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ABSTRACT 

The main concern of this thesis is to develop and advance the knowledge of new 
hierarchical algorithms for optimal control of interconnected nonlinear systems. To 
achieve this, four basic hierarchical structures are developed by taking into account the 
manner in which real process measurements taken from interaction inputs are 
incorporated and utilized in the model-based optimal control problem. The structures 
are iterative in nature, and are derived using the dynamic integrated system 
optimization and parameter estimation (DISOPE) technique to take into account 
model-reality differences that may have been deliberately introduced to facilitate the 
solution of the complex nonlinear problem or due to uncertainty in the model used for 

computation. 

Three of the four basic hierarchical structures are used as a basis for developing 
hierarchical optimal control algorithms using a linear quadratic model formulation. 
Two approaches are used in the coordination problem of the algorithms, price 
coordination approach and the direct coordination approach. The algorithms are then 
implemented using two techniques, the single loop and the double loop techniques. All 
the algorithms are implemented in software and a simulation study is carried out using 
two examples to investigate their effectiveness and convergence properties.. 

The optimality of the solution provided by the structures and the algorithms described 
in this research work are established. In addition, convergence analysis is carried out to 
provide sufficient convergence conditions of the double loop algorithms. Suggestions 
for future research as a continuation of the work presented in this thesis are also made. 
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CHAPTER 1 

INTRODUCTION 

1.1 CONTROL SYSTEMS 

A control system is a system capable of monitoring and regulating the operations of a 

physical process or a plant. A control system is also defined as an interconnection of 

components forming a system configuration that will produce a desired goal. The 

system may be an economic system, a technological process, an ecological system or a 

chemical process. The goals are usually related to economic objectives, costs, 

environmental regulations or operational constraints. 
A typical control configuration consists of the controlled system and the control unit. 
The controlled system has manipulated inputs or control variables which may cause a 

change in a set of measured variables which characterized the system, called the states. 
The controlled system is also subject to disturbances which reflect the effects of the 

surrounding environment. The task of the control unit is to determine the values of 

control variables that achieve a certain specification on the behaviour of the controlled 

system. The control unit based its decisions on observed variables or measurements 
that are related to the controlled system or the disturbance or both. In the case of a 
dynamic system, the decision must also be based in addition to the above, on the state 

of the system. 
There are two major classes of control system known as open-loop and closed loop 

control systems. Open loop control systems are control systems in which the process 

output has no effect on the input quantities. In contrast, a closed-loop system utilizes 

a measure of actual output and compares it with the desired output in order to produce 

the control signal. A closed loop system is in general more capable of coping with any 

unexpected disturbance and uncertainties in process parameters than open-loop 

systems. 
Consider a system with a given mathematical representation, then the problem is to 
find a control strategy or law so that the overall feedback system is stable and meets 
some desired specifications. The specification may be stated in terms of relative 
stability, performance measure, sensitivity, response time, interaction and so on. If the 
specification is a performance criterion expressed in a suitable mathematical form, then 

16 



we can formulate the problem of determining a control law which minimizes or 

maximizes the performance criterion. In this case we have an optimal control problem 

(Athans and Falb, 1966; Kirk, 1970; Bryson and Ho; 1975; and Lewis and Syrmos, 

1995). 

Most complex processes consist of interconnected subsystems and the number of 

variables involved is large. Designing a centralized controlled system for such a 

complex process may be very difficult or almost impossible. The difficulties may be 

caused by limited storage capability in a single computer or due to a time consuming 

solution process. This problem can be overcome by using decomposition techniques 

and hierarchical structures. 

1.2 OPTIMIZATION OF INTERCONNECTED DYNAMICAL SYSTEMS 

The need for dynamic optimization arises because the system state may differ from the 

desired precomputed steady state conditions. The fluctuations in the state may occur 
due to variations in inputs, disturbances and plant parameter variation. It then may be 

necessary to vary the control signals on-line in order to bring the state vector back to 

the desired precomputed level. Here optimization implies the extremization of a 

suitable functional of state and control trajectories subject to constraints of system 
dynamics as well as constraints on states and controls. 
The centralized optimization of dynamical systems with large dimensional state vectors 
is possible, in principle, using established methods such as Dynamic Programming 

(Bellman, 1957) and Pontryagin's Maximum Principle (Pontryagin et al, 1962) but the 

increase in the number of variables introduce problems of dimensionality. The amount 

of computation necessary for dynamic optimization increases rapidly with the increase 

in the number of state variables. For example, for the linear quadratic problem , the 

computation requirements increase cubically with the increase in system order 
(Singh, 1980). Therefore application of decomposition techniques and hierarchical 

structures provide more efficient strategies for solving large dimensional problems. 
These procedures decompose the centralized problem into subsystems of an 
interconnected system, each having a lower order than the overall global problem in an 
integrated way. 
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Another problem concerns the original structure of systems which by nature are 

decomposed into subsystems or are hierarchical in structure. They often model real- 

life systems and their hierarchical structures depict systems dealing with society, 

business, management, water resources, transportation etc. These systems are 

separated geographically and their treatment requires consideration of not only 

economic cost but also issues of communication and exchange of information between 

the subsystems (Jamshidi, 1983; Tzafestas and Kapsiotis, 1995). Optimization of such 

problems requires application of hierarchical techniques to take advantage of natural 

decomposed structures. 
Numerous hierarchical algorithms have been proposed in the last two decades for 

solving optimal control problem of interconnected systems. Hierarchical control 

schemes were first introduced in the work of Mesarovic et al (1970) which provides a 

general development of hierarchical system theory. The essential idea in most 

hierarchical techniques of the literature is to solve, independently, decomposed 

subsystems at the first level for a set coordination variables which are provided by a 

second level hierarchy. At the second level the coordinating variables are iteratively 

improved using information from the first level. 

The hierarchical approach mentioned above has been very successful when handling a 

linear system with quadratic cost. In absence of state and control constraints, the 

centralized linear quadratic(LQ) optimal control problem has a relatively straight 
forward solution based on the solution of matrix differential equations or difference 

equations (Anderson and Moore, 1989; Lewis and Syrmos, 1995). In the hierarchical 

approach, the solution of each subsystem in the first level in each iteration may be 

obtained using a similar technique if subjected to the same conditions (Singh, 1980; 

Singh and Titli, 1978; Mahmoud et al, 1985; Becerra, 1994). 

Two major hierarchical approaches have been applied to hierarchical optimal control of 
linear quadratic systems. They are goal coordination and interaction prediction 

approaches. In the goal coordination approach (also known as the interaction balance 

method), the Lagrange multipliers associated with the constraints are calculated in the 

second level of the hierarchical structure using a gradient based formula. In the 
interaction prediction approach both the Lagrange multipliers and the interaction 

vectors are calculated in the second level based on formula determined from optimality 
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conditions. The values of the multipliers and interaction vectors for a current iteration 

are predicted using values of variables supplied from the first level calculated during 

the previous iteration. 

Hierarchical control techniques can also be used to solve nonlinear optimization 

problems. The solution of nonlinear optimization problems via single level techniques 

leads ultimately to the solution of a nonlinear two point boundary value problem 

(TPBVP). The TPBVP normally requires successive approximation techniques for 

their solution (Sage and White, 1977). The key idea in hierarchical optimization 

algorithms for nonlinear system based on the prediction principle is to write the 

performance criterion under minimization in separable form and to write the nonlinear 

dynamic equations in the form of a linear part, which is blockwise separable, and 

another term which contains the nonlinearities and interaction terms. The role of the 

higher hierarchical level here is to fix the non-separable part in the performance 

criterion and the nonlinear part the dynamic equation. This results in a set of low order 

dynamic optimization problems to be solved at level one of the hierarchy. The higher 

level successively approximates the specification of coordination variables to their 

optimal values. Hierarchical optimal control algorithms based on such an approach are 
described in the works of Hassan and Singh(1977), Mahmoud et al (1985) and more 

recently Tzafestas and Kapsiotis(1995). 

Another approach for solving hierarchical optimization problems of nonlinear systems 
is based on the principle of handling model-reality differences in dynamic optimization. 
The technique is an extension of the steady state optimizing technique called integrated 

system optimization and parameter estimation (ISOPE) introduced by Roberts (1979) . 

1.3 INTEGRATED SYSTEM OPTIMIZATION AND PARAMETER 
ESTIMATION (ISOPE) ALGORITHMS 

The basis for optimizing control is the economic objective which is quantified by a 

performance criterion, a steady state mathematical model of the plant and knowledge 

of relevant process constraints. The result from steady state optimization is a set of 

optimal controller set-points at which the process should be regulated until a change in 

economic parameters requires a new operating point. In order to design an algorithm 

which is capable of producing a true optimum regardless of model-reality differences, 

it is necessary to find a way to cater for the interaction between parameter estimation 
19 



and model-based optimization problems. ISOPE achieved this by introducing a 

modifier into the model-based optimization problem so that interaction between system 

optimization and parameter estimation is compensated at the end of the algorithm 
iterations. This enables the iterative technique to achieve correct optimal operating 

point of the real process in spite of model-reality differences. Since its conception in 

1979, a considerable number of ISOPE algorithms, centralized and hierarchical have 

been developed. (Roberts, Wan and Lin, 1992; Roberts, 1995). Of particular interest in 

this thesis is the ISOPE techniques extended to hierarchical process optimization with 
different feedback structures for the purpose of handling large scale problems (Brdys 

and Roberts, 1986). Various form of hierarchical ISOPE algorithms have been 

developed and its convergence conditions rigorously investigated ( Chen et al, 1986; 

Roberts, 1988; Brdys et al, 1989; Lin et al, 1991; Amini et al, 1992; Augustin and 
Roberts, 1993 ). 

ISOPE have been extended to dynamic problems by Roberts(1992). It has been termed 
DISOPE (dynamic ISOPE) and the philosophy behind the techniques remains very 

similar. A new range of applications of DISOPE techniques has been developed 

(Becerra, 1994). DISOPE has been extended to hierarchical optimal control of 
interconnected systems with a specific interaction structure by Becerra (1992) and 
Becerra and Roberts (1995). 

The development of hierarchical DISOPE algorithms for optimal control of 
interconnected nonlinear systems with a more general interaction structure using an 
approach analogous to that of Brdys and Roberts (1986), and the study of their 

convergence properties are the central areas of research of the work described in this 
thesis. 

1.5 SCOPE AND AIMS OF THE THESIS 

As mentioned previously hierarchical ISOPE is a well established techniques for 

optimizing control of an interconnected steady state process. Hierarchical DISOPE is 

still recent. Prior to this work only one hierarchical DISOPE algorithm for an 
interconnected system with a specific interaction structure had been developed 

(Becerra, 1994; Becerra and Roberts, 1995). 
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The central aim of this thesis is to develop and advance the knowledge of new 

hierarchical DISOPE algorithms based on a more general interaction structure. 

Additionally an initial study of convergence properties of a specific implementation of 

the algorithms is carried out during the research. 

The means through which the central objective is achieved are: 

* To develop hierarchical structures for optimal control of interconnected 

dynamical systems using an approach similar to that of Brdys and Roberts 

(1986) and to ascertain the optimality of the solutions produced by the 

structures. 
* To develop and implement the hierarchical algorithms for structures described 

above using two different approaches , the price coordination and direct 

coordination. 

* To compare the performance of the algorithms by carrying out example 

simulation studies. 
* To establish the optimality of the algorithms based on a linear quadratic approach 

and provide an initial investigation of the convergence properties of the 

algorithms where possible. 

The scope and original contributions of this thesis are briefly summarized below. 

Contribution to hierarchical optimal control structure and algorithm 
development 

Four basic hierarchical optimal control structures are developed by taking into account 

the manner we incorporate and utilize real process measurements from interaction 

inputs in the model-based optimal control problem (Mohd_Ismail and Roberts, 1995). 

A total of twelve hierarchical DISOPE algorithms are developed from three of the four 

basic hierarchical structures. The structures are: structure with model based interaction 

input, structure with real interaction input in parameter estimation and structure with 

real input in interaction and parameter estimation. The algorithms can be separated in 

two categories: those developed using the price coordination approach and those using 
the direct coordination approach. They are then implemented using two techniques , 
single loop and double loop techniques. The algorithms are implemented in software 
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and tested with simulation examples. These works are considered as a continuation of 

effort made to realize the potential of DISOPE algorithms for applications in various 

optimal control problems. 

Contribution to theoretical analysis 

A study of optimality of the hierarchical algorithms described above is provided in this 

thesis. An initial study of convergence properties of double loop algorithms is 

performed in this thesis. Sufficient conditions for convergence of the double loop 

algorithms are derived. The convergence analysis is important in the development of 

further theoretical studies of the hierarchical algorithms. 

Contribution to software implementation and algorithm testing 

All the algorithms proposed have been implemented in software using C++ 

programming language based on the DMatrix class structure developed by Becerra 

(1995). Simulation studies were carried out on all algorithms and a comparative 

evaluation of the algorithms is carried out. These simulation have allowed us to obtain 

a greater understanding of the hierarchical DISOPE techniques and to test 

experimentally the algorithms developed. 

1.6 OUTLINE OF THE THESIS 

An outline of the thesis is given below. 
Chapter 2: reviews the development and algorithmic details of the discrete DISOPE 

algorithm in its centralized version as first presented in Becerra (1994) and more 

recently by Becerra and Roberts (1996). The hierarchical decomposition and 

coordination procedures utilized later in the thesis are described and discussed. These 

concepts provide a background for developing hierarchical optimal control structures 

and algorithms for interconnected dynamical systems. Other different approaches for 

solving the optimal control of an interconnected dynamical system is also briefly 

described. 
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Chapter 3: describes the development of four basic hierarchical structures for optimal 

control of interconnected discrete dynamical system. The structures have different 

stages of incorporation of real interaction input. The structures are a dynamic analogy 

of structures derived by Brdys and Roberts (1986). The optimality of the hierarchical 

structures is then established by showing that the resulting converged solution of each 

model-based structures is equivalent to that of the corresponding global real optimal 

control problem (ROP). 

Chapter 4: presents a systematic formulation of hierarchical DISOPE algorithms for 

optimal control of a discrete dynamical system with model-based interaction input. 

Four algorithms are described. Two are based on a price coordination approach, while 

the other two are based on the direct coordination approach. The algorithms are 
implemented using single and double loop techniques. The double loop technique is 

developed to take advantage of the global nature of the interaction structure. It is also 

simpler to implement in software. A simulation using two examples are carried out and 

a comparative evaluation is provided. 

Chapter 5: establishes the optimality of the algorithms presented in chapter 4. In this 

chapter we also provide the sufficient convergence conditions of the double loop 

version of the algorithm described above. The conditions shows that convergence 
properties may be influenced by the length of optimization horizon and size of the price 

stepsize in the price coordination approach. 

Chapter 6: presents the development of hierarchical algorithms for interconnected 

systems with real input in interaction in parameter estimation, and interconnected 

systems, with real input in interaction and parameter estimation. Four algorithms are 
developed for each system structure using techniques first described in chapter 4. The 

optimality conditions of all eight algorithms are also determined. Sufficient 

convergence conditions for the double loop implementation also provided. The 

algorithms are implemented in software and tested using the same simulation examples 
used earlier in chapter 4, A discussion of the convergence behaviour based on the 
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simulation studies is given. A comparison of all twelve algorithms is provided at the 

end of the chapter. 

Chapter 7: draws the conclusions from the results obtained in this thesis and presents 

a series of suggestions for further work in these areas. 

1.7 SUMMARY 

The development of hierarchical algorithms based on a more general interaction 

structure is the central subject of the research work described in this thesis. The main 

objective is to advance and improve the existing knowledge of hierarchical dynamic 

optimization of interconnected systems using the hierarchical DISOPE technique, thus 

making the DISOPE approach more attractive for its implementation in various control 

problems. 

In this introductory chapter, a short discussion of control systems is described. A brief 

review of main hierarchical optimization techniques for interconnected dynamical 

systems is also presented. Moreover, a brief review of the ISOPE technique, which is 

the predecessor of the DISOPE technique has also been given. This is followed by a 
discussion of aims, scope and original contributions of the work described in this 

thesis. Finally, the contents and the structure of the thesis have been described. 
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CHAPTER 2 

HIERARCHICAL OPTIMAL CONTROL SYSTEMS, 
METHODOLOGIES AND APPROACHES 

2.1 INTRODUCTION 

The mathematical models of many physical and engineering systems are frequently of 

high dimensionality and involve interacting dynamic components. The information 

processing demand and requirements for experimenting with these models for control 

purposes are usually excessive. It is, therefore, natural to seek techniques that reduce 

the computational effort. Hierarchical approaches and methodologies of interconnected 

systems provide such techniques through manipulation of system structure in an 

appropriate way. 

One of the techniques is based on the DISOPE algorithm which was first introduced by 

Roberts (1992). The centralized DISOPE was extended to solve hierarchical systems 

with linear state interactions (Becerra, 1994) using an interaction prediction approach 

(Hassan and Singh, 1976). Mohd_Ismail and Roberts (1995) proposed optimal 

hierarchical structures for continuous systems with a more general interaction structure 

using the interaction balance principle (Mesarovic et al, 1969; Findeisen et al, 1980) 

for coordination. In the following section we will described the centralized DISOPE 

algorithm in its discrete time version as presented by Becerra (1994), and Becerra and 

Roberts( 1996). The algorithm is considered most relevant to the work described in 

this thesis as it provides the basis for algorithm development for hierarchical optimal 

control of discrete time interconnected systems. In the subsequent sections, we will 

then be looking at ways of dealing with optimization of interconnected dynamical 

systems through existing hierarchical control techniques with emphasis on its 

application to interconnected systems. 

2.2 CENTRALIZED OPTIMAL CONTROL OF DISCRETE TIME SYSTEMS. 

In this section we describe a DISOPE algorithm which have been developed to solve 
discrete time dynamic optimal control with model-reality differences. In this scheme it 

is assumed that the control input is switched between different values at discrete time 
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steps. The control signal is normally held constant between samples by a zero order 

hold. 

2.2.1 DISOPE Algorithm 

Problem formulation and solution approach. 

Consider the following fixed time real optimal control problem (ROP) 

min Q* = &(N)) +E 
lq*(x(k), 

c(k), k) 
c(k) k =l 

subject to 

x(k +1) =f* (x(k), c(k), k) ;kE [0, N-1 ] 

x(0)=xp 

xt (N) = 0; te [1, q] 

x(N) = [xq+1(N)....... xn(N)]T (2.1) 

where c(k) E ¶flm and x(k) EW are the discrete control and state vectors 

respectively, O: gin-q ->91 is a given terminal measure, q*: 917 x91'" x91-> % is the 

real performance index function and f `: 91" x Sim xR -* fit" represents reality. 

The necessary optimality conditions of the ROP are as follows (Bryson and Ho, 1969) 

vc(k)H*(. ) =0 
Vx(k)H* (. ) - p(k) =0 (2.2) 

Pi(N)= 
O(D(. ) 

;t E[g+l, n] öxt (N) 

where 

H*(")=q*(")+P(k+1)T f*(. ); 

Instead of directly solving the ROP, the following possibly simplified model-based 

optimal control problem (MOP) is considered 
N-1 

min Q= qS(x(N)) +E q(x(k), c(k), y(k)) 
c(k) k =l 

subject to 

x(k +1) =f (x(k), c(k), a(k)) ; kE [0, N-1] 
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X(O) = xp 

xi(N)=O; tE [1, q] 

Y(N) = [xq+I(N)....... xn(N)]T (2.3) 

where a(k) e93' and y (k) e 9i are discrete parameters, q: 9i" X 91m x9-. ý 93 is 

the model performance measure function and f: %n x J3'" x 91 S -> 9t" represents the 

model. 

The key to integrating system optimization and parameter estimation is to define an 
Expanded Optimal Control Problem (EOP) which, in spite of being model based, is 

made equivalent to ROP by adding the appropriate equality constraints on state 

equations and discrete weighting function values. In addition, state and control 

variables are separated between parameter estimation and optimization steps by 

introducing separation variables z(k) and v(k), for state and control respectively. The 

EOP which is equivalent to ROP is defined as 

minQ =O(x(N))+ E[q(x(k), c(k), y(k))+ 
1 

rlllc(k)-v(k)II2 
c(k) k=l 2 

+2 r II x(k) -z(k)I12 ] 

subject to 

x(k + 1) =f (x(k), c(k), a(k)) ; kE [0, N-1] 

f* (x(k), c(k), k)) =f (x(k), c(k), a(k)) 

q* (x(k), c(k), k)) = q(x(k), c(k), y(k)) 

X(O) = x0 

xi (N) = 0; tE [l, q] 

Y(N) = [xq+I(N)....... xn(N)]T (2.4) 

The convex terms proportional to rl and rl are introduced to augment the 

performance index in order to improve convergence. 
Define augmented Hamiltonian l1(. ) 
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Ii(. ) = q(x(k), c(k), y(k)) + p(k + 1)T f (x(k), c(k), a(k)) - ß(k)T c(k) 

. 25 
-2(k)T x(k)+ 2 r1IIc(k)-v(k)II2+ 2 rill x(k)-z(k)II2 

where p(k) E 91' (the costate), ß(k) e ¶R' and A (k) E 91" are Lagrange Multipliers. 

Adjoining constraints in (2.4) and using (2.5) produces 
N-1 

qi(x (N)) + {H(. ) - p(k + 1)T x(k + 1) + ß(k)T v(k) + A(k)Tz(k) 
k=0 

+p(k)T If * (z(k), v(k), k) -f (z(k), v(k), a(k))] (2.6) 

+r7(k)T [4*(z(k), v(k), k) -4(z(k), v(k), Y(k))]} 

where , u(k) E 91" and rft) e 91 are Lagrange multipliers. 

It is now desired to examine the increment in Q due to increments in all variables. It is 

assumed that the final time N is fixed. Applying Lagrange multiplier theory, at a 

constrained minimum this increment Aq should be zero (Lewis and Syrmos, 1995). 

Therefore 

_ 
N-1 

i= O(x(N))+ 2] {[ 10 H k; )]Oc(k)+[ 
ac (k)-')-p(k)r] 

&(k) 

. [A(k)T +k(k)T" - 
A-i) 

,. ý� j1(k) 
ýl(") 

_ 
ý(") ]Ez(k) az(k) az(k) az(k) 

+IQ(k)T +N(k)T 
ý'*(") 

_ 
ý(") +rXk) ]ev(k) 

av(k) av(k) av(k) av(k) 

+['9 
H(') 

p(k) T °'. f(')]Da(k)+[a H(") 
_ j7(k) 

0 9(")]DY(k) 
d'a(k) OU(k) d''(k) i l, (k) 

+[ p(k+l -x(k+l)T] ttp(k+1)+[ 
9 H(.. )+z(k)T]tA(k) 

() 

+[49 Q((k) +v(k)TJOQ(k) +[f*(")_f(")]T E, w(k) +[R*(")-9(")ai; l(k) } (2.7) 

where 
9H(. ) 

_ 
ö9(") 

+P(k+l)T 
9f(") 

_Q(k)T +r1(c(k)-v(k))T dc(k) Oc(k) öc(k) 
OH(. ) 

_ 
ö9(") 

+P(k+1)7' 
ai() 

_2(k)T+ri(x(k)`z(k))T öx(k) ax(k) 9x(k) 
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a H(. ) 
_ p(k+i)T 

_(") 
da(k) Oa(k) 

0 110 
fT 

cp(k+1) 

a H(. ) 
_ _c(k)T; aQ(k) 

a II(. ) ag(") 
19y(k) - ay(k)' 
a H(. ) 

_ -x(k)T. 9A(k) 

(2.8) 

Setting to zero the coefficients of independent increments in (2.7), we can conclude by 

inspection that ti(k) =land p(k) = p(k + 1), ke [0, N -1] , and the following 

optimality conditions are obtained: 
Stationarity 

0TH() 
äc(k) =0 (2.9) 

Costate equation 

öT H(. ) 
- p(k) =0 (2.10) 

öx(k) 

State equation 

x(k+1)=f(x(k), c(k), u(k), a(k)) ; ke[O,.. N-1] (2.11) 

Boundary conditions 

Pt (N) = vt (i. e free); t E[1, q] 

PJ(N) _ 
oo(') 

; .1 E[q+1, n] 
(2.12) 

oxj (N) 

Multiplier equations 

a(k)=- of ý(')-af (') T 
p(k+l)- ags(')- ag(') T 

dv(k) ov(k) dv(k) ov(k) 

A(k) __ 
of r (") 

_ 
of (") 

IT 
P(k+l)-- 

8qß (") 
_ 

oq(") 
T 

äz(k) äz(k) äz(k) dz(k) 

(2.13) 
plus the following equality constraints 

f*(z(k), v(k), w(k), k)= f (z(k), v(k), w(k), a(k)) (2.14) 

9*(z(k), v(k), w(k), k)= q (z(k), v(k), w(k), Y(k)) (2.15) 

29 



v(k)=c(k); k E[O, N-l] 

z(k) =x(k); kE[O, N] (2.16) 
p(k)= p(k); k E[O, N] 

where p(k) is introduced as a costate separation variable. When grouping the terms in 

Av(k) and &z(k) to derive the equations for ß(k) and 2(k) 
, the terms 

rl(c(k)-v(k)) and r2(x(k)-z(k)) were neglected because at optimum c(k)=v(k) 

and x(k) =z(k) and thus the addition of these terms had no effect on the optimality of 

the EOP. 

It is assumed that the structure of f and q is such that given 

v(k) and z(k), k E[O, N-1], the values of a(k) and y(k), k E[O, N-1] can be 

uniquely determined from (2.14) and (2.15). Observe that optimality conditions (2.9)- 

(2.11) are model-based, and that /3(k) and 2(k), k E[O, N-1] carry information on 

model-reality differences in curvature, in contrast to a(k) and y(k), k E[O, N-1] 

which carry the information on model-reality in value. 
Recall that, our task is to solve ROP described by (2.1). We have defined EOP which 
is equivalent to ROP and derived its necessary optimality conditions. Thus if we satisfy 
the optimality of EOP, we are also satisfying the optimality of ROP. It is intended to 

solve ROP by using model-based computations. Given specified values of parameters 

a(k) and y(k), multipliers ß(k) and A(k), and vectors v(k) and z(k), equations 
(2.6) and optimality conditions (2.9)-(2.11) are satisfied by solving the following 

modified model-based optimal control problem (MMOP) . 
MMOP 

N 
minQ = q5(x(N))+ {q(x(k), c(k), u(k), y(k))+ 
c(k) k=l 

-A(k)T x(k)-Q(k)T c(k)} 

subject to 

x(k+1) =f (x(k), c(k), u(k), a(k)) 

x(0)=xa 

x(N)=O; t e[1, q] 

x(N) =[xq+I(N)....... XnUVAT (2.17) 
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Therefore, using prescribed values of vectors p(k) , v(k) and z(k) we can calculate 

the functions a(k) , y(k), /3(k) and 2(k) from (2.14), (2.15) and (2.13), and if the 

solution c(k), x(k) and p(k) of MMOP obtained from these function satisfy (2.16), 

then that solution is also the solution of ROP. 

The above reasoning leads to the following centralized discrete DISOPE algorithm 

which, assuming convergence, achieves the solution of ROP through repeated 

solutions of MMOP (Roberts, 1992, Becerra, 1994, and Becerra and Roberts, 1996). 

2.1.2 Centralized Discrete time DISOPE algorithm 

Data: f (. ), q(. ), x, p A. ), N, rl, r2, and means for calculating f j* (), Kt (") and gt (. ). 

Step 0: Compute a nominal solution c(k)O, x(k)0, p(k)0. Set s=0, v(k)0 =c(k)0, 

z(k)0 =x(k)0, ß(k)ß = p(k)o; k F-[O, N] 

Step 1:. Compute the parameters a(k) and y(k), k E[O, N-1], to satisfy (2.14) and 
(2.15). This is called parameter estimation step. 

Step 2: Calculate the multipliers ß(k)s and 1%(k)s; k E[O, N-1] from equation 
(2.13). 

Step 3: With prescribed v(k)3 , z(k)3 , a(k)S , y(k)s, ß(k)s and 2(k)'ß; 

k E[O, N-l] solve the model-based modified optimal control problem to 

obtain x(k)s+', p(k)s+l; k E[O, N] and c(k)s+1; k e[O, N-1]. This is called 
the system optimization step. 

Step 4: Test the convergence and update the estimates (Equation 2.16) for the 

optimal solution of real optimization problem. If v(k)s+l =v(k)s; 
k¬[O, N-1] within a defined tolerance, stop, else set s=s+1 and repeat 

from Step 1. 
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A version of the centralized discrete time DISOPE algorithm which uses a linear model 

and quadratic performance index was developed and implemented in the C++ 

programming language by Becerra (1994) and Becerra and Roberts (1996). The choice 

of a linear quadratic model enables the solution of the MMOP to be computed using 

the backward sweep method (Bryson and Ho, 1975; Lewis, 1986). It was observed 

from the simulation results that the convexification scalar rl and the stepsize for 

updating the control signal has the greatest influence on the convergence of the 

centralized DISOPE algorithm with linear quadratic model-based problem. For details 

of derivation and discussion of simulation results see the references quoted above. 

The technique described above in deriving the centralize DISOPE algorithm will again 

be utilized in deriving algorithms for hierarchical optimal control for interconnected 

systems. In the next section we describe the hierarchical control concept and 

methodologies. 

2.3 DECOMPOSITION OF AN INTERCONNECTED CONTROL SYSTEM 

A large scale system may be described as a complex system composed of a number of 

constituents or smaller subsystems serving particular functions and sharing resources, 

which is governed by interconnected goals and constraints. In an interconnected 

system such as illustrated by figure 2.1 below, it is often impractical to design a single 

control system for the entire process. 

U 
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Consequently, it is necessary to decompose the problem into a number of smaller 

problems where the individual subsystems can be solved more easily. It is important to 

solve the individual problems in such a way that the overall objective is achieved. The 

decomposition can be achieved using hierarchical structures. 
The two main approaches are the multilayer concept (Lefkowitz, 1966) and the 

multilevel concept (Mesarovic et al, 1970). In the first concept the control task is split 
into layers, each of which acts at different time interval. In the second one the control 

of the system is divided into local goals, and local control units are introduced where 

their action is regulated by a coordinator in a higher level. Mesarovic(1970) proposed 

three different approaches to decomposition of an interconnected system which were 
derived using the two concepts of decomposition. They are multilevel hierarchical 

approach, multistrata hierarchical approach and the multilayer hierarchical approach. 

2.3.1 Multilevel Hierarchical Approach 

The essential idea in the multilevel technique is to solve, independently, decomposed 

subsystems problems at a lower level using a set variables called `coordinating 

variables' prescribed by a higher level. At this higher level, the coordinating variables 
are iteratively improved, using information from the lower level. A two level 
hierarchical scheme is illustrated in figure 2.1. 

Second Level 

al 

YSTEM 1 

COORDINATOR 

bNs (a2 

'Ns 

SYSTEM 2 

First Level 

Fig. 2.2. Structure of a two-level hierarchical system. 

TEM NS 

At the first level, Ns subsystems of the original interconnected system are shown. At 
the second level a coordinator receives the local solutions of the NS subsystems, 
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bi Ji= [1, Ns ], and then provides a new set of coordinating variables, a1, i= [1, Ns ]. 

The aim of the coordinator is to arrange the activities of the subsystems to provide a 
feasible solution to the overall problem. 
Figure 2.3 show a multilevel, multi-objective system. The control is distributed into 

levels and arranged in a hierarchy with a pyramid structure. The controllers on the first 

level control each of the interconnected subsystems, whereas the controllers on the 

second level are then assigned the task of coordinating groups of first level controllers. 
Similarly, third level control may in turn control second level units which results in a 

pyramid hierarchy. The higher levels in the hierarchy must act accordingly so that the 

global solution is obtained. 

2.3.2 Multistrata Hierarchical Approach 

In this approach the decomposition of the control system is based on the level of 
influence. The problem is separated into a number of smaller better defined 

subproblems and each of the subproblems is solved separately. Figure 2.4 illustrates 

the decomposition based on stratum, where all the strata are acting in parallel and in 

general the higher the level the less often control action takes place. 
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The main characteristics of multistrata structure are: 
i) Each strata are assigned different tasks. 
ii) The higher strata has a higher priority over the lower. 

iii) Individual strata considers a different time horizon with the higher strata having the 

longer horizon. 

Long horizon 

Medium horizon 

Short horizon 

System under control k--, 
outputs 

Figure 2.4 The decomposition of control system on the basis of strata. 

2.3.4 The multilayer hierarchical approach 

In this approach the decomposition is based on the complexity of the control tasks. 
The control task are distributed in a vertical division (Singh and Titli, 1978; Leigh, 

1992) as shown in figure 2.5 below. 
The lowest level is the of regulation layer. Its task is to maintain the chosen variables at 

the desired values despite fast-disturbances acting upon the process. The second level 

is that of optimization. The task of the control here is to determine the best values of 

chosen variables to ensure that some overall measure of the system performance is 

maximized. The parameter adaptation which is in the third level is concerned with the 

adaptation or updating of parameter values used in the mathematical models employed 
in the optimization layer. The aim of such adaptation is to maintain the validity of the 

model despite changes in the system. 
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The fourth level is that of model adaptation. This layer is responsible for selecting the 

structure and strategies for the lower layers such that an overall objective is achieved 

Model Adaptation 

structure 

Parameter Adaptation 

parameters 

Optimization 

set points 

Regulation 

control I measurements outpul inputs 
System under control 

Figure 2.5 A multilayer control strategy 

2.4 COORDINATION OF HIERARCHICAL STRUCTURES 

It was mentioned in the previous section that an interconnected system can be 
hierarchically controlled by decomposing it into a number of subsystems and then 

coordinating the resulting subproblems to transform a given integrated system into a 

multilevel one. There are many ways to carry out the transformation. Most of the 

schemes, however, are based on two distinct approaches (Jamshidi, 1983): the model- 

coordination method and goal coordination method (Mesarovic et at, 1969). For 

simplicity we described the two coordination approaches for a two subsystem static 
optimization problem. 
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2.4.1 Model Coordination Method. 

Consider the following static optimization problem (Schoeffler, 1971; Jamshidi, 1983): 

min q(x, c, u) 

subject to f (x, c, u) =0 (2.18) 

where x is a vector of state variables, c is a vector of control variables and u is the 

interaction. Suppose the problem can be decomposed into two subsystems, i. e. 

2 
q(x, c, u) =2: qi (xi, ci, ut) (2.19) 

i=1 

subjectto fi(xi, cj, u1, u2)=0; iel, 2 

The subsystems are still interconnected through vectors ui ;i ¬1,2 The objective of the 

model coordination method is to convert the integrated problem (2.18) into a two-level 

problem by fixing interaction variables ui; 10,2 at some value for example 

w1 ; ie1,2, that is 

Constraint ui wi ;ie1,2 (2.18) 

Therefore problem (2.16) can be decomposed into the following two level problems: 
First level problem(Subsystem i) 

Find Pi (w) = min q, (x� cj, uj) xI, cI 

subjectto fi(xj, c1, wl, w2) (2.19) 
Second level problem( Coordinator) 

Min P(w) = Pl (w) + P2 (w) (2.20) 
w 

The minimization is to be done, respectively, over the following feasible sets: 
Slit = {(xi, cg): fj(xt, cj, w) = 0), 1=1,2 (2.21) 

S2,1= (wt: P1(wf) exists), i=1,2 (2.22) 

The hierarchical scheme for solving problem (2.16) using model coordination approach 
is illustrated in figure 2.7. In this procedure the coordinating variables w, ;f el, 2 fix 

the interaction by adding a constraint to a mathematical model. The task of 
determining the coordinating variables is assigned to the coordinator in the second 
level. The first level problems are constructed by fixing certain interacting variables in 

the original optimization problem. 
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Min P(w) = Pf (w) + Pl (w) 
w 

Xl'Cl /7 / 
H'1 W2 

Find P1(w) = mingl(x1, c1, w1) 
xi, ci 

s. t. 
fi(xl, cl, wl, w2) =0 

x2, C2 

Find P2(w) = min g2(x2, c2, w2) 
x2 , c2 

S. t. 

f2(x2, c29WltW2) =0 

Figure 2.6 Hierarchical solution using model coordination 

2.4.2 Goal Coordination Method 

In this model based method the interaction between subsystems is removed by cutting 

all links between the subsystems. Consider again the static problem described by 

equation (2.16). Let yj be the outgoing variable from the ith subsystem, while u; 

denotes its incoming variable. Removal of all links between the subsystems implies that 

yt # ui. Under this condition, u; acts as an arbitrary manipulated variable and should 

be chosen by the optimizing subsystems. As a result the global optimization problem 
(2.16) is completely decomposed into two subsystems and their performance indices 

are separated. In order to make sure the individual subproblems yield a solution to the 

original problem, it is necessary that interaction-balance principle be satisfied, i. e. 

yj u; . (Mesarovic et al., 1969; Schoefller, 1971; Jamshidi, 1983). 

The procedure is to decompose problem (2.16) into decoupled subproblems which 

constitute the first level problem. The second level problem is to force the first level 

subproblems to a solution for which the interaction-balance holds. Mathematically, an 

additional penalty term is introduced to penalize the performance of the system if the 

interconnections do not balance. Hence the modified performance index (2.17) can be 

expressed as 
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2 

R(x, c, u, Y, l)=>{gi(xi, ci, u1)}+1T(Y-u) (2.23) 
1=1 

where I is a Lagrange multiplier known as price vector which causes any interaction 

unbalance (y - u) to affect the performance index. 

By introducing the u variables the system's equation are given by 

A (x1, c1, Y19u2) =0 (2.24) 
f2(x23, c29Y2, ul)=0 

The modified performance index (2.23) is minimize over the following feasible set: 
So = {(x, c, Y, u): fi(") =f2(") = 0) (2.25) 

Expanding the penalty term in (2.23), i. e. 

1T (Y _ u) =11 (Yi - ui) + 12 (Y2 - u2) (2.26) 

expression (2.23) can be decomposed to form individual modified performance indices. 

Therefore from equations (2.23), (2.24) and (2.25), the first level problem can be 
formulated as illustrated by figure 2.7. 
The second level problem is to manipulate the coordinating variable I in order to 
derive the two subsystems interaction to zero, Le. 

min e =min (y - u) (2.27) 

The interaction balance is held by manipulating the performance indices of first level 

problems through variable 1. Using Lagrange Duality Theorem, an algorithm for the 
coordinator can be determined and the following overall dual function can be obtained 

NS 
D(1) _ Di (1) = min q(x, c, y, u, l) (2.28) 

i=1 
It can be shown that the coordinating variable 1 can be interpreted as a vector of 
Lagrange multipliers and the second level problem can then be solved using well- 
known iterative methods such as Newton's or conjugate gradient methods (see 

GeoffTion (1971), Pearson (1971) , Singh (1981)). 
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Choose 1 to achieve interaction 
balance 

XI, c1' Y1' u2 

11 

x2, c2, Y2, u1 

mmgl(x1, c1, Yl, u2)+11 Yl -12 u2 min 42(x2, c2, Y2, u1)-Il u1+12Y2 

Si. S. t. 
fl(x1, c1, Y1, u2) =0 f2(x2, c2, Y2, u1) =0 

Figure 2.7 Hierarchical solution using goal coordination method. 

2.5 APPLICATION OF DECOMPOSITION COORDINATION TO 

DYNAMICAL SYSTEMS 
In this section we described briefly a technique developed, from the approaches 
discussed previously, for solving optimal control problem of dynamical systems. The 

two main existing techniques are goal coordination (Mesarovic et al, 1970) and 
interaction prediction techniques (Hassan and Singh, 1976). The major difference 

between them is that the coordination vector of the latter constitutes both the 
interaction vector as well as the Lagrange multipliers associated with the 
interconnection constraints. Application of goal coordination techniques to 
interconnected dynamical systems is described in Singh (1976). In the resulting 

procedure, the value of the coordinating vector is computed using a gradient-type 

method in the second level. One main disadvantage of the goal coordination approach 

stem from the slow numerical convergence at the second level and its adverse effects 

on first level calculations (Jamshidi, 1983). The interaction prediction approach does 

not have this convergence problem at the second level as the coordinator function is 

computed directly from optimality conditions of the associated Lagrangian. Note that 

this approach will be utilized in the development of hierarchical DISOPE algorithms as 
described in Chapters 4 and 6 of this thesis. In the following subsection we describe 

the application of the interaction prediction technique to a discrete interconnected 

system. 
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2.5.1 Interaction Prediction Technique 

It is desired to solve the following linear optimal control problem with a quadratic 

performance index. 

Ns N 1 
(xi (k)Q; xi(k)+cT (k)Ric; (k)}} min { Q* =J] 

ci(k), x1(k) i=1 k=12 

subject to 
xj(k+1)=Ajx; (k)+B; c; (k)+D; u; (k) (2.23) 

xi (0) = xio 
NS 

uj(k) =E {Cjc j(k)+Wjx j(k)); i E[1, NS], k E[l, N] 
j=1 

where x, (k) E% nl 
, c, (k) e ¶O and u, (k) e%r' are the state, control and 

interaction vectors respectively. The interaction vector u, (k) represents the 

interactions between the ith subsystem and the remaining (N"1) subsystems. The 

integer, 
. r, represents the number of incoming interactions to the ith subsystem. 

Q; z0, R1 >0 are weighting matrices of appropriate dimensions. Al, B1 and Di are 

coefficients matrices of appropriate dimensions. Cy and Wy are appropriate 

interconnection matrices between control cl (k) , state x, (k) and the state x1 (k+1) 

respectively. 

The Lagrangian of the problem defined above is given by 

N, N, N1TT 
L= ýLi = {ý-{x; (k)Q; x1(k)+cj (k)R; c; (k)} 

i=1 1=1 k=12 
N 

+11 (k)ui(k)-11ý (k){Cjici(k)+K'jixi(k)} (2.24) 

j=1 

pT(k+1)x; (k+l)-A; xf(k)+B; c; (k)+D; u; (k) 

It is assumed that Lagrangian L is additively separable for u, (k) and 11(k) trajectories. 

This implies that for any given u1(k) and 11(k), there are Ns independent 

minimization problems. A necessary condition for this is 
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OL OL 
oui all 

(2.24) 

which result in 

l, (k)+D, T p; (k+1)=0 (2.25) 

N, 
u1(k)- (C, jcj(k)+Wjx j(k)} =0 (2.26) 

j=1 

Therefore the coordination at the second level in this interaction prediction scheme is 

given by 

1Il(k) s+l -DTp1(k+1) 
S 

Jul) 

E {Cl "c " (k) +J "x " (k)} 
(2.27) 

_1 
JJJJ 

for k= [1, NS ]and s is the iteration number. 

For a known set of augmented interaction vectors [IT (k) I UT (k)], the ith subsystem 
Hamiltonian is 

H1 (, ) =2 {xi (k)Q; xj(k)+ci (k)R; c; (k)) 

Ns 
+1T (k)ui(k)-llJ (k){Cj1ci(k)+Wjixi(k)} (2.28) 

j=1 

+p? '(k+1)xi(k+1)-A1x1(k)+Bic1(k)+Diu1(k) 

The necessary condition (Lewis and Syrmos, 1995) for optimality is given by 
VHxi(k) -pi(k) =0i. e 

Ns 

P1(k)=Q, xt(k)+ATP, (k+1)-Z (lj (k)Wj, )T; p, (N5)=0 (2.29) 
j=1 

VH 
, (k) =oi. e 

N 
c(k)=-Rl 

1Bj 
pi(k+1)+Ri 

! (lß (k)Cji)T (2.30) 
j =l 

OH p, (k+1) =0i. e. 

x, (k+1)=A; x; (k)+Bic; (k)+D; ui(k), x, (0)= 
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Equations (2.29) and (2.31) with (2.30) constitute a two point boundary value problem 

the solution of which will give the optimum estimates of state xi (k) and control c; (k) 

for the ith subsystem for given values of u; (k) and l(k) ; ie [l, Ns]. The solution of 

the TPBVP can be obtained using backward sweep method (Bryson and Ho, 1975; 

Lewis and Syrmos, 1995). 

From the above analysis the interaction prediction technique for optimal control of 
interconnected system can be summarized as follows: 

Algorithm 2.5.1 Interaction prediction technique for interconnected system. 

Step 1: At level 2, set s=1, assume initial values for ui (k) = ut (k) and 1i (k) =1i (k). 

Send them to level 1, i e[1, Ns] and k E[1, N]. 

Step 2: Solve Ns TPBVP defined by (2.29)-(2.3 1) to obtain the optimum estimates of 
state xi (k) and control ci (k) ;i E[l, N, 5 ] and k ¬[I, N] 

Step 3: Test for convergence of (2.25) and (2.26) If within defined tolerance, then 

stop. Otherwise update u, (k) and lj (k) ;IE[1, Ns] using (2.27), set s= s+l, 

and then go to step 2. 

It is noted that the second level convergence of the interaction prediction method is 

very fast( Singh and Hassan, 1976, Jamshidi, ! 983) when compared to the goal 
coordination algorithm. However one its disadvantage which it shared with the goal 
coordination approach is that it is sensitive to modeling errors. ( Sandell et a1,1978). 

2.6 SUMMARY 

In this chapter we have described a centralized DISOPE algorithm for a discrete 
dynamical system. We have also described approaches for dealing with interconnected 

dynamical systems. Emphasis is made on the decomposition and coordination 
techniques of hierarchical systems as the techniques will be utilized in developments of 
algorithms later in this thesis. A brief description of the interaction prediction technique 

which utilizes some of the coordination-decomposition principles is also described. 
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In the next chapter we will developed optimal hierarchical structures for 

interconnected dynamical systems using the DISOPE approach and some of 
hierarchical control techniques described earlier . 
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CHAPTER 3 

HIERARCHICAL STRUCTURES FOR OPTIMAL CONTROL OF 

INTERCONNECTED DISCRETE DYNAMICAL SYSTEMS 

3.1. INTRODUCTION 

In this chapter, we derive four basic hierarchical structures for solving the optimal 

control problem of interconnected discrete dynamical systems. Recently DISOPE was 

extended to hierarchical control of large scale systems by incorporating the interaction 

measurements in the model reality difference parameter of the subsystem's plant 
dynamics (Beccera, 1994). Here, a more general strategy is suggested. This is 

performed by taking into account the manner we incorporate and utilize real process 

measurements from interaction inputs in the model based optimal control problem 
(MOP). This approach had first been suggested by Brdys and RQberts (1986) for 

solving hierarchical steady state optimizing control. Through appropriate integration of 

model-based optimization and model parameter estimation, assuming convergence of 
the associated iterative scheme, it is then shown that the solution produced by each 

new structure converged to the solution of real optimal control problem (ROP). 

With increasing sophistication and decreasing cost of microprocessors, more control 

schemes are being implemented digitally. In these procedures, the control input is 

switched between different values at discrete time steps. The control signal is normally 
held constant between samples by a zero-order hold. Such controls are usually 
designed using a discretized version of the continuous plant. There are also processes 

which are discrete in nature and can only be controlled by using discrete time 

controllers (Leigh, 1992; Franklin et al� 1990). 
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3.1.1 System Description 

We assume that the interconnected system (see fig. 2.1) is an arrangement of NS 

subsystems. Each of which is described by a state equation 

x; (k+1)= f, * (x; (k), c; (k), u; (k), k); ke[0, N-1] (3.1) 

with initial condition 

x1(O) = x10 

and an input/output equation 

Yi(k) = Fi*(xi (k), ci(k), ui(k), k); kE[0, N] (3.2) 

where fi*: 91 n1 x9 mi x9l ri xR->9 ni represents the ith subsystem's real dynamics 

and F: 9 n1 x9{" xR rI xfi-* Rr represents the ith subsystem's real input and output 

equation. x, (k) E 91 nl 
, c, (k) E 91 'ß and u, (k) e 91 r+ are the state, control and 

interaction vectors respectively. y, (k) e 91 r' is the ith output vector. 

The structure of the interconnection between the subsystems is given by 

N 
ul(k)=Hiy= Y, Hljyj ; ke[O, N] (3.3) 

j=1 

where y= [yi,... YNs] and HI and Hy are the interconnection matrices composed of 

zeros and ones. The ith performance index is given by 
N-1 

min Qt = E9t(xi(k), ci(k), ul(k), k); ke [0, N] (3.4) 
k=0 

where q7 : 9i n' x%" xR r' x%->% is the discrete real performance function. If we 

define global vectors 

x(k)=[xl(k),..., xN 
s(k)] 

91 "' x..... X91"Na Erin" 

c(k) = [cl (k),..., C, Ns (k)] E 91 m' 
..... x91'"N' Em 

u(k) = [ul (k),..., uNs (k)] E 91 rl x..... x9t TNa E 91 r 
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Y(k)=[YI(k),..., YN 
s 

(k)JE91'1 x..... X91r', E93r (3.4a) 

then we can describe the global relationship of the whole system as follows: 

x(k + 1) =f* (x(k), c(k), u(k), k) ; kE [0, N-I] 

x(0) = xo (3.5) 

y(k) = F*(x(k), c(k), u(k), k) (3.6) 

u(k) = Hy(k) (3.7) 

where f*_[f1 F*_[Fi*...... FNs] and H=(H; y), ijE[1, NS] 

It is assumed that equations (3.6) and (3.7) can be uniquely solved with respect 

to the pair {x(k), c(k)} so that the output function can be expressed as 

y(k) = K*(x(k), c(k)) (3.8) 

whereK*: J? nxg{r_. 9 and K*=[Ki,..., KN ]. 

