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Abstract 

In this research the application of artificial intelligence techniques for on-line process 

control and fault detection and diagnosis are investigated. The majority of the research is on using 

artificial intelligence techniques in on-line fault detection and diagnosis of industrial processes. 

Several on-line approaches, including a rule based controller and several fault detection and 

diagnosis systems, have been developed and implemented and are described throughout this thesis. 

The research results obtained demonstrate that rule based controllers can be an alternative in 

situations where conventional mathematical modelling fails to give a highlevel of automation. The 

research on on-line fault detection and diagnosis emphasises the use of deep knowledge based 

approaches. Therefore, two on-line fault detection and diagnosis systems based on qualitative 

modelling have been implemented. For the first one only single abrupt faults have been considered 

while the second one can cope with single and multiple simultaneous abrupt faults. In order to 

overcome the problems associated with the inherent ambiguity of qualitative reasoning, a fuzzy 

qualitative simulation algorithm, which allows a semiquantitative extension to qualitative 

simulation, has been investigated. The adoption of fuzzy sets allows a more detailed description of 

physical variables, through an arbitrary, but finite, discretisation of the quantity space, and also 

allows common-sense knowledge to be represented through the use of graded membership. Further 

research concerning self-reasoning has been done for qualitative model based diagnosis approaches. 
A self-learning system which can find any inappropriate settings of fault detection and diagnosis 

parameters and also learn fault symptoms from on-line sampled data, has been developed. Through 

machine learning techniques, the system can adjust fuzzy membership functions of the process 

variables automatically, as well as build the knowledge base on-line very efficiently. In order to 

cope with incipient faults and transient behaviour of the process under concern, a distributed on- 
line fault detection and diagnosis system, consisting of a knowledge based approach coupled with a 
fuzzy neural network, has been developed. The fault detection task is performed through the 

knowledge based approach. A systematic methodology for formulating fault detection heuristic 

rules from knowledge of system structure and component -functions has been investigated. Since 

structural decomposition corresponds to plant topology, such a method could be easier to 

implement. A fuzzy neural network approach has been used for fault diagnosis. This system 

combines the advantages of both fuzzy reasoning and neural networks. In order to speed up the 

fuzzy neural network training task, an extension of the classical backpropagation learning 

algorithm is also investigated. The research results achieved with this fault detection and diagnosis 

system reveal a very good performance and reliability provided that the training data is available. 
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Chapter 1 

Introduction 

1.1 Motivation 

Artificial Intelligence has gone in and out of fashion several times over the last 30 years. 
However, nowadays no one can seriously doubt that computers presents us a unique tool for 

emulating and extending human cognitive abilities. Neither can anyone doubt that, in the twenty 

first century, human knowledge will be one of the world's most important commodities. As with any 
difficult enterprise, artificial intelligence has attracted more spectators than players. Scepticism has 

always been high, just as it was in the early days of aviation. However, the 1980s have seen the 

beginning of change in this situation, as prototype systems from university laboratories have been 

developed and subsequently deployed in commercial application. Perfecting a technology, and 

making it accessible to all, usually takes longer than doing the original R&D. 

A major goal of intelligent control systems is to achieve high performance with increased 

reliability, availability, and automation of maintenance procedures. In many applications, increased 

requirements on productivity and performance lead to plants operating near their design limits for 

much of the time. This may often result in system failures, which are typically characterised by 

critical changes in the inherent dynamics of the system. System failures can potentially result not 

only in the loss of productivity but also in the loss of expensive equipment and, ultimately, of 

human lives. In response to these concerns, tighter safety and reliability specifications have been 

imposed, which has resulted in increased activity on research dealing with on-line fault detection 

and diagnosis systems for industrial applications. This development was mainly stimulated by the 

trend of automation towards more complexity and the growing demand of higher control systems 

availability and security. 
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The development of real time fault detection and diagnosis systems is fast becoming an 

issue of primary significance in the design of intelligent and autonomous control systems (Antsaklis 

and Passino 1992, Stengel 1993, White and Sofge 1993), since it provides the prerequisites for 

increased reliability, safety, system availability, minimisation of maintenance activities and costs, 

and the enhancement of system performance via early detection and diagnosis of faults. Early 

indication concerning which fault or faults are developing can help avoid systems breakdown, 

mission abortion and catastrophes. Hence, the architectures of fault detection and diagnosis systems 

are attracting a lot of attention in a wide range of system engineering applications, such as aircraft 

and propulsion systems, power plants, nuclear reactors, high speed conveyors, and chemical 

processes. 

The reasons mentioned above have motivated the current studies on the application of 

artificial intelligence techniques to process control engineering. This field includes expertise of 

process operators related to the operation of a specific process and expertise of control engineers in 

designing and utilising different control structures and control algorithms. By making full use of 

such expertise and knowledge, huge economic profit can result. Good controller performance could 

lead to good product quality, while good supervisory control could reduce energy and raw material 

consumption. Earlier detection and diagnosis of faults could reduce damage to process 

equipment's and products and reduce the shut down times of the process and, hence, 

reduce profit losses. The aim of applying artificial intelligence techniques in process control 

engineering is to make full use of available expertise and knowledge in order to achieve economical 

advantages. 

Therefore, a rule based controller and several on-line fault detection and diagnosis systems 
have been developed and implemented during this research, which are briefly introduced in the 

following sub chapters. The aims of the research carried out on using a rule based controller in on- 

line control are to provide and investigate control methods for situations where conventional control 

techniques has not proven to be efficient, instead of replacing the traditional methods in every 

situation. The aim of the research on using artificial intelligence techniques in on-line fault 

detection and diagnosis is to explore more systematic and efficient approaches for building real 

time fault diagnosis systems. 
This chapter is organised as follows. In sub chapter 1.2 a rule based controller is 

presented. Fuzzy qualitative modelling applied for diagnosis of single and double simultaneous 

abrupt faults, is introduced in sub chapter 1.3. In sub chapter 1.4, the use of machine learning 

techniques is explored in order to provide fault detection and diagnosis systems with self-learning 

abilities. In sub chapter 1.5 a distributed intelligent fault detection and diagnosis system, which is 

based on a knowledge based approach coupled with a fuzzy neural network, is introduced. 
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1.2 A Rule Based Controller 

Traditional control algorithms depend on numerical models of the processes to be 

controlled. However, it may be difficult to obtain the numerical models for some processes. As a 

matter of fact, there are many industrial examples where the high-level of supervisory, control and 
optimisation of manufacturing processes is not automated but is conducted by a combination of 

process experts and plant operators. In such situations the operators may have a mental model, in a 

symbolic form, about the process being controlled, and derive control actions from this symbolic 

model. Artificial intelligence techniques provide a means for dealing with symbolic computation 

and, hence, based upon these techniques it is possible to develop a program which can handle 

symbolic models and decide control actions based on such models. 

The first system based on artificial intelligence techniques developed in this research is a 

rule based controller for a simulated mixing process. The rule based controller is designed based on 

the causal relations inside the process being controlled. These causal relations form a symbolic 

model of the process, and the control actions are inferred from samples of both controlled and non- 

controlled process variables through such a symbolic model. 
A similar approach has been reported by Zhang, Roberts and Ellis (1988). The rule based 

controller developed here shares some of their ideas but, instead of describing the process variables 
behaviour in linguistic terms, in the present approach the behaviour of the process variables is 

represented through its qualitative values. The aim is to reduce the quantitative precision of the 
behaviour description but retain the important distinction. Therefore, +, 0 and - are defined as the 

quantity space, where these symbols represent the cases that a variable is increasing, unchanging 

and decreasing respectively. Details of the rule based controller proposed here are presented in 

chapter 4.. 

1.3 Fault Diagnosis Based on Fuzzy Qualitative Modelling 

In the industrial process control domain, process models are sometimes available and, 
hence, this knowledge can be used for fault diagnosis purposes. However, for some processes, 

accurate model parameters may not be available and, in some cases, accurate or direct 

measurements of some process variables may also be unavailable. Therefore, there is a motivation 

in this context, to avoid the effort and expense of creating, maintaining and computing with 

rigorous dynamic mathematical models, by focusing on qualitative indicators of process conditions 

(Oyeleye and Kramer 1988). 

17 



The aim of qualitative modelling techniques is to model the process under consideration 

qualitatively, and the qualitative behaviour of the process, such as the changes that occur in the 

process variables can be predicted through qualitative simulation. However, previous methods of 

qualitative modelling have tended to suffer from excessive generation of multiple solutions, which 

could lead to a loss in diagnostic resolution if these methods were used in practice. 
Therefore, several strategies for reducing spurious solutions and/or ambiguity have been 

pursued. In order to achieve such a goal the qualitative modelling approach proposed here for on- 

line fault detection and diagnosis utilises the theory of fuzzy sets to give an arbitrary, but finite, 

discretisation of the representation of process variables. Linguistic variables are defused and 
interpreted as verbal probabilities and their semantics are represented by fuzzy numbers. Moreover, 

the adoption of fuzzy sets allows common-sense knowledge to be incorporated in the interpretation 

of values through the use of membership grades. Following this procedure, the qualitative 

modelling approach also allows both magnitude and sign information on the functional relationship 
holding against two or more variables to be represented, resulting in a considerable reduction of the 

inherent ambiguity of qualitative computation. 
In this research, a fuzzy qualitative method, which is based on de Kleer and Brown's 

(1984) confluence based qualitative physics, is investigated. By this means, changes in the process 

variables are predicted in terms of fuzzy numbers. When a fault occurs in the process under 

concern, the actual behaviour of the process variables will deviate from the predicted one and this 

can be used to detect the occurrence of a fault or faults in the process under consideration. Once a 
fault or faults are detected a knowledge based fault diagnosis system is triggered in order to locate 

the hypothetical fault or faults. The diagnosis task is carried out through the comparison between 

the process variables real behaviour and the fault symptoms stored in the knowledge base. Such a 

comparison is performed by using fuzzy sets for describing the process variables real behaviour, as 

well as for representing the fault symptoms. 
However, isolating and identifying a process malfunction can be especially difficult in large 

fault hypothesis spaces such as in the application of fault detection and diagnosis approaches in 

large scale systems. Therefore, in order to alleviate this problem and enhance the performance and 

reliability of the knowledge based fault diagnosis system, the current approach has been structured 

as a production system where the inference engine possesses forward and backward chaining 

abilities. Thus, following a forward chaining strategy and based on the patterns of violation in the 

fuzzy qualitative model, a general analysis is performed for finding what faults are possible and, 

hence, generate a reduced set of fault candidates. Afterwards, through backward chaining and 

following a procedure of hypothesis formulation and test, a diagnosis is selected and a more 

detailed analysis is carried out in order to prove or deny the diagnosis using known facts and other 
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rules. This methodology has the advantage of first indicating where to look for a solution rather 

than spending a lot of time retrieving unimportant data. 

The on-line fault detection and diagnosis system proposed here, which uses fuzzy 

qualitative modelling coupled with a knowledge based system, has been implemented with two 

different configurations. The first one, which is described in chapter 6., has only single abrupt fault 

detection and diagnosis abilities. In chapter 7. an extension of the first approach is considered 

which can cope with single and multiple simultaneous abrupt faults. Both systems have been 

successfully applied in simulation studies conducted with a mixing process and with a continuous 

stirred tank reactor. Moreover, for both on-line fault detection and diagnosis approaches, 

respectively described in chapters 6. and 7., a self-learning module has been developed which is 

briefly introduced in the following sub chapter. 

1.4 Self-Learning Fault Diagnosis Based on Fuzzy Qualitative 

Modelling 

A new generation of fault detection and diagnosis systems should have the ability to reason 
their own behaviour and to learn from past experience. With such a goal, some investigations have 

been performed in building self-reasoning fault 'detection and diagnosis systems and a self-learning 

module has been developed. Such a self-learning system is based on the fault detection and 
diagnosis systems, using qualitative simulation, described in chapters 6. and 7.. 

The self-learning approach is based on a hybrid inductive and deductive learning approach. 
When the fault diagnosis system fails to give the location of a detected fault or faults in the process 

under concern, the self-learning system is triggered. Therefore, the aim is to identify why the fault 

diagnosis system failed to give the desired diagnosis and to learn from this experience in order to 

avoid future similar situations. 
The performance of the on-line fault detection and diagnosis approaches mentioned above 

is affected by some threshold values used for firing the qualitative simulation process in order to 
detect a hypothetical fault. Any inappropriate settings of these parameters could result in a wrong 
diagnosis or miss a fault. Therefore, it is desirable that a fault diagnosis system can reason its own 

behaviour and find out any inappropriate parameters when it failed to give a desired diagnosis 

result. A inductive learning technique is used to backward trace the fault detection and diagnosis 

reasoning in order to find any parameters which are responsible for not giving the desired output. 

Once these parameters are identified, new values are evaluated in order to avoid a future similar 

situation. 
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The deductive learning ability of the self-learning fault detection and diagnosis system has 

been used to acquire new knowledge about fault symptoms. When a fault or faults occur at the first 

time and, hence, the fault diagnosis system failed to locate such fault or faults, the self-learning 

system starts to investigate the real behaviour process variables, according to the diagnosis 

reasoning procedure previously performed. This strategy provides values in a linguistic form whose 

semantics are represented by fuzzy numbers and stored in the knowledge base in order to be used 

for a possible future diagnosis. This procedure allows us to build the knowledge base on-line, 

simplifying the knowledge acquisition procedure, as well as the task of introducing all the fault 

symptoms in the knowledge base. 

Simulation studies conducted with a mixing process and with a continuous stirred tank 

reactor, where single and multiple simultaneous abrupt faults have been considered, have 

demonstrated a good performance of the self-learning fault detection and diagnosis system. The 

results achieved, as well as the system itself, are presented in chapter 8.. 

1.5 Process fault diagnosis using a knowledge based system 

coupled with a fuzzy neural network 

As mentioned in further chapters, dealing with incipient faulty scenarios, where faults 

evolve gradually instead of suddenly, is a major limitation of the techniques used in the conception 

of the fault detection and diagnosis systems previously introduced. Therefore, since incipient faults 

occur frequently in real applications of fault detection and diagnosis systems for industrial 

processes, investigations have been conducted for developing on-line fault detection and diagnosis 

system with the capabilities of coping with such a kind of faulty situation. It has been observed that 

artificial neural networks are a powerful tool for developing fault diagnosis systems which can cope 

with incipient faults. 

The structure of artificial neural networks is based on our understanding of the biological 

nervous system. Several models have been proposed where all of them attempt to achieve good 

performance via dense interconnection of simple computational elements. Instead of performing a 

program of instructions sequentially, artificial neural networks models explore many competing 

hypotheses simultaneously using massively parallel networks composed of many computational 

elements connected by links with variable weights. For modelling a specific problem, these weights 

are adjusted during the artificial neural network learning procedure. In general, a neural network is 

presented with a training set consisting of a group of examples from which the artificial neural 

network can learn. These examples, known as training patterns, are represented as vectors. In 
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diagnostics, a pattern (symptoms) acts as an antecedent from which we can infer a classification 

(diagnosis). 

Moreover, like brains artificial neural networks have the ability to recognise patterns we 

cannot even define-Ibis property is known as recognition without definition which enables systems 

to generalise. Since an artificial neural network has the ability to generalise on the tasks for which 

it is trained, fault diagnosis seems to be a promising field for their application. From this point of 

view, the ability to generalise may enable the artificial neural network to provide the correct answer 

when presented with a new input pattern that is different from any pattern used during the training 

procedure. Hence, once the artificial neural network has been trained with symptoms of abrupt 
faults, it may able to classify the same faults under an incipient faulty scenario, where the fault 

symptoms will be slightly different from the fault symptoms used during the training task. 

Moreover, since artificial neural networks can be trained to have the required relationships between 

inputs and outputs, they can be used to model systems with high nonlinearity and a wide dynamic' 

operating range. 

Therefore, a growing number of fault detection and diagnosis systems based on artificial 

neural networks have been introduced in the last few years. Some of these approaches are 

mentioned in chapter 10.. However, most publications only deal with processes under steady-state 

conditions or simply are turned off when a transient behaviour occurs. For such systems, and under 

transient behaviours of the process under consideration, the change in the artificial neural network 
inputs can also affect certain features of the neural network outputs and, hence, the on-line fault 

detection and diagnosis system could give incorrect information about a fault or faults in the 

process in the presence of transient behaviours. This reason motivated the development of a 
distributed on-line fault detection and diagnosis system, which has been designed' to cope with 

transient behaviours of the process under concern. 

The overall computational system implemented consists of a knowledge based approach 

coupled with a fuzzy neural network. Fault detection is performed through the knowledge based 

system where fault detection heuristic rules have been generated from deep and shallow knowledge 

of the process under consideration. Deep knowledge is obtained from structural decomposition of 

the overall process into subsystems according to plant topology. Details of this procedure are 

described in chapter 9., where a systematic methodology for generating fault detection heuristic 

rules is proposed. Since the method developed is systematic, it may be suitable for large scale 

process analysis. Fault detection heuristic rules based on shallow knowledge have been developed 

from operational process experience. 

The fuzzy neural network performs the diagnosis task. The aim of this approach is to 

combine the advantages of both fuzzy reasoning and neural networks. Fuzztiy reasoning is capable 
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of handling uncertain and imprecise information while an artificial neural network is capable of 

learning from examples. Moreover, the fuzzy approach also makes the system less sensitive to 

measurement noise (Zhang and Morris 1994). 

The interface between the knowledge based fault detection approach and the fuzzy neural 

network has been performed through transfer of data. Following this procedure the system can cope 

with on-line fault detection and diagnosis in the presence of transient behaviours, without the fuzzy 

neural network outputs being affected by measurement variables transient behaviour. The 

distributed on-line fault detection and diagnosis system has been implemented through a TURBO 

C++ program and successfully applied in simulation studies of a mixing process and of a 

continuous stirred tank reactor. Single and double simultaneous abrupt faults, as well as incipient 

faults, have been considered. The results achieved during these simulation studies, as well as a 

description of the overall computational system, are presented in chapter 10.. 
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Chapter 2 

Knowledge Based Systems 

2.1 Introduction 

Artificial Intelligence (AI) has achieved considerable success in the development of 

knowledge based systems since mid-1960s. This area of AI has concentrated on the construction of 
high performance programs in specialised professional domains, a pursuit that has encouraged an 

emphasis on the knowledge that underlies human expertise and has simultaneously decreased the 

apparent significance of domain independent problem-solving theory. Moreover, in the last few 

years the number of expert system applications have been increasing dramatically. As a matter of 
fact, one can find a large number of reported applications in the periodicals and conference 

proceedings of many subjects. The terms "expert systems" and "knowledge based systems" are used 

interchangeably in some artificial intelligence literature (Harmon and King 1985). However, in the 

remainder of this thesis the author will use the term knowledge based systems. 
The area of knowledge based systems investigates methods and techniques for constructing 

systems with specialised problem-solving expertise. Expertise consists of knowledge about a 

particular domain, understanding of domain problems, and skill at solving some of these problems. 
Elucidating and reproducing such knowledge is the central task in building expert systems. 
Knowledge in any speciality is usually divided in two kinds, public and private. Public knowledge 

includes the published definitions, facts, theories of which textbooks and references in the domain 

of study are typically composed. However, expertise usually involves more than this public 

knowledge. Human experts generally possess private knowledge that has not found its way into the 

published literature. This private knowledge consists largely of rules of thumb that have come to be 

called heuristics. Several knowledge based systems have been implemented during this research, 
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which are presented in the following chapters. This chapter provides some background for a better 

understanding of the further chapters. 
In general, a knowledge based system should consist of the following components (Pham 

1988): 

1. A knowledge base containing knowledge (facts, information, rules of judgement) about 

a problem domain. 

2. An inference mechanism (also known as inference engine, control structure, or 

reasoning mechanism) for manipulating the stored knowledge to produce solutions to 

problems. 
3. A user interface (or explanation module) to handle communication with the user in 

natural language. 

4. A knowledge acquisition module to assist with the development of the knowledge base. 

The knowledge base and inference engine constitute the core of the system and thus are essential 

parts of it. For this reason, they will be examined in detail below. 
In some artificial intelligence literature the term knowledge engineering has been adopted to 

combine scientific, technological and methodological elements. A principle of knowledge 

engineering holds that expert performance rarely conforms to some rigorous algorithmic process, 

yet this performance does lend itself to computerisation. Knowledge engineering addresses the 

problem of building skilled computer systems, aiming first at extracting the expert's knowledge and 
then organising it in an effective implementation. There are several ways of representing 
knowledge. The three most popular of these are rules, frames and semantic nets (Waterman 1985). 

Rule-based representation is a shallow representation, whereas schemes using frames and semantic 

nets are deep representations. 

In a rule based system, knowledge is represented in terms of facts pertinent to a problem 

area and rules for manipulating the facts. As in the approaches described in further chapters, many 

systems also incorporate information about when or how to apply the rules (i. e. meta knowledge). 

Facts are asserted in statements which explicitly classify objects or specify relationships between 

them. Rules consist of modular pieces of knowledge in the form "IF antecedent THEN 

consequence" or "IF situation THEN action", meaning that if the situation described in the 

antecedent part of the rule is true, then produce the action specified in the consequence part. Hence 

the names "IF-THEN rules" or "Production rules" are introduced. In contrast, representation 

schemes using frames or semantic nets allow a deeper insight into underlying concepts and causal 
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relationships and facilitate the implementation of deeper-level reasoning such as abstraction and 

analogy. 

However, rule based systems are the most widely used. This is, perhaps, because their 

development has been greatly facilitated by the availability of low cost skills on personal 

computers. They tend to be the natural choice for deviation-type problems, such as control, 
diagnosis, interpretation and monitoring (Pham 1988). 

As quoted above, another essential part of the system is the inference mechanism. In a rule 

based system, the inference engine, also called a rule interpreter, examines facts and executes rules 

contained in the knowledge base according to set -logical inference and control procedures. 
Reasoning by the exercising of inference rules can proceed in different ways according to different 

control procedures: backward or forward. In backward chaining, the inference engine works 
backward from a hypothesised consequence to locate known predicates that would provide support. 

In forward chaining, the inference engine works forward from known predicates to derive as many 

consequences as possible. 

Although the basic ideas of intelligent problem-solving allow for a wide diversity of 
implementations and, hence, a few architectural principles have begun to emerge. In this context the 

term architecture refers to the science and method of design that determine the structure of the 

knowledge based system. The emergent principles reflect current understanding of the best way to 

design structures that support intelligent problem-solving. During the current research, the 

knowledge based systems implemented, have been structured in a similar fashion to production 

systems (Rich and Knight -1991). 
This chapter is organised as follow. Sub chapter 2.2 provides a description of production 

systems. In sub chapter 2.3 the knowledge acquisition issue is discussed. In sub -chapter 2.4 a 

detailed description of how to represent the acquired knowledge is given. The inference 

mechanisms, such as forward and backward chaining, of a knowledge based system are described 

in sub chapter 2.5. 

2.2 Production Systems 

Knowledge based technologies are emerging as important elements of process engineering. 

The role of computing in this area has traditionally and predominantly been in "number-crunching" 

applications (McDowell et al. 1991). However, recent advances in knowledge based techniques 

allow the application of additional problem solving methods that can enhance and augment 

numerical techniques and in many cases address issues and problems outside the field of activity of 
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numerical methods (Stephanopoulos 1990). Production systems have been found to be a powerful 

tool for enhancing performance and reliability of knowledge based systems. 
Since search forms the core of the knowledge based systems implemented during this 

research, it is useful to structure the program in a way that facilitates the search process. The 

author has used a structure based upon a production system. A number of knowledge based 

systems have used this format and have shown that it works well, -such as MYCIN and Prospector 

(Vadera 1989). In general, a production system consists of: 

1. A set of heuristic or production rules, each consisting of a left side, which is usually 

denoted by a rule condition, that determines the applicability of the rule, and a right 

side that describes the action to be performed if the rule is applied; 

2. One or more knowledge bases that contain whatever information appropriate for the 

particular task. Some parts of each knowledge base may be permanent, while other 

parts of it may pertain only to the solution of the current problem; 
3. A control strategy that specifies the order in which the rules will be compared to the 

data in the knowledge base and a way of resolving the conflicts that arise when several 

rules match at once. 

A general structure of a production system is shown in Figure 2.1. 

Figure 2.1 - General structure of a production system 
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The pure production system model has no mechanism for recovering from dead ends in the 

search task; it simply continues until no more heuristic rules are enabled and then halts. Many 

practical implementations of production systems allow backtracking to a previous state of the 

search procedure in such situations. 
Production systems provide a model for encoding human expertise in the form of heuristic 

rules and designing pattern-driven search algorithms, tasks that are central to the design of the rule 

based knowledge systems. In knowledge based systems, the production system is not necessarily 

assumed to actually model human problem-solving behaviour; however, the aspects of production 

systems that make them useful as a potential model of human problem solving make them an ideal 

tool for building knowledge based systems. 

Production systems are a good way to model the strong data-driven nature of intelligent 

actions. As new inputs enter the database, the behaviour of the system will change. Moreover, new 

rules can easily be added for new situations without disturbing the rest of the system. Although 

sometimes confusion arises from interaction amongst rules, it is often less severe than the 

corresponding complications of modifying straight-line code. 
Data-driven search begins with a problem description, such as a set of logical axioms, 

symptoms of an illness, or a body of data that needs interpretation, and infers new knowledge from 

the data. This is done by applying rules of inference, legal moves in a game, or other state 

generating operations to the current description of the world and adding the results to that problem 
description. This procedure continues until a goal is reached. 

Although we have treated production systems in a data-driven fashion, " they may also be 

used to characterise goal-driven search. Goal-driven search begins with a goal and works 
backwards to establish its truth. To implement this in a production system, the program must try to 

match the goal against the actions of the heuristic rules. These actions are matched just as the 

conditions of the heuristic rules were matched in the data-driven reasoning. All heuristic rules 

whose actions match the goal form the conflict set. 
Therefore, the object of a search procedure is to discover a path through a problem space 

from an initial configuration to a goal state. As mentioned earlier there are two directions in which 

such a search could proceed: 

- Forward, from the start states; 

- Backward, from the goal states. 

The productions system model of the search process provides an easy way of viewing 

forward and backward reasoning as a symmetric process. To reason forward, the left sides of the 
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heuristic rules, the preconditions, are matched against the current state, and the right side, the 

results, are used to generate new hypotheses until the goal is reached. To reason backward, the 

right sides are matched against the current hypothesis and left sides are used to generate new 

hypotheses representing new goal states to be achieved. This continues until one of these goal states 

is matched by an initial state. 
We can also employ a combination of strategies. For example, we can search in a forward 

direction until the number of states becomes large and then switch to a goal directed search to use 

possible subgoals to select among alternative states. The danger in this situation is that, when 
heuristic or best-first search is used, the parts of the chain rules actually searched may "Miss" each 

other and ultimately require more search than a simpler approach. However, when the branching of 

a space is constant and exhaustive search is used, a combined strategy can cut back drastically the 

amount of space searched. For this reason, in the knowledge based fault diagnosis approaches 

described in subsequent chapters both strategies are combined in order to achieve a good 

performance for the fault diagnosis system. 
Hence, the production system offers a general framework for implementing search. 

Because of its simplicity, modifiability, and flexibility in applying problem-solving knowledge, 

production systems have proved to be an important tool for the construction of knowledge based 

approaches. The production system is an elegant model of separation of knowledge and control in a 

computer program. Control is provided by an inference engine responsible for firing the heuristic 

rules, and the problem-solving knowledge is encoded in the rules themselves. The advantages of this 

separation include ease of modifying the knowledge base without requiring a change in the code for 

program control and, conversely, the ability to alter the code for program control, without changing 

the set of heuristic rules. The first advantage is particularly important for, automating the 

knowledge acquisition task by using machine learning techniques. 

Another important aspect of the production system model is the lack of any syntactic 
interactions between heuristic rules. Rules may only affect the firing of other heuristic rules by 

changing the pattern in working memory; they may not "call" another rule directly as if it were a 

subroutine, nor may they set the value of variables in other heuristic rules. The scope of the 

variables of these rules is confined to the individual rule. This syntactic independence supports the 

incremental development of knowledge based systems by successively adding, deleting, or changing 

the knowledge (heuristic rules) of the system. This property of production systems has 

been found to be fundamental for implementing knowledge based approaches with self-learning 

capabilities. 
Moreover, the problem addressed by artificial intelligence programs requires particular 

flexibility in program execution. This goal is served by the fact that the rules in a production 
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system may fire in any sequence. The description of a problem that makes up the current state of 

the world determines the conflict set and, consequently, the particular search path and solution. 

In artificial intelligence literature it is usual to find the production systems divide into four 

classes, as monotonic production systems, nonmonotonic production systems, partially 

commutative production systems and commutative production systems. A monotonic production 

system is a production system in which the application of a heuristic rule never prevents the later 

application of another rule that could also have been applied at the time the first rule was selected. 

A nonmonotonic production system is one in which this is not true. A partially commutative 

production system is a production system with the property that if the application of a particular 

sequence of rules transforms state x into state y, than any permutation of those rules that is 

allowable, that is where each rule's preconditions are satisfied when it is applied, also transforms 

state x into statey. A commutative production system is a production system that is both monotonic 

and partially commutative (Nilsson 1980). 

The significance of these classes of production systems lies in the relationship between 

classes and appropriate implementation strategies. Obviously, for deciding which class of 

production system is best suited for solving a specific problem, the relationships between the 

problem and the different types of production systems should be analysed. 
Some authors have argued that, for any solvable problem, there exists an infinite number of 

production systems that describe ways to find solutions. However, some will be more natural and 

efficient than others. Clearly, any problem that can be solved by any production system can be 

solved by a commutative one. However, since such a production system may use individual states 

to represent sequences of applications of rules of a simpler noncommutative production system, 
hence, it may be practically useless. Therefore, one can conclude that, in a practical sense, there 

definitely is a relationship between kinds of problems and the kinds of production systems that lend 

themselves naturally for describing those problems. 
For instance, consider the generic problem of classification. The task here is to examine an 

input and then decide which of a set of known categories the current input is an example. Most 

diagnosis tasks, including medical diagnosis as well as diagnosis of faults in industrial processes, 

are examples of classification. For such problems a partially commutative, monotonic production 

system may be suitable. This procedure will be followed in further chapters for fault diagnosis 

purposes. From known facts a reduced set of hypothetical faults is generated and then the program 

using the known facts try to confirm a fault from the reduced set generated. 
The methodologies of acquiring knowledge about a specific domain for building the 

knowledge base of a production system is also a very important subject. Therefore, the next sub 

chapter examines such methodologies. 
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2.3 Knowledge Acquisition 

Knowledge of a domain takes many forms. When that knowledge is firm, fixed and 

formalised, algorithmic computer programs that solve problems in such a domain are more 

appropriate than heuristic ones. However, when the knowledge is subjective, ill-codified and partly 

judgmental, knowledge based systems embodying a heuristic approach are more appropriate. This 

type of knowledge is rarely formulated in a fashion that permits simple translation into a program. 

Thus, the process of extracting knowledge from a domain expert and transferring it to a program is 

an important and difficult problem. This process is denoted by knowledge acquisition and involves 

problem definition, implementation and refinement, as well as representing facts and relations 

acquired from an expert. 

Knowledge acquisition is a bottleneck in the construction of a knowledge based system. 
Since the knowledge engineer has far less knowledge of the domain than an expert, the knowledge 

engineer's job is to act as a go-between to help an expert build a system. However, communication 

problems impede the process of transferring expertise into a program. The vocabulary initially used 
by the expert to talk about the domain with a novice is often inadequate for problem-solving; thus, 

the knowledge engineer and domain expert must work together to extend and refine it. One of the 

most difficult aspects of the knowledge engineer's task is helping the expert to structure the domain 

knowledge, to identify and formalise the domain concepts. 
Knowledge for a knowledge based system can be acquired in several ways, all of which 

involve transferring the expertise needed for high performance problem-solving in a domain from a 

source to a program. The source is generally a human expert but could also be empirical data, case 

studies, or other sources from which a human expert's own knowledge has been acquired. The 

process of translating the knowledge from the source to the program may be performed by a 

knowledge engineer or by a program. 
The knowledge used in many of the early knowledge based systems was hand-crafted. A 

programmer would transform an expert's knowledge into code without separating the knowledge 

from the reasoning mechanism. Hand-crafting knowledge requires that the programmer learn 

enough about the domain, but it does not assume that the expert has any knowledge of computing 

or of the specific implementation involved. The programmer already is an expert or quickly 

becomes one. It takes a great deal of effort to build and debug such'a program, and it is nearly 

impossible to keep the problem-solving knowledge consistent when frequent updating occurs. 

Therefore, since the knowledge to build the knowledge base is acquired partly from past 

experience, there is reason to hope that a self-learning program could build a knowledge base for a 

knowledge based system in a similar way. Hence, in a further chapter, a fault detection and 
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diagnosis system with self-learning abilities, which has the capability of acquiring fault symptoms 

on-line, has been investigated. 

2.4 Knowledge Representation 

As a research area in its own right, knowledge representation evolved within the field of 

artificial intelligence, where it continues to play a central role. This should not come as a surprise 

since everyone would probably agree that intelligence has a lot to do with how knowledge is being 

handled in the human mind and, hence, in any kind of intelligent device. 

Elicited knowledge is recorded in a way that is suitable for people to examine and 

understand it. However, before it can constitute a knowledge base that is suitable for a computer, it 

must be organised in such a fashion that a computer inferencing program will be able to access this 

knowledge whenever needed and draw conclusions. 
The function of any representation scheme is to capture the essential features of a problem 

domain and make that information accessible to a problem-solving procedure. It is obvious that the 

representation language must allow the programmer to express the knowledge needed for a problem 

solution. Abstraction, the representation of only that information needed for a given purpose, is an 

essential tool for managing complexity. Abstraction is also important, in part, because many 

assumptions and expectations seem to be indexed for storage and retrieval according to the patterns 

that tie acts together. From the practical point of view, abstraction is also important for conveying 
information rapidly. This property is specially important when knowledge based systems are 

applied for real-time fault diagnosis purposes of large scale systems, where a large number of fault 

symptoms has to be handled. 

It is also important that the resulting programs be computationally efficient. 

Expressiveness and efficiency are major dimensions for evaluating knowledge representation 
languages. Sometimes, expressiveness must be sacrificed to improve efficiency. Of course, this 

must be done without limiting the abilities of the representation scheme used to capture essential 

problem-solving knowledge. Optimising this trade-off is a major task for designers of intelligent 

systems. 

A good system for representation of knowledge in a particular domain should possess the 
following four properties (Rich and Knight 1991): 

1. Representational Adequacy, the ability to represent all of the kinds of knowledge that 

are needed in that domain; 
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2. Inferential Adequacy, the ability to manipulate the representational structures in such a 

way as to derive new structures corresponding to new knowledge inferred from old; 

3. Inferential Efficiency, the ability to incorporate into the knowledge structure additional 

information that can be used to focus the attention of the inference mechanisms in the 

most promising direction; 

4. Acquisitional Efficiency, the ability to acquire new information easily. The simplest case 

involves direct insertion, by a person, of new knowledge into the database. Ideally, the 

program itself would be able to control knowledge acquisition. 

Unfortunately, no single system that optimises all of the capabilities for all kinds of 
knowledge has yet been found. As a result, multiple techniques for knowledge representation exist 

and many programs rely on more than one technique. As mentioned above, the three most popular 

techniques for knowledge representation are semantic networks, frames and heuristic rules. 
Semantic networks, also called semantic nets, are basically graphical representations of 

knowledge that show hierarchical relationships between objects. They are composed of nodes and 
links between nodes. Each node represents objects and descriptive information about those objects. 
Objects can be any physical item, concepts, events, or actions. Attributes of an object can also be 

used as nodes. These might represent size, colour, class, age, origin, or other characteristics. The 

links between nodes show the relationships between the various objects and descriptive factors. The 

most common links are of the "is-a" or "has-a" type. Hence, semantic networks'are well-suited for 

representing knowledge of a hierarchical nature. For instance, semantic networks are eminently 

suitable in recording the way in which objects are made up of their component parts as, for 

example, in computer-aided manufacturing (Marshall 1990). 

A frame is a data structure that includes all the knowledge about a particular object. As a 

means of representing knowledge, the frame is based on the observation that people do not 

construct their ideas about familiar objects from scratch, but carry with them a set of expectations 

about these things. A frame represents an object or situation by describing the collection of 

attributes that it possesses. It does' this by listing all the attributes of a typical case, and by 

providing a slot for each. This description of the typical case can them be used to capture any 

individual case by placing the values of its attributes in the respective slots. Frames are basically an 

application of object-oriented programming for artificial intelligence and knowledge based systems. 

Since the knowledge based systems implemented during this research work have 

followed a production system architecture, the knowledge has been represented through heuristic 

rules. Following this procedure, knowledge can be represented with heuristic rules of the general 
form: 
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- IF antecedent THEN consequence. 

According to such a general form, the rules' antecedent, in specific circumstances, can be 

either true or false, and the rules' consequence will be carried out only when the antecedent is true. 

The antecedent part of the rule may include dozens of Ifs and the consequence side may include 

several parts as well. Heuristic rules can be divided into two types such as, declarative rules and 

procedural rules. Declarative rules state all the facts and relationships about a specific problem. 

Procedural rules, on the other hand, advise on how to solve a problem, given that certain facts are 

known. 

Heuristic rules representation is especially applicable when there is a need to recommend a 

course of action based on observable events such as fault diagnosis. It has several major 

advantages: 

- Heuristic rules are easy to understand. Knowledge can be organised into modular form. 

They are communicable because they are a natural form of knowledge; 

- Inference and explanation are easily derived; 

- Modifications and maintenance are relatively easy. Knowledge can be added to a 
knowledge base in a straightforward way by adding heuristic rules to it, 

- Uncertainty is easily combined with rules. For instance, in the knowledge based fault 

diagnosis systems presented in further chapters, fault symptoms are described by using 
fuzzy sets; 

- Each rule is usually independent of all others. 

The major limitations, of representing knowledge about a particular domain by using the 

heuristic rules format, are as follows: 

- Complex knowledge requires many heuristic rules; 

- Systems with many rules may have a search limitation in the control program. Some 

programs have difficulty in evaluating rule-based approaches and making inferences. 

