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Abstract

This thesis investigates three salient areas efast in the structure of freight rates in
the shipping market, with a particular focus on tdweker and dry-bulk sectors, using
recent econometric and time series techniques.qliestions asked are: 1) do spot
freight rate levels follow a fractionally integrdtgrocess, as opposed to being
stationary or non-stationary, as had previouslynbgeposed; 2) does spot freight
rate volatility also follow a fractionally integed process; and 3) do freight rates
exhibit conditional skewness and kurtosis? It tlesaluates the impact that these
factors have on the risk exposure of market padiis. These concepts are further
tested in terms of their respective forecastinggoerance, relative to other more

standard econometric techniques.

An ongoing issue in the shipping literature is vileetspot freight rate levels follow a
stationary or non-stationary process. This theswiges another dimension to this
discussion by arguing that spot freight rate leviellow a fractionally integrated
process. The rationale behind this argument isfabethat the supply and demand
dynamics in this market mean that although frergiieés are mean-reverting overall,
the process of mean-reversion occurs with a devhych is exactly how one would
expect a fractionally integrated process to behalthough in-sample results were
promising in that fractionally integrated modelse d@ound to outperform their
stationary and non-stationary counterparts acrosstos and vessel sizes,
out-of-sample forecasts indicate that models thasumed stationarity or

non-stationarity outperformed these models, depgndin the sector and vessel size.

Additionally, the thesis extends this debate toubkatility of these spot freight rate
levels, where it is proposed that volatility alsolldws a fractionally integrated
process. In-sample results from the estimation @néBalised Autoregressive
Conditional Heteroscedasticity (GARCH), Integrat€gneralised Autoregressive
Conditional Heteroscedasticity (IGARCH) and Fracélyy Integrated Generalised
Autoregressive Conditional Heteroscedasticity (FR&H) models indicate that
FIGARCH models outperformed the other two model®sx all sectors and vessel

sizes, however, when calculating the respectiveobgample Values-at-Risk for each

17



vessel type, non-parametric models are found, istnecases, to outperform their

parametric counterparts across sectors and vesssl s

This thesis finally examines whether freight ragaibit conditional skewness and
kurtosis, where the shape of the supply functiorth@ shipping freight markets
indicates that these would not be constant oveg,tas is assumed by other standard
models. Results for the in-sample period indichtd the Generalised Autoregressive
Conditional Heteroscedasticity with Skewness andtd&is (GARCHSK) models
outperformed GARCH and FIGARCH models. This beiaglswhen calculating the
respective out-of-sample Values-at-Risk for eacésgbtype, non-parametric models
are found, in most cases, to outperform their patdam counterparts across

sectors and vessel sizes.
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1 Review of the Shipping Market and Hypotheses

1.1 General Introduction

For almost as long as people have been trading sgotbe primary means of
transportation for these goods has been by shis tlemonstrating the enduring
importance of the shipping industry to the worldmamy as a whole. To illustrate
this point, it was estimated that seaborne trad®0v was over 7,500 million tonnes,
with the demand for shipping services equatingver 82,900 billion tonne-miles.
For this reason, from when they were first discdslsg Koopmans (1939), freight
rates, or the price of transporting goods by seaehbeen a constant source of

practical and academic interest.

The academic interest has primarily been focusechodelling the freight rates, but
an ongoing debate as to the degree of stationanty therefore the correct models to
use, has continued for almost twenty years sineeatlivent of unit root tests. Within
this debate, general and partial equilibrium maqdis example those proposed by
Beenstock and Vergottis (1989) and Koekebakletral. (2006), amongst others,
argue that the first moment of freight rates, ot freight rate levels, are stationary.
The contrasting view, as outlined in such paper8asy-Andreassen (1997) and
Kavussanos and Visvikis (2004), amongst othergygees that unit root tests indicate
that these spot freight rates are in fact nonestatly. The debate extends to the issue
of the structure of volatility, or second moment, tbese freight rates where
Kavussanos (1997) argues that volatility exhibessgstence, while Kavussanos and
Nomikos (2003) are happy to assume that there ipamsistence in volatility. This
thesis adds a new dimension and middle groundet@éiate by suggesting that both
the first and second moments of freight rates exetibnally integrated where, to the
best of the author’'s knowledge, this is done ferfitst time in the shipping literature.
In addition, this thesis examines, where once agh@author is unaware of previous

research on this topic in the shipping literatutes third and fourth moments of

1 One should note that a tonne-mile is defined astthnsportation of one tonne of cargo over one
nautical mile.
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freight rates, and in particular, introduces theaspt of conditional skewness and

kurtosis to the shipping academic literature.

An interesting point to highlight is that the shipgp market is, perhaps, one of the few
markets in which the underlying good provided iseavice, and hence intangible.
This being said, it is worth considering that thesethodologies are not market
specific; already a significant amount of interestfractionally integrated models
exists in other markets, see for example Bai#lteal.(1996b) and Kanget al.(2009),
amongst many others. In addition, this methodology be readily applied to other

markets, such as the real estate market, in we@hassets are traded.

In summary, this thesis aims to give an insigho itlie structure of freight rates,
through the examination of the various momentshies¢ series. A thorough, and
correct, understanding of the structure is of gnei@rest as freight rates play a pivotal
role and form the basis of almost every functiontlie shipping industry, from

the determination of the price of the transporwiser through to the valuation of
second-hand vessels. For this reason a correct|rfardigeight rates is vital for all

participants in the market, from the ship-ownerd aharterers themselves, right on
down through the market to ship-brokers, maritimeyers, hedge funds and other
auxiliary parties involved. To give a structurethos concept, this chapter begins by
reviewing the structure of the underlying shippimgrket, before moving on to

outline the four main hypotheses that form the baéthe thesis.

1.2 Review of the Shipping Market

The shipping industry can be divided into seveeginsents, such as, those for tanker,
dry-bulk, container, reefer and cruise vessel \Jssdeowever, a more general
approach, commonly taken, is to divide the shippmagrket into two main sub-
markets, namely the liner and bulk-shipping markéiser shipping is generally
characterised by vessels that operate along pfiggk fixed routes according to a
regular, fixed schedule, where the majority of hesssels are now container ships.
Essentially, what characterises the liner sectadistinct from the bulk sector is the
fact that liner operators essentially provide a plate logistics, i.e. door-to-door

service. In contrast, the bulk operator’s respdhtsitonly begins when the goods are
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loaded onto the vessel, and ends when they areadf#d onto the quayside. The
freight rates in the liner sector are consequegdyerally fixed and there is usually
very little negotiation between parties with redptec these. Bulk-shipping, on the
other hand, is different in that the vessels irs theéctor usually operate when and
where the charterer demands them. Additionallyglfiterates in the bulk sector vary
widely and are a matter of negotiation between ship-owner, and are therefore
mostly negotiated privately. Focusing on the buikpping sector, this can be further
sub-divided into the dry-bulk and tanker sectorkere this classification depends on
the characteristics of the cargo that the vesdélcairy. In general, dry-bulk vessels
will carry dry cargo, such as coal, grain or irore,owhile tankers generally carry
liquid cargo, such as crude oil or oil productshaligh combined carriers do exist
which may operate in both markets, even thoughethes no longer in vogue.

As a result of the historic stability of freighttea in the liner industry, the consequent
lack of volatility renders asset play and freighddrlling strategies unnecessary and
therefore costly, and provides little scope foerast from auxiliary parties, such as
hedge funds. To illustrate this point, Clarksonsdech Services Ltd. (2010) show
that there were only 123 container vessels sotdlliteg 2.6 million DWT and worth
US$742 million, during 2009, as opposed to 153 ¢amessels, totalling 14.9 million
DWT and worth US$3,674 million, and 584 dry-bulkssels, totalling 32.2 million
DWT and worth US$8,846 million, during the sameigef In addition to this, the
vast majority of vessels lie within the bulk-shipgisector, where for example, ISL
Bremen (2008) indicates that, in 2007, 77% of therldv seaborne fleet was
comprised of either dry-bulk or tanker vesseBonsequently, this research will focus
exclusively on the bulk-shipping sector of the gimg market; and, hence, on the
freight rates exhibited in the dry-bulk and tanlsexctors of the shipping market.
Given this fact, however, it is very interestingntote that the freight rates in the liner
sector have become much more volatile recentlytlgnas a result of the credit crisis;
therefore the methodologies and hypotheses outlimehis thesis may be applied to

this sector as a future potential extension ofathek considered here.

2 This disparity is further illustrated in Figure®Ato A03, in Appendix A of the thesis.
% A graphical breakdown of the composition of theldseaborne fleet, both in terms of the number of
vessels and tonnage, can be found in Figures AQ4\88, in Appendix A of the thesis.
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1.2.1 The Dry-Bulk and Tanker Sectors

As mentioned above, the bulk-shipping sector is roomy sub-divided into the
dry-bulk and tanker sectors. The two sectors sharenumber of common
characteristics, the first of which is that, in lbsectors, the commodities carried tend
to be low-value products, hence their suitabildy $low, cheap transportation in large
consignments, where this is to achieve economiesat. One reason for this is that
the costs of alternative means of transportatianh sas transporting these goods by
air or container, is prohibitive, in addition toetlfiact that these goods are generally
transported in such large consignments as to maker ameans of transport
unfeasible. The second common characteristic i$ tliese sectors constitute the
majority of seaborne trade; where, for example, BBemen (2008) illustrate that of
the 7,572 million tonnes of cargo transported by, s least 58% of this was either
dry- or liquid-bulk cargd. The final common characteristic is that the sifehe
vessels, in both sectors, is measured in dead-weghes (DWT), as opposed to the
container sector, where ship size is generally oredsin terms of the number of
twenty foot containers they can carry. StopfordO@0defines the DWT as the
maximum amount of cargo, in terms of weight, thaeasel can carry, without being
classified as overloaded. One should note thaitieiasure includes the weight of any
fuel, stores, water ballast, fresh water, passenged baggage. Having established
these three characteristics, one can now proceedindvidually examine

characteristics of each market.

Table 1.1 — Classification of Dry-Bulk Vessels

Vessel Class Size (DWT)
Capesize Dry-Bulk Vessels Over 80,000
Panamax Dry-Bulk Vessels 60,000 to 79,999
Handymax Dry-Bulk Vessels 40,000 to 59,999
Handysize Dry-Bulk Vessels 10,000 to 39,999

Source: Clarksons Research Services Ltd. (2010)

Beginning with the dry-bulk sector, ISL Bremen (8)8how that, although only 16%
of the world fleet in 2007, in terms of vesselsswamprised of dry-bulk vessels, this
sector comprised 35% of the cargo carrying capaeity 26% of world trade, in

“* A graphical breakdown of the composition of waoskeaborne trade, by commodity, can be found in
Figure A06, in Appendix A of the thesis.
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terms of all cargo carried. Of these commoditiesied, the predominant cargoes are
iron ore, coal and grain, commonly known as theombijilks, where in 2007 trade of

these exceeded 1.9 billion tonnes, and where, aioned above, this was equal to
the 26% of the total world trade by se@he size of dry-bulk vessels can range from
small coastal vessels, of less than 1,000 DWT, ugehCapesize vessels of over
300,000 DWT. The major classifications of theseseésare provided in Table 1.1.