It is also assumed that the global performance index is additively separable and is given 
by - 

N 
Q* =E Ql =E q*(x(k), c(k), u(k), k) (3.9) 

i=1 1=1 

N 
whereq*(x(k), c(k), u(k), k)= ql*(x1(k), ci(k), u1(k), k) 

1=1 

It is also assumed that the mappings *, Ký` f and the performance index Q is Frechet 

differentiable. Hence the task of determining the optimal control of the global problem 
can be defined as the following real optimal control problem (ROP): 

min Q* =E 
lq*(x(k), 

c(k), u(k), k) 
k=1 

subject to 

x(k+1) =f 
*(x(k), 

c(k), u(k), k); ke [0, N-1] 

x(0) = xp 

y(k) = F*(x(k), c(k), u(k), k) 

u(k) = Hy(k) 

(3.10) 
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3.1.2 Necessary optimality conditions of global ROP 

In this section we derive the necessary optimality conditions of the ROP. (Bryson and 
Ho, 1975 and Lewis, 1986). 

Eliminating y(k) we can write the global ROP as: 

ROP 

N-1 
min Q* = Iq*(x(k), c(k), u(k), k) 

k=1 

subject to 

x(k+1)= f*(x(k), c(k), u(k), k); ke [0, N-1] 

X(O) = x0 

u(k) = HK* (x(k), c(k)) 

adjoining the constraints by using Lagrange multipliers we obtain the following 

augmented performance index 
N 

QROP = [q*(x(k), c(k), u(k), k) + p(k +1)(f *(x(k), c(k), u(k), k) -x(k +l)) 
i=1 

+l (k)T (u(k) - HK` (x(k), c(k))] (3.11) 

where p(k) E Ji n and 1(k) E 33 r are multiplier vector functions. p(k) is usually 
termed as costate and l(k) is defined as the price. If we define a Hamiltonian as 

(x(k), c(k), u(k), k) + p(k + 1)T (f * (x(k), c(k), u(k), k) 

+l(k)T (u(k) - HK'(x(k), c(k)) (3.12) 

then we can rewrite (3.11) as: 
N 

QROP=1: [H*(. )-p(k+1)T(x(k+1))] (3.13) 
i=1 

By using calculus of variations and relatively straight forward algebraic manipulation, 
the following necessary optimality conditions of the global ROP are obtained: 

Vc(k)H* =0 that is 

48 



q HTI(k)=0 (3.14) aT *ý')+aT f** (. )p(k+l)-8 K 
ac(k) Oc(k) ac(k) 

V x(k)H* - p(k) =0 that is 

aT q*(')+aT f *(') 
p(k+l)-aT 

K* HTI(k)-p(k)=0 (3.15) 
Ox(k) öx(k) Ox(k) 

vu(k) H* =0 that is 

aT q*(')+aT f(')p(k+l)+1(k)=0 (3.16) 
, 9u(k) AM 

x(k+1) =f *(x(k), c(k), u(k), k); kE [0, N-1] 

(3.18) 

u(k) = HF *(x(k), c(k), u(k), k) (3.19) 

x(0) = x0 (3.20) 

p(N)= 0. (3.21) 

It is often necessary to represent the real process with some mathematical 

model. This model, which is an approximation of the real process contains model 
reality differences. The differences maybe are introduced deliberately in order to 

facilitate mathematical aspects of the design or arise due to uncertainties in the 

knowledge of the process mathematical structures and parameters. Instead of directly 

solving ROP, in the next section we consider a model based optimal control problem 

of the interconnected system. 

3.2 MODEL BASED OPTIMAL CONTROL OF INTERCONNECTED 
SYSTEMS 

We now define the model of the ith subsystem's dynamic and input output equation as 
xi (k +I)= fj(xi(k), cj(k), uj(k), a(k)); ke[0, N-1] (3.22) 

with initial condition 

xi (0) = xio 
and an input/output equation 

yi(k)=Ft (xi (k), cl(k), ui(k), 01(k)); ke[0, N] (3.23) 
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where f; * :9"x "'' x9lr+ x9l-*91 "+ and F*: 92 "i x9i, x91'r+ xRi--ý rj are 
approximations of f i* and Fj*. The ith performance index is defined as: 

N 
min01 = Fg1(x; (k), c; (k), u; (k), y(k)); ke [0, N] (3.24) 

k=0 

where q, : 90 x9 11 x911 x9l--391. It is assumed that the model mappings f, , F, and 

the performance index Q1 are Frechet differentiable. al (k) e 91 ", 9i (k) e91 and 

Ti (k) ER are discrete parameters which take into account the model reality 

differences. 

In addition (3.4a), we will also need the following definition: 

a(k)=[aI(k),..., aNý (k)]ef. n, x..... x'JjnN, ER 

8(k)=[el(k),..., 6N, (k)]¬9 VI x..... xqj TN3 E9nr (3.24a) 

Y(k)=[Yl(k),..., YN, ik)le9t' x..... X91Nd e% 

we can now define the global model based optimization problem (MOP) which is 
equivalent to ROP as: 
MOP 

N-1 
min Q=I: q(x(k), c(k), u(k), y(k)) 

k=1 

subject to 

x(k+1)= f(x(k), c(k), u(k), a(k)); kE [0, N-1] 

x(0) = xo 

y(k) = F(x(k), c(k), u(k), 9(k)) 

u(k) = Hy(k) 

f *(x(k), c(k), u(k), k) =f (x(k), c(k), u(k), a(k)) 

K* (x(k), c(k)) = F(x(k), c(k), u(k), ©(k)) 

q* (x(k), c(k), u(k), k) = q(x(k), c(k), u(k), y(k)) 

The solution of the global MOP provides the control c(k) the function of the current 
parameter estimates a(k) = a(c(k)) , 4(k) = ©(c(k)) and y(k) = y(c(k)) . In turn such 
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estimates are obtained by matching model and real states, output and performance 
index at the current computed control c(k)=c(a(k), O(k), y(k)). Hence the 

optimization steps and the parameter estimation steps interact and, in general, because 

the model is only a simplification of reality, several iterations may be required before 

convergence is achieved. However simply iterating between optimization and 

parameter estimation in general does not lead to the correct optimal solution of ROP 

(Durbeck, 1965; Foord, 1974), and it is necessary to properly integrate the two steps 

taking into account their mutual interaction. 

3.3 THE HIERARCHICAL DISOPE APPROACH 

The structures for finding an optimal control shown in this section are iterative in 

nature. The current controls are generated by solving a modified optimal control 

problem based on the availability of information from the real system and the model. 
Depending on the manner we use this information we can derive four basic structures 

which are equivalent to the MOP. These structures are the dynamic analogy of 

structures obtained for hierarchical steady-state integrated system optimization and 

parameter estimation, ISOPE (Brdys and Roberts, 1986). 

Eliminating y(k) in MOP we obtain an equivalent form MOP 1 that is: 

MOPI 

N-1 
min Q= >q(x(k), c(k), u(k), Y(k)) 

i=1 

subject to 

x(k+l)= f (x(k), c(k), u(k), a(k)); ke [0, N-1] 

x(0)=xo 

u(k) = HF (x(k), c(k), u(k), ©(k)) 

f *(x(k), c(k), u(k), k) =f (x(k), c(k), u(k), a(k)) 

K*(x(k), c(k))= F(x(k), c(k), u(k), ©(k)) 

q*(x(k), c(k), u(k), k)= q (x(k), c(k), u(k), y(k)) 
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Noting that K*(x(k), c(k))= F(x(k), c(k), u(k), O(k)) an equivalent expression for 

interaction input can be written as: 

u(k) = HK*(x(k), c(k)) (3.25) 
Utilizing this in the parameter estimation steps to replace u(k), we obtain the second 
equivalent form (MOP2), which is: 
MOP2 

N-1 
min Q=I: q(x(k), c(k), u(k), Y(k)) 

1=1 

subject to 

x(k+1)= f (x(k), c(k), u(k), a(k)) ; kE [0, N-1] 

X(O) = xo 

u(k) = HF(x(k), c(k), u(k), O(k)) 

f' (x(k), c(k), HK* (x(k), c(k)), k) =f (x(k), c(k), HK* (x(k), c(k)), a(k)) 

K'(x(k), c(k)) = F(x(k), c(k), HK*(x(k), c(k)), 0(k)) 

q* (x(k), c(k), HK` (x(k), c(k)), k) = q(x(k), c(k), HK* (x(k), c(k)), y(k)) 

The third equivalent form can be obtained by using the information from the real 
output in the interaction term instead of the output model 

u(k) = HF(x(k), c(k), u(k), O(k)) (3.26) 
As a consequence of this it is no longer necessary to include the parameter estimation 
for 6(1c). The MOPS can be described as: 
MOP3 

N-1 
min Q= Zq(x(k), c(k), u(k), y(k)) 

1=1 

subject to 

x(k+1)= f (x(k), c(k), u(k), a(k)) ; ke [0, N-1] 

X(O) = x0 

u(k) = HK* (x(k), c(k)) 

f'(x(k), c(k), HK*(x(k), c(k)), k) =f (x(k), c(k), HK*(x(k), c(k)), a(k)) 
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q*(x(k), c(k), HK*(x(k), c(k)), k) = q(x(k), c(k), HK*(x(k), c(k)), y(k)) 

Finally , we obtain the fourth equivalent form by eliminating all interaction variables 

u(k). 

MOP4 

N-1 
min Q=I: q(x(k), c(k), HK'`(x(k), c(k)), y(k)) 

i=1 

subject to 

x(k+1) =f (x(k), c(k), HK* (x(k), c(k)), a(k)) ; ke [0, N-1] 

X(O) = x0 

f *(x(k), c(k), HK*(x(k), c(k)), k) =f (x(k), c(k), HK*(x(k), c(k)), a(k)) 

q`(x(k), c(k), HK*(x(k), c(k)), k) = q(x(k), c(k), HK'(x(k), c(k)), y(k)) 

Using a similar procedure to that used for developing steady-state ISOPE algorithms 
(Roberts, 1988) , the four equivalent MOPs can be further expanded and solved to 

obtain their respective hierarchical iterative structures. 

3.4 STRUCTURES WITH MODEL BASED INTERACTION INPUT 

It is assumed that real outputs y(k) = K* (x(k), c(k)) are available together with real 

model dynamics and the performance measure. Expanding MOP1 by introducing three 

new variables z(k), v(k) and w(k) , produces an equivalent expanded optimal control 

problem (EOP): 

EOP1 

N-1 
min Q= Zq(x(k), c(k), u(k), Y(k)) 

k=1 

subject to 

x(k+1)=f (x(k), c(k), u(k), a(k)) ; ke[O,.. N-1] 

X(O) = xo 

u(k) = HF (x(k), c(k), u(k), ©(k)) 
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f *(z(k), v(k), w(k), k) =f (z(k), v(k), w(k), a(k)) 

K* (z(k), v(k)) = F(z(k), v(k), w(k), O(k)) 

9*(z(k), v(k), w(k), k) = 9(z(k), v(k), w(k),, v(k)) 

x(k) =z(k) 

c(k) = v(k) 

u(k) = w(k) 

Adjoining the constraints produces the following augmented performance index: 

N-1 
QEOP1 = Z{q(x(k), c(k), u(k), y(k)) p(k+l)T[f (x(k), c(k), u(k), a(k))-x(k+l)] 

1=1 

+l (k)T [u(k) - HF (x(k), c(k), u(k), 9(k))] 

+ /1(k) T [f * (z(k), v(k), w(k), k) - f(z(k), v(k), w(k), a(k)) ] 

+ ý(k)T [K*(z(k), v(k)) - F(z(k), v(k), w(k), O(k)) ] 

+ r1(k)T [4*(z(k), v(k), w(k), k) - R(z(k), v(k), w(k), y(k))I 
A(k)r[z(k) - x(k)] + /3(k)T [v(k) - c(k)] + 4'(k)T [w(k) - u(k)] } (3.27) 

where p(k) e'. R" is the costate vector, I(k)r=%" is the price vector, p(k) ESN" 

; 7(k) r=91 and (k) Eý2r, ý (k) e ? ", ý(k) E%m andý; (k) EStr are Lagrange multiplier 
functions. 

Define the Hamiltonian function H(. ) 

H(. ) = q(x(k), c(k), u(k), y(k))+p(k+1)T f(x(k), c(k), u(k), a(k)) 

+ l(k)T [u(k)-HF(x(k), c(k), u(k), o(k))] 

-2(k)Tx(k) - /3(k)T c(k) -ý(k)T u(k) (3.28) 

Equation (3.27) can be re-written as 
N-1 

QEOP1 = {11(. ) - p(k+1)T x(k+1)+2(k)T z(k)+ß(k)T v(k)+C(k)T w(k) 
k=1 

+ p(k)T [f *(z(k), v(k), w(k), k) -f (z(k), v(k), w(k), a(k)) ] 

+ «(k)T [K* (z(k), v(k)) - F(z(k), v(k), w(k), O(k))] 
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+ i7(k)T [9*(z(k), v(k), w(k), k) - 9(z(k), v(k), w(k), Y(k))]} (3.29) 

Now it is desired to examine the increment in Q Earl due to increments in all the 

variables. According to the Lagrange multiplier theory, at a constrained minimum this 

increment should be zero (Lewis and Syrmos, 1995). Therefore 

N-I 
AQEOP1 {[a H(. )]ec(k)+[a H(. ) 

_ p( O k k ö 
k)T] Ax(k)+[a 

H(. )]eu(k) 
Ou(k) j_1 c( ) x( ) 

+[. (k)T +u(k)T 
of M (') 

-' 
c(') 

-I-r! (k) a9 * (. ) * 
- 

aq(. ) 
-l" (k)T 0K' l]&(k) 

az(k) az(k) (k) oz ) az(k L01) öz(k) 

T +[Q(k) +u(k)T dr' c") - af(") ) ag' (") +r(k) _ 
a9(") 

] 
OK' (. ) _ +&)T OF(. ) jev(k) 

ý(k) ý( ) ov(k) ) ch(k) ý(k) 

+(c(k)T +, u(k)T 
of * (') 

- 
Of(") +17(k) aq+(. ) 

_ 
äq(. ) + (k)T öKý Ow(k) 

öw(k) aw(k) L0w(k) äw(k) [Ow(ic) äw(k) 

+[ö 
H(. ) 

_ p(k)T 
äTf(. )]Aa(k)+[ö H(. ) 

_ i(k) 
ä q(")]E y(k) - 

Oa(k) i9a(k) öy(k) e(k) 

+[ -4(k)T o'19 k) 
se(k)+[ö -x(k+l)TJ ý(k+l) 

o'1B(k) () P(k + 1) 
a H(. ) Ta H(, ) Ta g(, ) 

+[ (k) + z(k) ]LA(k) +[ 0Q(k) + v(k) I AQ(k) +[ a1(k) 
lb 1(k) 

+[19 p(k) +w(k)T }L (k)+[f*()-f(. )]T iXp(k)+[K*(. )-F(")JTE (k) 

+[qi(")-q(")]djl(k) 
(3.30) 

where 

a x(. ) 
_ 8g(") +T c9J (") T aF(. ) T 

&(k) ac(k) p(k + 1) 
ac(k) -1(k) H 

ac(k) -Q(k) 

ö H(. ) 
_ 

6q(. ) 
+P(k+l)T 

Of (") 
-1(k)THaF(. 

) 
-2(k)T 

, 9x(k) öx(k) Ox(k) 9x(k) 

ö H(. ) 
= 

ö9(") T af(") T a[u(k)-HF(. )]_C(k)T 
öu(k) 

9u(k) 
au(k) -1(k) öu(k) 
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a H(. ) 
_ p(k + l)T 

9f(") 
. äa(k) äa(k)' 

(k + 

ö H(") 
=u(k)-HF(. ); 

67(k) 

a H(. ) 
_ 

6g(. ) 
-0 (k) 01(k) p 

a H(. ) 
_ _l(k)TH 

9F(. ). 
60(k) 612 (k) 

a H(. ) 
c92(k) 

ö H(. ) 
= _c(k)T; 

a H(. ) 
= -u(k)T aQ(k) t%'(k) 

According to Lagrange multiplier theory, when the increment t1Q EOP 1= 0, the 

constrained minimum can be achieved. Setting to zero the coefficient of independent 

increment, we obtain the following optimality conditions of EOP 1: 

Oq(. ) 
+p(k+l)T 

af(") 
1(k)THOF(. )-ß(k)T 

=0 (3.31) Oc(k) öc(k) ac(k) 

aq(. ) 
+P(k+1)T 

Of(*) 
_1(k)T HE-(-) -A(k)T p(k) =0 (3.32) öx(k) Ox(k) Ox(k) 

aq(. ) 
+P(k + 1)7' aA) 

_ 1(k)T O [u(k) - HF(. )] 
_ ý(k)T =0 (3.33) au(k) , 9u(k) öu(k) 

A(k)T +ý(k)T 1rý(k) aq' (') 
- 

aq(') + (k) r öK' (. ) 
- 

tF(. ) 
_0 öi(k) Oz(k) öz(k) Oz(k) az(k) az(k) 

(3.34) 

Q(k)T +u(k)T 
afýG)- ° +77(k) 

10q*(')-' 
a9(+&)T 0 9v(k) äv(k) vv(k) äv(k) öv(k) Ov(k) 

(3.35) 

i0 
1 

ý(k)T +. u(k)T 
of *(')- d1(") +. v(k) 

lIL(. )- Oq(') (k)T aF(. ) 
dw(k) aw(k) L01) aw(k) aw(k) 

(3.36) 

p(k+1)T 
of (x(k), c(k), u(k), a(k)) 

_ p(k)T 
öf (z(k), v(k), w(k), a(k)) 

_0 (3.37) äa(k) öa(k) 

öq(x(k), c(k), u(k), Y(k)) 
_ 7(k)T 

9q(z(k), v(k), w(k), r(k)) 
`0 (3.38) ay(k) or(k) 
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-1(k) 
T H8F(x(k), c(k), u(k), 0(k)s) 

_ ý(k)T 
9F(z(k), v(k), w(k), O(k)) 

_0 (3.39) 
öa(k) o13(k) 

x(k+l)= f(x(k), c(k), u(k), a(k)) ; ke[0,.. N-1] (3.40) 

X(O) = x0 (3.41) 

u(k) = HF(x(k), c(k), u(k), 0(k)) (3.42) 

f* (z(k), v(k), w(k), k) = f(z(k), v(k), w(k), a(k)) (3.43) 

K*(z(k), v(k))= F(z(k), v(k), w(k), 0(k)) (3.44) 

q*(z(k), v(k), w(k), k) = q(z(k), v(k), w(k), Y(k)) (3.45) 

x(k) = z(k) (3.46) 

c(k) = v(k) (3.47) 

u(k) = w(k) (3.48) 

Introducing p(k) as a costate separation variable, that is 

P^(k)=p(k) (3.49) 

and applying optimality conditions (3.46) - (3.48) into equation (3.37), (3.38) and 

(3.39) gives 

p(k) = p(k) (3.50) 

rliký= 1 (3.51) 

4(k) _ -HT 1(k) (3.52) 

Substituting these equations into (3.34), (3.35) and (3.36) will provides us with the 

multipliers equations: 

A(k) _- 
of * (") 

_ 
a1(") 

T-% 
(") 

_ 
a9(") 

T+ 

p(k+l) 
F( 

T 
HTS(k) 

öz(k) öz(k) öz(k) äz(k) ai(k) 2z(k) 

(3.53) 
T 

of. )_OfO ag*(") 
TT 

r *) 
ý(k) 

p(k+l)- (k) ýtk) 
+ axý(k) 

ý(k) H 1(k) Q(k)=- 
Ov(kt 

(3.54) 
TT 

ý'(k) _- of (') 
- OP. ) p(k+l)- ag(. ) _ ag(. ) aF(. ) IT 

HT1(k) 
[8w(k) 

Ow(k) ow(k) aw(k) 
[8w(k)] 
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(3.55) 

The parameter estimation problem is defined by optimality conditions (3.43), (3.44) and 
(3.45). It is assumed that the structure of f (. ), q(. ) and F(. ) is such that given z(k) ), 

v(k) and w(k), ke [O,.. N] the values of the model reality differences parameters 

a(k), y(k) and 6(k) , kE [O,.. N] can be uniquely determined in this step. 

a(k) =f *(z(k), v(k), w(k))- f (z(k), v(k), w(k), a(k)) (3.56) 

O(k) = K*(z(k), v(k)) - F(z(k), v(k), w(k), 6(k)) (3.57) 

y(k) = q(z(k), v(k), w(k))-q(z(k), v(k), w(k), y(k)) (3.58) 

Using equation (3.42), following a procedure suggested by (Findeisen et al, 1980) a 
price updating formula is obtained as follows: 

1(k + 1)s+1 _ 1(k)s + e1(u(k) _ HF(x(k), c(k), u(k), O(k)) - (3.59) 
where s is the iteration number. 
From equations (3.46)-(3.49) we can define the following relaxation formulae for 

updating the variables z(k), v(k), w(k) and P^ (k) at each iteration. 

z(k)s+1= z(k) s+ ez (x(k)s - z(k)s) 

v(k)s+1 _ v(k)s + ev (c(k)s - v(k)s) 

w(k)"' _ w(k)' +cw (u(k)s -w(k)1) 

P(k)s+1 = P(k) +sp(P(k)s -p^ (k)') (3.60) 

For a given a(k), y(k), 9(k), ß(k), A (k), i' (k) and 1(k) optimality conditions 
(3.31), (3.32) and (3.33) are satisfied by solving the following modified model based 

optimal control problem : 
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MMOP1 

N 
min Q=E {q(x(k), c(k), u(k), y (k)) + 1(k)T (u(k) - HF(x(k), c(k), u(k), 0(k)) 

k=1 

-1(k)T x(k) -ß(k)T c(k) -C(k)ru(k)) 

subject to 

x(k+1) =f (x(k), c(k), u(k), a(k)) 

x(0) = xo 

which is separable and can be decomposed into N local optimization problems: 

MMOP1 i 
N-1 

min Q1 = {gi(xi(k), ci(k), ui(k), YI(k)) 
k=1 

Ns 
+lý (k)T (uu (k) - Eli(k)HgF, 

" (x(k), c(k), u(k), B(k)) 
j=1 

_Ai(k)T xi(k)-Qi(k)T c, (k)-cr(k)T ut(k)} 

subject to 

xi(k+1) = ff (xj(k), cj(k), uj(k), aj(k)) 

xi (0) = x10 

The above analysis leads to the single iterative hierarchical structure described in 

Section 3.4.1 for solving EOP1. 

3.4.1 Hierarchical Structures and Information Exchange of EOP1 

The hierarchical structure and information exchange in solving EOP1 are given in 

figure 3.1. The structure consists of two levels, the coordinator and N local 

optimization units. each local optimization unit is made up of the ith local optimal 

control problem, the parameter estimation step and the variable updating step, The 

coordinator consists of the price updating formula given by equation (3.59) and the 

modifier equations given by (3.53)-(3.55). Notice that each local optimization problem 

can be solved independently. Thus the structure is suitable for the application of 
parallel processing methods. 
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COORDINATOR 

1(k+1)s+1=l(k)s+e1(w(k)-HF(z(k), v(k), w(k), O(k)) 

A(k) __t 
ý(") 

_ 
ý(") T 

P(k+l)- ýý(') 
_c(. 

) T 
-}- 

oKý(') 
- 

°F(. ) 
T 
Hr1(k) 

' cýi(k) äz(k) äl(k) ö(k) äl(k) a'(k) o 

/j(k) =- 
ý"O 

- 
ý(') T 

P(k+l)- - - 
OK'(. ) 

_ 
BF(. ) Hrl(k) 

oti(k) oti(k) 
[ (k) oý'(k) & ati(k) a'(k) 

ý(k) =T P(k+1)- - - 
Fit* (. ) 

_ 
al(") 

T_ 

' 
CT(. ) 

T 
Hrl(k) 

(k) otiv(k) L & 1ý'(k) Av(k) o äv(k) 

IýýýQýý 

LOCAL OPTIMIZATION PROBLEM 

w, v, z, p, derivatives 

PARAMETER ESTIMATION 

N 
min Q, = {qt (x1(k), ct (k), ut (k), Y 1(k)) a1(k) 4-f1 (z (k), vt (k), w1(k)) 

iE_1 =. ft (zt (k), vt (k), wt (k), at (k)) 

+l (k)T (ut (k) 91 (k) +- K`t (zt (k), vt (k)) 

Ns =F (zt (k), vt (k), wt (k), 0, (k)) 

- Ell (k)H F (x(k), c(k), u(k), O(k)) r (k) E-qt* (zt (k), vt (k), K't (k)) 
J° 1 =qt (zt (k), vt (k), wt (k), Y t (k)) 

-Ai (k)T xt(k)-ßr(k)T ct(k) 

- ýr (k)T uj (k)) 

subject to 

xi (k + 1) = fi (x1 (k), c1 (k), ui (k), a1 (k)) 

xß(0) = xi0 
.......................... ........................................................... VARIABLES UPDATES 

z, (k)s+l _ zi(k)s +cz(x, (k)s -zi(k)s) 
v, (k)s+l _ vi (k)" +-,, (ci(k)s -vi(k)s) 
wt(k)s+1 _ w, (k)' +e (ui(k)s - w, (k)s) 

Pi(k)s+l = Pr(k)s +Ep(Pr(k)s -Pi(k)s) 

ai, Yi, ei 

zi, vt, W j 

Figure 3.1. A two level structure with model based interaction input 
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3.5 STRUCTURES WITH REAL INTERACTION INPUT IN PARAMETER 
ESTIMATION. 

In this technique we consider the 'structure given by MOP2 in which the real 

interaction input, u(k) = HK* (x(k), c(k)); kE [1,.. N -1] , 
is utilized in the parameter 

estimation problem. We introduce additional constraints z(k) = x(k) and v(k) = c(k) 

in MOP2 to form the following equivalent Expanded Optimal Control Problem 

(EOP2). 

EOP2 

N-1 
min Q= >9(x(k), c(k), u(k), r(k)) 

k=I 

subject to 

x(k+l)= f (x(k), c(k), u(k), a(k)); kE[O,.. N-1] 

X(O) = xo 

u(k) = HF(x(k), c(k), u(k), B(k)) 

f* (z(k), v(k), HK* (z(k), v(k)), k) =f (z(k), v(k), HK* (z(k), v(k)), a(k)) 

K* (z(k), v(k)) - F(z(k), v(k), HK* (z(k), v(k)), 6(k)) 

q*(z(k), v(k), HK*(z(k), v(k)), k) = q(z(k), v(k), HK* (z(k), v(k)), y(k)) 

x(k) =z(k) 

c(k) =v(k) c(k) = v(k) 
Adjoining the constraints using Lagrange multipliers as in the previous derivation, we 
obtain: 

N-1 
QEOP2 = {9(x(k), c(k), u(k), 7(k)) p(k+1)T[f (x(k), c(k), u(k), a(k))-x(k+l)] 

1=1 

+ l(k)T [u(k)-HF(x(k), c(k), u(k), O(k))] 

+ U(k)T[f*(z(k), v(k), HK'(z(k), v(k)), k)- f(z(k), v(k), HK*(z(k), v(k)), a(k))] 

+ ý(k)T [K*(z(k), v(k))- F(z(k), v(k), HK''(z(k), v(k)), 0(k))] 

+ r7(k)T [q*(z(k), v(k), HK*(z(k), v(k)), k) - q(z(k), v(k), HK* (z(k), v(k)), y(k)) ] 

A(k)T[z(k) -x(k)]+ß(k)T [v(k) - c(k)] } (3.61) 

61 



where p(k) E 91 tt , 1(k) E 91", p(k) E 91", i 7(k) E 93, ý(k) E gir, A(k) E 91 and 

/3(k) E SJim, are Lagrange multiplier functions. 

Define: 

H(. ) = q(x(k), c(k), u(k), y(k))+p(k+1)T f (x(k), c(k), u(k), a(k)) 

+ 1(k)r[u(k) - HF (x(k), c(k), u(k), 6(k))] -A(k)T x(k) - ß(k)T c(k) (3.62) 

Following similar procedure outline in Section 3.4, we then use (3.62) and apply 
Lagrange multiplier theory to obtain the minimum of (3.61). As a consequence of this 

the necessary optimality conditions of EOP2 are obtained: 
aq(. ) 

+P(k+1)T 
Of() 

_1(k)THOF(. 
) T= 

-ß(k) -0 (3.63) Oc(k) Oc(k) Oc(k) 

aq(. ) 
+P(k+l)T 

Of (") 
_1(k)THÖF(. 

) 
-2(k)T P(k) =0 (3.64) öx(k) Ox(k) Ox(k) 

aq(. ) 
+P(k+1)T 

8f(") 
_I(k)T 

ö[u(k)-HF(. )] 
=0 (3.65) Ou(k) öu(k) au(k) 

A(k)T +P(k)T 
of *(')-19 

+rft) a9ý(")_ 9q(") ]+4r(k)TIK. )-OF(. ) 1=0 
L äz(k) öz(k) [Oz(k) Oz(k) oz(k) äz(k) 

(3.66) 

(")- aq(") +ý(k)T aK`(. )F(. ) 
_0 

Q(k)T +P(k)T 
of *(')-af (") ]+[e 
r7v(k) Ov(k) rýv(k) 9v(k) äv(k) dv(k) 

(3.67) 

p(k+1)T 
of (x(k), c(k), u(k), a(k)) 

_ p(k)TO 
f (z(k), v(k), HK * (z(k), v(k)), a(k)) 

=0 aa(k) Aa(k) 

(3.68) 
a9(x(k), c(k), u(k), Y(k)) 

_ ýJ(k)T 
of (z(k), v(k), w(k), Y(k)) 

=0 (3.69) äy(k) oy(k) 
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-1(k)T HaF(x(k), c(k), u(k), 0(k)s) 
- (k)T aF(z(k), v(k), HK*(z(k), v(k)), O(k)) 

=0 aa(k) 00(k) 

(3.70) 

x(k+1)= f (x(k), c(k), u(k), a(k)) ; k¬[O,.. N-1] (3.71) 

X(O) = xo (3.72) 

u(k) = HF(x(k), c(k), u(k), O(k)) (3.73) 

f* (z(k), v(k), HK+(z(k), v(k)), k) =f (z(k), v(k), HK* (z(k), v(k)), a(k)) (3.74) 

K* (z(k), v(k)) = F(z(k), v(k), HK* (z(k), v(k)), O(k)) (3.75) 

q* (z(k), v(k), HK` (z(k), v(k)), k) = q(z(k), v(k), HK* (z(k), v(k)), Y(k)) (3.76) 

x(k) =z(k) (3.77) 

c(k)=v(k) (3.78) 

Introducing p(k) as costate separation variable, that is 

ß(k) = p(k) (3.79) 

and applying it , equations (3.77) and (3.78) in optimality conditions (3.68)-(3.70) 

gives: 

, u(k) =P(k) 

1l(k)= 1 

ý (k) = -HT l (k) 

(3.80) 

In this procedure we only need to calculate two modifiers which are determined by 

equations (3.66) and (3.67). That is: 

_ 
äf' (z(k), c(k), HK' (z(k), v(k)), k) 

_ 
äf (z(k), c(k), HK' (z(k), v(k)), a(k)) 

T 
ý(k)&(k) 

dz(k) P(k+l) 

T 

_f 
c2l*(z(k), c(k), HK*(z(k), v(k)), k)_c (z(k), c(k), HK*(z(k), v(k)), y(k))1 

&(k) äz(k) 

T 
äK* (z(k), c(k), k) 

_ 
öF(z(k), c(k), HK* (z(k), v(k)), O(k)) H. TI (k) 

äz (k) &(k) 

(3.81) 
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ß(k) 
[of ` (z(k), c(k), HK* (z(k), v(k)), k) 

_ 
Of (z(k), c(k), HK* (z(k), v(k)), a(k)) 

T 
fr(k+1) 

v(k) &(k) 

T 

_ 
a1 (z(k), c(k), HK*(z(k), v(k)), k)_cog(z(k), c(k), HK*(z(k), v(k)), y(k)) 

öv(k) äv(k) 

_ 
8K* (z(k), c(k), k) 

_ 
OF(z(k), c(k), HK* (z(k), v(k)), O(k)) 

T 
H''l(k) 

öv(k) öv(k) 

(3.82) 

Optimality conditions (3.74)-(3.76) define the parameter estimation step, that is: 

a(k) =f* (z(k), v(k), HK* (z(k), v(k)), k) -f (z(k), v(k), HK* (z(k), v(k)), a(k)) 

O(k) = K* (z(k), v(k)) - F(z(k), v(k), HK* (z(k), v(k)), B(k)) (3.83) 

y(k) =q* (z(k), v(k), HK* (z(k), v(k)), k) - q(z(k), v(k), HK* (z(k), v(k)), Y(k)) 

From equation (3.73) and using the formula previously defined in Section 3.4, the price 
1(k) is updated by: 

1(k + 1) s+1= l(k) s+ el (u(k) - HF(x(k), c(k), u(k), O(k)) (3.84) 

At each iteration the separation variables z(k), v(k) and p(k) are updated using 

relaxation formula define by (3.60). 
Optimality conditions (3.63), (3.64) and (3.65) can be satisfied by solving the following 

model based optimal control problem for given a(k), y(k), O(k), 2(k) and ß(k). 

MMOP2 
N 

min Q= E{q(x(k), c(k), u(k), y(k))+1(k)T(u(k)-HF(x(k), c(k), u(k), ©(k)) 
k=1 

-A(k) 
T x(k) -Q(k)T c(k)) 

subject to 

x(k+1) =f (x(k), c(k), u(k), a(k)) 
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x(0)=x0 

which is separable and can be decomposed into N local optimization problems: 

MMOP2 i 
N-1 

min QI = 1, {R'i{xi(k), q (k), ui(k), Y1(k)) 
k=1 

Ns 

, 
li(k)H! F(x(k), c(k), u(k), 0(k)) +1, (k)T(u; (k)- 2: 

j=i 

-Ai (k) T xi (k) -ß, (k) T ci (k)} 

subject to 

xl(k+1)= ff (x1(k), cj(k), ul(k), ai(k)) 

x, (0) = x, 0 

From the above analysis we can derive a basic hierarchical structure for solving EOP2. 

3.5.1 Hierarchical Structure and Information Exchange of EOP2 

The previous analysis leads to a two level structure shown in fig. 3.2. The coordinator 
in the upper level consists of the price updating mechanism (3.84) and the two modifier 

equations (3.81) and (3.82). The first level consists of N local optimization problems. 
Each of which contains a local optimal control unit, a parameter estimation step and a 

variable updating step. As in Section. 3.4.1, the local optimization unit is totally 

independent, thus making the whole procedure suitable for parallel processing 
techniques. 

A comparison of these structure with that of Section 3.4 leads to the following 

observations. Firstly, the number of iterated variables is reduced because there is no 

variables w(k). Secondly, computation in the coordinator is reduced because there no 

parameter 4(k). Finally, it is no longer necessary for each local optimization problem 

to provide the coordinator with the value of parameter £Xk). These advantages are 

achieved at the cost of incorporating the real system interaction measurements in the 

parameter estimation steps. 
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COORDINATOR 

l(k+l)s+1=l(k )S+e1(u(k)-HF(z(k), v(k), u(k), O(k)) 

A(k) __ 
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- 
r(") T 

P(k+1)- a`(') 
-1- HTI(k) 

äz(k) oýi(k) äi(k) dc(k) äi(k) äc (k) 
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P(k+1) ý"(. )-c (') T 

ý' 
"(ý) 

- 
ý() rHTI(k) 

ati(k) a1ý(k) oti(k) oti(k) o1'(k) o1'(k) 

1, ß, A u, z, v, p, 9 derivatives 

LOCAL OPTIMIZATION PROBLEM PARAMETER ESTIMATION 

N ai (k) <-fl (z i (k), v1(k), H, K* (zi (k), vi (k)), k) 
min Qi =Z (4i (xi (k), ci (k), ui (k), Y i (k)) 

k=1 = fi (zi (k), vj (k), H1K* (zi (k), vi (k)), ai (k)) 

+li (k)T ui (k) 

- 
NsZ1 

T (k)HJ"iF (x (k), c" (k), u k 
,Bk 

01(k) F- KK (zi (k), vi (k)) 
jii: i() t( )) 

j=1 = Fi (zi (k), vi (k), HIK* (z1 (k), vj (k)), 0i (k)) 

-Ai (k) T x, (k) - fli (k)T ci (k) Y 1(k) E-9i (zi (k), vi (k), H, K* (zi (k), vi (k)), k) 

subject to =4i (zi (k), vi (k), H: K* (z i (k), vi (k)), Y1(k)) 

xi (k + 1) fi 

xi(0) = xi0 
(x1(k), c1(k), u1(k), aj (k)) 

............................................................... 
VARIABLES UPDATES 

ai"Bi, Yi 

zj(k)s+1 = zj(k)s +Ez(xi(k)s -z, (k)s) 

Vi (k), 5 +1 

p! (ýýs+l fi (k)s +e (P, (k)s -P, (k)s) 
zi, vl 

Figure 3.2 A two level structure with real interaction input in parameter estimation 
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3.6 STRUCTURE WITH REAL INPUT IN INTERACTION AND 
PARAMETER ESTIMATION 

In this section we consider the structure based on MOP3. The structure utilizes real 

output y(k) = K'`(x(k), c(k))as the interaction input instead of the model output 

function y(k) = F(x(k), c(k), u(k), 6(k)) . The parameter estimation remains as in 

Section 3.5. We introduce separation variables z(k) = x(k) and v(k) = c(k) to form 

the following Expanded Optimal Control Problem: 

EOP3 

N-1 
min Q= Zq(x(k), c(k), u(k), y(k)) 

k=1 

subject to 

x(k +'1) =f (x(k), c(k), u(k), a(k)) ; kE [O,.. N-1 ] 

X(O) = xo 

u(k) = HK* (x(k), c(k)) 

f* (z(k), v(k), HK* (z(k), v(k)), k) =f (z(k), v(k), HK* (z(k), v(k)), a(k)) 

q`(z(k), v(k), HK`(z(k), v(k)), k) =q(z(k), v(k), HK` (z(k), v(k)), y(k)) 

x(k) = z(k) 
c(k)=v(k) 

Notice that in the above formulation parameter 0 (k) does not have to be computed as 
in formulation EOP1 and EOP2. 

Adjoining the constraints using Lagrange multipliers as in the previous derivation, we 
obtain: 

N-1 
QEOP3 = fq(x(k), c(k), u(k), y(k)) p(k + 1)T [f (x(k), c(k), u(k), a(k)) -- x(k + 1)] 

1=1 

+ 1(k)T [u(k) - HK*(x(k), c(k))] 

+ p(k) T[f * (z(k), v(k), HK* (z(k), v(k)), k) - f(z(k), v(k), HK*(z(k), v(k)), a(k))J 

+ il(k)T [q*(z(k), v(k), HK*(z(k), v(k)), k)- q (z(k), v(k), HKM(z(k), v(k)), y(k)) J 

2(k)T [z(k) -x(k)]+/1(k)T Lv(k) - c(k)] } (3.85) 
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where p(k) e 91" ,l (k) (=- sl",, u(k) e 91", i7(k) E 91, %(k) e gin and ß(k) e 91', are 
Lagrange multiplier functions. 

Define: 

H(. ) = q(x(k), c(k), u(k), y(k))+p(k+1)T f (x(k), c(k), u(k), a(k)) 

+ l(k)T[u(k)-HK*(x(k), c(k))] -2(k)Tx(k)-Q(k)Tc(k) (3.86) 

Repeating the procedure outlined in Section 3.4, we then use (3.86) and apply 
Lagrange multiplier theory to obtain the minimum of (3.85). These will result in the 
following necessary optimality conditions for EOP3: 

ä (. 
+P(k+1)T 

of (") 
_I(k)T HOK* (. ) _/3(k)T =0 (3.87) 

() &(k) 8c(k) 

a (. 
+P(k+1)T 'of(') _I(k)THÖK*(. 

)_A(k)T 
P(k) =0 () Dx k 

(3.88) 
( ) Dx(k) 

cll(o) +p(k+1)T'9f(") _1(k)T=0 ' (3.89) 
o u(k) l(k) 

A(k)T +, u(k)T 
of ')-af (") 

rý(k) 
i(")_ °ý1(") =0 (3.90) 

äz(k) t9z(k) äz(k) öz(k) 

Q(k)T +N(k)T 
0, f ; (')-af (") ]+k) 

ý'ý(")_ c 1(. ) =0 (3.91) 
ý(k) v(k) a(k) ý(k) 

P(k+1)T 
of (x(k), c(k), u(k), a(k)) 

_ p(k)T 
9f (z(k), v(k), HK*(z(k), v(k)), a(k)) =0 öa(k) öa(k) 

(3.92) 
(x(k), c(k), (k), Y(k)) 

_ il(k)T 
ýf (z(k), v(k)k (k), Y(k)) =0 (3.93) aY() OY( ) 

x(k+1)ßf (x(k), c(k), u(k), a(k)) ; kE[0,.. N-1] (3.94) 

X(O) = xo (3.95) 

u(k) = HK* (x(k), c(k)) (3.96) 

f* (z(k), v(k), HK' (z(k), v(k)), k) = f(z(k), v(k), HK* (z(k), v(k)), a(k)) (3.97) 
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q* (z(k), v(k), HK*(z(k), v(k)), k)t= q(z(k), v(k), HK*(z(k), v(k)), y(k)) (3.98) 

x(k) =z(k) (3.99) 

c(k) =v(k) (3.100) 

Introducing p(k) as costate separation variable, that is 

p(k) = p(k) (3.101) 

Using this and equations (3.99) and (3.100) in optimality conditions (3.92) and (3.93) 

gives: 

p(k) = p(k) 

i7(k) =1 (3.102) 

The modifiers are given by equations (3.90) and (3.91) as: 
T 

__ 
0f ' (z(k), c(k), HK` (z(k), v(k)), k) 

_äA(k) 
f(z(k), c(k), HK` (z(k), v(k)), a(k)) p(k + 1) 

Oz(k) oz(k) 
T 

__[j 
(z(k), c(k), HK*(z(k), v(k)), k) 

_ 
c%(z(k), c(k), HK*(z(k), v(k)), y(k))1 

äz(k) oz(k) 

(3.103) 

T 
of*(z(k), c(k), HK*(z(k), v(k)), k) 

_ 
äf (z(k), c(k), HK*(z(k), v(k)), a(k)) ß(k) _- Ov(k) äv(k) 

P(k +1) 

T 

_c 
*(z(k), 

c(k), HK*(z(k), v(k)), k) 
_ 

oýj(z(k), c(k), HK*(z(k), y(k)), y(k)) 
öv(k) Ov(k) 

(3.104) 

Notice that incorporation of real inputs in the interaction terms results in simpler 

calculation for the modifiers when compared to that of EOP1 and EOP2. 

The parameter estimation step is defined by optimality conditions (3.97) and (3.98). 

The price vector is computed using the formula: 

1(k+1)s+1 =; I(k)s+6 (u(k)-HK'(x(k), c(k)) (3.105) 
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where EI is a suitably chosen scalar, chosen so as to aid convergence. At each 

iteration the separation variables z(k) and v(k) are updated using relaxation formula 

defined by (3.60). 

Optimality conditions (3.87)-(3.89) are satisfied by solving the following Modified 

Model-based Optimal Control Problem (MMOP) under specified a(k) and y(k), 

specified multipliers A(k) and /3(k), and specified v(k) and z(k). 
MMOP3 

N 
min Q=E {q(x(k), c(k), u(k), y(k)) + 1(k)T [u(k) - HK* (x(k), c(k))] 

k=l 

-A(k)Tx(k) -fl(k)Tc(k)} 
subject to 

x(k+l) =f (x(k), c(k), u(k), a(k)) 

X(O) = xo 

which is separable and can be decomposed into N. local optimization problems: 

MMOP3 i 
N-1 

min Qi ={gt(xi(k), cf(k), ui(k), Yi(k)) 
k=1 

Ns 
+11(k) T (ui (k) -Z li (k)HyKi (xi (k), ci (k)) 

j=1 

-AI(k)Tx, (k)-ß1(k)T c, (k)} 

subject to 

xg(k+1)= f1 (x1(k), c1(k), uj(k), a1(k)) 

x, (0) = xi0; i E[1,.. Ns], k E[1,.. N] 

The above analysis will lead to a two level hierarchical structure for solving EOP3. 

3.6.1 Hierarchical Structure and Information Exchange of EOP3 

The above procedure results in a single iterative two level hierarchical structure for 
solving EOP3. As in section 3.5, the coordinator which is in level two, is made up of 
price updating mechanism and the two multiplier equations. The first level is made up 
of Ns local optimization problems, each of which contains a local optimal control unit, 
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parameter estimation step and a variable update unit. Notice that, the Ns local 

optimization units remain independent thus making the procedure suitable for parallel 

processing algorithms. 
The structure obtained is different from that of Section 3.5 in the sense that the amount 

of computation is further reduced. By incorporating real measurements in the 
interaction terms we do not have to calculate model-reality parameter 0 (k) and also 

Lagrange multiplier vector ý (k). As a result the number of parameters involved in 

information exchange between the two level is significantly reduced. 
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COORDINATOR 

1(k+1)s+l _1(k)s+Ej[u(k)-HK* (z(k), v(k))] 

ý(k) __ 
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af(") 

p( )- " k+l 
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- 
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__ 
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T- 
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T 
av(k) äv(k) av(k) v av(k) 

l, ß, ß, 
u, z, v, p derivatives 
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N a1 (k) /--fi* Uzi (k), vi (k), H1K (z i (k), v; (k)), k) 

minQi = {gi(xi(k), ci(k), ui(k), Yr(k)) =fi(zi(k), v1(k), HiK`(z1(k), vi(k)), aj(k)) 
k=1 

+1i (kyT ui (k) 
N' 

T 
-ý1 j (k)H jiK, ixt (k), ci (k)) 

J=t 

-, 11(k)T xi(k)-ß, (k)T ct(k) 

subject to 

yi (k)+-4i (z1(k), vi (k), H1K* (zi (k), vi (k)), k) 

=9'i Uzi (k), vi (k), Hi K* (zi (k), vi (k)), ri (k)) 

a1, Yi 

xi(k+1)= ff (xi(k), ci(k), u; (k), aj(k)) 
xr(0)=xio 

................................................................................... 

VARIABLES UPDATES 0 Zj'V, 

zi(k)s+l = zi(k)s +a, (x, (k)s -zi(k)s) 
vj(k)S+l = vi (k)' +sv(c, (k)s -vi(k)s) 
p1(k)s+l = ß1(k)3 +ep (Pi (k)s - pr (k)s ) 

Figure 3.3 A two level structure with real input in interaction and parameter estimation 
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3.7 STRUCTURE WITH TOTAL REAL INTERACTION MEASUREMENTS 

We now consider MOP4 in which the interaction vector u(k) is totally eliminated by 

substituting with the real input HK* (x(k), c(k)). The real interaction measurement is 

now incorporated in the performance measure, the plant dynamics and the parameter 

estimation. There is no free interaction variable in these procedure. 

MOP4 is expanded by including two separation variables z(k) =x(k) and v(k)=c(k) to an 

equivalent form, giving the Expanded Optimal Control Problem : 
EOP4 

N-1 
min Q= Fq(x(k), c(k), HK*(x(k), c(k)), y(k)) 

k=1 

subject to 

x(k+l) =f (x(k), c(k), HK* (x(k), c(k)), a(k)) ; ke [O,.. N-1] 

X(O) = x0 

f *(z(k), v(k), HK*(z(k), v(k)), k)= f(z(k), v(k), HK*(z(k), v(k)), a(k)) 

q* (z(k), v(k), HK*(z(k), v(k)), k) = q(z(k), v(k), HK* (z(k), v(k)), y(k)) 

x(k) =z(k) 
c(k) = v(k) 

Adjoining the constraints using Lagrange multipliers as before, we obtain: 
N-1 

QEOP4 = {q(x(k), c(k), HK* (x(k), c(k)), y (k)) 
t=1 

p(k + 1)T [f (x(k), c(k), HK` (x(k), c(k)), a(k)) - x(k + 1)] 

+ u(k)T [f* (z(k), v(k), HK* (z(k), v(k)), k) -f (z(k), v(k), HK* (z(k), v(k)), a(k)) ] 

+ q(k)T[q*(z(k), v(k), HK*(z(k), v(k)), k)- q (z(k), v(k), HK*(z(k), v(k)), y(k))] 

+ %(k)T [z(k) - x(k)] +/3(k)T [v(k) - c(k)] } (3.106) 

where p(k) e p(k) e 91', q(k) E 91, A(k) e 91n and ßß(k) r= 91m, are Lagrange 

multiplier functions. 

