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0 

ABSTRACT. 

The objective of this research programme is the development 

of a comprehensive mathematical model of the patient - artificial 
kidney machine system consisting of several interconnected sub- 

systems of the human organism. The model is based on current general 

physiological knowledge, but can be tailored to simulate individual 

patients by adjusting model parameters. Model parameters for 

individual patients may be obtained by using a parameter identi- 
fication technique and available past data of the patient. The 

model is designed to be used in an interactive mode by the renal 

clinician. Using the model as a predictive instrument, the 

clinician would be aided in the selection of optimal therapeutic 

procedures for individual patients. 
The model can also be used to represent the renal - body 

fluid system of a normal, healthy human. As such, it may be 

used as a vehicle with which to test hypotheses concerning the 
functioning of the complex and poorly understood control mech- 

anisms of this system. 

Validation of the model was performed using pattern recog- 
nition feature comparison and classical least squares techniques. 
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CHAPTER 1 

INTRODUCTION. 

The benefits which accrue from the application of 

systems engineering to the fields of medicine and health care 

are beginning to be recognised. The exchange of ideas 

between engineers and clinicians over the past decade or so 

has resulted in considerable advances in medical instrument- 

ation and in the use of artificial limbs and organs. The 

application of computers in hospitals as an information 

storage and retrieval system is now commercially available 

on a turn-key basis. However, the usefulness of the applic- 

ation of the tools and methods at the disposal of the systems 

engineer to further physiological knowledge and to aid in 

patient management is still to be fully accepted. 

One of the principal tools used by the biomedical systems 

engineer in health care is the mathematical model. The 

first step in developing a mathematical model is to form 

the functional description of the system of interest in 

systems' notation. This, in itself, is of great value to 

the physiologist, since the mechanisms of the overall 

system are easier to comprehend when described in this 

fashion rather than in the verbal form of description trad- 

itionally used by physiologist. 
Areas of weak knowledge in the physiology of the system 

are then highlighted when the mathematical description of the 

system is derived from the functional model. These areas may 

be filled in one of two ways. The first is to attempt to 

determine the unknown relationships by direct measurement on 

the system. Although the uncertain relationships sometimes 

can be inferred from measurements of related variables, or 

derived from experiments on laboratory animals, the accuracy 

and even the possibility of determining the relationships 
depends, largely, on the availability of suitable instrumentation. 

The second method entails using the mathematical model 

as a vehicle for testing hypotheses. Candidate mathematical 

hypotheses are inserted in the model for the uncertain 
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relationships until the variables of the model behave in a 

manner, similar to those of the real system under the same 

conditions. When the model mimics the aspects of the behaviour 

of the real system with the accuracy necessary to accomplish 

the purposes of model-building, then the model is said to be 

valid. Since this process depends on the elimination of a 

certain number of hypotheses, a resulting valid model may 

not be unique; that is, more than one of the candidate 

hypotheses could result in the model being observed as 

valid. It is also possible that the set of candidate hypo- 

theses may be exhausted without a single being able to 

satisfy the conditions of validity set for the model. 

In spite of the above limitations, the effect that 

mathematical modelling of biological systems has had on the 

advancement of knowledge in various areas in the field of 

human physiology may be found in the following references: - 

Guyton (1971), Kitney (1974), Blesser (1969), Cooney (1976). 

An obvious advantage of this form of research is that the 

results of different internal or external environments (thera- 

pies, for instance) can be tested on a valid mathematical 

model as opposed to on the actual system or on animal 

models. Examples of this are the testing of the effects of 

drugs on the cardiovascular system (Pullen, 1976), optimizing 
dialysis therapy (Frost and Kerr, 1977) and the study of the 

effects of pesticides on plant growth. 
A further potential benefit is that by rigorous mathematical 

analysis of the most complex piece of machinery known to man - 

man, himself - the structure of biological controllers may be 

determined and adapted for technological uses. Ifs for instance, 

the structure of the internal temperature homeostatis mechanism 

of the human body could be determined and adapted for use in 

industry, advantages such as better behaved large scale 

chemical reactions might be forthcoming. 

The original purpose of biological systems modelling 

was to aid in the advancement of knowledge of human physiology 
by the methods suggested above. The models produced for this 

purpose were generally of a single organ or metabolic system. 
These were as isomorphic with the system being modelled as 
permitted by the extent of the knowledge of the relevant 
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physiology, and by the available computer facilities at that 

time. Although the benefits of this form of modelling were 

considerable, they did not have any immediate impact upon the 

vast majority of the medical profession whose assistance for 

the purpose of supplying data is invaluable . For this reason, 
biological modelling came under criticism of having little more 

purpose than that of occupying the time of otherwise bored 

mathematicians. 

The modeller, armed with ever-improving computer facilities, 

responded to this crtiticism by producing models of medical sit- 

uations designed, for instance, to aid the clinicians in the 

decision making process in patient management. These models, 

often incorporating models of several of the subsystems of 
the human organism, did not have to provide a comprehensive 
description of the actual physiological mechanisms being 

modelled; instead the accuracy of response was of prime 
importance. Hence, empirical or 'black-box' modelling 
techniques came into use. 

The work described here, however, attempts to utilize 
current knowledge as far as is practical to arrive at a 
structural model of the patient-artificial kidney machine 

system. The aim is that the model should be used in a renal 

unit by the clinician in order that he may be aided in the 

selection of parameters for the dialysis therapy so that the 

patient may be maintained in an optimal state. 
The need for this work arose due to the observations by 

the clinician that an alarming number of dialysis patients 
complained of feeling worse after dialysis than before. 
Specifically, some patients suffered from nausea and vomit- 
ing during and just after dialysis, and occasionally the blood 

pressure of patients deviated from normal to such an extent 
that it would have been dangerous not to terminate dialysis 

prematurely. The causes for these conditions are unknown 
at present, although it has been suggested that perhaps the 
feeling of nausea is due to the disequilibriation syndrome 
(Abbrecht and Prodany, 1971), when the intracellular concen- 
tration of urea does not fall as rapidly as the extracellular 
concentration, and that the circulatory problems arise 
because of a similar effect on body potassium, which, in 

-11- 



turn, affects the pumping ability of the heart. Due to the 
limitations of instrumentation , it is not possible to test 

these or similar hypotheses by direct measurement. However, 

relevant data are readily available from a valid mathematical 

model for the purpose of such testing. 

It has been casually observed (Thompson, 1976) that the 

above mentioned problems which occur during dialysis are 

generally accompanied by deviation in the core and surface 
temperatures of the patient. Statistical analysis of the 
data generated by the model suitably linked to a thermo- 

regulatory model would confirm that the temperature devia- 

tions are expected in these conditions, and investigation 

of the structure of the model may reveal the reasons for this 

phenomenon. This may throw more light on the reasons for the 

occurrance of the complications during dialysis. Also, it may 
be possible that by monitoring the temperature of the patient, 

early warning of circulatory problems may be obtained, 

provided that the deviation in temperature is not a direct 

result of the change in blood flow patterns. 
In the majority of cases, there is little pre-dialysis 

monitoring of patients due to measurement difficulties. 

During the course of dialysis, blood pressure and pulse rate 
are generally the only variables monitored. Hence the dialysis 
therapy selected may not be optimal as far as the end-state 
of the patient is concerned. In addition, since there is a 
drastic shortage of renal units and their resources, compared 
with the need for this service, minimization of time on 
dialysis for each patient is extremely desirable. 

The objectives of the work described in this thesis are 
hence as follows: - 

(1) Tb produce and validate a comprehensive, strutural 
model of the patient-artificial kidney machine 
system, including as many of the subsystems of the 
human body whose variables are of interest to the 
clinician. 

(2) To adapt the above model so that it may be used in 
the renal unit to predict continuously with time the 
future (during dialysis and post-dialysis) states of 
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the patient, given the present (pre-dialysis) state 

and proposed therapy so that the clinician, by 

repeating this procedure for different therapies, 

may be aided in the selection of the therapy that 

would produce an optimal end-state for the patient. 

The model should also be capable of predicting the 

state of the patient for up to several days after 

dialysis so that the clinician may obtain an ind- 

ication of any complications that might occur in 

between dialyses when the patient may be away from 

clinical supervision, and also an indication as to 

when the next dialysis should be performed. 
(3) To utilize the model, adapted to represent the 

subsystems with normal renal functions, as an 

instrument with which to test current hypotheses 

concerning the renal-body fluid regulating system. 
(k) To statistically analyse the data generated by the 

model linked to a thermoregulatory system model 

in order to establish the dependence, if any, of 
the temperature variables to the patients condition 
during dialysis. This may give more information 

on the causes of the abnormal conditions seen to 

occur during dialysis. 

Apart from the benefits to patient management and medical 

science mentioned previously, this work has several contribu- 
tions, to make to systems science: - 

(1) The model developed for this work consists of models 

of several subsystems linked by their common varia- 
bles. Previous biological models have been developed 

mainly to represent a single subsystem of the human 

organism. 
(2) Although biological system models for the purpose 

of patient management have been developed in recent 
years, these are generally of a rather empirical 
nature. This work shows that a structural model 
may be applied successfully in the health care 
situation, having the advantage that the unmeasureable 
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system variables of interest may be obtained from 

the model. 
(3) The lack of any formalised approach to the problem 

of validation of biological models has resulted in 

many models being presented without sufficient 

validation. Several validation techniques, including 

a feature comparison technique were used on the 

model presented here, so that the effectiveness, 

advantages and disadvantages of the different tech-. 

niques may be compared. 

The description, in systems terminology of the health care 

process to be modelled is presented in Chapter 2. The functions 

of the normal kidneys are outlined first. This is followed 
by a description of the abnormal states which arise from renal 
failure; and finally the dialysis process is explained. 

A review of past work on the modelling of relevant 
biological systems is presented in Chapter 3. Since the 

model produced in this work consists of several sub-models, 

past work on each of the subsystems incorporated is examined 
in turn. Chapter 3 concludes with a review of past models 

with an emphasis on dialysis patient management 
The detailed description of the mathematical model is 

presented in Chapter 4. 

Relevant experiments on humans are simulated using 

modifications of the basic model, and the results are pres- 

ented in Chapter 5. The capabilities and limitations of the 

model, as well as results using the hypothesis testing 
facility of the model are also discussed here. 

The results of tests of the validity of the model of the 

patient-artificial kidney machine are presented in Chapter 6. 
A feature comparison technique is used in order to utilize 
available measurement data gathered during the dialysis of 
patients in a renal unit. 

For improved predictive performance, certain parameters 
of the model need to be 'tuned' so that the individual 
patient is represented more accurately by the model. A 
description of the application of a parameter estimation 
routine for this purpose, and the improvement in simulation 
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accuracy thus obtained, is presented in Chapter 7. 

A description of how the model may be used interactively 

in the renal unit to aid in optimal therapy selection is 

presented in Chapter 8. 

Chapter 9 concludes the thesis and discusses the lines 

along which further research could progress to further 

benefit the dialysis patient. 
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CHAPTER 2 

MEDICAL PROCESS TO BE MODELLED. 

The first stage in the development of a mathematical model 

of a complex system is the formulation of a functional description 

of the system. In addition, it is necessary for this functional 

description to be relevant to the objectives underlying the 

model formulation process. Therefore, a description of the 

current concepts of the physiology of the renal - body fluid 

system and the related functional model, in the form of block 

diagrams, are presented in this chapter. The first section of 

this chapter presents an overall description of the renal - body 

fluid system; and the second section examines certain components 

of this system in greater detail. Section 2.3 briefly describes 

the causes and effects of renal failure, and the final section 
describes the process of renal haemodialysis, which is used to 

compensate for the lost kidney function, and thus, sustain the 
life of the patient suffering from renal failure. The material 

presented in this chapter, thus forms the basis for the formu- 

lation of a major portion of the mathematical model, described 

in Chapter 4. 

2.1. Overall Description Of The Renal - Body Fluid System. 

The primary role of the kidneys is the excretion of waste 
materials generated in the body. This function is accomplished 
in the following manner. First, a large. volume of blood 
(approximately 1500 litres per day)* is filtered in the kidneys, 

such that approximately one ninth of this volume is forced 

across the two million glomerular filtration membranes into 
their associated tubules. (Figure 2.1 depicts a functional 
diagram of a nephron). The chemical composition of the glomer- 
ular filtrate is very similar to that of plasma, except that the 

All quantities quoted in this chapter are average values for 
a normal 70 kg. male, cited from Cooney (1976), Guyton (1971) 

and Maude (1977). 
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concentration of protein in the filtrate is negligible. The 

glomerular filtrate therefore, contains the waste products 

to be excreted and, in addition, large quantities of vital 

substances such'as water, electrolytes, amino acids and 

glucose. It is then the function of the tubules to cause the 

reabsorption, back into the bloodstream, of these vital sub- 

stances to the extent required for the correct functioning of 

the body. The remaining fluid, containing the wastes, is then 

collected in the bladder and is periodically released from the 
body as urine at a rate of approximately 1.3 litres per day. 

Quantitatively, the most important substances of the 

tubular reabsorbate are water and sodium salts. Hence the 

secondary, but nevertheless extremely important task of the 

kidneys is the regulation of the volume and composition of the 

body fluids. 

The functions of the kidneys, in relation to the other 

organs of the body, are made apparent by considering the majot 
body fluid compartments and their important influx and efflux 

pathways, as shown in Figure 2.2. 

The two channels representing influxes to the body are 
ingestion via the gastrointestinal tract (2.3 litres of water 
and 7.0 grammes of NaCl per day) and the metabolic generation 
of wastes and water (30 grammes of urea, 0.6 grammes of creat- 
inine, and 0.3 litres of water per day). 

The plasma (3.2 litres in volume), circulating throughout 
the body, acts as a medium for the transport of substances from 

the influx to the efflux channels. In addition, filtration of 
protein - free plasma across the capillary membranes provides 
a two way exchange of substances with the largely stationary 
interstitial fluid compartment (8.4 litres in volume). Although 
the one way fluxes are very large, the nett two way fluxes of 
water and electrolytes in the steady state are zero. The 
plasma and interstitial fluid compartments, together with other 
minor fluid compartments comprise the extracellular fluid comp- 
artment (15 litres in volume). Extremely rapid two way exchange 
of water and slight exchange of electrolytes by diffusion and 
active transport take place across the cell walls between the 
interstitial compartment and intracellular compartment (25 litres 
in volume approximately). But in the steady state, the nett 
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movement of water and electrolytes is zero. 

The waste products are generated as a result of metabolism 

in the cells. Hence diffusion of these substances occurs from 

the intracellular, through the interstitial, to the plasma 

compartment, from where they are removed by the kidneys (or in 

the case of a patient with kidney failure, by the artificial 

kidney machine). Along with these wastes, the kidneys (arti- 

ficial kidney machine) cause the excretion of water (normally 

1.3 litres per day) and electrolytes (normally 6.2 grammes of 

NaC1 per day). There is also some loss of water via the respi- 

ratory tract, and some loss of water and electrolytes through 

the faeces and the skin (sum of non-renal losses is 1.3 litres 

of water and 0.8 grammes of NaCl per day). 

In the steady state, in addition to the three major fluid 

compartments being in dynamic equilibrium, the total influx 

of any substance is equal to the total efflux from the body. 

However, any change in influx or non-renal change in efflux from 

the body constitutes a disturbance to the system. Apart from a 

change in the metabolic rate, all other influxes and effluxes 

will immediately affect the plasma compartment. The rapid rate 

of transport of substances between the three compartments, however, 

brings about a large degree of compensation to the effects of the 

disturbance almost immediately. However, the renal efflux is 

internally adjusted, so that the kidneys are the ultimate 

controllers of the volumes and composition of the body fluid 

compartments. 

2.2. Normal Functions Of The Renal System. 

Figure 2.3 presents a simplified schematic diagram of the 

internal variables affecting renal efflux. The variables, apart 

from the renin-angiotensin-aldosterone feedback system, are seen to 

originate from the cardiovascular system, although some are affec- 

ted via the neuroendocrine systems of the body. 

Basically, the cardiovascular system consists of the heart 

in a closed circuit of blood vassels and capillaries. The heart 

mechanically pumps the blood, containing fluid and nutrients absor- 
bed from the gastrointestinal system, to the various tissues and 

organs of the body, including the neuroendocrine and renal 
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systems. The variables of the cardiovascular system, shown as 

outputs in Figure 2.3, are renal blood flow, RBF, blood volume, 

By, and blood osmolality, 
Cos 

p. 
The neuroendocrine system, consisting of the hypothalamus- 

pituitary system and the adrenal gland, monitors the blood 

volume and osmolality, and also the plasma level of angiotensin 

II, [Ang] 
p, which is an output of the renin-angiotensin system. 

Changes in blood volume or osmolality alter the rate of release 

of antidiuretic hormone (ADH) and hence its plasma concentration, 
[ADH]p; and changes in the plasma level of angiotensin II alter 

the rates of synthesis and release of aldosterone from the adrenal 

cortex, and hence its plasma concentration, [Ald]p. 

The rate of excretion of water, electrolytes and metabolic 

waste are determined primarily by the renal blood flow rate; 

however, the rates of excretion of water and electrolytes are 

modified by the effects of the concentration of ADH and aldo- 

sterone respectively. 

A deeper understanding of the regulatory function of the 

kidneys may be obtained by considering in detail the mechanisms 
involved in (a) the renal system, and (b) the Aeuroendocrine 

system. 

2.2.1. The Renal System. 

The functional diagram of Figure 2.4 represents the mech- 

anisms of the renal system. The upper portion depicts the four 

major components of the nephron. 
The variables seen as outputs from the cardiovascular 

system are mean arterial pressure, PAS , and renal blood flow, 
RBF. The rate of renal blood flow is maintained at a rela- 
tively constant value by the renal vascular resistance. 

There is a pressure drop across the renal vasculature, and 
hence, the pressure forcing fluid across the glomerular capillary 
membranes, Pf, is the difference between the resulting pressure 
in the glomerular capillaries, 'rT 

g, and the pressure outside the 
glomerular capillaries in the Bowman's capsule, PB. The rate of 
fluid filtration, GFR, is proportional to the nett filtration 
pressure, Pf. 
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In the proximal tubule, approximately three quarters of the 

filtered sodium, and a corresponding volume of water, are iso- 

osmotically reabsorbed. The phenomenon that a constant fraction 

of the filtered lead of sodium is actively reabsorbed in the 

proximal tubule for a wide range of values of glomerular filtration 

rate, is known as the glomerular-tubular balance. However, it has 

been shown that the glomerular-tubular balance is upset by certain 

factors (De Wardener, 1973), the most important for fluid balance 

being changes in the concentration of sodium in the intraluminal 

fluid. 

The fluid emerging from the proximal tubule, VPT, with 

osmolality, 
[Os] 

pT, enters the loop of Henle, where a similar 

effect is responsible for the control of the ratio of sodium 

chloride reabsorbed in this section of the nephron. In addition, 

the filtrate volume and osmolality undergo considerable modification, 

within the loop of Henley consistent with the operation of the 

countercurrent multiplication process (Guyton, 1971). Changes 

in the final sodium concentration or load in the filtrate, as it 

emerges from the loop of Henle, Nl , are monitored by the macula 
densa cells of the juxtaglomerular apparatus. It is believed 

that these cells are responsible for the negative feedback 

control of glomerular filtration rate (Thurau et al. 1967 ). The 

theories are discussed in a later section in this chapter. 
The filtrate emerging from the loop of Henley with volume, 

VLH, and osmolality, 
[Os1 

LH, undergoes its final changes in 

volume and composition in the distal tubules and collecting ducts 

by the effects of the levels of ADH and alsodterone in the circu- 
lating interstitium. Increases in the levels of ADH and aldo- 

sterone promote increases in the reabsorption of water and 
sodium respectively. The mechanisms are outlined in the relevant 
sections in this chapter. 

The final filtrate emerging from the collecting ducts, with 
volume, VU, and osmolality, COs] 

U, is stored in the bladder for 

periodical excretion as urine; whereas the substances reabsorbed 
by the tubules are returned to the renal venous blood stream. In 
this manner, control of the volume and composition of the blood, 

and indirectly, the interstitial and intracellular fluid compart- 
ments is established. The major controlling factors are seen to 
be the arterial pressure, which is dependant on circulating blood 

-20- 



volume, and ADH and aldosterone levels. Other important factors 

are described in Chapter 4. 

2.2.2. The Neuroendocrine System. 

The two major neuroendocrine systems affecting renal function, 

and hence control of the volume and osmolality of the body fluids, 

are (i) the antidiuretic hormone (ADH) system, and (ii) the renin- 

angiotensin-aldosterone (RAA) system. The ADH system influences 

the rate of water excretion by the kidneys, and hence it affects 

firstly, the osmolality, and secondly, the volume of the extra- 

cellular fluid compartment. Aldosterone influences the rate of 

sodium excretion by the kidneys, and hence controls the fluid 

volumes of the body. 

However, since a disturbance in fluid volume will affect 
fluid osmolality and a disturbance in fluid osmolality will cause 

an ADH - induced effect on fluid volume, the question arises as 

to how the volume and the osmolality controlling mechanisms 
interact to bring the fluid systems back to the normal steady 

state. 

(i) The ADN System. 

A detailed account of the mechanisms involved in the ADH 

system may be found in the reviews by Handler and Orloff (1973), 

Moses and Miller (1974) and Share (1974). The salient features 

are described below and in Figure 2.5. 

Changes in the plasma level of ADH are dependant on the 

balance between its secretion rate and the rate of its removal 
from the blood by the liver and kidneys. The secretion rate 

appears to be largely dependant on blood osmolality and volume. 

The major role of ADH is to adjust the water permeability 
of the cells of the distal and collecting tubular membranes, such 

that an increase in the level of ADH will lead to an increase, 

and a decrease will cause a decrease, in the rate of water re- 

absorption through the membranes of these tubules. In this 

manner, the osmolality and volume of the fluid leaving the body, 

and hence, of the body fluids themselves are regulated. 
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The osmoreceptor theory of ADH secretion, first proposed 
by Verney (1947), suggests that changes in plasma osmolality, 
[os] 

p, are monitored by osmoreceptors in the supraoptic nucleus 

of the hypothalamus, which, on an increase in osmolality would 
increase the frequency of neural discharge, f0. This would lead 

to increases in the rates of synthesis and release of ADH from 

the hypothalamus-pituitary system into the blood, and hence to 

an increase in its plasma concentration. A decrease in osmolality, ' 
however, would lead to the converse effects -a fall in the rate 

of release and, hence, concentration of ADH. 

Volume or stretch receptors for the control of ADH release 

rate have been located at three sites in the vascular system. 
Receptors in the left atrium, also known as low-pressure venous 

vascular bed receptors, measure the distention of the left atrium. 
Receptors located in the carotid sinus and in the aortic arch 

monitor the arterial pressure. The receptors at these two sites 

are also known as the high-pressure arterial vascular bed 

receptors. 

Experiments conducted by Johnson and associates (1969), give 
evidence to support the theory that receptors in the left atrium 
monitor the volume of blood, BV9 returning to the left ventricle, 

and for an increase in left atrial pressure (caused by an increase 

in blood volume), there is an increase in the frequency of impulses 
in the vagal afferents, fv, to the hypothalamic centres. There is 

considerable evidence (Lauer et al., 1970) that the vagal impulses 
inhibit the synthesis and release of ADH, hence lower its plasma 
concentration and so reduce the fluid volume by reducing the 

rate of water reabsorption from the distal and collecting tubules 

of the kidneys. A decrease in left atrial pressure would give 
rise to the opposite effects. 

The carotid sinus and aortic baroreceptors monitor changes 
in arterial pressure, PAS , such that an increase in arterial 
pressure stimulates these receptors to increase their rate of 
firing impulses, fb. The impulses then enter the vasomotor 
centre where they inhibit sympathetic, and stimulate parasympa- 
thetic, outflow, fs, to (among other sites) the kidneys and the 
hypothalamic-pituitary system. The reduced sympathetic stimulation 
causes a fall in the renal vascular resistance, and therefore, 
an increase in glomerular filtration rate; it also causes the 
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inhibition of the release of ADH from the hypothalamus, which 
leads to increased fluid excretion and hence a reduction in 

body fluid volume, and thus also in arterial pressure. Converse 

effects would occur with a fall in arterial pressure. 
The left atrial stretch receptors, rather than the carotid 

and aortic baroreceptors, appear to be the more important first 

line of defence against a change in blood volume. Changes in 

blood volume in excess of ten per cent will cause a change in 

arterial pressure and hence activate the baroreceptors, whereas 

smaller changes in blood volume will alter the distention of the 

left atrium. However, following the experiments of Johnson and 

associates (1970), the conclusion was reached that the stimuli 

to release ADH, caused by a change in fluid volume and by a 

change in fluid osmolality are additive. The relative potency 

of each of the stimuli are examined in more detail in the 

development of the model presented in Chapter 4. 

(ii) The Renin-Angiotensin-Aldosterone System. 

The volume of the extracellular fluid compartment, and hence 

the blood compartment, is dependant on the total sodium in the 

extracellular compartment. Normally, only the efflux of sodium 
is subject to internal variation by the kidneys, and an important 

factor influencing changes in the rate of efflux of sodium is 

the renin-angiotensin-aldosterone system, via the effects of aldo- 

sterone on the distal and collecting tubules of the nephron. An 

outline of the components and mechanisms involved in this system 
is presented here, but a more detailed account may be found in 

the review by Laragh and Sealey (1973). 

Renin is an enzyme produced primarily by the granular cells 

of the juxtaglomerular apparatus of the kidneys in response to a 

variety of stimuli. These include a reduction in renal perfusion 

pressure, a reduction in sodium load at the mascula densa cells 
and an increase in the sodium concentration at the mascula dense 

cells of the juxtaglomerular apparatus. 
Based on the findings of experiments by Tobian and associates 

(1959), the intrarenal vascular receptor theory for renin release 
was proposed. This theory suggests that the granular cells of the 
juxtaglomerular apparatus, located in the media of the afferent 
arteriole, are sensitive to changes in stretch in the wall of 
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this vessel. The degree of stretch is dependant on the renal 

perfusion pressure, which, in turn, is related to the systemic 

arterial pressure. Thus, any factor which decreases the renal 

perfusion pressure tends to reduce the stretch of the afferent 

arteriole and increase the granularity of the cells, and thereby 

increase the rate of renin release. An increase in renal perfu- 

sion pressure would give rise to the opposite effects. There 

exists much experimental evidence in support of this theory (Lee, 

1969; Blaine et a1., 1971)ß although the exact mechanisms and 

quantitative relationships between the variables are still to 
be determined. 

Goormaghtigh (1945) first proposed that the macula densa 

cells of the juxtaglomerular apparatus were involved in a 

negative feedback loop controlling glomerular filtration rate. 
The experiments of Vander and Miller (1964) led to the proposal 

of the macula densa sodium load theory for renin release. This 

theory states that an increase in sodium load at the macula densa 

cells inhibits sodium sensitive tubular receptors, thereby 
decreasing the rate of renin release from the juxtaglomerular 

cells. However, much controversy exists over this theory, since 

experiments such as those of Lee (1969) have shown that adminis- 

tration of natriuretic agents in man and dog, which presumably 

cause an elevation of the tubular sodium load at the macula densa 

cells, cause an increase, and not a derease, in plasma renin 
levels. To resolve this apparent discrepancy, Vander and Luciano 
(1967), through their experimental results, suggested there was 

more than one mechanism involved in the control of the release 

of renin in these experiments. However, the controversy over the 

validity of this theory still exists. 
Another theory, the macula densa intraluminal sodium concen- 

tration theory proposed by Thurau and associates (1967), has 

received wider acceptance. The theory suggests that it is the 

concentration of sodium at the macula densa cells which stimulates 
the granular cells to increase the release rate of renin into the 
afferent arteriolar blood. This renin is converted into angioten- 
sin II9 a vasopressor substance, which causes the constriction 
of the afferent arteriole, thereby reducing the glomerular 
filtration rate. This in turn reduces the sodium load and concen- 
trations reaching the macula densa cells and thereby closes the 

I 
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feedback loop. There exists much evidence in support of this 

theory (Meyer et al., 1968; Cooke et al.,. 1970; Thurau et al. # 
1972), but it is contested by Vander and Carlson (1969). 

To summarize, the three theories regarding the intrarenal 

control of the release of renin have been outlined above. The 

mechanisms involved in each of these theories are not clearly 

understood, but, as shown in Figure 2.6. the stretch of the 

afferent arteriole and sodium sensitive macula densa cells have 

been implicated as receptors to control the granulation and 

thereby the rate of release of renin from the granular cells of 

the juxtaglomerular apparatus. The release of renin appears to 

be controlled by other factors as well, possibly mediated via 

the mechanisms suggested above. These factors include posture 

(Gordon et al., 1967), the dynamics of sodium (Nash et al. 9 1968) 

and potassium (Vander, 1970), sympathetic simulation (Taquini et 

a1., 1964)ß ADH and angiotensin levels (Shade et al., 1973). 

The plasma renin level is determined by the dynamic balance 

between its rate of release into, and rate of inactivation from, 

the circulation. Experiments (Heacox et al., 1967) have shown 

that the liver is the major site for renin inactivation, and that 

the clearance rate of renin is a function of hepatic blood flow. 

It appears that renin has only one physiological effect - 

to liberate angiotensin I from renin substrate (Skeggs at al. p 
1964). Conclusions from a study by Sealey and associates (1972) 

suggest that the substrate concentration in human plasma is far 

in excess of that needed to maintain a normal plasma level of 

angiotensin III and hence renin substrate is not a rate limiting 

factor in the renin-angiotensin system. 
Angiotensin I is split by enzymes found mainly in the lungs 

and kidneys to yield angiotensin III a pressor substance (Ng and 
Vane, 1968). It has been shown that the plasma concentration of 

angiotensin II is directly related to the plasma level of renin, 

and inversely related to the degree of sodium depletion (Gocke at 

al., 1969), and that it is rapidly removed from the circulation 
by angiotensinase in the liver and kidneys (Ng and Vane, 1968; 

Biron et al .9 1968). Angiotensin II has two major physiological 

effects: firstly, it causes vasoconstriction of the arterioles in 

the circulation; and secondly it acts on the adrenal cortex 
causing an increase in the rate of secretion of aldosterone. 
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The rate of aldosterone secretion is also affected by the 

states of sodium and potassium balances, such that chronic sodium 

loading or potassium depletion inhibits, and chronic sodium 

depletion or potassium loading enhancespthe secretion of aldo- 

sterone (Müller, 1971). The roles of aldosterone are to control 

the secretion of potassium electrolytes, and the reabsorption of 

a small fraction (2 - 3%) of the filtered load of sodium remaining 

in the distal and collecting tubules of the nephrons. 

These concepts are summarized in the diagram of Figure 2.7. 

In addition, we may consider how the renin-angiotensin-aldo- 

sterone system affects feedback control on variables which deter- 

mine the volumes of the two major fluid compartments. Since 

sodium is the major electrolyte in extracellular fluid, and 

potassium is the major electrolyte in intracellular fluid, the 

volumes of the extracellular and intracellular compartments are 

largely determined by the total body sodium and potassium, respect- 

ively. The rate of resin release is stimulated primarily by, 

firstly, a fall in arterial pressure, brought about, possibly, by 

a drop in extracellular fluid volume, and secondly, a rise in 

total body sodium via increased sodium concentration at the macula 

densa cells of the juxtaglomerular apparatus. The rate at which 

angiotensin II is produced in the plasma compartment is primarily 

dependant on the plasma renin level. Elevation of the level of 

angiotensin II, [Ang] 
p, 

increases firstly, the vasoconstriction 

of circulatory arterioles, thereby returning the arterial pressure 
towards its normal level, secondly, the renal vascular resistance, 

and hence lowers glomerular filtration rate which probably removes 
the stimulus to the sodium - sensitive tubular receptors to 

release renin, and thirdly, the production rate of aldosterone. 
The rate of aldosterone production is also increased by hyper- 
kalemia and low plasma sodium concentration. High levels of 

aldosterone, 
[Ald 

p, promote firstly, tubular secretion and 

urinary excretion of potassium electrolytes, thereby reducing 
the body potassium content and controlling the intracellular 
fluid volume, and secondly, tubular reabsorption of sodium 
electrolytes, thereby increasing extracellular fluid volume and 
hence arterial pressure. 

Based on the physiological and functional concepts above, 
a brief description of how various classes of renal disease 
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affect the normal functions of. the kidneys is presented in the 

next section. There then follows a section describing dialysis 

therapy which is used to combat the effects of renal failure. 

2.3 Renal Failure. 

Renal failure represents the terminal stage of certain renal 

and non-renal diseases. The pathophysiology and etiology may be 

found in detail in (Maude, 1977). The symptoms of renal failure, 

in general, are the impairment of the renal functions to various 
degrees; the extreme case is the complete shut-down of urine 

flow. Renal failure is described as acute when the onset of 
this condition is rapid, and is potentially reversible. Chronic), 

renal failure results from a progressive reduction in the number 

of functioning nephrons over a period of, perhaps, years. Renal 

failure can be brought about by many factors which fall into the 

general categories of pre-renal, renal, or post-tenal. 

2.3.1. Pre-renal Factors. 

Pre-renal factors leading to acute renal failure include 

hypotension, heart failure, haemorrhage, dehydration, burns and 

shock. Chronic renal failure can be brought about by such pre- 

renal factors as reduced liver function in cirrhosis of the liver. 

The common underlying mechanism in all pre-renal factors is the 

reduction of renal blood flow, leading to renal ischaemia and 
tubular necrosis. 

2.3.2. Renal Factors. 

Renal factors are by far the most coannon causes of renal 
failure. Acute renal failure may occur as a result of glomer- 
ularnephritis (morphological changes to the glomerular membrane 
resulting in increased membrane'permeability, decreased glomer- 
ular filtration rate and urine flow), pyelonephritis (infection 

of the tubules resulting in reduced glomerular filtration rate, 
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urine flow and some urinary loss of protein), and toxic nephro- 

pathy (destruction of nephrons as a result of intake of a toxic 

material such as a heavy metal). Glomerularnephritis and toxic 

necropathy are two of the renal factors that could also lead 

to chronic renal failure. Abnormalities, primarily affecting 

the kidneys and leading to renal failure, are categorized as 

renal factors. 

2.3.3. Post-renal Factors. 

Post-renal factors leading to acute or chronic renal failure 

are those associated with the obstruction of the flow of urine 
in the urinary tract, such as obstructive uropathy. 

2.3.4. Summary. 

The primary symptom of acute renal failure is the sudden 
drastic reduction in urine output, known as oliguria, such that 

it is insufficient to excrete waste products, such as urea and 

creatinine, at a rate needed to prevent the development of 

uraemia. The onset of chronic renal failure, strangely enough, 
is marked by an increase of up to three times the normal urine 

output, known as polyuria. This is followed by a gradual 
decrease to zero urine output as the number of functioning nephrons 
diminish. The total cessation of urine output is known as 

anuria. Other symptoms associated with renal failure are oedema, 
hypertension, disturbances in the sodium and fluid balance 

system, hyperkalemia and anaemia. 
Clinical management of renal failure patients (apart from 

attempting to remove the underlying causes of the failure) depends 

on the severity of the attack. In the initial stages of failure, 

and if the failure is not severe, control of protein, salt and 

water intake may be sufficient therapy to counteract the effects 
of renal failure. When this strategy proves to be ineffective, 

the kidney functions must be performed artificially by means of 

peritonial dialysis or haemodialysis. In the limiting case, when 
hypertension is not controlled by dialysis, renal transplant 

represents the ultimate therapy. 

-28- 



2.4. Renal Dialysis. 

Haemodialysis is the most commonly used method of artificially 

performing the functions of the kidneys, and thus, of alleviating 

the patient suffering from renal failure of its associated symp- 

toms. Haemodialysis is a process where the patient is attached 

to the dialysis machine for periods varying from four to seven 

hours, two or more times per week, depending on the needs of the 

patient. The mechanisms of the process are described below and 

are shown in the diagram of Figure 2.8. 

