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FOREWORD 

This thesis is submitted on the basis of reports prepared for the National Coal 

Board (now British Coal Corporation) over a period of years. The work 

concentrates on the development of electrochemical sensors for monitoring 

carbon monoxide. British Coal's prime interest was the use for incipient 

spontaneous combustion detection with a subsidiary interest in general safety 

monitoring. 

Some reports concerning earlier work on oxygen sensors are relevant to the 

present work for two reasons: (a) some of the important concepts developed 

here were used in the carbon monoxide sensor, and (b) City University set up 
City Technology Ltd, a company which successfully exploited this novel oxygen 

sensor, thus providing a manufacturing and marketing base through which 

subsequent products could be developed. Sensors found widening commercial 

applications in response to urgent needs even during the early development 

period. A consequence was that a lot of the work was done against the 
background of field experience, which resulted in a better depiction of the 

performance requirements and raised various problems which needed urgent 
solution. This in its turn gave a spur to gaining the best possible fundamental 

understanding without which progress would have been difficult. 

The other applications for carbon monoxide sensors were the subject of separate 

work, but wherever relevant to British Coal's interests, the findings were included 

in the reports. Some of the Coal Board reports date back to the early 1970's, 

which preceded the SI system now adopted by the Scientific Community. 

Consequently, the linking summary has been compiled using the same 

nomenclature, in order to facilitate cross referencing to the original reports. A 

conversion table of all units used in these reports to SI units is included in 

Appendix 5. 

A company profile, a list of publications and a portfolio of patents are included 

in Appendices 1-4. 
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1. Cross-Referencing 

As a result of extensive collaboration with BCC over a number of years (1973-88) 

developing gas sensors for use in mines, a series of reports have been 

published. These are listed in chronological order and numbered from 1 to 22 

in the series (see Volume 1, App. 3). 

If reference is made to sections within Volume 1, the initial number in brackets 

will denote the volume number, thus: 
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(1) Fig. 1- denotes Volume 1, Figure 2, etc. 

Reference to Volume 2 would be similarly annotated, but the Report Number 
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electrode not in contact with the test gas, which is capable of giving a coherent, 

galvanic response to an electrochemically active gas. 

A third, reference electrode may also be included. 

3. Electrode Potential (E) 
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electrode in the same electrolyte, or wrt a reference electrode (see (1) App. 6). 
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The rest potential of the electrode when no external current is being drawn. 
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5. Over Potential (q) 

The displacement from the reversible electrode potential which constitutes the 
driving force for the reaction to take place. 

6. Open Electrode Current (io, j 

The intrinsic current capability of the electrode, assuming no external diffusion 

restrictions such as capillary barriers. 

7. Capillary Current 

The intrinsic current capability of the capillary, assuming no other rate restrictive 

process ie. 100% capillary control. 

8. Sensor Baseline (ie) 

Sensor output current in clean air (ie. in the absence of electrochemically active 

gas other than 02). 

9. Sensor Output Current (ij 

Total sensor current in the presence of the electrochemically active gas being 

measured. 

10. Sensor Span Current (im) 

'span = is . iB 

11. Sensor Sensitivity ($) 

$=i. 
ý. n eg. pA ppm-', nA ppm-, 

gas concentration 

12. Activity Reserve (Ar) 

Ar = IM_ 
'span 

xxiv 



13. i-E Curve 

Current-voltage characteristic of an electrode. 

14. Three-Electrode Potentiostatic Circuit 

A rapid response comparator which is used to set the sensing electrode potential 

wrt an internal reference electrode, the output of the comparator being linked to 

the counter electrode of the sensor (see (1) 2.1.1 Fig. 3). 

15. Two-Electrode Potentiostatic Circuit 

A rapid response comparator which is used to set the sensing electrode potential 

wrt the counter electrode, the output and the inverting input of the comparator 
being linked to the counter electrode of the sensor (see (1) 2.1.3 Fig. 4). 

16. Load Resistance (R) 

Resistive element, through which the total sensor current passes, linking the 

sensing electrode to: 

(a) ground (common) in a potentiostatic circuit. 
(b) the counter electrode in a 2-electrode sensor not controlled with a 

potentiostat 

17. Self-Powered Sensor 

A 2-electrode sensor used as in 16(b) above; the voltage drop across the load 

resistor constitutes the voltage output signal of the sensor and therefore a 

control circuit is not necessary (see (1) 2.1.3 Fig. 5). 
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ABSTRACT 

Historically, electrochemical gas sensors had suffered from several drawbacks 

such as poor temperature coefficient, leakage, susceptibility to shock and 
vibration and orientation sensitivity, which led to poor field reliability. In the 

present work these problems have largely been overcome by superior design, 

drawing on field experience in fuel cell and battery technology. 

The culmination of a sensor design embodying a number of unique concepts 
has revolutionised electrochemical gas sensor analysis and has pioneered the 

way for many new and hitherto difficult applications. The main features are: 

(a) A capillary diffusion-limiting barrier, based on gas-through-gas diffusion, with 

a theoretical temperature coefficient of 0.17% of signal per °C (at 20°C). 

(b) Very active fuel cell-type Pt black electrodes with large activity reserves 

giving rise to low span temperature coefficients, wide dynamic measurement 

ranges and enhanced long-term stability. 

(c) A close-wick sandwich arrangement of the electrodes conferring very good 

stability, to the extent that the sensors are substantially immune to shock 

and orientation problems. The sandwich design also enables the sensors 

to be very compact. 

(d) Use of strong sulphuric acid electrolyte in balance with ambient relative 
humidity (RH) - about 65% on average in temperate climates - in 

conjunction with a wick dipping into an expansion reservoir, giving 

maintenance-free, continuous dynamic range of operation between 20% and 
90% RH and very long residence times outside these limits -several weeks 
in zero RH and several months in 100% RH at 20°C. 

(e) Extensive use of porous polytetrafluoroethylene (PTFE) membrane sealing 
techniques, which have dramatically improved cell integrity to the extent that 
leakage is virtually eliminated. 
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(f) Matched sensing and reference electrodes in conjunction with zero bias cell 
operation, which allows the sensing and reference electrodes to be shorted 

out when the instrument is switched off; this gives almost instant warm-up 
when the instrument is switched on and the cell has excellent (NULL) 

stability under all conditions. 

(g) Since the sensor does not need to be powered-up when the instrument is 

switched off, there is a considerable saving on battery power in portable, 
hand-held instruments. 

(h) Inclusion of a second sensing (auxiliary) electrode, which enables the 

cancellation of partially reacting cross-interfering gases such as hydrogen. 

The auxiliary electrode can also substantially offset baselines; this is 

especially beneficial in biased sensors which generate large baselines. 

(i) Use of inboard chemical filters, which can remove cross interfering gases 

such as NO, N02, SO2, C12, NH3 and C2H4 by chemical reaction/adsorption. 
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CHAPTER 1, -; -OVERVIEW 

1.1 LINKING SUMMARY STRUCTURE 

The thesis is based on a series of 5 annual reports resulting from a joint 

collaboration between City Technology Limited (CTL) and British Coal 
Corporation (BCC) to develop an electrochemical trace level CO detector to meet 
BCC's needs for advanced warning of incipient spontaneous combustion in 

mines. 

Volume 1 constitutes a Linking Summary of the work contained in the reports 

and Volume 2 is a bound copy of the annual progress reports, from Phase 1 

through to Phase 5 of the development. 

The Linking Summary is structured to take the reader step by step through the 

logical progression of designing and developing a trace level CO detector 

suitable for British Coal's needs. Thus, examination of the technical 

requirements identifies the design objectives listed in (1) Chapter 1, whereas 

reviewing the fundamentals and relevant sensor electrochemistry gives one a 
basic understanding of sensor technology - (1) Chapter 2. 

In addition to Volume 1 being a systematic exposition of sensor design, it is also 
intended to be a summary of the work contained in the annual reports and 

therefore, where necessary, reference is made to Volume 2 for further detail. 

Inevitably, reference to the original reports does not always follow the 

chronological order of development. 

1.2 BACKGROUND 

Since carbon monoxide is a product of most combustion reactions, it is a wide- 

spread pollutant. In dense urban areas, the internal combustion engine is the 

largest single source of carbon monoxide pollution, where levels as high as 30- 

50ppm are not uncommon. This may be compared with the Threshold Limit 

Value (TLV) of 50ppm CO and the Short Term Exposure Limit (STEL) of 300 ppm 
CO('). [The TLV is the 8 hour exposure limit and the STEL is the 10 minute 
exposure limit. ] 
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Carbon monoxide reduces the ability of the bloodstream to carry oxygen to body 

tissue by displacing oxygen from haemoglobin to form carboxyhaemoglobin. 
Continuous exposure to ambient air containing 10 ppm carbon monoxide will 

produce carboxyhaemoglobin levels greater than 2%, the point at which effects 

upon the nervous system become apparent(2). 

In addition to its toxic effects, carbon monoxide is a precursor to incipient 

spontaneous combustion in coal mines and therefore the accurate measurement 

of trace levels is of vital importance in the safety of mines. For optimisation of 

gas, oil or coal burner efficiency and for emission control, it is essential to 

measure carbon monoxide, in addition to the more customary measurements of 

oxygen and temperature. 

Because of the ubiquitous nature of carbon monoxide, it is imperative to have 

sensors capable of providing information on the generation and distribution of 

carbon monoxide in a wide variety of environments. 

1.2.1 Technical Requirement 

1.2.1.1 British Coal Incipient Combustion Detection 

Monitoring carbon monoxide in mines is demanding. Sensors 

have to cope with adverse environments which have high levels 

of dust, extreme temperatures, at times as low as 0°C, but 

frequently about 35°C, accompanied by saturation moisture levels. 

General background CO levels can range from 3 ppm to 10 ppm, 
depending on the local site conditions. Obviously, for the earliest 

warning of the onset of incipient spontaneous combustion, the 

ability to measure deviations of 1 ppm from normal background is 

highly desirable. 

Sensors require good long-term baseline and span stability as well 
as low temperature coefficient. It is essential for electrochemical 
sensors to have low (minimal) baselines, since baselines typically 
double with every 10°C increase in temperature (see (1) 4.3.1). For 
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example, an instrument which is calibrated at 20°C and tested at 
40°C, using a sensor with a2 ppm CO equivalent baseline at 

20°C, will generate a null error of +6 ppm CO equivalent at 40°C 

(see (1) 4.4.2). 

In general, sensors are required to measure 0-500 ppm CO with 

a resolution of 1 ppm, whilst being able to tolerate 1000 ppm CO. 

Mining activities can produce a host of gaseous products, which 
if the sensor responds to, would give erroneous CO readings and 

possibly cause false alarms. For example, in-situ battery charging 

produces hydrogen, and shot blasting and traction diesel 

equipment produce a host of by-products including NO, NO2, S02 

and CO. Incipient spontaneous combustion of coal generates CO 

as well as a host of unsaturated hydrocarbons such as ethylene. 

In addition, high levels of hydrogen, up to 1%, occur naturally 

under some geological conditions, such as in mines in South 

Africa. 

All cross interferences constitute errors in true CO readings and 

are therefore undesirable. Most cross interfering gases only 

partially react on the electrode so they are activation controlled 

rather than diffusion controlled and consequently have high 

temperature coefficients of the order of 3% of signal per degree 

centigrade (see (2) 13 4.6). 

1.2.1.2 Environmental Monitoring 

The general remit for environmental monitoring is much wider than 

for spontaneous combustion detection in mines; temperatures can 

range from -40°C to +50°C and there is a much larger range of 

possible cross interfering gases. The usual requirement is to 

provide an alarm at the TLV of 50ppm so that the resolution 

needed is much less than for the mining application and therefore 

the signal to noise ratio as well as the signal to baseline ratio is 

much more favourable. 
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1.2.1.3 Flue Gas Analysis .. 
Market forces based on increased awareness of environmental 

pollution and safety and efficiency(3) have provided the incentive for 

the development of low-cost, rugged and portable gas sensors for 
flue gas analysis. 

Measurement of CO is needed for three purposes: 

(1) To check that the appliance is safe. 
(2) To check that the emissions are below the statutory 

requirement. 
(3) To achieve the best possible fuel efficiency. 

Combustion efficiency varies with stoichiometric air/fuel ratio, as 

shown in (1) Fig. 1. 
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At low excess air levels, incomplete combustion lowers efficiency, 

while at high air/fuel ratios, energy is wasted by heating air 

unnecessarily(4). In theory, optimum combustion efficiency can be 

achieved by monitoring either oxygen or carbon monoxide and 

controlling the air/fuel ratio. In reality, neither of these 

components alone provides the optimal signal for easy control of 

combustion process efficiency. The 02 concentration in the flue 

gas stream is influenced by a number of factors(5), including fuel 

type and British Thermal Units (BThU) value, combustion process 
load factor, air by-passing the combustion zone, and air leaks 

downstream of the combustion process but upstream of the 

analyzer system. To use oxygen-only analyzers for combustion 

control, the boiler system must be 'characterized' with portable 

instruments measuring both 02 and CO at several air/fuel ratios 

over the entire combustion process load range(6). This information 

is then used to generate a relationship expressing optimum 02 

concentration vs. boiler load for use by the combustion control 

system. Such a system requires a significant setup and 

installation cost. 

Carbon monoxide concentration can be used to control air/fuel 

ratio, but it has several important drawbacks. The CO signal 

tends to vary greatly - for example, changes in boiler load cause 

wide swings in the CO level, necessitating the use of 

preprogrammed air and fuel settings until steady-state operation 

is obtained and CO concentration-driven control can be re- 

instituted. The ideal combustion control system must therefore 

provide both CO and 02 concentration measurements, which 

must be used to control the air/fuel ratio. There are, in fact, 

several control strategies that use both measurements. 
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The first strategy uses CO measurement to offset the actual 02 set 
point from the theoretical. The air/fuel ratio is continuously 

adjusted, based on the difference between measured 02 

concentration and the 02 set point value; simultaneously, actual 
CO is measured and the average CO concentration over a timed 
interval is compared to the desired CO level. When this CO 

average deviates significantly from the desired level the 02 set 

point is readjusted. 

The alternative strategy uses CO as a trim control on top of 

primary 02 control. When a boiler load change occurs, the 02 

sensor alone is used for adjustment of the air/fuel ratio until a new 

stable operating setting is reached. Typically, the controller is 

adjusted to make this initial condition one with slight excess air. 
When the process has again stabilized, the controller switches to 
CO control and fine tunes the settings by reducing the air/fuel 

ratio until CO rises to its set point range. 

With the advent of microcomputers, numerous other control 

strategies have become possible. It is now possible to use a 

running CO average for primary control and look-up tables for 

dynamic conditions when the load is changed or process upsets 

occur. Look-up tables can be generated by the control system 
during the first weeks of operation when the combustion system 
is tuned and operating properly. A microprocessor-based system 

can also provide safety over-ride functions based on out-of-range 
CO and 02 concentrations and can give diagnostic warnings of 

process malfunctions (e. g. when a dirty burner causes poor 

mixing of air and fuel and leads to high CO levels in the presence 

of adequate excess air). Furthermore, intelligent microprocessor- 
based systems can be self-teaching, identifying a 'proper 

operation window' in a specified time period after the process has 

been tuned. Diagnostic warnings can be given when the 02 and 
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CO process variables stray into combinations indicative of 

malfunctions. 

It is evident from such applications that the region of interest for 
boiler tuning is the range 0-1000ppm CO - see (1) Fig. 1. 

However, once the stoichiometric excess air ratio drops below 

zero, the CO concentration rises exponentially and concentrations 

as high as 200,000ppm CO can often be encountered in an out-of- 
tune flue. It is therefore essential that CO sensors for flue gas 

analysis are at least able to tolerate such high levels of CO, so 
that when the burner is re-tuned, the sensor can recover with little 

hysteresis to give an accurate reading round the maximum 

efficiency point i. e. <600ppm CO. 

Low cross-interference is also of importance, because high levels 

of hydrogen are often found in flue gas, sometimes in the ratio 1: 4 

with CO. Nitric oxide can be very high - up to 1000ppm and coal- 
burning installations can generate up to 4000ppm S02 in sulphur- 

rich coal. Unrefined oil can also generate similar levels of SO2. 

In practice the flue gas sample is cooled before reaching the 

sensor, but good temperature stability is of importance, as 
temperatures can range from sub-zero temperature to +55°, 

depending on site conditions. 

Since a wide dynamic range of measurement is required (10- 

200,000ppm CO) the sensitivity has to be low to achieve the 

required tolerance at high levels. This in turn puts pressure on 
keeping the baseline current as low as possible so that the ppm 
CO equivalent baseline does not shift too much with temperature. 
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1.3 DESIGN OBJECTIVES FOR INCIPIENT COMBUSTION DETECTOR 

As a result of close collaboration with British Coal over a period of years to 

develop a suitable Carbon Monoxide sensor to give advanced warning of 
incipient spontaneous combustion in mines, the final design brief was set out as 
follows: 

1.3.1 Service Life 

Minimum of one year, preferably more than two years. 

1.3.2 Temperature Range 

Overall accuracy maintained within ±10% of signal over the range 0- 

40°C. 

1.3.3 Calibration Frequency 
Recalibration once every 6 months is desirable, but once every 3 months 
is acceptable, although there is a statutory need to check equipment 
fortnightly and in some applications weekly. 

1.3.4 Attitude Stability 

On inverting the sensor, baseline movement not more than 2ppm, 

preferably less than ±1 ppm. 

1.3.5 Shock and Vibration Sensitivity 

Transient signals due to shock and vibration should not trigger the TLV 

alarm and in the steady-state the overall accuracy of ±10% of reading 

should be maintained. 

1.3.6 Linear Measuring Range 

The sensor output should be linear. The upper range of measurement 
should preferably be 500ppm CO, but an upper limit of 200ppm CO 

would be acceptable, if necessary. 
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1.3.7 Response Time 

The 90% response time, measured across a load resistance of 500, 

should be less than 40 seconds. 

1.3.8 Carbon Monoxide Tolerance 

On subjecting the sensor to 200ppm CO for 20 minutes, the baseline 

hysteresis should be less than ±2ppm CO equivalent after 5 minutes 

recovery in clean air. 

1.3.9 Moisture Tolerance 

The sensor should be able to function continuously in the relative 
humidity (RH) range 20% to 90% and be able to tolerate periodic 

excursions to 100% RH (non-condensing) intermittently. 

1.3.10 Cross Interference 

Cross interference should be as small as possible, preferably less than 

1%, from other gases arising from various processes in mines such as: 

(a) Spontaneous Combustion - ethylene and other unburnt 
hydrocarbons. 

(b) Diesel traction equipment and shot 
blasting - NO, NO2 and SO2. 

(c) Battery re-charging - H2. 
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CHAPTER 2- FUNDAMENTALS and LITERATURE REVIEW 

2.1 ELECTROCHEMICAL GAS SENSOR FUNDAMENTALS 

There are two generic methods of operating electrochemical sensors, one is 

POTENTIOMETRIC in which the open circuit potential of the sensing electrode, 

measured with respect to (wrt) an internal reference electrode, is used as the 

sensor signal and the other method is AMPEROMETRIC, in which the current 

generated on the sensing electrode, is used as the sensor signal. 

Potentiometric sensors rely on the voltage response generated by the Nernstian 

relationship between electrode potential and gas concentration, namely: 

Reactants "- Products 

Thus : E=E, - RT In (Products] 

nF [Reactants] 

where E= Electrode Potential 

Eo = Standard Electrode Potential 

R= Universal Gas Constant 

T= Absolute Temperature 

n= Number of electrons transferred per Mole 

F= Faraday = 96494 C mol-' 

.... (1) 

Thus, the potentiometric method measures the thermodynamic activity of a 

substance by relating the potential it creates at an electrode to the theoretical, 

thermodynamically-determined potential. The relationship between concentration 

and potential is logarithmic and this technique is more useful for measuring 

orders of magnitude than smaller changes in concentration. Further, the 

chemical species to be measured must exhibit 'reversible' behaviour, a 

characteristic of many ionic reactions but not of gases (except H). Gases such 

as CO, H2S, 02 do not exhibit 'reversible' electrode potentials at ambient 

temperature and their concentrations must be measured by amperometric 

methods. 
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The amperometric method, measuring current, measures the rate at which a 

species releases (oxidation) or consumes (reduction) electrons at an electrode. 

If the number of electrons exchanged per molecule is known, then the rate of 

oxidation or reduction can be calculated, eg. 

CO+H2O-+CO2+2H++2e' .... (2) 

O2 + 4H+ + 4e'--o 2H2O .... (3) 

H2S+4H2O--. H2SO4+8H++8e' .... (4) 

Thus a molecule of H2S will release 8 electrons, compared with 2 electrons from 

CO. If the molar concentrations are the same, then H2S generates four times as 

much current as CO, assuming the electrode process is not reaction-rate limited. 

The biggest advantage of amperometric sensors is the direct link between 

current and gas concentration expressed by Faraday's Laws of electrolytic 

conduction, which statem: 

(1) In any electrolytic process the amount of chemical reaction is proportional 

to the quantity of electricity passed through the electrolytic conductor. 

(2) The masses of different substances deposited or dissolved by the same 

quantity of electricity are in the proportions of their chemical equivalents. 

In ideal cases these laws are exact, although this fact may be obscured in 

certain cells by the occurrence of side reactions. 

With reference to electrochemical gas sensors, Faraday's Laws may be simply 

stated: "One gram - equivalent weight of gas at NTP will yield 96494 coulombs 

of charge". 
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2.1.1 Diffusion Limiting Principle 

A suitable electrode in a cell can be activated by applying an anodic 

overpotential so that the reactant gas diffusing into the cell is fully 

oxidised. 

Such a cell is converted to a sensor by the inclusion of the diffusion 

barrier at the sensing electrode(°). The nature of this barrier is 

fundamentally important to the operation of the sensor and is designed 

to restrict access of the reactant gas so severely that it becomes 

completely oxidized as it arrives at the sensing electrode. Under these 

conditions the concentration of reacting gas at the sensing electrode 

approaches zero and the current becomes limited solely by the rate of 

gas diffusion through the barrier. The sensing-electrode is then under 

mass transfer control and a limiting current is observed (see (1) Fig. 2). 

Sensing -electrode 
, polarization with 
barrier 

Ei , 
d 

c 
a 
4- 
CR 

Counter-electrode 
polarization 

Sensing-electrode 
polarization without 
barrier 

Sensor current 
Current 

Figure 2 Schematic I-E polarisation characteristics for a two-electrode 

gas sensor. E' is the operating potential. [After Hobbs BS et al (1990) 

Liquid Electrolyte Fuel Cells (Adam Hilger : New York)] 
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The limiting current may be derived as follows: 

According to Fick's first Ia49), the diffusion flux of reactant gas through 

the barrier is directly proportional to its concentration gradient across the 

barrier: 

reactant fluxoc Cf, - C12 

where C', and Cl2 are the concentrations of reactant on the ambient air 

and cell sides of the barrier respectively. 

However, since C'2 approaches zero in the limiting-current condition (ie. 

all reactant oxidised as it arrives at the electrode), then: 

reactant fluxcc C', 

Also, from Faraday's law, the cell limiting current iL is directly 

proportional to the diffusion flux of reactant: 

reactant flux (mol s') =1r= constant x C', 

nF 

where iL (A) is the cell limiting current, n is the number of electrons 

transferred per mole, F (= 96494 C mol"') is the Faraday, and the 

constant is the diffusion barrier diffusibility (cm3 s'). Thus, 

IL = kC I .... (5) 

where CI , (mol cm-3) is the ambient concentration of reactant gas and 

k is a proportionality constant. There exists then a direct relationship 
between the reactant concentration and the sensor limiting current which 
constitutes the signal from the sensor. 
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In general, this principle may be applied to measure any gaseous 

substance which can be made to react electrochemically at a suitable 

electrode. 

2.1.2 Three-Electrode Principle 

The classic amperometric sensor comprises three electrodes, namely a 

sensing, a reference and a counter electrode. The sensor is controlled 
by an operational amplifier used in the so-called 'potentiostatic' mode(10) 
(see also (2) 13 Fig. 6.3), in which the sensing electrode potential is 

controlled against a stable reference electrode which draws negligible 

current. 

The sensor is 'driven' by configuring the amplifier as a comparator, in 

which the sensing electrode is tied to the non-inverting input, the 

reference electrode to the inverting input and the counter electrode to 

the amplifier output (see (1) Fig. 3). 

iý 

E° COUNTER REF 

CELL 1 '4'1 REFERENCE 
SENSING I 

ýE ERU 

9 

GE IC 
1R 

C 

co" 

Figure 3 Potentiostatic control circuit for three-electrode sensors 
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The function of each electrode is best explained using CO detection as 
a model: 

(a) Sensing Electrode - at which CO is electrochemically oxidised to 
CO2 according to (1) Equ. (2). 

The electrode is maintained at a fixed potential at which neither the 

electro-reduction of oxygen (cathodic process) nor the electro- 

oxidation of water (anodic process) occurs at a significant rate. 
Under these conditions, the CO introduced is oxidized causing a 

current to flow. The current is proportional to the partial pressure 

of carbon monoxide in the gas sample since it is limited at the 

electrode by a diffusion barrier (see (1) 2.2.1). 

(b) Reference Electrode - to all intents and purposes, this electrode 

virtually operates at open circuit voltage (OCV), as no appreciable 

current is drawn from it because of the high input impedance of 
the amplifier. The operational amplifier is used as a comparator 

which acts to null the potential difference between the inverting 

input (sensing electrode) and the non-inverting input (reference 

electrode) by alternating the output potential (counter electrode) 

either positive or negative as required, thus forcing the sensing 

electrode to follow the reference electrode potential (see (1) Fig. 

3). 

(c) Counter Electrode - this electrode serves to balance the redox 

processes within the cell; for example, if CO is OXIDISED at the 

sensing electrode (see (1) Equ. (1)) then a REDUCTION reaction 

must be provided at the counter electrode. This can for example 
be 02 reduction and then the electrode reactions are: 
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Sensing = CO + H2O -. CO2 + 2H+ + 2e' 

Counter = 1/z02 + 2H+ + 2e' -º H2O 

Net Cell Reaction: CO + '/202 -' CO2 T 

and E. = icRG 

Equ. (2) 

.... (s) 

.... 

(I ) 

.... (8) 

Note: The sensing electrode may be controlled at different potentials with 

respect to the reference (E°,, ) by setting ERf, in which case 

Esensing= E'Ref -ER*f .... (9) 

Other examples of sensing electrode reactions involving 

electrochemical oxidation of the reactant gas are as follows: 

hydrogen sulphide H2S + 4H20 --> H2SO4 + 8H+ + 8e' 

Equ. (4) 

sulphur dioxide SO2 + 2H20 -º HZSO4 + 2H+ + 2e" ... (10) 

nitric oxide NO + H2O -a- NO2 + 2H+ + 2e' .... (11) 

In these cases the normal counter electrode reaction would be oxygen 

reduction (see (1) Equ. (3)). 