The dry-bulk trade has grown steadily over the ge§articularly with the
development of China and India as major economiweps) where this has been
fuelled by world economic growth and the consequiemband for bulk commaodities,
such as coal and iron ot&his growth is not immune to current economic dtods,
and with the current recessions, levels of tradeehallen, although the markets
appear to have picked up somewhat recently. Ancatidin of this is that annual
weighted average earnings, i.e. earnings weigldethe size of vessels, as reported
by Clarksons Research Services Ltd. (2010), fethfe high of US$43,649 per day in
2007 to US$15,016 per day in 2009, although these hecovered to US$21,677 per
day, for the year to date in 2010.

Table 1.2 — Classification of Tanker Vessels

Vessel Class Size (DWT)
Ultra Large Crude Carrier (ULCC) Tankers Over 800
Very Large Crude Carrier (VLCC) Tankers 200,00299,999
Suezmax Tankers 120,000 to 199,999
Aframax Tankers 80,000 to 119,999
Panamax Tankers 55,000 to 79,999
Product Tankers 10,000 to 54,999

Source: Clarksons Research Services Ltd. (2010)

Changing the focus to the tanker sector, the préaummh cargoes here are either crude
oil, generally carried by larger tankers, or refir@l products, such as heating oil, jet
fuel, liquefied natural gas, to name but a few. with the dry-bulk sector, when
looking at the figures from ISL Bremen (2008), fhet tankers comprise only 25% of

® A graphical breakdown of the composition of tradethe three major dry-bulk commodities, by
commaodity, can be found in Figure A07, in Appendinf the thesis.

® This is illustrated in Figure A08, in Appendix A thesis, which shows the evolution of dry-bulk
trade against world trade for the ten year perieigvben 1988 and 2007.

" Figure A09, in Appendix A of the thesis, illuseatthe evolution of average weighted earnings for
dry-bulk vessels for the ten year period betweedil2ind 2010.

23



the world fleet, in terms of the number of vessealsyerely under-represents the
importance of the sector as it comprises 41% ofwibdd fleet, in terms of cargo

carrying capacity. Moreover, trade in liquid-bullargoes comprised 32%, or 2.4
billion tonnes, of the total world trade of 7.6 ligih tonnes® The size of tankers

ranges from small barges, used to transport bunkerthe enormous Ultra Large
Crude Carriers (ULCCs), which can range up to S8D,DWT. The classification of

tankers is summarised in Table 1.2. For the pupa$dhis study, the ULCC and

Very Large Crude Carrier (VLCC) markets have beamlzined for ease.

As with the dry-bulk sector, the tanker sector beswvn steadily over the years as
world economic growth and increased demand for eradl and oil products has
increased the demand for transportatidfiowever, the tanker sector is, as stated
above, also not immune to current economic conuti@and, with the advent of the
latest recession, tanker rates plummeted. To rdtestthis point, average annual
weighted earnings for tankers, as reported by Gtark Research Services Ltd.
(2010), fell from US$44,130 per day in 2008 to $11, per day in 2009; however,
the market has shown signs of recovery in 2010date, with average weighted
earnings of $21,583 per d&.

A further small point to note regarding the drytbahd tanker sectors is the manner
in which freight rates are quoted differs acrosst@s. In the tanker sector, freight
rates are quoted in terms of the Worldscale (W®)clvcan then be converted into
US$ per tonne, according to the route, using theloale Book, which is revised

annually. In contrast, dry-bulk sector freight eatge simple quoted in terms of US$

per tonne, regardless of the route on which thelg@oe transported.

Having established the characteristics of eachecfos, one can now move on to
explore the underlying characteristics, in termssopply and demand, for the

shipping market as a whole, and how these playeamaletermining freight rates.

8 A graphical breakdown of the composition of tankexde, by commodity, can be found in
Figure A10, in Appendix A of the thesis.

° This is illustrated in Figure A11, in Appendix A thesis, which shows the evolution of tanker trade
against world trade for the ten year period betwi288 and 2007.

9 Figure A09, in Appendix A of the thesis, illustatthe evolution of average weighted earnings for
tanker vessels for the ten year period between 20612010.
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1.2.2 The Demand for and Supply of Bulk-Shipping Se  rvices

Having examined the structure of the individualtsex of the shipping market, one
can now move on to examine what factors drive thk-bhipping sector, i.e. the
determinants of the demand and supply functiont) bbwhich determine the level

of freight rates in the market.

Since the demand for bulk-shipping services is matel for the transportation of
goods, this demand is derived from the demandHergoods being carried and is
therefore susceptible to the cyclical nature oflditnade. However, although this is a
derived demand, Stopford (2009) illustrates thatah be divided into five main

determinants, namely: 1) the level of world ecoroagtivity; 2) the level of seaborne
commodity trade; 3) the average haul, or, in otherds, the distance over which the
commodities must be carried; 4) current politica¢rgs; and, finally, 5) the level of

transportation costs.

If the level of world economic activity is high,ate will, of course, be a high demand
for commodities, and, consequently, a high demamadte means with which one
would transport these, hence, the demand for thifpeng services will increase.
Moreover, even if the above does not hold, if tnesl of seaborne commodity trade is
high, then the demand for shipping will naturalhcriease, due to the nature of the
service provided. Another factor that would inceeéise demand for vessels in the
bulk sector would be if the average haul were twrdase, for example, if new oil
fields were discovered in a remote part of the @oihe reason for this is that
charterers would seek to take advantage of theoeai®s of scale offered by bulk-
shipping to drive down their transportation coatswell as the fact that fewer vessels
would be available for hire. Looking at the fouftttor, political events can either
have a positive or negative effect on the demamdbiédk-shipping, depending on
whether the news is perceived as good or bad. Aample of how good news for the
bulk-shipping industry would impact on demand tfogit services was when the Suez
Canal was closed during the 1970s, where tankarsporting oil from the Middle
East to Europe and the US East Coast were forceauttd the Cape of Good Hope,
thus resulting in increased average hauls. Howewar,the negative side, the

introduction of the Oil Pollution Act of 1990, wiianade ship-owners and charterers
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Figure 1.1 — The Demand Function for Bulk-ShippingServices
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liable under certain cases for clean-up costs & dlkient of a spill, meant that
charterers looked for other alternatives, suchvasland pipelines, to transport their
cargoes, thereby reducing the demand for shippsng means of transport. The final
factor is that if transport costs are high, thetkdshipping may become attractive to
charterers as they seek to take advantage of treptes of scale provided, thereby

increasing the demand for their services.

Looking at the demand function in Figure 1.1, ohewd note that the demand
function is relatively price inelastic, i.e. demaiod bulk-shipping services will only

decrease by a very small amount, for a fixed ireea the freight rates. A reason for
this is that, on the whole, the cost of transpatats only a very small part of the
overall cost of the product, therefore, althouglrtdrers are still sensitive to price
changes, they are much less sensitive than theldvibey for example, with respect to
the cost of refining the crude oil. Another reasonthis price inelasticity in demand

is that, in some cases, shipping is the only mezngransport available to the
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charterer, and therefore it is a case of necessifyay whatever is demanded to be

able to transport the commodities.

As mentioned above, ISL Bremen (2008) show thaR(@7, over 7.5 billion tonnes
of cargo were transported by sea, and these warsported over 4,439 billion
nautical miles, corresponding to a demand for shigppf 22,018 billion tonne-miles.
Of this demand, 12,440 billion tonne-miles, or 38%ihe total, corresponded to the
dry-bulk sector, and 10,397 billion tonne-miles, 32% of the total, to the tanker

sector, thus serving to reinforce the importanckeath these sectors.

Changing focus to the supply-side of the marketpferd (2009) argues that the
supply of shipping services depends on five maetdrs, namely: 1) the fleet stock,
i.e. the number of vessels operating; 2) ship-ingigproduction, i.e. the number of
new vessels being built; 3) scrapping, i.e. the Inemof vessels scrapped for scrap
metal, and losses, or vessels lost at sea or daimbhggond repair; 4) fleet

productivity; and 5) the current level of freiglates in the market. Furthermore, one
should also note that the supply of shipping isedixin the short-term, for

reasons discussed below.

Beginning with the fleet stock, it is fairly obvisuhat the higher the fleet stock, the
greater the supply of bulk-shipping in that there more vessels available to carry
goods. Clarksons Research Services Ltd. (2010ytepwat, as of May 2010, there
are 7,541 dry-bulk vessels, totalling 481 millioWD, and 5,353 tankers, totalling
442 million DWT, meaning that the bulk-shippingdtds at its highest levels for at
least forty years. Moving on to ship-building protlan - as new vessels enter the
market, so supply increases and Clarksons Res&amiices Ltd. (2010) report that,
during 2009, 544 dry-bulk vessels and 580 tankessevdelivered, corresponding to
43 and 48 million DWT, respectively, once again thghest figures for over 40
years. As far as scrapping and losses are conceanedcrease in these would lead to
a corresponding decrease in the supply of bulkpshigp Scrapping levels are
relatively low at the moment, but increasing, whhe current market conditions, in
terms of the low freight rates, mean that a lothef fleet is slow-steaming, i.e. not
operating a the maximum speed possible, therettheureducing the supply of

shipping. Despite these three factors, the siz¢heffleet stock and the level of
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Figure 1.2 — The Supply Function for Bulk-ShippingServices
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new-buildings being delivered mean that the supylyulk-shipping is at record
levels, and, given the current state of the oramklfor new vessels, is likely to keep
growing. This is not an ideal position for the bslkipping to be in, considering that
the world is currently only just recovering fromeoaf the worst recessions since the
Great Depression, and where shipping is merely anmseof transport for

this world trade.

The shape of the supply function, illustrated igufe 1.2, can be explained by the
fact that supply is fixed in the short-term. Thagen for this is that it can take up to
three years, sometimes even longer, for a vesd® ttelivered, i.e. from the time the
vessel is ordered to when the ship-owner takesegsgm. This means that, with the
exception of scrapping vessels or placing vesselay-up, when freight rates are so

low that operating the vessel becomes unprofitatiie, level of supply remains
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Figure 1.3 — The Short-Run Market Equilibrium for Bulk Shipping Services
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relatively fixed, atS, until the new-buildings are delivered, where thepmy
function in Figure 1.2 will shift outwards fror8, to S,. However, one should note

that even delivering vessels for scrapping may taf@v months; hence this may also

delay any adjustments to the supply function.

Having established the characteristics of the sumgpld demand functions for
bulk-shipping, one can now move on to examine tleehanics of the freight rate

mechanism and the impact that this has on volairlithe shipping markets.

1.2.3 Freight Rates and Volatility in the Bulk-Ship  ping Sectors

The prevailing freight rate, which is the name tloe prices of the transport service,
are determined from the interaction between theplsupnd demand functions,

discussed above. The mechanics of this freight maehanism are illustrated in
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Figure 1.3. If we remember that the supply funci®fixed in the short-run, then, as
the demand function shifts along this fixed supfugction, the prevailing freight
rates will change accordingly. This means that thementary equilibrium will
increase (decrease), if the demand for the bulgpshg services increases (decreases)
accordingly, with the magnitude of the change iicgrdepending on the price
elasticity of the supply function at the point @fudibrium. Using the example given

in Figure 1.3, if one begins at Point A, a 50% @ase in demand, froD, to D,

will result in a small increase in freight ratesorh FR, to FR,, corresponding to
Point B, while a 10% further increase in demandmfiD, to D,, would result in a
much bigger increase in freight rates, fréiR, to FR,, corresponding to Point C.

