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Abstract—Reliable and reproducible estimation of vessel 

centrelines and reference surfaces is an important step for the 

assessment of luminal lesions. Conventional methods are 

commonly developed for quantitative analysis of the ‘straight’ 

vessel segments and have limitations in defining the precise 

location of the centreline and the reference lumen surface for both 

the main vessel and the side branches in the vicinity of 

bifurcations. To address this, we propose the estimation of the 

centreline and the reference surface through the registration of an 

elliptical cross sectional tube to the desired constituent vessel in 

each major bifurcation of the arterial tree. The proposed method 

works directly on the mesh domain, thus alleviating the need for 

image upsampling, usually required in conventional volume 

domain approaches. We demonstrate the efficiency and accuracy 

of the method on both synthetic images and coronary CT 

angiograms. Experimental results show that the new method is 

capable of estimating vessel centrelines and reference surfaces 

with a high degree of agreement to those obtained through 

manual delineation. The centreline errors are reduced by an 

average of 62.3% in the regions of the bifurcations, when 

compared to the results of the initial solution obtained through the 

use of mesh contraction method.  

Index Terms—Bifurcation, Centreline Estimation, CTA, 

Coronary Arteries, Elliptic Cross Sections, Shape analysis, 

Tubular Deformable Model. 

 

I. INTRODUCTION 

therosclerosis is a condition where plaques become 

clogged up in the medium and large arteries of the heart, 

which could lead to severe consequences, such as heart attack 

and stroke. Arterial bifurcations, in particular, are prone to 

developing atherosclerotic lesions because of the turbulent 

blood flow and the changing shear stress, which accounts for 

about 20-30% of all percutaneous coronary interventions [1]. 

Hence, there is a need to develop dedicated techniques to 

perform reproducible quantification and report the 

angiographic results for bifurcation lesions.  

Fractional flow reserve (FFR), a technique which measures 

the pressure differences between a stenotic artery and the 

normal segment proximal to the lesion, is considered to be the 

golden standard for the diagnosis of myocardial ischemia in 

clinical practice [2]. However, as it is an invasive procedure, it 

carries a certain amount of risk in terms of morbidity and 
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mortality. Recent advances in CT imaging offer a non-invasive 

alternative for imaging of the coronary artery within one 

breath-holding. CT produces a 3D volumetric image of the 

heart with high spatial and temporal resolutions, which allows 

the construction of patient-specific models of the coronary 

arteries for the assessment of the severity of arterial stenosis 

and potentially the means for evaluation of the functional 

significance of coronary stenoses by carrying out image-based 

haemodynamic analysis of the blood flow in the arteries [3, 4]. 

Despite the significant volume of past and on-going research, 

characterisation of local geometry information in the vicinity of 

a vessel bifurcation, such as estimation of vessel centrelines 

and reference surfaces, remains a changeling task, due to the 

irregular local geometries of the bifurcation. Conventional 

approaches determine the width of the reference vessel by 

linear interpolation of the normal vessel parts before and after 

the bifurcation, however, this does not suffice for 

reconstruction of the reference vessel in 3D. To characterise the 

morphology of the bifurcation, a closed surface representing 

the reference vessel’s boundaries is required, as it would further 

support the choice of treatment and analysis of the geometric 

changes which may occur following coronary intervention [5].   

 

Fig. 1.  The synthetic image illustrates the vessel centrelines defined based on 

the locus of the maximal circles/spheres within the vasculature. It shows that 

the detected centreline (dashed curves) deviates from the manually delineated 
one (shown in blue colour) near the bifurcation region.  

Li and Yezzi [6] modelled the vascular structure as a 4D 

curve (centreline coordinates and vessel radius) and proposed 

the use of a minimal path based method to simultaneously 

detect the vessel surface and determine the centreline between 

two manually selected seed points. Along the same research 

direction, Antiga et al. [7] proposed the extraction of 

centrelines by finding the locus of centres of maximal spheres 

inscribed into the tubular structures based on the Voronoi 

diagram of the object’s surface points. Both methods, however, 

are only able to correctly estimate the centrelines of single 

branch vessels. Inaccurate estimation may occur in the presence 

of multiple branching structures (e.g., vessel bifurcations) as 
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the centreline cannot be precisely defined by using the centre of 

the maximally embedded sphere in the bifurcation area. Fig. 1 

illustrates the problematic centrelines defined in the vicinity of 

a bifurcation using 4D curve based algorithms.   