Blood from an artery of the uraemic patient is caused to 

flow into the artificial kidney machine on one side of a semi- 

permeable membrane, and an electrolytic solution, the dialysate,, 

is passed on the other side. The electrolytic composition of the 

dialysate is the same as that of normal plasma, except for the 

absence of potassium from the dialysate. However, the composition 

of the dialysate is generally altered, to suit the needs of the 

individual patient. Electrolytes and waste products then diffuse 

through the membrane (at rates dependant on the differences in 

the concentrations of the particular substances) across the 

membrane. The rate of diffusion of a particular substance through 

the membrane is also dependant on the surface area of the membrane, 

and the relative size of the pores of the membrane compared with 

the size of the molecules of the substance. Fluid is forced 

through the membrane at a rate dependant on the controllable 

ultrafiltration pressure across the membrane. 
The 'cleaned' blood is then returned, via a vein, to the 

vascular compartment of the patient, where it equilibriates 

with the body fluids of the patient. Thus, continuous passage 

of blood through the artificial kidney machine removes excess 

water and some of the waste products, and alters the concentrations 

of the electrolytes to more normal levels in the extracellular 

and intracellular fluid compartments of the patient. 
After dialysis, the patient is free to live a near - normal 

life, apart from the restriction of a controlled diet, until it 

is necessary for him to be dialysed again, when the above proc- 

edure is repeated. 
The above description of the mechanical aspects of haemo- 

dialysis gives little indication of the problems associated with 
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the administrations of this form of therapy. A discussion of 
these problems, in conjunction with the objectives of the work 
described in this thesis, was presented in the previous chapter. 

2.5. Summary. 

The functional description of the renal - body fluid system, 

the consequences of the various classes of renal failure and the 

mechanisms of haemodialysis, presented in previous sections of 

this chapter form the basis from which the mathematical description 

of the patient - artificial kidney machine system is derived. 

However, as is evident from the foregoing discussions, certain 

aspects of renal physiology are, as yet, poorly understood. 

One of the objectives of this work, as discussed in the 

previous chapter, is to produce a model which may be used to 

test hypotheses regarding these areas of weak knowledge. In the 
development of the mathematical model, the specific regions of 

uncertainty are highlighted; and subsequent simulation of the 

model, as described in Chapter 5, serves to test the validity of 

assumptions and hypotheses associated with these uncertainties. 
However, preceding the chapters presenting the discussions 

concerning the development and simulation of the model, previous 

relevant biological models are reviewed in the following chapter 
in order to facilitate the transition from the verbal to the 

mathematical description of the system being considered in this 

work. 
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CHAPTER 3 

REVIEW OF PAST BIOLOGICAL MODELS. 

Existing biological models relevant to this work are 

briefly described and examined in this chapter. The purposes 

for this are as follows: 

(1) The various methods of model formulation are made 

apparent. 
(2) The capabilities and limitations of different models 

are brought to light, and the need for definite 

purposes for model building is emphasized. 

(3) Comparison of certain aspects, such as method of 

formulation, level of modelling and the potential 

capabilities of satisfying the objectives of model 

building, can be made between this work and others. 

(4) Aspects of current knowledge of the subsystems to be 

modelled may be gained by consideration of existing 

models. 

Models describing the individual subsystems incorporated 

in this work are examined in the first section of this chapter; 

models built to improve the health care of renal dialysis 

patients are described in the second section; and in the 

summarizing section, a comparison is made of the model 

formulation techniques revealed by this survey in the light of 

the objectives of the work described in this thesis. 

3.1 Individual Subsystem Models. 

Brief descriptions of models of the human thermoregulatory 

system, cardiovascular system and renal functions are given 
in this section. Since the number of existing biological 

models relevant to each system is so large, representative 

models, which demonstrate the range of modelling techniques, 

are discussed for each of the above subsystems. 
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3.1.1 Thermoregulatory System Models. 

(1) Wyndham and Atkins (1960): 

Wyndham and Atkins developed a model, in which they 

made the simplifying assumption that the human body is 

represented as a single cylinder whose elements are thin 

concentric shells about the axis of the cylinder. They also 

assumed that the temperature is uniform throughout a single 

element, and that the rate of heat transfer between two 

adjacent elements is proportional to the temperature difference 

between them. Hence, using the terminology of Table 3.1, 

the equation representing the system is: 

p CP x T_ 
"L 

J_ Kr xr+ hm (3.1) 
traT --) 

Where the rate of accumulation of heat (left hand side of 
equation) is given as the sum of the rate of heat conduction 

and the metabolic heat generation rate. 
The boundary conditions for the solution of (3.1) are: 

(1) The temperature gradient at the centre of the cylinder 
is zero. 

(2) At the surface, the rate of heat loss to the environment, 

qs, is equal to the sum of the heat lost due to 

convection, qc# radiation, q=9 and evaporation, qe. 

Radiative heat loss from the surface of the body to the 

environment is given by the Stefan-Boltzman equation: 

9rýR1xArx(T34-TW4) (3.2) 

Convection of beat from the surface of the body With air 
velocity between 10 and 1000 ft/min parallel to the axis of 
the cylinder is given by: 

qc - 0.5*Aýxv1 005*(T3 
-. Te ) (3.3) 
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TABLE 3.1. Variables Of The Model By Wyndham And Atkins (1960). 

Cp Specific heat. 

Density of blood. 

T Tissue temperature. 

r Radial distance from axis of cylinder. 

K Thermal conductivity, 

hm Rate of tissue beat generation by metabolic reaction* 

qr Heat loss by radiation. 

K1 Universal radiation constant (4.92 x 10-8 cals/m2/I). 

Ar Effective radiation area. 

Ts Mean radiation absolute temperature of the body surface. 

Tw Mean radiant absolute temperature of the environments 

qc Heat loss by convection. 

Ac Effective area of the body creating convection losses. 

v1 Velocity of surrounding air. 

Ts Mean skin temperature. 

Te Effective environmental temperature* 

qe Heat loss by evaporation. 

Ae Effective area of body creating evaporative heat losses. 

VPs Partial pressure of water at skin temperature, Ts. 

VPa Partial pressure of moisture in air at temperature, Te. 

K Evaporation conductance. 

qý 1.04cAcaiv1 0"5x(Ts 
- Te) (3.4) 

Evaporative heat exchange from saturated skin is given by: 

qe 23 1.4vv1 0.4xAex(VPs 
-. VPa) (3.5) 
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Evaporative heat loss from unsaturated skin is given by: 

q-KW1 
0' 4YAe 

)(VPs -. VPa) (3.6) 

(2) Wissler (1963): 

Wissler extended the work of Wyndham and Atkins (1960), 

whereby the body is assumed to be represented by six interconnected 

cylinders (head, torso, two arms and two legs), each cylinder 

assumed to be a homogeneous mixture of bone and tissue, 

covered with a layer of fat. and skin. In addition, this model 

assumes that the tissues of each cylinder are uniformly perfused 

with blood. Hence neglecting longitudinal heat transfer and 

using the terminology of Table 3.2, the heat balance for the 

ith cylinder is given by: 

X%X Ti KK 
ý2 Ti I 

t 
r2 rr 

+' hmi 
T, 

+ (v1x r XCp)i x (Tai-Ti) (3.7) 

This equation is similar to that of a single cylinder, (3.1), 

except for the additional term on the right hand side to 

account for heat transfer due to circulating blood. 

The system equations, (3.7), are solved, given the initial 

temperature distribution, and the boundary conditions that the 

rate of heat transfer to the akin from the tissue layer 

immediately below is equal to the rate of heat transfer from 

the skin to the environment. 
Blood is assumed to take the temperature of the tissue 

surrounding it, so that the cylinders are interconnected by 

the thermal balance equations, for blood flowing between the 

cylinders and the heart. 

(3) Stolwijk and Hardy (1966): 

The model developed by Stolwijk and Hardy considers the 
human body as three cylinders and a blood-compartment. Each 

cylinder consists of two or three concentric layers to 

represent the head (core and skin), trunk (core, muscle and 
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TABLE 3.2. Variables Of The Model By Wissler (1963). 

? Density of blood. 

Cp Specific heat. 

Ti Temperature in the ith cylinder. 

K Thermal conductivity. 

r Radial distance from axis of cylinder. 

mi Metabolic heat generation rate in the ith cylinder. 

VL Volume of blood flowing in capillary bed. 

Ta Temperature of blood entering capillary bed. 

skin), and extremities (core and skin). Each of these elements 
is characterized by anatomical, thermal and blood flow rate 

parameters needed to describe it for the purpose of the 

model. Mathematical representations of the physiological 
thermoregulatory mechanisms are also incorporated. 

An element of the system exchanges heat with the adjacent 
layer in the same cylinder by conduction, and with the blood 

compartment by convection; in additioa the skin elements lose 

heat to the environment by conduction, convection, radiation 

and evaporation. The passive system is then described by 

heat balance equations for each of the elements including 

the blood compartment. As an example, the heat balance 

relationship for the skin of the cylinder representing the 
head is given belows 

dT 
CHSx-dt 0 KHCH$THC THS' + MORS ý 0.09EVOHS ý 0.09Ev 

+a HS tCx0.138SBF. (TCB Tom) - AHSxha(THS - TA) 

(3.8) 

Equation (3.8) states that the rate of accumulation of beat 
in the skin of the head is equal to the algebraic sum of the 

rates of heat gain and heat loss factors, The heat gain factors 

are heat conduction rate from the core of the head, the metabolic 
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TABLE 3.3. Variables Of The Model By Stolwijk And Hardy (1966). 

CHS Thermal capacitance of the skin of the head 
(0.27 kcals. / C. ). 

THS Temperature of the skin of the head. 

KHCHS Thermal conductunce between he core and skin of 
the head (2.63 kcals. /hr. / C. ). 

T HC Temperature of the core of the head. 

MORS Basal metabolic rate of skin of the head 
(0.12 kcals. /hr. ). 

I0.09Ev0HS Assigned fraction of insensible evaporative heat 
loss (0.8 kcals. /hr. ). 

0.09Ev Assigned fraction of thermal evaporative beat loss. 

«HS Factor for countercurrent heat exchange. 

re Product of density and specific heat of blood 
(0.92 kcals. / C. ). 

0.138SBF Assigned fraction of total skin blood flow. 

TCB Temperature of blood. 

AM A0 Product of area of the skin of the head and the 
environmental heat transfer coefficient 
(0.165 x 6.0 kcals. /hr. /°C. ). 

TA Temperature of the environment. 

TS Average skin temperature. 

T.. Muscle temperature. 

heat generation, rate in the skin of the head and the heat 

delivered by the fraction of the skin blood flow assigned to 

the skin of the bead. The heat loss factors are the fractions, 

assigned to the skin of the head, of the total evaporation, 

convectiong'radiation and conduction heat loss rates from the 

skin to the environment. 

The controlling system is a mathematical description of 

the set-point theory of thermoregulation (Hammel at al, 1963). 

In the model the vasoconstriction and shivering heat gain 
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is the control of peripheral circulation by the adjustment of 

vasomotor tone. It is proposed that if this manoeuvre is 

insufficient to prevent a deviation of core temperature, then the 

gross second line of defence, namely the shivering and 

sweating mechanisms, comes into effect. 
Analysis of digit blood flow waveforms in response to 

thermal disturbance has led Burton and Taylor (1940) to 

isolate spontaneous components, which they associate with 

vasomotor activity. Further power spectral analysis of digit 

blood flow by Minorsky (1962) demonstrated that the vasomotor 

control system could be entrained by a square wave thermal 

stimulus (18°C - 46°C) of a period of twenty seconds. This 

suggests the presence of a nonlinear component in the thermally 

induced vasomotor control of blood flow, which was considered 

to be of the 'bang - bang' type. 

Kitney rejected the set point temperature controller on 
the grounds that it produced instabilities in the system 

response within a certain range of environmental temperatures. 
Instead, he proposed a set point thermal gradient controller 
for the system, the set point value having been empirically 
derived from the responses of the system to variations in 

skin temperature and vasomotor tone. He reports that analysis 

of the responses of the complete model to the thermal 
disturbances led to the power spectra of digit blood flow 

very similar to those described by Minorsky (1962). 

Discussion on Thermoregulatory System Models, 

The descriptions of the four preceeding models demonstrate 

the changes with time in the approach to the problem of 

mathematically describing the human thermoregulatory system. 
It is seen that increasing emphasis is placed on the effects 
of the tbermoregulatory controller mechanisms on the thermal 
dynamics of the human body. In particular, it appears that 
the control of peripheral blood flow in response to thermal 

stress plays -a*major -regulatory role, at least within a 
normal range of body temperatures. 

The model by Wyndham and Atkins (1960), incorporating 
detailed equations for the heat loss mechanisms from the 
surface, yields a continuous temperature gradient from the 
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centre to the surface of a cylinder representing the human 

body. No account is taken of the effects of blood flow or 

of any form of temperature regulation on the temperature 

distribution. The model also suffers from the disadvantage 

that there is the need to specify the distribution of the 

metabolic heat generation rate with respect to the distance 

from the centre of the cylinder. 
The model by Wissler (1963) utilizes blood flow to convect 

heat between the six cylinders representing the human body. 

However, the rate of blood flow is not thermally regulated, 

and no form of thermoregulatory control is incorporated in 

the model. In addition, the surface boundary condition imposes 

a condition of constant surface temperature. 

The classic model by Stolwijk and Hardy (1966), describes 

the human body, thermally, in terms of eight cylindrical 

elements, with a uniform temperature in each. This model, 
therefore, does not yield continuous temperature gradients 

as do the previous two distributed models. However, the 

control of metabolic heat production, heat loss through 

evaporation and peripheral blood flow are incorporated by 

the empirical representation of the set point temperature 

theory of thermoregulation. 

The purpose of the thermoregulatory model of the human 

forearm by Kitney (1974) was to analyse the thermoregulatory 

control of blood flow, in particular the nonlinear elements 

which give rise to the observed oscillatory behaviour of 
digit blood flow. In his analysis, Kitney rejects the set 

point temperature theory in favour of a set point temperature 

gradient theory of thermoregulation. In recent years, the 

set point temperature gradient theory appears to be gaining 
recognition, and as a result more distributed parameter 
thermoregulatory system models incorporating this theory may 
be forthcoming in order to explain observed thermal phenomena. 

The limitations in the accuracy with which the passive 
system can mathematically be described is dependant on the 

accuracies with which the thermal and anatomical parameters 
of the human body are known. ' However, little is yet known 
in detail about the mechanisms by which the body maintains 
control of its temperature. ' It is the opinion of the author, 
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however, that the detail with which the thermoregulatory 

controller needs to be modelled depends on the purpose for 

which the model is to be used. 

3.1.2 Cardiovascular System Models. 

(1) Beneken and DeWit (1967)t 

The model developed by Beneken and DeWit deals with the 

cardiovascular system as a mechanical system, consisting of 

the four chambers of the heart acting as pumps; these supply 

blood to the systemic and pulmonary blood vessels, which are 

lumped, so that the cardiovascular circuit is represented by 

fifteen arterial and venous segments and four heart chambers 

appropriately connected. Haemodynamic relationships of each 

of the nineteen segments represent the passive system, which 

is influenced by mathematical representations of certain 

control mechanisms of the cardiovascular system. 

The equations, using the symbols of Table 3.4, relating 

pressure, flow and volume for a typical segment are: 

PO - P1 = R1xF01 + Llxdol (3.11) 
dt 

v1 a V01 + 
J(F01 

- F12)dt (3.12) 

P1 "c x(V1 - Vu1) + R+ lx 
dV 

dtl (3.13) 
1 

The ventricles and atria are made pulsatile by incorporating 

time-varying periodic compliances in the pressure - volume 

relationships of equation (3.13). In addition, the effects of 

ventricular shape and heart muscle properties on the volumes 

and pressures of each heart chamber are mathematically represented. 
This passive system is under the influence of the controllers 

such as heart rate controllerp'peripheral resistance controller, aid 
blood volume adjustment by capillary fluid shift. In addition, 

nonlinearities due to collapsing veins at low pressures and 
the influence of variations in coronary blood flow on heart 
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TABLE 3.4. Variables Of The Model By Beneken And DeWit (1967). 

p0' P1 Pressures in two adjacent segments. 

R1 Resistance to blood flow in segment 1. 

F01 Total flow of blood into segment 1. 

L1 Inertia of blood in segment 1. 

V1 Volume of segment 1. 

Vol Initial volume of segment 1. 

F12 Total flow of blood out of segment 1. 

C1 Compliance of segment 1. 

Vul Unstressed volume of segment 1. 

R1 Viscosity coefficient of wall material of segment 1. 

performance are also incorporated. 

Beneken and DeWit report that simulation results of Valsalva 

manoeuvres, and changes in blood volume by bleeding and 

reinfusion compare reasonably well with experimental results, 

although further improvement of simulation response may be 

afforded with the inclusion of representations of other 

cardiovascular control systems in the model. 

(2) Guyton and Coleman (1967). ' 

The model produced'by Guyton and Coleman (1967) was 
built to represent the long term response of the circulatory 

system to stresses. ' Therefore the mechanical aspects of the 

cardiovascular system, which ace important in the short term 

effects of the circulation, are not modelled. Instead factors 

which affect body fluid volumes, hence the circulation in the 
long term, are considered. 

The block diagram of figure 3.1 shows the relationships 
between the important variables of the basic cardiovascular 
system model. The empirical relationships have been derived 

mainly from animal experiments. ' The basic structure represents 
a feedback loop such that an initial increase in arterial 
pressure causes an increase in urinary output of fluid, hence a 
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TABLE 3.5. Variables Of The Model By Guyton And Coleman (1967). 

AP Arterial pressure. 

UO Urine outflow rate. 

dE 
Rate of change of fluid volume. dt 

ECFV Extracellular fluid volume. 

BV Blood Volume. 

MSP Mean systemic pressure. 

RAP Right atrial pressure. 

RVR Resistance to venous return. 

CO Cardiac output. 

VR Venous return. 

TPR Total peripheral resistance. 

decrease in the volumes of body fluids, leading to a reduction 
in cardiac output and arterial pressure. This simple model 

was reported to be capable of reproducing the actual variations 
in arterial pressure, cardiac output and blood volume which 

occurred due to changes in peripheral resistance in animal 

experiments. 
Structures representing the effects of long term 

autoregulation (collateral circulation), the autonomic reflexes 

and limitations in heart performance on circulatory response 

were added to the basic model. Simulations of experiments, 
such as reducing renal mass and increasing sodium and fluid 

intake, reducing heart performance, and applying a Goldblatt 

clamp to a renal artery, reproduced many of the features of 

response observed in actual experimental data. 

The model was completed with the addition of a circuit 
representing the long term regulation of interstitial fluid 

and its effects on the circulation. 
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(3) Guyton, Coleman And Granger (1972): 

This model, developed by Guyton and co-workers, is an 

extensive lumped parameter, non-pulsatile model of the 

circulation incorporating many of the physiological systems 

which interact, both in the short term and the long term, with 

the circulation. The model, presented in block diagram form 

(Guyton et al, 1972), consists of 354 blocks, each of which 
defines a relationship between two or more variables. These 

relationships, in the main, have been derived from experiments. 
The diagram is partitioned into eighteen major systems representing 

the dynamics of the various body fluid compartments, hormonal 

and kidney control mechanisms, blood flow and oxygen delivery 

control, and others. 

The time constants of the system vary from 0.005 minutes 
to 57,000minutes. Hence, at the start of the simulation of 

any stress, it is necessary to integrate with a small time 

step until the rapid time constant factors reach steady state; 
the integration interval step is then increased so that the 

whole system model attains steady state without consuming 
excessive computer time. 

Simulations described include the development of hypertension 
in a salt loaded renal deficient patient, heart failure, nephrosis, 

and the effects of severe muscle exercise on the circulation. 
It is reported that many of the features of the simulation 
responses are in agreement with those which are observed 
in studies on animals. 

Discussion On Cardiovascular System Models. 

Comparison of the model of Beneken and DeWit (1967) and 

of Guyton and Coleman (1967) demonstrates the two extreme 
approaches to cardiovascular system modelling. The first model, 
based on consideration of the mechanical aspects of the 

circulation, is designed to simulate the cardiovascular system 
in the short term; the second model relies on 'empirical 

descriptions, based on animal experiments, to explain the long 

term phenomena of the circulation. The third model (Guyton et 
al, 1972), though empirical in the main, combines both short 
term and long term effects, but the resulting model is so det- 

ailed that it would be found to be unwieldy in use. However, the 

-43- 



model demonstrates the usefulness of the systems analysis 

approach in the understanding of biological systems. 

3.1.3. Renal Function Models. 

(1) Cage, Carson And Britton (1977): 

A model of the renal medulla was developed by Cage and 

associates using mass balance equations to describe the flow 

of water, electrolytes and urea through the loops of Henle of 

the cortical and the juxtamedullary nephrons, the collecting 
ducts, vasa recta and medullary interstitium. The primary 

aim for the development of this model was to examine possible 

mechanisms which create the concentration gradient for the 

operation of the countercurrent multiplier. 
Figure 3.2 represents the nth segment of a tubule of 

length, &x, in a segment of the medulla at time, t. The flux 

equation for water passing through all the tubule segemnts in the 
th 

n segment of the interstitium, using the symbols described in 

Table 3.6, is: 

Q(n, t) - Q(n-1, t) - (2 nRi axBj)xJ(ngt) (3.14) 

Equation (3.14) States that the rate of water flow out of all 
the tubule segments in the nth segment of the interstitium is 

equal to the difference between the total rate of water flow 

into the tubules and the rate of water flux through the 

tubule walls into the intersitium. The fact that the number 

of nephrons decreases with depth into the medulla from the 

cortex is taken into account by representing the number of 
nephrons, B, as a function of distance into the medullary 
region. 

The equation describing mass balance for solutes in the 

tubule segments of the nth segment of the interstitium is: 

Z dC1(n, t) 
(ýRj axB3)x 

dt " Ci(n-1, t)xQ(n-ltt) - Ci(n, t)AQ(n, t) 

- (2TtRj4xBj)AN, (nrt) (3.15) 
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TABLE 3.6. -Variables Of The Model By Cage, Carson 

And Britton (1977). 

Q Flow rate of water. 

Rj Inner radius of tubule type, j. 

dx Length of segment. 

Bj Number of tubules of type, J, in segment of interstitium. 

J Water efflux rate per unit area. 

Ci Concentration of solute, i. 

Ni Molar flux of solute, i. 

Equation (3.15) states that the rate of accumulation of solute, 
i, in all the tubule segments of the nth segment of the 
interstitium is equal to the difference between the rates at 

which the solute, i, enters and leaves the tubule segments 

minus the rate at which the solute passes through the walls of 
the tubule segments into the interstitium. 

Appropriate equations are written for other phenomena in the 

system. The quantities of water and solutes entering the 

interstitium from the tubules are determined by the relative 

concentrations of solutes according to the laws of osmosis and 
Pick's law. A factor is included, wherever appropriate, to 

represent the flux of electrolytes due to active transport 

mechanisms. 
The vasa recta are assumed to have the same concentration of 

solutes as plasma, and thus the ascending limb acts as a sink. 
Hence excess water in the interstitium passes freely into the 

ascending limb of the vasa recta, and solutes pass from the 
interstitium according to Fick's law., The descending limb is 

assumed to be impermeable to water and solutes. 
The tubule segments are characterized by appropriate parameters 

representing dimensions and transfer coefficients for solutes 
and water, The effects of antidiuretic hormone and aldosterone 
are represented by the adjustment of the appropriate transfer 

coefficients. 
The model is used to simulate the effects of diuresis and 

antidiuresis. The variations of urinary urea excretion with 
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variation of the state of diuresis or antidiuresis compares 

well with clinical data, and this cömparison serves as a test 

of the validity of the model. 

(2) Cameron (1977). 

A simple representation of kidney function, together with 

some of the factors which affect renal function, form a closed 

system model developed by Cameron. This model forms the basis 

for the testing of hypotheses concerned with the mechanisms of 
body fluid homeostatis. The framework of the model is similar 

to that of Guyton et al (1972), though it differs considerably 
in the extent of detail incorporated. 

The renal dynamics are described by a set of empirical 

algebraic equations. The symbols used are described in 

Table 3.7. Afferent arteriolar resistance is represented as 

a function of blood viscosity and a feedback signal from the 

macula densa: 

AAR -9 
RBVxRANRXMDAM/FKR 

3 
(3.16) 

Post afferent renal resistance is simply related to blood 

viscosity: 

PAR s 
135XRBV/FKR (3.17) 

The total renal resistance is the sum of these two resistances: 

RR - AAR + PAR (3.18) 

The renal blood flow is calculated from arterial pressures 

RBF - AP/RR (3.19) 

Nephron blood flow is dependant on the number of functioning 

nephrons: 

FNBF - FFN*RBF (3.20) 
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TABLE 3.7. Variables of The Model By Cameron (1977). 

AAR Afferent arteriolar resistance. 

RBV Relative blood viscosity. 

RANR Renal autonomic nervous response. 

MDAM Macula densa autoregulatory multiplier. 

FKR Fraction of kidneys remaining. 

PAR Post afferent resistance. 

RR Renal resistance. 

RBF Renal blood flow. 

AP Arterial pressure. 

FNBC Functional nephron blood flow. 

FFN Fraction of functioning nephrons. 

APD Afferent pressure drop. 

PDGF Pressure driving glomerular filtration. 

PCOP Plasma colloid oncotic pressure. 

GFR Glomerular filtration rate. 

TRR Total tubular reabsorption rate. 

ALM Aldosterone.. multiplier. 

ADHM Antidiuretic hormone multiplier. 

UFR Urine flow rate. 

NER Sodium excretion rate. 

ENC Extracellular sodium concentration. 

The afferent arteriolar pressure drop is given by: 

APD - AAR. RBF 

The resulting pressure driving glomerular filtration is 

given as the sums 

PDGF - AP - APD - PCOP - 20.4 

(3.21) 

(3.22) 
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The glomerular filtration rate is related to this pressures 

GFR - FFNAFKR*PDGF/128 (3.23) 

The feedback signal from the macula densa is a function of 

the variables controlling giomerular filtration rate= , 

MDAM - median (0.4,15,16vPDGF-4) (3.24) 

The rate of tubular reabsorption of fluid is given as the sum 

of a constant fraction of glomerular filtration rate (glomer- 

ular-tubular balance) anda factor dependant"on. the level of 
antidiuretic hormone and aldosterone: 

TRR - 0.8xGFR + 0.025*FFNxF[R - 
0. OO1xFFNKFKR (3.25) 

AIMXADHK 

Urine flow rate is then given as the difference between 

glomerular filtration rate and the tubular reabsorption rate, 

unless this is less than the obligatory urine flow ratet 

UFR - max (0.0003, GFR-TRR) (3.26) 

Sodium excretion rate is given as a function of urine flow 

rate, aldosterone level and extracellular sodium concentration: 

NER o 
1000xUFR (3.27) 

AIMx(10.0 - 0.4x(ENC - 142)) 

These equations, (3.16) - (3.27) form the representation 

of renal dynamics, one of five subsystems included in the model. 
Relevant equations constitute the subsystems concerned with the 
fluid compartmental volumes and protein concentrations in the 

model. The electrolyte subsystem represents the dynamics of 

extracellular potassium and sodium, and intracellular potassium. 
Included in the hormonal subsystem are equations governing the 
dynamics of aldosterone, angiotensin and antidiuretic hormone. 

The last subsystem represents the cardiovascular system. 
The model was used to simulate the conditions of excitation 
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of renal nerves, unilateral nephrectomy, aldosterone loading, 

and acute water loading. The validity of the model was based 

on the comparison of simulation results of the excitation of 

renal nerves and aldosterone loading experiments with 

published data of the same experiments. 

Discussion On Models Of Renal Functions. 

The paucity of data leads the renal system modeller either 

to produce a model of some narrow aspects of the renal system, 

as in the model of Cage and associates (1977), or, with the use 

of uncertain empirical relationships, to produce a model of 

overall renal functions, such as the model of Cameron (1977). 

The approach adopted depends on the purpose for which the model 
is to be used. Thus, whilst the approach of Cage and associates 
is appropriate when developing a model with which to investigate 

the plausibility of physiological hypotheses, the overall 

model developed by Cameron is clearly more immediately relevant 
in clinical investigations. In either case, validation of 

the model is of greater importance in such cases where the 

structure and parameters are uncertain. 

3.2 Renal Dialysis Health Care Models. 

In addition to examining models of relevant physiological 
processes, there is a need to examine, critically, previous 

models devoted explicitly to renal dialysis. A representative 

set is considered below. 

3.2.1 The Models Of Renal Dialysis. 

(1) Ramirez, Lewis And Mickley (1973): 

Ramirez and associates have determined an optimal control 
policy for dialysate flow rate utilizing a three compartmental 
model for the patient, adapted from a previous model of Gormley 

and Bell (1970). The optimal strategy is based on the minimization 
of the time for the removal of waste solutes, with a constraint 
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on the perturbation of cerebrospinal fluid pressure in the 

patient in order to avoid the problems associated with such 
perturbations. 

The adapted model represents the dynamics of urea 

concentrations in the extracellular and intracellular- 

compartments and in the cerebrospinal fluid compartment. 

The cerebrospinal fluid pressure is related to the difference 

between the concentrations of urea between the extracellular 

and cerebrospinal fluid compartments. The equations, using 
the terminology of Table 3.8, are: 

dC 
Vixdtl - Klx(C2-C1) + K2(C3-C1) - QBx ExC1 + LC3 (3.28) 

dC 
V2i 2aGf K1(C1-C2) (3.29) 

VdC 3 (3.30) 3xdts K2(C1-C3) - LC3 

PG s Pox(C3 C1) (3.31) 

The effectiveness factor, £, is related to the dialysate flow 

rate (Ramirez et al, 1972). 

Considering perturbations about the steady state, the 

equations (3,28) - (3.31) are linearized to form the state 
and measurement equations: 

4 A. x + b. u (3.32) 

- M. x (3.33) 

The optimal control problem is to take the system described 

by the state space equations, of the form of (3.32) and (3.33)x, 

from an initial state, x- x0, to a terminal state, x-0, with 
practical constraints on the state and control variables, and 
with the following quadratic performance index to be 

minimized: 
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TABLE 3.8. Variables Of The Model By Ramirez, Lewis 

And Mickley (1973). 

V1 Extracellular fluid volume. 

C1 Concentration of urea in extracellular fluid. 

K1 Intracellular-extracellular mass transfer coefficient. 

C2 Concentration of urea in intracellular fluid. 

K2 Extracellular-cerebrospinal fluid mass transfer 
coefficient. 

C3 Concentration of urea in cerebrospinal fluid. 

L Coefficient for bulk flow from cerebrospinal fluid to 
extracellular fluid compartment. 

QB Blood flow rate through dialysis machine. 

E Effectiveness factor for dialysis. 

V2 Intracellular fluid volume. 

G Urea generation rate. 

V3 Cerebrospinal fluid volume. 

PG Cerebrospinal fluid pressure. 

P0 Coefficient for cerebrospinal fluid pressure. 

ftn 
I .2+u. R. u)dt 

ta0 
(3.34) 

The solution is the descrete variation in time (half hourly 

intervals) of the control variable, dialysate flow rate. The 

optimal solution does not cause the cerebrospinal fluid to rise 

above the acceptable level of 7.45 mm. H2O (which corresponds to 

an uncontrolled, constant dialysate flow rate of 500 mis. /min. ), 

yet yields an overall clearance rate corresponding to a flow 

rate of almost 800 mis. /min. (which causes an unacceptable 

maximum cerebrospinal fluid pressure of 8.01 mm. H20). The 

optimally controlled dialysate flow also affords a 27.1% 

saving in dialysate fluid when compared with the uncontrolled 

case with the removal of the same quantity of solute. 
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(2) Walker, Hall, Sanfelippo And Swenson (1975): 
A programme, designed for use on the Hewlett-Packard 65 

hand-held programmable calculator, was developed by Walker and 

associates. The programme calculates predictions of post- 

dialysis and next pre-dialysis serum urea and creatinine 

concentrations. The calculations are based on the one-compart- 

mental model of Gotch et al (1974). Using the terminology 

of Table 3.9, the equations are: 

(K+Kr)t/V 
CT 

(c01 
-R. edd+K+ (Dialysis) (3.35) 

drdr 

Ir, -Kr B /V 
C02 

(CT 
-e +-4- (Interdialysis) (3.36) 

rr 

TABLE 3.9. Variables Of The Model By Walker, Hall, Sanfelippo 
And Swenson (1975). 

CT End-dialysis concentration. 

C 01 Pre-dialysis concentration. 

G Generation rate. 

Kd Dialyser clearance. 

Kr Residual renal clearance. 

td Time on dialysis. 

V Volume of distribution. 

C02 Next pre-dialysis concentration. 

0 Time between dialyses. 

The input. data required for the calculations are pre- 
dialysis concentrations, residual renal clearance, dialyser 

clearance, time on dialyis, and time between dialyses. The 

generation rates and volumes of distribution are calculated 
using the model with the previous post-dialysis and next 
pre-dialysis concentrations. 

The programme can therefore easily be used in the clinic 
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to aid in the selection of appropriate values for time on 

dialysis and time between dialyses to achieve desired post- 

dialysis and maximum allowable next pre-dialysis serum levels 

of waste products. It is also suggested (Walker et al, 1975) 

that deviations from predicted values reflect changes in the 

clinical state of the patient. 

(3) Lott, Moorhouse And Whitt (1977): 

Interactive use of the system developed by Lott and 

associates, aids the clinician in the selection of values for 

duration of dialysis, blood flow rate through machine and 

ultrafiltration pressure for optimum dialysis. A one compart- 

mental model, based on the analysis by Renkin (1956), forms the 

basis of the system. The equations of the model relate the 

post-dialysis and next pre-dialysis concentration of urea, uric 

acid and creatinine to the variables of the dialysis therapy. 

Using the terminology of Table 3.10, these equations are: 

Cf (n-1) - Ci(n-1)xe - 
D+R t+ 

(D. FR) 

1-e_ D+R t (3.37) 
v 

Ci(n) - Cf (n-1)xe (�v-) + Rx 
1-e -R, _ (3.38) 

0 

The volumes of distribution and rates of generation are 

calculated using the results of previous dialyses. 

The change in the body weight of the patient with time is 

described by consideration of the ultrafiltration pressures, 
P1' p2 ".. Pn, during time intervals (O, tl), (tl, t2) """ (tn-l, tn) 
in dialysis, 

nt 
Wf(n) - Wi(n) + W7'(n) -EjPp Adt (3.39) 

i-1 3 
tj-1 

Decrease in the permeability of the dialysis membrane 
through use is represented by having the dialysance and ultra- 
filtration coefficients as functions of time. By entering 
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TABLE 3.10. Variables Of The Model By Lott, Moorhouse 

And Whitt (1977). 

Cf(n) Post nth dialysis concentration of waste product. 

Ci(n) Pre nth dialysis concentration of waste product. 

D Dialysance. 

R Residual renal function. 

V Volume of distribution. 

t Time on dialysis. 

IG Generation rate of waste product. 

u Time between dialyses. 

Wf(n) Post nth dialysis weight. 

Wi(n) Pre nth dialysis weight. 

Wg(n) Weight gained due to food and fluid intake between 

(n-1) th 
and nth dialysis. 

P Ultrafiltration pressure. 

F Ultrafiltration coefficient. 