The reason for this discrepancy is that the priestieity of the supply function at
Point B is much lower than at Point C, as therstiis excess capacity in terms of

supply, whereas at Point C, supply is pretty mugh@maximum short-term level.

In the long-run, the supply function may shift etiinwards, if the level of scrapping
exceeds the level of new-building deliveries, otwauds, if the reverse applies. This
ratio of scrapping vessels to new-building ordei$ @epend on market sentiments
about the future direction of freight rates. If ketrsentiments are good, which would
correspond to ship-owners feeling that freight sasee likely to remain high or
increase in the future, then the supply functiory rehift to the right, as the ship-
owner delays any scrapping activity and placesrsriig new vessels to benefit from
the boom. The reverse would apply when ship-owreltsthat freight rates are
depressed, or are likely to fall in the futurehappened last year, in which case ship-
owners would seek to scrap unprofitable vesselsdahaly any orders. Over time, as
the long-run supply of ships adjusts from a presiander- or over-supply of tonnage,
freight rates will revert to the mean level thaiséed prior to the observable changes

in the supply function.

Moving to look at the volatility of shipping freighates, or the risk inherent in the
market, one should be aware that the shipping tngus highly dependent on a
number of external factors, over which market agér@ve no control. This means
that, as a result of this lack of direct controgight rates in the shipping market are

exceptionally volatile, with volatility increasings ship-size increases. The reason for
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this size-volatility relationship is that smalldrigs are more versatile in terms of the
cargo they can carry and ports they can visit, @athey can operate in multiple
markets. In contrast, a larger vessel is limitetenms of the cargo it can carry, due to
the size of the cargo consignments required, amt$ ffocan visit, as a result of draft
constraints. Another reason for this volatilitythe volatile nature of the demand for
the goods being carried. For example, it is comikmowledge that the demand for
crude oil and refined oil products increases duthrgy Northern Hemisphere winter,
due to the increased demand for heating, howekisr demand falls dramatically in

spring. This means that the fixtures for VLCCs anttler types of tankers will

increase as the Northern Hemisphere winter appesa@nd falls sharply during the
spring months. In summary, all these factors cahseshipping industry to be a
highly volatile market, hence any assistance tlaat loe given as to predicting the
nature of and relationship between factors in tidustry, such as freight rates and

volatility, will be in high demand.

1.2.4 Shipping Market Cycles

No study on freight rates within the shipping mankeuld be complete without some
comment on the market cycles within the industdyipfing market cycles vary in

length and frequency, but it is generally accepted there have been 22 dry-cargo
cycles between 1741 and 2007, where Figure 1.4tilltes these cycles in the
dry-bulk sector. There are generally four stageth¢oshipping market cycle, namely:

the trough, the recovery, the peak, and the calaps

During the first stage, i.e. the trough, freightesaare low, as a result of low demand.
This would mean that ships queue up at loadingspuessels generally slow-steam to
conserve fuel and there are distress sales, i&s aa a result of default on loans or
due to cash shortages. The second stage, or rgcaveharacterised by freight rates
beginning to increase, ships being removed fromulayand second-hand prices
beginning to recover as the freight market improvidgoughout the third stage, or
peak, freight rates are high, the fleet operateflbspeed, second-hand prices are
above book value, order-books are almost full, #uede is no idle tonnage available,

so demand tends to outstrip supply. The final stkgewn as the collapse, generally
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Figure 1.4 — Dry-Bulk Sector Market Cycles from 174 to 2007
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occurs as a result of new orders, ordered eithenglihe recovery or peak, being
delivered, which means that the supply of tonnam& ance again exceeds demand,
hence freight rates plummet and no new orders @@, with many ship-owners

trying to cancel existing orders.

This collapse could occur as a result of a droprade, due to a slowdown in the
world economy, where these effects tend to be eRatsd by negative market
sentiment. Interestingly, the shipping marketspaobably coming towards the end of
the collapse stage and entering the trough phateeafycle, where this is as a result
of the world only now beginning to recover from afehe worst recessions since the

Great Depression.

Being able to predict the future direction of figigates, and therefore, to an extent,
the market cycles, would enable one to predict weaeh of the stages will occur,
thus allowing to profitably enter and exit the nerkboth in terms of day to day

operations and investment timing, at the most dppertimes.
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1.2.5 A Brief Overview of the Prevailing Market Con  ditions

Having outlined the main characteristics of thepphig markets in general, this
subsection provides a brief overview of the premgilmarket conditions in the
dry-bulk and tanker sectors in order to give contexthe environment in which the

research hypotheses were formed.

Examining firstly the evolution of the tanker spioeight rates, as illustrated in
Figure 1.5, freight rates for the tanker marketeveziatively stable for the ten year
period up to 2001 when they experienced the first geries of peaks which followed
over the next seven or eight years. The first peaikcides with the initiation and the
process of accelerated phasing out of single-huleéters in favour of the double-
hulled alternates, as a result of the amendmetitetd/larpol Convention. This led to
reduction in the number of vessels in the tanleatfand a consequent decrease in the
supply of tanker services and a resultant dramiatiease in freight rates as a result
of the shape of the supply curve. The second pealesponds to the second Gulf
War in 2003 as well as a further amendment to therpel Convention which
increased the scrapping schedule of single-hude#édrs, with corresponding effects
on the price of oil and supply of shipping servicasd therefore freight rates. This
peak then leads on to the further peaks resultiog fan increased demand for oil,
increased oil prices and the development boom ima&land therefore an increased
demand for transportation services for the oil eeedlhese series of peaks were
followed by an unprecedented collapse in the fieigte market in late 2008, caused
by both the world undergoing arguably the most seeeonomic slowdown since the
Great Depression, combined with massive over-andeduring the previous peaks
resulting in a huge number of new tankers entdahedleet thus increasing the supply
of vessels to record levels and causing an extiearad sudden fall in freight rate
levels. One could also argue that these peaks maytbbuted to the rescaling of the
Worldscale rates in January, however, this is abbttb be a major factor as many of

the peaks occur in the middle of the year.
When changing focus to look at the dry bulk markie¢ picture is somewhat more

tranquil, as illustrated in Figure 1.6, in thatidie rates remained relatively stable at
fairly low levels until 2003. During the period baten 2004 and 2005, a first peak is
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Figure 1.5 — Evolution of Tanker Spot Freight Rate8etween 13 January 1989 and 26 June 2009
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Figure 1.6— Evolution of Dry-Bulk Spot Freight Rates Between 13 January 1989 and 26 June 2009
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found, corresponding with increased demand for codities driven by the growth of
the Chinese economy. The correction in the markes then followed by a massive
increase in freight around the end of 2006 andrimeigg of 2007, driven by a rapid
increase in the demand for commodities by Chinagestion in world ports leading
to tonnage being tied up, and a dramatic increas¢éheé price of commodities.
However, as was the case in the tanker market,amatic slowdown in world
economic growth, as well as over-ordering, led goeatreme a fall in freight rates,
although in this case, continued demand for comtresdsuch as coal and iron ore, by

China led to a much faster and somewhat greateveeg.

The following section outlines the research hypséisewith the ultimate goal of
trying to achieve exactly this outcome, by underdilag the structure and nature of

freight rates themselves.

1.3 Research Hypotheses

The aim of this research is to expand on the iaudit models of the structure of
freight rates through the use of Autoregressivectivaally Integrated Moving
Average (ARFIMA), Fractionally Integrated GeneratisAutoregressive Conditional
Heteroscedasticity (FIGARCH) and Generalised Awgossive Conditional
Heteroscedasticity with Skewness and Kurtosis (GABK) models. Once this
has been done, these models will be used to fdreped freight rate levels and
freight rate volatility, and then evaluate the wygeg risk for market participants
through the use of the Value-at-Risk methodologyisTwill give one an
understanding of the behaviour of the different reata of freight rates, thereby
enabling participants in the shipping markets teeha better understanding of both

the direction of spot freight rate levels, and aieerlying risk.

This research is of interest to a number of difierparties, both in terms of
participants in the shipping market, as well asaricial markets as a whole. One
reason for this is that it aims to add another disitn to the debate as to the exact
structure of freight rates, as well as the degrestationarity of these, as well as
providing insight as to how the higher moments wloaffect freight rate risk as a

whole. As mentioned above, this is of interestadipipants in the shipping markets
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as this kind of understanding is crucial for invesnt timing and planning decisions,
as well as for indirectly linked parties to be abdequantify their exposure to the
market. Interestingly, the fact that the shippingight market is perhaps one of the
few markets in which the underlying asset is aisenas well as the fact that it may
be used as a proxy for world trade, means that rttasket can be of interest to

participants in financial markets.

1.3.1 Background to Research Questions

As mentioned above, shipping is one of the few migrkn which the good being

priced is a service, as well as being one of orfgnamarkets in which the underlying

asset is a real asset. This research has beereglamprovide critical insight into the

function of the price series within this very diéat type of market. Within the

shipping market, freight rates play a pivotal rivig¢hat they form the basis of almost
every function, from determining the cost of trams$img goods from point A to point

B, to the valuation process for vessels themselVasrefore, a deep understanding
and correct modelling of freight rates is esserftalall participants in this market,

from the ship-owners and charterers themselve$t yp down to ship-brokers,

maritime lawyers, institutional investors, suchhesige funds, and other auxiliary
parties.