Electrochemical reduction of a reactant at the sensing electrode can 

also be applied in gas sensors. Examples are: 

chlorine CI2 + 2H+ + 2e' -* 2HCI .... (12) 

nitrogen dioxide NO2 + 2H+ + 2e' --º NO + H2O .... (13) 

oxygen 02 + 4H+ + 4e' -. 2H20 Equ. (3) 
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In these cases an electrochemical oxidation reaction must occur at the 

counter electrode eg. oxygen evolution: 

2H20-*02+4H++4e' 

2.1.3 Two-Electrode Principle 

.... (14) 

The classic 3-electrode circuit may be converted to 2-electrode form by 

simply shorting the reference and counter electrodes (see (1) Fig. 4). 

i 

CELL 

1 

Figure 4 Potentiostatic control circuit for two-electrode sensors 

In this configuration the counter electrode also serves as reference 

electrode (see (2) 13 6.1). 

If no bias is required (ERef = 0), then the sensor can be converted to 
'self-powered' mode by dispensing with the amplifier and simply using 
a passive load resistance RL between sensing and counter electrodes 
(see (1) Fig. 5). 
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Figure 5 Two-electrode sensor with load resistor RL 

Es"olng = Ecountor ' icRL 
.... (15) 

and the cell output is given by 

Ec = ICRL .... (16) 

Ideally, the sensing electrode should be highly polarizable, so that it 

follows the potential of the counter electrode. Conversely, the counter 

electrode should be highly non-polarizable, so that its potential is stable 

under load. 

2.2 ELECTROCHEMICAL GAS SENSOR REVIEW 

A wide range of gas concentrations may be measured using electrochemical gas 

sensors. Thus commercially available systems are used to monitor near 100% 

oxygen in medical and gas purity applications, to around 20% for general air 

quality and hypoxia warning systems, a few per cent in flue gas analysis and 
down to a few parts per million in some process control and gas purity 

applications; toxic gases can be measured in the range from around 20% down 

to a few tenths of a part per million, the lower limit being determined by baseline 

(zero-gas output) and cross-interference effects. 
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Electrochemical sensors do not suffer from the humidity effects which are a 

problem with many semiconductor and solid state devices. Although cross- 
interferences can pose problems, as with any chemical sensor, electrochemical 

sensors can achieve high specificity when suitably designed and operated. 

An additional advantage is that, operating on fuel cell and battery principles, they 

can also be constructed using well-established engineering methods to produce 

small compact devices with a high degree of robustness and reliability, freedom 

from orientation effects, intrinsically low cost and suitable for volume production. 
Such sensors can operate in an ambient temperature range from about -50 to 

+55°C without the need for external heating and therefore their power 

requirements are extremely low, some designs are available which are 

completely self-powered (see (1) 2.1.3), additional power only being required for 

extra-sensor functions such as alarms, recording and data transmission. 

Fuel cell sensors in theory have unlimited life, but in practice, various 
degradation processes may occur such as attack of the seals by the acid 

electrolyte, loss of catalyst surface area (and hence activity) through poisoning, 

and solution-recrystallization reactions. These processes are generally very slow 

and lives of several years are typical in normal temperate environments. High 

temperatures, extremes of humidity and the presence of high concentrations of 

strongly adsorbing chemical species can reduce the working life of these 

sensors. 

2.2.1 Commercially Available Three-Electrode CO Sensors 

At the start of this work, a survey revealed that commercially available 
CO sensors generally used platinum electrodes contacting sulphuric acid 

electrolyte. 

The CO sensor manufactured and marketed by Energetic Science(115 

exemplified the early three-electrode design approach, based on an all- 

platinum electrode system. The electrodes were of the'fuel cell' type(''" 
' using finely divided Pt mixed with PTFE powder and bonded to 

porous PTFE membrane material. 
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The cell comprised a sensing electrode and a split reference/counter 

electrode, one half serving as the counter electrode and the other half 

as the reference electrode. Since the electrodes were made from finely 
divided Pt contacting sulphuric acid electrolyte, the OCV of the 

electrodes in clean air was of the order of 1050mV vs. the Dynamic 

Hydrogen Electrode(' 8)(DH E). 

The sensing electrode was biased to the reversible potential for oxygen 

reduction (---1250mV vs. DHE) to avoid cathodic oxygen interference on 
the sensing electrode and to minimise H2 cross-interference (<1%). 

Carbon monoxide was aspirated through the sensing electrode 

compartment where it was oxidised to CO2 (see (1) Equ. (2)) and oxygen 

reduction took place on the counter electrode (see (1) Equ. (3)) to 

complete the cell reaction. 

Output sensitivity was high since the sensor did not contain an external 
diffusion barrier, the current being limited only by the electrolyte film in 

the electrode. This eased signal processing since the signal/noise ratio 

was good, but contributed to the following problems: 

- output electrolyte film-limited (see (1) 3.3) and hence large temperature 

coefficient (-3% signal per °C). This required thermistor compensation 

of the span signal(15) 

- high CO consumption rate required flow rates in excess of a litre per 
minute to stabilise the output and this consumed a lot of power. 

- in-line chemical filters rapidly consumed and back-pressure build-up in 

the sampling system aggravated. 

- water transfer rates enormously accelerated, especially since dilute 

electrolyte was used in order to improve electrode activity. This 

necessitated frequent topping up with distilled water, especially under 
low RH conditions. 
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Running the sensor at high anodic bias also created other problems: 

- increased the sensitivity to hydrocarbon gases such as ethylene and 

propylene. 

- caused large standing currents (-10j., A) in the absence of CO - at a 

sensitivity of 1 NA/ppm =1 Oppm CO baseline"). Since such baselines 

arise out of activated processes, baselines roughly double for every 
10°C rise in temperature (see (1) 4.3.1), leading to baseline shifts of 
40ppm CO equivalent 0-40°C. Thermistors were used to temperature 

compensate baselines, but bad location of the thermistor often resulted 
in appreciable mismatching as well as causing severe thermal lag and 

complex circuitry was needed to compensate baselines accurately. 

- the primary control stage had to be permanently powered, otherwise 

a considerable warm-up time was required for baselines to settle. 

Because of these drawbacks, these cells tended to be cumbersome, 
bulky and suffered tremendous orientation problems. Bad sealing 

caused extremely unreliable performance, which tainted the image of 

past electrochemical sensors. 

2.2.2 Commercially Available Two-Electrode CO Sensors 

The INTERSCAN range of sensors were based on a precious metal 

sensing electrode coupled to a lead dioxide counter electrode. These 

electrodes were housed in a large canister, with the intervening space 
bridged by an infill of glass wool and wetted with sulphuric acid 

electrolyte (20). 

Since the counter electrode potential of 1500mV was high enough to 

evolve oxygen on the Pt sensing electrode, a cathodic bias of about 
25OmV was applied to control the sensing electrode at 1250mV vs. DHE 

to avoid interference from 02 evolution. 
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The INTERSCAN sensor suffered most of the disadvantages of the 
Energetic Science sensor (see (1) 2.2.1) and in addition, the counter 

electrode further suffered from: 

(1) Finite capacity of the counter electrode 

Discharge reaction: 

Pb02 +S02 + 4H+ + 2e' -* PbSO4 + 2H20 .... (17) 

(2) Self-discharge and therefore limited shelf life. 

A Pt wire current collector was used on the counter electrode and 
the oxygen evolution overpotential on the Pt surface was sufficiently 
low to evolve oxygen at a small but finite rate. 

Self-discharge reaction on Pt: 

H2 0 -º 2H+ + 2e' + '/2 02f .... (18) 

Since self-discharge is an activated process, the rate of reaction 

roughly doubled per decade increase in temperature, thus limiting 

the service life of the sensor even further. 

2.3 ELECTROCHEMISTRY REVIEW 
The review of commercially available electrochemical CO sensors revealed that 

platinum is the only catalyst with sufficient activity to completely oxidise CO to 

C02 in acid electrolyte. 

Trace level sensors are required to measure low ppm concentrations of CO in 

the presence of very high concentrations of oxygen (209,000ppm O) in ambient 

air. Since platinum is a polyfunctional electro-catalyst which promotes not only 
CO oxidation (21), but oxygen reduction (22) as well, it is remarkable that trace levels 

of CO can be measured without significant cross interference from oxygen. That 
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it can, depends, serendipitously, on there being a window of potential with a 

platinum electrode where oxygen reactivity is effectively zero, but CO reactivity 
is high. 

To understand the fundamentals involved and the practical consequences that 

follow, one needs to look at the electrochemistry of platinum, oxygen, carbon 

monoxide and the intimate co-relations between them. 

The logical steps determining the design of the sensor may be set out as 
follows: 

(a) The first essential consideration is NO OXYGEN INTERFERENCE -must 
operate in dead region (see (1) 2.3.1) 1000-1500mV vs. DHE. 

(b) In this region, platinum is partially covered with oxide (see (1)2.3.2.3). The 

amount of coverage increases with potential so the platinum is faradaically 

active. Increase in potential will produce an anodic current and a decrease 

in potential, a cathodic current. 

(c) The above factors dictate that CO has to be oxidised on a platinum surface 

partially covered with oxide at potentials 1000-1500mV vs DHE. 

Serendipitously, these are the best conditions, since: 

- bare Pt is poisoned by CO because it adsorbs strongly with high 

coverage. However, Gilman's Reactant Pair Mechanism for CO oxidation 
(see (1) 2.3.3) requires bare Pt sites which adsorb CO and adjacent 

platinum oxide sites to adsorb water molecules, thereby forming an 

activated complex which facilitates electron transfer and promotes CO 

oxidation. 

- the requirement to operate between 1000-1500mV vs. DHE results in a 
high over voltage for CO oxidation, since the CO rest potential, relative to 

a hydrogen electrode in the same electrolyte, is given by: 

23 



E= -0.103 + 0.0295 log Pco2 

Pco .... (19) 

Where Pco2 and Pco are the partial pressures of CO2 and CO respectively 
(see (1) 3.3.4.1). 

For a gas mixture at 1 atmosphere containing 50ppm CO, 0.03% CO2 and 
balance N2, the theoretical OCV would be - 80mV and under the operating 

conditions described above, the overpotential for CO oxidation would be 

1080 - 1580mV vs. DHE. 

These are the most relevant points affecting the operation of the sensor 

and are discussed in more detail under separate headings below. 

2.3.1 Electrochemical Oxygen Reduction 

The most relevant and important aspect of the electrochemistry of 

oxygen is the existence of the so-called, dead region. This is the fairly 
broad region of potential, around the theoretical potential, in which 

oxygen is electrochemically very inactive (see (1) Fig. 6). 

In fire detection and safety applications, it is required to detect low ppm 

concentrations of CO in air, ie. in the presence of some 210,000ppm of 
02. 

Platinum black electrodes of the hydrophobic fuel cell type, as used in 

the CO sensor, are capable of producing currents of over 100mA cm2 
(100,000jA cm-2) when operating as air electrodes in the active region 
for 02 reduction. This may be compared with the minute (low pA) 
currents which are all that is possible from the low ppm concentrations 

of CO that need to be detected. 
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Figure 6A plot of the anodic and cathodic overvoltage obtained 

galvanostatically on the same bright Pt electrode in 02 saturated, 1M 

H2S04 solution. The cathodic curve was obtained first, after which the 

anodic curve was determined. The potential was calculated from 

1229mV vs DHE. [After Hoare JP (1965) J. Electrochem. Soc. 112 602, 

replotted on a linear scale]. 

These figures serve to emphasise how vital it is to maintain operation 

within the dead region for oxygen. The low oxygen reduction activity in 

the dead region may be explained as follows: 

The overall electrochemical reaction for the oxygen electrode in acid 

solution is: 

02+ 4H+ + 4e = 2H20 Equ. (3) 

25 

-100 -15 -50 -25 0 25 50 75 100 



The -accepted value of E. calculated from thermodynamic data for pure 
02 at 1 atmosphere and O°C is 1229mV(23-27. The electrode potential 

relative to a normal hydrogen electrode in the same electrolyte is given 
by (28): 

E=1.229+0.0148IogPoe .... (20) 

Thus the theoretical air rest potential (Po2 = 0.20 Atm) is 1220mV. 

However, the measured air rest potential in acid electrolyte is found to 

be much lower, namely 1050mV vs. DHE. 

The explanation for this discrepancy between the theoretical and 

measured air rest potentials probably lies in the highly irreversible nature 

of (1) Equ. (3) above, which requires breaking of the 0-0 bond; this bond 

is very strong and therefore leads to high activation polarization. 

The irreversible nature of oxygen reduction is apparent from the very low 

exchange current densities measured in practice. (1) Table 1 gives a 

representative selection of i0 values. However, agreement between 

different workers is poor and the concentration dependence is not 

known. 

0 

0.5M H2SO4 10"' 0.36 

0.5M H2SO4 10. ° 0.45 
1M KOH 5x 10'7 0.20 

5M HCIO4 4x 10$ 0.32 

Table 1 Exchange Current Densities in Acid and Alkali Electrolytes. 

[After Riddiford AC (1961) Electrochim. Acta 4 170] 
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Since the io for the oxygen reaction is so low (10A A cm 2), many impurity 

reactions could become potential - determining at potentials below 

1229mV. Such impurities would set up a'mixed potential' (see (1) Ref. 

22 p. 32) depending on relative areas of anodic and cathodic surface 

sites. The existence of such sites would explain not only the failure to 

attain the reversible potential, but also the strong dependence of the 

potential on the method of electrode preparation. 

An alternative theory is that a more favourable reaction pathway for 02 

reduction could be found via a peroxide intermediate (see (1) Ref. 22 

p. 20), which would not require breaking of the 0-0 bond: 

O2 + 2H* + 2e' "- H2O2 .... (21) 

E=0.682 - 0.0591 pH + 0.0295 log Po 

[H202J .... (22) 

The peroxide intermediate can then be further reduced in a second step: 

H2O2 + 2H+ + 2e' "- 2H2O .... (23) 

E=1.776 - 0.0591 pH + 0.0295 log [H2021 .... (24) 

In order for (1) Equ. (23) to proceed, a finite concentration of peroxide 

has to build up to drive the reaction from left to right. This peroxide 

concentration will then set the electrode potential according to (1) Equ. 

(21). 

Conversely, if we calculate the peroxide concentration at the measured 

air rest potential (P02 = 0.21,1050mV vs DHE) in acid electrolyte (pH 

= -1) using (1) Equ. (22) we get 

[H2021 =7x 10.12 .... (25) 
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Thus, we only need the smallest amount of peroxide at the-electrode to 

drop the air rest potential from 1,220mV to 1050mV vs DHE and this 

would explain the large initial polarization observed in practice. 

It is important to note that other workers have found that the OCV is 

dependent on Pt morphology and on pre-treatment history, thus: 

- clean Pt electrodes in 02 saturated acid solution 30) have OCV's of 
1050mV vs. DHE. 

- Pt electrodes in which the surface is covered by a complete layer of 

adsorbed oxygen produced by anodization and heating in pure 
02 (23.31.32) or by treating in HNO3(30) have OCV's is of 1229mV vs. NHE, 

but cathodic discharge leads to cyclic hysteresis. Thus, Lingane(33) 

obtained an initial OCV of 124OmV vs. NHE (in sulphuric acid) on a 
freshly anodised Pt electrode, but after cathodic discharge, the 

electrode returned to 98OmV, which is the potential of the NO - Pt 

couple and oxygen reduction only started at 700mV. Lingane claimed 
that in acid solution the first discharge removed most of the anodic 

oxide film and subsequent discharges utilised only dissolved 02 from 

solution, since direct cathodic oxygen reduction is probably much 

slower on the heavily oxidised surface than on almost bare metal and 

the current density increases rapidly at cathodic potentials at which the 

oxide film becomes unstable. The effect, noted by Lingane and others, 
that a freshly anodised and reduced surface is active to oxygen 

reduction has at least three explanations: 

(1) As Lingane believed, it may be necessary for the surface to be 

oxidised to some extent before it adsorbs oxygen and gives 
cathodic current. 

(2) Anodization-cathodization may remove adsorbed impurities or 

anions, which only slowly readsorb. 
(3) Reduction of an anodized surface may produce particularly active 

surface sites (crystal defects, for example) on the platinum, which 
anneal out on standing. 
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The abnormal activity of an anodized-reduced surface is maintained 

even when the electrode is taken to vigorous hydrogen evolution, and 
it has not been demonstrated that a surface oxide layer can withstand 

such treatment. 

Gas diffusion electrodes containing high surface area platinum black 

give immediate activity with hydrogen or oxygen, and in reasonably 

pure solutions they do not require activation by anodic-cathodic cycling 

nor does such cycling increase performance. An electrode of this type 

which has been used for many days as a hydrogen electrode can be 

immediately used as an oxygen electrode. This suggests that inactivity 

of bright platinum electrodes is due to impurities and lack of active 

surface sites rather than the absence of an oxide film. Massively 

anodized-reduced surfaces are probably abnormal surfaces and results 

cannot be directly compared with steady-state operation of fuel cell 
electrodes. 

The impact on sensor design of these characteristics can be 

summarised as follows: 

- on bright Pt, the dead region (see (1) Fig. 6) extends from 1000- 

158OmV. These limits will be narrowed slightly for the more active Pt 

black fuel cell electrodes, namely 1050-1450mV vs DHE. 

- the lower limit round 1050mV vs. DHE is the one of prime 
importance, representing the air rest potential of the Pt electrode. 
This can vary a little with Pt black morphology and with electrode 

preparation and loading. 

- It is essential to operate the sensing electrode within the dead region 
to avoid oxygen reduction cross interference and yet the Pt black 

counter electrode has to work off oxygen reduction, ie. outside the 
dead region. This problem is overcome by making the Pt loading on 
the counter electrode heavier than that on the sensing electrode (see 
(1) 3.5.4). 
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2.3.2 Platinum Electrochemistry 

As discussed in (1) 2.3.1, trace CO sensors based on Pt/H2SO4 must 

work within the 'dead' region for oxygen, namely 1000-1500mV vs DHE. 

In this region platinum, although stable in bulk, can undergo surface 

reactions and in this sense is Faradaically active, adsorbing oxygen in 

the form of an electronically conducting film about a monolayer thick 

(see (1) Ref. 22, p. 39). 

2.3.2.1 Triangular Sweep Technique 

Information about the nature of the adsorbed oxygen layer on Pt 

may be obtained using a triangular wave potential sweep method, 

an excellent technique for studying quickly and qualitatively the 

potential regions of a given electrochemical system in which 

various components of the system are adsorbed. Randles(34) and 
Sevcik(35) independently were the first to give the theory behind 

this method. 

Early work using this technique concerned the study of electrode 

processes controlled by mass transfer steps and is summarised 
by Vogel(36). As the electrode reaction proceeds in a solution 

containing an excess of inert electrolyte, the concentration of 

reactants at the electrode surface decreases and diffusion 

processes set in. During the potential sweep, the thickness of the 

diffusion layer increases (lowering the diffusion current), but the 

concentration gradient across the diffusion layer also increases 

(increasing the diffusion current). The opposing effects of these 

two processes on the diffusion current produce a peak in the 

current. Randles('-3 has shown that the peak value of the 

diffusion current may be related to the concentration of the 

reactant in the bulk of solution. 

Will and Knorr'SB) first used the output of a triangular sweep 

generator to control the reference potential of a potentiostat 
having a fast response time. In this way a potentiostatically 
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controlled voltage sweep is presented to the cell, and E-i curves 

containing information about electrode processes involving 

chemisorption may be obtained, provided the experimental 

conditions are chosen in this case to minimize the effects of mass 
transfer (eg. strongly stirred solutions). Under these conditions, 

a current peak corresponds to the existence of a Faradaic 

process, and so the potential range over which the given 

electrode process takes place may be determined. 

The cyclic scan shown in (1) Fig. 7 is typical of the curves 

obtained by this method on bright Pt(39-42) for acid solutions, in 

which oxygen adsorption begins at about 800mV and oxygen 

evolution above 1500mV. 

Below 400mV the hydrogen adsorption peaks are observed, and 
between 400 and 800mV is the low current double layer region. 
During the cathodic sweep the oxygen reduction peak is 

displaced from the oxygen adsorption peak toward less noble 

potentials, which indicates that an activation energy hump must 
be surmounted before reduction can take place. In contrast to 

oxygen adsorption, it is seen that hydrogen adsorption occurs 

reversibly; the adsorption and reduction peaks occur at the same 

potential. 

Böld and Breite r(39) and Burshtein and co-workers(41) found that for 

fast sweeps Q8= Qc. Where Qe and Qc are the charge under the 

anodic and cathodic curves respectively. The value of Q is 

determined by integration under current peaks since the sweep 

rate is constant and known. A correction to the charge due to 
double layer charging currents must be made and is usually 

obtained from the low current double layer region. 
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Figure 7 Current potential curve for a smooth platinum electrode 
in 0.5M sulphuric acid (30°C). The potential was scanned linearly 

between 0.05 and 1.55V at a speed of 3OmV/sec: - the solid line 
indicates the anodic sweep and the broken line the cathodic 
sweep [After Will FG and Knorr CA (1960) Zeitschrift für 

Elektrochemie 64 258] 

For slow sweep speeds, Böld and Breiter observed Qe> Qc 

because, as they suggest, oxygen enters the Pt metal on the 

anodic scan. Burshtein recorded that the value found for Qc is 

larger for a single sweep than for repetitive sweeps. 

It has been observed(3840) that the adsorbed oxygen layer builds 

up with anodic polarization to a point (about a monolayer thick) 

and then no further. Such behaviour would be expected if the 
layer of adsorbed oxygen was electronically conducting. 

2.3.2.2 Oxide Theory 

Both Lorenz and Spielmann (43-47) and Grube (48) measured the 
potentials of the metal-metal oxides electrodes constructed from 

32 



the- chemically prepared oxides. A summary of the results 

obtained by these investigators is presented in (1) Table 2. A 

definite potential was not obtained for a Pt/Pt(OH)2 electrode(48) 

which is to be expected(47) since Pt(OH)2 is very unstable. 

Electrode:; <> >: > 

Couple 
..;::.: ". >:: <::::.: <> 

S dimanniii 

::::;; ý:;::.: >:; ": «<::: >":::::::: >;..: ý>::;:: : >:.::; <: >;::::: ý::: >:::;. ý: ><:::. . Dietz 
..... 

Bethune 
...... 

Hoare 

..:.................. 
Pt/Pt-O 0.88V 

Pt/PtO 0.9V 

Pt/Pt(OH)2 0.98V 0.98V 

Pt/PtO. 2H20 0.95V 1.04V 

Pt/Pt02.2H20 0.96V 

Pt/Pt02.3H20 0.98V 

Pt/Pt02.4H20 1.06V 

Pt/PtO3 1.5V 

Pt/PtO4 >1.6V 
Pt/Pt304 1.11 V 

Pt(OH)2/PtO2 1.1v 1.1v 

Table 2 Standard Potential for Various Platinum Oxide Couples in Acid 

Solutions as Reported in the Literature 

However, many of the early investigators (53-57) subscribe to some 
form of the oxide theory. Foerster(53) observed that the potential 

of a Pt electrode anodized to 1.5V fell under open-circuit 

conditions without hesitation through the potential values of 1.23, 

1.1 and 1.06V. From his investigations, he concluded that the 

various potentials observed on open circuit were the result of 
different combinations or ratios of an ill-defined oxide, PtOX 

[approximating to NO or Pt(OH)2], and Pt02. Above 1.23V the 

potentials may be due to higher oxides such as PtO3 or PtO4 as 
suggested by Grube (48), but Foerster considered these to be very 
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unstable, decomposing to mixtures of PtOX and PtO2. It was 

observed by Klemenc(54) that the rest potential varied with the 

partial pressure of oxygen, P 02, but the Pt/02 potential was 

produced by PtO2 in equilibrium with the p 02 above the solution. 
At high P o2 up to about 100psi, Tamman and Runge(57n found 

large hysteresis effects with changes in p o2, yet they came to the 

same conclusions as Foerster about the potential-determining 

species on the electrode at high potentials. Some investigators (40. 

49,58-82) hold that at potentials below about one volt the adsorbed 

oxygen is in the form of NO and that above this, it is in the form 

of a mixture of NO and Pt02. Anson and Lingane(58) concluded 
from their experimental work of oxidising Pt electrodes and then 

chemically stripping the 'oxides', that two oxides were present, 

namely PtO and Pt02, in a ratio of 6: 1. Apparently this ratio did 

not alter, even at more anodic potentials when more oxide was 
formed, which is rather surprising, since one would expect the 

concentration of Pt02 to increase at the expense of PtO. 

Other investigators (29,3°. 39, si. 63-69) favour the concept that the 

oxygen exists on the Pt surface as adsorbed oxygen atoms, Pt-O. 

On oxygen-free surfaces, Bockris et al (67,70) observed that a square 

root relationship exists between the partial pressure of oxygen and 
the amount of oxygen adsorbed on the Pt surface as determined 

from cathodic stripping techniques. This indicates that oxygen is 

adsorbed as atoms by a dissociative adsorption process. 

2.3.2.3 Oxide Coverage 

It is not just the nature, but also the degree of surface coverage 

with oxide, that is of importance to sensor design, because any 

movement in sensing electrode potential will generate an oxide 

rearrangement current. This in turn will cause hysteresis in the 
dynamic performance, as the counter electrode polarizes under 
load (see (1) 2.4). 
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Oxide coverage on bright Pt -has been studied by Gilman(") by 

means of rigorous pretreatment and applying fast 

'potentiodynamic' sequences to adsorb and subsequently to strip 

the oxide under controlled conditions (see (1) Fig. 8). 

0 Tp =I ms 
N A TO_ 10 Ins . 

(3 TV 100 ms 
V TD _ 1000 ms 

---LAITINEN B ENKE 

I. 0 

W 

I- 
W 

--'ý 

0.5 1.0 
U. V 

1.5 2.0 

Figure 8 Relative charge for platinum surface oxidation 

measured at constant potential (step sequence of figure 2(e) used 
for 0.8 sUs1.6V; sequence 2(g) used for 1.6 <Us2.0V. rD 
is the oxidation time at constant potential). 
[After Gilman S (1964) Electrochemica Acta 9 1025] 

Gilman assumed Q. = 2QSH =2x 210 it C cm -2 

Where Q0 = surface oxide charge on Pt 

QSH = charge equivalent to monolayer surface 

coverage with H2 on Pt. 

Using the mean values found by Gilman at an adsorption time of 
1000ms and that of Laitinen and Enke(60) - see (1) Fig. 8: 
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Slope = ýQ / 2QSHý = 1.72 

av 0.78 

or aQ� = 2.21 x2x210 

av 1000 

= 2.21 v! 

= 0.9281tC cm-2 mV' 

Since this is on bright Pt, the fuel cell sensing electrode will have a 
surface roughness of about 1000, therefore: 

PI-Q-O-) I= 928µC mv' 
w sensor 

It is evident therefore that oxide rearrangement, as a result of quite 

small potential changes, can result in significant interference to the 

CO signal. The consequences of this are considered in more detail 

in (1) 2.4. 

2.3.3 Electrochemical Carbon Monoxide Oxidation 

Since trace level CO monitoring takes place largely against a 
background of ambient air, the Pt sensing electrode OCV is 1050mV vs. 
DHE, ie. in the oxygen adsorption region (see (1) Fig. 7 and (1) 2.3.2). 
However, most of the published literature on CO oxidation concerned its 

poisoning effect on low-temperature fuel cell H2 anodes(72) operating at 

much lower potentials (73), viz 100mV vs. DHE. 

In fuel cell applications, H2 is produced by catalytic cracking of 
hydrocarbons to generate 'reformer gas' for direct utilisation as anode 
feedstock("). However, due to the shift reaction, a small amount of 
CO(-1%) is produced as an impurity, which rapidly poisons the anode, 

causing the operating potential to rise and hence causing the fuel cell 

power to drop off rapidly. In other applications, CO itself was 
(75"'a) considered as anode feedstock for fuel cells. 