A Dialysis machine membrane area. 

the results of the previous dialysis and the desired final 

values for serum concentrations of the waste products and 
body weight, the system aids the clinician in the selection 

of values for the duration of dialysis, mean ultrafiltration 

pressure and the blood flow rate through the dialysis machine. 
The fact that the rate of removal of fluid is higher at the 

start of dialysis than at the end, is compensated for by the 

system. The suggested treatment schedule for optimal dialysis, 

with half hourly increments of ultrafiltration pressure from 

an initial value below the mean to a final, above, gives a 

nett removal of fluid from the body equal to that as if the mean 

pressure had been applied throughout dialysis. 
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(4) Abbrecht And Prodany (1971): 

Abbrecht and Prodany developed a model in which the patient 

is represented by a two compartmental system with equations 

describing the dynamics of urea, creatinine and the 'impermeable 

solutes' in'the intracellular and extracellular pools, and 

the transfer of water between the pools. The impermeable 

solutes are considered to be all the solutes in the body fluid 

compartments apart from urea and creatinine. These solutes 

are assumed to have no nett mass transfer across the cell 

membrane, and indeed are also assumed to be in balance with 

the dialysate bath fluid. The dialysate bath is assumed to 

have an inlet flow rate of fresh dialysate and an overflow rate, 

leaving a constant bath volume. 

The equations of the model described below use the termino- 

logy of Table 3.11. The transfer of waste solutes from the 

extracellular pool to the dialysate bath is governed by the 

diffusion equation: 

Ni a Dix (CE - CB) i (3.40) 

Similarly the movement of urea and creatinine from the intra- 

cellular to the extracellular compartment is represented by: 

Mi Kix (CI - CE) i 
(3.41) 

The rate of change of intracellular fluid volume is given by: 

dVi 3 

dt I'p 
Jul 

6jx(c1 CE)i/Cw (3.42) 

The reflection coefficients, Cj, j-1-3, were taken to be 

unity for all solute species, and the water concentration, C, 

was assumed to be a constant value of 55.6 umols. /ml.. 

On the basis of the above assumptions, ten differential 

equations were derived, describing the dynamics of intracellular 

and extracellular fluid volume compartments, and the concentrations 

of urea, creatinine and the impermeable solutes in the intra- 

cellular and extracellular fluid compartments, and urea and 
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_ TABLE 3.11. Variables Of The Model By Abbrecht And Prodany (1971)9 

Ni Rate of flux of solute, iq from the extracellular 
pool to the dialysate bath. 

Di Dialysance of solute, L. 

CEL Extracellular concentration of solute, I. 

CBi Dialysate bath concentration of solute, L. 

Mi Rate of flux of solute, i, from the intracellular 
to the extracellular pool. 

Ki Cell membrane mass transfer coefficient for solute, i. 

VI Intracellular fluid volume. 

Lp Intracellular-Extracellular pressure - filtration 
coefficient. 

Ci Staverman reflection coefficient. 

C Concentration of water. w 

creatinine dynamics in the dialysate bath. 

The equations were used to simulate actual dialyses on six 

patients. Cell membrane mass transfer coefficients were adjusted 
for each patient so that the model gave the best fit to the 

actual data, and the dialysance parameters were interpolated 

from the dialysis results for each patient. Other parameters 

were taken from literature. The authors report that a 

reasonable match was obtained between actual data and simulation 

results, and that the model could be used with mean values for 

the patient dependant parameters to analyse the effects of 

various therapy strategies in order to minimize the cost of 
dialysis. 

3.2.2. Discussion On Renal Dialysis Models. 

The four models described above all share the same general 
objective - the improvement in the management of renal dialysis 

patients. The simpler models of Walker et at (1975) and Lott et 
al (1977) are designed primarily to be used in the clinic to 

I 
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aid in the selection of parameters of dialysis therapy for 

individual patients, whereas the models of Ramirez et al (1972) 

and Abbrecht and Prodany (1971) are designed primarily to be 

used in the analysis of the effects of different generalized 

strategies for renal dialysis treatment. 

Each model describes the effects of dialysis on the dynamics 

of the concentrations of the waste products in the body. In 

addition, certain other factors are incorporated in each model, 
depending on the precise objectives for the model. For instance, 

the model of Ramirez et al (1972) incorporates the dynamics of 

the pressure in the cerebrospinal fluid compartment, and the 

model of Lott et al (1977) represents the change, with time, in 

the permeability of the dialysis membrane. Conversely, inherent 

in each model is a set of assumptions concerning the factors 

not incorporated in the particular system model. 
Each of these models considers the body fluid compartments 

and the effects of dialysis on them in isolation from any 

other subsystems of the human organism. However, the well-being 
of the dialysis patient is dependant of the state of other 

subsystems, the most obvious being the cardiovascular system. 
It may be concluded from the omission of any other subsystems, 
either that these models are not concerned with the overall 

management problem of the dialysis patient, or that the effects 

of dialysis on the other subsystems are assumed to be 

unimportant to patient well-being. However, one of the 

primary objectives-for the work described in this thesis, as 
discussed in the next section, is the prediction of the overall 
state of the dialysis patient during and after dialysis. 
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3.3. Discussion. 

The discussion of previous models clearly demonstrates 

that the form of a model is dictated by the underlying' objectives 

to be met by the analysis. Therefore, examination of the 

objectives for this work in relation to those of the models 

previously described indicates the necessary form of the model 
developed and described in the following chapter. 

The objectives for this work, as described in Chapter 19 

are to build a mathematical model to be used for the following 

purposes: 
(1) Prediction of the state of the patient during and 

after dialysis; 

(2) Utilization of the model to test various hypotheses 

concerning the renal - body fluid system; 
(3) Examination of the structure of the model and data 

generated in order to search for the causes of the 

unexplained phenomena that are occasionally observed 
during dialysis. 

In order to satisfy these objectives, the model representing 

normal human functions was formulated so that various renal 

malfunctions could easily be superimposed to represent indi- 

vidual dialysis patients. The overall model consists of the 
following subsystem models: 

(1) Thermoregulatory system model, 
(2) Electrolyte (sodium and potassium) and body fluid. 

(intracellular and extracellular) compartments model, 
(3) Cardiovascular system model l, 
(4) Overall renal function (including hormonal control 

system) model, 
(5) Waste products (urea and creatinine) dynamics, 
(6) Dialysis machine (switched on or off) model. 

The practicalities involved with the clinical use of the 
model impose a constraint on its overall size in terms of the 
number of subsystems and the complexity with which they are 
represented. on the other hand, -the hypothesis testing 
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requirements of the work demands that the model be isomorphic 

with the system modelled as far as permitted by current 

knowledge, at least with the subsystems on which these tests 

are to be performed. From a consideration of these facts, the 

objectives and previous models, some of which are described in 

this chapter, the following strategies were adopted for the 

formulation of the major subsystems of the model. 

The thermoregulatory system model plays a role in this 

work primarily in the analysis of the model structure and data 

generated in order to determine the causes of phenomena 

observed during dialysis. The core and surface temperatures 

of the patients are routinely measured during dialysis. 

Therefore the passive system was satisfactorily represented 

simply as core and surface compartments. However, it is clear 

from the trend in the modelling of this system that the thermo- 

regulatory control of peripheral blood flow greatly influences 

the dynamics of body temperature. Hence the thermoregulatory 

controller was considered in more detail during model formulation, 

as discussed in the following chapter. 

During dialysis only a few of the important variables of 

the cardiovascular system are of interest to the clinician. 
In addition, short term dynamic effects may be neglected since 

the clinician is only interested in longer term effects. 
Therefore a simple model based on that of Guyton (1972) was 
found to be satisfactory for our purposes. 

Although dialysis patients have little or no kidney 

function, it was considered necessary to examine and represent 

the renal - body fluid regulating system in some detail for 

the purpose of utilizing the model as an instrument to test 

hypotheses. Hence the subsystem model, including the hormonal 

control systems is based on the physiology described in the 

preceeding chapter. However, the depth of knowledge of the 

system is not sufficient to avoid the use of empirical relations 
for many of the functions in the real system. 

Dialysis is then easily represented by superimposing 
appropriate degrees of renal malfunctions and logically 

switching the dialysis machine model into the rest of the 

system model. Appropriate simulation then yields prediction 

of the dynamics of the clinically important variables. These 
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results may be used to examine the effects of generalized 
strategies of dialysis therapy as well as the outcome of a 

single treatment on a particular patient in the clinic. 
The model, as described in the following chapter, was 

developed on the basis of the considerations discussed above. 
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Figure 3.2. Diagram of a segment of a tubule in the medullary 
interstitium (Cage et al., 1977).. 



CHAPTER 4 

THE MODEL. 

In this chapter a detailed account is given of the formu- 

lation of the mathematical model built in order to achieve the 

objectives stated in previous chapters. This model was developed 

to represent the appropriate functions of the normal human 

organism so that the effects of varying degrees of renal failure 

may be superimposed to represent individual patients undergoing 
dialysis. The structure of the model, consisting of inter- 

connected models of six major systems, is based on current under- 

standing of the appropriate physiology, and as far as possible, 

the relationships between variables are derived from data presented 
in the literature. 

The major subsystem models and their interconnections are 
represented in Figure 4.19 and the equations comprising each of 
the subsystems are derived in the sections below. The nomen- 
clature for the equations is listed in Appendix I. and a full 

listing of the equations is given in Appendix II. 

4.1. Thermoregulatory System Model. 

The thermoregulatory system model developed for this work 
relies on the concepts of the hypothalamic set-point theory 
for the control of deep body temperature. Control is effected 
by vasomotor adjustment of the rate of blood flow from the core 
to the surface of the body. 

A conceptual model of the set-point theory of thermoregulation 
is presented in Figure 4.2. The temperatures in the core and 
surface of the body are sensed by thermoreceptors, and signals 
representing these temperatures are transmitted to the hypo- 

thalamus. These signals are compared with the hypothalamic 
'set-point' temperatures, and signals representing the differences 
between the actual and set-point temperatures are transmitted to 
the vasomotor centre of the central nervous system. Appropriate 
sympathetic or parasympathetic stimulation causes a change in the 
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rate of blood flow, and therefore heat transfer, from the core 

to the surface of the body. An increase in the rate of blood 

flow results in an increase in the temperature of the surface 

of the body and subsequently, an increase in the rate of heat 

loss from the surface of the body to the environment. The 

converse is also true. The actions of the passive and cont- 

rolling systems of thermoregulation are summarized in Figure 

4.3, where the core and surface temperatures in the system 

model cause an appropriate change in the rate of blood flow to 

the surface, in order to return the temperatures in the passive 

system towards their set-point values. 
The shivering and sweating heat exchange mechanisms are not 

incorporated in the system model since it is assumed that patients 

undergoing dialysis are not subjected to thermal stresses which 

would require the actions of these temperature control mechanisms. 

The passive system is described mathematically by appropriate 
heat balance equations below, and the controlling system equations 

are derived in the following subsection. 

4.1.1. The Passive System. 

Figure 4.4 gives a representation of the mechanisms of heat 

exchange within the controlled system of the thermoregulatory 

model. The derivation of the heat balance equations for the 

core and surface compartments is also dependant on the following 

assumptions. 

(1) For thermoregulation, it is assumed that the human body 

may be considered as two homogenous concentric cylinders, 

each with uniformly distributed temperatures, where the 

surface cylinder represents the outer two centimetre 
layer of the body, and the core cylinder represents the 

remainder of the body. 
(2) The rate of metabolic heat generation in the patient is 

assumed to be constant at the basal level. 
(3) It is assumed that there'is. negligible axial heat transfer 

in the body. Hence, only the radial flux of heat is 

considered in the system model. 
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(4) The mechanisms of heat transfer between the portions of 

the body represented by the two compartments are conduction 

and convection due to the flow of blood between compart- 

ments. The rate of heat transfer by conduction is consid- 

ered to be proportional to the difference between the 

temperatures of the two compartments; and the rate of 
heat transfer by convection, proportional to the product 

of this temperature difference and the rate of blood flow 

between the compartments in the system model. 
(5) Blood is assumed to be in thermal equilibrium with the 

portions of the body represented by the core compartment 

of the model. 
(6) It is assumed that the patient undergoing dialysis is not 

thermally stressed to an extent which causes shivering or 

sweating. Hence, in the model, the factor representing 

the rate of heat loss due to evaporation from the surface 

of the body is constant and equal to the basil level. 

Similarly, the factor representing the rate of heat loss 

from the core due to respiration is constant. 

(7) It is further assumed that the remaining mechanisms of 

heat transfer from the surface of the body to the environ- 

ment, namely convection and radiation, may be represented 

simply as a factor proportional to the difference in the 

temperatures of the surface compartment and the environment 

in the system model. 

Hence the heat balance equation for the core compartment 
ist 

CcxdTc - BMRC - Kcsx(TcmT3) - pxc*SBFx(Tc T3) - Riü. (4.1) 
dt 

This states that the rate of accumulation of heat in the core 

compartment is equal to the algebraic sum of the rates of heat 

gain and heat loss factors in this compartment. The heat gain 
factor represents the constant metabolic heat generation rate in 

the core compartment; the heat loss factors represent the rates 

of conduction and convection of heat to the surface compartment 

and the constant rate of heat loss to the environment due to 

respiration. 
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The heat balance equation for the surface compartment ist 

CsAdT3 s BMRS + 3x(TrmT3) + ? xCXSBFF(Tc-T. ) 
dt (4.2) 

- Ksex(T3-Te) - IHL 

The factors for heat gain by the surface compartment represent the 

constant basal metabolic heat generation rate assigned to the 

surface and the rates of conduction and convection of heat from 

the core to the surface compartment. The heat loss factors 

represent the radiation, conduction and evaporation heat loss 

rates from the surface of the body to the environment. The rate 

of accumulation of heat is given by the algebraic sum of these 

rates of heat gain and loss. 

Numerical values for the parameters of equations (4.1) and 
(4.2) may be found in Appendix I. These values were derived by 

appropriately combining the anatomical and thermal parameters 

used by Stolwijk and Hardy (1966) in their model of human thermo- 

regulation based on seven compartments. The values presented by 

them are for a standard man of 71 kilogrammes body weight. Hence 

the calculated values for the thermal capacitances of the core 

and surface compartments are scaled in the system model according 

to the weight of the individual patient. In addition, the value 
for the heat transfer coefficient from the surface of the body to 

the environment is reduced by a factor, in order to represent a 

patient lying in bed with bed-clothes. 

The passive system model for thermoregulation is therefore 
described by equations (4.1) and (4.2). 

4.1.2. The Controlling System. 

The passive system of the thermoregulatory system model, 
by itself, does not exhibit control characteristics, but does 

represent a transfer function between a disturbance and the 

controller (Figure 4.3). It is. therefore the controller that 

regulates the body temperature by adjusting the rate of blood 
flow from the core to the surface of the body. 
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When the body needs to dissipate heat (when core temperature 

rises above the set-point), peripheral blood vessels are caused 

to vasodilatate, permitting a larger flow of warm arterial blood 

to the surface of the body. Hence, the temperature at the 

surface of the body rises, and results in the increase in the rate 

of transfer of heat to the environment. Thus the temperature at 

the core of the body is returned towards the set-point. When the 

body needs to conserve heat, the converse effects are observed, 
brought about by vasoconstriction of the peripheral blood vessels 
(Ruch and Patton, 1965). 

Vasodilatation or vasoconstriction may be considered as the 

decrease or increase in the resistance to the flow of. blood in 

the surface of the body. Figure 4.5 presents a simple electrical 

analogy of this concept. The pressure drop, AP, forces blood 

through the resistances, Rc and Rs, representing the resistances 

to blood flow through the core and surface blood vessels respec- 

tively. Hence, of the total rate of blood flow, CO, the rate at 

which blood flows through the surface blood vessels, SBF9 is 

dependant on the relative values of the two resistances, Rc and 
Rs. For the development of the model for the controller in the 

human thermoregulatory system, the resistance to blood flow 

through the core of the body is assumed to be constant, whereas 

the resistance to blood flow through the surface blood vessels 

is considered to be a function of the passive thermoregulatory 

system model. 

The mechanisms involved in the thermoregulatory controller 
are well known in a qualitative sense. It is generally accepted 
that temperature sensitive receptors in the hypothalamus (Hammel 

et al., 1963), other regions deep in the body (Robinson et al., 
1965) and in the skin (Hardy and Stolwijk, 1966) are involved 

in the transmission of signals that bring about the vasomotor 
effector actions for thermoregulation. However, little is known 

quantitatively about the relation between these signals and the 

resulting vasomotor actions. Therefore, the system model uses 
the hypothetical relationship of Figure 4.6 as the function 
between core temperature and the rate of blood flow through the 

surface of the body. The normal value for the resistances, R3, 
for the range of core temperatures, (36.4 ( Tc < 37.0), was 
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derived from consideration of Figure 4.5 and normal values of 

arterial pressure (100 mm. Hg. ), cardiac output (5 litres/min. ) 

and normal surface blood flow (223.0 ml. /min. ) (Stolwijk and 

Hardy, 1966). 

A lower limit for the rate of blood flow through the surface 

of the body (hence an upper limit for the resistance, Rs9 in the 

model) exists in order that the supply of necessary nutrients to 

the tissues of the surface is not stopped. In the system model 

this lower limit was considered to be one tenth of the normal 

rate of blood flow, yielding a maximum value for the resistance 

of 4485 mmHg/litre min. -1t for a normal arterial pressure of 

100 mm. Hg., at core temperatures below 35.0°C.. Similarly, 

there is a lower limit below which the resistance does not drop, 

since the surface blood vessels have a finite compliance. This 

was considered to be a value of 64.0 mmHg. /litres min. -19 

yielding a rate of blood flow seven times normal at normal arterial 

pressure, for values of core temperature greater than 38.5°C.. 

Figure 4.6 shows that the relationship between the variables in 

the model representing core temperature and resistance to blood 

flow through the surface of the body for ranges of core temperature, 
(35.0 < Te '< 36.4) and (37.0 -C Te ( 38.5) are considered to be 

straight line functions between the limiting values and normal 

value of resistance, Rs. In addition, for the range of core 

temperatures which causes no net vasoconstriction or vasodila- 

tation in the model (36.4 < Tc < 37.0), the value for skin 
temperature in the model is considered to control the resistance 
to blood flow in the surface in accordance with the function 

described by Figure 4.7. This function is included to represent 

the local thermoregulatory control of blood flow in the tissues 

of the surface in order to minimize temperature differences 

within the body (Ruch and Patton, 1965), and therefore to control 
the surface temperature of the body. 

The rate of blood flow through the surface is then calculated: 

SBF - AP / RS (4.3) 

where the value for arterial pressure, AP, is obtained from the 

cardiovascular system model. 
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The relationships used in the controller system model 
(Figures 4.61 4.7) have been derived in a rather arbitrary manner 

due to the lack of quantitative information regarding the human 

thermoregulatory controlling system. However, the concepts on 

which these relationships are based are in agreement with the 

general theories of thermoregulation. A description of these 

theories may be found in the recent review by Fox (1974). 

4.1.3. Links With Other Subsystem Models. 

Figure 4.1 shows that the value for arterial pressure, APB 

used in the model above is obtained from the cardiovascular 

system model, and that the thermoregulatory system model generates 
a value for total peripheral resistance, TPR, as affected by 

thermoregulation. 
It has been stated that the resistance to blood flow through 

the core of the body is set to a constant value in the model. 
The value is calculated on the basis of the system as depicted 

in Figure 4.5, operating with normal values for the variables. 
Hence 

Rý a AP/(CO-SBF) - 100.0/(5.0-0.223) 

s 20,934 nna. Hg. /1. min. m1 

The value for total peripheral resistance is then given by 

considering the two resistances in parallel in Figure 4.5: 

Rs x 20.9 34 
TPRTH sRx 20.934 

(4.4) 
s 

4.1.4. Summary of The Thermoregulatory System Model. 

The formulation of the mathematical description of the 
human thermoregulatory system - indeed, for any system - involved 
the use of several- simplifying assumptions. One major simplifi- 
cation is the consideration of the coefficient for the rate of 
transfer of heat from the surface of the body to the environment 
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by convection and radiation, Kse, as a constant. A more accurate 
description of these heat transfer processes would be based on 

material presented by Hardy and associates (1970). However, 

the justification for having adopted the simple approach described 

above stems from the clinical use of the model, since the other 

approach would not only add to the computer memory requirements, 
but also add to the complexity in using the system in the clinic 
for patient management. In addition, it is uncertain whether 
the need exists for the benefits of using the complex modelling 

approach for the purposes of this work. 
Another simplification is the mathematical treatment of the 

thermoregulatory controller. This was largely due to the lack 

of meaningful data regarding this system. However, the functions 

used were selected on the basis of simulations of the thermoregu- 

latory system model with several candidate functions of the 

controller. It was found that the model responded satisfactorily 

without any instability with the controller model described 

above. 

These and other assumptions were deemed to be acceptable 
from consideration of the results of the validation tests 
described in subsequent chapters. 

4.2. Cardiovascular System Model. 

Two basic reasons exist for including a model of the 
cardiovascular system in the overall system model. Firstly, 

certain variables of the cardiovascular system interact with 
other subsystem models as shown in Figure 4.1. Secondly, some 
of the variables of the cardiovascular system are important in 

establishing the state of the patient undergoing dialysis. 
However, for patient management, it is more important to know 

the trends of these variybles rather than their absolute values 
with accuracy. For instance, the clinician is more interested 
in whether the arterial pressure of his patient is rising away 
from or falling back towards a more normal value, rather than 
to know the precise pressure at a particular instant. Hence, for 
this reason, and also from consideration of the time spans of 
simulations necessary for the objectives of this work (30 minutes 

-68- 



to several hours), the primary requirement for the model is 

prediction of the trends of the key variables in the longer term. 

Therefore the phenomena which affect the cardiovascular system 

only in the relative short term were neglected in the modelling 

process. 
The model of Guyton and Coleman (1967), briefly described 

in the previous chapter, is simple, yet sufficient for the 

requirements stated above. Hence the model developed below, and 

shown in block diagram form in Figure 4.8t relies largely on 
the concepts and data used for the model developed by Guyton and 
Coleman. The function of each block and the assumptions made in 

the development of the model are detailed below. 

4.2.1. Derivation Of The Model. 

Block 1 represents the algebraic summation of the rates of 
fluid gain by ingestion, FLUMIN, and fluid loss by urine flow, UFL, 

to give the rate of change of extracellular fluid volume, 
dt. 

Block 2 integrates this rate of change, giving the extra- 
cellular fluid volume, E, at any instant. 

Block 3 represents the non-linear relationship between 

extracellular fluid volume, Et and blood volume, BVG as estab- 
lished by experiments (Guyton and Coleman, 1967). The relation- 
ship is linear up to a value of extracellular fluid volume 
slightly greater than 20 litres. A further expansion of extra- 
cellular fluid volume causes little further increase in blood 

volume, and marks the onset of the state of oedema, where the 

excess fluid stays mainly in the interstitium, The quantitative 
function used to represent this relationship in the model is: 

BV d 0.33 xE if E < 21.0 litres 

BV a 0.015xE +'6.6 if E >i 21.0 litres 
(4.5) 

Mean systemic pressure may be dfined as the extent to which 
The systemic circulation is filled with blood. Theoretically, 
mean systemic pressure is equal to the sum of the pressures in 

all the individual segments of the systemic circulation when each 

BV a 0.015xE +'6.6 
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of these pressures is weighted by a factor equal to the compliance 

of the respective individual segment divided by the compliance 

of the whole systemic circulation. In practice, it is measured 

by stopping the circulation and rapidly pumping blood from the 

arteries to the veins till the pressures are in equilibrium. 

This equilibrium pressure is then approximately equal to the 

mean systemic pressure. 
Block 4 represents the relationship between blood volume, BVG 

and mean systemic pressure, MSP9 which was experimentally derived 

by Richardson and associates (1961). This relationship is 

quantitatively represented in the model by the function: 

MSP Q 3.5xBV - 10.5 (4.6) 

Sympathetic and parasympathetic stimulation are also determinants 

of mean systemic pressure. However, since the effects of 

autonomic nervous activity on the circulation are transient 

relative to the time spans of interest in this work, the autonomic 

nervous system is not modelled. 

Total peripheral resistance to blood flow is subject to 

alteration by many factors, including tissue demand for oxygen 

and nutrients, autonomic nervous activity and levels of circulat- 
ing pressor substances (Johansson, 1978). For the purpose of 
this work, the only factors determining the value of total peri- 

pheral resistance in the model are the thermoregulatory demand 

for blood flow, as described previously, and the level of the 

pressor substance, angiotensin III in plasma. All other factors 

are assumed either to have only transient effects on the resistance 
to blood flow or to remain constant at normal levels in the 
dialysis patient. 

The approximate relation between the level of angiotensin 
II in plasma and the change in blood pressure due to the pressor 

effect was derived from the results of experiments of incremental 

angiotensin II infusion in humans (Oelkers at al., 1974; Deheneffe 

et al., 1976). The relationship for the change in total peri- 
pheral resistance, DTPR, due to. the level of angiotensin It in 

plasma, A, represented by Block 5 in Figure 4.89 was then extra- 
polated from these data. The resulting function used in the 
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model is: 

DTPR - 0.037xA - 1.0 

DTPR - 5.44x1og10(A) 7.8 

if A4 27.0 ng. /1. 

if A< 27.0 ng. /1. 
(4.7) 

The value for DTPR then modulates the value for total peripheral 

resistance generated by the thermoregulatory system model, TPRTHI 

to give the overall value of total peripheral resistance, TPR: 

TPR - TPRTH + DTPR (4.8) 

Block 6 represents the process of equating the cardiac 
function curve and venous return curve to yield values for 

right atrial pressure, RAP, and venous return, VR, which, 

according to the Frank-Starling law of the heart, is equal to 

cardiac output, CO, (Guyton, 1971). The Frank-Starling law of 

the heart states that the heart pumps out as much blood as that 

which flows into it, within physiologic limits. The principle 

mechanism by which this is achieved is known as the heterometric 

autoregulation of the heart, whereby the more the muscular walls 

of the cardiac chambers are stretched by incoming blood, the 

greater the force of contraction and outflow of blood from the 

heart (Guyton, 1971). Using this relationship, the function of 

the heart as a pump is then suitably described by the cardiac 
function curves, depicted in Figure 4.9, which relate the pressure 
in the right atrium (that is, the extent to which it is filled) 

to the rate of blood flowing out of the left ventricle or the 

cardiac output. 
Figure 4.9 shows a set of cardiac function curves] represent- 

ing the hypoeffective, normal and hypereffective heart. The 

effectiveness of the heart as a pump varies with certain factors - 
the short term variation due to sympathetic and parasympathetic 

stimulation being the most important. Other factors include the 
deteriorating effects of abnormally high levels of certain 
cations in the fluids surrounding the heart and the effects of 

previous damage to heart tissues (Guyton, 1971). 

The relatively short term effects of sympathetic and para- 
sympathetic stimulation on the effectiveness of the heart as a 
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pump are not taken into account in the model. However, the level 

of hypoeffectiveness of the heart is determined by relationships 
dependant on a parameter specified by the clinician concerning 
the state of the heart of the individual patient (see Chapters 
6 and 8), and also on the levels of sodium and potassium in the 

extracellular fluid, PNA and PK respectively. 
Although evidence suggests a more complex relationship 

(Hoff at at., 1939; Friedman at al., 1959), as a first approxi- 

mation, the relationship between the effectiveness of the heart 

as a pump, CE, and the excess cations in the extracellular fluid 

was assumed to be of the form: 

CENA 1.0 if PNA < 148.0 

CENA - "0.0125xPNA + 2.85 if PNA >, 148.0 

CEK - 1.0 ifPK<6.5 

CEK a -0.065PK + 1.43 if PK > 6.5 

CE - (LENA + CEK) x 0.5 

(4.9) 

(4.10) 

(4.11) 

In addition, the parameter specified by the clinician for the 

state of the heart of the patient is also accounted for so that 
the level of hypeeffectiveness of the heart, and thus the operat- 
ing pressure - flow relationship of Figure 4.9 is determined. 

Block 6 of Figure 4.8 also shows the systemic function 

curve which relates the rate of blood returning to the heart 
from the veins to the pressure in the right atrium. This curve 
is the graphical representation of the relationship between the 

pressure drop across the systemic veins, (MSP - RAP), the resis- 
tance to blood flow in the systemic veins, RVR, and the resulting 
rate of venous return, VR: 

VR - (MSP - RAP)/RVR (4.12) 

The collapse of veins at right atrial pressure of 0 mm Hg. and 
below causes a sharp increase in the resistance to blood flow, 

which is demonstrated by the non-linearity in the systemic 
function curve. This is seen more clearly in Figure 4.10, which 
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shows a set of systemic function curves for various values of 

mean systemic pressure. 
In the model, the value for the resistance to venous 

return, which determines the slope of the linear portions of the 

systemic function curves, is assumed to be a constant fraction 

(0.07) of the value for total peripheral resistance (Guyton, 

1971). 

Hence, the operating cardiac function curve in determined 

by the level of hypoeffectiveness of the heart as a pump, and 

the operating curve for systemic function is determined by the 

values of mean systemic pressure and total peripheral resistance 

generated previously in the model. Since venous return is equal 
to cardiac output (Frank-Starling law of the heart) equating the 

appropriate cardiac function and systemic function curves yields 

values for venous return or cardiac output, and for right atrial 

pressure. 

Block 7 of Figure 4.8 represents the pressure - flow 

relationship between total peripheral resistance, TPR, cardiac 
output, CO and arterial pressure, APt 

AP - CO x TPR 

In order to accomodate differences in the cardiovascular systems 

of individual patients, and also to represent very long term 

effects on the circulation, a steady state bias, calculated from 

initial condition information, was included in the above 
relationship: 

AP - CO x TPR + DAPo (4.13) 

4.2.2. Summary Of The Cardiovascular System Model. 

The model of Guyton and Coleman (1967) utilizes an experi- 
mentally derived relationship between arterial pressure and urine 
flow rate in order to clode the-loop on their cardiovascular 
system model. However, for the purposes of this work, the various 
renal and hormonal factors affecting the rate of urine flow in 
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the normal human have been modelled in considerably greater 
detail as described in the following sections of this chapter. 

The model of the cardiovascular system, as described above, 
does not incorporate mathematical representations of many of the 

controllers which affect the circulation on a relatively short 

time scale. The anticipated result of these omissions is that 

the fine detail of the dynamic behaviour of the variables in the 

real system will not be matched by the simulations. However, as 
demonstrated in the validation exercises described in subsequent 

chapters, this limitation is of little consequence, since the more 
important objective of the prediction of the overall trends of 
the variables is met. 

4.3. The Kidney Function Model. 

The functions of the renal system were described in a 
qualitative manner in Chapter 2 of this thesis. In particular, 
a discussion was presented in section 2.2.1, with reference to 
the diagram of Figure 2.4. regarding the currently accepted 
theories related to the formation of the glomerular filtrate 

and the subsequent processing of the tubular fluid as it passes 
through the major segments of the nephrons before entering the 
bladder as urine. 

Considering the kidneys as one large nephron, mathematical 
expressions are derived below, representing the effects of these 
kidney functions on the tubular processing and eventual excretion 
of sodium, potassium and watercin the urine. Data reported in 

the literature were used in the derivation of the relationships 
between variables wherever possible, but owing to the fact that 

renal physiology is still not clearly understood, certain 
assumptions concerning renal function had to be made. 

The subsections below state these assumptions and describe 

the data used to derive the resulting equations, which represent 
glomerular function, proximal tubular processing, the effects of 
the loop of Henle and the actions of aldosterone and the anti- 
diuretic hormone (ADH) on the fluid in the distal portions of 
the nephron. 
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4.3.1. Glomerular Function Model. 

It was stated in section 2.2.1 that the rate of formation 

of glomerular filtrate, GFR, is dependant on the nett pressure 
forcing fluid across the glomerular capillary membranes in the 

Bowman's capsules of the nephrons. The nett filtration pressure, 

Pf, is equal to the difference between the hydrostatic pressure 
in the capillaries, Pg, which is dependant on mean arterial 

pressure, AP, and the sum of the glomerular colloid osmotic 

pressure, IT g, and the hydrostatic pressure of the fluid surround- 
ing the capillaries, PB. 

The assumption is made that variations within the physiolog- 
ical ranges of the pressures, Tr g and PB, have negligible effects 

on glomerular filtration. The data shown in Figure 4.11, 

resulting from experiments by Shipley and Study (1951), relating 
GFR and AP, is therefore used to derive the expression below 

governing GFR: 

GFR e 0.0 if AP 4 20.0 mn. Hg. 

GFR s 1.92xAP - 38.4 if 20.0 < AP 4 75.0 mmHg. 

GFR - -0.00808xAP2 + 2.195xAP - 13.6 (4.14) 

if 75.0 < AP 4 120.0 mm. Hg. 

GFR - 0.035xAP + 129.2 if AP >120 man. Hg. 

The relative constancy of glomerular filtration rate as 

renal arterial pressure rises above and beyond the value of 
90 mmHg. is known as the renal autoregulation of glomerular 
filtration rate. It has been demonstrated that this phenomenon 
is due to adaptive changes in the resistance of the afferent 

arterioles to renal blood flow (Thurau and Krammer, 1959). 

Hence, this is consistent with the macula densa sodium concent- 

ration theory of renin release (Thurau et al., 1967), outlined 
in Chapter 2 of this thesis, and with the theory of tubulo- 

glomerular feedback controlling GFR by the renin-angiotensin 
system (Vander, 1967). 

Chemical analysis of the glomerular filtrate fluid, 

collected from the early portions of the proximal tubule have 

shown that it is iso-osmotic and isotonic with protein - free 
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plasma fluid obtained from the glomerulus (Windhager, 1968). 

Therefore, ignoring the slight error due to the Gibbs-Donnan 

effect, the rate of filtration of sodium into the proximal 

tubule, FNA, is given by: 

FNA a GFR x PNA / 1000.0 (4.15) 

The glomerular filtrate then passes into the proximal and 

subsequent tubule segments for appropriate processing for 

homeostatis. 

4.3.2. Proximal Tubule Segment. 

(i) Sodium. 

Approximately three-quarters of the filtered load of sodium 
is actively reabsorbed in the proximal tubule. The fraction 

reabsorbed appears to be independant of glomerular filtration 

rate (Windhager, 1968). This parallel relationship between 

glomerular filtration rate and the fraction of sodium re--- 

absorbed in the proximal tubule is known as the glomerular- 
tubular balance. 

However, it has been-shown that glomerular-tubular balance 

' is upset by changes in the concentration of sodium in the filtrate 

in the proximal tubule, which is essentially equal to the 

concentration of sodium in plasma (Johnston et al. 9 1967). This 

effect is thought to be mediated by, as yet, an undetermined 

natriuretic substance acting on the proximal tubule. 
Since such a large proportion of the filtered load of sodium 

is reabsorbed in the proximal tubule, this is the most important 

mechanism for sodium homeostatis in the body. However, data 

pertaining to the relationship between intraluminal or plasma 

concentration of sodium, PNA, and the fraction of filtered 

load reabsorbed in the proximal tubules of human kidneys, GTB, 

are not available. Therefore, in the model, the relationship is 

approximated by the linear function: 

GTB a -0.0357xPNA + 5.815 (4.16) 
with the constraint 0.75 ,< GTB < 1.0 
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The rate of reabsorption of sodium in the proximal tubule, SPTR, 

is then given by: 

SPTR - GTB x FNA (4.17) 

and the rate of flow of sodium into the loop of Henley SFLH, ist 

4 

SFLH - FNA - SPTR 

(ii) Water. 

(4.18) 

In the absence of significant amounts of poorly reabsorbable 

solutes, the fraction of the water load passively reabsorbed in 

the proximal tubule is equal to the fraction of the sodium load 

reabsorbed. This has been shown to occur in the kidney of the 

rat for a wide range of osmolality of the final urine (Malnic 

et al., 1966). 

Hence, the rate of reabsorption of water in the proximal 
tubule, EPTR, is represented by the relationship:. 

EPTR - GTB x GFR (4.19) 

and the rate of flow of water into the loop of Henle is given by: 

EFLH Q GFR - EPTR 

(iii) Potassium. 

(4.20) 

Virtually all of the filtered potassium is reabsorbed in the 

proximal segments of the nephron of the rat (Malnic et al. t 1964). 

Potassium in the urine is therefore due to nett secretion in 

the distal portions of the tubules. Hence, assuming these results 

may be extrapolated to human kidneys, only the secretion of 

potassium in the distal tubule is considered in the model. 