Perhaps one of the most obvious uses of freigatmettdelling is for decision-making

purposes, where, through the forecast of freigtesrand the respective market risk,
charterers can determine when it is optimal togpant their cargo, and ship-owners
can determine where to position their vessels dkasewhen to enter and exit the
market. This would mean that ship-owners could mise their earnings by

repositioning their vessels prior to the freighteraising, and make allowances for
falling freight rates, such as re-arranging thearficing of their vessels. In contrast,
while charterers could minimise their transportatamsts by planning to transport as

much as possible of their goods only when marketlitimns are favourable.
Another, although perhaps not quite as obvioussamdor their importance is that

they allow investment timing decisions to be médea. ship-owners, as freight rates

form the basis on which prices of new and secomtthvassels are valued, a thorough
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understanding of the structure of freight rates ibouean that they could determine
the ideal time to invest in new or second-hand agen or either sell or scrap their
vessels. This type of asset play in the market lmarcrucial for risk management
purposes, due to the notoriously volatile naturéhef market. An example of this is
highlighted by Clarksons Research Services Ltd1@20who illustrate out that
year-on-year returns from tanker earnings betwe@®il 2and 2010 ranged from -
62.43%, in 2009, to 88.85%, in 2003. Furthermarehe dry-bulk sector, this ranged
from -19.84%, in 2005, to 151.84% in 2010. To gae idea of the size of this
market, Clarksons Research Services Ltd. (2010) shat at the peak of the market,
in 2007, trade in second-hand vessels was wortM@8%illion, consisting of 1,873
individual transactions and 85.6 million DWT. Fanrsiitutional investors, such as
banks providing loans, or hedge funds, this ismssefor both evaluating their risk
exposure to the market, and identifying the ideaétin which to invest in the market.
As ships are predominately financed through loansmfbanks, any fall in freight
rates, and hence the value of the ship, would pthe& loans in the precarious
position of a possible default. For other investansderivatives products, such as
Forward Freight Agreements (FFASs), where thesébased on analysts’ assessments
of future freight rate direction, an understandirighe structure of these would mean

that they could determine the optimal time to itves

In order to correctly model this, one needs to eslslithe debate regarding the degree
of stationarity of freight rates and the persiseeatvolatility in the market, as well as
understand the impact that higher moments have ankanrisk in this context. This
thesis proposes that freight rate levels are neitparely stationary, nor
non-stationary, but that they follow a fractionaihfegrated process. In addition, this
thesis proposes that this argument extends to okegility of freight rates, where
volatility also follows a fractionally integratedrqress. This implies that volatility
does not decay rapidly, as implied by the trad@lo@Generalised Autoregressive
Conditional Heteroscedasticity (GARCH) models,isgitl in most papers on volatility
in the shipping markets; however, neither doeseiisigt indefinitely, as would be
implied by the Integrated Generalised Autoregressionditional Heteroscedasticity
(IGARCH) model. The final proposal in this thesssthat higher moments have an
impact on the inherent risk in the shipping marlet,skewness and kurtosis evolve

over time, hence, introducing the concepts of dimail skewness and kurtosis.
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1.3.2 Hypothesis 1 — The Dynamics of the First Mome  nt

Traditional general equilibrium models, such asséhproposed by Hawdon (1978)
and Beenstock and Vergottis (1989), suggest tleagit rates are mean reverting.
This implies that any imbalance in the supply armandnd functions would be
corrected, thus causing freight rates to revethéomean level. In contradistinction,
newer research, mostly during the 1990s, includegg-Andreassen (1996), Glen
(1997) and Kavussanos and Nomikos (2003), whichooded with the development
of new tests for stationarity, found that freiglates were not mean reverting, but
followed a random walk process, thus implying thiady are non-stationary. This
means that any imbalances in freight rate wouldipemdefinitely, thus leading to an
“explosive” series. However, more recent resedmhexample papers by Adland and
Cullinane (2006) and Koekebakkeat al. (2006), using partial equilibrium models,
propose that the original assumption of mean réwmelis correct, and any conclusions
otherwise were as a result of deficiencies in th&-noot tests, a fact outlined by
Schwert (1989). Furthermore, this literature stremngues that this mean reversion
process will be almost immediate, therefore imglystationarity. Another element
that may cast doubt on the validity of any assuamstiof non-stationarity is the length
and frequency of the data set examined. SchweB9(1Bighlights the fact that the
longer the data set and the greater the frequeti®y, greater the number of
observations in the sample and the more likelyisrte observe mean reversion in the
data and the better the understanding of the dysami the data. This issue is
addressed in this thesis in that the sample ofgtiterates consists of weekly

observations for the period extending from 13 Jan@889 to 26 June 20009.

This thesis puts forward, for the first time in thi@pping literature, the proposal that
the answer may in fact lie somewhere in betweesetltwo rival conclusions, i.e. that
freight rates follow a fractionally integrated pess. The rationale behind this
statement are that in the short-term, the suppigtfan for shipping services is fixed,
while demand is relatively price inelastic, howevarthe longer-term, as new vessels
are delivered, the supply function will expand adoagly. This means that in the
short-term, freight rates will exhibit non-statiopdehaviour in that, due to the fixed
nature of supply, as demand increases, so wilgtiterates, up to the point where

freight rates make other, more expensive, altareatieans of transportation viable,
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as illustrated in Figure 1.3 above. However, a# tifgight rates induce ship-owners
to order new vessels, and these vessels are dalivesually after between 18 and 36
months, but this can be extended to over five yabhessupply function will shift to
the right, as illustrated in Figure 1.2 above, &etght rates will revert to their mean
level. Thus, as one can see, freight rates are mmewmarting; however, this
mean-reversion process will occur with a lag, whigkhe definition of a fractionally

integrated process.

In order to test this hypothesis, Chapter 5 of timesis presents the results from
applying Autoregressive Moving Average (ARMA), Awgressive Integrated
Moving Average (ARIMA) and Autoregressive Fractitipalntegrated Moving
Average (ARFIMA) models to a series of freight mtand subsequently produces
forecasts based on each of these models. Whichevénie ARMA, ARIMA or
ARFIMA models provides the best model of the unged freight rate series, will
demonstrate whether freight rates follow a statipnaon-stationary or fractionally
integrated process, respectively.

The interesting aspect of this hypothesis is thatuld enable market participants to
better forecast freight rates. This would enabl@-skwners to better plan the
positioning of their vessels, to take advantaghigher freight rates, as well as better
make decisions as to the optimal time in whichneest or pull out of the market.
These factors would, in turn, lead to increaseditgréor market participants, which
could also have a run-on effect on other markestsnast of the commodities traded in
the world are transported by sea. Furthermore tterenderstanding of the transport
costs involved would enable charterers to bettezcfast their costs, and potentially
pass on these cost-savings to clients and pantitsipa other markets. Better forecasts
of freight rates, as stated above, would also enablbetter understanding of
investment timing, where these methods could therafplied to other markets in
which real assets are traded. A final benefit & there are of course the policy and
decision making implications, where a better un@d@ding of the structure of freight
rates would enable one to make better decisiongardeyy company policies,
investments, and the structure of the market abalen
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1.3.3 Hypothesis 2 — The Dynamics of the Second Mom  ent

Having established the dynamics of the first monanthe underlying freight rates,
the obvious next question is whether a similarcstne applies to the second moment,
or volatility, of these freight rates. One shouttenhere that volatility is a measure of
risk in the market, where, the higher the standbadation, or variance, the greater
the level of associated risk. As has been mentionetthe review of the shipping
markets above, the shipping market is exceptionallsitile and therefore any method
that could be used to correctly model this undegywolatility would be most
welcome. For this reason, there has been a clezest in the study of the volatility
in the shipping context, where the predominant nedesed have been the
Autoregressive Conditional Heteroscedasticity (ARCtamily of models, first
introduced by Engle (1982). Examples of this inelu¢hvussanos (1996), who uses
an ARCH model; Kavussanos (1997), who uses a GlgetdaAutoregressive
Conditional Heteroscedasticity (GARCH) model; andvKissanos and Nomikos
(2000b) and Kavussanos and Nomikos (2003), who amseaugmented GARCH
(GARCH-X) model. One should note that Kavussan®9T). also proposes that an
Integrated Generalised Autoregressive Conditionakerbscedasticity (IGARCH)

model could be used, although this was never estiina

Having established the applicability of ARCH-typeadels to estimate volatility in
the shipping markets, one can now move on to seeth® structure of the underlying
freight rate series could affect the model selectim this respect, the concepts
of stationarity, non-stationarity and fractionallytegration can be extended
from the spot freight rate levels to the volatility freight rates, as illustrated in
Baillie, et al. (1996a). This research is therefore, to the bdsthe author's
knowledge, the first in the shipping literaturetést the hypothesis as to whether the
volatility series follows a fractionally integrategrocess. To give a graphic
understanding of what is meant, one should exartmeadlifferent impulse response
functions in Figure 1.7, where this measures tme fit takes for a shock to volatility
to dissipate. In this sense, should shocks to thatility decay exponentially, as

indicated by impulse response function C in Figurg.7, where

A :(q—ﬁl)qof'l ;k>1, then the volatility series could be argued tolofol a

“stationary” process; while if these shocks persgtefinitely, then the volatility
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Figure 1.7 — Cumulative Impulse Response Functions
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series would follow a “non-stationary” processpastrayed by news impact curve A,

in Figure 1.7, wherel, :(1—,81) ;k>1. Once again, this research proposes that a

middle ground, where, should shocks to the votgtiilecay in a hyperbolic

manner, as illustrated by news impact curve B ingul@ 1.7, where
A J1-B,~(1-d) k™| (k+ d=)r (K" (d™ ; k> 1, then the volatility series

could be argued to follow a “fractionally integrdteprocess. The rationale behind
this hypothesis is the same as for the spot fremjietlevels. Imbalances in supply and
demand in the short-term cause freight rate let@l$xplode”. Consequently, the
volatility, or standard deviation, of these freigtill also increase dramatically, until
such a time as the level of spot freight ratesiliéab. As new vessels are delivered,
spot freight rates revert to the mean spot freigvel, and volatility stabilises,

however, this process of stabilisation occurs veithkag, due to the fixed nature of

supply in the short-term.

In order to test this hypothesis, Chapter 6 of timesis presents the results from
GARCH, IGARCH and Fractionally Integrated Genesrlis Autoregressive
Conditional Heteroscedasticity (FIGARCH) models. iefiever of the GARCH,
IGARCH or FIGARCH models provides the best modethe underlying volatility,
will be demonstrate whether freight rate volatifiolows a stationary, non-stationary

or fractionally integrated process, respectively.
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As with the structure of the first moment, the sttme of the second moment of
freight rates is of particular interest for investmh timing decisions. Ship-owners,
charterers, hedge funds, and other market parnitspare all, in one way or another,
exposed to volatility in the freight rate markd&y. being able to better understand the
underlying structure of this volatility, market paipants are able to determine the
ideal time to enter and exit the market in ordemiaimise the market risk exposure.
In addition, auxiliary parties, such as hedge fumigy seek to take advantage of this
volatility in order to trade in freight rate dertixges. Finally, an understanding of
volatility and the inherent risk in the market issential for portfolio optimisation,
whether of vessels themselves, or freight ratevdevies, and is vital for determining
one’s correct Value-at-Risk, although a more cdrtexan in the context of this thesis
would be the ship-owner’'s or charterer's ProfiRask, as one is not trading a
portfolio here but minimising the risk exposureroérket participants’ profits. One
should note that these techniques can once agaapfieed to any market in which
real assets are traded.

1.3.4 Hypothesis 3 — The Dynamics of the Higher Mom  ents

Moving on with the analysis of the moments, thise@ch examines the higher, i.e.
third and fourth, moments. Incorporating skewness leurtosis into models of price
series is well established, however, a relativedyv rintroduction to the financial
markets literature is the concept of conditionavskess and kurtosis. The concept of
conditional higher moments was introduced by Haraeyg Siddique (1999), who
developed the Generalised Autoregressive Conditidhateroscedasticity with
Skewness (GARCHS) model to measure the impact nditonal skewness on the
volatility of stock prices. This work was extendbg Brooks et al. (2005) who
examined the impact of conditional kurtosis, propgs the Generalised
Autoregressive Conditional Heteroscedasticity andtésis (GARCHK), on stocks
and bonds. To amalgamate both these conceptscomditional skewness and
conditional kurtosis, Legnet al. (2005) developed and proposed the use of the
Generalised Autoregressive Conditional Heterosdamilgs with Skewness and
Kurtosis (GARCHSK) model, to model the impact ofesk conditional higher

moments on the returns from a series of stockseankange rates, thereby illustrating
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the importance of these conditional moments inrd&teng the true structure and risk

inherent in these series,.