Hence interest in CO oxidation in fuel cell applications led to a number 
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of mechanistic studies by Gilman using potentiostatic pulse techniques (21. 

77-79) whilst others used galvanostatic stripping (80-82) and potentiodynamic 

sweeps at various speeds $'). 

In 1964 Gilman proposed the 'reactant pair ' mechanism for CO 

oxidation(2'). Gilman's work was based on adsorbing dissolved CO at 
low anodic potential (400mV vs. DHE) onto bright Pt pre-cleaned by a 

series of anodic pulses at 1500mV vs. DHE to oxidise adsorbed organic 
impurities. This was followed by cathodic stripping of the Pt oxide to 

prepare a clean surface for CO adsorption. 

The'reactant pair' mechanism postulated that CO was strongly adsorbed 

on bare platinum sites and that water was adsorbed on adjacent 

platinum oxide sites to form an activated complex of the type: 

(CO) (H20) (CO) .... (H20) 
II 

-" 
I+ 

e- 
Pt PtOX it PtOX 

(activated complex) 

(CO)----(OH) 

-. 
II+ 

e'+ H+ -> C02+2e'+2H+ 

Pt PtOX .... (26) 

in which the activated complex facilitated the electron transfer step in the 

oxidation of CO to C02, 

Gilman's 'dual-site' mechanism was confirmed in a different way by the 

work of Brummer'88', who studied the reaction of CO oxidation on three 

compound electrodes: 

(a) platinum, platinum 
(b) platinum, tantalum carbide 
(c) gold, tantalum carbide 
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In each-of the above systems the first material of the two named was a 

solid electrode and the second a powder electrode, dispersed in the 

electrolyte. The two reactants in the oxidation, carbon monoxide and 

water, were adsorbed separately on either the solid or the dispersed 

electrode, in order to regulate their relative concentrations. The steady 

state rates of oxidation were thereby increased, sometimes by several 

orders of magnitude. 

Tantalum carbide was chosen because it does not adsorb carbon 

monoxide, but is very hard and therefore has a very high surface energy, 
thereby making it a strong adsorbent for water. 

Additional evidence for the involvement of Pt oxide was found in the 

work of Brett et al(89) who studied CO oxidation on bright Pt and 

supported Pt using potentiodynamic sweep techniques (see (1) Fig. 9). 

In the anodic sweep (0.4-1.3V vs. DHE), there was no oxidation current 
from 0.4V to 0.9V. The CO oxidation current increased sharply at 0.91V 
(start of PtOX formation) and thereafter decreased linearly with potential. 
In the cathodic sweep the oxide current was less than on the anodic 

sweep in the range 1.3 - 0.9V; it was slightly greater in the range 0.9 - 
0.7V and zero from 0.7 to 0.2V. 

The need for portable analytical devices for monitoring CO led to the 
development of electrochemical sensors based on Pt fuel cell 

(9° {9' electrodes and metallised membrane electrodes . 

More recently, mechanistic studies of CO oxidation on smooth Pt 

electrodes by McCallum and Pletcherýfl5ý led to the development of Pt 

and Au metallised electrodes") for use in CO sensors, from which they 

concluded that both types of electrode behaved similarly towards CO 

oxidation. However, they noted that both Pt and Au metallised 

electrodes are rapidly poisoned by CO oxidation intermediate products. 
This is not surprising, since such metallised electrodes have very low 

surface area compared to fuel cell-type electrodes. 
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Figure 9 Potentiodynamic sweep of platinum under anaerobic 

conditions. Solid line 20% H2S04, N2. Broked line 20% H2SO4, CO, 30 

min, N210 min, 24°C. [After Brett J et at (1973) Journal of Catalysis 29 

160] 

Of most relevance to studying CO oxidation under realistic sensor 

conditions ie. using fuel cell Pt electrodes/H2SO4 electrolyte operating in 

ambient air and at high anodic potential to avoid oxygen reduction (see 

(1) 2.3.1) is the work of Blurton & Sedlak(1°), who studied CO oxidation 
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under potentiostatic control, mapping out the ýj-v curve under quasi 

steady state conditions measuring one point per day. This is thought to 

more closely approximate to the genuine steady state where the 

influence of surface platinum oxide on carbon monoxide could be taken 

into account. These results in conjunction with studies of oxide 
formation on platinum electrodes (197-100) identified PtOH as the most active 

electrocatalytic species for CO oxidation. 

This may be summarised as follows: 

Stage 1: Reversible electrosorption of OH- species on Pt 

Pt - PtOH 0.72V sE <_ 0.9V 

Stage II: Rearrangement of surface PtOH species 
PtOH -º OHPt 0.90V <ES1.1V 

Stage III: Conversion of OHPt Species to NO 

OHPt -º NO 1.1V<E51.5V 

.... (27) 

.... (28) 

.... (29) 

As the surface is oxidised at successively higher potentials or is held for 

longer times at a given potential the irreversibility of the reaction of 

rearranged PtOH and formation of the NO species is increased. 

The increase in carbon monoxide oxidation current in the range 0.8 - 1V 

(see (1) Fig. 10) parallels the increase in reversibly bound OH species 

on the Pt surface (see (1) Equ. (27)). 

Between 1.0 and 1.1V there is a sharp decrease in current (see (1) Fig. 

10, curve (a)) corresponding to the rearrangement in the surface layer 

(see (1) Equ. (28)). At more anodic potentials the continuing decrease 

in current with increasing potential is in accordance with the diminished 

availability of PtOH groups (see (1) Equ. (29)). 
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Figure 10 CO oxidation current as a function of Pt electrode potential. 

0 Potential increased from 0.8 to 1.5V; 0 potential decreased from 1.5 

to 0.8V; 0 potential increased from 0.8 to 1.1V. [After Blurton KF and 
Sedlak JM (1974) J. Electrochem. Soc. 121 1315] 

On decreasing the potential from 1.4 to 1.0V (see (1) Fig. 10, curve (b)) 

the current decreased linearly with potential due to the retention of NO 

which was formed at 1.5V together with the decreasing over voltage for 

the reaction. At 0.9V the current increased sharply due to the 

reformation of electro-adsorbed PtOH (see (1) Equ. (27)) and on further 

decrease of the potential to 0.8V, the CO oxidation current dropped to 

a low level in accordance with a decrease of surface PtOH 

concentration. 

On the subsequent increase of potential (see (1) Fig. 10, curve (c)), very 
high currents were observed at 0.85 and 0.9V due to extensive surface 

coverage with PtOH. On increasing the potential beyond the reversible 
PtOH formation (see (1) Equ. (27)), the CO oxidation current decreased 
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markedly due to the rearrangement of electrosorbed 0H" (see (1) Equ. 

(28). 

Blurton and Sediak(1°) concluded: 
(A) oxidised Pt electrodes are more active for CO electro-oxidation 

than unoxidised Pt. 

(B) PtOH is the preferred catalytic site and NO is catalytically 

active to a lesser extent. 
(C) The oxidation of the Pt surface in the potential range 0.8 to 

1.0V is reversible while that in the range 1.0 to 1.5V is 

irreversible. 

(D) The Pt electrode does not attain a steady state at 1.2V until it 

has been under potentiostatic control for some 35 days. 

2.4 Two-Electrode Dynamic Oxide Balance 

Since two-electrode sensors combine the function of both reference and 

counter in one electrode (see (1) 2.1.3), polarization of the counter electrode 

will cause the sensing electrode potential to shift by an equivalent amount. 
This movement of the sensing electrode potential will elicit a Faradaic 

response due to oxygen reduction/Pt oxide surface re-arrangement (see (1) 

2.3.1,2.3.2 and especially oxide charge calculation in (1) 2.3.2.3). 

It is therefore possible to qualitatively postulate the dynamic response of a 
two-electrode CO sensor using Pt electrodes (see (2) 12 2): 

Case 1: Sensor anode operating above the OCV 
If the anode potential is Vo in clean air and drops to V, (see (1) Fig. 11) 

when the sensor is exposed to CO, due to polarization of the cathode (ie. 

non-ideal counter), then a spurious cathodic transient current will be 

generated due to oxide reduction (see (1) Equ. (30)), which would subtract 
from the CO oxidation current: 
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Figure 11 Schematic diagram showing anode polarization under load. 

[After CTL Report No. 81/31/006, (2) 12 p. 7] 

NO +2H++2e'-*Pt +H20 .... (30) 

This results in a low initial response (see (1) Fig. 12), but as the Pt oxide 
dissolution current dies down, the sensor output 'creeps' to its full signal 

and on recovery positive baseline hysteresis occurs because the anode 

surface is re-oxidised to equilibrium coverage as the cathode 
depolarises. 

SIGNAL CREEP 

CO EXPOSURE 

fiLl 
SIGNAL 

WE 
BASELINE 

HYSTERESIS 

---------------------- 
THE-ý 

Figure 12 Schematic diagram showing sensor response to CO and 
baseline hysteresis on recovery. [After CTL Report No. 81/31/006, (2) 

12 p. 8] 
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Signal 'creep' may be summarised as follows: 

Anode Cathode 

Transient Signal S= ico - ipto (a) = i02 (C) + ipto (c) .. (31) 

Steady State Signal S=i, = i02 (c) .... (32) 

Case 2: Sensor anode polarising below the OCV 

Sensors which are over exposed to carbon monoxide will exhibit Case 

1 'creep' behaviour initially, but as the anode polarises below the OCV 

under excessive load (see (1) Fig. 13), oxygen reduction will set in on 

Y0 

ANODE OCV 
---------------------- 

i 

ý v 

SENSOR CURRENT (I) 

i Co <iL 

Figure 13 Schematic diagram showing sensing electrode coming 

out of the 'current-limiting' mode due to cathode polarization under 
load. [After CTL Report No. 81/31/006, (2) 12 p. 4] 

the sensing electrode and the transient response can be described by: 

Anode Cathode 

S= ico - ip, o (a) - i02 (a) = i02 (c) + iPto (c) .... (33) 

With time, ico remains constant, both i. (a) and lpto (c) decay to zero 

and both ic)2 (a) and 102 (C) increase to a final steady state value. At the 

steady state: 

S= 'CO - i02 (a) 0 2( c .... (34) 

44 



The i02values apply at the steady state potential (VcO). 

As the sensing electrode potential polarises from VO to V, during the 

exposure, the sensor signal will decay expontially, approaching its 

steady state value when VcO is reached (see (1) Fig. 14). 

This leads to a response curve of the type: 

SIGNAL CREEP 
SIGNAL DECAY 

FILL CO EXPOSURE -VE SIGNAL BASELINE 
/ HYSTERESIS 

Figure 14 Schematic diagram showing sensor response under 

extreme overload to CO. [After CTL Report No. 81/31/006, (2) 12 

p. 11] 

On recovery, the Pt surfaces are re-oxidised: 

Anode Cathode 

S= iPt (a) - i02 (a) = i02 (C) - iPt (C) .... (35) 

All these currents decay to zero with time, or at least revert back to the 

net baseline current. 

2.5 Diffusion and Diffusion Barrier 

Early sensors such as those described by Oswin and co-workers 1115) 

(see (1) 2.2.1) were simply minifuel cells with no separate additional barrier. 

The diffusion-limiting step was diffusion in solution through the electrolyte 
film around the electrode catalyst (see (1) 2.6 and Fig. 21), which 

constituted the diffusion barrier and resulted in a high temperature 
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coefficient with an exponential response. Such sensors had large 

sensitivities and needed to be operated in a pumped system. 

The use of a separate, more restricted diffusion barrier enabled sensors to 

be made which could operate in the diffusion mode, without the need for 

a pumped gas supply. Solid non-porous membranes were first used for 

this purpose"01", involving a process of solid state diffusion of the reactant 

gas, dissolved in solid solution in the polymer. The outputs at a fixed 

temperature of sensors utilizing such membranes are linearly related to 

reactant gas partial pressure(102), thus: 

IL = constant x p, .... (36) 

where iL (amps) is the sensor limiting current and p, is the partial pressure 

of the reactant gas in the environment being sensed. The proportionality 

constant, or membrane diffusibility, is a function of the nature, thickness and 

area of the membrane at a given temperature (see (1) Ref. 22 p. 191). 

In practice, these membranes have fairly low diffusibilities and need to be 

very thin to achieve practical sensor sensitivities. Such thin films can give 
handling difficulties due to static, fragility, etc, and problems with cracks, 

pinholes and other defects. The process of solid state diffusion has an 
inherently high exponential temperature coefficient and sensor outputs can 

vary with temperature(103) by as much as 3-4% °C'' at or near 20°C. The 

principal advantage of the solid membrane barrier is that it furnishes a true 

partial pressure measurement which is linear over the complete 

concentration range 0-100%; this can be important in some applications, eg. 
in deep diving where large pressure changes are experienced and a true 

partial pressure measurement is essential for physiological reasons. 
However, these requirements are not necessary in the majority of ambient- 

pressure-monitoring application and the benefits of a gas diffusion 

(capillary) barrier (GDB) as used in CTL sensors&104) far outweigh those of 

solid membranes (see (1) Ref. 8 p. 167). 
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2.5.1 Gas Diffusion Barrier 

The gas diffusion' barrier can take the form of a porous plastic, metal or 

ceramic membrane, or simply a single capillary hole. If the pore 
diameter is much greater than the mean free path of the gas molecules 

undergoing diffusion, then the effects of wall collisions with the pores of 

capillaries are relatively insignificant to the process. Under these 

conditions, intermolecular collisions dominate the diffusion process, 

resulting in a sensor output which has a considerably lower temperature 

coefficient and provides a volume fraction, rather than a partial pressure 

measurement. This can be illustrated by considering the case of a 

capillary diffusion barrier sensor: 

reactant flux (mol'') = _IL = constant x (C', - C'2). .... (37) 

nF 

The constant in (1) Equ. (37) is the diffusion barrier diffusibility Df which 

for a porous barrier is given by the following relationship: 

DI (m's) = barrier diffusion area (m2) x porosity x Do(m2s'') 

barrier diffusion thickness (m) x tortuosity 

.... (38) 

where Do is the diffusion coefficient of reactant gas through the 
background (carrier) gas at fixed temperature (273K) and pressure 
(1 atm). Tortuosity is the ratio of mean pore length to barrier thickness; 

for a simple capillary, both porosity and tortuosity will be equal to unity. 

For a simple capillary barrier, at a temperature of 273K and a pressure 
of 1 atm, (1) Equ. (38) becomes: 

D' = 11 d2 Do .... (39) 

4L 

where d (m) is the capillary diameter and L(m) is the capillary length. 
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According to the kinetic theory of gases (105), D. varies in direct proportion 
to the g/2 root of absolute temperature and in inverse proportion to the 

total pressure, therefore 

DI (at T(K) and P (atm) total pressure) =H d2 Do T 3/2 1 

4L 
\273) 

P 

.... 
(40) 

Considering the concentration gradient across the barrier in (1) Equ. 

(37), at temperature T(K) and partial pressure p, and p2 (atm). 

Cý, -C'2(molm"')=,, (p, -e)273x103 

22.4T .... (41) 

This derives from the molar volume of an ideal gas, occupying 22.4 1 at 
273K and 1 atm pressure. 

However, p2 tends to zero in a limiting-current condition, therefore 

C'1-C'2=21x 273x103 

22.4T .... (42) 

Substituting (1) Equs. (40) and (41) into (1) Equ. (37) gives: 

reactant flux (mol s'') =I = If d2 Do I T 3/2 p, x 273 x 103 

nF 4L P \273) 22.4T 

.... (43) 

cell current (A) = 2.05 x 105 D0T"And2p1_ 

LP .... (44) 

(1) Equ. (44) predicts the following: 
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2.5.1.1 Capillary Temperature Coefficient 

The signal will have a 'r4 dependence on temperature, equivalent 
to 0.17% °C71 near 20°C or about one twentieth of that of a solid 

membrane, or other activated diffusion barrier. When considering 

wider temperature excursions, the differences in temperature 

sensitivity become even more marked because of the exponential 

response of the activated diffusion barrier. For example between 

0 and 40°C, an activated diffusion barrier gives a signal change of 
the order of 300-400%, compared with about 10% with gaseous 
barriers. 

2.5.1.2 v/v Measurement 

The ratio p, /P is the volume fraction (Boyle's law), so the sensor 

signal measures volume fraction rather than partial pressure. This 

produces a signal which is essentially independent of barometric 

pressure. 

2.5.1.3 'Carrier Gas Effect 

The diffusion coefficient Do of the reactant gas, diffusing through 

a gas phase barrier, varies inversely with the square root of the 

mean molecular weight of the background gas filling the pores, or 

capillary, of the diffusion barrier('05). Most applications are 

concerned with ambient air monitoring where the background gas 
is essentially nitrogen and remains constant. However, where the 

composition of the background gas does change, such that its 

mean molecular weight alters significantly, then recalibration of the 

sensor in this environment will be necessary. 

2.5.1.4 Lineari 

Since reactant gas is being consumed at the sensing electrode, 

a pressure difference will tend to develop across the barrier which 

will have the effect of drawing in additional gas by bulk flow, over 

and above that coming in by diffusion, and provide an enhanced 

signal over that predicted by (1) Equ. (44). Macropores offer 

49 



relatively little resistance to bulk flow and in practice the pressure 
difference is very small. If we take an oxygen sensor in pure dry 

air at 1 atm as an example, we see that the partial pressure of 

nitrogen in-board of the barrier will be close to 1 while out-board 
it is 0.79. Nitrogen will therefore be diffusing back. Since there 

is no net flux of nitrogen, the bulk flow of air must be such that the 

input of nitrogen exactly balances its back diffusion. This enables 

the total mass transport of oxygen to be calculated(105) and leads 

to the law 

S=KIn(1-Cff ) .... (45) 

where S is the sensor signal expressed as a fractional 

concentration, Cr I is the actual fractional concentration of reactant 

and K is a constant whose value depends on the calibration point. 
For example, for an oxygen sensor calibrated at 21% oxygen, 

C It =S=0.21 and K= 0.891. 

For low concentrations, below a few per cent of reactant gas, the 
bulkflow is imperceptible and sensor outputs are highly linear with 

respect to reactant concentration (see (1) Fig. 15). 

At concentrations above a few per cent, sensors become 

increasingly non-linear. (1) Fig. 16 shows the output of a capillary 
barrier oxygen sensor with oxygen concentration between 0 and 
25%. The figure shows the error resulting in assuming a linear 

response over the concentration range on calibrating in air at 
20.9% oxygen. Above 25% oxygen, the deviations from linearity 

become much more significant. Since the bulk flow effect follows 

a clearly defined logarithmic law, it can be compensated 

electronically using a suitable linearizing logarithmic amplifier. 
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Figure 15 Output signal as a function of concentration of a capillary 

barrier sensor for 0-5000ppm carbon monoxide. 

[After (1) Ref. 8 p. 172] 
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Figure 16 Output signal as a function of concentration of a capillary 

barrier sensor for 0-30% oxygen :Q= sensor output[After Ref. 8 p. 173] 
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2.5.2 Pressure Transients 

Additional bulk flow effects arise with porous and capillary barriers when 
the sensors are subjected to sudden sharp pressure pulses. This results 
in gas being forced into the sensor through the barrier, producing a 

current transient. These transients rapidly decay to zero as the normal 
diffusion conditions are re-established once the pressure change or 

pulse is over. However, such transients may trigger false alarms and 

steps need to be taken to avoid them where an application involves 

sudden pressure changes. Current transients resulting from pressure 

pulses can be dampened by using a protective porous membrane in 

front of the main diffusion barrier, this membrane is chosen to be highly 

diffusive, relative to the main barrier, but of sufficiently small pore size to 

restrict bulk flow of gas significantly. This membrane performs the 

additional function of protecting the sensor from draughts and ingress 

of dirt or dust particles, moisture condensation etc, which may block the 

main capillary or porous barrier. 

When using diaphragm pumps, in aspirated gas-handling systems, 

pressure oscillations introduced into the gas sampling stream can 

produce false, enhanced signals with capillary or porous barrier sensors 

which are also flow dependent, as the pressure pulses will change with 

pump speed and flow rate. This may be overcome by suitable design 

of the gas sampling system. Thus the gas supply line to the sensor may 

contain an expansion chamber with a small bleed hole to dampen the 

gas flow to the sensor; a flow restrictor, upstream from the sensor, will 

also help dampen such pressure oscillations. An additional effective 

measure is to ensure that back pressure downstream of the sensor is 

very low, such that the gas stream has an essentially unrestricted flow 

to ambient air. However, it is important that the exhaust outlet is of 

suitable dimensions to prevent back diffusion from ambient air, diluting 

the gas stream and lowering the gas concentration being measured. 
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2.5.3 Electrode Activity Reserve Concept 
. 

Ideally, if the electrode is infinitely active, the gaseous capillary barrier 

will be fully in control of the sensor signal and will exhibit a t' 

temperature dependence giving a temperature coefficient of 0.17% signal 

per °C at 20°C. In practice, however, electrodes have finite activity and 
therefore the capillary is not the sole barrier to diffusion, some of the 

control residing within the electrolyte film, as shown schematically in (1) 

Fig. 17. 

CO partial 
pressure P P' 0 

I 
1 

Capillary Electrolyte Film 

Outer end Electrode 
of capillary Surface 

Figure 17 Relative diffusion resistance barriers [After CTL Report No. 

82/09/007, (2) 13 App. 3] 
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Finite electrode activity will affect sensor performance as follows: 

(a) depress the true capillary signal 
(b) increase the sensor temperature coefficient. The temperature 

dependence of diffusion through electrolyte or electron transfer 

kinetics or other electrode reaction activated processes is 

exponential (2-3% of signal per °C at 20°C) and will be higher at low 

temperature and lower at high temperature. The sensor 

characteristics will therefore depend on the relative contributions of 
these two diffusion resistances (see (2) 13 App. 3): 

The flux of CO through the capillary expressed as a current (i, ) is given 
by: 

Is = k, (P - P') .... (46) 

where P and P' are the CO partial pressures outside and inboard of 

the capillary respectively and the proportionality constant k, includes 

the diffusion constant, geometric factors and conversion factor from 

mass flow to current. 

Similarly for the electrolyte film: 

Is = k" P' .... (47) 

Substituting in (1) Equ. (46) for P' = i- from (1) Equ. (47): 

ke 

kc P-1 

ke 

Rearranging: 

i, = kk_ P .... (48) 

kc+ko 
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For the capillary on its own: 

kP hence k. = i» 

P 

For the electrolyte film on its own: 

k1P hence k. = i. 

P 

Substituting in (1) Equ. (48) gives: 
1. = i!. 

- 
1c +1. 

.... (49) 

It is convenient to express the sensing electrode activity in terms of an 

activity reserve (Ar) factor, defined as: 

Ar L 

le 
.... (50) 

i. e. the ratio of the current capability of the electrode on its own (open 

electrode current) to the current with 100% capillary limitation. 

Substituting for ie = Ar is in (1) Equ. (49) gives: 

I. Ar and I. -º i. as Ar -º oo .... (51) 

+Ar 

2.5.3.1 Activity Reserve Effect on Sensor Drift 

The effect of activity reserve (Ar) on long-term sensor drift may be 

calculated as follows: 

If the initial signal is I, at activity reserve Ar and the signal decays 

to i, ' after six months when the activity reserve has, say halved, 

55 



then the percentage signal decay after six months may be 

calculated by substituting the values into (1) Equ. (51) to give: 

Stability = -1, 
' x 100 =1+ Ar xx 100 

Is Ar 1+ Ar/2 

.... (52) 

At Ar =5 Stability = 85.7% 

At Ar = 10 Stability = 91.7% 

The relationship is shown in (1) Fig. 18(x) where it is seen that 

even at an activity reserve of 20, there is a measurable element of 

electrode control in the sensor signal. 
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2.5.3.2 Activity Reserve Effect on Sensor'Temperature Coefficient 

The effect on temperature coefficient may be derived as follows: 

If the activity reserve is Ar then the relative contributions to the 

signal are Ar from the capillary, compared to 1 from the electrode. 
An amount Ar is subject to the capillary temperature coefficient 
(oct) and an amount 1 to the electrode temperature coefficient; as 

will be the resulting mean, so: 

«s = Ar«c «_ .... (53) 

Ar +1 

Rearranging: ocs = Ar f «c + c_ .... (54) 

Ar+l Ar 

The theoretical capillary temperature coefficient («t) is 0.17% per 
degree and measured values of «e for CO oxidation on platinum 

electrodes are about 2.5% per degree centigrade. Substitution of 
these values into (1) Equ. (54) and its solution produces the 

relationship shown in (1) Fig. 18 (o). 

Note: The above is a simplified treatment to illustrate the order of 

magnitude of the effects. Two points should be noted: 

(1) The capillary diffusion is actually proportional to P/Pt, where 
P is the partial pressure and Pt is the total pressure, since the 

diffusion constant is proportional to 1/Pt. The electrolyte film 

diffusion will be proportional to P and independent of Pt. A 

strict treatment should take this into account. At very high 

values of Ar (capillary dominated signal) the sensor will be a 

true concentration (volume %) sensor, with zero pressure 

coefficient. At low values of Ar there is an element of partial 

pressure response, which will result in a finite pressure 

coefficient when treated as a concentration sensor. 
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(2) The treatment has implied that temperature coefficients are 

substantially independent of temperature. The deviation from 

this assumption is not large for the capillary, which follows a 
T/ law, but is much greater for the electrolyte film, which 
follows an exponential law. 

The effect of this is that with low values of Ar the resulting 

temperature coefficients, expressed as % signal, per °C, will 
be increased at lower temperatures as illustrated in (1) Fig. 
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Figure 19 Schematic curve showing exponential dependence 

of signal on temperature 

[After CTL Report No. 82/09/007, (2) 13 p. 120] 

2.6 FUEL CELL ELECTRODE TECHNOLOGY 

2.6.1 Hydrophobic Fuel Cell Electrode Structure 

Fuel cell electrodes are essentially made by mixing finely-divided 

electrocatalyst material with a Teflon (PTFE) binder which creates 
hydrophobic channels, providing effective gas penetration of the catalyst 

agglomerates which are filled with electrolyte (see (1) Fig. 20). 
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Hydrophilic platinum 
aggregate 

Hydrophobic PTFE 

Figure 20 Two dimensional schematic representation of PTFE bonded 

gas diffusion electrode [After Ref. 8 Fig. 6.7] 

This Teflon bonded electrode ('o6,107 represents a very efficient structure 

which allows extensive utilization of the catalyst, so that high current 

densities may be drawn at very low polarization. The actual sites within 

the fuel cell structure where electron transfer takes place, exist at the so- 

called 'three-phase interface' where catalyst surface, thinly wetted 

electrolyte film and gaseous reactant co-exist (see (1) Fig. 21). 

According to the double-porosity model""'), it is thought that the 

catalyst forms porous, electronically conductive agglomerates which 

under working conditions are completely flooded with electrolyte. These 

catalyst agglomerates are held together by the Teflon binder which also 

creates hydrophobic gas channels. When current is drawn from the 

electrode, reactant gas diffuses through the hydrophobic channels, 

dissolves in the electrolyte contained in the agglomerates and reacts on 

available sites on the catalyst particles. The number of sites available 
depends on the rate of diffusion and on the rate of reaction at sites 

located near the surface of the agglomerate. 
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Figure 21 Schematic diagram of 3-phase interface. 