4.3.3. The Loop Of Hanle. 

The morphology and transport characteristics of the loop of 
Henle, depicted in Figure 2.1, give rise to the primary mechanism 
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by which the kidneys control the osmolality of the final urine 

as required by the state of fluid balance in the body. In the 

course of this process, known as the countercurrent mechanism, 
the concentrations of the various substances in the tubular 
fluid undergo drastic changes as the fluid passes along the loop 

of Henle (Guyton, 1971). 
The overall reabsorptive characteristics for sodium and 

water in the loop of Henle of the animal kidney have been 

determined experimentally (Landwehr et al., 1968). It has been 

demonstrated that the fraction of the water load reabsorbed is 

a function of the transit time, or an inverse function of the 

rate of flow, whereas the fraction of the sodium load reabsorbed 
remains fairly constant as the rate of flow of tubular fluid is 

varied. Hence, 'extrapolation of the data presented by Landwehr 

and associates (1968) to the human kidneys yields the following 

relationship, used in the model, to represent the rates of water, 
ELHR, and sodium, SLHR, reabsorbed in this nephron segment: 

EBLH d (-0.01 x EFLH) + 0.65 
(4.21) 

ELHR - EBLH x EFLH 

SLHR = 0.8 x SFLH (4.22) 

The rates of flow of water, EFDT, and sodium, SFDT, into the 
distal tubule are then given by the following equations: 

EFDT - EFLH - ELHR (4.23) 

SFDT a SFLH - SLUR (4.24) 

It is assumed that the filtered load of potassium is totally 

reabsorbed in the proximal segments of the tubule. Hence potassium 
in the urine is due to active secretion in the distal portions / 
of the nephron. 
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" 4.3.4. Distal And Collecting Segments. 

The volume and osmolality of urine is controlled finally by 

the actions of the antidiuretic hormone (ADH) and aldosterone on 

the distal segments of the tubules. The permeability of these 

segments to water, and therefore the fraction of the tubular 

load of water reabsorbed, is controlled by changes in the concen- 

tration of ADH in plasma. The rate of reabsorption of sodium 

and the rate of secretion of potassium across the tubular walls 

are influenced by the concentration of aldosterone. 
These hormonal control systems were described in Chapter 2, 

and the quantitative relationships which determine the concen- 

trations of the hormones in plasma in the model are derived in 

section 4.4. The discussion below describes the derivation of 

the relationships used in the model to represent the actions of 

ADH and aldosterone on the distal and collecting segments of the 

nephron in the model. 

(i) The Action Of ADH. 

The rate of reabsorption of water from the luminal fluid in 

these nephron segments is controlled by the concentration of ADH 

in plasma (Guyton, 1971). Although the precise mechanisms 
involved are unknown, it is clear from experiments by Grantham 

and associates (1969) on the rabbit tubule, that the rate of 

reabsorption of water is influenced by some intracellular bio- 

chemical reaction initiated by the exposure of the surface of the 

peritubular membrane to a different concentration of ADH. 

Data on the relationship between variations in plasma ADH 

levels and rates of reabsorption of fluid in the human tubules 

are not available. However, using data from the literature, 

Dehaven and Shapiro have derived a quantitative relationship 
between the plasma level of ADH and the resulting rate of urine 
flow in man for use in their model (Dehaven and Shapiro, 1970). 

From their relationship, assuming a normal value for the rate of 
delivery of tubular fluid to the distal tubule, the relationships 
below were derived to approximate the effect of variations in 

the plasma concentration of ADH '(ADH) on the rate of reabsorption 

of fluid from the distal and collecting segments of the human 

nephron, ERDTB 
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EBDT a 0.0 

EBDT - 0.383xADH - 0.293 

if ADH (0.765 munits/1. 

if 0.765<ADH 43.0 

EBDT - -0.0383xADH2 + 0.364xADH + 0.109 

if 3.0 <ADH <5.0 

EBDT - 0.0012xADH + 0.9653 if ADH > 5.0 munits/1. 

EDTR - EBDT x EFDT 

The rate of flow of urine, UFL, is then given by: 

UFL - EFDT - EDTR 

0 

(4.25) 

(4.26) 

The action of ADH on the distally located nephron segments 
is, thus, represented by equations (4.25) and (4.26). 

(ii) The Action Of Aldosterone. 

(a) Sodium. 

The rate of reabsorption of sodium across the distally 

located nephron segments in dependant on the plasma concentration 

of aldosterone (Lowitz et al., 1969). Experiments have shown 

that the fraction of sodium reabsorbed under the influence of 

aldosterone is approximately two per cent of the filtered load 

of sodium (Roemmelt et al., 1949). 

Data regarding the effect of variations of the concentration 
of aldosterone in plasma, ALD, on the resultant rate of reabsorp- 
tion of sodium across the distal and collecting tubules, SDTR, 

of the human kidneys are not available. Hence it was necessary 
to formulate the expression below to represent this function in 

the model: 

SDTR - 0.6xSFDT 

SDTR - (0.003xALD + 0.596) x SFDT 

SDTR - (0.00021xALD + 0.833) x SFDT 

SDTR a SFDT 
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The expressions, (4.27), are based on the assumptions that 

when the level of aldosterone in plasma is low, the fraction of 

the distal tubular load of sodium reabsorbed is 0.6; and when the 

level of aldosterone in plasma is high (ALD > 800.0 ng. /l. ), the 

entire distal tubular load of sodium is reabsorbed. Therefore, 

the reabsorption of 407. of the distal tubular load of sodium is 

controlled by aldosterone. Considering steady state values of 

the filtration rate of sodium (17.75 mEq. /min. ) and the distal 

tubular load of sodium (0.8875 mEq. /min. ), the fraction of the 

tubular load of sodium under the influence of aildosterone in 

the model is equal to two per cent of the filtered load of sodium. 

The rate of excretion of sodium in the urine, UNA, is then 

given by: 

UNA - SFDT - SDTR (4.28) 

The influence of aldosterone on the reabsorption of sodium 
from the tubular fluid iss therefore, represented by equations 
(4.27) and (4.28) in the model. 

(b) Potassium. 

Malnic and associates have determined that the concentration 
of potassium in the fluid entering the distal tubule of the rat 
kidney remains relatively constant at very low levels, even when 
the kidneys are subjected to a wide variety of forcings. However, 
different forcings were seen to cause large variations in the rate 

of excretion of potassium in the urine (Malnic et al., 1966). 

These findings suggest that virtually all the filtered load of 

potassium is reabsorbed in the proximally located nephron seg- 

ments. In addition, the rate of excretion of potassium in the 

urine is determined by the nett rate of secretion of potassium 
into the distal tubule, which is dependant on the forcing or 

conditions imposed on the renal system. 
Consideration of the forcings applied led Valtin to propose 

the probable mechanisms for the secretion of potassium into the 
distal tubule. These mechanisms are mediated by two major factors, 

namely the concentration of potassium in the body fluids and the 

magnitude of the electrical gradient across the walls of the 
distal tubule (Valtin, 1973). It is proposed that a high 
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concentration of potassium in the cells of the walls of the 

distal tubules inhibits reabsorption from, and enhances sec- 

retion of potassium into the distal tubular lumen. Also, an 

increase in the rate of secretion of potassium is observed as 

the luminal fluid in the distal tubule becomes more negative 

with respect to the peritubular fluid. Since the electrical 

gradient increases with increased sodium reabsorption due to 

an increased concentration of aldosterone in plasma, it is 

suggested that the reabsorption of sodium and the secretion of 

potassium are electrically coupled and mediated by the effects 

of aldosterone. 
Owing to the lack of adequate data relating to the excretion 

of potassium due to homeostatis, UKH, and aldosterone, UKAL, 

these functions are simply represented in the model by the 

relationships below: 

UKH - 0.107xPK - 0.505 (4.29) 

MAL - 0.00028xALD f 0.0062 if ALD 
,< 

85.0 ng. /1. (4.30) 

UKAL a 0.00009xALD + 0.0224 if ALD > 85.0 ng. /1. 

These functions are simply combined to yield the nett rate 

of excretion of potassium. 

UK - UKH + UKAL (4.31) 

Thus, the renal handling of potassium is represented by 

equations (4.29), (4.30) and (4.31). 

4.3.5. Summary On The Kidney Function Model. 

The development of the mathematical equations representing 
the basic kidney functions was presented above. The equations 

are based on current knowledge and, as far as possible, on 

meaningful data. However, owing to the obvious difficulties 

in measuring the variables on humans, these data are generally 
derived from animal experiments. Therefore, a general assumption 
in the development of the kidney function model is that data on 
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the kidneys of relevant animals may be extrapolated to the 

kidneys of the human. 

The most crucial portion of the model, as far as homeostatis 

of the body fluids is concerned, is the representation of the 

mechanisms involved in the reabsorption of sodium and fluid from 

the proximal tubule. The assumption is made that the fraction 

of the filtered loads of sodium and water reabsorbed is independant 

of the rate of flow, or in other words, that perfect glomerular 
tubular balance exists in the proximal tubule. There is some 

evidence (Imai et al., 1977) that this is not the case in the 
kidneys of the rabbit. However, the inclusion of relationships 
to represent the flow - dependant fractional reabsorption of 

sodium and water from-the proximal tubule made little difference 

to the overall response of the model when used to simulate 

stresses, of the form described in Chapter 5, on the normal 
kidneys. In the case of chronic renal failure, though, with 

greatly diminished glomerular filtration rate, an imperfect 

glomerular tubular balance is introduced due to hypertrophy of 

the tubules (Gottschalk, 1971). This effect is discussed further 

in the development of equations to represent renal failure in 

section 4.7 of this chapter. 

Many other assumptions are inherent in the model. However, 

the final version of the model presented here was arrived at 

after adjustments to the structure and parameters were made such 
that the responses of the model to stresses were satisfactory 
when compared with physiological data. In this process, it was 
found that the response was surprisingly insensitive to changes 
in many of the parameters. The conclusion to be drawn is that 
because of the inherent feedback loops in the model, the effect 

of variations of parameters is minimized. Therefore the model 
can tolerate a degree of inaccuracy in parameter values. 

In addition, any detrimental effects of inaccuracies and 

assumptions introduced by the process of modelling would be 

greatly reduced when the model is used to simulate the dialysis 

patient with little or no residual kidney function. The following 

chapters on validation demonstrate that the kidney function 

model is adequate to accomplish the aims of this work. 
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4.4. Hormonal System Models. 

Included in the previous section was the derivation of 

equations representing the effects of the antidiuretic hormone 

(ADH) and aldosterone on the distal and collecting segments of 

the nephron. In this section, equations representing the control 

of the concentrations of these substances in plasma are derived. 

The relevant physiology was described in section 2.2.2. 

4.4.1. Control Of The Concentration Of ADH In Plasma. 

The concentration of ADH in plasma is determined by three 
factors. The first is the rate of release of ADH from the 

hypothalamus-pituitary system in response to signals from the 

osmoreceptors of the supraoptic nucleus of the hypothalamus and 
from volume and pressure receptors in the vascular system (see 

Chapter 2). The second factor is the rate of clearance of ADH 

from the body by the liver and kidneys, and the third factor is 

the volume of distribution of ADH. 
It is generally agreed that an increase in the rate of 

release of ADH follows an increase in the osmolality of the 

blood compartment, a decrease in the volume of the extracellular 

compartment or a sudden decrease in arterial pressure due toi for 

instance, haemorrhage (Toates and Oatley, 1977). However, since 

arterial pressure is determined by the extracellular fluid volume 
in the model, and the patient undergoing dialysis is not normally 

expected to suffer haemorrhage, the baroreceptor influence on the 

rate of release of ADH is omitted from the model. 
Since sodium is the major constituent of plasma, the osmo- 

lality of plasma, POS9 which is equal to the osmolality of the 

extracellular fluid, is approximated by the equation: 

POS - 2.11 x PNA (4.32) 

Dehaven and Shapiro (1970) and Bigelow, Dehaven and Shapley 
(1973) derived a relationship, from physiological data, between 

the change in the osmolality of plasma and the rate of release 
of ADH into the blood compartment. This relationship was 
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adapted to represent the effect of differing osmolalities of 

plasma on the rate of release of ADH (ADHSP), and used in the 

model in the form of the equations below: 

ADHSP - 0.348xPOS - 103.43 for POS >i299.5 mosm. /1. (4.33) 

ADHSP a 0.0285xPOS - 8.04 for POS < 299.5 mosm. /1. 

Reeve and Kulhanek (1967) derived a sigmoid shape curve from 

physiological data for the relationship between the fractional 

change in the volume of body fluid and the rate of release of 

ADH. The relationship was adapted so that the variable causing 

the release of ADH was the deviation of the volume of extra- 

cellular compartment, DWV, from the normal volume, EN: 

DWV -E- EN 

The resulting relation between the deviation of extracellular 
fluid volume from normal, IMV, and the rate of release of ADN 
(ADHSV) is approximated by the equations: 

ADHSV - 0.0 for EMV>, 1.8 

ADHSV - 0.15 - 0.083xtMV for 1.8> IMV >, 1.0 

ADHSV - 0.813 - 0.75xI V for 1.0 ) WW)-1.2 

ADHSV n 1.71 for -1.2>tWV 

(4.34) 

(4.35) 

The results of experiments by Johnson and associates (1970) 

on sheep suggest that the signals for the release of ADH are 

additive. Simulation of stresses involving water and hypertonic 

saline loading with different methods of combining the variables, 
ADHSP and ADHSV, suggest that the signals for the release of ADH 

are, indeed, simply additive. However, for the condition when 
both the osmolality and the volume of the extracellular fluid 

compartment are above normal, the optimal combined signal was 
found, by comparison of simulation results with reported experi- 
mental data, to be the sum of the weighted signals in favour of 
the signal from the volume receptors. This is in agreement with 
the concepts presented by Arndt (1965). Therefore, the resulting 
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signal for the release of ADH in the model, ADHS, is given by: 

ADHS - ((17. OxDWVxADHSV) + ADHSP)/((17. oxIMV) + 1.0) 

for POS) 299.6 mosm. /1. and DWV > 2.01. 

ADHS - (((33. OxDWV - 32.0) x ADHSV) + ADHSP) 
(4.36) 

/ ((33. OxDWV - 32.0) + 1.0) 

for POS > 299.6 and 1.0 DWV C 2.0 

ADHS - (ADHSV + ADHSP)/2.0 for all other conditions. 

The valid mathematical representation of the clearance of 

ADH from the body is as important as is the representation of the 

release of ADH. However, data concerning the clearance of ADH 

are scanty and unreliable. Fabian and associates (1969) report 

a value for the clearance of ADH of 1.0 1. /min., whereas Lauson 

(1960) reports a value of 0.125 1. /min; but consideration of the 

steady state for equations (4.33), (4.35) and (4.36) yield a 

rate of release of ADH of 0.825 munits/min.. The normal value 

reported for the concentration of ADH in plasma is 4.0 munits/1. 
(Bigelow et al., 1973). This yields a value for the clearance 

rate of ADH from plasma of 0.206 1/min. in the steady state. 

There is evidence, however, that the rate of clearance of ADH 

varies with the level of ADH in plasma (Czaczkes et al. t 1964). 

Hence, the relationship between the concentration of ADH in plasma 
(ADH) and the rate of clearance in the model, DADH, is of the 

same general form as that used by Bigelow and associates (1973) 

in their model of the renal systems 

DADH - 0.206 for ADH> 4.0 munits/1. 

DADH m 0.374 - 0.042xADH for ADH < 4.0 munits/1. 
(4.37) 

The work of Reeve and Kulhanek (1967) suggests that ADH is 

mainly confined in the plasma compartment. The volume of the 

plasma compartment, PVC in the model is considered to be a 

constant fraction of the blood volume, BV: 

PV - 0.6 x BV 
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Therefore, the balance equation for ADH is: 

d(ADH) 
Q (ADHS - ADH N DADH) /PV (4.39) 

dt 

The equations in the model representing the dynamics of 

ADH are, therefore equations (4.32) to (4.39). 

4.4.2. The Control Of Aldosterone Concentration. 

Aldosterone is the final component of the renin-angiotensin- 

aldosterone (R-A-A ) system, the function of which is to effect 

feedback control on the rates of excretion of sodium and potassium, 

and thereby influence the volumes of the intracellular and extra- 

cellular fluid compartments. The underlying physiological 

theories concerning the R-A-A system were described in Chapter 29 

and the mathematical representation of the effects of aldosterone 

on the rates of reabsorption of sodium from and secretion of 

potassium into the distal and collecting tubules of the nephron 

were presented in the preceding section. The derivation of 

mathematical equations representing the control of the levels of 

each of the components of the R-A-A system in plasma is presented 

below. 

(i) Renin. 

Renin is an enzyme stored and released from the granular 

cells of the juxtaglomerular apparatus which lies between, and 
in contact with, the afferent arteriole and the beginning of the 

distal tubule of each nephron. Due to the location of the 
juxtaglomerular apparatus, many theories concerning the control 

of the release of renin have arisen. These theories suggest a 

role for renin in feedback systems for the control of body sodium 

and fluid volume. The three main theories, described in Chapter 
2, are outlined below for the purpose of modelling the control of 
the release of renin. 

The intrarenal vascular receptor theory for renin release 
(Tobian et al., 1959) suggests that the granular cells are sensi- 
tive to the stretch of the walls of the afferent arteriole such 
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that a decrease in stretch due to a reduction in perfusion 

pressure produces an increase in the rate of release of renin from 

the granular cells. This leads to an increase in the level of 
aldosterone in plasma, which causes the increased reabsorption of 

sodium from the distally located nephron segments. Concurrent 

with the resulting reduced renal excretion of sodium is the 

osmotically induced expansion of extracellular fluid volume, 

which serves to raise the mean arterial pressure and hence the 

renal perfusion pressure. Thus the signal for the increase in 

the rate of release of renin is removed. 
The macula densa sodium load theory for the release of renin 

(Vander and Miller, 1964) states that the rate of release of the 

enzyme is increased due to a decrease in the sodium load at the 

beginning of the distal tubule, sensed by the macula densa cells 

of the juxtaglomerular apparatus. If the assumption is made 

that the sodium load at the distal tubule is directly related 
to the plasma concentration of sodium or to the extracellular 
fluid volume, then the macula densa sodium load theory is the 
basis of a possible feedback system for the control of the 

plasma. concentration of sodium or the volume of the extracellular 
fluid compartment, and hence of blood pressure. The mechanics of 
the system are identical to those of the system based on the 
intrarenal vascular receptor theory for renin"release. 

The macula densa intraluminal sodium concentration theory 
(Thurau et al,, 1967) states that an increase in the concentra- 
tion of sodium in the tubular fluid at the macula densa cells 
causes an increase in the rate of release of renin into the 
blood of the afferent arteriole. It is proposed that the in- 

creased local concentration of renin causes an increase in the 

concentration of the pressor substance, angiotensin III which 
in turn causes the constriction of the afferent arteriole, 
thereby reducing the glomerular filtration rate and, thus, the 

signal for the increase in the rate of release of renin. 
The local effects of the release of renin due to the intra- 

luminal sodium concentration theory of renin release form the 
basis of the probable mechanism by which the glomerular filtration 

rate is autoregulated (Thurau, 1971). Since the relationship in 
the model between arterial pressure and glomerular filtration 

rate, equation (4.14), incorporates the characteristics of renal 
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autoregulation, there is no need to consider the effects of the 

intraluminal sodium concentration theory for renin release for 

the modelling process. 
If the assumption is made that the sodium load entering the 

distal tubule is directly related to the sodium content of the 

body, which determines the extracellular fluid volume and, thus, 

the mean arterial pressure, then the intrarenal vascular receptor 

theory and the macula densa sodium load theory both relate an 
increase in the rate of release of renin to a decrease in 

extracellular fluid volume. Thus a single mathematical relation- 

ship between the sodium load entering the distal tubule and the 

rate of release of renin would represent both these theories. 

Owing to the lack of adequate data, the linear relationship 

of equation(4.40)was postulated as a representation of the control 

of the release of renin, RS, due to the load of sodium entering 
the distal tubule, SFDT: 

RS a 0.0163 - 0.0093 x SFDT (4.40) 

The effects of other factors, such as posture (Gorden et al., 
1967) sympathetic stimulation (Taquini et al., 1964), ADN and 

angiotensin II levels (Shade et al., 1973), on the rate of release 

of renin are assumed to be negligible. 
The rate of release of renin into plasma is therefore 

represented by equation (4.40). The steady state value of the 

rate of release of renin given by this equation, 0.008GU. /min., 

is in agreement with the value quoted by Blaine and associates 
(1972). The value for the normal concentration of renin is 

quoted as 0.06GU/1. (Blaine et al., 1972). Renin is removed 
from the circulation on passage through the liver (Heacox et 

al., 1967). Therefore the rate of clearance of renin from 

plasma can be assumed to be constant if the hepatic blood flow 

is assumed to be constant. The resultant rate of clearance 
is calculated from steady state considerations. 

Secretion rate a removal rate 

R clearance rate x steady state concentration (4.41) 
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This yields a clearance rate for renin of 0.135 1. /min.. 

Thus the balance equation for the concentration of renin, R, 

in plasma is: 

ät = (Rs - 0.135 x R)/PV 

The dynamics of renin in plasma are, thus, represented in 

the model by equations (4.40) and (4.42). 

(ii) Angiotensin. 

(4.42) 

The enzyme, renin, acts on its substrate to release angio- 
tensin I. This physiologically inactive substance is rapidly 

converted to angiotensin 11 by enzymes chiefly located in the 
lungs. Angiotensin III the active component of the renin- 

angiotensin system, controls the rate of release of aldosterone, 

and also has a pressor effect on the circulation. 
The rate of release of renin substrate from the liver is 

controlled by the level of angiotensin II in Plasma. This is 

due to a positive feedback mechanism by which the concentration 
of the substrate in plasma remains relatively constant in the 
face of varying rates of utilization for the formation of angio- 

tensin. tI (Reid et al., 1978). Other known factors that effect 
the concentration of renin substrate in plasma are the variations 
in glucocorticoids and estrogens in the body (Reid et al. 9 1978). 

Renin cleaves angiotensin I from its substrate in plasma, 
The rate of formation of angiotensin I by. the enzyme - substrate 

reaction appears to follow a Michaelis-Menten equation, where 
the rate of formation of angiotensin I is dependant on the 

concentrations of both resin and its substrate (Haas and 
Goldblatt, 1967). 

Angiotensin I is then converted to angiotensin II by enzymes 
located chiefly in the lungs. The rate of conversion appears 
to be extremely rapid, such that the conversion is complete on 
a single passage of blood through the lungs (Ng and Vane, 1968). 

The parameters for the Michaelis-Menten equation, to 
describe the rate of formation of angiotensin II given the con- 
centrations of renin and its substrate, were experimentally 
determined by Haas and Goldblatt (1967). In using this equation 
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in the model it is assumed that the concentration of renin 

substrate remains constant. In other words, it is assumed that 

the positive feedback mechanism for the control of the concen- 

tration of renin substrate is totally effective; in addition, 

it is assumed that glucocorticoid activity is maintained at a 

normal level in the patient; also, it is assumed that estrogen 
is not being administered to the patient. 

The general form of the Michaelis-Menten equation is: 

dx k3xExS 
-a dt Km +S 

where x represents the quantity of the product formed 
(units/mi. serum) 

k3 is the velocity constant of the reaction 
(units of product/unit of enzyme/min. ) 

E is the concentration of the enzyme (units/ml. serum) 
S is the concentration of the substrate (units/ml. seri 
Km is the Michaelis-Menten constant (unit product/ml. si 

The values for the parameters of the Michaelis-Menten equation 
to represent the human renin -' renin substrate reaction-in the 
formation of angiotensin II as determined by Haas and Goldblatt 

are: 

(4.43) 

(units of product/unit of enzyme/min. ) 

E is the concentration of the enzyme (units/ml. serum) 
S is the concentration of the substrate (units/ml. serum) 
Km is the Michaelis-Menten constant (unit product/ml. serum) 

Michaelis-Menten, constant; Km a 0.56 units of angiotensin II 
/ml. serum 

Velocity constant; k3 1.7 units of angiotensin II 
/unit of renin/minute 

Average substrate concentration, S-2.5 units/ml. serum 

Incorporating these values into the'Michaelis-Menten equation, 
(4.43), and converting units from Goldblatt units to nanogranmes 
by a multiplicative factor of 420.0 (Laragh and Sealey, 1973), 

the rate of formation of angiotensin III AS, is represented in 

the model by the equation: 

AS s 1.7 
56 6x2.5 .5xRx 

PV x 420.0 ng. /min. (4.44) 
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Angiotensin II is rapidly removed from the circulation either 
by the action of binding to receptor sites or by the degradation 

to inactive products due to the action of angiotensinases. 
Assuming a normal concentzntion of angiotensin II in plasma of 
26.0 ng. /l. (Blaine et al., 1972), and that the rate of clearance 

of this substance remains constant for all conditions, the appli- 

cation of equation (4.41) yields a value for the rate of clearance 

of angiotensin II from plasma of 4.04 litres/minute. Therefore, 

the balance equation regulating the concentration of angiotensin 
II in plasma, A. in the model is: 

dA a (AS - 4.04 x A)/PV 
' dt 

(4.45) 

Angiotensin II has two major functions in the mechanisms 
for the homeostatis of the fluid compartments of the human body. 
Firstly, it acts as a pressor substance on the circulation as 
described mathematically is section 4.2. Secondly, the concen- 
tration of angiotensin II in plasma is the most potent regulator 
of aldosterone release from the adrenal cortex in man. 

(iii) Aldosterone. 

The factors known to increase the rate of release of 
aldosterone from the adrenal cortex are (Guyton, 1971): 

(1) An increase in the concentration of angiotensin II in 

plasma, 
(2) A decrease in sodium balance or concentration of sodium 

in plasma, 
(3) An increase in potassium balance or concentration of 

potassium in plasma, 
(4) An increase in circulating adrenocorticotropic hormone 

(ACTH). 

Since a decrease in the concentration of sodium in plasma causes 
an increase in the rate-of release of renin (equations (4.15), 
(4.16), (4.17), (4.18), (4.22), (4.24) and (4.40)), which results 
in the increase in the circulating angiotensin II in the model, 
the effects of sodium balance is assumed to be mediated by the 
effect of the renin-angiotensin system on the release of aldo- 
sterone in the model. In addition, the role of ACTH in this 
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control system is known to be relatively minor (Guyton, 1971), 

and is assumed to be negligible for present purposes. Therefore, 

only the effects of angiotensin II and the concentration of 
potassium in plasma are considered in the process of modelling the 

control of the rate of release of aldosterone. 
The relationship between the concentration of angiotensin II 

in plasma and the rate of secretion of aldosterone in sheep was 
found experimentally to be of the form of the typical sigmoid 
shaped dose - response curve (Blair-West et al., 1962). These 

results were extrapolated by Blaine and associates (1972) to 

represent approximately the relationship between the concentra- 
tion of angiotensin II in plasma, A, and the rate of secretion 

of aldosterone, ALSA, is numerically represented below for use 
in the model: 

ALSA sA for A< 18.0 ng. /1. 

ALSA - 4.43xA - 61.7 for 18.0 <A< 34.0 (4.46) 

ALSA - 0.78xA + 62.5 for A >i 34.0 ng. /1. 

The effect of the concentration of potassium on the rate of 
release of aldosterone has been investigated by Seif (1974). 

The relationship given below has been extrapolated from their 
findings to represent the rate of secretion of aldosterone, 
ALSK, due to the concentration of potassium in plasma, PKW in 
the model: 

ALSK a 21.64 x PK - 55.5 (4.47) 

Since the manner in which the signals for the release of 
aldosterone are combined in the human organism is unknown, it was 
postulated that the nett signal, ALS, is the sum of the signals, 
ALSA and AISK, weighted by appropriate factors. By simulation 
of the model using various weighting factors, it was determined 
that a satisfactory response is obtained when the signals are 
weighted as shown: 

ALS - (ALSA x 3.0 + ALSK)/4.0 (4.48) 
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This is also satisfactory from a physiological point of view, 

since it is thought that the renin-angiotensin system is the most 

potent stimulant for the release of aldosterone (Blaine et al., 

1972). 
The normal concentration of aldosterone in the body fluids 

is reported to be 85.0 ng. /1.. The assumptions are made that the 

volume of distribution of aldosterone is equal to the plasma 

volume, and that the rate of removal of aldosterone is propor- 

tional to the concentration of aldosterone in the plasma compart- 

ment. Thus, application of the expression (4.41) yields a value 

for the rate of clearance of aldosterone of 0.62 1. /min.. Hence 

the equation representing the dynamics of the level of aldosterone, 

ALD, is: 

d(ALD) 
Q (ALS - 0.62 x ALD)/PV 

dt 
(4.49) 

The control of the secretion and of the level of aldosterone 

in the body is thus represented by equations (4.46) to (4.49), 

and the actions of aldosterone were mathematically derived in 

equations (4.27) to (4.31). 

4.4.3. Summary Of The Hormonal Systems Model. 

The mathematical representation of the control of the levels 

of the antidiuretic hormone (ADH) and aldosterone was derived in 

the section above. Several difficulties had to be overcome in 

the development of this subsystem model. 
The major difficulties arose because of uncertainties or 

total lack of knowledge regarding the mechanisms of parts of the 

control system. An example of this is the uncertainty surrounding 

the manner in which the signals for the release of ADH due to a 

deviation of the osmolality of plasma and the expansion of fluid 

volume are combined. This problem was tackled by postulating 

several possible mechanisms for the combination of the signals 

and inserting the corresponding. mathematical representations for 

each of the mechanisms in turn in the basic model. Simulations 

" of physiological experiments of the type reported in Chapter 5 
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were then generated using the various versions of the model, 

and the version which generated the most satisfactory response 

was chosen as that containing the appropriate representation of 

the uncertain mechanism for the eventual model. 

This process, however, is complicated by there being more 

than one area of uncertainty in the control system, all of which 
have to be resolved simultaneously in the manner described. An 

example of this is the combination of uncertainties of the ADH 

system regarding the combining of signals, described above, and 

the clearance factor for ADH from plasma. It is clear that in 

such instances, the solutions are not necessarily unique. 
Numerous postulated variations on the basic structure of 

the renin-angiotensin-aldosterone (R-A-A) system may be found in 

the literature. Among the many variations are the three hypotheses 

regarding the control of the release of renin, which were outlined 

above. Other hypotheses for which there is supporting evidence 

are as follows. It is postulated (Shade at al., 1973) that the 

concentration of angiotensin II exerts an influence via negative 
feedback on the rate of release of renin in order to prevent an 

excessive rise in the concentration of angiotensin II. There is 

evidence also for the hypothesis that the potency of angiotensin 
II to release aldosterone from the adrenal cortex is modulated 
by the state of sodium balance in the body (Oelkers at al., 1974). 

As progress in the research of the renal system is made, 
these and other hypotheses will either be accepted or rejected 
by physiologists on the grounds of further experimental evidence. 
Therefore, the model of the R-A-A system derived above consists 
of the representation of the most widely accepted concepts regard- 
ing this system. The model thus forms a basis on which various 
hypotheses may be tested, and hence may make contributions to 
the advancement of knowledge regarding the physiology of the 
renal system. 

Apart from the uncertainties regarding the structures of 
the control systems, the values of the parameters used in the 
model are also uncertain. For instance, the rate of release of 
aldosterone from the adrenal cortex for a normal man under 
normal steady state conditions is quoted as a range from 20 g, /day 
to 200 g. /day (Ledingham at al.,, 1967). "There are two-main rea- 
sons for-the uncertainty. Firstly, parameter variations are. 
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seen to. exist between individuals. Secondly, measurement noise 

is introduced due to the difficulties in measuring these variables. 

Therefore, parameter values used in the subsystem model above 

were, in the main, derived from previous models (Dehaven and 

Shapiro, 1970; Bigelow et al., 1973; Reeve and Kulhanek, 1967; 

Blaine et al., 1972). 

These difficulties tended to cast doubts on the accuracy 

of the representations of the hormonal control systems, and there- 

fore, the potential of the overall model for accomplishing its 

objectives. However, owing to the inherent negative feedback 

nature of the control systems, a degree of uncertainty appears 

not to have detrimental effects on the performance of the model, 

as demonstrated in subsequent chapters. In addition, since the 

patients undergoing dialysis have little or no remaining kidney 

function, the extent to which the inaccuracies in the model 

affect the results of simulations of these patients is approp- 

riately reduced. 

4.5. Artificial Kidney Machine Model. 

The mathematical expressions representing the artificial 
kidney machine are so arranged that they may be logically switched 

into and out of the overall model of the patient - artificial 
kidney machine system, as specified by the candidate therapy 

proposed by the clinician. The details of how the overall model 

may be used for the prediction of the outcomes of candidate 

therapies are given in Chapter 8. Section 2.3 presented the 

outline of the mechanisms of haemodialysis by which the lost 

functions of the kidneys are compensated for. This section 

presents the mathematical expressions which represent the effects 

of dialysis on the renal failure patient in the model. 
Dialysis is performed in order to remove excess body fluid 

by ultrafiltration, waste products and excess electrolytes by 

diffusion. Of the many waste and possibly toxic materials that 

accumulate in the body following renal failure, the dynamics of 
the two most closely monitored in the patient, urea and creatinine, 
are modelled. Similarly, the manner in which dialysis affects 
the plasma concentrations of sodium and potassium is modelled, 
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as these variables have to be carefully controlled because of 

their influence on fluid balance and on the cardiovascular 
system, 

4.5.1. Ultrafiltration Of Water. 

Fluid is forced out of the blood compartment into the 
dialysate compartment by the controllable pressure difference 

across the semi-permeable membrane of the dialysis machine. The 

rate at which fluid traverses the membrane, ULTRF, is dependant 

on the value at which the pressure difference across the membrane, 
PCP, is set, according to the function (Thompson, 1977): 

ULTRF Q 0.0139xPCP + 0.7 if PCP <100.0 aM. Hg. 
(4.50) 

ULTRF = 0.042xPCP - 2.1 if PCP >, 100.0 mn. Hg. 

4.5.2. Diffusion Of Electrolytes And Waste Products. 

The analysis of mass transfer across the dialyzing membrane, 
based on the "film theory" approach, and the subsequent integration 

of the resulting equation representing Pick's law of diffusion 
(Cooney, 1976; Renkin, 1956) yields the following expression for 

the extraction ratio, EIV, which characterizes the performance of 
the dialysis machine in terms of the permeability of the membrane 
for a solute, K. the surface area of the membrane, Arand the rate 

of flow of blood through the machine, Q3: 

exp (ST) 

The extraction ratio, Of, is defined in terms of the concen- 
trations of the solute in the blood as it enters and leaves the 
dialysis machine, CBi and CBo respectively, 

of the solute in the dialysate as it enters 

Eec Bi Bo 
c Bi CDi 

and the concentration 
the machine, CDI: 

(4.51) 
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Combining the above two equations and rearranging, gives: 

cBo m cBi (C 
Bi - CD1)vk 1- exp 

QB r (4.52) 

The equation for the rate of change of the quantity of the solute 

in the extracellular fluid compartment is: 

d(CBi x E) 
° QB x (cBo CBi) (4.53) 

dt 

Substituting for CBo from 6quatioa (4.52), this becomes: 

d(CBi X E) QB x (CBi - CDi) X 
(exp 

- 
B~ 

-) (4.54) 

Equation (4.54) represents the rate of transfer of a subs- 
tance across the dialyzing membrane due to diffusion, given the 

membrane parameters, K and A, the rate of flow of blood through 

the machine, QB, and the difference between the concentrations 

of the substances in the blood and the dialysate compartments. 
It is assumed that the flow arrangement for the dialysate is 

such that the concentrations of the various substances in the 
dialysate entering the dialysis machine remain constant. 

It is further assumed that the nett electrical force on 
the transfer of electrolytes across the membrane is negligible. 
Equation (4.54), with appropriate values for membrane permeability, 

may then be applied to represent the effects of dialysis on the 

transfer of sodium and potassium across the dialyzing membrane. 
The parameter values used for equation (4.54) are given in Table 4.1. 