Deformable model based methods have been widely used in 

modelling of vascular structures. Such methods allow the local 

deformation of a curve (surface) in terms of image features, 

while maintaining global smoothness, usually constrained by 

inherent physical characteristics, such as elasticity and 

stiffness. Wong and Chung [8] proposed a deformable tube 

model based method to recover the healthy shape of abnormal 

vessels in 3D angiography images. In their method, the original 

shape of a diseased vessel segment is reconstructed by 

registering a circular cross sectional tube to the vessel 

boundaries in the normal regions. However, their method is 

sensitive to initialisation, since the widths along the tube are 

determined by linear interpolation between two manually 

selected cross sections. This may lead to under- or 

over-estimation of the area of tube cross sections due to the 

non-linear nature of the vessel, thus resulting in erroneous 

estimation of vessel centrelines and the reference surface. In 

addition, the tube deformation process is carried out in the 

voxel domain, which requires upsampling of the original 

volume to calculate the image-based energy in the case of 

insufficient resolution. However, the choice of the image 

upsampling technique could dramatically affect the magnitude 

of the image-driven energy, leading to non-unique solutions for 

the tube registration problem. Similar work was also reported in 

Kang et al. [9], who proposed the classification of the region of 

interest (ROI) to one of three types, namely, normal, stenotic 

and aneurismal (corresponding to bifurcations), prior to model 

registration. In a departure from previous methods, which 

define vessel cross sections by finding the perpendicular plane 

to the tangent direction of the centreline at each point, they 

propose the determination of vessel cross sections by extracting 

the isosurface from the complementary geodesic distance field, 

which permits the cross sections of the tube to be determined 

uniquely and independently of the fitted centrelines. In this 

method, the classification of the ROI is based on the segmented 

image, which is obtained using a region-growing algorithm. 

The ‘leakage problem’, which is commonly encountered in 

region-growing based segmentation, however, could result in 

erratic classification of the ROI and subsequently degrade the 

performance of the method.   

The current work introduces an automated algorithm for 

simultaneous determination of centrelines and reference 

surfaces in coronary bifurcations. The proposed algorithm is 

based on the concept of deformable tube registration, and offers 

a number of advantages compared to previous approaches. 

Firstly, it works directly on the mesh domain, which alleviates 

the requirement for image upsampling. Secondly, contrary to 

conventional circular cross sectional tube models [8-10], which 

use linear interpolation to determine the width along the tube, 

the proposed method estimates the tubular cross sections based 

on partial information of the vessel surface to be fitted. 

Specifically, the cross sections of the tube are adaptively 

estimated by finding the best fitting ellipse to the intersection 

points (obtained by slicing the vessel surface using a cutting 

plane which is perpendicular to the centreline points) belonging 

to the desired constituent branch of the bifurcation. Thirdly, a 

weighted directional distance metric is employed to measure 

the goodness of the fit between the tube and the vessel of 

interest in the energy calculation, which facilitates tube 

registration at the desired location of the bifurcation. In 

addition, we propose the use of a hybrid optimisation method to 

minimise the tube energy functional. In particular, a local 

greedy search is used to determine the initial solutions for the 

relevant vessel locations, which are then optimised using 

dynamic programming (DP). The proposed optimisation 

strategy ensures the global optimality of the solution, and 

permits the incorporation of hard constraints, posed on the tube 

within a natural and direct framework.  

The remainder of the paper is organised as follows. In 

Section II, we describe the proposed method in detail. This is 

followed by the presentation and analysis of the results, which 

demonstrate the performance of the approach in terms of 

efficiency and accuracy. Finally, Section IV is dedicated to the 

conclusions of the research and a discussion of possible future 

directions.  

II. METHODS 

The purpose of this research is to develop a methodology for 

the extraction of an anatomically valid centreline and the 

determination of the corresponding reference surface in arterial 

bifurcations. It is assumed that the stage of vessel segmentation 

has been previously completed and the segmented vessel 

volume set is available prior to the tube registration. Without 

loss of generality, a binary image volume, with voxels labelled 

to one for vessels and zero for others, is used to represent the 

vessel segmentation. The coronary arteries are extracted using a 

generalised active contours algorithm, described in previous 

work [11]. The binary volume is then converted to its 

equivalent mesh domain by finding the zero-isosurface using 

the marching cube algorithm [12]. The flow chart of the 

proposed approach is shown in Fig. 2. It commences with the 

extraction of the initial centreline location of the arterial trees, 

by using the mesh contraction algorithm [13]. The resulting 

centreline data, C0, are represented by two arrays, holding the 

coordinates of the centreline points (nodes) and the sets of 

indices, which define the adjacent points for each node, 

respectively. Based on the initial centreline (C0), bifurcation 

points are automatically detected by finding the centreline 

nodes with more than two connected neighbours. Next, for each 

constituent vessel of the bifurcation, two endpoints located 

prior and distal to that bifurcation are selected and the 

associated cross sections are determined, respectively. In the 

following step, an initial tube model is constructed by using the 

original centreline and the associated cross sections, where the 

remaining cross sections along the centreline of the tube are 

obtained through linear interpolation between the two 

endpoints. Next, the algorithm alternates between registering 

the tube on the vessel surface and estimating the cross sectional 

shape of the tube, based on the current model. Once the fitting 

process is completed, the central axis of the tube model is 
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considered as the resulting centreline for each of the constituent 

vessel segments of the bifurcation, and the tube surface can be 

used as the reference vessel.  
     

 

Fig. 2.  Flow chart of the proposed framework.   

A. Explicit Vascular Model 

1) Deformable Tube Model: The proposed tube model, 

R(v,θ), is defined in terms of its central axis and the 

corresponding cross sections. The points v={vi, i=1,…,N} 

represent the path of the N control points (moving nodes), 

where N is adaptively chosen to ensure the distance between 

adjacent moving nodes is less than 0.5 voxels, and θ={i,, 

i=1,…,N} is an array consisting of the parameters of the 

associated cross sections. In this research, the cross section of 

the tube model is approximated as the best fitting ellipse. 