2.5 Inference Engine 

Once the knowledge base is completed it is ready for use. To do so, we need a computer 

program that will enable us to access knowledge for the purpose of making inferences and 

33 



decisions. This program is an algorithm that controls some reasoning process and it is usually 

referred to as the inference engine or the control program. In the heuristic rule based systems it is 

also referred to as the rule interpreter (Turban 1992). 

The inference engine directs the search through the knowledge base. The process may 
involve the application of procedural rules in what is called pattern matching. The inference engine 

decides which heuristic rule to investigate, which alternative to eliminate, and which attribute to 

match. The most popular strategies of an inference engine are forward and backward chaining, 

which are used in the knowledge based approaches described in further chapters. These inference 

techniques are described in the remainder of this sub chapter. 
Inferencing with heuristic rules involves implementation of the modus ponens approach 

(Rich and Knight 1991). According to this procedure, if there is a heuristic rule such as "IF A 

THEN B" and if we know that A is true, then it is valid to conclude that B is also true. When this 

situation has occurred, we say that a specific heuristic rule was fired. Firing a rule occurs only 

when all of the rule's antecedents (IF side) are satisfied. 
Testing a rule antecedent or consequence can be as simple as matching a symbolic pattern 

in the heuristic rule to a similar pattern in the working memory. Every heuristic rule in the 

knowledge base can be checked to see if its antecedent or consequence can be :. satisfied by 

previously made assertions. This process may be done in one of two directions, forward or 
backward, and it will continue until no more rules can be fired, or until a goal is achieved. 

Forward chaining is a data-driven approach. In this approach, we start from available 
information as it comes in, or from a basic idea, and then try to draw conclusions. Following a 
forward chaining strategy, the inference engine uses heuristic rules in a chain to move forward from 

a given knowledge to new knowledge. 

For instance, from the fact that A is true and the rule, "IF A THEN B", we may deduce 

that B is true. Afterwards, the existence of a rule such as, "IF B THEN C, allows us to deduce 

that C is true. This process can be continued for as long as the heuristic rules will connect. Such a 

chaining procedure may be represented as shown in Figure 2.2. Moreover, forward chaining is 

equivalent to finding what can be inferred from given knowledge by using a set of rules. 

Backward chaining is a goal-driven approach in which we start from an expectation of 

what is going to happen (hypothesis), and then seek evidence that supports or contradicts our 

expectation. In other words, we set out to find if C is true. A heuristic rule such as, "IF B THEN 

C", asserts that C is true if B is also true. A heuristic rule, "IF A THEN B", asserts in turn that B 

is true if A is also true. Therefore, if A is a known fact, then the chain is complete and C is shown 

to be true. Backward chaining is illustrated in Figure 2.3. 

The smallness of the set of rules considered above obscures certain difficulties that may 
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1 

Figure 2.2 - Forward chaining procedure 

Figure 2.3 - Backward chaining procedure 

arise with larger sets. It may be that at any point there is more than one rule that matches the 

requirement to continue the chain. In this case some means of resolving the conflict must be 

invoked. The simple expedient of taking the first matching rule to be encountered is employed in 

some systems, but others employ more sophisticated strategies. Another matter that arises is how to 
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decide when to use forward chaining and when to use backward chaining. In general, this can be 

decided by examining the branching factor of the chaining process and deciding which is the 

smaller of the number of new facts that can be determined from the given ones, and the number of 

ways in which assertions can be demonstrated to be true in terms of the given facts. 
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Chapter 3 

Fuzzy Systems 

3.1 Introduction 

System theory is defined as a body of concepts and techniques used to analyse and design 

systems regardless of their nature. The important aspect of systems analysis and design is the 

development of a model that describes the "cause and effect" relationships between variables. But 

an exact description of any real system is virtually impossible. Our inability to make precise 

statements about complex behaviours is a fact we have to accept and adjust to. Complexity is 

associated with description rather than being thought of as an intrinsic property of objects. Hence, 

we may well consider reducing the complexity of an object, not by changing that object, but by 

changing our views about it. 

Conventional systems approach has tended to assume that what needs to be done is to 

survey the whole system. The fuzzy systems approach challenges this assumption and proposes to 

construct a global representation on the basis of assumptions about partial representation. In this 

way we are able to hold different imperfect representations of reality under concern at the same' 

time. Fuzzy systems theory has already been born and is growing. 
This chapter provides the background and key points about fuzzy logic, 'which form the 

basis of the work carried out by the author and presented in later chapters. The term fuzzy logic, 

which has become very popular in the last decade, is used in a generic way throughout this thesis. It 

is not limited to the narrow view of fuzzy logic, which is a generalisation of conventional logic. 

Rather it emconpasses all methods, techniques and tools based on fuzzy set theory. The term fuzzy 

technology, which is often used in literature, is probably a better name for the application of fuzzy 

set theory and we will use it later. 
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Fuzzy logic was invented in the mid 1960s as an alternative to two-valued logic and 

probability theory by offering alternatives to traditional notions of set membership and logic 

(Bellman et al. 1964). After years of academic debate on its merits, fuzzy logic has finally emerged 

as an alternative to classical binary valued logic in applications ranging from industrial process 

control to consumer products to aerospace and bioengineering (Sugeno 1985, Zimmermann 1991 

and Langari et al. 1994). Fuzzy logic views two-valued logic and set theory as special cases of a 

more general multi valued theory. In this approach mathematical probability is viewed as 
inappropriate and is replaced with an alternative theory referred to as possibility theory (Zadeh 

1979). 

In contrast to inspection frequencies that tend to use the record of previous events in 

assigning probabilities, fuzzy truth values deal with the likelihood or certainty that a fact or 
heuristic rule is true. The main idea behind fuzzy systems is that a truth value (in fuzzy logic) or a 

membership value (in fuzzy sets) is indicated by a value in the range 0-1; with 0 representing 

absolute Falsity and 1 representing absolute Truth. Note that in fuzzy set theory, these membership 

values do not have to sum to 1, in contrast to probabilities that are constrained by a summation 

axiom. Thus, in fuzzy logic, we may use any form of inexact value assignments without fear of 

upsetting the underlying mathematical model. 
Everyday language is one example of the way vagueness is used and propagated. 

Imprecision in data and information gathered from and about our environment is either statistical or 

nonstatistical. This latter type of uncertainty is called fuzziness. Hence, fuzzy sets are intuitively 

very appealing. Natural language abounds with vague (fuzziness) and imprecise concepts, such as 
"The temperature is high" or "The water inlet flow is small". Another example of a fuzzy set is the 

set of real numbers much larger than zero. For this example, the real numbers that are not all larger 

than zero, are not in the set, while numbers which are larger than zero are partially in the set based 

on how much larger than zero they are. Thus, the goal behind the introduction of fuzzy set theory 

was to provide a means of defining categories that are inherently imprecise. Since the introduction 

of fuzzy set theory the terms hard and crisp have been used to describe sets conforming to 

traditional set theory. 

The theory of fuzzy sets has as its main aim the development of a methodology for the 

formulation and solution of problems that are too complex or ill-defined to be susceptible to 

analysis by conventional techniques. Therefore, during the last three decades, the theory of fuzzy 

sets has developed in a variety of directions, finding applications in solving various kinds of real 

physical world problems, particularly in the fields of pattern classification, information processing, 

control, systems identification, artificial intelligence, and, more generally, decision processes 

involving incomplete or uncertain data. 
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The advantage provided by fuzzy logic is that the degree of membership in a set can be 

specified, rather than just the binary is or isn't member. This can be especially advantageous in 

describing the rate of change of industrial process variables, where frequently objects are not 

clearly members of one class or another. Using crisp techniques an ambiguous object will be 

assigned to one class only, lending an aura of precision and definiteness to the assignment that is 

not warranted. On the other hand, fuzzy logic will specify to what degree the object belongs to each 

class, which is information that frequently is useful. 
This chapter is organised as follows. Sub chapter 3.2 provides some formal definitions for 

fuzzy sets, which are fundamental for following the reasoning in further chapters. Sub chapter 3.3 

presents several alternatives for representing a fuzzy quantity space of a physical system. The 

problem of performing basic arithmetic operations within a fuzzy quantity space is discussed in the 

last sub chapter. 

3.2 Formal Definitions for Fuzzy Sets 

Fuzzy sets were introduced by Zadeh (1965) as a new way to represent vagueness in 

everyday life. This indeterminacy does not mean that one lacks sufficient knowledge of a concept or 

some facts, but that the concept itself is such that its relation with the current state of affairs is 

uncertain. It is through man or human thinking that fuzziness comes into the world. In many 

situations there are several choices but not all are equally acceptable. The conventional quantitative 

techniques of system analysis are unsuited for dealing with humanistic systems and other 

comparable complex systems, because, as the complexity increases, our ability to make precise and 

yet significant statements diminishes until a threshold is reached beyond which precision and 

significant relevance become mutually exclusive characteristics. 
Fuzzy sets are a generalisation of conventional set theory, one of the basic structures 

underlying computational mathematics and models (Bezdek and Pal 1992). Fuzzy approach is 

based on the premise that the key elements in human thinking are not just numbers but can be 

approximated to tables of fuzzy sets, or, in other words, classes of objects in which the transition 

from membership to nonmembership is gradual rather than abrupt. Computational pattern 

recognition has played a central role in the development of fuzzy models because fuzzy 

interpretation of data structures is very natural and intuitive. Fuzzy- control theory has also 

provided a wide variety of real system applications of fuzzy technology. Fuzzy control has emerged 

as one of the most active fields for research in the application of fuzzy set theory, as well as studies 

on the theory itself, as have been reported in many works (Sugeno 1985, Lee 1992, Chen 
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et aL 1993, He et al. 1993, Yager and Zadeh 1994, Yen et at 1995 and Linkens and Nyongesa 

1995). 

This sub chapter presents a brief review of the relevant aspects of fuzzy mathematics that 

forms the basis of the work described in further chapters. A more extensive treatment of fuzzy 

mathematics can be found in Zadeh et al. (1975), Kandel and Lee (1979), Dubois and Prade 

(1980), Klir and Folger (1988) and Zimmermann (1991). 

As mentioned above, the fuzzy sets theory deals with a subset of a universe of discourse, 

where the transition between full membership of a set and no membership is gradual rather than 

abrupt. Such subsets, which are called fuzzy sets, arise, for instance, when descriptions of 

ambiguity, vagueness, and ambivalence in the mathematical models of physical systems are needed. 
Examples of such a situations are given in the following chapters. 

Let us introduce a special notation that is often used in the literature for defining fuzzy sets 

with a finite support. Let X be a space of objects, with a generic element of X denoted by x. A 

fuzzy set A in Xis characterised by a membership function, pA(x), which associates each point in X 

a real number in the interval /0,11 This membership function can be viewed as a weighting 

coefficient which reflects the ambiguity in a set. Thus, the nearer the value of PA(x) to unity, the 

higher the grade of membership of x in A. Moreover, the support of a fuzzy set, A, in the universal 

set, X, is the crisp set that contains all the elements of X that have a non zero membership grade in 

A. This can be expressed as follow, 

suppA={x E Xlßt4(x)>0} (3.1) 

A crossover point in A is an element of X whose grade of membership in A is 0.5. A fuzzy 

singleton is a fuzzy set whose support is a single point in X. If A is a fuzzy singleton whose support 

is the point x, we may write, 

A=p 
x 

(3.2) 

where u is the grade of membership of x in A. To be consistent with this notation, a nonfuzzy 

singleton will be denoted by 1/z. 

The fuzzy set A may be viewed as the union of its constituent singletons. Therefore, if we 

assume that xj is an element of the support of fuzzy set, A, and that pi is its grade of membership in 

A, then A can be written as follows, 
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xl x2 x� 
(3.3) 

Note, that in equation (3.3) the slash is employed to link the elements of the support with 

their grades of membership in A and the plus sign indicates, rather than any sort of algebraic 

addition, that the listed pairs of elements and membership grades collectively form the definition of 

the set A. 

For the case in which a fuzzy set, A, is defined on a universal set that is finite and 

countable, we may express such a fuzzy set through the following equation, 

n 
A= %/ 

%=1 Ixt 
(3.4) 

In this sense of addition, a finite universe of discourse X= {x,, x2, ........., x�} may be 

represented simply by the summation, 

X= xl + x2+ " . +x� 

or 

X=Ex, 
1=1 

although, strictly, we should write the equations (3.5) and (3.6) as follows, 

X_/ 
XI 

+ 
YX2+.. 

+/n 

and 

X=ývx1-1 
/! 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

However, when X is an interval of real numbers, that is when the support of A is a 

continuum, a fuzzy set, A, is often written in the following form, 
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A=f /24 (x) 

xx 

(3.9) 

An ordinary set thus becomes a special case of a fuzzy set with a membership function 

which is reduced to the well known binary value, either 0 or 1, characteristic function. The 

definitions, theorems, proofs and so on of f izzy'set theory always hold for nonfuzzy sets (Pal and 

Majumder 1986). Because of this generalisation, the theory of fuzzy sets has a wider scope of 

applicability than classical set theory in solving problems that involve, to some degree, subjective 

evaluation. 

When PA(x) is restricted to the values 0 and 1, the fuzzy set, A, degenerates to an ordinary 

set and its membership distribution becomes the characteristic function of a classical set. 

Furthermore, if A satisfies the two conditions below, 

a) x EX, pA(x) =1; (3.10) 

b) r, s eX, AE /0,11, /4A(2'+(1-A)s) z min(uA(r), fp(s)); (3.11) 

then, A is a normal and convex fuzzy number (Dubois and Prade 1980). Graphically, the 

membership distribution of the fuzzy set "approximately y", can be represented as shown in Figure 

3.1. 

lg, (x) 

1I.............................. 
(x2) .................. .......... gcAx, + ................ 

/4(x, ) ............. 

xI 
Axt + (1-2)x2 

ý. 

1% X2 

Figure 3.1 - Membership function of a normal convex fuzzy number 

The membership values obtained from a specific membership function of a fuzzy set, 

determine how much fuzziness such a fuzzy set contains. Therefore, because fuzzy sets are a 
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generalisation of the classical set theory, the embedding of conventional models into a larger setting 

endows fuzzy models with greater flexibility to capture various aspects of incompleteness or 

imperfection in whatever information and data are available about a real process. The fuzzy 

membership function is in some respect similar to the probability density function, however, they 

are conceptually different. Probability is about how frequently a sample occurs in a population 

while fuzzy membership value means how closely or how accurately a sample resembles an ideal 

element of a population. 
The assignment of the membership function of a fuzzy set is subjective in nature, and 

reflects the context in which the problem is viewed. It can not be assigned arbitrarily. For instance, 

it would be totally wrong to assign the membership function of the fuzzy set "real numbers 

clustered around 10" using a function which increases monotonically. 

When we want to exhibit an element, xeX, that usually belongs to a fuzzy set, A, we may 

demand its membership value to be greater than some threshold, ac [D, Ij The ordinary set of 

such elements is called the a-cut of A and denoted by Aa (Zimmermann 1991). Hence, an a-cut of 

a fuzzy set, A, is a crisp set, Aa, that contains all the elements of the universal set, X, that has a 

membership grade in A greater than or equal to the specified value of a. Such a definition can be 

written as follows, 

Aa =(x E X1 /2A (x) z al (3.12) 

The value a can be chosen arbitrarily but is often designated at the values of the membership 

grades appearing in the fuzzy set under consideration. 
Using the concept of a-cut, a fuzzy set A may be decomposed into its associated a-cut Aa 

through the resolution identity, 

A' Jo ga (3.13) 

where the following notation is used: 

- aAa = {(x, a) Ixc Aa}, stands for a fuzzy set representing the product of a scalar, a, 

with the set Aa; 

- 
J0 is the union operator on aAa, with a ranging from 0 to 1. 

Here, the union of two fuzzy sets is defined by the following expression, 
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AU B= {(x, pA, B(x»l, u. a�a(x) = max(u4(x), p11(x)), xE XI (3.14) 

That is, the resolution identity can be viewed as the result of combining those elements in A that fall 

into the same level set. 
In the context of fuzzy logic theory, detailed definitions for the operations of union, 

intersection, complement, algebraic product and algebraic sum were pointed out by Zadeh et al. 

(1975) to investigate fuzzy reasoning. Mizumoto and Tanaka (1978), investigates the algebraic 

properties of fuzzy sets under such operations. 

3.3 Fuzzy Quantity Spaces 

In later chapters a fuzzy qualitative simulation technique is used for on-line fault detection 

in industrial processes. Several studies and applications of fault detection and diagnosis systems 
based on fuzzy logic has been reported (Tsukamoto and Terano 1977, Asse et al. 1987, Kitowski 

and Bargiel 1988, Ulieru and Isermann 1993). All of them describe the process variables behaviour 

in qualitative terms. However, the choice of representation of physical quantities plays a critical 

role in qualitative modelling. In the present approaches fuzzy qualitative values are used to provide 

a semi-quantitative extension to the quantity representation of magnitude of change of a process 

variable. 

All qualitative simulation techniques describe quantities with a small set of symbols, which 

are called qualitative values. These values are abstracted from the underlying field that the 

variables of a physical system take values from, sometimes called the support set. In the on-line 

fault detection approaches described in further chapters, a fuzzy qualitative value of a process 

variable is a fuzzy number chosen from a subset of normal convex fuzzy numbers. This subset is 

generated by an arbitrary but finite discretization of the underlying numeric range of the variable. A 

set, consisting of all the elements of such subsets for all the variables in the process under concern, 

is called a fuzzy quantity space which is denoted in the remainder of this thesis by of The real 

number zero is required to belong to q,. It is worth noting that, under the above definition, a 

variable takes values from a subset of a quantity space q f. This subset can be different from the 

other subsets of of from which other variables take values. Moreover, the rate of change of a 

variable can also have different sets of qualitative values. Therefore, this increases the flexibility of 

the representation of knowledge about plants since, if necessary, we can model a physical plant 

with different detailed abstraction of its variables in response to the extent of we have knowledge of 

the process variables behaviour. 
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Because a fuzzy quantity space, cl:, is generated by a finite discretization of the underlying 

range of each variable of the process being modelled, we can translate a subset of a numeric range 

to a single qualitative value according to what is needed in a specific application. Moreover, 

according to the rule mapping method, a fuzzy quantity space can be represented through the 

following index set (Peng and Liu 1988, Wang et al. 1990, Wong et al. 1993), 

qf I (3.15) 

The index set, represented by expression (3.15), is denoted as 'a sequence containing 2m+1 

linguistic values for a linguistic variable, where a linguistic values set is represented by means of a 

numerical set. For instance, the following chapters is define a fuzzy quantity space for describing 

the process variables behaviour, where m takes the value 3. Therefore, each process variable rate of 

change is described by seven fuzzy sets, A-3, A-2. A.,, Ao, Ai, A2 and A3, which are called "Negative- 

Large (nlarge)", "Negative-Medium (nmedium)", "Negative-Small (nsmall)", "Zero (zero)", 

"Positive-Small (psmall)", "Positive-Medium (pmedium)" and "Positive-Large (plarge)". For 

simplicity, however, a normalised range, [-1, +1], for representing the rate of change of each 

process variable, has been used. This normalised range forms the basis on which the fuzzy quantity 

space is discretised. 

Therefore, by fuzzy representation, the underlying real range [-1, +11, from which a 

process variable takes values, can be mapped onto a set of qualitative values represented by the 

following fuzzy quantity space, which can be represented as shown in Figure 3.2, 

qf= {nl arge, nmedium, nsmall, zero, psmall, pmedium, p1 arge} (3.16) 

fi(x) 

fr 
..... 

nlarge nmedium nsmall all pmedium plarge 

x x 
-1 -0.5 0 0.5 1 

Figure 3.2 - Fuzzy quantity space represented by normal convex fuzzy numbers 
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Thus, according to Figure 3.2, each qualitative value A, actually a normal convex fuzzy 

number, has an associated linguistic term so that it corresponds to the perceived meaning. The 

fuzzy quantity space removes the boundary interpretations problem, which is achieved through the 

description of a gradual rather than an abrupt change in the degree of membership of which a 

physical quantity is mapped onto a particular qualitative value. It is, therefore, closer to our 

common sense intuition of the description of a qualitative value. 
In order to illustrate the boundary interpretation problem, let us consider the following 

example. According to the fuzzy quantity space depicted in Figure 3.2, a rate of change in a 

process variable having a value 0.5 belongs to pmedium with a membership value less than 1. If 

such a process variable presents a rate of change equal to 0.45, then it belongs to pmedium with a 

strength less than the previous one, but simultaneously it also belongs to psmall with a small 

membership value. This non-exclusivity of values is an important aspect of fuzzy sets and, again, is 

important in capturing our common sense intuition. However, using crisp intervals, for instance as 

shown in Figure 3.3, a rate of change equal to 0.5 belongs to pmedium if a close interval is 

considered while 0.45 does not but fully belongs to the interval defined as psmall. Clearly, such a 

crisp representation would often result in a non-intuitive interpretation in practice. 

14x) 

Z 

e 

nlarge nmed. nsmall r psmall pmed. plarge 

0 

x 
-1 -0.5 0 0.5 1 

Figure 3.3 - Quantity space represented by crisp intervals 

By relying on the use of fuzzy linguistic values, and fuzzy algorithms, this new approach 

provides an approximate and yet effective and more flexible means for describing the behaviour of 

systems which are too complex or too ill defined to admit precise mathematical analysis by 

classical methods and tools. 

However, the definition, on a fuzzy quantity space presented above, is given in a general 
form. It has been assumed that the quantity space consists of normal and convex fuzzy numbers 

with arbitrary forms of distribution. Moreover, in further chapters, these fuzzy numbers, used for 

describing the process variables behaviour, will be propagated through a qualitative model of the 
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process under consideration in order to predict the behaviour of some process variables in fuzzy 

terms. Arithmetic operations form the basis of this qualitative simulation procedure. However, 

operations performed within a quantity space consisting of normal convex fuzzy numbers usually 

entail several types of computational difficulties. As a matter of fact, arithmetic operations on 

fuzzy qualitative values are based upon the extension principle presented in the next sub chapter. 

As stated in the next sub chapter, this principle is invoked every time an arithmetic operation is 

performed and requires expensive calculations. The way to alleviate this problem is presented in the 

next sub chapter and is followed in further chapters by a fuzzy qualitative simulation algorithm 

used for fault detection purposes in industrial processes. 

3.4 The Extension Principle 

The extension principle, which has been introduced by Zadeh (1975), provides a general 

method for extending nonfuzzy mathematical concepts in order to deal with fuzzy quantities. The 

extension principle can be systematically applied to real algebra, operations of fuzzy numbers, and 

also for defining set theoretic operations for higher order fuzzy numbers. 

The extension principle allows the use of fuzzy sets to represent algebraic operations in a 

fuzzy framework. It provides the means for any function f that maps points in x j, x2, ..., xn in the 

crisp set X to the crisp set Y to be generalised such that it maps fuzzy subsets of X to Y. Formally, 

given a function f mapping points in set X to points in set Y and any fuzzy set AG P(X), where A is 

given by expression (3.9), the extension principle states that j(A) can be given through the following 

equation, 

. 
f(A)=. f(x1 +z2+...... + ")=ýz+. 

fýx+...... 
+ý") (3.16) 

1 X2 »f 1) 2) 
f xn 

If more than one element of X is mapped by! to the same element ycY, then the maximum 

of the membership grades of these elements in the fuzzy set A is chosen as the membership grade 

for y in J(A). If no element xeX is mapped to yeY, then the membership grade of y in J(A) is 

zero. Often a function f maps ordered tuples of elements of several different sets Xl, X2, ". "' 
Xn 

such that f (xl, x2, ..., xn) = y, yEY. In this case, for any arbitrary fuzzy sets on Xl, X2, """. 
Xn, 

respectively, the membership grade of element y in f(A j, A2, ..., 
An) is equal to the minimum of the 

membership grades of xl, x2, ..., xn in Al, A2, ..., Ani respectively. 
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In order to maintain the family of fuzzy sets, previously defined, unchanged after algebraic 

operations are performed, an approximation principle is used (Zadeh 1975). According to this 

principle if we have n fuzzy sets Al, A2, ..., An G P(X), and if A J(A j, A2, 
..., 

An) and, 

d(PA(x), PA(X))=Burin d(pA(x), PB(x)), AEP(X) (3.17) 

then the approximation of A is A. Where d(. 
, .) 

is any distance which satisfies the axioms of a 

metric (Shen and Leitch 1993). It is clear that the selection of a distance metric plays a critical role 
in the application of the approximation principle. In order to save computational time and memory 

storage, a metric based on appropriate features of the membership functions is usually used. 

The use of the formal definition given above for the extension principle entails various 
types of computational difficulties (Shen and Leitch 1993). The solution to these difficulties is 

based on the parametric representation of the membership distribution of a fuzzy number. This 

parametric representation is achieved by the 4-tuple (a, b, c )i 
. 

The first two parameters indicate 

the interval in which the membership value is 1; the third and fourth parameters indicate the left 

and right width of the distribution. Linear functions are used to define the slopes. Therefore, the 

membership function A, (x), of the fuzzy number A= (a, b, a, p) is defined as expressed in the 

following equation, 

0 
1 

x-a+a) 
a 

PA- 1 
(Ti ()bßx) 

0 

for x<(a-a) 

for xe [(a-a), a] 

for x r= [a, b] 

for x r= [b, (b + fl) ) 

for x> (b+13) 

and Figure 3.4 shows the membership distribution of the fuzzy number quoted. 

(3.18) 

The arithmetic operations on these fuzzy numbers are well developed (Bonissone and 

Decker 1986), and for the preceding reasons we adopt such a representation to form the fuzzy 

quantity spaces used in the following chapters. 
This solution is a very good approximation of the result obtained from using the extension 

principle to evaluate arithmetic functions with fuzzy numbers, and has a much more limited 

computational overhead. So, the qualitative simulation presented in further chapters is performed 

through the following two formulas, 
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f-r(x) 

1 

X 

Figure 3.4 - Parametric representation of a normal convex fuzzy number 

A+B=[a+c, b+d, a+y, Q+S] 

A-B=[a-d, b-c, a+8, ß+y] 

where A= [a, b, a, ß] and B= [c, d, y, S]. 

(3.19) 

(3.20) 

Two important features of a fuzzy set that are used in fuzzy mathematics are its power and 

centre. The power of 'a fuzzy set, with a normal and convex membership distribution, is defined as 

the integral of its membership distribution, 

Power(A) =J PA (x)dx 
R 

(3.21) 

The'centre of A is the central element among those elements whose degrees of membership 

are equal to the maximum membership value. 
If the membership distribution of a fuzzy number A has a parametric representation by the 

4-tuple (a, b, a, p. )), the Power and Centre can be evaluated through the following formulae, 

respectively, 

Power (A)= [2(b-a)+a+/3] (3.22) 

Centre(A) _I (a + b) (3.23) 
2 
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Moreover, the fuzzy qualitative simulation algorithm described in a further chapter uses the 

approximation principle previously introduced to evaluate the degree of closeness between fuzzy 

sets. Therefore, in order to calculate the degree of closeness between two fuzzy sets, each of which 

belongs to a different subset of the same universe, the distance measure defined by the following 

equation (Shen and Leitch 1993), is used, 

d (A, B) = 
V(Power(A) 

- Power(B))2 + (Centre(A) - Centre(B))2 (3.24) 
A Eqf B E9f 

In the last equation, the quantity space qf is one of the two subsets, while another one, 

denoted q ̂f , 
is the collection of all results from operations applied to the elements among qf. 

Once we have a desirable distance measure, the approximation of the fuzzy number Be 4f 
, to a 

qualitative value A in qr can be determined by choosing A such that the distance between B and A 

is the smallest among all the distances between the fuzzy number B and all elements in qf. In the 

case when are more than one value in qf which have the same shortest distance from B, all such 

values are treated as the approximation results of the original calculation. 
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Chapter 4 

Modelling and Rule Based Control of a Mixing 

Process 

4.1 Introduction 

In order to investigate the application of different artificial intelligence techniques to on-line 

Process control, as well as to on-line fault detection and diagnosis, a mixing process has been taken 

as an example of an industrial process. Several real time expert systems, including a rule based 

controller and various different on-line fault detection and diagnosis systems, have been developed 

for this process. Therefore, at an initial stage of this research, a dynamic mathematical model for 

the mixing process has been derived, which is presented in sub chapter 4,3. From this mathematical 

model a qualitative one was developed for the mixing process, which will be used in following 

chapters for fault detection purposes. This qualitative model is constituted by a set of confluence's 

which are presented in sub chapter 4.4. 

The first expert system developed during this research is a rule based on-line control 

system for the mixing process. This controller has been implemented for a multi-input and multi- 

output situation. It derives control actions from the causal relations among process variables, where 

the causal relations form a symbolic model of the process. Since the symbolic model captures the 

causal relations inside the system, for some situations, it can be more understandable than any 

numerical model. The rule based control system is described in sub chapter 4.5, where the causal 

relations in the mixing process and the control rules are described in detail. The performance of the 

rule based controller is discussed in sub chapter 4.6, where some results achieved during simulation 

studies are also presented. The last sub chapter contains some concluding remarks. 
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4.2 The Mixing Process 

The layout of the mixing process is presented in Figure 4.1. Two tanks in cascade receive 

hot and cold water input streams. The hot water, at about 80 °C, is supplied from an electrically 

heated tank, while the cold water is supplied from the mains. Both streams enter tank 1 where 

mixing takes place. The contents of tank 1 pass to tank 2 and subsequently out to the pool tank 

from which they are recycled to the header tank. A number of hand valves can be seen in the mixing 

process shown in Figure 4.1. These hand valves are either kept fully open or fully closed during 

normal operation, as their function is simply to allow different systems configuration. When both 

tanks are used, as it has been considered during this research, hand valves 1,2,3 and 5 are fully 

open and hand valve 4 is closed. The mixing process, although simple in operation, enables generic 

concepts to be developed. The simplicity of the process does not obscure the fundamental basic 

ideas which are being studied. 

Measurement of the process variables level and temperature in both tanks is available and, 
hence, it is possible to control level and temperature in either tank. However, during the research 

work conducted with this process only the case of tank 2 being controlled has been considered 
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Figure 4.1 - The mixing process 
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The dynamic model for the mixing process is developed in the next sub chapter, which is 

achieved from mass and heat balances relationships performed in tanks 1 and 2 respectively. 

4.3 The Mixing Process Dynamic Model 

This sub chapter presents the dynamic model for the mixing process. This mathematical 

model will be used to simulate the process under normal operation conditions, as well as under 

failure situations. As quoted above the model is determined from mass and heat balance 

relationships. Thus, from the mass balance in tank 1 of the mixing process, the following equation 

can be obtained, 

d(A1L'P) 
dt -P(Q +Qh)-PQ, (4.1) 

Which can be simplified to, 

Al 
dL' 

_ Qc + Qh - ýý (4.2) 
d 

From the application of the mass balance to tank 2, the following equation, (4.3), can be 

obtained, 

d(A24p) 
= p(Q,, -Q, 2 

(4.3) 
dt 

Which can be simplified to, 

A2 
d4 

=a 
I- 

Q02 (4.4) 

The heat balance in tank 1 can be represented as follows, 

d(Cp T)) 
= Cp T +CpQh7 -CpQo, T (4.5) 

dt 
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The equation (4.5) can be simplified such that the following equation can be obtained, 

(4.6) ALT 
dý` 

+ A, L, 
±T-1 

= QCTC + QhTh -al TI 
dt 

Multiplying the two sides of equation (4.2) by T, and then substituting the result into 

equation (4.6) gives, 

AIL, 
ýT 

= QC (T -T)+Qh(T -T) (4.7) 

From the heat balance in tank 2 of the mixing process, the following equation, (4.8), has 

been obtained, 

d(Cp4T) 
=CpQ, T_CpQ, 

=T2 
(4.8) 

dt 

Which can be simplified to, 

q2T A2 
+A 

dT2 
= Q17 - Q2 7 (4.9) 

dt dt 

Multiplying both sides of equation (4.4) by T2, and then substituting it into equation (4.9), 

gives, 

aiLi 
dt 

= Q0, (T -T2) (4.10) 

The output flows from the two tanks, a, and a,, are determined by pressure differences 

and valve parameters, and can be expressed as follows, 

ýý . kl (4.11) 

Q2 = k2 V L-2 (4.12) 
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In short briefly, the dynamic model of the mixing process is presented below by equations 

(4.13) to (4.18), 

Aý 
d 

=QC+Qh -Q, 

A2 
dd 

=a I- Qo2 

A, H, 
dý =QC(TC-T)+Qh(T -T) 

A2H2 
dT = Q1(T 'T) 

Qj =k2 4-4 

Q2= k214- 

where the following notation is used, 

A, - is the cross-sectional area of tank 1 (cm2); 

L, - is the level in tank 1 (cm); 

T1 - is the temperature of water in tank 1(°C); 

A2 - is the cross-sectional area of tank 2 (cm2); 

L2 - is the level in tank 2 (cm); 

T2 - is the temperature of water in tank 2 (°C); 

Tc - is the temperature of input cold water (°C); 

Th - is the temperature of input hot water (°C); 

Qý - is the input cold water flow rate (cm3/sec); 

Qh - is the input hot water flow rate (cm3/sec); 

Qoi - is the output flow rate from tank 1 to tank 2 (cm3/sec); 

Qo2 - is the output now rate from tank 2 (cm3/sec); 

t- is the time (sec); 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 
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p- is the density of the inlet water (g/cm'); 

C- is the specific heat of the inlet water (J/g'C). 

Moreover, during the simulation studies conducted with the dynamic model just derived, 

the values used for the independently variables have been, 

A, = 285.6 cm2; 

A2 = 150.04 cm2; 

Th = 80 IC; 

TT=20 C. 

The other two unknown parameters, k, and k2, are determined from experiments, through the least 

squares estimation algorithm as presented by Zhang (1991). He obtained the following values for 

these parameters: 

ký = 29.07 cros.. /sec; 

k2 = 29.46 cm512/sec. 

In the mixing process dynamic model just achieved, the following assumptions have been 

made: 

- Difference between cold and hot water density is negligible; 

- Difference between cold and hot water specific heat is negligible; 

- The mixing is perfect; 

" Water doesn't boil; 

- Heat transfer coefficients are constant; 

- Heat losses into the environment are negligible. 

The qualitative model presented in the next sub chapter is derived from the quantitative one 

presented here. 
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4.4 Qualitative Modelling of the Mixing Process 

The strategy for developing a qualitative representation is to search for a qualitative 

mathematics capable of yielding significant results from a minimum of information. This sub 

chapter presents the qualitative model, which has been derived from the quantitative model 

presented in the last sub chapter, for the process under consideration. 

As quoted above, several different approaches to qualitative modelling are pointed out by 

several researchers. The qualitative model presented by the author is a set of confluence's, which 

consists of a set of qualitative equations derived from the quantitative model under concern, such as 

in de Kleer and Brown's confluence based qualitative reasoning approach (de Kleer and Brown 

1984). Therefore, the qualitative model or confluence's of the mixing process, shown below, can be 

obtained through the dynamic model linearized by comparing the dynamic model at a present state 

with that at a previous state, or by Taylor series expansion. 

However, the sign of some variables are dependent on the process state. In order to solve 

this problem, we have used the approach presented by Shiozaki et at. (1985) and Kramer and 

Palowitch (1987). This means, that a conditional sign, x, of a variable, A, can be expressed as 

follows: 

x=+ ifcond,; 

x=- if cond2; 

x=0 otherwise. 

Thus, the qualitative model of the mixing process, can be expressed as, 

[A] = [, &Qrl +[Aal -[AQ, 1 (4.19) 

[A4] =[iQ0j]-[AQ2] (4.20) 

[A2] =[QhJ-[J-[i] (4.21) 

if T> T2 
(4.22) [A] 

= [LQ1] +(OT } -{OT2} 
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if T<T2 
[A72] = -[ ]+[AT]-[AT2] 

(4.23) 

if T T2 
(4.24) [AT2]=[AT]-[LT2] 

where the qualitative values of [AQ1] and [iQ2], are evaluated through the following two 

equations, 

[AQ1] =[A(4 -L )] (4.25) 
[iQ2] = Cerz] (4.26 

4.5 Rule Based Control of the Mixing Process 

There are many industrial examples where the high-level of supervisory, control and 

optimisation of manufacturing processes is not automated but is conducted by a combination of 

process experts and plant operators. In some cases, this may be due to safety or other operational 

constraints deliberately imposed by management. Often, however, this level of the process has not 

been automated due to complexity. The types of problems that can exist are that many of the key 

control parameters are not capable of being measured directly or reliably, and many processes are 

inherently multivariable in nature. This means that changes in one manipulated variable can cause 

changes to the whole processes, and often the response to such changes is highly non-linear. When 

this is coupled with the possibility of random disturbances, and long transport lags that can mask 

the effects of control changes, the problem can become extremely complex. 
Conventional mathematical modelling has succeeded best in the automation of those 

processes which are well understood and well behaved. However, in a number of more complex 

applications it has failed to be sufficiently robust to provide a reliably high level of automation. In 

these situations a rule base controller may be more adequate. The paradox is that in many of the 

processes where mathematical modelling has not proven effective, the process is controlled by one 

or two human operators, often apparently with a great deal of ease. Closer examination of the 

techniques used by such skilled operators to control such a complex process shows that they rely on 

some basic process knowledge (but little deep knowledge) combined with heuristic rules acquired 
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through experience. Attempting to mimic the human expert therefore provides a natural and 

interesting alternative to mathematical modelling of the process; in some cases, it may be the only 

alternative. 

The reasons quoted above motivated the present study, where the controller is designed 

based on causal relationships between subsystems, and the control actions are inferred from 

samples of both controlled and non-controlled variables. In the mixing process, the level and 

temperature of tank 2 are directly affected by those of tank 1, and the level and temperature of tank 

1 are directly affected by the inlet hot and cold flow streams. These causal relationships are used to 

infer control actions. 
Based on steady-state conditions, an increase in inlet flow will cause the level in the tank 1 

to increase, whereas a decrease in inlet flow will cause the level in tank 1 to decrease. An increase 

in inlet hot flow or a decrease in inlet cold flow will cause the temperature of tank 1 to increase. An 

increase in level and temperature of tank 1 will cause the level and temperature of tank 2 to 

increase respectively, and a decrease in level and temperature of tank 1 will cause the level and 

temperature of tank 2 to decrease respectively. These causal relationships form a symbolic model 

of the system. 