Define: 
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H(, ) = q(x(k), c(k), HK*(x(k), c(k)), y(k)) 

+ p(k + 1)T f (x(k), c(k), HK*(x(k), c(k)), a(k)) _2(k)Tx(k) - ß(k)T c(k) 

(3.107) 

Repeating the process shown in Section 3.4, we then use (3.107) and apply Lagrange 

multiplier theory to obtain the minimum of (3.108). These will result in the following 

necessary optimality conditions for EOP4: 

c (x(k), c(k), HK*(x(k), c(k), r(k))+p(k+1)T of (x(k), c(k), HK*(x(k), c(k), a(k)) 
8c(k) c9c(k) 

Q(k)T =0 (3.108) 

c (x(k), c(k), HK*(x(k), c(k), y(k))+p(k+l)T of (x(k), c(k), HK*(x(k), c(k), y(k)) 
Dx(k) ox(k) 

2(k)T -P(k)= 0 (3.109) 

ý(k)T +p(k)T 
of *(Z(k), v(k), HKw(z(k), v(k), k)`of(z(k), v(k), HK*(z(k), v(k), a(k)) 

äz(k) tz(k) 

o *(z(k), v(k), HK*(z(k), v(k), k)a'(z(k), v(k), HK*(z(k), y(k), Y(k)) -0 äa(k) 2(k) 

(3.110) 

ß(k)T +u(k)T 
of *(z(k), v(k), HK+(z(k), v(k), k)_&f (z(k), v(k), HK`(z(k), v(k), a(k)) 

dv(k) O'(k) 

+1/(k) Al* (z(k), v(k), HK* (z(k), v(k), k) 
_ 

O1(z(k), v(k), HK* (z(k), v(k), y(k)) =0 
cý(k) cýV(k) 

(3.111) 

p(k+1)T 
Of (x(k), c(k), u(k), a(k)) 

_ p(k)T 
Of (z(k), v(k), HK* (z(k), v(k)), a(k)) =0 da(k) da(k) 

cq(x(k), c(k), u(k), y(k)) 
ay(k) i1(k)r 

of (z(k), v(k), w(k), Y(k)) 
`0 dy(k) 

(3.112) 

(3.113) 
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x(k + 1) =f (x(k), c(k), HK* (x(k), c(k), a(k)) ; ke [O,.. N-1 ] 

X(O) = xo 

f* (z(k), v(k), HK" (z(k), v(k)), k) =f (z(k), v(k), HK* (z(k), v(k)), a(k)) 

q*(z(k), v(k), HK*(z(k), v(k)), k)= q(z(k), v(k), HK * (z(k), v(k)), y(k)) 

x(k)=z(k) 

c(k) =v(k) 

Introducing p(k) as costate separation variable, that is 

P(k) = p(k) 

(3.114) 

(3.115) 

(3.116) 

(3.117) 

(3.118) 

(3.119) 

(3.120) 

Using this and equations (3.118) and (3.119) in optimality conditions (3.112) and 
(3.113) gives: 

/) = P(k) 

i(k)=1 (3.121) 
The modifiers are given by equations (3.110) and (3.111) as: 

A(k) _T 
[of* 

(z(k), c(k), HK' (z(k), v(k)), k) 
_ 

of (z(k), c(k), HK* (z(k), v(k)), a(k)) 
T 

p(k+l) äz(k) ö(k) 

T 

_ 
dl*(z(k), c(k), HK*(z(k), v(k)), k)_a1q(z(k), c(k), HK*(z(k), v(k)), y(k)) 

äz(k) Oz(k) 

(3.122) 

T 
/3(k) 

äf ` (z(k), c(k), HK* (z(k), v(k)), k) 
_ 

of (z(k), c(k), HK* (z(k), v(k)), a(k)) p(k+l) 
&(k) a, (k) 

T 

_ 
a7 (z(k), c(k), HK*(z(k), v(k)), k) c%(z(k), c(k), HK*(z(k), v(k)), y(k)) 

öv(k) r'(k) 

(3.123) 
The parameter estimation step are given by optimality conditions (3.116) and (3.117). 

As in Section 3.6, the separation variables are updated using relaxation formula (3.60). 
By solving the following Modified Model based Optimal Control Problem (MMOP) 
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under the specified values of a(k) and y(k) , specified modifier . %(k) and /3(k) and 

specified z(k) and v(k): 
MMOP4 

N-1 

min Q= E{q(x(k), c(k), HK*(x(k), c(k), y(k)) -2(k)T x(k)-ß(k)T c(k)) 
k=1 

subject to 

x(k + 1) =f (x(k), c(k), HK'` (x(k), c(k)), a(k)) 

X(O) = x0 

which is separable and can be decomposed into Ns local optimization problems: 
MMOP4 i 

N-1 

min Qj = 1, {qi(xi(k), ci(k), H: K*(xi(k), ci(k), Yi(k)) 
k=1 

-A, (k)T xr (k) - Qr (k)T c, (k)} 

subject to 

xi(k+I) = ft(xi(k), ci(k), HiK*(xi(k), ci(k), at(k)) 

xj(0) = xi p; ie[1,.. Ns], ke[1,.. N] 

The previous analysis will lead to the a two level hierarchical structure for solving 
EOP4. 

3.7.1 Hierarchical Structure and Information Exchange of EOP4 

The structure proposed to solve EOP4 contains a coordinator level and Ns local 

optimization units in the lower level as shown in Figure 3.4. There is no price updating 

mechanism apart from the need to calculate the modifiers 2(k) and ß(k) in the 

coordinator. The structure is completely decentralized because the real interaction 

measurements are utilized not only to the local estimation unit but also to the local 

optimal control unit. 
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az(k) äz (k) az(k) öz(k) 

_ ý(k )-- 
al+(") 

_ 
af(") 

T 

P( k+l ) 

T 
oq (") 

_ 
Oq(") 

öv(k) öv(k) öv(k) öv(k) 

ß,., 

LOCAL OPTIMIZATION PROBLEM 

minQi = 
N 

{q'i(xi(k), c1(k), HiK*("), Yi(k)) 
k=1 

-Ai (k)T xi (k) - ßi (k)T ci (k) 

subject to 

x; (k+1) =fi (xi (k), ci (k), HiK* (")'ai (k)) 

xi(O) = x10 

z, v, p, derivatives 

PARAMETER ESTIMATION 

al (k) = ftUzi (k), v, (k), H1K(. ), vi (k)), k) 

fi uzt (k), vj (k), H1 K* ("), at (k)) 

Yi (k) = qi (zi (k), vi (k), Hi K* ("), k) 

- qi (zi (k), v, (k), Hi K* (" ), Y i (k)) 

ai(k), Yi(k) 

VARIABLES UPDATES o, zi (k), v j (k) 

Zi(k)s+l = z, (k)s +EZ(xi(k)s -zt(k)) s 

vi(k)s+1 = v, (k)S +E,, (cl(k)S -vj(k)S) 
pi(k)s+1 = P, (k)s +Bp(P1(k)s -ß, (k)5) 

Figure 3.4 A two level structure with total real interaction measurements 
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3.8 OPTIMALITY OF BASIC HIERARCHICAL STRUCTURES 

In this section we will show the four structures derived to solve four equivalent 

problems EOP 1, EOP2, EOP3 and EOP4 are optimal in the sense that their optimality 

conditions are equivalent to those of real optimal control problem(ROP). 
The following assumptions define the existence and uniqueness of optimal solution of 
ROP, and the existence of appropriate derivatives. For a detail discussion of this 

assumption, see for example, Rubio (1986). 

Assumption 3.1 

The optimal solutionc°p (k), x°P (k), pP (k) and u°" (k) ; ke [1,.. N], exists and is 

unique under the given boundary conditions. 
Assumption 3.2 

The derivatives 

of * (") of * (") of *(") eK*(. ) öK*(. ) d1 (. ) c' `(. ) and 
* (') 

exist and are öx(k) &(k) &(k) &(k) &(k) t &(k) ai(k) &(k) 

continuous for ke [1,.. N]. 

The following theorem establishes the optimality of hierarchical structures EOP1- 
EOP4. 

Theorem 3.1-Optimality of Structures 

Under Assumptions 3.1 and 3.2, and assuming convergence, the structures EOP1- 
EOP4 are optimal in the sense that their optimality conditions satisfies the optimality 
conditions of the global real optimal control problem (ROP) defined by (3.14)-(3.16) 

Proof. 

From optimality conditions of EOP1, substitute the modifier equations (3.53), (3.54) 

and (3.55) to eliminate 2(k), ß(k) and ý(k) in equations (3.31), (3.32) and (3.33) to 

obtain the following: 

aq(. ) 
+P(k+l)T'9f(. 

) 
_l(k)THi9F(. 

) 
öc(k) ac(k) öc(k) 
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-p(k+l)T 
*(") 

_ 
`(") 

_ 
`+(") _ 

a1(") 
-1(k)T (3.124) 

oti(k) oti(k) A(k) oti(k) A(k) a'(k) 

(") 
+P(k+l)T 

ff(") 
_l(k)THý'(") 

cx(k) dc(k) c-9 (k) 

-p(k+l)T 
°rý(") _ 

Y(") 
_c 

'(") 
_t 

(") I(k)T ° ý(") (") 0 (3.125) 
cý(k) äz(k) cý(k) öz(k) cý(k) c(k) 

ý(") 
+P(k+1)T °ý`(") 

-1(k)TH 
°'g'(") 

cl(k) cl (k) 61(k) 

-p(k+l)T 
4`*(") 

_ 
() 

- laio_ ý(") 
_1(k)T H °ý(") =0 (3.126) 

äv(k) 
It 

3v(k) ¬ w(k) ol+'(k) 

At convergence x(k) = z(k), c(k) = v(k) and u(k) = w(k). Substituting these in 

(3.116)-(3.118) produces (3.31), (3.32) and (3.33) which are a subset of optimality 

conditions for ROP. This show that the structure developed to solve EOP1 is optimal 

in sense that it will satisfy the optimality conditions of ROP. 

To prove that the structure to solve EOP2 is optimal, we substitute equations (3.82) 

and (3.83) in (3.65) and (3.66) to eliminate 2(k) and ßk). Noting that at convergence 

x(k)=z(k) and c(k)=v(k) and from optimality condition (3.75) K*(. ) = F(. ), the 

equations (3.66), (3.67) and (3.68) reduce to (3.31), (3.32) and (3.33). 

Similarly to show that the structure to solve EOP3 is optimal, we eliminate A (k) and 

/3(k) in equations (3.87) and (3.88) using modifier equations (3.103) and (3.104). At 

convergence x(k)=z(k) and c(k)=v(k). Substituting this in (3.87) and (3.88) leads to 

optimality conditions (3.31) and (3.32). From (3.97) and (3.98) we have 

f*(. ) =f(. ) and q* (. ) = q(. ), applying this in (3.89), produces (3.33). 

To show that the hierarchical structure is optimal, we eliminate A (k) and ß (k) in 

(3.108) and (3.109) using modifier equations (3.122) and (3.123). Substituting 

optimality conditions (3.116) to (3.119) produces 
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öq * (x(k), c(k), HK*(x(k), c(k), y(k)) 
&(k) 

+ p(k + 1)T 
of * (x(k), c(k), HK* (x(k), c(k), a(k)) 

=0 &(k) 

(3.127) 

cll * (x(k), c(k), HK* (x(k), c(k), y (k)) 
Dx(k) 

+p(k+l)T 
af *(x(k), c(k), HK*(x(k), c(k), a(k))_ p(k)=0 

o'x(k) 

(3.128) 
Optimality conditions (3.127) and (3.128) are a subset of the centralized version of 
ROP. 

Q. E. D 
3.9 SUMMARY 

In this chapter new hierarchical structures for optimal control of interconnected 
discrete dynamical are presented and discussed. The structures presented are a 
dynamic analogy to the structures derived by Brdys and Roberts (1986) for solving 
optimizing control of steady-state systems. The hierarchical structures presented are of 
an iterative type and utilize real interaction input in the model when available. These 

new structures represent optimal methods in the sense that the converged solution will 

agree with the solution of the original real optimal control problem (ROP). This is 

achieved by employing an appropriate integration of model-based optimal control 

problem and parameter estimation to produce an optimizing scheme. The first structure 
is a fully model-based structure, where interaction inputs are based on output function 

models of the subsystems. The second structure is derived by incorporating the real 

output model in the interaction measurements. The third is obtained by further utilizing 
the real interaction measurements in the parameter estimation step. The final structure, 

which is fully decentralized, is produced by utilizing the real interaction measurements 
in the whole model of the systems thus eliminating the interaction variables. All the 

structures are derived by extending the DISOPE techniques to interconnected systems, 
to take into account model reality differences that may have been deliberately 
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introduce to facilitate the solutions of complex nonlinear optimal control problems or 
due to uncertainty in the model used for computation. 
In chapter 4, four versions of an algorithm implementation for hierarchical structures 

with model based interaction input are presented. We will also present simulation 

results that illustrate the convergence behaviour of the four approaches. In chapter 5, 

we will provide the convergence analysis for two of the algorithms. 
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CHAPTER 4 

ALGORITHMS FOR STRUCTURE WITH MODEL BASED 
INTERACTION MEASUREMENTS. 

4.1 INTRODUCTION 

In this chapter, four hierarchical algorithms for optimal control of interconnected 

systems with model-reality differences are developed using two different approaches. 

The algorithms however are similar in the sense that they are based on the structure 

with model based interaction measurements which is presented in Chapter 3, Section 

3.4 . In the first approach we implement directly the structure shown in figure 3.4.1. 

This approach is called a price coordination approach to denote the role of the 

interconnection price by as defined by equation (3.59) in the coordination of the 

algorithm. The first algorithm presented is a single iterative version with a linear- 

quadratic model based problem which is developed and implemented in software as 

algorithm 4.2.1 . In the second algorithm a double iterative technique is employed. 
This technique utilizes the global nature of the price coordination formula (3.59) by 

calculating the interconnection price in a global outer loop. In the second approach, we 

calculate the interconnection price directly from the optimality conditions. We denote 

this by calling this approach a direct coordination approach. This procedure restricts 

the choice of the output function model and calculates the interaction vector u(k) at 

the coordination level (level 1) instead of at a lower level as in the price coordination 

approach. Two versions of this approach are implemented with a linear quadratic 

model based problem. The first version is a single iterative algorithm and the second 

version employs a double iterative technique. In the double iterative technique the 

interaction vector and the interaction price are iterated in the algorithm at a global 

outer loop of the hierarchical structure. All algorithms are implemented in software 

and tested with two simulation examples. 

82 



4.2 PRICE COORDINATION APPROACH 

PROBLEM FORMULATION AND SOLUTION APPROACH 

Consider the optimal control problem defined by MMOPIi in Chapter 3, Section 3.4. 

Augmenting the performance index with variable augmentation to aid convergence, 

Then the following equivalent augmented problem is produced: 

MMOP1i': 

N-1 
min Qi =l (x(N))+ 

, 
{gi(zi(k), ci(k), ui(k), Yi(k)) 

c(k), u(k) k=1 

Ns 
+li(k)Tui(k)- lj (k)HjiP(xi(k), ci(k), ui(k), ei(k)) 

J=1 

-Ai (k)T xi(k)-ßi(k)T ci(k)-ýi(k)T ui(k) 

+2 r1i lI ci (k) - vi (k)JJ2 +2 r2t llxi (k) - zi (k)112 +2 r3i Il ul (k) - wi (k)p2 } 

subject to 

xi(k+1)= fi(xi(k), ci(k), ui(k), ai(k)); ke[1, N-1] 

X! (0) = xi0 

xi, t(N) = 0; t E[l, q] 

xi (N) = [xi, q+l(N)...... , xi, n(N)I 
T 

where rli, r21 and r31 are given scalar convexification factors. Notice that at the end of 

the iterations, c(k)=v(k), x(k)=z(k) and u(k)=w(k) so that at this stage the 

augmentation terms and their derivatives are zero, so having no effect in the real 

optimality of the solution. 
The model based optimal control problem and consequently the modified model based 

control problem MMOP11, can be chosen as a linear quadratic approximation of the 

real optimal control problem for which there are standard solution procedures (Lewis 

and Syrmos, 1995). This provides a computational advantage. The parameters c(k), 

Xk) and Bu(k) , ke[O,. N-l] can be chosen as shift parameters and thus we have: 

qt (xi (k), ci (k), ut (k), Y t (k)) = 

Zxt(k)TQixt(k)+2cj(k)TRjct(k)+ 1 
ut(k)Tstuj(k)+Yt(k) 
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f, (x; (k), c; (k), u; (k), a; (k)) = 

A; x, (k)+B; c, (k)+D; u; (k)+aj(k) 

F. (x; (k), c; (k), ui (k), 01(k)_ 

ci xi (k) +. i ci (k) +. üi ui (k) + 01(k) 

0i (xi (N)) = 
fxj(N)Tjx, (N); kE [0, N] (4.1) 

where ci z 0, Q; z 0, Ri >0 and Si z0 are weighting matrices of appropriate 

dimensions, A;, B; and D; are matrices which represent a linear model of fi* (. ) , 

and Xi are matrices which represent a linear model of the output function 

Fj(. ). 

The corresponding Hamiltonian function is: 

ýI(. ) = 
1xi Qixi(k)+ 1 

ci(k)T Rici(k)+ 1 
ui(k)T S, ul(k)+yl(k) 22 

+pl(k+1)T [Aixi(k)+Bici(k)+Diui(k)+ai(k)] 

N 
s 

+11(k)T ul(k)- 2: 1 j (k)Hji[dixi(k)+. ici(k)+Ciui(k)+Oj(k)] 
j=1 

-, t, (k)Txt(k)-ß, (k)T ci(k)-C, (k)T ut(k) 

+2 rli llci (k) - vi (k)112 +2 rit 11xi (k) - zi (k)112 +2 rat II ui (k) - wi (k)112 , ke [0, N-1 ] 

(4.2) 

Applying model based optimality conditions (3.31), (3.32), (3.33) and (3.41) for the ith 

subsystem, the following equations are obtained : 
N 

Rici(k)+Bi p(k+l)- T EsHjilj(k)-ß1(k)+r1jcr(k)-r11vi(k)=0 
J=1 

N 
Qixi(k)+Aj T p(k+l)-. 7, I: Hji1 j(k)-21(k)-P1(k)+r2txi(k)-r2izi(k)=0 

J=1 

N 
s 

Si ui (k)+DTp(k+1)- ,, 
EHjll j(k)-ýi(k)+1, (k)+r3iufi(k)-r°3iwi(k)=0 
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Pi (N) = (Dixi (N) where p1(N) _ [Pi, q+l (N).... Pi, n(N)JT 

Pi, r(N) = vi, t; t E[l, q]; k E[0, NJ (4.3) 

To facilitate the computation, we define the following augmentations; 

Let 
N 

__s Qi =Qi+riil ; pi(k)=pi(k)+c7i ýHJ Ij(k)+r2, zi(k); then 
J=1 

pi(k)=Qixi(k)+Ai Pi(k+l)-;, i(k); Pi(N)=cbixi(N) 

where Pt (N) = [Pi, q+i (N).... An (N))T 

Pi, r(N) = vi, t; t E[l, gI; k E[0, NJ (4.4) 

and let 

N 
s 

Ri=Ri+ 1I ; ßi(k)=ßi (k)+,, 'ýT H 1j(k)+riivi(k); 
j=1 

ci(k) =-R't 1(Br pi(k+1)-(k)); k E[O, N-1) (4.5) 

Also let 

N 
Si=S1 +f'31Ir ýi(k)=ýi(k)+ýý ý, H Ij( )+t`3iwi(k) 

J=1 

sui (k)=-Si, (DTp; (k+1)-ýj(k)+li(k)); kG[O, N-1J (4.6) 

Substituting (4.5) and (4.6) in the model dynamic equation, results in the following: 

xi(k+l)= Alxi(k)-B, J 1(BjTpj(k+l)-ý1(k)) 

-D, gi-1 p; (k+1)-ýi(k)+1i(k))+a1(k) 

X1 (0) =x0; xj,, (N) = 0; t E[l, gt]; k e[O, N-1] (4.7) 

Equations (4.4) and (4.7) constitute a two-point boundary value problem. It can be 

solved by using Ricatti equation techniques (Bryson and Ho, 1975; Lewis and Syrmos, 

1995). The key is to assume the relationship between costate and state as 

pi (k) = Vj (k)xi (k) + E; (k) vi + hi (k); kE [0, N] 
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where V; (N)= 
0; 

Ei(N)= 
ID' 

; h; (N)=0 

vi = [pi, l (N).... pi, q (N)]T (4.8) 

where V1 (k) is an nl x nj matrix, El (k) is nj x qi matrix , hi (k) E 91 n1 and 

V. E ýiqi . Substituting this in (4.7), produces 

xi(k+l) =[In + B1 1Bi Vi(k+1)+Digi lDTVi(k+1)]-'[Aixi(k)+BiRi lßt(k) 

+Djsi-1(? r(k)-lt(k))+ai(k)-(B1Rt'BT +D, 7'DT)Et(k+1)vi 

-(B1Rj 
1BT +D, Sj'DT )hl (k+1)] 

Substituting (4.8) in (4.4) gives 
Vj (k)xi (k) + Ei (k) vi + h; (k) 

(4.9) 

=Q; xj(k)+A 'V (k+1)xx(k+1)+Ai Ei(k+1)vj+ATh; (k+1)-Äi(k) (4.10) 

Substituting (4.9) into (4.10) and grouping terms 

[-Vi(k)+Qi +ATV (k+1)[In + BiR 'Bi Vi(k+1)+DiSi-'DTV (k+1)]-'Ai]xi(k) 

+[A, E; (k+1)-Ei(k+1)-ATV, (k+1)[In+B1 1Bi Vi(k+1)+D19i 1DTVj(k+1)]-i " 
(Bi Ai 1BT +D; S 'DT)E1(k+1)]vi 

+[Aj -Ai Vi(k+1)[I� +B, iBi Vi(k+1)+DiSi`1Di V, (k+1)]-i 

(B i tBT +D1 tDT)]h; (k+1)-h, (k) I tj(k) 

+ATV, (k+1)[I� +B, Ri`1Bi Vt(k+1)+D, SFiDTV3(k+1)]-'(B; Rf lß, (k) 

+DiSF 1(ýi(k)-11(k)+ai(k)]°0; k E[0, N-11 (4.11) 

Equating coefficients to zero in (4.11) results in the following set of difference 

equations, which can be solved backwards from terminal conditions shown. 

Vi (k) = Q'i + A1V1(k + 1)[In + Bj J 13, V1(k + 1) + D1 D1T V (k + 1)]`l A, 

ke [0, N- 1], V (N) =0; (4.12) 

E1(k) =[Alr -AITVi(k+1)[In +B1Rj 1BiTVi(k+1)+D; Sý 1Di Vj(k+l)]-1 e 

(B, RI- B +DiSj 1Di)]E1(k+1) 
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k r= [0, N- 1]; E; (N) = 
ID' 

(4.13) 

hi (k) = [A1T -ATV (k + 1)[In + Bi Ri l BTVi (k + 1) + Di Si-l DT V (k + I)]-'* 

(BiRt 1Bi + DSi 1Di)]hi(k+1)- j(k) 

+A1TVi(k+1)[In +B, R7T BT Vi(k+1)+D1Si 1DTVi(k+1)]-1 " 

(B1Rt 1ß, (k)+Dist 1(ýi(k)-11(k)+a, (k); 

where h; (N) = 0; kE [0, N -1] (4.14) 

Let us assume the (assumed fixed) terminal constraints function as 

Pj(k) = E, (k)T xi(k)+W (k)vi +nj(k); k e[0, N] 

where W (k) is aqjx q1 matrix and ; ri (k) e 91 qt and 

`1`i(k) _ [xi, 1(N)..... xj, q(N)]T =[O .... Of 

then Ti(k+1) = Ei(k+1)T xi(k+1)+W (k+1)vi +; ri(k+1); (4.15) 

Using (4.9) and equating LYt (k) and Tf (k + 1) in (4.15) results in a repeat of (4.13) 

plus the following difference equations, which may be solved backwards. 

W(k)=W, (k+1)-Ei(k+l)T[In+BiRF1Bi Vi(k+1)+D; Si-1DiTVi(k+1)1-10 

(B; Rý 1B1 +Dist 1DT)]Ei(k+1) 

W(N) = 0; k E[O, N-1] (4.16) 

; ti (k) = ; ri (k + 1) + Ei(k + 1)T [In + Bi RI 1 Bj Vj (k + 1) + Dj 91 DjT Vj (k + 1)]-' " 

[-(B; Rj 1B; +DjSr 1Di)]h; (k+1)+(B17Q'ß1(k)+D1SF 1(? 
i(k)-11(k)+aj(k)] 

where r (N) = 0; kE [O, N -1] (4.17) 

We need to find an expression for multiplier vi. then from the terminal constraint 

function (4.15), we obtain the following 

vi = Wi (k)LEI (k) T xi (k) - iri (k)] (4.18) 

' iär E [0, N]. Noticing that W (N) is ill conditioned 

Pi (N) = vi = -ui (0) [Ei (0) T xio + 7ri (O)) (4.19) 
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Hence p; (N) can be obtained once E, (k) , Wj (k) and zr, (k), ke [0, N]. Thus from 

(4.8) we obtained the following 

p. (k) =Vj(k)x; (k)+E1(k)p; (N)+h; (k); k e[0, N] (4.20) 

Substituting (4.20) in (4.5) gives 

ci(k)=-Ri-tBT[Vi(k+1)xl(k+1)+E1(k+1)p, (N)+h; (k+1)+R; 1ý3t(k)); 

ke [0, N -1] (4.21) 

which can be expressed as 

ci (k) = -G1(k)x j (k) + g1 (k) (4.22) 

where Gj(k) = R7 1BTVi(k+1)[I, 
ß +BBR1B, V, (k+1)+D, , DTV1(k+1)]A1 

and 

gi(k)=-Ri 1BTVi(k+1)[In +B1R4BTV; (k+l)+D1YjDTV1(k+1)]-1 " 

[(B1 TQ1(k)+D1Si 1(? 
t(k)-11(k))+a, (k) 

-(B, Ri-1B, +A S1 1D, T)](Ei(k+1)v+hi(k+1)) 

+E, (k+1)p; (N)+h1(k+1)]+RiTßi(k) k E[0, N-1] (4.23) 

The interaction term is given by 

uj(k) = -SFDT[Vi(k+1)x, (k+1)+E1(k+1)pi(N)+hi (k+1)] 

+3 1(? 
i (k) -1t (k)) ke [0, N -1] (4.24) 

If we define 

M1(k) = 9171DTVj(k+1)[In +B1k, BTV1(k+1)+D1 91 DTV1(k+1)]-1 A, 

and 

ml(k) =-Si lDTVi(k+1)[I� +B1RjB, V, (k+1)+D; StDTV1(k+l)]-1 " 

[(B1RjTQ1(k)+Dist 1(-Ct(k)-11(k))+at(k) 

-(BjRi 
1Br+Dist 1DT)](E, (k+l)v+h, (k+1)) 

+E1 (k + 1)p 1(N) + h1(k + 1)] + Sý 1(ß'1 (k) 
-1, (k)) ke [0, N -1] (4.25) 

then (4.24) can written as 

u, (k) _ -Mi(k)xi(k)+mi(k) (4.26) 

Thus from (4.22) and (4.26), the state equation can be expressed as 

x; (k+1) = (A; -B; G; (k)-D; M; (k))x; (k)+Bjg, (k)+D; m; (k)+ai(k); 
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x; (0)=x, o, xi(N) =0; t E[1, q]; k E[O, N-1) 

The linear model allows the multipliers (3.54), (3.55) and (3.56) to written as 

(4.27) 

TT 

ýi(k)_- ! 
(ký-At 

Pi(k+l)- t(k)-Qiziýk) + 
týk)-cat 

Ht ! t(k) 

4TT*T aft (") 
- 

a9LT (") 
-i 

(") 
-T ! jt (k) _- ýyt (k) 

Bt Pi (k+1) _ ýyt (k) 
Rtvi (k) ý' 

&, 
[k'] Ht 1t (k) 

ý' (k)=- Iafi*(") _Di 
T 
Pi(k+1)- 

a91 (") 
_S1w: (k) 

T 

_. G1T 1`ß+T It(k); l awi (k) öwi (k) 

ke [O, N-1 ] 

The calculation of parameter a1 (k) and Bi (k) becomes 

ai (k) =f* (zi (k), vi (k), wi (k), k) - Ai zi (k) - Bl v= (k) - Di wi (k) 

01(k) Ki (zi(k), vi(k))-c, 7tzi(k)-. Jivi(k)-. liw, (k); 

kE [O, N-1] 

Note that it is not necessary to calculate yj (k) . 

(4.28) 

(4.29) 

The price multiplier vector 1(k) is computed using formula defined by (3.60), that is 

1f+1(k+1) =l (k)+el[u1(k) 
Ns 

-E 11y (& xj(k)+ jcj(k)+,,. Ljuj(k)+O j(k))] (4.30) 
j=1 

where el is a positive scalar suitably chosen to preserve convergence and s denotes 

the iteration number . 
The above analysis gives rise to the following two versions of hierarchical DISOPE 

algorithms for interconnected systems with model based interaction input. We will 
denote the single loop version by PC1 and the double loop version by PC2. 

4.2 .1 Single Loop Technique PC1 

A single loop technique is obtained by iterating all the coordinating variables in 

equations (4.29) and (4.30) in the upper level simultaneously with local optimization. 

units defined by MMOP1i in the lower level. This scheme is shown in Chapter 3 as: 
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figure 3.4.1, where the appropriate linear quadratic models are applied to the model- 

based problem as defined in Section 4.2. 

The lower level consists of Ns local optimization units, each of which contains the 

MMOPli unit, the parameter estimation unit and the variable update unit. Each local 

optimization unit is independent of other local optimization units, thus making it 

suitable for application of parallel processing. 

The algorithm can be summarized as follows: 

Algorithm 4.2.1: Single Loop Price Coordination Hierarchical DISOPE for 

systems with model based interaction measurements. 

Data: Ai, Bi" Di" Qi, Ri, Si, xio, Oi, N, Ns, rli, r2i, r3isEcolex, cutEp$EI and means 

for calculating fi* (" ), Ki (") and qi i") 
Step 0: At level 2, choose the initial value of coordinating variables 

A4 (k), ß? (k) , f'? (k) and l? (k) . At level 1, let a? (k) = 010 (k) = 0, 

compute or choose a nominal solution for the ith local optimal control 

problem. Set iteration number s=0 and v0 (k) = c0 (k) and w? (k) = u1 (k), 

ke [0. N-1 ]. z? (k) = x4 (k) and pP (k) p? (k) , ke [0, N]. Send them to 

level 2. 

Step 1. At level two, calculate coordinating variables Ai (k),, 8 i(k) 
, 4' 1(k) and 

li (k) ke[1, N] using equations (4.28) and (4.30). Augment them 

according to (4.4), (4.5) and (4.6). Send them to the local optimization 

problem in level 1. 

Step 2: At level 1, calculate a If(k) and 0 If(k) from (4.29) and send them to the ith 

local optimal control problem and to level 1. This is called the parameter 

estimation step. 
Step 3: At level 1, solve the ith modified model based optimal control problem. 

3.0 If s-0, from data compute V3 (k), Et (k) and 6j (k), ke [0, N] and 
Gj(k), M, (k), k e[O, N-l] using equations (4.12), (4.13), (4.16), 
(4.23) and (4.25). The results are stored for use in the subsequent 
iteration. 

3.1 Solve (4.14) and (4.17) backwards to obtain 
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hl (k) and iris (k), ke [0, N1. 
3.2 Use (4.19) to obtain pi (N) . Calculate gi (k) and m; (k) 

,ke [0, N -1] from equation (4.23) and (4.25). 

3.3 Solve equation (4.27) to obtain new state xi + 1(k), k c- [0, N]. 
3.4 Use (4.8) to calculate new costate p1 + 1(k), ke [0, N] 

3.5 Use (4.21) to calculate new control ci + 1(k), kE [0, N- IJ 

3.6 Use (4.24) to calculate new interaction of + 1(k), ke [0, N -1] 
Step 4. At level 1, update the variables 

zS+1 (k) = zi (k) + ez (xi (k) - zl (k)), ke [0, N] 

vs+1(k) =vi (k)+ev(cis (k)-vi (k)) ,k E[0, N-1] 

N, = +l M= wl (k) + sw (ul (k) - wl (k)) ,ke 
[0, N -1] 

Ps+1(k) = pf (k)+cp(pis (k)-Pi (k)) ,k E[0, N] 

Send them to level 2. 
Step 5 At level 2, convergence of coordinating variables is checked. If 

vs+1(k)=vs(k), zs+1(k)=zs(k) and ws+1(k)=ws(k) within a 

defined tolerance, stop, otherwise set ss+I and go to step 1. The whole 

procedure is repeated. 

4.2.2 Double Loop Technique PC2 

The double loop technique is first introduced in hierarchical ISOPE algorithms by Shao 

and Roberts (1983) in which a nested double iterative loop structure is employed such 

that the subsystem coordination is separated from the controller set-point optimization. 
The technique was developed for the purpose of reducing as much as possible the 

number of set-point changes at the expense of an increase in the total number of model 
based iterations for some circumstances . (See for example, Brdys and Roberts, 1985). 

In the hierarchical DISOPE the technique is developed to exploit the global structure 
of the interconnection terms defined by (3.24). The proposed technique involves an 
iterative procedure of solving modifier equations (4.28) for a given value of price 1(k). 
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The outer loop task is to evaluate the global price 1(k) such that equation (3.42) is 

satisfied and this is equivalent to solving the following equation : 

u(l(k)) = HF(x(l(k)), c(l (k)), u(l(k)), O(x(l(k)), (c(l (k)), (u(l(k))) ke [0, N- 1] 

(4.31) 

where x(1(k)), c(l(k)) and u(l(k)) are solutions of the inner loop problem under a 

prescribed 1(k). Note that in the linear quadratic model based problem F(. ) is defined by 

the appropriate equation in (4.1). The strategy for updating the price is given by a 

global version of (4.30) that is: 

1s+ 1(k + 1) =ls (k) + el (u(k) - H(Jx(k) + ,,, , c(k) + bu(k) + 9(k)) (4.32) 

The inner loop consists of two levels similar to the structure given in Section 4.2.1. On 

the upper level we have the modifier equations as defined by (4.28). The lower level is 

made up of Ns local optimization units. Each local optimization unit consists of a 

MMOP; unit, parameter estimation unit and the variable update unit. Notice that, the 

local optimization unit remains independent thus making this technique suitable for of 

application parallel processing methods. The software implementation of this technique 

is much more easier because we do not have to separate the interacting component for 

each subsystem at the coordinator level. This separation of global component (the 

price mechanism) and local components also facilitates the convergence analysis as 

shown in Chapter 5. 

Sufficient conditions for convergence of this iterative scheme are given in Chapter 5. 

The procedure for implementing the algorithm is summarized as follows: 

Algorithms 4.2.2 Double Loop Price Coordination Hierarchical DISOPE for 
systems with model based interaction input 

Data: Al, Bl, Dl, Ql, RI, Si, xlo, 0l, N, Ns, r11, r2i, r3l'EC, ex, r= , r=p and means for 

calculating fl* (" ), Kt (. ) and q1(" ) 

Inner Loop 
Step 0. At level 2, choose the initial values of coordinating variables 

2? (k), /3j (k) and ý? (k) . At level 1, let a? (k) = ©? (k) = 0, compute or 

choose a nominal solution for the ith local optimal control problem. Set 

iteration number s=0 and v? (k) = c? (k) and w? (k) up (k), ke [0, N] 
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z0 (k) = x? (k) and 130 (k) = po (k) ,ke [0, N]. Send them to level 2. 

Step 1: At level 2, calculate modifier vectors) l (k),, ßl (k) and ß'1(k) 
,ke [1, N) 

using equations (4.28) under prescribed 1(k) from the outer loop. Augment 

them according to (4.4), (4.5) and (4.6). Send them to the local optimization 

problem in level 1. 

Step 2: At level 1, calculate ai (k) and O (k) from (4.29) and send them to the ith 

local optimal control problem and to level 1. This is called the parameter 

estimation step. 
Step 3: At level 1, solve the ith modified model based optimal control problem. 

3.0 If s=0, from data compute V (k), E1 (k) and W (k), ke [0, N] and 
G1 (k), M1 (k), ke [0, N -1] using equations (4.12), (4.13), (4.16), 
(4.23) and (4.25). The results are stored for use in the subsequent 
iteration. 

3.1 Solve (4.14) and (4.17) backwards to obtain 
hf (k) and 4th (k), k c- [0, N], 

3.2 Use (4.19) to obtain p1 (N) . Calculate gj (k) and mi (k) 
ke [0, N -1] from equation (4.23) and (4.25). 

3.3 Solve equation (4.27) to obtain new state x+ 
1(k), ke [0, N]. 

3.4 Use (4.8) to calculate new costate Pi +I (k), kE [0, N] 
3.5 Use (4.21) to calculate new control cl + 1(k), ke [0, N -1] 
3.6 Use (4.24) to calculate new interaction ul + 1(k), ke [0, N -1] 

Step 4. At level 1, update the variables 

Zj S+1 (k) = zi (k) + ez (xl (k) - zl (k)), ke [0, N] 

vl +1(k)=vl (k)+cv(cis (k)-vl (k)), k e[0, N-1] 

wj + 1(k) 
= wi (k) + sw (ui (k) - w1 (k)) ,ke 

[O, N -1] 
ps+1(k)=pi (k)+ep(pi (k) -Pf (k)), k e[0, N] 

Send them to level 2. 
Step 5 At level 2, convergence of coordinating variables is checked. If 

vs+l(k)=vs(k), zs+l(k)=as(k) and ws+l(k)=ws(k) within a 

defined tolerance, stop, otherwise set s=s+1 and go to step 1. The whole 

procedure is then repeated. 
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Outer Loop: 

Step 0: Set p=0, choose a nominal value for 10(k). Send it to the inner loop. 

Step 1: Using prescribed global values of x(k), c(k), u(k) and 6(k) from the inner 

loop calculate the price using equation (4.31). Send it to the inner loop. Set 

p=p+1. 

Step 2: Test for convergence using equation (4.31) . If within a defined tolerance, 

stop, otherwise repeat step 1. 

Simulation results for the two algorithms will be shown at the end of the chapter. 

4.3 DIRECT COORDINATION APPROACH 
PROBLEM FORMULATION AND SOLUTION APPROACH 

In this section we develop hierarchical algorithms for solving EOP 1 (see Chapter 3, 

Section 3.4) using methods based directly on the optimality conditions . We choose the 

model to be of a linear quadratic form. In this technique the price multiplier function is 

calculated directly from the optimality conditions. The interaction term is calculated 

directly from the interaction equation as defined in optimality condition (3.42). 

Because of this , MMOP11' in Section 4.2 is now modified as a minimization 

problem with respect to the control vector only . In this sense this approach is similar 

to the interaction-prediction approach (Mahmoud et 41985). However, in the present 

problem a different and more general interaction structure is adopted . Augmenting the 

performance index with variable convexification terms to aid convergence, 

MMOP1iin chapter 3, Section 3.4 is now modified to the following equivalent 

augmented problem: 

MMOP1i ": 
N-1 

min Qi =O(x(N))+ {Ri(xi(k), ci(k), ui(k), yl(k)) 
c(k) k=I 

N 
+1 (k)T ul(k)- 

SIj (k)H jr Fi (xi (k), cl (k), ui (k), 0r {k)) 
j =I 

-Ai (k) T xi (k) - fli (k) T ci (k) - Ci (k) T ui (k) 
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+2 rri Ilci (k) - vi (k)II2 +2 r2i (Ixi (k) - zi (k)II2 +2 r3i Ilui (k) - wi (k)II2 } 

subject to 

x; (k+1) = f1 (xi(k), c1(k), u; (k), aj(k)); kE[1, N-1] 

Xi (0) = x, 0 

xl, t (N) = 0; t E [l, q] 

ii (N) _ [x�, q+1(N)....... xi, n (N)]T 

where r11, r21 and r3i are given scalar convexification factors. 

To solve MMOPli" we choose the following linear quadratic approximation of 

ROP for which there are standard procedures for its solution (Lewis and Syrmos, 

1995). The parameters ai (k), 
,vi 

(k) and 01(k), kE [O, N-1] can be chosen as shift 

parameters. 

Define 
qi (xi (k), ci (k), uj (k), yi (k)) _ 

2Xi(k)TQixi(k)+2ci(k)TRici(k)+ 
1 

ui(k)TSiui(k)-i-yi(k) 

fi(xi(k), ci(k), ui(k), ai(k))= 

A; xi(k)+Bic; (k)+D; ui(k)+ai(k) 
F1 (xi(k), c, (k), u1(k), 0. (k))= 

ýýxi(k)+Xicj(k)+9; (k) 

01 (xi (N)) =2 xi (N)T ,xj (N) ; ke (0, N] (4.33) 

Note that the model for Fi (. ) does not contain any interaction vector uj (k) in order 

to satisfy the sequence of computation used in this approach. Proceeding as in Section 

4.2, we define the Hamiltonian as: 

H(")= 4x, 
(k)TQ1x, (k)ý! c, (k)TRfc((k)ý--u, (k)TSjuj(k)+r(k) 

+pi(k+1)T [Aixi(k)+B1cc(k)+D; u; (k)+a; (k)] 
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N 
s 

+li (k) T u1(k)-I: 1j (k)Hjl [d; x; (k)+ /; cl (k)+9, (k)] 
j=1 

, (k)T xi(k)-ßi(k)T ci(k)-Ci(k)T ui(k) 

+I r11 ci (k)-vt (k)112 +I r2t ll xt (k)-zt (k), 12 +I r3i l iu; (k) -wi (k)112 ke [O, N-1 ] 
222 

(4.33a) 

Applying optimality conditions (3.31)-(3.33) and (3.41) gives the following equations, 

N 
s 

Rici(k)+BTPj(k+1)-, Z/ l: Hjilj(k)-Qi(k)-r1ici(k)-rllvi(k)=0 
J=I 

Ns 
Qixi(k)+ATpi(k+l)-ýT YHjil j(k)- I(k)-pi(k)+rzixi(k)-r21z1(k)=Q 

j=1 

stuf (k)+DiT Pi(k+1)-C't(k)+li(k)+r3iui(k)-r3iwi(k) =0 

Pi (N) _ cixi (N) where pi (N) = [Pi, q+l (N).... Pi, n (N)]T 

Pi, t (N) = vi,, t; te [1, q]; ke [0, N] (4.34) 

To simplify the derivation and computation we make the following augmentation. 
Let 

N 
_ Qi =Qi+rlil ; 2i(k)=A, (k)+cýT ZHj l j(k)+rrizt(k); then 

j=1 

pi (k)=Qixi(k)+ATpi(k+1)-21(k); 151(N)=(Dix't(N) 

where Pi (N) = [pi, q+1(N).... pi, n (N)]T 

pi, t(N) = vi, t; t e[1, q]; k e(0, N] (4.35) 

Let 

N 
s 

Ri=Ri+rliI ; Qi(k)=Qr(k)+. rT j: H 1 j(k)+rtuvj(k); 
j=1 

ci(k)=-Rý 1(Bi p1(k+1)-ýJ(k)); k E[O, N-1] (4.36) 

Let 91 =Si+r3iIr ; pi(k)=pi(k)+r3iwi(k); 
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11(k) =i'j(k)-Si ul(k)-DT p; (k+1); k e[O, N-1] (4.37) 

where the interaction vector u; (k) is calculated from optimality condition (3.42), that 

is; 

N 
s 

uj(k)_ 1] HÄFj(xi(k), cl(k), ul(k), 9j(k)) 
J=1 

N 
S 

=IHK(, tjxj(k)+J; Jcj(k)+Gj(k)); kE[O, N-1] (4.38) 

Note that in (4.37) we calculate the Lagrange multiplier associated with the interaction 

terms 1(k) directly from the optimality, conditions. 
Substituting (4.36) in the model dynamic equation, produces the following; 

xi(k+ 1) = Aixi(k) -Brij 
1(BT pi(k+1)-ßt(k))+Diui(k) +ar(k) 

Xi (0) = x1o ; xi,, (N) = 0; te [l, qi ]; ke [0, N -1] (4.39) 

Equations (4.35) and (4.39) define a TPBVP, which can be solved by using Riccati 

equation methods (Bryson and Ho, 1975; Lewis and Syrmos, 1995). 

The key to solution is to assume the relationship between costate and state as 
pi (k) = Vj (k)x; (k) + Et (k) v, + hi (k); k r= [0, N] 

where VV (N) =0 cp ; E1 (N) = 
[, 

171 ; hi (N) =0 
t 

Vi = [pi, l (N).... pi, q (N)] T (4.40) 

where Vj (k) is an nl x nj matrix, El (k) is nl x qi matrix , hi (k) e 92 ni 
and 

Vi G 91 

Substituting (4.40) in (4.39) produces; 
T xi (k+1) =[In +Bjkj-lBVi(k+1)]-i[Aixt(k)+B1Rt'ßr(k) 

-(B; Ri-'BIT +D; Si 1D; T)(EI(k+l)vi +h, (k+1)) +D; ui(k)+ai(k) 

(4.41) 
Applying (4.40) in (4.34) gives; 
V, (k)x1(k)+Ei(k)v, +h, (k) 
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=Q; xl(k)+ATV (k+1)xi(k+1)+A, TE1(k+1)v+ATh; (k+1)-ß, 1(k) (4.42) 

Substituting (4.41) into (4.42) and grouping terms 

[-Vi (k)+Qi +Ai V (k+1)[In +BiR_ 1BiTV (k+1)]-' Ai ]xi (k) 

+[Al Ej(k+l)-E1(k+1)-Aj V; (k+l)[In +BiRi-1Bi. TVi(k+l)]-i 
" 

(B1 IBi T )E, (k + 1)]vi 

+[Ai -ATV (k + 1)[In + Bi ki ' BT V (k + 1)]-1 " (Bi ki IBT )1hi (k + 1) 

-hi (k)+ý, j(k) +ATVV(k+1)[In +B1 Tj-1 (Bikt lßt(k) 

+Di ul (k) + a; (k)] = 0; kE [0, N -1] (4.43) 

Equating coefficients of xi (k) and vi to zero in (4.43) results in the following set of 

difference equations, which can be solved backward from the terminal condition 

shown. 

V, (k) = Qi + A, V1(k + 1)[In + B1 RI B, T V1(k + 1)]-1 Al 

ke[0, N-1], V(N)= 
0; 1 

011 
(4.44) 

Ei(k) =[A, -ATV; (k+1)[In +BiRi 1BTVi(k+1)]ý' (B; Ri 1Bý)]Eý(k+l) 

k e[0, N-1]; Ei(N) 
jý 

(4.45) 

hi(k) =[A1T -ATV (k+1)[In +B, T BTVi(k+1)]-' Bild 1Bi]hi(k+1)-ýi(k) 

+A, Vi(k+1)[I� +BiRiT BTV; (k+1)]-1 " 

(Bji 1ßi (k) + Di ui (k) + ai (k)); 

where h; (N) = 0; kE [0, N -1] (4.46) 

By using the matrix inversion lemma (see, for example Lewis and Syrmos, 1995) we 
obtain the following equivalence: 

[Inl +B1T 18TVý(k+l)]= I I. -Bj[Ri +BTVj(k+l)B1]-1BTV1(k+1) (4.47) 

Define 

G1(k)=[R; +BTV; (k+l)B3]`1BiTVi(k+1)Aj (4.48) 

The Discrete Riccati Equation (4.44) can now be expressed as 

Vi(k) = Q, + A; V, "(k+ 1)[A; - B; G, (k)] 
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V; (N) =00; (4.49) 
t 

Equation (4.45) becomes 

E; (k) = [Ai - B; G; (k)]T Ei (k + 1) 

10 
k r= [0, N -1]; Ei (N) =I (4.50) 

9t 

and equation (4.46) reduces to 

ha(k) =(Al -B; G, (k))T h, (k+1)+(A1-B, G, (k+1))TVi(k+l)(D; ul (k)+a, (k)) 

-ß, 1(k)+G, (k)T/, (k); h; (N)=0; k e[0, N-1] (4.51) 

Let assume the terminal constraint function (assumed fixed) as 

3'; (k) = Ei (k)T x, (k) + W, (k)vi +; ri (k); ke [0, N] 

where W, (k) is a ql x ql matrix and ; ti (k) e 91 gi and 

Ti (k) _ [xi, 1(N)..... xi, 9 (N))T = [0.... 0]T 

then - '}'j (k+l) = E1(k+l)T x1(k+1)+W (k+1)v1 +; zj(k+1); (4.52) 

Using (4.39) and equating 'P (k) and 'l's (k + 1) in (4.52) results in a repeat of (4.43) 

plus the following difference equations, which may be solved backwards. 