Hence, at the i-th moving node vi, the parameter vector is 

defined as θi={ai,bi,u1i,u2i,φi}, where ai and bi represent the semi 

diameters of the axes of the ellipse, u1i,and u2i 
denote the origin 

of the ellipse, and φi
 
is the tilt angle. The central axis of the tube 

is defined using a B-spline curve with N moving nodes, and the 

surface of the tube can be reconstructed from its circumferences 

(i.e., the cross sections along its centreline) by using the ball 

pivoting algorithm [14]. 

The tube registration problem is solved by minimising a 

generic active contour energy functional, defined as follows: 

                        ConExtInt EEEE                      (1) 

where η and γ are constants, controlling the influence of each 

energy term on the total tube energy. The internal energy, EInt, 

is comprised of the elasticity (v´(s)=dv/ds, where v(s) represents 

the medial axis and s is the arc length parameter) and the 

stiffness of the medial axis (v´´(s)=d
2
v/ds

2
): 
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The constants α and β are the weights for the elasticity and 

stiffness, respectively.  

The external energy functional, EExt, is derived from the 

fitting error between the tube model and the desired vessel 

segment. This poses a strong constraint on the tube based on its 

position with respect to the vessel surface, making the tube 

deform and follow the course of the vessel of interest. In this 

research, we define the external energy of the tube as follows: 

                        s
Ext dsFE )),(( θsv                        (3) 

where F(v(s),θ) is a scalar function, returning the similarity 

score between the tube model and the desired branch. The 

metric is defined as the weighted directional distance between 

the fitting tube and the vessel surface, which will be discussed 

later on in Section II-B.  

The elastic force defined in the internal energy favours small 

distances between adjacent centreline points, which will 

eventually shrink the curve to a single point. To prevent 

shrinking, an additional constraint, which encourages equal 

spacing between the centreline points, is defined as follows:  

                            
2

))(( ddECon  sv  (4) 

where d(v(s)) denotes the distance between the control point 

v(s) and its successive neighbour along the centreline, and d is 

the average distance between the centreline points. 

 B. Construction of the Reference Surface 

In this research, the reference surface for each constituent 

branch of a bifurcation is constructed through the registration of 

a deformable tube model to the desired branch. In contrast to 

conventional tubular models using fixed cross sections, the 

proposed approach adaptively updates the shape of the tube 

model, thus resulting in a more robust and accurate estimation. 

To this end, the method alternates between updating the cross 

sectional shape of the tube and registering the tube model to the 

desired branch.   

1) Estimation of the Shape of each Cross Section: The 

circular cross sectional tube is the most popular model to 

approximate vascular structures in the literature. Vessels, 

however, are elastic bodies, which can accommodate local 

deformations of the lumen due to changes in blood flow and 

intraluminal pressure within the artery. Such deformations 

cannot be accurately represented using circular cross sections. 

Hence, we use an elliptical cross sectional tube model to 

approximate the vessel surface, which provides sufficient 

degrees of freedom to accommodate the potential deformations 

and facilitates the accurate estimation of the vessel cross 

sections. An ellipse can be defined in parametric form as:  

                             ')( xx Qu                                  (5) 
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x denotes a point located on the circumference of the ellipse, u 

is the centre of the ellipse, a and b represent the semi-lengths of 

its axes, φ denotes the tilt angle, i.e., the angle between the 

x-axis of the local coordinate system and the major axis of the 

ellipse, and t is an angular parameter varying between 0 to 2π. 

The minimum distance of an arbitrary point, p= [p1, p2]
T
, to the 

circumference of the ellipse can be found by:  

Optimisation 

Initial centreline 

data (C0) 

Surface of arteries 

Binary volume 

of the artery 

CTA volume 

Tube Model Initialisation 

Isosurface Construction 

Detection of Bifurcation 

Points and Endpoints 

Selection 

Registration of the 

Tube Model to the 

Vessel Surface 

Estimation of the 

Shape of Each 

Cross Section 

Resulting Centreline 

and Reference Surface 

Vessel Segmentation 

Initial Centreline Extraction 



 4 

         
2

2

1

2

12

sin

cos
)(||min 




























tb

ta
Q

u

u

p

p
d

t
xp         (6) 

Let Pi= [(p11, p12), (p21, p22), ..., (pm1, pm2)]
 T

,
 
  (m>U, where U≥5 

with the lower value representing the number of free 

parameters of the ellipse) to be the intersection points, found by 

slicing the vessel surface using a perpendicular plane at the 

location of each moving node. The best fit ellipse, for which the 

sum of the squares of the distances to the given points is 

minimum, can be found by solving the following nonlinear 

least squares problem [15]:   
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In order to produce a smooth and anatomically correct 

generalisation of the tube model, we further constrain the area 

of the fitting ellipse, by limiting the lengths of its axes, based on 

its neighbouring slices. Specifically, we restrict the length of 

the axes of the ellipse to lie in the range of [1-c, 1+c] with 

respect to its adjacent cross sections. The constant c (fixed to 

0.2) is determined based on the viscoelastic properties of the 

vessel in [16], where the authors conducted a series of in vitro 

experiments to validate the ability of their CFD model in 

simulating blood flow within the vessel by considering the 

deformation of the vessel wall.  

Let τ= [t1,…, tm, a, b, u1, u2, φ]
T
 denote the unknown 

parameters which need to be determined. By taking into 

consideration the constraints imposed on the axes of the ellipse, 

we set up with the constrained nonlinear least squares problem 

as follows: 
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where 
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The subscript i denotes the i-th moving node along the central 

axis of the tube model. 