[After Ref. 8 Fig. 6.6] 

If all the catalyst particles are in good electronic contact with the external 

circuit and there is good ionic contact with the electrolyte, then efficient 

utilization of the catalyst surface will depend on mass transfer rates 

within the agglomerate. 

2.6.2 Electrode Activity 

The term 'electrode activity' has been used to denote the current 

generating capability of the electrode. There are two factors concerned 

with this (a) The catalytic activity of the catalyst which affects the kinetics 

of the actual electrochemical reaction. (b) The diffusibility of the 

electrode which affects the rate of mass transfer of the reactant eg. CO 

to the catalyst sites. 

Factor (a) will be a function of the nature of the catalyst and its surface 

area. Other things being equal, activity should increase with 

surface area. 
Factor (b) is a function of the path length and area available. Diffusion 

through the electrolyte should be the dominant factor, since 

rates of diffusion through solution are many orders of 

magnitude slower than through the gas phase. This 

diffusibility will be a function of the aggregate size of the 

catalyst agglomerates and will maximise with minimum 
agglomerate size. 
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Hence, diffusibility is the dominant factor determining the electrode 

activity. Increasing the surface area of the platinum beyond a 

certain point actually results in a reduction of electrode activity. 
This is because the aggregate size increases due to the higher 

bonding forces deriving from the higher surface energy. 

This point was elegantly demonstrated with graphite catalyst by 

Tantram & Tseung(16) who showed that the maximum activity 

corresponded with the minimum aggregate size and at an 
intermediate value of the surface area (see (1) Fig. 22). 
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Figure 22 Variation of aggregate size with surface area compared with 

variation of performance with surface area [After Tantram ADS and 
Tseung ACC (1969) Nature 221 167] 

2.6.3 Effect of Teflon Content on Electrode Performance 

It has been established by Giner(10) et al that the electrode activity for 

hydrogen oxidation on platinum passes through a broad maximum over 

the range 15-50% Teflon. At both extremes the activity is found to drop 

off very quickly; at 15% the electrode is too hydrophilic, so that there are 

very long gas diffusion paths within the electrolyte and at 50% Teflon, 

the electrode is too hydrophobic so that there is poor electrolyte contact. 
Within the range of 20-40% Teflon, practically 100% of catalyst is known 
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to be wetted by the electrolyte and the electrode activity passes through 

a broad maximum. 

Watanabe("') et at also realised that it is important for low overpotential, 
high current density fuel cell electrodes to have a fine structure such 
that: 

(1) most of the Pt clusters are flooded with electrolyte. 
(2) reactant gas is transported to the clusters via the shortest pathway. 

Watanabe et al confirmed Giner's finding that performance peaked at 

about 30% PTFE content for 02 reduction, at a catalyst utilisation of 

-75% (see (1) Fig. 23). 

Electrode activity is also a function of the electro-catalyst surface area, 

the performance varying with the grade of platinum at fixed Teflon 

content. This is thought to be due to variations in microporosity (fraction 
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Figure 23 The effects of PTFE content on cathode performance (02) and 

the utilisation of platinum clusters. Thickness of reaction layer: 0.14mm; 

cool press: 50kg cm"2 [After Watanabe M et at (1985) J. Electroanal. 

Chem. 182 193] 
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of flooded agglomerate occupied by the electrolyte) and macropörosity 

(fraction of electrode not filled by the flooded agglomerate). For 

example, comparing different types of platinum black at 30% Teflon(10) 

it can be seen that microporosity varies from 80% to 90%, while 

macroporosity varies from 50 to 72%. 

Agglomerate size is also an important characteristic of the Teflon-bonded 

electrode since it determines in part the radial utilization of the catalyst 
(within the agglomerate"''oaý 
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CHAPTER 3- SENSOR DESIGN 

3.1 INTRODUCTION 

The review of commercially available CO sensors and the statement of design 

objectives identified a number of problems which needed innovative solutions in 

order to meet the target specification for the design of a trace-level CO sensor 
for BCC's needs. It is worth listing these innovative solutions before discussing 

sensor design in depth. 

oblem. >::::: <: <: »:: inncývaiveolüýion: l::: >: :: >:: < ee rence 
Yi. ° :: Vol > :< : Vol 2 

(1) Leakage - seal integrity 'Sandwich' construction of 3.5.1 10 6.1.2 

electrode stack: 123 

(a) enables current collectors to 13 2.1 

be sealed between layers of 

porous PTFE tape, which forms 

a very effective electrolyte seal. 
(b) minimises the number of 

electrolyte sealing points, which 
benefits seal integrity. 

(2) Leakage - internal Gas vent in cover slip; hole 3.5.14 13 2.2 

pressurisation due to made small enough to severely 143 

applied pressure, changes limit gas diffusion into reservoir, 
in temperature or changes but not inhibit bulk flow. 

in RH resulting in water 

uptake/loss 

(3) Controlled 02 access Unique 'sandwich' construction 3.5.1.5 11 2.2 

to counter electrode of electrode stack controls 02 14 2.3 

supply to counter electrode with 143 

negligible CO access: 
(a) 02 feed via diffusion barrier 

and electrode tape peripheries. 
(b) 02 feed via radial diffusion 

along counter electrode tape 

backing. 
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Problem : >:: nnavativ+ý. Solo 6n <>: 

(4) Electrolyte water loss Use of 5M H2SO4 (in equilibrium 3.5.1.7 10 6.2.6 

requiring frequent at 63%RH) in conjunction with 4.11 114.1 

replenishment with wick threaded through hole in 11 4.3 

distilled water counter electrode to link 125 

electrolyte expansion reservoir 135.1 

with electrode stack, gives 

maintenance-free continuous 

operation 20-90%RH and long 

residence time outside these 

limits. 

(5) Orientation/shock 'Close-wicked' sandwich 3.5.1 10 6.2.5 

stability construction of electrode stack 11 5.7 

sealed with compression '0'- 14 2.1 

ring demobilises the electrolyte 

within the electrode envelope, 

preventing gas bubbles tracking 

across the electrode face. 

(6) Calibration drift Use of very active fuel cell 2.5.3 10 4.3 

electrodes combined with gas 
3.5.3 106.1.3 

diffusion barrier to limit open 10 6.1.4 

electrode signal more than 15 11 3 
fold. This confers good long- 13 App. 3 

term span stability. 

(7) Span temperature Solution (6) gives low 3.5.4.1 10 6.2.4 

sensitivity temperature coefficient - 134.5 

theoretically 0.17% of signal per 135.2 

°C at 20°C, but in practice a 13 App. 3 

little higher. 

(8) Signal pressure Solution (6) also gives low 3.5.4.1 14 4.5 

sensitivity pressure coefficient ie. 

concentration measurement 

rather than partial pressure 

measurement. 
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roblem 

(b) 3-electrode (CTL) 

design 

(10) Cross Interference 

(a) Inboard filter 

(b) Auxiliary electrode 

>;: I Innovative : . 
so lutivn' «' ' >'' >Rfr nce:: ? 

Use of similar 'matched pair' 

sensing and counter electrodes 

results in baselines typically less 

than 1 ppm CO equivalent at 

20°C. 

3.5.3 

3.5.4 

102 

12 8.1 

13 4.2 

Use of a third, reference 

electrode similar to the sensing 

electrode and run at zero bias 

results in baselines typically less 

than 1.5ppm CO equivalent at 

20°C. 

Use of an inboard filter placed 

between capillary and electrode 

to remove interfering species by 

either chemical reaction or by 

physical adsorption. 

By transmitting partially reacting 

species to a second sensing 

(auxiliary) electrode and 

subtracting (ie. nulling) the 

cross-interfering signal. 

3.6 

3.5.1.9.2 

3.7 

12 8.2 

137 

14 2.4 

13 5.3.2 

13 App. 2 

146 

(*) 

(11) Size The close-wicked sandwich 3.5.1 10 6 

construction with electrolyte 11 2 

expansion reservoir and vent is 123 
inherently compact, has good 13 2 
integrity and is amenable to 14 2 
production. 

* Patents EP126 623, US 4,587,003 
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3.2 LABORATORY EQUIPMENT 

Most of the experimental work was carried out using the following laboratory 

equipment: 

THREE ELECTRODE POTENTIOSTAT Ministat model 251 

Thompson Electronics Ltd 

Newcastle Upon Tyne 

DIGITAL VOLTMETER 

FLAT BED CHART RECORDER 

Dana Laboratories Inc. 

Irvine CA USA 

Model 4600 

S/N 505799 

Gould Electronics Ltd 

Model SC 272 

Input Impedance 1M0 (constant) 

Accuracy ±0.3% at 296 k 

Linearity ±0.25% 

GAS BLENDER 

ENVIRONMENTAL CABINET 

MODIFIED CHROMATOGRAPH OVEN 

(Electrode curing up to 300°0) 

H Wöstoff O. H. G. 

Bochum, Germany 

Type NA18/2 

No. 14011 220V, 50Hz 

Ringway Climatic Ltd 

London, UK 

Model RSS1008 

Type SC10B 220V, 50Hz 

Phillips 

Eindhoven, Holland 

Pye Unicam 

Type GLC2469 220V, 50Hz 
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FLOW METERS 

0-100cm3miri' 

0-500cm3min"' 

0-1000cm3min' 

Platon Flowbits Ltd 

Platon Park, Viables 

Basingstoke, Hants 

RG22 4PS 

England 

DYNAMIC HYDROGEN ELECTRODE See Appendix 5 

(DHE) 

GAS MIXTURES Rank Hilger Ltd 

CO in 21% oxygen, balance N2 BOC Ltd (Special Gases) 

supplied in aluminium cylinders 24 Deer Park Road 

at nominal values 50,200 and London SW19 3UF 

500ppm CO. 

PLATINUM BLACK Johnson Matthey Chemicals 

JM std. black _10m2g"' Orchard Road 

JM Fuel Cell grade --35m2g-1 Royston, Hertfordshire SG8 5HE 

Engelhard No. 4 --20m2 g"' Engelhard Sales Ltd 

Engineering Materials Group 

Valley Road, Cinderford 

Gloucestershire GL14 2PB 

PTFE SUSPENSION Whitford Plastics Ltd 

10 Christleton Court 

Manor Park 

Runcorn, Cheshire 

WA7 1 SU 

Grade ICI GP1 

POROUS PTFE TAPE WL Gore & Associates (UK) Ltd 

Thickness 7 thou West Pitkerro Ind. Est. Dundee Water 

water initiation pressure --- 30psi Tayside DD5 3RX 
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3.3 EXPLORATORY WORK ON YRL SENSOR 

At the start of the development programme, British Coal's Yorkshire Regional 

Laboratories (YRL) had successfully demonstrated that a commercially available 
three-electrode Ecolyser sensor could be modified to run as a simpler two- 

electrode trace level CO sensor although the linear measuring range was limited 

to 50ppm. This was achieved by shorting the counter and reference electrodes 
together to form the 2-electrode counter and linking this with the sensing 

electrode via a fixed load resistance (470) to convert the cell current to a voltage 

output signal (see (2) 10 2.1.1). By replacing the plastic moulding containing 

channels") for pumping the test gas across the electrode face with a bronze 

sinter, the YRL cell was converted to a passive sampler, relying on carbon 

monoxide to reach the sensor by natural diffusion rather than having to pump 

the CO across the electrode face. 

Comparison of the modified YRL cell and a similar modified Ecolyser run in 

'pumped' mode gave similar sensitivities (see (2) 10 2.1), showing that the 

bronze sinter on the YRL cell was not diffusion limiting and that the limiting 

barrier was within the electrode itself, so for convenience the 'pumped' cell was 

used to study the YRL 2-electrode design. 

All electrode potentials were referred to an external DHE reference electrode 
dipping into the cell via a luggin capillary (see (1) Fig. 24). 

Baselines were established by purging with 'zero' cylinder air obtained from 

Rank Hilger. Span signals were obtained by purging with a nominal 50ppm 

CO/Air mixture at various flow rates up to 25Ocm3min-' to check for flow 

sensitivity. 

Steady-state potentiostatic i-E curves were obtained by controlling the sensing 

electrode against the third, reference electrode within the cell. 

Analysis of the Ecolyser electrolyte revealed that it contained 30cm3 of 3.2M 

H2SO4, so this electrolyte was mostly used for the initial work. Some exploratory 

work was done with 4M NaOH and 4M potassium acetate/acetic acid mixtures, 
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which were found to be inactive for CO oxidation using Pt electrodes; gold 
showed. good activity but was unsuitable because of massive CO2 cross 

interference (see (2) 10 2.3 (B)). 

SIDE VIEW 

GAS OUT GAS IN 

t II 

SIDE VIEW SIDE VIEW Section on AA' 
Showing position of electrolyte 
brldge/DHE reference electrode. 

-:: i: 
Figure 24 Diagram of Ecolyser Test Arrangement 

[After CTL Report No. 79/31/002, (2) 10 Fig. 2.1] 

3.3.1 Two-Electrode Dynamic Response 

The Ecolyser sensor was used in its original purge configuration but 

otherwise run in the YRL 2-electrode mode with 470 load resistor. 

During a 10 day period, baselines registered zero mV when purged with 
compressed air at flow rates between 0 and 200cm3min-'. With a 
resolution of 10µV on the DVM, this implied baselines less than 0.2pA 

(0.2ppm CO equivalent). 

Initially, the cell potential rose to 1032mV after 24 hours and settled at 
1050±5OmV after 48 hours. Exposure to 49ppm CO/Air caused 

electrons to flow from sensing to counter electrode, indicating oxidation 

at the sensing and reduction at the counter electrode. The output 

generally stabilised within 10 to 30 seconds, as shown in (1) Fig. 25 and 

was fairly insensitive to flow rate above 80cm3min"', producing 1 pA/ppm 
CO or 0.2pA/cm2/ppm CO for a working area of 5cm2. 
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Figure 25 Output of Ecolyser Cell on a fixed load as a function of gas 

flow rate. Load resistor : 4712, temperature : 20°C, gas : 49.2ppm CO/Air, 

electrolyte : 3.4M H2SO4. [After CTL Report No. 79/31/002, (2) 10 Fig. 

2.2] 

The operating potential of the sensing electrode when exposed to CO 

(49.2ppm CO/Air, 100cm3min"', 18°C) was 930mV vs DHE and the 

counter electrode potential was 1 mV more anodic. 

The change in output was followed with ambient temperature and 
indicated an underlying temperature coefficient of 3 to 4% of signal per 
°C, as shown in (1) Fig. 26. 

56 

54 

52 

I so 
C 
0h 

48 

46 

Temperature °C. 

Figure 26 Temperature response of Ecolyser Cell. Load Resistor: 470, 

gas : 49.2ppm CO/Air flow rate : 100cm3 min"', electrolyte : 3.4M 

H2SO4. [After CTL Report No. 79/31/002, (2) 10 Fig. 2.3] 
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3.3.2 Steady State Potentiostatic i-E curves 
Electrode potentials were scanned from 800mV to 1300mV in 50mV 

steps, allowing sufficient time for currents to reach steady state, typically 

10-30 minutes at cathodic potentials and up to 48 hours at anodic 

potentials, due'to oxide film growth (see (1) 2.3.2.2-3). 

Net CO oxidation currents were obtained by subtracting the background 

Pt-O film oxidation currents. 

The i-E curves for the sensing electrode in compressed air and the 

49.2ppm CO/Air test gas are shown in (1) Fig. 27. The total CO 

oxidation current as a-function of potential, obtained by subtracting the 

curves in (1) Fig. 27, tended to a limiting value of 130, uA above about 
900mV vs. DHE (see (1) Fig. 28). Considering the cell geometry and the 

above temperature coefficient measurement, this limiting current very 
likely arose from a controlling process of diffusion through an electrolyte 
film within the electrode (see (2) 10 2.1.2). Any diffusion control through 

gaseous barriers such as the PTFE backing tape would result in much 
lower temperature coefficients as for the CTL oxygen sensor. 

With the air-cathode counter electrode arrangement used in the Ecolyser 

and YRL cells, the sensing electrode operating potential was cathodic 

relative to its OCV. Measured potentials on the DHE scale in (1) 3.3.1 

were 1050mV in air and 930mV with a 49.2ppm CO/Air mixture. Under 

the latter conditions the sensing electrode supported both CO oxidation 

and oxygen reduction reactions and these coupled to form a parasitic 
local cell which consumed a significant proportion of the total CO 

oxidation current (see (2) 10 App. 1). Thus the Ecolyser cell signal 

measured in (1) 3.3.1 was only about 494uA (49.2ppm CO/Air, 470 load, 

20°C) instead of the 122pA indicated in (1) Fig. 28 at the operating 

potential of 930mV. 
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Figure 27 i-E curves for Ecolyser Cell. Gases : Air and 49.2ppm CO/Air, 

flow rate : 100cm3 min"', reference electrode : DHE, temperature : 20°C, 

electrolyte : 3.4M H2SO4. 

[After CTL Report No. 79/31/002, (2) 10 Fig. 2.4] 
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14 x 1.1 
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Ö 
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47 

0. 

CO-oxidation current (MA) 

Figure 28 Derived CO oxidation i-E curve for Ecolyser Cell. 

Electrolyte 3.4M H2SO4, gas 49.2ppm CO/Air, flow rate :1 00cm3 min"', 
temperature : 20°C. [After CTL Report No. 79/31/002, (2) 10 Fig. 2.5] 
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An estimated cell signal at 930mV can be obtained from the data in (1) 

Figs. 27 and 28 and compared with the measured value of 49uA from (1) 

3.3.1 as follows: 

The sensing electrode rest potential in the CO/Air test gas is 920mV 

which corresponds to the intersection point of the CO-oxidation i-E curve 
((1) Fig. 28) and the air/oxygen reduction curve ((1) Fig. 27), as redrawn 
in (1) Fig. 29. The current value of 117pA at this intersection 

1.10 

w 

1.00 

N 

O 

b 

C 
d 

0 

0.90 
0 
u a 

94 

0.80 

I 

Current (. j, A) 

Figure 29 i-E curves for sensing electrode local cell and counter 

electrode in the Ecolyser Cell. Electrolyte : 3.4M H2SO4, flow rate : 
1 00cm3 min'', gases : compressed air and 49.2ppm CO/Air, temperature 

: 20°C. 
[After CTL Report No. 79/31/002, (2) 10 Fig. 2.6] 

is the local cell current at open circuit in the test gas. An air counter 

electrode connected via an external load causes the potential of the 

sensing electrode to rise from 920 to 930mV. The local cell oxygen 
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reduction current reduces to 83A (point B, (1) Fig. 29), the total CO 

oxidation current increases slightly to 121 pA (point C, (1) Fig. 29) and the 

difference of 38pA appears as a cathodic, oxygen reduction current on 

the counter electrode which represents the sensor signal (IS). The 

correlation between this value and the measured value of 49A is quite 

good, considering the errors expected in deriving the curve in (1) Fig. 28 

(see (1) 2.1.2). 

The i-E curve of the counter electrode was not measured, but it is 

evident that polarisation is greater than for oxygen reduction at the 

sensing electrode. (A likely curve is sketched in (1) Fig. 29). This 

originates from a greater contribution from oxygen diffusion resistance 
through the cell electrolyte at this electrode compared to the sensing 

electrode. 

The use of a non-polarisable counter electrode such as battery cathode 

materials to hold the sensing electrode near the OCV would suppress 
the local cell at the sensing electrode and the total CO flux would appear 

as current in the sensor signal thus increasing sensitivity (see (2) 10 

App. 1). Alternatively, a third, unpolarised reference electrode could be 

included to hold the sensing electrode at or above OCV by means of a 

potentiostatic control circuit; a provision for this is included in the 

Ecolyser cell design which incorporates a split counter electrode 

arrangement. 

3.3.3 Summary 

The Ecolyser, platinum black electrodes exhibited a high, stable activity 

towards carbon monoxide oxidation and oxygen reduction in 3AM 

sulphuric acid electrolyte. 

- the CO oxidation current was probably controlled by diffusion through 

an electrolyte film within the electrode structure and had a limiting 

value under the conditions tested (20°C, 100cm3 min"' flow rate) of 

about 0.5pA per ppm CO per cm2 electrode area. 
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- with the YRL 2-electrode arrangement, the sensing electrode 

operated at about 93OmV vs. DHE in a test gas containing 49ppm CO 

in air. At this potential part of the electrode output was consumed by 

a local cell involving CO oxidation coupled with 02 reduction. 
Consequently the cell sensitivity to CO under the test conditions was 

only 0.2pA per ppm per cm2. 

- PTFE bonded platinum electrodes were produced by foil transfer 

techniques as for the silver electrodes used in the CTL oxygen 

sensor. Some studies of alternative catalysts could be productive, 

particularly gold and supported gold which possessed poorer activity 

towards hydrogen oxidation than platinum. 

-A more dilute acid electrolyte was desirable, being less corrosive, but 

YRL work has shown that this results in increased interference from 

hydrogen. 

- Future development work would involve designing suitable corrosion 

resistant plastic hardware and assembly methods. 

3.3.4 Conclusion 

3.3.4.1 Sensor Electrochemistry 

The carbon monoxide electrode reaction is represented by the 

equation: 

CO + H2O -> CO2 + 2H+ + 2e' Equ. (2) 

The open circuit potential, relative to a standard hydrogen electrode 

(arbitrary zero) at 25°C is given by the relationship (12): 

E= -0.103 - 0.0591 pH + 0.0295 log PCO2 Equ. (19) 

PCo 

77 



Where Pco2 and Pco are the partial pressures of CO2 and CO 

respectively and negative signs indicate potentials which are 

cathodic to the hydrogen zero potential. 

The potential relative to a hydrogen electrode in the same 

electrolyte is then given by: 

E= -0.103 + 0.0295 log PCO2 
.... (55) 

Pco 

If a true equilibrium was established at the electrode, the theoretical 

potential, relative to a hydrogen electrode in the same electrolyte, 
in the presence of a gas mixture of 1 atmosphere pressure, 

containing 50ppm CO, 0.03% CO2 and the balance nitrogen (or 

some such electrochemically inert gas) would be -80mV (see (2) 10 

App. 1). Under these conditions CO is thermodynamically unstable 
towards water which it would tend to decompose with the evolution 

of hydrogen: 

CO rn. CO + H2O -> CO2 + 2H+ + 2e' .E= -8OmV 
H2 rn. 2H+ + 2e' -> H2 E= zero 
Overall rn. CO + H2O -+ CO2 + H2 .... (56) 

However, the carbon monoxide electrode reaction is highly 

irreversible and approaches equilibrium infinitely slowly at room 
temperatures, even with precious metal electrocatalysts or relatively 
high activity. Consequently measured rest potentials of carbon 

monoxide electrodes are invariably anodic (positive values) relative 

to a hydrogen reference electrode, ie. water decomposition ((1) 

Equ. 56) is not observed. 
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The anodic oxidation of carbon monoxide proceeds via a 'reactant 

pair' mechanism(" in which electrode transfer occurs between the 

electrode and a surface intermediate composed 
. 
of CO and H2O 

molecules adsorbed on adjacent surface sites(see (1) 2.3.3). 

Precious metal surfaces such as platinum or gold which are 

normally used as electrocatalysts for the CO reaction, at potentials 

near or more cathodic to the normal hydrogen electrode, adsorb 

carbon monoxide strongly with high coverage. Under these 

conditions the reaction is severely inhibited by the low availability of 

surface sites for water molecule adsorption to form the reactant 

pairs. At more anodic potentials the noble metals form surface films 

of oxides or adsorbed oxygen which have much lower catalytic 

activity towards the CO reaction but act as adsorption sites for 

water molecules. CO-H20 reactant pairs then form at the metal- 

oxide interfaces and the electrode can sustain CO oxidation 

currents at these potentials. 

The onset of surface oxidation occurs at about 0.8 volts on the 
hydrogen scale for platinum (see (1) 2.3.2.2) and about 1.30 volts for 

gold(22), in sulphuric acid electrolyte. These potentials do not vary 
to any extent with solution pH, but in alkaline electrolyte adsorption 
films containing hydroxyl ions form at more cathodic potentials and 

may modify the kinetics of an electrode reaction (see (1) Ref. 22, 

p. 29). 

The surface coverage of a precious metal electrode with oxide 
increases with potential in the anodic direction (see (1) 2.3.2.3). 
Complete coverage only occurs at considerably more anodic 

potentials than those quoted above, but when such a condition is 

reached then the CO reaction will become inhibited by the low 

availability of suitable adsorption sites for the CO molecule and the 

electrode is said to be 'passivated'. 

Platinum/gold powders, intimately mixed, might provide a more 
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active catalyst for CO oxidation than either alone. Gold surfaces are 

essentially free of oxide up to potentials of 1.3 volts (hydrogen 

scale) and would provide CO adsorption sites. Platinum surfaces 

above 0.8 volts are extensively covered with oxide for water 

adsorption. The Pt-Au interfaces would then provide a high number 

of reactant pair sites. Alternatively gold, supported on corrosion 

resistant oxides (eg. Fe203 in alkali electrolytes) could prove a 

suitable alternative to pure Pt. 

3.3.4.2 Two-Electrode Mechanism 

Oxygen is an electroactive gas and sets up an electrode reaction on 

platinum or gold electrodes which can be represented by the 

following equation in acid electrolytes: 

2H20-X02+4H++ 4e' Equ. (14) 

The electrode potential relative to a normal hydrogen electrode in 

the same electrolyte is given by the relationship (28): 

E=1.228 + 0.0148 log P02 Equ. (20) 

The theoretical potential for an electrode in contact with air (Pa2 = 
0.20 atm) then becomes about 1.22 volts. This electrode reaction 
is also irreversible and measured values of air electrode rest 

potentials are about 1.05 volts in acid electrolytes (see (1) 2.3.1) and 

about 1.15 volts in alkaline media. The potential of a gas sensing 

electrode, exposed to air containing carbon monoxide, therefore 

sets up a mixed potential resulting from a local cell between the 

carbon monoxide and oxygen electrode reactions on the 

electrocatalyst surface: 

Oxygen reduction 02 + 4H+ + 4e'--)- 2H20 

CO oxidation 2CO + 2H20--)-2C02+ 4H+ + 4e' 

Local cell rn. 02 + 2CO -o 2CO2 Equ. (7) 
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This can be represented schematically in the following diagram of 

the current-potential curves for the two electrode reactions - see (1) 

Fig. 30. 

Air R. FL. ---- -------- 
CO reaction polarisation curve 

Air/CO R. P, 
reaction polarisation curve 

i local cell current 
i 

Figure 30 Schematic diagram showing the localised i-E curves for 

CO oxidation and parasitic 02 reduction. 
[After CTL Report No. 79/31/002 (2), 10 App. 1 (iv)] 

The mixed potential sensing electrode is connected via an external 
load circuit to an oxygen reduction counter electrode. In the YRL 

and Ecolyser cells this is an oxygen electrode located inside the cell 

so that it is not exposed to the CO in the atmosphere. The cells are 
designed to oxidise completely any carbon monoxide as it reaches 

the sensing electrode, but excess oxygen in the air dissolves in the 

electrolyte and diffuses to the counter electrode where it sets up an 

oxygen potential; since there is no carbon monoxide in the vicinity 

of the counter electrode, its potential will be higher than the mixed 

potential of the sensing electrode. With the load circuit closed, 

electrons flow from the sensing to the counter electrode and 

provide the 'signal' of the sensor. The sensor current in the external 

circuit causes the counter electrode to polarise to a steady 

potential, slightly above the sensing electrode depending on the 

load resistance. The counter effectively presents a larger area for 

the local cell oxygen reduction current at the sensing electrode 
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which therefore depolarizes. The situation at a fixed CO 

concentration in air is depicted schematically in (1) Fig. 31. 