W(k)=W(k+1)-Ei(k+1)T[I�+B1R; 1B1 V1(k+l)]-1BjJ 1Bj ]Ej(k+1) 

W(N) = 0; kE [0, N -1] (4.53) 

rrj(k)(k+1)+Ej(k+1)T [In +B1 1BTVj(k+1)]-' " 

[(B1i T ß1(k)-Bjkj-'BB)hi(k+1)+Dlui(k)+ a, (k)] 

where ; tj (N) = 0; ke [0, N -1] (4.54) 

Noticing that W (N) is ill conditioned 

Pi (N) = vi = -W (0) [Ei (0) T xio + Iri (0)] (4.55) 

Hence j5i (N) can be obtained once Ei (k) , Wi (k) and ;rj (k), ke [0, N]. Thus from 

(4.40) we obtain the following 

pi(k) =VI(k)xi(k)+Ej(k)pI(N)+hi(k); k E[0, N] (4.56) 

Substituting (4.56) in (4.36) gives 
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c; (k)=-R; '1Bi [V, (k+l)xl(k+1)+El (k+1)p; (N)+hi (k+1)+Ri lß, (k)); 

k <0, N -1] (4.57) 

which can be expressed as 

ci(k) =-Gj(k)xi(k)+gj(k) (4.58) 

where 

g; (k) = [i +BTV1(k+1)B; ]-1[-BTVi(k+l)(D; u; (k+l)+ai(k)) 

-BT EI(k+1)pl(N)-B, h; (k+1)+ /3i (k) (4.59) 

Finally, the model dynamic equation (4.41) can written as 

xi (k +1) = (A; - B1G; (k))xt (k) + Big, (k) + D; uj (k) +aj (k); 

xi (0)=xj0, xj(N)=0; te[1, q]; kE[0, N-1] (4.60) 

The modifier multiplier functions for Ai (k) and ß1(k) remains as in equation (4.28). 

Modifier function ý; i (k) is now defined by 

TT 

awt(k)-Dt 
Pt (k+l)- 

aZ (k) 
Sjw, (k) (4.61) 

t 

The calculation of parameter ai (k) is as defined by equation (4.29). Parameter 01(k) 

is given by 

Oi (k) = .F* (zi (k), vi (k), wi (k), k) - cýizi (k) -. Zivi (k)) 

kE [O, N-1 ] 

Notice that, it is not necessary to calculate yj (k). 

(4.62) 

The above analysis gives rise to the following two algorithms for hierarchical optimal 

control of interconnected systems with model based interaction input. We will denote- 

the single loop version by DCI and the double loop version by DC2. 

4.3.1 Single Loop Technique DC1. 

In this section a two level single iterative hierarchical algorithm is presented. The 

coordinator which is in the upper level is made up of equation (4.37) which computes; 

the price 1(k) and is followed by the modifier equations given from equation (4.28).. 

The interaction variable is calculated in the coordinator and is defined by equation: 
(4.38). The lower level is made up of Ns units of local optimization problems. Each of 
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them consists of the local optimal control problem, the parameter estimation step and 

the update unit. A single iterative technique is obtained by iterating the variables in the 

coordinator simultaneously with local optimization units in the lower level. 

Algorithm 4.3.1: Single Loop Direct Coordination Hierarchical DISOPE for 

system with model based interaction measurements. 

Data: Ai, B1, Di, Q1, RI, Si, xio, 01, N, Ns, rli, r21, r31, Ec'Ex'%9Ep and 

(. ). means for calculating f *(. ), Kj (. ) and qj 

Step 0: At level 2, choose the initial value of coordinating variables 

A'j (k), /3? (k) ,7 (k) and 11(k) . Set ui = 0. At level 1, let 

a? (k) = 9? (k) = 0, compute or choose a nominal solution for the ith local 

optimal control problem. Set iteration number s=0 and v° (k) =. cO (k) , 

kE [0. N-1]. z? (k) = x? (k) and pO (k) = p? (k) , kE [0, N]. Send them to 

level 2. 

Step 1: At level 2, calculate interconnection price if (k) from equation (4.37). Then 

compute modifiers A (k) , Qi (k) and C (k) from equation (4.28). 

Calculate the interaction vector ul from equation (4.38). Send them to 

level 1. 

Step 2: At level 1, calculate a'i (k) and O (k) from equations (4.29) and (4.54). 

These are send to level 2 and the ith local optimal control unit. 

Step 3: At level 1, solve the ith modified model based optimal control problem. 
3.0 If s=0, from data compute Gl (k), kE [0, N -1 ] and 

V (k), El(k) and W (k), ks [0, N] using equations (4.48), (4.49), 
(4.50) and (4.53) . The results are stored for use in subsequent 
iterations. 

3.1 Solve (4.51) and (4.54) backwards to obtain 
his (k) and r (k), ke [0, N] 

3.2 Use (4.55) to obtain p; (N) . Calculate g, (k) , ke [O. N-1] from 
equation (4.59). 

3.3 Solve equation (4.60) to obtain new state xis + 1(k), ke [0, N]. 
3.4 Use (4.40) to calculate new costate pl + 1(k), k [0, N] 
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3.5 Use (4.51) to calculate new control ci + 1(k), kE [0, N -1] 
Step 4: At level 1, update the variables 

zJ + 1(k) 
= zl (k) + cz (xl (k) - zl (k)), kE [0, N] 

vs+ 
1(k) 

= v1 (k) + cv (cl (k) - vl (k)) ,ke [0, N -1] 

wl +1 (k) _ wl (k)+cw (ul (k)-Hi F(xi (k), ci (k), Oi )) ,kE [O, N -11 

Pis + 1(k) 
= Pi (k) + sP (Pi (k) - Pis (k)) ,ke [0, N] 

Send them to level 2. 

Step 5: At level 2, convergence of coordinating variables are checked. If 

vs+l (k)! vs (k) , zs+l (k) =zs (k) and ws+l (k) _ ws (k) within a defined 

tolerance, stop, otherwise set s=s+1 and go to step 1. The whole 

procedure is then repeated. 

4.3.2 Double Loop Technique DC2 

In this technique, we utilize the global nature of the price and the interaction term by 

calculating them in an outer loop. The outer loop iteration consists of computation of 

the interaction term given by a global version of (4.38), that is 

w(k) = H(dz(k) +; v(k) + 6(k)) ke [O, N -1] (4.62) 

where the global control v(k) global state z(k) and model reality ©(k) are 

prescribed by the inner loop 
. The interconnection price 1(k) is computed from the 

global version of equation (4.37) , that is 

1(k) = 4'(k) - Su(k) - DTp(k + 1); kE [0, N -1] (4.63) 

where ý(k) andp(k) are given by the inner loop. The interaction term u(k) is updated 

using the relaxation formula 

uP + 1(k) 
= uP (k) + cu(wp (k) - uP (k)) (4.64) 

The inner loop is made up of a two level iterative structure consisting of modifier 

equations in level 2 and Ns local optimization problems in level I. Modifiers equations 

are given by equation (4.28). The structure of local optimization units is similar to the 
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previous algorithm. It is made up of MMOPi units, the parameter estimation unit and 

the variable update unit. The local optimization unit remains independent thus making 

this approach suitable for utilization of parallel processing technique. 

The double loop procedure discussed above can be summarized as follows. 

Algorithms 4.3.2 Double Loop Direct Coordination Hierarchical DISOPE for 

system with model based interaction measurements. 

Data: Al, B1, Dl, Qi, Ri, Si, xio, cI, N, N,, riI, r2I, r3IIEC, Ex, EUIEp and means for 

calculating ft* ("), Ki (. ) and qi (") 

Inner Loop 
Step 0. At level 2, choose the initial value of coordinating variables 

Ai (k), ß? (k) and (k) . At level 1, let a? (k) = 8? (k) = 0, compute or 

choose a nominal solution for the ith local optimal control problem Set 

iteration number s=0 and v° (k) = c° (k) and w? (k) = uj (k), ke [O. N- 1], 

zý (k) = x4 (k) and p° (k) = po (k) , ke [0, N]. Send them to level 2. 

Step 1: At level two, calculate modifier vectors 2 (k), ßf (k) and Q (k) , ke[l, N] 

using equations (4.28) under prescribed 1(k) from the outer loop. Augment 

them according to (4.35), (4.36) and (4.37). Send them to the local 

optimization problem in level 1. 

Step 2: At level 1, calculate ai (k) and O (k) from (4.29) and send them to the ith 

local optimal control problem and to level 1. This is called the parameter 

estimation step. 

Step 3: At level 1, solve the ith modified model based optimal control problem. 
3.0 If s=0, from data compute Gi (k), kE [0, N -1] and 

Vi (k), E; (k) and Wi (k), ke [0, N] using equations (4.48), (4.49), 
(4.50) and (4.53) . The results are stored for use in subsequent 
iterations. 

3.1 Solve (4.51) and (4.54) backwards to obtain 
hl (k) and 4c3 (k), ke [0, N] 

3.2 Use (4.55) to obtain pj (N) . Calculate g1(k) , k¬ [0. N-1 ] from 

equation (4.59). 
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3.3 Solve equation (4.60) to obtain new state xis +I (k), kE [0, N1. 

3.4 Use (4.40) to calculate new costate pi + 1(k), ke [0, N] 

3.5 Use (4.51) to calculate new control cl + 1(k), kE [0, N -1] 

Step 4. At level 1, update the variables 

z (k)), kE [0, N] s+ 1(k) 
= zl (k) + cz (xi (k) - zl 

vs+1(k) =vi9 (k)+ev(cis (k)-v1(k)) ,k e[0, N-1] 

+1 pl (k) = his (k) +cp (pi (k) - Pi (k)) ,k r= [0, N] 

Send them to level 2. 
Step 5 At level 2, convergence of coordinating variables is checked. If 

vs+l(k)=vs(k) and zs+l(k)=zs(k) within a defined tolerance, stop, 

otherwise set s=s+1 and go to step 1. The whole procedure is then 

repeated. 
Outer Loop: 

Step 0:. Set p=0, choose a nominal value for 10 (k) and for uO (k). Send it to the 

inner loop. Set wO(k)=u0(k) . 
Step 1: Calculate wp (k) from interaction equation (4.62) using prescribed global 

values of z(k), v(k) and 9(k) from the inner loop. Calculate the price 1(k) 

using equation (4.63). Send it to the inner loop. 

Step 2: Update the variable 

wp+l(k)=wP(k)+cw(uP(k)-HF(x(k), c(k), O)) ,k E[0, N-1) 

Step 3: Test for convergence using equation (4.62) . If wp+l (k) = HFp (. ) within a 

defined tolerance, stop, otherwise set p=p +1 and go to step 1. The 

whole procedure is then repeated. 

Simulation results for the two algorithms will be shown at the end of the chapter. 
Note that the inner and outer loop are run simultaneously. 
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4.4 SIMULATION EXAMPLES 

Algorithms 4.2.1 (PC1), 4.2.2 (PC2), 4.3.1 (DC1) and 4.3.2 (DC2) were implemented 

in C++ programming language using object oriented and modular programming 

techniques. In the implementation we make use of the DMatrix class type and 

operators developed by Becerra (1995), which optimizes operations involving the 

matrix structures. The application DMatrix class types helped simplify the task of 

programming the algorithms. 
The convergence of the appropriate vectors in each algorithm is verified by comparing 

the following 2-norm with a given tolerance 

IN-1 Ns 

il a +l -aslý -EE 
llaý+'(k)-aý(k) 

2 1/2 

II 2 k=0j=1 

(4.62) 

where as denotes the relevant iterated vectors and s denotes the iteration number. 

In the simulation examples we will be discussing the efficiency of the algorithms using 

two examples. The number of iterations used to compare the performance of the 

algorithms is defined as the number of times the global performance index is 

evaluated. Sensitivity of the speed of convergence to tuning parameters such as 

cc, ex, eu, cl, rl , r2 and r3 will also be discussed. 

To ascertain if the solution achieved at the end of the iterations is the correct optimal 

solution of the ROP, we test that the solution satisfies the optimality conditions of 

ROP as defined by equations (3.14), (3.15) and (3.16). Throughout the simulation it is 

assumed that the values of derivatives with respect to 

v(k), z(k) and w(k) off 
* 

and F* are available. A solution to this problem wars 

proposed by Roberts and Becerra (1996) by using an extension Broyden's formula for 

approximating the Jacobian matrix in Quasi-Newtons method to define a recursion on 

the Jacobian trajectories given two successive control and states trajectories. 
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Example 4.4.1 

This example consists of optimal control of an interconnected system containing three 

non linear subsystems. The tolerance specified for convergence is set at sT =0.01. The 

ROP is as follows: 

ROP: 

3 51 
min 

1EE 
[xi (k)T Q xi (k) +ci (k)T Ri*ci (k) + u1(k)T SS ul (k)] 

u(k), c(k) 2i=1k=0 

where 
Qi = diag(0S , 0S) ; Ri =0.1 ; Si = diag(OS , 05) 

QZ = diag(0.5,0.5) ; RZ = 0.1 ; SZ = diag(05,0.5) 

QQ = diag(0.5,0.5,0S) ; R3 = 0.1 ; S3 = diag(0S , 03) 

subject to: 

Subsystem 1: 
x1 1(k + 1) = 0.125x1 1(k) + 0.005x12 (k) + 0.0025u1 1(k) + 0.0125u12 (k) 

+ 0.0025c1 1(k) + 0.125x11(k)xl2 (k) 
x12 (k + 1) = 0.05x12 (k) - 0.0125u1 1(k) + 0.005u12 (k) - 0.0125c1 1(k) 

+ 0,025u11(k)u12 (k) 

y11(k) ` x11(k) + 0.05c11(k) + 0.025x11(k)cl 1(k) 
y21(k) = x21(k) 
x11(0)=1.0 x12(0)=0.8 

Subsystem 2: 
x21 (k + 1) _ -0.0625x21(k) + 0.0125u21 (k) + 0.0125u22 (k) + 0.005c21 (k) 

+ 0.05x21(k)3 

x22 (k + 1) = -0.0125x21(k) + 0.975x22 (k) + 0.005u21(k) + 0.005c21(k) 

+ 0.025u21 (k)x22 (k) 

y21(k) = '21 (k) + 0.05c2 1(k) 
y22 (k) = x22 (k) 

x21(0) =O. 5 , x22(0) =0.6 
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Subsystem 3: 

x31(k + 1) = -0.00425u32(k) +0.975X3 l(k)+0.025x33(k) +0.025x31(k)x33 (k) 

x32 (k + 1) = 0.0025u31(k) + 0.025u33 (k) + 0.9$75x32 (k) 

x33(k+ 1) = 0.0 1u31(k) - 0.025u32 (k) - 0.025x31(k) +0.975x33(k) +0.0025c31(k) 
+0.005x31(k)x32(k) 

y31(k) = x31(k)+ 0.0125c31(k) +sin(x31(k)) 
Y32(k) = x32(k) 
y33(k) = x33(k) 
X31(0)=1.5 x32(k)=1.0 X33(k)=12 

MOP: 

13 51 
min -EE [xi (k)T Qi xi (k) +ci (k) T Ri ci (k) + ui (k)T Si ui (k) +Y j (k)] 

u(k), c(k) 2i 
=1 k=0 

where 

Ql = diag(0.4,0.4) ; Ri = 0.08 ; Sl = diag(0.4,0.4) 

122 = diag(0.4,0.4) ; R2 = 0.08 ; S2 = diag(0.4,0.4) 

Q3 = diag(0.4 , 0.4,0.4) ; R3 = 0.08 ; S3 = diag(0.4 , 0.4) 

subject to: 

Subsystem 1: 

x1(k+1)= 
0 -0.005 x1(k)+ cl(k)+ 

0.025 0 
ul(k)+a1(k) 0 0.05 

[0.0 
0125 -0.0125 0.005 

Y1 (k) = 01(k) 
x11(O)=1. O X12(0)= 0.8 
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Subsystem 2: 

x2 (k + 1) ; -0.625 0 
x2 (k) + 

0.005 
(k) + 

0.0125 

-0.0125 0975 Lo. 005ic2 0 

y2(k) 02(k) 

x21(0) = 05 , x22 (0) = 0.6 

Subsystem 3: 

0.975 0 0.025 0 

x3 (k + 1) =00.9875 0 x3 (k) +0 c3 (k) 

-0.025 0 0.975 0.0025 

0 -0.00425 0 
+ 0.0025 '0.0 0.025 u3(k)+'3(k) 

0.01 -0.025 0 

Y3(k) = 93(k) 

x31(0) =15, x32(0)=1-0, x33(0)=12 

The interconnection matrix H is given as 

0000100 
0000010 
0100000 

H= 0000001 
1000000 
0010000 
0001000 

0.0125 
u2 (k) + a2 (k) 

0.005 

To test the effectiveness of the hierarchical algorithms in dealing with model reality 
differences the above choice of MOP is made. The MOP plant dynamics is a linear 

approximation of the ROP. The MOP performance measure is deliberately chosen to 

be 80% of the ROP performance index. Notice that the MOP output function y(k) is 

assumed to be zero. 

Table 4.4.1 shows the results of simulation of the algorithms for this example. The 

entries marked with a* indicates the best performance for each algorithm. The single 

loop price coordination algorithm PCI converges after 23 iterations without addition 

of convexification terms. However the speed of convergence of the double loop price 
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coordination algorithm, PC2 improves with addition of convexification terms involving 

scalars r2 and r3. This shows that the convexification of the states and the 

interaction vectors are able to influence the rate the convergence for this algorithm 

favorably. The direct coordination algorithms converge at a much faster speed when 

compared to that of the price coordination version . Single loop versions of direct 

coordination, DC1 is slightly faster in terms of convergence when compared to the 

double loop version, DC2. This can be accounted by the extra computation required in 

the outer loop in algorithm DC2. The centralized problem is also solved using 

centralized DISOPE for comparison. If each subsystem in the interconnected problem 

is solved in parallel instead sequentially a better CPU time is expected. 

Figures 4.4.1.1-4.4.1.3 show the plant dynamics of the subsystems. Notice that the 

dynamics of subsystem 1 is slow when compared to that of subsystem 3. This indicates 

that the hierarchical DISOPE algorithms presented are robust enough to solve 

subsystems of involving slow and fast dynamic response. Figures 4.4.1.4-4.4.1.6 show 

the final control signals of each subsystem. Figures 4.4.1.7-4.4.1.9 show the interaction 

vectors. of each subsystems. Figure 4.4.1.10 compares the speed of convergence of 

the best performance of the direct coordination algorithm DC1 and the price 

coordination algorithms, PC1 and PC2. It is observed from Figure 4.4.1.10 that the 

convergence of the global performance index of price coordination algorithms appears 

to be increasing towards the final global performance index value . This is because in 

the price coordination approach, the interconnection constraint defined by optimality 

condition (3.42) is not satisfied in the iterations until the price updating mechanism 
defined by (4.30) has sufficiently converged. This is in contrast with the direct 

coordination algorithms, where the interaction variable and the price are computed in 

the second level using values of variables prescribed in the previous iteration which 

results in the satisfaction of the interconnection constraint in each iteration. The figure 

also shows that the direct coordination approach has better convergence at initial and 

tail end stages. Algorithm PC2 is observed to be slowest in terms of initial and tail end 

convergence. This observation is illustrated by Figures 4.4.1.11,4.4.1.12 and 4.4.1.13 

which display the convergence behaviour of the interaction norm and the control norm 

of the respective algorithms. 
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Algorithm c1 r1 r2 r3 Number of 
iterations 

CPU (s) Final 
Performance 

Index 
Price Cor. 
single loop 

0.3 0 0 0 31 129 121.4840 
0.5 0 0 0 27 114 121.4893 
0.3 1.0 0 0 47 193 121.4911 
0.3 0 0 1.0 65 285 121.5071 
0.3 0 1.0 0 29 126 121.5031 

* 0.4 0 0 0 23 99 121.4907 
Price Cor. 
Double 
Loo 

0.2 0 0 0.5 22 105 121.4971 
0.15 0 0 0 23 108 121.4983 
0.15 0 1.0 0.5 22 106 121.5016 
0.4 1 0 0 28 115 121.4891 

* 0.3 0 1.0 0.5 20 93 121.4898 
Direct Cr. 
single loop 

* n/a 0 0 0 11 48 121.5077 
n/a 1.0 1.0 0 45 184 121.5067 
n/a 0.5 0 0 28 110 121.4853 
n/a 0 0 0.5 11 50 121.5017 
n/a 0 0 1.0 11 48 121.5076 

Direct Cr. 
Double 
Loop 

* n/a 0 0 0 12 51 121.5028 
n/a 1.0 0 0 45 210 121.5048 
n/a 0.5 0 0.5 29 115 121.5091 
n/a 0 0 0.7 12 51 121.5064 

Centralize 
DISOPE 
(Centralized 
Problem 

n/a 0 0 n/a 6 32 121.5032 

Table 4.4.1 Algorithms performance for Example 4.4.1. 
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Example 4.4.2 

This example is a modification of an example from Findeisen et al (1980), consisting of 

an interconnected system made up three non-linear subsystems. Note that the 

coefficients of the control and interaction vectors in the subsystems of the ROP are 

nonlinear. The example is tested on the four different algorithms presented in this 

chapter. For comparative purposes a centralized version of the example is also solved 

on a centralized Discrete DISOPE algorithm. The tolerance specified for convergence 

is set at eT=0.01. T=0.05 

ROP: 

3 51 
min 

2EY, 
[xi(k)T Qi xi (k)+ci(k)T RC*ci(k)+ui(k)T Si u, (k)I 

u(k), c(k) i= l k= 0 
where 
Q1=05; R1=0.1; S, =0S 
Q2 = OS ; RZ = 0. I ; SZ = 0S 

23 = OS ; R3 = 0.1 ; S3 = 0S 

subject to 

subsystem 1: 

x1, l(k+1)=T(1+05sin( 
ZS 

)cl, l(k))+T(05+0.2sin( 
2, 

))u1,1(k)+xl, l(k) 

Y1,1 (k) = xl, l(k) 

x1,1(0) =1.0 

subsystem 2: 
2 

x2,1(k+1) = T(1+0S sin(5)c2,1(k))+T(OS+05sin( 
25k ))u2, t(k)+05x2,1(k) 

y2,1 (k) = x2,1 (k) + c2,1 (k) 

x2,1(0) = 0.8 
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subsystem 3: 

x3,1(k+ 1) = T(1+0Ssin( 
25k)c3,1(k))+T(O. 

5 +0.5sin( 
2xk))u3,1( 

k)+x3, t(k) 

y3,1 (k) = x3,1(k) 

x3,1(0) = 0.3 

The interconnection matrix H is given as 
001 

H= 100 
010 

The model-based problem is an Linear Quadratic approximation of ROP. The output 

function yj (k) is deliberately chosen to be zero to test the convergence of the 

algorithms. 
MOP: 

3 51 
min 

1EE [xl (k)T Ql xl (k) -+ci (k)T Rl cl (k) + u, (k)T Sl ul (k) +Y(k)] 
u(k), c(k) 21= lk=O 
where 
Q1=0.5 ; R1=0.1; S1=05 

Q2=0S; R2 = 0.1; S2=05 

Q3=0S; R3 = 0.1; S3=0S 

subject to 
subsystem 1: 
xl, 1(k + 1) = 0.05c1,1(k) + 0.025u1, l (k) + x1, l (k) 
Y1,1(k) =0 
x1'1(0) =1.0 

subsystem 2: 
x2,1 (k + 1) = 0.05c2,1 (k) + 0.025u2,1 (k) + 03x2,1 (k) 

Y2,1 (k) =0 
x2,1(0) = 0.8 

subsystem 3: 
x3,1 (k + 1) = 0.05c3,1 (k) + 0.025u3,1 (k) + x3,1 (k) 

Y3,1 (k) =0 
x3,1(0) = 0.3 
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Algorithm 61 rl r2 r3 Number of 
iterations 

CPU (s) Final 
Performance 

Index 

Price Cor. 
single loop 

0.3 0.9 1.0 0 101 260 15.8701 

0.2 0.9 1.0 0 100 259 15.8692 
0.1 0.9 0 0 99 258 15.8679 

* 0.05 0.9 0 0 94 250 15.8710 
0.01 0.9 0 0 107 275 15.8689 
0.05 0.9 0 1.0 121 307 15.8659 

Price Cor. 
Double 
Loop 

0.7 0.9 0 0 95 276 15.8729 

* 0.3 0.9 0 0 94 265 15.8717 
0.5 0.9 1.0 0 95 269 15.8722 
0.3 1.2 0 1.0 100 288 15.8690 
0.3 2.0 0 0 135 381 15.8733 

Direct Cr. 
single loop 

N/A 1.0 1.0 0.0 102 273 15.8747 

1.0 0.0 0.0 102 274 15.8750 
* 0.9 0.0 1.0 97 240 15.8721 

1.2 0.0 3.0 113 298 15.8801 
0.9 0.0 0.5 110 294 15.8831 

Direct Cr. 
Double 
Loo 

N/A 0.9 1.0 0.0 96 235 15.8788 

* 0.9 0.0 0.0 96 232 15.8731 
0.9 0.0 0.1 114 276 15.8697 
0.9 0.0 0.5 113 274 15.8677 

Centralize 
DISOPE 
(Centralized 
Problem) 

N/A 0.0 0.0 N/A 25 40 15.8891 

Table 4.4.2 Algorithms performance for Example 4.4.2 
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The choice for step size for variables updates are found by trial and error. The best 

combination for this example are ev = 1.0. ez = 1.0. su = 0.9. ep=1.0. 

Entries marked with a* denotes the best choice of parameter settings. From table 

4.4.2 it can be observed that rl and el influence the rate of convergence of the price 

coordination algorithms, PC1 and PC2. In the single loop direct coordination algorithm 

DCI, rl and r3 have the effect of improving the rate of convergence. However in the 

double loop versions of each algorithm only r1 seemed to influence the rate of 

convergence. There is no significant difference in terms of speed of convergence 
between the double loop and single loop technique for the two approaches. It can be 

seen however that the double loop technique increases the computation time slightly 
for the same number of iterations. The speed of convergence is very slow when 

compared to the centralized approach using the centralized version of DISOPE. This 

can be explained by the difference in the number of variables to be iterated in the 

hierarchical case as compared with the centralized case. Figure 4.4.2.1-4.4.2.3 show 
the final state vector of each subsystem. The final control signals and the interaction 

vector can be observed in figures 4.4.2.4-4.4.2.9. It should be noted that changing the 

stepsize for update for values other than the optimum choice shown results in a slower 
speed of convergence. 

Figure 4.4.2.10 shows the convergence of global performance index of single loop 

versions of the algorithms and figure 4.4.2.11 shows the convergence of double loop 

versions of the algorithms. It can be observed that there is no significant difference in 

convergence behaviour between the two approaches in solving example 4.4.2. The 

change in direction in the convergence pattern of the performance index can be 

explained by the presence of model-reality differences in the model based problem. 
Note that in this example we have deliberately approximated a sinusoidal time-varying 
function in ROP with a linear time invariant function in MOP. This convergence 

pattern is also exhibited by the centralized DISOPE algorithm in solving the equivalent 

centralized problem. This is illustrated by Figure 4.4.2.13. Figure 4.4.2.12 shows the 

convergence of the control variation norm of the single loop algorithms with the best 

choice of tuning parameter settings. 
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4.5 SUMMARY 

Four algorithms for solving hierarchical structures with model based interaction input 

have been presented, discussed and implemented in software using C++ programming 

Language. Two approaches have been used in implementation of each algorithm. In 

the price coordination approach, the interaction price is iterated using the dynamic 

version of price mechanism presented by Findeisen et al(1980) . The second approach, 

direct coordination, is similar to the interaction-prediction method (Singh, 1980; 

Jamshidi, 1983; Mahmoud et al, 1985) where the interaction price is calculated directly 

from the optimality conditions. However, in the proposed algorithm a more general 

version of interaction involving output function have been used . Simulation results 

indicate that algorithms using the direct coordination approach have a better 

convergence property when compared to that of the price coordination approach. This 

can be accounted by the extra computation required by iterations of the price updating 

mechanism . The price coordination approach however offers a greater flexibility in 

the choice of model-based output functions In terms of techniques of implementation 

the double loop version of both approaches have slower rate of convergence than that 

of the single loop technique. The double loop procedure which utilizes the global 

structure of the interaction term is however more attractive in terms of the ease of 

software implementation and analysis. In the following chapter we proceed to prove 

the optimality of algorithms and show conditions under which the double loop version 

of the algorithms will converge. 
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CHAPTER 5 

OPTIMALITY AND CONVERGENCE ANALYSIS FOR DOUBLE 
LOOP ALGORITHM FOR STRUCTURES WITH MODEL BASED 
INTERACTION MEASUREMENTS. 

5.1 INTRODUCTION 

In this chapter an analysis of optimality and convergence properties of double 

loop hierarchical DISOPE algorithms with a linear-quadratic model based 

problem described in Chapter 4 is presented. The optimality is established by 

showing that the global optimality conditions of the modified model based 

optimal control in the algorithms is equivalent to that of the global real optimal 

control problem (3.10). The convergence conditions of the double loop version 

of the algorithms, which are derived by using contraction mapping arguments 

(Kantorovich, Akilov, 1982), are obtained by applying similar procedures as 

presented initially by the work of Hassan and Singh (1976), and more recently by 

Becerra and Roberts (1996). 

Initially to simplify notation, we will need the following definitions. 

Define 

fci (xi, ci, uj, k)= j 
(k)fi (xl (k), ci(k), ul (k), k) 

fxl (xl, cl, ui, k)ý 
hak) 

fl* (xi (k), cl (k), uj (k), k) 

fut (xi, ci, u;, k) __ l(k) 
f. (xl (k), ci (k), ul(k), k) 

r 

qý1(xi, cj, ul, k) _' 
ýk) 

qi (xi (k), ci (k), ul (k), k) 

qxi (xl, cl, ul, k)m 
ýk)qi 

(x, (k), c1(k), ul(k), k) 
xi 

qul (xl, c1, ut, k)= 
(k) 

q1 (xi(k), cl(k), ul(k), k) 
r 

Kc1(x1, cl, k)_A- (k)K*(xi(k), 
cg(k), k) 

r 
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Kx, (x1 , cl , k) =D k) 
Kl (x1(k), ci (k), k) 

r( 
(s. 1) 

and specify the optimal solution, that is the solution of global ROP (3.10) , as 

c°p(k), x°p(k), p°p(k) and u°p(k) ; ke[1,.. N]. 

We also need to make the following definitions. 

Define 

A= diag[Al,.., ANS 

B= diag[B1,.., BNS 

D= diag[D1,.., DNs ] 
(5.2) 

diag[cýj,.., c Ns ] 

J= diag[, Z1,..,, ZNs ] 

Z= diag[Zj,.., ZNs ] 

where A, B and D are global matrices representing a linear model of global f* and 

and are matrices representing a. linear model of global output function K*. 

Furthermore we define 

Q= diag[Q1,.., QN, ] 

R= diag[Rl,.., RN, ) 
(S. 3) 

S= diag[S1,.., SNd ] 

(D = diag[(D 1,.., ON, ] 

where Q, RS and D are global symmetric weighting matrices of appropriate 

dimension of the model based optimal control problem. 
We will denote the single loop price coordination algorithm by PCI, the double loop 

version by PC2, the single loop direct coordination algorithm by DC1 and the double 

loop version by DC2. 

In the next section we will established the optimality of the algorithm presented in 

chapter 4. 
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5.2. OPTIMALITY 

The following theorems follow naturally from problem formulation and derivation of 

the price coordination and direct coordination hierarchical DISOPE algorithm for 

solving the structure with model based interaction input, with a linear model and 

quadratic performance criterion. The theorems are defined in conjunction with 

definition (3.1) which define the existence and uniqueness of the optimal solution of 

ROP and definition (3.2) which define the existence of the appropriate derivatives. 

By considering the algorithm at the global level , theorem 5.1 establishes the 

optimality of algorithms PCi and PC2 presented previously. 

Theorem 5.1: 

Under Assumptions 3.1 and 3.2, and assuming convergence, the converged solution of 

the price coordination algorithm PC1 and PC2 with a linear model and quadratic 

performance index satisfies the optimality conditions of the global real optimal control 

problem defined by (3.10). 

Proof 

To prove the above theorem we consider the equivalent global optimality conditions of 
ROP (3.10) and MMOP 1 define by (4,1): 

From (3.14) -(3.21), at the optimal solution of ROP the following conditions are 

satisfied 

Vc(k)H' =0 that is 

[gc*(k)(x0P, c0P, u0P, k)]T +[fý(k)(x°p, c°P, u°p, k)]T p0"(k+1) 

-EKý(k)(x01 , c0P)JHTI°n(k) =0 

(5.4) 

Ox(k)H* - p(k) =0 that is 
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[RX(k)(xP, c°P, u°P, k)]T +[fx(k)(x0P, c0P, u°p, k)]T pop(k+1) 

_[KK(k)(x°p, c°P)]HT l°P(k) - p°P(k) =0 

ou(k)H* =0 that is 

(5.5) 

u(k)(zop, cop, uop, k)]T +[f'ü(k)(xoP, coP, u°P, k)]T p0P(k+1)+l01(k)=0 

(5.6) 

with 

x°p(k+1)= f*(x0P, c9, u01, k); kE[0, N-11 (5.7) 

u°P(k) = HK*(x°p, c°p) (5.8) 

x°p(0) = x0; xtp(N) = 0, t E[1, q] (5.9) 
Pip(N) = cpx0(N), t E[q+1, n] 

where x0 (N) = [xq+l (N)... xo (N)]T n 

We require the converge solution , u' (k), xC (k), u" (k), pC (k); ke [l, N] , of the 

modified model based optimal control problem (4.1). Noting that the convexification 

terms can be ignored, since at convergence v(k) = c(k), z(k) = x(k) and w(k) = u(k), 

this solution will satisfy the Hamiltonian 

Hc(. ) = 2[xc(k)T QxC(k)+c'(k)T Rcc(k)+u(k)T Suc(k)) 

+YC(k)_2c(k)T xc(k)-ßc(k)T cc(k)+C(k)T uc(k) (5.10). 
+pc (k + 1)HT [AX`(k) + BcC(k) + Duc(k) + ac(k)] 

. 
ýxc(k)+ jcc(k)+Ju°(k)+©°(k)] +1" (k)T[u°(k)-H(c 

and optimality conditions 

Vc(k)Hc(. ) =0 
Rc"(k)+BTpc(k+1)-; TH7'1°(k)-/3C(k)=0 (5.11; ) 

Vx(k)Hc() - pc(k) =0 

ýQxc(k)+ATpc (k+1)-&THTIc(k)-. %C(k)=pc (k) (5.121) 
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Vu(k)H'c(. ) =0 

Su°(k)+DT/(k+1)-. THT1c(k)-jk)-1(k) -0 

together with 

xC(k+1) = Axc(k)+ Bcc(k)+ Duc(k)+ac(k) 

where, from (4.29) 

aC(k) =f *(xc(k), cc(k), uc(k), k)- Axc (k) - Bcc (k)-Duc(k) 

Oc(k) = K*(xc(k), cc(k))-dxc(k)- Jcc(k)-,. 
�Zuc(k) 

From the modifier equations (4.28) 

(5.13) 

(5.14) 

(5.15) 

A =LA-fx (xc(k), cc(k), uc(k), k]T pc(k+1)+Qxc(k)-gx(xc, cc, uc, k)T 

+KK(xc, cc)HTIC(k)- , HTIc(k) 

ßc(k)=[B-fc (xc(k), cc(k), uc(k), k]T pc(k+1)+Rcc(k)-gc(xc, cc, uc, k)T 

+Kc(xc, cc)HTIc(k)_,. THTlc(k) 

4(k) =[D-. fu (xc(k), cc(k), uc(k), k]T Pc(k+1)+Suc(k)-q*(xc, cc, uc, k)T 

-11Z 
THT jc(k) 

and from the price updating mechanism 

(5.16) 

lcls+l(k) lc, s(k)+E1[uc(k) 
(5.17) 

-H(c, x" (k) +J cC (k) +. Luc (k) + ©c (k)] 

Eliminating ), c (k), ßc (k) and yC (k) from (5.11), (5.12) and (5.13) using modifiers 

equation (5.16), it can be readily be seen that equation (5.11) becomes 

[9c(k)(xc, cc, uc, k)]T +[fc(k)(x., c, uýºk)]T P°(k+l) 
(5.18) 

-[KC k (xc, cc)]H7,1c(k) .0 

equation (5.12) becomes 

T p'(k+1) I4 x(k)(xC, cc, u', k)JT +[fz(k)(x', c', U', k)] 
(5.19) 

_[Kx(k)(xc, cc)]HT I`(k) _ p°(k) =0 
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and equation (5.13) is now 

[qu(k) (xc ýc u', k)] T+f. f u(k) (xc cc uc, k)aT Pc (k + 1) +1c (k) =0 (5.20) 

Substituting (5.15) in (5.14) produces 

(5.21) xc(k+1)= f* (xc, cc, uc, k) ; ke [0, N- 1] 

with boundary conditions 

x"(O) = xo, x(N)=O, t e[l, q] (5.22) 
P" (N) = Cxo(N), t e[q+1, n] 

where x0(N) = [xq+l (N)... xn(N)]T 

Eliminating O' (k) from (5.17) using (5.15), and noting that at convergence the 

interaction price 1', '+ 1 (k) _ Ic, s+1 (k) we obtain the following equation 

0= ei [uc (k) - H(K* (x, cc))l (5.23) 

Since scalar c1 >0 , then equation (5.23) reduces to 

uc(k) = H(K*(xc, cC)) (5.24) 

Comparing (5.1)-(5.9) with (5.18)-(5.22) and (5.24), it is clear that the two set of 
optimality conditions are in agreement. Furthermore from assumption 3.1 

xL(k) = x°I'(k), c"(k) = c°P(k), uc(k) = u°p(k), pc (k) = p°I'(k); k E[D, N] 

(5.25) 

Q. E. D 

The following theorem establishes the optimality of the direct coordination approach. 
Repeating the previous procedure, if we consider both algorithms at global level the 

two different techniques of implementation will generate the same method. Thus 

theorem 5.2 applies to the double loop and single loop implementation of the direct 

coordination method. 

Theorem 5.2 

Under Assumptions 3.1 and 3.2, and assuming convergence, the converged solution of 
the direct coordination algorithms DC I and DC2 with a linear model and quadratic 
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performance index satisfies the optimality conditions of the global real optimal control 

problem defined by (3.10). 

Proof 

To prove the theorem we will show that the optimality conditions of ROP given by 

(3.10) are equivalent to the converged solution of MMOP defined by (4.33) produced 

by the direct coordination approach. 

The equivalent optimality conditions of (3.10) are given by equations (5.4)-(5.9). 

We require the converged solution , u" (k), x' (k), uC (k), pC (k); k of the 

modified model based optimal control problem (4.33). Noting that the convexification 

terms can be ignored, since at convergence v(k) = c(k), z(k) = x(k) and w(k) = u(k), 

this solution will satisfy the Hamiltonian 

H°(. ) =2 [x°(k)T Qx°(k)+cc(k) T Rcc(k)+uc(k)T Suc(k)] 

+y°(k)-1, C(k)Txc(k)-Qc(k)T cc(k)+C(k)T uc(k) (5.26) 
+pc (k + 1)HT [Axe (k) + Bcc (k) + Duc (k) + ac (k)] 

+1'(k)T [uc (k) - H(dxc(k) + Jc' (k) + Oc(k)] 

and optimality conditions (5.11), (5.12) and 

Vu(k)Hc(. ) =0 

Suc(k)+DTpc(k+1)-C(k)-1(k) 0 (5.27) 

together with model dynamic equation (5.14) . From (4.29) and (4.62), we have 

a°(k) =f* (x" (k), cc (k), uc (k), k) - Axc (k) - Bcc (k) - Du" (k) (5.28) 

Oc(k) =K* (xc (k), cc (k))-c xc(k)- Xcc (k) (5.29) 

In addition to the above we have used the following optimality condition to calculate 

u'' (k) , that is; 

uc (k) = H(c; xc (k) +Xcc (k) + ©c (k)) (5.30) 

From (4.28) and (4.62) we have the following equations 

Ac (k) =[A-fx' (xc(k), c"(k), tuc(k), k]T P`(k+I)+Qxc(k)-9x(xC, cc, tuc, k)T 
TI +Kx(xc, cc)HT1c(k)-LTHC (k) 
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Qc(k)=[B-. fc (xc(k), cc(k), uc(k), k]T Pc(k+1)+Rcc(k)-q*(xc, cc, uc, k)T 

+Kc (xc, cc)HT1c(k)-X- 
THTIc(k) 

(k) _[D-. fu (x'(k), c'(k), uc(k), k]T pc(k+1)+Suc(k)-R'u(xc, cc, uc, k)T 

(5.31) 

Eliminating ', c (k), , ßc (k) and y' (k) from (5.11), (5.12) and (5.27) using modifiers 

equation (5.31), produces (5.18) , (5.19) and 

[q (k)(xc, cc>uc, k)]T +Lfu(k)('>c''u''k)]T Pc(k+l)+lc(k) =0 (5.32) 

Eliminating a' (k)in (5.14) using (5.29) we obtain (5.21) with boundary conditions 

(5.22). 

Substituting (5.29) in equation (5.30) gives 

u°(k) = H(K*(xc, cc)) (5.33) 

Comparing (5.1)-(5.9) with (5.18), (5.19), (5.32), (5,21), (5.22) and (5.34), it is clear 

that the two set of optimality conditions are in agreement. Furthermore from 

assumption 3.1 

x° (k) = x°P (k), cc (k) = c°p (k), uc (k) = u°p (k), pc (k) = P°" (k); ke [0, N] 

(5.34) 

Q. E. D 

5.3 THE ALGORITHM MAPPING OF THE DOUBLE LOOP PRICE 
COORDINATION ALGORITHM PC2 

For simplicity, we will consider the special case of no terminal conditions and CD = 0. 

First, we derive the algorithm mapping of the inner loop of algorithm PC2. 

Let s denote the iteration number of the inner loop and p denote the corresponding 

iteration number of the outer loop. 

The inner loop: 

The inner loop constitutes iterations in the ith decomposed modified model based 

optimal control problem (MMOP; ) 
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We need to established the transition from iteration s to iteration s+l of the inner loop 

of the double loop price coordination algorithm PC2 with a linear model and quadratic 

performance criterion defined by (4.1) in terms of difference equations. 

From (4.28) we obtain the following expressions representing the computation of 

modifiers. 

2l (k)=[A1 - fx. (xi cl us ), k]T pl (k+1)+Ql xf (k)-qx* (x1 , c1 , ul , k)T 

NN 
+K;. (xis , cis) E Hl lp(k)-cý H1Tl '(k) 

j=1 j=1 

ßf(k) =[B1 -fci (xl ci , ul ), k]T pl (k+l)+R1 cf (k)--qý1(xl 
, ci , u1 , k)T 

NN (5.35) 
+Kc, (xi , ci) 

E H(lp(k). ýºT E Hr lp(k) 
j=1 j=1 

Qs(k) (k) =[D1 -. fu= (xis , cis , ul ), k]T pý (k+1)+Sj uj (k)-qu1(x , cl, ul , k)T 

N 

-. CT E Hý IP (k) 
j=1 

where 1' (k) is prescribed by computation in the outer loop. 

From equation (4.29) the calculation of parameters can be expressed as 

als (k) =A (xi , cl , ul , k) - Ai xis (k) - Bicl (k) - Di of (k) 
(5.36) 

e1(k) = Ki (xý cis) ' cýl cf (k) - Ziul (k) 

The solution of the MMOP, defined by (4.3) can be represented by 

ci (k) = Rl 1 [-B1 pl (k+1)-ßi (k)-J jNE H' jlj (k)+rlcf (k)1 
j=1 

xA (k+1)=Alit (k)+B1c (k)+D1üf (k)+al (k) 

pl (k)=Qjzl (k)+Api (k+1)-1% (k)-JT E HTIp(k)+r2xf(k); (5.37) 
j=1 

pl (N)=0 

N 
ül (k)=S, 1[-DTpj (k+1)_ (k)-. ZT E II Ip(k)+l+rlul (k)] 

j=1 
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The control state, interaction and costate updating mechanism defined by (3.60) are 
expressed as 

xf +' (k) = xi (k) + ex (zl (k) - xl (k)) 

cl + 1(k) 
= cl (k) + Ec (c (k) - cf (k)) 

(5.38) 
ul + 1(k) 

= ul (k) + cu (ii (k) - us (k)) 

pis +1(k) = pis (k)+Sp(pl (k)-pl (k)) 

Equations (5.35)-(5.38) are defined for kE [1, N -1] and c1(k) =vj (k), 

Xi ik) = zi (k), üi (k) = wi (k) and Pi (k) = Pi (k) 

Notice that in (5.37) we can write 

ps (k+l) =-AI T Qzs (k)+AT fk +A-T 2k+TN! HT 1'k +r2 At T xý (k); i1li pl () i 1( 4=7i 1j j 
j=1 

Pis (N) 0 

Substituting (5.35), (5.36) in (5.37) and applying (5.39), we can write 

if + 1) ýs 

(k) 
xs 

(k + 1) 
Eýpl 

$(k) 
+Ml 

pl 
jz (k)+Sl, i(zt (k)) 

where zls(k) = [cf (k)T x (k)T ui (k)T pl (k+l)T ]T and 

Eli Aj 

_, 41-TU i 

r1B1Ri 
1 

M1ýi = 
On1 

Ami 

-BiRI 
1BT 

- DiS1 lDl 1 

Ai 

Onf r3DiSi 
1 0ni 

T 
r2A1 Oni 

>mi 
0n1 

(5.39) 

(5,40) 

(5.41) 

s gi l, i (zi ( )) 
9', i (xi (k)) 

912,1 (4(k))] 

with 

(5.42) 

(5.43) 
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g1 11(z (k)) = B1 ' [B1 -f 
* (xl 'cl , ul ), k]T p (k+1) 

+B; R`; `'[Ri cl (k)-qcl (xl , ci , ui , k)T] 

N 
-B1 [, i1 -Kcl (Xs cl )]T E H; j lp(k)) 

j=1 
N 

+BIRT 1TE Hlj lP(k)+D; Sj'lp(k) 
j= 

+DiSj ' [Di - ful (xis , ci , ui ), k] Pi (k+l) 

+D11 [S1 ul (k)-qu1(xi , cl , ul , k)]T 

+fl*(xl , c1 , ul , k)-Alxl (k)-Blci (k)-Di of (k) 

Pi (k+1) 912,1(z4 (k)) = At T [A, -fx1(xi ci >ui ), k] T 

+Aý T ýQI xi (k)-9xt ixt cl, ui , 
k)T 1 

NN 
-Ai Ic i `Kx1( 'cl )JT E HI J (k)+Aý Tý H1 jpýk) 

jý1 j=1 

It should be noted that, in (5.40), Et is a transition matrix, H1' , contains solely 

(5.44) 

(5.45) 

convexification terms (i. e H 1,1 =0 if rl = r2 = r3 =0), and g12,1(zý (k)) represents 

the model-reality differences. 