2) Computation of the Tube Energy: By discretising the 

energy functional defined in (1), the tube energy can be 

rewritten as: 
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Here, vi denotes the moving node of the tube centreline, and the 

external energy is calculated by F(vi,θi), which returns the 

weighted sum of squared errors between the estimated cross 

sections θi and the vessel boundaries intersected by the cross 

section at the location of the moving node vi. Due to the 

irregular geometry of the vessel cross sections at the location of 

the bifurcation, as shown in Fig. 3, not all of the intersection 

points belong to the desired branch, rather a subset of the 

intersection points may belong to another vessel branch. Hence, 

modelling the tube cross sections using all of the intersection 

points may introduce inaccuracies in defining the reference 

vessel surface. To address this issue, we make use of directional 

information to measure the difference between the model and 

the vessel boundaries, where the intersection points belonging 

to the desired vessel surface are assigned higher weights.  

A vessel bifurcation is defined as the subdivision of a vessel 

into two branches. As depicted in Fig. 4(a), it can be considered 

as a single object delineated by a left, middle and right contour, 

respectively [17]. In Fig. 4(b), we extend this concept to 3D 

images, where a bifurcation comprises three surfaces, namely 

the left, middle and right surfaces, respectively. As an example, 

let us consider the vessel segments shown in Fig. 3(a), the 

objective being to fit the tube model to the distal main branch 

(the right branch) over the bifurcation. To this end, the tube 

surface needs to be accurately registered onto the right surface 

of the vessel, as its left counterpart belongs to another 

constituent vessel of the bifurcation. However, it should be 

noted that, the terms ‘left’ and ‘right’ surface are ambiguous in 

3D space, as the definitions of ‘left’ and ‘right’ are relative to 

the viewpoint. In order to correctly register the tube model onto 

the desired surface, we propose a viewpoint-independent 

procedure to determine the surface of interest in an automated 

fashion. As illustrated in Fig. 5, we firstly find the intersection 

curve (Cinter, shown in black) between the vessel surface and the 

intersection plane (i.e., the green plane), defined by the two 

endpoints (PA and PB) together with the bifurcation point (PC), 

in the vicinity of the bifurcation area. Then, the orientation of 

the x-axis of the cross section at PA (denoted by CrossA) 

coincides with the direction of the line segment (shown in red), 

defined as the intersection between the plane CrossA and the 

curve Cinter. Next, we project the endpoint PB onto the plane 

CrossA (denoted by PB´), and the weight distribution is 

subsequently determined based on the sign of the x coordinate 

of the projection point PB´. Specifically, when PB´ is located 

on the left-hand side of plane CrossA, the ‘left’ constituent 

branch is considered as the desired branch, where it is assumed 

that the positive direction of the x-axis of a plane points to the 

‘right’.  Consequently, the intersection points located on the left 

half plane of the cross section are assigned higher weights, and 
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vice versa. In order to deal with the torsion of 3D vessels, the 

technique of rotation minimising frames [18] is employed to 

determine the local reference frame for each point of the 

centreline axis of the tube. Based on the local frame, we define 

the directional weights as: 

                    )
2

)(
exp(

2

1
2

2

2 






w   (11) 

where  is an angular parameter as illustrated in Fig. 6(a), φ is 

the tilt angle of the estimated ellipse at the current cross section, 

and σ indicates the variance of the normal distribution, which is 

chosen to be equal to 60 degrees [(see Fig. 6(b)). The weights 

assigned for fitting the left and right surfaces are shown in Figs. 

6(c) and (d), respectively. 

  

                          (a)                                             (b) 

Fig. 3.  Illustration of the intersection points taken from the vessel 

bifurcation. (a) The 3D view shows the intersection points in the vicinity of the 
vessel bifurcation. (b) The intersected points of (a) shown in a 2D projection 

image. The black dots are the vessel boundary points, while the red dot is the 

position of the centreline point at the cross section. Points on the right side of 
the centreline location are parts of the right surface, and exhibit normal vessel 

shape. Their left hand side counterparts belong to the side branch of the 

bifurcation, and are characterised by an irregular shape. 

   

                          (a)                                        (b) 

Fig. 4.  Representation of the vessel bifurcation in (a) 2D, and (b) 3D, 

respectively. The vessel bifurcation is treated as a single segment delineated by 

three contours/surfaces.  

            

Fig. 5.  Illustration of the proposed scheme for the determination of the 

desired surface. The semi-transparency structure represents the vessel surface. 

The intersection plane, defined by the endpoints PA and PB together with the 

bifurcation point PC, is shown in green. The black curve depicts the 
intersection curve between the plane and the vessel surface near the bifurcation. 

The cross section taken at endpoint PA, denoted by CrossA, is delineated by the 

blue contour, and the red line shows the x-axis direction of the cross section at 
PA.            

 
                       (a)                                             (b) 

  
                       (c)                                             (d) 

Fig. 6.  The directional weights scheme used in the registration of the tube to 

the desired surface in the bifurcation. (a) The definition of the angular 
coordinate system. (b) The weight distribution as a function of the angle, when 

fitting the right hand side surface. (c) and (d) 3D plots of the distribution of 
weights for the left and right surfaces, respectively. The estimated cross section 

is shown in blue and the height of the plot at each point indicates the relative 

magnitude of the weights.  