Air R. P ----. - -- 71 J. 

Sensor_ 
Operating 

Potential 

1 

1ý 
1 

- 

. c. ! Is 

(O 
,, reduction) 

oxidation polarisation curve 

2 reaction polarisation curve at 
sensing electrode 

i 

Figure 31 Schematic diagram showing the mixed potential 
(parasitic) anode and oxygen reduction cathode i-E curves. 
I, = local cell current, IS = sensor signal 
[After CTL Report No. 79/31/002, (2) 10 App. 1 (v)] 

In the YRL cell only part of the total CO-oxidation current appears 

as a signal in the instrument load circuit. The parasitic signal losses 

caused by the oxygen reduction reaction at the sensing electrode 

could be eliminated by employing either 2-electrode bias, or 3- 

electrode potentiostatic control as follows: 

3.3.4.3 Two-Electrode Bias 

An external circuit can be used to hold the sensing electrode at a 
fixed anodic potential difference with respect to the counter 

electrode (see (1) Fig. 32). 

If the applied potential difference is greater than the counter 

electrode polarisation at the maximum CO-signal, then the sensing 

electrode will never polarise down to oxygen reduction potentials 

and the full CO signal will always be obtained, even under maximum 

sensor load. However this will be at the expense of a higher 

baseline. 
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Figure 32 Schematic diagram showing 2-electrode potential bias 

application. IS = sensor signal, in, ax = maximum likely sensor 

current 
[After CTL Report No. 79/31/002, (2) 10 App. 1 (v)] 

The potential bias should not be so great as to drive the sensing 

electrode into a 'passive' region, or to cause oxygen evolution. 

3.3.4.4 Three Electrode Potentiostatic Control - 
A third unpolarised reference electrode, in conjunction with a 

potentiostatic control circuit, can be used to hold the sensing 

electrode at or above the air rest potential and thereby avoid 02 

reduction. The Ecolyser cell has provision for this mode of 

operation by employing a split cathode; one side functions as the 

reference electrode, the other acts as the cell counter electrode. 

3.4 HALF CELL OPEN ELECTRODE MEASUREMENTS 

3.4.1 Electrolyte : Selection of Acid Type and Concentration 

Initially, four options were considered: 
(a) concentrated sulphuric acid (3.4 - 6M) 

(b) Dilute sulphuric acid (0.05-0.5M) with additions of magnesium 

sulphate (approx. 2M) to lower the electrolyte vapour pressure and 

reduce water loss. 
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(c) Dilute sulphuric acid with about 4M sodium perchlorate in place of 

magnesium sulphate as above. 

(d) Perchloric acid/sodium perchlorate mixtures. 

The dilute acids containing dissolved salts proved unsuitable; their 

vapour pressures and hence water evaporation rates were still high, 

electrode activity was much lower than with the pure acid and sensors 

gave erratic signals. Perchloric acid media were also rejected on the 
basis of possible fire hazard if a cell dried out (see (2) 11 4.1). 

Sulphuric acid (5M) was selected for most of the work, having an 

equilibrium water vapour pressure equivalent to 63% relative humidity. 

This is roughly in balance with average ambient humidity in temperate 

climates; other acid concentrations could be selected to be in 

equilibrium with higher or lower average humidities, without affecting the 

sensor performance significantly (see (2) 113), eg. 2M, RH 92% and 7M, 

RH 39%. The variation of solution RH with sulphuric acid concentration 
is shown in (1) Fig. 33 - this relationship is essentially unaffected by 

operating temperature. 

3.4.2 Electrode Manufacture 

Electrode manufacturing techniques, suitable for volume production 

without sacrificing performance, were examined. All techniques were 
based on the 'foil transfer' method whereby the catalyst layer was 
formed on aluminium foil and then transferred by pressing onto a porous 
PTFE backing tape to give the completed electrode (see (2) 10 3.1.1 and 
(2) 11 3.1). The fabrication methods can be classified as follows: 

(i) Spray method 
(ii) Drop method 
(iii) Solvent extraction 
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Figure 33 Relationship between relative humidity and concentration of 

aqueous sulphuric acid mixtures 
[After CTL Report No. 80/31/003, (2) 11 Fig. 4.1] 

The spray method was originally developed for silver catalysed 

electrodes, used in the CTL oxygen sensor. It is ideally suited to large 

scale production and results in good electrode characteristics. However, 

material wastage was very high due to overspray, offcuts, etc. and 

overall catalyst transfer efficiency was at best 40 to 50%. 

Similarly, the solvent extraction method was considered too hazardous, 

using 2-propanol and much too labour intensive (see (2) 12 4.1). 

The drop method, although quite labour intensive, achieved near 100% 

Pt utilisation efficiency and was adopted for production. With this 

method a free flowing slurry of platinum and PTFE dispersion in aqueous 

acetone was prepared, which was capable of being measured out in 
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aliquots with a graduated teat dropper into aluminium foil moulds. The 

procedure was as follows: 

Platinum black was weighed out and mixed with an appropriate volume 

of diluted aqueous PTFE dispersion (ICI, GPI, Fluon dispersion) in an 

ultrasonic bath. A measured amount of acetone was added to produce 

a slurry having the required flow characteristics. An homogeneous 

suspension was maintained by transferring the slurry to a rotating cup, 

from which aliquots were taken by means of a teat dropper pipette and 

put into moulds lined with aluminium foil (see (2) 10 3.1.1 and (2) 113.1). 

When using standard Johnson Matthey platinum black, the catalyst 

moulds were allowed to dry overnight in ambient air. However, the more 

active Engelhard No. 4 black was dried by forced air circulation at room 

temperature for 20 minutes to minimise the contact time between foil and 

wet catalyst mix. This was necessary as prolonged drying resulted in 

excessive corrosion of the aluminium, due to formation of an 

oxygen/metal corrosion cell (see (2) 12 4.1). 

After drying, the moulds were cured in a circulated air oven according 
to the following cycle: 

-5 minutes 50°C 

-5 minutes 100°C 

- 45 minutes 280°C 

- Removed from oven and cooled in ambient air. 

The temperature was raised in stages in order to progressively drive off 

residual acetone before the mix became too hot. This avoided the 

possibility of local overheating of the catalyst surface by catalytic burning 

of any organic vapour. The high temperature stage was necessary to 

achieve the correct wetting properties of the catalyst by removing a 

surfactant used to stabilise the PTFE dispersion. After cooling, the 

catalyst castings were transferred from the foil substrate by pressure 
bonding on to porous PTFE tape. 
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3.4.3 Test Method 

To ensure a stable sensor signal over long periods of time, with minimal 
temperature dependence, it is essential that the capillary holes present 
the principal diffusional resistance barrier to the incoming carbon 

monoxide reactant gas. In particular the electrode reaction polarisation 

resistance and diffusional resistance through the electrolyte should be 

at least 1/10th to 1/15th that of the gaseous diffusional barriers, ie. the 

electrocatalyst activity reserve should be at least 10 to 15 times the 

sensor signal (see (1) 2.5.3.1). 

Early open electrode activity tests had been conducted with catalyst 
layers, pressure bonded to standard Gore porous PTFE tapes as used 
in the CTL oxygen sensor. However, diffusibility measurements (see (2) 

11 App. 1) indicated that this tape would limit at a carbon monoxide 

current of about 0.9pA/ppm/cm2, equivalent to a CO signal of about 
15OpA, on the sensor electrode area of H cm2 in a 54ppm CO in air test 

gas. Measured electrode currents in fact limited at about 70 to 80A in 

this test gas. Whilst this test method suffices to establish whether the 

electrode activity is above or below the target level of 10 to 15 times the 

corresponding sensor signal of 5.4pA on the 54ppm CO in air test gas, 
II cm2 area, it cannot distinguish between electrodes having different 

activities above the 70-80, uA level and therefore cannot be used to 

optimise electrode activity as a function of catalyst type and 

catalyst/PTFE ratio. The electrode optimisation work therefore was 

conducted with thinner, more porous Gore tapes, having measured 
diffusibilities greater than 2.5pNppmCO/cm2, i. e. signals in 54ppm CO 

in air test gas, and II cm2 area, of 430pA, or above an 80X factor over the 

sensor signal. 

A new test cell was designed to accomodate the thinner backing tape 

(see (2) II Fig. 3.1). Electrode testing was restricted to measuring 

currents in aerobic conditions, using a 54ppm CO in air test gas, at 

potentials between the air rest potential and up to 100mV anodic 

overpotential (between about 1000 and 110mV vs. DHE) at ambient 
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temperature. Potentials were controlled by means of a potentiostat and 

a Pt/air electrode In this way no contamination by H2 from the DHE 

occurred (see (2) U 3.2.1). 

The tests were conducted by allowing the test electrode to settle for 

about half an hour at the air rest potential in static air. The steady 
background current was noted and test gas admitted to the electrode at 
a flow rate of about 200ml per minute. The response was monitored on 
a recorder and the difference between background and the steady test 

gas signal taken as the CO response of the electrode. This procedure 

was then repeated at 50 and 100mV anodic polarisation steps. 

The following parameters were evaluated using the above procedure: 

- effect of platinum/PTFE ratio, using standard Johnson Matthey platinum 
black in 5M H2SO4. 

- effect of platinum loading using the standard J. M. black and a near 
optimum Pt/PTFE ratio. 

- effect of platinum black grade and admixture with gold, using a neär 
optimum metal/PTFE ratio. 

- effects of ageing various electrode compositions in contact with 5M 
H2SO4. 

- effect of H2S04 concentration on various electrode compositions. 

3.4.4 Open Electrode i-E Curves 

(2) ll Fig. 3.3 shows the effect of electrode potential on the signal 
obtained from the test gas, over the range 1000 to 1100mV vs. DHE, in 

5M H2SO4, using freshly prepared, standard J. M. Pt black electrodes. 
A similar trend exists for aged electrodes and with other grades of Pt 
black. 

The virtual independence of signal with potential indicates that the 
currents are diffusion controlled, either by the PTFE tape or the 

electrolyte film, or both. The range of currents measured, 155 to 295jtA, 

88 



was well above both the standard tape and the'sensor limits of 70 and 

5.4, u respectively in the 54ppm CO in air test gas. 

3.4.5 Effect of Pt/PTFE Ratio 

(2) 11 Fig. 3.3 shows the variation of signals obtained at 1 000mV vs. DHE, 

in 5M H2SO4, with freshly prepared standard J. M. Pt electrodes, at 
different Pt/PTFE ratios between 2: 1 and 10: 1. 

Although there is a hint of an activity maximum at about a 6: 1 Pt/PTFE 

ratio, considering the spread between replicate electrodes, there is little 

to choose between the measurements between 8: 1 and 3: 1 (see (1) 

2.6.3). 

The high spread between replicates could have been due to either 

variations in the very thin, porous, Gore PTFE tape used, or inherent 

variations introduced by the electrode preparation method. 

The 2: 1 electrode had a very sluggish response and was obviously too 

hydrophobic. A 10: 1 replicate electrode was virtually inactive and may 
have flooded with electrolyte. The preferred range chosen was 
therefore, 6: 1 to 4: 1 for the standard J. M. grade of platinum black. 

Sensor tests conducted within this composition range to define more 

precisely the desired ratio indicated that the 4: 1 electrodes gave a 

slightly faster sensor response than 6: 1, but further work on other 

parameters, in particular temperature coefficient and long term signal 

stability, favoured 6: 1 electrodes. 

3.4.6 Grades of Platinum Black and Gold Admixtures 

Production of Johnson Matthey, fuel cell grade platinum black, used in 

the initial development phase, ceased so two other grades of platinum 

were examined, Johnson Matthey standard black and Engelhard No. 4 

black. 
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Standard J. M. black had a larger particle size (lower specific surface 

area) than J. M. fuel cell grade. Although this resulted in slightly reduced 

activity, response time was better (see (2) ll 5.2).. On balance, the 

standard grade was selected on the basis of availability, cost and 

response time; the slight loss of activity was not important since the 

activity reserve was still adequate. However, both materials were 

assessed for long term performance in sensors. 

Engelhard black has a particle size nearer to J. M. fuel cell grade. Its 

activity was about 20% higher than standard J. M. black in a 3: 1 Pt: PTFE 

electrode, 5M H2SO4. Response times were longer than an equivalent 

standard J. M. electrode, particularly with higher load resistors. This 

material was considered as a fall-back option to J. M. fuel cell grade 
black. 

A 1: 1 mechanical mixture of platinum and gold was found to be less 

active than a similar plain, J. M. standard Pt electrode (2.8 compared to 

4.3µA ppm"' respectively, using 0.5M H2SO4 with catalyst : PTFE ratio 
4: 1). Although synergism may be obtained with the correct Pt/Aü 

admixture, corrosion of gold in stronger acid ruled it out as a viable 

option (see (2) 11 3.2.5). 

3.4.7 Electrode Ageing Effects 

A number of electrode variants were stored in 5M H2S04 and periodically 

retested. The activities of these electrodes over a 30 day period are 

shown in (2) II Fig. 3.4. All electrodes showed an initial decline over the 

first week or two of between 18 to 32%, depending on composition, but 

stabilised thereafter (see (2) 11 3.2.5). 

3.4.8 Effect of Acid Concentration 

The effects of H2SO4 concentration on the activity of 20-30 day aged, 

standard J. M. electrodes, and a fresh Engelhard No. 4 electrode, are 

shown in (2) II Fig. 3.5. Activity decreased linearly with increasing acid 

concentration up to 10M with all electrodes tested. The gradient of each 
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line was practically the same for all electrodes. Even at 10M the . 
electrode signal was above 100, uA with electrodes of Pt/PTFE ratio 
between 6: 1 and 4: 1, which is within the target specification of 10 to 15 

times the sensor signal (5.4, uA) (see (2) II 3.2.6). 

3.5 TWO-ELECTRODE DESIGN 

In its simplest form a fuel cell electrochemical sensor consists of the following 
basic elements (see (1) Fig. 34). 

Load resistor 

Diffusion 
barrier 

I 
'I 

=5= 

Sensing Electrolyte 
electrode 

Counter- electrode 

Figure 34 Schematic diagram of the basic elements of a fuel cell gas 
sensor [After Ref. 8 Fig. 6.1] 

(a) Two similar gas diffusion, fuel cell electrodes. The sensing electrode has 

relatively easy access to external gases via the diffusion barrier. 
Conversely, the 02 reduction counter electrode is located deep within the 

cell interior to provide controlled gas access, ensuring adequate supply of 
02 yet severely restricting CO access to the counter. How this is achieved 
is described in (1) 3.5.1.3. 

(b) A concentrated, ionically conducting aqueous electrolyte separating the two 

electrodes, eg. a solution of sulphuric acid or alkaline solutions of sodium 
hydroxide or potassium hydroxide. 

(c) A low-impedance external electrical circuit connecting the sensing electrode 

and counter electrode and providing a voltage output across a load resistor 

to measure the current output of the cell. 
(d) A diffusion barrier controlling diffusion of reactant gases to the sensing 

electrode. 
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In clean ambient'äir, when reactant gases are absent, oxygen diffuses into the 

cell via the diffusion barrier and adsorbs on both electrodes to set up the air rest 

potential. Using a platinum electrocatalyst on the electrodes, this potential will 
be about 1V on the normal hydrogen electrode (NHE) scale and the electrode 

process is: 

02+4H++4e'--2H20 Equ. (3) 

The thermodynamic (or Nernst) potential of this process is about 1.2V in air at 

20°C versus NHE. The oxygen reaction, however, is highly irreversible, even on 

platinum electrodes, and observed potentials are somewhat below this value 

(see (1) 2.3.1). 

In clean air, when reactant gases are absent, both electrodes will assume the 

same potential and no current will flow in the external circuit. Actually a small 

baseline current is observed, involving oxide - oxygen reactions (22) on the 

electrocatalyst as a result of minor differences in the potentials of the two 

electrodes due to variations in the electrodes and their geometrical 

environments. With suitable electrode design the baseline current can be limited 

to below 0.1 pA, representing less than one part per million equivalent of the 

reactant gas. Such baseline currents, and their associated temperature 

dependence (see (1) 4.3.1), are one of the principal factors establishing the lower 

limit of resolution of such electrochemical gas sensors. Cross-interferences are 

the other principal limitation. 

If an electrochemically oxidizable gas (reducing gas), such as carbon monoxide, 

is present in the ambient air, it will diffuse to the sensing electrode and cause its 

potential to shift in a cathodic direction. The resulting potential difference 

between the sensing electrode and counter-electrode will then cause a current 

to flow in the external circuit, sustained by electrochemical oxidation of the 

reactant gas at the sensing electrode, matched by an equivalent amount of 

oxygen reduction at the counter-electrode. This is represented for a carbon 

monoxide sensor, with an acid electrolyte, by the following equations: 
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sensing electrode 2CO + 2H20 -ý 2CO2 + 4H+ + 4e' 

counter electrode 02 + 4H+ + 4e" -> 2H20 

cell reaction 2CO + 02 -> 2CO2 Equ. (7) 

In producing current during active sensing of carbon monoxide, the following 

dynamic conditions prevail. 

(1) Carbon monoxide diffuses via the diffusion barrier to the sensing electrode 

where it is oxidised to carbon dioxide, consuming water, producing protons 

and releasing electrons to the external circuit. 

(2) The carbon dioxide product is rejected by the acidic electrolyte and diffuses 

out of the cell via the diffusion barrier; the acidic electrolyte also prevents 

absorption of carbon dioxide from the external environment, which can 

cause spurious signals from pH gradients and carbonation in alkaline or 

near-neutral electrolytes. 

(3) Protons produced at the sensing electrode migrate to the counter electrode 

and, together with electrons from the external circuit and oxygen, react to 
form water. 

An oxygen supply must be provided to the counter electrode to sustain the 

current. Most applications are concerned with monitoring small concentrations 

of a gas in ambient air where a high concentration of oxygen is present (about 

21%). Under these conditions an adequate oxygen supply to the counter 

electrode can readily be achieved, even though access is severely restricted and 

reactant diffusion to the counter electrode is negligible. When measurements 

need to be conducted with gas mixtures of very low oxygen content, a separate 

access of air to the counter electrode must be ensured. 
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The electrochemical power source is converted to a sensor by the inclusion of 

the diffusion barrier at the sensing electrode of the cell. The nature of this barrier 

is fundamentally important to the operation of the sensor and is designed to 

restrict access of the reactant gas so severely that it becomes completely 

oxidized as it arrives at the sensing electrode (see (1) 2.1.1). Under these 

conditions the concentration of reacting gas at the sensing electrode approaches 

zero; not only does this condition prevent reactant gas from accessing the 

counter-electrode and setting up a reverse reaction, but also the sensing.. 

electrode reaction and resultant current become limited solely by the rate of gas 
diffusion through the barrier. The sensing electrode is then under mass transfer 

control and limiting current is observed (see (1) Fig. 35). 

Sensing -electrode 
polarization with 
barrier 

E' 
C 

-4-- C 
a 

. 4- 

CIE 

Counter-electrode 
polarization 

Sensing-electrode 
polarization without 
barrier 

Sensor current 
Current 

Figure 35 Schematic i-E polarisation characteristics for a two-electrode 

gas sensor. E'is the operating potential. [After (1) Ref. 8, Fig. 6.2] 
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3.5.1 Hardware Design 

3.5.1.1 Materials Selection 

Electrode/electrolyte investigations established a strong preference 
for acid electrolyte systems (see (1) 3.3.1). Early prototype sensors 

were machined out of perspex and sealed with neoprene O-rings 

(see (2) 10 6, (2) 11 2.3). 

Electrodes consisted of PTFE-bonded Pt black catalyst, cured on 

aluminium foil and transferred by pressure bonding on to 25.4mm 

e discs of porous PTFE backing tape (see (1) 3.4.2). Pt ribbon 

current collectors were used to lead the signal out of the sensor. 
Initially polyamide felt (Webril) separator and wicking material was 

used, but this was not acid stable in the long term and was 

replaced by glass filter mat material supplied by Whatman (see (2) 

11 2.3). 

The electrode stacking arrangement comprised a sensing and 

counter electrode envelope sandwiching some separator material 
(see (1) Fig. 36). 

There are many novel features to this design which are subject to 

patent(13) 

The electrode 'sandwich' construction (see (1) Fig. 36) with a 

communicating wick (part 4) threaded through a hole in the counter 

electrode (part 3) provided electrolyte contact with the expansion 

reservoir. This conferred the following advantages over existing 
designs such as the Ecolyser sensor. 

- eliminated the problem of gas bubbles forming in the electrode 

compartment, due to water evaporation, which would otherwise 

cause severe orientation instability as the bubbles tracked across 

the electrode face. 
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Figure 36 Schematic diagram of fuel cell acid-electrolyte sensor: 
(1) sensing electrode (2) counter electrode (3) counter electrode 

wick hole (4) wick (4A) wick extension (5) electrolyte reservoir, 

expansion chamber (6,7) contact (8) terminal bolts (9,10) separators 
(11) gasket (12) O-ring (13) retaining ring (14) top plate (15) 

capillaries (16) cavity (17) bottom plate (18) wick hole (19) terminal 

post holes (20) cover plate (21) PTFE tape (22) vent (23) electrode 

support [After (1) Ref. 8 Fig. 6.13] 

- provided direct 02 gas access paths to the counter electrode by 

radial diffusion through the edge of the counter electrode backing 

tape, which ensured an adequate supply of 02 and hence 

minimised cathode polarization under load (see (1) 3.5.1.5). 
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- the electrode 'sandwich' construction minimised the number of 

electrolyte sealing areas and therefore made sealing easier and 

more reliable. 

Components not in direct contact with the electrolyte, eg. external 

electrical connectors, clamping bolts etc. were made from nickel or 

nickel plated steel. However, even minor electrolyte leaks (or 

tracking) corroded the bolts and solder tags and caused erratic and 
drifting signals. 

In the latter stages of phase 3 development, an injection moulded 

polycarbonate version of the sensor was introduced (see (2) 12 3.2) 

in which the body components, base plate, floor and '0' ring 

retainer were incorporated into a single base plate unit (see (2) 12 

Fig. 3.4) and current collector tags were relocated to the clamping 
bolt pressure points to provide maximum sealing pressure and leak 

resistance. 

3.5.1.2 Capillary Plate Modelling 

Early machined prototype sensors using a 9-hole capillary pattern 
evenly distributed round an area of diameter 20mm and using a 
webril/mesh spacer to provide a 0.25mm gap between the capillary 
plate and the electrode, had measured sensitivities of 0.10, uA/ppm 
CO, much lower than the calculated sensitivity of 0.51 pA/ppm (see 
(2) 10 6.3.1). This was confirmed in later work, when capillary 

control was found to be only 20-25% (see (2) 11 2.4). Since sensor 
temperature coefficients were found to be 0.2-0.4% of signal per °C 

(see (2) 10 6.2) the additional diffusion resistance was most likely 

gaseous (0.17% per °C) rather than a liquid film barrier (3% per °C) 

such as one would find in the electrode structure. 

Detailed analysis (see (2) 12 App. 1) of the relative contributions to 

diffusion resistance of capillary and spreading resistance, ie. air gap 
between capillary and electrode, showed that the webril diffuser 
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(0.25mm air gap equivalent) accounted for 75% of the diffusion 

resistance control (see (2) 12 Fig. A1.1). Consequently, the 

moulded capillary plate diffusion gap was set at 2.5mm, so that the 

capillaries were at least 95% in control (see (2) 12 Fig. A1.2). 

3.5.1.3 Counter Electrode Oxygen Access Calculation 

A supply of oxygen to the counter electrode is essential in order to 

minimise cathode polarisation. There are two main gaseous 02 

feed paths for the counter electrode, namely via the sensing 

electrode cavity, across the perimeters of the electrode tapes which 

are in contact with each other and side access via the current 

collector gates (see (1) 3.5.1.5). Both these paths rely on radial 
diffusion along the backing tape to reach the cathode. 

At one extreme, if the oxygen flux to the counter is insufficient to 

maintain the sensor current, then the counter electrode will limit 

rather than the sensing electrode and the sensor will effectively 

saturate. Even before this limit is reached any diffusion resistance, 

sufficient to lower the oxygen partial pressure at the counter 

electrode, will produce added polarisation and contribute to non- 
linearity. 

The limiting flux of oxygen to the counter electrode therefore, needs 
to be equivalent to many times the sensor current. 

At the other extreme, and in the case where the whole sensor is 

exposed to the atmosphere under test, if there is too much gas 

access to the counter electrode, an appreciable amount of carbon 

monoxide will reach the counter electrode, resulting in loss of 

signal. For example with identical sensing and counter electrodes, 
having identical gas access, the signal would be zero. The 

diffusibility to the counter therefore needs to be many times less 

than that to the sensing electrode. 

98 



It is possible to calculate the oxygen supply requirements to the 

counter electrode, making various assumptions (see (2). 112.2). The 

treatment below assumes that the sensor is completely diffusion 

limited, which is not necessarily the case. However, it can still be 

of some value in setting approximate guidelines. 

Take: sensor signal (pA) = fx .... (57) 

where x is the CO concentration in ppm 
f is sensitivity in pA per ppm 

Assuming diffusion limiting conditions, the sensor signal in ambient 

air (21 x 104 ppm of 02) is given by: 

iL (02 to sensing in #A) = 42 x 104f .... (58) 

(the factor of 2 appears because 1 mol of 02 is electrochemically 

equivalent to 2 mots of CO). 

If the gas flux to the counter electrode is much less than that to the 

sensing electrode, say at least by a factor b, so: 

'L (02 counter) <_ 42 x 10° f 

b 
.... (59) 

The other condition is that the oxygen flux to the counter electrode 

should be much greater compared to the sensor current, say at 
least by a factor 'a': 

IL (02 counter) z afx 

(in pA) 
.... (60) 
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Equating (1) Equ. (59) and (1) Equ. (60) gives: 

ax5 42x10` .... (61) 

b 

or x <_ 42 x 104 ppm .... (62) 

axb 

Note that these equations are independent of the sensitivity factor 

f. 

The counter electrode will be at its ultimate limit when a=1, so that 

the ultimate sensor saturation point is given by: 

x= 42 x 10° .... (63) 

b 

eg. if b= 84 the limit would be 5000ppm. 

In practice the sensor will suffer appreciably before the ultimate limit 

is reached, ie. with a>1, particularly with the balanced pair mode 

of operation where relatively small increases in counter electrode 

polarisation can affect the signal, since the sensing electrode is not 

truly into a limiting current region because of local cell effects (see 

(1) 3.3.4.2). 

Gas supply to the counter electrode via the sensing electrode by 

dissolution and transport across the electrolyte sandwich is 

negligible because diffusion rates of gases in solution are four to 

five orders of magnitude slower than that in the gas phase. 