Based on the symbolic model and the current state of the system, control actions can be 

inferred The control rules are in the following form, 

Goal A Condition = Subgoal 

where, 

- Goal, is the destination to be achieved; 

- Condition, is the current state; 

- Subgoal, is the intermediate goal to be achieved under the particular "Condition" in order 

to achieve the "Goal". 

The sets of rules presented below are similar to those pointed out by Zhang (1991), but 

here a different approach is used. While in Zhang's approach a linguistic description of the 

behaviour of the variables is used, the author performs the rule based controller from the proposal 

of de Kleer and Brown (de Kleer and Brown 1984), where the behaviour of the process variables is 

represented through its qualitative values. 
Therefore, in the approach presented by the author the aim is to reduce the quantitative 

precision of the behaviour description but retain the important distinctions. Instead of continuous 

59 



real-valued variables, each variable is described qualitatively. Since one of the most important 

features of a physical variable is whether it is increasing, unchanging or decreasing; +, 0 and - are 

defined as the quantity space, where +, 0 and - represent the cases that a variable is increasing, 

unchanging and decreasing respectively. For instance, the following rule: 

-(L21=0A(L21=+=(L1J=-; 

can be interpreted as "To achieve a qualitative value of the level in the tank 2 unchanging while the 

qualitative value of the level in the tank 2 is increasing, the qualitative value of the level in the tank 

1 should be decrease". 

Since for the level and temperature control loops the symbolic models are identical, they 

have the same control rules. The full sets of rules are listed below, 

Rule set 1: 

Y2 = Setpoint A Y2 < Setpoint = (Y) =+ 

Y2 = Setpoint A Y2 = Setpoint IY21= 0 

Y2 = Setpoint A Y2 > Setpoint = (Y2J =- 

Rule set 2: 

1Y21 = +A(Y21=-*(YIJ= + 

(Y21 =+A(Y21=0=> [YI] =+ 

IY21=+A(IY2J=+, Yl <AJ=IYIJ= + 

(Y21=+A([Y21=+, Y1>A]:, * (YIJ=0 

The parameter A take a value slightly lower than the steady state value of Y, 

corresponding to the setpoint of Y2 

Rule set 3: 

JY21=0AJY21=+ý--* JYjJ=- 

IY21, = 0 AIY2] =0 ý* IYIJ =0 

(Y21 0A(Y21=-ß(Y11=+ 
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Rule set 4: 

IY21=-AIY2J= +=(Y11=- 

IY21=-AIY2J= 0IY11 

IY21=-A(IY21= ºY1>BJ=IYIJ=- 

I}'21=-A(IY21= , Yl <BJ=(YIJ= 0 

The parameter B take a value slightly higher than the steady state value of Y, 

corresponding to the setpoint of Yz. 

Rule set 5: 

IY1j=+n[Y1]=-=ý IQ]=+ 

fY11=+A[Y11=0=*(QI=+ 

(Y11=+A(Y11=+=[Q] =0 

Rule set 6: 

JYJJ=0A[Y11=+= [Q] =- 

IY11= 0n(YJJ= 0 =[QJ= 0 

[Y11= 0A[Y1J=-=[QJ= + 

Rule set 7: 

JYJ]=-AIY1)=+=[Q] =- 
IYJJ=-AIYJJ=0=IQJ=- 

[Y11 =-A [Yll =-ß [Q] =0 

When dealing with the level control loop, Y,, Yz and Q stand for level in tank 1, level in tank 2 and 

inlet cold flow respectively. When dealing with the temperature control loop, Y,, Y2 and Q stand for 

temperature in tank 1, temperature in tank 2 and inlet hot flow respectively. Within the rule sets, 

the changes in inlet cold flow and/or inlet hot flow are proportional to the error between the desired 

value and sampled value, with a proportional parameter K. In order to obtain a quick response the 

parameters A and B are introduced in rule sets 2 and 4 (Zhang 1991). 
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According to the previous work on controlling this mixing process (Ellis et al. 1986, Zhang 

1991), the hot inlet flow is used to control temperature while the cold inlet flow is used to control 

level. Since either hot inlet flow or cold inlet flow can affect both temperature and level, interaction 

exists between the two control loops. It is necessary to design a decoupling scheme to eliminate the 

interaction. 

Hence, after the control actions for the individual loops have been inferred from the above 

control rules, they should be modified in order to eliminate the interactions. To do this, two 

situations must be considered. The first is when the hot water flow is changing while the cold water 

flow is kept steady. Here, in order to eliminate the effect of changing hot water flow on the level 

control loop, the total amount of inlet water flow should be unchanged. That is, 

Aa +eQh "0 (4.27) 

Therefore, 

eQ - -AQh (4.28) 

Then, in the situation that the hot water flow is changing while the cold flow is kept steady, the 

final control action is that the cold water inlet flow should be changed by the following quantity, 

The other situation is when the hot water inlet flow is kept unchanged while the cold water 

inlet flow is changing. Here, in order to eliminate the effect of changing cold water inlet flow on the 

temperature control loop, the total input heat should be unchanged. This can be expressed by the 

following equation, 

C(7 -T )P+AQhC(Th -T)p =0 (4.29) 

Therefore, 

eQh _ 
(T T )eQý (4.30) 

T T, 

Thus, when the hot water inlet flow is kept unchanged while the cold water inlet flow is changing, 

the final control action is that the hot water inlet flow should be changed by 

T DAWCATh -TI) 
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In the implementation of the rule base controller, the knowledge quoted above, is 

represented by rules in the form "IF antecedent THEN consequence", such that, if the situation 

described in the antecedent part of the rule is true, then the action specified in the consequence part 

is produced. To fire the rules, a inference engine with forward chaining abilities has been 

implemented. This starts with a set of facts or given data and then searches the knowledge base for 

rules whose "IF" portion match the data. This generates new facts and data in the knowledge base 

which in turn causes other rules to fire. The reasoning operation stops when no more rules can be 

fired. This kind of reasoning is also known as data-driven inference (Jackson 1986). 

Sub chapter 4.6 presents some results achieved during simulation studies of the 

implemented rule based controller, where it can be seen that a quite successful performance has 

been obtained. 

4.6 Performance of the Rule Based Controller 

The rule based controller has been implemented using a TURBO C++ program running in 

any PC without special features. Its performance is very satisfactory, as can be seen from the 

Figures 4.2 and 4.3, for steps changes in the setpoints of the controlled variables temperature and 
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Figure 4.2 - Controller response when a step in the setpoint of temperature is pcrformed 
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Figure 4.3 - Controller response when a step in the setpoint of level is performed 

level in tank 2, respectively. The response of the rule base controller has low overshoot and 

undershoot and no interaction is observed between the two control loops. Also it is observed that 

the rule base controller has settled to the steady state condition in about 200 seconds real time. 

The tuning of the rule base controller is performed by a trial-error procedure by adjusting 

the parameters K, A and B, and is relatively easy. It has been found that the controller is not very 

sensitive to changing the tuning parameters. This suggests that the properties of a rule based 

controller is largely determined by its rules. The role of controller parameters is less crucial in rule 

based controllers than in conventional controllers. Therefore, one can conclude that a rule base 

controller could be an alternative for conventional controllers in cases where numerical models for 

the controlled processes are not available or are difficult to obtain, or in cases where the key control 

parameters are not capable of being measured directly or reliably. 

4.7 Conclusions 

From mass and heat balance relationships the dynamic model for the mixing process is 

derived in sub chapter 4.3. From this dynamic mathematical model a qualitative model has been 
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achieved which is presented in sub chapter 4.4. Both models will be used in subsequent chapters, as 

a test bed of some artificial intelligence techniques proposed for industrial process fault detection 

and diagnosis. 

In sub chapter 4.5 a rule based controller is presented, whose performance has been 

discussed in sub chapter 4.6. Control of level and temperature in tank 2 has been performed 

through the rule based controller and a satisfactory performance has been observed. Moreover, it 

has been observed that the properties -of a rule based controller are mainly determined by its rules, 

and that a rule based controller is not very sensitive to the changes in Its parameters. This 

demonstrates the robustness of rule based controllers and, hence, suggests that they can be an 

alternative for conventional controllers in cases where conventional mathematical modelling fails to 

provide a high level of automation. 

f 
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Chapter 5 

Modelling and Control of a Continuous Stirred 

Tank Reactor 

5.1 Introduction 

In an operating chemical plant, product quality is maintained by monitoring process 

variables and controlling their fluctuations within a desired range. When operating conditions vary 

outside these design limits, not only is product quality in danger but, if left uncorrected these 

variations could result in a catastrophic event such as an explosion, fire, or the release of toxic 

chemicals. The operator's task in the event of a process malfunction is to diagnose the cause of the 

plant upset quickly and accurately so that corrective action may be taken in time. However, 

diagnosis of process malfunctions is a difficult task for process operators. Under certain 

circumstances, operators may have difficulty handling unanticipated events or low probability 

failures. In this context, there was motivation to choose a chemical process as another example of 

an industrial plant, which has also been used as test bed of various on-line fault detection and 

diagnosis systems presented in following chapters. 
Therefore, a continuous stirred tank reactor (CSTR) has been selected, similar to that used 

by Kramer and co-authors (Kramer and Palowitch 1987, Finch and Kramer 1988, Oyeleye and 

Kramer 1988, Kramer and Finch 1989), as well as by Zhang and co-authors (Zhang 1991, Zhang 

and Roberts 1991a, Zhang and Roberts 1992a, Zhang and Roberts 1992b, Zhang and Morris 

1994). Such a process is described in sub chapter 5.2. In sub chapter 5.3, a dynamic model for the 

process is derived. From this mathematical model a qualitative model is developed for the CSTR 

process, whose details are described in sub chapter 5.4. During simulation studies of the CSTR 
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plant control of some process variables has been considered. Thus, in sub chapter 5.5 some 

features of the controller used to perform the regulation tasks are presented. Some concluding 

remarks about the performance of the controllers implemented are presented in sub chapter 5.6. 

5.2 Continuous Stirred Tank Reactor 

The continuous stirred tank reactor is a very common process in the chemical industry 

although it does have numerous variations regarding the introduction and extraction of energy and 

materials (Franks 1972). The layout of the CSTR plant used during this research, is shown in 

Figure 5.1, where it is assumed that the reaction takes place in the reactor vessel in isothermal 

conditions. Moreover, the reaction is cooled by recycle through an external heat exchanger. 

Temperature and level in the reactor, as well as the recycle flow rate, are controlled by feedback 

control systems (cascade control for the case of temperature). Classical controllers have been used 

to perform the process variables control. The performance of such a controllers is discussed in 

further sub chapters. 
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Figure 5.1 - Continuous stirred tank reactor 
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5.3 The Continuous Stirred Tank Reactor Dynamic Model 

The dynamic model for the continuous stirred tank reactor is developed In this sub chapter, 

which is achieved based upon results presented in Franks (1972). The model is used to simulate the 

process under normal operating conditions and serves to obtain the behaviour of the process under 

a fault or set of faults situation. 

Figure 5.2 shows an elementary diagram of the continuous stirred tank reactor with an 

input fluid feed, whose rate is Q, (cm'/s) and an output flow having a rate Q. (cm3/s). Several 

assumptions have been made in modelling the system. The underlying assumption for a continuous 

stirred tank reactor is that the outlet flow has the same temperature and composition as the reactor 

contents. 

Q; (cm3/s) 
)9/s) 

CSTR 

Figure 5.2 - Elementary diagram of the CSTR system 

It is also assumed that perfect mixing takes place in the reactor vessel, perfect heat 

exchange takes place in the heat exchanger and heat losses into the environment are negligible, as 

well as the reactant and the product have the same density and specific heat. The model is achieved 

from mass and heat balances relationships in the process under concern and is constituted by the 

following set of differential and algebraic equations, 

A =Q+Q2 Q3 (5.1) 
dt 

AL dCa 
= Qi (Cao - Ca) - r. AL (5.2) 

AL1= raAL - CbQ{ (5.3) 

ALB2 dT 
_ BQI(T -T)-BZQ2(T-T)+H, ra (5.4) 

dt 
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Bi = Ca0PC+(1-Cno)POC0 (5.5) 

B2 = PC(Ca'+'Cb)+(1-Ca-C6)POC0 (5.6) 

ra = K, C' (n > 0) (5.7) 

Ký = ar8 
bIT (5.8) 

Q2 = KZA2ý (5.9) 

Q4 = K4A4, P (5.10) 

(5.11) Q5= KsAs Ps 

Q3=Q2+Qa (5.12) 

P=Po+AP (5.13) 

PO = 
4(Ca+Cb)P+(lCaCb)PO] 5.14) 

T= 
COPOQ5T +Q27f CP(Ca+Cb) +C0Po(1-CQ-Cb) 

_ 
(5.15) 2 CoPoQs + QZCP(Ca +Ca)+CoPo(1-Ca -C b 

where the following notation is used, 

L- level in the reactor (cm); 

T- temperature in the reactor (°C); 

T, - temperature of input reactant (°C); 
T2 - temperature of the recycled reactant after heat exchange (°C); 

Ti - temperature of cold water entering heat exchanger (°C); 

A- cross-sectional area of the reactor (cm2); 

Qi - flow rate of input reactant (cm3lsec); 

Q2 - flow rate of the recycled reactant (cm3/sec); 

Qj - flow rate of the liquid leaving the reactor (cm3/sec); 
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Q4 - now rate of the product (cm3/sec); 

QS - flow rate of cold water entering heat exchanger (cm3/sec); 

CQ - concentration of reactant in the reactor; 

Cb - concentration of product in the reactor; 

CQo - concentration of reactant in the input stream; 

ra - reaction rate (g/sec); 

H, - reaction heat constant (KJ/g); 

p- density of the reactant (g1cm3); 

po - density of the solvent (g/cm3); 

C- specific heat of the reactant (J/g°C); 

Co - specific heat of the solvent (J/g°C); 

K, - reaction rate constant (g/sec); 

a, - constant peculiar to reaction (g/sec); 

A, - constant peculiar to reaction (°C); 

K2 - restriction parameter of valve 3 (cm4/g'/2 sec); 

K4 - restriction parameter of valve 1(cm4/g't2sec); 

Ks - restriction parameter of valve 2 (cm4/g'/2 sec); 

A2-fractional opening of valve 3 (%); 

A4 - fractional opening of valve 1 (%); 

A5 - fractional opening of valve 2 (%); 

P- pressure of liquid leaving the pump (g/cm2); 

Po - pressure at the bottom of the reactor (g/cm2); 

AP - pressure increase caused by pump (g/cm2); 

P5 - pressure of the feed cold water to the heat exchanger (g/cm2); 

t- time (sec). 

The model parameters and the nominal values of certain process variables are given in the 

following table, Table 5.1. Therefore, from equations (5.9), (5.10) and (5.12), and using the model 

parameters values of A, K2 and K4, equation (5.1) can be simplified to, 

dL 43.4A4-JP 
dt 300 

(5.16) 

Following a similar procedure, from equations (5.7) and (5.8) and taking the model 

parameters values of n, a� b, and A, equation (5.2) can be represented as, 

70 



omm 

P 
S 

... «..... «« . »« ......................... 
Po 

«. 
1.1 g/cm3 

AP 
...... »........ «...... »... ... » ....................... ». 

200 g/cm2 
... ».... ».. Ä 

300 cm1 
a, 0.8 g/sec 

................... ».................... »....... »... ....... »...................... «.. »...... 
b, 66.9 °C 

C 
.... « ................................................................. 

0.9 J/g°C 
...... »........................................ 

Co 0.8 J/g°C 

CaO 0.8 
................... «............. »«.. »............... «....... ......... «. ».......... ý 

....................... 
H, 430 KJ/g 

» ...... « ... 
K? 

»... « ................... «.. « «32.6 
cm4/g'asec 

... 
K4 43.4 cm`/g'nsec 
K5 

............................ » ...... «......... «.............. 
47 cm4/g'sec 

.............. «. «..... «..... «.. »....... 
n 1 

PS 
'»« 

200 g/cm2 
Q1 300 cm3lsec 
Tl 20 °C 

.. « .......................... ....... .. ».... »»............... «......... «..... 
Ts 20°C 

Table 5.1 - Model parameters and nominal values of certain process variables 

dCQ 
= 

Qi(Cao 
- C) - 240CaLj 6. 

a 

dt 300L 

and equation (5.3) can be reduced to, 

dCb 
_ 

240CaLe-66. / 
- CbQI 

dt 300L 

(5.17) 

(5.18) 

From equations (5.7), (5.8) and (5.9) and using the model parameters values of n, a� b,, 

A, K2 and H� equation (5.4) can be simplified to, 

dT 
- 

B, QI(TI -T)-32.6A2BZN/TP(T-T)+344x103Cae-16* (5.19) dt 300LB2 
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Substituting equations (5.9) and (5.11) into equation (5.15), using the model parameters 

values of p, po, C, Co, K2 and K5, and using the process variables nominal values of Ts and Ps, 

gives, 

1169.8375A5 + 3.26A2. 
T_ 

58.4919A5 +3.26A2 P 
L08(CQ + Cb) + 0.88(1- Ca - cb) 

1.08(C, +Cb)+0.88(1-Ca-Cb) 
(5.20) 

Substituting equation (5.14) into equation (5.13), and using the model parameters values of 

p and po, gives, 

P= 41.2(CQ+Cb)+1.1(1-Ca 
-Cb)]+AP (5.21) 

Substituting the model parameters values of p, po, C and Co into equations (5.5) and (5.6), 

gives respectively the following two equations, 

B1= L08CQ0 + 0.881- CQo) 

B2= 1. O8(Ca+Cb)+o. 88(i-ca -cb) 

(5.22) 

(5.23) 

Hence, briefly, the dynamic model of the CSTR system can be represented by the 

following set of equations, which are used to simulate the process. 

81=1.08Ca0+0.88(1-Ca0) (5.24) 

B2= L08(Ca+cb)+0.88(1-Ca-Cb) (5.25) 

T2 _ 
1169.8375A5 + 3.26AZýTB2 

(5.26) 
58.4919A5 + 3.26A2JB2 

P= 41.2(Ca+Cb)+1.1(1-Ca-Cb)]+eP (5.27) 

dL 43.4Ai 
(5.28) dt - 300 
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-66.9/- 
dCa 

= 
Q1(CQ0 - Ca) - 240C6Le (5.29) 

dt 300L 

dCb 
_ 

240CaLe46, I 
- CA (5.30) 

dt 300L 

dT 
_ 

B, QI(T, -T)-32.6A2B2, rP(T-TZ)+344x10Cae -66. yr 

(5.31) 
dt 300LB2 

Under normal operating conditions, the process variables Q,, AP, CO aand T, take the 

nominal values shown in Table 5.1, while in a fault simulation situation the values could be 

changed according to the fault or set of faults chosen by the operator. The process variables AN A4 

and A5 are controlled variables and, therefore, their values are the controllers outputs. 

The qualitative model of the CSTR process is presented in the next sub chapter, which is 

derived from the dynamic model just achieved. 

5.4 Qualitative Modelling of the Continuous Stirred Tank Reactor 

A qualitative model is also developed for the continuous stirred tank reactor in a similar 

way as described in the previous chapter for the mixing process. 

As this qualitative model will be used for fault detection purposes, it is assumed that the 

process is operating at a steady state prior to the occurrence of a fault or faults. Hence, the 

qualitative model for the continuous stirred tank reactor can be achieved based on its steady state 

model. Under this assumption, from equations (5.1) and (5.12), the following equation can be 

obtained, 

Qi=Q4 

Substituting equation (5.10) into equation (5.32), gives, 

Q, = K4A4) 

From equations (5.13) and (5.14), equation (5.33) can be represented as, 

(5.32) 

(5.33) 
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Ql =K4A4 
L[P(CO+Cbl+po(1-Ca-Cb)]+LP (5.34) 

Considering the continuous stirred tank reactor in steady state conditions, equations (5.2) 

to (5.4) become, 

0=Q1(Cao-CQ)-rQAL 

0=r. AL-CbQI 

0= B1Q1(T -T)-BZQ2(T-TZ)+H, r, 

Equations (5.35) to (5.37) can also be represented as, 

Qi(Ca0 - Ca) = r7AL 

QICb = raAL 

(B1Q1 + B2Q2)T = B, Q, T + B2Q2T2 + Hr, 

Differentiating the two sides of equation (5.34), gives, 

2 4p(Co+Cb) +Po(1-CQ-Cb)] +AP 
dQ, 

= 

=K4A4[p(Ca+Cb)+Po(1-Ca-Cb)] 
dL+ 

d44 

dt 
+ +K4{4P(Ca+Cb)+Po(1-Ca -Cb)]+OP} 

+K4A4L(P - Po) 
dCjL 

+ K4A4L(P - Po) 
da+ 

K4A4 
dd- 

dt dt dt 

Equation (5.41) can be re-formulated as, 

K4k[p(Ca + Cb) + Po(1- Ca - Cb)] 
dt 

=2 4P(Ca +Cb) +P0(1-Ca -Cb)] +AP 
dý L 

-K41L[P(Ca+Cb)+P0(1-Ca-Cb)l +Apj - 

-K4A4L(P-Po) 
a-K4A4L(P-Po) dCb 

-K4 A4dLP 
dt dt dt 

(5.35) 

(5.36) 

(5.37) 

(5.38) 

(5.39) 

(5.40) 

(5.41) 

(5.42) 
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If, in equation (5.42), it is assumed that the changes in C. and Cb cannot significantly affect the 

average density of the content in the reactor vessel and, hence, cannot significantly affect the 

pressure at the bottom of the reactor, then the above equation can be simplified to, 

K4A4[P(Ca + Cb)+ Po(1- Ca - Cb)I 
dL 
dt 

=2 4P(Ca+Cb)+PO(1-Ca-Cb)]+AP - 
(5.43) 

dA4 
-Kal`'IP(Ca+Cbý+ Pol - Ca-CI+AP} 

-K4A4 
dEP 
dr 

Taking the qualitative values of the two sides of equation (5.43) and using AX to denote dX/dt, 

gives, 

[AL] _ [Au] - [M4] - [A(AP)] (5.44) 

Substituting equations (5.7) and (5.8) with n=1, in equation (5.38), and then 

differentiating both sides, gives the following equation, 

°) 
Q+ý dCao 

+ 
dCa 

= C ao -C dt dt 
Ql 

dt 
6 (5.45) 

=AaCe 
bI dL 

+ Aa Le 
b/ 

+ 
AarbrLCae dT 

ra dt r dt v dt 

which can be re-formulated as, 

Aa, Le T- Qj 
ddta 

= 
(5.46) 

= Cao-C4 
dCll býT d-Aa, G, LCee 

býT 
dT 

dt dt dt T2 dt 

From equation (5.46) and following a similar procedure, as for the derivation of equation (5.43), 

gives the following qualitative algebraic equation, 

[, &c. ] = [ea] + [ecao] - ['&L] - [AT] (5.47) 
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Substituting equations (5.7) and (5.8) with n=1, in equation (5.39), and then 

differentiating both sides, we achieve, 

CI+= Aa C 
6ýT d+ AaLebýT ý+ Aa LCae-bl dT (5.48) -d L6 

dt 
Q` 

dt ' ae dt dt T2 dt 

which can be re-formulated as, 

Qi dCb 
= AaCae 

b'r dL 
+ 

Aa, b, LCae 
6kr dT 

+ 
dt dt T2 dt (5.49) 

+Aa, Le 
bX dCa 

_ Cb 
dQ, 

dt dt 

Taking the qualitative values of the two sides of equation (5.49), gives the following qualitative 

equation, 

[ecb] = [AL] + [AT] + [AC. ] - [AQ1] (5.50) 

Substituting equations (5.7) and (5.8) with n=1, in equation (5.40), gives the following 

equation, 

(B1Q1 + B2Q2)T = B1Qj7 + B2Q2T + H, a, Cae 
6ýr (5.51) 

However, the variables Bl and B2 in equation (5.51) can approximately be treated as 

constants, if it is assumed that changes in Cao, Ca and Cb will not significantly affect the densities 

and specific heats of the input reactant and the content in the reactor vessel. Then, differentiating 

both sides of equation (5.51), gives the following equation, 

AT 
-+ 

B2T +(B1Q1 + B2Q2)t = 

AT 
Q 

+Ji 4d +B2Ti 
d 

+BiQ2 
d+ 

(5.52) 

+ 
H, a, kC,, e o'lTdT 

+Hae 
b4 dC 

T2 dt dt 

which can be re-formulated as, 
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b 
Fl, a, b,. CQe JdT B1Q1 + B2Q2 -T2 dt 

(5.53) 

dT dT dQ -6 dC 
=B1QI I+BiQz2-A(T-T)dQ dQ'-BZ(T-T2)Q+Hae z,, 

dt dt dt dt dt 

Taking the qualitative values of the two sides of equation (5.53), gives, 

[eT]=[i 7 ]+[eT2]-[AQ, ]-[eQ2]+[ecQ] c5.54) 

The qualitative model for the continuous stirred tank reactor has now been achieved and is 

listed below, 

JAL] = [OQ1] - [MA4] - [e(OP)] (5.55) 

[E Ca] = [AQ]+[ecao]-[AL]-[AT] (5.56) 

[Acb] _ [OL] + [AT] + [eca] -[AQl] (5.57) 

[LT]=[oT]+[LT]-[AQ1]-[AQ2]+[LCa] (5.58) 

This set of confluence's, which are formally derived from the quantitative equations for. the process, 

will be used by a fuzzy qualitative simulation algorithm described in following chapters. In this 

way, the qualitative behaviour of physical variables L, Ca, Cb and T is predicted in the form of 

linguistic variables whose semantics are represented by fuzzy numbers. Moreover, the derivation of 

the qualitative model from the quantitative one ensures that the set of confluence's is consistent 

with the dynamic model of the process. 

5.5 Process Variables Control 

During simulation studies conducted with the continuous stirred tank reactor, control of 

some process variables has been performed. As quoted above, temperature and level in the reactor, 

as well as the recycle flow rate, are controlled by feed back control systems and classical 

controllers have been used. 
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To regulate level in the reactor a discrete PID controller is used of the form, 

e(i) 
u(t) =K e(t) +T+ Td[e(t) - e(t -1)] 

and the corresponding block diagram is depicted in Figure 5.3. 

Level Setpoint Error Control Signal 
MID Val. l Process 

Figure 5.3 - Level control loop 

(5.59) 

Level 

1 

On the other hand, to control temperature in the reactor a PI controller in cascade with aP 

controller is used and to control recycled flow rate a PI controller is used, which have respectively 

the following forms, 

e(i) 
u(t) = e(t) + r-1 (5.60) 

Ti 

u(t) = Ke(t) (5.61) 

The corresponding block diagrams of the control loops are depicted in Figures 5.4 and 5.5, 

respectively. 

Flow rate (Qs) FR 
Temper. Error Flow rate Error Control 

PID P Val. 2 Process 
Setpoint Setpoint Signal Temperature 

Figure 5.4 - Temperature control loop 
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Flow rate Setpoint Error ri Control Signal 
PI Val. 31 Process 

Figure 5.5 - Recycled flow rate control loop 

Flow rate (Q2) 

1 

In the control laws defined by equations (5.59), (5.60) and (5.61) the following notation is 

used: 

- u(t), stands for control signal at time instant t; 

- e(t), stands for error signal at time instant t; 

- K, is the controller gain; 

- Ti, is the integration time; 

- Td, is the derivative time; 

- t, stands for sampling time instant. 

The controllers performance is discussed in the next sub chapter, where some results 

achieved during simulation studies conducted with the continuous stirred tank reactor, are also 

presented. 

5.6 Controllers Performance 

In order to perform the process simulation a fifth-order Runge-Kutta method is used to 

solve the set of differential equations which constitutes the dynamic model of the process. For this 

simulation a sampling time interval of 1 second is used, and the corresponding parameters values of 

the controllers are given in Table 5.2. 

Control Loop Cont rollers Parameters 
K Tf Td 

L 0.08 20.0 2.86 
Q2 0.1 5.0 ----- LT 

8.0` 
0.02*0 

1.2` 

----- 
----- 
---- 

* Primary control loop ** Secondary control loop 

Table 5.2 - Controllers parameters 
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During the simulation studies performed with the continuous stirred tank reactor, a 

satisfactory controls performance has been observed. An example can be seen in Figure 5.6, where 

the response of the PID controller for the level control loop and the response of the PI controller for 

the recycled flow rate are shown. A low overshoot, as well as a low undershoot, for both control 

loops is observed. 

Figure 5.6 - Controllers performance 

5.7 Conclusions 

In this chapter a continuous stirred tank reactor is presented. For such a process a dynamic 

mathematical model is derived in sub chapter 5.3. Moreover, a TURBO C++ program has been 

implemented to perform the process simulation. During simulation studies conducted with the 

computational system developed, the dynamic model of the process has been used to achieve the 

process simulation. In further chapters this model will be used to simulate the process under normal 

operating conditions, as well as under fault or faults situations. This will allow the performance and 

reliability of several fault detection and diagnosis systems presented in the following chapters to be 

tested. 
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From the dynamic mathematical model of the continuous stirred tank reactor a qualitative 

model, which is represented by a set of confluence's has been obtained The qualitative model of the 

process will be used in further chapters for fault detection purposes in the process under 

consideration. 

Control of some process variables has been performed through conventional controllers. 

The results, which have been obtained during simulation studies, have shown a good performance 

of the control system implemented. 
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Chapter 6 

On-Line Single Fault Diagnosis Based on Fuzzy 

Qualitative Simulafi'on 

6.1 Introduction 

During the last two decades, the so called model based fault diagnosis approach has 

received increasing attention in both research and application, providing plant operators with a 

complete knowledge of the plant's operating state in order to maximise safety, efficiency and 

quality of operation (Frank 1990 and Patton et al. 1989). Accurate and timely information enables 

operators to respond rapidly to plant disturbances and minimise the effects of system failures on 

the plant, product and the environment. The early detection and identification of degradation or 

impending failure of a plant component or sensor can provide vital information to the plant 

operator to assist in the task of controlling the plant. 

The goal of early fault detection is. to recognise the occurrence of a fault early enough in 

order to permit the control system to resume normal operation or operate with degraded but 

acceptable performance or initiate action for a controlled shut down. The traditional techniques of 

fault diagnosis involve limit value checking of some process variables or simple plausibility checks. 

Clearly, this method is not capable of performing a high quality fault diagnosis, because it can not 

provide much information about the locations and sources of faults. Moreover, with current 

monitoring technology, alarms are triggered whenever fixed threshold values are exceeded. In 

process plants with complex interactions and tight coupling, hundreds or thousands of distinct 

alarms can be activated within a minute. In such situations, process operators tend to overlook 

relevant information, respond too slowly, and panic when the rate of information now is too great. 
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For these reasons there is motivation to develop a computational system consisting of a 

process simulator with control of some process variables in a lower layer and a supervisory module 

in an upper layer whose main aim is to detect and diagnose faults introduced in the lower layer. The 

fault detection and diagnosis system implemented has the ability to detect and diagnose single 

abrupt faults, and has been applied during simulation studies conducted with the mixing process 

which has been described at chapter 4.. The expert system developed is based on Artificial 

Intelligence techniques and is described below. 

Depending on the depth of the process knowledge employed, the techniques, applied in the 

development of the most recent detection and diagnosis systems, can be classified into quantitative 

and qualitative approaches. Quantitative diagnostic systems utilise a rigorous process model and 

on-line measurements to back-calculate the crucial process variables (Willsky 1976, Isermann 

1984). A process fault is characterised by, the significant deviation in the calculated process 

variables. This approach requires extensive quantitative process knowledge, 
, to perform 

computation quantitatively. However, for some processes, accurate model parameters may not be 

available, and in some cases, accurate or direct measurements of some process variables may also 

be unavailable. So, qualitative information may be more adequate for fault diagnosis and this is the 

basis of the present computational system. Moreover, the use of qualitative information allows an 

increase in the computational speed, which is fundamental for an early fault detection. 

The qualitative approach, require much less process knowledge. This method is based upon 

the concept of a qualitative model which unlike the quantitative approach only requires declarative 

information, such as, the sign of variables, the tendencies of variables increasing (+), decreasing () 

or steady (0) together with relative magnitude. Indeed qualitative models result in diagnostic 

systems that are inherently more robust than numerically based systems. One advantage of this 

method is that the effect of a fault can be easily represented by the deviation of the corresponding 

process variables and, hence, the qualitative model can easily be used to simulate the process under 

normal or various faulty conditions. This property is essential in monitoring a physical system, 

whether healthy or faulty. 

Studies of qualitative modelling are currently being conducted in the field of artificial 

intelligence. Previous methods of qualitative modelling have. tended to suffer from excessive 

generation of multiple solutions, which could lead to a loss in diagnostic resolution if these methods 

were used in practice. Spurious solutions which may be generated when there are competing 

qualitative influences which cannot be resolved, for instance when one parameter tends to make a 

variable increase, and another tends to make it decrease. In general, qualitative simulation cannot 
be guaranteed to exclude spurious solutions (Kuipers 1986); however, several strategies for 

reducing spurious solutions and/or ambiguity have been pursued. 
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There are several different methods in qualitative reasoning such as de Kleer and Brown's 

confluence based qualitative reasoning (de Kleer and Brown 1984) which is also referred to as 

Incremental Qualitative Analysis (IQA)(Herbert and Williams 1987), Forbus' qualitative process 

theory (Forbus 1984), Kuipers' qualitative simulation (Kuipers 1986,1987), Kramer and 

Palowitch's signed directed graph (Kramer and Palowitch 1987), and Shen and Leitch's fuzzy 

qualitative simulation (Shen and Leitch 1993). 

However, due to the lack of quantitative information, ambiguity often occurs in qualitative 

reasoning, especially when a large number of qualitative variables are involved. Several 

methodologies have been pointed out to minimise the effects of ambiguity in qualitative reasoning. 

For instance, in order to solve this problem, Zhang (1991) used an extended method of order of 

magnitude reasoning proposed by Raiman (1986). In the current approach the theory of fuzzy sets 

has been used to overcome this problem and increase the system's reliability. 

The qualitative model used in this approach is a set of confluence's which are qualitative 

equations and are derived from a quantitative model of the process under consideration, following a 

similar procedure as proposed by de Kleer and Brown (1984). The approach presented by the 

author utilises the theory of fuzzy set to give an arbitrary, but finite, discretisation of the 

representation of system variables (Dubois and Prade 1980). Linguistic variables defined on the 

interval, (-1,11, are interpreted as verbal probabilities and their semantics are represented by fuzzy 

numbers. The term set of linguistic variables defines the granularity of the confidence assessment 

values that can consistently be expressed by users or experts. Moreover, the adoption of fuzzy sets 

allows common-sense knowledge to be incorporated in the interpretation of values through the use 

of graded membership. Thus, fuzzy heuristic rules can be used to perform this task. Such a system 

also allows both magnitude and sign information on the functional relationship holding-against two 

or more variables to be represented, resulting in a considerable reduction of the inherent ambiguity 

of qualitative computation. 

Such an approach uses a qualitative level of description that lets us express imprecise 

knowledge and takes advantage of quantitative knowledge when it is available, which is usually the 

case in process plants. Moreover, it permits direct comparison of the numeric sensor readings 

transformed into linguistic variables, whose semantics are represented by fuzzy numbers, with the 

linguistic values predicted for each variable. 

In the next sub chapter, a description of the computational system architecture 
implemented is presented. Sub chapter 6.3 describes the fuzzy qualitative reasoning, which has 

been used as a first stage of a fault detection. Sub chapter 6.4 presents the methodology used to 

detect a fault in the process under concern. The fault diagnosis reasoning is described in sub 

chapter 6.5. The application of such a fault detection and diagnosis system to the simulated mixing 
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process, presented at chapter 4., is described in sub chapter 6.6. In this sub chapter some results, 

achieved during simulation studies, are also presented. The last sub chapter contains some 

concluding remarks. 

6.2 System Architecture 

This sub chapter presents a general description of the computational system implemented. 

The mixing process presented in the previous chapter has been used as a test bed for the fault 

detection and diagnosis system developed. Therefore, control of level and temperature of tank 2 has 

been considered, which has been performed through the rule based controller described in chapter 

4.. The overall computational system is implemented in Turbo C++ and run in a personal computer 

without special features. For instance during the current research a 386 (25 MHz) machine, fitted 

with a mathematical co-processor, has been used. A block diagram of such a computational system 

is depicted in Figure 6.1. 

This computational system can be interpreted as a system developed in two layers. In the 

lower layer we have the process simulator and the respective control. The upper layer consists of a 

supervisor system, whose main goal is to detect and diagnose faults simulated in the lower layer. 

The module identified by Data Fuzzification makes the interface between the two layers, which 

samples the process variables and transforms their values into linguistic variables whose semantics 

are represented by fuzzy numbers. 

To perform the process simulation in the lower layer the dynamic model of the process 

under consideration is used in the form of differential equations. For instance, for the mixing 

process the simulation has been achieved through the dynamic model represented by equations 

(4.13) to (4.18). To solve this set of ordinary differential equations a fifth-order Runge-Kutta 

method is used. In order to obtain a predetermined accuracy in the solution with minimum 

computational effort, an adaptive stepsize for the Runge-Kutta method is utilised. So, the integrator 

of the ordinary differential equations set exert some adaptive control over its progress making 

frequent changes in its stepsize. 

As quoted above the data fuzzification block performs the interface between the layers that 

constitute the system, process simulator/control and fault detection/diagnosis. The process 

variables are sampled with a sampling rate of 5 seconds and transformed into linguistic variables 

whose semantics are represented by fuzzy numbers. For simplicity, however, the author has used a 

normalised range [-1,1] to form the basis on which the fuzzy quantity space is discretized. The 

following fuzzy quantity space was adopted, of = Inlarge, nmedium, nsmall, zero, psmall, 
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FAULT DIAGNOSIS 
I Fault trees /Heuristic Rules I 
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FAULT DETECTION 

Discrepancy Generator 

QUALITATIVE PROCESS SIMULATOR 

Qualitative Model i 

to I ti 
Upper Layer 

DATA FUZZIFICATION 
........................................ Linguistic variables .......................................... 