This thesis adopts these concepts, and tests th@hesis that conditional skewness
and kurtosis also plays a significant role in theicgure of the underlying freight
rates, where this is, to the best of the authorievkedge, the first time this is
examined in the shipping literature as well asliteeature for markets in which real
assets are traded. The rationale behind this hgpwths that the shape of the supply
function in the freight markets is such that whee @& positioned at a relatively price
elastic portion of the supply curve, the degreskafwness and excess kurtosis will be
relatively low. This being said, as the price etatst decreases, as short-term supply
reaches its maximum level, and freight rates shpotso will the degree of skewness
and excess kurtosis, resulting in an extremely taided, positively skewed

distribution.

As with the second moment, skewness and kurtoaig @lhuge role in determining

the market risk exposure of participants in thegfierate markets. For this reason, an
understanding of these is vital for investment-tighend decision making purposes.
In addition, as Christoffersen (2003) highlightspme does not incorporate these into
any Value-at-Risk calculation, one significantlydenestimates the risk exposure of
market participants. One can conclude by addingttiese concepts can, as with the

previous two, be readily applied to other market&/hich real assets are traded.

1.4 Structure of the Thesis

Having outlined the aims and contributions of thesis to shipping market literature,
this section outlines the organisation of the theshich consists of the nine chapters,
including this introduction. The general structwe each of the four empirical
chapters, i.e. Chapters 5 through 8, is similahat each begins with the general aim
of the discussion, before moving onto a brief déston of the methodology, a
description of the data, a thorough analysis ofetmgirical findings, and a final brief

summary of the findings and conclusion.
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Chapter 2 of the thesis is devoted to an in defgtudsion and review of the market
literature regarding each of the hypotheses digcusit begins by outlining the
general theorems regarding the structure of thppsiy markets, before going onto
discuss the issue of stationarity, with resped¢he&spot freight rate levels. Following
this, the chapter outlines the literature regardihg impact of volatility in the

shipping market, and how FIGARCH models have besadun other markets. The
chapter continues with a discussion of the curfgetature on conditional higher
moments, and concludes by clearly outlining andreansing the contribution of this

thesis to the existing literature.

Chapter 3 outlines the methodology to be usedenethpirical chapters. This begins
with a particular focus on the ARMA, ARIMA and AR¥A models for spot freight
rate levels, as well as how one would evaluatectsts of these. Following this a
discussion of the GARCH, IGARCH and FIGARCH modelad the implications
therefore, before moving onto look at the highemreats, with a particular focus on
the GARCHSK model.

A general description of the data is provided inafter 4, which includes a
discussion on such matters as the data sourcingplsaperiod and general
characteristics of the data. In addition, standemd root tests are performed to give a
preliminary idea as to the degree of integratiothef spot freight rate levels, as well

as tests to determine the degree of autoregresstbe various moments.

The first hypothesis regarding the degree of iregn is addressed in the fifth
chapter of the thesis. Tests for fractional intégra are also performed on the
residuals of the models to determine if the modelse been properly specified.
Following this, forecasts are performed and evallidab determine the best model
with which to identify the future direction of tispot freight rates themselves.

Chapter 6 introduces the concept of fractionalgrdggon, in the volatility series, to
the shipping literature and highlights the degréepersistence in the shocks to
volatility. Chapter 7 extends the discussion in [@bka 6 by introducing the
GARCHSK model to the analysis, and highlights hadus tcontributes to the

understanding of the true structure of freightsate
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Chapter 8 highlights the practical applicationsfrgfight rate volatility models. It
highlights the difference in the performance offetént standard Value-at-Risk
methodologies and selects the best model, giveetafspre-determined critical
levels, for determining the Profit-at-Risk, CostsdRisk and Value-at-Risk for
ship-owners, charterers and auxiliary parties i tbhipping freight market,
respectively. It also aids in highlighting the atlmitions of Chapters 6 and 7 to

understanding the concept of risk in the market.

The final chapter, Chapter 9, presents a summattyeothesis findings and highlights
the main conclusions. The implications and limgasi of the findings of each
empirical study are also discussed further. Theisheoncludes with suggestions for

future research.
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2 Literature Review

2.1 Introduction and Key Papers

From the time when they were first discussed by@igen (1931), Tinbergen (1934)
and Koopmans (1939), freight rates have been aauansource of academic interest.
The reason for this, as outlined in Beenstock aachbttis (1989), amongst others, is
that freight rates form the basis on which all ping decisions are made, from when
and where to operate, to the crucial investmenisaets of when and where to buy
vessels. This research focuses on three main hggesh namely the use of
Autoregressive Fractionally Integrated Moving Awgga(ARFIMA), Fractionally
Integrated Generalised Autoregressive Conditionaterbscedasticity (FIGARCH)
models, and Generalised Autoregressive Heterosteithaswith Skewness and
Kurtosis (GARCHSK) models, to model the freightergirocess in the shipping
freight market. This section aims to examine tHevant literature on each of these
topics and critically evaluate its potential apgation to solve the issues raised in the
research hypotheses in Chapter 1 of the thesis.

The literature review begins with an analysis oé first econometric models of
freight rates and the shipping markets. These geod basic understanding of the
determinants of freight rates, and how these behader different market conditions.
The aim of this is to give an understanding offtiectioning of the markets, and how
the various factors interact to form the generalicstire of freight rates in these

different shipping markets.

Section three of this literature review examines #tationarity of freight rates,
beginning with the structural models, which arguat tdue to the supply and demand
dynamics of the freight markets, the constant adjaat of supply to a relatively
inelastic demand will cause freight rates to follanmean reversion process. The
reason for this is that when freight rates are e, supply of shipping services will
naturally also be low; however, as the demand Fappsng services increases, SO
supply will gradually increase in response untitess supply is exhausted. If the
level of demand continues to increase, due to #gebetween the ordering and
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delivery of new vessels, freight rates will incre@&xponentially; however, as soon as
the new vessels are delivered to the market, trease in supply will lead to freight
rates decreasing back to the mean level. The titerdhen moves on to an argument
that this traditional maritime economic theory iscarrect and that modern
econometric tests, such as the Augmented DickelgiRst, proposed by Dickey and
Fuller (1981), and Phillips-Perron test, introdudagd Phillips and Perron (1988),
amongst others, in fact prove that freight ratesraim-stationary. This literature then
moved on from this to use cointegration analysidaiecast future freight rates.
Finally, the most recent literature proposes tmafaict the structural models were
correct, and that freight rates are indeed statjorthe error lying in the relative
weakness of the stationarity tests utilised. Tleeeefby applying still more modern
econometric tests, such as the KSS test proposé@pgtanioset al. (2003), which

is used in the paper by Koekebakketral.(2006), it is proposed that freight rates are
indeed stationary. The aim of the current reseacto contribute to this existing
literature and maritime economic theory by propgsihat in fact neither of these
arguments are correct, and that the answer to tiestign of the stationarity of
freight rates lies somewhere in the middle, i.eatthhat freight rates are

fractionally integrated.

The fourth section of literature looks at risk metform of the volatility of freight
rates; however, unfortunately, there has been Vigtg published on the topic.
Volatility in the shipping freight markets was driglly believed to be best modelled
using the Autoregressive Conditional HeteroscediagtfARCH) models, developed
by Engle (1982). However, later papers found theg tise of the Generalised
Autoregressive Conditional Heteroscedasticity (GARGramework, proposed by
Bollerslev (1986), provided the most appropriatgapeeterisation for volatility.
As the literature regarding freight rates moved amig freight rates following a
non-stationary process, so did the literature oratiity, where the use of the
Integrated Generalised Autoregressive Conditionakerbscedasticity (IGARCH)
framework, outlined in Engle and Bollerslev (19883, was proposed by Kavussanos
(1997) but never actually implemented. The aim lwé turrent research, in this
respect, is to contribute to the existing literatlny arguing that, as there is long

memory in freight rates, there is long memory ia tlolatility of freight rates, and
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therefore the most appropriate model to use tomes# volatility would be a
FIGARCH model.

Section five looks at the concepts of fractiondégration and long memory and how
these have been used in different financial markeith a particular focus on the
stock, exchange rate and interest rate marketseviews both the concepts of
fractional integration in terms of price levels ardatility to give an understanding of
how these work, and how they may be applied insthipping context. It therefore

provides a link between the second and third sestod the literature review.

The sixth section of literature looks at the impafchigher moments on the behaviour
of price series. This literature argues that ad#teaviour of volatility can vary across
time, i.e. the concept of conditional volatilityg san the behaviour of skewness and
kurtosis, thus introducing the concepts of conddloskewness and kurtosis. The
argument here is that the assumption of constamiviséss and kurtosis leads to
market participants severely underestimating thek exposure, hence Harvey and
Siddique (1999) and Brookst al. (2005) developed the Generalised Autoregressive
Conditional Heteroscedasticity with Skewness (GARSJHo enable one to model
conditional skewness, and the Generalised Autossgre Conditional
Heteroscedasticity and Kurtosis (GARCHK) modeleiamine conditional kurtosis,
respectively. The limitations of these models hattthe GARCHS model enabled one
to model conditional skewness but not conditionattdsis, and vice versa for the
GARCHK model, led Leodnet al. (2005) to propose the Generalised Autoregressive
Conditional Heteroscedasticity with Skewness andtd@is (GARCHSK) model,
which enabled one to jointly analyse the impactariditional skewness and kurtosis.
With these concepts in mind, this research aimsattribute to the literature by
examining, for the first time in the shipping légure, the impact of these conditional
higher moments on the structure of freight ratestaen evaluate how this impacts on
the risk of market participants using the ValudR&k methodology.

The final section of literature examines the deéfgreconometric methodologies used

to forecast freight rate levels and volatility inet shipping freight markets. This

research aims to contribute to the literature kyottucing the notions of fractional
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integration and conditional higher moments to thp@ing literature, and then

comparing the results to provide a conclusion aegampact of these in the market.