Given the parameter vector of the cross sectional model 

θi={ai,bi,u1i,u2i,φi}, i.e., the best fit ellipse approximating the 

cross sectional shape of the vessel at the i-th moving node, and 

the directional weights, the goodness of the fit for each cross 

section at the moving node xi can be expressed as: 
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where P = {(pj1, pj2), j=1,...,g}, denote the intersection points as 

defined in the previous section, wj is the weight associated with 

the direction tj, and g denotes the number of points on the 

intersection. 

3) Minimisation of the Tube Energy Functional: Rather than 

minimising the overall energy functional defined in (1), it is 

possible to examine the effect of the moving nodes on the 

model, by minimising the energy functional at each node in 

turn, and allowing the model to move as a whole to fit the vessel 

surface through an iterative process. One way of doing so is 

through the use of a greedy search algorithm. However, the 

optimal locations of the centreline obtained by means of the 

conventional greedy algorithm take place at each moving node, 

without considering the effect of the current node on the total 

energy of the solution. To remedy this issue, we propose the 

incorporation of dynamic programming (DP) into the 

optimisation strategy. For each moving node along the 

centreline, Num suboptimal locations, associated with the 
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lowest energy in the search space, are firstly determined using 

an exhaustive search algorithm [19]. The node energies are 

obtained by the sum of the individual energy functions as 

defined in (10). The search space is defined as a four voxels 

width square grid with a step size of 0.2 voxels, perpendicular 

to the tangential direction of the centreline at each moving 

node. Next, dynamic programming is applied to determine the 

global optimal path of the centreline among all possible paths 

connecting the suboptimal solutions. In this paper, we follow 

the terminology and notation of the work of Amini et al. [20], 

and the tube energy is then expressed as the sum of 

triple-interaction potentials as follows: 
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where 
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In general, dynamic programming is a serial multistage 

decision process, which decomposes a problem as a number of 

single stage processes, connected in series. The solution of the 

dynamic programming involves the determination of a 

sequence of optimal value functions (Si(vi+1,vi),  i=1,...,N) for 

each stage. The optimal value function is defined by two 

adjacent moving nodes on the centreline as: 

          )},,(),({min),( 111111
1
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where the moving node vi serves as the state variable in the i-th 

decision stage and is only allowed to move on the discrete grid 

within the search space. For fixed values of vi and vi+1, the value 

of the function Si(vi+1,vi) is determined by finding the minimum 

value of the right-hand side of (15), when moving the node vi-1 

over the space of its possible positions. In each decision stage, 

the optimal value function incorporates information from three 

successive moving nodes, and hence, the global optimal 

solution can be obtained recursively in terms of the consecutive 

nodes on the centreline.  

III. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, we apply our method to both synthetic and 

clinical images to demonstrate the efficiency and accuracy of 

the proposed method in defining the centreline and reference 

vessel surface over the vessel bifurcation. We firstly compare 

the proposed image-driven energy functional with its volume 

domain counterparts, i.e., Wong and Chung’s method [8] and 

the model proposed by Kang et al. [9], to show the benefits 

offered by the proposed energy formulation. The comparison 

was carried out using synthetic 3D vascular images, which 

allow testing these energy metrics on various types of vessel 

segments with known optimal solutions (i.e., ground truth 

data). Next, we validate our method in clinical CTA images and 

compare its performance against the approach reported by 

Antiga et al., in the determination of the centreline location in 

vessel bifurcations.  

A. Experiments on Synthetic Images 

The synthetic tubes were generated using the locus of the 

central axis and associated cross sections (for simplicity, the 

circular cross sectional tube model was used). The tubes were 

represented by a binary volume, in both the mesh and volume 

domains. Fig. 7 illustrates an example of a synthetic tubular 

image.  

Since the purpose of this experiment is to compare the 

performance of the aforementioned image-driven energies in 

measuring the fitness of the tube model at bifurcation areas, the 

central axis of the tube model was initialised using the optimal 

solution for all of the methods. In terms of the associated cross 

sections, they are determined by linear interpolation between 

two ending cross sections, located prior and distal to the 

bifurcation, for both Wong and Chung’s and Kang et al. 

methods. We follow the procedure described in Section II-B to 

estimate the cross sections for the proposed tube model.  

Fig. 8 depicts the change of magnitude of the image-driven 

energies with respect to the distance of the control point from 

the optimal position at the bifurcation area. In this experiment, 

the control point is only allowed to move on a square grid, 

perpendicular to the tube centreline at each control point. The 

radius of the grid was set to three voxels, and the grid size was 

chosen to be 0.2 voxels. Linear interpolation was applied for 

image upsampling in the calculation of the image energies for 

the volume domain methods. It can be seen from Fig. 8 that 

both Wong and Chung’s metric (Fig. 8(a)) and image-based 

energy designed by Kang et al. (Fig. 8(b)) have a flatten region 

near the optimal location. This is due to the fact that both 

image-driven energies are based on the degree of overlapping 

between the tube model and the vessel segment. At a vessel 

bifurcation, the cross section of the vessel, as shown in Fig. 