4.5.3. Sumunary Of The Artificial Kidney Machine Model. 

The effects of the dialysis machine on the extraction of 
fluid by ultrafiltration is represented in the model by equation 
(4.49), and the diffusion of the waste products, urea and creat- 
inine, and the electrolytes, sodium and potassium, is represented 
by equation (4.54) with the appropriate values for the parametera. 
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TABLE 4.1. Parameter Values For The Dialysis Machine Model. 

Parameter Value 

QB User specified 

CDi User specified 

Krea 0.07 m. /min. 

Kcreatinine 0.06 m. /min. 

Ksodium 0.10 m. /min. 

Kpotassium 0.05 m. /min. 

Ar 1.5 m? 

However, in accordance with the philosophy underlying this 

work - that the model forms a basis on which it is possible 

to build - the removal of other waste products and electrolytes, 

such as uric acid, calcium, and bicarbonate and chloride anions, 

by the artificial kidney machine from the body fluids may easily 

be represented, if need be, by the appropriate use of the general 

equation (4.54). 

A possible source of errors in the simulation of dialyses 

arises due to the gradual deterioration of the permeability 

characteristics of the dialyzing membrane through use (Thompson, 

1977; see also discussion on model of Lott and associates (1977) 

in section 3.2.1 of this thesis). This effect is not represented 

in the model. However, as demonstrated by the validity tests 

described in Chapter 6, which presents the results of the simu- 

lations of actual dialyses, the representation of the effects of 
dialysis by equations (4.49) and (4.54) is adequate for the pre- 
diction of patient state following dialysis. 

4.6. The Balance Equations For Fluid, Electrolytes And Waste 

Materials. 

The body fluids and their constituents are considered to 

reside in two compartments in the model, where the compartments 
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represent the intracellular and the extracellular fluid pools in 

the body. The balance equations for the volume of these compart- 

ments and for the sodium, potassium, creatinine and urea in these 

compartments are derived in this section. These equations depend 

on such factors as the rate of accumulation of a substance in a 
compartment due to ingestion, generation or transfer from the 

other compartment, and the rate of removal of a substance due to 

kidney or artificial kidney machine function or transfer to the 

other compartment. 
Since the concentrations of the electrolytes in the fluid 

compartments influence the osmotic shift of fluid across the 

cellular membranes, the balance equations for sodium and pota- 

ssium in the intracellular and extracellular compartments are 
derived below. The subsection following presents the equations 

representing the balance for the volumes of the fluid compartments 

and the dynamics of urea and creatinine respectively. 

4.6.1. Sodium And Potassium Balance. 

Sodium and potassium enter the extracellular fluid pool 
through the gut as a result of ingestion, and leave the extra- 

cellular pool by-way of the kidneys or the artificial kidney 

machine. In the model, the rate at which these substances 
enter the extracellular fluid compartment%; is considered to be 

the time average of the daily ingestion rates of these electro- 
lytes by the human, SODMIN and POTMIN. The rate at which the 

electrolytes leave the body via the kidneys, UNA and UK9 have 

been derived elsewhere (equations 4.28 and 4.31). Hence the 

rates of change of the quantities of sodium and potassium in the 

extracellular compartment, when the model is used to simulate 
a human with normal kidney functions, are: 

d TENA SODMIN - UNA dt 

d TEK 
o pOTMIN - UK dt 

(4.55) 

(4.56) 
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Equation (4.54) is combined with equations (4.55) and (4.56) to 

represent a patient with diminished kidney functions to excrete 

sodium and potassium, UNA1 and UK ý 
who is undergoing dialysis: 

d(TENA) 
vQ j(pVA - SODDIA)X exp 

%odiumxAr 

dt QB 

+ SODMIN - UNA (4.57) 

d(ä K) 
- QB%(PK - POTDIA) exp 

Kp°tassiumxA" 
-1 QB 

+ POTMIN - UK (4.58) 

After integration of equations (4.55) and (4.56), or 

equations (4.57) and (4.58), the concentrations of sodium and 

potassium in the exttrace11u1ar compartment, PNA and PK respec- 
tively, are given by the quotients: 

PNA - TENA /E (4.59) 

PK a TEK /E (4.60) 

The concentration of sodium in the extracellular pool is much 
higher than in the intracellular pool, and the concentration of 

potassium-is much higher in the intracellular pool than in the 

extracellular pool. As a result there is nett diffusion of sodium 
from the extracellülar to. the intracellular pool, and nett 
diffusion of potassium from the intracellular pool to the extra- 

cellular pool. These fluxes are compensated for by an active 
transport process which shifts sodium and potassium against 
their, respective concentration gradients. 

The assumption is made that the active transport process 
balances the transcellular transfer of electrolytes by diffusion, 

so that there is negligible nett transfer of electrolytes across 
the cellular barrier. This is represented mathematically below: 

(TINA) 
(4.61) 
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ä(TIK) 
=0 

(4.62) 

Again, after integration of equations (4.61) and (4.62), 

the concentration of sodium and potassium in the intracellular 

compartment, INA and IK respectively, are given by: 

INA - TINA /1 (4.63) 

IK v* TIK /1 (4.64) 

Thus equations (4.55), (4.56) and (4.59) to (4.64) represent 

the dynamics of sodium and potassium in the intracellular and 

extracellular fluid compartments of a patient not undergoing 

dialysis; and equations (4.57) to (4.64) are used to simulate 

the dynamics of the electrolytes in the fluid compartments of a 

patient while being dialyzed. 

4.6.2. Fluid Balance. 

Ingested water is considered to pass into the extracellular 

compartment from the gut at a constant rate, FLUMIN, ana is 

removed in the form of urine by the kidneys, UFL, or by ultra- 

filtrationg ULTRF, by the artificial kidney machine at rates 

determined by equations (4.26) and (4.49). Thus, the balance 

equation for the volume of the extracellular fluid compartment 

in a person with normal kidney function ist 

d t- 
FLUMIN - UFL (4.65) 

The balance equation for a patient with diminished kidney function 

to excrete urine, UFL 9 undergoing dialysis is: 

ät 
- FLUMIN - UFL - ULTRF 

Water is transferred from the extracellular pool to the 

intracellular pool almost instantaneously so that osmotic 

(4.66) 
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equilibrium is constantly maintained (Guyton, 1971). However, 

the analysis of subsection 4.6.1 yields values for the intra- 

cellular and extracellular concentrations of sodium and pota- 
ssium before osmotic equilibration of the compartments is con- 

sidered to take place. Since sodium and potassium are the major 

constituents, the values of their concentrations, PNA, PK9 INA, 

IK, are used to approximate the osmolalities, POS and IOS, of the 

two fluid compartments before equilibration: 

POS a PNA + PK + PC (4.67) 

IOS - INA + IK + IC (4.68) 

PC and IC are constant terms to represent the osmotic effects 

of the remaining constituents in the body fluid compartments. 

The overall osmolality of the body fluids, AVOS, is then: 

AVOS _ 
POS xE+ IOS xI (4.69) 

E+I 

Fluid shifts across the cell membrane barrier such that both 

intracellular and extracellular osmolalities are equal to AVOS. 

Hence, the fluid volumes after equilibration (E" and 
I) 

are 

given by: 

El POS xE (4.70) 
AVOS 

IOS x1 (4.71) Is 
AOS 

Since sodium and potassium do not cross the cell membrane barrier 

in the model, the values for extracellular and intracellular 

concentrations of sodium and potassium after osmotic equilibration 
(PNA', PK', INA", and IKE) are given by the expressions: 

PN/ m 
PNA x AVOS (4.72) 

POS 

PK /R PKPxOSAVOS (4.73) 
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INÄ a 
INA x AVOS (4.74) 

IOS 

IK/ a 
IK x AVOS (4.75) 

IOS 

4.6.3. Urea And Creatinine Dynamics. 

There exists some debate regarding the site of generation 

of the metabolic end-products, urea and creatinine (Frost and 

Kerr, 1977). However, in the development of the model, it is 

assumed that these products are effectively generated entirely in 

the intracellular compartment. These substances then diffuse 

across the cell membrane barrier at rates dependant on the con- 

centration gradients (CI - CE) and the cell permeability constants, 
kisE. In normal health and considering steady state conditions, 
the rate of clearance of a substance, r, must be such that the 

rate of removal by the kidneys is equal to the rate of generation, 
G, of the substance. Therefore, the generalized form of the 

mass balance equations for the waste products in the intracellular 

and extracellular fluid compartments in normal health are written 
as: 

d(CI x I) 

dt G- kI 
Ex 

(CI - CE) 
s 

d(CE x E) 

dt ` kIsE x (CI - CE) rx CE 

(4.76) 

(4.77) 

The diet of a patient with renal insufficiency to excrete urea 

and creatinine, Kr , is controlled such that the rates of gener- 
ation of these waste products, G, are reduced. Therefore, the 
balance equations representing the dynamics of urea and creat- 
inine in the intracellular and extracellular fluid compartments 
of the patient undergoing dialysis become: 

d(CI x I) 

dt G k19E x(CI - CE) (4.78) 
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d(Cdi 
' kI 

Ex(CI 
CE Kr CE 

t 

= QB(CE - C, )x exp -r-1 
(4.79) 

TABLE 4.2. Parameter Values For Urea And Creatinine Model. 

Parameter Urea* Creatinine Reference 

G (g. /min. ). 0.021 0.00042 Cooney, 1976 

G (g. /min. ) 0.0084 0.00014 Cooney, 1976 

E 
(1. /min. ) kI 0.7 0.4 Frost and Kerr, 

ý 1977 

0.15 0.03 Cooney, 1976 

Predialysis CE (g. /1. ) 0.9 0.15 Cooney, 1976 

(1. /min. ) K 0.14 0.014 
r 

" (1. /min. ) K User User - r specifie d specified 

Blood urea nitrogen values. 

Steady state values for normal kidney fu nction. 

Calculated using expression (4.41) with the values for CE 

and G. 

The values for the parameters for equations (4.76) to (4.79) 

are given in Table 4.2. 

4.6.4. Summary Of The Balance Equations. 

The differential equations presented in this section, equations 
(4.55) to (4.58), (4.61), (4.62), (4.65), (4.66), (4.76) to (4.79), 

together with the differential equations representing the dynamics 

of the hormones in plasma, equations (4.39), (4.42), (4.45) and 
(4.49), and the differential equations of the thermoregulatory 
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model, equations (4.1) and (4.2), are placed together in the 

computer program in the subroutine, MODEL. These equations are 

integrated by the fourth order variable step Runge-Kutta inte- 

grator, subroutine INTEGR, to generate values for the state 

variables at intervals of one minute of simulated time. The 

organization of the complete computer program, listed in Appendix 

III, is described in Chapter 8. 

In the development of the mass balance equations for the 

electrolytes, it was assumed that there is negligible nett transfer 

of electrolytes across the cell membrane barrier. This assumption 
is based on the comparison of two sets of simulation of the types 

reported in Chapters 5 and 6. The first set of simulations was 
the response of the model with the appropriate equations altered 

to incorporate factors representing the active and passive trans- 

port of sodium and potassium across the cell membrane barrier, 

based on data presented by Tosteson (1955). The second set was 
the simulation of the identical stresses using the model of sodium 

and potassium balance as presented above. Comparison of these 

simulations indicates that the inclusion of the representation 

of the-diffusion and active transport processes has negligible 
effect on the response of the key variables. 

Due to the controlled diet and reduced clearance of waste 

products in patients suffering from renal failure, the values of 
the parameters for the mass balance equations for urea and creat- 
inine are altered as shown in Table 4.2. There is evidence 
(Bergstrom and Furst, 1976) that the human body adapts to these 

unusual conditions, the result of which is the further alteration 

of these parameters. The simulations of Chapter 6 indicate that 

there is variation between patients of their parameters for the 

mass balance of urea, in particular. Therefore, the parameter 
representing the rate of generation of urea, together with other 
parameters of the model, were subject to optimal estimation using 
data of dialysis on a particular patient, as described in Chapter 
7. The model thus represents a particular patient, and as such, 
is capable of the prediction of the state of that patient with 
greater accuracy. 

The mass balance equations'representing a patient with renal 
insufficiency and undergoing dialysis included factors representing 
diminished kidney functions. In many of the simulations described 
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in Chapter 6 these factors are set to zero because the patient 

being simulated is anuric. However, the mechanism by which the 

model estimates the effects of the reduced renal functions is 

described in the following section. 

4.7. Representation of Renal Failure. 

The common underlying mechanism for all forms of renal 

failure is the decrease in the number of functioning nephrons. 

A brief description of the various causes of renal failure was 

presented in section 2.3, which stated that in chronic renal 

failure, the number of functioning nephrons gradually decreases 

until the patient is anuric, whereas the onset of acute renal 

failure is marked by the sudden cessation of urine flow. However, 

acute renal failure is a potentially reversible condition, and 

if the patient is fortunate, the number of functioning nephrons 

in his kidneys gradually increases till the patient is returned 

to a state of near normal health. When renal insufficiency is 

not severe, conservative management of diet is generally adequate 

therapy to combat the effects of renal failure. However, dialysis 

therapy is required when renal insufficiency is severe. 

Renal failure, or the large reduction of the number of 

functioning nephrons, as far as the variables in the model are 

concerned, has the effect of reducing the functions of the 

kidneys to excrete water, sodium, potassium and the waste products, 

and to secrete renin. However, it is often found that each of 

these functions is reduced by various extents in the patient 

with near - complete renal shut-down, since the disorder causing 

renal failure may only affect part of the nephron. It is some- 

times the case that the ability of the kidneys to secrete renin 

remains relatively intact, whereas the rate of formation of 

urine is reduced to almost zero. Similarly, since potassium, 

the waste products, sodium and water undergo differing processes 

of reabsorption and secretion on passage through the tubules, 

renal failure may result in the reduction of the rates of excretion 

of each of these species by varying extents. 
Appropriate alterations, therefore, need to be made to the 

model of normal kidney functions, presented in previous sections 

-107- 



of this chapter, in order that the model may be used to simulate 

patients with varying degrees of renal insufficiency and in need 

of dialysis therapy. A simple though not entirely accurate 
method of accomplishing this is to multiply the appropriate 

equations in the model by factors, values for which are specified 
by the clinician, which represent the extent to which the kidney 

functions are reduced in the patient being simulated. These 

factors thus take a value in the range from zero to unity, where 

zero represents the anuric state and unity represents the healthy 

state, 

The multiplicative factors, then, are defined as follows: 

FACTI s Fraction representing remaining kidney function to 
excrete sodium and water. 

FACT2 s Fraction representing remaining kidney function to 
secrete renin. 

FACT3 s Fraction representing remaining kidney function to 
excrete potassium. 

FACT4.: Fraction representing remaining kidney function to 
excrete urea and creatinine, 

To represent renal insufficiency, the following equations 
are modified, as shown: 

GFR 0.0 if AP <20.0 mm. Hg. 

GFR - (1.92xAP - 38.4) x FACT1 

if 20.0<AP <75.0 

GFR - (-0.00808xAP2 + 2.195xAP - 13.6) x FACT1 (4,14a) 

if 75.0 < AP < 120.0 

GFR - (0.035xAP + 129.2) x FACT1. - 
if AP > 120.0 mmHg. 

If FACT1 ) 0.0 

EBLH - (-0.01 x EFLH/FACT1 )'+ 0.65 (4.21a) 

UK " (UKH + UKAL) x FACT3. " (4.31a) 
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If FACT 1>0.0 
RS - (0.0163 - 0.0093 x SFDT/FACT1) x FACT2 (4.40a) 

The general balance equations for waste products, urea and 

creatinine in the extracellular compartment are modified as 
below: 

For the interdialysis period: 
d(CE x E) 

dt - kIqE(CI - CE) -rKx CE x FACTO (4.77a) 

For the dialysis period: 
d (CE x E) 

dt ' k19E (CI - CE) -rCK"- 

QB(CE - CDi)x exp -Qr .01 (4.79a) 
B 

The values for these factors are introduced into the model 
by way of the sections of the computer program which interact 

with the user for the communication of information. This aspect 
is described in greater detail in Chapter 8. 

When the number of functioning nephrons in the kidneys is 

reduced, the remaining nephrons undergo hypertrophy so that the 
lost effects of nephrons no longer functioning are compensated 
for to a certain extent (Gottschalk, 1971), In addition, as 
demonstrated by the polyuric stage during the onset of chronic 
; enal failure, other changes occur, regarding the capabilities of 
the nephrons to concentrate tubular fluid. Therefore, it appears 
that the method of representing a reduced number of functioning 

nephrons, as described above, is inaccurate. However, since the 

model is used to simulate patients undergoing dialysis who have 

very few or no healthy nephrons, taking no account of these 

adaptive changes in the remaining nephrons would not result in 

significant errors in the prediction of patient state. 

4.8. Summary. 

The derivation of the mathematical model of the patient - 
artificial kidney machine system was presented in the previous 
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sections of this chapter. The model consists of submodels of 

several of the systems of the human organism, appropriately 
interconnected. The systems modelled contain the variables 
(and those that are the major determinants of the variables) 

which need to be closely monitored by the clinical staff to 

assess the clinical state of the patient with renal failure and 

undergoing dialysis therapy. Thus, the model, incorporated in a 

suitable system, may be used in the clinical environment to give 

predictions of the future state of the patient undergoing dialysis 

therapy, given parameters representing the present state of the 

patient and the proposed therapy. 

The equations of the model were derived, as far as possible, 

from relevant quantitative data presented in the literature. 

However, considering the complexity of the system being modelled, 
there exists uncertainty, and, undoubtedly, total lack of know- 

ledge in some instances, concerning certain areas of the physio- 
logy. In particular, as suggested by the results of the simu- 
lations of dialyses presented in Chapter 6, the interaction 
between the thermoregulatory system and other systems is not 

adequately represented. Very recent data from experiments 
performed on humans (Graveney, 1979) indicate that correlation 
exists between the variables of the thermoregulatory system 

model and other variables represented in the model. However, the 

mechanisms which give rise to the correlation between some of 
these variables are not clearly understood at this time. There- 
fore, this apparent inadequacy in the model is due to the short- 
comings of physiological knowledge. Uncertainty also exists 
regarding the representation of the cardiovascular system. In 

addition to the lack of quantitative information regarding the 

relationships between the variables of this highly complex 
system, the objectives of this work dictate that the mathematical 
representation of the shorter term control mechanisms of the human 

circulatory system be omitted. However, from the results of the 

simulations presented in the subsequent chapters, it is clear 
that these, and other possible omissions have little effect on 
the potential of the model to satisfy the main objectives of 
this work. 

Since the equations of the model are based on the widely 
accepted current theories regarding the relevant physiology, the 
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validated model may be used as an instrument for the testing of 

hypotheses regarding the complex control mechanisms of the renal - 
body fluid system. Examples of the use of the hypothesis 

testing facility of the model are presented in the following 

chapter. 

In addition, the model, having been designed on the basis 

of interconnected submodels, lends itself to the possibility of 

expansion by the augmentation of additional submodels representing 
further systems of the human organism. Thus, the model, suitably 

adapted, may be used to serve other related clinical functions. 
A discussion on the other possible uses for the model is presented 
in the final chapter of this thesis. 

Having presented the derivation of the mathematical model 
in this chapter, it now remains to present the results of the 

investigation of the validity of the model, or in other words, 

of the capabilities of the model to satisfy the objectives of 

this work. This investigation was conducted in three distinct 

stages. The first stage was designed to establish the validity 

of the model of the renal - body fluid system of a normal human, 

and therefore, the capability of the model to be used as a 

hypothesis testing instrument. The second stage examined the 

potential of the model to serve as a health care aid in predicting 

the outcome of a single dialysis on a patient. In the final 

stage, the capability of the model to predict patient state in 

the longer term was examined. The results of the three stages 

of validation of the mathematical model are presented in the 
following three chapters. 
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Figure 4.3. Configuration of the passive system and controller 
in the thermoregulatory model. 
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Figure 4.5. Electrical analogy for blood flow through core and 

surface of the body in thermoregulation. 
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Figure 4.6. Postulated function between core temperature and 
resistance to blood flow (not to scale). 
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CHAPTER 5 

SIMULATIONS USING THE MODEL AS A REPRESENTATION 

OF A NORMAL HUMAN. 

The mathematical equations comprising the model of the 

patient - artificial kidney machine system were presented in the 

previous chapter. The modelling process, however, is not complete 

until the model is shown to satisfy tests to establish its valid- 
ity; that is, it has to be demonstrated that the model is a 

sufficiently accurate representation of the real system to be 

capable of meeting its objectives. 

In practice, the validation exercise forms part of the feed- 

back path of an iterative optimization process, where the uncertain 

model structures and parameters are adjusted until the model is 

a sufficiently accurate representation of the real system to 

satisfy the validation tests. Therefore, it is important that 

the strategy adopted to test the validity of a mathematical 

model be relevant to the tasks to which the model is eventually 

to be applied. 
The overall model, presented in the previous chapter, was 

formulated for the main purpose of prediction of the future 

state of the patient undergoing dialysis, and thus to serve as 

an aid in patient management. A further objective of this work, 
however, is to examine various controller structures that may 

exist in the human body by using the model as an instrument to 

test hypotheses. Therefore, the tests chosen to examine the 

validity of the model are such that the results indicate the 

capabilities of the model, to achieve these objectives. 
The model presented in the previous chapter is the final 

product of the manual optimization procedure, outlined above, 

based on the simulation tests and optimal results described in 

this and the following chapter. The simulation tests in this 

chapter are related to the use of the model to represent the 

renal - body fluid system of an average, healthy human, and the 

tests in the subsequent chapter examine the capabilities of the 

model to represent the process of dialysis on a patient with 

renal failure. 
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This chapter presents the results of simulations of certain 

relevant experiments on healthy humans as reported in the liter- 

ature. Comparison of the reported experimental results and the 

simulation results serves as an indication of the validity of 

the model of the renal - body fluid system of the healthy human. 

The experiments were chosen on the basis that the validity of 

all the subsystem models of the renal - body fluid system would 
be tested, but that the validity of the subsystem models with 

greatest uncertainty - the hormonal control systems - would be 

under greatest scrutiny. Therefore, the experiments chosen from 

the literature are the effects oft 

(1) Water loading, 

(2) Hypertonic saline loading, 
(3) Saline loading after the reduction of renal mass, 
(4) Aldosterone loading. 

In addition, simulations which confirm the validity of 

certain assumptions made in the process of the development of 
the model are presented. This serves to demonstrate the manner 
in which the model of the renal - body fluid system of a healthy 

human may be used to test further hypotheses. 

5.1. The Effect Of A Water Load. 

The experiment, reported by Baldes and Smirk (1934), consisted 
of monitoring the urine flow rate in a human subject following 

the rapid ingestion of one litre of water. The results of this 

experiment are shown in Figure 5.1. Similar experiments were 
conducted by Forsling (1979) at the Department of Physiology of 
the Middlesex Hospital in London. The time course of the mean 
of these results, together with their standard deviation are 
shown in Figure 5.2. The major difference between these two sets 
of results, considering gross features, is the absence of the 
oscillations and plateau at the peak of the curve in the results 
of Forsling. Consideration of the results of the individual 

experiments conducted by Forsling, an example of which is shown 
in Figure 5.3, suggests that this difference is not due to the 
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effects of averaging the results of eight subjects. Rather, it 

appears that these features in the much publicised data reported 

by Baldes and Smirk are due to the peculiarities of the single 

subject on whom the experiment was conducted. However, apart 
from this difference, the features of the two sets of data are 

generally in agreement. 
The experiment was simulated with the use of a model desc- 

ribed by the equations presented in sections 4.2,4.3,4.4 and 
4.6 of the previous chapter. The ingestion of water was 

simulated by increasing the water content of the extracellular 
fluid compartment by one litre at an instant in simulated time; 

and the effect of the transfer of fluid across the walls of the 

stomach into the fluid compartment on the response in the actual 

experiments was approximated by introducing a pure delay of 
fifteen minutes in the simulated response immediately after the 

expansion of the extracellular compartment. 
The simulation results are plotted on Figure 5.1 for comp- 

arison. It is seen that the general features of the simulated 

urine flow rate response match those of the data presented by 

Baldes and Smirk. The simulated response curve exhibits the 

same characteristics of a sharp rise, followed by a relatively 
flat portion and a sharp fall. However, the features of the 

simulated response are seen to match those of the data reported 
by Forsling to a much greater extent. 

Examination of the responses of the other variables of the 

model to the simulated water load stress indicates that the urine 
flow rate response is mediated by changes in the concentration 
of ADH in plasma. However, in the development of the model of 
the ADH system, there was uncertainty regarding the representation 
of the clearance of ADH from plasma. Therefore, the following 

subsection examines the effects of various clearance control 
structures on the response of the model to the water load. 

5.1.1. Clearance Of ADH. 

Owing to the difficulties in measuring low concentrations 
of ADH, uncertainty exists regarding the rates of clearance of 
ADH at levels below the normal concentration of ADH in plasma. 
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Czaczkes and assosiates (1964) suggested that the rate of clearance 

of ADH increases as the concentration of ADH decreases. Lauson 

(1960), however, suggested that under physiological conditions, 
the rate of clearance of ADH is essentially constant. In the 

development of the model, it was assumed that the rate of clearance 

of ADH is a decreasing function of its concentration up to its 

normal concentration in plasma. This is in agreement with the 

concepts presented by Czaczkes and associates, and the function 

used is similar to that of a previous model of the human ADH 

system (Bigelow et al., 1973). However, -the control action 
for the removal of-ADH used in the model, equation (4.37), pres- 

ented in Chapter 4, was adopted following simulations of the 

water load and other experiments using the model with several 

candidate control actions. Two of the simulation results are 

presented below. 

(i) Constant Rate Of Clearance Of ADH. 

The model was adjusted so that the rate of clearance of 
ADH was considered to be independent of the concentration of 
ADH in plasma. The constant rate of clearance of ADH was set 
to a value equal to that calculated from steady state considere 

ations (equation (4.41)). This was achieved by replacing 

equations (4.37) and (4.39) by equation (5.1): 

PAX ddtDH 
- ADHS - 0.206XADH (5.1) 

The model in this form was used to simulate the water load 

experiment. The simulation results are shown in Figure 5.4: 
The features of the results of this simulation are not matched 
to the features of the actual experiment (Figures5.1 and 5.2) 

as well as the simulation results presented above. Thus, as 
evident from the simulations above, the rate of clearance of 
ADH increases as the concentration of ADH in plasma decreases. 

(ii) Third Control Strategy For The Clearance Of ADH. 

A high rate of clearance at low levels of ADH in plasma is 
perhaps unphysiological since the system would then be relatively 
unresponsive when returning from a state of hydration (low ADH 
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level) to normal hydration. Therefore, the third candidate 
function, equations (5.2), was proposed for the relationship 
between the rate of clearance of ADH and the concentration of 
ADH in plasma: 

DADH - 0.145xADH 

DADH - -0.042xADH + 0.374 

DADH - 0.206 

if ADN < 2.0 mu. / 1. 

if 2.0 < ADH �< 4.0 (5.2) 

if ADH) 4.0 gnu. / 1. 

The results of the simulation of the water load experiment 

using the model with the function (5.2) representing the relation- 

ship for the rate of clearance of ADH are shown in Figure 5.5. 

Comparison of the responses shown in Figures 5.1 and 5.5 

indicates that the representation of the clearance of ADH from 

plasma as in the model of Chapter 4 results in the more accurate 

simulation of the water load experiment. 

5.1.2. Conclusions On The Water Load Test. 

Comparison of the simulation results and the experimental 

results reported by Baldes and Smirk (1934) and Forsling (1979) 

(Figures 5.1 and 5.2) indicates' that the model is sufficiently 

valid to reproduce the features of response of the rate of. flow 

of urine when-a normal human is subjected to a water load stress. 
In particular, this test confirms the validity of the represent- 

ation of the ADN control system in the model, since the varia- 

tion in the rate of flow of urine is affected by the changes in 

fluid volume and the osmolality of plasma and subsequent changes 
in the concentration of ADH in plasma. 

Furthermore, candidate hypothetical functions to represent 

the clearance of ADH from plasma were proposed. Two of the 
functions were described above. The results of simulations of 
the water load experiment and of other conditions, using the 

model with each of the proposed'functions in turn indicated 

that the features of the experimental results were best matched 
to the simulation responses of the model incorporating the 
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function of equation (4.37) to represent the clearance of ADH 

from plasma. It is to be concluded, then, that the clearance 

of ADH from, plasma in the real system may be approximated by 

the function of equation (4.37). 

The other area of uncertainty regarding the ADH system is 

the manner in which the signals for the release of ADH due to 

changes in the osmolality of plasma and fluid volume, respec- 

tively, are combined. For modelling purposes, the following 

control action for the combining of these signals was proposed 
in section 4.4.1. For the condition when the osmolality of 

plasma and fluid volume are both above normal, the nett signal 
is considered to be equal to the sum of the signals weighted 

such that the weighting factor for the signal due to the fluid 

volume is an increasing function of the excess fluid (equation 

(4.36)); and for all other conditions, the nett signal is 

considered to be the simple average of the two signals. Simul- 

ation of the water load experiment confirms the validity of the 

control action for the condition of increased fluid volume and 
decreased osmolality of plasma, when the nett signal is considered 

to be the average of the two signals. The following test of the 

validity of the model, however, investigates the validity of the 

control action for the release of ADH when the increased osmo- 
lality of plasma tends to increase, and the simultaneous increase 

in fluid volume tends to decrease the rate of release of ADH. 

5.2. Effect Of A Hypertonic Saline Load. 

Experiments involving the infusion of hypertonic saline 
loads into adults and infants, and the subsequent monitoring 

of the rates of flow of urine, were reported by Dean and McCance 
in 1949. Each subject was deprived of fluid for sixteen hours 
before being infused with a solution of ten per cent sodium 
chloride. Dean and McCance (1949) reported the urine flow rate 
response for one adult, who was infused with a dose of 0.91 

grammes of sodium chloride per kilogramme of body weight over 
a period of sixty-five minutes, and the average of the responses 
of all the adults, who were infused with various dosages over 
varying periods of time, as well as the responses of the infants. 
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The features of the response of the single adult, plotted in 

Figure 5.6, where the start of the experiment is considered to 

be the mid-point of the period of administration of the solution, 

are similar to those of the averaged response of the adults. 

The experiment of loading the adult with a hypertonic saline 

load was simulated using the model of the renal - body fluid 

system of a normal human of 70.0 kilogrammes. This was achieved 

by appropriately programming values for the variables representing 

the rates of ingestion of sodium and water as follows: 

For 0.0 hours < time <16.0 hours 

Rate of ingestion of sodium - Normal 

Rate of ingestion of water = 0.0 ml. /min. 

For 16.0 hours < time < 17.08 hours 

Rate of ingestion of sodium - 16.7 mEq. /min. 

Rate of ingestion of water - 9.8 ml. /min. 

For time > 17.08 hours 

Rate of ingestion of sodium - Normal 

Rate of ingestion of water = Normal 

Since representations of the stomach and intestines do not exist 

in the model, ingestion of the saline solution is equivalent to 

infusion in the real system. 
The results of the simulation are plotted on Figure 5.6 for 

comparison with the response data of the actual system. It is 

seen that there is close agreement between the response of the 

real system and that of the simulation, to the stress of the 

infusion of hypertonic saline. 
During the course of simulations of this experiment, it was 

determined that the response is sensitive to variations in two 

areas of uncertainty in the model. The first is the parameter 

representing the fraction of the glomerular filtrate reabsorbed 
in the proximal tubule, and the second is the manner in which the 

signals for the release of ADH due to the hyperosmolality of 

plasma and expanded fluid volume are combined. Simulation results 

presented in the following subsections demonstrate the sensitivity 

of the simulation response to perturbations in these areas of 

uncertainty. 
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5.2.1. Glomerular-Tubular Balance. 

Approximately three-quarters of the filtered load of sodium 

is actively reabsorbed in the proximal tubule. A similar fraction 

of the water load is iso-osmotically reabsorbed. The pheno- 

mena that this fraction is independant of the rate of glomer- 

ular filtration is known as-glomerular-tubular balance 

(Windhager, 1968). However, there is some evidence (Johnson 

et al., 1967) that this balance is upset by changes in the 

plasma concentration of sodium, and it has been postulated 

that the balance is then controlled by an as yet undetermined 

natriuretic hormone (Tobian et al., 1967). 

In the model, the fraction of the tubular load of sodium 
and water reabsorbed, GTB, is given as a function of the plasma 
concentration of sodium, PNA: 

GTB - -0.0357. PNA + 5.815 

GTB - 1.0 if GTB > 1.0 (4.16) 

GTB - GTB if 0.75 < GTB S 1.0 

GTB - 0.75 if GTB < 0.75 

Comparison of the experimental data of Figure 5.6 and the results 

of simulations of this experiment using the model with differing 

lower constraints on the value of GTB, indicated that the optimum 
lower limit for the value of GTB is 0.75. The sensitivity of the 

simulation response to variations in this parameter is demonstrated 
by the comparison, in Figure 5.7, of responses of the model with 

values for this parameter of 0.6 and 0.75, and-the response of 
the real system. Thus, from these simulations, it may be 

concluded that the normal glomerular-tubular balance is un- 

affected by the increase above normal, of the concentrations of 

sodium in plasma, associated with the infusion of hypertonic 

saline. 
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5.2.2. Combination Of The Signals To Release ADH. 

The similarity of the features of the experimental and 

simulation results of the water load test described in the previous 

section confirms the validity of the assumptions regarding the 

control action for combining the signals for the release of ADH 

for the condition when the increase in fluid volume and the 
decrease in the osmolality of plasma both tend to inhibit the 

release of ADH. In the case of a hypertonic saline load, however, 

the increase in fluid volume tends to inhibit, and the increase 

in the osmolality of plasma tends to stimulate the release of ADH, 

respectively. Comparison of the experimental results and simu- 
lation response, presented in Figure 5.6, confirms the validity 

of the assumptions made in the development of the model regarding 
the combining of these signals for this condition (section 4.4.1). 

However, the function for the combining of these signals (equation 

(4.36)) was arrived at by consideration of the simulation responses 

of the model incorporating several candidate functions and the 

results of the saline infusion experiment. In order to demon- 

strate the sensitivity of the simulation response to variations 
in the control action for the combining of the signals for the 

release of ADN due to excess fluid volume, ADHSV, and hyper- 

osmolar plasma, ADHSP, respectively, to give the nett signal 
for the release of ADH, ADHS, the simulation responses of the 

model incorporating three candidate functions are presented with 
the experimental results in Figure 5.8. The candidate functions, 

replacing equation (4.36) in the model are: 

(a) 
ADHS - (ADHSV + ADHSP) / 2.0 for all conditions. '-"" (5.3) 

(b) 
ADHS - ((15. O*IMV)tADHSV) + ADHSP)/((DWV 15.0) + 1.0) 

for POS > 299.6 mosm. /1. and DWV > 2.0 1. 

ADHS - (((29. O DWV'- 28.0)xA Hsv) + ADHSP) (5.4) 
/ ((29. oxnwv - 28.0) + 1.0) 

for POS > 299.6 mosm. /1. and 1.0., <DWV <2.0 
, 

. 
ADHS - (ADHSV + ADHSP)/2.0 for all other conditions. 
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cri ADHS = ((20. OXDWVXADHSV) + ADHSP)/((DWVx20. O) + 1.0) 

for POS i 299.6mosm. /1. and ThJV ) 2.0 1. ' 

ADHS s (((39. OxDWV - 38.0)xADHSV) + ADHSP) S (5.5) 

/ ((39. OXDWV - 38.0) + 1.0) 

for POS > 299.6 mosm. /1. and 1.0 < tWV 2. Q 

ADHS - (ADHSV + ADHSP)/2.0 for all other conditions. 