2.1.1 Key Papers

2.1.1.1 Early Econometric Models of the Shipping Ma  rkets

1. Tinbergen (1931)
2. Tinbergen (1934)
3. Koopmans (1939)

2.1.1.2 Key Papers Regarding the Stationarity of Fr  eight Rates

Papers on Structural Models

1. Zannetos (1966)
2. Hawdon (1978)
3. Beenstock and Vergottis (1989)

Papers on Non-Stationarity and Cointegration

Berg-Andreassen (1996)
Berg-Andreassen (1997)
Veenstra and Franses (1997)
Kavussanos and Nomikos (1999)

Kavussanos and Nomikos (2003)

o a0k 0w NP

Kavussanos and Visvikis (2004)

Papers on Partial Equilibrium Models

Tvedt (1997)

Tvedt (1998)

Tvedt (2003)

Adland and Strandenes (2004)
Adland and Cullinane (2006)
Koekebakkeret al.(2006)

o a0k 0w NP
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2.1.1.3 Key Papers Regarding the Volatility of Frei ght Rates

1. Kavussanos (1996)
2. Kavussanos (1997)
3. Kavussanos and Visvikis (2004)

2.1.1.4 Key Papers on Long Memory and Fractional In  tegration

1. Adelman (1965)
2. Baillie (1996)

2.1.1.5 Key Papers on Conditional Higher Moments

Harvey and Siddique (1999)
Brooks et al.(2005)

Ledn et al.(2005)

Bali, et al.(2008)

w0 NP

2.1.1.6 Key Papers on Forecasting in the Shipping M arkets

1. Batchelor et al.(2007)
2. Angelidis and Skiadopoulos (2008)

2.2 Some Early Models of the Shipping Markets

Despite the rapid growth of international seabdrade in the early 1900’s, as well as
the increasing importance of the shipping industrgroviding the means with which
to connect sources of supply and demand for diftetgpes of commodities, it was
not until the 1930’s, with the pioneering studies Tanbergen (1931), Tinbergen
(1934) and Koopmans (1939), that the foundationshefanalysis of this industry
were set out. In the first of these, Tinbergen ()9B@rovided the first quantitative
analysis of the dynamics of the shipbuilding marketvhich the important variables
for this market were empirically identified. In atér study, Tinbergen (1934)
investigated, for the first time, the formulatioh feeight rates using a supply and

demand framework, introducing the concept of magkgiilibrium to the market, with

51



a particular focus of the sensitivity of these didi rates to changes in the factors
affecting the supply of and demand for shippingvises. The factors included the
price of bunkers, the size of the shipping fleet &he fact that the demand function
for shipping services is price inelastic. Koopm#ét339) provided the first attempt to
analyse the shipping freight market, in which teddviour of the supply and demand
schedules for shipping services under differentketaconditions are distinguished.
These studies provided the foundation upon whidisesguent studies in the literature
on shipping and shipbuilding markets are built. Hus reason, these studies are

discussed in more detail below.

2.2.1 Tinbergen (1931) and the Dynamic Shipbuilding  Model

Tinbergen (1931) provided the first empirical arsédyof the cyclical nature of the
shipbuilding market. The model developed in thipgraprovided the basis for all
subsequent studies in the literature through thenection of shipping freight rates
and shipbuilding activities via the size of the ldofleet, which Tinbergen denoted

K,. Tinbergen began the analysis by assuming thatlditbe world fleet increase

(decrease) in size, i.e. should there be an inergathe supply of ships, this would
results in a negative (positive) effect on the pilvg freight rates in that market,

denotedFR, , hence:

FR = fl(Ktj 2.1)

In addition to this, Tinbergen argued that any geam the size of the fleet, denoted

AK,, where this is adjusted for losses and scrappotgity, will be proportional to
the orders place& periods earlier, denote@R,_, , wherek denotes the lag between

an order being placed and the order being delivareid means that:
AK, = fz(oé_kj 2.2)

Tinbergen then assumed that the level of new ordegeriodt -k, i.e. OR_,, are

positively related to the level of freight ratedtzdt period, denote#R,_, , thus:

OR_, = f3( Fé_k) 2.3)
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Tinbergen (1931) thus derived a model, through tsubisg Expression (2.3) into
Expression (2.2), which relates the expansionpatraction, of the world fleet size to
the levels of freight rates at timie-k. One should note that, in Expressions (2.1) to
(2.3), the signs above variables correspond tositpes of the partial derivatives of
these variables. Following this, Tinbergen contthtlee analysis by estimating the
model, using data for the period between 1870 &1@ 1reaching the conclusion that
the shipbuilding industry follows a cyclical patiewhere each of these cycles has a
duration of approximately eight years from peaké¢ak.

2.2.2 Tinbergen (1934) and the Shipping Freight Rat e Model

In a subsequent study Tinbergen (1934) providedfiiteestudy of shipping freight
rates within a supply-demand framework. Within tHmmework, Tinbergen

evaluated the sensitivity of shipping freight rateshe determinants of supply and
demand, where there are deno@d andQP, respectively. Tinbergen proposed that

the important determinants of the level of supmpiythe shipping are the bunker, or
fuel, prices, denote®P, the size of the world fleet, denoté&d, and the prevailing
freight rates in the market, denoté&. On the demand-side, Tinbergen argued that
the demand for shipping services is perfectly priegastic, as changes in freight
rates do not appear to influence the level of demBased on these assumptions, the

following equations for supply and demand were pemgl:
QS = f(k; BP ER] (2.4)

QP =inelastic deman  (2.5)

One should note that, in Expression (2.4), thessajyove variables correspond to the
signs of the partial derivatives of these variablésbergen proposed that the level of
supply, which is measured in tonne-miles, is negétirelated to the price of bunkers
as an increase in this will force ship-owners tduee the speed of their vessels in
order to reduce and optimise fuel costs. In conhttag level of supply is positively

related to the size of the world fleet as it is iolig that an increase in the size of the
fleet will directly increase the level of supplytime market. Additionally, freight rates

are positively related to supply as an increasefr@ight rates will incentivise
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ship-owners to increase the speed of their vesselsell as take idle vessels out of

lay-up as shipping operations become more proétabl

Tinbergen (1934) continued by proposing that, utidermarket clearing assumption,

freight rates move instantaneously to bring the ketainto equilibrium, where

Q°=QP. This implies that one can therefore derive treigfit rate equation by

solving the system of equations in Expressions @l (2.5) as follows:
FR = f(QtD; K ép} (2.6)

Following this, Tinbergen estimated the model impEession (2.6), using annul data
for the period between 1870 and 1913. This is dasirg the following log-linear
form in order to determine the significance andstiity’'s of the respective

variables, where:
INFR =ainQ°+BIn K +yin BR  (2.7)

Tinbergen reported that all the estimated paramdtem Expression (2.7) have the

correct sign, i.,ea>0, <0 andy>0. Tinbergen this established the important

influences that demand, supply and bunker price® lva the determination of the

prevailing freight rates.

2.2.3 Koopmans (1939) and Tanker Freight Rates and  Shipbuilding

Koopmans (1939) provided the first study within #tgpping literature to distinguish
between the dry cargo and tanker sector. In thidystKkoopmans examined the tanker
freight market using a supply-demand framework, ihreost of the theory proposed
by Tinbergen (1931) and Tinbergen (1934) was exadimsing tanker market data
for the period between 1920 and the mid 1930’s. gfoans’ most interesting
contribution, apart from examining the tanker madsea separate entity, was that the
study distinguishes between periods of prosperitg depression in the tanker
markets. This meant that Koopmans could explain flosv price elasticity of the
supply schedule would change from being relativabstic when freight rates are
low, i.e. the market is depressed, to being inielashen freight rates are high and

almost all the fleet is employed, i.e. the marketxperiencing a period of prosperity.
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2.2.4 Criticisms of Early Econometric Models

Although these models form the basis of further ieicgd analyses of the shipping
markets, they are still open to criticism. Thetfiobvious criticism is that Tinbergen
(1931) and Tinbergen (1934) completely ignored fhet that the bulk shipping
market is comprised of two separate sectors, nathelylry-bulk and tanker sectors,
each with their own particular characteristics opgly and demand. Although this
issue was somewhat addressed by Koopmans (193@gtithe study focuses on the
tanker sector, this still means that the dry-budktsr was largely ignored, where
Chang and Chang (1996) argued that the dry-bullosecexposed to the most risk as
it is the most perfectly competitive sector. A het criticism is that, with the
exception of Koopmans (1939), no attempt was maddigtinguish between the
behaviour of supply and demand at various stagethanshipping cycle. A final
criticism was that no attempt is made in any okéhpapers to determine whether the
shipping markets are efficient or provide any favfrforecast of the future direction
of shipping freight rates. These criticisms aretipy addressed in the following
section, which investigates the question as to érdteight rates follow a stationary
or non-stationary process, a question to which thesis provides an alternative

answer by proposing that these are in fact fraatlgimntegrated.

2.3 Are Spot Freight Rate Levels Stationary?

As mentioned above, since the pioneering work ofb&rgen (1931), Tinbergen
(1934) and Koopmans (1939), there has been tremnendoademic interest in the
area of maritime economics, particularly on theictire of freight markets and the
modelling of the spot freight rate for bulk shipgirHaving an understanding of the
structure of these freight rates, ship-owners ehars, and other participants in the
shipping markets may be more secure as to the ancwf models and forecasts
made with regard to the future direction of freigates, and, accordingly, therefore
more able to make the correct operational and tmest decisions. This section
focuses on the structure of freight rate levelsl Bnparticular on the question as to

the degree of stationarity of freight rate levelshe shipping freight market?
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Before going any further it is worth noting whatneant by a stationary time series.
Brooks (2002) defines a series as weakly statignahat is commonly meant as a
stationary series, if it has a constant mean, astaah variance and a constant
autocovariance. Engle and Granger (1987) extersl dlgument by stating that a

series, given that the it has no deterministic coment, is said to be integrated of

orderd, i.e. | (d) if this series is a stationary, invertible, Awgressive Moving

Average representation after it has been differé¢dcemes. For example, a series is

said to follow anl (1) process if the first-difference of the seriest&isnary.

2.3.1 Structural Models of Shipping Freight Rates

The early econometric models of the shipping inguisliscussed above, provided the
first ideas regarding the formation of freight satend the structure of the shipping
freight markets. These ideas were then expandedabyetos (1966) to provide the
first complete structural model, which was in twxpanded on by Hawdon (1978)
and Beenstock and Vergottis (1989). The basiseddahmodels was to use supply and
demand fundamentals to develop a definitive modebrder to forecast the future
direction of spot freight rates. This section rexgethese papers and provides a brief

critical commentary on their value.

2.3.1.1 Zannetos (1966) and the Structure of Tanker  Freight Rates

Zannetos (1966) extended the earlier econometrideinim provide one of the first
structural models, and the first study to distisgubetween the determination of spot
and time charter freight rates. Although this eztea study primarily dealt with the
relationship between spot and period freight raf@snetos argued that prevailing
spot freight rates, i.e. short-term freight rates,the tanker market are solely a
function of the number of ships in lay-up at anynpan time. In order to test this

hypothesis, Zannetos tested the relationship that:

—ard L
S = at t{LU) (2.8)

One should note that, in Expression (2.8) ab&elenotes the tanker spot freight

rate level, whilel/LU denotes the proportion of the tanker fleet in digy-It is worth
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mentioning thafl/LU is included to provide for the empirical obsereatthat tanker

freight rates never fall below certain rates, kn@srthe so-called lay-up points.

Hawdon (1978) highlighted the fact that the vajidf this simple model depends on
the assumption that autonomous shifts in demandrpead that the supply schedule
in the tanker market is fixed. Although this asstioppwould hold in the short-term,
the supply function can change when looking atreyés horizon. Hawdon proposed
that Zannetos (1966)'s assumption can be testedeXamining the correlation

between the spot freight rate levels dAdU for sub-periods of approximately equal

length, the results of which indicate that the d$yppurve has indeed shifted

significantly between sub-periods.

Hawdon (1978) suggested several possible techmeeaons for the failure of this
hypothesis. The first of these is that the develapinof combined carriers led to a
reduction in the specificity of the tanker fleebabling these vessels to switch to the
dry-bulk market, rather than going into lay-up. Amer reason is that vessels have
significantly increased in size, hence the subsatgeeonomies of scale would mean
that vessels are able to operate a lower freighsrdhus leading to a reduction in the
number of lay-ups. A further reason proposed i$ Hanetos (1966) fails to allow
for the fact that the costs of inputs into the &mikarket may change over time, thus
affecting the number of lay-ups.