8(d), deviates from being circular, and thus, the same fitting 

error will be found when the cross section of the tube model is 

located within the interior of the vessel area. In this case, the 

internal energy of the tube model becomes the dominant 

contributor in these two methods in the vicinity of bifurcations, 

and thus, the location of the tube is almost entirely determined 

by this energy term. This may result to erroneous estimation of 

the reference surface and vessel centrelines, since the internal 

energy favours a ‘straight’ tube. On the contrary, only a small 

number of local minima were identified around the optimal 

position in the proposed image-driven energy formulation. As 

shown in Fig. 8(c), our image-driven energy generally 

increases with the distance from the optimal position. 

Therefore, the proposed model is capable of producing accurate 

estimation of vessel centrelines and the reference surface.  

As previously discussed in Section I, image upsampling 

(interpolation) is usually required for the calculation of the 

image-based energy in volume domain methods, when the 

in-plane resolution is insufficient. In Table I, we present a 

comparison of different interpolation methods in the 

calculation of both Wong and Chung’s image-driven energy 

and the external energy proposed by Kang and his Colleagues. 

The experiment was performed on the vessel cross section 
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shown in Fig. 7(b), and the width of the cross section was set to 

its optimal value. It can be observed from Table I that Wong 

and Chung’s image-based energy varies in the range of 0.0043 

to 0.2083, for different interpolation methods. The maximum 

value is almost 50 times greater than the minimum, indicating 

that their method is sensitive to the choice of interpolation 

scheme. In addition, image upsampling is a computationally 

expensive operation with the 3D linear interpolation taking 

approximately 0.4s, while the proposed image energy can be 

calculated within 3ms for the same cross section.  

             
                            (a)                                         (b) 

Fig. 7.  An example illustrating a synthetic tube image. (a) The volume of the 

tube, and (b) An example of the cross sectional image of the tube (at the 

location of the green plane in (a) represented in the voxel domain. Voxels 
labelled as one correspond to the tube while zero is used for the background 

(linear interpolation was applied to increase the resolution).  

   
                         (a)                                            (b) 

     
                         (c)                                            (d) 

Fig. 8.  Calculation of image-based energies near the vessel bifurcation using 

various methods. The change in the magnitude of image energies with respect 

to the distance of the moving node from the optimal solution at the bifurcation 
area, (a) Wong and Chung’s energy, (b) Kang et al. energy, and (c) The 

proposed image energy, (d) A cross sectional image of the vessel taken from the 

bifurcation area. Voxels labelled as one represent the vessel area, and the cross 
section of the tube model is delineated in blue.  

TABLE I 

EFFECT OF INTERPOLATION METHODS ON IMAGE ENERGY 

  Interpolation 

Method 
Wong and Chung’s Energy [8] 

Kang et al. 

Energy [9] 

Nearest neighbour 0.2083 0.1773 

Linear 0.0727 0.1600 

Cubic 0.0275 0.1629 

Cubic spline 0.0043 0.1501 

B. Experiments on Real Clinical Images 

Eight coronary CT volumes were acquired from St Thomas 

and Guys Hospitals, London, UK. Two were imaged with a 

16-slice CT scanner (Brilliance, Philips), and the remaining six 

volumes were acquired with a Philips ICT-256 workstation. In 

addition, a further four coronary CT studies were obtained from 

a public database [21]. The mean size of the images is 512 ×512 

× 285 with an average in-plane resolution of 0.40 mm × 0.40 

mm, and the mean voxel size in the z-axis is 0.42 mm. For each 

CTA image, four major bifurcations in the main arterial 

branches, i.e., right coronary artery (RCA), left anterior 

descending artery (LAD), left circumflex artery (LCX), and 

one large side branch of the coronaries, were chosen for 

evaluation. The ground truth centrelines were provided by our 

clinical collaborators at St Thomas and Guys’ hospitals. Three 

experts manually and independently annotated the centrelines 

of the CTA data. They were also asked to specify the radius of 

the lumen at the centreline points with a sampling of 3mm. The 

ground truth data (CTR), for which the sum of squares of the 

distances to the experts’ delineations is minimal, was 

determined by solving the associated least square problem. The 

standard deviation of the centreline CTR was found to be 

0.218mm (approximately 0.544 voxels). The tuning parameters 

of the proposed technique were empirically determined from 

the training set, which consisted of three CT studies randomly 

selected from the 12 volumetric datasets. The parameter 

settings are listed in Table II, and were fixed throughout the 

experiments.  

To quantify the accuracy of the fitting results, two distance 

metrics, namely, the Mean Square Error (MSE) between the 

ground truth centreline data and the central axis of the fitting 

tube, and the MSE between the fitting tube surface and the 

vessel boundaries, are used to validate the performance of the 

algorithms. 
TABLE II 

PARAMETER SETTINGS FOR THE PROPOSED METHOD 

Maximum number of iterations, iter 20 

Number of suboptimal solutions for each node, Num 10 

Elasticity weight, α 0.2 

Stiffness weight, β 0.2 

Constrained energy weight, γ 0.15 

Appearance energy weight, η 1 

Axis constraint, c 0.2 

Radius of the search space, rad 4 

Grid size of the search space, ds 0.2 

Maximum number of iterations, emax  100 

Stopping criterion, eps 10-6 

Circularity criterion for selection of endpoints, comp 0.9 

 

Clearly, the choice of parameters in the proposed method can 

influence the performance. For instance, the elasticity weight α 

controls the degree of stretching (length) of the centreline. 