The rate of release of ADH due to the hyperosmolar plasma 
in the model incorporating candidate function (a) is such that 

the concentration of ADH in plasma is maintained at a high level 
ti 

throughout the simulation time; and the effects of the signal to 

inhibit the release of ADH due to the excess fluid volume is 

masked. The result is that urine is caused to flow at very low 

rates in the simulation. Thus, the functions of the form of 

candidate hypotheses (b) and (c)t with variable weighting factors 

were proposed in order to overcome this drawback, and the optimal 
function was found to be the one eventually used in the model, 

equation (4.39). 

5.2.3. Conclusions on The Hypertonic Saline Infusion Test. 

Comparison of the urine flow rate response to hypertonic 

saline infusion, as reported by Dean and McCance (1949), with 
the simulation response of the model of the renal - body fluid 

system of the average human, in Figure 5.6, indicates that the 

model is sufficiently valid to reproduce the real response to 

within acceptable limits. In particular, this test for the model 
confirms the validity of the kidney function model and the ADH 

control system model. 
Furthermore, this test is of special interest, since the 

infusion of a hypertonic saline solution gives rise to conflicting 
signals for the release of ADH. Since the concentration of ADH 
in plasma is a major determinant of the rate of urine flow, the 

successful simulation of this experiment indicates that the control 
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action for combining the signals for the release of ADH in the 

real system is adequately represented in the model. 
The optimum function to represent the control action for 

combining the signals for the release of ADH was determined by 

the iterative technique of minimizing the error between the 

experimental result and the simulation response of the saline 
infusion test. The minimum fraction of sodium and water re- 

absorbed in the proximal tubule was similarly determined. from 

simulations. These latter simulations provide evidence that the 

normal glomerular-tubular balance ratio of 0.75 is not affected 
by the elevated plasma concentration of sodium, and hence, evidence 

against the theory of the existence of a natruiretic substance, 
as proposed by Tobian and associates (1967). 

However, these optimal functions were determined independ- 
ently, although variations in each affects the simulation in a 

similar manner. Thus, these optimal functions-may only represent 
a local optimum. Several simulations with various values for 

the minimum glomerular-tubular balance ratio and various functions 

representing possible control actions for combining the signals 
for the release of ADH were performed in order to demonstrate 
that the functions used in the model are the globally optimal 
functions. Figure 5.9 presents the simulation responses of the 

model incorporating two pairs of functions: ' 

(a) GgýIN - o. -M 

ADHS - ((14. OxDWVXADHSV) + ADHSP)/((DWVx14.0) + 1.0): 

for POS > 299.6, mosm. /1. and ThIV > 2.0 1. 

ADHS w (((27.0xDWV - 26.0)xADHSV) + ADHSP) 

/ ((27. O DWV - 26.0) + 1.0) 
for POS > 299.6 mosm. /1. and 1.0, < DWV, <2.0 

ADHS - (ADHSD + ADHSP) /2.0 for all other conditions. 

-122- 



(b) 
GTBMIN " 0.6 

ADHS = ((10.0xDWVxADHSV) + ADHP)/((DWVx10.0) + 1.0 

for POS > 299.6 mosm. /1. and DiWV ) 2.0 1. 

ADHS - (((19. OxDMV - 18.0)AADHSV) + ADHSP) 

/ ((19. OADWV - 18.0) + 1.0) 

for POS > 299.6 mosm. /1. and 1.0 <DWV , <2.0 

ADHS - (ADHSV + ADHSP)/2.0 for all other conditions. 

The model incorporating each of the pairs of functions, (a) and 
(b), generated locally optimal simulations. However, comparison 
of Figures 5.6 and 5.9 indicates that the simulation generated by 

the model incorporating the functions of equations (4.16) and 
(4.36) is the optimally matched simulation. 

The results of the water load and hypertonic saline infusion 

experiments were reported as the resultant dynamic response of 
the urine flow rate. Therefore, using these experimental results, 
the validity of the model was estimated by comparing these urine 
flow rate dynamic responses with those of the simulations of 
these experiments. The factors which directly influence the rate 

of flow of urine are those incorporated in the models of the 
kidney functions, presented in section 4.3, and the ADH system, 
presented in subsection 4.4.1. Hence, the validity of these 

system models to reproduce features of response is demonstrated 
by the results of these tests. 

In addition, since the other system models, the cardiovas- 
cular system model, the renin-angiotensin-aldosterone model,. 
the fluid and electrolyte balance model, all indirectly affect 
the rate of flow of urine, the results of these tests place a 
fair degree of confidence in these other system models. None- 

theless, the following two tests of the validity of the model 
compare more of the key variables, so that the validity of these 
other system models may be estimated. 
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5.3. Reduced Renal Mass With Increased Sodium Intake. 

A simulation was performed, using a detailed, extensive 

model of the circulation and renal - body fluid system, to 

represent the events during the development of hypertension 

(Guyton et al., 1972). This model was discussed in section 
3.1.2. Due to the level of detail incorporated in this model, 
it was decided that comparison of these simulations results and 

those generated by simulating the same conditions using the 

model presented in this work would be a suitable challenge. 
The condition simulated by Guyton and associates is the 

following. Renal mass is reduced to one=third normal; simul- 
taneously, the rates of intake of sodium and water are increased 

to fivefold and double normal, respectively. The results of 

this simulation are presented in Figure 5.10, where the dynamic 

responses of the variables representing the extracellular fluid 

volume, blood volume, cardiac output, total peripheral resistance, 

arterial pressure and urinary output are plotted against time. 

This condition was simulated, using the model prevented in 

Chapter 4, by the following manoeuvres. The reduction in renal 

mass was represented by setting the multiplicative factors, used 
to represent renal insufficiency, as discussed in section 4.71 

to 0.33. However, compensatory, adaptive changes are known to 

occur in the remaining nephrons when the number of functioning 

nephrons is reduced. These changes are most marked in the 

glomeruli and proximal tubule segments of the remaining nephrons 
(Gottschalk, 1971). Extrapolation from experiments, where the 

relation between the percentage of glomeruli remaining after 

subtotal nephrectomy of dogs and glomerular filtration rate is 

determined (Hayman et al., 1939), yields the result that glomer- 

ular filtration rate is reduced to sixty per cent of its value 

when renal mass is reduced to one-third normal. Therefore, this 

was appropriately incorporated in the model. In addition, the 

rates of intake of sodium and water were programmed: 

Rate of intake of sodium - 0.66 mEq. /min. 

Rate of intake of water i 2.0 ml. /min. 

The computer programme was run such that the above changes were 
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made in the model after one day of simulated time had elapsed. 

The results of this simulation are shown in Figure 5.10 for 

comparison with the results of the simulation performed by Guyton 

and associates. It is seen that the urinary output response curve 

of this simulation corresponds with that of the simulation 

carried out by Guyton and associates. This is to be expected, 

since the previous two tests of validity demonstrated that the 

model is capable of reproducing features of urine flow rate 

responses. The initial features of the total peripheral resistance 
(TPR) response curves are in agreement. However, the curve of 
the simulation, carried out by Guyton and associates, then rises. 
This, according to the authors, is mainly due to the long term 

control of local blood flow, when excess blood flow through 

tissues causes progressive constriction of the blood. vessels; and 

this is the underlying mechanism for the development of hyperten- 

sion. Since longer term control mechanisms are omitted from the 

model of this work, this feature of the TPR response is not 

present in the simulation response generated using the model of 
this work. Similarly, the curve representing the response of 

cardiac output in the simulation, carried out by Guyton and 
associates, rises and then gradually falls back to a normal 
value. The fall is said to be due to the effect of adaption of 

the baroreceptors on the heart. Since there is no representation 

of nervous control of the heart, the simulation of the model of 

this work does not exhibit this feature. The arterial'pressure 

curve of the simulation, carried out by Guyton and associates, is 

seen to rise at a slightly faster rate than the response of this 

simulation. This appears to be caused by the gradual rise in 

TPR in the simulation, carried out by Guyton and associates, 

since arterial pressure is given by the product of cardiac 

output and TPR (equation (4.13)). The blood volume curves are 

seen to match. 

Finally, there appears to be no match between the respective 
responses of the extracellular fluid volume. Examination of the 

other variables of this simulation indicates that the value for 

the concentration of sodium in the extracellular compartment 
rises to an unphysiological level. It is this that causes the 

serious overload of the extracellular compartment. In reality, 
it is debatable whether a human, subject to these conditions of 
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severely reduced renal mass and increased sodium and water 

intake, would achieve the steady state value of extracellular 
fluid volume suggested by these authors. 

However, taking into account the recent findings that oral 

sodium loading produces a greater natriuresis than intravenous 

sodium administration in man, without there being any differences 

in the aldosterone response (Carey, 1978), an interesting expla- 

nation may be offered for this discrepancy between the simulation 

results, if those of the simulation, carried out by Guyton and 

associates, are considered to be physiologically correct. It is 

suggested (Carey, 1978) that natriuresis following oral adminis- 

tration of sodium is due to a natriuretic agent released in 

response to receptors in the gastrointestinal tract which monitor 

the quantity of sodium presented to them. It is then postulated 

that this natriuretic agent acts on the proximal tubule segments 

in the nephrons so that the normal glomerular-tubular balance 

ratio is reduced, thus causing the large, rapid natriuresis. There 

is, as yet, no evidence either to support of disprove this post- 

ulation. However, if the postulation is correct, the fraction 

of the proximal tubular load reabsorbed is related, not to the 

concentration of sodium in plasma, as suggested by equation 
(4.16), but to the rate of intake of sodium. (Incidentally, 

this quantity remains essentially constant in the patient under- 

going dialysis). The explanation as to why, in the experiment 

of the infusion of a hypertonic saline solution, the glomerular- 
tubular balance ratio remains normal in the presence of an 
elevated concentration of sodium in plasma, is then, that the 

sodium receptors in the gastrointestinal tract were not stimu- 
lated to cause the release of the postulated natriuretic agent. 

In the conditions being considered in this section, according 
to the above postulations, the glomerular-tubular balance ratio 
is reduced. Since there. is no relevant data, however, the 

extent to which it is reduced is unknown. But the same conditions 

were simulated using the model with the minimum value of glome- 

rular-tubhlar balance ratio reduced 0.3, and the results are 
shown in Figure 5.11. It is seen that in this case, there is 

agreement between the simulations regarding the extent to which 
the human, subject to these conditions, would be overloaded. In 

addition, the simulated concentration of sodium in plasma remains 
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within physiological levels. 

In summary, the condition of reduced renal mass with 
increased sodium and water intake were simulated, and the results 

were compared with the simulation results reported by Guyton and 

associates (1972). The features of the results of the simulations 

are in agreement except for the following aspects. Firstly, there 

are deviations in the simulated responses of total peripheral 

resistance and cardiac output. These variables in the simulation, 

carried out by Guyton and associates, behave in a manner in accor- 
dance with the effects of long term control mechanisms not incor- 

porated in the model of this work. In the development of the 

model of this work, it was considered that the inclusion of these 

longer term control mechanisms was unnecessary for the model to 

achieve its objectives. Secondly, disagreement exists regarding 

the extent to which the extracellular fluid compartment is over- 
loaded as a result of the simulated condition. However, an 

example, of how the use of mathematical models-serves to high- 

light areas of weak knowledge and indicates the direction for 

further experimentation, is created by this discrepancy. 

5.4. Aldosterone Loading. 

Relman and Schwartz (1952) conducted a fluid and electrolyte 

balance study during the course of daily intramuscular adminis- 
tration of 20 milligrammes of deoxycorticosterone acetate (DOCA) 

to three groups of healthy 'adult humans. Each group was on a 
high, normal or low salt intake regimen. Davis and Howell (1953) 

conducted a similar experiment on four dogs on a controlled, 

normal salt diet. 

The results of the experiments, averaged for the humans on 
the normal diet, and for the four dogs, are shown in Figure 5.12 

as the time course of the following variables: extracellular 
fluid volume (extrapolated from weight gain data), arterial 

DOCA is a mineralocorticoid whose effects, apart from potency, 
are very similar to those of aldosterone. 
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pressure, hormone level and sodium excretion rate. The most 

significant aspect of these results is the demonstration of the 

phenomenon of 'escape', where, after an initial fall due to the 
high level of sodium retaining hormone, the rate of excretion 

of sodium rises to match the rate of intake. 

The experiments were simulated, using the model of the 
healthy human, by multiplying the rate of secretion of aldo- 
sterone by a factor of four, 'throughout the period of simulation. 
This approximately represents the administration of DOCA as 
described above (Cameron, 1977). 

The simulation results are shown in Figure 5.12 for comp- 

arison with the experimental results. It is seen that the features 

of response of the variables of the simulation representing 

extracellular fluid volume, arterial pressure, hormone level and 
the rate of excretion of sodium are in agreement with those of the' 

experimental data. In particular, the 'escape' phenomenon is 

clearly apparent in the simulation response. Examination of the 

other variables of the simulation indicate that the contributing 
factors to 'escape' are the elevation of glomerular filtration 

rate, due to the expanded extracellular fluid compartment and 

elevated arterial pressure, and the increase in the concentration 

of sodium in plasma, resulting in the increased rate of filt- 

ration, and hence excretion, of sodium. It is of interest to 

note that 'escape' occurs without the adjustment of the glomer- 
ular-tubular balance ratio by the supposed natriuretic hormone 
in the simulation. 

The simulation results, presented in Figure 5.12, thus 

contribute to the evidence of previous simulation tests, 

suggesting that the model is a sufficiently valid representation 
of the renal - body fluid system of a normal, healthy human, to 

reproduce features of responses due to a variety of stresses. 
This test, in particular, serves to demonstrate the validity of 
the representation of the aldosterone system, the cardiovascular 
system, fluid balance and the renal handling of sodium. 
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5.5. Conclusions. 

The results of the tests of the validity of the model of 

the renal - body fluid system of the normal human, indicate its 

capabilities and limitations. The water load and hypertonic 

saline infusion simulations suggest that the model is capable 

of reproducing features of response, in the relative short term, 

of the output variable - urine flow rate. However, comparison of 

the simulations of the condition of reduced renal mass and increa- 

sed sodium intake, made apparent the limitation that the model is 

not capable of predicting the long term effects of stresses. This 

was to be expected, since consideration of the objectives of this 

work dictated that representations of the relevant long term 

controllers be excluded from the model. The simulation of sus- 

tained sodium - retaining hormone administration displays the 

characteristics of renal 'escape', as expected; and analysis of 

the simulation variables indicate the mechanisms involved in 

this phenomenon. 
The model offers the facility for the testing of hypotheses. 

Using the model as a basis, the probable function between the 

rate of clearance of ADH and its concentration in plasma was 
determined for the range of low concentrations which are diffi- 

cult to measure. In addition, the means by which opposing sig- 

nals for the release of ADH are effectively combined was suggest- 

ed by the minimization of errors between the features of the 

simulation response and actual results of the hypertonic saline 
infusion experiment. 

The model was also used in an attempt to resolve questions 

regarding the existence of an undetermined natriuretic substance 

which, it is postulated, acts on the proximal tubule in order to 

control the level of sodium in the body fluids. The results of 

simulations indicate that the natriuretic agent is released by 

signals from receptors monitoring the ingestion of sodium, so 

that corrective action is taken before the level of sodium in 

the body is perturbed to any large extent. However, the need 
for experimentation is made apparent, and the direction in which 
this should proceed may be determined by the use of the model. 

Hence, the overall model of the patient - artificial kidney 

machine system, adapted to represent the renal - body fluid 
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system of the normal human, satisfies the tests set to determine 

its validity to reproduce features of response to stresses. It 

may thus be used to test further hypotheses regarding the relevant 

control systems of the human organism. The results of the test 

of the validity of the overall model, and therefore, of its capa- 

bilities of predicting the future state of the patient undergoing 
dialysis, is presented in the following chapter. 
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Figure 5.1. Urine flow following ingestion of one litre of water. 
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Figure 5.2. Average response of eight subjects to a water load 

stress. (Data from Forsling (1979)). 
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Figure 5.3. Result of a single water load test conducted 
by Forsling (1979). 
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Figure 5.6. Urine flow following ingestion of hypertonic saline. 
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Figure 5.7. Sensitivity of simulation response of hypertonic 
saline infusion experiment to variation in glomerular 
tubular balance. 
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Figure 5.9. Urine flow following ingestion of hypertonic saline 

showing locally optimal simulations. 
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CHAPTER 6 

VALIDATION OF THE MODEL FOR PREDICTION OF 

THE OUTCOME OF DIALYSIS THERAPY. 

The simulation results presented in the previous chapter 
demonstrate the validity of the model of the renal - body fluid 

system of the normal, healthy human in terms of the capabilities 

of the model to reproduce features of response to stresses. In 

this chapter, the capabilities of the model of the patient - 

artificial kidney machine system (the model of the renal - body 

fluid system combined with relationships derived in sections 
4.1,4.5 and 4.7) to predict the outcome of dialysis are 

examined. This is achieved by the simulation of actual dialyses, 

and the comparison of clinically important features of the 

responses of the simulations with the data of the actual dialyses. 

Several factors tend to cause errors in the model response. 

The first concerns the errors in. the clinician specified 

parameters needed to generate the simulation of dialysis for 

the individual patient. The sensitivity of the simulation 

responses is investigated in the second section of this chapter. 

The second factor is concerned with the individual differences 

between patients. Due to the nature of these differences, it is 

not possible to characterise the patient in these aspects by 

parameters specified by the clinician. Rather, it appears that 

it is necessary to adjust the internal parameters of the model 
for this purpose. Therefore, the parameter estimation exercise, 

presented in the following chapter, serves to indicate the manner 

in which this is to be performed for more accurate prediction of 

the future state of the patient. Finally, certain discrepancies 

between real test data and simulation response highlight areas 

of model inadequacy due to lack of knowledge of the relevant 

physiology. However, the simulations presented in section 6.1 

indicate that improved patient management may be obtained in the 

renal unit through use of a system incorporating the model to 

predict the outcome of candidate therapies for the individual 

patient. The description of such a system is presented in 

Chapter 8. 
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6.1. Simulation Of Dialyses. 

The simulation results of eight dialyses on six patients 

are reported. The overall model of the patient - artificial 
kidney machine system requires the input of certain data in 

order to simulate a dialysis. The data required are specified 
in Table 6.1, and required data, as specified by the clinician 
for the eight dialyses, are listed in Table 6.2. The software 
designed to receive these input data is included in the prog- 

ramme listing of Appendix III. 

The inadequacies of the thermoregulatory system model, 

owing to lack of physiological knowledge, and the omission of 

representations of the longer term and very short term control 

mechanisms from the cardiovascular system model were discussed 

in Chapter 4. The expected deviations of the simulation 

responses from the actual data are seen to arise as a result 

of these inadequacies in, and omissions from, the model.. 
Therefore, in accordance with the objectives of this work, 

only gross features of response of the variables of these 

subsystems in the actual dialysis data are compared with those 

of the simulation responses. In the main, these features are 

the slopes of the response curves. Taking this into account, 
in the final subsection, features of the data of the actual 
dialyses are compared with those of the simulations in a 

quantitative manner. 

6.1.1. Simulation Of Dialysis On S. C. 

The data representing the state of the chronic renal 
failure patient, S. C., indicate that there exists little 

residual kidney. function, which results in the patient being 

overloaded with fluid and, therefore, hypertensive. The con- 
centration of sodium in plasma is maintained at a level 

slightly below normal by the effects of a controlled diet, 
but the levels of waste products are elevated. 

The effedts of dialysis on'this patient are shown in 
Figure 6.1 and Table 6.3. It is seen that the hypertension 
is controlled by the removal of fluid during dialysis. 

-132- 



TABLE 6.1. Data Required To Simulate Dialysis. 

A. State of Patient. 

FACT1 : Fraction of kidney function to excrete sodium and 
water remaining. 

FACT2 : Fraction of kidney function to secrete renin 
remaining. 

FACT3 : Fraction of kidney function to excrete potassium 
remaining. 

FACT4 : Fraction of kidney function to excrete urea and 
creatinine remaining. 

IHF : Extent to which heart pumping ability is 
diminished. 

W: Pre-dialysis weight of patient, (kgs), 

B. Average Daily Ingestion Rates. 

FLUDAY : Average daily fluid intake (1. ), 

SODDAY : Average daily sodium intake (mEq. ). 

POTDAY : Average daily potassium intake (mEq. ). 

C. Initial Conditions At The Start Of Dialysis. 

TCo : Core temperature °C. ), 

Tso : Skin temperature (°C. ). 

Eo : Extracellular fluid volume (1. ), 

PNA0 : Sodium concentration in plasma. (mEq. /l. ). 

PK° : Potassium concentration in plasma (mEq. /l. ), 

Io : Intracellular fluid volume (1. ), 

INA :0 Sodium concentration in intracellular fluid (mEq. /l. ). 

IK : Potassium concentration in intracellular fluid (mEq. /l. ), 
0 

R° : Plasma renin concentration (GU/1. ), 

A0 : Plasma angiotensin II concentration (ng. /l. )4 

ALD : Plasma aldosterone concentration (ng. /l. ). 

AP° : Arterial pressure (mm. Hg), 

ADH :0 Plasma A. D. H. concentration (Munits/1. ), 
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TABLE 6.1. (continued) 

EUR 
0: 

Urea concentration in extracellular fluid (g. /l. ). 

ECRE : Creatinine concentration in extracellular 
0 fluid (g. /l. ). 

D. Parameters Defining Proposed Dialysis Therapy. 

SODDIA : Sodium concentration in dialysate (mEq. /l. ). 

POTDIA : Potassium concentration in dialysate (mEq. /l. ). 

T: Length of time on dialysis (hours), 

PCP : Ultrafiltration pressure (mm. Hg. ). 

QB : Average blood flow rate through machine (mis. /min. ). 

Initial concentration of waste products in intracellular 
compartment are assumed to be equal to the initial 
concentrations in the extracellular compartment. 

The levels of waste products in plasma are significantlly 

reduced, and the concentration of sodium is raised across 
dialysis. 

The results of the simulation of this dialysis, using 

the appropriate input data listed in Table 6.2, are shown in 

Figure 6.1 and Table 6.3 for comparison with the actual data. 

It is seen that the reduction in arterial pressure across 
dialysis in the simulation response is present, though not to 

the extent observed in the data of the actual dialysis. In 

addition, the values for weight loss across dialysis (calculated 

from the volume of fluid lost in the simulated dialysis), and 

post-dialysis levels of electrolytes and waste products in 

plasma in the simulated dialysis are approximately in agreement 

with the actual dialysis data. 
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TABLE 6.2; Input Data For The Simulation Of Dialyses. 

S. C. G. W. M. G. K. F. R. R. D. G. 1 D. G. 2 D. G. 3 

FACT1 0.12 0.13 0.00 0.12 0.00 0.00 0.00 0.37 

FACT2 0.17 0.50 0.00 0.17 0.00 0.87 0.87 0.87 

FACT3 0.17 0.17 0.00 0.17 0.00 0.00 0.00 0.62 

FACT4 0.12 0.37 0.00 0.12 0.00 0.00 0.00 0.12 

IHF 0.0 0.5 0.5 0.0 0.25 0.0 0.0 0.0 

W 64.8 74.8 68.0 73.2 77.0 66.0 66.3 66.0 

FLUDAY 1.00 1.20 1.20 1.20 0.80 0.60 0.75 2.70 

SODDAY 100.0 120.0 110.0 100.0 80.0 190.0 50.0 120.0 

POTDAY 60.0 80.0 70.0 80.0 50.0 40.0 50.0 60.0 

T 37.0 36.3 37.0 36.8 37.0 36.2 36.0 35.6 
eo 

T 34.0 28.0 34.0 33.4 34.0 34.0 34.0 34.0 
so 

E 19.0 22.0 15.0 16.0 21.5 19.0 17.0 15.0 

PNA 137.0 144.0 142.0 141.0 138.0 129.0 128.0 135.0 
0 

PK 4.8 4.6 5.6 7.4 5.1 6.2 6.0 4.1 
0 

10 26.0 28.0 25.0 25.0 27.5 25.0 25.0 25.0 

INA 9.0 10.0 10.0 10.0 9.0 9.0 9.0 10.0 
0 

IK 139.0 141.0 141.0 141.0 144.0 143.0 143.0. 141.0 
o 

R 0.08 0.06 0.0 0.06 0.0 0.07 0.07 0.06 
0 

A 30.0 27.0 0.0 26.0 0.0 28.0 28.0 26.0 
0 

ALD 85.0 80.0 20.0 85.0 80.0 100.0 90.0 85.0 
0 

AP 150.0 85.0 50.0 138.0 122.0 110.0 97.0 101.0 
o 

ADH 0.5 0.5 5.0 2.0 0.5 0.5 0.5 2.0 
0 . 

EUR 2.91 1.74 2.16 2.58 1.80 3.17 2.75 2.99 
0 

ECRE 0.153 0.159 0.129 0.204 0.156 0.078 0.075 0.05 
0 

SODDIA 135.0 130.0 138.0 140.0 134.0 135.0 135.0 139.0 

POTDIA 2.0 2.0 1.0 2.0 2.0 2.3 2.3 2.3 

T 7.0 7.0 6.0 7.0 7.0 4.0 4.0 4.0 

PCP 160.0 100.0 140.0 180.0 180.0 30.0 90.0 100.0 

QB 250.0 300.0 250.0 300.0 350.0 150.0 200.0 150.0 
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TABLE 6.3. Comparison Of Effects Of Dialysis On Weight Los 
And Plasma Biochemistry Of Patient S. C. 

Pre- 
Dialysis 

Post-Dialysis 
Real Data 

Post-Dialysis 
Simulation 

Weigh loss (kgs) - 2.2 2.2 

Plasma Sodium (mEq. /l. ) 137 139 140.9 

Plasma Potassium (mEq. /l. ) 4.8 3.6 3.4 

Plasma Urea (g. /l. ) 2.91 1.50 1.28 

Plasma Creatinine (g. /l. ) 0.153 0.082 0.078 

6.1.2. Simulation Of Dialysis On G. W. 

0 

From the data concerning the pre-dialysis state of the patient, 

G. W., it is seen that small fractions of the kidney functions are 

remaining, and the patient appears to be normotensive. However, 

the patient is seriously overloaded with fluid and sodium, and 

this results in the decrease in heart performance. The level 

of urea in the body fluids is high, and the level of creatinine 
is very high. The core and surface temperatures of the patient 
during dialysis have been recorded. 

Figure 6.2 and Table 6.4 show the effects of dialysis on this 

patient. It is seen that the core temperature progressively 

rises, whereas there is a less smooth rise in surface temperature 

across dialysis. The arterial pressure curve is seen to fall 

slightly at the onset of dialysis, and then progressively rise 
till the fourth hour on dialysis, after which it falls again 
before reaching steady state. Dialysis removes a significant 

quantity of sodium, urea and creatinine, and a moderate quantity 

of potassium from the fluid compartments of this patient. 
The results of the simulation of this dialysis are presented 

in Figure 6.2 and. Table 6.4 for comparison. It is seen that 

there are gradual rises in the core and surface temperature 

variables of the simulation response. The arterial pressure 
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TABLE 6.4. Effect Of Dialysis On G. W. 

Pre- 
Dialysis 

Post-Dialysis 
Real Data 

Post-Dialysis 
Simulation 

Weight loss (kgs) - 2.2 1.3 

Plasma Sodium (mEq. /1. ) 144 139 137.8 

Plasma Potassium (mEq. /l. ) 4.6 3.4 3.6 

Plasma Urea (g. /l. ) 1.74 0.84 0.64 

Plasma Creatinine (g. /l. ) 0.159 0.072 0.080 

response of the simulation exhibits similar features when compared 

with the actual dialysis data, apart from the initial drop in the 

arterial pressure in the patient, which may be due to a psycho- 

logical factor. There is a gradual rise in the arterial pressure 

variable of the simulation response after the first hour till the 

fifth hour, after which there is a relatively significant drop. 

Finally, the post-dialysis values of sodium, potassium and" 

creatinine concentrations in plasma, generated by the simulation, 

compare well with those of the actual data, whereas the values for 

weight loss across dialysis and post-dialysis urea concentration 

generated by the simulation do not compare as favourably with the 

actual data. These latter two factors, and the. comparatively 

sluggish arterial pressure simulation response, are discussed 

in a subsequent section of this chapter, with regard to errors 
in the values for the parameters specified by the clinician 

and the 'tuning' of the model to represent individual patients. 

6.1.3. Simulation Of Dialysis On M. G. 

Consideration of the relevant data in Table 6.2 regarding 
the pre-dialysis state of the patient, M. G., suggests that chronic 

renal failure has progressed to result in the patient being 

anuric, that is, having totally lost the ability to form and 
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TABLE 6.5. Effect Of Dialysis On M. G. 

Pre- 
Dialysis 

Post-Dialysis 
Real Data 

Post-Dialysis 
Simulation 

Weight loss (kgs) - 1.8 1.1 

Plasma Sodium (mEq. /1. ) 142 142 143.2 

Plasma Potassium (mEq. /l. ) 5.6 2.8 2.8 

Plasma Urea (g. /l. ) 2.16 0.80 1.13 

Plasma Creatinine (g. /1. ) 0.129 0.058 0.065 

therefore to excrete urine. In addition, the patient, with an 

elevated level of potassium in plasma, suffers from hypotension 

and decreased heart function. The levels of waste products in 

the body fluids are also high. However, the patient is not 

_ overloaded with sodium or fluid. 

Dialysis for a duration of six hours results in the time 

response of arterial pressure as shown in Figure 6.39 where a 

rise in arterial pressure for the first hour is followed by 

a gradual fall for the remainder of the period of dialysis. 

Table 6.5 presents the effects of dialysis on the other variables. 
There is seen to be considerable weight loss, and significant 
decreases in the levels of potassium, urea and creatinine in 

plasma; but there is no change in the level of sodium in plasma. 

The results of the simulation of this dialysis are presented 
in Figure 6.3 and Table 6.5 for comparison. The arterial- pressure 

response curve of the simulation is seen to differ from the 

actual response in that the initial rise is not present in the 

simulation response. However, the slopes of the two curves after 

this initial period are approximately the same. This suggests that 

the initial rise in the actual arterial pressure response is due to 

some factor not represented in the simulation - such as the 

effect of some therapeutic manoeuvre, administered to elevate the 
blood pressure in the patient, and which has not been recorded 
in the medical data made available for this work, or the compen- 
satory effects of nervous control of the circulation due to the 
tendency for arterial pressure to drop. There are also discrepancies 
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between the values, in the actual dialysis data and the simulation 
results of Table 6.5, for weight loss and the change in the 

concentration of urea in plasma. These are discussed in a follow- 

ing section of this chapter. However, values generated by the 

simulation for post-dialysis concentrations of sodium, potassium 

and creatinine are in approximate agreement with the corresponding 

values in the actual data. 

6.1.4. Simulation Of Dialysis On K. F. 

The pre-dialysis state of the patient, K. F., as defined by 

the relevant input data listed in Table 6.2 suggests that this 

patient has some residual kidney function, and is not overloaded. 
However, the patient is slightly hypertensive and hyperkalemic, 

and has elevated levels of waste products in the body fluids. 

The core and surface temperatures of this patient were recorded 
during dialysis. 

TABLE 6.6. Effect Of Dialysis On K. F. 

Pre- 
Dialysis 

Post-Dialysis 
Real Data 

Post-Dialysis 
Simulation 

Weight loss (kgs) - 2.4 2.15 
Plasma Sodium (mEq. /l. ) 141 142 145.6 
Plasma Potassium (mEq. /. ) 7.4 3.8 3.9 
Plasma Urea (g. /l. ) 2.58 0.90 1.02 
Plasma Creatinine (g. /l. ) 0.204 0.088 0.092 

The effects of dialysis on-the relevant variables of the 
patient are presented in Figure 6.4 and Table 6.6. In Figure 6.49 
it is seen that there is a very slight rise in core temperature 
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for the entire period of dialysis, after an initial oscillatory 

period. Surface temperature rises till the third hour on dialysis, 

then abruptly falls in the next hour, and finally decreases 

gradually for the remainder of the treatment session. It is 

possible that the response of surface temperature in the third 

hour of dialysis is due to, for instance, bedclothes being rem- 

oved from the patient after the patient, with skin temperature of 
34.6°C, complains of feeling warm. The arterial pressure response 
indicates that hypertension is controlled by dialysis, since 

arterial pressure is seen to fall progressively to a normal level. 

It is suspected (Thompson, 1978) that the reading at the end of the 

fifth hour of dialysis is a misrecorded value, since no other 

explanation can be offered for the sudden drop, followed by a 

sudden rise back to the previous value of arterial pressure. 
The effects of dialysis on the other relevant variables are 
listed in Table 6.6, which shows significant decreases in pota- 

ssium, urea and creatinine concentrations, and a slight increase 

in the concentration of sodium, in plasma. 
The results of the simulation of this dialysis are presented 

in Figure 6.4 and Table 6.6 for comparison. Core temperature, in 

simulation response, is seen to remain essentially constant 
throughout dialysis; and surface temperature falls gradually, 
after an initial increase, as it does in the initial and latter 

portions of the actual surface temperature response. The simu- 
lated arterial pressure response is similar to the actual response 
in that arterial pressure falls, essentially, throughout the 

period of dialysis. The values generated by the simulation for 

the other variables of interest, listed in Table 6.6, compare 

well with the corresponding values in the actual dialysis data, 

apart from the slight discrepancy in the values for the post- 
dialysis concentration of sodium in plasma. This discrepancy, 

together with the simulation response for core temperature and 

arterial pressure, are discussed in a following section of this 

chapter, concerning errors in the data specified by the clinician. 
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6.1.5. Simulation Of Dialysis On R. R. 

The pre-dialysis state of this chronic renal failure patient 

is defined by the relevant parameters specified by the clinician 

in Table 6.2. It is seen that this patient is anuric and slightly 

hypertensive at the start of dialysis. The patient is overloaded with 

fluid, and has a correspondingly low concentration of sodium in 

plasma. The levels of urea and creatinine, however, are elevated. 

The effects of dialysis on the relevant variables of this 

patient are presented in Figure 6.5 and Table 6.7. Hypertension 

is seen to be controlled by dialysis, and the levels of waste 

products and potassium in the body fluids are significantly 

reduced, whereas the level of sodium in plasma is slightly reduced. 

The patient is reported to have vomited during dialysis. 

TABLE 6.7. Effects Of Dialysis On R. R. 

Pre- 
Dialysis 

Post-Dialysis 
Real Data 

Post-Dialysis 
Simulation 

Weight loss (kgs) - 2.5 2.0 

Plasma Sodium (mEq. /l. ) 138 137 139.5 

Plasma Potassium (mEq. /l. ) 5.1 3.1 3.4 

Plasma Urea (g. /l. ) 1.80 0.63 0.95 

Plasma Creatinine (g. /l. ) 0.156 0.057 0.080 

The results of the simulation of this dialysis are presented 

in Figure 6.5 and Table 6.7 for comparison. The simulation of the 

arterial pressure response is seen to correspond closely with the, 

general shape of the actual response. The levels of potassium, 
urea and creatinine in the body fluids are all reduced significantly 
in the simulation response, but'there is a slight increase in the 

level of sodium in plasma. It is suspected that the slightly 
inaccurate simulation results for weight loss, and the concentrations 
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of sodium and waste products in the body-fluids are due to the 

unaccountable disturbance to the fluid compartments of the 

patient due to vomiting. 

6.1.6. Simulation Of Dialysis: D. G. 1 

This, and the two subsequent dialyses being considered for 

simulation, the data for which are listed in Table 6.2, were 

performed on the same patient at different times during his 

episode of acute renal failure. This first dialysis being simu- 

lated is, in fact, the first dialysis the patient underwent 
following the onset of acute renal failure. The patient is, 

therefore, anuric, though the function to secrete renin is 

relatively unimpaired. The patient is overloaded and hyperkal- 

emic, though the concentration of sodium in plasma is seen to be 

very low. In addition, the patient is catabolic, which results 
in the extremely high level of urea in the body fluids, and the 

need for dialysis to be performed daily. As a consequence, the 

level of creatinine in the body fluids is only slightly elevated. 