Lower Layer 

PROCESS 

Dynamic Behaviour /Control 

Figure 6.1 - General scheme of a computer assisted fault diagnosis system 

pmedium, plarge), with the qualitative values being represented by seven 4-tuple parametric fuzzy 

numbers as given below and shown in Figure 6.2, 

qf= (/-1, -0.75,0,0.1 j, 1-0.6, -0.45,0.1,0.15j, [-0.3, -0.1,0.05,0.1 j, 10,0,0, Oj, 

10.1,0.3,0.1,0.05j, 10.45,0.6,0.15,0.1j, 10.75,1,0.1,0)) 

The corresponding membership functions, of such seven 4-tuple fuzzy numbers, are depicted in 

Figure 6.2. 
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X 

Figure 6.2 - The representation of the fuzzy quantity space 

However, in a general situation, design engineers usually cannot determine membership 

functions of a fuzzy number precisely (Yagawa et at. 1991). Therefore, the membership functions 

need certain tuning processes before their utilisation. In the present study, the fuzzy membership 

functions are first tuned up through a trial and error procedure. 

The information handled by the diagnosis system is in qualitative form which is converted 

from on-line quantitative information. To perform this task it is necessary to define a parameter for 

each variable which makes the normalisation of the different changes in the process variables in the 

range [-1,1]. However, since the fault detection system is triggered only if a sample process 

variable presents a change greater than "psmall" or less than "nsmall", the normalisation 

parameters will affect the performance of the detection system and should be set properly. Large 

normalisation parameters could make the fault detection system very sensitive to process 

disturbances as well as in a real situation very sensitive to measurement noise, and may result in 

spurious triggers of the fault detection system. Small normalisation parameters may miss faults. 

During the current studies, it is found that the proper setting of these normalisation parameters, 

used to normalise the changes in the process variables, can remarkably save computational time 

and increase the performance of the system. 

These parameters are set based on previous operational experience of the process under 

concern. To set the normalisation parameters of each sampled process variable the author 

performed the following procedure: 

1. Random changes in the magnitudes of the setpoints of the temperature as well as of the 

level of tank 2 are performed. The consequent changes in the sampled variables are 

collected in a file with ASCII format. 
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2. This file is imported by a spreadsheet such as Lotus or Excel and with the data 

collected corresponding flowcharts are achieved. A example of the flowchart achieved 

for level in tank 1 is shown in Figure 6.3. 

3. The normalisation parameter is achieved such that the most part of variable changes is 

converted into a linguistic variable "psmall" or "nsmall". For the example shown in 

Figure 4.3, the normalisation parameter I is obtained. 
4. Through a trial and error procedure a fine adjustment of some normalisation 

parameters is performed in order to obtain the desirable results in qualitative 

simulation. 

This procedure allows qualitative simulation to be performed through arithmetic operations 

with fuzzy numbers that correspond to changes in process variables with different physical 

meaning. 

crr 

Sarges 

Figure 6.3 - Changes in level of tank 1 

However, if any normalised change of a process variable, has a value greater than I or less 

than -1, the linguistic variables "plarge" and "nlarge" will be assigned accordingly. For instance, 

since the normalisation parameter for level of tank 1' takes the value 1, some situation such that 

seen in Figure 6.3 occurs where the changes'in the level of tank I take values less than -1 cm. 

Therefore, in such a situation, the linguistic value "nlarge" will be assigned. 
The main parts of the fault detection and diagnosis system, such as the fuzzy qualitative 

simulation as well as the fault detection and diagnosis reasoning, are described in the next sub 

chapters. 

88 



6.3 Fuzzy Qualitative Reasoning 

The aim of the Qualitative Process Simulator block is to predict the behaviour of the 

measured process variables under normal operational conditions as well as under fault conditions, 

based on a qualitative reasoning approach. The qualitative reasoning method is specially 

appropriate when the monitored process contains a large number of variables and also because it 

depends less on accurate quantitative information. This is particularly useful in simulating the 

effect of a fault as the exact severity of a fault is generally not known. Moreover, in contrast with 

quantitative approaches, noise in the measurement variables has a reduced effect in qualitative 

reasoning. 

Typical methods of qualitative simulation for the description of a physical system are 

based on initial use of quantitative knowledge, and normally only sign information on the rate of 

change of each variables is represented, lacking ordering information amongst the rates of change. 

In the present approach a new methodology is performed based on the use of linguistic variables 

which semantics are represented by fuzzy numbers. 

Thus, due to the lack of quantitative information, ambiguity often occurs in qualitative 

reasoning, especially when a large number of qualitative variables are involved. In order to reduce 

the ambiguity, the sampled process variables are converted into fuzzy numbers by a fuzzification 

system. Therefore, in some sense, we can say that this is a system based on a 

qualitativelquantitative approach. However, the use of fuzzy numbers allows the introduction of 

common sense knowledge and by this means the ambiguity can be eliminated. 

As quoted above several different approaches in qualitative reasoning are pointed out by 

several researchers. The qualitative model used in this approach is a set of confluence's which are 

qualitative equations derived from 'a quantitative model of the process under concern. The 

qualitative simulation is triggered when at least one of the sampled process variables takes one of 

the following linguistic variables: pmedium; plarge; nmedium; nlarge. Here the aim is to predict 

the behaviour of the process variables, in order to confirm or to deny a hypothetical fault, which is 

performed by the fault detection module. The sampled process variables, converted into linguistic 

variables by the data fuzzification system, are propagated through the set of confluence's. 
Following this procedure, according to the qualitative model of the process under consideration, the 

rate of change of some process variables can be predicted in a qualitative form, such that the 

semantics of the results are represented by fuzzy numbers. 
Therefore, as the semantics of the linguistic variables are represented by 4-tuplc fuzzy 

numbers, their propagation through the qualitative model is performed using expressions (3.19) and 
(3.20). However, in order to avoid computational difficulties the arithmetic operations with fuzzy 
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numbers have been implemented in the form of a matrix as shown in Tables 6.1 and 6.2, 

respectively for addition and subtraction. 

l 
+ nlarge nmedium nsmall zero psinall pmedium arge p 

nlarge nlarge nlarge nlarge niarge nmedium nsmall nsmall or 
nsmall 

ll 
nmedium nlarge nlarge nlarge nmedium nsmall nsmall or 

small 
psma 

nsmall nlarge nlarge nmedium nsmall nsmall or 
small 

psmall pmedium 

zero 
psinall 

nlar e 
nmedium 

nmedium 
nsmall 

nsmall 
nsmall or 

small 

zero 
psmall 

small 
pmedium 

medium 
plarge 

plarge 
plarge 

pmedium nsmall nsmall or 
small 

psmall pmedium plarge plarge plarge 

plarge nsmall or 
small 

psmall pmedium plarge plarge plarge plarge 

Table 6.1 - Addition of fuzzy numbers 

_ nlarge nmedium nsmall zero psmall pmedium plarge 

nlarge nsmall or nsmall nmedium nlarge nlarge nlarge nlarge 

small 
nmedium psmall nsmall or nsmall nmedium nlarge nlarge nlarge 

small 
nsmall pmedium psmall nsmall or nsmall nmedium nlarge nlarge 

psmall 
zero plarge medium small zero nsmall nmedium nlar e 

psmall plarge plarge pmedium psmall nsmall or nsmall nmedium 
small 

pmedium plarge plarge plarge pmedium psmall nsmall or nsmall 
small 

plarge plarge plarge plarge plarge pmedium psmall nsnzall or 
small 

Table 6.2 - Subtraction of fuzzy numbers 

In order to illustrate the importance of the distance measured principle quoted in chapter 3., 

in the qualitative reasoning, the follow example is presented. Thus, let us consider the confluence 

for the mixing process, represented by the following equation, 

[614] =[AQOI] -[AQ021 
(6.1) 
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where [iQat] takes the qualitative value psmall while [OQ<] takes the qualitative value 

pmedium. As the semantics of psmall and pmedium are represented by 4-tuple fuzzy numbers, [0.1, 

0.3,0.1,0.05] and [0.45,0.6,0.15,0.1 ] respectively, we have, 

[O4] _ [0.1,0.3,0.1,0.05]-[0.45,0.6,0.15,0.1] (6.2) 

Then, according to the expression (3.20), the result of expression (6.2) is the following 4-tuple 

fuzzy number, 

[4 ]= [-0.5, --0.15,0.2,0.2] (6.3) 

By checking if an element in qf intersects with X =[-0.5, -0.15,0.2,0.2 , the following 

set of 4-tuple fuzzy numbers, is generated, 

.t qr = {[--o. 6, -0.45,0.1,0.15], [-0.3, -0.1,0.05,0.1], [0,0,0,0], [0.1,0.3,0.1,0.05] } (6.4) 

This implies that [-0.6, -0.45,0.1,0.15], [-0.3, -0.1,0.05,0.1], [0,0,0,0] and 
[0.1,0.3,0.1,0.05] are fuzzy values that [AL2] may take. However, the utilisation of the 

approximation principle allows a distinction to be made between the possible values of a variable. 
A In fact, distances between X and X, where Xe qf, can be evaluated through the expressions 

(3.22), (3.23) and (3.24), and the results are, 

d= {0.340,0.302,0.639,0593} (6.5) 

Therefore, the approximation of [-0.5, -0.15,0.2,0.2] is deemed to be [-0.3, -0.1,0.05,0.1]9 
based on the smaller distance 0.302. This results in, 

[AI2] = [-0.3, -0.1,0.05,0.1] = nsmall (6.6) 

So, we have, 

psmall - pmedium = nsmall (6.7) 
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as shown in the Table 6.2, and is well suited to our common sense calculus, putting the problem of 

order of magnitude reasoning on a firm basis. This simple example clearly shows that the 

ambiguity with regard to conventional sign algebra (de Klecr and Brown 1984) is significantly 

reduced with an extended quantity space. 

Even in the case where differences between the distances are not obtained, the calculations 

can result in only two values. For instance, let us consider the following, 

plarge + nlarge = [-0.25,0.25,0.1,0.1] (6.8) 

Now, by checking if an element in Cjintersects 'with X =[-0.25,0.25,0.1,0.1], the following set 

is generated, 

.tqf= 
1[-0.3, -0.1,0.05,0.1], [0,0,0,0], [0.1,0.3,0. I, QO51} (6.9) 

In this case, the calculation of the distances between i and X, where XE qf, gives the 

following result, 

d= {0.382,0.632,0.382} (6.10) 

Therefore, as shown in Table 6.1, the result of expression (6.8) can be nsmall or psmall. However, 

in this situation, the fact that we are using fuzzy numbers to perform the qualitative simulation, 

allows common sense knowledge in the form of heuristic rules, which can eliminate these spurious 

solutions, to be used. 

For instance, during the simulation studies conducted with the mixing process, when we 

Process Variables Predicted Behaviour 

Ll Increase - plarge 

L2 Decrease - nsmall or 

Increase - psmall 

Tl Steady - zero 

T2 Steady - zero 

Table 6.3 - Predicted behaviour of process variables under "Hand Valve I 
is blocked" fault situation. 
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initiate the fault situations of "Hand Valve 1 blocked" and "Hand Valve 2 blocked" with the steady 
state condition, setpoints of the level and temperature in tank 2 equal to 50%, the predicted 

behaviour of level and temperature in both tanks is presented in Table 6.3 and Table 6.4 

respectively. It can be seen that there are two situations with spurious solutions. Fortunately, the 

use of common sense knowledge can solve this ambiguity problem. 

Process Variables Predicted Behaviour 

Ll Increase - psmall 

L2 Decrease - nlarge 

Tl Decrease - nsmall or 

Increase - psmall 
T2 Steady - zero 

Table 6.4 - Predicted behaviour of process variables under "Hand Valve 2 
is blocked" fault situation. 

Therefore, in order to solve this ambiguity problems the following three heuristic rules can 

be introduced in the knowledge base, 

1. IF ([AL2] = indeterminate AND Qo1= 0) THEN [i 4] = nsmall; 

2. IF ([t 4ý = indeterminate AND Q02 = 0) THEN []= psmall; 

3. IF ([AQh] 
= [AQQ]) THEN [OT] = zero. 

Looking at the qualitative model of the mixing process, which is presented in chapter 4., 

the first and second rules are obvious while the third rule can be obtained from the controller 

mechanism explained in sub chapter 4.5. It is worth noting that the predicted behaviour of the level 

in the tank 2, presented in Table 6.4, appears strange. However, we obtained this prediction 

because the fault is confirmed only in the second time that the qualitative simulator is triggered 

after fault initialisation. The used of this specific knowledge about the process under concern could 
increase the reliability of the fault detection system. 

The results of the qualitative simulation are passed to the fault detection block where they 

are compared with the real behaviour of the process variables in the next sampled time. In the next 

sub chapter the fault detection reasoning is discussed. 

93 



6.4 Fault Detection Reasoning 

Fault detection, which is closely related to monitoring, involves differentiating between 

normal and abnormal conditions. Managing this kind of problem solving requires reasoning about 

physical relationships in a way that explains the current process state and predicts trajectories that 

the process is likely to follow. 

There are two ways to view the fault detection problem. In the first view past experience 

plays the dominant role. Experienced failure situations are coded as heuristic rules, perhaps 

together with some predictive or statistical knowledge, all obtained from a human expert in a 

particular domain. This could, in some sense, be considered as the traditional expert system 

approach. However, the trial and error process by which knowledge is elicited, programmed, and 

tested is likely to produce inconsistent and incomplete databases and, hence, an expert system may 

exhibit important gaps in knowledge at unexpected times (Denning 1986). Obviously, such 

situations can have serious consequences in some process industries. 

The second view, and the view taken in the approach presented here, is a fault detection 

system based on a functional model of some system and some measurements from that system. If 

the measurements conflict with the functional model then there is a diagnostic problem, which is 

dealt with as presented in sub chapter 6.5. This model based approach to fault detection and 

diagnosis has emerged from two different communities. In the engineering community, fault 

detection and diagnosis techniques generally rely on a precise mathematical model of the process 

and on pre-enumerated fault symptom patterns known as fault signatures. In the computer 

science/artificial intelligence community, model based fault detection and diagnosis systems rely on 

models of structure and behaviour. 

The process plant knowledge used here is based on general laws of physics and chemistry; 

that is, a description of the physical and chemical laws that the plant obeys. The method of 

description is qualitative physics, which attempts to model the plant in terms of a model of the 

general physical and chemical relationships in the plant rather than by rigorous mathematical 

modelling of the process. The current model based approach has evolved within the artificial 
intelligence community. 

The detection of a fault is based on the comparison of the predicted behaviour with the real 
behaviour of the process variables. Thus, when the qualitative simulator system is triggered the 

behaviour of some process variables are predicted following the procedure described in the 

previous sub chapter, and the results are passed to the fault detection block. 'Then, in time instant 

W, the data fuzzification system samples the real behaviour of the process variables whose 
behaviour has already been predicted, and converts these values to linguistic variables whose 
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semantics are also represented by fuzzy numbers. The linguistic variables achieved in this way are 

then passed to the fault detection system. The next step of the procedure is to compare the results of 

the qualitative simulator system with the real behaviour of the process variables. Mien if the real 

behaviour of at least one process variable does not match the linguistic value predicted by the 

qualitative simulator, the existence of a fault in the process under concern is confirmed. Otherwise, 

the existence of a fault is denied. 

Hence, the fault detection system can be called a discrepancy generator. This means that 

when any discrepancy is achieved the existence of a fault is confirmed, and the fault diagnosis 

system is triggered in order to locate the fault or faults. Otherwise the process simulation continues 

until the qualitative simulator system is triggered with a fault confirmed by the fault detection 

module. The procedure used to locate a fault in the process under consideration is described in the 

next sub chapter. 

6.5 Fault Diagnosis Reasoning 

Malfunction diagnosis isolates and identifies process malfunctions. This can be especially 

difficult in large malfunction hypothesis spaces. Navigating these hypothesis spaces requires that 

we structure diagnostic knowledge in forms that are efficient for problem solving. Therefore, since 

search forms the core of the fault diagnosis system, it is useful to structure the program in a way 

that facilitates the search process. 

Hence, according to chapter 2. the fault diagnosis system has been implemented as a 

production system, which has been shown to be a good way to model the strong data-driven nature 

of intelligent actions. Moreover, the object of a search procedure is to discover a path through a 

problem space from an initial configuration to a goal state. As discussed earlier there are two 

directions in which such a search could proceed: 

- Forward, from the start states; 

- Backward, from the goal states. 

In the system developed, both techniques are used in the diagnostic process. A general 

analysis is carried out to find what faults are possible and generate a reduced set of fault 

candidates; forward chaining. A diagnosis is then selected and a more detailed analysis carried out 

to try and prove the diagnosis using known facts and other rules; backward chaining. This 

95 



procedure has the advantage of first indicating where to look for a solution rather than spending a 

lot of time retrieving unimportant data. 

Once a fault is detected in the process under concern, the fault diagnosis system is called in 

order to advise the operator that a fault has occurred in a process component. The diagnosis task is 

performed through the comparison between the process variables real behaviour and the fault 

symptoms stored in the knowledge base. However, if the real behaviour of the process variables 

does not match any set of fault symptoms stored in the knowledge base, the fault diagnosis system 

is not able to identify the fault and an unsuccessful diagnosis occurs. At this stage a fault detection 

and diagnosis system with self-learning abilities will be desirable, which is considered in a further 

chapter. 

Therefore, the fault diagnosis system implemented consists of a set of rules, a knowledge 

base with the fault symptoms, another knowledge base with the faults descriptions, and an inference 

engine. When the fault detection system observes a discrepancy between the real behaviour of the 

process variables and the predicted behaviour, the fault diagnosis system is triggered. At this stage, 

in order to locate a hypothetical fault, the fault diagnosis task starts. 

The first linguistic value of the achieved process variable real behaviour, which is 

responsible for generating a discrepancy, is compared with the corresponding linguistic values of 

the fault symptoms, stored in the respective knowledge base. By this strategy, performed through 

forward chaining, a reduced set of fault candidates is generated. If the result of this procedure is a 

set of fault candidates that is empty, an unsuccessful diagnosis is achieved. However, if an empty 

set of fault candidates is not achieved, the fault diagnosis procedure will continue. 
From the set of fault candidates, none of which is empty, the hypothetical diagnosis is 

performed by the "hypothesis-test" strategy. The procedure is first to generate a hypothesis from 

the set of fault candidates, then compare the real behaviour of the remaining sampled process 

variables with the fault symptoms. If they agree this hypothesis is retained. Otherwise, this 

procedure is continuously repeated until all fault candidates have been tested. Also here, if no 

hypothesis is retained, an unsuccessful diagnosis occurs. 

To perform the diagnosis a recursive algorithm is implemented, which can work with any 

number of faults. Moreover, as the faults symptoms and the faults description are stored in a 

magnetic support we can consider a large malfunction hypothesis space that can be used for real 

time fault diagnosis. 

The overall computational system described so far has been applied to the simulated 

mixing process described in chapter 4.. The next sub chapter presents the results achieved during 

the simulation studies. 
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6.6 Fault Detection and Diagnosis of the Mixing Process 

The Mixing Process, shown in Figure 4.1 and described in chapter 4., has been used as a 

test bed of the computational system just introduced. Thus, the dynamic model, represented by 

equations (4.13) to (4.18), has been used to simulate the process under normal operation 

conditions, as well as under a fault situation. Control of level and temperature in tank 2 has been 

considered and, hence, the rule based controller, described in sub chapter 4.5, has been used. The 

fuzzy qualitative reasoning, which is used during the fault detection task, has been based on the 

qualitative model of the process. This model is a set of confluence's which are qualitative equations 

represented by expressions (4.19) to (4.26). 

Therefore, since the detection of a fault is based on the comparison of the predicted 

behaviour with the real behaviour of process variables, when the qualitative simulator system is 

triggered the level and temperature of both tanks are predicted as described above, and the results 

passed to the fault detection system. Then, in the time instant t+1, the data fuzzification block 

samples the real behaviour of level and temperature in both tanks, and converts them into linguistic 

variables whose semantics are also represented by 4-tuple fuzzy numbers. The linguistic variables 

obtained by this way are then passed to the fault detection block, where they are compared with the 

fuzzy qualitative simulator results. According to the procedure described in sub chapter 6.4, a 

hypothetical fault is confirmed or denied. If a fault is confirmed then the fault diagnosis block is 

triggered in order to locate the faulty component. This task is performed according to the procedure 

described in sub chapter 6.5. 

As presented in Figure 6.4, in the prototype implemented, the possible faults that may 

occur in the mixing process are listed in Table 6.5. All of them must be regarded as abrupt faults. 

Moreover, Table 6.5 also present the process variables used to simulate the faults. The qualitative 

------------------------ ---- --------------- 

Hot water control valve fails low 

----------- 

EMS= ! [AQh] = negative 
Cold water control valve fails low [AQj = negative 

Hand valve 1 is blocked [OQ0 ]= negative 
....... .............. ............................................................................. Hand valve 2 is blocked [OQo2] negative 

Hot water control valve fails high [OQh] = positive 
.................................. ...................... Cold water control valve fails high ...:.................................. ............. ..... [OQj = positive 

Table 6.5 - Single faults representation for "The Mixing Process" 
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values taken by the process variables under a failure situation are represented by the linguistic 

values "negative" and 'positive", because the real fuzzy qualitative values taken from the 

descretized fuzzy quantity space, presented above, depend on the steady state conditions of the 

process when a single abrupt fault has been initiated. The behaviour of the process under a failure 

situation is achieved by changing the value of the corresponding variable in the dynamic model. 

13: 41: 13 15-7-1994 
INTELLIGENT DETECTION AND DIAGNOSIS OF FAULTS 
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STRART A FAULT 

" HUCU fails low 
" CHCU tails low 
" Hand valve I Is blocked 
" Hand valve 2 is blocked 
" HNCU fails high 
" CNCU fails high 

F 

Yourr choice is: Hand valve I blocked 

SETPOIHT L2 

SETPOII4T T2 

M 0.3 a 

FAULTS SIMULATION 

_Ovarflow 

Pool Tank 

Figure 6.4 - Fault simulation 

CFIF (cn3/s ) 
97.7 

HWF (cn3/s) 
41.9 

EXIT 

Moreover, as quoted in previous sub chapters, in order to save computational time and 
increase the system performance and reliability, an enable condition is defined, which should be 

satisfied in order to trigger the fault detection and diagnosis system. For the mixing process the 

definition of such enable conditions has been based on the process variables Li, L2, TI, T2, Qh and 
Q, The notation used here is presented in chapter 4.. Furthermore, since the author has used a 

normalised range [-1,1] to form the basis on which the fuzzy quantity space is descretized, for each 

variable a fuzzification parameter has been defined. Such fuzzification parameters are given in 

Table 6.6. 

The fault detection system, based on the above procedure, has been applied successfully to 

the mixing process, where all the faults quoted in Table 6.5 have been detected in the first time that 

the qualitative simulator system is triggered; with the exception of the faults "Eland valve 2 

98 



AL1 1.0 
.......... .............. _.,................. eL '= ............................... .............. 1.1 

.......... AT, .... ý:.................... ...... ..................... 0.75 

eT2 0.7 

.... ......... ....... eQh ..:.................... .......... ..... .................. 0.08 
...................... _: __... ý... ý... eQý 

................. ««.......... « ................ 

. _. _....... ......... 0.095 
................................ r«.............. 

Table 6.6 Fuzzification parameters for "The Mixing Process" 

blocked" and "Hand valve 1 blocked", which are detected in the second time that the qualitative 

simulator has been triggered, after initialisation in some steady state conditions. 

After the knowledge bases have been build with the fault symptoms and the corresponding 

fault descriptions, which have been acquired through simulation studies, the overall computational 

system has been successfully applied to the mixing process. During the experiments, all single 

faults mentioned in Table 6.5 were separately initiated with different steady state process 

15: 12: 59 18-7-1994 
INTELLIGENT DETECTION AND DIAGNOSIS OF FAULTS 

FAULT DETECTION 
Hot water control value fails low 

Real Behaviour Predicted Behaviour 

Li-Dec (nlarve) Li-Dec (nlarge) 
L. 2-Dec (nsnall) L2-Steady 
Ti-Dec (nlarge) TI-Dec (niarge) 
T2-Doc (nsnall) T2-Steady 

SETPOIHT L2 
F-I 

o. 5 L 

SETPOINT T2 

{' 0.5 

CWF (cn3/s) ýOvertlow 60.0 

HWF (cn3/s) 

0.0 

FAULTS SIMULATION I P® [ EXI T 

Figure 6.5 - Diagnostic of "Hot water control valve fails low" fault 

FU 

Mains 
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conditions, and they were detected and diagnosed successfully. For instance, Figure 6.5 shows the 

diagnosis result achieved after fault, "Hot water control valve fails low", has been initiated with the 

setpoints of the controlled variables having the value 0.5. 

6.7 Conclusions 

This chapter has been concerned with applications of artificial intelligence techniques to 

on-line process control and fault diagnosis with the main emphasis on knowledge based systems for 

on-line process fault detection and diagnosis. Therefore, a computational system with a two layer 

configuration has been implemented through a TURBO C++ program. Process simulation and 

control of some process variables are performed in the lower layer. The on-line process control has 

been achieved through a rule based controller. Moreover, faults simulated in the lower layer could 

be detected and diagnosed through the fault detection and diagnosis system implemented in the 

upper layer. On-line fault detection and diagnosis is regarded as a supervisory task in the prototype 

developed. 

A fault detection and diagnosis system based on fuzzy qualitative modelling is investigated. 

It is demonstrated that qualitative reasoning depends less on accurate process parameters and 

accurate measurement data and, therefore, a result obtained from qualitative reasoning is less 

accurate than that from quantitative reasoning. However, for the purpose of fault detection and 

diagnosis, accurate results are generally not needed and sometimes difficult to implement. 

Ambiguity is a problem associated with qualitative reasoning. In order to solve this 

problem a fuzzy simulation algorithm has been developed. This algorithm allows a more detailed 

description of system variables than the classical qualitative simulation methods, through an 

arbitrary but finite discretisation of the quantity space. Moreover, the use of graded membership 

within a fuzzy quantity space, in a parameterized form, allows common sense knowledge to be 

incorporated in the basic description of the quantity space. The use of fuzzy relations and the fuzzy 

compositional rule of inference allows semi-quantitative information about the strength, as well as 

the sign, of functional relationships to be represented. 

In order to improve efficiency and reliability in the diagnosis task an inference mechanism 

with forward and backward chaining abilities is used. First a set of fault candidates is generated 

through forward chaining and then, through backward chaining, the algorithm tries to confirm a 

hypothetical fault from the set of fault candidates. This procedure may be suitable for large scale 

processes where a big number of faults symptoms can be achieved, avoiding computational 

difficulties in performing real-time diagnosis. 
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The overall computational system has been successfully applied to a simulated mixing 

process. However, only single abrupt faults have been considered. An extension of the fault 

detection and diagnosis system implemented, which can cope with multiple simultaneous abrupt 

faults, is presented in the next chapter. 
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Chapter 7 

On-Line Multiple Fault Diagnosis Through Fuzzy 

Qualitative Simulation 

7.1 Introduction 

Traditionally a process failure is diagnosed by skilled operators. The complexity of modem 

plants and the availability of inexpensive computer hardware allow us to develop automated fault 

detection and diagnosis systems. The broad requirements of an automated fault detection and 

diagnosis system are that it guarantee real time performance so that it can be useful in time critical 

situations, and that it possess an operator interface capable of displaying and updating results 

comprehensibly. Fundamental issues facing the design of a fault detection and diagnosis system 

include the kind of knowledge to represent, the representation scheme and the inference strategy 

that performs the actual diagnosis. 

Based on artificial intelligence techniques a huge number of fault diagnosis systems have 

been pointed out by several researchers. However, a modest amount of work has been done on the 

use of automated systems to detect and diagnose multi-simultaneous faults on the process under 

concern. In the single fault case, only one physical component is the source of plant failure, 

whereas in the multiple fault case, more than one physical component is the source. Narayanan and 

Viswanadham (1987), Padalkar et al. (1991) and Rao et al. (1987) diagnose single faults, and offer 

some assistance in localising multiple faults. De Kleer and Williams (1987) used a process of 

backwards and forwards propagation to accept or rule out single faults, and then successively 
investigate more complex multiple fault cases. Guan and Graham (1994) used a digraph approach 

to detect and diagnose single and multiple faults. Watanabe et al. (1994) used a hierarchical 
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artificial neural networks technique to diagnose multiple simultaneous faults. The author presents a 

different approach to detect and diagnose multiple simultaneous faults based on a fuzzy qualitative 

simulation algorithm. 

The difficulty with diagnosing multiple faults based on the classical mathematical models 

or state space models is that the process model needs to be almost perfect and extensive 

calculations are needed. If there are errors in the model, they may manifest as faults, thus yielding 

false alarms. As in the approach presented in the last chapter, there is a motivation in this context, 

to avoid effort and expense of creating, maintaining and computing with rigorous dynamic 

mathematical models of large-scale processes, by focusing on qualitative indicators of process 

condition (Oyeleye and Kramer 1988). 

Studies of human diagnostic strategies show that a hypothesis/test procedure is frequently 

used by operators to mentally simulate the effect of the hypothesised malfunction on process 

behaviour (Rasmussen 1980). However if the malfunction is a consequence of more than one 

component failure the operators may have difficulty to determine and identity the process faults. 

Because time constraints are critical, hesitation as well as inappropriate action could lead to 

disaster. 

In previous research work, which is described in chapter 6., the author developed a 

hierarchical computational system based on qualitative simulation to detect and diagnose single 

faults introduced in a pilot mixing process plant simulation. In the current chapter an extension of 

the system developed to cope with the detection and diagnosis of multiple simultaneous faults is 

presented. The goal is to develop a real time fault detection and diagnosis system able to accurately 

diagnose both cases. 

A set of double simultaneous faults corresponding to an AND set in the single fault space 

is considered as already pointed out by Watanabe et al. (1994). So, in general, if the single fault 

space is represented by, 

(7.1) { F1, F2, Fs, ........, F, ) 

the AND set for double simultaneous faults, must be represented by, 

{ (F1, F2), (F,, F3), ......., (F1, F�), ......., (F2, F'3), ......., (F2, F�)........, (F,,.,, F. ) } (7.2) 

However, while the authors quoted used a hierarchical artificial neural networks approach, the 

diagnosis system presented here is based on a fuzzy qualitative simulation technique. Therefore, the 

current approach is based on deep knowledge of the process under consideration. 
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The view of qualitative process behaviour advanced by the author is that the effects of a 

fault and/or faults are propagated from one variable to another in the form of linguistic variables 

whose semantics are represented by fuzzy numbers, ultimately satisfying steady-state process 

constraints. As quoted in the previous chapter, these constraints are sets of algebraic equations, 

represented qualitatively as steady-state confluence equations, which are derived from the dynamic 

model of the process under consideration according to the proposal pointed out by de Klccr and 

Brown (1984). 

The knowledge corresponding to the single and multiple fault symptoms is stored in a 

knowledge base. However the use of fuzzy sets to describe the process variables real behaviour 

lead to a more than one fault symptom by each fault considered, each one corresponding to 

different steady state conditions of the process under concern. So in order to avoid computational 

difficulties in performing a real time diagnosis, the inference engine with forward and backward 

chaining abilities, described in the last chapter, has been used. This procedure has been shown to be 

very efficient even when the number of faults increases significantly. 

In the remainder of this chapter, a description of the fault detection and diagnosis technique 

used is presented as well as a discussion of the problems found out with the extension of the single 

fault detection and diagnosis system to detect and diagnose multiple simultaneous faults. Sub 

chapter 7.2 presents the architecture of this new approach. In sub chapter 7.3 the fault diagnosis 

task under the new architecture of the fault detection and diagnosis system is discussed. In sub 

chapters 7.4 and 7.5 the results achieved with the application of the system to detect and diagnose 

double simultaneous faults introduced respectively in simulation studies of a mixing process and of 

a continuous stirred tank reactor are presented. Sub chapter 7.6 provides some concluding 

remarks. 

7.2 System Architecture 

The system architecture of the fault detection and diagnosis system, which has single and 

double simultaneous fault detection and diagnosis abilities, is depicted in Figure 7.1. As can be 

seen the configuration of the system is similar to the architecture of the system described in the last 

chapter, which has only single abrupt fault detection and diagnosis capabilities. The computational 

system implemented still has a hierarchical structure of two layers configuration. In the lower layer 

a process is simulated through it's dynamic model in a differential equations form and to solve the 

ordinary differential equations a fifth-order Runge-Kutta method is still used. It is also in this layer 

that a fault or double simultaneous faults can be initiated in order to achieve the process behaviour 
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Interface Man /Machine 

FAULT DIAGNOSIS 
Fault trees/ Heuristic Rules 

FAULT DETECTION 

Discrepancy Generator 

QUALITATIVE PROCESS SIMULATOR 1 

Upper Layer 

Qualitative Model 

t t) 

ý-ý. ...................... 
DATA FUZZIFICATION 

Linguistic variables j 

Lower Layer 

PROCESS 

l Dynamic Behaviour / Control 

Figure 7.1 - General scheme of a computer assisted multi-faults diagnosis system 

under a failure situation. The present approach has been applied during simulation studies 

conducted with the mixing process described in chapter 4., as well as during simulation studies 

performed with the continuos stirred tank reactor (CSTR) described in chapter 5.. Therefore, the 

process variables control for the first case has been achieved through a rule based controller while 

for the second example of an industrial process classic controllers, such as PID, PI and P, have 

been used. 
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As can be seen from Figure 7.1, the interface between the two layers is still performed by a 

Data Fuzzification block. The rates of change of the process variables behaviour are sampled and 

then converted into linguistic variables whose semantics are represented by fuzzy numbers. 

However, during the current research work, it has been observed that the adoption of fuzzy subsets 

has a direct advantage over the traditional crisp representation when considering granularity. 

So, let us to define the property granularity. If xj, x2 EX characterise similar things or 

stand for similar properties of a variable X, then the relevant qualitative values of xi and x2 are 

equal to each other. 

In fact, if we intend to describe the qualitative values of the process variables rate of 

change only in terms of the crisp subsets of the underlying real range, the mapping from the real 

range to a quantity space will result in the search for the limits of the real numbers at the 

boundaries among adjacent qualitative values within the quantity space. This usually incurs severe 

difficulties in determining these limits (Shen and Leitch 1993). 

The fuzzy representation of qualitative values is indeed more general than ordinary interval 

representations, since it can represent not only the information stated by a well defined real interval 

but the knowledge embedded in the soft boundaries of the interval is also represented. Thus, fuzzy 

quantity space reduces the boundary interpretation problem, which is achieved through the 

description of a gradual rather than an abrupt change in the degree of membership of which a 

physical quantity is mapped into a particular qualitative value. 

Since it has been observed that the parametric representation of the membership function of 

a fuzzy number is a good approximation of the result obtained from using the extension principle to 

evaluate arithmetic functions with fuzzy numbers, and has a more limited computational overhead, 

in the present approach the author has still used the 4-tuple fuzzy numbers as semantics of the 

qualitative values taken by the process variables. Thus, the set of qualitative linguistic values used 

in this system remain the same as used in the approach described in the last chapter. 

However, in the present approach the supervisory system, which has been implemented in 

the upper layer, has the abilities to detect and diagnose single and double simultaneous abrupt 

faults simulated in the lower layer. Both the multiple simultaneous fault detection and diagnosis 

tasks and the single faults detection and diagnosis tasks are performed in a similar way. The 

procedures for single faults have been described in chapter 6.. Hence, in this chapter only a brief 

description of the techniques is presented. However, with the extension of the system to cope with 

multiple simultaneous faults, some modifications have been performed and are discussed in (he 

remainder of this chapter. 

It is worth noting that, in order to save computational time and increase system's 

reliability, an enable condition, which consists of several constraints on the sampled process 
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variables rate of change, is defined Then, only when this enable condition is satisfied, is the upper 

layer triggered in order to detect and diagnose a hypothetical fault or faults in the process under 

concern. 
A man/machine interface is used to keep the operator informed about any fault occurred in 

the process under consideration. The location of a fault or faults in the process will be given 

through this interface, as well as the reasoning followed during the fault detection task. Moreover, 

during the simulation studies conducted with both processes quoted above, this interface has been 

used to simulate faults in the process. Thus, the interaction between the computational system and 

the operator in order to start a fault or faults simulation occurs into levels. At the first level the 

operator must choose between single faults or multiple simultaneous faults as Figure 7.2 shows. 

When the operator chooses single or multiple faults, the second level of the man/machine interface 

allows the operator to introduce a single or a double simultaneous fault respectively, in the process 

under consideration. Figure 7.3 shows an example of the second level's interface implemented to the 

continuous stirred tank reactor. 
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Figure 7.2 - First level of the interface man/machine in order to start 
a fault simulation situation 

The mixing process simulation has been achieved through its dynamic model represented 

by equations (4.13) to (4.18), while the qualitative reasoning performed during the fault detection 
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Figure 7.3 - Interface man/machine to start the simulation of double simultaneous 
faults in `°rhe Continuous Stirred Tank Reactor" 

task, has been achieved through the qualitative model in a form of set of confluence's represented 

by equations (4.19) to (4.26). The simulation of the CSTR process has been obtained using the 

dynamic model represented by equations (5.24) to (5.31) and the qualitative simulation of this 

process has been performed through the qualitative model represented by equations (5.55) to 

(5.58). 

As quoted above, the fault detection and diagnosis system presented in this chapter, which 

has the ability to detect and diagnose single and multiple simultaneous abrupt faults, is an extension 

of the system described in chapter 6.. Thus, to cope with multiple simultaneous faults, a main 

change has been performed in the fault diagnosis block, represented in Figure 7.1. Therefore, the 

fault diagnosis reasoning, which has been followed under the current approach, is described in sub 

chapter 7.3. 

7.3 Fault Diagnosis Reasoning 

A knowledge based system has been used for fault diagnosis purposes. In the present 

approach two knowledge bases are used, as shown in Figure 7.4. In the first one, the fault 
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symptoms are stored, while in the second one the corresponding fault descriptions, given by the 

operators, are saved. An inference engine with forward and backward chaining abilities, has been 

implemented. Through forward chaining, a general analysis is carried out to determine what faults 

are possible and to generate a reduced set of fault candidates. Through backward chaining, a 

diagnosis is then selected and a more detailed analysis carried out to try and prove the diagnosis 

using known facts and other rules. This procedure has the advantage of first indicating where to 

look for a solution rather than spending a lot of time retrieving unimportant data. As the results 

presented in the next two sub chapters show, it has been observed that, following this strategy, the 

inference engine performs very satisfactorily, even when the number of fault symptoms increase. 