All designs of carbon monoxide sensor, based on this principle 

therefore, need a specially designed air access to the counter 

electrode. The access must of course be restricted so as to deny 

any significant access of carbon monoxide in the atmosphere to the 
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counter electrode. The porous PTFE tape, -supporting the catalysed 

electrode, projects beyond the cell seal into the atmosphere; this 

tape then presents a diffusion path for gases to the electrode (see 

(2) 13 2.3). The diffusion path is highly restrictive relative to the 

sensing electrode access - measurements indicated oxygen 
diffusibility rates in air were about 80 times lower relative to the 

sensing electrode access but, because oxygen is present in much 
higher concentrations than carbon monoxide, the oxygen supply 

rate can satisfy the counter electrode without any significant 
interference from carbon monoxide. 

3.5.1.4 Pressure Release Vent 

Water uptake and/or heating pressurises the gas in the electrolyte 
reservoir which, if not vented adequately, can cause electrolyte 
leakage through the sensor current collector seal (see (1) 5.1.3). 
This was alleviated by a pinhole of 0.2mm e, 1 mm length in the 
back coverplate (see (2) 13 2.2.1), protected from electrolyte leakage 
by a porous PTFE membrane, shown schematically in (1) Fig. 37. 

The PTFE membrane also provides a gas diffusion pathway to the 

pinhole, even when the hole becomes obscured by electrolyte. 
However, venting is not possible if the membrane is totally 

obscured eg. if operating in a horizontal position with capillaries 
facing upwards. In this position, any free liquid in the reservoir, 
resulting from excessive moisture pick-up, can form a continuous 
film over the PTFE and thereby prevent venting. 

A gas access path to the electrode sandwich may be traced via the 

pressure release pinhole, into the electrolyte reservoir and through 

the wick hole. Carbon monoxide entering through the pin hole, 

particularly during prolonged and/or high concentration exposures, 

could interfere with the sensor signal and cause prolonged 
hysteresis during recovery, since the reservoir would provide a large 

store of carbon monoxide. 
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. RIMETER 

GLUED JOINTS 4 SEALS 
(see (1) Fig. 38) 

PVC OUTER 

OIR SENSOR BODY 

Figure 37 Schematic drawing of the Pressure Release System & 

Rear Coverplate Seal Design [After CTL Report No. 82/09/007, (2) 

13 Fig. 2.5] 

In practice however, total exposure tests and tests conducted by 

exposing only the pinhole, using 500ppm CO in air, showed no 

measurable signal even after 30 minutes exposure (see (2) 13 2.2.2). 
Presumably, the wick hole is flooded with electrolyte. 

3.5.1.5 Gate Gas Access Control 

The principal gas access routes to the sensor interior are: 
(a) front access, through the sensor capillaries, directly onto the 

sensing electrode, where carbon monoxide is immediately 

oxidised, dropping its partial pressure substantially to zero. 

However, oxygen is not consumed and can therefore further 

diffuse from the sensing electrode cavity, across the perimeters 

of the electrode tapes where they are in contact with each 
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other, and then radially inwards to the counter electrode (see 

(2) 13 2.3). 

(b) side access, through the current collector gates in the sensor 

counter plate (see (1) Fig. 38) and diffusion through the 

sensing and counter electrode PTFE tapes which protrude 
beyond the '0' ring seal area. 

(c) rear access from the electrolyte reservoir (see (1) 3.5.1.4). 

The latter, by inference from the tests described (1) 3.5.1.4 above, is 

highly restricted, since no measurable diffusion of carbon monoxide 

could be detected. 

Early attempts to assess these gas access routes using machined 

sensors (see (2) 13 2.3) indicated that front and side access routes 

provided ample oxygen supply to the counter electrode when 

measuring up to 500ppm CO in air. Therefore the gates of the 

injection moulded sensor were raised to limit the side gas access 

to the sensor in order to give closer agreement in reading between 

capillary only and total exposure, the enhancement being less than 

2%. 

Further confirmation of access routes was obtained when oxygen 

access routes were measured directly by using silver electrodes in 

4M NaOH (see (2) 14 3). This showed that the front oxygen access 

signal in air is 1.8mA, which is equivalent to measuring 1.8% CO in 

air at a sensitivity of 0.1 pA/ppm CO and is clearly quite adequate. 

A small rear access route also exists, giving 12jiA oxygen signal in 

air. 
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3.5.1.6 Water Transfer Rate Determination -- 

Residence times under extreme RH conditions are governed by the 

water transfer rate capability of the sensor geometry and are 

temperature dependent. The expression for water transfer may be 

derived in terms of the sensor oxygen limiting diffusion current, 

assuming that the sensor capillaries represent the only factor 

controlling water access (see (2) 11 4.3). An equation of the same 

form may be obtained by direct consideration of water vapour 

diffusion through the capillaries (see (2) 12 5.1). Thus, the water 

flux according to Fick's Law is: 

Water Flux =Nn d2 DH0 (C1-C2) .... (64) 

42 

N is the number of identical capillary holes. 

d is the capillary diameter (cm). 

2 is the capillary length (cm). 

DH20is the diffusion coefficient of water in air at latm pressure. 

C, and C2 are the water concentrations on either side of the 

capillaries. C, will be the ambient air concentration and C2 the 

equilibrium water vapour concentration above the sensor electrolyte. 

The water concentration differential may be restated in terms of 

partial pressures at 20°C : 

(C1 _ C) =A P�20 x 273 .... (65) 

(moles cm 3) 22.4 x 103 x 760 293 

The diffusion coefficient of water at 25°C is 0.256 cm2 s1 (see (1) 

Ref. 105, p. 562). This changes in proportion to the 3/2-power of 

absolute temperature and at 20°C has the value 0.25cm2 s''. 
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Substituting values into (1) Equ. (64) and expressing the water flux 

in gday' gives: 

Water Flux =aW= 16.713 x 10-3 N d2 Ap 

(g day'') at 20°C .¢.... (66) 

The sensors contain silicone rubber capillary inserts in a perspex 

top, designed to temperature compensate the span signal (see (1) 

3.5.1.8). Assuming this achieves perfect compensation, then (1) Equ. 

(66) holds at any temperature provided the correct values of water 

vapour pressure are used, thus: 

AP 0= Ptýo (RH - RH, ) .... (67) 

where PH20 is the saturated vapour pressure of water at the 

operational temperature (T) and RH , RHe are the relative humidities 

on the ambient air and electrolyte sides of the capillaries 

respectively. 

Substitution of (1) Equ (67) into (1) Equ. (66) and rearranging gives: 

ft (a t)T =2Waw... (68) 
Jo 

16.713 x 10"3N d2 PH2o o (RH - RH. ) 

Integration of (1) Equ. (68) gives the variation of water content with 

time (days) at a fixed temperature (T) and ambient humidity (RH). 

RH, is a function of electrolyte concentration and hence water 

uptake (or loss). The relationship. is complex and integration of the 

right hand term is not easily accomplished. 

In practice, a stepwise method may be used in which average 

values of RH, are taken for a number of small volume increments (a 

W) and the estimated times summed separately (see (2) 11 4.3). 
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Water uptake experiments were conducted with sensors primed with.. 

0.5cm3 5M H2SO4 and stored in a chamber at 40°C and 100% 

humidity (RH=1 and PH20 = 55.324mm Hg) (see (2) 12 5.1). A 

theoretical water uptake curve was calculated from (1) Equ. (68) for 

comparison, using 0.4cm3 volume increments, when: 

W 
t=2: 1.805 

(days) 01- RHa� T= 40°C .... (69) 

where RHa� is the mean electrolyte relative humidity for each 0.4cm3 

volume increment. 

The theoretical and experimental data points are compared in (1) 

Fig. 39. The experimental water diffusion rates were about 20% 

greater than those predicted by (1) Equ. (68), but the general curve 

shapes were identical. In addition to the capillary access, it was 

estimated from sensor span measurements that 'side access' 
through the sensor seal is at least 10% of that through the 

capillaries. For example, using a 50ppm CO in air span gas 

mixture, sensor signals on the capillaries alone were about 5NA 

compared with about 0.2 to 0.5NA on the totally immersed sensors 
in the gas, with blocked capillaries; the latter, side access, signal 

represents the difference between cathode and anode side access 
for CO, which appears as a net sensor signal. The total access 

would be higher than that indicated by these measurements and 

could approach 15 to 20% of the capillary diffusibility. Within these 

uncertainties therefore, the correlation between measured and 

calculated water transfer rates was very good. 
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Figure 39 Water Uptake Measurements of Various Sensors in 100% 
RH, 40°C. All sensors have 5 capillary holes (10.5mm ex2.3mm 
length) and are primed with 0.5cm3 10M H2SO4 

[After CTL Report No. 81/31/006, (2) 12 Fig. 5.1] 

3.5.1.7 Electrolyte Working Volume 

Having chosen 5M H2S04 as the electrolyte for the sensor (see (1) 

3.4.1), it was empirically established that the minimum operating 

volume for the close-wicked sandwich design was 0.5cm3 (see (2) 

11 2). This represented the minimum priming volume at which 

sensor parameters such as response time, baseline and span 

stability started to suffer (see (1) Table 3). 
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Electrolyte Volume (cm) 1.0 0.9 0.8 0.7 0.6 0.5 

Anode Loading (mg Pt cm-3) 27 27 29 31 31 27 

Cathode Loading (mg Pt cm'3) 37 37 39 41 41 37 

80% Response Time (s) 19.5 22.0 24.5 22.0 23.4 40.8 

90% Response Time (s) 28.0 32.2 39.0 32.2 35.6 76.8 

Average baseline @ 20°C (ppm) 0.6 1.0 0.9 0.6 0.9 2.6 

Span stability (%) 98.6 93.9 102.0 98.8 100.0 79.5 

Table 3 Performance characteristics of Mark 6 sensors with 

varying electrolyte volumes 
[After CTL Report No. 21/31/006, (2) 12 Table 5.1] 

The maximum working volume of the injection moulded design (see 

(1) Fig. 38) was calculated to be 3.5cm3. 

Thus if the cell was initially primed with 1 cm3 5M H2SO4 (63% RH), 

it could sustain continuous exposure to relative humidities in the 

range equivalent to 10M H2SO4 to 1.5M H2SO4, ie. 14 to 94% RH 

(see (1) Fig. 33). 

The upper and lower humidity limits for continuous exposure can be 

extended by adjustments to the priming electrolyte volume and 

concentration. For example, by using 0.5cm3 of 5M H2SO4 initially, 

the sensors can absorb up to 3cm3 additional water, when the 

concentration reduces to 0.7M. In this way continuous exposure to 

high humidities up to 98% is possible, but the sensor will have little 

tolerance at low RH. Larger volumes of more concentrated acids 
could be employed where dry atmospheres are likely to be 

encountered. However, the decline in electrode activity with acid 

strength above 1 OM could affect sensor calibration and some doubt 

exists over the stability of plastic hardware and platinum corrosion 

resistance in very strong sulphuric acid (see (2) 11 4.2). 
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3.5.1.8 Span Temperature Compensation 

A sensor with 100% capillary diffusion control will have a 

temperature coefficient near theoretical, ie. about 0.17% signal per 
°C at 20°C (see (1) 2.5.1.1). 

In practice, the 2-electrode CO sensors have finite electrode activity 

so that the capillary is not fully limiting and some of the diffusion 

control resides in the electrode, which has a very high temperature 

coefficient --- 3% of signal per T. Sensors therefore have much 
larger temperature coefficients than expected, nearer 0.5% of signal 

per °C (see (1) 2.5.3.2). 

The span signal may be compensated by differential thermal 

expansion. This is achieved by lining the capillary with silicone 

rubber tubing, which has a much higher thermal expansion 

coefficient than perspex, viz. 3x 10-4 per °C and 10-4 per °C 

respectively. 

The degree of compensation is proportional to the ratio of silicone 

rubber to capillary cross sectional areas, so that a wall to bore ratio 

of 1.5 should fully compensate an intrinsic sensor temperature 

coefficient of 0.58% of signal per °C (see (2) 12 App. 2). In fact, a 

substantial part of the differential expansion is taken up by distortion 

of the ends of the tube rather than by changing the capillary 
diameter, which reduces the compensator efficiency. Loss in 

compensation efficiency accelerates rapidly as silicone rubber wall 
thickness increases. 

Two factors are probably relevant here: 

1. The radii of curvature of the silicone rubber surfaces. One would 

expect that the smaller the radius of curvature the more difficult 

it will be to distort. So distortion of the flat ends of the tube 

would tend to be favoured over the interior capillary wall with its 

small radius of curvature. 
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2. The relative surface areas of the interior capillary wall and the 

ends of the silicone rubber. One would expect that the higher 

the ratio of capillary wall area to end area, the more the 

differential expansion would be taken up by a change in the 

capillary as opposed to end distortion. 

For a simple capillary tube insert eg. 3mm long, 1 mm bore and 

1.6mm wall, the surface area ratio is 0.36: 1, ie. the relative areas 

favour end distortion. The fraction of interior wall area to total 

exposed area is 0.26. This is roughly in line with the measured 

compensation efficiency (see (2) 13 5.2). 

On this basis, compensation efficiency was improved by building 

in greater interior wall area of higher radius of curvature by 

splitting the silicone tube lengthwise and inserting a solid core 

(see (1) Fig. 40). 

Solid core insert. - 

Silicone Rubber 

Capillary 

Figure 40 Capillary temperature compensation by split silicone 

rubber tube inserts [After CTL Report No. 82/09/007, (2) 13 5.2] 

A double, cross-split was found to be even more efficient (see (1) 

Table 4): 

Polycarbonate 
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Table 4 Comparison of calculated compensation efficiency with 

various silicone rubber capillary tube configurations [After CTL 

Report No. 82/09/007, (2) 13 5.2] 

3.5.1.9 Inboard Filters 

Sensor selectivity can be improved by using chemical filters to 

remove interfering constituents from the gas stream. Ideal filter 

materials are those which undergo spontaneous regeneration, for 

example by catalytic oxidation in aerobic conditions, thus reducing 
the need for maintenance. However, since most materials are non- 

regenerative, it would be advantageous to locate the filter 

downstream of the diffusion barrier of the sensor where the 

cumulative total exposure to reactants is considerably lower than in 

the main gas stream. 

This concept of "inboard" chemical filtering has been demonstrated 

with CTL capillary - limited carbon monoxide sensors, particularly 
for the removal of acid gases such as S02 and is covered by 

(patents 14ý. 

3.5.1.9.1 Formulation of Filter Materials 

The fine filter materials are blended with PTFE powder 

(10: 1) in order to bind the loose powders, giving a spongy, 

porous matrix with good diffusibility and which does not 

settle out and densify in use. 
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3.5.1.9.2 Sulphur Dioxide Filter 

Filters comprising Mn02 as the active element can remove 
S02 and H2S by oxidation and salt formation (see (2) 14 

6.3.2). A number of chemical reactions are possible: 

(i) Formation of Mn(III) oxide and sulphate 
3 S02 +6 Mn02 --> 3 S03 + 3Mn2O3 
Mn203 +3 SO3 -ý Mn2(SO4)3 

3 S02 +6 Mn02 -. Mn2(SO4)3 +2 Mn203 

.... (70) 

(ii) Formation of Mn(III) oxide and sulphite 
S02 + 2MnO2 -> S03 + Mn203 
Mn203+ 3SO2 --)- Mn2(SO3)3 

4SO2 f 2MnO2 -. Mn2(SO3)3 fS03 

.... (71) 

(iii) Participation of aerial oxygen 
8 S02+4 Mn02+3 02 -* 2SO3 + 2Mn2(SO4)3 

or 3 S02 +2 Mn02 + 02 --1. Mn2(SO4)3 

.... (72) 

(iv) Catalytic oxidation via Mn(III) compounds 
2Mn2O3 + 2SO2 -> 4MnO + 2SO3 
4MnO + 02 --> 2Mn2O3 

2SO2 + 02 -. 2SO3 .... (73) 

On the basis of the first 3 reactions above, filter capacity 

would be determined by an S02: Mn02 stoichiometric ratio 

of between 0.5 and 2 to 1. If the latter catalytic reactions 

occur to any significant extent, filter capacity would be 

considerably greater in aerobic conditions. 
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A 3F sensor was assembled with a top-plate cavity filter, 

containing 0.45g of 10: 1 mixture of Mn02 and PTFE (i. e. 4.7 

millimoles Mn02) and subjected to continuous exposure to 

a 1000 ppm S02 in air gas stream. The theoretical capacity 
based on 100% Mn02 utilisation, according to (1) Equ. (70) 

above, was 244 days in 1000 ppm S02 (calculated capillary 

current for S02 at this concentration was 22A). 

Considerably longer filter life would be expected if any of 

the other reactions were involved to any significant extent. 
By the end of the report period, the sensor had completed 

63 days at 1000ppm S02 without any significant signs of 
S02 breakthrough. 

3.5.1.9.3 Ethene Filter 

In-board filtration can be used to selectively remove ethene 

with brominated carbon cloth (see (2) 13 App. 2). Ethene 

produces a cross-interference at platinum electrodes in 

carbon monoxide sensors where it undergoes a 2-electron 

oxidation to 1,2-ethanediol: 

C2H4 + 2H20 -ý C2H4(OH)2 + 2H++2e' 

.... (74) 

The diffusion coefficient of ethene in air is 0.157cm2s"1 @ 

25°C, 1 atm. pressure, compared to 0.203 for carbon 

monoxide. Since both gases undergo 2-electron 

oxidations, the theoretical cross-sensitivity should be 77ppm 

CO. equivalent per 100ppm ethene. 

YRL have found that bromine-impregnated carbon cloth can 

remove ethene interference without affecting the carbon 

monoxide signal to any great extent. Presumably the 

unsaturated double bond reacts to form the relatively stable 

brominated adduct: 
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C2H4 + Br2 -ý C2H4Br2 .... (75) 

With a brominated carbon filter the sensor's ethene 

response was very low and stable, indicating significant 

removal of hydrocarbon on the filter and complete reaction 

of . the residue as it reached the sensing electrode. 
However, the efficiency of ethene filtration gradually 
decreased with time when the sensor was left in ambient air 

and the ethene cross-sensitivity of the test sensor increased 

from 0.09ppm CO equivalent per ppm ethene to 0.236, over 

a3 week period. One filter left out on the laboratory bench 

was almost completely deactivated over the same period. 

3.5.2 Anode Design 

The choice of anode and cathode compositions was complicated 
because of the need to satisfy a number of conflicting requirements and 
the final selection involved a number of compromises. 

High electrode activity was an important criterion for both anode and 

cathode. 'Activity' in this context refers to both the intrinsic 

electrocatalytic activity of the platinum black (kinetic factor) and the 

diffusibility of the electrolyte film in the thinly wetted region between solid 

catalyst surface, liquid electrolyte and gas phases within the electrode 

structure (mass transfer factor) (see (1) 2.6). Such electrode activities 

may be measured and compared by experimental determination of the 

currents generated at a given reactant concentration and polarisation (ie. 

difference between rest and operating potentials of an electrode), in the 

absence of other controlling factors such as capillary barrier or low 

diffusibility backing tapes (see (2) 11 Appendix 1). Experimental 

methods, using thin, Gore backing tapes to support the catalyst layer, 

are described elsewhere (see (2) 11 3.2.1). 

Generally electrode activity was promoted through the use of higher 

specific surface area (smaller particle size) platinum black, lower 
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electrode curing temperatures and higher platinum loadings. Thus 

solvent extracted, 100°C dried, Engelhard No. 4 catalysts produced the 

most active electrodes at a given platinum loading, and J. M. Standard 

black, 280°C cured, the least active. Platinum/PTFE ratio also influenced 

activity, producing broad maxima between about 3: 1 and 8: 1 for all 

platinum black types tested; ratios of 4: 1 and 6: 1 were generally chosen 

with J. M. Standard and Engelhard No. 4 blacks respectively (see (1) 

2.6.3). 

With anodes, an unrestricted (open) electrode activity towards CO 

oxidation of at least 10 times the capillary diffusion barrier sensitivity (ie. 

activity reserve > 10) was considered desirable to ensure a signal 

governed predominantly by the capillaries and which is therefore, both 

stable and of low temperature coefficient (see (2) 11 5.3). However, an 

upper limit on the anode activity reserve was imposed because of two 

other considerations: 

(i) Sensor response time, being a function of interfacial contact area 
between anode catalyst and electrolyte, generally increased with 
steps taken to improve anode activity. 

(ii) Parasitic, local cell consumption of carbon monoxide at the anode 
causes loss of signal sensitivity and may reduce linearity (see (2) 11 
5.8). Suppression of parasitic reactions can be accomplished by 

enhancing the oxygen reduction capability of the cathode relative 
to that of the anode. However, measures taken to limit the anode 

oxygen reduction capability may also affect the CO oxidation 

reaction and hence the activity reserve. 

Thin tape anodes produced limiting CO oxidation currents above air rest 

potentials (ie. in the absence of oxygen interference) which were 

apparently insensitive to the fabrication technique but increased fairly 

linearly with platinum loading in the range 7.5 to 35mg CM -2 (see (2) 12 

Table 4.1 and figs 4.1 and 4.4). This probably reflected the fact that 
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diffusion of ' CO through the thinly wetted area was the dominant 

controlling mechanism under these conditions. Below 4 to 5mg cm-2 

platinum catalyst coverage was incomplete and activity decreased 

dramatically with loading. Above 35mg CM -2 platinum, CO oxidation 

currents became more comparable with the thin tape diffusibility and 

mixed control set in with an apparent decrease in current per unit 

platinum loading. 

Oxygen reduction activity similarly increased with platinum loading but 

currents were very sensitive to fabrication technique (particularly curing 

temperature) and prehistory of the electrode (see (2) 12 Table 4.1). This 

suggested electrocatalytic activity as the controlling factor, rather than 

film diffusion. 

The final choice of anode composition, prepared from J. M. Standard 

black by the Drop Method and cured at 280°C, achieved an acceptable 

compromise between the requirements of CO oxidation activity reserve 

on the one hand and response time and oxygen reduction activity on the 

other. Anodes prepared in this way, with platinum loadings between 7.5 

and 35.0mg cm-2 , on thin Gore PTFE tape, supported limiting CO 

oxidation currents which represented between 10 and 45 times 

respectively, the 0.1 pA ppm" sensitivity of the capillary hole barrier used 

with BCC trace CO sensors. 

3.5.3 Cathode Design 

The correct balance of oxygen reduction activity between anode and 

cathode proved to be the single, most important feature in the trace CO 

sensor design and had important inter-relationships with sensor 

characteristics such as signal stability and hysteresis, baselines, 

response times and hydrogen sensitivity. 

In a two-electrode galvanic CO sensor, the sensing electrode controls 

the current whilst the counter electrode determines the operating 

potential. Platinum is a versatile catalyst, supporting both CO oxidation 
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and oxygen reduction, so that- if the sensing - electrode polarises 

appreciably below its air rest potential, some of the CO signal is lost due 

to local cell action (see (2) 12 2 and 4.2). It is therefore necessary to 

bias the oxygen activity in favour of the cathode. This can be achieved 
by increasing the cathode surface area using: 

(a) high platinum loading. 

(b) high surface area platinum black, eg. Engelhard No. 4. 
(c) solvent extraction with 2-propanol and drying at 100°C to avoid loss 

of surface area. 

Judicious application of these measures provided a means of controlling 

sensor properties such as signal stability and baseline hysteresis. 

3.5.3.1 Influence on Signal Stability 

Because the sensors have a large activity reserve (see (2) 12 4.2) 
hysteresis behaviour probably does not involve saturation of the 

catalyst per se. Rather, as there is a potential dependent, 

equilibrium oxide coverage on the electrode (see (1) 2.3.2.3 ), 

cathodic polarisation during CO exposure induces an oxide 
reduction reaction. Sensors in which the anode/cathode surface 
areas are heavily biased such that the anode operates well into 

the current limit, where no oxygen scavenging occurs (see (1) 

Fig. 11), will then exhibit a 'creep-up' effect due to a transient 

offsetting signal as the oxide coverage readjusts to the new 

potential conditions (see (1) Fig. 12, shaded area). 

The extent of the signal loss is largely governed by the degree of 

polarisation and to a lesser extent by the anode loading (see (2) 
12 7.1(a)). 
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If the sensor anode/cathode surface areas are only marginally 
biased, the signal may stray off the current limit (see (1) Fig. 13) 

and further signal loss would occur due to oxygen scavenging 
(see (1) Fig. 14, cross-hatched area). 

The extent of this signal decay depends not only on the degree 

of polarisation but also on the operating potential. 

3.5.3.2 Influence on Baseline Hysteresis 

Biasing anode/cathode oxygen activity unfortunately results in 

increased baselines, see (2) 12 Fig. 7.1 and Table 7.1; these 

results represent the long term average, settled baselines of 
different sensors, monitored at ambient temperatures close to 

20°C. 

Baselines increased almost linearly up to a loading bias of about 
10mg Pt cm-2. Between 10 and 20mg cm"2, baselines showed 

signs of levelling out, although there was a large scatter in 

behaviour, and no further increase was found at a 25mg cm"2 
loading bias. 

All sensors, despite large disparities in platinum morphology and 
loading bias, exhibited similar baseline temperature sensitivity, 

with an average energy of activation of 16.5 ± 2.5 kcal mol' (see 

(2) 12 Table 7.1). 

Baseline hysteresis after CO exposure was the reverse of the 

signal effects observed during exposure, as the surface oxide 

underwent readjustment back to the quiescent condition (see (1) 

Figs. 12 and 14). 

Unlike the anode, cathode interfacial area did not influence sensor 

response time. However, an upper limit was imposed on the 

differential oxygen reduction activity between cathode and anode 
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due to the need to ensure a minimal sensor baseline in CO-free 

air (see (2) 12 7.1(b)). 

The final choice of cathode, therefore was Engelhard No. 4 Pt 

(loading 20mg cm-2) prepared by the 'drop method' and cured at 

280°C. 

3.6 THREE-ELECTRODE DESIGN 

Hysteresis problems in 2-electrode sensors derive primarily from the voltage 

swing resulting from significant cathode polarisation (see (1) 3.5.4), since the 

sensing electrode potential closely follows that of the counter. 

These problems may be overcome by including a third, reference, electrode from 

which negligible current is drawn. Using a potentiostatic circuit enables the 

potential of the sensing electrode to be held at any desired potential with respect 
to the reference electrode, quite independently of the potential of the counter 

electrode as this changes with polarisation. 

In the past, one could not operate the sensing electrode at a fixed potential 
(without running the risk of infringing the Energetics Science patents 15ý. 

However, an earlier, now lapsed, patent('"), achieved something very close to the 

desired effect by using a potentiostatic circuit to tie the sensing electrode to 

ground via a fixed load resistor RL , using the voltage drop across RL as the 

sensor signal (see (1) Fig. 41). 

When the sensing electrode is exposed to CO its potential drops by an amount: 

nV = Ec = ICRL .... (76) 

where is is the cell current generated. The change in potential aV is effectively 
used as the output signal. 
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Figure 41 Potentiostatic control circuit for 3-electrode sensors. 
[After CTL Report No. 81/03/006, (2) 12 Fig. 8.1] 

The movement in electrode potential is only 1% that of 2-electrode sensors at RL 

= 51f) and hence hysteresis is correspondingly less. 

Commercially available CO sensors are usually biased 100-200mV above their 

air rest potential to decrease H2 cross sensitivity, but this generates large 

baselines (-10ppm CO=) with long warm up times when the circuitry is 

switched on. 

By controlling the reference electrode at ground potential (zero bias), the sensing 

electrode is effectively held at OCV if the sensing and reference electrodes are 

matched and warm up time is reduced to about 60 seconds and baselines are 

similar to those of the 2-electrode sensors. 