This being said, Hawdon (1978) argued that theeeraore fundamental flaws in
Zannetos (1966)'s model. The first of these is,tdae to a lack of data, the data and
methods used to constrlfLU are open to question. The other is tHatU does

not account for other factors, such as sailing dpewhich may affect the level of
supply in the market. This leads one nicely ontavtian (1978)’'s model, which is

discussed in more detail in the following sub-sw@tti

2.3.1.2 Hawdon (1978) and Tanker Freight Rates Acro ss Time Horizons

Hawdon (1978) extended the previous literaturergyiag that shipping freight rates

in the tanker sector can be viewed as a seriestefactions between the market for
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tanker services and the market for tankers. Hawmtoposed that both the supply and
demand functions are price inelastic in the shant-However, this picture changes in
the long-run, where, although demand remains itieJabe level of supply is likely

to be affected by the current and expected valGé=ight rates in the market, where

the market for tankers will initially alter as fghit rates in the tanker market change.

Hawdon (1978) continued by proposing that as tankeedominantly carry oil, the
demand for tanker services is likely to a functamthe world demand for oil. In
addition, Hawdon argued argues that supply of temikethe market, or the size of the
current fleet, is derived as follows:

F,.=F_,+D,-Sg (2.9)
One should note that, in Expression (2.9) abdyeand F,_, denotes the size of the

fleet in the current and previous periods, resgebt while D, and Sg denote the

number of vessels delivered and scrapped duringuhent period, respectively. In

this function, Hawdon proposed thBt and Sg are likely to be dependent on the

expectations in the tanker market with respecutaré rates, as well as some other

market specific factors.

Hawdon (1978) hypothesised that the demand foretasdrvices is a simple function
of total world trade in oil, where at any momenttiime a certain proportion of the
existing tanker fleet will be employed, or activéhile the remainder will either be in
lay-up or lying idle. One can measure the sizénisf active fleet as follows:
AF=a+bT (2.10)
In Expression (2.10) abové\F denotes the size of the active fleet, whildenotes
the level of demand for tanker services. Consedyethis would imply that freight
rates will remain relatively low, until the pointahich the proportion of the total that
fleet that is active reaches a critical value, dticlw point freight rates will
subsequently increase rapidly as this proportiamemses. This being said, Hawdon
argued that freight rates in the tanker marketikedy to vary with the proportion of
the total fleet that is active, rather than with #ize of the active fleet, hence:

R=f(gR+bT k) (211)
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In Expression (2.11)R, denotes the spot freight rate,and b are the coefficients
from Expression (2.10)F, is as calculated in Expression (2.9) anhdis given.

Hawdon believed that if this analysis is correlsgr a direct exponential relationship

may exist betweerR , a/F, andbT/F, since the proportion of the total fleet that is

active is equivalent to the total fleet minus thember of lay-ups. Hawdon noted,
however, that this model of freight rates is ndfisent as, in order to complete this

specification one must take into account such supigle factors. These include

bunker cost{BC), the price of new tankefPS), the cost of laboufLab), the
prevailing freight rate in the dry-bulk sect@DR) , Wwhich acts as a substitute market,

as well as the average size of a tar(sé8). Hawdon thus derived the following

reduced form freight function:
logR =a+d F+bT F+ cBCr dPS elLab fDR g/ (2.12)

Hawdon went on to describe other characteristicheftanker market, namely how
orders for new tankers, second-hand ship prices,le¢kel of scrapping and the
number of new deliveries are described. Howevethase are not strictly relevant
for the current research topic, it would not beassary for these to be considered

further in this thesis.

2.3.1.3 Beenstock and Vergottis (1989) and the Dry- Bulk Market

Beenstock and Vergottis (1989) extended the preverapirical analyses by, amongst
others Koopmans (1939), Hawdon (1978) and Werge{af81). This was done by
developing and estimating, using annual data ferpriod between 1960 and 1985,
an aggregate econometric model of the dry-bulkoseat which freight rates, the
level of lay-up, new and second-hand prices ofelesaind the size of the fleet were
jointly determined. One should note that in thigpgra Beenstock and Vergottis
assumed rational expectations, i.e. that the lmestést of future values is provided
by a random walk, and that time-charter rates g@othesised to reflect rational
expectations of current freight rates in the spotayage market. It should be further
noted that Beenstock and Vergottis did not test fiypothesis, although later papers,
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such as Berg-Andreassen (1997), amongst othergeslidhis and found that it does

not hold in the shipping context.

Beenstock and Vergottis (1989) assumed that shipeesvmaximise profits under
conditions of perfect competition, in which they &een a price-takers, both in terms
of voyage income, as reflected by the prevailirggint rates, denoted , and voyage
costs, denotedPB, such as bunkers, wages and port charges. Bekrastdd/ergottis
highlighted the fact that the number of voyages endy a vessels is directly
proportionate to the average speed of the veseabtddS, however, voyage costs
vary disproportionately with speed, in fact theyxraase exponentially. One can
therefore determine the profit from a vessel, dyany time period, as follows:
MN=SF-S PB- OC (2.13)
In Expression (2.13) aboves? reflects the hypothesis exponential relationship
between the speed and voyage costs of a vesséd @8i denotes the operating, or

fixed, costs for the respective vessel.

Beenstock and Vergottis (1989) highlighted the thet freight rates are determined
by the interaction between the demand and suppigdsdes in the market, where the
supply of vessels is proportional to the size af thading fleet multiplied by the
average speed of this fleet. In addition, the sizéhe world fleet is inelastic in the
short-run as a result of the lead-time on shiplingjcactivities. One should also note
that the number of vessels in lay-up will dependtba prevailing freight rates,
voyage costs and running costs relative to thesaafslay-up. In the longer term, the
fleet size varies as a result of shipbuilding aacgping activity, where the level of
shipbuilding varies directly with the price of newvessels, and scrapping varies
inversely with second-hand prices of vessels. Beeksand Vergottis therefore
proposed that as the size of the fleet affectglfiteiates, while freight rates affect the
stock demand vessels, the level of freight ratégy rices and fleet sizes are

dynamically interdependent.

Following this, Beenstock and Vergottis (1989) hymsised that the short-term level
of supply, which is measured in tonne-miles, caddtermined as follows:

M®=1,(K%F/PB;Z) (214)
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In Expression (2.14) abové/ °> denotes the level of suppli ” denotes the size of
the fleet trading in the dry-cargo market, i.e. tvhlawdon (1978) defined as the

active fleet,F/PB denotes the size of the world fleet divided by phiee of bunkers

and Z, denotes a vector of exogenous variables thatteafiedevel of supply.

Beenstock and Vergottis (1989) continued by defjrire active fleet as follows:
K”=(1-4)K+COM  (2.15)
In Expression (2.15) above; denotes the proportion of the dry-bulk fleet ig-igp,

COM denotes the number of combination carriers opegat the dry-bulk market,

and K denotes the total dry-bulk fleet.

Beenstock and Vergottis (1989) proposed that thekebhdoehaves slightly differently
in the longer-term as new vessels are deliveredaaonarket and ship-owners are able
to scrap their vessels. This would imply that tize ®f the dry-bulk fleet at the end of
periodt is calculated as follows:

K,=K_,+D,-S,- L (2.16)

In Expression (2.16) aboved) , S and L denote the number of new vessels
delivered, the number of vessels scrapped, and nilmaber of vessels lost,
respectively. Beenstock and Vergottis proposed tiatnumber of vessels sent for
scrapping will vary inversely with the second-primfevessels relative to the price of
scrap, and directly with the age profile of theefleln addition, drawing on previous
models proposed, such as those in Witte (1963)n&8eek and Vergottis argued that
the supply of new vessels, measured by the sigeeadrder-book, varies directly with
the new-building price and inversely with the praeother types of vessels, where
the latter provide alternative means of income tloe shipyard. Beenstock and
Vergottis also highlighted the decision to investdisinvest in vessels is also a
function of the expected operating profit, whicls, defined in Expression (2.13)

above, is at least in part a function of the expaéteight rates.

On the other side of the market equilibrium equatithe level of demand, denoted
M P, which is again expressed in tonne-miles, ineWtaeflects the volume of

seaborne trade. The volume of seaborne tradeynn feflects the level and structure
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of world economic activity, both in terms of geqgghn& location and the type of
commodities traded. Beenstock and Vergottis theeefimply defined the demand
function as follows:

MP=M (2.17)
One should that in Expression (2.17) abaVie,denotes the exogenously determined
volume of seaborne trade in dry-bulk commoditiesefstock and Vergottis argued
that, although in theory the level of demand shaddy inversely with the level of
freight rates, the fact that there is limited scégresubstitution means that demand is
relatively price inelastic. It should be furtherted that Beenstock and Vergottis
assumed that the market was in equilibrium, ie> =M °, hence freight rates would
move to clear the market. This would imply thatipes of high (low) freight rates
would induce ship-owners to invest (disinvest) iessels, thereby leading to an
increase (decrease) in the level of supply of shgpgervices, and a subsequent fall
(rise) in freight rates, and hence follow a mearersion process.

A flaw with Beenstock and Vergottis (1989)'s arguthéhat freight rates follow a
mean reversion process is that they do not exarthieespeed at which these
adjustments occur. Although this research doesurtpte with the premise that freight
rates are bounded in the long-run, it does feeltthia will not necessarily be the case
in the short-run due to the lag between the ordeaind delivering of new vessels.
Therefore, it may be more appropriate to talk alfoeight rates being fractionally

integrated rather than completely stationary.

2.3.1.4 Concluding Comments on Structural Models

The structural models discussed above assume ribightf rates are bounded by
supply-side factors. One could therefore, using enmgcent time series theory,
conclude that freight rates are mean revertingh@ $hort-run and are therefore
stationary. The reasons for this is that any dramatrease in freight rates will be
accompanied by an increase in the supply of shipparvices as ship-owners take
their tonnage out of lay-up and increase the spédich their vessels are operating.
This is because ship-owners do not want to misepipertunity to earn high returns.
The reverse will apply if freight rates fall, i.ghip-owners will begin to lay-up their
vessels and operate their vessels at a greatlgeddueight rate in order to minimise
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costs such as bunkers and the cost of wages. Odetimand side, if freight rates
increase dramatically, charterers will begin toklat other substitute methods of
transport, such as air, therefore causing a dezreashe demand for shipping
services. Therefore these factors all combine éater a mean reverting process, as
outlined in later papers, such as Tvedt (1997)aretlt (1998).

2.3.2 Critique of General Equilibrium Models

While this research does not disagree with theragmi that freight rates follow a
mean reversion process, presented above, it preplaethe mean reversion process
is ‘delayed’ in that freight rates display a longsmory and therefore this process will
not happen as quickly as authors such as Zann&®&6) and Hawdon (1978) may
have implied. This would mean that the level oidght rates may exceed the two
standard deviation unit band that a stationary ggecsuggests. Hence, this research
surmises that the answer to the question of theedegf integration lies somewhere in

the middle of stationary and non-stationary process freight rates are fractionally

integrated(0<d <1).