Such results have been obtained during simulation studies conducted with both processes quoted 

above. 

Figure 7.4 - Fault diagnosis system organisation 

As in the fault diagnosis system described in the last chapter, the fault diagnosis procedure 
is performed through the comparison between the process variables real behaviour and the fault 
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symptoms. However, with the system extension to cope with multi-simultaneous faults some 

changes have been done, which are discussed in the remainder of this sub chapter. 

Since each different fault takes a different time to affect the process behaviour, with the 

system architecture used to diagnose single faults, under a multi-simultaneous faults situation, only 

the fault with a quick effect was diagnosed. It has been observed that by using the process variables 

rate of change, corresponding to the time instant when the fault detection and diagnosis system is 

triggered, it is possible to overcome this problem and to increase the reliability of the system to 

cope with multi-simultaneous faults. Then, the main change in the fault diagnosis reasoning was 

not to limit consideration to the process variables behaviour in the time instant ti after a fault has 

been detected, as in the single fault detection and diagnosis approach. Together with these process 

variables, the behaviour of other process variables, which must be directly affected by certain 

faults considered, in the instant of time that the supervisor system is triggered, are also considered. 

The rationale for this is that, for the process variables directly affected by certain faults, no changes 

in their values in the time instant tj will be observed after such abrupt faults have been detected. 

Therefore, if we consider the changes in the values of these process variables in the time instant ti, 

the fault detection input space will be reduced and the problem quoted above arises again. 

So, when the fault detection system observes a discrepancy between the process variables 

real behaviour and the predicted one, the fault diagnosis task starts. The linguistic values of the 

process variables real behaviour used by the Fault Detection block are passed to the Fault 

Diagnosis block, as well as the linguistic values of process variables considered as directly affected 

by faults, corresponding to the time instant that the fault detection block was fired. This set of 

linguistic values is retained in the Data Fuzzification block until the fault diagnosis system has been 

triggered 

Once the fault diagnosis system has been fired, the first linguistic value, which is received 
from the fault detection system and was responsible for generating a discrepancy, is compared with 

the corresponding linguistic values of the fault symptoms stored in the respective knowledge base. 

As described above, following this strategy, performed through forward chaining, a reduced set of 

fault candidates is generated. From the set of fault candidates, the hypothetical diagnosis is 

achieved through backward chaining, following a "hypothesis-test" procedure. The procedure is 

first to generate a hypothesis from a set of fault candidates and, then to compare the real behaviour 

of the remaining variables with the fault symptoms. If they agree this hypothesis is retained. 
Otherwise, this procedure is continuously repeated until all fault candidates have been tested. 

However, if no hypothesis is retained, an unsuccessful diagnosis occurs and a self-learning system 

will be desirable to avoid such situations. Hence, in the next chapter a self-learning system for the 

present approach is described. 
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Successful results achieved during simulation studies conducted with the mixing process, 

and with the CSTR, are presented in the next two sub chapters, respectively. 

7.4 Fault Detection and Diagnosis of the Mixing Process 

In previous research work, single abrupt faults in the mixing process have been 

successfully detected and diagnosed by a fault detection and diagnosis system described in the last 

chapter. Here, results achieved through the approach described in this chapter are presented. The 

aim is to detect and diagnose double simultaneous faults initiated in the mixing process. 
The set of double simultaneous faults considered in the present approach is derived from 

the single faults space through an AND operation. So, as in previous research work, with the single 

faults space considered as represented in Table 6.5, applied to expression (7.2), the set for double 

simultaneous faults, presented in Table 7.1, is achieved. 

To build up the knowledge base with the fault symptoms, simulation studies have been 

conducted with the mixing process, where all the single and double simultaneous abrupt faults, 

quoted above, have been initiated with all the possible setpoints combinations of the controlled 

variables level in tank 2, L.,, and temperature in tank 2, T1, taking values between 0.1 and 1.0 with 

a stepsize of 0.1. Thus, as the process variables behaviour is described by fuzzy numbers, as stated 

above, we can have more than one fault symptom for each fault according to the different steady 

state conditions of the process. Hence, the result achieved during a fault symptoms learning phase 

produced a knowledge base with 278 fault symptoms. Even with this number of fault symptoms, all 

the single and double simultaneous faults, quoted above, have been detected and diagnosed 

successfully with different steady state conditions. It has been observed that the inference engine, 

with forward and backward chaining abilities, performed very efficiently providing the diagnosis in 

less than 1 second on a 386 PC (25 MHz) fitted with a mathematical co-processor. 
For example, Figure 7.5 shows the diagnostic achieved after the double simultaneous 

faults, "Hot water control valve fails low AND Hand valve 1 is blocked", have been initiated with 

the setpoint of the controlled variable level in tank 2 having the value 0.6, and the sctpoint of the 

other controlled variable, temperature in tank 2, having the value 0.4. Figure 7.6 shows the 

disturbance in the controlled variables, as well as the Rule Based Controller actions in order to 

correct the disturbance effect after the faults have been reset. 
As is described in sub chapter 7.3, with the extension of the fault detection and diagnosis 

system to cope with multi-simultaneous abrupt faults some modifications have been done to the 

system architecture. In the previous research work the diagnosis reasoning of single faults was 
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- -------------- --- Hot water control valve fails low AND -- ------------ --- -- ----------------------------- [AQ, ] = negative AND 

Cold water control valve fails low COQ, ] = negative 

Hot water control valve fails low AND [AQh] = negative AND 

Hand valve 1 is blocked [AQol] = negative 

Hot water control valve fails low AND [AQ, ] = negative AND 

Hand valve 2 is blocked [AQo2] = negative 

water control valve fails low AND Hot -- { [EQh] = negative AND 

Cold water control valve fails high [OQj = positive 

Cold water control valve fails low AND [AQj= negative AND 

Hand valve 1 is blocked [OQ0 ]= negative 

Cold water control valve fails low AND [AQ, ] = negative AND 

Hand valve 2 is blocked [OQo2] = negative 

Cold water control valve fails low AND [AQj = negative AND 

Hot water control valve fails high [OQ, ] = positive 
.................................................. ....... .......... ............;........................................................ Hand valve 1 is blocked AND [OQot] = negative AND 

Hand valve 2 is blocked [OQa] = negative 
................. ............................ Hand valve 1 is blocked AND [OQ0I] = negative AND 

Hot water control valve fails high [AQh] =positive 

Hand valve 1 is blocked AND [OQ0l] = negative AND 

Cold water control valve fails high [OQ, ] = positive 

Hand valve 2 is blocked AND [OQa] = negative AND 

Hot water control valve fails high [, &Qt, ] = Positive 
............... . ..................................... . ..... . .... .. Hand valve 2 is blocked AND ýýýýýýý "ýýýýýýýý ýý 

_ [OQo2] =negative AND 

Cold water control valve fails high [AQC] _ positive 

Hot water control valve fails high AND [i Q]= positive AND 

Cold water control valve fails high I [EQ, ] = positive 

Table 7.1 - Double simultaneous faults representation for "The Mixing Process" 

based on the behaviour of the process variables level and temperature in tanks I and 2, 

respectively, L1, L2, Tl and T2, at the time instant, t,, after the fault detection and diagnosis system 
has been triggered. In the present approach, in order to be able to detect and diagnose multi- 
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Figure 7.5 - Diagnostic of "Hot water control valve fails low AND Hand valve 1 is blocked" faults 
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simultaneous faults, the diagnosis reasoning is based on the behaviour of the process 

variables quoted above, as well as on the behaviour of the process variables hot water input flow 

and cold water input flow, respectively, Qh and Q, in the time instant corresponding to the fault 

detection and diagnosis system trigger, as shown in Figure 7.5. Otherwise, as we are considering 

abrupt faults and each fault has different time effects in the process behaviour, only the fault with a 

quick effect will be detected The procedure is to perform the diagnosis based on the behaviour of 

the process variables used in the single fault detection and diagnosis approach and on the 

behaviour of the process variables Qh and Q,, which are directly affected by the hot water control 

valve faults and cold water control valve faults respectively, as described in the previous sub 

chapter. 

The diagnosis reasoning of double simultaneous faults follow a similar procedure as 

described in chapter 6. for the single abrupt faults. The process variables behaviour is compared 

with a set of fault symptoms stored in a knowledge base, in order to identify the fault symptoms 

that match the real process variables behaviour. Following this procedure single or double 

simultaneous faults are located in the process under concern in a similar way. 

In order to demonstrate the robustness of the proposed fault detection and diagnosis 

system, a more complicated process has been used in order to test the approach. As for the mixing 

process, single and double simultaneous abrupt faults have been considered. Therefore, simulation 

studies have been conducted with a continuous stirred tank reactor and the results achieved, are 

presented in the next sub chapter. 

7.5 Fault Detection and Diagnosis of the Continuous Stirred Tank 

Reactor 

To test the computational system implemented, another example of an industrial process 
has been taken, which is the continuous stirred tank reactor described in chapter 5.. The on-line 

fault detection and diagnosis system for the continuous stirred tank reactor is similar to that of the 

mixing process described in the last sub chapter. The process behaviour under a failure situation is 

achieved by changing the process variable values in the dynamic model, according to the fault 

chosen by the operator. The single faults considered in this process to test the present fault 

detection and diagnosis system are listed in Table 7.2, as well as the corresponding variables used 

to initiate the fault. 

Each variable has its own underlying numeric range of values. For simplicity, however, we 

still use a normalised range [-1,11 to form the basis on which the fuzzy quantity space is 
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discretized. Hence, the fuzzy quantity space presented in sub chapter 6.2 was adopted, with the 

qualitative values represented by seven 4-tuple parametric fuzzy numbers as shown in Figure 6.2. 

However, as can be seen in Table 7.2, the qualitative values taken by the process variables rate of 

change, under a failure situation, are represented by the qualitative values "negative" and 

"positive". This is because the real qualitative values taken from the fuzzy quantity space quoted 

depends on the steady state conditions of the process in the time instant that the operator initiated 

the fault. 

----------------- 
--- 

Pipe 1 is blocked 
-- 

---------- --- ---- -- [AQ1] = negative 

External feed reactant flow high [AQi] = positive 

Pipe 23 blocked .......... «........ » ..... »... »...... «. « 
or or pump fails .i.. [ e(AP)] = negative 

External feed reactant temperature high = [AT, ] =positive 
............... .............................. ............................................ ...... «.... External feed reactant temperature low . «.......... »... »........... »»........... [AT, ] = negative 

Pipe 10 or 11 is blocked or control vale 1 fails low [AA4] = negative 

high ...... «. «.... «........ ».......... » ....................... ».. .. Control valve 2 fails .............................. .. ». » . =.. [ý5ý _ ýsitive 

Pipe 7,8 or 9 is blocked or control valve 2 fails low [DA5] = negative 
......................... ............... .... »....................... »««............ «...... »...... ... »............. 

Control valve 1 fails high 
i... »».. «».. «». «. «». »...... «....... 

[] = positive 

Pipe 4,5 or 6 is blocked or control valve 3 fails low [DA2] = negative 
...................... ...................................... »............. «...................................... Control valve 3 fails high ..... «....... ».......... ««................. [DA2] = positive 

External feed reactant concentration too low 
................................................................... ..................... »........... «... «...... 

[OCo] = negative 
..: «............................ «»«»«.. «.... 

Table 7.2 - Single faults representation for the "Continuous Stirred Tank Reactor" 

The fault detection and diagnosis system is triggered only when a pre-defined enable 

condition, which consists of several constraints on the sampled process variables, is satisfied. For 

the CSTR process the sampled process variables used to defined that enable condition are L, Ca, 

Cb, T, Q1, Ti, Cao, Q2, Qs, 7's and Q4i which are measurement process variables. The notation used 

in this sub chapter for measurement and controlled variables of the continuous stirred tank reactor 

is defined in chapter 5.. 

Moreover, the constraints are defined in a form of linguistic values. This means that to 

satisfy the enable condition the sampled process variables values must be converted into linguistic 

values, which is performed by the Data Fuzzification block. Therefore, the fault detection and 

diagnosis system will be triggered if at least one of the process variables quoted above takes a 

linguistic value greater than "psmall" or less than "nsmall". However, as we use a normalised 
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range [-1,1] to form the basis on which the fuzzy quantity space is discretized, a fuzzification 

parameter must be defined for each variable. Table 7.3 presents the fuzzification parameters 

adopted in the current approach, which have been adjusted following a similar procedure whose 

details have been described in chapter 6.. 

-------------------------------------- 

L 0.23 
............................................. C. ... »......................... »....... ».......... 32.0 

Cb 85.0 
......... » .................... ». »......... 

T 
............................ »....... »........... »... 

0.35 

T2 0.2 
........................................ ...... »»...... » »..... »...... 0.005 
........ .......... _.............. ....... ................... »» 0.2».. »........ ». 

Q, 0.003 
..................... , ................. .... ». ».......... »0.25 .... »»... ». ».. 

Ca0 1.0 
........ »........... Q ................... .......... »........ »............. »»............ ».. 0.0075 

Q4 0.0013 

0.043 

Ts 0.25 

.............................................. A2 ............... »........................... »»...... 1.0 

A4 0.33 

Table 7.3 - Fuzzification values of the CSTR process variables 

Once the fault detection and diagnosis system has been fired the real values of the process 

variables rate of change of L, T, Ca, Cb, T1, T2, Q1, Q2, OP and Cao, and the real value of the 

controlled variable rate of change of A4, are passed to the Qualitative Process Simulator block in 

the form of linguistic values, whose semantics are represented by 4-tuple fuzzy numbers as quoted 

above. In this block, they are propagated through the qualitative model of the process under 

consideration, which is a set of confluence's represented by equations (5.55) to (5.58), The aim is 

to predict the behaviour of the sampled process variables L, Ca, Cb and T, in the time instant 11, 

after the fault detection and diagnosis system has been triggered. Hence, the rates of change, of 

such process variables obtained by this way, are qualitative values represented by fuzzy numbers 
expressed in a parametric form. 
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Then, the predicted linguistic values by the qualitative process simulator are passed to the 

Fault Detection block where they are compared with the real values of the process variables rate of 

change in the time instant t,. The result of this comparison may, or may not, be a discrepancy 

between the predicted behaviour and the real one. If a discrepancy is generated, then It Is considered 

that a fault has occurred in the CSTR process and, in order to obtain a location of this fault, the 

Fault Diagnosis block will be fired. If no discrepancy is achieved, then the hypothetical failure 

situation will be denied. 

Once a fault has been detected, the Fault Diagnosis block is triggered in order to determine 

the fault location in the process. The goal is to discover which process component is faulty, in order 

to give such information to the operator through the interface man/machine. This task is performed 

by comparing the real behaviour of the process variables rate of change, in a linguistic form, with 

the fault symptoms stored in the knowledge base. In order to avoid computational difficulties to 

achieve a real time diagnosis, the fault diagnosis task has been performed by using the inference 

engine with forward and backward chaining abilities, which is described above. Good performance 

and reliability of this procedure has been observed. 

During simulation studies and experiments, it has been found that the diagnosis task is well 

performed for single faults, only with the knowledge corresponding to the process variables L. Co, 

Cb and T, in the time instant t1. However, as quoted above for the mixing process, when multiple 

simultaneous faults are considered it has been observed that more information is needed in order to 

perform a reliable diagnosis. Otherwise, since each different fault takes a different time to affect the 

process behaviour, only the fault with a quick effect will be diagnosed Then, in order to overcome 

this problem in the CSTR process, the diagnosis task is performed by using the knowledge quoted 

above together with the real process variables rates of change of T1, Q,, Q2,, Q4 and Qs, in the time 

instant to. The aim is to consider some process variables which are directly affected by the failure 

component, as described in the previous sub chapter. 

After a phase of simulation studies performed to acquire the fault symptoms of single 

abrupt faults, the fault detection and diagnosis system has been successfully applied to the 

continuous stirred tank reactor. During the experiments, all single faults mentioned above were 

separately initiated with different steady state conditions of the process, and were detected and 

diagnosed successfully. For instance, Figure 7.7 shows the diagnosis result after the fault, 'Pipe 1 

is blocked', has been initiated with all the setpoints of controlled variables, respectively L, T and 

Q2, having the value 0.5. 

As for the mixing process, the multiple simultaneous abrupt faults considered in the current 

approach are double faults initiated simultaneously in the continuous stirred tank reactor. Hence, 

according to expression (7.2), the set of double simultaneous faults is achieved through an AND 
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Figure 7.7 - Diagnostic of `Pipe 1 Is blocked" fault 

operation in the single faults space, which is represented in Table 7.2. However, for the continuous 

stirred tank reactor only a sub set of the AND set is considered Table 7.4 presents all the double 

simultaneous abrupt faults considered, as well as their corresponding representation. The faults 

representation is given through the process variables used to simulate the process under a failure 

situation. The changes in these variables are represented in a qualitative form by the linguistic 

values "negative" and "positive", as described above for the single faults space. 

The fault detection and diagnosis system, based on the above approach, has been applied 

successfully to the CSTR process where all double simultaneous abrupt faults listed in Table 7.4, 

have been considered. Experiments have been conducted to acquire the corresponding fault 

symptoms, with all the setpoints of the controlled variables taking the value 0.5. After that all the 

double simultaneous faults quoted above have been detected and diagnosed successfully. For 

instance, Figure 7.8 shows the diagnosis result after the double simultaneous faults, `Pipe 1 is 

blocked AND Control valve 3 fails high", have been initiated. However, let us consider the real 

process variables behaviour after fault, `Pipe I is blocked", has been initiated, and after faults, 

"Pipe 1 is blocked AND Control valve 3 falls high", have been initiated, respectively, as shown in 

Figures 7.7 and 7.8. Comparing both sets of process variables real behaviour, it can be seen that if 
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-------------- ---------------- --- External feed reactant flow high AND [AQj] = positive 

M 

Pipe 10 or 11 blocked or control valve 1 fails low AND [DA4] = negative 

External feed reactant flow high AND [OQI] = positive 

Control valve 2 fails high AND [DA5] = positive 

External feed reactant flow high AND [AQ1] = positive 

Pipe 7,8 or 9 is blocked or control valve 2 fails low AND [iA5] = negative 
» .«............................... «.... »................ ».............. «....... «. «. «. «.......... »... External feed reactant flow high AND .. «...... «...... m»m.. »»..... m»«. »»»mmm»«... «. m....... «... «... ý «[ýQ1] 

= positive 

Pipe 4,5 or 6 is blocked or control valve 3 fails low AND [DAS] = negative 
.. « .................. ».................. »........................ »... «............. External feed reactant flow high AND .... »... «. «...... »». m»m.... ». mm. ». m». m.. «... mm.... m... m.... < »[ýQl] 

= positive 

Control valve 3 fails high AND [DA2] = positive 

External feed reactant flow high AND [OQl] = positive 

External feed reactant concentration too low AND [AC, ] = negative 

Pipe 1 is blocked AND [OQi] = negative 

Control valve 2 fails high AND [SAS] = positive 
«Pipe 1 is blocked AND ......................................... m»..... »........... . [OQt] = negative 

. «.. m».. «mm«... mm. ». »m........ m= 

Pipe 7,8 or 9 is blocked or control valve 2 fails low AND [M5] = negative 
«Pipe 1 is blocked AND [OQt] = negative 

Control valve 1 fails high AND [AA4] = positive 

Pipe 1 is blocked AND [iQj = negative 

Pipe 4,5 or 6 is blocked or control valve 3 fails low AND [AA2] = negative 

Pipe 1 is blocked AND [AQI] = negative 

Control valve 3 fails high AND [DAZ] =positive 

Pipe i or 3 is blocked or pump fails AND [A(AP)l = negative 

External feed reactant temperature high AND [ATt] = positive 
.... .... ...... ............ «.................... ............. m».... Pipe 2 or 3 is blocked or pump fails AND ... ».. ».... m... m........ m. m...... «. ««...... m....... «.... mm. mmm» [A(AP)l = negative 

External feed reactant temperature low AND [OT, ] = negative 

Pipe 2 or 3 is blocked or pump fails AND [A(AP)l = negative 
Control valve 2 fails high AND [AAs]= positive 

-------- ----- Pipe 2 or 3 is blocked or pump fails AND [A(AP)l = negative 
External feed reactant concentration too low AND [, &Co] = negative 

Table 7.4 - Double simultaneous faults representation for the CSTR process 
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External feed reactant temperature high OR low [AT1] = positive OR [AT, ] = negative 

AND AND 

Pipe 10 or 11 is blocked or control valve 1 fails low [AA4] . negative 

External feed reactant temperature high OR low [AT, ] = positive OR [AT, ] = negative 

AND AND 

Control valve 2 fails high [DAS] = positive 

External feed reactant temperature high OR low [AT1] = positive OR [OT, ] = negative 

AND AND 

Pipe 7,8 or 9 is blocked or control valve 2 fails low [AA5] = negative 

External feed reactant temperature high OR low [AT, ] = positive OR [AT, ] = negative 

AND AND 

Control valve 1 fails high [AA] = positive 

External feed reactant temperature high OR low [AT, ] = positive OR [AT, ] = negative 

AND AND 

Pipe 4,5 or 6 is blocked or control valve 3 fails low [, ßp2] = negative 

External feed reactant temperature high OR low [AT, ] = positive OR [OT, ] = negative 

AND AND 

Control valve 3 fails high [AA2] = positive 

External feed reactant temperature high OR low [AT, ] = positive OR [AT, ] = negative 

AND AND 

External feed reactant concentration too low [AC10] = negative 

Pipe 10 or 11 is blocked or control valve 1 fails low [ý] = negative 
AND AND 

Control valve 2 fails high [AAS] = positive 

Pipe 10 or 11 is blocked or control valve 1 fails low [] = negative 
AND AND 

Pipe 4,5 or 6 is blocked or control valve 3 fails low [AA2] = negative 

Pipe 10 or 11 is blocked or control valve 1 fails low [AA4] = negative 
AND AND 

Control valve 3 fails high [DA2] = positive 

Table 7.4 (Cont. ) - Double simultaneous faults representation for the CSTR process 
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Pipe 10 or ills blocked or control valve I fails low 
0 

Ems= 

["] = negative 

AND AND 

External feed reactant concentration too low [iCO] = negative '_. 

.................................................................................................... Control valve 2 fails high AND ......................................................................................... [AAS] = positive 

Control valve 1 fails high AND [AA4J = positive 

Control valve 2 fails high [DAS] = positive 

AND AND 

Pipe 4,5 or 6 is blocked or control valve 3 fails low [AA2] = negative 

Control valve 2 fails high AND [DAS] = positive 

External feed reactant concentration too low AND [ACo] = negative 

Pipe 7,8 or 9 is blocked or control valve 2 fails low [AA5] = negative 

AND AND 

Control valve 1 fails high [AA4] = positive 

Pipe 7,8 or 9 is blocked or control valve 2 fails low [DA5] = negative 

AND AND 

Control valve 3 fails high [iA2] = positive 

Pipe 7,8 or 9 is blocked or control valve 2 fails low [AAS] = negative 

AND AND 

External feed reactant temperature too low [AC, o] =negative 

Control valve 1 fails high AND [A4] = positive 

Pipe 4,5 or 6 is blocked or control valve 3 fails low AND [DA2] = negative 
.......................................................... .... _.......... ......................................... Control valve 1 fails high AND .......... ........................................................................... [DA4] = positive 

Control valve 3 fails high AND [AA2] =positive 
.. Control valve 1 fails high . .................................... ý.............. _...... .. fAAa] 

=......................... positive 
External feed reactant concentration too low AND [OCo] = positive 

Pipe 4,5 or 6 is blocked or control valve 3 fails low [AA2] = negative 
AND AND 

External feed reactant concentration too low [AC, 0] =positive 

Control valve 3 fails high AND [MA2] = positive 
External feed reactant concentration too low AND [OCo) = positive 

Table 7.4 (Cont. ) - Double simultaneous faults representation for the CSTR process 
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the diagnosis procedure is only based on the behaviour of process variables L, C4, Cb and T, in the 

time instant t,, it will be impossible to diagnose the double simultaneous abrupt faults. This means, 

since the fault, `Pipe 1 is blocked", has a quick effect on the process behaviour, using the same 

procedure under a double simultaneous faults situation, the diagnostic result will be "Pipe I Is 

blocked". 

Figure 7.8 - Diagnostic of "Pipe 1 is blocked AND Control valve 3 fails high" faults 

Therefore, the use of real behaviour process variables Ti, Q1, Q2, Q. and Qs, in the time 

instant when the fault detection and diagnosis system is fired, are absolutely necessary in order to 

cope with multi-simultaneous faults. According to the general description of the fault detection and 

diagnosis system presented in sub chapter 7.3, the process variables, quoted in the last sentence, 

were chosen because they are directly affected by the following faults respectively: 

- External feed reactant temperature high or low; 

- Pipe 1 is blocked or external feed reactant flow high; 

- Pipe 4,5 or 6 is blocked or control valve 3 fails low or high; 

- Pipe 10 or 11 is blocked or control valve 1 fails low or high; 

- Pipe 7,8 or 9 is blocked or control valve 2 fails low or high. 

122 



Moreover, if the diagnosis task is based on the process variables rate of change of Ti, Q1, 

Q2, QQ and Q, s, taken in the time instant tj after a fault has been initiated, it will be impossible to 

diagnose the double simultaneous faults considered in Figure 7.8, because the qualitative values of 

Q, and Q2 will be "steady" and the fault symptoms corresponding to the fault "Pipe 1 is blocked 

and Control valve 3 fails high" will match the fault symptoms corresponding to the fault "Pipe I Is 

blocked". Hence, once again, if this procedure is followed, only the single fault with a quick effect 

in the process behaviour will be diagnosed. 

Following the procedure described to cope with single and multiple simultaneous abrupt 

faults, the fault detection and diagnosis system has been successfully applied to the continuous 

stirred tank reactor. All the single and double simultaneous abrupt faults stated above have been 

initiated under different steady state conditions of the process and successfully detected and 

diagnosed. 

7.6 Conclusions 

This chapter has been concerned with the application of a fuzzy qualitative simulation 

algorithm to on-line multiple simultaneous fault detection and diagnosis. To perform the fuzzy 

qualitative task an approximation of the extension principle has been used, which is described in 

chapter I. This procedure has shown to be a good approximation of the results achieved through 

the extension principle and has the advantage that it is easier to implement. 

It has been observed that the fuzzy representation of qualitative values is more general than 

ordinary interval representation, since it can represent not only the information stated by a well 

defined real interval but also the knowledge embedded in the soft boundaries of the interval. Thus, 

fuzzy quantity space removes, albeit not completely, the classical boundary interpretation problem, 

through the description of a gradual rather than an abrupt change in the degree of membership of 

which a physical quantity is mapped into a particular qualitative value. Moreover, to represent the 

semantics of the qualitative values, fuzzy numbers represented in a parametric form by 4-tuples, 

have been considered. 

The real time expert system developed has a hierarchical structure consisting of a process 

simulator with control of some process variables in a lower layer and a supervisory module in an 

upper layer whose main aim is to detect and diagnose faults introduced in the lower layer. 

Therefore, in the prototype implemented, the on-line fault detection and diagnosis procedure is 

regarded as a supervisory task. 
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The current fault detection and diagnosis approach is an extension of a previous one 

developed to detect and diagnose single abrupt faults, which is presented in the last chapter. The 

system architecture of the present approach, which can cope with multiple simultaneous faults 

situations, has been presented in sub chapter 7.2, and the main changes performed in the previous 

system are discussed at sub chapter 7.3. 

The present approach has been successfully applied to the mixing process, as well as to the 

continuous stirred tank reactor, which have been described at previous chapters. Fault detection 

and diagnosis of single and double simultaneous faults, which occur suddenly, have been 

considered. The results, achieved during experiments conducted with such processes, are presented 

respectively in sub chapters 7.4 and 7.5. However, it has been found that if incipient faults, which 

evolve gradually, are considered, the efficiency and reliability of the system is significantly 

affected. A further chapter will investigate the use of a fuzzy neural network coupled with a 

knowledge based system in an attempt to overcome this problem. 
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Chapter 8 

Fuzzy Qualitative Simulation Based Fault 

Diagnosis with Self-Learning Abilities 

8.1 Introduction 

The extraordinary growth of artificial intelligence applications, in the last years, has been 

paralleled by a surge of interest in machine learning, a field concerned with the developing 

computational theories of learning processes and building learning machines. Because the ability to 

learn is clearly fundamental to any intelligent behaviour, the concerns and goals of machine 

learning are central to the progress of artificial intelligence. 

Precise definitions of learning are hard to find, but most authorities would agree that it is a 

characteristic of adaptive systems which are capable of improving their performance on a problem 

as a function of previous experience; for example, in solving similar problems on the domain under 

consideration (Simon 1983). 

As machine learning research has shown, learning ability manifests itself not as an all or 

nothing quality but as a spectrum of information processing activities, ranging from the direct 

memorisation of facts and acquisition of simple skills by imitation to very intricate , inferential 

processes leading to creation of new concepts and discovery of new knowledge. It always involves a 

change in a system, whether human or machine, that makes it better in some sense. Efforts to 

develop programs exhibiting some form of learning capabilities have multiplied in recent years 

(Jang 1992, Saraiva and Stephanopoulos 1992, Campos and Moral 1993). A summary of sonic of 

these efforts can also be found in Michalski et al. (1983,1986), Mitchell et a!. (1986) and Forsyth 

eta!. (1986). 
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On the basis of the results achieved so far, clearly some rudimentary machine, learning 

abilities are possible. Already there exist programs able to formulate new concepts and discover 

previously unknown regularities in data; develop decision rules that can outperform human rules; 

draw interesting analogies; automatically learn problem-solving heuristics; or develop generalised 

plans for achieving a goal (Mitchell et al. 1986). 

Introducing all required knowledge into any new knowledge based system is a very 

complex procedure, time consuming and error prone process, requiring special expertise. 'This task 

can be simplified by using machine learning techniques. Such techniques would enable a system to 

develop decision rules from examples of experts' decisions and through the automated analysis of 

facts in a database. 

In every learning situation, the learner transforms information provided by the environment 

into some new form in which it is stored for future use. The nature of this transformation 

determines the type of learning strategy used. The basic strategies have been distinguished into 

learning from examples and learning by observation and discovery. The approach presented in this 

chapter uses the learning by observation and discovery strategy. 

As pointed out by Michalski et al. (1983), research in machine learning encompasses three 

interconnected orientations: 

- Theoretical analysis and development of general learning algorithms; 

- The development of computational models of human learning processes, also called 

cognitive modelling. 

- Task-oriented studies concerned with building learning systems for specific applications, 

also called an engineering orientation. 

Clearly, the approach described below is within the third orientation. The motivation of the 

present study was to build a self-learning system to the fault detection and diagnosis approaches 

presented in the last two chapters in order to achieve improvement in the. reliability of the systems. 

So, we are in the engineering orientation domain. 

Since diagnosis is a dominant application area of expert systems, the ability of learning 

would be a desirable property for a fault diagnosis system. Several fault diagnosis systems with 

learning properties have been reported (Pazzani 1986,1987, Rich and Venkatasubramanian 1989, 

Zhang and Roberts 1991b). They are called failure-driven learning diagnosis systems because, as in 

the approach described here, learning is initiated when a failure occurs in the diagnosis system. 
Other examples of failure-driven self learning systems have been reported by Sussman (1975) and 

Charniak et al. (1985). 
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In the first three approaches quoted above, fault diagnosis is based on a set of hcuristic 

rules, which are believed to give reliable diagnosis. This heuristic rules are in the form: 

- IF Antecedent THEN Consequence. 

The heuristic rules antecedent consists of fault symptoms, which are linked by logical 

operators such as AND and OR, while the rules consequence represents the corresponding fault. 

Therefore, when the behaviour of the measurement process variables match the antecedent of a 

rule, the rule is fired and the corresponding fault is diagnosed. However, since the heuristic rules 

may not be perfect, a failure may occur during the diagnosis task, such that the hypothetical fault 

proposed by a rule is incorrect. Once such a failure has occurred, the heuristic rule generating the 

wrong hypothesis is modified and a new rule is generated. The task of learning is carried out based 

on a deep model of the system being diagnosed. The failed heuristic rule is modified by including 

additional features in its antecedent part, which are obtained from reasoning through, the deep 

model, such that its applicability is limited and will not be fired in future similar situations. On the 

other hand, when a fault occurs at the first time in the process under consideration a new 

heuristic rule corresponding to a newly discovered fault from reasoning through the deep model is 

added. 
However, since when considering complex processes the diagnosis result is usually 

obtained by the chaining of a set of rules, when a failure occurs in the fault diagnosis system, it 

may not be easy to decide which specific rule is responsible for the failure. Therefore, the method 

described above may not be applied in a straight forward manner for fault diagnosis of complex 

plants. 
In the self-learning fault diagnosis system proposed by Zhang and Roberts (1991 b), a 

methodology to adjust threshold values, which is responsible for firing a fault detection and 

diagnosis system based on a deep qualitative model of the process being monitored, is pointed out. 

In this approach, the self-learning system through reasoning its own behaviour will find any 

inappropriate parameters and suggests correct ones. It has been observed that in fault detection and 

diagnosis systems where threshold values are used for firing such a system, incorrect settings of 

such parameters could lead to a wrong fault detection and diagnosis (Iri et al. 1979). 

In the self-learning on-line fault detection and diagnosis described in this chapter, the 

learning task is carried out differently from above. However, this approach shares some properties 

with the systems quoted. The current self-learning system has been coupled with the on-line fault 

detection and diagnosis systems described in the previous two chapters, which detected and 
diagnosed faults based on fuzzy qualitative reasoning. The methodology followed in the present 
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system, which use inductive and deductive learning techniques, is described in the next sub 

chapters. 
Sub chapter 8.2 presents the system architecture. In sub chapter 8.3 a methodology to tune 

fuzzification parameters is described. A method for acquiring fault symptoms from on-line 

measurement data is presented in sub chapter 8.4. Some results achieved during simulation studies 

conducted with the mixing process described in chapter 4. and with the continuous stirred tank 

reactor described in chapter 5., are presented in sub chapter 8.5. The last sub chapter contains 

some concluding remarks. 

8.2 System Architecture 

Since the ability of learning would be a desirable property for a fault detection and 

diagnosis system, the fault detection and diagnosis approaches described in the last two chapters 

have been extended for possessing such an ability. 

Hence, according to Figures 6.1 and 7.1, which depicted the architecture of the fault detection and 

diagnosis systems, respectively, with single and multiple faults detection and diagnosis capabilities, 

a new module has been developed for the upper layer of the overall computational systems. The 

aim of this module is to provide the fault detection and diagnosis approaches quoted above with 

self learning abilities. Moreover, since the kinds of failures in the approach are analogous, the same 

self-learning module has been applied for both architectures. Therefore, the self-learning fault 

detection and diagnosis system proposed in this chapter, has the architecture depicted in Figure 8.1. 

The upper layer of the computational system developed, which consists of the self-learning 

fault detection and diagnosis system proposed in this chapter, can be viewed as a hierarchical fault 

diagnosis system with two levels. The lower level consists of an on-line supervisory fault detection 

and diagnosis system, which can be any one of those described in the last two chapters, and the 

upper level consists of a self-learning system which has the ability for reasoning the behaviour of 

the lower level if it failed to give a correct result. 
Therefore, when the on-line fault detection and diagnosis system fails to give the location 

of a hypothetical detected fault in the process under concern, the self-learning module is triggered. 

There are two kinds of such failures: one is that the system has perceived that a fault or faults 

occur in the process but really no fault occurred; another one is that a new fault occurred in the 

process. The second failure quoted includes the situation where a fault has been occurring in the 

process, but not with the present steady state conditions. Note that the fault symptoms of a specific 
fault or faults depend on the steady state conditions of the process. 
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Interface Man hnachine 

SELF-LEARNING 

Heuristic Rules J 
ý. 

On-Line Supervisory Fault 
Detection and Diagnosis 

System 

Upper Layer DATA FUZZIFICATION 

Lower Layer Linguistic Variables 

PROCESS 

Dynamic Behaviour / Control 

Figure 8.1 - General scheme of a computer assisted fault diagnosis system 

with self-learning abilities 

However, before the self-learning system is triggered the computational system developed 

requests the operator to identify which kind of failure has occurred in the fault detection and 

diagnosis tasks. This procedure is performed through an iterative menu as depicted in Figure 8.2 

for simulation studies conducted with the mixing process, which is described in chapter 4.. An 

analogous menu has also been used in simulation studies conducted with the continuous stirred tank 

reactor, which is presented in chapter 5.. 

The learning system developed is based on a hybrid inductive and deductive learning 

approach. Inductive learning is used to hypothesise causal relations and is supported by general 

knowledge of the forms of causal relations in terms of functional dependencies between quantities. 

Deductive learning is used to hypothesise and verify causal relations and is supported by knowledge 

of the kinds of causal mechanisms which exist in the domain of physical systems. 
Moreover, as quoted above in every learning situation, the learner transforms information 

provided by the environment into some new form. If the transformation process involves 
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Figure 8.2 - Interface man/machine when the diagnosis system fails 

generalisation of input information and selection of the most plausible or desirable result, that is 

called in the machine learning literature by inductive inference, and then we have inductive 

learning. Deductive learning includes knowledge reformulating, knowledge compilation, creation of 

macro-operators, caching, chunking, etc. (Michalski 1986). In the self-learning, fault detection and 

diagnosis system presented here, deductive learning includes knowledge compilation. 

The next two sub chapters describe the reasoning behind the inductive and 

deductive learning abilities associated with the current self-learning fault detection and diagnosis 

system. 

, 
8.3 Adjusting Fuzzy Membership Functions Through Inductive 

Learning 

The inductive learning technique has been successfully applied in a wide range of areas 

from medical disease prediction to financial market forecasting, from fault diagnosis of printed 

circuit boards to predicting problems with the application of surface mount adhesives (Donald 

FU 

Mains 
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1994). In this paper a wide range of engineering applications, such as condition monitoring, quality 

control, fault tolerant systems, image inspection, etc., are also reported. 

A particularly interesting application of this technique is described by Michic (1982). lie 

considers the possibility of constructing an expert system backwards because it is easier that way. 

An expert system can be considered as a function from the input space to the expert solution. 