The reference and sensing electrodes may be shorted out when not in use to 

help maintain stability and to keep start up times to a minimum. 

The main advantage of the 3 electrode sensor is the tolerance to very much 

higher CO concentrations without showing significant hysteresis. 

The higher complexity of sensor manufacture is offset by the need to take less 

care in selecting and manufacturing the electrodes and the Pt loading on the 

counter electrode can be reduced to a minimum, thereby saving money. 
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On the other hand 3-electrode sensors require more complicated circuitry and 

are not self-powered, whereas 2-electrode sensors are. 

3.7 AUXILIARY ELECTRODE DESIGN 

One of the major problems with electrochemical CO sensors is H2 cross 
interference. Three electrode sensors are often run at 200mV bias to reduce H2 

cross interference to under 10% ie. 100ppm H2 < 10ppm CO-. 

However, the two electrode CO sensor run in self-powered mode with a fixed 

load resistor has much higher sensitivity to H2(< 40%). An auxiliary sensing 

electrode may be placed beneath the primary sensing electrode and arranged 

so that there is a gas diffusion path to it via the sensing electrode. CO, which 

reacts completely at the sensing electrode, will not be transmitted to the 

auxiliary. On the other hand, H2 , which only partially reacts, will be transmitted. 

The resulting signal from the auxiliary (or a fraction or multiple thereof) can then 

be electronically subtracted from the primary sensing electrode (CO + H2) to null 

out the H2 interference. Baselines can also be offset by this method. 

The auxiliary electrode principle can be used in both 2- and 3-electrode sensors 

and is subject to patent("'). 
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CHAPTER 4- SENSOR PERFORMANCE 

The main criteria which ultimately dictated the choice of design for a two- 

electrode trace CO sensor for BCC's needs revolved around parameters such 

as long-term signal stability, baselines (ie. resolution) and CO tolerance at the 

upper measuring range, namely 200ppm CO in air. 

Tolerance was measured using a regime agreed with BCC, based on a 20 

minute exposure to 200ppm CO in air and a 1,2 and 5 minute recovery in clean 
(CO-free) air (see (2) 12 7.2). 

During Phase 3 development, the electrode configuration was narrowed down 

to: 

Sensing Electrode (Anode) Johnson Matthey Std. Pt Black 

Pt : PTFE ratio 4: 1 

Cured at 280°C 
Loading 26-34mg cm-2 

Counter Electrode (Cathode) Engelhard No. 4 Pt Black 

Pt : PTFE Ratio 6: 1 

Loading 36-44mg cm-2 

These sensors were able to measure up to 500ppm CO and were designated 2E 

(environmental) sensors (see (2) 12 7.2). However, by Phase 4 development, it 

was evident that the 2E baselines, as judged on mature sensors, were still too 

large (1-3ppm CO equivalent at ambient temperature) to meet BCC's 

specification on accuracy. 

The final choice of electrodes therefore necessitated trading off CO tolerance (ie. 

lowering the upper measuring range from 500 to 200ppm) for the sake of lower 

baselines (0-2. Oppm CO equivalent). This was achieved by decreasing the 

anode Pt loading and by using less active catalyst on the counter electrode: 
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Sensing Electrode (Anode) Johnson Matthey Std. Pt Black 

Pt : PTFE ratio 4: 1 

Cured at 280°C 

Loading 20 - 25mg cm -2 

Counter Electrode (Cathode) Johnson Matthey Std. Pt Black 

Pt : PTFE ratio 8: 1 

Cured at 2800C 

Loading 40 - 48mg cm -2 

These sensors were designated 2T (Trace) sensors (see (2) 13 4). In general, 
the 2T sensor represented the best compromise between low baseline and CO 

tolerance to achieve the overall design objectives set out for an incipient 

combustion detector to meet BCC's needs (see (1) 1.3), which are discussed in 

detail below. 

4.1 SERVICE LIFE 

There was insufficient time to establish any significant long-term service life 

history on the final version of the 2T sensor, but earlier work on the prototype 
designs (see (2) 11 5.1) indicated an initial settling in period of about 2 months, 

with a 4-7% loss of output. In the next 2 months, output loss was much less, 

averaging 0.7-0.8% and reaching a stable output between 4-6 months. On this 

evidence, it should be possible to achieve at least 1 year service life, with the 

prospect that the sensors could actually last 2 years in service. 

4.2 OUTPUT SENSITIVITY 

A total of 42 2T sensors were made up in 3 batches and monitored over a period 
of 2 weeks for sensitivity and baseline. 

The sensors were gassed with a nominal 50ppm CO in air mixture and a mean 

sensitivity of 0.100 ± 0.01A ppm'' was obtained. There was no significant 
batch-to-batch variation in sensitivity (see (2) 13 4.2). 
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4.3 TEMPERATURE RANGE 

The baseline and span signals have different temperature characteristics and are 
therefore best discussed under separate headings as follows: 

4.3.1 Baseline Temperature Stability 

The baseline temperature dependence (0-40°C) follows an Arrhenius law 

(see (2) 11 fig. 5.7), with a mean energy of activation of 16.4 ± 2.5 kcal 

mol' (see (2) 12 Table 7.1). This means that baselines would roughly 
double per decade increase in temperature. 

The first 3 batches of prototype 2T sensors supplied to BCC for 

evaluation comprising 42 sensors in total, had a mean baseline of 1.2 ± 
0.6ppm CO equivalent with spread 0.3-3.4 ppm CO equivalent. No 

significant batch-to-batch variation in baselines was found and only three 

baselines were higher than 2.0, viz. 2.1,2.5 and 3.4ppm CO equivalent 
(see (2) 13 4.2). 

A further batch of 12 sensors averaging 0.6 ± 0.5ppm CO equivalent 
subsequently confirmed that 2T sensors could be manufactured with 
baselines less than 2ppm (see (2) 14 4.3). 

4.3.2 Span Temperature Stability 

The intrinsic span temperature coefficient of the 2T sensor is so large 

that sensors would not meet the accuracy specification of ±10% of 
signal at 0°C, so the sensors were temperature compensated by lining 

the capillaries with fine bore silicone rubber tubing with a wall : bore ratio 

of 2.00 (see (2) 12 3.1 and appendix 2). Subsequently, it was 
discovered that the compensation efficiency could be further improved 
by using split tubing, as this reduced 'end-loss' effect (see (2) 13 5.2). 
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Comparison of compensated and, uncompensated sensors may be 

made by obtaining best linear fit values of temperature coefficient 
between 10 and 400C (see (2) 14 4.2 and (1) Table 5): 

Table 5 Temperature Coefficients on Compensated and Uncompensated 2T 

sensors. 

Clearly the split sleeve compensation is very efficient. 

4.4 CALIBRATION FREQUENCY 

For fixed point monitoring, calibration frequency would depend on 3 main 
factors: 

(a) Long-term stability 
(b) Baseline temperature stability 
(c) Span temperature stability. 

Using the characteristics of these factors as discussed in (1) 4.1 and (1) 4.3 

above, it is possible to compute the maximum errors generated over a3 month 

period, assuming initial calibration at 20°C using 200ppm CO in air. 

4.4.1 Drift Calculation 

As discussed in (1) 4.1 above, the maximum drift would occur over the 

first calibration period, ie. in the first 3 months it would be <8% and 

subsequently <1%, say. Assuming calibration with 200ppm CO, this 

would translate to a maximum drift in calibration of -16ppm CO on initial 

calibration, and -2ppm CO on subsequent recalibration. 
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4.4.2 Baseline Shift Calculation - %- : 
Assuming the baseline is nulled out when the instrument is set up at 
20°C, the maximum baseline shift with temperature would be incurred 

with the largest permissable baseline, namely 2. Oppm CO equivalent 
(see (1) Table 6). 