Data describing the effects of this dialysis are presented 
in Figure 6.6 and Table 6.8. Across dialysis, arterial pressure 

remains essentially constant, and the temperature of the core of 
the patient rises steadily. The concentration of sodium in plasma 
is elevated, whereas the concentrations of creatinine and pota- 

ssium are reduced slightly, and the concentration of urea in the 

body fluids is reduced significantly. The change in the weight 

of the patient across dialysis was not recorded. 
The results of the simulation of this dialysis are also 

presented in Figure 6.6 and Table 6.8. It is seen that the 

simulated arterial pressure response remains constant throughout 

the period of dialysis; and the simulated core temperature rises, 
but at a slightly lower rate than that indicated by the clinical 
data. This discrepancy may be due to the fact that no account 

was taken of the patient being in a catabolic state, with a high 

basal rate of metabolism. The concentration of sodium in plasma 
is increased in the simulation, but to a value somewhat higher than 

-142- 



TABLE 6.8. Effect Of Dialysis: D. G. I. 

Pre- 
Dialysis 

Post-Dialysis 
Real Data 

Post-Dialysis 
Simulation 

Weight loss (kgs) No Data - 
Plasma Sodium (mEq. /l. ) 129 131 133.3 

Plasma Potassium (mEq. /l. ) 6.2 5.3 4.4 

Plasma Urea (g. /1. ) 3.17 2.33 2.12 

Plasma Creatinine (g. /l. ) 0.078 0.066 0.055 

indicated by the clinical data; the concentrations of potassium, 

urea and creatinine are all reduced in the simulation of the 

dialysis, but, in each case, the values for the post-dialysis 

concentrations generated by the simulation are slightly lower 

than the corresponding values in the clinical data. In the case 

of urea, this slight difference is, again, probably due to the 

fact that no account was taken, in the simulation, that the patient 

was catabolic, and therefore, had a rate of generation of urea 

which was somewhat higher than normal. The concentration of 

creatinine in the body fluids is lowered very slightly by dialysis. 

Thus, although there is a large relative error between the actual, 

and the simulated, changes in creatinine concentrations, the 

absolute error is not significant. 

6.1.7. Simulation Of Dialysis: D. G. 2. - 

The patient was dialysed daily, throughout the anuric stage 
of acute renal failure. The simulation presented here is of the 
fifth dialysis performed on the patient - approximately in the 

middle of the anuric stage of acute renal failure. The relevant 
data in Table 6.2 indicate that the extent to which the patient 
is overloaded with fluid is gradually being reduced, though the 

concentration of sodium in plasma is still low, and the concentrations 
of potassium and urea are still high. 
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TABLE 6.10. Effects Of Dialysis: D. G. 3. 

Pre- 
Dialysis 

Post-Dialysis 
Real Data 

Post-Dialysis 
Simulation 

Weight loss (kgs) No Data - 
Plasma Sodium (mEq. /l. ) 135 137 138.4 

Plasma Potassium (mEq. /. l) 4.1 3.5 3.57 

Plasma Urea (g. /l. ) 3.00 2.27 1.75 

Plasma Creatinine (g. /l. ) 0.050 0.040 0.036 

potassium in plasma are at more normal levels than the pre-dialysis 

values reported for the previous two simulations. However, the 

high level of urea in the body fluids indicates that the patient 
is still catabolic, and in need of frequent dialysis therapy to 

prevent uraemia. 

For this dialysis, the dialyser was primed with blood instead 

of saline or dextrose, as is the usual case. The effects of the 

dialysis are presented in Figure 6.8 and Table 6.10. It is seen 

that the core temperature of the patient and the arterial pressure 

rise across dialysis. In addition, there is a slight increase in 

the concentration of sodium, and reductions in the concentrations of 

potassium, urea and creatinine across dialysis. No data were 

recorded for the loss in weight of the patient across dialysis. 

The priming of the dialysis machine with blood was simulated 
simply by increasing the volume of the blood compartment by the 

priming volume, 0.4 litres, one minute after the start of dialy- 

sis. The simulation results are presented in Figure 6.8 and 
Table 6.10. It is seen that the core temperature response of the 

simulation corresponds with that of the actual dialysis, in that 
there is an increase in core temperature throughout dialysis. 
The increase in arterial pressure in the simulation response is 

rather more abrupt than in the actual response. This may be 

due to the lack of representations of the compensatory control 

mechanisms of the cardiovascular system in the model. However, 

the overall increase in arterial pressure in the simulation 
response is approximately the same as in the actual response. 

-145- 



Finally, the post-dialysis values generated by the simulations 

for the concentrations of sodium, potassium and creatinine are 
in close agreement with the corresponding values in'the clinical 
data. The lower value generated by the simulation for the post- 
dialysis concentration of urea in the body fluids is probably 
due to the fact that no account was taken of the patient being 

catabolic in simulation. This discrepancy is discussed further 

in a later section of this chapter. 

6.1.9. Summary. 

The results of the simulations of dialyses, performed on 

several patients in differing clinical states, were presented 

above. The comparison of clinical data with the relevant simu- 
lation results was also discussed, but in a qualitative manner. 
In order to assess the capabilities and limitations of the model 
to predict the outcome of a dialysis, a quantitative, concise 

method of presentation of the errors between the clinical data 

and the above simulation responses is required. The feature map, 

Table 6.11, is a suitable method for this purpose. 
Certain key features and variables in the clinical data were 

selected by the clinician as important in assessing the effecti- 
veness of the dialysis. These are listed across the top of the 
feature map of Table 6.11.. Listed vertically, on the left hand 

side, are the simulations of dialyses discussed above, so that a 

matrix is formed. A particular feature, such as a positive or 
negative overall slope of response of a variable, in the simu- 
lation response was compared with that of the clinical data. 
If the features matched, the appropriate space in the feature map 

was marked with a positive sign; and if the features did not 

match; the space was marked with a negative sign. If there were 
no clinical data relevant to that feature, a zero was placed in 

the space. Variables, such as the change in the concentration 
of a substance in plasma across dialysis, were treated in a 

similar manner. A positive sign was recorded when the value for 
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the variable generated by the simulation agreed with the corres- 

ponding value in the clinical data with a certain specified 

relative accuracy, or with an absolute accuracy calculated as 

twice the measurement accuracy. The measurement accuracy for a 

variable was derived from Table 6.12, which presents the accur- 

acies with which the parameters, used as input for the model to 

generate a simulation of dialysis, are specified. 
The resulting feature map for the above simulations is 

presented in Table 6.11. Consideration of the distribution of 
the mismatched features leads to certain inferences concerning 
the simulations. 

It is seen, from Table 6.11, that the results of the simu- 
lation of the dialysis performed on patient, R. R., deviate from 

the real data in respect of several variables; these are the 

weight loss and the change in the concentrations of certain 

substances in plasma across dialysis. The patient, R. R., is 

reported to have vomited on more than one occasion during the 

dialysis. This, obviously, would explain the erroneous result 
for the weight loss in the simulation response. In addition, 

vomiting constitutes a disturbance to the fluid compartments of 
the body, and, therefore, the ommission of the representation 

of this disturbance in the simulation is the probable cause for 

the errors in the variables representing the concentrations of 

substances in the fluid compartment in the simulation response. 

Apart from. vomiting, noise, which affects primarily the 

weight loss variable, is introduced into the system by the pass- 
of faeces and the ingestion of food and liquids by the 

patient during the course of dialysis. Since the length of 
time on dialysis extends to seven hours in some cases, it is 

likely that these bodily functions may occur during this 

period. Unfortunately, no record was kept of these, and, there- 
fore, less confidence is placed on the values for weight loss 

across dialysis generated by the simulation. 
The other variable which is seen to have suffered more than 

the occasional mismatch is the change in the level of urea 
across dialysis. Apart from the usual uncertainties associated 
with models representing subsystems of the human organism, as 
discussed in Chapter 4, the model representing the dynamics of 
urea in a patient suffering from renal failure is even more-prone 
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TABLE 6.12. Accuracies With Which Input Data Is Specified. 

FACT1 : »± 0.12 T : + 0.1°C 

FACT2 : ± 0.17 
°O 

T : f 0.1°C 
SO 

FACT3 : ± 0.17 E 3.0 litres 
° 

FACT4 : ± 0.12 PNA : ± 1.0 mEq. /1. 
° 

IHF : ± 0.12 PK 0.2 mEq. /1. 
° 

W : ± 0.01 kgs 1 5.0 litres 
° 

INA : ± 2.0 mEq. /1. 
° 

FLUDAY : ± 0.1 litres IK : 210.0 mEq. /1. 

SODDAY : = 10 mEq. 
° 

R : t 0.02 CU/1. 
° 

POTDAY : '-' 10 mEq. A 5.0 ng. /1. 
° 

ALD : t15.0 ng. /1. 

SODDIA : 1.0 mEq. /1. 
° 

AP : ± 5.0 mm Hg 
° 

POTDIA : ± 0.2 mEq. /1. ADH : ± 1.0 munits/l. 0 

T : * 5 min. EUR 0.05 g. /1. 
° 

PCP : ± 25 mm Hg ECRE : ± 0.005 g. /1. 
° 

Q$ : 2` 25 mis. /min. 

to uncertainty with regard to the parameter representing the 

rate of generation of urea in equation (4.78). This is so since-, 

associated with renal failure, it is often the case that the rate 

of metabolism, and, therefore, the rate of generation of urea, 
is altered from a normal value in either direction (Thompson, 

1978). Since the clinician is unable to quantify the rate of 

generation of urea in a patient, this and other parameters, 
discussed in the following section, need to be estimated by 

some means in order that the model may yield more accurate pre- 
dictions of the outcome of dialysis when used as a predictive 
aid in patient management. The method by which the estimation 

of these parameters may be achieved is described in the follow- 

ing chapter. 

In summary, the feature map of Table 6.11 offers a measure 
of how accurately the model is capable of simulating the dialy- 

sis process. It is seen that the simulation response matches 
important features in the clinical data with sufficient accuracy 
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0 

for the model to be of use as a predictive instrument in the 

renal unit. However, the performance of such a system would be 

improved with the availability of more extensive data regarding 

factors which affect the weight of the patient during dialysis. 

In addition, certain parameters, such as the rate of generation 

of urea, are found to be 'patient - dependent', and greater 

accuracy of simulation may be obtained if these parameters are 
'tuned' so that the model represents the individual patient. 

Finally, the simulation responses are prone to errors due to 

inaccuracies in the values specified by the clinician for the 

input data needed for the simulation of dialysis. The sensitivity 

of the simulation responses to these possible errors is examined 
in the following section. 

6.2. Effects Of Errors In Clinician-Specified Data On 
The Simulation Response. 

The simulation of dialysis, using the model of the patient- 

artificial kidney machine system presented in Chapter 4, is 

dependent on values being specified for the variables listed in 

Table 6.1. The simulations described above were performed using 

the values for these variables, listed in Table 6.2, which were 

specified by the clinician. However, owing to measurement diffi- 

culties, it was necessary for the clinician to estimate the 

values for some of the variables; and the other variables had 

associated measurement noise. The estimated margins of errors 

associated with each of these variables is given in Table 6.12. 

For the clinical applicability of this work, it is necessary to 

determine how sensitive the performance of the model is to 

potential inaccuracies in the values for these variables. A 

discussion on the sensitivity of the simulations to inaccuracies 

in the values of Table 6.2 is presented in the following sub- 

section. 

-149- 



6.2.1. Sensitivity Of The Simulations To Errors In The 
Clinician - Specified Data. 

The values listed in Table 6.2 are approximate values, as 

discussed above. The true value for each variable for each 

simulation may be considered to lie in a probable range speci- 

fied by the value in Table 6.2 and the appropriate range, given 

in Table 6.12. The simulations were repeated, but with each 

variable, in turn, taking on the extreme values in the range. 

In this manner, an indication of the sensitivity of the simu- 
lation responses to potential inaccuracies in these variables 

was obtained. 

Since an alteration in the value of a variable had similar 

effects on all simulations, only the results of the simulations 

of the dialysis performed on patient, S. C., are presented below, 

though the results of the other simulations are also discussed 

briefly in general terms. The results of the previous simu- 
lation of dialysis performed on patient, S. C., presented in 

Figure 6.1 and Table 6.3, are presented again in Table 6.13 

for convenience. 

TABLE 6.13. Simulation Of Dialysis On S. C. With Input Data 
Of Table 6.2. 

Pre- 
Dialysis 

Post-Dialysis 
Real Data 

Post-Dialysis 
Simulation 

Mean Arterial Pressure 
(mm. Hg) 150 115 124.8 

Weight loss (kgs) - 2.2 . 2.2 

Plasma Sodium (mEq. /l. ) 137 139 140.9 

Plasma Potassium (mEq. /l. 4.8 3.6 3.4 

Plasma Urea (g. /1. ) 2.91 1.50 1.28 

Plasma Creatinine (g. /l. ) 0.153 0.082 0.078 
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(i) State Of Patient. 

Parameters representing the fractions of the functions of /hr. J C 
the normal kidneys remaining in the patients needed to be esti- 

mated from medical records by the clinician. These parameters 

are therefore subject to relatively large margins of error. The 

simulations for patients with residual kidney functions were 

repeated with the values for the parameters, FACT1, FACT2, FACT3, 

FACTO, perturbed in turn. The patients who were reported to have 

no residual kidnay functions were anuric. Therefore, the values 
for these parameters were assumed to be accurate, and further 

simulations of the dialyses performed on these patients were not 

generated. 

The results of the simulations of the dialyses performed 

on patient, S. C., are presented in Table 6.14. The effects of 

the variations in the values of the parameters on the simulation 

results are representative of all the dialyses simulated. It is 

seen that the simulation response, with regard to arterial pressure, 

weight loss and the change in the concentration of sodium in 

plasma across dialysis, is sensitive to changes in the value of 

the parameter, FACT1, which represents the remaining fraction of 

the normal kidney function to excrete sodium and water. The 

variations in the above variables are seen to exceed twice the 

measurement errors for these variables. The simulation responses 

were relatively insensitive to variations in the values assigned 

to parameters, FACT2 and FACT3, which represent the remaining 
fractions of the functions of the kidneys to secrete renin and 

to excrete potassium, respectively. However, variations in the 

values for FACT4, the parameter representing the remaining fraction 

of the function of the kidneys to excrete urea and creatinine, 
influenced the change in the concentration of urea in the body 

fluids in the simulation response. Again, the variations in the 

concentration of urea exceeds twice the measurement error for this 

variable. 
Finally, the parameter, IHF, representing the extent to which 

the pumping ability of the heart is decreased, was altered for 

each of the patients. The appropriate results, given in Table 
6.14, of the simulation of the dialysis performed on patient, 
S. C., with this parameter altered indicate that the simulation 
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response is relatively insensitive to potential inaccuracies in 

the evaluation of this parameter. This was found to be the case 
for all the simulations of dialyses. 

In summary, for greater accuracy of prediction of the out- 

comes of dialysis, the parameters, FACT1 and FACT4, need to be 

specified with smaller margins of uncertainty. However, the 

simulation responses are relatively insensitive to variations of 
the other parameters, relevant to defining the clinical state of the 

patient, within the stated ranges of uncertainties. 

(ii) Average Daily Ingestion Rates. 

Patients undergoing dialysis therapy are generally maintained 

on strictly controlled diets. In addition, the input and output 

of fluid and electrolytes are recorded on a daily basis. There- 
fore, by refering to medical records, the clinician is able to 

specify values for the average daily rates of ingestion of fluid, 

sodium and potassium, FLUDAY, SODDAY and POTDAY, respectively, 
with small degrees of uncertainty, as suggested by the appropriate 

expected margins of errors, quoted in Table 6.12. 

In order to determine the sensitivity of the simulation 
responses to variations in these parameters within these margins 
of errors, the simulations were repeated with different values 
for these variables. The results of these simulations of the 
dialysis performed on the patient, S. C., are presented in Table 
6.15. These results indicate that the simulation response is 

relatively insensitive to variations within the ranges of un- 
certainties for these parameters, since the variation in any 
variable did not exceed the measurement error for the variables. 
This was found to be the case for all the simulations of dialy- 

ses performed. 

(iii) Initial Conditions. 

The values representing initial condition information were 
perturbed in a similar manner. The results of these tests on the 
simulation of the dialysis on patient S. C., are presented in 
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Table 6.16. 

In general, it was found that model simulations were parti- 

cularly insensitive to variations in the values for. initial 

conditions. There were some notable exceptions. Firstly, vari- 

ation of the values for initial extracellular fluid volume, Eo, 

resulted in moderate variations in final values for mean arterial 

pressure, MAP. Secondly, the final values for the concentration 

of urea in plasma, EUR, was seen to be more than slightly sensi- 

tive to variations in the values for initial intracellular fluid 

volume. However, the magnitudes of the variations in the final 

values of these two variables were less than twice the quoted 

margins of measurement errors for these variables in all the 

tests performed. Thirdly, the final values for arterial 

pressure, AP, were apparently sensitive to variations in the 

initial values for arterial pressure, AP.; but consideration of 

equation 4.13 suggests that this was to be expected. The offset 
in the final value of arterial pressure is expected to be equal 

to the offset in the initial value. Thus the slope of the simu- 
lated arterial pressure response, which is used as a variable in 

the feature map of Table 6.11, is unaltered by variations in the 

initial value of arterial pressure. 
Therefore, these tests demonstrated that the response of the 

model of the patient - artificial kidney machine system is not 

significantly sensitive to errors in the values representing the 

initial conditions of the state variables of the model. 

(iv) Parameters Defining Proposed Dialysis Therapy. 

The values representing the proposed dialysis therapy were 

perturbed in the same manner as described above for each of the 

simulations. The results of these sensitivity tests on the simu- 
lation of dialysis on patient S. C., are presented in Table 6.17. 

It was found that the final values for the concentrations 
of sodium and potassium in the extracellular fluid were sensitive 
to values for the concentrations of sodium and potassium respecti- 

vely, in the dialysate. In general, however, the variations in the 
final values did not exceed twice the margin of measurement error 
for that variable as defined in Table 6.12. 
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The model responses, in terms of the final values for mean 

arterial pressure, weight loss and the concentration of sodium 
in the extracellular fluid, were found to be sensitive to possible 

errors in the values for post coil pressure, which is the pressure 

set across the dialyzer membrane to remove fluid from the patient 
by ultrafiltration. This finding suggests that the deviation 

between the simulations of dialyses presented in section 6.1 from 

the real data may have been partly due to inaccuracies in the 

values used for post coil pressure in the simulations. 
When the model is used as a predictive aid in patient 

management, an optimal value for post coil pressure would be 

determined by the method described in Chapter 8. Theoretically, 
if the model is a valid representation of the patient, this 

value would be applied in the actual dialysis, and would not be 

changed. Therefore, the margin of error associated with this 

variable would be considerably smaller, and correspondingly, 
there would be less uncertainty in the response of the model. 

The sensitivity of the model response to possible errors 
in the values for time on dialysis and rate of flow of blood 

through the dialysis machine was found to be insignificant for 

the purposes of this work. 

6.2.2. Conclusions On The Sensitivity Tests. 

The results of sensitivity tests indicate that the response 

of the model of the patient - artificial kidney machine system 
is sensitive to possible errors in the values of some of the 
input parameters. In particular, it was determined that possible 
errors in the values specified for FACT1, FACT4 and post coil 
pressure could have caused variations in the response of the 

model such that the deviations of the final values of the clini- 
cally important variables would have exceeded the margins of 
measurement errors for these variables. Therefore, the values 
for these input parameters need 'to be specified with lesser un- 
certainty in order that more confidence may be placed on the long 
term predictive capabilities of the model when it is used in the 
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clinical environment as an aid in patient management. 

6.3. Optimal Feature Map. 

The simulations of the eight dialyses were repeated, with 

changes to some of the values for the input parameters within the 

ranges of measurement error listed in Table 6.12, in order to 

optimize the feature map of Table 6.11. The resultant feature 

map is shown in Table 6.18, where a change in sign from negative 

to positive is indicated by the positive sign being encircled. 

It was observed that improved simulation responses were 

obtained primarily by changes in the values for FACT1, FACT4 and 

post coil pressure. Changes in the values for some of the initial 

condition input variables also caused some improvement in some 
instances. However, the conclusion that emerged was that for 

greater accuracy of model prediction, the values for FACT1, 

FACT4 and post coil pressure would need to be specified with 

smaller margins of error. 

Consideration of the feature map of Table 6.18 indicates 

that the dynamics of urea are still not satisfactorily simulated 
for all patients. As outlined in the discussion in section 4.6.4, 

a long term adaptive mechanism is responsible for alterations 
in the rate of generation of urea in the patient suffering from 

renal failure (Bergstrom and Furst, 1976; Thompson, 1978). This 

suggests that the value for the rate of generation of urea varies 

between patients and also with time. Therefore, the deviations 

in the final values for plasma urea levels between the real data 

and the simulation responses, using the model with a constant 

value for the rate of generation of urea, are to be expected. 
Thus, for more accurate prediction of plasma urea dynamics, the 

value for the rate of generation of urea in the patient being 

considered should be determined and substituted into the model. 
The adjustment of the values of the input parameters was not 

seen to affect the accuracy with which weight loss across 
dialysis was simulated. This supports the suggestion presented 
in section 6.1.9, that the actual weight loss in the patients 
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across dialysis affected by disturbances due to the ingestion of 

food and liquids, excretion of faeces and vomiting by the patients 
during dialysis. These events were not recorded in the patient 
data. 

6.4. Summary. 

Validation tests were performed on'the model of the patient - 
artificial kidney. machine system model, using available real 
data representing actual dialyses. The results of these tests 

were presented quantitatively in the form of a feature map. It 

was found that the results were generally acceptable, but that 

certain important clinical variables were not simulated accu- 

rately, and that the simulation results of the dialysis on one 

patient were not in close agreement with the real data. However, 

this patient had vomited quite severely during dialysis, and 

this constitutes a disturbance to the system which could account 
for the discrepancy between the simulation results and the real 
data for this dialysis. 

Discrepancies may have also arisen due to errors in the 

values specified for the input parameters needed for the execution 

of the model. Therefore,. the sensitivity of the response of the 

model to errors in each of these parameters was investigated. It 

was determined that the sensitivity of the model response was 
particularly sensitive to variations within the margins of errors 
in values for FACT1, FACT4 and post coil pressure. 

By manipulating values for the input parameters within the 

regions of uncertainties in repeated simulations, it was deter- 

mined that most of the discrepancies between real dialysis data 

and the simulation responses could be accountable to inaccuracies 
in the values of the input parameters. However, discrepancies 

still existed in two of the important features. These were the 
weight loss in the patient across dialysis and the final con- 
centration of urea in the extracellular fluid compartment. 
Vomiting, ingestion and periodic excretion of wastes during 
dialysis constitute disturbances to the system which could not 
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be taken into account in the simulations since the relevant data 

were not recorded. Therefore, discrepancies in the weight loss 
feature were not unexpected. Also, as discussed above, the rate 

of formation of urea in patients suffering from renal failure 

is expected to vary. Thus, the model with the rate of generation 

of urea set as a constant was found to be inappropriate. 

Post coil pressure is subject to variation during the course 
of dialysis. The values used for the simulations represent 
approximate time average values, and therefore, these values have 

a large range of uncertainty. When the model is used for pre- 
dictive purposes, and optimal value for post coil pressure would 
be determined by the method described in Chapter 8. This value 
would have a negligible range of uncertainty, and therefore the 

simulation response would be relatively insensitive to possible 

errors in its value. 
Thus, for more accurate long term prediction of patient 

state, it is necessary to obtain more accurate estimates for the 

values for FACT1, FACT4 and the rate of generation of urea for 

the patient being considered. A method for obtaining these values, 
using past patient data and a parameter estimation routine is 
discussed in the following chapter. 
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CHAPTER 7 

PARAMETER ESTIMATION FOR IMPROVED MODEL ACCURACY. 

The major objective of this work is the development of the 

mathematical model of the patient - artificial kidney machine 

system which would be used as a predictive tool in aiding in 

the selection of an optimal dialysis therapy for the patient. 
To this end, the model described in Chapter 4 was formulated, and 
its performance as a predictive tool was tested. The results of 
these tests were presented in the previous chapter. 

These results demonstrate that the model is adequate for the 

prediction of the outcomes of dialysis therapies for optimal 

therapy selection. However, greater accuracy of prediction, 

especially for longer term prediction, might be forthcoming, given 
better estimates for the values for the parameters which represent 

the extent to which the functions of the kidneys to excrete water 
and sodium, FACT1, and urea and creatinine, FACTO, and the rate 

of formation of urea, GUREA, in the patient. 

In the clinical environment, these better estimates may be 

obtained by using a parameter estimation routine on the data 

of the previous dialysis of the patient concerned. In order to 

demonstrate the manner in which parameter estimation may be per- 
formed, and the resulting improved accuracy of the model response, 

parameter estimation was performed using the data for the three 
dialyses, D. G. 1t D. G. 2 and D. G. 3, presented in the previous 

chapter. The procedure for parameter estimation is described in 

section 7.1, and the results are presented in section 7.2. 

7.1. Method For Parameter Estimation. 

Parameter estimation was performed using the Fortran IV software 
package, GIDENT (Roberts, 1977), which is based on the Simplex 

method for optimization of a non-linear dynamic model with multi- 
ple outputs. The model of the patient - artificial kidney machine 

system was inserted into'GIDENT as a user routine such that GIDENT 

called and evaluated the model at each parameter estimation 
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TABLE 7.1. Output And Parameter Requirements For Parameter 

Estimation. 

Typical Time Dependant Weighting Factors 
Definition 

Values Wil w12 1w0 w14 wi5 W16 V17 V18 V19 

Y AP 100 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 
0 Y 5OxPUR 150 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 
0 

2 
Y 1000xPCRE 70 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 

Initial Values 

P 1-FACT1 0.9 0.0 

P2 1-FACT4 0.9 0.0 

CO P3 10x(1-GUREA) 0.85 0.85 

iteration using various values for the parameters to be estimated. 

The requirements for the optimization routine are presented 
in Table 7.1. The variables of the model used as outputs were 

chosen such that the estimation problem was identifiable. How- 

ever, the output variables were redefined in order that their 

values were normalized as shown in Table 7.1. Arterial pressure 

data at thirty minute intervals were available, and data at 

thirty minute intervals for plasma concentrations of urea and 

creatinine were generated by linear interpolation between the pre- 

dialysis and post-dialysis data values for these variables. Time 

dependant weighting factors were set as shown in Table 7.1 to 

reflect the reliability of the data. The parameters to be esti- 

mated were also redefined as shown in Table 7.1, since the opti- 

mization is performed best when the values of the parameters to 

be estimated are approximately unity. Initial estimates were 

always set to nominal values for the average healthy human. 

Parameter estimation was based on the minimization of the 

sum of the squares of the errors between model response and data 

values. The error term for each variable was evaluated at each 

thirty minute interval, and the squares of each of these values 

were multiplied by the appropriate weighting factors, wij. These 

values were then added together to give a value for the sum of 

the weighted squares of errors, and this value was minimized by 

subsequent iterations of the optimization routine using various 
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values for the parameters as set by the Simplex method. Full 

details of the optimization procedure may be found in Roberts 

(1977). 

7.2. Results Of Parameter Estimation. 

The optimal values for the parameters, FACT1, FACT4 and 
GUREA were determined for the three dialyses D. G. 1, D. G. 2 

and D. G. 3 by the method outlined above. These values were then 

substituted into the model and the three dialyses were simulated. 
These results are presented in section 7.2.1. 

For each'of the simulations of dialysis, the model was 

allowed to run on till the time corresponding to the start of 

the next dialysis on the patient, with the submodel of the 

artificial kidney machine switched off. The simulation results 

representing the patient at the start of the next dialysis were 
then compared with the corresponding real data, where available. 

These results are discussed in section 7.2.2. 

7.2.1. Estimated Parameters And Resulting Simulation Of 

Dialyses. 

The values for the. parameters obtained by optimal estimation 
for the three dialyses are listed in Table 7.2. The corresponding 

parameter values used in the simulations presented in the previous 

chapter are also listed in Table 7.2 for comparison. 
It is known that the patient was suffering from acute renal 

failure. The values for the clinician specified parameters 
for patient state, FACT1 and FACT4, suggest that it was the 

opinion of the clinician that the patient was in an anuric stage 
during the first and second dialyses, D. G. 1 and D. G. 29 but 

that he had regained the excretory functions of the kidneys to 

some extent by the time of the third dialysis, D. G. 3. The 

values obtained by optimal estimation for FACT1 and FACT4 for 

dialyses D. G. 1 and D. G. 2 correspond exactly with the values 

specified by the clinician. -However, the optimally, estimated 

values for FACT1 and FACT4 during the third dialysis suggest 
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that the patient had not regained the excretory functions of 

the kidneys at this time. 

The third parameter, GUREA, was specified as a constant for 

the simulation of the dialyses presented in the previous chapter. 

However, the results of the validation tests of the previous 

chapter indicated that this was not appropriate, and this 

conclusion is supported by the fact that the values for GUREA 

determined by optimal estimation for the first two dialyses are 

approximately four times the constant value, whereas the value 
for the third dialysis is equal to that of the constant. 

The results of the simulations D. G. 1, D. G. 2, D. G. 3, using 

the appropriate optimally estimated values for FACT1, FACT4 

and GUREA are presented, in Tables 7.3,7.4 and 7.5. The corres- 

ponding values for real data and the results of the simulations 

using the clinician specified values for these parameters are 

also presented in these tables for comparison. 
The optimal values reached by GIDENT for the parameters 

for dailyses D. G. 1 and D. G. 2 differed from the clinician 

specified values only in respect of GUREA. The results of the 

simulations of D. G. 1 and D. G. 2, using the optimally estimated 

parameters, differed from the results of the simulations using 

clinician specified parameters only in the final concentration of 

urea in plasma, PUR, as shown in Tables 7.3 and 7.4. It is seen 

that optimal estimation of parameters has resulted in a significant 

improvement in the prediction of'the*final value of PUR in D. G. 1.. 

However, the error in the final value of PUR in D. G. 2 is larger 

in the results of the simulation using the optimally estimated 

parameter values compared with the error seen between the real 
data and the results of the simulation of D. G. 2 using the 

clinician specified parameter values. 
The values for FACT1 and FACT4 for dialysis D. G. 3 obtained 

by optimal estimation are seen to differ significantly from 

the corresponding values as specified by the clinician, whereas 

the values for GUREA are in agreement. These values are shown 
in Table 7.2. The results of the simulation of dialysis D. G. 3 

using the optimally estimated parameter values are presented in 

Table 7.5. It is seen that`theesimulation response for PNA and 
PUR are significantly better than the corresponding results using 

the parameter values as specified by the clinician. The final 
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TABLE 7.2. Optimally Estimated Parameter Values. 

FACT1 FACT4 GUREA 

D. G. 1 Specified 0.0 0.0 0.015- 

Estimated 0.0 0.0 0.055 

D. G. 2 Specified 0.0 0.0 0.015 

Estimatedt" 0.0 0.0 0.056 

D. G. 3 Specified 0.37 0.12 0.015 

Estimated 0.0 0.0, 0.015 

values for the other variables are essentially the same. 

The discussion above demonstrates that optimal estimation 

of the values for parameters, FACT1, FACT4 and CUREA in the model 

of the patient - artificial kidney machine may lead to more 

accurate results in the simulation of dialysis than those obtained 
by using the values for these parameters as specified by the 

clinician. 

7.2.2. Simulation Of The Inter-Dialysis Period. 

The capabilities of the model of the patient - artificial 
kidney machine system to predict patient state in the inter- 

dialysis period were then examined. Certain clinical data 

concerning the state of the patient at the start of the dialyses 
following dialyses D. G. 1 and D. G. 3 were used for this purpose. 
The data for the dialysis following D. G. 2 were not available. 

The model was allowed to run on following the end of the 

simulated dialysis periods for the number of hours of simulated 
time corresponding to the start of the next dialyses. The sub- 
model of the artificial kidney machine was switched off in this 
period of simulated time. Two simulations were performed for 

each of the inter-dialysis-periods. The first used values for 
FACT1, FACT4 and GUREA as specified by the clinician, and the 
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TABLE 7.3. Results Of Simulation Of D. G. 1 Using Optimal 

Parameter Values. 

AP PNA PK PUR PCRE 

Pre-dialysis* 110.0 129.0 6.2 3.17 0.078 

Clinical Data 103.3 131.0 5.3 2.33 0.066 

Non-Optimal 110.8 133.3 4.4 2.12 0.055 

Optimal 110.8 133.3 4.4 2.28 0.055 

TABLE 7.4. Results Of Simulation Of D. G. 2 Using Optimal 

Parameter Values. 

AP PNA PK PUR PCRE 

Pre-dialysis* 97.0 128.0 6.0 2.75 0.075 

Clinical Data* 93.0 131.0 4.9 1.67 0.052 
Non-Optimal 97.4 133.1 4.2 1.76 0.051 

Optimal 97.4 133.1 4.2 1.93 0.051 

TABLE 7.5. Results Of Simulation Of D. C. 3 Using Optimal 

Parameter Values. 

AP PNA PK PUR PCRE 

Pre-dialysis 101.0 135.0 4.1 3.0 0.050 

Clinical Data* 115.0 137.0 3.5 3.27 0.040 

Non-Optimal 119.2 138.4 3.5 1.75 0.036 

Optimal 118.9 137.7 3.4 1.92 0.036 

I 

* Pre-dialysis and Clinical Data values taken from clinical 
records. 
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second simulations were performed using the optimally estimated 

values for'these parameters. The simulation results are presented 
in Tables 7.6 and 7.7. 

The results of the simulation of the seventeen hour period 
following dialysis D. G. 1, using parameter values specified by 

the clinician are shown in Table 7.6. Considering that these 

results represent the end of a seventeen hour period of simulated 
time, the simulation results compare favourably with the corres- 

ponding clinical data apart from the final values for the concen- 

trations of sodium and urea in plasma. However, the concentration 

of sodium in plasma, PNA, is seen to have fallen in the patient, 

whereas the simulation results indicate a slight rise. Also the 
level of urea in the patient, PUR, is seen to rise by 0.8 g. /l. 

in the inter-dialysis period, whereas the corresponding rise in 

the first simulation is 0.4 g. /l. 

The results of the simulation using the optimally estimated 

parameter values, also shown in Table 7.6, are the same as those 

of the first simulation with regard to all the variables except 
the final level of urea in plasma. This is due to the fact that 

the only difference between the parameter values specified by the 

clinician and those obtained by optimal estimation is in the value 
for GUREA as shown in Table 7.2. Considering the dynamics of 

urea in these simulations, it is seen that the rise in the level 

of urea is only 507. of the actual rise, whereas the rise in the 

second simulation is 1407. of the actual rise. This suggests that 

although the high value for GUREA established by the optimization 
routine for the dialysis period, D. G. 1, is appropriate, the value 
for the inter-dialysis period should be lower than that for the 

dialysis period. 
The results of the simulation of the twenty-four hour period 

following the dialysis, D. G. 3, using parameter values specified 
by the clinician are shown in Table 7.7. It is seen that the 

final values for mean arterial pressure, %MAP, and plasma sodium 

concentration, PNA, generated by this simulation compare well 

with the clinical data. However, the values for the concentra- 
tions of potassium, PK, and creatinine, PCRE, are seen to have 

risen, and the level of urea has fallen. These are not in 

accordance with the clinical data. 

The results of the simulation of this post-dialysis period 

-169- 



i 

1 

C9 

y 

Cd 
M 
A 

N 
0 
a 
w 
0 
Q 
0 
M 41 

E 
En 

0 
N 

in n 
M1OO 

O" O 

\Nn 
" cV 1OO 

OO 

12 
V Co %D O 

a r+ OOO 

OOO 

Co "4 
N '. p 

M1"" 
NM 

dMm% 

"N1"" 
MNN 

e') NM 

M1"" 

O' N1"" 

v 

ßr NM O'. 