However, this forward transformation is typically difficult, but sometimes the reverse 

transformation, the inverse function, from a given solution to the problem that would have 

generated it, is easily computable. In the development of an expert system for soybean disease 

diagnosis, Michalski and Chilansky (1980) inductively derived the diagnostic rules from a 

collection of symptoms and the diagnosed disease. 

In the present approach when an unsuccessful diagnosis is achieved due to the first kind of 

failure quoted above for the fault detection and diagnosis system, an inductive learning technique is 

used in order to avoid such a future similar situation, automatically. The main reason for this kind 

of failure is incorrect settings of normalisation parameters which are used to make the 

normalisation of the changes in the process variables, in the range [-1,1]. The linguistic threshold 

values, which are represented in a form of fuzzy sets such as psmall or nsmall, that are responsible 

for triggering the fault detection system as quoted above, are directly affected by these 

normalisation parameters. Therefore, they will dramatically affect the performance and reliability 

of the fault detection and diagnosis system. 

When a false fault is detected by the reason mentioned above and afterwards confirmed by 

the operator, through the interface depicted in Figure 8.2, that no fault has actually occurred in the 

process, the self-learning system is fired. Then the system begins to investigate its own behaviour in 

order to detect which parameter (or parameters) was responsible for triggering the fault detection 

system. After these parameters are identified, the system starts to adjust their fuzzy membership 

functions, in order that in a future similar situation the fault detection system is not triggered. The 

methodology developed is composed of the following steps: 

1. Find the real value of the process variable change. 

2. For this process variable evaluate a new normalisation parameter, such that the 

linguistic value of the process variable achieved through the data fuzzification system 

would be psmall or nsmall. 

This procedure has been successfully applied during simulation studies conducted with the 

mixing process, as well as with the continuous stirred tank reactor. Some results was obtained 

which are presented in sub chapter 8.5. 
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8.4 Learning Fault Diagnosis Heuristic Rules 

The deductive learning ability of the self-learning system is used to compile new knowledge 

about fault symptoms. When a fault or set of faults occurs at the first time with the present steady 

state conditions of the process under consideration, the fault detection and diagnosis system 

requests the operator to confirm that a fault has occurred in the process and afterwards to give a 

description of that fault or faults. An example of such an interface with the operator is depicted in 

Figure 8.3. 
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Figure 8.3 - Interface man/machine when a new fault or faults occur in the process 

Therefore, the self-learning system starts to investigate the real behaviour of the process 

variables, according to the diagnosis reasoning procedures described in the previous chapters. This 

strategy provides values in a linguistic form whose semantics are also represented by fuzzy 

numbers and stored in the knowledge base in order to be used for possible diagnosis of that fault or 

set of faults the next time that it occurs. This procedure allows us to build the knowledge base on- 
line very efficiently, simplifying the task of introducing all the fault symptoms in the knowledge 

base. Moreover, since fault symptoms are acquired on-line, following the proposed procedure, there 
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is no need for a human expert in the domain to build the knowledge base. By this means, the fault 

detection and diagnosis system performance will improve over time. 

To test this ability of the self-learning system several studies have also been conducted with 

both processes quoted above. The results shown in the next sub chapter demonstrate the 

successfully application of this procedure for building on-line the fault diagnosis knowledge bases 

of the mixing process and the continuous stirred tank reactor. 

8.5 Case Studies 

Both fault detection and diagnosis systems described in the last two chapters have been 

used to test the self-learning fault detection and diagnosis system proposed in this chapter. 

Moreover, simulation studies with both processes previously presented, which are the mixing 

process and the continuous stirred tank reactor, have been conducted. All the single abrupt faults 

and all the double simultaneous abrupt faults previously mentioned for such processes, have been 

considered during the current simulation studies. Successful results have been obtained which are 

presented in the remainder of this sub chapter. 

Since the fault detection and diagnosis systems implemented for both processes, and 

described in the last two chapters, are well tuned, all the normalisation parameters have been set 

appropriately. Therefore, to test the inductive learning ability of the self-learning system, which is 

described above, initially it is required to deviate some normalisation parameters values from their 

pre-set values. Figure 8.4 shows the result of one such experiment conducted with the mixing 

process. 

After the self-learning system has been developed, the fault diagnosis knowledge bases 

have been built on-line very efficiently. All the single and double simultaneous abrupt faults 

mentioned above were separately initiated and the corresponding fault symptoms have been 

acquired for different steady state conditions of the process under consideration. As illustrated by 

the following figures successful results have been achieved. Figure 8.5 presents an example of 

knowledge acquisition for a single abrupt fault situation, which has been achieved during 

simulation studies conducted with the mixing process. This example has been obtained by using the 

on-line fault detection and diagnosis system proposed in chapter 6.. Figure 8.5 shows the fuzzy 

qualitative values corresponding to the real behaviour of the process variables, which are used to 

perform the diagnosis task, under the single abrupt fault, "Hand valve 1 is blocked", with the 

setpoints of the controlled variables having the values 0.5. It is worth noting that if the controlled 

variables had taken other values the fault symptoms for such a fault could be slightly different. 
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A similar situation for a double' simultaneous abrupt fault in the continuous stirred tank 

reactor is presented in Figure 8.6. For this situation the on-line fault detection and diagnosis 

system, described in chapter 7., has been used. According to the description given in this chapter 

and, in contrast with the example shown in Figure 8.5, it can be seen from Figure 8.6 that in this 

example two time instants are considered for acquiring the fault symptoms. This means that a fault 

or faults are detected in the time instant, t, but can only be diagnosed in the time instant, t+1. 

Figure 8.6 - Self-Learning double simultaneous abrupt faults symptoms in the CSTR 

8.6 Conclusions 

In this chapter an on-line self-learning fault detection and diagnosis system is investigated. 
The ability for reasoning about its own behaviour could make a knowledge based system more 

intelligent and autonomous. The self-learning system developed can be understood as a diagnosis 

system working in an upper level, which will reason about the fault detection and diagnosis system 

working in a lower level, when any undesirable performance occurs there. By such means, any 
inappropriate parameters in the fault diagnosis system could be found and updated. Therefore, the 

computational system developed possesses adaptive properties. 
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A method for learning fault symptoms from on-line sampled data has also been 

investigated. By using machine learning techniques, fault symptoms in the form of heuristic rules 

can be automatically acquired, and this eases the knowledge acquisition task. Through self-learning 

of fault symptoms, the diagnosis system can gradually improve its performance in terms of 

diagnostic efficiency. This enhances diagnostic reliability and can cover a wide range of potential 

faults. 

The overall computational system implemented has been tested during simulation studies 

conducted with a mixing process, as well as with a continuous stirred tank reactor. The detection 

and diagnosis of single and double simultaneous abrupt faults have been considered for evaluating 

the performance and reliability of the on-line self-learning fault detection and diagnosis approach 

proposed in this chapter. Successful results have been obtained. 
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Chapter 9 

Generating Fault Detection Heuristic Rules 

Through Shallow and Deep Knowledge of the 

Process 

9.1 Introduction 

During the last few years there has been a dramatic increase in the number of expert 

system applications. As a matter of fact, any one can find huge numbers of reported applications in 

the periodicals and conference proceedings of many subjects. Early expert systems, such as 

MYCIN (Harmon and King 1985, Jackson 1986) and DENDRAL (Johnson and Kcravnou 1984), 

contain empirical knowledge of experts in their domains. Many recent expert systems contain 

knowledge which may not necessarily be experience of some experts, and are also called knowledge 

based systems. The terms "expert systems" and "knowledge based systems" are used 

interchangeably in some artificial intelligence literature (Harmon and King 1985). However, in the 

remainder of this report the author will use the term knowledge bas ed system. 

A number of knowledge based systems have been reported, which perform fault detection 

and diagnosis' by the method of heuristic classification. In this method, diagnostic knowledge is 

represented mainly in terms of heuristic rules, which perform a mapping between data abstraction 

(typical symptoms) and solution abstraction (typical disorders). Such a representation is sometimes 

called "shallow" because it does not contain much information about the causal mechanisms 

underlying the relationship between symptoms and faults. The rules typically reflect empirical 

associations derived from experience, rather than a theory of how the device under diagnosis 
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actually works. The latter knowledge, used in conception of knowledge based systems, is sometimes 

called "deep" knowledge because it involves understanding the structure of the device and the way 

its components function (Jackson 1990). 

Thus, knowledge based fault detection and diagnosis systems can be divided into shallow 

knowledge or deep knowledge approaches according to the nature of the knowledge employed to 

build up the knowledge base. For instance, MYCIN, the knowledge based system quoted above, is 

a typical shallow knowledge based medical diagnosis system capable of handling uncertain 

information. The knowledge is represented by heuristic rules and, quite often, fuzzy reasoning is 

used since the knowledge is frequently uncertain. Knowledge acquisition is the key task associated 

with the shallow knowledge based systems. Expertise covering a wide range of problems must be 

encoded into the knowledge base. The task of knowledge acquisition is very time consuming since 

the process operators may know little about knowledge engineering, and therefore the interchange 

of information between a knowledge engineer and a process operator may not be carried out 

efficiently. This issue is often referred to as the "knowledge bottle neck" (Moor and Kramer 1986, 

Price and Lee 1988). Moreover, in a industrial process, many faults needing to be diagnosed may 

never have been experienced and, for new or recently developed plants, there may be little 

applicable experimental knowledge. Due to these drawbacks, in recently developed knowledge 

based systems, shallow knowledge supplements knowledge based schemes. Several knowledge 

based approaches which combine deep knowledge with shallow knowledge have been reported 

(Swartout 1983, Kahn 1988, Venkatasubramanian and Rich 1988). 

The so called deep knowledge includes models of the process under concern and fault 

models of different process units. The models can be in the form of a set of numerical equations, or 

a qualitative model, or even in the form of rules compiled from a model. Fault detection and 

diagnosis systems based on any of these models can be called deep knowledge based systems (Scarl 

et al. 1987). 

The heuristic rules used in conception of shallow knowledge based approaches lack process 

generality and they tend to fail under novel circumstances. Recently reported knowledge based fault 

detection and diagnosis systems use the deep knowledge based approach or use a combined 

approach where deep knowledge plays a dominant role. The advantages of deep knowledge based 

approaches are that they can provide reliable behaviour for infrequently occurring faults, and some 

deep knowledge is general in nature and can be used for other processes. 
However, as Clancey (1985) has pointed out, the deep models required by the latter deep 

knowledge based systems are hard to construct, even for relatively simple electronic devices. Even 

Genesereth (1984) acknowledges that "not all design descriptions are tuned for the task of 

diagnosis"; although part of the motivation for using design descriptions is surely that they are not 
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supposed to need tuning unlike heuristic rule sets. Therefore, in order to narrow the diagnosis focus 

in the process under consideration, as well as in order to facilitate the process variables behaviour 

analysis, some methodologies have been pointed out by several researchers. A fault detection and 

diagnosis system based on a deep knowledge approach, which tries to explore the causal path from 

the observed abnormalities to their causes and, hence, locate any associated fault, is reported by 

Moor and Kramer (1986). Another methodology is proposed by Finch and Kramer (1988). In their 

approach, an industrial process is decomposed into several subsystems according to their functions 

and then diagnosis is performed by identifying the source system which is the subsystem where the 

fault occurs. Further the fault is located in the source system. A similar approach is pointed out by 

Steels (1989), but in this approach the function of the system being diagnosed is hierarchically 

decomposed. Zhang and Roberts (1991a) have proposed a fault diagnosis system based on 

structural decomposition of the process under concern and component functions. 

However, most reported fault detection and diagnosis systems only deal with a single 

failure assumption. Moreover, in most of the reported approaches, in order to avoid false diagnosis 

under transient process behaviour, the diagnosis system trigger is based on threshold values or 

simply switch off when a setpoint change is performed. These threshold values will affect the 

performance of the diagnosis system and should be set properly according to previous operational 

experience of the process under consideration. This issue has been discussed in previous chapters, 

as well as by Zhang (1991). 

In this research, a systematic methodology for generating fault detection heuristic rules is 

proposed. The goal is to develop a knowledge based fault detection system with the abilities to cope 

with multiple fault situations and increase the system reliability under transient behaviour 

situations. Fault detection heuristic rules are generated from knowledge of system structures and 

component functions. Deep and shallow knowledge will be combined and such a system will be 

used to trigger a fault diagnosis system based on a fuzzy neural network, which is presented in the 

next chapter. There, the performance and reliability of the overall fault detection and diagnosis 

approach are analysed, where single and double simultaneous faults are considered as abrupt and 

incipient faults. 

This chapter is organised in the following sub chapters. Sub chapter 9.2 provides a 

methodology for description of system structures. In sub chapter 9.3 the reasoning for generating 

fault detection heuristic rules is described. The application of such a methodology is applied to the 

mixing process presented in chapter 4., as well as to the continuous stirred tank reactor described in 

chapter 5., respectively, in sub chapters 9.4 and 9.5. In sub chapter 9.6 some concluding remarks 

are presented. 
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9.2 Description of System Structures 

In order to facilitate the behaviour analysis of process variables, the process under concern 

is structurally decomposed into several subsystems, where the structural decomposition 

corresponds to the plant topology. 0 
By using a graph similar to the Signed Directed Graph (SDG) (Iri el al. 1979, Oyclcyc and 

Kramer 1988), the process can be represented by a graph which contains nodes and directed arcs. 

Each node represents a subsystem and the directed arcs represent interactions between subsystems. 

For instance, if a hypothetical system is divided into three subsystems, S,, S2, and S3, where each 

one interacts with each other, we can represent such a system by a Directed Graph shown 

in Figure 9.1. 

Figure 9.1 -A directed graph 

Moreover, a Connection Matrix, C, can be used to represent the interactions between the 

subsystems. If the process is decomposed into n subsystems, then the Connection Matrix for such a 

system is anxn matrix. The element of C, cy, is defined as follows, 

1, if subsystem Si can directly affect subsystem Sj. 
CU_ (9.1) 

0, otherwise. 

Since a subsystem can affect itself, according to equation (9.1) the diagonal elements of the 
Connection Matrix are all ones. 

The state of a system is described by its measurements and a subsystem is abnormal if one 

of its measurements is abnormal, where such a situation can be represented by the, following 

equation, 
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AB S; ) G3k, k E 1, rrj, AB(mm) (9.2) 

which states, that if there exists in subsystem Si a measurement, m; i,, which is abnormal, Uren 

subsystem Si is abnormal. In equation (9.2) the following notation is used, 

AB - is a predicate meaning abnormal; 

m; - is the total number of measurements in S;; 

ma - is the kth measurement in Si. 

In the Connection Matrix, if the element cu takes the value one, then subsystem Si can 

affect subsystem S. Hence, this means that at least one of the process variables in Si can affect 

those in Sp The Connection Matrix only provides a rough description on the relationships among 

subsystems. A refined description can be given by the Measurement Causal Matrix, CMq. If there 

are n measurements in Si and m measurements in Si,, then the Measurement Causal Matrix between 

Si and S;, CMV, is anxm matrix. The element of CMy� c4- , is determined through the following 

equation, 

1, if the kth measured variable in Si can directly 

affect the lth measured in S.. 
C(9.3) mai = 

0, otherwise. 

Causal relationships also exist between measured variables within a subsystem. The Self- 

Causal Matrix, CS; , is responsible for representing these relationships. If there are n measurements 

in subsystem Si, then the Self-Causal Matrix for subsystem Si is anxn matrix. Each clement of 

CS� cs' , is determined according to the following equation, 

1, if the kth measured variable in S, can directly 

cs'ý _ affect the lth measured variable in Si. (9.4) 
t 

0, otherwise. 

Since a measurement can affect itself, according to the last equation the diagonal elements of the 

Self-Causal Matrix are all ones. 
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The Directed Graph together with the above defined matrices give a description of the 

process under consideration. Fault detection heuristic rules can be generated from this description. 

This procedure is described in the next sub chapter. 

9.3 A Methodology for Generating Fault Detection Heuristic Rules 

The reasoning behind the development of the fault detection heuristic rules is based on the 

predicate stated by equation (9.2). Therefore, let us consider that the jth measurement in the itli 

subsystem presents an abnormal behaviour, which according to equation (9.2) is represented by 

AB(mä). Then a search is conducted to causally look for any measured variable in subsystem Si 

which could be responsible for the observed abnormality in mu. If such a variable exists, then it is 

retained and a fault detection heuristic rule must be generated. At this stage, this search is guided 

by the Self-Causal Matrix of subsystem Si. Similar searches are also performed to find further 

causes in Si for the retained variable. If there is another variable in subsystem, Si, which can 

directly affect the retained variable behaviour, then this one is also retained and another diagnostic 

rule is generated. 

If there are no more variables in Si which could be responsible for the observed 

abnormality, then the causal search at subsystem Si is terminated. Therefore, a search is conducted 

to find all the subsystems that are connected with the subsystem Si which can directly affect any 

measurement variable in Si. These subsystems form the following set, 

{djSj, cy =1, j#i} (9.5) 

Thus, in the procedure followed for generating the above set, the Connection Matrix plays the main 

role. The goal is to obtain all the subsystems whose measurement variables can directly affect the 

measurement variables in the subsystem where such an abnormal behaviour is observed. 

Next, a search is conducted through all the subsystems that compose the above set in order 

to find all the measured variables in other subsystems, which could directly affect the last retained 

variable. If such variables exist, then other heuristic rules are generated. At this stage the search 

procedure is guided by the Measurement Causal Matrix, which gives us the detailed information 

about interactions between subsystems. Once the search procedure is terminated, certain process 

shallow knowledge, in the form of some specific heuristic rules, can be used. By this manner, the 

reliability of the fault detection system can be increased. 
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The knowledge base of the knowledge based fault detection system will be built up with the 

fault detection heuristic rules achieved following the procedure described above. To fire the rules 

an inference engine with forward chaining abilities is used. Therefore, the fault detection hcuristic 

rules will be chained in a forward manner and then, when the behaviour of the measurement 

variables match the antecedent parts of a heuristic rule, a fault detection enable flag will be settled. 

This flag will be used to trigger a fault diagnosis system, in order to locate the fault or faults in the 

process under consideration. In contrast with the on-line fault detection and diagnosis systems 
described in previous chapters, the main advantage of the present approach is that the fault 

detection task is not based on threshold values. Hence, transient behaviours of the process under 

concern can be considered as well as incipient faults whose development occurs gradually, instead 

of suddenly as considered for abrupt fault situations in previous chapters. 
A benefit of the rule based format is that the fault detection rules can be augmented by any 

available heuristic knowledge about a particular process. The procedure, which has just been 

introduced for generating fault detection heuristic rules, has been applied to a simulated mixing 

process and to a simulated continuous stirred tank reactor. The development of these heuristic rules 

is described in the next two sub chapters, respectively. 

9.4 Formulation of Fault Detection Rules for the Mixing Process 

The mixing process, described in chapter 4., has been used as a test bed of the 

methodology presented in the previous sub chapters. This process is decomposed into two 

subsystems. The first subsystem includes the following components: hot and cold water control 

valves, tank 1 and the associated sensors. Components of the second subsystem are hand valves I 

and 2, tank 2 and associated sensors. The Directed Graph corresponding to this decomposition is 

shown in Figure 9.2, from which it can be seen that the two subsystems can affect each other. The 

level and temperature in the second subsystem are affected by those in the first subsystem while the 

controller outputs in the first subsystem are affected by the controlled variables in the second 

subsystem. 

S] 

Figure 9.2 - The mixing process directed graph 
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Therefore, according to equation (9.1) the Connection Matrix for the mixing process is 

given by the following equation, 

Si S2 

C=S11 
1 

S2 11 

(9.6) 

Moreover, the on-line information in the first subsystem includes level, temperature, cold 

water input flow and hot water input flow measurements. Therefore, according to equation (9.4) the 

Self-Causal Matrix for the first subsystem is represented by equation (9.7). 

I, T Q Qa, 

L 1 0 0 0 

T, 0 1 0 0 
- CS1 

Q 1 0 1 0 
Qh 0 1 0 1 

where the following notation is used for labels on the top and left of the matrix, 

L! - is the level measurement in tank 1; 

T, - is the temperature measurement in tank 1; 

Q, - is the cold water input flow; 

Qh - is the hot water input flow. 

(9.7) 

In the mixing process, either Qc or Qh can affect both level and temperature in tank 1. 

respectively L, and Ti, However, according the rule based controller implemented for the mixing 

process and described in chapter 4., the cold water input flow, Q,, is used to control level and the 

hot water input flow, Qh, is used to control temperature. Consequently, the effect of Qc on T, and 

the effect of Qh on L, can be eliminated by the feedback control loops. Therefore, due to the 

decoupling scheme implemented in the mixing process control, equation (9.7) indicates that the cold 

water input flow, Q,, only can affect itself and the level in tank 1, L,, while the hot water input 

flow, Qh, only can affect itself and temperature in tank 1, Ti. 

The on-line information about the second subsystem is the level and temperature in tank 2, 

respectively L2 and T2. Then, the Self-Causal Matrix for the second subsystem is given by the 

following expression, 
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L2 T 

1ý1 0 
CS2=T 

01 

(9.8) 

where the labels on the top and the left of the matrix, L2 and T2, have respectively the following 

meaning, 

L2 - level measurement in tank 2; 

T2 - temperature measurement in tank 2. 

Because in the second subsystem each measurement variable can only affect itself, according to 

equation (9.4) only the diagonal elements of the Self-Causal Matrix, which is represented by 

equation (9.8), take the value 1. 

Since Q, Qh, LI and Tl belong to subsystem S, while L2 and T2, belong to subsystem S2, 

according to equation (9.3) the Measurement Causal Matrix from subsystem S, to subsystem S2 

can be expressed by equation (9.9). 

LT 

111 0 
T01 

CM12=Q 
00 

Q, 00 

(9.9) 

As equation (9.9) states, the controlled variables cold and hot water input flows, respectively QC 

and Qh, cannot directly affect the measurement variables level and temperature in tank 2, 

respectively L2 and T2, since their influence on these variables is exerted through the measured 

variables level and temperature in tank 1, L, and T, respectively. Therefore, the level in tank 2 is 

only directly affected by the measurement variable level in tank 2, while the measurement variable 

temperature in tank 2 is only directly affected by the measurement variable temperature in tank 1. 

The Measurement Causal Matrix from subsystem S2 to subsystem S,, is given by equation 

(9.10), 

L, T, aa 40010 
CM21=T 

0001 
(9.10) 
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The level and temperature in tank 2 can affect both cold and hot water controller outputs. However, 

the Measurement Causal Matrix from subsystem S2 to subsystem Si, Indicates that L2 can only 

affect Q, and T2 can only affect Qh, as is expressed in equation (9.10). This is due to the fact 

quoted above, that a decoupling scheme to eliminate the interactions between control loops has been 

implemented and, therefore, cold water input flow, Q,, and hot water Input flow, Qr� are 

dominantly affected by level in tank 2, L2, and temperature in tank 2, T2, respectively. 

Based on the above described process structures, fault detection heuristic rules can be 

developed. We start with the process controlled variables, which are level and temperature in tank 

2. Hence, consider the hypothetical situation where L2 presents an abnormal behaviour taking a 

value lower than its setpoint. The procedure for generating the fault detection heuristic rules is 

based on a search to find if there are any measured variables in the subsystem S2 (where L2 

belongs) which can affect L2. From equation (9.8), it can be seen that no such variables exist. 

However, equation (9.6) indicates that subsystem S, can affect subsystem S2 and, furthermore, 

equation (9.9) shows that only L, in subsystem S, can affect L2. Then L, should be examined and, 

if L, is decreasing S, will be the subsystem responsible for the abnormal behaviour in L2. Under 

this assumption, from equation (9.7) it can be seen that only the cold water input flow, Q,, can 

affect L1. Then, if the cold water input flow, Q,, is decreasing the search procedure is terminated 

since both subsystems have been explored and the following heuristic fault detection rule should be 

generated, 

IF (L2 is lower than its setpoint AND 

L, is decreasing AND 

Q, is continuously decreasing) THEN 

enable fault detection flag 

However, if the measurement variable L,. is not decreasing, subsystem S2 will be 

responsible for the abnormal behaviour of the measurement variable level In tank 2. Equation (9.8) 

suggest that only L2 can affect itself in subsystem S2. In such a situation the following rule is 

generated, 

IF (L2 is lower than its setpoint AND 

L, is not decreasing AND 

L2 is continuously decreasing) THEN 

enable fault detection flag 
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The notion of "continuously decreasing" has been introduced, in order to avoid false fault detection 

situations due to small perturbations in the process or even noise problems in a real implementation 

of the fault detection system. Moreover, the fault detection heuristic rules, for the situation where 

the level in tank 2, L2, is higher than its setpoint, are generated in a similar way as above for the 

opposite situation. 

For the other controlled variable, which is temperature in tank 2, T2, there are also two 

situations that could indicate an abnormal process behaviour. As quoted above for level, one is that 

Tz is lower than its setpoint and, another one is that T2 is higher than its setpoint. Hence, for 

instance let us consider the situation where T2 is higher than its setpoint. Equation (9.8) suggest 

there is no variable in subsystem S2 which can affect T2, while equation (9.6) suggest that 

subsystem S, can affect subsystem S2. Moreover, equation (9.9) shows that only T, in the first 

subsystem can affect T2 in the second subsystem. Then, if T, is increasing, subsystem S, will be 

responsible for the abnormal behaviour in T2. Under this assumption, from equation (9.7) we can 

see that only the hot water input flow, Qh, can affect the temperature in tank 1, T1, and, then if Qh, 

is increasing the search procedure is terminated since both subsystems have been explored and the 

following heuristic rule is generated, 

IF (T2 is higher than its setpoint AND 

T, is increasing AND 

Qh is continuously increasing) THEN 

enable fault detection flag 

The list of single faults that can occur in the mixing process simulation is presented in 

chapter 6., while the list of double simultaneous faults considered for the mixing process is 

presented in chapter T. It can be seen that we do not consider sensor failures. Hence, temperature 

in tank 2 should follow temperature in tank 1 apart from a small lag and, hence, the procedure for 

generating fault detection heuristic rules, under the situation quoted above, is terminated. The fault 

detection heuristic rules, for the situation where T2 is lower than its setpoint, are generated in a 

similar way as above. 

In order to cope with valve saturation situations, the deep knowledge quoted above has 

been combined with shallow knowledge to implement the knowledge based fault detection system. 

The performance of the fault detection system applied on the simulation studies of the mixing 

process, is discussed in chapter 10.. A combined approach, the knowledge based system and a 

fuzzy neural network, has been implemented and successfully applied for fault detection and 
diagnosis on the mixing process. 
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9.5 Formulation of Fault Detection Rules for the CSTR 

A detailed description of the continuous stirred tank reactor (CSTR), as well as the 

development of its dynamic model and its qualitative model, have already been given in chapter 5.. 

Control of some process variables, such as temperature and level in the reactor, as well as the 

recycle flow rate, which are controlled by feedback control systems (cascade control for the case of 

temperature), is considered. 
Following a similar procedure as described above and already applied to the mixing 

process, the CSTR process is decomposed into three subsystems. The first subsystem, S,, consists 

of the following components: external feed reactant elements, which includes pipe 1 and associated 

sensors. The second subsystem, S2, includes the following components: reaction vessel, pipe 2 

pump, pipe 3, valve 1, pipe 11 and associated sensors. The remaining components form the third 

subsystem, S3, which are all the components associated with the heat exchange part of the process. 

The Directed Graph corresponding to this decomposition is shown in Figure 9.3, from which it can 

be seen that the first subsystem can affect the second subsystem while the second subsystem cannot 

affect the first one, and both subsystems, S2 and S3 can affect each other. 

Figure 9.3 - Continuous stirred tank reactor directed graph 

Thus, in a similar way as quoted above for the mixing process, and according to equation 

(9.1), the Connection Matrix for the continuous stirred tank reactor is given by the following 

equation, 

Sl S2 S3 

Sl1 10 
C=S2 011 

S3 011 

(9.11) 

To perform the process behaviour analysis ten measurement variables have been 

considered. For the first subsystem, S,, three measurements Qi, T, and Ca� are considered which 
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are the flow rate, temperature, and concentration of the external feed reactant respectively. Hence, 

according to equation (9.4) the Self-Causal Matrix for the first subsystem is given by the following 

equation: 

Q1 T C.. 

Ql 100 
CS1=T 010 

Ca 001 

(9.12) 

which suggests that the three measurement variables considered for the first subsystem cannot 

affect each other. 

Following an analogous procedure, the Self-Causal Matrix for the second subsystem, S2, is 

given by equation (9.13): 

L T Qd C. 
L1 1 0 1 

CS 
T0 

2 -_ 
1 0 1 

Q, 4 1 0 1 0 

C. 0 0 0 1 

where the following notation is used, 

L- stands for level in the reactor; 
T- stands for temperature in the reactor; 
Q4 - stands for flow rate through valve 1; 

Ca - stands for concentration of the reactant in the product. 

(9.13) 

For the third subsystem of the CSTR plant, Sj, the following measurement variables are 

considered, 

Q2 - flow rate through valve 3; 

Qs - flow rate through valve 2; 

T5 - temperature of cold water entering heat exchanger. 

and, hence, the Self-Causal Matrix for the third subsystem is given by the following equation: 
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Q2 Q5 T5 

Q2 100 
CS3 = Q5 010 

T001 

(9.14) 

Moreover, according to equation (9.3) the Measurement Causal Matrix from subsystem S, 

to subsystem S2, is given by the following equation: 

LT Qd C. 

Ql 1000 
CM12=T, 0100 

Cae 0101 

(9.15) 

From equation (9.15), it can be seen that the measurement variables flow rate and temperature of 

external feed reactant can directly affect the controlled variables level and temperature in the 

reactor vessel respectively, and the external feed reactant concentration can directly affect both the 

temperature in the reactor and the reactant concentration in the product. 

The Measurement Causal Matrix from subsystem S2 to subsystem Sj is: 

Q2 Q5 T 

L 1 0 0 
T 

CM23= 
0 0 0 (9.16) 

Q 1 0 0 
Ca 0 0 0 

Equation (9.16) shows that the process variables level in the reactor and flow rate through control 

valve 1, which are measurement variables of the second subsystem, can only directly affect the flow 

rate through valve 3 in the third subsystem. 

The Measurement Causal Matrix from subsystem Sj to subsystem S2, is given by the 

following equation: 

LTQ, C. 

Q2 1010 
CM32 = QS 0100 

T0100 

(9.17) 
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Equation (9.17) suggests that the flow rate through valve 3, which belongs to the third subsystem, 

can directly affect both level in the reactor and flow rate through valve 1, in the second subsystem. 

Moreover, both the flow rate through valve 2 and the temperature of cold water entering the heat 

exchanger, which are measurement variables of subsystem S3, can only directly affect the 

temperature into the reactor, which is a measurement variable of subsystem S2. 

Abnormal behaviour detection is similar to that for the mixing process. Fault detection 

heuristic rules are generated from the knowledge on system structures and component functions in a 

similar way as quoted above for the mixing process. Considering controlled variables abnormal 

behaviour, the reasoning behind the generation of the heuristics is conducted to causally search any 

measured variable or variables which could be responsible for the observed abnormality. These 

variables could be in the same subsystem where the abnormality is observed or in any other 

subsystem. Hence, for instance, let us consider the situation where the level in the reactor is 

presenting an abnormal behaviour. In such a situation two possibilities must be considered, one is 

that the level is higher than its setpoint and another is that the level is lower than its setpoint. 

Consider the first possibility. From equation (9.13) it can be seen that only Q4 In S2 can affect the 

level in the reactor, L. Therefore, if Q4 is continuous decreasing then it is responsible for L being 

higher than its setpoint and the following fault detection rule is generated, 

IF (L is higher than its setpoint AND 

Q4 is continuously decreasing) THEN 

enable fault detection flag 

However, if Q4 is not responsible for the L abnormal behaviour, then equation (9.15) 

suggests that Q, in the first subsystem can affect L in the second subsystem. Therefore, If Q, is 

continuously increasing then it is responsible for the observed abnormal behaviour in L, and the 

following heuristic rule is achieved, 

IF (L is higher than its setpoint AND 

Q4 is not decreasing AND 

Q, is continuously increasing) THEN 

enable fault detection flag 

But if Q, is not responsible for the L abnormal behaviour, then equation (9.17) shows that 

only Q2 in the third subsystem can directly affect L in the second subsystem. Hence, If Q2 is 

continuously increasing then it is responsible for L being higher and the following rule is achieved, 
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IF (Lis higher than its setpoint AND 

Q4 is not decreasing AND 

Q, is not increasing AND 

Q2 is continuously increasing) THEN 

enable fault detection flag 

The formulation of fault detection rules for the situation where the level in the reactor 

vessel is lower than its setpoint is similar to the above procedure, as well as for the other controlled 

process variables. 

In the developed fault detection system, nineteen such heuristic rules have been used in the 

simulation studies of the CSTR process. Moreover, to cope with valve saturation effects and avoid 

false fault detection situations when more than one setpoint change is performed, some shallow 

knowledge, based on the operational process experience, has been used to build up the knowledge 

base. As presented in the next chapter, the knowledge based fault detection system joined together 

with a fuzzy neural network, which is responsible for the fault diagnosis task, has been applied 

successfully for fault detection and diagnosis of single and multiple abrupt faults and incipient 

faults on simulation studies of the continuous stirred tank reactor. 

9.6 Conclusions 

A systematic methodology for formulating fault detection heuristic rules from knowledge of 

system structure and component functions has been developed. Therefore, a method to describe the 

system structures is presented in sub chapter 9.2. The reasoning behind the development of fault 

detection heuristic rules is described in sub chapter 9.3. The application of such a methodology to a 

mixing process, as well as to a continuous stirred tank reactor, respectively, is presented in sub 

chapters 9.4 and 9.5. 

Since structural decomposition corresponds to plant topology, such a method could be 

easier to implement. Advantages of a rule based format are that rules are efficient to evaluate and 

the heuristic rules based on deep knowledge can be combined with other rules based on shallow 

knowledge. Moreover, the apparent advantages of the proposed method for eliciting fault detection 

heuristic rules based on deep knowledge of the process under consideration are as follows: 

1. Given a plant description, the program designer is able to shortcut the laborious process 

of eliciting empirical associations from a human expert; 
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2. The reasoning method employed is device independent, so it is not necessary to tailor the 

inference machinery for different applications; 

3. The methodology is systematic, so may be appropriate for large scale processes which 

consist of a large number of components as well as strong interactions between them. 

The successful application of this method for developing fault detection heuristic rules for 

the simulated mixing process and for a simulated continuous stirred tank reactor suggest that the 

method provides a systematic and efficient approach for the design of on-line rule based fault 

detection systems. Moreover, since the fault detection task is not dependent on threshold values the 

performance of an overall fault detection and diagnosis system could be increased. 
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Chapter 10 

On-Line Fault Detection and Diagnosis Using a 

Knowledge Based System Coupled with a Fuzzy 

Neural Network 

10.1 Introduction 

Fault detection and diagnosis systems based on conventional techniques are usually 

supported by linear system models. For non-linear processes, the traditional approach is to linearize 

the system model around the system operating point. This approach is effective for many non-linear 

processes if the operating range is limited and the fault detection and diagnosis system has been 

designed to be robust enough to tolerate small perturbations around the operating point. However, 

for systems with high nonlinearity and a wide dynamic operating range, the linearized approach 

fails to give satisfactory results. One solution is to use a large number of linearized models 

corresponding to a range of operating points which is not very practical for real-time applications 

(Chen 1995). Hence, in this chapter a fault diagnosis approach based on artificial neural networks 

is presented. Because artificial neural networks can be trained to have the required relationships 

between inputs and outputs, they can be used to overcome difficulties in conventional techniques 

for dealing with nonlinearity. Neural networks are properly aimed at processes that are ill-defined, 

complex, non-linear and stochastic. 

The use of artificial neural networks for fault detection and diagnosis purposes has 

received increasing attention in both research and application. The number of publications about 

this subject have demonstrated the promise of this new tool (Watanabe el al. 1989 and 1994, 
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Venkatasubramanian and Chan 1989, Naidu et al. 1990, Himmelblau et al. 1991. Hoskins et al. 

1991, Sorsa et al. 1991, Willis et al. 1991, Zhang and Roberts 1992a, Sorsa and Kolvo 1993, 

Kavuri and Venkatasubramanian 1994, Patton et al. 1994, Zhang and Morris 1994). In the present 

approach, a fuzzy neural network is used, which combines the capability of fuzzy reasoning In 

handling uncertain information and the capability of neural networks in learning from examples. In 

contrast with a conventional feed forward neural network, this fuzzy network has an additional 

fuzzification layer which converts the increment in each on-line measurement Into seven fuzzy sets: 

negative large (nlarge), negative medium (nmedium), negative small (nsmall), zero, positive small 

(psmall), positive medium (pmedium) and positive large (plarge). By using these fuzzy sets to 

describe the process variables real behaviour, due to the fact that similar training patterns are 

transformed into the same fault symptoms, training data will be compressed and training effort can 

be eased. Moreover, the fuzzy approach also makes the system less sensitive to measurement noise 

(Zhang and Morris 1994). 

In order to achieve on-line fault detection and diagnosis in the presence of transient 

behaviours, the system dynamics have to be considered. However, most publications only deal with 

processes under steady-state conditions. In these applications, neural networks were used to 

examine the possible fault or faults in the process under concern and give a fault classification 

signal to declare whether or not the process is faulty. This procedure may be suitable for 

diagnosing faults for some processes under steady state conditions, but this is not the case for 

diagnosing faults in dynamic processes because the change in the neural network inputs can also 

affect certain features of the neural network outputs. Following this approach, the fault detection 

and diagnosis system could give incorrect information about a fault or faults in the process when in 

the presence of transient behaviours. In order to overcome this problem, a hybrid fault detection 

and diagnosis system, which is a combined approach of the deep/shallow knowledge based system, 

described in the last chapter, with a fuzzy neural network, is considered in this chapter. 'Iahe 

knowledge based system is responsible for detecting a fault in the process under concern while the 

fuzzy neural network locates the hypothetical fault or faults. 