Equation (5.40) can be written as 

i s(k) =EI 
X0 k-i 

+Z E/(M1 jz1(k-1-j)+gl 1(zý(k-1-f)): 
P; (k) pi (0) , ý (5.46) j= O 

pi (N)=0 

Writing qS(k) =Eir, at k=N, the final costate is given by 

Pl (N) _ 021,1(N)xio + 022,1(N)1rf (0) 

+kE102, j(f)[M1, izi(N-1-J)+gl, {(z (N-1-j)) 
(5.47) 
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with 

N_ 011i(N) 0121(N) 
E1 ý' ýN) L021,1(N) 022,, (N) ; 02, i(i) _ 

[021,1(1) 022, i( j)] (5.48) 

Hence, the initial costate can be expressed in the form 

Pi (o) = O22,1(N)-1 021, i (N)xio 

k-1 (5.49) 
-022, i(N)-' E02, i(j)[Ml, izi(N-1- j)+gl, i(zl (N-1-j)) 

j=o 

Substituting (5.49) in (5.46), we obtain 

zl (k) 
_ 

{uxr (N, k) 
xio 

pl (k) pPr Nk 

1012, i (k) N-1 

- jh2i(N)-1 Z02, i(. 1)[M1, jzj(N- 022, i(k) J =o 
(Z (N-1-f))] 

_o 
k-1 

+I: gi(. 1)[M1,1zi(k-1- j)+g11(zl (k-1-. 1))] (550) 
j-o 

where 

liz1(N, k) = O11, t (k) - O12, i (k)022,1(ß-1021,1(N) 
(5.51) 

, up, (N, k) = 021,1(k) - 022,1(k)022, i (N)-1021,1 (N) 

Using (5.35) and (5.37) to eliminate pi (k + 1) and ßi (k) from the optimal control 

estimate ci (k) gives 

ci (k) _ -RT 
IB! Ai T Qipxi (N, k)xio 

-)ii1B, 
TAt TQiqsi2, 

i(k)g22, t(N)-1 ýý2, i( )[Mýýýzi(N-1-j)+g11(zj(N-1-ý))] 
j=o 

_ 
k-] 

+RF 'Bt Ar T Qt 10r(. 1)[Ml, izi(k -1- J) + g1,1(z f (k -1- f))] 
j=o 

_Rj 
1 Bi Ai T 

pp, (N, k)xio 
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N-1 

-Ri 
1BiT Ai T 022, i (k)022, i (N)-1 E 02,1(J)[M 1,1zi (N -1- j) + gl, i (zf (N -1- j))) 

j=o 

k-1 
+R; 1BITA; T Egi(j)LM1,1zi(k-1-j)+g1,1(z7 (k-1-J))) 

j=o 

NS 

-r2Rt 
1BTAý Txl (k)+r1Rl lci (k)+Ri 1Z; 

lT 
HlTlp(k) 

j=Z 

+Rý 1LB1 
-}c (xi , ci ui ), k]T p (k+1) 

+Rý 1R1 cT (k)-Rj lgct (x ßc1 , us, k)T 

NN 
-Ri 

'[X 
i -Kc*. (xj , ci )]T E H, j lf (k))+Rý 1 t/ E Hlj jp (k) 

j=1 j=1 

-ki-'Bii Af T [Ai -fxl (xl , cf, uf ), k]T pl (k+1) 

+RF 1BT Ar TQI xis (k) - J'Bi AT Tqx* (x1, c, , u` , k)T 

+Ri 1Bj Al T [cal -Kz1(xl , cl )]T 
NE1 

11 (k) 
j=1 

N 
-7 

1 B/ Ar TE Hlj lý (k) 
J =l 

(5.51) 

Repeating the previous procedure, we can eliminate pi (k + 1) and ýi (k) from the 

optimal interaction estimate i (k) to obtain 

u (k) = -Si 
IDi . Ai T Qt Px, (N, k)xto 

_ 
N-1 

-S! 
IDi Al TQiqs12,1(k)022, 

t(W1 2: 02, l(J)[Ml, 1zJS(N-1-j)+gl, 1(zis(N-1-j))] 
J=0 

_ 
k-1 

+Si-IDiTAi TQ1 E01(. 1)[Ml, lzi(k-1-j)+gl, i(zf(k-1-j))J 
J=O 

-Sý 
1Di Ai T, 

upr (N, k)xio 
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N-I 
-Si 

1 DiT Ai T o22, i (k)022, i (N)-1 E O2, i (. 1)[M lei zi (N -1- j) + g1 1(zß (N -1- j))] 
j=0 

k-i 
+Si 1D1T Ai T 0, (j)[Ml, izi(k-1- j)+g1 (zi (k-1-1))l 

j-o 

-r S-1DTA-Txs(k s-971DTA" TT 4i5? 
(k)-1 (k) 211171 ýj 

l 
j=1 

+ S-lus k +S 1T 
NS 

HT lP k +S'-1 Di - fu* 
i ps (k+l r3 tr () 1 . Cj 

j=1 
i1 J 

() ful (: 
r 

k)J 
,) 

+j 1S" 
us(k)-Sj1 

* (xf cs, us, k)T S1pE J4Ip(k) 
j=1 

-Si' DT AT T [A1 -f x 
(xl , cj , ul , k)]T pl (k+1) 

-St 
1D, TAI TQl x= (k)+S_ 1DD Az-Tqzi (xi , cf , us t , 

k)T 

+Sý iDT[ýl 
-Kz (x; , c, )lT 41f(k) 

-Si 
1Di JýJJ 

j=1 J=1 

(5.52) 
Combining (5.50), (5.51) and (5.52) produces 

AS (k) _ pi(N, k)xio 
N-1 

-i7t(k)cs22,1(N)-1 E02,1(j)[Ml, 'zi(N-1- j)+g1, i(zi (N-1-J))1 
J=o 

k-1 
+2: Vl, i(. 1)[Ml, izi(k-1-J)+gl, i(zi(k-1- f))] 

j=o 

+M2, tzi (k) + g2, i (z; (k)) 

where 

/jct (N, k) 

,ux. (N, k) 

ft u. 
(N, k) 

pi (N, k) 

(5.53) 

with 
pcI . 

(N, k) Ri , Bi Ai T [u 
, 

(N, k)- P pi (N, k)] 

/I Ui 
(N, k) = Si 1DT At T [QjUx, (N, k)-ppl (N, k)} 

(5.54) 
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I Ri 1BiT Ai T[ c12, i (k) - 022, i (k)) 

and i7i (k) _ [_1D1TArT[ýI205.55) 

,1 
(k) - 022, ik )ý 

022, i (k) 

1Rr 1Bi Ai T [Q ý1,, (k) - cs2,1(k)] 

V/11(i) _1 
[1 

, ý(k(k 

- 
(5.56) 

,i) 
02, i ()] 

02,1(k) 

M 2 -- 

1ri_1 -r2Rl-1BT Al T Orl 
cri 

on! 

On1, m1 
_ 

On, On1'r1 Onj 

Or1, 
mi r2 Dt Aý r3s_i Ori'ni _-1 

T -T -1 
(5.57) 

On, 
'mi 

Ont Oni, rj 
Ong 

1g21,1 (zi (k)) 

and 92,1 (Z4 (k)) 
(ZS(k)) 

(5.58) 
922,1 

0 

with 

g21,1(zi (k)) _ 

Ri I[[B f xs'cs'us), kT BTA-T xs, cs'us), k]T }Ps i` c 
(xi ii ]-i 1[Ai `fxi (i iii (k+1) 

_N +Rý-I[R1 cý (k)-qc. (x , cs, uff �k) 
T l+Ri_lý; i S H613 (k) 

j=1 
+Ri-lBi A7T [Qi xi (k)-gx1(x ,c , ui , k)T 

-Rt 
I[[J 

-Kc. (x1 . ci )1T +13TATT [ýi -Kz (xS, cj )]T ]E HT IP(k) 
:i j=1 ui 

(5.59) 
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g23,1(zl (k)) 

+9j -'[[Di -. fu. (xl cf, ui ), k]T -D, 
T Al- T [AT -f. (x1, c1. u1), k)T ]Pf (k+1) 

-Si 
1DT Ai T. TE HT lj'(k)+S9 '[S1 ul (k)-9u, (x, cl 'ui , k)T ] 

Jj j=1 

-S; 
ID, T A-T [Qr xl (k)-qxi (x1 Cl , ul , 

k)T ] 

N s 
-Si 

IDT Ai T [cal -Kx. (xi , ci )]T F, Hij 1p(k)-S1-11f (k) 
j=1 

(5.60) 

From (3.46)-(3.48) and (5.38), the updating mechanism can be written as 

Zi+1 (k) = S2 (k) +[I2n+m+r -C]Zj (k) (5.61) 

I eC' 1 
Omi, ni 

0mi, ri Oml, ni 

with $Zl = 
On1, m1 ExInl On 

, ri 
0n1 

(5.62) 
Orl 

, ml 
Ori, 

ni Eu rl 
Orj, 

nl 
Onf, mi On1 Oni, ri PIi 

Combining (5.61) and (5.53) produces 

-s+l zi (k) = ezi uj(N, k)x1o 

-EZI; 1j(k)022,1(N)-1 7,01(N-1-f)[Ml, i4; (f)+sl, i(zf (. i))] 
-0 (5.63) 

-I 

j 

+EZ; 
kE 

Y'(k -1- . 
1)[Ml, i4i (k) + Sl, { (Z4 (k))] 

j=0 
+[-OZi M2,1 + X2nt + m1 + rfi ̀  s]zi (k) + czi 92,1(z f (k)) 

The algorithm mapping of the inner loop showing how zis (k) ke [0, N] is updated 

from iterations to iteration s+1 is obtained by the following simplification of (5.63), 

which can expressed as 

Zf + 1(k) 
= ezi p1(N, k)x o 

+czi F01i(N, k, j)[M11z (j)+g1,1(Zi (, 1))] (5.64) 
j=0 

+[Ez: M2, i +12nl +ml +rt 'eztazi(k)+cz1 g2,1(zi (k)) 
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where 

ýi(k-1-j)-ii(k)022,1(N)02,1(N-1-f); j e[O, k-1] 
E) li (N, k, j) 

i7i (k) 022j (N)-102,1(N -I-Aj E[k, N-1] 

(5.65) 

We now proceed to derive the algorithm mapping of the outer loop. 

The outer loop 

From algorithm 4.2.2 we note that the outer loop uses global information available 
from the NS subsystems from the inner loop. Let p denote the iteration number of the 

outer loop. The outer loop consists of the price updating mechanism (4.32) that is: 

Ip+1 (k+1)=1P(k)+el(üs(k)-H(&2s(k)+ cs(k)+ 
4SuS(k)+Os(k)) 

(5.66) 

which can be simplified as 

lp+1(k+1)=1p(k)+s1Tl$s(k)-e1HBS(k) (5.67) 

Or, m Or 
with TI = Or 

n 
Hc; ý Or (5.68) 

,n 
Or, 

m H`Ir 

ys(k) _ Ies(k)T xs(k)T üs(k)T]T 
and 

zs(k)=[cs(k)T xs(k)T us(k)T ps(k+l)T]T 
(5.69) 

(k) is the optimum estimates of global control, state and interaction ( defined in ys 

equation (3.4a)) as prescribed by the inner loop. 

Using global definitions (3.4a), (3.24a) , (5.2) and (5.3), and from equation (5.53) an 

expression for ys(k) canbewritten as 
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Yi (k) = fey (N, k)xo 

-rly(k)022(N)-1 
N-1 

E02(i)[M3zs(N-1- j)+g3(zs(N-1-. 1))] 
j=0 
N-1 

-i7y(k)022(N)-1 E02(j)[94(1P(N 
j=0 

Y'2 (j)IM3zs (k -1- J) + S3(zs (k -1- j))] + +E w2 (j)[g4 (l s (k -1- f))1 
kE k 

j=0 j=0 

+M4zs (k) + 95 (zs (k)) + 96 UP (k)) 

(5.70) 

where 

pc (N, k) R-'B T 

ýy(N, k) px (N, k) 

pu (N, k) S-1DT 

A_T [Q O12 (k) - 022 (k)f 

012 (k) (5.71) 

A_T IQ 412 (k) - 022 (k)) 

with qß(, ) denotes the corresponding global version of 0(. ), 1 

M3 
[r1BTF1 0r DT0 On 3 On 

(5.72) = On, m r2A_T 0n'r 0n 

R-1BTA-T[ ý1(k)-02(k)] 

W2(. 1) = 01(k) (5.73) 
[-. _1DTA_T[Q-I (k) - 02 (k)] 

02 (k) 

r1 
IR-1 

_r1R-1BTA-T Omer Om, n 
M4 = On, m On 0n, r On (5.74) 

L Or, m -r3S-1DTA-T r3s-10r, n 

93 (ZS (k)) = 
931(zs (k)) 

(5.75) 
S32 (z (k)) 

with 
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931(zs(k)) = BR-1[B-fc (x3, cs, us), k]T ps(k+1) 

+BR-i[Rcs(k) -q*(xs, cs, us, k)T j 

+DS-1[D- fü (xs, cs, uS), k]T PS(k+1) (5.76) 

+D37-'[Sus(k) - qu (x s, cs , us, k) T 

+f 
*(xs, 

cs, us, k) - Axs(k) - Bcs(k) - Dus(k) 

932(ZS(k)) = A-T [A-fx (xs, cs, us), k]T ps(k+l) 

+A-T [Qxs(k)-gz(xs, cs, us, k)T (5.77) J 

94 (1 p (k)) = 
[g41(1P(k))l 

(5.78) p S42 )) 

with 

941 (1 (k))=-BR-1[X -K,, (xs'cs)]T HTl (k) 

+BR`1 JT HT IP(k)+DS -il '(k) 
(5.79) 

g42(1'(k))=Kx(xs, cs)THT1p( ) (5.80) 

g51(z (k)) 

S5(z5(k)) _0 (5.81) 
g53(zs(k)) 

0 

with 

g51(z3(k)) 2 _l[[B-. f: (xs, cs, us), k]T 

-BT A-T [A-fz (xs, cs, u3), k]T ]ps(k + 1) 

+R-1[Rcs(k)-gc*(xS, cs, us, k)T ] 
(5.82) 

+ R-1BT A_T [Qxs(k) - qx (xs, cS, us, k)T ] 
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g531 (zl (k))= St '[[D-fu (xs, cs'us), k]T 

-DT A-T [A- fx (x s, cs, us), k]T ]ps(k+2) 
(5.83) 

+9-1 [Sus (k)-qu (xs, cs, us, k)T ] 

-S-1DTA-T[Qxs(k)-gx(xs, cs'us, k)T ] 

561(1S(k)) 
96 (1 s (k)) =0 (5.84) 

963 (1 S (k)) 
0 

with 

g61(1S (k))=R-1[Kc (x3, cs)]T -BT A-T [t-Kx(x5, cs )]T ]H T JP(k) (5.85) 

g63(ls(k))=-S-1DTAT JTHTIP(k) 
(5.86) 

-S-1DTAT [, =G-Kx(xs, cS)]T HT zP(k)-_-1lP(k) 

Equation (5.70) described the global output from the optimization of Ns subsystems in 

the lower level of the hierarchical algorithm PC2 to the outer loop. Note that the terms 
involving the interaction price 1(k) are isolated from the others in order to facilitate 

further derivation of the algorithm mapping of the outer loop . 
Matrices M3 and M4 consist of convexification terms rl , r2 and r3. g3(zs(k)) and 

g6 (zs (k)) represents the global model-reality differences in the global performance 

criterion and global plant dynamics. S4 (I P (k)) and g6 UP (k)) are made up of model- 
reality differences in the global output functions and coefficients of 1(k) . 
Expression (5.70) can be further simplified by use of the following definition. 

Define 
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W(N, k, j) = /y, (N, k)xo 

N-1 
_ii (k)O22 (N)-1 E 02 (j)IM 3zs (N -1- j) + g3i (zs (N -1- j))] 

J 

+kF-V(j)IM3zs(k-1-j)+g3(zs(k-1-j))I 
j=0 

+M4zs (k) + g5(zs(k)) +e1HOS(k) 

(5.87) 

Definition (5.87) isolates terms prescribed by the inner loop that remain constant in the 

outer loop iteration. Using (5.87) in (5.70) and applying it to (5.67) produces the 

algorithm mapping of the outer loop which describes how 1(k), k¬[0, N] is updated 

from iteration p to iteration p+1; 

jp+1(k 
1 

+1) = g7(l (k))+81TW(N, k, j)+e1T E E)2(N, k, f)[g4lP(j)] (5.88) 
j=0 

where 

yi2(k-1- j)-ily(k)q522(N)q$2(N-1-J); j E[O, k-1] 
ý2(Nýký. l) = (5.89) Iy(k)22(N11 

- 02(N-1- j); j e[k, N-1] 

and 97 (1 p (k)) _ [Im+n+rl p (k) - e, T S6 (1 p (k))l (5.90) 

5.3.1 Convergence of Double Loop Price Coordination algorithm PC2. 

Convergence behaviour is investigated by considering successive iterations of the 

algorithm in the inner loop and the outer loop, as defined by the mappings (5.64) and 
(5.88) respectively. 

First, we consider the convergence of the inner loop. We need to determine conditions 
such that 

IN + 1(k) 
- zr (k)II s IIzf (k) - zI -1(k)II (5,91) 

where 
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Ilzi (k)II= sup II zi (k)Ilq :kE [O, N] 
k (5.92) 

SUP(, zl, ilq+.... +Izn, iIq)1/q. q ¬[1,00); k e[O, N] 
k 

The following additional assumption is required. 

Assumption 5.1: 

The functions gl, l (zi (k)) and g2/z1(k)) defined by (5.43) and (5.58) are 

Lipshitz continuous for all zi (k), ke [0, N], with Lipschitz constants hl, 1 and h2,1 

respectively. That is 

II g1,1(z (k)) 
- g1, i (zl -1(k))I 1: 5 hl,; II zi (k) - zis -1(k)I I 

II g21, (zl (k)) - 92 1,1 (zl -1(k))II s h2,1 1124 (k) - zý -1(k)II (5.93) 

523,1 (z (k)) - 523,1(zi -1(k))II $ h3, f IIzis (k) - zl-1(k)I I 

The following theorem presents the local convergence conditions of the inner loop. 

Theorem 5.3: 

A sufficient condition for algorithm mapping (5.64) to satisfy (5.91) for every inner 

iteration s>1 is given by the expression 
(a1,1(N)+h1,1Q2, i(N))N+ech2,1 +cuh3, i+t(cM2,1 +I2n1 +m1 +r1 -elk I 

(5.94) 

where h1,1 , h2,1 and h3, j are defined in (5.93), c and M2,1 are defined by (5.62) 

and (5.57); and 
iiol, l(N)= sup sup IIcOj(N, k, J)M1,! '1 

k E[O, N-1] j E[O, N-1] 
(1"2,1(N) = sup sup jleej(N, k, j)lI 

k e[O, N-1] j e[O, N-1] 

with 4i (N, k, j) and M Iii defined by (5.65) and (5.42). 

Proof: 

Consider two successive iterations of (5.64) . Taking the norm we obtain 

(5.95) 
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N-1 
Ilzl +1(k)-zl (k)! I IIE E®i(N, k, j)[Mli(z1(j)-zis-1(j)) 

j=0 

+gi, i (z (J)) - g1,1(zl -1(. 1))] (5.96) 

+[CM2, i +2n1 +mi +ri -e](zi (k) - zl - 1(k)) 

+c[g2, ; (Z; (k)) - 92,1(2; -1(k))]II 

The above can be written as 

IIz +'(k)-z; (k)I(SIIc EO, (N, k,. i)Ml, i(zf(j)-Zi -'(. i))II 
j=o 

+I1 Es ei(N, k, j)S1, i(zf (J))-91, {(z -l(j))II 
(5.97) 

j=O 

+IIcM2, l +'2n1 +ml +rl -EII(zi (k)-zi "i(k)) 

+II c[g2,; (z, (k)) - g2�(4 
' (k))]II 

From (5.59) and (5.60) and (5.62) we have 

cg2,1(z1(k)) = ec g21,1(z1(k)) + ex 923,1(z1(k)) (5.98) 

Then, using (5.93) and (5.95), (5.97) gives 

Ilzl +1(k)-zj (k)II5 {(c1, l(N)+hl, iC2,1(N))N+II6M2, i +I2ni +ml +r1 -EI) 

+cch2, i + euh3, i } Ilzjs(k) - zl -' (k)II 

(5.99) 

Hence the inner loop iteration will converge if 

(a,, 1(N)+hl'iQ2, i (N))N+ Ech2, i +cuh3, i+ttcM2,1 +I2n1 +mi +r1 --011<1 

(5.1 ooh 
Q. E. D 

Convergence property of the outer loop is studied by considering successive iterations 

of the algorithm mapping defined by (5.91) and determining conditions such that 

Illp+t(k)-l°(k)lI tl1p(k)-lP-'(k)II (5.101) 

where 
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I11(k)II= sup II1(k)Ilq ;k E[O, N] 
k 

= sup(I11 Iq +.... +II,. I q)llq; qE [l, o]; kE [0, N] 
(5.102) 

k 

The following additional assumptions is needed. 

Assumption 5.2: 

The functions g4 (1(k)) and g7 (1(k)) defined by (5.78) and (5.91) are Lipshitz 

continuous for all 1(k), kE [0, N], with Lipschitz constants h3 and h4 respectively. 

That is 

I)g4 (IP(k))-S'4(IP-1 (k))II sh3 Ill"(k))-1P-l(k)II 

I1 S7 (1 p (k)) - S7 (l p-1 (k))II s h4 III"(k)) -I p-l (k)I) (5.103) 

The following theorem presents the global convergence conditions of the outer loop. 

Theorem 5.4 

A sufficient condition for algorithm mapping (5.88) to satisfy (5.101) for every outer 
loop iteration s>1 is given by the expression 

II (h4 + h3or3(N))N II< 1 (5.104) 

where h3 and h4 are defined in (5.103) and 

o3 (N) = sup sup II e1T O2 (N, k, j)j j (5.105) 
k e[0, N-1] j E[O, N-1] 

with 02 (N, k, j) and T defined by (5.90) and (5.68). 

Proof 

Consider two successive iterations of (5.88). Taking the norm we obtain 

IIIP+i(k)-Ip(k)1Isl)97(Ip(k))-S7(lp-1(k)) 

+eIT 1102 (N, k, )1941 p (j) - g41 p -1(J)} 
(5.106) 

j=0 
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which can be expressed as 

Illp+'(k)-11(k)Ilslig7(lp(k))-97(lp-1(k))Il 

+11 Es1T42(N, k, j){g41p(j)-g41p-1(. 1)III 
(5.107) 

j=0 

Then, using (5.101) and (5.103) gives 

I I1 p+ 1(k) 
-lP (k)II :! ý(h4 + h3a3 (N))N)I I1 P(J) -1 p -1(j)I I (5.108) 

and, hence the iterations will contract asymptotically according to (5.101) if 

II (h4 + h3Q3 (N))N II<1 (5.109) 

Q. E. D 

Conditions (5.94) and (5.104) show that the convergence of algorithm PC2 may 
depend on model-reality differences, the length optimization horizon, the choice of 

stepsizes for price and variables updates, and convexification factors as defined by 

matrices M1, j and M21 in equations (5.42) and (5.57). 

In the inner loop, the absence of model-reality differences means equations (5.44), 

(5.45), (5.59) and (5.60) are reduced to terms containing coefficients of the price 

If (k) which are considered as constants in the inner loop. As a result , condition 

(5.94) reduces to 

(Q1,, (N))N+HHEM2, i +I2ni +mi +r1 -Ell<1 (5.94a) 

By inspecting (5.83), (5.84), (5.86) and (5.87) in the outer loop, it is observed that, 

the equations are also reduced to terms containing coefficients of the price 1(k). 

Inspecting conditions (5.94a) and (5.104) in conjunction with (5.90a), it is observed 
that the absence of model-reality differences will relax the sufficient convergence 

condition of PC2 to that which depends on the choice the price updating stepsize, the 
length of optimization horizon value of aj (N) and the stepsize of variable updates. 

Notice also conditions (5.94) and (5.104) also imply that increasing the length of 
optimization horizon (or increasing number of samples) may decrease the rate of 
convergence of the algorithm. 
It is important to note that equations (5.94) and (5.104) are sufficient conditions only. 
It is not necessary to satisfy this condition for the algorithm to converge. However, the 
iterations in the inner loop and the outer loop are guaranteed to contract according to 
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(5.91) and (5.101) respectively, if the conditions are satisfied. This procedure 

demonstrates that convergence of the double loop price coordination algorithm PC2 is 

possible. 

5.4 THE ALGORITHM MAPPING OF DOUBLE LOOP DIRECT 
COORDINATION ALGORITHM DC2 

For simplicity we repeat the procedure in Section 5.2 by considering the special case of 

no terminal conditions C=0. First we derive the algorithm mapping of the inner loop 

of algorithm DC2. Let s denote the number of inner loop iterations and p denotes the 

corresponding outer loop iteration number. 

The inner loop: 

The inner loop constitutes iterations in the ith decomposed modified model based 

optimal control problem (MMOP; ) 

We need to established the transition from iteration s to iteration s+l of the inner loop 

of the double loop direct coordination algorithm DC2 with a linear model and 

quadratic performance criterion defined by (4.33) in terms of difference equations. 
From (4.28) we obtain the following expression representing the computation of 

modifiers. 

il (k)°ýA1 -. ßx3 (xi , ci >uf ), k]T p (k+l)+Qi xs(k)-gz1(xis, ci ,uf , 
k)T 

NS 
TN +Kz1 

. 
(xl 'c; ) EH lp(k)-c T HT jJp(k) 

j=1 JJ jýl 
j 

Qi (k)=[B1 -f 
* (xj , cl , up), k]T p (k+1)+Rj ci (k)-q 1(xf 

, cf ,uf , k)T 

NN 
+Ký, (xl , ci) 

F, H 1ý (k)-ý; I Y, Hl l' (k) 
j=1 j=1 

ýi (k)=[DT -fuß (xis , cis , u'), k)T p1 (k+l)+Si u (k)-qua (xs, cý ,u , k)T 

(5.110) 

where 1p (k) is prescribed by computation in the outer loop. 
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Calculation of parameter ai (k) remains as in (5.36). Parameter Ol (k) is given by 

0T (k) = Kl (xl , ci) - c&tx1 (k) -. l cis (k) 

The solution of the MMOP; defined by (4.33) can be represented by 

Ns 
cl (k)=Rj l[-BT 

pl (k+1)+ß1(k)+J 7' Hý lp(k)+r1ic1 (k)] 
j=1 

zjf(k+l)=Aizf (k)+B1cl (k)+DIÜP(k)+af (k) 

NS 
Pis (k)=Qiz1 (k)+Aß (k+1)-ß, 1(k)-dT SHE l '(k)-r2ixf(k); 

J 

pi (N)=0 

where uP (k) is prescribed by computation in the outer loop. 

(5.111) 

(5.112) 

The control state, interaction and costate updating mechanism defined by (3,60) is 

expressed as 

xl + 1(k) 
= xis (k) + 6x (xl (k) -- xi (k)) 

cis +1(k)=cis (k)+cc(cf (k) - ci (k)) 
(5.113) 

pis + 1(k) 
= pis (k) +ep (pi (k) - pis (k)) 

Equations (5.110)-(5.113) are defined for kE[1, N-1] and 
cj (k) = vi (k), I, (k) = zi (k), ü; (k) = wi (k) and p, (k) = pi (k) . 
Notice that in (5.37) we can write 

TQizý (k)+ATM (k)+ATTýj(k)+ H lp(k)+r2iAj Txs(k) 
j`1 vji 

pi (N) =0 
(5.114) 

Substituting (5.110), (5.111) in (5.112) and applying (5.114), we can write 

Rf (k+1) 
=E 2i 

[Rsf(k) 
+M5, iwis (k)+98,1(wi (k)) (5.115) 

Ifif 

(k + 1) pl (k) 

where wl (k) = [cis (k)T xl (k)T pl (k+ 1)T ] and 
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Al -Bi Ri BT 
E2i - 

-At 
TU AI 

, 
Fr1iBIRl I Ont 

, 
Ont 

M5,1 
Ont", mt " r2IAi 

T Oni 

$81, i (w (k)) 
S [g82j(w(k))j 

with 

Pi (k+1) SglJ(wl (k))=B; RT 1[Bl 
-f 

' (xl , cl , uP), k] T 

+B; Rj 1[R1 cl (k)-qcl (xl , cf , up, k)T ] 

Ns 
+B1i 1[. ß; T -Kcl (xý , cý )lT Z HTj Ip(k)) 

J 
NS 
Z. lpik) 

J 

+fl*(xi , ci , uf , k)-Alxi (k)-Bicl (k) 

582, E (w (k)) Ai T [Al - fx. (xý cý , uP), k]T pl (k+1) 

+Ai 
T [Ql xl (k)-gx1(xf 

, ci , uJ', k)T 

NS 

-Al 
T [a'} -Kz1(xl , cl )]T E Hl) If (k) 

j=1 
Ns 

+Ai T ýT 41! (k) 
J=1 

(5.116) 

(5.117) 

(5.118) 

(5.119) 

(5.120) 

Notice that in (5.115), E2,1 is a transition matrix, M5,1 contains solely convexification 

terms (i. e M 5,1 =0 if r1 = r21 = 0), and g8,1(w I (k)) represents the model-reality 
differences. 
Equation (5.115) can be written as 

x(k) 
i _E2 

Xio k-1 
+Z EZi[M5ýiw1(k_1_ j)+gg i(wi(k-1-j)); Pis (k) , A pi (0) , j=0, 

pi (N)=0 
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Writing ipi (k) = EZý1, the initial costate can be written in the form 

ASP = 922J (N)-1 ý'21, i (N)zio 

-ý'22, i(N)-1 
k1 

EO(P2, /(. 1)CM5, iwi(N-1- j)+g8, i(wl (N-1- j)) 
J 

(5.122) 
Using (5.122) in (5.12 1) produces 

if (k) [, Uxj (N, k) 

Lpf(k)i = ppi (N, k) xio 

912'1(k) (N)-1.1 
1V2 

i(J)LMS iwi(N-1-j)+g (ws(N-1-j))] 
(P22', i(k) 

ý22, i 8, i i 
= 

+ 
kE(Pi(j)[MS, 

iwis(k -1- j) +gg, i (wi (k -1- j))) 
j=0 

(5.123) 
where 

Pxl (N, k) = (Pll, i (k) - '12,1(k)»22,1(N)-1 P21, i(N) 
(5.124) 

Ppl (N, k) = q21, i(k)-`, 22,1(k)»22, i(N)-1c21, i(N) 

Using (5.35) and (5.112) to eliminate pi (k + 1) and Qi (k) from the optimal control 

estimate cl (k) gives 

ci (k)=-R1 1BT Ai T Qi ux. 
r 

(N, k)xio 

N-1 
-Ri 1BiA, QiV12, i(k)V22j(N) E0V2, i(j)[M5,1wf (N-1-j) 

j 

+g8,1(w1(N-1-j))] 

+R-'BT A-TQ E19li(J)[MSiws(ki -1-f)+g$, 3(wsi(k-1-J))) 
J=O 

-Ri 
1BT Ai T 

upi (N, k)xia 

-R'i 
1BT Ai Tppi (N, k)xio 

N-1 
-Rl 

1 BT Al T 
922) (k»22,1(N)-1 E0'P2,1(J)[M5,1wi (N-1-. 1) 

J 
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+g81 (w j (N-1-J))] 

k-1 
+Rj 1BT Al TE 

ýP1,1 (I)[MS, iwi (k-1- j)+gg, i (w= (k-1-J))) 
j=0 

N 

-r2iRliBTAI 
Txi (k)+lii 1BTAj TE HIP(k) 

j=1 
NS 

+r1ikj7l cl (k)+Rj 1ýT z Hl lp(k) 
j=I 

+Rl 
1[B1 (xl, ci , up), k] pl (k+l) 

+Rl-1R1 cl (k)-Rl lgc1(xl 
, cl , uf, k) 

*s +Ri 1[ßi 
-Kc. (x; ýci )ýT E HIP (k)) 

t j=1 

Pi -Ri 
1BT Al T [Ai -. rx. (xis , cf 'uf), k] T 

I 
(k+l) 

+R-1BT A`TQ xi -R`lB tT Ai-T *i (xst, cst, utp, k)T 
tritt ýx 

N 
+Rl 1i Ai T [vii -Kzi (xI , ci )]T EH1' (k) 

j=1 

Combining (5.123) and (5.125) produces 

wi M- 4u2i (N, k)xio 

_ZN-1 5 -i12iq'22, i(N) 
jE092, 

i(J)LM5, iwi(N-1-j) 
= 

+gg, i (wi (N -1- j))J 

k-1 
+E yr2,1(J)LM5,1wi(k-l-j)+98, i(wf(k-1-f))] 

j=0 

+M6wi (k)+S9, iwf (k) 

where 

(5.125) 

(5.126) 
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Cl (N, k) 

P21 (N' k) = UX, (N, k) (5.127) 
p Pi (N, k) 

with , uCi (N, k) -Rt 
1BT Ai T Iýi, uXi (N, k) -pp (N, k)] 

i 

{.. r1BITAIT[, l2I(k) -g22, i(k)1 
ý21(N'k) 'P12, i(k) (5.128) 

9'22, i (k) 

-Ri-1Bi Ai T[Q1Ci? 
-4ý22, iCý)] 

V2,1 C/) (5.129) 

__ 
r11 M6,1 

1 
_r2IRi 

1BT Al T Omi'ni 
,i On 

ým 
On 0 (5.130) 

i1i ni 

1g911(wf(k))1 

and g9,1(wi (k)) =0 (5.131) 
0 

where 

g91, i (wjs(k))=Rj-i[[Bi 
-fc; (Xs 

, ci , uf ), k]T 

-BT Ai T [Al -f., (xi , ci , uf ), k] TI 
pi (k+l) 

+Ri-'BT ATTC 4lj? (kýJ[1J. T TIP 

,1°1 jS 1 
4ý . (k) 

+Rf 1[Rl cf (k)-qct (xf , cf , up, k)T J 

+Rj`iBT Ai T [Qt xf (k)-qzt (x{ 
, ci , u/, k)T l 

+Rt 1[[. ßi -K* (xi 
, ci )l T 

+BT Ai [c i -. Kx (xi , ci )]T ]E1,1ý (k) 
j=1 

(5.132) 
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From (3.46)-(3.48) and (5.38), the updating mechanism can be written as 

wf +1(k) = swý(k) +[I2n+m -e]wi (k) (5.133) 

with 

Ec'mi Omi 
ºni 

Omi, ni 
62 = pn1, ml ExInl 0m1, ni 

(5.134) 

Onl, m1 
Oni Cplni 

Combining (5.126) and (5.133), produces 

wi +1(k) _ c2p2i(N, k)xio 

1N-1 
-s2 ii2l(k)V22,1(N)- E 92,1(j)[M5, iwi(N-1- j) 

j=0 

+gg, l (wj (N -1- j))] (5.135) 

+E2 
kE 11 

2,1(j)IM5, iwi (k--1- j)+g8, (W J (k-1-, j))] 
j=0 

+[s2M6, i +I2nl +mj -E2]wi(k)+E299, iwi(k) 

Hence the algorithm mapping, showing how w 1(k) ,kE [0, N], is updated from 

iteration s to iteration s+l in the inner loop, is given by 

Wi +1(k) 
_ e2p2i(N, k)xio 

-s2 E®3, i(N, k, j)LM5,; w'i(j)+98,1(wß (j))l (5.136) 
j=0 

+1E2M6, i +I2n, +m, -s2]w 
j (k)+s2g9, jwj (k) 

where 

Vý2, i(k-1-J)- 1I21(k)ýP22,1(N)92, i(N-1-J); j E[O, k-1] 
03i(N, k, 1) 

-172,1 (k)OP22, i(N)-1O 2,1(N-1- j); j E[k, N-1] 

(5.137) 
Next we derive the algorithm mapping of the outer loop. 

The outer loop: 

From algorithm 4.3.2 we note that computation in the outer loop utilize the global 
information available from the Ns subsystems in the inner loop. Let p denote the 

number of iteration in the outer loop. 
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The outer loop consist of the following steps. The interconnection price is given by 

equation (4.63), that is 

IP(k)=as(k)-Sup(k)-DTps(k+1); k E[1, N-1] (5.138) 

The interaction vector is computed directly from the interconnection model which is 

given by 

üp(k) =H(Jzs(k)+ ; cs(k)+OP(k)) k E[1, N-1] (5.139) 

Finally the interaction term is updated after each iteration using the relaxation formula 

given by (4.64), that is 

uP + 1(k) 
= up (k) + Eu (u ̂P (k) - up (k)) (5.140) 

where [. ]s denotes variables prescribed by the inner loop optimization unit. 

Using (5.139) in (5.140) we eliminate aP (k) to produce 

up + 1(k) 
=(I -8u)uP(k) + suT2v(k) - cuHs(k) (5.141) 

where 

T2 =[H%Z and vs(k) _ [cs(k)T zs(k)T JT (5.142) 
r, n ý 

Using global definitions (3.4a), (3.24a), (5.2) and (5.3), and from inspection of the 

local optimization output equation (5.126) an expression for the global variable vs(k) 

can be written as 

viýk) =pv(N, k)xo 

1N-1 ss '1v9g22(N)- Efý2(j)IM7w (N-1-j)+ g10(w (N-1-j))] 
j=0 

-7vX22(N)-1 
N -1 F-'P2 (j)gl1(uP(N-1- j))] 
i =O 

k-1 
+ EVz(j)IM7ws(k-1- j)+g10(ws(k-1-j))J 

j=0 
k-1 

+ EY'2(J)g10(u"(k-1-j))]+M8(ws(k))+g12(ws(k))+g13(up(k)) 
j=0 

(5.143) 
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where ws(k) = [cs(k)T xs(k)T ps(k+l)T ] 

and 

,u c(N, k) [R-IBTA_T[Q_912(k)-922(k)J 
' (N, k) = rw (k) _ (5.144) 

, ux(N, k) P12(k) 

with qp(. ) denoting the corresponding global version of 4p(. ), i 
T --I 

M7 riB R On On 
(5.145) 

On, m r2A 
T On 

R-1BTA-T[Q471(k) -V2(k)] 

V2 (J) = 4o1 (k) (5.146) 

92 (k)] 

r1R-1 _r1R-1BTA-T pm, n 
M8 = On, m On On (5.147) 

On, m On On 

g10 (w s (k)) = 
510,1(w (k)) 

(5.148) 
g10,2 (w s (k)) 

with 

g10,1(ws(k)) = BR-1[j -Kc*(xs, cs)]T HT [cs(k)-DTps(k+1)] (5.149) 

g10,2 (w S (k)) = [A-Td - AT Kx (xs, cs)]T HT [; s (k) - DT PS (k + 1)J (5.150) 

Sl l (up (k)) = 
Sl l, l (up (k)) 

(5.151) 
91 l, 2 (Yp (k)) 

with 

911,1(up(k)) = BR-1[B- f: (xs, es, up), k]T ps(k+1) 

+BR-1[Rcs(k)-gc(xs, cs, uP, k)T ] 

(5.152) 
+f 

*(xs, 
cs, up, k) - Ax'v(k) - Bcs(k) - Du1'(k) 

- BR'-1 [ý; - Kc (xs, cs)]T HT Sup (k) + Dup (k) 
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911,2(uP(k)) = A-T [A-fx (xs, cs, up), k]T Ps(k+1) 

+A-T[Qxs(k)-gx(xs, cs, uP, k)T l (5.153) 

+A-T [c; 7 - Kx (xs, cs)]T HT SuP (k) 

g12,1(W S (k)) 

g12, (ws(k)) =0 (5.154) 

0 

with 

g12,1(w3 (k)) =R -1 [[. ;- Kc (xs cs )]T 
(5.155) 

+BT A-T [J-KX(xs, cs)]T 1HT [; s(k)-DT ps(k+1)p(k)] 

g13,1(us (k)) 

913, (us(k)) =0 (5.156) 
0 

with 

g13,1(us(k))= R-1[[B-fC (xs, cs, uP), k]T 

-BTA-T[A-fx(xs, cs, uP), k]T ]p8(k+l) 

+R-1[Rcs(k) -q*(xs, cs, up, k)T ] 

+R-1BTA-T[Qxs(k)-gx(xs'cs, uP, k)T ] 

+ R-1[[. - Kc (xs, cs)]T + BT A-T [c7 - Kx(xs, cs)]T ]Sup(k) 

(5.157) 
Equation (5.143) represents the global output from the optimization of Ns subsystems 

in the lower level of the hierarchical algorithm DC2 to the outer loop. Note that the 

terms involving the interaction price 1(k) is eliminated using (5.138). Terms containing 

the interaction vector u(k) are isolated from the others in order to facilitate further 

derivation of algorithm mapping of the outer loop. 

Matrices M7 and Mg consist of convexification terms r11 and r2i . gi0(w3(k)) 

and g12(ws(k)) represents the global model-reality differences in the global 

performance criterion and global plant dynamics. gig (up (k)) and gi 3 (1 p (k)) are 
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made up of model-reality differences in the global output functions and coefficients of 

u(k). 

Our aim is to express the iteration in the outer loop in terms of interaction variable u(k) 
by substituting (5.143) into (5.141). To achieve this we make the following definition 

which will be used to simplify the resulting equation. 

Define 

Wv(N, k, J) =uv(N, k)xo 

-'1v'°22 (N)-1 Y-P2(. 1)IM7w$(N-1- j)+g10(w8(N-1- f))] 
j=0 

+ F-V2(j)IM7ws(k-1- j)+g10(ws(k-1-j))I 
k 

j=0 

+g12 (wS (k)) + 513 (uP (k)) + EuHBS(k) 

(5.158) 
Definition (5.158) contains terms prescribed by the outer loop that remain constant 
throughout the computation in the outer loop. Using (5.158) in (5.143) and applying to 
(5.141), produces the algorithm mapping of the inner loop which describes how 

u(k), ke [0, N] is updated from iteration p to iteration p+1 in the outer loop; 

up+I(k+1) = (1-eu)(up(k))+cuT2Wv(N, k, j) 

N -I (5.159) 
+CuT2 F- 03(N, k, j)[Sllul'(f)]+cuT2g13(up(k)) 

j=0 
where 

®3(N, k, j)= VV2(k-1-j)- v(k) 22(N)O2, (N-1-. 1); j e[O, k-1] 
(5.160) 

I-t7v(k)P22('V)- 

I P2( A; j E[k, N-1] 

5.4.1 Convergence of Double Loop Price Coordination algorithm DC2. 
The convergence property is investigated by considering successive iterations of the 
algorithm in the inner loop and the outer loop, as defined by the mapping (5.136) and 
(5.159) respectively. 
Initially we consider the convergence of the inner loop. We need to determine 

conditions such that 
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Ilwl +1(k)-wl (k)II5IIwl (k)-wi -1(k)II (5.161) 

where 

IIwi(k)II= sup II''i(k)I19; k E[0, ß'] 
k 

(5.162) 
SUP(, W1, ßlq+.... +Iwn, i lq)llq; Q E[1, °0]; k E[O, N] 
k 

The following additional assumption is required. 
Assumption 5.3: 

The functions gg, i (w , (k)) and g911(w1 (k)) defined by (5.118) and (5.132) are 

Lipschitz continuous for all w; (k), kE [0, N], with Lipschitz constants 

hs, i and h6j respectively. That is 

Il gg, l (w i (k)) - g81(w i-1(k))I is h5,, Ilwf (k) - w' -1(k)I I 
(5.163) 

(Ig91,1(w1(k))-g91,1(wf -1(k))IIsh6j Ilw! (k)-wi-1(k)lI 

The following theorem presents the local convergence conditions of the inner loop. 

Theorem 5.5: 

A sufficient condition for algorithm mapping (5.136) to satisfy (5.159) for every inner 

iteration s>1 is given by the expression 
(cr4,1(N)+h5,1a5,1(N))N+sch6,1+IIc2 M6,1 +l2n1 +ml - C2 ýý<1 (5.164) 

where h5,1 and h6,1 are defined in (5.163), c and M6,1 are defined by (5.134) and 

(5.130); and 

a4, I(N)= sup sup 1162021(N, k, J)M10I11 
kE[O, N-1] j e[O, N-1] 

cr5,1(N) = sup sup 1162 02, (N, k, j)I 
k e[O, N-1] j E[O, N-1] 

with 1 91 (N, k, j) and M lit defined by (5.65) and (5.42). 

Proof: 

Consider two successive iterations of (5.136) . Taking the norm we obtain 

(5.165) 
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N-1 
IIwý +1(k)-wi (k)IIS e2 E 03, i(N, k,. l)[M5, i(wi (j) - wi ^ 1(j)) 

j=0 

+g8,1(wl (1))-gg, i(wf -I(. 1))] (5.166) 

+182M 6, i +'2n1 +m1 -'2](wj (k)-wi -I(k)) 

+E2[g9, iw; (k) -g9, iwi (k)] 

The above can be written as 
N-1 

Ilwi +1(k)-wi (k)IIý11C2 E 03, i(N, ksl)M5,1(w? (J)-wf-1(J))II 
j=0 

+IIE2 E 
1O3,, 

(N, k, f)[g8, j (W j (J)) - g8, i (Wj -'(D)ill (5.167) 
j=o 

+Ik'2M6, i +12ni +mi -e211(wis(k)-wl -1(k)) 

+1Is2[g4, iwi (k)-g9, iwl (k)ill 

From (5.129) and (5.160) we have 

c g9, l (w j (k)) =cc g91,1(w j (k)) (5.168) 

Then, using (5.163) and (5.166), (5.167) gives 

Ilwi +1(k) -wi (k)NS {(cr4, i(N)+h5,1cr5, {(N))N+e, h6, t 

+1k2 M6, i +'2ni +mi `E2 II)II(wi (k)-wJ -'(k))II 

(5.169) 

Hence the inner loop iterations will converge if 

(Q4, i(N)+h5 i 5,1(N))N+cch6,1+11162M6, i +l2ni+mi -£2l1<1 

(5.170), 

Q. E. D 

Notice that the convergence condition of the inner loop is similar to that of the 

centralize Discrete DISOPE algorithm given by Becerra and Roberts (1996). This is 

because in the inner loop, interaction variable u(k) and interaction price I(k) are 

prescribed from the outer loop which remain constant throughout the inner iteration.. 

Hence the inner loop has a similar iterative mapping to that of a centralized discrete 

DISOPE. 
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Next, we derive the sufficient condition for convergence of the outer loop by 

considering successive iterations of the algorithm mapping defined by (5.159) and 
determining conditions such that 

Ilup+l (k) - up (k)1I511up (k) - up-l(k)II (5.171) 

where 

IIu(k)I)= sup IIu(k)Ilq ;k E[O, N] 
k 

ýsup(, ullq+.... +lurlq)1/q; q E[1, oo]; k e[O, N] 
(5.172) 

k 
The following additional assumption is needed. 
Assumption 5.2: 

The functions gll, (u(k)) and 913,1(1(k)) defined by (5.151) and (5.157) are 

Lipschitz continuous for all 1(k), ke [0, N], with Lipschitz constants h7 and h8 

respectively. That is 

Ilgl1, (w '(k))-Sli, (w '(k))IISh7 Ilws(k)-ws-1(k)1) 

(Ig13,1(ws(k))-S13,1(wS-1(k))IIshg IIms's(k)-ws-1(k)I 
(5.173) 

The following theorem presents the global convergence conditions of the outer loop. 

Theorem 5.6 

A sufficient condition for algorithm mapping (5.159) to satisfy (5.171) for every outer 
loop iteration s>1 is given by the expression 

(cuIIT2IIh8 +h7c6(N))N <su (5.174) 

where h7 and h8 are defined in (5.173) and 

`6(N) = sup sup IIcuT2 03(N, k,, ý)II 
k E[O, N-1] j E[O, N-1] 

with 03(N, k, j) and T2 defined by (5.161) and (5.142). 

Proof 

Consider two successive iterations of (5.159) . Taking the norm we obtain 

(5.175) 
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Ilup+l(k) - up(k)11: 511(l - Eu)(up(k) - up-1(k)) 

UT2 E 
103(N, 

k,. l)[gl1(up(J))-gll(up-1(! ))1 (5.176) 
j=0 

+EUT2 [g13 (uP (k)) - S13 (up -1 (k))II I 

which can be expressed as 

II up+l (k) - up (k)IIIII (1- Eu)(u" (k) - uP -' (k))I 
N 

+IIe T2 E 
103(N, 

k, j)[g1I(up (j))-911(up-1(. 1))lII 
j=0 

+IIeuT2I913(uP(k))-913(up-l(k))JII 

(5.177) 

Then, using (5.173) gives 

ii up+i (k) - u"(k)II s {1- cu + c. IITz ll 
(5.178) 

+h7Q6 (N)) N) II uP (k) - up-1(k)I 

and, hence the iterations will contract asymptotically according to (5.101) if 

1- su + culIT21lh8 +h7a6(N))N <1 (5.179) 

That is cuII T2I hg +h70'6(N))N < eu (5.180) 

Q. E. D 

Note that if we choose the default stepsize for interaction update (i. e. eu=1) then 

equation (5.174) is reduce to 

IIT211h8 +h7o 6(N))N <1 (5.181) 

Conditions (5.164) and (5.174) show that the convergence of algorithm DC2 may 
depend on model-reality differences, the length optimization horizon, the choice of 

stepsizes for price and variables updates, and convexification factors as defined by 

matrices M51 and M6 j in equations (5.117) and (5.130). 