MtM.. 
c') cM 

\M 1ý" 

O' N1 t') .i 
L . 

MI 
. -4 

W . -1 N !7N 

Co M 

M1O . -4 
0-4 N 

0,0 

00 e'1 

NtO . -1 
P-4 N 

OM fý 

r-+ O' e4 ;C 
O. O 

sn 

cn 

N 
M 
N 

r-1 
ca 

M 
A 

N 
0 
C14 
w 
0 
0 M 

N 
'-d 

E 
Ord 
U) 

ýD M 
M %O 

M1OO 

O" O 

U-4 %D tn 

"N1OO 
bO "" 

OO 

V u'1 %t 
Co 

L1+ 9-4 OOO 

OOO 

N CO 
C' M 

M1"" 
. -1 N 

'-4 in N 

"N1"" 

äöN in 

MNN 

M1"" 
M 'O 

" 

O' N1"" 
WM ý1 

vQ .,. 
ä 

, w-4. _tn .. c 
.-""" 

,T-, 
-4. M 

,M 

1% 'O 

M1MN 

" 
\ ý7 O 

C 

[N 

1 a0 N 
M .7 
r1 rl 

p4ei (n 

o' N 

N . -1 

64N 
1 

r'-1 
N 

U, 
H 

0 -i; r Co 
N 

q 
"r4 

0 
"H 

ei a 4+ 0 
a Co 

"r4 N 
M 

+J O 

.0G 

'0 wo 
4) C! 

My 
W Co 
r-4 il 
vM 
a iJ 

.NO 
My 
n1 p) 
OO 

Co ti 

HH 
Q) 07 
41 4J 

N i+ 
Co ei 
aa 
co Qo aa 
yH 
OO 

V1 N 

Oa 
" V) v) 
(C C) CJ 

NN 

0 

Co iJ 11 
V tu tu 

M-- 
MOa 

a P er4 

.... .. 

"-1 N N1 

1 

'b 
q 

yW 

-170- 



using the optimally estimated parameter values are also presented 

in Table 7.7. The values for the final mean arterial pressure, 

plasma sodium and potassium concentrations deviate from the 

clinical data more than the corresponding values generated by 

the first simulation. However, the value for the final level of 

urea in the patient is in close agreement with the clinical data. 

These results appear to indicate that the value for FACTI as 

specified by the clinician, 0.37, is more appropriate for the 

post-dialysis period than the value, 0.0, obtained by optimal 

estimation using the clinical data representing the state of the 

patient during dialysis, D. G. 3. This is also seen to be the 

case by intuitively considering the effects of having a lower 

value for FACT1 in the post-dialysis period. The lower value 

for FACT1 leads to greater fluid retention over the post-dialysis 

period, and hence a higher value for mean arterial pressure and a 

lower concentration of sodium in the body fluid. In order to 

maintain osmotic equilibrium and compensate for the drop in 

sodium concentration in the extracellular compartment, potassium 

is drawn from the intracellular to the extracellular compartment, 

thus raising its concentration-in the extracellular compartment. 

Examination of other clinical records relevant to this patient 

revealed that in a four day period encompassing the twenty-eight 

hour period from the, start of-dialysis, D. G. 3, the daily rate 

of flow of urine increased from 150 mis. to 1,800 mis. It is 

evident, therefore that the value for FACT1 increases with time 

in this four day period. Thus, although the optimally estimated 

value for FACT1,0.0, appears, to be more appropriate during the 

period of dialysis, D. G. 31 the value specified by the clinician 

generates the better simulation results for the post-dialysis 

period. However, it is seen from, the final values for the level 

of urea in the patient, that the. value for. FACT4,0.0, obtained 
by optimal estimation appears, to be more appropriate than the 

value specified by the clinician, 0.12, even for the post-dialysis 

period. 
The results of the simulations of the. two post-dialysis 

periods of patient D. G. may now be summarized. It appears that 
in this patient, the actual rate of generation of urea in the 

period following dialysis; D. G. 1 and the ability of the kidneys 

to excrete sodium and water in the period following D. G., 3 are 
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changing rapidly. Thus, the results of the simulations of the 

patient for the periods following dialyses D. G. 1 and D. G. 3p 

using the optimally estimated values for FACT1, FACT4 and GUREA 

which were obtained using the clinical data of dialyses D. G. 1 

and D. G. 3 respectively, show little or no improvement over the 

results of the simulations using the values for these parameters 

as specified by the clinician. 

7.3. Summary. 

A method for 'tuning' the model of the patient - artificial 
kidney machine system to fit the individual patient has been 

demonstrated in this chapter. Data representing three dialyses 

on a patient suffering from acute renal failure were used to 

obtain three sets of optimal values for the patient - dependant 

parameters. The three dialyses were then simulated using the 

optimal values for these parameters and the results of these 

simulations were compared with those of the simulations using 

parameter values specified by the clinician. It was found that 

in two out of three cases, the results of the simulations using 

the optimally estimated parameter, values matched the clinical 
data more closely than the results of the simulations using 

parameter values specified by the clinician. This finding 

indicated that improved accuracy of prediction of the future state 

of the dialysis patient may be achieved by the use of an optimal 

estimation routine on past patient data, 

The long term predictive capabilities of the model were 

then tested. These tests, however, were inconclusive. The 

patient, whose clinical data were used for these tests, was 

suffering from acute renal failure, and was gradually regain- 
ing the functions of his kidneys. Therefore, the actual values 

of some of. the parameters which were optimally estimated for 

the model were not constant in the patient. 
, 
This factor, there- 

fore, gave rise to the somewhat inappropriate simulations of the 

patient in the inter-dialysis periods. 
Although the tests of the validity of the model for long 

term prediction of patient state were inconclusive due to 
inappropriate test data, the overall indication from the work 
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presented in this chapter is that the optimal estimation of 

certain patient - dependant parameters would lead to improved 

accuracy of simulation response. Further, it appears that the 

long term prediction of patient state would be more successful 

for the chronic renal failure patient, whose values for the 

patient - dependant parameters would remain essentially constant, 
than for the acute renal failure patient. The following chapter, 
therefore, describes the overall system, incorporating the 

mathematical model, to be used in the renal unit to aid in the 

selection of optimal dialysis therapies for renal failure 

patients. 

. _ýý. . 
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CHAPTER 8 

CLINICAL APPLICATION OF THE MODEL. 

The derivation of the model of the patient - artificial 
kidney machine system was presented in Chapter 4. The results 

of tests to demonstrate the validity of the model have been 

presented in the preceding three chapters. To be of use as a 

clinical aid in the renal unit, however, the model needs to be 

incorporated within an appropriate software system. 
The necessary associated software has been developed as part 

of this research programme. The major function of this software 
is to enable the clinical user, assumed to have little or no 

experience with computer systems, to enter into the system, via 

an interactive terminal of the computer, parameters representing 

the state of the patient and the candidate dialysis therapy. 

These parameters are listed in Table 6.1. 

The other function of the associated software system is to 

enable the clinical user to run the model several times for one 

-patient using parameters representing, different candidate therapies 

so that an optimal therapy may be selected for actual use on the 

patient. 
The overall software system is presented in this chapter, and 

a listing of the source code is given in Appendix III. Hardware 

system requirements are also addressed below. 

8.1. Description Of The Overall Software System. 

The overall software system is written in Fortran IV computer 
language. The routines representing the mathematical model comprise 
the core of the software system; the remainder of the system 

consists of an integration routine, used to solve the differential 

equations of the model, and the routines which cause the clinical 
user to interact with the system in order to feed in the appropriate 

parameter values for the model. The function of each routine is 

described below: - 
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MAIN ROUTINE: The purpose of the main routine is to direct 

the execution of the subroutines in a particular sequence. This 

sequence may be influenced by the responses of the user. Detailed 

discussion of this aspect is presented in the following section 

of this chapter. The main routine also causes the model predic- 

tions to be printed on the computer output device. 

SUBROUTINE READFA: This routine prompts the user to enter 
into the system, via an interactive computer terminal, parameter 

values specified by the clinician which represent the state of 
health of the patient. 

SUBROUTINE READIN: This routine prompts the user to enter 

values representing the daily rates of ingestion of substances. 

The daily rates are then transformed to rates of ingestion per 

minute. 

SUBROUTINE READIC: This routine prompts the user to enter 
initial condition information. These data are then transformed 

to represent initial values for the state variables of the model. 
SUBROUTINE READTH: This routine prompts the user to enter 

values representing the candidate dialysis therapy. 

SUBROUTINE CONTRL: This routine solves the algebraic equa- 

tions of the model. 

SUBROUTINE MODEL: This routine contains the differential 

equations of the model which are solved by the integration 

routine. 

SUBROUTINE INTEGR: This routine is a Runge - Kutta fourth 

order variable step integration routine which is used to solve 

the differential equations of the model'. The iteration step 

length is one minute. 

SUBROUTINE OSMOS: This subroutine establishes osmotic 

equilibrium between the intracellular and extracellular com". - 

partments of the model at the end of each iteration. 

The equations comprising the subroutines CONTRL, MODEL and 
OSMOS were presented in Chapter 4, and are listed in Appendix II 
in algebraic form. The calling sequence of`the routines is 

presented in the diagram of Figure 8.1, and the organisation of 
the prompts for the user to enter parameter values into the 

system is shown in Figure 8.2. 
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8.2. Facilities Offered By The Software System. 

Incorporated"In the software system, described here, are 

certain logical switches to be set by the user. These switches 

enable the user to run the model with several candidate dialysis 

therapies so that an optimal therapy may be selected for actual 

use on the patient. The manner in which the system is to be used 
is described below and a flowchart of the functions of the pro- 

gramme is presented in Figure 8.3. 

on initiation of the programme, the user is prompted to 

enter into-the system the required data, as shown in Figure 8.2. 

The model is then run using these data values so that prediction 

of the outcome of dialysis is obtained. The prediction is listed 

on the output device in tabular form such that the values of. the 

clinically important variables are printed every thirty minutes 

of simulated time for the duration of the proposed dialysis. 

Analysis of the prediction would give the user or the clinician 

an indication of any abnormal patient states that may arise during 

the actual dialysis on the patient. 

The user is then asked whether another candidate dialysis 

therapy is to be proposed. If the response of the user is 

affirmative, the system then returns the user to the part of the 

programme where the parameter representing the proposed dialysis 

therapy are to be entered by the user. The model is then run 
again using the original parameters representing the patient, but 

with the revised parameters for the dialysis therapy, and a new 
prediction of the outcome of dialysis is obtained. 

By entering this loop repeatedly, several candidate dialysis 

therapies may be tried on the model with the same set of parameters 

representing the patient. The optimal therapy for that patient 
may then be selected by considering the different model predictions. 

When the user is satisfied that an optimal therapy has been 

selected, an exit from this loop is gained simply by entering the 

negative response in reply to the question. A second switch is 
then set by the user which either halts the system or prepares it 

. for the purpose of prediction of the state of the patient. for some 
time after the completion of the proposed dialysis therapy. 

If prediction of the post-dialysis state of the patient is 

requested, then the system causes the user to update, if necessary, 
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the parameter values representing the state of the patient and the 

rates of ingestion of substances. The model is then run for a 

specified length of simulated time with the model of the artificial 
kidney machine switched off and the initial values for the state 

variables set equal to the final values generated in'tbe last simu- 
lation of dialysis. The user would then be able to estimate, from 

the resulting model predictions, when the next dialysis would need 
to be performed. In addition, these model predictions would give 
indications of any undesirable patient states that may arise in the 
inter-dialysis period. 

Finally, the system gives the user the option to try another 

candidate dialysis therapy in case the, predicted post-dialysis 

state of the patient is found to be unsatisfactory. Used in this 

manner, the software system described above offers the user the 

facility to select an optimal dialysis therapy, for the patient, 
in terms of the state of the patient during dialysis. 

8.3. Computer Hardware Requirements. 

The computer hardware necessary for the implementation of the 

software system for a renal unit should be relatively easy to set 

up. Most hospitals either have their own, or have access to 

computer facilities. 

The minimum hardware requirement is for an interactive tele- 

type terminal, in or near the renal unit, which is linked to a 

medium sized or a mainframe computer system with a Fortran compiler. 
The software programme would be stored in the bulk memory of the 

computer system, to be loaded into core whenever there was a need 
for it. With this arrangement, it is important that the computer 

system is not overloaded with other uses such that the response 
time of the system for interactive users is so great that it 

becomes impractical to use the software system as a predictive 

clinical aid to patient management. 
If speed of use of the, software system is a crucial factor, 

then an arrangement consisting of a visual display unit and a 
high-speed line printer, linked'to the computer, could be adopted. 
With this arrangement, only some of the model predictions would 
be directed to the line printer for "hard copy", whereas user 
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interaction and general testing of model responses would be 

carried out on the visual display unit. The software system 

would require slight modifications to permit its use in this 

manner. 

The software system was run on a mainframe computer, the 
ULCC CDC 7600 computer system, in batch mode, and interactively 

on a medium sized computer, the PDP 12 with OS/8 operating system. 

The size of core needed for the programme was 13 K words of 16 bits 

each. The mainframe computer used twenty-one seconds of processor 

time to generate model predictions of two hundred hours. Using 

the system in the interactive mode, an experienced user of the 

system required approximately six minutes to enter the data needed 
for the model to run, and the model prediction for a six hour 

dialysis was generated in approximately four minutes. 

8.4. Summary. 

The system described above offers a method for the input of 

parameter values for the model. The system is designed such that 

the software system may be used relatively easily by clinical 

staff who may not have experience with computer systems. 
The system used in the manner described above results in 

predictions of the outcome of several candidate therapies so that 

an optimal therapy may be selected for use on the patient. In 

addition, these predictions would indicate any problems that may 

occur during dialysis. Further, using the post-dialysis pre- 
diction results, the clinician would be able to estimate when the 

next dialysis would need to be performed and also ensure that no 

complications arise in the condition of the patient in the period 
between dialyses. Thus, the model incorporated in the software 

system described above may be used to maintain the renal dialysis 

patient in an optimal state. 
Timing considerations demonstrate that the system may be 

used interactively in a renal unit in an economical manner. 

3 
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READ: Patient's state of health - SUB READFA' 
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Ta0.0, Ka0 

KaK+1 

Solve model, - SUBS CONTRL, INTEGR OSMOS 
. 

/Is No 
Ka 30 

Yes 

WRITE Results 

.Ka0 

No Is <T 
TT 

Yes 

,. 

Figure 8.3. Flowchart of overall software system. 
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Figure 8.3. (continued) 



NAHELIST FOR FLOWCHART. 

T: Simulated time in minutes. 

K: Counter used for printing prediction results once every 

thirty minutes of simulated time. 

TT : Length of time for which dialysis or post-dialysis 

predictions are required. 

Figure 8.3. (continued) 



CHAPTER 9 

CONCLUSIONS. 

The primary aim for this research programme is to investi- 

gate the feasibility of the application of a mathematical model 

as an aid in patient management in renal dialysis. To this end, 

the mathematical model of the patient - artificial kidney machine 

was developed for use in an interactive mode to generate predictions 

of the outcome of candidate dialysis therapies on the patient. 

This model consists of interconnected models of subsystems of the 
human organism, and is based on the current knowledge of the 

relevant physiology. 
During the modelling process, it was necessary to make 

several simplifying assumptions with regard to some complex and 

poorly understood control mechanisms in these human subsystems. 
However, the validation tests, which were designed to examine 
the capability of the model to satisfy its objectives, revealed 
that the performance of the model was adequate. Firstly, it was 
determined that the model of the renal - body fluid system, a 

Submodel of the model of the patient - artificial kidney machine 

system, was capable of simulating the effects of certain stresses 

to the human renal - body fluid system, and thus this submodel 

could be used as a vehicle with which to test hypotheses 

related to the renal - body fluid system. 
Secondly, using the available clinical data, it was estab- 

lished that the model is capable of predicting the outcomes of 
dialysis therapies on patients with sufficient accuracy to be of 

use to the renal dialysis clinician as a predictive tool. How- 

ever, sensitivity tests revealed that greater accuracy of simu- 
lation response may be obtained given better estimates for values 

of certain parameters representing the state of health of the 

patient than those suggested by the clinician. Using available 

patient data, the parameter estimation exercises were conducted. 
The resulting improvement in simulation responses of two out of 
three dialyses indicated that the model may be useful for the 

prediction of patient state in the longer term in the inter-dialysis 

period. However, due to the lack of useful clinical data, no 
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definite conclusions can be drawn with regard to the third 

objective of this work - that of being able to use the model to 

predict the state of the patient in the inter-dialysis period. 

Thus, as far as the limited available clinical data permitted, 

the validity of the model for clinical application was estab- 
lished. However, it is recognized that further extensive 

validation of the model, both for simulation of the dialysis and 
the inter-dialysis periods, is necessary before this work may 

safely be applied in a clinical environment. It is unfortunate 
that clinical data of sufficient quality and quantity for this 

purpose were not available during the course of this research 
programme. 

Two major areas of weak knowledge, where assumptions needed 
to be made for the modelling process, were discovered. The first 
is concerned with the interrelationships between the thermo- 
regulatory system model and the other subsystem models. Recent 
data (Craveney, 1979) resulting from experiments on humans have 

shown that there is an unexpectedly high degree of correlation 
between the temperature of the human body and many of the clini- 
cally important variables of the model. The second area is 

related to the effects of changes in the concentrations of 
electrolytes in the body fluids on the pumping ability of the 
heart and on the cardiovascular system as a whole. The use of 
the model as a hypothesis testing tool on appropriate experi- 
mental data, in a manner similar to that reported in Chapter 5, 

may lead to a better understanding of these areas of weak 
knowledge, and help to explain some of the phenomena that are 
sometimes observed in patients undergoing dialysis. 

Apart from its use as an aid in dialysis therapy selection 
for the individual patient, and as a tool to expand knowledge 

about the functioning of the human body, the model has another 

potential application to benefit dialysis patients. It may be 

used as a test - bed on which to examine the effects of various 
generalized long term strategies for the treatment of dialysis 

patients in order to minimize the 'cost' of dialysis. Cost 

would be a measure of some combination of factors including 

patient well-being, financial cost and, not least of all, 
overall time on dialysis for the patient. Less time on dialysis 

would mean that each expensive artificial kidney machine, of 
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which there is an insufficient number, may serve more renal 
failure patients in need of dialysis treatment. Thus the toll, 
in terms of human life, taken by renal failure may be reduced. 

In addition to the potential benefits for medical science 

outlined above, this research programme has also contributed 
to the field of systems science. It has been demonstrated that 

valid complex, structural biological models, which are as 
isomorphic with the system being modelled as permitted by current 
knowledge, may be formulated. Further, it has been shown that 

such models can be useful for clinical applications. Finally, 

validation of such models is found to be an important and 
integral part of the model formulation process. Validation 

exercises should therefore be formulated specifically to test 

the capabilities of the model to accomplish the functions that 

the model is designed to perform. 
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APPENDIX I 

VARIABLES OF THE MODEL. 

Symbol Definition Nominal 
Value 

A Concentration of angiotensin II in plasma 
(ng. /l. ) 27.0 

ADH Concentration of ADH. in plasma (munits/l. ) 4.0 

ADHS Nett release rate of ADH (munits/min. ) 0.825 

ADHSP Release rate of ADH due to plasma osmolality 
(munits/min. ) 0.84 

ADHSV Release rate of ADH due to diminished fluid 
volume (munits/min. ) 0.81 

ALD Concentration of aldosterone in plasma (ng. /l. ) 85.0 

ALS Nett rate of secretion of aldosterone (ng. /min. ) 52.7 

ALSA Release rate of aldosterone due to a 
angiotensin II (ng. /min. ) 52.7 

ALSK Release rate of aldosterone due to plasma 
potassium concentration (ng. /min. ) 52.7 

AP Arterial pressure (mm. Hg) 100.0 

Ar Surface area of dialysis membrane (m. 2) 1.5 

AS Rate of formation of angiotensin II (ng. /min. ) 105.0 

AVOS Equilibrium osmolality of body fluids 
(mosm. /1. ) 299.6 

BMRC Basal metabolic rate in core compartment 
(cals. /min. ) 1165.3 

BMRS Basal metabolic rate in surface compartment 
(cals. /min. ) 21.5 

BV Blood volume (1. ) 5.0 

C Thermal capacitance of core of body 
c 

(cals. /°C. ) 55860.0 

C Thermal capacitance of surface of body 
s 

(cals. /°C. ) 3030.0 

c Specific heat of blood (cals. /°C. /kg. ) 920.0 

CBi Concentration of solute in blood entering 
dialysis machine (mEq. /1. ) or (g. /1. ) - 

ýr 
Value for a normal 71 kg. man. 

Patient dependant value. 

r 
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Nominal 
Symbol Definition 

_ Value 

CDi Concentration of solute in dialysate 
(mEq. /l. ) or (g. /l. ) _ 

CEi Extracellular concentration of waste 
substance (g. /l. ) - 

C Intracellular concentration of waste Ii 
substance (g. /l. ) - 

CE Cardiac effectiveness 1.0 

CEK Cardiac effectiveness due to abnormal 
potassium level 1.0 

CENA Cardiac effectiveness due to abnormal 
sodium level 1.0 

CO Cardiac output (1. /min. ) 5.0 

DADH Clearance rate of ADH (1. /min. ) 0.206 

DAP Steady state bias on arterial pressure (mm. Hg) P. D. 
0 

DTPR Pressor effect of angiotensin II on 
circulation (mm. Hg/l. /min. ). 0.0 

DWV Excess fluid in extracellular compartment (1. ) 0.0 

E Extracellular fluid volume (1. ) 15.0 

EN Normal extracellular fluid volume (1. ) 15.0 

EBDT Fraction of water load reabsorbed in the 
distal nephron segments 0.952 

f 
EBLH Fraction of water load reabsorbed in the 

loop of Henle 0.33 

ECRE Extracellular concentration of creatinine (g. /1. ) 0.030 

EDTR Rate of reabsorption of water in the distal 

nephron segments (mls. /min. ) 19.7 

EFDT Rate of flow of water into the loop of Henle 
(mis. /min. ) 31.25 

ELHR Rate of reabsorption of water in the loop of 
Henle (mls. /min. ) 10.55 

EPTR Rate of reabsorption of water in proximal 

-°" 
tubule (mls. /min. ) 93.75 

EUR Extracellular concentration of urea (g. /1. ) 0.15 

FACT1 Fraction of remaining-kidney function to 
excrete sodium and water 1.0 

FACT2 Fraction of remaining kidney function to 
secrete renin 1.0 

FACT3 Fraction of remaining kidney function to 
excrete potassium 1.0 

FACT4 Fraction of remaining kidney function to 
excrete urea and creatinine 1.0 

FLUMIN Rate of ingestion of water (mis. /min. ) P. D. 

FNA Filtered load of sodium (mEq. /min. ) 17.75 
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Nominal 
Symbol Definition Value 

Gi Generation rate of waste substance (g. /min. ) - 

GFR Glomerular filtration rate (mls. /min. ) 125.0 

GTB Fraction of filtered load of sodium reabsorbed 
in proximal tubule 0.75 

I Intracellular fluid volume (1. ) 25.0 

IC Osmolality of constituents apart from sodium 
and potassium in intracellular pool 
(mosm. /l. ) 161.2 

ICRE Intracellular concentration of creatinine 
(g. /l. ) 0.030 

IHL Insensible evaporative heat loss rate from 

surface of body (°C. /min. ) 149.3 

IK Intracellular concentration of potassium 
(mEq. /l. ) 141.0 

INA Intracellular concentration of sodium (mEq. /1. ) 10.0 

IOS Osmolality of intracellular fluid compartment 
(mosm. /l. ) 299.6 

IUR Intracellular concentration of urea (g. /1. ) 0.15 

K Heat transfer coefficient due to conduction 
cs between core and surface of body 

(cals. /min. /°C. ) 405.6 

ri Renal clearance of waste substance (1. /min. ) - 

K Heat transfer coefficient due to convection se and radiation between surface of body 

and environment (cals. /min. /°C. ) 100.0 

k Cell permeability coefficient for waste I Ei 
substance (1. /min. ) - 

MSP Mean systemic pressure (mm. Hg) 7.0 

PC Osmolality of constituents apart from sodium 
and potassium in the extracellular pool 
(mosm. /l. ) 156.2 

PCP Controllable pressure difference across 
dialysis machine membrane (mm. Hg) - 

PK Extracellular concentration of potassium 
(mEq. /l. ) 5.0 

PNA Extracellular concentration of sodium (mEq. /l. ) 142.0 

POS Osmolality of plasma (mosm. /1. ) 299.6 

POTDIA Concentration of potassium in dialysate 
(mEq. /1. ) P. D. 

POTMIN Rate of ingestion of potassium (mEq. /min. ) P. D. 

PV Plasma volume (1. ) 3.0 

** 

** 
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Symbol Definition Nominal 
---- Value 

QB Blood flow rate through dialysis machine 
(1. /min. ) P. D. 

R Concentration of renin in plasma (GU. /l. ) 0.06 
Rc Resistance to blood flow through core of body 

(mm. Hg/l. /min. ) 20.93 
R Resistance to blood flow through surface of s body (mm. Hg/l. /min. ) 448.4 
RAP Right atrial pressure (mm. Hg) 0.0 
RHL Respiratory heat loss rate (cals. /min. ) 150.0 
RS Rate of release of renin (GU. /min. ) 0.008 
RVR Resistance to venous return (mm. Hg/1. /min. ) 1.4 

SBF Rate of blood flow to surface of body (1. /min. ) 0.223 
SDTR Rate of reabsorption of sodium from the distal 

nephron segments (mEq. /min. ) 0.757 

SFDT Rate of flow of sodium into distal tubule 
(mEq. /min. ) 0.89 

SFLH Rate of flow of sodium into loop of Henle 
(mEq. /min. ) 4.44 

SLHR Rate of reabsorption of sodium from the loop 
of Henle (mEq. /min. ) 3.55 

SODDIA Concentration of sodium in dialysate (mEq. /1. ) P. D. 

SODMIN Rate of ingestion of sodium (mEq. /min. ) P. D. 

SPTR Rate of reabsorption of sodium in proximal 
tubule (mE-q. /min. ) 13.3 

T Temperature of core of body (°C. ) 36.7 
c 

T Ambient temperature (°C. ) - e 
T Temperature of surface of body (°C. ) 34.1 

s 
TEK Total extracellular potassium (mEq. ) 75.0 

TENA Total extracellular sodium (mEq. ) 2130.0 
TIK Total intracellular potassium (mEq. ) 3525.0 

TINA Total intracellular sodium (mEq. ) 250.0 

TPR Total peripheral resistance (mm. Hg/l. /min. ) 20.0 
TPRTH Value of TPR generated by thermoregulatory 

system model (mm. Hg/1. /min. ) 20.0 
UFL Urine flow rate (mis. /min. ) 1.0 

UK Nett rate of excretion of potassium (mEq. /l. ) 0.06 
UKAL Rate of excretion of potassium due to 

aldosterone (mEq. /min. ) 0.03 
UKH Rate of excretion of potassium due to 

homeostatis (mEq. /min. ) 0.03 
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Symbol Definition Nominal 
Value 

ULTRF Ultrafiltration rate of fluid across dialysis 
machine membrane (mls. /min. ) 

UNA Rate of excretion of sodium (mEq. /min. ) 

VR Venous return (1. /min. ) 

W Weight of patient (kgs. ) 

f Density of blood (kgs. /l. ) 

P. D. 

0.128 

5.0 
** P. D. 

1.0 
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APPENDIX II 

EQUATIONS OF THE MODEL. 

A2.1. Tjiermoregulatory System Model. 

CcxdTc=. = BMRC - Kesx(Tc-Ts) - OxczSBFc(T. -TS) = RHL 
dt 1 

CSxdTs. BMRS + Kcsx(Tc-Ts) + rxcxSBFx(Tc-TS) 
dt 

- KSex(TS-Te) - IHL 

Ra f(Tc, T8) 

SBF - AP / Rs 

TP a 
Rs x 20.934 

H Rs + 20.934 

A2.2. Cardiovascular System Model. 

atAFLUMIN-UFL dt 

E 
ixdt 

BV= 0.33xE 

BV a 0.015 xE+6.6 

MSP m 3.5xBV - 10.5 

if E< 21.0 1. 

if E >> 21.0 1. 

DTPR = 0.037xA - 1.0 

DTPR = 5.44x1og10(A) - 7.8 
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if A< 27.0 ng. /l. 

if A> 27.0 ng. /1. 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 



TPR a TPRTH + DTPR 

CENA a 1.0 

CENA - -0.0125XPNA + 2.85 

CEK - 1.0 

CEK - -0.065xPK + 1.43 

CE _ (CENA + CEK) x 0.5 

CO - f(CE, MSP, TPR) 

AP - COxTPR + DAP 
0 

A2.3. Kidney Function Model. 

if PNA < 148.0 

if PNA >ý 148.0 

if PK < 6.5 

if PK >/ 6.5 
3 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.13) 

GFR - 0.0 if AP < 20.0 mm. Hg 

GFR - 1.92xAP - 38.4 if 20.0 <AP .< 75.0 mm. Hg 

GFR = -0.00808xAP2 + 2.195xAP - 13.6 (4.14) 

if 75.0 (AP 4 120.0 mm. Hg 

GFR - 0.035xAP + 129.2 if AP) 120.0 mm. Hg 

FNA = GFRxPNA / 1000.0 

GTB = -0.0357xPNA + 5.815 

with the constraint 0.75 < GTB 4 1.0 

SPTR - GTB x FNA 

SFLH m FNA - SPTR 

EPTR = GTB x GFR 

EFLH = GFR - EPTR 

If FACT1 > 0.0 

EBLH (0.01 x EFLH/FACT1) + 0.65 

ELHR = EBLH x EFLH 
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SLHR a 0.8 x SFLH (4.22) 

EFDT a EFLH - ELHR (4.23) 

SFDT - SFLH - SLHR (4.24) 

EBDT = 0.0 if ADH 0.765 munits/1. 
EBDT 0.0383xADH - 0.293 if 0.765< ADH < 3.0 

EBDT -0.0383xADH2 + 0.364xADH + 0.109 

if 3.0<ADH 45.0 (4.25) 

EBDT = 0.0012xADH + 0.9653 if ADH? 5.0 munits/1. 
EDTR - EBDT x EFDT 

UFL = EFDT - EDTR 

SDTR - 0.6xSFDT if ALD (0.0 ng. /1. 

SDTR - (0.003xALD + 0.596) x SFDT 

if 0.0<ALD 4,85.0 
SDTR s (0.00021xALD + 0.833) x SFDT 

if 85.0 <ALD < 800.0 

SDTR a SFDT if ALD ) 800.0 ng. /1. 

UNA m SFDT - SDTR 

UKH - 0.107xPK - 0.505 

UKAL = 0.00028XALD + 0.0062 

UKAL - 0.00009XALD + 0.0224 

UK = (UKH + UKAL) x FACT3 

A2.4. Hormonal System Models. 

POS - 2.11 x PNA 

ADHSP = 0.348xPOS - 103.4 

ADHSP - 0.0285xP0S - 8.04 

if ALD .< 85.0. ng. /1. 

if ALD ) 85.0 ng. /1. 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31a) 

(4.32) 

if POS >, 299.5 mosm. /1. 

if POS ( 299.5 mosm. /1. (4.33) 
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DWV -E- EN 

ADHSV = 0.0 

ADHSV - 0.15 - 0.083XIYJV 

ADHSV - 0.813 - 0.75xDWV 

ADHSV = 1.71 

if LMV >/ 1.8 1. 

if 1.8>TJWV> 1.0 

if 1.0>DWV>' -1.2 
if: -1.2)TMV 

(4.34) 

(4.35) 

ADHS = ((17.0xDwvxADHSV) + ADHSP)/((17. o/Dwv)+ 1.0) 
if POS? 299.6 mosm. /l. and TMV ) 2.0 1. 

ADHS (((33. OxDWV - 32.0) x ADHSV) + ADHSP) 

/ ((33. OxDWV - 32.0) + 1.0) 
(4.36) 

if POS >299.6 and 1.0 < DWV ý< 2.0 

ADHS - (ADHSV +-ADHSP)/2.0 for all other conditions. 

DADH = 0.206 if ADH) 4.0 munits/1. 
DADH = 0.374 - 0.042xADH if ADH 44.0 munits/1. 

(4.37) 

PV - 0.6 x BV (4.38) 

d(ADH) 
a (ADHS - ADHxDADH) / PV (4.39) 

dt 

RS a (0.0163 - 0.0093xSFDT/FACT1) x FACT2 (4.40a 

ät 
= (RS - 0.135xR) / PV (4.42) 

Aa 1785.0 xRx PV (4.44) 
- 3.06 

T (AS - 4.04xA) / PV (4.45) 

ALSA =A if A< 18.0 ng. /1. 
ALSA - 4.43xA - 61.7 if 18.0 $< A <34.0 (4.46) 
ALSA - 0.78xA + 62.5 if A >' 34.0 ng. /1. 

ALSK a 21.64xPK - 55.5 (4.47) 
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ALS = (ALSAx3.0 + ALSK) / 4.0 

d(ä Da (ALs - 0.62xALD) / PV 

A2.5. Artificial Kidney Machine Model. 

ULTRF - 0.0139xPCP + 0.7 if PCP < 100.0 mm. Hg 
ULTRF - 0.042xPCP - 2.1 if PCP >'100.0 mm. Hg 

d(CBi x E) 
a QB x (CBi - CDi) x exp - 

KQAr 
-1 

dt B 

A2.6. Balance Equations. 

d(TENA 
s SODMIN - UNA dt 

d(TEK) 
= POTMIN - UK dt 

(dialysis machine off) 

(dialysis machine off) 

d(TENA) 
d x(PNA-SODDIA) Q 

KsodiumxAr 
x exp t b Q B 

+ SODMIN - UNA (dialysis machine on) 

d(TEK) Kpotassium xAr 
d QBx(PK-POTDIA)x 

) (exp 

Q B 
-1 

+ POTMIN - UK (dialysis machine on) 

PNA Q TENA /E 

PK - TEK/E 

d(TINA) 
_0 dt 

d (TIK) 
dt 
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INA = TINA /I (4.63) 

IK = TIK /1 (4.64) 

dE 
. FLUMIN - UFL (dialysis machine off) (4.65) ät 

dE 
dt a F'UNIN - UFL - ULTRF (dialysis machine on) (4.66) 

POS a PNA + PK + PC (4.67) 

IOS INA + IK + IC (4.68) 

AVOS POSxE + IOSXI (4.69) 
E+I 

E= POS xE (4.70) 
AVOS 

Ia IOS xI (4.71) 
AVOS 

PNA x = 
PNA (4.72) 

POS 

PK 
PK x AVOS 

° 
(4.73) 

Pý 

INA AVOS 
Q 

INAIx (4.74) 
OS 

IK IKIx AVOS (4.75) 

d(CI x I) 
=G- kI, 

E x (CI - CE) (4.76) 
dt 

d(CE x E) 
= kI 

Ex 
(CI - CE) - KrxCExFACT4 

dt (4.77a) 
(dialysis machine off) 
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d(CE x E) 
a kI 

Ex(CI-CE) - KrxCExFACT4 
dt ' 

QBX(CE-CDI) x 
(exp 

-Qr-1 
B 

(dialysis machine on) 

(4.79a) 
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APPENDIX III 

THE COMPUTER PROGRAMME. 

Some of the symbols for the variables of the model in the 

computer programme are different from those given in Appendix I. 

These different symbols are listed in Table A3. 

TABLE A3. Symbols For Variables Of The Model In The Computer 

Programme. 

Variable in Appendix I Variable in the computer programme 

A X(10) 

ADH X(12) 

ALD X(11) 

DAP APCONS 
0 

E X(3) 

ECRE PCRE 

EUR PUR 

I X(6) 

PCP PCPR 

QB QB 

R X(9) 

R STPR 
C 

T X(1) 
c 

T X(2) 
s 

TEK X(5) 

TENA X(4) 

TIK X(8) 

TINA X(7) 
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