Tt 
.: 

```>> 

........:............:...................... 
0 20 40 

`'(pP ri; C` qü1v. ` 0.5 2.0 8.0 
; q _1.5 0 6.0 

Table 6 Calculation of Maximum Baseline Shift 

with Temperature on 2T Sensors. 

4.4.3 Span Shift Calculation 

Assuming the span is calibrated with 200ppm CO in air at 20°C and a 

span temperature coefficient of 0.27% per °C (see (1) 4.2.2 and (1) Table 

7). 

Table 7 Calculation of Maximum Span Shift 

with Temperature on 2T Sensors. 

4.4.4 Maximum Error Calculation 
Assuming 3-monthly calibration with 200ppm CO in air at 20°C, the 

maximum error in service at 0°C and 40°C may be calculated as shown 
in (1) Table 8. 

127 



>; T me Tem :::: :: Maximum: rr+p s. > n.. rvice p#? m«CO eqüirr 
:.:.:..:...: months 

.:.::........ 
)... 

.... .....:.. 
Dt' Toga[ 

3 0 -8 -2 -11 -21 

40 -8 6 11 9 

6 0 -2 -2 -11 -15 
40 -2 6 11 15 

9 0 -1 -2 -11 -14 
40 -1 6 11 16 

12 0 -1 -2 -11 -14 
40 -1 6 11 16 

t ... *ý 

Table 8 Maximum Error Calculation Considering Temperature and Long- 

Term Drift on 2T Sensors. 

Because of the large initial drift, the maximum total error occurs over the 

first 3 month calibration period (-10% of FSD reading) and subsequent 

errors are less than 8% of FSD reading. 

4.4.5 Baseline Effect on Error Calculation 

For genuine trace level monitoring (0-10ppm CO), baseline shift with 
temperature is the single largest source of error, as shown (see (1) Table 

9). 

2.0 1.5 1.0 0.5 0 

>: <°ýC>><> 8.0 6.0 4.0 2.0 0 

`` ase ne Sh ft. 6.0 4.5 3.0 1.5 0 

Table 9 Calculation of Baseline Shift With Temperature 

at Various Ambient Baselines. 
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' -; The maximum baseline error of 6ppm CO equivalent may be compared- 

with the span calibration error at 40°C using 10ppm CO in air of 

<0.1 ppm CO and a long term calibration drift of -0.1 ppm CO. 

However, most sensors have baselines <1 ppm CO equivalent at 20°C, 

which limits the baseline shift error at 40°C to 3ppm CO equivalent. 

4.5 ATTITUDE STABILITY 

On inverting the sensor, the baseline stability is better than ±0.2ppm CO 

equivalent. 

4.6 SHOCK AND VIBRATION SENSITIVITY 

This test is rather subjective, but nevertheless shows how stable the sensors are 

- the sensors may be tapped on the bench surface, at all faces and all corners, 

without inducing a baseline disturbance of more than ±0.2ppm CO equivalent. 

4.7 LINEAR MEASURING RANGE 

Two sensors were calibrated with 55ppm CO in air and then exposed to 9.5ppm 

CO in air. Sensor P9 read 10.1 ppm (+6%) and sensor P18 read 9.7ppm (+2%) 

(see (2) 10 6.2.3). 

Similarly, four other 2T sensors were calibrated at 50ppm and exposed to 

209ppm CO in air for 5 minutes, when a mean reading of 205± 6ppm CO was 

obtained (see (2) 13 table 4.1). 

However, a comparison at 1000ppm CO level showed that the 2T sensor read 
low at 864ppm CO but the 3E sensor coped very well, reading 991 ppm CO (see 

(2) 13 table 7.1). 

4.8 RESPONSE TIME 

The 2T sensor 90% response times, measured on a load resistance of 500, 

ranged from 23 to 35 seconds (see (2) 13 4.3). 
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The 90% response-time dependence on load resistance (measured on sensor 
2T 158) was linear up to 1000 RL, with a slope of 0.32 sf)-' and an intercept of 
16s at zero RL (see (2) 13 fig. 6.5). Further work on a batch of 5 2T sensors 
indicated that the response time dependence was near-linear up to 500 and 

started deviating above linearity up to 100f2RL. The deviation from linearity was 
thought to be related to the sensors being relatively fresh at the time - 
approximately 1 month old (see (2) 14 fig. 4.2). These results yielded a slope 
in the range 0-500 of 0.30 S0"' and an intercept at zero RL of 16 s (see (2) 14 

4.4) which is in good agreement with the earlier findings on sensor 2T 158 

above. 

4.9 PRESSURE COEFFICIENT 

The pressure coefficients of a batch of 12 2T sensors were measured using 
49.3ppm CO in air test gas in the range 764-1100 torr. 

Output increased linearly with pressure, giving a mean pressure coefficient of 
0.030 ± 0.01% per torr (see (2) 14 4.5). 

The small but finite pressure coefficient stemmed from partial electrode control - 
ie. low activity reserve (see (1) 2.5.3). 

4.10 CARBON MONOXIDE TOLERANCE 

Four 2T sensors were subjected to a standard tolerance test by exposure to 

200ppm CO for 20 minutes and monitoring the recovery in clean air (see (2) 12 

7.2). 

Signal decay after 20 minute exposure averaged 4± 2ppm CO and baseline 

hysteresis after 5 minutes recovery in clean air averaged 0.9 ± 1.2ppm (see (2) 
13 table 4.1). 

A 2T sensor (no. 158) and a 3E sensor (no. 120) were compared using 1 000ppm 

CO in air. Although stability during exposure was good, the 2T sensor read low - 
856ppm on average compared to 991 ppm for the 3E sensor (see (2) 13 table 
7.1). The 2T sensor also suffered negative hysteresis, reading -12ppm CO at the 
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5 minute recovery stage. Clearly the 2T, sensor was not capable of handling 

1000ppm overload conditions, whereas the 3E sensor managed much better, 

registering 4ppm CO equivalent hysteresis at the 5 minute recovery stage. 

4.11 MOISTURE TOLERANCE 

During the 2 electrode design stage, the following facts regarding water balance 

were established: 

(a) Water transfer rates closely follow the theoretical relationship for control by 

diffusion through the sensor capillaries (see (1) 3.5.1.6). 
(b) The limits of workable electrolyte volume for the trace sensor are between 

0.5 and 3.5cm3, corresponding to acid concentrations of 10M and 1.4M 

respectively, when primed with 1 cm3 5M H2SO4 (see (1) 3.5.1.7). 

The remaining aspects of moisture tolerance that needed to be empirically 

established were the residence times at zero and 100% RH during which sensors 

still functioned normally and the impact of prolonged operation at the upper and 
lower humidity limits on sensor performance. 

Note: 

The humidity work was carried out on nominal 2E sensor designs. In 

comparison, the 2T design, finally adopted by BCC for trace CO measurement, 
had the same nominal sensitivity of 0.1 uA per ppm, but had larger capillaries to 

compensate for the fact that, due to the electrode design, it only operated at 

about 55% theoretical signal, compared to 2E operation nearer 95% theoretical 

signal. Thus the 2T sensor was capable of correspondingly greater water 
transfer rates. 

The 2E electrode composition also gave baselines that were generally higher 
than the 2T and this was reflected in the experimental sensors studied in this 

work. 
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4.11.1 Residence Times in Zero and 100% RH ---. I" 
Sensor E4 was primed with 1 cm3 5MH2SO4 and stored in a desiccator 

over silica gel. 

The sensor was periodically removed and weighed to determine water 
loss. Baseline and span signals were also recorded. 

The sensor ran satisfactorily for about 4 weeks in zero humidity, during 

which time the acid concentration increased to 11.6M representing a 
final volume of 0.45cm3. There were few signs of performance decline 

at this point due to electrolyte deficiency (see (2) 13 Table 5.1). 

Water loss rate followed the theoretical relationship closely, taking an 

estimated 27 days to reach 11.6M H2SO4 (assuming a mean laboratory 

ambient temperature of 20°C) compared to 29 days actually measured. 

During the 5th week the ABS coverplate and perspex base of the 

sensor fractured and the test was discontinued. The acid 

concentration had by then reached 12.7M which was the most 

probable reason for the plastics failure. The sensor continued to 

operate reasonably, albeit at a somewhat enhanced baseline and 
decreased span, although the response time was normal. The final 

electrolyte volume was 0.4cm3 (see (2) 13 5.12). 

Three sensors, equipped with a pressure release vent (see (1) 3.5.1.4) 

were primed with 1 cm3 5M H2SO4 and stored in a desiccator over 

water. Similar measurements were made as for sensor E4 above. 

Sensor PR1 leaked at the cover plate seal after 3 weeks but sensors 
E6 and E8 had stable performance at ambient temperature, 100% RH 

for 250 and 175 days respectively, without leakage. This represented 

about 80% utilization of the expansion reservoir capacity. 
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4.11.2 " Humidily Limits -ý in 
Early experiments, running the sensors at low humidity and hence at 

high acid concentrations for prolonged periods, established that 

perspex material was unstable above acid strengths of 7.5M H2SO4 

(see (2) 13 5.1.2). 

A comparison of sensors moulded out of Noryl, ABS and 

polycarbonate material, run at 10M H2SO4, identified the latter material 

as the most acid compatible. 

Moulded polycarbonate sensors, primed with 0.5cm3 10M H2SO4 and 

stored in a desiccator over the same electrolyte, gave stable, normal 

performance at ambient temperature for over 200 days, when tests 

were terminated (see (2) 13 5.1.2). 

At the other extreme, sensors primed with 2cm3 0.86M H2SO4 and 
stored in a desiccator over the same electrolyte, also gave stable, 

normal performance for over 200 days, when tests were terminated 

(see (2) 13 5.1.3). 

4.11.3 Conclusion 

Although the sensor can function normally down to an electrolyte 

volume of 0.4cm3 before catastrophic loss of signal sets in, at 0.5cm3 

(10M H2SO4) the concentrated acid starts attacking glued joints and 

seals. 

However, the practical limit is really determined by long-term span 
stability considerations, as the electrode activity deteriorates below 

0.6cm3 (8.5M H2SO4 ) due to Pt corrosion. 

Within these limits the standard sensor can operate continuously in 

relative humidities down to about 20%, without incurring any water 
balance problems. Excursions of several weeks at zero humidity can 
be sustained, but special measures may be necessary to cope with the 
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cumulative water loss when operating for frequent and/or extended. 

periods in very dry conditions. Operating times in dry conditions could 
be extended by priming with greater volumes and/or using more 

concentrated electrolyte, but at some point sensors will need to have 

their water restored by exposure to a moist atmosphere, before any 

permanent damage occurs through degradation of the plastic 
hardware, joints, seals, etc. 

The upper limit of acid volume is determined by the free space within 

the sensor reservoir, which is about 2.5cm3 in current standard sensor 
designs. Acid concentration in a standard sensor, primed with 1cm3 

5M H2SO4, at the limit of water uptake, would be about 1.5M. No 

measurable changes in sensor performance characteristics (baseline 

or span) resulted from acid dilution to this extent. The increase in 

liquid volume however, made it essential to have a pressure release 

vent. This was also necessary to release pressures caused by thermal 

cycling. The pressure release system achieved better than 80% space 

utilization for water uptake and thermal cycling between 20 and 40°C, 

provided the back of the coverplate was not completely obscured by 

electrolyte. 

Standard sensors incorporating the pressure release vent are capable 

of continuous operation in relative humidities up to about 93%, without 
incurring any water balance problems. Excursions of several months 
(depending on temperature) at higher humidities are possible but, as 

with very dry conditions, special measures may be necessary to cope 

with any cumulative water gain when operating frequently or for any 

extended periods in very moist conditions. Operating times may be 

extended by priming with smaller volumes of less concentrated 

electrolyte, but at some stage it will be necessary to restore the water 
balance by drying out, before permanent damage from leakage occurs. 
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4.12 CROSS INTERFERENCE -x-u -:: I 
The 2 electrode trace CO sensor is sensitive to various gases arising from 

processes in mines, such as ethene, NO, NO2, SO2 and H2 (see (1) 1.3.9). These 

are discussed under separate headings: 

4.12.1 Hydrogen Response 

Cross interference on a CO sensor at trace level may be expressed in 

terms of the CO equivalent response per 100ppm test gas. 

For example, if a CO sensor with sensitivity 0.100NA ppm" CO is 

exposed to 100ppm H2 and gives a signal of 2A, the CO equivalent 

response would be 2= 20ppm. 

0.100 

This may be defined in terms of a percentage cross interference, OH2: 

OH2= _x100% 
$co 

Thus for the above example: 

0H2= 2x1x 100=20% 
100 0.100 

All cross interferences may be expressed in the same way. 

Hydrogen sensitivity has been very variable not only from one design 

to the next, but also within the same sensor design (see (2) 12 table 

7.3). 

Although the mechanism of hydrogen response is incompletely 

understood, several trends are apparent. Platinum in its zero valent 

state is an extremely active catalyst for hydrogen fuel cell anodes 

operating at low overpotential -100 to 200mV vs. DHE (see (1) 2.3.2). 
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On the other hand, platinum operated near its open circuit potential in 

ambient air -105OmV vs. DHE gives only a partial response to several 
hundred ppm H2 and it is quite likely that the surface oxide at these 

potentials (see (1) 2.3.2.3) in some way passively obscures, or more 
likely actively inhibits, the reaction. One would therefore expect 
hydrogen sensitivity to be potential dependent, decreasing in some 
fashion as counter electrode loading and hence potential, increases. 

Also, since the hydrogen response is not capillary-controlled, it should 
be sensitive to anode loading. 

In order to deconvolute the cathode contribution, the product of the 

hydrogen sensitivity and the cathode loading was plotted against the 

anode loading (see (2) 12 fig. 7.5 and table 7.4). Although there was 

some scatter, the hydrogen sensitivity generally increased linearly with 

anode loading up to -30mg Pt cm -2 and then reached a plateau, 

suggesting that it had become diffusion limited. 

This is borne out by the H2 cross interference on 2T sensors, which 

range from 10-30% CO equivalent at 20°C and have a large 

temperature coefficient, indicating diffusion and electrode kinetic 

control (see (2) 13 4.6 and (1) Table 10). 

Table 10 Hydrogen Cross Interference Variation with Temperature on 2T 
Sensors. 
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= Hydrogen cross interference may be further reduced by anodisation ... 
(see (2) 14 5.4) or by biasing the sensing electrode during operation 
(see (2) 14 5.2) but both of these methods are unsatisfactory, 

anodisation blunting CO activity and bias operation leading to large 

baselines. 

4.12.2 NOX and SO2 Response 

The only method of reducing the sensitivity to these gases is to use in- 

board chemical filters (see (1) 3.5.1.9) such as MnO2 (see (1) 3.5.1.9.2), 

which proved very effective for SO2 removal in flue gas analysis, 

surviving 63 days exposure at 1000ppm SO2 without any significant 
SO2 breakthrough (see (2) 14 table 6.2). There was also some 
indication that MnO2 could remove NO2 by adsorption and NO by 

oxidation to NO2 and subsequent adsorption of the NO2 product. 

Use of MnO2 filters in 2T sensors was highly desirable in view of its 

efficiency in removing SO2 cross interference, but was only 
implemented after phase 5 development. 

4.12.3 Ethene Response 

Ethene gives a partial, sluggish response on a 2T sensor, with a great 
deal of baseline hysteresis on recovery (see (2) 13 fig. A2.2). 

Theoretical cross interference is 77%, compared to the measured 

response of 64% (see (2) 13 table A2.1). 

Work done at YRL showed that brominated carbon cloth can remove 

ethene, presumably by forming a stable brominated adduct across the 

unsaturated double bond (see (1) 3.5.1.9.3): 

CZH4 + Br2 -º C2H4Br2 Equ. (75) 

Brominated carbon cloth was supplied by YRL and incorporated into 

inboard filters in 2T sensors and tested at CTL. 
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Although these filters dropped the cross interference to 5% initially (see 
(2) 13 table A2.1), shelf life was rather short, deteriorating to 24% after 
3 weeks (see (2) 13 table A2.2). This was probably due to the Br2 
desorbing from the carbon cloth with time, as evidenced by the slightly 
negative baselines, indicating Br2 reduction. 

No further work was done on ethene cross interference. 
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CHAPTER 5- CONCLUSIONS AND FURTHER DEVELOPMENT 

The main thrust of this thesis has been concerned with the incipient combustion 
detector, the objectives for which were set out in (1) 1.3. In general most of 
these objectives such as compactness, seal integrity, long life, maintenance free 

robust operation with freedom from shock, vibration and orientation stability, 
have been achieved in the 2T sensor design. These sensors have been used 

widely and successfully in coal mines throughout the world. 

Other CO sensors were developed in parallel to cover general environmental 

monitoring (2E- and 3E-sensors) and flue gas analysis (3F sensors). The 

performance characteristics of these sensors are compared in (1) Table 11. 

Improvements in electronics, both in performance and cost, now mean that 

three-electrode sensors with their better control are favoured over two-electrode 

sensors in spite of the latter's intrinsic simplicity. 

A number of the innovatory concepts have since been further developed with 
success. Of particular value have been: 

(1) The inboard filter system, which has been used to remove cross 
interferences from H2S, SO2, NO, NO2, CI2, NH3 and C2H4 by chemical 
reaction/adsorption. 

(2) The auxiliary electrode concept using transmission of unreacted H2 from the 

sensing electrode to null out hydrogen interference; it is not possible to 

remove H2 cross interference by inboard filtration. 

(3) The auxiliary electrode principle can also be used to offset baselines; this 
is especially beneficial where biased sensors generate large baselines. 

The basic design concepts described are capable of being applied directly to the 
detection and measurement of many other gases and this in fact has been done 
with sensors being produced for H2S, SO2, NO, NO2, H21 CI2, HCN, HCI and 
PH3(see (1) App. 2). 
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APPENDIX 1 

COMPANY PROFILE 



City Technology Limited 

Company History 

City Technology Limited is the brainchild of Dr ADS Tantram who established the company with 

three other scientists, Mr JR Finbow, Dr BS Hobbs and Mr R Chan-Henry, in 1977. The 

company, which is still owned today by London's City University, was formed to apply laboratory 

technology to the development of a commercially viable oxygen sensor. 

The CTiceL® oxygen sensor was designed initially for personal safety monitoring. Increasing 

awareness of the importance of safety, spurred on by the Health and Safety at Work Act (1974) 

had produced a pressing demand for gas sensors. The sensors had to be small, robust, reliable, 

stable and inexpensive in order to meet the requirements for widespread use in the working 

environment, often under difficult conditions such as in mines and sewers. One of the most 

important requirements was for an Oxygen deficiency monitoring sensor. 

The CiTiceLs rapidly became established in the safety field and the range was extended to cover 

a variety of toxic gases. This now includes sensors for the measurement of oxygen (Oz), carbon 

monoxide (CO), hydrogen sulphide (HZS), sulphur dioxide (SO), nitric oxide (NO), nitrogen 
dioxide (NO2), chlorine (Cl j, hydrogen (H2), hydrogen cyanide (HCN), hydrogen chloride (HCI), 

and ammonia (NH2); in addition, CITIpeL® catalytic sensors/pellistors are now available for the 

detection of combustible gases. In most cases there are several models for each gas to cover 
different concentration ranges and application requirements. This technical prowess has been 

rewarded by two of the prestigious Queen's Awards for Technological Achievement; in 1982 for 

the Oxygen CmceL© and in 1985 for the toxic CITIceL© range. 

As a measure of City Technology's success, it is worth noting that in 1977 the UK was almost 

totally dependent on imports for the supply of electrochemical gas sensor equipment. However, 

by 1984 following entry into the market, City Technology was supplying some 80% of the UK 

market. Continued international growth means that today City Technology exports 80% of 

CMceL® production and holds a 1992 Queen's Award for Export Achievement. 



Market Information 

Gas sensors are mainly concerned with: 

a) Environmental monitoring e. g. is it safe to breath? 
b) Accident prevention e. g: incipient fire detection, and inerting of tankers. 
c) Combustion efficiency 

CmceL9 are sold into three main markets: - 

i) Combustion Emissions (45% Revenue) 

The monitoring of emissions from chimneys, boilers and automotive engines to ensure they meet 
national legislation e. g. TÜV in Germany and UK MOT requirements. 

Also, further to the oil crisis in the 70s, CITIcoLs are employed to analyse the efficiency of 
combustion processes i. e. to ensure that fuel consumption is minimised. 

ii) Portable Monitors (45% Revenue) 

CmceLs are used in small single or multiple gas detectors designed for individuals to use in 
their working environment e. g. miners operating underground, workmen entering confined 
spaces, etc. 

iii) Ambient Monitoring (10% Revenue) 

The detection of toxic and combustible gases and oxygen deficiency in both industrial and 
domestic environments. Remote heads are fixed at various points in industrial plants and public 
places such as underground car parks. Readings are then transmitted back to a central point 
where measurements can be analysed and appropriate action taken e. g. venting the 
underground car park. 

CITicoLs are supplied worldwide, with exports contributing approximately 80% to sales. The 
three major geographical markets for CiTiceLs are: - 

North America 40% 
Germany 30% 
UK 20% 

The remaining 10% of sales are exported to: South Africa, Italy, Spain, France, Denmark, 
Belgium, Switzerland, Netherlands, Austria, Norway, Sweden, Finland, Eastern Europe, Australia, 
New Zealand, India, Israel, Turkey and the Far East. 

This export success was recognised with Queen's Awards for Export Achievement in 1988 and 
1992. 
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11 
The Future 

The future looks busy for City Technology. 

The increasing concern for the environment and both proposed and pending legislation will 
challenge our R&D capabilities in anticipating future sensor designs. Consequently, this 
department is undergoing extensive expansion and investment. 

The single European Market and our continued efforts in South Africa, Eastern Europe, the Far 
East and Pacific Rim offer City Technology the opportunity of extending sales to the whole world. 
This will be backed by continued investment in both the production facilities and our other 
support departments. 

" City Technology designs and manufactures gas sensors. These are supplied on an OEM 
(original equipment manufacturer) basis to leading instrument companies who 
incorporate them in a wide range of advanced gas detection instruments. 

" City Technology has its own R&D facility enabling new sensors to be developed and 
improvements made to existing CITIceLs, as market requirements change. An example 
of this was City Technology's launch of the A3ME/F Carbon Monoxide ClTicaL© to meet 
the immediate demand for specific sensors required in emission monitoring, brought 

about by legislation enacted in Germany. 

" Our marketing success is a result of frequent customer visits, overseas exhibitions, freely 

available technical literature and the provision of a constantly manned after-sales and 
technical support service. We have exhibited in USA, Germany, France, Italy, Korea, and 
have participated In a very successful DTI sponsored trade mission to the Far East. 

" City Technology has established a rigorous Quality Assurance System and is approved 
to British Standards BS 5750, Pt 11, International Standards ISO 9002, and European 
Standards EN 29002. 

City Technology has exhibited in Chicago, Detroit, London, Los Angeles, Milan, New 
York, Nürnburg, Paris and Seoul in its world wide promotion of CiTiceLs, and will be 

exhibiting in Nümburg and Philadelphia in October 1992. 

City Technology consistently exhibits annual growth of between 30-40%. As a result of this in 
1990 it was necessary for City Technology to relocate from its London base to a custom made 
building in Portsmouth, Hampshire. The 66,000 ft2 City Technology Centre has been designed 
to streamline the Company's entire operation so maximising production and sales efficiency. 

Officially opened in February 1992 by the Right Honourable John Major MP, Prime Minister, the 
City Technology Centre provides an excellent base from which to respond to the challenges of 
the years ahead. 
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TYPICAL APPLICATIONS 

02 CO HS SO2 NO NO2 Cl2 H2 HCN HCI NH3 CH4 

Air Quality 

Auto Exhausts " " 

Battery Rooms 

Beer Cellars " 

Breath Analysis "`. '' " 
Chemical Industry " " " " " " " " " 

Chicken Farms 

Chimney Stacks " " " " " " " " 

Construction Sites 

Domestic Boilers " " " " " " 

Fertiliser Plants 

Fire Detection " 
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APPENDIX 2 

HISTORIC DEVELOPMENT OF SENSORS 

AT CITY TECHNOLOGY 



HISTORIC DEVELOPMENT OF SENSORS AT CITY TECHNOLOGY LIMITED 

Essentially, City Technology make sensors of two generic types, namely alkaline 

electrolyte and acid-electrolyte sensors. The former is housed in the Ever Ready 

RR size metal crimp can and the latter makes use of injection-moulded 

polycarbonate. 

(1) Oxygen Sensors 

The Wolfson Unit for Electrochemical Technology (WUET) was set up in 1971 at 
City University to undertake Contract Research and Development work. One of 

the important functions of WUET was to bridge the gap between academia and 
industry and to translate academic ideas into useful products. 

Research and development into gas sensor technology was initiated by an early 

contract with the Ministry of Defence (MOD) to develop an Air Crew Hypoxia 

sensor. When initial feasibility was established, the National Coal Board (NCB) 

sponsored work on the translation of the laboratory model into a practical, 

working sensor using battery crimp technology. Increasing awareness of the 

importance of safety, spurred on by the Health & Safety at Work Act (1975), 

produced a growing and pressing demand for gas sensors, so that in 1977 City 

University set up its own commercial company, City Technology Ltd, to 

manufacture oxygen sensors for industry. This has been a tremendous success, 

culminating in the Queen's Award for Technological Achievement in 1982, for the 

design of the oxygen sensor. A total of 729,442 oxygen sensors have been 

manufactured up to June 1992. 

(2) Development of Carbon Monoxide Sensors 

In 1979, on the strength of the success of the oxygen sensor, NCB jointly funded 

on an equal basis with CTL, work to develop a 2-electrode CO sensor for 

incipient combustion detection in mines. The innovative features of the oxygen 

sensor were retained, namely a capillary limiting barrier and very active fuel cell 

electrodes, but acid-resistant hardware had to be developed. 



This design proved to be so versatile that modification to 3-electrode design 

extended its application to cover general ambient air monitoring and flue gas 

analysis. 

The ability to reliably measure CO and 02 with simple, portable and cheap 
instruments opened up a very large market in flue gas analysis. Since its launch 

in 1982, more than 306,550 CO sensors have been manufactured. 

(3) Other Toxic Gas Sensors 

By using different combinations of catalyst, operating potential and electrolyte, 

the basic CO sensor hardware was adapted to measure H2S, SO2, NO, NO2, C121 

H2, HCN, HCI and PH3. Of these sensors, H2S (130,215) and SO2 (23,713) are 

the longest running, although chlorine recently introduced also shows 

tremendous potential. 

City Technology was awarded a second Queen's Award for Technological 

Achievement in 1985, for the design of the Toxic Gas sensor range. The 

company has also won two Queen's Awards for Export Achievement in 1988 and 

1992. 

In 1987 Frost and Sullivan (118) acknowledged City Technology as 'World 

Leaders in Gas Sensor Manufacture'. 

y 
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LIST OF PUBLICATIONS 



OXYGEN SENSORS 

MOD REPORTS 

1. HYPOXIA - Phase 1 (July 1973) 

Key Words : Survey - electrolytes and membranes 

2. AIRCREW HYPOXIA WARNING SYSTEM - Phase 2 (June 1974) 

MOD Contract No. K/A676/618 

ERA Project No. 5047 

TCU Project No. 03/91/009 

Report to MOD 

Key Words : Breadboard sensor - potassium carbonate electrolyte, fuel cell 

cathode, Pb anode, capillary barrier. 

3. AIRCREW HYPOXIA WARNING SYSTEM - Phase 2 Extension (July 1975) 

Tantram ADST 

Finbow JR 

Palmer AG 

MOD Contract No. 

ERA Project No. 

TCU Project No. 

Report to 

K/A676/618 

5047 

03/91/09 

Dr ED Wall (MOD) 

Key Words : Nuclepore porous membranes, PTFE tape Cd-plated Ni mesh, 

cylindrical sensors, volume changes and gas bubbles. 



NCB REPORTS ". "ltl 

4. OXYGEN DETECTOR FOR USE IN COAL MINES - Phase 1 (May 1976 

Tantram ADST 

Finbow JR 

Hobbs BS 

Chan-Henry R 

NCB Project No. 

ERA Project No. 

TCU Project No. 

Report to 

7B 1350/09/22 

44-01-2977 

03195/18 

Dr ED Wall (MOD) 

Key Words : Production prototype, capillary barrier, sodium hydroxide electrolyte, 

porous Pb anode, low temperature and pressure coefficient. 

5. OXYGEN DETECTOR FOR USE IN COAL MINES (Sept 19771 

Tantram ADS 

Finbow JR 

Chan-Henry R 

Hobbs BS 

CTL Report No. 

NCB Project No. 

TCU Project No. 

Report to 

77-13-010 

YB 1350/09/22 

03/95/13 

Mr LR Cooper (NCB) 

Key Words : Prototype -o. production sensor, field trials (OTOX 80) 4M KAc, Pb 

wool, temperature coefficient follows T'h law. 

6. OXYGEN SENSOR FOR USE IN COAL MINES (July 1978 

Tantram ADS CTL Report No. 78/02/001 

Chan-Henry R NCB Contract No. YB 1350/09/22 

Hobbs BS CTL Report No. 94/02/00 

Finbow JR Report to Mr LR Cooper (NCB) 

Key Words : Mesh-less FS6 electrode, fast response time, pressure sensitivity, 

exponential response to 02, discovery of Knudsen Diffusion Barrier (KDB) 

2 



7. OXYGEN SENSOR FOR USE IN COAL MINES Au 1979) 

Partial Pressure Sensor with Knudsen Diffusion Barrier 

Tantram ADS CTL Report No. 79/06/001 

Chan-Henry R NCB Contract No. YB 1350/09/22 

CTL Report No. 94.06.00 

Report to . Mr LR Cooper (NCB) 

Key Words : Knudsen diffusion theory, 'Sandwich Tape' barrier, low negative 

temperature coefficient, linear 0-21% oxygen. 

8. OXYGEN SENSOR FOR USE IN COAL MINES 

Partial Pressure Sensor with Knudsen Diffusion Barrier - Phase 2 (Sept 1980) 

Tantram ADS CTL Report No. 80/06/004 

Finbow JR NCB Contract No. YB 1350/09/22 

Hobbs BS CTL Project No. 94.06.00 

(Chan-Henry R) Report to Mr LR Cooper (NCB) 

Key Words : Knudsen barrier measures 02 partial pressure, signal « T'/', 

production sensors characterised 02 concentration, pressure and long term 

stability. 

3 



9. OXYGEN SENSOR FOR USE IN COAL MINES -^ r- 
Partial Pressure Sensor with Knudsen Diffusion Barrier - Phase 2 

Supplementary Report (June 1981) 

Tantram ADS CTL Report No. 81/06/005 

Finbow JR NCB Contract No. YB 1350/09/22 

Hobbs BS CTL Project No. 94/06/00 

(Chan-Henry R) Report to . Mr LR Cooper (NCB) 

Key Words : Previous report covered life testing up to 20 weeks; this report 

covers end of life. 



'"' CARBON MONOXIDE SENSORS "` 

10. CARBON MONOXIDE SENSORS FOR USE IN COAL MINES - Phase 1 

(Sept 1979) 

Tantram ADS CTL Report No. 79/31/002 

Chan-Henry R NCB Contract No. Y 135007/09/21 

Hobbs BS CTL Project No. 94/95/31 

Report to . Mr LR Cooper (NCB) 

Key Words : NCB cell studied, Au/NaOH system active for CO but prone to C02 

interference. Pt/H2SO4 'sandwich' design established. 

11. CARBON MONOXIDE SENSORS FOR USE IN COAL MINES - Phase 2 

(April 1990) 

Tantram ADS CTL Report No. 80/31/003 

Chan-Henry R NCB Contract No. Y135007/09/21 

Hobbs BS CTL Project No. 94.95.31 

Report to . Mr LR Cooper (NCB) 

Key Words : Small reservoir, balanced electrolyte -63% RH, law OCT, large Ar, 

wide range of measurement, wide RH range, baseline study, pre-treatment of 

components. 

5 



12. CARBON MONOXIDE SENSORS FOR USE IN COAL MINES - Phase 3 

(July 1980) Final Report 

Tantram ADS CTL Report No. 81/31/006 

Chan-Henry R NCB Contract No. Y135007/09/21 

Hobbs BS CTL Project No. 94.95.31 

Report to Mr LR Cooper (NCB) 

Key Words : 2-electrode sensors, improving tolerance and minimising hysteresis, 

3E sensor, cavity in capillary plate, Si rubber temperature compensation, 

injection moulding, minimum operating volume established. 

13. CARBON MONOXIDE SENSORS FOR USE IN COAL MINES - Phase 4 

(Sept 1982) 

Tantram ADS CTL Report No. 82/09/007 

Chan-Henry R NCB Contract No. Y135007/09/21 

Hobbs BS CTL Project No. 94.09.00 

Report to . Mr LR Cooper (NCB) 

Key Words : '2T' designation, moulded components, vents, hoods and 

chambers, diffusion collars, split Si rubber tube compensation, in-board filter, 

water balance. 

14. CARBON MONOXIDE SENSORS FOR USE IN COAL MINES - Phase 5 

(July 198 

Tantram ADS CTL Report No. 83/09/008 

Chan-Henry R NCB Contract No. Y135007/09/21 

Hobbs BS CTL Project No. 94.09.00 

Report to . Mr LR Cooper (NCB) 

Key Words : In-board filters for S02 and CO, water balance calculations, 
'residence time' models. 



M' 

CO. NOX. H2 SENSORS 

15. CARBON MONOXIDE SENSORS FOR USE IN COAL MINES - Phase 6 

First Progress Report (Oct. 1984) 

Tantram ADS CTL Report No. 84/09/009 

Chan-Henry R NCB Contract No. Y135007/09/21 

Hobbs BS CTL Project No. J009 

Gilby JH Report to . Dr J Wykes (NCB) 

Amabilino GG 

Chow T 

Key Words : Improved 2-electrode performance, H2 and NOX sensor 

development, auxiliary electrode sensors, double-headed sensors, temperature 

compensation by Si rubber and thermistors, instrument performance modelling, 

3E sensors, A2E Undergraduate Project (TC). 

16. CARBON MONOXIDE SENSORS FOR USE IN COAL MINES - Phase 6 

Second Progress Report Volume 1 (Nov 1985) Nitrogen Oxides Sensors 

Tantram ADS CTL Report No. 85/09/010 

Chan-Henry R NCB Contract No. Y135007/09/21 

Hobbs BS CTL Project No. J009 

Gilby JH Report to . Dr J Wykes (NCB) 

Amabilino GG 

Chow T 

Key Words : 3NF sensor at 200mV bias, range 1000ppm NO, 3NT sensor 

prototype at 5 times 3F sensitivity, prototype N02 sensor. 

7 



17. CARBON MONOXIDE SENSORS FOR USE IN COAL MINES - Phase 6 
Second Progress Report Volume 2 (Jan 1986) Auxiliary Electrode Carbon 
Monoxide Sensors 

Tantram ADS CTL Report No. 86/09/010 
Chan-Henry R NCB Contract No. Y135007/09/21 

Hobbs BS CTL Project No. J009 

Gilby JH Report to . Dr J Wykes (NCB) 

Stokell N 

Key Words : Pilot production A2E sensors, H2 cross-interference and baseline 

temperature coefficients improved, A2E circuits, A3E sensor prototypes. 

18. CARBON MONOXIDE SENSORS FOR USE IN COAL MINES - Phase 7 
(Feb 1987) NOX and A2E sensors 

Tantram ADS CTL Report No. 87/09/011 

Chan-Henry R NCB Contract No. Y135007/09/21 

Hobbs BS CTL Project No. J009 

Gilby JH Report to . Dr J Wykes (BCC) 

Smith GN 

Chow T 

Key Words : 3NF flue gas sensor (200mV bias) characterised, 3NT trace NO 

sensor prototypes (300mV bias), S02 enhancement of NO signal studied, silver 

oxide used to remove S02 cross-interference, 3ND (NO2) sensor characterised. 
Further development of A2E and A2E/F (split filter) production prototype to final 

production stage. 

liý 



11 19. CARBON MONOXIDE SENSORS FOR USE IN COAL MINES - Phase 7- 

(June 1987) Supplementary Investigations of A2E Carbon Monoxide Sensors 

Tantram ADS 

Chan-Henry R 

Hobbs BS 

CTL Report No. 87/09/012 

NCB Contract No. Y135007/09/21 

CTL Project No. 

Report to 

J009 

Dr J Wykes (BCC) 

Key Words : Study of separator diameter/H2 null, long-term null stability, circuit 
design for production prototypes have hydrogen null gains set between 1 and 

2. 

20. CARBON MONOXIDE SENSORS FOR USE IN COAL MINES - Phase 8 

(Sept 1988) Part 1: Auxiliary, 2-Electrode, Carbon Monoxide Sensors 

Tantram ADS 

Chan-Henry R 

Hobbs BS 

Hon CSS 

Smith GN 

CTL Report No. 88/09/012 

NCB Contract No. Y135007/09/21 

CTL Project No. 

Report to 

C009 

Dr J Wykes (BCC) 

Key Words : Final design A2E, A2E/F characterised in batches of 10 over 1 year, 
filter improves performance, baseline, tolerance and hydrogen cross-sensitivity 

better than 2E. 

I 



21. CARBON MONOXIDE SENSORS FOR USE IN COAL MINES - Phase 8 

(Sept 1988) Part 2: Nitric Oxide Sensors 

Chan-Henry R 

Hobbs BS 

Smith GN 

Hon CSS 

Latif F 

Barton S 

Key Words : 10x3NT, 10xA3NT NO sensors (300mV bias) characterised over 1 

year. Auxiliary electrode analogues much better on start-up time and baseline 

temperature stability, higher sensitivity of 3NT and A3NT have much lower filter 

capacity than 3NF sensors. 

22. CARBON MONOXIDE SENSORS FOR USE IN COAL MINES - Phase 8 

CTL Report No. 88/09/013 
NCB Contract No. Y135007/09/21 

CTL Project No. 

Report to 

C009 

Dr J Wykes (BCC) 

(Sept 1988) Part 3: Nitrogen Dioxide Sensors 

Hobbs BS CTL Report No. 88/09/014 

Chan-Henry R NCB Contract No. Y135007/09/21 

Smith GN CTL Project No. C009 

Latif F Report to Dr J Wykes (BCC) 

Key Words : 3NDH (N02) has $1 NA/ppm, better baseline and resolution than 

3ND, stagnant layer effect and moisture transient studied, 3NDH can measure 
1000ppm N02 (diesel exhaust). 

to 



23. Tantram ADS and Chan-Henry RY (1985) Oxygen Sensors with Knudsen 

Diffusion Barrier. Paper presented at Occupational Health and Safety 

Conference, London, September 1985. 

24. Hobbs BS, Tantram ADS and Chan-Henry RY (1991) Liquid Electrolyte Fuel 

Cells. In: Techniques and Mechanisms In Gas Sensing, EDs. by PT Moseley, 

JOW Norris and DE Williams. (Adam Hilger : New York). 
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APPENDIX 5 

CONVERSION TO SI UNITS 



THE INTERNATIONAL SYSTEM OF UNITS (SI) 

The International System of Units (SI)' comprises the S/ Units and the SI Prefixes. 

(110) 
The SI Units are of three kinds: base, derived, and supplementary. There is one 

and only one SI Unit for each physical quantity. The SI Units all belong to a 

single coherent system. 

The SI Prefixes are used with the help of four simple rules to form decimal 

multiples and decimal fractions of the SI Units. The decimal multiples and 

fractions so formed do not in general belong to a coherent system of units but 

are nevertheless part of the International System of Units or SI. 

A) The SI base Units 

The names and symbols of the SI base Units are as follows: 

Physical Quantity Name of SI Unit Symbol for Si Unit 

length metre m 

mass kilogramme kg 

time second s 

electric current ampere A 

thermodynamic temperature kelvin K 

amount of substance mole mol 
luminous intensity candela cd 

The orthography of the symbols for the units is international, but the spelling of 

the names of the units depends on the language within which they are used. 
The spelling given above is the authorised English-language version. 

' The cipher SI is used in all languages to denote what, in the English language, is 
called the International System of Units. It is written SI and not 'Si. ' 



B) The SI derived Units - .: 
The Si Units for derived physical quantities are those coherently derived from the 

SI base Units by multiplication and division. 

Some of the SI derived Units have special names and symbols as follows: 

Physical Quantity 

frequency 

energy 
force 

Name of SI Unit 

hertz 
joule 

newton 

power 

pressure 

electric charge 

electric potential difference 

electric resistance 

electric conductance 

electric capacitance 

magnetic flux 

inductance 

magnetic flux density 

(magnetic induction) 

watt 

pascal 

coulomb 

volt 

ohm 

siemens 

farad 

weber 

henry 

tesla 

Symbol for 

Definition of SI Unit 
Hz s-' 

J kg m2 s2 

N kg ms2=Jm' 
W kgm2sý=Js' 

Pa kg m's2=Nm2=Jm-3 
C As 

V kg m2 s4 Al =JA's' 
0 kg m2s-3 A2=VA'S'' 

S kg''ni2s3Ai=f2-, 

F A2 s`kg-'m2=AsV' 
Wb kg m2m2s2A' =Vs 
H kg m2s2A2=VA's 
T kgs2A' =Vsm2 

It will be noted that none of the special names and symbols listed above relates 
to any physical quantity involving either of the dimensionally independent 

quantities, thermodynamic temperature or amount of substance. In spite of 

general reluctance to extend the list, there is a strong case for special SI names 

and symbols at least for some of the following: 

Physical Quantity Name of SI Unit Symbol for Definition of SI Unit 

molar energy ?? kg m2 S-2 mol'' =J mol-' 

molar heat capacity 
molar entropy ?? kg m2 s2 K"' mol-' _ 
gas constant i K"' moF' 

concentration ?? mol m4 
molality ? mol kg' 

Z 



Some illustrative examples of SI derived Units formed from the SI base Units, 

and where relevant from the SI derived Units having special names and symbols, 

are given below. 

Physical Quantity Name of SI Unit Symbol for SI Unit 

wavenumber reciprocal metre m' 

area square metre m2 

volume cubic metre m3 

speed metre per second m s'' 

acceleration metre per second squared ms2 
density (mass density) kilogramme per cubic metre kg m4 
dynamic viscosity pascal second Pa s=N s m'2=kg m's'' 

kinematic viscosity, square metre 
diffusion coefficient per second m2 s"I 

surface tension pascal metre Pa m=N m"' = kg s2 

electric field strength volt per metre V m' =N C'' = kg m s3 A' 

magnetic field strength ampere per metre A m" 

electric conductivity siemens per metre S m'' = kg' m3 s3 A2 

dipole moment coulomb metre Cm=Asm 

magnetic moment ampere square metre A m2 

thermal conductivity watt per metre kelvin W m" K' = kg m s-3K' 
heat capacity, joule per kelvin J K' = kg m2 S-2 K' 

entropy 

specific heat capacity, joule per kilogramme 

specific entropy kelvin J kg'' K' = m2 S-2 K' 

molar heat capacity, joule per kelvin 

molar entropy, mole J K' mol"' = kg m2 S-2 K' mol-' 

gas constant 
concentration mole per cubic metre mol m4 

molality mole per kilogramme mol kg"' 



C) The SI prefixes 

The SI Prefixes and their symbols are as follow: 

Fraction SI Prefix Symbol Multiple SI Prefix Symbol 

10"1 deci d 

10"2 centi c 
10-3 milli m 

10a micro µ 
10-° nano n 

10"12 Pico p 

10.15 femto f 

10"18 alto a 

10 deca da 

102 hecto h 

103 kilo k 

106 mega M 

109 giga G 

1012 tera T 

T 



D) Conversion factors to SI Units for Unit Quantities used in CTL Reports 

': Ph sical Quantit .:.:::... 
i.:..:::.:: 4: ": ii::::::: ii:::. 'rý: i ä: ii'::::::.:. Y:: i. i 

< Unit Quantities 
:::: i`: 'i:::.:: i:: i:: ii f'i: i: i.: -! ":: i::::..: ' ::: {: i,: i:. O:: i": i. ' i::: 'ý: i:: ": i .: ̀i. ;.;, " 

uivalent` 

:;::: "::::;:: <;::: «>: >:: >»: <: >:: <>::. »'; <:::: <;:;: <>ý;: >:: <::: <; <: <: <: used' in : TL>'``<<'< <: :: <:...... .. .;. 
<<: 

...... 
for>. Sl: <<: >: :: <>;;::;::::: >:::::::. >'>ý>: ý>::::;: >:::: <::: >: 

length A° 100 pm 
/1 1µm 

mm m 1 mm 
cm 10mm 
m 1m 

mass mg 1 mg 
9 kg 19 

Kg 1kg 

time second (sec) ls 
minute (min) s 60s 

hour (hr) 3.6ks 

electric current nA 1 nA 
NA A 1pA 
mA 1mA 

electric charge AC C 1 µC 

thermodynamic °C K 274.16K 
temperature 

amount of mol mol 1 mol 
substance 

concentration mols cm3 mol m3 1 Mmolm3 

PPM (PPm)* (1 ppm) 

energy of kcal mol-' J mol"' 4.1868kJmol- 

activation 
diffusion coefficient cm2 s"' m2 s'' 100µm2 s"I 

pressure cm H2O 98.1 Pa 
cm Hg Pa 1.333kPa 

Atm 101.325kPa 
mBar 100Pa 
torr 133.3Pa 

* This is a ratio and is therefore dimensionless 

S 



APPENDIX 6 

HYDROGEN REFERENCE ELECTRODE DEFINITIONS 



HYDROGEN REFERENCE ELECTRODE DEFINITIONS 

H2 -º 2H+ + 2e' Ea =0-0.0591 pH - 0.0295 IogP,., (volts) 

Standard Hydrogen Electrode (SHE) 

This is accepted as the absolute zero of potential at all temperatures"". It is 

defined as the potential of the reversible H2 electrode in unit activity of H+ (pH 

= 0) in equilibrium with H2 at 1 atmosphere pressure. 

It can be considered as the primary reference. 

Normal Hydrogen Electrode (NHE) 

In practice one will usually be working with electrolytes of pH not equal to zero. 

What is significant is the potential of the electrode under study relative to the 

potential of the hydrogen electrode in the same electrolyte. This is the Normal 

Hydrogen Electrode (NHE). 

The NHE is formed by bubbling H2 over a platinised platinum electrode and is 

connected to the cell under study via a luggin capillary. 

Dynamic Hydrogen Electrode (DHE) 

The NHE is somewhat awkward to use in practice, requiring a hydrogen cylinder. 

The DHE was developed by Giner°8) to provide a much more convenient 

reference for experimental purposes. Hydrogen is generated at the reference 

electrode itself (high surface platinum) by passing a current. Because of the 

small polarisation that results, the DHE is slightly more negative than NHE by an 

amount depending on the current used. 

In the present work the DHE current was selected when calibrating so that the 
DHE was -30mV with respect to NHE. 
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