In the inner loop, the absence of model-reality differences means equations (5.119), 

(5.120) and (5.132) are reduced to terms containing coefficients of the price If (k). 

As a consequence of this, condition (5.164) reduces to 
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(a'4, ß (N))N+11'62 M6,1 +I2nj +m1-s211<1 (5.182) 

In the outer loop in absence of model-reality differences sufficient condition (5.181) is 

simplified to the following, 

h7Q6 (N))N<1 (5.183) 

This implies that the absence of model-reality difference will relax the convergence 

conditions of algorithm DC2 and may result in a faster speed of convergence. 

From (5.164) and (5.174) it can be concluded that reducing the length of optimization 

horizon (or the number of samples) may also improve the rate of convergence in 

algorithm DC2. 

It is important to note that conditions (5.164) and (5.174) are sufficient conditions 

only. It is not necessary to satisfy them for the algorithm to converge. However, the 

iterations in the inner loop and the outer loop are guaranteed to contract according to 

(5.161) and (5.171) respectively, if the conditions are satisfied. This procedure 

demonstrates that convergence of the double loop direct coordination algorithm DC2 

is possible. 

5.5 SUMMARY 

In this chapter we have established the optimality of hierarchical algorithms for solving 

structure with model based interaction input. We have also derived the algorithm 

mapping of the double loop version of both the price coordination and direct 

coordination approach. From the algorithm mapping we have shown that it is possible 

to derive the sufficient convergence condition of the respective algorithms. Although 

the conditions derived are conservative in the sense they do not have to be satisfied im 

order for algorithms to converge, they point the way for further theoretical 

investigation into the convergence property of the algorithm. For instance from 

simulation results in chapter 4, it would appear that convexification factor n 

, convexification factor associated with control signal c(k), have the greatest influence 

on convergence of the four algorithms presented. Note that at present the convergence 

condition of the single loop algorithms PCI and DCl is still intractable because the 

presence of the interaction term and interaction price multiplier in a single loo=p 

structure complicates the derivation of the algorithm mapping. In the double loop 
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structure the interaction term and the interaction price multiplier is conveniently 

decoupled from the inner loop and can be treated as constant, thus making it possible 

to derive the algorithm mapping using method described in this chapter. 

In the following chapter we present implementations of algorithms for solving systems 

with different level of utilization of real interaction input in the hierarchical structure 

which was proposed earlier in chapter 3. 
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CHAPTER 6 

ALGORITHMS FOR STRUCTURES WITH REAL INTERACTION 
MEASUREMENTS 

6.1 INTRODUCTION 

In this chapter we develop algorithms for solving optimal control problem of structures 

with real interaction measurements. The structures which have been described in 

Chapter 3, are dynamic analogies of hierarchical ISOPE structures with input-output 

information feedback (Brdys and Roberts, 1986). They have two different levels of 

utilization of real interaction measurements. A real interaction measurement is defined 

as the actual real system measurement given by the output function 

y(k) = HK* (x(k), c(k)). Initially, we consider the structure given by fig. 3.5.1., where 

the real interaction measurement is utilized in the parameter estimation step of the local 

optimization unit. Next we consider the third structure proposed in chapter 3, 

illustrated by fig. 3.6.1. In this structure the real interaction measurement is 

incorporated in both the parameter estimation step and as part of the interconnection 

equation itself. In contrast to algorithms described in chapter 4, where models of 

output function are utilized , the algorithms presented here use actual measurements 

from the reality to solve the equivalent modified model based optimal control problem. 

To derive the algorithms for both structures, we will use familiar procedures , that is , 

assuming that the model based problems are represented by linear quadratic 

approximations of the real optimal control problems. These in turn are solved using a 

standard method (Lewis and Syrmos, 1995; Bryson and Ho, 1980) using two 

approaches, price coordination and direct coordination. Implementing the resulting 

algorithms in single loop and double loop techniques produces a total of eight 

algorithms which are summarized below. 

1. Algorithms for structure with real interaction measurements in parameter estimation, 

PC3-Single Loop Price Coordination 

PC4-Double Loop Price Coordination 

DC3-Single Loop Direct Coordination 

DC4-Double Loop Price Coordination 
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2. Algorithms for structure with real input measurements in interaction and parameter 

estimation. 

PC5-Single Loop Price Coordination 

PC6-Double Loop Price Coordination 

DC5-Single Loop Direct Coordination 

DC6-Double Loop Price Coordination 

The algorithms are implemented in software using the C++ programming language and 

simulated using earlier examples to test its efficiency and convergence property. The 

optimality of respective algorithms will also be established. 

6.2 ALGORITHMS FOR STRUCTURES WITH REAL INTERACTION 
INPUT IN PARAMETER ESTIMATION 

In this section we derive the algorithms for optimal control of hierarchical structures 

with real input in parameter estimation (see figure 3.5.1) using the price coordination 

and direct coordination approaches. 

6.2.1 PRICE COORDINATION APPROACH 
PROBLEM FORMULATION AND SOLUTION 

Consider the optimal control problem defined by MMOP2i in Chapter 3, Section 3.5. 

Augmenting the performance index with variable augmentation produces the following 

equivalent form MMOP2j'. 

MMOP2i': 

N-I 

min Qr =qi(z(N))+ j: fgr(xg(k), cr(k), uj(k), Y1(k)) 
c(k), u(k) k=l 

+11(k)T ul(k)- 
NS 

ij Hj1Fi(xi(k), ci(k), ui(k), Ot(k)) 
j=1 

-AI(k)T xi(k)-Q, (k)T C, (k) 

2 rii llcr (k) -- vi (k)112 +2 rij lixi (k) - ZI (k)112 ) 

subject to 

x; (k+1) = f; (xi(k), ci(k), ui(k), ai(k)); ke[1, N-11 
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x1(0)=x, 0 
x,, t (N) = 0; tE [1, q] 

xI (N) = [Xi, q+1(N) ....... xf, n (N)I T 

where r11 and r2i are given scalar convexification factors. Notice that at the end of 

the iterations, c(k)=v(k) and x(k)=z(k) so that at this stage the augmentation 

terms and their derivatives are zero, so having no effect in the real optimality of the 

solution. Notice also in this structure we do not need a separation variable for the 

interaction term u(k). 

MMOP2; ' can be chosen as a linear quadratic approximation of the ROP; where there 

are standard procedures for its solution(Lewis and Syrmos, 1995, Bryson and Ho, 

1980). This provides computational advantage. Assume now 

q1 (x1(k), c1(k), u; (k), c1(k)), y1(k)) _ 

2 
xi (k) T äßi x1(k) +2 ci (k) T Ri ci (k) +2 ui (k)T s1u, (k) + y1 (k) 

fi (xi (k), ci (k), uj (k), at (k)) = 

Ajxi(k)+Bici (k)+. Djul(k)+ai(k) 

F ixt (k), ct (k), ut (k)'Ot(k)) 

taxi(k)+J jcj(k)+. Xjuj(k)+01(k) 

fei(xi(N))= 
1xt(N)T(Dixi(N); ke[O, N] (6.1) 

where cDi z 0, Qi z 0, Ri >0 andSj z0 are weighting matrices of appropriate 

dimensions, A;, B; and D; are matrices which represent a linear model of fi* (. ) , 
Ii, J, j and 'i are matrices which represent a linear model of the output function 

Fi (. ) . The corresponding augmented Hamiltonian function is: 

H(. ) =2 x1(k)T Qlxi (k) +2 cl (k) T R, cj (k) +1u, (k) T S, u, (k) + y, (k) 

+p1(k+1)T [A; x, (k)+Bic1(k)+Diu, (k)+a1(k)] 

N 
s 

+li(k)T ui(k)->1j (k)Hji[c7rxi(k)+Jici(k)+. Crur(k)+©i(k)] 
J=1 
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-A,; (k)T x, (k)-Qt(k)T ci (k) 

+ r1iIjci(k)-vi(k)II2 +2r2i(jxi(k)-zi(k)112, ke[O, N-1] (6.2) 2 

Applying the model based optimality conditions (3.63), (3.64) and (3.65) and (3.72) 
for the ith subsystem, we obtain the control law: 

ci(k)=-Rj 1()31T1 (k + 1) - /3j (k)); k E[0, N-1] (6.3) 

the optimum interaction vector: 

ui (k)=-S; 1(Dirp; (k+1)+1; (k)); k e[0, N-1] (6.4) 

where 

N 
lj (k) =1, (k) +,,, rT E HT1l j (k) (6.5) 

j=1 

and, in addition, the following two-point boundary value problem (TPBVP): 

xi(k+1)= Aixi(k)-B; RF 1(B1 pi(k+1)-ýj(k)) 

-D1' (DT p1(k + 1) + il (k)) + a1 (k) (6.6) 

pi (k) = al x, (k) + AT pi (k + 1) -Aj (k) (6.7) 

with boundary conditions: 

xi (0) = xio; xi, 1(N) = 0; te (l, qi ] 

P1(N) = cixi(N) (6.8) 

where the augmented weighting matrices Rl and Uj are given by: 

Ri = Xi +riilm, (6.9) 

Ui = Qi +r2IIn (6.10) 
J 

and the augmented multipliers ßj (k) and ýi (k) are expressed as: 

_N ß1(k)_ß1(k)+ 1 Hjjlj(k)+rliv1(k) (6.11) 
j=1 

N 
_s ýt (k) = ý% (k) + chi Heil j (k) + rZizi (k) (6.12) 

j=1 
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Using equations (3.81) and (3.82) the linear quadratic formulation enables the 

multipliers ß; (k) and Al (k) , ke [0, N-1 ] to be written as 

TTTT 

Qrzt (k) + III !r (k) Ai (k) -. - _ 
ýr ý") 

-A, pi(k + 1) - 
12, (ti 

azi (k) az ý (k) 

jTfi TT 

Qt (k) Bt t (k + 1) _' avt (k) 
Rtvi(k) + ;t Hi li (k) 

kE [O, N-1 ] (6.13) 

The calculation of parameters a1 (k) and 01(k) are given by equation (3.83), that is; 

ai (k) =f I* (zi (k), vi (k), Hi K* (xi (k), cl (k)) 
(6.14) 

-Alz1(k)-B1v1(k)-D1HiK*(x1(k), cl(k)) 

9i (k) = Ki (zj (k), v1(k)) - cýizj (k) -. t }v1(k) -. Cl Hi K* (x, (k), cj (k)); 

kE [O, N-1] (6.15) 

Note that it is not necessary to calculate y1(k). Notice also (6.14) is the main 

difference between the current and the previous structures (see fig. 3.5.1 and fig. 3.4.1 

for comparison). Here the interaction term in the parameter estimation step is 

calculated directly from the real output function y(k) = K* (x(k), c(k)) instead of its 

model. 

The price multiplier vector remains as in the previous structure and is computed using 
the formula defined by (3.8), that is 

li +1(k+1)=ll (k)+e1[u1(k) 

NS 
-E HU (J jx j (k) +, ; jc j (k) + ,t ju j (k) + ©j (k))] (6.16) 

j=1 

It is observed that the structure of TPIVP described (6.6) and (6.7) with boundary 

conditions (6.8) is identical to that of TPI3VP given by (4.4) and (4.7). However (6.6) 

and (6.7) have no terms of w; (k) and C', (k) 
, the parameters ai (k) and 01(k) ire 

computed using real interaction measurements. Repeating the procedure described in 
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chapter 4, section 4.2, the solution of TPBVP can be obtained using the sweep 

method (Lewis and Syrmos, 1995, Bryson and Ho, 1975). The key is to assume the 

relationship between state and costate as 

pi (k) =V, (k)x; (k)+Ei(k)vi +h; (k); k E[O, N] 

0 
where Vi(N)= 

00; 
Ei(N)= ý' ; hi(N)=0 

t 

ýt = [pi, i (N).... pi, q 
(N)]T (6.17) 

where V, (k) is an nl x n1 matrix, Et (k) is ni x q; matrix , h1 (k) E 91 nI and 

Vi ed gl The procedure (see Appendix A for derivation) can be summarized as 

follows: 

Procedure 6.2.1 : Solution of MMOP2; for structure with real interaction 

measurement in Parameter Estimation 
_ __ __ 

Step a: From data solve backwards from k=N to k=0 the following set of 
difference equations. 

Vi(k) = Ui +AiVI(k+1)[I� +BiR, Bi Vi(k+1)+DiSiDTVi(k+1)]'1,41 

k e[0, N-1], Vi(N)= 
0 cp t 

(6.18) 
El(k) =[A, -AI Vt(k+l)[I� +BtRi 1Bt Vt(k+1)+D1Si 1DiVj(k+l)]-1 " 

(B1 1i 1Bt +D, Sr 1Di)]Ei(k+1) 

k E[0, N-1); El (N) = 
Iý 

(6.19) 
ý(k) =W (k+1)-Et(k+1)T [I� +B111 1Bi Yi(k+1)+DiS1 1D, Vi(k+l)]-1 " 

(B1Ri'BT +DiSt IDi )]Ei(k+1) 
W(N)=0; k s[O, N-1] 

(6.20) 
Step b: Calculate Gi (k) and M1(k) using the following equations: 

Gi(k) =P IB1 Vj(k+1)[I� +B, RB, V, (k+1)+D, S, D, Vr(k+1)]-IA, 

M1(k) = S3-IDTV1(k+1)[II + ß1i Bj V1(k+1)+DDSfDTV1(k+1))_1 Al 

(6.21) 
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Step c: Solve the following difference equation backwards to obtain 

h; (k) and irr; (k) : 

hi(k) =[AT -ATV (k+1)[1� + B; R_ lBTVI(k+1)+D; St 1D; Vf(k+1)]-1 " 
(Bike-'Bi +DiS1'Di)]hi(k+I)-A,, (k) 

+ATVi(k+1)[In +B1RiT B, TV (k+1)+D, St IDj VI (k + I)]-' 

(Bi Ri-1Qi (k) - Di S lli (k) + a, (k)); 

where hi (N) = 0; ke [0, N -1] (6.22) 

'; (k) , ri(k+1)+Ei(k+I)T[I�+Biki 1Bj Vf(k+1)+DISj'DTV, (k+1)j-1" 

[-(B1Ri 1Bi+DISi 1Di)]hi(k+1)+BjkjTßi(k)-D, St llt(k)+at(k)] 

where n, (N) = 0; ke [0, N -1] (6.23) 

Step d: Calculate p; (N), g; (k) and m; (k) from the following equations: 

Pi (N) = vi = -W (0)[Ei (0) T xio + iri (0)} 

gi(k)=-Rt 1BTV1(k+1)[In + B, i IBi Vi(k+1)+D, S! IDTVI(k+1)f-1 " 
[Bik 1Qi(k)-DiSi'ii(k))+ai(k) 

-(B, Ri 1Bi +D; Sr 1D, )](E1(k+1)v+hi(k+l)) 

+Ei(k+1)pi(N)+hi(k+1)]+Rj 1ß1(k) k e[O, N-1] 

(6.24) 

mi(k) =-Si'DTV, (k+1)[In +BIIF 1B! vi(k+1)+D, Si lDi Vi(k+1)1`1 " 
[(B17 lßi(k)-Disi ir(k))+a, (k) 

-(B, R( 1B; T +D; SI DT )](Ej(k+1)v+hi (k+1)) 

+E; (k+l)p; (N)+hi(k+1)]-Sj'ij(k)) k E[O, N-1] 
(6.25) 

Step e: Solve the following equation to obtain the state x1 (k) ,k6 [0, NI 

x, (k+1) = (A, -B1G1(k)-DiMj(k))x, (k)+Big, (k)+Dims(k)+a, (k); 

x, (0)=xo, xt(N)=0; t ¬[1,4]; k e[O, N-1] (6.26) 

Step f Calculate the costate p; (k), ke [0, N] from: 

p; (k) = Vi (k)xi (k) + E, (k) vi + h; (k); ke [0, N] 

Step g: Calculate the new control ci (k) and the 

u, (k), ke [0, N -1] from the following equations: 

cl (k) _ -Gj(k)xj(k)+ g1(k) 

uj(k) _ -M, (k)x, (k)+mj(k) 

(6,27) 

new interaction 

(6.28) 

(6.29) 
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The previous analysis enables us to formulate the following two algorithms using the 

single loop and double loop techniques. 

6.2.1.1 Single Loop Technique PC3 

A single loop technique is obtained by iterating all the coordinating variables in 

equations (6.13) and (6.16) in the upper level simultaneously with the local 

optimization units defined by MMOP2; in the lower level. The lower level is made up 

of Ns local optimization units, each of which contains the MMOP2j unit, the 

parameter estimation unit and the variable update unit. Each local optimization unit is 

independent of other local optimization units, thus making this algorithm suitable for 

application of parallel processing. 

In comparison to algorithm PC1 (for hierarchical structures with model based 

interaction input), the present algorithm has less variables to be iterated since there are 

no interaction separation variable wi (k) and the interaction modifier vector ;j (k). 

This is achieved at the expense of including the real interaction input in the parameter 

estimation step. Simulation examples in section 6.4 will show that the algorithm can 
have faster speed of convergence in comparison to algorithm PCi described in Chapter 

4. 

The single loop algorithm can be summarized as follows: 

Algorithm 6.2.1.1: Single Loop Price Coordination Hierarchical DISOPE for 

systems real interaction input in parameter estimation. 

Data Aiº B1, Di, Q1, R1, Si, xlo, 01, N, Ns, rliº r21, Ecº ex, Epº El and means 

for calculating ft` (. ), Kj (. ) and qi (. ) . 
Step 0. At level 2, choose the initial values of coordinating variables 

2'i (k), ß? (k) and 110(k). At level 1, let 4(k) 
= O°(k) = 0, compute a 

nominal solution (using procedure 6.2.1) or choose a nominal solution for the 
ith local optimal control problem. Set iteration number s=0 and 

v? (k)=c? (k), ke[0. N-1]. z? (k) = x? (k), p0(k) = p? (k), ke[0, N] and 

u9 (k) = Hi F(z°(k), v? (k)) kE[O, N-1 ]. Send them to level2. 
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Step 1: At level two, calculate coordinating variables ) (k), ßl (k) and 1f (k) , 

kE[1, N] using equations (6.13) and (6.16). Augment them according to 

(6.11), (6.12) and (6.5). Send them to level 1. 

Step 2: At level 1, calculate ai (k) and 91(k) from (6.14) and (6.15). Send them to 

the ith local optimal control problem and to level 1. This is called the 

parameter estimation step. 

Step 3: At level 1, solve the MMOP2; using procedure 6.2.1. Note that if s=0, 

perform Step a in procedure 6.2.1, store the results for use in subsequent 
iterations. Otherwise start at Step b in the same procedure. 

Step 4: At level 1, update the variables 

zf +1(k) =zl (k)+sz(xi (k)-zi (k)), k E[O, N] 

vl + 1(k) 
= vl (k) + ev (cl (k) - of (k)) ,ke [O, N -1] 

p +1(k) = pl (k)+c (Pr (k)-Pf (k)) ,k E[0, N] 

Send them to level 2. 

Step 5: At level 2, convergence of coordinating variables is checked. 

If vs+l(k) = vs(k), zs+1(k) = zs(k) andus+1(k) = HF(zs(k), cs(k)) 

. within a defined tolerance, stop, otherwise set s=s+1 go to step 1. The 

whole process is repeated. 

6.2.1.1 Double Loop Technique PC4 

A similar reasoning which was given in Chapter 4, is utilized at present to develop a 
double loop price coordination algorithm PC4. The technique evolved from the need to 

take advantage of the global structure of the interconnection term defined by equation 
(3.73). The technique involves an iterative procedure of solving modifier equations 
(6.13) in an inner loop for a prescribed value of price 1(k) . The task of the outer loop 

is to evaluate the global price 1(k) such that equation (3.73) is satisfied. This is 

equivalent to solving the following equation 
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u(l(k)) = HF(x(l(k)), c(l(k)), u(l(k)), ©(x(l(k)), (c(l(k)), (u(l(k))) k E[0, N-1] 

(6.30) 

given that x(1(k)), c(I(k)) and u(l(k)) are solutions of the inner loop problem under 

a prescribed 1(k). The linear quadratic model based problem F(. ) is defined by the 

appropriate equation in (6.1). The strategy for updating the price is given by a global 

version of (6.16) that is: 

is + 1(k + 1) =1 s (k) + c1(u(k) - H(Jx(k) + Jc(k) +. Lu(k) + 6(k)) (6.31) 

The inner loop consists of two levels similar to the structure described in the Algorithm 

6.2.1.1. On the upper level we have modifier equations as defined by (6.13). The 

lower level is made up of N$ local optimization units. Each local unit consists of a 
MMOP2; unit, a parameter estimation unit and a variable update unit. The local 

optimization unit can be solved independently thus making this technique suitable for 

application of parallel processing methods. The software implementation of the double 

loop technique is much easier because there is no need to separate the interacting 

components for each subsystem at the coordinator level. The resulting algorithm can 
have a faster speed of convergence over the equivalent double loop technique PC2 as 
illustrated by simulation examples in Section 6.4. This could be explained by the fewer 

number of iterating variables required in solving the hierarchical structure with real 
interaction input in parameter estimation. 

The procedure for implementing the algorithm is summarized as follows: 

Algorithm 6.2.1.2: Double Loop Price Coordination Hierarchical DISOPE for 

systems real interaction input in parameter estimation. 

Data: Aj, Bj, DI, Qt, R!, Si, x10,0f, N, NS, r11, º2l, ec, ex, ep, el and means 

(. ) . for calculating fi' (. ), K1 (. ) and q; 
Inner Loop: 

Step 0. At level 2, choose the initial values of coordinating variables 
'°(k) and Q? (k) . At level 1, let a, 0(k) 

= D, 0 (k) = 0, compute a nominal 
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solution (using procedure 6.2.1) or choose a nominal solution for the ith local 

optimal control problem. Set iteration number s=0 and 

v? (k)=c0(k), kE[O. N-1]. z° (k) =X0 (k) , j5; 0(k)=p0 (k), ke[0, N) and 

u9 (k) = HlF(z? (k), vý(k)), kE[O, N-1] . Send them to level 2. 

Step 1. At level 2, calculate coordinating variables 2j(k) and X 1(k) , ke[1, N] 

using equations (6.13) and (6.16). Augment them according to (6.11), 

(6.12) and (6.5). Send them to level 1. 

Step 2. At level 1, calculate al (k) and 9i (k) from (6.14) and (6.15). Send them to 

the ith local optimal control problem and to level I. This is called the 

parameter estimation step. 

Step 3. At level 1, solve the MMOP2; using procedure 6.2.1. Note that if s=0, 

perform Step a in procedure 6.2.1, and store the results for use in subsequent 
iterations. Otherwise start at Step b in the same procedure. 

Step 4: At level 1, update the variables 

zl + 1(k) 
= zl (k) + EZ (xl (k) - zf (k)), ke [0, N] 

vý + 1(k) 
= vl (k) + ev (cis (k) - vi (k)) ,ke [0, N -1] 

pl + 1(k) 
= pr (k) +c (pi (k) - ft (k)) ,k es [0, N] 

Send them to level 2. 

Step 5: At level 2, convergence of coordinating variables is checked. 

If vs+l(k)=vS(k) zs+ 
l(k) 

= zs(k) and 

us +t (k) = HF(zs(k), cs (k)) within a defined tolerance, stop, otherwise 

set s=s+I and go to step 1. The whole process is then repeated. 
Outer Loop: 
Step 0: Set p 0, choose a nominal value for 10(k), Send it to the inner loop 

Step 1: Using prescribed global values of x(k), c(k), u(k) and ©(k) from the inner 

loop calculate the price using equation (6.31). Send it to the inner loop. 
Set p=p +1. 
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Step 2: Test for convergence using equation (6.30) 
. If within a defined tolerance, 

stop, otherwise repeat step 1. 

6.2.2 DIRECT COORDINATION METHOD 
PROBLEM FORMULATION AND SOLUTION APPROACH 

In this section we develop the hierarchical algorithms for solving EOP2 (see Chapter 3, 

Section 3.5) using methods derived directly from the optimality conditions. The 

approach we use is similar to that of the interaction-prediction approach (Mahmoud, 

Hassan and Darwish, 1985), however in the present problem a different and more 

general interaction structure is adopted. In this procedure the interaction price 

multiplier is calculated directly from the optimality condition and the interaction 

vector is computed using the interaction equation as given by optimality conditions 

(3.66) and (3.74) respectively. As a result , MMOP2i' in Section 6.2.1 is now defined 

as a minimization problem with respect to the control vector only. Augmenting the 

performance index with variable convexification terms to aid convergence, MMOP2i' 

is modified to the following equivalent augmented optimal control problem: 

MMOP2; ": 
N-1 

min Qi = 0(x(N))+ E {gi(xi(k), c1(k), u1(k), Y1(k)) 
c(k) k=1 

N 
+1, (k)T uj(k)- 

E 1; (k)H11F1(x1(k), cj(k), u1(k), 01(k)) 
j=1 

-A, (k)T x1(k)-ßt(k)T cc(k) 

+2 rl! (lit (k) - vi (k)112 +2 rit jJxt (k) -zj (k)112 } 

subject to 

xi(k+1) = fi(xi(k), ci(k), ui(k), ai(k)); kE[1, N-1] 

xi(0) = xi0 

xi, f(N) = 0; t E[1, q] 

zi (N) = [xi, q+1(N),..... , xi, n (N)]T 

where r11 and r2i and are given scalar convexification factors. 
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To solve MMOP2; " using hierarchical DISOPE techniques we choose the model to be 

a linear quadratic approximation of ROP for which there are standard procedures for 

its solution (Lewis and Syrmos, 1995). The parameters aj (k), yi (k) and ©i (k) , 

ke [0, N-1] can be chosen as shift parameters. 

Define 

q1 (xi (k), c1 (k), uj (k), cl (k)), 71(k)) 

2x; 
(k)TQjx, (k)+ 

1 
c, (k)TR; ci(k)+2u, (k)TSiui(k)+yi(k) 

. 
it (xi (k), ci (k), ui (k), a1(k)) = 

Aix; (k) + B; ci(k) + D; ui(k) + ai(k) 

F, (xi(k), c; (k), uj (k), 01(k)) = 

o; ixi(k)+. Ztci(k)+et(k) 

Oj(x1(N))=2xj(N)T(Dfx, (N); kE[O, N] (6.32) 

where 01 z 0, Qj z 0, Ri >0 and Si z0 are weighting matrices of appropriate 

dimensions, A;, B; and D; are matrices which represent a linear model of fj*(. ) , 
J j, J, j and Z, are matrices which represent a linear model of the output 

function. 

The corresponding augmented Hamiltonian function is: 

H(. )= 
2xl(k)T Qixl(k)+2c, (k)T Rlci(k)+2u, (k)T S, u1(k)+Yi(k) 

+ pj(k + 1)T [4, xi (k) + Bi c, (k) + Di u, (k) + al (k)] 

NS 

+lr(k)T ui(k)- >l (k)Hji[dixi(k)+. ici(k)+©i(k)] 
J= l 

-Aj(k)Txt(k)-Qt(k)T cr(k 

+2 r1111ci (k) - vt (k)II2 +2 r21Ikxi (k) - zi (k)I12 ,kE [O, N-1) (6.33) 

Using the model based optimality condition (3.64) for the ith subsystem, produces the 

control law: 
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c; (k) =-Ri 1 (BT p; (k+1)-ßj(k)); k E[O, N-1] (6.34) 

From optimality condition (3.66) , the interaction price vector 1i (k) can be expressed 

as: 

1i (k) =-S; ui(k)-DT p; (k+1); k E[O, N-1] (6.35) 

From optimality conditions (3.65) and (3.73), we obtain the following TPBVP: 

xi(k+1)= A; xi(k)-BiR; 1(BTpi(k+1)-ßi(k)) +Dl uj(k)+al(k) (6.36) 

pi (k)=Qixi (k)+AiTpi(k+1)-Ai (k) (6.37) 

with boundary conditions: 

Xi (0) = xio; xi,, (N) 0; t e[l, gi] (6.38) 

Pi (N) = (Dili (N) 

In addition, we use optimality condition (3.74) to calculate the interaction vector 

u1(k) which can be written as: 

N 
u1 (k) =Z Hy Fj(xi(k), ci(k), uj(k), 01(k)) 

j=1 

N 
_Z HU(�, ljx j(k)+ J jc j(k)+O j(k)); ke[O, N-1] (6.39) 

j=1 

The augmented weighting matrices k, and Q, are given by: 

Rý = Ri + ril Im, (6.40) 

Qi = Qi + r2lIn, (6.41) 

and the augmented multipliers ýj (k) and ýj (k) are expressed as: 

NS 
ßi (k)=ßj (k)+X; T 

J= j 
(6.42) 

NS 

(k) = A, (k)+cit EH331j(k)+r2jzt(k) (6.43) 
J=' 

The computation of multipliers 81(k) and Aj (k) remains unchanged and is given by 

equation (6.13). The calculation of model-reality parameters aI (k) and ©1 (k) are 
defined by equations (6.14) and (6.15) respectively. 
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The TPBVP defined by (6.36) , (6.37) and (6.38) can be solved using Ricatti equation 

method (Bryson and Ho, 1975; Lewis and Syrmos, 1995). The key is to assume the 

relationship between state and costate as 

pi(k) =V, (k)xt (k)+Ei (k) vi +hi(k); k E[O, N] 

where V1(N) =0]; E1(N) =I p' ; h; (N) =0 
f 

vi = [pf, i (N).... p;, q (N)]T (6.44) 

where V1 (k) is an ni x ni matrix, Ej (k) is n1 x ql matrix ,hi (k) E9i and 

v1 E 93 g1 The procedure (see Appendix B for derivation) can be summarized as 

follows: 

Procedure 6.2.2 : Solution of MMOP2; for structure with real interaction 

measurement in Parameter Estimation using direct coordination approach 

Step a: From data solve backwards from k=N to k=0 the following set of 
difference equations. 

Vi (k) = QJ + A1VJ (k + 1)[Aj - BJGJ(k)] 
10 0 

ke [O, N -1], VJ (N) =0, 
J 
T where GJ (k) = [RJ + Bi Vt (k + 1)BJ ]-1 Bi V (k + 1)A1 

E1(k)=[At -BtGi(k)]T E, (k+1) 
10 

ke [O, N -1]; El (N) = Iqr 

W(k)=W(k+1)-El(k+1)T[I�+B1RF'Bj Vi(k+1)]-1 

BijF 1B, ]E, (k+1) 
W(N) = 0; 

Step b: Solve the following difference equation backwards 

h; (k) and jr i (k) with prescribed interaction uj (k) from (6.39) : 

ha(k)=(A, -B; GI (k))Thi (k+1)+(Aj -B, G, (k+1))TVI(k+1)(D, ut(k)+a, (k)) 

-7, (k)+G1(k)Tß, (k); h; (N)=0; k e[O, N-1] (6.49) 

rci (k) = zi (k + 1) + Et (k + 1)T [In + Bi Rj-1 Bj Vj (k + I)]-1 " 

(6.45) 

(6.46) 

(6.47) 

k e[4, N-1j 
(6.48) 

to obtain 
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[(B, R, T, ß; (k)-Bji 1B; )h; (k+1)+D; uj(k)+ai(k)] 
where , r1 (N) = 0; kE [0, N -1] (6.50) 

Step c: Calculate pj (N) and gi (k) from the following equations: 

Pi (N) = vi = -W (O)[Ei (0) T x, 0 + I'i (0)J (6.51) 

g; (k) = [1 +B, TVV(k+1)B; ]'I[-BTV1(k+1)(D; ui(k+1)+a; (k)) 

-B; 
TEj (k+1)pi (N)-Bt h; (k+1)+ß1(k) (6.52) 

Step d: Solve the following equation to obtain the state x; (k) ,ke [0, N] 

xt(k+1) _ (Al -B; G1(k))xj(k)+Bjgj(k)+Dju1(k)+a1(k); 
Xi (0) = x; o, xi(N)=O; te [1, q]; ke [0, N -1] (6.53) 

Step f: Calculate the co state p; (k), ke [0, N] from: 

p; (k) V1 (k)xi (k) + Ei (k) vi + h; (k); k r: [0, N] (6.54) 

Step g: Calculate the new control cj (k) ke [0, N -1] from the following 

equations: 

cj (k) = -G; (k)xi (k) + gi (k) (6.55) 

The above analysis gives rise to the following two algorithms using the single loop and 

double loop techniques. 

6.2.2.1 Single Loop Technique DC3 

In this section a single loop implementation of a direct coordination algorithm for 

hierarchical systems with real input in parameter estimation is presented. The algorithm 
has the same structure as Algorithm 4.3.1 (DC 1). The upper level is made up of 

equation (6.35) which calculates the interaction price vector 11(k) , the computation of 

modifiers ß, 1(k) and ßi (k) given by (6.13) and the calculation of interaction vector 

defined by (6.39). The lower level consists of Ns units of local optimization problems. 
Each of them is made up of a MMOP2; unit, a parameter estimation unit and a variable 

update unit. A single iterative unit is obtained by iterating the variables in the 

coordinator simultaneously with the local optimization units in the lower level. The 

algorithm has fewer variables to iterate when compare to the corresponding algorithm 
DC 1 for systems with model based interaction input. As a result algorithm DC3 can 
have a better speed of convergence in comparison to DC1. This is illustrated by the 

simulation examples described in section 6.4. 
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Algorithm DC3 discussed above can be summarized as follows: 

Algorithm 6.2.2.1: Single Loop Direct Coordination Hierarchical DISOPE for 
system with real interaction input in parameter estimation. 

Data Ai, B1, D1, Q1, 
"1, 

Si, X10, Ot, N, N3, r11, r21, EC, ex, Ep and means 

(. ) . for calculating f j* (. ), Ki (. ) and qj 

Step 0: At level 2, choose the initial values of coordinating variables 

A. i(k), /31(k) and 10(k) . At level 1, let aj(k) = 010 (k) = 0, compute a 

nominal solution (using procedure 6.2.2) or choose a nominal solution for the 

ith local optimal control problem. Set iteration 

number s=0 and v? (k)=cO(k), ke[0. N-l]. zo(k) = xj(k) , 

pO(k) = p? (k), ke[O, N] and u? (k) = H1F(aý(k), v? (k)), ke[O, N-1] 

Send them to level 2. 

Step 1: At level 2, calculate interconnection price if (k) from equation (6.35). Then 

compute modifiers X31 (k) and 2j (k) from equation (6.13). Augment them 

according to (6.42) and (6.43). Calculate the interaction vector of from 

equation (6.39). Send them to level 1. 

Step 2: At level 1, calculate ajS (k) and Of (k) from equations (6.14) and (6.15). 

These are send to level 2 and the ith local optimal control unit. 

Step 3: At level 1, solve the MMOP21 using procedure 6.2.2. Note that if s--O, 

perform Step a in procedure 6.2.2, store the results for use in subsequent 
iterations. Otherwise start at Step b in the same procedure. 

Step 4: At level 1, update the variables 

s+1 (k) =zl (k)+ez(xi (k)-zý z (k)), k E[0, N] 

yr + 1(k) 
= vl (k) + ev (cf (k) -of (k)) ,ke [0, N -1] 

P, (k)= pf (k)+Ep(Pf (k) -Ps (k)), k e[0, N] 

Send them to level 2. 

Step 5: At level 2, convergence of coordinating variables is checked. 
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If vs+1(k) vs(k), zs+l(k) = zs(k) and us+l(k) _ HF(zs(k), cs(k)) 

within a defined tolerance, stop, otherwise set s=s+I and go to step 1. The 

whole process is then repeated. 

6.2.2.2 Double Loop Technique DC4 

In this implementation, we utilize the global nature of the price and the interacting term 

by calculating them in an outer loop. These consists of calculation of the interaction 

term defined by a global version of (6.39), which can be expressed as 

u(k) = H(, 7x(k) + J; c(k) + 0(k)) kE [O, N -1] (6.56) 

where the global control c(k), global state x(k) and model reality 9(k) are provided 

by the inner loop. The interconnection price 1(k) is computed from the global 

equivalent of equation (6.35), that is 

1(k) = -Su(k) - DT p(k + 1); ke [0, N -1] (6.57) 

where p(k) are given by the inner loop. In contrast to algorithm 4.3.2 (DC2), we do 

not have to include an updating formula for u(k) because in this structure , the 

interaction term is calculated directly in (6.56) instead of its separation variable w(k). 

As consequence, the outer loop iteration of the current hierarchical structure (EOP3) 

using the double loop technique with direct coordination approach is much simpler 

than that of algorithm DC2. This is illustrated in the simulation examples in Section 

6.4, where a faster speed of convergence is observed. 

The double loop technique described above can be summarized as follows: 

Algorithm 6.2.2.2: Double Loop Direct Coordination Hierarchical DISOPE for 
system with real interaction input in parameter estimation. 

Data: A1, B1, Di, Q1, Rig S1, x1o, cD1, N, Ns, r1l, r21,6., Ex. Ep and means for 

calculating fl* (. ), Ki (. ) and q, (. ) . 
Inner Loop 

Step 0: At level 2, choose the initial values of coordinating variables 

29 (k) and Qio (k). At level 1, let a? (k) = O? (k) = 0, compute (using 

183 



procedure 6.2.2) or choose a nominal solution for the ith local optimal 

control problem. Set iteration number s=0 and vO (k) = c0 (k) , ke [0. N-1 ]. 

z? (k) = x? (k) and pO (k) = p? (k) ke [Q, N]. Send them to level 2. 

Step 1: At level two, calculate modifier vectors ßl (k) and 2i (k) 
, ke [1, N] using 

equations (6.13) with 1f(k) prescribed by the outer loop. Augment them 

according to (6.42) and (6.43). Send them to the local optimization problem 
in level 1. 

Step 2: At level 1, calculate al (k) and O (k) from (6.14) and (6.15). Send them to 

the ith local optimal control problem and to level 1. This is called the 

parameter estimation step. 

Step 3: Perform the same process as in Step 3 of algorithm 6.2.2.1. Send the results 
to the outer loop. 

Step 4: Perform Step 4-Step 5 of algorithm 6.2.2.1 

Outer Loop 

Step 0: Set p=0, choose a nominal value for 1° (k) and for uO (k). Send it to the 

inner loop. 

Step 1: Calculate up (k) from interaction equation (6.56) using prescribed values of 

x5(k) , cs (k) and Os (k) from the inner loop. Then compute the price 

interaction l'° (k) from (6.57). 

Step 2: Test for convergence using equation (6.56) , If uP+l (k) = HFp (. ) within a 
defined tolerance, stop, otherwise repeat step 1. 

Note that the inner loop and the outer loop run simultaneously. 
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6.2.3 OPTIMALITY OF ALGORITHMS FOR STRUCTURES WITH REAL 
INTERACTION INPUT IN PARAMETER ESTIMATION. 

In this section we established the optimality of algorithms PC3, PC4, DC3 and DC4 

which were derived and described in the previous sections. We use a similar approach 

utilized earlier in Chapter 5 by considering the global optimality conditions of each 

algorithm. This is done by showing that the conditions are equivalent to that of the 

global real optimal control problem defined by (3.10). The theorems are defined in 

conjunction with definition (3.1) which define the existence and uniqueness of the 

optimal solution of ROP and definition (3.2) which define the existence of the 

appropriate derivatives. 

First we consider algorithms PC3 and PC4. At the global level, the optimality 

condition of the two algorithms are equivalent since they are derived by applying the 

same approach in a similar structure defined by EOP3 (see Chapter 3, section 3.5). 

Hence they can be considered jointly. 

The following theorem establishes the optimality of PC3 and PC4. 

Theorem 6.1: 

Under Assumptions 3.1 and 3.2, and assuming convergence, the converged solution of 

the price coordination algorithms PC3 and PC4 with a linear model and quadratic 

performance index satisfies the optimality conditions of the global real optimal control 

problem defined by (3.10). 

Proof: 

The proof of is similar to that of theorem 5.1 and is described in Appendix B. 

Using an identical reasoning as given previously, we can established the optimality of 

algorithm DC3 and DC4 jointly using the following theorem. 

Theorem 6.2 

Under Assumptions 3.1 and 3.2, and assuming convergence, the converged solution of 
the direct coordination algorithms DC3 and DC4 with a linear model and quadratic 
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performance index satisfies the optimality conditions of the global real optimal control 

problem defined by (3.10). 

Proof: 

The proof is similar to that of theorem 5.2 and is described in Appendix C. 

6.3 ALGORITHMS FOR STRUCTURES WITH REAL INPUT IN 
INTERACTION AND PARAMETER ESTIMATION 

In this section we derive the algorithms for optimal control of the hierarchical structure 

with real input in interaction and parameter estimation (see figure 3.6.1 in Chapter 3) 

using the price coordination and direct coordination approaches. The structure 

utilizes real output y(k) = HK* (x(k), c(k)) as the interaction input instead of the 

model output function y(k) = HF(x(k), c(k), u(k), 9(k)) . As a result of this, there is 

no need to calculate the model reality parameter 0(k) . The parameter estimation for 

a(k) remains as in Section 6.2. As in the previous section we will use the two 

approaches in deriving the algorithms. Implementing the algorithms using the single 
loop and double loop techniques will result in four algorithms which are denoted as 
PC5, PC6, DC5 and DC6. 

Initially we will consider the price coordination approach. 

6.3.1 PRICE COORDINATION METHOD 
PROBLEM FORMULATION AND SOLUTION APPROACH 

Consider the optimal control problem defined by MMOP3 j in Chapter 3, section 3.6. 

Augmenting the performance index with variable augmentation produces the following 

equivalent form MMOP3; '. 

MMOP3; ': 
N-1 

min Q1 =ý(z(N))+ j, {9t(xi(k), ci(k), uj(k), 71(k)) 
c(k), u(k) k=1 

+11(k)T u1 (k) - 
7, N 

1T TH 
jKi (xi(k), c (k)) 

1=1 

-A, (k)T xt (k) -1ýj (k)T c, (k) 
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+2 r1; Il i (k) - vi (k)112 +2 r2t IIxi (k) - zi (k)112 } 

subject to 

xi(k+1) = fi(x1(k), ci(k), ui(k), ai(k)); ke[1, N-1] 

xi (0) = x10 

x1, t(N) = O; t e[1, q] 

3E1 (N) = [xi, q+1(N),...... Xi, n (N)]T 

where rll and r2l are given scalar convexification factors. Notice that at the end of 

the iterations, c(k)=v(k) and x(k)=z(k) so that at this stage the augmentation 

terms and their derivatives are zero, so having no effect in the real optimality of the 

solution. Assume now 

ql (x1(k), cl (k), ui (k), cl (k)), yr (k)) _ 

Z 
x, (k)T Qizt (k) +2 ct (k) T Rtct (k) +Z ut (k)T slut (k) +Y1(k) 

fj ixt (k), ci (k), ul (k), ai (k)) = 

A; xl(k)+B; ci(k)+D; ui(k)+aj(k) 

Oi(xi(N)) =2 xi(N)T (DlXi(N); ke[O, N] (6.58) 

where 1z0, Qi z 0, Ri >0 and St Z0 are weighting matrices of appropriate 

dimensions, A;, B; and D; are matrices which represent a linear model of fl*(. ). The 

parameters ai (k), y1(k) and 01(k), kE [0, N-1] can be chosen as shill parameters. 

Notice that in contrast to previous structures, the real output function 

y(k) = K*(x(k), c(k)) is not approximated by a model. The corresponding 

Hamiltonian is defined as: 

H(. )` Zx, (k)T Qixi(k)+Zci(k)T Rici(k)+ 1 
ui(k)T siui(k)+y, (k) 

+pj(k+l)T [Ajxi(k)+Bjcj(k)+Djuj(k)+a, (k)] 

N 

+li(k)T ui(k)- E1j (k)Hj, Kt (xj(k), cj(k)) 
J=i 
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-Ai (k)T xf (k) -Qi (k)T c; (k) 

+2rli!! ci(k)-vi(k), I2 +2r21llxi(k)-z1(k), )2, ke[O, N-1] (6.59) 

Applying model based optimality conditions (3.88), (3.89), (3.90) and (3.96) for the ith 

subsystem, we obtain the control law: 

ci(k) =-Ri 1(BT p; (k+1)-ßj(k)); k E[0, N-1] (6.60) 

the estimated optimum interaction vector: 

u; (k)=-ST'(DTp; (k+1)+ 1i(k)); k e[0, N-1] (6.61) 

and, in addition the following two-point boundary value problem (TPBVP): 

xi(k+1)= A, x; (k)-B1Rt71(BT pi(k+1)-/3t(k)) 

-D1Si 
1(DT p1(k + l) + 1i (k)) + ai (k) (6.62) 

pi (k)=Q; xj(k)+AjTp; (k+1)-ý(k) (6.63) 

with boundary conditions: 

xt (0) = xio; xi,, (N) = 0; te [1,9t ] 

15i(N) = (Dixi (N) (6.64) 

where the augmented weighting matrices Rl and Qj are given by: 

Ri = R, + rl IMi (6.65) 

Ui = Qt + r2i In, (6.66) 

and the augmented multipliers /3 j (k) and Ai (k) are expressed as: 

NS aT Kt ixt (k), ci (k)) T (k) = ß, (k) +E aci(k) 
Hill j (k) + r1iv1(k) (6.67) 

1=1 

(k) _ ý, (k) + 
NS aT K; (xi (k), ei (k)) 

HT jJ(k) +zk6.68) iry öx (k) rid 1 i) t 
! =1 

Notice that the augmentation contains derivatives K1(. ) w. r. t. xi (k) and ci (k) . 
The modifiers are given by equations (3.104) and (3.105), which can be written as: 

T T*T 
i(k) =- -Al IYi*(. ) 

p1(k+I)- 
Oi----t ( 

tk-Qjzt(k) 
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*T T* T 

Q1()- 
avý(k) 

BI 
]T 

k 
art ()-B 

k+l)- 
a ql (. )-Rv, 

k 
8vl(k) 

() 

kE [O, N-1 ] (6.69) 
Observe that the modifier equations are simpler in comparison to previous algorithms. 

The calculation of parameters aI (k) are given by equation (3.98), that is; 

aj (k) = fi* (zi (k), vi (k), Hl K* (xi (k), cl (k)) 
(6.70) 

- A1zi (k) - Biv1(k) - Di Hi K* (xi (k), ci (k)) 

It is not necessary to calculate yi (k) 

The interaction price is computed from (3.106), which can be expressed as 

Is+1(k+1) =1l (k)+cj[uj(k) -E Hl Kj(x (k), c (k))] (6.71) li 
,ý i j=1 

It is observed that the structure of TPBVP described (6.62) and (6.63) with boundary 

conditions (6.64) is identical to that of TPBVP given by (6.6) and (6.7). The solution 

of the TPBVP is obtained using the sweep method. (Lewis and Syrmos, 1995; Bryson 

and Ho, 1975). The key is to assume the relationship between costate and state as 

pi(k) =Vj(k)xj(k)+Ej(k)vg +hi (k); k e[0, N] 

0 
0 tp ; EI(N)=[ 

1ý' 
; hi(N)=O where V, (N) =t 

Vi = [pj, l (N).... pj, q (N)]T (6.72) 

where V1 (k) is an n1 x ni matrix, E1 (k) is ni xqf matrix , hi (k) e 9tni and 

V, e iq1. Procedure 6.2.1 can be used to obtain the solution of MMOP3j with the 

following modifications. 
1. The modifiers are calculated using (6.69) and are augmented using (6.67) and 
(6.68). 

2. The interaction price multiplier is not augmented. 

The above analysis leads to the formulation of algorithms PC5 and PC6. 

189 



6.3.1.1 Single Loop Technique PC5 

Algorithm PC5 has a similar hierarchical structure to algorithm PC3. The main 
differences are a simpler equation structure for calculation of modifiers and the absence 

of model reality parameter 9j (k) . This is achieved at the cost of incorporating real 

measurements in parameter estimation and interaction input. 

The single loop algorithm can be summarized as follows: 

Algorithm 6.3.1.1: Single Loop Price Coordination Hierarchical DISOPE for 

systems with real input in interaction and parameter 

estimation. 

Data: A1, B1, Dl, Q1, R1, Si, X10, (Di, N, N., rlj, r2l, EC, Ex, Ep, Ej and means 

for calculating f1* (. ), K; (. ) and q1 (. ) . 
Step 0: At level 2, choose the initial values of coordinating variables 

A (k), ßi(k) and 1, (k) . At level 1, let alo (k) = 9°(k) = 0, choose or 

compute a nominal solution (using procedure 6.2.1) a nominal solution for 

the ith local optimal control problem. Set 

iteration number s=0 and v0 (k) = c? (k) , ke [0. N-1 ]. 

z0 (k) = x0 (k) , p'° (k) = pio (k) , ke [0, N] and uý (k) = 0-,. Send them to 

level 2. 