This chapter is organised as follow. Sub chapter 10.2 presents the fault detection and 

diagnosis system architecture. In sub chapter 10.3 a general description of classical artificial neural 

network is presented. Sub chapter 10.4 discusses the advantages of using a fuzzy neural network 

for fault diagnosis purposes instead a classical neural network, as well as giving a fuzzy neural 

network topology. In sub chapter 10.5 an extension of the classical backpropagation learning 

algorithm is proposed for performing the learning task. In sub chapters 10.6 and 10.7 the fault 

detection and diagnosis system is applied to the mixing process and to the continuous stirred tank 

reactor, respectively, which are presented in previous chapters; in these simulation studies single 
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and multiple simultaneous abrupt faults and incipient faults have been considered. 'Ihe performance 

of the fault detection and diagnosis system is analysed in sub chapter 10.8. Sub chapter 10.9 

provides some concluding remarks. 

10.2 System Architecture 

When neural networks were revived in recent years they were labelled by some as sixth- 

generation computing (Turban 1992). This labelling gave the erroneous impression that the fifth- 

generation computing, of which knowledge based systems are a major part, is going to be replaced. 

As a matter of fact, while in some cases neural networks can perform tasks better or faster than 

knowledge based systems, in most instances the two technologies are not in competition. 

Furthermore, the characteristics of both techniques are so different that they can complement each 

other in some practical applications. 

Knowledge based systems perform reasoning using pre-established heuristic rules for a 

well defined and narrow domain. They combine knowledge bases of rules and domain specific facts 

with information about specific instances of problems, provided by a domain expert. Ideally, 

reasoning can be explained and the knowledge bases can be easily modified or updated, 

independently of the inference engine, as new rules become known. 

A major limitation of the knowledge based approach arises from the fact that domain 

experts do not always think in terms of rules. Moreover, domain experts may not be able to explain 

their line of reasoning, or they may explain it incorrectly. Thus, in many cases, it is difficult or even 

impossible to build the necessary knowledge base. In order to overcome this, or other limitations, 

neural networks could be used. 

As quoted above, the neural network approach relies on training data to model the system. 

Particular applications are developed by establishing an appropriate training set that allows the 

system to learn and generalise for operation on future input data. Inputs that match the training 

data exactly are recognised and identified, while new data or incomplete and noise versions of the 

training data can be matched closely to patterns recognised by the system (Zhang and Roberts 

1992a). 

For well behaved systems, with well defined rules, knowledge based systems can be 

developed to provide good performance. In contrast to neural network approaches, knowledge is 

represented as numeric weights and, hence, the rules and the reasoning process are not readily 

explainable. Neural networks can be preferable to knowledge based systems when rules are not 

known either because the topic is too complex or no domain expert is available. If training data can 
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be generated the system may be able to learn enough information to perform as well as, or better 

than, a knowledge based system. This approach also has the benefit of easy maintenance, since 

modifications are achieved by retraining the neural network with an updated data set, avoiding 

programming changes and rule reconstruction. Moreover, as described below, the use of a special 

type of neural network, a so called fuzzy neural network, could be more suitable for fault diagnosis 

purposes. Such a neural network combines the capability of fuzzy reasoning in handling uncertain 

information with the capability of neural networks in learning from examples. 

From the above considerations, there is motivation to implement a hybrid fault detection 

and diagnosis system, which consists of a knowledge based approach for fault detection combined 

with a fuzzy neural network approach for fault diagnosis. The overall system can be seen as a 

distributed intelligent system in the sense that both subsystems are capable of functioning 

independently. They can interface with each other through communication lines, that is by transfer 

of data. Once a fault has been detected by the knowledge based system, the fault diagnosis system 

is triggered to locate the hypothetical fault or faults in the process under concern. On-line 

measurement data is fed forward through the fuzzy neural network and the corresponding output 

values analysed. 

As in the computational systems presented in previous chapters, the overall computational 

system presented in this chapter still can be seen as a two layer configuration. In the lower layer the 

process under consideration is simulated through its dynamic model and control of some process 

variables is performed. It is also through the lower layer that a fault, or faults in the process under 

concern, can be simulated. The upper layer has supervisory functions with the main aim of 

detecting and diagnosing faults introduced in the lower layer. Figure 10.1 depicts the overall 

computational system, which has been implemented through a TURBO C++ program. 

The information handled by the fault detection and diagnosis system is basically the 

changes which occur in on-line measurement variables. However, for simplicity, all the changes 

observed in the measurement variables used by the fault detection and diagnosis system have been 

normalised into the range [-1, +1]. From Figure 10.1, it can be seen that the normalisation task is 

performed by a "Data Normalisation" module. This module interfaces the lower layer with the 

upper layer. On-line measurement variables are sampled with a pre-defined sampling time and their 

values are retained. With two consecutive samples retained, the changes in the measurement 

variables which occur between sampling times are evaluated and then converted into the normalised 

range [-1, +1]. To perform this task, it is necessary to define a parameter for each variable which 

makes the normalisation of the different process variable changes. 

In previous implemented fault detection and diagnosis, described in previous chapters, 

normalisation parameters have also been used. During the studies conducted to develop such 
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Figure 10.1 - Architecture of a on-line fault detection and diagnosis system 

systems, it is found that the normalisation parameters could affect the performance of the overall 

system and, hence, should be set properly. In contrast, since in the current approach the fault 

detection task is not based on threshold values, but is performed through a knowledge based system 

and the fault diagnosis is achieved through a fuzzy neural network previously trained with data 

acquired with the normalisation parameters already defined, then the performance and reliability of 

the overall fault detection and diagnosis system is not affected by such normalisation parameters. 

At each sampling time the normalised data is passed to a "Fault Detection" module. Mais 

module is basically a knowledge based system consisting of deep and shallow knowledge of the 

process under concern. The fault detection heuristic rules have been generated following the 

procedure described in the last chapter. From the on-line information transferred to the knowledge 

based system, a forward chaining inference engine tries to match the heuristic rules pre-conditions 

against the current state. If at least one rule is fired a fault detection slag is enabled and the fault 

diagnosis module is triggered. Then, the fault diagnosis task is performed through a fuzzy neural 

network with the topology described in sub chapter 10.4. Therefore, if the fault diagnosis module 
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has been triggered, the normalised changes observed in the measurement variables are fed forward 

through the fuzzy neural network. Thus, a particular diagnosis could be achieved if any fuzzy 

neural network output has a value close to one. In the current approach it is considered that any 

fuzzy neural network output with a value greater than 0.8 suggests that the corresponding 

hypothetical fault has occurred in the process under consideration. 

After a fault or faults have been diagnosed the computational system keeps the operator 

informed about that fact through the "Interface Man/Machine" module. This module provides to the 

operator the fault or faults location, as well as the values of the neural network outputs which have 

been obtained during the diagnosis phase. Moreover, since we are using simulation studies, it is 

possible to know the time instant when the fault or faults have been initiated and, therefore, the 

fault detection and diagnosis time is also provided through the man/machine interface. This 

parameter allows us to evaluate the performance of the overall fault detection and diagnosis system. 

Since the current research work has been carried out through simulation studies the 

man/machine interface module has been also used for allowing the simulation of faults in the 

process under consideration. Therefore, if a faults simulation is chosen from the main screen on the 

application an iterative menu appears as shown in Figure 10.2. From this menu the user should 
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chose between abrupt fault/faults and incipient fault/faults. A similar menu is used for defining if 

the user wants to simulate single or double multiple simultaneous faults. At this stage, further 

similar menus are used to initiate a specific fault or faults simulation. However, if at the first menu 

the user has chosen incipient fault/faults simulation, before the fault or faults will be initiated the 

user is requested to provide the speed of the fault or faults development through the menu shown in 

Figure 10.3. The examples depicted in Figures 10.2 and 10.3 are for the simulation of the 

continuous stirred tank reactor but they are process independent. This means that the same 

interface is used in simulation studies conducted with the mixing process. 

15: 44: 26 7-10-1995 
INTELLIGENT DETECTION AND DIAGNOSIS OF FAULTS 

Q5 (cn3/c) T (Col. ) 

23.8 51.2 
04 (cn3/s) L (cn) 

300.0 30.0 

q2 (cn3/a 

160.0 

Yip. 5 Ll 
RC 

Ua 13 Pipe 

HTL{ 

Pipe 4 

Pipe 2 Pipe 3 Pip° 11 

Punp 
wo L 

FAULTS SIMULATION 

START A FAULT 

Incipient fault/faults are simulated 
through the following equation! 

Hf - Mn x (1 +ax t) 
Mf - is the value of the variable 

when there is a fault. 
Mn - is the value of a variable 

when there is no fault. 
s- is the speed of the fault 

dovelopnent. 
t- is this. 
Please enter the speed value and 
than press (EHTER): 

SETPOINT L 
127E0.5 r 

8 SETPOINT T 
Ua12 P 7C" 

PLI 
Q 0.5 

cN 
Pipe 9 

SETPOINT Q2 

c14R Etl 0.4 
E. 

11 
. Pipe 11 

EXIT 

Figure 10.3 - Man/machine interface for incipient fault simulation 

10.3 Artificial Neural Networks 

This sub chapter is an introduction to Artificial Neural Networks with the aim for 

providing the background for the Fuzzy Neural Networks field which is the subject of the next sub 

chapter. Artificial neural networks try to model the brain's cognitive process. In contrast with 

conventional single-processor computers, the brain is considered to have a multiprocessor 
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architecture that is highly interconnected. This architecture can be, and has been, described as 

parallel distributed processing. In this way, artificial neural networks are also referred to in the 

literature as neurocomputers, connectionist networks, parallel distributed processors, etc. 

Throughout this chapter the author uses simply the term "neural networks". 

Neural networks originated as a model of how the brain works and have a long history. 

Indeed, this research has its beginnings in psychology. The theories of Freud, and other nineteenth- 

century psychologists, laid the groundwork of ideas that was to give birth to early neural networks 

research (Blum 1992). In a neural network, the unit analogous to the biological neurone Is referred 

in neural networks literature as a "processing element" or a "processing unit". In this chapter the 

term processing element is adopted. 

Development of detailed mathematical models began more than fifty years ago (McCulloch 

and Pitts 1943, Hebb 1949). More recent work has led to a new resurgence of the field (Hopfield 

1982, Hopfield and Tank 1986, Rumelhart and McClelland 1986). This new interest is due to the 

development of new neural network topologies and algorithms, and new analogue very large scale 

integration techniques. All these models attempt to achieve good performance via dense 

interconnection of simple computational elements. In this respect, neural networks structure is 

based on our understanding of the biological nervous system. Recent interest is also driven by the 

realisation that human-like performance in the areas of speech and image recognition will require 

enormous amounts of processing. Neural networks provide one technique for obtaining the required 

processing capacity using large numbers of simple processing elements operating in parallel 

(Lippmann 1987). 

Instead of performing a program of instructions sequentially, neural network models 

explore many competing hypotheses simultaneously using massively parallel networks composed of 

many computational elements connected by links with variable weights. Unlike traditional expert 

systems, where knowledge is made explicit in the form of rules, neural networks generate their own 

rules by learning from being shown examples. Learning is achieved through a learning rule which 

adapts or changes the connection weights of the network in response to the example inputs and, in 

some situations, the desired outputs of those inputs. Moreover, whereas traditional computing 

systems are rendered useless by even a small amount of damage to memory, neural networks based 

computing systems are fault tolerant. Fault tolerance refers to the fact that in most neural networks, 

if some processing elements are destroyed, disabled, or their. connections altered slightly, then the 

behaviour of the network as a whole is only slightly degraded As yet more processing elements are 

destroyed the behaviour of the neural network is degraded just a bit further. Performance suffers, 

but the system doesn't come to an abrupt halt. Neural network based computing systems are fault 

tolerant because information is not contained in one place, but is distributed throughout the system. 
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This characteristic of graceful degradation makes these systems extremely well suited for 

applications where failure means disaster. 

Typically, a neural network is presented with a training set consisting of a group of 

examples from which the neural network can learn. These examples, known as training patterns, 

are represented as vectors, and can be taken from such sources as images, speech signals, sensor 

data, robotic arm movements, financial data, and diagnosis information (Dayhoff 1990). In 

diagnostics, a pattern (a set of measurements or symptoms) acts as antecedents from which we can 

infer a classification (diagnosis) of each pattern. The neural networks training procedure is 

described, in detail, below. 

Like brains, neural networks recognise patterns we cannot even define. We call this 

property recognition without definition. Recognition without definition characterises much 

intelligent behaviour in that it enables systems to generalise (Kosko 1992). Since a neural network 

has the ability to generalise on the tasks for which it is trained, fault diagnosis seems to be a 

promising field for their application. From this point of view, the ability to generalise may enable 

the neural network to provide the correct answer when presented with a new input pattern that is 

different from the inputs in the training set. This means that the neural network has the capability to 

provide a correct diagnosis under a new faulty scenario. However, during the present research 

work, it has been observed that to achieve an effective generalisation behaviour from a neural 

network, the training section must be limited in iterations, so that no "overlearning" takes place, and 

the training set must include a variety of examples that are a good preparation for the generalisation 

task. 

An example of a typical processing element for a neural network is depicted in Figure 10.4. 

On the left are the multiple inputs to the processing element, each arriving from another clement, 

which is connected to the element shown at the centre. Each interconnection has an associated 

strength, which is called the connection weight, given as wi,, w; 2, ......, w,,. Furthermore, the 

processing element performs a weighted sum on the inputs and uses a transfer function, f, to 

compute its output. This transfer function can be a threshold function, which only passes 

information if the weighted sum reaches a certain value, or it can be a continuous function of the 

weighted sum. The output value of the transfer function is generally passed directly to the output 

path of the processing element. 

Moreover, the output path of a processing element can be connected to input paths of other 

processing elements through connection weights. Since each connection has a corresponding 

weight, the signals on the input lines to a processing element are modified by these weights prior to 

being summed. In itself, this simplified model of a processing element is not very interesting; the 

interesting properties result from the ways processing elements are interconnected. 
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Artificial neural networks consist of numerous, simple processing elements that we can 

globally program for computation. We can program or train neural networks to store, recognise and 

associatively retrieve patterns or database entries; to solve combinatorial optimisation 

problems; to filter noise from measurement data; to control ill-defined problems; in summary, to 

estimate sampled functions when we do not know the form of the functions (Kosko 1992). 

Artificial neural networks have been shown to possess a good approximation capability for 

a wide range of non-linear functions (Hornik et al.. 1989, Park and Sandberg 1991, Wang et al. 

1992). 

A neural network consists of many processing elements joined together in the above 

manner. Processing elements are usually organised in groups which are called layers. A typical 

multilayer artificial neural network consists of a sequence of layers with full or random connections 

between successive layers, as shown in Figure 10.5. Each layer of the neural network consists of 

computing nodes. There are usually two layers with connections to the outside world, which are an 

input buffer where data is presented to the neural network, and an output buffer responsible to hold 

the response of the neural network to a given input. Layers between the input and output buffers 

are called hidden layers. 

There are two main phases in the operation of a neural network which are called 

"Learning" and "Recall". Learning is the process of adapting or modifying the connection weights 
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in response to a pattern being presented at the input buffer and optionally the output buffer. A 

pattern presented at the output buffer corresponds to a desired response to a given input pattern. 

Therefore, this desired response must be provided by a knowledgeable "teacher". In such a case the 

learning task is referred to as supervised learning. 

Output layer 

Hidden la 

Input layer 

Figure 10.5 -A simple artificial neural network architecture 

If the desired output is different from the input, the trained neural network is referred to as 

a hetero-associative network. If, for all training patterns, the desired output vector is equal to the 

input vector, the trained network is called auto-associative. If no desired output is shown the 

learning task is called unsupervised learning. 

A third kind of learning falling between supervised and unsupervised learning is 

reinforcement learning where an external "teacher" indicates only whether the response to an input 

is good or bad. Whatever kind of learning is used, an essential characteristic of any artificial neural 

network is its learning rule which specifies how weights are adapted in response to a learning 

pattern. The learning procedure may require showing to an artificial neural network many 

examples, many thousands of times, until some convergence criterion is met or a pre-dcfned 

number of iterations is reached. 

Recall has been used to refer to how the artificial neural network processes a pattern 

presented at its input buffer and creates a response at the output buffer. Often recall is an integral 

part of the learning procedure, such as when a desired response of the artificial neural network 

must be compared with the actual output of the network to generate an error signal. Such a 

situations occurs whenever a supervised learning strategy is followed. 

The simplest form of a neural network has no feedback connections from one layer to 

another or to itself. Such a neural network is called a static "feedfonvard network" (Zbikowski and 
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Gawthrop 1992). In this case information is passed from the input buffer through Intermediate 

layers to the output layer in a straightforward manner using the summation and transfer function 

characteristics of the particular neural network. Thus a feed forward artificial neural network 

performs a non-linear transformation of input data in order to approximate output data (Montague 

el al. 1992). Moreover, many types of artificial neural networks have an energy function associated 

with them, as presented with some detail in sub chapter 10.5. Each state of the network, which is 

defined by a particular set of processing element outputs, has an energy value. The recall procedure 

iteratively modifies the states so that energy decreases and, hence, a state representing a local 

minimum in the energy surface will be achieved. 

The capabilities of the neural networks of the 1950s and 1960s were limited compared to 

those of modern neural network architectures. However, these early paradigms did bring many 

important properties to the attention of researchers. One of the most Important paradigms Is the so- 

called single layer perceptron, which is a neural network designed to learn to recognise simple 

patterns and is intended as a research tool for modelling possible brain mechanisms (Dayhoff 

1990). The single layer perceptron pattern-mapping architecture learns to classify patterns through 

a supervised learning technique, and it is the simplest form of a artificial neural network used for 

classification of a special type of patterns said to be linearly separable, that is patterns that lie on 

the opposite sides of a hyperplane. Basically, the perceptron consists of a linear combiner followed 

by a hard limiter, as shown in Figure 10.6. Inputs arrive from the left hand side, and each Incoming 

interconnection has an associated weight, w,;. The perceptron processing element performs a 

weighted sum of its input values, and also accounts for an externally applied threshold, 0. The 
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Figure 10.6 - Single layer perceptron 
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resulting sum is applied to a hard limiter such that the output is either +1, if the hard limiter Input 

is positive, or -1, if the hard limiter input is negative. 

From the model depicted in Figure 10.6, the linear combiner output, that is the hard limiter 

input, is given by the following equation, 

Si = ai x wj; 

)-0 

i=0 

where the following notation is used, 

(10.1) 

w;; - weight associated with the connection to processing element j, which comes from 

processing element i; 

a; - value output of input element i; 

Sj - weighted sum at processing element j; 

A- threshold value. 

A useful technique for analysing the behaviour of neural networks, such as the single layer 

perceptron, is to plot a map of the decision regions created in the multidimensional space spanned 

by the input variables. These decision regions specify which input values result in one class or 

another. The single layer perceptron forms two decision regions separated by a hyperplan 

(Lippmann 1987). 

However, because the perceptron was a developmental device it had certain limitations. 

One, emphasised by Minsky and Papert (1969), was the inability to represent the basic Exclusive 

OR function. This is a result of the linear nature of the perceptron. A single layer perceptron can 

perform pattern classification only on linearly separable patterns. Linear separability requires that 

the patterns to be classified must be sufficiently separated from each other to ensure that the 

decision surfaces consist of hyperplanes (Haykin 1994). When inputs are not separable and 

distributions overlap, the decision boundaries may oscillate continuously with the original 

perceptron training procedure. 

To overcome the single layer perceptron limitations, several advanced forms of artificial 

neural networks have been proposed. For example, the well known multilayer perceptron artificial 

neural network, which is in fact computationally more powerful than a single layer perceptron, can 

learn and categorise complex class categories. This is typically achieved by using processing 

elements with non-linear transfer functions, which are also referred to in the literature as 

activation functions. The fuzzy neural network used in the present fault diagnosis 
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approach, which is presented in the next sub chapter, is based on a multilayer perceptron 

architecture. 

Multllayer perceptrons are feed forward neural networks with one or more layers of 

processing elements between the input and output nodes. These additional layers have been called 

hidden layers, since they are constituted by processing elements (hidden) which are not directly 

connected with the outside world. A general topology of a two layer perceptron neural network, 

which consists of one hidden layer, is depicted in Figure 10.7. 

A multilayer perceptron is a tremendous step forward compared to its predecessor, the 

single layer perceptron, but was generally not used in the past because effective training algorithms 

were not available (Lippmann 1987). As quoted above, the single layer perccptron was limited to 

only two layers of processing -elements, with only a single layer of adaptable weights. Therefore, 

this key limitation meant that the single layer perceptron could only classify patterns that were 

linearly separable. A multilayer perceptron overcomes this limitation because it can adjust two or 

more layers of connection weights, and uses a more sophisticated learning rule. The power of a 

multilayer perceptron neural network lies in its ability to train hidden layers and thereby escape the 
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Figure 10.7 - General topology of a multilayer perceptron neural network 
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restricted capabilities of single layer neural networks. Moreover, the capabilities of multilaycr 

perceptron neural networks stem from the non-lincarities used as processing clement activation 

functions. If these elements are linear, than a single layer neural network with appropriately chosen 

weights could exactly duplicate the calculations performed by any multilayer neural network 

(Lippmann 1987). 

In multilayer perceptron neural networks each layer is fully connected to the succeeding 
layer. In the example shown in Figure 10.7, the arrows in the connections between processing 

elements are used to indicate the flow of information during recall. During the learning procedure, 

information is also propagated back through the neural network and used to update the connections 

weights. Moreover, such a neural network can be either hetero-associative or auto-associative. In 

the auto-associative approach the number of processing elements in the output layer is equal to the 

number of processing element in the. input layer and, when the training task is performed, the input 

patterns are used also as the desired output values. This approach can be used for applications such 

as data compression or noise filtering. In the hetero-associative approach the output layer can have 

any number of processing elements, usually less than the input layer, and during the training 

procedure each example must be constituted by an input pattern, as well as the desired output 

values. 
Artificial neural networks can be trained using a number of training methods. For instance, 

the backpropagation training algorithm (Rumelhart, Hinton and Williams 1986), the conjugate 

gradient algorithm (Leonard and Kramer 1990), or the genetic algorithm method (Goldberg 1989). 

However, for multilayer feed forward neural networks, the most popular training algorithm is the 

so called backpropagation learning algorithm or error backpropagation whose details are described 

in sub chapter 10.5. 

10.4 Fuzzy Neural Networks 

In the last few years the application of both technologies, neural networks and fuzzy logic, 

has received increasing attention in both research and application. Probably the first introduction of 

neural networks in consumer products occurred in Japan in December 1990, with a Matsushita air 

conditioner. Since then, a rapid growth in applications of neural networks and fuzzy logic in the 

consumer electronics industry has been observed in Japan. Moreover, a huge number of fuzzy logic 

industrial applications in Europe has also been reported (Altrock 1995). 

A major reason for the widespread application of fuzzy systems in industry is that they 

have the ability to handle non-linear problems, are easy to understand, are easy to apply quickly, 
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and reduce development costs. However, fuzzy systems can express knowledge but cannot learn to 

adapt themselves. Neural networks have the ability to learn, so the two methods complement each 

other. There are five types of co-operative systems using both technologies: neural networks used 

as a development tool for building fuzzy systems; neural networks and fuzzy technology used 

independently; neural networks as correctors of the outputs of a fuzzy system; neural networks and 

fuzzy systems combined serially; and consumer-trainable functions (Takagi 1995). 

In the present approach both techniques are combined serially for fault diagnosis purposes 

in industrial processes. Thus, for a neural network to be called a fuzzy neural network the signals 

and/or the weights must be fuzzy sets (Buckley and Hayashi 1994). From an engineering point of 

view much of the interest in neural networks and fuzzy systems has been for dealing with 

difficulties arising from uncertainty, imprecision and noise. Fuzzy reasoning is capable of handling 

uncertain and imprecise information while a neural network is capable of learning from examples. 

Fuzzy neural networks intend to combine the advantages of both fuzzy reasoning and neural 

networks. The fuzzy neural networks have been studied by many researchers and several different 

types of fuzzy neural networks have been proposed. Such types of fuzzy neural networks can be 

divided into three classes: fuzzy neural networks which have real number signals but fuzzy set 

weights; fuzzy neural networks which have fuzzy signals and real number weights; and the last 

class of fuzzy neural networks which have both fuzzy signals and fuzzy weights. In the present 

research work a fuzzy neural network of the second class has been used, that is the fuzzy neural 

networks, which have been used for fault diagnosis purposes, have fuzzy signals and real number 

weights. 

This sub chapter describes a fuzzy neural network used for fault diagnosis purposes. 

Measurements or fault symptoms act as antecedents from which we can infer a classification of the 

pattern input, that is a diagnosis. In any classification task we have a measurement space from 

which we receive physical input data. In the present approach changes in the measurement process 

variables are received and then are linearly transformed into values in, say, the unit interval. 

Therefore, we have a normalised physical input space as an initial data representation This means 

that after the linear transformation has been performed, the maximum change in a process variable, 

which can be observed, will be +1, and the minimum change will be -1. To perform this task it is 

necessary to define a parameter for each measurement variable which makes the normalisation of 

the different changes in the process variables in the range [-1, +1]. In previous chapters it has been 

reported that these normalisation parameters could affect the fault detection and diagnosis system 

performance, and should be set properly. However, since the training patterns used during the fuzzy 

neural network learning task have already been normalised, and there are no threshold values to 

trigger the system, the normalisation parameters do not affect the performance and reliability of the 
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fault detection and diagnosis approach proposed in this chapter. 

Once the fuzzy neural network system has been triggered by the knowledge based fault 

detection block, which was described in the previous chapter, the normalised data is presented to 

the network. The fuzzy neural network topology, which is used in this approach, is depicted in 

Figure 10.8. According to the last sub chapter, it can be seen that the fuzzy neural network is 

"achieved by adding a fuzzification layer to a conventional feed forward neural network. The 

fuzzification layer converts each input into the following quantity space, ql - (nlarge, nmcdium, 

nsmall, zero, psmall, pmedium, plarge), by association with seven types of neurones in the 

fuzzification layer. The desired membership functions can be located by appropriately selecting the 

fuzzification layer weights of the fuzzy neural network. 
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Figure 10.8 - Fuzzy neural network topology for fault diagnosis 
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A similar topology for a fuzzy neural network applied for fault diagnosis has already been 

reported by Zhang and Morris (1994), as well as a comparison between such a neural network and 

the classical feed forward neural network. In their paper some results are presented which 

demonstrate that a fault diagnosis system based on a fuzzy neural network approach performs 

much better than one based upon a conventional neural network. Therefore, comparing the 

architectures of both neural networks, we can conclude that the good performance of the fuzzy 

neural network is due to the additional fuzzification layer. 

However, in the approach reported by Zhang and Morris, only three fuzzy sets have been 

used to discretize the fuzzy quantity space. As illustrated in Figure 10.8, in the present approach 

seven fuzzy sets have been used. The advantage of this approach is to allow a reduced set of 

measurement variables to form the input space of the fuzzy neural network and increase the number 

of faults that can be diagnosed. Hence, in the approach presented in this report, the amount of 

information handled in the diagnosis task is reduced and the number of possible patterns to 

recognise can be increased. 

The processing elements of the fuzzification layer associated with the fuzzy sets nlarge and 

plarge use the complement sigmoid function and the sigmoid function, respectively, as their 

activation functions. Such an activation functions, which define the outputs of a processing 

elements in terms of the activity level at their inputs, can be represented by the following two 

equations, respectively. The corresponding shapes of these activation functions are shown in 

Figures 10.9 and 10.10, respectively. 

f (z) =1- 
1 

1+e-''jZ 
(10.2) 

f(z)-1+e-'", 
Z 

(10.3) 

where the following notation is used, 

- Jtz), is the processing element output; 

- z, is the processing element input; 

- w;, is the input weight. 

The other processing elements of the fuzzification layer associated with the remaining fuzzy sets 

use the gaussian function as their activation function. By using the same notation mentioned above, 

for the complement sigmoid and sigmoid functions, the gaussian activation function can be 

171 



ß7l 

Figure 10.9 - Complement sigmoid function 

fr 7) 

Figure 10.10 - Sigmoid function 

if 

Figure 10.11 - Gaussian function 

Z 

Z 

Z 

represented by the following equation, (10.4), and the corresponding shape of this activation 

function is given in Figure 10.11. 

f (z) =e 
(wiz)2 

(10.4) 

The processing elements in the hidden and output layers use the sigmoid function. For these 

processing elements the variable, z, quoted above, represents the weighted sum of all the inputs of 

each processing element. As shown in Figure 10.8, each output of the fuzzy neural network is used 

to represent a particular fault. Outputs of the fuzzy neural network take values in the range zero to 
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one and a fault is indicated when a corresponding network output is close to 1. Therefore, if for a 

specific input pattern there is no network output taking a value close to 1, then that input pattern 

does not represent a faulty scenario. However, if more than one output of the fuzzy neural network 

takes ä value close to 1, this means that more than one fault has occurred in the process under 

concern. 

Training data are on-line measurements covering the events of the faults being considered 

and the nominal operating conditions. These can be obtained from a recorded operating history of 

the process or, as in the applications presented in sub chapters 10.6 and 10.7, from simulation 

studies. The weights of the fuzzification layer have been initialised based on experiences about the 

process under consideration, such as nominal fluctuation levels of process variables. The fuzzy 

neural network proposed here can be seen as a feed forward neural network, since there are no 

feedback`connections in the layers or between them. As quoted above, for such neural networks the 

most popular training algorithm is the so-called backpropagation method. However, during this 

research work an extension of such a learning algorithm has been developed, which is presented in 

the next: sub chapter. This extended backpropagation learning algorithm has the advantage of 

decreasing the learning time to achieve a pre-defined accuracy in the network outputs, as can be 

seen through the results presented in sub chapter 10.5. 

' The fault diagnosis system based on this fuzzy neural network approach has been applied 

successfully in simulation studies of the mixing process and a continuous stirred tank reactor. In 

these processes single and double simultaneous abrupt faults have been considered, as well as 

incipient faults. During these studies, it has been observed that the neural network's gencralisation 

ability has the major importance in the diagnosis of incipient faults, since the training patterns used 

only include abrupt faults symptoms. A detailed description of the results achieved is given in sub 

chapters 10.6 and 10.7, respectively, for the mixing process and for the continuous stirred tank 

reactor. 

10.5 Backpropagation Training 

Among the many interesting properties of an artificial neural network, the property that is 

of primary significance is the ability of the network to learn from its environment and to improve its 

performance through learning; the improvement in performance taking place over time in 

accordance with some prescribed measure. In the present study the neural network learns about its 

environment through an iterative process of adjustments applied to its synaptic weights. l' he 

learning procedures are usually divided into three classes: supervised learning, reinforcement 
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learning and self-organised or unsupervised learning. Supervised learning is performed under the 

supervision of an external "teacher"; reinforcement learning involves the use of a "critic" that 

evolves through a trial and error process; unsupervised learning is performed in a self-organised 

manner in that no external teacher or critic is required to instruct synaptic changes in the network 

(Haykin 1994). 

As discussed in previous sub chapters, a feed forward neural network is used in the study 

presented in this chapter, since there are no interconnections between the output of a processing 

element and the input of a processing element in the same layer or in a preceding layer. The so 

called backpropagation, or in other words the error back propagation algorithm, is the most widely 

used learning technique applicable to feed forward neural networks (Turban 1992). An extension of 

such a learning technique is used in the present approach. Hence, as under this learning method the 

fuzzy neural network weights are adjusted each time a correct pattern, represented by an input- 

output example, is externally provided, we can say that a supervised learning procedure is used in 

this research work. Each example requires two stages: a forward pass and a backward pass. The 

forward pass involves presenting a sample input, from a set of input-output examples, to the neural 

network and letting activation flow until the output layer is reached. During the backward pass, the 

actual output of the neural network is compared with the desired or target output for that sample 

input. The errors between the actual and desired outputs are used to adjust the weights for the 

connections to the previous layer. We can then use the output unit errors to derive the hidden layer 

output errors. Finally, errors are propagated back to the connections coming from the input units. 

The error back propagation algorithm is based on an error correction learning rule and it 

may be viewed as a non-linear extension of an equally popular adaptive filtering algorithm, the so 

called least-mean-square (LMS) method which is also known as the delta rule or the Widrow-Hoff 

rule, developed for a single linear neurone model (Haykin 1994). However, one of the problems 

associated with this algorithm is the training time needed to achieve a pre-defined accuracy in the 

artificial neural network outputs. From the fault diagnosis point of view, this problem is specially 

important when we have a large number of faulty scenarios for the process under concern. 

Therefore, in order to speed up the backpropagation learning technique an extension of the standard 
error back propagation algorithm is developed, which is presented in the remainder of this sub 

chapter. Such an algorithm is applied to the mixing process, as well as to the continuous stirred 

tank reactor and, a results comparison is made between the standard backpropagation algorithm 

and the extended one proposed below. 

Suppose that the neural network has some global error function E, with an associated 
differentiable function of all the connections weights in the neural network. Hence, the critical 

parameter that is passed back through the layers is defined by equation (10.5), 
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j] =-a (10.5) 

where the following notation is used, 

current error of jth neurone in layer, s; 

E- global error function; 

1 (4 
- weighted summation of inputs to jth neurone in layer, s. 

The result of equation (10.5) can be considered as a measure of the local error at 

processing element j, in the level s. Using the chain rule twice in succession gives a relationship 

between the local error at a particular processing element at level s, and all the local errors at the 

level s+1 (Haykin 1994), as shown in equation (10.6), 

J', 
_ f'(IýsI) x (e, 1$+1I x w, ý+lýý (10.6) lk 

where ejs] and Ij are defined above and the other variables are defined as follows, 

is +'] - current error of kth neurone in layer s+1; 

ktl 
- weight on connection joining jth neurone in layers to kth neurone in layer s+1. 

Note that in equation (10.6) there is a layer above layer s, therefore this equation can only 

be used for non-output layers. 

If the activation function, f, considered for a processing element, is the sigmoid function as 

defined by equation (10.3), then its derivative can be expressed as a simple function of itself as 

follows, 

f'(z) = .f (z) x(LO-. f (z)) (la7) 

where the use of prime (on the left hand side) signifies differentiation with respect to the argument. 

Moreover, a processing element (neurone) transfers its inputs as expressed by the following 

equation, 
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xis] = i( Eýwiiý x x, [$-)]) = f'(Iis'1 1I 

where the following notation is used, 

x0 - current output state of jth neurone in layer s. 

(10.8) 

Therefore, from equations (10.7) and (10.8), equation (10.6) can be rewritten as follows, 

CH = . xiýd] x (1.0 
-x 

j-1) xE (4s+I] x wl: +l]) (10,9) 

Thus the main mechanism in a back-propagation network is to forward propagate the input 

through the layers to the output layer, determine the error at the output layer, and then propagate 

the errors back through the network from the output layer to the input layer. The multiplication of 

the error by the derivative of the transfer function scales the error. The transfer function derivativc 

serves to keep the error correction well bounded. The weights of each input to the jih neurone are 

then adjusted in proportion to this calculated error. The aim of the learning process is to minimise 

the global error E of the system by modifying the weights. 

Given the current set of weights wJ.; 1, 
we need to determine how to increment or decrement 

them in order to decrease the global error. This can be done using a gradient descent rule which can 

be expressed by the following equation, 

Awýi1(k + 1) = -Icoef x OT (10.10) 

where Icoef is a learning coefficient; and k is the adaptation step. In other words, each weight is 

changed according to the size and direction of negative gradient on the error surface. The partial 

derivative in equation (10.10) can be calculated directly from the local error values, because, by the 

chain rule and equation (10.8), we have, 

oý oý X 
ýjs] 

_ -e[s] x x[s-l) 

Substituting equation (10.11) into equation (10.10), gives, 

(10.11) 
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OwJý'(k+1)=lcoef xe[ý 
lxzýs-1ý 

(10.12) 

The above discussion has assumed the existence of a global error function without actually 

specifying it. This function is needed to define the local errors at the output layer so that they can 

be propagated back through the network. Suppose that a vector j is presented at the input edge 

layer of the network and suppose that the desired output d is specified by a teacher. Let Q denote 

the actual output produced by the network with its current set of weights. Then an iterative gradient 

algorithm is used to minimise a cost function equal to the mean square error between the desired 

and the actual neural network outputs (Lippmann 1987), which can be defined as, 

E= 
ý 

xl(dk-ok)2 

k 
(10.13) 

where the subscript k indexes the components oft and Q. From equation (10.5) the scaled "local 

error", at each processing element of the output layer, is given by, 

DE DE 
eko)=_ 

I( a0 
xä =(dk_°k)f 

kkk 

(10.14) 

One of the problems of the algorithm discussed above is setting an appropriate learning 

rate. Changing the weights as a linear function of the partial derivative as defined in equation 

(10.10) makes the assumption that the error surface is locally linear, where "locally" is defined by 

the size of the learning coefficient. However, at points of high curvature this linearity assumption 

does not hold and divergent behaviour might occur near such points. Therefore, it is important to 

keep the learning coefficient low to avoid such behaviour. 

On the other hand, a small learning rate coefficient can lead to very slow learning, The 

concept of "momentum term" was introduced to resolve this dichotomy. Hence, the delta weight 

equation (10.12) is modified so that a portion of the previous delta weight is fed through to the 

current delta weight (Rumelhart 1986a), as it is shown by the following equation, 

Au- 5] (k + 1ý = Icoef x else x xjs-1] + momentum x Awý; 1(k) (10.15) 

This acts as a low-pass filter on the delta weight terms since general trends are reinforced where as 

oscillatory behaviour cancels itself out. This allows a low learning coefficient but faster learning. 
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In order to speed up the back propagation, learning technique a number of methods have 

been- reported (Fahlman 1988, Leonard and Kramer 1990, Haykin 1994). These include 

changing the learning rate from one iteration to the next. For instance, Quickprop 

(Fahlman 1988) is a method which uses the curvature of the error surface to speed up 

the, learning task. Quickprop assumes the error surface to be locally quadratic and attempts 

to jump in one step from the current position directly in the minimum of the parabola. 

Quickprop computes the derivatives in the direction of each parameter and after computing 

the, first gradient, with regular backpropagation a direct step to the error minimum is 

attempted. 