Small values of α could increase the resistance of the centreline 

curve, while large values may result in shortening of the 

centreline. The effect of the centreline smoothness (stiffness) 

parameter β is illustrated in Fig. 9, when β is set to relatively 

small values. The image based energy term dominates the tube 

fitting process, thus leading to a jagged tube centreline (see Fig. 

9(a)). Conversely, when β takes large values, the smoothness 
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constraint becomes the major contributor to the total energy, 

thus resulting in a ‘straight’ tube, as shown in Fig. 9(b).   

The search space of the proposed method is defined as a 

square grid, given by the window’s radius (rad) and the step 

size (ds), centred at each moving point along the centreline. We 

use the vessel segment of Fig. 3(a) to evaluate the performance 

of the tube fitting process with respect to the rad and ds 

parameters. It can be seen in Fig. 10(a) that the results change 

dramatically as the search space step ds increases. This is 

because a small step size for the search space (i.e, finer 

resolution) allows a larger number of alternative locations for 

the node to move and thus improves the overall performance. 

Large values for the step size (i.e., coarser resolution), however, 

may result in the node making large and potentially erratic 

movements On the other hand, the influence of parameter rad, 

as shown in Fig. 10(b), is not as significant, since the minimum 

value of the local energy for each node is usually found within a 

small distance from its initial position. In theory, the choice of 

parameter rad should not introduce significant changes on the 

results. However, this parameter still needs to be chosen at the 

appropriate scale, with the optimal value being the width of the 

vessel, at the vessel bifurcation. The reason for this is that a 

large value for the parameter rad can increase the probability 

for an erroneous movement of the centreline and subsequently 

increase the computational cost of the optimisation procedure. 

Since the initial centreline is already near the optimal position, 

we set the radius of the search space to four voxels in order to 

improve the efficiency of the proposed algorithm.  

 

                                                     
(a)                                           (b) 

Fig. 9.  The tube centreline obtained by using extreme values for the weights 
of the smoothness constraints. The tube centrelines obtained by using the 

standard parameter settings, listed in Table II, are shown in red. The black 

curves are the centrelines obtained with (a) low, and (b) high weights for the 
smoothness (stiffness) parameter β.  

 
(a)                                              (b) 

Fig. 10.  Comparison of the tube fitting results in terms of the centreline and 

surface fitting errors. Plots (a) and (b) correspond to the influence of parameters 
ds and rad, respectively. The centreline fitting error is depicted with the dashed 

line, while the surface fitting error is illustrated by solid lines.  

Fig. 11 illustrates the results obtained from the application of 

the proposed method on four clinical datasets, where the 

semi-transparent structures (shown in blue) are the arterial 

lumen surfaces, obtained from the vessel segmentation, and the 

initial centrelines (C0) are shown in blue. The central axis of the 

fitting tube is delineated in red, while the corresponding surface 

is represented in black. Fig. 11(a) shows the fitting of the 

proposed tube model on the main vessel in the bifurcation. Fig. 

11(b) illustrates the registration of the fitting tube onto a highly 

curved side branch. Fig. 11(c) depicts the result obtained in the 

neighbourhood of a complex bifurcation, while the ability of 

our method in fitting a tapering vessel is demonstrated in Fig. 

11(d).  

 

      
(a)                                          (b) 

       
                     (c)                                          (d) 

Fig. 11.  Tube registration/fitting results obtained from major bifurcations of 

coronary arteries: (a) Main vessel in a bifurcation (b) A highly curved side 

branch, (c) A complex bifurcation and and (d) A tapering vessel. The semi 

transparent structure represents the vessel surface (blue surface). The fitting 
tube is represented by its central axis (in red) and the outer surface (in black) 

reconstructed from the cross sections. The blue line denotes the initial 

centreline estimations.  

Fig. 12 depicts the correlation between the tube energy (blue 

colour) and the MSE of the fitted centrelines (red colour) with 

varying parameter settings. Parameter rad is fixed to the 

standard value since it has little influence on the fitting results. 

We assume that parameters α and β have equal values and 

evaluate their effect when they take the values of {0.05, 0.2, 

0.5}. The grid size parameter takes the values of {0.1, 0.5, 1}, 

while the remaining parameters are set to their standard values. 

Note that to facilitate comparison, the values of the MSE and 

the tube energy were normalised between 0 and 1. By observing 

the results of Fig. 12, we can see that there is a high degree of 

correlation between the MSE of the centreline and the total tube 

energy, apart from the cases of Figs. 12 (c), (f), (h) and (i). This 

is because the combination of high smoothness constraints and 

large search space step size imposes a limit on the possible 

locations of the tube centreline. Nevertheless, the results 

provide sufficient evidence that for an appropriate choice of 

parameters, minimisation of the energy functional of the entire 

tube is equivalent to minimisation of the MSE of the fitting 

tube, and thus, it is reasonable to terminate the tube registration 



 9 

process, when the tube energy stops decreasing.   

 

Fig. 12.  Correlation between the tube energy and the MSE of the centreline for 
different parameter settings. The x-axis of the plot corresponds to the number of 

iterations, while the y-axis corresponds to the normalised MSE and tube energy 

values. The tube energy and MSE are plotted in blue and red colours, 
respectively. Plots (a)-(c) show the MSE and tube energy with parameters 

rad=2, α=β=0.05, ds={0.1, 0.5, 1}, respectively, plots (d)-(f) for rad=2, 

α=β=0.2, ds={0.1, 0.5, 1}, and plots (g)-(f) for parameters rad=2, α=β=0.5, 
ds={0.1, 0.5, 1},  respectively.  