Step 1: At level two, calculate coordinating variables 2l (k), /3f(k) and 1f (k) , 
ke[1, N] using equations (6.69) and (6.71). Augment them according to 
(6.67) and (6.68). Send them to level 1. 

Step 2: At level 1, calculate al (k) from (6.70) . Send them to the ith local optimal 

control problem and to level 1. This is called the parameter estimation step. 
Step 3: At level 1, solve MMOP3i using the modified procedure 6.2.1. Note that if 

s=0, perform Step a in procedure 6.2.1, store the results for use in 

subsequent iterations. Otherwise start at Step b. 
Step 4: At level 1, update the variables 

zf + 1(k) 
= z1 (k) + cz (x s (k) - zis (k)), ke [0, N) 
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vf + 1(k) 
= vl (k) + Ev (cis (k) - vl (k)) ,ke [0, N -1] 

Pi 
' (k) =ps (k) +cp (Pf (k) - pi (k)) ,ke [0, N] 

Send them to level 2. 

Step 5: At level 2, convergence of coordinating variables is checked. If 

vs+ 
1(k) 

= vs(k), zs+l(k) =as(k) and us+l(k) = HK*(zs(k), cs(k)) 

within a defined tolerance, stop, otherwise set s=s+1 go to step 1. The 

whole process is repeated. 

6.3.1.2: Double Loop Technique PC6 

Algorithm PC6 forms the same double loop structure as algorithm PC4. The inner loop 

is made up of a modifiers calculation in the upper level and local optimization units in 

the lower level. The composition of local optimization units is similar to algorithm 
PC4. The function of the outer loop is to evaluate the global price 1(k) such that the 

following equation is satisfied 

u(l (k)) = HK* (x(1(k)), c(1(k))) kE [0, N -1] (6.73) 

given that x(1(k)), c(1(k)) and u(l(k)) are solutions of the inner loop problem under 

a prescribed 1(k). The price updating mechanism is given as a global equivalent of 

(6.71) which can be expressed as 

IP+ 1(k 
+ 1) =1 p (k) + el [u(k) - HK* (x(k), c(k))] (6.74) 

The double loop technique PC6 can be summarized as follows: 

Algorithm 6.3.1.2: Double Loop Price Coordination Hierarchical DISOPE for 

systems with real inVut in interaction and parameter 
estimation. 

Data: A1, B1, Di, Q1, Ri, Sj, xto, Dj, N, Ns, rli, r21, cc, ex, ep, el and means 

for calculating ft*("), Ký C") and 9, 
t{") 

Inner Loop: 

Step 0: At level 2, choose the initial values of coordinating variables 
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�2(k) and 89 (k) . At level 1, let a9 (k) = 09 (k) = 0, choose or 

compute a nominal solution (using procedure 6.2.1) for the ith local optimal 

control problem. Set iteration number s=0 and vi (k) = cr (k) ,ke [0. N-1 ]. 

z° (k) = xi (k) , p; O (k) = p? (k), kE [0, N] and ul (k) =0 Send them to 

level 2. 

Step 1: At level two, calculate coordinating variables ß, 1(k) and ßi (k) , ke[1, N] 

using equations (6.69) and (6.71). Augment them according to (6.67) and 
(6.68). Send them to level 1. 

Step 2: At level 1, calculate alf(k) from (6.70) . Send it to the ith local optimal 

control problem and to level 1. This is called the parameter estimation step. 

Step 3: Repeat step 3 of algorithm 6.3.1.1. Send the result to the outer loop. 

Step 4: Repeat step 4 and 5 of algorithm 6.3.1.1. 

Outer Loop: 

Step 0: Set p=0, choose a nominal value for 10 (k). Send it to the inner loop 

Step 1: Using prescribed global values of x(k), c(k), u(k) and 8(k) from the inner 

loop calculate the price using equation (6.74). Send it to the inner loop. 

Setp= p +1. 

Step 2: Test for convergence using equation (6.73) . If 1 p+I (k) =1 p (k) within a 

defined tolerance, stop, otherwise repeat step 1. 
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6.3.2 DIRECT COORDINATION APPROACH 
PROBLEM FORMULATION AND SOLUTION APPROACH 

In this section, we develop algorithms DC5 and DC6 using direct coordination for the 

hierarchical structure defined by EOP3. As in all the direct coordination algorithms 
described previously , the procedure involves calculating the interaction price directly 

from optimality condition (3.90). The interaction term is calculated from optimality 

condition (3.97) which gives the interconnection equation. The procedure transforms 

MMOP3; ' in Section 6.3.1 into a minimization problem with respect to the control 

vector. In order to aid convergence the performance index in MMOP3; is augmented 

with variable convexification terms. Hence, MMOP3; becomes: 

MMOP3; ": 

N-1 
min Qi = 0(x(N))+ {9i(xi(k), ci(k), ui(k), Y1(k)) 
c(k) k=1 

+11(k)T ui (k) -ZlýJ 
T (k)H I Kj (xi (k), ci (k)) 

j_1 

-A1(k)T x1(k)-Qi(k)T pi (k) 

+2 ill ijci (k) - vi (k)! )2 +2 rillIxi (k) - zi (k)i12 ) 

subject to 

xf(k+I) = fi(xj(k), cj(k), uj(k), ai(k)); ke[1, N-1] 

Xi (0) = x+o 

xi, r(N) = O; t E[1, q] 

xi (N) _ [xi, q +1 (N), ....., xi, n (N)] T 

where rl1 and r2 i and are given scalar convexification factors. 

To solve MMOP3i" using hierarchical DISOPE techniques we choose the model to be 

a linear quadratic approximation of ROP for which there are standard procedures for 
its solution (Lewis and Syrmos, 1995). The parametersa1(k) and y j(k) , ke[O, N"1] 

can be chosen as shift parameters. 
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Define 

ql (xi (k), cl (k), ui (k), cl (k)), Y i (k)) 

2 zi (k)T Qtxi (k) +2 Ci (k)T Rini (k) +2 ui(k)TS iU, (k) +Yi(k) 

ft (xi (k), ci (k), ui(k), ar (k)) = 

Alx! (k)+B; c; (k)+D; u; (k)+a; (k) 

Ski(xi(N)) =2 xi(N)T ? ixi(N); kE[O, N] (6.75) 

where cD1 2 0, Q; z 0, R; >0 and Si z0 are weighting matrices of appropriate 

dimensions, A;, B; and D; are matrices which represent a linear model of fi' () . In 

this structure we utilize real output function y(k) = K*(x(k), c(k)) instead of its 

model in the computation. 

The corresponding augmented Hamiltonian function is: 

H(. ) = 2xg(k)T 
Qlxi(k)+Zc1(k)T Rlcl(k)+ 1 

u1(k)T S{uf(k)+7j(k) 

+p, (k+l)T [A; x; (k)+B, c; (k)+Dju, (k)+af(k)) 

N 

+1I(k)T uj(k)- 1: 1j (k)Hj, KK (xi (k), ci (k)) 
J1 

_2, (k)T x, (k)-ßt(k)T ct(k) 

+I rit 1ic, (k) - vt (k)! 12 +2 r2i jjxt (k) - Zt (k)! )2 
, ke[O, N-1] (6.76) 

Applying model based optimality conditions (3.87) for the ith subsystem, we obtain the 

control law: 

ci (k) = -RF 1 (BT Pi (k + 1) -Qj (k)); kE [0, N -1] (6.77) 

Interaction price 11(k) is given by optimality condition (3.89) which can written as: 

li(k)=-Siui(k)-DTpi(k+1); k E[0, N-1] (6.78) 

To calculate the interaction vector we use optimality condition (3.96), that is-. 

ul(k)= E HUK(x (k), c (k)); k ERN-1] 
j=1 

(6.79) 
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From optimality conditions (3.88) and (3.94), the following TPBVP is obtained: 

xi (k+1)= Aixi(k)-B1Rr 1(BT pi (k+1)-ý3(k)) +D1 u1 (k)+a1(k) (6.80) 

pi (k+1)-. Z1(k) (6.81) pi (k)=Qixi(k)+AT 

with boundary conditions: 

Xi (0) = xip; xis, (N) = 0; te [1, qi ] (6.82) 

Pi (N) = (Dizi (N) 

The augmented weighting matrices Rl and Qi are given by: 

Ri = Ri +rlIImi (6.83) 

Ui = Qi + r2i Ini (6.84) 

and the augmented multipliers ßi (k) and 1j (k) are expressed as: 

ßl (k) _ ýl (k) + 
öT Kf (xi (k) 

(k) 
, cj (k)) 

Hý T1j 
" (k) + r1 jv, (k) (6.85) 

ý, 
NS aT K' (xi (k), cl (k)) 

HTl (k) + ijzt (k) (6.86) i(k) _A, (k)+ Z 
dx"(k) j 

j=1 ' 

The modifiers are defined by optimality conditions (3.90) and (3.91), and are given by 

equation (6.69). The parameter estimation for a, (k) remains the same as in the price 

coordination approach and is defined by equation (6.70). 

The TPBVP defined by (6.80) (6.8 1) and (6.82) can be solved using a Ricatti equation 

method (Bryson and Ho, 1975; Lewis and Syrmos, 1995). The key is to assume the 

relationship between state and costate as 

pi (k) =Vj(k)xj(k)+Ej(k)vi +hj(k); k E[0, N] 

where Vt (N) =0 (Ur 
; Et (N) = 

10' 
; hi (N) =0 

vi = [Pi, 1(N).... Pi, q (N)]T (6.87) 

where V1(k) is an nj x n, matrix, El (k) is njx q1 matrix , hl (k) e 91 ni and 

vi e 9tgi . Procedure 6.2.2 can be used to obtain the solution of MMOP3; defined by 

TPBVP (6.80-6.82), with the following modifications: 
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a. The modifiers /3. (k) and'% (k) are computed using (6.69) and augmented 

according 

to (6.85) and (6.86). 

b. The interaction price 11(k) is not augmented. 

c. The interaction vector uJ (k) is computed from (6.79). 

From the above analysis, we can derive direct coordination algorithms DC5 and DC6. 

6.3.2.1 Single Loop Technique DC5 

Algorithm DC5 has the same two level structure as described in algorithm DC3. 

However, it has a simpler formula for calculation of modifiers ß1(k) and '% j (k). The 

parameter estimation is made simpler by having to compute a single model reality 

parameter, aj (k) . This is achieved at the cost of including real output measurements 

in the computation of the local optimal control and parameter estimation problems. A 

summary of single loop direct coordination algorithm DC5 is given below. 

Algorithm 6.3.2.1: Single Loop Direct Coordination Hierarchical DISOPE for 
system with real input in interaction and parameter 
estimation measurements. 

Data: Ai, B1, DI, Q1, Ri, S1, x10,01, N, Ns, r1i, r21,5c, ex, 6p, el and means 

for calculating fi*("), K, (") and q (") 

Step 0: At level 2, choose the initial values of coordinating variables 

A, (k), ß10 (k) and 10(k) . At level 1, let a4(k) = 0, choose or compute a 

nominal solution (using procedure 6.2.2) for the ith local optimal control 

problem. Set iteration numbers =0 and v? (k) = c? (k) ,ke [0. N-1 ]. 

zo (k) = xO (k) , j50 (k) = po (k), ke [0, N] and u4 (k) = 0;. Send them to 

level 2. 

Step 1: At level two, calculate coordinating variables ', (k), Pi (k) and if (k) , 
ke[1, N) using equations (6.69) and (6.78). Augment the modifiers according 
to (6.85) and (6.86). Send them to level 1. 

Step 2: At level 1, calculate ai (k) from (6.70) . Send them to the ith local optimal 
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control problem and to level 1. This is called the parameter estimation step. 

Step 3: At level 1, solve MMOP3; using the modified procedure 6.2.2. Note that if 

s=0, perform Step a in procedure 6.2.2, store the results for use in 

subsequent iterations. Otherwise start at Step b. 

Step 4: At level 1, update the variables 

zl +1(k)=zl (k)+cz(x (k) - zl (k)), k E[0, N] 

vi + 1(k) 
= vi (k) + cv (cl (k) - v1 (k)) ,ka [0, N -1] 

ps+(k) ps(k)+c (Pi (k)-^ (k)), k e[0, N] 

Send them to level 2. 

Step 5: At level 2, convergence of coordinating variables is checked. If 

vs +l (k) = vs (k), zs +l (k) = zs (k) and us +l (k) = HK* (zs (k), cs (k)) 

within a defined tolerance, stop, otherwise set s=s+1 go to step 1. The 

whole process is repeated. 

6.3.2.1 Double Loop Technique DC6 

In the double loop implementation we use the global nature of the interaction price and 

the interaction equation by computing them in the outer loop. These made up of the 

global version of interconnection equation (6.79) which can be expressed as: 

u(k) = HK* (x(k), c(k)), ke [Q, N -1] (6.88) 

where the global control c(k) and global state x(k) are provided by the inner loop. 

The interconnection price 1(k) is computed from the global equivalent of equation 

(6.78), that is 

1(k) = -Su(k) - DT p(k + 1); kE [0, N -1] (6.89) 

where p(k) is prescribed by the inner loop. Algorithm DC6 has all the advantages of 
DC5 plus a double loop structure which is much easier to implement. This is because 

we do not have to separate the individual components of the interacting variables for 

each subsystems. 
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The procedure described above can be summarized as follows: 

- Algorithm 6.3.2.2: Double Loop Direct Coordination Hierarchical DISOPE for 

system with real input in interaction and parameter 
estimation measurements. 

Data: A. B1, Di, Qi, 
"1, 

S!, X10, (Di, N, N3, r1i, r2l, EC, Ex, Ep, El and means 

for calculating fi* (. ), Ki (. ) and Qi (. ) . 

Inner Loop 

Step 0: At level- 2, choose the initial values of coordinating variables 

.% (k) and 60(k) . At level 1, let a? (k) = 0, choose or compute a 

nominal solution (using procedure 6.2.2) for the ith local optimal control 

problem. Set iteration number s=0 and vo (k) = cQ (k) , ke [0. N-l]. 

z4(k) = x°(k) , po(k) = po(k), ke[0, N] . Send them to level 2. 

Step 1: At level two, calculate coordinating variables ) (k) and ßV (k) , ke [1, N] 

using equations (6.69) and (6.78). Augment the modifiers according to 

(6.85) and (6.86). Send them to level 1. 

Step 2: At level 1, calculate a15 (k) from (6.70) . Send them to the ith local optimal 

control problem and to level 1. This is called the parameter estimation step. 

Step 3: At level 1, solve the MMOP3; using the modified procedure 6.2.2. Note that 

if s=0, perform Step a in procedure 6.2.2, store the results for use in 

subsequent iterations. Otherwise start at Step b. 

Step 4: Perform step 4 and step 5 of algorithm 6.3.2.1 

Outer Loop 

Step 0: Set p=0, choose a nominal value for 10 (k) . Send it to the inner loop 

Step 1: Calculate up (k) from interaction equation (6.79) using prescribed values of 

xs (k) , cs (k) and ps(k) from the inner loop. Then compute the price 

interaction IP (k) from (6.78). 
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Step 2: Test for convergence using equation (6.56) . If 1ß'' 1(k) 
=1 p (k) within a 

defined tolerance, stop, otherwise repeat step 1. 

6.3.3 OPTIMALITY OF ALGORITHMS FOR STRUCTURES WITH REAL 
INPUT IN INTERACTION AND PARAMETER ESTIMATION. 

The optimality of algorithms PC5, PC6, DC5 and DC6 will be established by the 

following theorems. We use a similar approach used earlier in section 6.2.4 by 

considering the global optimality conditions of each algorithm. The optimality is 

established by showing that the optimality conditions are equivalent to that of the 

global real optimal control problem defined by (3.10). The theorems are defined in 

conjunction with definition (3.1) which define the existence and uniqueness of the 

optimal solution of ROP and definition (3.2) which define the existence of the 

appropriate derivatives. 

We initially consider algorithms PC5 and PC6. At the global level, the optimality 

condition of the two algorithms are essentially the same because they are derived by 

applying the same approach in a similar structure defined by EOP3 (see Chapter 3, 

section 3.5). Hence they can be considered jointly. 

The following theorem establishes the optimality of PC5 and PC6. 

Theorem 6.3: 

Under Assumptions 3.1 and 3.2, and assuming convergence, the converged solution of 
the price coordination algorithm PC5 and PC6 with a linear model and quadratic 

performance index satisfies the optimality conditions of the global real optimal control 

problem defined by (3.10). 

Proof: 

The proof of is similar to that of theorem 5.1 and is described in Appendix D. 

Applying a similar reasoning as given previously, we can establish the optimality of 
direct coordination algorithms DC5 and DC6 together in the following theorem. 
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Theorem 6.4 

Under Assumptions 3.1 and 3.2, and assuming convergence, the converged solution of 

the price coordination algorithm DC3 and DC4 with a linear model and quadratic 

performance index satisfies the optimality conditions of the global real optimal control 

problem defined by (3.10). 

Proof: 

The proof is similar to that of theorem 5.2 and is described in Appendix E. 

6.4 SIMULATION EXAMPLE 

All eight algorithms described earlier in this chapter were implemented in C++ 

programming language using object oriented and modular techniques. In the 

implementation we make use of DMatrix class type and operators developed by 

Becerra (1995), which optimizes operation involving matrix structures. 

The convergence of the appropriate vectors in each algorithm is verified by comparing 
the norm equation (4.62) with a given tolerance. Simulation will be carried out using 
the same examples described earlier in Chapter 4, section 4.5. This is done to enable us 
to compare the performance of all the algorithms in this chapter in relation to those 

presented in Chapter 4. To ascertain if the solution achieved at the end of each 
iteration is the correct optimal solution of the ROP, we test that the solution satisfies 
the optimality conditions of ROP as defined by equations (3.14), (3.15) and (3.16). 

Throughout the simulation it is assumed that the values of derivatives with respect to 

v(k), and z(k) of q*(. ) ,f 
*(. ) and K*() are available. 

It should be noted that the choice of parameters settings in the examples is made by 

trial and error. The choices shown are by no means exhaustive. Settings which result in 

non convergence are not shown in the table of results. Only a sample of parameter 

settings for each algorithm is given for the purpose of illustration. The number of 
iterations used to compare the performance of the algorithms is defined as the number 

of times the global performance index is evaluated. 
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Example 6.4.1 

Example 4.4.1. is repeated here. The example is made up of an interconnected system 

containing three nonlinear subsystems. The tolerance specified for convergence is set 

at eT =0.01. The ROP is as follows: 

ROP: 
51 

min 
1E3 E[xi(k)T Qi x1(k)+c1(k)T 

4c1(k)+u1(k)T S iei(k)] 
u(k), c(k) 211k0 

where 

Qi =diag(0S, 03) ; Ri = 0.1 ; Sl =diag(0S, 0.5) 

QZ =diag(0S, 0.5) ; RZ =0.1; S2 = diag(05,0.5) 

Q3 =diag(0S, 0.5,0.5) ; R3 =0.1; S3 =diag(0.5,0.5,0.5) 

subject to: 

Subsystem 1: 

x11(k+1) = 0.125x11(k) + 0.005x12 (k) + 0.0025u11(k) + 0.0125u12 (k) 

+ 0.0025c11(k) + 0.125x11(k)x12 (k) 

x12 (k + 1) = 0.05x12 (k) - 0.0125u11(k) + 0.005u12 (k) - 0.0125c11(k) 

+ 0.025u11(k)u12 (k) 

yi 1(k) = x11(k) + 0.05c11(k) + 0.025x11(k)cl 1(k) 
y21(k) = X21 (k) 

x11(0) =1.0 x12(O)=O. 8 

Subsystem 2: 

X21 (k+') = -0.0625x21(k)+0.0125u21(k)+0.0125u22 (k)+0.005c11(k) 

+0.05x21(k)3 

x22 (k+1) = -0.0125x21(k)+0.975x22 (k)+0.005u21(k)+0.005c21(k) 

+0.025u21(k)x22 (k) 

Y21 (k) = x21(k)+0.05c21(k) 
y22 (k) = x22 (k) 

x21(0) = 05 , x22 (0) = 0.6 
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Subsystem 3: 

x31(k + 1) _ -0.00425u32 (k) + 0975x31(k)+0.025x33(k)+0.025x31(k)x33(k) 

x32 (k + 1) = 0.0025u31(k)+0.025u33(k)+09875x32(k) 

x33(k + 1) = 0.01u31(k) - 0.025u32 (k) - 0.025x31(k) +0.975x33 (k) + 0.0025c31(k) 
+ 0.005x31(k)x32 (k) 

y3 1(k) = x31(k)+0.0125c31(k) + sin(x31(k)) 
Y32 (k) = x32 (k) 

y33(k) = x33(k) 
x31(0)=1.5 x32(k)=1.0 x33(k)=12 

MOP: 
3 51 

min 
1EE [x, (k)T Q1 xi (k) +ci (k)T R1 ci (k) + u1(k)T S1 u1(k) +Y j (k)l 

u(k), c(k) 21=1k=0 

where 
Q1 = diag(0.4,0.4) ; Rl = 0.08 ; Sl = diag(0.4 , 0.4) 

Q2 = diag(0.4 , 0.4) ; R2 = 0.08 ; S2 = diag(0.4,0.4) 

Q3 = diag(0.4 , 0.4 , 0.4) ; R3 = 0.08 ; S3 = diag(0.4 , 0.4) 

subject to: 

Subsystem 1: 

10.125 0.005 0.0025 110.0025 0.0125 
xl (k+1) =00.05 xl (k)+ 

-0.0125 
cl (k)+ 

-0.0125 0.005 
jui (k)+a 1(k) 

y, (k)=01(k) 
x11(0) =1.0 X12(O)=o-8 

Subsystem 2: 

x2 (k + 1) _ 
-0.625 0 

z2 (k) + 
0'005 

(k) + 
FO. 0125 0.0125 

(k)+a(k) 
-0.0125 0.975 0.005 c2 0 0.005 u2 Z 

y2(k)=02(k) 
x21(0)=0S , x22(0)=0.6 
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Subsystem 3: 

0.975 0 0.025 0 

x3 (k + 1) =00.9875 0 x3 (k) +0 c3 (k) 

-0.025 0 0.975 0.0025 

0 -0.00425 0 

+ 0.0025 0.0 0.025 u3(k)+a3(k) 
0.01 -0.025 0 

Y3 (k) = 03(k) 

x31(0)=15, x32(0)=1.0, x33(0)=1.2 

The interconnection matrix H is given as 

0000100 
0000010 
0100000 

H= 0000001 
1000000 
0010000 
0001000 

To test the effectiveness of the hierarchical algorithms in dealing with model reality 

differences the above choice of MOP is made. The MOP plant dynamics is a linear 

approximation of the ROP. The MOP performance measure is deliberately chosen to 

be 80% of the ROP performance index. Notice that the MOP output function y(k) is 

assumed to be zero in the case of algorithm for systems with real input in parameter 

estimation (i. e algorithms PC3, PC4, DC3 and DC4). 

Tables 6.4.1.1 shows the simulation results for algorithms PC3, PC4, DC3 and ßC4. 

Simulation results of algorithms for systems with real input in interaction and 

parameter estimation (algorithms PC5, PC6, DC5 and DC6 ) are shown in table 

6.4.1.2. The final states, final control signals and interaction vectors are similar to 

those given by figures 4.5.1.1-4.5.1.9, therefore they are not included among the 
figures shown on the following pages. Entries marked * indicate the `best' choice 
among the samples. 
Figure 6.4.1.1 compares the convergence behaviour in terms of performance index of 

algorithms PC3, PC4, DC3 and DC4. The convergence of the price coordination 
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algorithms, PC3 and PC4, shows an increasing pattern towards the final performance 
index value. This is because in the iterations, the interconnection constraint defined by 

optimality condition (3.96), is not satisfied until the price update mechanism (6.16) has 

sufficiently converged. This is in contrast with the direct coordination algorithms, 

where the interaction variable and the price are computed in the second level using 

values of variables prescribed in the previous iteration which results in satisfaction of 
interconnection constraint in each iteration. In general direct coordination algorithms 

performed better than price coordination algorithms in this example. 

From table 6.4.1.1 it is observed that using convexification scalar r2 improves the 

speed of convergence of algorithms PC3 and PC4. Whene1=0.15 and r2=2.0, 

algorithm PC3 converges after 17 iterations. The effect of setting r2 =2.0, is illustrated 

by figures 6.4.1.3 and 6.4.1.4. It is noted that changing the stepsize ev from 1.0 to 

0.85 does not improve the convergence speed of algorithm PC3 further. However in 

the direct coordination algorithms DC3 , changing the stepsize from 1.0 to 0.85 

improves the performance of the algorithm. From the table it can be seen that changing 

r2=0.85 to 1.0 does not improve the convergence speed of algorithm DC4. Single 

loop algorithm DC3 converges faster than the double loop implementation DC4. This 

is due to the extra computation involved in the outer loop of DC4. However there is 

no significant difference in terms of convergence pattern of the norms of interaction, 

states and control signals. This property can be observed by comparing figures 6.4.1.5 

and 6.4.1.6. This could be explained by the fact that the inner loop of DC4 use the 

same MMOPJ solution structure as that of DC3. 

We now consider table 6.4.1.2 which shows the performance of algorithms for 

structures with real input in interaction and parameter estimation. Algorithms based on 
direct coordination have better speed of convergence when compared to the price 

coordination algorithms. This is displayed by figure 6.4.1.7. The price coordination 

algorithms show similar increasing convergence pattern as illustrated by figure 6.4.1.1. 
The same reasoning can be applied to explain the behaviour shown by algorithms PCs 

and PC6. The single loop implementations PC5 and DC5, converged faster than the 
double loop implementations PC6 and DC6 respectively. Figure 6.4.1.8 shows the 

convergence of PC6 in terms of the norms of control signal state and interaction 
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vectors. From the table it is observed that convexification scalar r2 influences the 

convergence of the price coordination algorithm. This is shown by figure 6.4.1.9 

which illustrates that changing r2 from 0.0 to 1.0 and stepsize ev from 1.0 to 0.85 

improves the convergence of the control norm of PC6. The control signal norm 

changes from an oscillating converging pattern to that of a monotonic one. Figure 

6.4.1.10 shows the effect of changing the stepsize ev from 1.0 to 0.85 on the 

convergence of the control norm for algorithm DC5. Note that at ev -0.85 the norm 

of the control signal converges faster. 

Figure 6.4.1.11 compares the convergence of algorithms PC4 and PC6. Note that PC6, 

which uses real input in interaction and parameter estimation, converged faster than 

PC4 which uses real input in parameter estimation. This could be explained by the 

extra computation required in PC4 because it has an extra model reality parameter, 

9(k) , in its structure. Figure 6.4.1.12 compares the convergence of the control norm 

of algorithm DC4 and DC6 using the same parameter settings. Note that the control 

signal norm of DC6 which uses real input in interaction and parameter estimation 

converged at a faster rate than DC4, even though they finally converged equally after 

11 iterations. Comparing results in table 6.4.1.1 and 6.4.1.2, it can be concluded, for 

this example, that the price coordination algorithms for systems with real input in 

interaction and parameter estimation PC5, PC6 performed better than PC3 and PC4 

(for systems with real input in parameter estimation). However no significant 
difference is shown in terms of convergence speed for the direct coordination 

algorithms DC3, DC4 DC5 and DC6. Comparing the results with the centralized 
DISOPE algorithm shows that in this example the direct coordination algorithm 

compares favourably. This is despite the fact that the computation in each subsystem is 

carried sequentially. In general, it is expected that application of parallel processing 

methods will result in a better speed of convergence in all of the algorithms discussed 

above. 
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Algorithm e1 rl r2 Ev 
Number of 
iterations 

CPU (s) Final 
Performance 

Index 
price cor. 
single loop 

0.15 0 0 1.0 20 85 121.4894 

PC3 0.15 0 1.0 1.0 19 71 121.4819 
0.2 0 1.0 1.0 21 75 121.4955 
0.15 0 2.0 1.0 17 65 121.4878 
0.15 0.5 2.0 1.0 27 98 121.4816 
0.15 0 2.0 0.85 17 64 121.4843 

price cor. 
double loop 

0.4 0 0 1.0 22 79 121.4929 

PC4 * 0.4 0 1.0 1.0 19 70 121.4817 
0.4 1.0 1.0 1.0 44 150 121.4856 
0.3 0 1.0 1.0 26 92 121.4901 
0.15 0 1.0 0.8 51 171 121.4773 

direct c or. 
single loop 

N/A 0 0 1.0 9 48 121.4885 

DC3 1.0 0 1.0 44 170 121.4975 
0 1.0 1.0 9 38 121.4960 

* 0 1 0.85 8 35 121.4951 
0 0 0.85 9 38 121.4854 

direct cor. 
doubleloop 

N/A 0 0 0.85 11 47 121.4841 

DC4 0 0 1.0 11 48 121.4821 
0 1.0 1.0 44 169 121.4932 
0 1.0 1.0 11 48 121.4874 

* 0 1.0 0.85 11 45 121.4974 

Centralize 
DISOPE 
(Centralized 

Problem 

N/A 0 0 1.0 6 32 121.5032 

Table 6.4.1.1 Algorithm performance for Example 6.4.1 
(for systems with real interaction input in parameter estimation) 
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Algorithm 61 ri v 

Number of 
iterations 

CPU (S) Final 
Performance 

Index 

price cor. 
single loop 

0.15 0 0 1.0 19 73 121.4878 

PC5 0.1 0 0 1.0 26 97 121.4781 
0.15 0 1.0 1.0 16 58 121.4842 

* 0.15 0 1.0 0.85 15 56 121.4854 
0.15 1.0 0 0.85 45 151 121.4876 
0.15 0 2.0 0.85 17 62 121.4953 

price cor. 
double loop 

0.4 0 0 1.0 19 73 121.5013 

PC6 0.2 0 0 1.0 38 138 121.4953 
0.4 1.0 0 1.0 44 156 121.4823 
0.4 0 2.0 0.85 17 58 121.4962 

* 0.4 0 1.0 0.85 16 56 121.4856 
0.3 0 1.0 0.85 26 96 121.4893 

direct cor. 
single loop 

N/A 0 0 1.0 10 40 121.5033 

DC5 1.0 0 1.0 43 153 121.4943 
0.5 0.5 1.0 26 96 121.4879 
0 0 0.8 9 33 121.5012 
0 1.0 1.0 10 41 121.4988 

* 0 0 0.85 9 33 121.4891 

direct cor. 
double loop 

N/A 0 0 1.0 11 43 121.4893 

DC6 0 2.0 1.0 11 44 121.4970 
1.0 0 1.0 44 153 121.4873 
0.5 0 1.0 28 100 121.4870 

* 0 0 0.85 10 34 121.4899 

Centralize 
DISOPE 
(Centralized 

Problem 

0 0 1.0 6 32 121.5032 

Table 6.4.1.2 Algorithms performance for Example 6.4.1 
(for systems with real input in interaction and parameter estimation) 
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Fig. 6.4.1.1 Convergence of performance index for algorithms PC3, PC4, DC3 and 
DC4. 

16 

14 

12 

10 

8 
norm 

6 

4 

2 

0 

interaction norm 

control norm 

state norm 

05 10 15 20 
iteration no 

Fig. 6.4.1.2 Convergence of state norm, control norm and interaction norm for 
algorithm PC4 with sl = 0.4, rl = 0, r2 = 1.0, cy =1.0 
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Fig. 6.4.1.6 Convergence of state norm, control norm and interaction norm for 
algorithm DC4 with rl = 0, r2 = 1.0, Eu = 0.85 
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Example 6.4.2 

This example is similar to example 4.4.2 It is a modification of an example from 

Findeisen et al (1980), which is made of an interconnected system containing three 

non-linear subsystems. Note that the coefficient of the control and interaction vectors 

in the subsystems of the ROP are nonlinear. The example is tested on the eight 

different algorithms presented in this chapter. The tolerance specified for convergence 

is set at ET=0.01. T=0.05. 

ROP: 

min 
1E3 51 

EIxý(k)T QI xl (k)+ci(k)T Rl ci(k)+ul(k)T Sl ui(k)] 
u(k), c(k) 23=1k=0 

where 
Ql = 05 ; Rl = 0.1 ; Si = 0.5 

QZ =0S ; R2 = 0.1 ; SZ =0S 

Q3 = 03 ; R3 = 0.1 ; S3 = 0S 

subject to 

subsystem 1: 

xl, i(k+1) = T(1+05sin(25 )c1,1(k))+T(OS+0.2sin( 
2Sk))u1, 

i(k)+x1,1 (k) 

y1,2 (k) = x2,1 (k) 

X�, (0)=1.0 

subsystem 2: 

x2ýI(k+1) = T(1+0.5 sin( 
2j)c2, 

l(k))+T(05+0Ssin( 
2; k))u2,1(k)+05x2,1(k) 

y2,1 (k) = x2,1(k) + c2,1 (k) 

x21(0) = 0.8 

subsystem 3: 

x3,1 (k+1)=T(1+ 05sin(25 )c3,1(k))+T(0.5 +03sin(2 ))u3,1(k)+x3,1(k) 

Y3,1 (k) = x3,1(k) 

x31(0) = 0.3 
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The interconnection matrix H is given as 

001 
H= 100 

010 

The model-based problem is an Linear Quadratic approximation of ROP. The output 

function yy (k) is deliberately chosen to be zero to test the convergence of the 

algorithms. 

MOP: 
3 51 

min 
1E E[xi(k)TQ, x1(k)+cl(k)T1? c1(k)+u1(k)TSl ul(k)+Y(k)] 

u(k), c(k) 2i=1k=0 

where 
Ql = 05 ; R1 = 0.1 ; Sl = 05 

Q2 =03; R2 = 0.1 ; S2 = OS 

Q3=0S; R3= 0.1; S3=05 

subject to 
subsystem 1: 
X1,1 (k + 1) = 0.05c1, i (k) + 0.025u111 (k) + xl, l (k) 

YJ, J (k) =0 
xl, l (0) =1.0 

subsystem 2: 
X2,1 (k + 1) = 0.05c2,1 (k) + 0.025u2,1 (k) + OSx2,1(k) 

y2,1 (k) =0 
x2,1(0) = 0.8 

subsystem 3: 
X3,1 (k + 1) 0.05c3,1 (k) + 0.025u3,1 (k) + X3,1(k) 

y3,1 (k) =0 

x3,1(0) = 03 

The model output function is used in algorithms PC3. PC4, DC3 and DC4 only. In 

algorithms PCS, PC6, DC5 and DC6 the real output function as specified in the ROP is 

used. 
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Algorithm 
e1 rl r2 £v 

Number of 
iterations 

CPU (s) Final 

Performance 

Index 

price cor. 
single loop 

0.05 0.9 0 0.85 111 266 15.8735 

PC3 0.05 0.9 0 1.0 94 228 15.8736 
0.05 0.5 0 1.0 73 152 15.8497 
0.02 0.5 0 1.0 68 147 15.8487 
0.02 0 0 0.9 41 102 15.8901 
0.02 0 0.5 0.9 101 240 15.8975 

* 0.023 0 0 0.9 36 89 15.8907 

price cor. 
double loop 

0.08 0 0 1.0 55 154 15.8905 

PC4 0.08 1.0 0 1.0 101 234 15.8714 
0.15 0 0 1.0 50 119 15.8977 
0.07 0 1.0 0.9 36 87 15.8903 

* 0.07 0 0 0.9 35 85 15.8903 

direct cor. 
single loop 

NIA 0.5 0 0.8 92 225 15.8826 

DO 1.0 0 0.9 112 264 15.8719 
0.6 0 0.9 84 206 15.8802 
0.5 0.5 1 104 255 15.8830 

* 0.5 0 0.85 82 202 15.8838 

direct cor. 
double loop 

N/A 0.5 0 0.8 92 206 15.8816 

DC4 0.6 0 0.85 89 204 15.8892 
* 0.5 0 0.85 81 208 15.8823 

0.5 0.5 0.85 82 209 15.8793 
0.4 0 0.85 89 222 15.8802 

Centralize 
DISOPE 
(Centralized 

Problem) A 

N/A 0.0 0.0 1.0 25 40 15.8891 

Table 6.4.2.1 Algorithms performance for Example 6.4.2 

(for systems with real interaction input in parameter estimation) 

216 



The results of the simulation for a set of sample tuning parameters settings are shown 

in tables 6.4.2.1 and 6.4.2.2. The optimum state, final control signals and interaction 

vectors are similar to those given by figures 4.4.2.1-4.4.2.9, therefore they are not 

included among the figures illustrated in this chapter. Entries marked * indicate the 

best choice of parameter settings from the samples. From table 6.4.2.1 
, it is observed 

that el and ev influence the rate of convergence for price coordination algorithms 

PC3 and PC4 in this example. There is no significant difference in speed of 

convergence when the best settings of each algorithm are compared. This is illustrated 

by fig. 6.4.2.1 and fig. 6.4.2.2. The change in direction in the convergence pattern of 

the. performance index in algorithms DC3 and DC4 can be explained by the presence of 

model-reality differences in the model based problem. Note that in this example we 

have chosen a linear time invariant function to approximate a sinusoidal time-varying 

function as defined in MOP. This convergence pattern is also exhibited by the 

centralized DISOPE algorithm in solving the equivalent centralized problem as shown 

in figure 4.4.2.13 in Chapter 4. In algorithm PC3 the convexification scalar r1 does 

increase the speed of convergence but only whenc1 = 0.05. In direct coordination 

algorithms DC3 and DC4 , rl influence the rate of convergence. There is no 

significant difference between the single loop (DC3) and double loop (DC4) 

implementation of the direct coordination algorithms. Notice also, for this example, 

the price coordination algorithms has a better overall convergence property than that 

of direct coordination (refer to figures 6.4.2.1 and 6.4.2.2). Figure 6.4.2.3 compares 

the convergence of the interaction norm with different values of parameter choices. 

Setting rI . =0.5 ,e=0.05 and e=1.0 results in an oscillating convergence pattern 

with a much slower tail end convergence. Convergence behaviour for the single loop 

algorithm DC3 with different parameter choices is shown by figure 6.4.2.4. Setting 

r2 = 0.5 and ev = 1.0 improves the speed of convergence of the algorithm. Figures 

6.4.2.5 and 6.4.2.6 illustrate the convergence pattern of the control norm and 
interaction norm of the double loop algorithms DC4 and PC4 with the best choice of 

parameter settings. Note the oscillating pattern of convergence displayed by algorithm 
DC4. This is in contrast to the smooth monotonic pattern displayed by the double- 
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loop price coordination algorithm PC4. This may be explained by the stabilizing effect 

ofs1 in price coordination algorithms for this example. 

We now consider table 6.4.2.2 which shows the performance of algorithms for 

systems with real input in interaction and parameter estimation. The algorithms utilized 

real values from the output function. In general it has been observed that algorithms 
for this systems have better convergence behaviour when compared to those that 

utilized output model (PC1-PC4 and DC1-DC4). This is because there is no need to 

calculate model-reality parameter 6(k) and to use interaction separation variable 

w(k) in structures that utilized real output function. From the table it can be seen, that 

there is no significant difference between single loop and double loop implementations 

of the two approaches. This is also shown in figures 6.4.2.7 and 6.4.2.8. The choice of 

the price updating stepsize e1 influences the convergence behaviour of the price 

coordination algorithms. Setting the convexification factor r2 at 0.9 and ev at 0.85 

gives the best performance among sample settings of algorithm PCS (see fig. 6.4.2.9). 

This shows that the choice r2 can influence the convergence of the algorithm using the 

price coordination approach. In the direct coordination algorithms DC5 and DC6, the 

choice of rl influence the speed of convergence. This is consistent with the 

observation made in table 6.4.2.1 . Setting s,, at 1.0 and rl at 0.3 gives the best 

performance among the samples shown for DC5 (see fig. 6.4.2.10) and DC6. Figures 

6.4.2.11 and 6.4.2.12 compares the convergence of algorithms with real input in 

parameter estimation and algorithms with real input in interaction and parameter 

estimation. It is clearly illustrated that the utilization of real input improves the 

algorithms performance in term of speed of convergence. 

Comparing the performance of the eight algorithms with that of the centralized 
DISOPE algorithm in this example, shows a favourable performance for the price 

coordination algorithms in spite of the fact that the subsystems are being solved 

sequentially. It is expected that application of parallel processing methods to the price 

coordination algorithms will result in a better performance. 
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Algorithm e1 r1 r2 ýv 

Number of 
iterations 

CpU (S) Final 

Performance 

index 

price cor. 
single loop 

0.05 0.9 0 0.85 111 233 15.8730 

PC5 0.05 0 0.9 0.85 22 50 15.8911 
0.06 0 0.9 1.0 41 90 15.8916 
0.05 0 2.0 0.85 26 59 15.8920 

* 0.05 0 0 1.0 24 55 15.8914 

price cor. 
double loop 

0.05 0 1.0 0.85 50 106 15.8901 

PC6 0.1 0 1.0 0.85 27 60 15.8918 
0.1 0 0 0.85 26 58 15.8918 
0.15 0 0 0.85 38 81 15.8915 

* 0.12 0 0 0.85 25 55 15.8950 
0.12 1.0 0 0.85 118 233 15.8796 

direct cor. 
single loop 

N/A 1.0 0 0.85 119 239 15.8768 

DC5 0.5 2.0 0.85 82 169 15.8825 
0.5 1.0 0.85 82 169 15.8751 
0.5 0 1.0 70 142 15.8826 
0.4 0 1.0 63 129 15.8512 

* 0.3 0 1.0 55 111 15.8735 

direct cor. 
double loo 

N/A 0.5 0 1.0 70 131 15.8265 

DC6 0.4 0 1.0 63 124 15.8511 
* 0.3 0 1.0 55 108 15.8734 

0.25 0 0.85 122 240 15.8922 
0.3 1.0 0.85 122 239 15.8921 

Centralize 
DISOPE 
(Centralized 

Problem 

N/A 0.0 0.0 1.0 25 40 15.8891 

Table 6.4.2.2 Algorithms performance for Example 6.4.2 

(for systems with real input in interaction and parameter estimation) 
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Fig. 6.4.2.1 Convergence of performance index for algorithm PC3 and DC3 
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Fig. 6.4.2.9 Convergence of control norm and interaction norm for single 
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Fig. 6.4.2.10 Convergence of control norm and interaction norm for single 
loop algorithm DC5 with rl = 0.3, r2 = 0.0, sv =1.0. 
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6.5 COMPARISON OF HIERARCHICAL DISOPE ALGORITHMS PCI-PC6 
AND DC1-DC6 

We will be comparing the efficiency of both approaches, price coordination approach 

and direct coordination approach, based on the simulation results of examples 4.4.1 

(Chapter 4), 6.4.1 and 4.4.2 (Chapter 4), 6.4.2. The best results selected for each 

algorithm in two examples is tabulated in Tables 6.5.1 and 6.5.2 respectively. 

Comparison is made on the basis of iteration number made for the algorithm to 

converge. 

From Table 6.5.1 , it is observed that for example 1, the algorithms based on structures 

with model based interaction input are the slowest to converge. In general for this 

example, direct coordination algorithms are more efficient in the sense that a faster 

speed of convergence is observed. It is also observed that the speed of convergence 

improves with an increase in the utilization of real interaction input in the structure. 

The double loop version is observed to converge slower than the single loop version 

except for the case of algorithms based on the structure with model based interaction 

input. 

From Table 6.5.2 it is observed that the price coordination approach is more efficient 

in solving example 2 than the direct coordination approach. This may be explained by 

the stabilizing effect of price stepsize el in price coordination algorithms for this 

example. The speed of convergence improves with an increase in the utilization of real 

interaction input in the structures. The algorithm based on the structure with real input 

in interaction and parameter estimation is observed to be most efficient in this sense. 

This can be explained the reduction of variables required in the iterative structure as a 

result of utilization of real inputs in interaction and parameter estimation. 

y 
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Price Coordination Direct Coordination 
Approach Approach 

Algorithm 

Number of iterations Number of iterations 
Single Loop Double Loop Single Loop Double Loop 

Structures with model 25 20 11 12 
based interaction input 
Structure with real 17 19 8 11 
interaction input in 
parameter estimation 
Structure with real 15 16 7 8 
input in interaction and 
parameter estimation 

Table 6.5.1 Comparison of best results for Example 1. (Examples 4.41 and 6.4.1) 

Price Coordination Direct Coordination 

Algorithm 
Approach Approach 

Number of iterations Number of iterations 
Single Loop Double Loop Single Loop Double Loop 

Structures with model 94 94 97 96 
based interaction in ut 
Structure with real 36 35 82 81 
interaction input in 
parameter estimation 
Structure with real 22 25 55 55 
input in interaction and 
parameter estimation 

Table 6.5.2 Comparison of best results for example 2(Examples 4.4.2 and 6.4.2) 

6.6 SUMMARY 

In this chapter we have developed eight algorithms for optimal control of structures 

with real input measurements. The algorithms can be classified into two groups. One 

group , PC3, PC4, DC3 and DC4 is based on a structure with real input in parameter 

estimation. The other group, PC5, PC6, DC5 and DC6 is based on a structure with 

real input in interaction and parameter estimations. The later group of algorithms havc 
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less variables to iterate because their structure do not require calculation of model- 

reality parameter 9(k) . Instead they utilize the real interaction measurement which 

results in inclusion of real output function y(k) = K* (x(k), c(k)) in the solution of 

modified model based optimal control problem, MMOP;. Simulation of the algorithms 

were carried on out examples. The first example is made up of nonlinear 

interconnected system consisting of three nonlinear subsystems. The dynamics of 

state is a mixture of fast and slow dynamics. In this example it is shown that direct 

coordination algorithms performed better than the price coordination algorithms The 

second example is nonlinear example with time varying coefficients consisting of three 

subsystems. Results show that the price coordination algorithms performed better than 

the direct coordination algorithms in example 6.4.2.. From the simulation we can 

conclude that the performance of the algorithms depends on the structure of the 

problems they are solving. For sinusoidal nonlinear systems (example 6.4.2) it was 

observed that price coordination algorithms have 'better convergence property. 

Overall, it was observed that the algorithms for structures with real input measurement 

have a better convergence property when compared to those with model based 

interaction input presented earlier in chapter 4. 
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CHAPTER 7 

CONCLUSIONS 

7.1 CONCLUSIONS 

The development of new hierarchical DISOPE algorithms for optimal control of 
interconnected nonlinear systems with a more general interaction structure and the 

study of their convergence properties has been the central subject of the research work 
described in this thesis. Four basic hierarchical optimal control structures are 
developed by taking into account the manner we incorporate and utilize real process 

measurements from interaction inputs in the model-based optimal control problems. 
The structures are of an iterative type and utilize real interaction input in the model 

when available. These structures are : structure with model based interaction input, 

structure with real interaction input in parameter estimation , structure with real input 

in interaction and parameter estimation and structure with total real interaction 

measurements. They are a dynamic analogy of hierarchical ISOPE structures derived 

by Brdys and Roberts (1986). The proposed structures are derived by extending the 

DISOPE technique to interconnected systems to take into account model-reality 
differences. These may have been deliberately introduced to facilitate the solution of 

complex intractable nonlinear optimal control problems or arise due to uncertainty in 

the model used for computation. Here, it is assumed that the derivatives of the reality 
functions and the models are piecewise continuous . It is also shown that the structures 

represent optimal methods in the sense that the converged solution will agree with the 

solution of original real optimal control problem (ROP). Of the four basic structures 
described, we used the first three to develop new hierarchical optimal control 

algorithms based on a linear quadratic approach. 

Two approaches are used in the formulation of the hierarchical optimal control 
algorithms based on structures mentioned previously. They are the price coordination 

approach and the direct coordination approach. % 

In the price coordination approach the Lagrange multiplier associated with the 
interconnection constraint is calculated using an interaction balance updating 
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mechanism as suggested by Findeisen et al (1980). The optimal control problem 
becomes a minimization problem with respect to the interaction and the 'control terms. 

The estimated optimal interaction and the estimated optimal control are both calculated 
from the resulting minimization procedure. Algorithms using this approach do not 

satisfy the interconnection constraint in the solution of MOP in the iterations until the 

price mechanism has sufficiently converged. As a result the convergence of the global 

performance index of algorithms using this approach may exhibit an increasing pattern 

towards convergence as opposed to a decreasing pattern expected in a minimization 

problem. 

In the direct coordination approach, the price associated with each interconnection 

constraint is calculated directly from optimality conditions. The optimal control 

problem constitutes a minimization problem with respect to the control term. In the 

iterations, the interaction vector and the interconnection price are computed in the 

second level using the previous estimated optimum variables resulting from the MOP 

solution in level one. In this procedure, the convergence of the global performance 

index may exhibit the normal decreasing pattern towards convergence as expected in a 

minimization problem. 