However, one simple technique, which almost doubles the speed, is to add a small 

positive offset, f, ýT, et , to the derivative of the sigmoid function, prior scaling the local 

error. -Following this procedure, equations (10.6) and (10.14) can be rewrittcn, respectively, as 
follow, 

elJJ = 
[ýýýIýJJý+ fo 

er] x 
ýeks+iJ xw +1]) (10.1G) 

kJ 

ek 
(o) 

ýoý 
kX= 

(dk 
- Ok) X 

[f l (Jk) fofaet, 

k CÄ aL 

The rationale for this is that when the incoming weights of a processing clement become 

large, the summation values are large and, hence, the activation values become saturated 
(0.0 . or 1.0). When such a situation happens, the derivative becomes zero and the scaled 
local error is always zero. Thus the processing element stops learning. Adding a positive 

offset to the derivative alleviates this problem. In the remainder of this sub chapter some 

results achieved during the current studies are presented, which demonstrate the potter of 

the derivative offset parameter in increasing the speed of the neural network training 

procedure. 
The standard backpropagation learning algorithm, as well as the extended one proposed 

above have been applied to train a fuzzy neural network for fault diagnosis purposes in the mixing 

process and in the continuous stirred tank reactor respectively. Training data was obtained from 

previous simulation studies of the process under concern, with the aim of covering all the faulty 

scenarios being considered and the nominal operational conditions. Moreover, as a fault can have 

more than one fault symptom according to the different possibilities for the steady state condition of 

the process, the number of patterns that the network should recognise is always higher than the 
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number of faults being considered. Therefore, for the mixing process, 382 patterns have been used 

as training data of the fuzzy neural network, while for the continuous stirred tank reactor 105 

patterns have been used. These patterns are divided essentially into three groups, one corresponding 

to single abrupt fault symptoms, another covering double simultaneous abrupt fault scenarios and 

the last one covering the nominal operational conditions. The set of training patterns do not include 

incipient fault symptoms. However, as neural networks have the ability to generalise, it is expected 

that such a fuzzy neural network can diagnose incipient faults. Some results achieved during 

simulation studies, which have been conducted with the processes quoted above, are presented in 

subsequent sub chapters. 

The training procedure followed during the present studies can be divided into two stages. 

In the first stage the training patterns have been presented to the fuzzy neural network a pre-definod 

number of times. Data is read randomly and presented to the neural network as an input/output 

pair. Therefore, through the learning algorithm presented above, the connection weights bctwccn 

the fuzzification layer and the hidden layer, as well as the connection weights between the hidden 

layer and the output layer, are adjusted in order to minimise the error between the actual network 

outputs and the desired ones. Thus, when the pre-defined number of iterations is reached, this phase 

is terminated. Moreover, before this phase begins, the learning coefficient, the momentum term and 

the derivative offset parameter should be defined. In the second stage all the training patterns used 
during the learning task are sequentially presented to the network. No weights adaptation is made 
during this phase, but the errors between the actual network outputs and the desired ones are 

retained. 
The fuzzy neural network, which has been used for fault diagnosis purposes in the mixing 

process, has 42 processing elements in the fuzzification layer corresponding to 6 measurement 

variables, 20 hidden processing elements in the hidden layer and 6 processing elements in the 

output layer corresponding to 6 faults being considered. Thus, with the following parameter values 

pre-defined: 

- Number of iterations, 20000; 

- Learning coefficient, 0.9; 

- Momentum term, 0.6; 

- Derivative offset, 0; 
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the results achieved, after the two stage training procedure has been performed, arc depicted in 

Figure 10.12. Note, since the derivative offset parameter was selected as 0, according to equations 

(10.16) and (10.17), this trial corresponds to the situation where the standard backpropagation 

learning algorithm has been used. 

A maximum error signal of 0.249 is shown in Figure 10.12. It appears in the output 2 of 

the fuzzy neural network when pattern 364 is presented. In order to improve the performance of the 

learning procedure, the derivative offset parameter has been introduced. Thus. another it 1.11 h: j` 
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Figure 10.12 - FNN output errors for the mixing process (Derivative offset =- 0) 
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Figure 10.13 - FNN output errors for the mixing process (Derivative offset - 0.19) 
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been made with the derivative offset equal to 0.19 and the other parameters having the values 

quoted above. The results obtained after the fuzzy neural network training task was completed are 

shown in Figure 10.13. 

Figure 10.13 shows the improvements achieved with the introduction of the dcrivativc 

offset parameter. The maximum error signal has been reduced almost ten times. In order to 

determine the derivative offset value which gives the best result, further trials have been made. For 

instance, Figures 10.14 and 10.15 depict the results obtained with the derivative offset parameter 

equal to 0.2 and 0.21, respectively, and the other parameters still having the same values as in 

previous trials. 
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Figure 10.14 - FNN output errors for the mixing process (Derivative offset = 0.2) 
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Figure 10.15 - FNN output errors for the mixing process (Derivative offset = 0.21) 
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Comparing the results depicted in Figures 10.12 to 10.15, one can see the importance of 

the derivative offset parameter in the training task of a neural network. The best results have been 

obtained with the derivative offset equal to 0.2, as shown in Figure 10.14. Hence, the fuzxv neural 

network, which was achieved after the learning procedure has been terminated, has been 

implemented for fault diagnosis purposes. The results achieved with such a fuzzy neural network, 

are presented in the following sub chapters. Moreover, under the above considerations the learning 

task has been taken an average time of forty minutes, in a 386 PC (25 MHz) fitted with it 

mathematical co-processor. 

For the continuous stirred tank reactor a fuzzy neural network, with the same topolop 

described above and consisting of 63 processing elements in the fuzzification layer corresponding 

to 9 measurement variables, 20 hidden processing elements in the hidden layer and 12 processing 

elements in the output layer corresponding to 12 hypothetical faults being considered, has been 

used. As for the mixing process several trails have been performed by using the supervised learning 

algorithm presented above, with the learning parameters having the following values, 

- Maximum number of iterations, 5000; 

- Learning coefficient, 0.9; 

- Momentum term, 0.6. 

Figures 10.16 and 10.17 give the worst and the best results obtained, respectively witli 

derivative offset equal to 0 and equal to 0.13. Once again the results achieved when the derivative 
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Figure 10.16 - FNN output errors for the CSTR (Derivative offset = 0) 
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Figure 10.17 - FNN output errors for the CSTR (Derivative offset = 0.13) 

offset parameter is used are much better than the results achieved with the derivative offset having 

the value zero. The error has been reduced almost three times. This suggests that if we are 

concerned with neural network training time the derivative offset parameter should be used. For the 

continuous stirred tank reactor, the fuzzy neural network learning task has been taken an average 

time of seventeen minutes, in the same computer quoted above. After the training procedure has 

been completed, a fault diagnosis system based on such a fuzzy neural network has hceu 

implemented. 

The fuzzy neural networks just achieved for the mixing process and for the continuous 

stirred tank reactor, respectively, have been applied for fault diagnosis purposes in simulation 

studies conducted with each process. In the next two sub chapters die results achieved during such 

simulation studies are presented. 

10.6 Fault Detection and Diagnosis System Applied to the Mixing 

Process 

The mixing process, which is described in chapter 4., has been used as a test bed of the 

distributed intelligent fault detection and diagnosis system presented in this chapter The 

architecture of such a system is described in sub chapter 10.2. As quoted above the overall system 

consists of a knowledge based approach coupled with a fuzzy neural network. Fault detection is 

performed through the knowledge based system where fault detection heuristic piles have been 

generated from deep and shallow knowledge of the mixing process as described in the previous 
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chapter. From this description, it can be seen that in some heuristic rules pre-condition, is used the 
linguistic statement "continuous". Therefore, for implementation purposes, the last two changes in 

the measurement variables should be retained. According to the system architecture described in 

sub chapter 10.2, this task is performed through the "Data Normalisation" module which passes the 

retained data to the "Fault Detection" module each sampling time, and to the "Fault Diagnosis" 

module when this one is triggered. 

The fuzzy neural network achieved in the last sub chapter has been used to perform the 
fault diagnosis task. Following this procedure the fault detection and diagnosis system can cope 

with on-line fault detection and diagnosis in the presence of transient behaviours without the fuzzy 

neural network outputs being affected by measurement variables transient response. 
Single and double simultaneous abrupt faults, which are represented in Tables 6.5 and 7.1 

respectively, have been considered. Moreover, as quoted in the last sub chapter, six measurement 

variables are used as input data to the fuzzy neural network which performs the diagnosis task. 
These measurement variables are the following: 

- L,, level in tank 1; 

T,, temperature in tank 1; 

- L2, level in tank 2; 

- T2, temperature in tank 2; 

- Q, input cold water flow rate; 

- Q,,, input hot water flow rate. 

However, as the linguistic statement "continuous" is used in the knowledge based system 
responsible for triggering the fault diagnosis module, at least a hypothetical fault could only be 
diagnosed in the second sampling time after the fault has occurred. Thus, since Q, and Qti used as 
inputs of the fuzzy neural network are also used to simulate some faults, in the second sampling 
time after such abrupt faults have occurred, no change will be observed in these two measurement 
variables. Hence, following this procedure, the initial set of six measurement variables used to 

achieve the fault symptoms will be reduced to four variables. However, during previous research 
work carried out with the mixing process, which is presented in chapter 7., it was found that only 
four variables are not enough to diagnose all the faults quoted above. Therefore, in order to 
overcome this problem, the fuzzy neural network input data is constituted by the changes in the 

measurement variables L,, L2, T, and T2 observed when the fault diagnosis module is triggered, 
together with the changes in the measurement variables Q, and Q,, observed at a previous 
sampling. 
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According to the previous sub chapters, the use of six measurement variables as input data 

of the fuzzy neural network implies the existence of 42 processing elements in the fuzzification 

layer, 'arranged in six groups corresponding to the six on-line information sources. The number of 

processing elements in the hidden layer is determined by the complexities of the relationships 
between the faults and the fault symptoms. Therefore, during the current studies, it is found that 20 

hidden processing elements could give good performance and, thus, the number of processing 

elements in the hidden layer was fixed at 20. From Table 6.5, it can be seen that six single faults 

have been considered. Moreover, as the double simultaneous faults have been achieved through an 
AND operation in the single fault space, the number of processing elements in the output layer was 
fixed at 6 each one corresponding to a fault. As quoted in the last sub chapter, training data arc 

obtained from previous simulation studies. All single and double simultaneous abrupt faults have 

been initiated with all the possible combinations of the setpoint values, and then 382 patterns have 

been achieved corresponding to the fault symptoms and the nominal operating conditions. As 

described in sub chapter 10.5, several trials have been performed to achieve the fuzzy neural 

network used in the present approach. 
During simulation studies conducted with the present fault detection and diagnosis 

approach applied to the mixing process, all the possible single and double simultaneous abrupt 
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Figure 10.18 - Single abrupt fault detection in the mixing process 
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faults quoted above, which occur suddenly, have been simulated with different steady state 

conditions. For instance, Figure 10.18 shows the result achieved 1.1 second after the single abrupt 

fault "Hand valve 2 is blocked" has been simulated in the mixing process, with the sctpoints of the 

controlled variables having the value 0.5. It can be seen that the diagnosis was very precise since 

the output 4 of the fuzzy neural network, which corresponds to the fault quoted above, has taken 

exactly the value 1 and all the other outputs have taken the value 0 or very close. 
Figure 10.19 shows the result achieved in the mixing process under a double simultaneous 

abrupt fault situation. This diagnosis was achieved 1.1 seconds after the double simultaneous 

abrupt faults "Hand valve 2 is blocked and Cold water control valve fails low" have been simulated 
in the mixing process, with the steady state conditions corresponding to the controlled variables 
having the setpoints values at 0.5. Note that all the fault detection and diagnosis times quoted 

above, as well as all that will be mentioned below, have been obtained running the computational 

system implemented in a 386 PC (25 MHz) fitted with a mathematical co-processor. 
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Figure 10.19 - Double simultaneous abrupt fault detection in the mixing process 

All the single and double simultaneous faults, quoted above for both processes as abrupt 
faults, have also been considered during the current research work as incipient faults, which evolve 
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gradually. To simulate such an incipient faults in the process under concern, it has been assumed 

that the component degradation follows a linear law. Therefore, incipient faults arc simulated 

through the following equation, 

Mf=M�x(l+yxt) 

where the following notation is used, 

Mf- is the value of a process variable when there is a fault; 

- is the value of a process variable when there is no fault; M 

y- is a constant which determines the speed of the fault development (sec 1); 

t- is time (sec). 

(10.18) 

In the remainder of this sub chapter some diagnostics are presented, which have been 

achieved for the mixing process under incipient failure situations. However, in order to make it 

possible to perform a comparison of the fault detection performance, under abrupt and incipient 

failure situations, the results shown below have been obtained under the same fault situations 

considered above. 

Figure 10.20 shows the diagnosis achieved in the mixing process under a incipient single 

fault situation, "Hand valve 2 is blocked". This fault was simulated with a development speed of 

0.002 sec 1 and, as a result, the fault detection and diagnosis time has been 3.46 seconds against a 

fault detection and diagnosis time of 1.1 seconds obtained when the same fault was simulated as an 

abrupt fault. We can say that to achieve this result the generalisation ability of the fuzzy neural 

network has been used, since the training patterns used during the learning phase do not include 

incipient fault symptoms. Therefore, a small degradation in the fuzzy neural network outputs 

accuracy can be observed, but the system is still able to identify the correct fault. 

Figure 10.21 shown a successful diagnostic which has been achieved under incipient 

double simultaneous faults situation. In this example, the double simultaneous faults, "I land valve 
2 is blocked and Cold water control valve fails low", have been simulated as incipient faults %%ith a 
faults developing speed equal to 0.02 sec". From Figure 10.21, it can be seen that a successful 
diagnosis has been achieved 1.26 seconds after the faults have been initiated. Note that a fault 

detection and diagnosis time of 1.1 second was obtained when the same faults wwwcre simulated as 

abrupt faults. As in the diagnosis presented above for incipient single fault situations, when 
incipient double simultaneous faults are considered a small degradation in the fuzzy neural nct vork 

outputs accuracy can be observed. Despite such a degradation, the fault detection and 
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diagnosis system proposed in this chapter, is still able to detect and diagnose the 

correct double simultaneous faults. 

10.7 Fault Detection and Diagnosis System Applied to the CSTR 

As quoted in previous sub chapters, the continuous stirred tank reactor, which is presented 
in chapter 5., has been also used during simulation studies conducted to test the performance and 
reliability of the distributed intelligent fault detection and diagnosis approach proposed in this 

chapter. All the single and double simultaneous faults, which are represented in Tables 7.2 and 7.4 

respectively, have been considered as abrupt and incipient faults. Incipient faults, which evolve 

gradually, have been simulated in an analogous way as described for the mixing process. 
Successful results have been obtained and are presented in the remainder of this sub chapter. 

The fault detection heuristic rules have been generated in the last chapter while the fault 

diagnosis system is based on a fuzzy neural network with the characteristics previously presented. 
As quoted in sub chapter 10.5, nine measurement variables have been used as input data to the 
fuzzy neural network. These measurement variables are the following: 

- L, level in the reactor; 

- Ca, concentration of the reactant in the reactor; 

Cb, concentration of the product in the reactor; 

- T, temperature in the reactor; 

- TI, temperature of input reactant; 

- Q,, flow rate of input reactant; 

- Q2, flow rate of the recycled reactant; 

- Q,, flow rate of the product; 

- Qs, flow rate of the cold water entering the heat exchanger. 

Thus, the diagnosis task is performed by presenting the changes in the measurement 

variables to the fuzzy neural network, which are propagated in a feed forward manner through the 

neural network. Then to locate a fault or faults in the process an analysis of the fuzzy neural 
network output values is carried out. However, for the same reasons given in the previous sub 
chapter for the mixing process, the changes in the measurement variables are considered in different 
time instants. This means that the input data for the fault diagnosis system is constituted by 

changes in measurement variables L, Ca Cb and T observed when the fault diagnosis module is 
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triggered, together with the changes in the measurement variables T,, Q,, Q2, Q4 and Q,, observed 

at a previous sampling. However, it is worth noting that during the current studies it was found that 

the diagnosis of all the single faults, listed in Table 7.2, could be achieved by only using the 

measurement variables L, C. Cb and T. 

The fuzzy neural network fuzzification layer has 63 processing elements arranged in 9 

groups corresponding to the 9 on-line information sources, with each group containing 7 processing 

elements as described in previous sub chapters. As for the mixing process the number of hidden 

processing elements was fixed at 20. Moreover, as it can be seen in Table 7.2,12 single faults have 

been considered and, hence, the output layer is constituted by 12 processing elements, each one 
corresponding to a fault. 

Training data was obtained following a similar procedure as for the mixing process. The 

setpoint values of level and temperature in the reactor vessel were fixed at 0.5 and the setpoint of 

the recycled product flow rate took values between 0.1 and 1. Thus, all the single and double 

abrupt faults have been simulated with the different steady state conditions. In this manner, 105 

patterns were obtained corresponding to the fault symptoms and the nominal operating conditions. 

With such a fault detection and diagnosis system, several simulation studies have been 

performed. For instance, Figure 10.22 illustrates the diagnosis achieved 1.04 seconds aller the 

12: 16: 08 ? -10-1995 INTELLIGENT DETECTION AND DIAGNOSIS OF FAULTS 

QS (cn3/s) T (Cel. ) 
23.8 51.2 

Q4 (cn3/s) L (en) 
300.0 30.0 

2 (cn3/s 
200.0 

>'? z 

TR 
PtpQ 6 

Us 13 Pp 

HTX 
1Pipe 

4 

FAULT DETECTION 
EFRTH 

Neural Network Output 

of - 0.004 07 - 0.000 
02 - 0.000 Oe - 0.002 
03 - 0.001 09 - 0.000 
04 - 1.000 010 - 0.0oa 
os - 0.000 011 - 0.004 
os - 0.000 012 - 0.000 

sq. tine (n: sth ) 

00: 01: 04 Hx 

SETPOIN1 L 

270o .5 
8 

Uaiz p Pa 7cu 
SETPOINT T 

Ei o. 5 
1pe 9 

SETPO[NT Q2 

`W"' RI o. s C Pipe 2 Pip. 

FAULTS SIMULATION 

Figure 10.22 - Single abrupt fault detection in the CSTR 

U48 11 pipe 11 

EXIT 

190 



single fault "External feed reactant temperature high" has been initiated in the process, with all the 

setpoints of the controlled variables having the value 0.5. Once again, a very accurate diagnosis has 

been achieved, since the fuzzy neural network output corresponding to the fault quoted has taken 

the value 1 and the remaining outputs have taken the value 0 or very close. 
Figure 10.23 shows the result achieved in the continuous stirred tank reactor under a 

double simultaneous abrupt fault situation. Here, the diagnosis was obtained 0.98 seconds after the 

double simultaneous abrupt faults "Pipe 2 or 3 is blocked or pump fails and External feed reactant 

temperature high" have been initiated. These faults have been simulated with the steady state 

conditions of the process corresponding to the setpoints of level and temperature into the reactor 
having the value 0.5 and the setpoint of the recycled flow rate having the value 0.6. A very accurate 
diagnosis is still observed. 

16: 33: 35 7-10-1995 
INTELLIGENT DETECTION AND DIAGNOSIS OF FAULTS 

---I --ti Inc rn-i il I iN 2 .9 51.2 
Q4 (cn3/s) L (en) 

ZZ 

125.3 31.2 
TR 
1 Q2 (CM3/s) 

^ 102.7 
...... .... . ^a 

e 

FAULT DETECTION 
P2/30 or pupp fails AND EFRTN 

Neural Network Output 

01 - 0.000 O7 - 0.001 
02 - 0.000 08 - 0.000 
03 - 0.997 09 - 0.000 
04 - 1.000 01.0 - 0.003 
05 - 0.001 011 - 0.000 
as - 0.001 012 - 0.000 

as. tine (n: s: hs) 

00: 00: 91) _" __ _ _'fr_ _ 
T., 

iN ý" 
Pipes 6i 

SETPUINT L 
Ua13 a 

270.5 
C 

HT X8 
SETPOINT T 

Ua12F' we T 

9 0. s[ cm Pipe 4 Pip. SETPOINT Q2 
----o CNR 

Pipe z00.6 
E 

Pipe 3 Pipe 10 Uali 
- .. Pipe 11 

FAULTS SIMULATION EXIT 

Figure 10.23 - Double simultaneous abrupt fault detection in the CSTR 

In order to compare the fault detection and diagnosis system performance, under abrupt 

and incipient failure situations, both single and double simultaneous abrupt faults quoted above 
have been simulated as incipient faults under the same steady state conditions respectively. 
Therefore, Figure 10.24 shows the diagnosis result achieved in the continuous stirred tank reactor 

after the single fault, "External feed reactant temperature high", has been simulated as an incipient 
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fault with a speed development value equal to 0.0009 sec-'. It can be seen that after 6.49 scconds 

the fault has been successfully diagnosed. The result obtained under an incipient double 

simultaneous fault situation is depicted in Figure 10.25. Here, the double simultaneous faults, "Pipe 

2 or 3 is blocked or pump fails and External feed reactant temperature high", have been considercd 

under the steady state conditions quoted above for the simulation of such faults as abrupt. A fault 

developing speed of 0.03 sec' has been used, and the diagnosis has been achieved at 1.04 seconds 

after the faults have been simulated in the continuous stirred tank reactor. 

For both cases, where incipient failure situations have been considered, a small degradation 

in the fuzzy neural network outputs accuracy can be observed. However, the overall distributed 

intelligent fault detection and diagnosis system proposed in this chapter is still able to detect and 

diagnose the correct faults occurred in the process. Some considerations about the performance of 

the system are presented in the next sub chapter. 

10.8 Performance of the Fault Detection and Diagnosis System 

As the results presented in previous sub chapters demonstrate, the overall distributcd 

intelligent fault detection and diagnosis system has been successfully applied in simulation studies 

of the mixing process, as well as of a continuous stirred tank reactor. Good performance of the 

fault detection system has been observed avoiding false fault diagnosis under transient behaviours. 

For both processes a significative number of single and double simultaneous faults have been 

considered. All the faults quoted in the previous sections have been simulated as abrupt faults and 

successfully detected and diagnosed in time, with different steady state conditions of the process 

under consideration. Thus, we can state that the distributed fault detection and diagnosis system 

proposed in this chapter, has performed with good performance and high reliability has been 

achieved for the faulty scenarios. 
Simulation studies under incipient fault or faults situations have also been conducted. 

Successful results have also been achieved under such faulty scenarios, as the diagnosis shown in 

, the last two sub' chapters demonstrates. However, a reliability degradation when the fault 

developing speed parameter take small values has been observed. This is due to the fact that the 
diagnosis of a incipient fault is not performed by matching the process variables behaviour, which 

are used as input data of the fuzzy neural network, with a pattern used during the learning 

procedure, but is performed using the neural network generalisation ability. Therefore, if under an 
incipient fault or faults situation the process variables behaviour is very different to the fault 
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symptoms used during the fuzzy neural network learning phase, such a fault or faults could be 

missed or misunderstood. 

, 
Nevertheless, in the author's opinion, this problem could be allcviatcd in practical 

implementations of the fault detection and diagnosis system, since the worst situation for the 

development of a incipient fault is to follow a linear law as considered in the present approach. 
Therefore, if the component degradation follows an exponentially increasing law, at a certain stage 

the process variables behaviour will be closer to the process variables behaviour under an abrupt 

fault situation and, hence, the problem quoted above will be minimised. 

10.9 Conclusions 

A distributed intelligent fault detection and diagnosis system, consisting of a knowledge 

based approach coupled with a fuzzy neural network, has been implemented. Successful results 

have been achieved during simulation studies conducted with a mixing process, as well as with a 

continuous stirred tank reactor. The system implemented has the ability to cope with transient 

behaviours of the process variables avoiding false fault detection and diagnosis under such 

situations. 
The fault detection task has been performed through the knowledge based approach. 

Following the methodology proposed in the last chapter, fault detection heuristic rules, based on 

deep and shallow knowledge of the process under consideration, have been used to build up the 
knowledge base. The advantage of such a fault detection system is that the fault detection task is 

not dependent on threshold values and, hence, the performance and reliability of the overall fault 
detection and diagnosis system could be increased. 

A fuzzy neural network approach has been proposed for fault diagnosis. The topology of 

the fuzzy neural network used to perform the fault diagnosis task is described in sub chapter 10.4. 

Moreover, an extension of the classical backpropagation supervised learning algorithm has been 

developed. It has been observed that this extension provides more efficient results than the same 

algorithm in its standard form. Several tests have been conducted which demonstrate that the 

extended algorithm provides a pre-defined accuracy in the learning results in less time than the 

standard algorithm. This suggests that if we are concerned with learning time the cxtcnsion 

proposed for the standard backpropagation algorithm could be employed with advantage. 
The fault diagnosis system based on a fuzzy neural network combines the advantages of 

both fuzzy reasoning and neural networks. Fuzzy reasoning is capable of handling uncertain and 
imprecise information while a neural network is capable of learning from examples. The fuzzy 
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neural network proposed for fault diagnosis purposes can be seen as a classical feed forward neural 

network with an additional fuzzification layer. Thus, quantitative information about the process 

being supervised is converted into qualitative information by the fuzzification layer. By using this 

qualitative approach to represent abnormalities in the process under consideration, similar training 

patterns are transformed into the same fault symptoms. Following this procedure training data is 

compressed and training effort is eased. Moreover, the use of qualitative information to perform the 

diagnosis task may reduce the sensitivity to measurement noise. 
The successful results achieved with the distributed intelligent fault detection and diagnosis 

system suggest that the combined approach of a knowledge based system with a fuzzy neural 

network could be a powerful methodology for practical implementations. Following this 

methodology, transient behaviours of the process under concern will not affect the performance and 

reliability of the overall fault detection and diagnosis system. 
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Conclusions and Recommendations for Future 

Research 

The research carried out has been concerned with the application of artificial intelligence 

techniques to on-line process control and fault diagnosis, and the majority of this research is on on- 

line fault detection and diagnosis systems for industrial processes. Several on-line approaches have 

been developed and tested. The research results achieved with the implementation of a rule based 

controller demonstrate that this type of controller is useful in cases where mathematical models of 

the controlled process cannot be obtained or are very difficult to obtain, and/or in cases where the 

key, control variables are not capable of being measured directly or reliably and, therefore, 

conventional control algorithms may not be efficiently applied. The research carried out with this 

type, of controller, which is described in chapter 4., also suggests that the property of a rule based 

controller is mainly determined by the set of heuristic rules used on its conception and, hence, 

unlike conventional controllers, such as PI or PID controllers, the performance of a rule based 

controller is not as sensitive to its parameter changes. 

On-line fault detection and diagnosis is regarded as a supervisory task in this research. 

Artificial intelligence techniques have more perspectives in performing such supervisory tasks than 

performing lower level regulatory tasks, since many supervisory tasks cannot be represented by a 

concise mathematical model. 

Several different on-line fault detection and diagnosis systems for industrial processes have 

been investigated throughout this research. Two examples of an industrial plant, a mixing process 

and a continuous stirred tank reactor, have been used as test beds of various implemented on-line 
fault detection and diagnosis approaches. These processes are described in chapters 4. and 5., 
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respectively, where the corresponding dynamic and qualitative models are derivcd. For both 

processes single and double simultaneous faults have been considered. 

For fault detection and diagnosis purposes, knowledge based approaches, as well as fuzzy 

neural networks have been used. The research performed by using knowledge based systems 

emphasises the use of deep knowledge which can be qualitative models and/or knowledge on the 

connectivity and functions of process units. Two on-line fault detection and diagnosis approaches 
based on qualitative reasoning have been implemented and tested. The first one, which is presented 
in chapter 6., has been developed to cope with single abrupt faults that occur in the process under 

consideration. In chapter 7., an extension of the on-line fault detection and diagnosis system 

presented in chapter 6., which can cope with single and multiple simultaneous abrupt faulty 

scenarios, is considered. 

In contrast with fault detection and diagnosis systems based on classical mathematical 

models, qualitative modelling provides a means for reasoning based on inaccurate process models 

and/or inaccurate measurements. Qualitative simulation is suitable for fault diagnosis purposes for 

which exact reasoning may not be necessary and, furthermore, since the exact severity of a fault is 

usually not known, qualitative simulation could be more appropriate for simulating the effect of a 
fault in the process under concern. In this context, there is motivation to avoid effort and expense of 

creating, maintaining and computing with rigorous dynamic mathematical models, by focusing on 

qualitative indicators of process conditions. 

The simulation studies conducted with the on-line fault detection and diagnosis systems 
described in chapters 6. and 7. demonstrate that the confluence based qualitative reasoning 

technique (de Kleer and Brown 1984) is very suitable for detection of abrupt faults in the process 

under consideration. The set of confluence's for a process, which form the qualitative model, can be 
derived from its mathematical model. Using the confluence's representation, various fault models 

can be easily handled. The effect of a fault can be achieved by setting some variables in the 

qualitative model to certain specified qualitative values and, hence, it is not necessary to have 

different models for different operational conditions. To simulate the effect of a fault, it is only 

necessary to alter some variables in the qualitative model and all the operations based on the model 

remain unchanged. Therefore, it is not required to have different fault simulation procedures for 
different faults. 

Ambiguity is a problem associated with qualitative reasoning. However, the research 
carried out on qualitative reasoning demonstrate that the use of fuzzy sets for representing the 

process variables behaviour result in a considerable reduction of the inherent ambiguity of 
qualitative computation. In contrast with the traditional qualitative simulation methods, the use of 
fuzzy sets allows a more detailed description of process variables through an arbitrary but finite 
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discretisation of the quantity space. The research performed with this fuzzy approach also suggests 

that qualitative reasoning ambiguity can be reduced or eliminated by using common scnsc 

knowledge. This knowledge can be incorporated in the basic descriptions of the quantity space 

through the use of graded membership within a fuzzy quantity space. 

The work described in chapter 8. is based on, and supplements, the fuzzy qualitativc 

modelling based fault detection and diagnosis approaches described in chapters 6. and 7.. The 

ability for reasoning about its own behaviour could make a knowledge based system more 

intelligent and'autonomous and, therefore, it will be a desirable property of an on-line fault 

detection and diagnosis system. The on-line self-learning fault detection and diagnosis approach 

described in chapter 8. can be seen as a hierarchical system, where the lower level fault detection 

and diagnosis system is an ordinary one, identical to that described in chapters 6. and 7., and the 

upper level fault detection and diagnosis system will reason about the lower level one if any 

undesirable performance occurs there. By such means, any inappropriate parameters in the fault 

detection and diagnosis system can be found. Moreover, the research described in chapter 8. 

suggests that the use of machine learning techniques can be used very efficiently to automatically 

acquire fault symptoms in the form of heuristic rules and, hence, cases the knowledge 

acquisition task. Following this methodology, fault symptoms are acquired from on-line 

sampled data and, therefore, the diagnosis system will improve its performance in tcrms of 

diagnostic efficiency each time a new fault or faults occur in the process under 

consideration. This enhances diagnostic performance and reliability and can cover a wide range of 

potential faults. 

The on-line fault detection and diagnosis systems based on fuzzy qualitative simulation 
have -shown a good performance and reliability under single and multiple faulty scenarios. 
However, it has been observed a performance and reliability degradation when incipient faults arc 

considered. This is mainly due to the fact that in such approaches the fuzzy qualitative simulation is 

only triggered when pre-defined threshold values are reached. Therefore, since for avoiding false 

alarms under transient behaviours of the process these threshold values can not be too small, the 

research conducted with the above mentioned fault detection and diagnosis approaches has shown 

that they are not very appropriate for diagnosing faults that evolve gradually, that is incipient 

faults. This problem has been investigated and, a distributed intelligent on-line fault detection and 
diagnosis system has been implemented for coping with incipient faults. This approach is based on 

a knowledge based system coupled with a fuzzy neural network. Fault detection is performed by the 
knowledge based system and, when a hypothetical fault or faults are detected the fuzzy neural 

network approach is triggered in order to locate the fault or faults in the process under concern. 
During the simulation studies carried out with the distributed on-line fault detection and diagnosis 
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system a good performance and reliability have been observed even under transient behaviours of 
the process under consideration. 

The reasons mentioned above have motivated the research work described in chapters 9. 

and 10.. Chapter 9. suggests that developing fault detection heuristic rules based on knowledge on 

system structures and component functions would be a systematic way for developing rule based 

fault detection systems. Fault detection heuristic rules developed in such a way could cover a wide 

range of potential faults. Inference based on these heuristic rules has a higher certainty since these 

rules capture the underlying first principles of the process under consideration. Any experimental 
knowledge, that is shallow knowledge, can also be integrated with the heuristic rules developed 

from knowledge of system structures and component functions, that is deep knowledge. Moreover, 

since the methodology developed is systematic and the structural decomposition corresponds to 

plant topology, it may be appropriate for generating fault detection heuristic rules of large scale 

processes. 
The fault detection knowledge based approach has been coupled with a fault diagnosis 

system based on a fuzzy neural network. This implementation avoids the use of threshold values for 

firing the overall on-line fault detection and diagnosis system and enables it to cope with transient 

behaviours of the process being diagnosed. Chapter 10. presents a fault diagnosis system based on 

a fuzzy neural network. This approach combines the capability of fuzzy reasoning in handling 

uncertain information and the capability of artificial neural networks in learning from examples. As 

a matter of fact, an advantage of such systems is that they are easy to develop provided that 

training data is available. Training data could be obtained from past operating experience on a 

process or from simulation studies. However, since in artificial neural networks, training time is 

usually a concern, an extension of the classical backpropagation learning algorithm has been 
developed. The research results presented in chapter 10. show the power of the extended algorithm 
for speeding up the fuzzy neural network training task. This aspect is particularly important \%-hcn 
the complexity of the neural network increases and/or a huge number of training patterns arc 

considered. 
The research results presented in chapter 10. suggest that fuzzy neural network based 

diagnosis systems could work under partially incorrect information and, hence, they can tolerate 

model plant mismatch in the case where training data is obtained from simulation studies. This 

neural network ability has also been found to very useful for performing incipient faults diagnosis, 

since the training examples used only included abrupt faults symptoms. This demonstrates the 

robustness of fuzzy neural network based diagnosis systems. A further advantage of the fuzzy 
neural network based approach is the parallel nature in neural network operations, which can be 
ideally implemented with the recently developed parallel processing techniques to achieve real time 
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requirements. From the practical point of view, the use of fuzzy sets together with artificial neural 

networks may alleviate the problem usually associated with the effects of measurement noise. 

- :, The research results presented in this thesis have shown the great potential of artificial 

intelligence techniques in performing on-line process control tasks including both lower level 

regulation tasks and higher level supervisory tasks. The on-line fault detection and diagnosis 

systems described in this thesis have been successfully applied in simulation studies conducted with 

a mixing process and with a continuous stirred tank reactor. Single and double simultaneous faults 

have been considered, together with abrupt and incipient faults. Further applications to industrial 

scale processes could be investigated in future research. Since the on-line fault detection and 
diagnosis systems developed in this research will not have any side effects on the process being 

monitored, they are ready for industrial trial. 

As quoted in chapter 6., when applying fuzzy systems in practice, the main topic for the 
designer is to find a good parameter set of membership functions describing the linguistic terms in 

order to achieve the desire results. The suitable membership functions have usually been given by a 

very time consuming trial and error procedure. In general, following this procedure we can not be 

sure that the selected membership functions will provide the system with a better performance. 
Furthermore, it is desirable for control engineers to tune the parameters in order to achieve an 

-I optimal system performance. Therefore, the recently emerged topic in artificial intelligence, Gcnctic 

Algorithms (Goldberg 1989, Koza 1994), which imitates the process of biological cvolution and 
has shown remarkable performance in search, optimisation and machine learning, has potcntial 

perspectives for selecting the most appropriate membership functions for a specific task based on 

some performance measures. Genetic algorithms are search procedures based on natural selection 

and natural genetics and are efficient for global searches. Generally, genetic algorithms consist of 
three operators: reproduction, crossover and mutation. Given a search problem, genetic algorithms 

run repeatedly by iteration by using the three operators at random, but based on a fitness function 

evolution to find a better solution in the searching space. Genetic algorithms require only 
information concerning the quality of the solution (the fitness value) produced by each parameter 

set. This differs from many searching methods requiring derivative information or complete 
knowledge of the problem structure. Due to the simple structure of genetic algorithms and since this 

structure does not rely on the characteristics of the system being considered, genetic algorithms 

may be applicable to a large range of practical problems. Further research is needed to explore the 

perspectives of genetic algorithms incorporated into on-line fault detection and diagnosis systems 
for industrial processes, in order to make them more intelligent and autonomous. 

As mentioned above, a problem associated with knowledge based fault detection and 
diagnosis systems is the detection and diagnosis of incipient faults. With the goal to ovcrcomc this 
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problem and, hence, increase the performance and reliability of these systems, the combination of a 

knowledge based approach with a parameter estimation approach could be a future topic of 

research. Under such a scheme, parameter estimation techniques could function as part of an 
information pre-processor, which provides the knowledge based element with more information 

about the process under consideration. Such a system could then be sensitive to slight faults. 

Process supervisory tasks include on-line fault detection and diagnosis and other tasks such 

as suggesting repairing procedures after a fault has been diagnosed, suggesting different control 

structures and control algorithms in cases of occurrences of faults. These tasks are specially 

important since a conventional feedback control loop design for a large scale system may result in 

unsatisfactory performance, or even instability, in the event of malfunctions in process components. 

A closed loop control system which tolerates component malfunctions, whilst still maintaining 

desirable performance and stability properties can be said to be a fault tolerant control system 

which has attracted the attention of several researchers (Patton 1993, Stengel 1993). Thc 

conventional approach to fault tolerant control systems includes the design of three separate 

modules: control, fault detection and diagnosis, and reconfiguration. The independent design 

between the control and fault detection and diagnosis modules may neglect the significant 
interactions between them and, hence, the reconfiguration module may fail to maintain the desirable 

stability 
'and performance of the system. There is, therefore, a need for a research study into this 

subject where artificial intelligence techniques could play a major role. 

Many on-line fault detection and diagnosis approaches have been developed. However 

many techniques are very complicated to apply without the assistance of design software. Hienee, 

there is a need for developing a design toolbox which can be used for new applications and further 

research. This toolbox should of course have a modular structure and a common information 

exchange standard between modules. The user would be able to select the most appropriate 
diagnostic technique to suit a particular problem. Moreover, the user should be able to combine 
different modules in order to form a complete application for a given situation, and the toolbox 

should provide the most efficient way for linking and assuring data communication between units. 
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