We also compared the performance of the proposed method 

using two tube models, i.e., both circular and elliptical cross 

sectional tubes, with the centreline extraction algorithm 

reported by Antiga et al. [7], in the determination of vessel 

centrelines near bifurcations. For the circular cross sectional 

model, we initialise the tube in a similar way as in Wong and 

Chung’s method, where the central axis of the tube is defined as 

the initial centreline of the arteries and the corresponding width 

of the cross sections along the centreline is determined by linear 

interpolation between the diameters estimated at the two 

endpoints. The tuning parameters for the circular cross 

sectional tube were determined in the case of the elliptical tube, 

with the help of the same training set. The VMTK toolkit [22] 

was used to perform the centreline extraction algorithm in [7], 

and 3D slicer [23] was employed to interactively select the end 

points for each vessel segment. 

As can be observed in Fig. 13, the average MSE of the initial 

centrelines (C0) near the bifurcation is approximately 1.71 

voxels. The error can be reduced by 36% on average with the 

use of the method proposed in [7] (the MSE was found at 1.05 

voxels). For the proposed algorithm, the circular cross sectional 

tube has a similar performance to Antiga et al. method, where 

the mean MSE across the test datasets was 0.92 voxels. A 

further improvement in performance is achieved (i.e., the MSE 

is reduced by 62.3 % on average compared with the initial 

centrelines), when using the elliptical cross section tube model. 

The box and whisker plots of the centreline fitting errors of 

these models for the eight datasets are presented in Fig. 14. It 

can be seen that the dispersion of the centreline fitting errors 

when using the elliptical cross section tube model is the least. 

This indicates that the proposed elliptical cross section tube 

model has a higher degree of reproducibility and is more 

insensitive to the characteristics of the input datasets. The 

maximum fitting error of our method, when using the elliptical 

cross section tube model, was found to be equal to 0.86 voxels, 

which implies that the proposed model is able to estimate the 

locations of the centrelines over the region of the bifurcation 

with sub-voxel accuracy.  Note that datasets #1-#3 were used as 

the training set for tuning parameters for all the methods. 

 

 

Fig. 13.  Comparison of the centrelines extracted at the vicinity of the 

bifurcations using various methods.  

 

Fig. 14.  Centreline fitting errors for the clinical datasets obtained using the 

various models. 

The proposed approach was implemented in MATLAB 

(R2010b) on a standard specification PC (Dell Precision 

T3500, Inter(R) Xeon(R) CPU at 2.67GHz), and the average 

execution time was found to be 61.3 seconds for fitting each 

constituent branch of a bifurcation. VMTK, on the other hand, 

requires roughly 100s to carry out the same process (when 

implemented using 3D slicer). 

IV. CONCLUSIONS 

In this research, a novel deformable tube model based 

method was proposed to determine the vessel centreline and the 

associated reference vessel in the area of bifurcations. 

Compared to state-of-the-art algorithms, which determine the 

width of the tube in a fixed fashion, the proposed method is 

robust to initialisation, even when the initial cross section radii 

are over- or under-estimated at the end cross sections. This is 

achieved by dynamically updating the cross sectional shape 
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during the registration process. The proposed model directly 

works on the mesh domain, which eliminates the need for 

image upsampling, normally encountered in conventional 

volume domain based methods, in the case of insufficient 

image resolution. Furthermore, we propose the application of a 

hybrid optimisation scheme, combining greedy search and 

dynamic programming, to solve the tube registration problem, 

which guarantees the global optimality of the solution and 

allows the enforcement of hard constraints in a natural manner. 

The efficiency of our method was demonstrated on both 

synthetic and clinical datasets, with encouraging results. 

Experiments on synthetic tube images have shown that the 

proposed image-driven energy is more efficient and accurate in 

measuring the fitness of the tube model at bifurcation areas. For 

the real clinical data, the proposed method can produce smooth 

and morphologically correct centrelines and reference surfaces 

for both the main vessel and the side branch in the region of a 

bifurcation. The fitting results show that the proposed method 

leads to an improvement of 62.3% in accuracy (on average), 

when compared to the initial centreline locations, obtained 

through the use of mesh contraction algorithm. The application 

of the proposed tube model allows for the local geometric 

parameters of vessel bifurcations to be easily and robustly 

estimated, which in turn can be used as a starting point for 

further clinically relevant research. For instance, prediction of 

the optimal size of a stent is important in intervention treatment, 

and requires reliable measurement of the centreline length and 

the distal cross sectional diameters of the vessel segment [24]. 

Experimental results have shown that vessel centrelines 

obtained through the proposed technique have a high degree of 

agreement with the manually delineated ground truth data in the 

vicinity of bifurcations. Hence, the proposed technique may 

potentially facilitate for a more accurate prediction of the size 

of stent. In addition, the proposed system is fully automatic, 

which supports the estimation of bifurcation geometries with 

minimal user interaction. Finally, the outputs of this work may 

be particularly useful in the study of the relationship between 

local geometries and the associated risk of developing arterial 

lesions by carrying out patent-specific haemodynamic analysis 

of the blood flow in the artery [25].    
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