Two techniques of implementation were used in the algorithms. In the single loop 

technique, for the price coordination approach, the coordinator is made up of the price 

updating mechanism and the model-reality modifiers computation. For the direct 

coordination approach, the coordinator is made up of price, interaction and model. 

reality modifiers computations. In the double loop technique, the global structure of 
interconnection constraints is exploited by creating an outer loop where global price 

and interaction computation can be made. In the price coordination approach, the price 

updating mechanism is computed in the outer loop while, in the direct coordination 
approach, both the interaction term and the interconnection price are computed in the 

outer loop. The double loop technique is much easier to implement in software because 

there is no need to separate the interacting components for each subsystem at the 

coordinator level. This separation of global component also facilitates the convergence 
analysis of the algorithm. 
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A total of twelve algorithms , PCI-PC6 and DCI-DC6 have been developed based on 
the three basic hierarchical structures using a linear quadratic model formulation. 

Simulation studies using two examples were carried out to test the effectiveness of the 

algorithms using a sample combination of tuning parameters. The efficiency of the 

algorithms is measured on the basis of the number of iterations needed for 

convergence. Simulation results show that algorithms based on a structure with model 
based interaction input (PC1, PC2, DC1 and DC2) were the slowest to converge. 
Algorithms based on a structure with real input in interaction and parameter estimation 
(PC5, PC6, DC5 and DC6) are observed to be most efficient. It is also observed that 

application of convexification terms improves the robustness of the algorithms. Direct 

coordination algorithms are observed to be most efficient for solving a time invariant 

nonlinear interconnected system as shown by Examples 4.4.1 and 6.4.1. For a time 

varying sinusoidal system such as described in Examples 4.4.2 and 6.4.2, algorithms 
based on price coordination approach are observed to be most efficient. 

There is no significant difference between the single loop and double loop 

implementations . However the double loop implementation is preferable because of 
the ease of implementation and debugging in software. 

The optimality of the twelve algorithms was established by showing that their 

optimality conditions at convergence agree with the solution of the real global optimal 

control problem (ROP). Initial convergence analysis was carried out to establish the 

sufficient conditions for convergence of the double loop algorithms. As mentioned 

previously, the double loop structure facilitates convergence analysis by the separation 
of the global component of the interconnection at the coordinator which reduces the 

mathematical complexity of the algorithms. The sufficient conditions show that the 

convergence properties may be influenced by the length of optimization horizon, 

updating mechanism stepsize, model-reality differences and convexification factors. It 
is observed that a longer optimization horizon and model-reality differences may cause 
divergence. Although the conditions derived are only sufficient and they do not 
necessarily need to be satisfied for convergence to occur, they point the way for 
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further theoretical investigation into the convergence properties of the algorithms. 

Convergence analysis of the single loop structure is difficult because of the 

mathematical complexities posed by the interconnecting components in the 

coordinator. 

In summary, it may be said that the objectives stated in Chapter 1 have been achieved. 

Firstly, new hierarchical structures for optimal control of interconnected nonlinear 

systems have been developed using an analogous approach to that of ISOP1r 

hierarchical structures (Brdys and Roberts, 1986). The nonlinear systems are assumed 

to be Frechet differentiable. Secondly, twelve hierarchical optimal control algorithms 

were developed based on a linear quadratic formulation and implemented in software 

using three of the four basic hierarchical structures. Simulations studies were carried 

out to test the effectiveness and efficiency of the algorithms using two different 

examples. Finally, the optimality of the structures and algorithms were established and 

theoretical investigation of convergence properties of the double algorithms were 

carried out. As a result, sufficient convergence conditions have been derived for the 

double loop hierarchical algorithms. 

7.2 SUGGESTIONS FOR FURTHER RESEARCH 

The subject of the research is concerned with the development and implementation of 

new hierarchical DISOPE algorithms. However the algorithms described are still at 

their initial stage of development before full on-line implementation can be considered. 
In recent years, various extensions of the centralized DISOPE algorithms has been 

developed (Becerra, 1994; Roberts, 1995; Becerra and Roberts, 1996). The author 

considers that these developments should be extended to the hierarchical algorithms 
described in this thesis in order to realize their full potential. Some possible extension 

to the research work described in this thesis are described below. 

(a) In addition to further convergence analysis, local stability studies need to be 

carried out to examine the stability of the DISOPE algorithms described in 
this thesis. 

(b) Extensions of hierarchical DISOPE for handling control , state dependent 
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(c) Application of more efficient updating techniques for the updating 

mechanism in the price coordination approach to improve convergence 

behaviour 

(d) The extension of hierarchical DISOPE approach for handling time-delays in 

the dynamics of the (in general nonlinear) real optimal control problem. 

(e) Application of hierarchical DISOPE techniques to optimal predictive control 

and batch process optimization. 

4 
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APPENDIX 

A. DERIVATION OF PROCEDURE 6.2.1 

Here we want to solve the following discrete-time two-point boundary value problem 
(TPBVP): 

x; (k+1)= Aixi(k)-B1k 1(BiTpi(k+1)-ßi(k)) 

-Di Si 1(DiTpi(k+1)+li(k))+al(k) (A. 1) 

pi(k)=Qix; (k)+A; TPi(k+1)-ij(k) (A. 2) 

with boundary conditions: 

Xi (0) = xio; xi,, (N) = 0; t E[l, qi] 

Pi (N) = (Di xi (N) (A. 3) 

where all the quantities are defined in Chapter 6 and the control law and the optimum 
interaction vector are given by: 

ci (k) = -RI-1 (BT p (k + 1) -, 3i (k)); kE [O, N -1) (A. 4) 

and 

u; (k)=-Sj 1(Di pi(k+I)+li(k)); k E[O, N-1] (A. 5) 

respectively. 

The solution of this linear TPBVP can be obtained using the sweep method (Lewis, 

and Syrmos, 1995; Bryson and Ho, 1975). The key is to assume the relationship 
between state and costate as 

P; (k) =V (k)x1(k) + E} (k)vi +h; (k); kE [0, N] (A. 6) 

where V (k) is an ni x nj matrix, Ei (k) is nj x q1 matrix , hi (k) E 91N and 

VlE glqj 
. 

Substituting this in (A. 1) and grouping terms results in the following: 

x, (k+1) =[In +B1)' 1DTV (k+1)+D1Si 1Dj V1(k+1)]-I[Afx1(k)+B, Rj 1ß, (k) 

-D; S'r 1i, (k))+a; (k)-(Bi2 1BT +D, 3 'DT )E1(k+1)vi 

-(B; R, - 1 B1T +D; Si1D, )h; (k+1)] (A. 7) 
T 
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Substituting (A. 6) in (A. 2) gives 

V; (k)x; (k) + Ei (k)v; + li, (k) 

=Qix; (k)+A V(k+l)x; (k+l)+ATE; (k+l)v+ATh; (k+l)-A (k) (A, 8) 

Substituting (4.9) into (4.10) and grouping terms 

[-V (k)+Uj+ATY(k+1)[I +B; R; lBTV(k+1)+D; gi-'D1TV; (k+1)1_IA1]xi(k) 

+[A, 'E1(k+l)-Ei(k+l)-ATV (k+l)[I, +BjJ 1BTTV1(k+1)+D1Sj`1D, TV1(k+l)]-1 

(B; Rj- 1 B, T +D; S; _IDiT)Ej (k+1)]v1 

+[A; -ATV, "(k+1)[I� + B, y _IB, TV (k+1)+D; Si ID; TVI(k+l)]-t 
" 

(B1RI-IBT +Disr 1DT)]hi(k+1)-hi(k)+ýi(k) 

+ATVi(k+1)[In +BiRi 1BTYi(k+1)+DiSi IDTVi(k+l)]-1(B1Ri 1Qi(k) 

-D; Sj tli (k)+ai (k)]=O; (A. 9) 

Equating coefficients to zero in (A. 9) results in the following set of difference 

equations, which can be solved backwards from terminal conditions shown. 

V, (k) = Qi +A. Vj(k+1)[In +BfRiBiTV (k+1)+Dj$, D, TV, (k+l)]"' A, 

00 
kE [0, N -1], V (N) = Lo 1 

(A. 10) 

E, (k) = [AT - AT Vý (k + 1) [In + B, i _l Bj Y} (k + 1) + D; Sf -'DIT Yf (k + 1)]-le 

(B; k, 1B; +DiS, ̂ 1Di)]Et(k+1) 

k E[0, N-1]; E; (N) = 
Iqt 

(A. 11) 

hi(k)=[AT -A, Vi(k+1)[In+BiRi"'BI Vl(k+1)+DDL tDiTVf(k+I)]-l " 

(B, J 1B; +D; Sj-1D, )]hf(k+1)-ý, (k) 

+ATV, (k+1)[I� +B; TiTBTV (k+1)+D1Si 1D, TV1(k+1)]"1 " 

(B; Ri har(k)-Dis; llt(k)+a, (k); 

where A. (N) = 0; kG [0, N -1] (A. 12) 

Let us assume the (assumed fixed) terminal constraints function as 

Ti(k)= E; (k)Txi(k)+» (k)v; +7r, (k); k E[O, N] 
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where W. (k) is a ql x ql matrix and iri (k) E 91 g1 
and 

ß'1(k) = [x;, 1(N)..... x;, gq (N)]T = [0.... 0]T 

then )'; (k+l)=E; (k+l)Tx; (k+1)+W(k+l)v; +; r, (k+1); (A. 13) 

Using (A. 7) and equating % (k) and ̀ j (k + 1) in (A. 13) results in a repeat of (A. 11) 

plus the following difference equations, which may be solved backwards. 

W(k)=W(k+1)-E; (k+i)r[I�+B1i B; TV, (k+1)+DI37lDI V, (k+1)]-1 " 

(B, i IB1T + D1 I DT )]Ei (k + 1) 

W(N) = 0; kE [O, N -1] (A. 14) 
7r; (k)=7i(k+1)+E; (k+l)T[In+Bi IBrTV(k+l)+DtSj 1D, TVi (k+l)]"I 

[-(B; ki 'Bi +DiY 1Di)]hi (k+1)+(Bi RT ßi (k)-D; st 'i1(k)+ai (k)) 

where 'c; (N) = 0; kE [0, N -1] (A. 15) 

We need to find an expression for multiplier of . then from the terminal constraint 
function (A. 13), we obtain the following 

vi = N; (k)LEi (k) T xi (k) - ; rt (k)J (A. 16) 

for k¬[0, N]. Noticing that W (N) is ill conditioned 

pr (N) = vi =W (O)[E1(0) T xio + 2i, (0)] (A. 17) 

Hence p1 (N) can be obtained once Ei (k) , W, " (k) and ic1 (k), kE [0, N]. Thus from 

(A. 6) we obtained the following 

Iii (k) =V (k)xi (k) + E; (k)P, (N) + hi (k); kE [O, N] (A. 1 S) 

Substituting (A. 18) in (A. 4) gives 

cl(k) = -Ki 
'BT [VI(k+1)x; (k+1)+Ej(k+1)pß (N)+hi(k+1)+Rl Ißl(k)); 

k E[0, N-1] (A. 19) 

which can be expressed as 

ci (k) = -Gi (k)xt (k) + gi (k) (A. 20) 

where G; (k)-P 1B, TJ/ (k+1)[I� +B1J BTV, (k+1)+D1$, D, TV1(k+l)1-I A, 

and 

g1 (k) = -Ri 
IBT V (k + 1)[In + BIJ BT V, (k + 1) + Di S1 DT V1 (k + 1)]-1 " 
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[(B; R, Tß; (k)-DjSj- li (k))+ai (k) 

-(B; R; 1Blr +D1 1DT)J(E; (k+1)v+hr(k+1)) 

+E; (k+1)p; (N)+hi (k+1)]+R; TQ; (k) k E(O, N-1]^ (A. 21) 

The interaction term is given by 

u; (k)=-Si- IDi [V(k+1)x1(k+1)+Ei (k+1)p1(N)+hi (k+1)] 

-Si 
lli (k)) kE [0, N -1] (A. 22) 

If we define 

M, (k) = Sj-'D1TVI(k+l)[In +BBi BTV (k+1)+D, S, DjTVI(k+1)]-l A. 

and 

m; (k)=-Yj-lD1TV (k+1)[I,, +B1R1B1TV (k+1)+DIL D, TV1(k+l)]`1 
" 

t(B1 RiT ß1(k)-D; Sj lli (k))+ai (k) 

-(B; Rj-'B, +D13 ID; T)](E; (k+1)v+h; (k+1)) 

+E1(k+1)p; (N)+h; (k+l)]-S; -lii(k)) k E[0, N-l] (A. 23) 

then (A. 22) can written as 

u; (k) = -M! (k)xt (k) +mi (k) (A. 24) 

Thus from (4.22) and (4.26), the state equation can be expressed as 

x; (k + 1) = (Al - B; G; (k) - D; Mi (k))x; (k) + B3 g; (k) + D; m; (k) + a; (k); 

x; (0)=x; p, xi(N)=0; t E[1, q]; k E[0, N-1] (A. 25) 

A straightforward reasoning on dependence of different variables involved, gives rise 
to Procedure 6.2.1. 

B. PROOF OF THEOREM 6.1 

To prove the above theorem we consider the equivalent global optimality conditions of 
ROP (3.14) and MMOP2' define by (6.1): 

From (3.14) -(3.21), at the optimal solution of ROP the following conditions are 
satisfied % 

Vc(k)H* 0 that is 

242 



[gc(k)(x°p, c°1', u°p, k)JT +[fc(k)(x°pc°pu°/' k )]T �O (k + 1) 

-[Kc(k)(x0P, c0P)IHTIOP(k) =0 

V x(k)H* - p(k) =0 that is 

[gx(k)(x0P, c01, u01 , 
k)]T +ux(k)(xoP, coP, uoP, k)ITPop(k+1) 

_[Kx(k)(x0P, c0P)JHTIOP(k)_ p0P(k) =0 

Vu(k)H* =0 that is 

(II. 1) 

(n. 2) 

[qu(k)(x°p, c°p, u°p, k)]p +[fu(k)(x°p, c°°, U0', k)]T p°p(k +1)+l°p(k) =0 

with 

(1,3) 

x°"(k+1) =f 
*(x°p, c°P, u°p, k); ke [0, N-1] (3.4) 

u°P(k) = HK*(x°p, c°p) (B. 5) 

x°p(0)=xo; xtp(N)=0, t E[1, q] (13.6) 
prp (N) _ OZO (N), tE [q + 1, n] 

where x0 (N) _ [xq+l (N)... xOP (N)]T 

We require the converged solution , uC (k), xc (k), uc (k), pC (k); kE [l, N], of the 

modified model based optimal control problem (6.1). Noting that the convexification 

terms can be ignored, since at convergence v(k)=c(k), z(k)=x(k) and w(k)=u(k), this 

solution will satisfy the Hamiltonian 

HC(. ) =2 [xc(k)T Qx°(k)+cc(k)T Rc4(k)+u'(k)T Suc(k)} 

c(k) -', C(k)Tx°(k)-, 6(k) r +y cc(k) (II. 7) 
+p°(k+ 1)HT [Axc(k)+Bcc(k) +Duc(k) +a"(k)] 

+l'(k)Tju°(k)-H( c°(k)+ Zbc(k)+4ic(k)+0°(k)] 

and optimality conditions 
Vc(k)Hc(. ) =0 
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= Rcc(k)+BT p`(k+1)-THT1c(k)-ß'(k) =0 (B. 8) 

Vx(k)HC() -Pc(k) =0 

= Qxc(k) + AT pc(k + 1) - &T HT 1c(k) -, e(k) = pC(k) (B. 9) 

V u(k)II°(. ) =0 which can be expressed as 

=Su°(k)+DT pc(k+l)- 'OT [uc (k)-H(,. xc(k)+jc°(k)+. Zu°(k)]I°(k)=0 
Guc(k) 

together with 

(B. 10) 

xc(k+1) = Axe(k)+Bcc(k)+Duc(k)+ac(k) (13.11) 

where, from (4.29) 

aC(k)= f *(x' (k), cc(k), HK*(xc(k), c°(k), k) 

-Axc(k)-Bcc (k) -DHK* (xc (k), c°'(k) 

Oc(k)=K*(xc(k), cc (k))-,, 7xc(k)-. cc (k)-. fHK*(xc (k), cc(k) (13.12) 

From the modifier equations (6.13) 

Ac (k) =[A-. t (xc(k), c'(k), uc(k), k] Pc(k+l)+Qxc(k)-qx(xc, ccuc, k)7' 
T Tl +Kx(xc, cc)HTl'(k)- lHc(k) 

ßc (k) = [B - fc (xc(k), cc(k), uc(k), k]T pc(k + 1) + Rcc(k) - sic (xc, cc, uc, k)T 

+Kc (xc, cc)HTic(k) -Z 
TH T1 c(k) 

and from the price updating mechanism 

jc, s+1(k) =1c, s(k)+81[uc(k) 

-H(Jxc (k) + Jcc (k) + Luc (k) + Oc (k)] 

(B. 13) 

(B. 14) 

Eliminating 2, °(k) and ß°(k) from (B. 8) and (B. 9) using modifiers equation (B. 13), it 

can be readily be seen that equation (B. 8) becomes 
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L9ý(k)(xý, cý, uC, k)JT +[fý(k)(Xý, c°, uc, k)]TI, c(k+1) 
(8.15) 

-[Kc(k)(xc, cc)]HT 1C(k) =0 

equation (B. 9) becomes 

[gx(k)(xc, cC, uc, k)]T +[. fx(k)(xc, cc, uc, k)]T p°(k+1) 

0 
(B. 16) 

-[Kx(k)(xc, cc)]HTIc (k)-pi(k) = 

From (B. 12) , 
it can be concluded that there is no model-reality differences with 

respect to u' (k) 
, therefore it can assumed that qu(k) (")= qu(k) (") and 

fu(k)(")=fu(k)("), 
. 
Since at optimum we have K*(. )=F(. ), then (B. 10) reduces 

[qu(k)(xC, cC, uc, k)JT +[fu(k)(xc, c°, l/, k)JT p°(k+1)+1c(k) =0 (B. 17) 

Substituting (B. 12) in (B. 11) produces 

xc(k + 1) =f *(x°, c', u', k) ; ke [0, N-1] (0.18) 

with boundary conditions 

xc(0)=xo; xr(N)=0, t E[1, g] (B. 19) 
Pi (N) = Wo (N), IE [q + 1, n] 

where x0 (N) = [xq+l (N)... xn (N)l r 

Eliminating 9C (k) from (B. 14) using (B. 12), and noting that at convergence the 

interaction price 1 c, s+1 (k) = lc, s+1 (k) we obtain the following equation 

p. [u°(k)-H(K*(Xc, cC))] (13.20) 

Since scalar EI >0 , then equation (5.23) reduces to 

uC(k) = H(K*(x°, c°)) (11.21) 

Comparing (B. 1)-(B. 6) with (B. 15)-(B. 19) and (B. 21), it is clear that the two set of 

optimality conditions are in agreement. Furthermore from assumption 3.1 

x°(k) = x°" (k), c°(k) = c°p (k), u°(k) = u°p (k), pC (k) = p°P(k); kE [0, N] 

(B. 22) 

Q. E. D 
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C. PROOF OF THEOREM 6.2 

To prove the theorem we will show that the optimality conditions of ROP given by 
(3.10) are equivalent to the converged solution of MMOP2" defined by (6.32) 

produced by the direct coordination approach. 

The equivalent optimality conditions of (3.10) are given by equations (B. 1)-(B. 6). 

We require the converged solution , u° (k), x° (k), uC (k), p° (k); ke [1, N] , of the 

modified model based optimal control problem (6.32). Noting that the convexification 

terms can be ignored, since at convergence v(k) = c(k), z(k) = x(k) and w(k)=r1(k), 

this solution will satisfy the Hamiltonian 

Hc(. ) =2 jxc(k)T Qx'(k)+cc(k)T Rcc(k)+uc(k)T Suc(k)] 

+yc(k) -2C(k)T xc(k) -Q°(k)7'c°(k) (C, 1) 
+pc (k + 1)HT [Axe (k) + Bcc(k) + Duc(k) + aC (k)] 

+lc(k)T [uc(k)-H(c XC(k)+Jcc(k)+Bc(k)l 

and optimality conditions (B. 8), (B. 9) and 

Vu(k)H'(. ) =0 

=Su"(k)+DT p°(k+1)+1(k)=o (C. 2) 

together with model dynamic equation (B. 11). From (6.14) and (6.15), we have 

aC (k) -I 
* (x"(k), c '(k), HK* (x"(k), cc (k), k) 

(C. 3) 
-Axc(k)-Bc°(k)-DHK*(xc(k), cc(k) 

ec (k) = K* (xc(k), cc(k)) -c x° (k) - Zcc(k) 

(e. 4) 

In addition to the above we have used the following optimality condition to calculate 

u° (k) , that is; 

uý (k} = H(, =7x' (k) + Zc' (k) + ©c (k)) (C. 5) 
From (6.13) we have the following equations 

% Ac(k) = [A -. fx (xc(k), c°(k), u°(k), k)T pc(k + 1) +Qx°(k) - gx(xc, cc, Iic, k)T 

+K*(xc, cc)HTl°(k) - , =; 
T HT Ic(k) 
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ßc(k)=[B-fc (xc(k), cc(k), uc(k), k]T pc(k+i)+Rcc(k)-gc(xc, cc, f°, k)T 

+ KK(xc, cc)HTlc(k)- JTHrlc(k) 

" (C. 6) 

Eliminating ),. c(k) and 6°(k) from (B. 8) and (B. 9) using modifiers equation (C, 6), 

produces (B. 15) and (B. 16) . 
From (B. 12) , 

it can be concluded that there is no model-reality differences with 

respect to uC (k) 
, therefore it can assumed that qu(k) (") = qu(k) (") and 

fu(k) (") ý fu(k) 0, therefore (C. 2) can be expressed as 

[41(k)(xc, c"u,, k)]T +[fry(k)(xý, ýý, 1ýý, k)]T/(k+1)+1°(k)=0 (C. 7) 

Eliminating a' (k)in (B. 11) using (C. 3) we obtain (B. 18) with boundary conditions 

(B. 19). 

Substituting (C. 4) in equation (C. 5) gives 

u'(k) = H(K*(Xc, Cc)) (C. 8) 

Comparing (B. 1)-(B. 6) with (B. 15), (B. 16), (C. 7), (C. 8), (B. 18) and (B. 19), it is clear 

that the two set of optimality conditions are in agreement. Furthermore from 

assumption 3.1, 

x°(k) = x°P(k), c°(k) = c°F'(k), u°(k) = u°P(k), p°(k) = p°P(k); k e[0, N] 

(C. 9) 

Q. E. D 

D. PROOF OF THEOREM 6.3 

To prove the theorem we will show that the optimality conditions of ROP given by 

(3.10) are equivalent to the converged solution of MMOP3' defined by (6.58) 

produced by the direct coordination approach. 

The equivalent optimality conditions of (3.10) are given by equations (B. 1)-(3.6), 

We require the converged solution , uC (k), x° (k), u' (k), pc (k); k Cz(IN], of the 

modified model based optimal control problem (6.58). Noting that the convexification 
terms can be ignored, since at convergence v(k) = c(k) and z(k) = x(k) this solution 

will satisfy the Hamiltonian 
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Hý(. ) =2 [xC(k)T Qxc(k)+cc(k)T Rcc(k)+uc(k)T SI c(k)] 

+y' (k) -. 2ý(k)T xc(k) - ßc(k)T c°(k) (D. 1) 
+pc(k + 1)T [Axc(k) +Bcc(k)+Du'(k)+aC(k)] 

+1c(k)T [u`(k) - HK*(xc(k), cc(k)] 

and optimality conditions 

vc(k)gc(. ) =0 

=Rcc(k)+BTpc(k+l)-Kc OHTIc(k)-ßc(k)=0 
(D. 2) 

Vx(k)Hc(. )- pc(k) =0 

=Qxc(k)+AT pc(k+1)-KX 
ýk)HTIC(k)-ý, ý(k)=pc(k) (D. 3) 

Vu(k)Hc(. )=0 
, 

=Suc(k)+DT pc(k+1)+1c(k)=0 

together with 

(D. 4) 

xc(k+1)=AxC(k)+Bcc(k)+Duc(k)+a°(k) (D. 5) 

where, from (6.70) 

aC(k)= f *(xC(k), cc(k), HK*(xC(k), cc(k), k) 

-Ax'(k)-Bcc(k)-DHK*(xc(k), cC(k)) 
(D ý) 

From the modifier equations (6.69) 

AA(k)=EA_fx (xc(k), c°(k), uc(k), k]T Pc(k+1)+Qxc(k)-q (xc, cc, uc, k)T 

Q0(k)=[B-. fý PC(k+l)+Rcc(k)-gc(xc"cc, uc, k)T 

and from the price updating mechanism 

(D. 7) 

Ic, s+1 (k)=1C, s(k)+e [u° (k)-HK* (x' (k), cc(k))] (D. 8) 
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Eliminating ), '(k) and ßC (k) from (D. 2) and (D. 3) using modifiers equation (D. 7), it 

can be readily be seen that 

[gc(k)(xC, c°uC, k)]T +[fc(k)(x°, c°ric, k)]T Pc(k+1) 
becomes 

Kc(k)(xc cc))T HTlc(k)=0 

equation (B. 9) becomes 

equation (D. 2) 

(D. 9) 

[(k) (xc, ccuck)]T +Efx(k)(x°, cc, u', k))T Pc(k+1) 

-[Kz(k)(xc, cc))T HTIC(k)-p°(k)=0 
(D. 10) 

From (D. 6) , 
it can be concluded that there is no model-reality differences with respect 

to u° (k) 
, therefore it can assumed that qu(k) () = R'u(k) (") and fu(k) 0: fu(k) (") 

, 

then (D. 4) is equivalent to 

L9'u(k)(xc, cc, uc, k)]T +Vu(k)(xc, c°, uc, k)]TPc(k+l)+1c(k)=0 (D. 11) 

Substituting (D. 6) in (D. 5) produces 

xC(k + 1) =f* (x, c°, u°, k) ; kE [0, N-i] (D. 12) 

with boundary conditions 

x'(0)=xp; xr(N)=0, t E[1, q] (D. 13) 
P, (N) = «0(N), t E[q +I, rr] 

where x0(N) = [x4 +1(N)... xn(N)JT 

Noting that at convergence the interaction price jc, s+i (k) = Ic, s+i (k) we obtain the 

following equation 

a=E! [uý (k) - hi(. K*(x', cc))] (D. 14) 

Since scalar E1 >0 , then equation (D. 14) reduces to 

u' (k) = H(K* (xc, cc)) (D. 15) 

Comparing (B. 1)-(B. 6) with (D. 9)-(D. 13) and (D. 14), it is clear that the two set of 

optimality conditions are in agreement. Furthermore from assumption 3.1 

x'(k) = x°- (k), c°(k) = c°'(k), u°(k) = u°P(k), pc (k) = p°p(k); k E[0, N] 

(D. 16) 
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Q. E. D 
E. PROOF OF THEOREM 6.4 

Theorem 6.4 can be proven using the same definitions as in appendix D and following 
the similar reasonings as in appendix C. 

F. CONVERGENCE OF ALGORITHM PC4 

For simplicity, we will consider the special case of no terminal conditions and (=0. 

First, we derive the algorithm mapping of the inner loop of algorithm PC4. 

Let s denote the iteration number of the inner loop and p denote the corresponding 
iteration number of the outer loop. 

The inner loop: 

The inner loop constitutes iterations in the ith decomposed modified model based 

optimal control problem (MMOP2; ) 

We need to established the transition from iteration s to iteration s+1 of the inner loop 

of the double loop price coordination algorithm PC4 with a linear model and quadratic 

performance criterion defined by (6.1) in terms of difference equations. 
From (6.13) we obtain the following expressions representing the computation of 

modifiers. 

, Zl (k)=[A1 -Jx (xý , ci , ul ), k]T p1 (k+l)+Ql xl (k)-qxt (xý , ci , tiI , k)T 

Ns N 
+Kx. ix; , c; ) E HTjp(k)--JT ! HTIJ(k) 

r j=1 j=1 yJ 

Qj (k) =[13f -ffl (x 
, ci , tul ), k] T 

pi (k+l)+Rý ci (k)-q , (xi , ci , tl , 
k)ý 

1Vs Ns (F. 1) 
+K* * (xl , cl) ± H, lp(k)-XT E HlIp(k) 

1=1 j=l 

where 1P (k) is prescribed by computation in the outer loop. 

From equation (4.29) the calculation of parameters can je expressed as 
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al (k)= fj*(xl , cl , ui , k)-Ajxis(k)-Bjc; s (k)-1)j 11, K*(xr(k), cr (k)) 

Oj (k)=Kj (xj 
,c 

)-vjxj (k)-. ;j cis (k)-.. 6jH, K*(xi (k), C4r(k)) 

The solution of the MMOP2; defined by (6.1) can be represented by 

(F. 2) 

os - (k)--Rj-1 [-BT pl (k+1)+ß1(k)+ 1T 
NS 

' 
EHT1c (k) +rlci (k)] 

z1 (k+1)=Ajxl (k)+Blcl (k)+Diül (k)+al (k) 

Ns 
Pis (k)-Qjz1 (k)+Apis(k+l)-il(k)-c 

. ýIiT ZH11ý'(k)+r2xl (k); (F. 3) 
j =l 

Pis (N)=0 
N 

ül (k)=SI 1[-D; T pl (k+l)+/f (k)+, T i Hl Ip(k). +] 
j=1 

The control state, interaction and costate updating mechanism defined by (3.61) are 

expressed as 

xi +1 (k) = xf (k)+Ex (zf (k)-xi (k)) 

cs+1 (k)=cl (k)+c (cl (k)-cis (k)) 

pj +1 (k) = pl (k)+c p (jj1 (k)-pi (k)) 

Equations (F1)-(F4) are defined for kG[1, N-1] and 

c(k) = v(k), 2(k) z(k) and p(k) = p(k) . 
Notice that in (5.38) we can write 

pl (k+i)=-A; TQjzJ (k)+ATpI (k)+A; rýl(k)+&, 
Ns 
Z 

j=1 

pl (N)=0 

Substituting (F. 1), (F. 2) in (F. 3) and applying (F. 5), we can write 

zs(k+1) 
_ E1 xsS (k) 

+M1, izi (k)+g1,1 zi (k)) 
pi(k+l) p; (k) 

(F. 4) 

iij 1ý'(k)-r2At rxi (k); 

(F. 5) 

(F. 6) 
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where ajs(k)=[cl (k)T xl (k)T pl (k+l)T ]T and 

Al -BIRi. 
1BT 

- Djgi`1Di 1 
(F. 7) 

-A1 
ui AT_ . 

r1 Bl Rl1 0,11 0111 

M (F. 8) l, i - 0lii'm1 r2 Al T Ong 

s g1 1, i (zr (k)) 
g�, (zß (k)) = (F. 9) 

912, i (zi (k)) 

with 

g1l, j(zi (k))=B1J 1[B1 
-fC. (xj cl , ul ), k1 Pf (k+1) 

+B; R; '[R1cl (k)-gc* 
i(xi, cis, ul, k)T 

-B; Br-10. äL1 -K S 
(xi, cl )]T E HT 1' (k)) 

l j`1 IJ 

N 
+B; R; -'XT j H? j1P(k)+D; S; -llp(k) 

j=1 

+ fj*(x1 , ci , u1 , k)-Alxl (k)-B, cf (k)-D, ui (k) 

(F. 10) 

zs(k))=AiT (Ai-fxi (xj, cýpul ), k]T pl(k+1) 912i(i 

+A; T [Ql xis (k)-qx. (xis, cf , ul , 
k)T ] (F. 11) 

T*s S)] T 
Ns 

HT I? (k)+Ai"T T 
NS 

T 
-A; Cam, -Kx. (x; , cl 

J 
)] 

1 
ýI 1J ýl 

IHiý 
lä (k) 

It should be noted that, in (F. 6), Ei is a transition matrix, II l'i contains solely 

convexification terms (i. e H Ij =0 if r1= r2 =0), and g12j(zjs(k)) represents the 

model-reality differences. 

Equation (F. 6) can be written as 

0 
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12t(k)i Ek 
[ X1O k-1 

+ Ei [NI 1 izi (k -1- +gl i (zi (k 
PI (k) Pi (0) , , j=o (F. 12) 

pi (N) =o 

Writing q$(k) = Ei; , at k=N, the final costate is given by 

Pi (N) = 02 U, i (N)xro + 022, i (N)I>; (0) 

k -I (P. 13) 
E 02/JXM1J zi(N -1- j) + g1/zl (N -1- 1)) 

j=0 

with 

EN ^ ýi(N) 
011, i(N) 012, i(N) 

1=] ; 02,1(7) = 
[021, 

i (i) 022,1C1)] (F. 14) 
[021, 

i( N) 022, i( ) 

Hence, the initial costate can be expressed in the form 

Pi (0)" 022J (N)-1021,1(N)xio 

k-1 

-022J (N)-1 Z 02,1(J)[M 1,1 z (N -1- J) + 91, r (zf (N -1- J)) 
j=o 

(F. 15) 
Substituting (5.50) in (5.47), we obtain 

1zr (k} 
- 

PX, (N, k) 

pl (k) -gyp, (N, k) xio 

012J (k) 
X22 

N-1 
J (N)-1 02, E (j)[M1,1zi (N -I- j) + g11 (z; (N -1- f))) Lý22J () 

j_0 

k-1 
+ Oi(. I)ýMl, lzS(k-I-j)+g1 (zý(k-1-. 1))l (I'. 16) 

31 j=O 

where 

pxi (N, k) = 011,1(k) - qS12, i (k)022,1(N)-1021,1(N) 

(r. 17) 
p pi (N, k) = 021, i (k) - b22, i (k)022, i (N)-1. b21, i (N) 
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Using (F. 1) and (F. 3) to eliminate pl (k + 1) and ßi (k) from the optimal control 

estimate cl (k) gives 

cl (k) = -R; '1Br Ar T QiIJ (N, k)xio 

_ 
N-1 

-)ii 
1BiTAi TQi012, 

i(k)022, i(N) 
102, 

i(J)[Ml, lzi(N-1-j)+gl, i(zf(N-1-f))) 
j=0 

_ 
k-I 

+k, -1B1TAi TQi ýq, (J){M1, lzi(k`1-j)+g11(zl(k-1-I))] 
j=0 

-R; 
1BýT Al rp (N, k)xio 

N-i 

-R; 
IB, T A, T 022, 

i (k)022, i (N)-1 E02, i (j)[Ml, izi (N -1- j) + gl, l (z; (N -1-. i))] j=o 

k-I 
+Ri-IBiT Ar T ýb1(f)[M1, 

jzi(k-1-1) t ¬; l, i(zl (k`1-. 1 ))] 
j=0 

-r2Rl 
1BT Ai T 

xl (k)+r1Rl''cis (k)+R; -1 T 
Ns 
E 

1H, 
l (k) 

J 

+R; -1(Bi -, fcl (xl 
, cl , ul ), k]T pl (k+l) 

+R; 71Rl ci (k)-Rl lgc*l (xl 
, cl , uf , 

k) T 

NN 
-R; 

I[. ß; 1 -Kcl (x , cf )JT E Hl l5T E Hlý lý {k) 

, 
I=1 j-I 

-R! -iB, T Aý T [Al - fl (Xj 
, cl , ul ), kJT pj (k + 1) 

+R, IB; T Ar T Ql x1 (k) - R-1B1T Al T qxt (xl, ci , ul , 
k) T 

,ý 
Ns 

+i lB; T Ai T[ J7 -K;. (xl cf ))T E H11 p (k) 
j =I 

-R! 
IHT A: -T 

NS 
Z 

cHy 
!p (k ) 

J 

(F, 18) 
Combining (F. 17) and (F. 18) produces 
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zi (k) = pi (N, k)x, o 
N-1 

-iii (k)5622, i (N)-1 02, i (J)[1 L1 lzi (N -I- j) + g1 1(zl (N -1- f))] 

k-1 
o (F. 19) 

+ZV1, i (j)[NI1, izi (k -1- j) + gl, i (zi (k -1- j))) 
j=0 

+M2,; zsi (k) + g2,1(zi (k)) 

where 

pcl (N, k) 
__ p (N, k)= , uxl (N, k) with µcl (N, k)=1B1T Ai T [QPxl (N, k)-ppl (N, k)l 

p. (N, k) 

(F. 20) 

p; -T WITA 1T [Q012, i (k)-622) (k)] 

and 77i (k) 012, i (k) ; (F. 21) 
022) (') 

-IBiT Ai T [Q c5I, i (k)-S 2J (k)] 

O11 (k) (F. 22) 

02/ (k) 

1rii_1 R-r2-1BT A-T 0111 

M2j = 0f1, mj 
0111 0,71 (F. 23) 

L0n1, mi 
0111 Oni 

Ig2ij(z (k)) 

and g2,1(z (k)) =0 (V. 24) 
0 

with 
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921)(zl (k)) = 

RJ-I[[B1 -fcl (Xs cl , ul ), k]T -BIT Ar T [Ar -fX. (xi cý , uý ), k]T ]Pf (k+1) 

+Rr-I[R1 cl (k)-yei (x1 , c1, ul , k)T 
NS 

l+Rl-1., Z; T ENý lý (k) 
J1 

+ lBT A" T xis k* xs cs us kT 

N 

-Ri 1LL. ý2; 1 -Ký. (xis , ýl )lT +B, T A; T [J1 `Kx. (x> >cl )lT ]E NTI5 (k) 

From (3.46)-(3.48) and (5.38), the updating mechanism can be written as 

z' +' (k) =i (k)+[12n+m -E]z (k) 

mf "'i1 Ili ni mi, ni cc 0 

with Czi 0rli, ml ExIni 0Ili 
O111, 

m1 
0i17 c PI 

. 

Combining (F. 19) and (F. 26) produces 

Zs+l (k) = eZ1 u1(N, k)xio 

-c 7) (k)qS22,1(N)-1 Eo, (N-1-j)[MI, t z(j)+g1 
,, 

(z, (j))] 
J=O 

+cZ1 EV(k-1-j)[Ml, izi (k)+Sl, i (zi (k))] 
j=o 

+[Ezi M2, i +12ni +mi -e]zi (k)+szt fi2,1(zý (k)) 

(F. 25) 

(F. 26) 

(F. 27) 

(F. 28) 

The algorithm mapping of the inner loop showing how z' (k), k E[O, N] is updated 

from iteration s to iteration s+l is obtained by the following simplification of (F. 28), 

which can expressed as 

Zl +1(k)=Ezt N1(N, k)xio 

N-1 
+czj Ti Ev(N, k, J)[M Lei zi (J), +gl, i (zj (i))l (F, 29) 

j=o 
+[ez1 M2, i +I2ni +rnl -czi l zi (k)+c, g2,, (zi (k)) 

where 
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O li (N, k, j) = 
y/i(k-1-j)-i7i(k)O22, i(N)O2, i{N-i-j); j E[O, k-1] 

i1i(k)022, i(N) 02, i(N-]-J); j r=[k, N-1] I 

" (F. 30) 

We now proceed to derive the algorithm mapping of the outer loop. 

The outer loop 

From Algorithm 6.2.2 we note that the outer loop uses global_information available 
from the Ns subsystems from the inner loop. Let p denote the iteration number of the 

outer loop. The outer loop consists of the price updating mechanism (6.16) that is: 

1p+1(k+1)=1p(k)+sl(üs(k)-H(,:, 7zs(k)+ Zes(k)+.. LL, s(k)+©S(k 

(F. 31) 

which can be simplified as 

1p+1(k+1)=1p(k)+ejTlys(k)-slHOS(k) (F. 32) 

Or, m Or 

with T1 = Or, n HJ Or (F. 33) 
Or, n Or, m 

h'*,, L- Ir 

ys(k)`[es(k)T zs(k)T us(k)T1T 
and 

zs(k)=[cs(k)T xs(k)T ps(k+l)T ]T 
(F. 34) 

ys (k) is the optimum estimates of global control, state and interaction ( defined in 

equation (3.4a)) as prescribed by the inner loop. 

Using global definitions (3.4a), (3.24a) , (5.2) and (5.3), and from equation (F. 19) an 

expression for ys(k) can be written as 

k 
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yi (k) ` Ny (N, k)xo 

N-1 
-77y(k)c22(N)-1 -Z02(j)IM3's(N-1- 

j)+s3(zs(N-I -. 1))] 
j=0 
N-1 

-riy(k)022(N) E02(j)[94(1 (N-1-j))] 
j=0 

F-'V2(j)[M3zS (k -1- j) + g3 (zs(k -1-J))] +E V2(j)tg4 (JS(k -1-j))1 +k 
k 

j=0 j=0 

+M4zs (k) + g5 (zs (k)) + g6(1 p (k)) 

(F. 35) 

where 

1 
, uc (N, k) R-1BT 

py(N, k) = px (N, k) ily(k) 
[PU (N, k) 

S-1DT 

A _T [U O12 (k) - 022 (k)] 

012(k) (P. 36) 
A-T [ b12 (k) - 022 (k)] 

with 0(. ) denotes the corresponding global version of 0(. ), j 

[riBT R-1 0 0n r MT (P. 37) 3- 
On, m r2 A- Orrr 

R-1BT A-T [U ý1(k)-ý2 (k)f 

rV 2 U) = 01 (k) (F. 38) 
S -1DT A -T [U X61(k)-02(k)] 

1ri7' 
-r1k-1BT A-T OM, 11- 

M4 O,, , On On (F. 39) 
On m on o 

s 
g3(zs(k))= 

931(z(k)) 
(F. 40) 

S32(Zs(k)) 

with 
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931(ZS(k))=BR-'[B- f: (xs, cs, US), k1T ps(k+1) 

+BR -' [Rcs(k)-q* (xs, cs, Us, k) T] 

+f 
*(xs, 

cs, us, k)-Axs(k)-Bcs(k)-Dus(k) 

932(zs(k)) = A-T [A-fz (xs, cs, us), k]T ps(k+1) 

+A-T [Qxs(k) - gz(xs, cs, us, k)T 1 

S4(l °(k)) = 
g4i(IP(k)) 
g42 (I p (k)) 

with 

g41(lP(k))=-BR-i[Z-KK(xs, cs)IT HTI1(k) 

+BR-1XT HTIP(k)+DS-Ilp(k) 

g42(JP(k))=KK(xs, cs)T HT lp(k) 

g51(zs(k)) 

g5(zs(k)) 0 

g53(zs(k)) 

with 

8S1(z5(k)) = R`1[[B- f: (xs, cs, us), k]T 

-BT A"T [A - fx (xs, cs, us), k]T ]PS(k + 1) 

+R-1[Rcs(k)-4c(xs, c s, us, k)T J 

+ R^1BT A`T [Qxs(k)- 9x(xs, cs, us, k)T 

S53,1(Zi (k))=-5; -1DTA-T[A-. fx (xs, cs, us)kl 
T 

PS(k+1) 

-S'1DT A_T [Qxs(k). -qx* (xs, cs, NS'k)T I 

(F. 40 

(F. 42) 

(F. 43) 

(F. 44) 

(F. 45) 

(F. 46) 

(F. 47) 

(C. 4ß) 
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g61(Is(k)) 
96(IS(k)) 0 (F49) 

963 (Is (k)) 

with 

861(1 s(k))= R -1 [Kc (xs, cs )lT -BT A-T [c-Kx(xs, cS))T ]IJT JP(k) (F. 50) 

963(IS(k))=-S-lDT AT`, T, /T HT JP(k) 

1TT*ssTTpXp 
(F. 51) 

-S -DA[; -Kx (x c )] H1 (k)-S `1 (k) 

Equation (F. 35) described the global output from the optimization of Ns subsystems in 

the lower level of the hierarchical algorithm PC2 to the outer loop. Note that the terms 

involving the interaction price 1(k) are isolated from the others in order to facilitate 

further derivation of the algorithm mapping of the outer. loop 
. 

Matrices M3 and M4 consist of convexification terms rl , r2 and r3. g3(zS(k)) and 

g6(zs(k)) represents the global model-reality differences in the global performance 

criterion and global plant dynamics. g4 (I P (k)) and g6 (11'(k)) are made up of model 

reality differences in the global output functions and coefficients of 1(k) . 
Expression (F. 35) can be further simplified by use of the following definition, 

Define 

W(N, k, j) = py(N, k)xo 

1N-1 s 
-iy (k)g22 (N)- E o2 (j)[M3z (N -1- f) + g31(ZS (N -1- J))) 

J 

+kEV(j)[M3z$(k-1-J)+ 3(zs(k-1-! ))1 
j=o 

+M4zS (k) + gs (zs (k)) +s jH©s(k) 

% (F, 52) 
Definition (F. 52) isolates terms prescribed by the inner loop that remain constant in the 
outer loop iteration. Using (F. 52) in (F. 35) and applying it to (F. 32) produces the 
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algorithm mapping of the outer loop which describes how 1(k), k(: - [0, N] is updated 

from iteration p to iteration p+l; 

Ip+1 
N-i 

(k+l)=g7(IP(k))+e1TW(N, k, J)+e1T Eö 2(N, k, j)[g4/P(J)] (F. 53) 
J 

where 

yr2(k-1-f)-ny(k)022(N)ýi2(N-1-J); j E[O, k-1] 
®2(N, k, 1)= t? 

ly(k)022(N)-102 (N-1-J); j e[k, N-1] 
(F. 54) 

and S7 (1 P (k)) = [Im+n+rl p (k) -e1Tg6 (1 ° (k))) (F. 55) 

Convergence behaviour is investigated by considering successive iterations of the 

algorithm in the inner loop and the outer loop, as defined by the mappings (F. 29) and 

(F. 53) respectively. 

First, we consider the convergence of the inner loop. We need to determine conditions 

such that condition (5.91) is satisfied. 

The following additional assumption is required. 

Assumption F. 1: 

The functions gl, j (z1 (k)) and g2,, (z1 (k)) defined by (F9) and (F. 24) are Lipshitz 

continuous for all z; (k), kE [0, N], with Lipschitz constants hlj and "2,1 

respectively. That is 

IISI., T(zl (k))-gl, l(zf-l(k))Ilshl, i (lzj (k)-zj' 1(k)I1 
(r. 56) 

IIS21j (zj (k))-921,1(zi 
-1(k))IISh2, i IIzf (k)-zi-'(k)II 

The following theorem presents the local convergence conditions of the inner loop. 

Theorem F. 3: 

A sufficient condition for algorithm mapping (F. 29) to satisfy (5.91) for every inner 

iteration s>I is given by the expression 

(Q 1, i (N)+h1, i a2, i (N))N+c h2'i +11 s112,, +12ni +nri -ehe<1 (F. 57) 

where h11 and h2,, are defined in (F. 56), e and M2, are defined by (F. 27) and 
(F. 23) and 
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II61? 1(N) = sup sup IIeO1(N, k, j)M11pill 
k E[O, N-1] j E[O, N-1] 

11(2,7 (N) = sup sup IIe0i (N, k, j)II 
(1'. S8) 

k E[O, N-1] j E[O, N-1] 

with O; (N, k, j) and M1,; defined by (F. 30) and (F. 8). 

Proof 

Condition (F. 57) is similar in structure to condition (5.94), therefore Theorem F. 3 can 

be proven using similar procedure as shown in the proof of Theorem 5.3. 

Convergence property of the outer loop is studied by considering successive iterations 

of the algorithm mapping defined by (F. 53) and determining conditions such that 

condition 

III pt1(k) -I (k)II <II1" (k) - lP ' (k)(I (F. 59) 

where 

II1(k)I1= sup III(k)IIq ;k E[O, N] 
k 

upQ11Iý+.... +II,. Iq)i/q; q E[1, ao]; k E[O, N] 
(r. 60) 

k 

The following additional assumptions is needed. 

Assumption F. 2: 

The functions g4 (1(k)) and g7 (1(k)) defined by (F. 43) and (F. 55) are Lipshitz 

continuous for all 1(k), k E[0, N], with Lipschitz constants 113 and /14 respectively. 

That is 

IIg4(1P(k))-g4(1p-1(k))II sh3 (Il"(k))-1P-l(k)Il 

II97(1 (k))-g7(11'-'(k))II sh4 Illp(k))-l1-l(k)II ý'. fl) 

The following theorem presents the global convergence conditions of the outer loop, 
Theorem F. 4 

A sufficient condition for algorithm mapping (F. 54) to satisfy (F. 59) for every outer 
loop iteration s>1 is given by the expression 

(h4 + h3a3 (N))N II <, 1 (F. 62) 

where h3 
, h4 and hs are defined in (5.101) and 
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IIo-3(N) = sup sup Ilc, T02(N, k, j)I( 
kE [O, N -1] jE [O, N -1] (F. 63) 

with 02(N, k, j) and T defined by (F. 54) and (F. 33). 

Proof: 

Theorem F. 4 can be proven using similar contraction mapping arguments as provided 
by the proof of Theorem 5.4. 
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