Another criticism of structural models is that theguire one to forecast both the
demand and supply sides of the freight rate prodé8sle the supply side of the

process is endogenous to the shipping market, hedkfore may be able to be
accurately forecasted using variables within thpmhg market, the demand side
factors are exogenous, in that the demand for stgpgervices is derived from world

trade. As a result of this, one cannot forecastddimand side of the market using
endogenous variables, and, even if one were to tblebtain all the relevant

exogenous variables, many have tried to model wioalde and failed. This research
avoids this problem by using a partial equilibriapproach where the only item being
used to model freight rates are freight rates tie¢ves.

A final criticism of these models is that these adlsume investors have ‘rational

assumptions’. This means that future freight ratéksbe solely be a function of the

level of freight rates today. This hypothesis Haswyever, been queried in a number

63



of papers, where, for instance, Berg-Andreassef7(l®und that this does not hold

in the shipping context.

2.3.3 Arguments Regarding Non-Stationarity and Coin  tegration

This section reviews the literature on the coirdéign between freight rates and other
factors in the shipping market. The aim of thisosuse the concept of cointegration,
which requires that the underlying series are haggrated of the same order, where
the order is greater than or equal to one, to oeter whether freight rates follow a
non-stationary process. To put this simply, in ordebe cointegrated with another

factor from the shipping markets, freight rates niakow at least an (1) process.

2.3.3.1 Berg-Andreassen (1996) and the Structure of  Freight Rates

In the first paper reviewed here, Berg-AndreassiEd9g) tested two fundamental
hypotheses regarding the structure of freight rameshe shipping market. First,
Berg-Andreassen tested if freight rates are statioor not; and, second, then tested
whether the assumption that freight rates are nibyndistributed holds true. The
motivation behind the first hypothesis was thahdtad econometric techniques have
serious shortcomings when performed on non-statyorexiables, hence one needs to
ensure that all variables, in this case freighdgaare stationary before continuing. As
far as the second hypothesis is concerned, Bergeasden argued that one cannot
implement any risk-reducing diversification straésgif the characteristics of the

distribution of the underlying series are not known

Regarding the first hypothesis, Berg-Andreassefg)l8oted that Engle and Granger

(1987) defined a series as integrated of odldrthe d"-difference of the series is

stationary. To this end, Berg-Andreassen perfordvedmented Dickey-Fuller tests,
developed by Dickey and Fuller (1981), on a sangpldaily freight rates, extending
from 4 April 1985 and 23 December 1988 and acr@seolites. The results indicated
that one could not reject the null hypothesis far $pot freight rate levels; however,

one could for the first differences. Berg-Andreasmis concluded that freight rates

followed anl (1) process, and were thus non-stationary in levetsgf\ndreassen

argued further that these results indicated theglfit rates followed a random walk
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process, hence forecasts of future freight ratsgdan historical statistics became
nigh on impossible and therefore the conventiotesdt“done” wisdom would provide
just as good a forecast as any other more sopdtistienethod.

Looking at the second hypothesis regarding theribigton of freight rates,
Mandelbrot (1963), in response to the common oeoee of extreme leptokurtosis in
financial time series, developed a new family oftdbutions named the Paretian
distribution. Berg-Andreassen (1996) adopted tlsisaastarting assumption, which
was then tested using the Jarque-Bera test, deacklop Jarque and Bera (1980), the
results for which indicated that one could rejdw null hypothesis of normality,
where further descriptive statistics indicated phesence of extreme leptokurtosis, as

suggested by the Paretian assumption, as welldugfiicients of skewness.

Berg-Andreassen (1996) thus reached the overatllgsion that freight rates over the

sample period were non-stationary, following la(li) process. In addition, it was

argued that the hypothesis of a Paretian distobutf these freight rates was met.
This latter conclusion is of definite interest tetdiscussion of the structure of the

higher moments later in this chapter.

This being said, there are doubts regarding the&ieficy of the tests used to
determine whether the data series are stationanyotrIf the data series are not
non-stationary as proposed by Berg-Andreassen J198&n the results of the
cointegration analysis will be invalid. In factadlitional maritime economic theory, as
outlined by Zannetos (1966), amongst others, ardghas due to the supply and
demand fundamentals, freight rates are in meantregewhile more recent studies,
such as Adland and Strandenes (2004), propose fteght rates are indeed
stationary. However, this research argues thataltiee lag between the ordering and

delivery of new vessels, freight rates are in feattionally integrated.

2.3.3.2 Berg-Andreassen (1997) and Freight Rate Gen eration

Berg-Andreassen (1997) extended the earlier wortherstructure of freight rates by
empirically evaluating five different prevailingetries on the freight rate generation
process in the time charter markets in shippinggBedreassen sought to test the

market notion that changes in spot freight ratesnénl the basis of the market
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expectation regarding future period freight ratgaimast those hypotheses laid out
regarding the structure of period freight rates papers by Zannetos (1966),
Beenstock and Vergottis (1989) and Hale and Var(@889). In brief, Zannetos

argued that the short-run rate is an importantradeteant in the long-run expectation
process, while Hale and Vanags based their reag@mirthe expectations hypothesis,
i.e. that the spot-period freight rate relationshspould be similar in nature to those in
other markets. Beenstock and Vergottis arguedtiigaturrent period rate should be a
function of both the expected short-term rates #mel voyage cost. Using the
Koyck-lag estimation procedure, developed by Kof®54), it was shown that most
of the explanatory power for the model was gleafteth the constant and lagged

dependent variable, where this was the period rate.

Berg-Andreassen (1997) then formalised these cdsdejo five separate hypotheses.
The first of these was the Zannetos Hypothesisyel@rfrom the Zannetos (1966)
model, which argued that the period was a funabioipoth the spot rate levels and the

changes in the spot rate, consequently:
V.= f(S:88) (218)
In contrast, the second, i.e. the Lagged ZannetgsotHesis, extended the above

hypothesis by postulating that it would hold if txeplanatory variables were lagged
one period, hence:

Y, = f(S,508,) (19
The third hypothesis, known as the Koyck-Lag Hypsth, which was derived from
Beenstock and Vergottis (1989), stated that theo@erate was a function of all
previous period’s voyage costs. In simpler ternmaétely stated that the time charter

rate was a function of the lagged time charter aatkthe contemporary voyage costs,

thus it can be expressed as follows:

R, = f(Rw V) (220
Fourth, the Rational Expectation Hypothesis, asirmd in Hale and Vanags (1989),
proposed that period freight rates were a funatibthe difference between the long-

and short-term freight rates, the rate spread,thadagged level of the short-term

rate, therefore one could state that:

Ry = f( Riv =40 4 —1) (2.21)
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The fifth, and final, hypothesis, referred to byr@é\ndreassen as the Conventional
Wisdom Hypothesis, stated the market notion that pleriod freight rate was a

function of only the changes in the short termdheirate:, i.e.:
v, = f(as,) (222
One should note that in Expressions (2.18) to (2.BZ2 andY,, denote the time

charter freight rate in the markietit periodt, where these were measured in $ / day

and $ / dwt / month, respectively. Additionally,, andZ,, denote the spot freight

rate in the market at period t, where these were measured in $ atah$ / day,

respectively; whileyV.. denotes the voyage costs in the markat periodt, where

it

these were measured in $ / day.

Having outlined the hypotheses, Berg-Andreassef7)Lthen moved on to examine
the methodology to be used in the empirical evauabf these. The first step in the
process was to determine the degree of integraifothe underlying freight rate
series, using Dickey and Fuller (1981)'s AugmentBitkey-Fuller test for
stationarity. Having done that, Berg-Andreassen tiested for cointegration between
the underlying series using the test developeddhardsen (1988). Using a data set
comprised of 10 years of quarterly data over tltifferent routes, Berg-Andreassen

reached the conclusion that all variables in théa deet were first-difference

stationary. Berg-Andreassen found that the residdat all series werd (1),

therefore the Zannetos and Lagged Zannetos hypesthamild be rejected outright.
Moving on, the results for the Johansen test indicano cointegrating relationship
between the time charter rates and voyage costieftne the Koyck Lag hypothesis
could be rejected, while mixed results for the &ai Expectations Hypothesis led
Berg-Andreassen to conclude that the Johansenvtesimore reliable and therefore
reject this hypothesis. Of all the hypothesesatfilg set of series for which there was
a cointegrating relationship was between the tiheeter rates and changes in the spot
freight rates. Consequently Berg-Andreassen coedutiat only the Conventional

Wisdom Hypothesis is valid in these cases.

One should note, however, that a series of majablpms with this paper exist. The
first of these is that the whole analysis is onséd on three routes, which places
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serious doubts on whether or not these resultsganeralisable across the entire
freight market. Furthermore, as argued previouslyhis chapter, there are doubts
regarding the efficiency of the tests used to deit®ee whether the data series are
stationary or not. If Berg-Andreassen (1997)’'s dosion that the freight rates are
non-stationary fails, then the results of the cnation analysis will be invalid. In

fact, traditional maritime economic theory, as matl by Zannetos (1966), amongst
others, argues that due to the supply and demamthifnentals, freight rates are in
fact mean reverting, a fact supported by more reltenature, such as Tvedt (1998),
where these suggest that freight rates follow tosiary process. This being said, this
research argues that due to the lag between tlegimgdand delivery of new vessels,

freight rates are in fact fractionally integrated.

2.3.3.3 Veenstra and Franses and the Efficiency of  Shipping Markets

Veenstra and Franses (1997) took a slightly diffeegproach to previous papers in
that they looked at cointegration between datesghowever these data series were
solely comprised of freight rates. Veenstra andnéea developed a Vector
Autoregressive (VAR) model to model these freigites and then assessed forecasts
derived from this model to determine whether tinprioved the accuracy of short-
and long-term forecasts. The main justificationvmed for this process was that
shipping freight markets were assumed to be apprately efficient, hence these
freight rates would contain all publicly availabfgormation and no extra variables
beyond these would be required for model buildikRgrthermore, Veenstra and
Franses argued that one might have expected #ighfrrates for different parts of
the shipping industry were correlated; thereforee aould try to indentify the
underlying structure that could have been sumntnsea multivariate time series
model, such as that provided. Veenstra and Fratheesfore identified three main
aims for the research, i.e. to generate forectsigentify the long-term trend behind
the freight rates; and, to investigate whether\t#d&R model outperformed the no-
change forecasting model. Veenstra and Fransegstagbthat should the above aims
not be the case, then one could feel confidentrdaga the validity of the Efficient

Markets Hypothesis in the case of the shipping etark
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In the analysis, Veenstra and Franses (1997) uskdaaset comprised of the natural
logarithms of monthly freight rates across six sefgaroutes and two vessel classes,
three per class, for the period between Septen@3 and February 1995, where the
period between September 1993 and February 1995.sexs for ex-ante evaluation
of the forecasting performance. Veenstra and Fgatisen performed Augmented
Dickey-Fuller tests, first proposed by Dickey andllér (1981), to test for the
stationarity of the data series, the results foictviindicated that all data series were
non-stationary at the 1% level of significance. iHgvcalculated the respective
correlations for all data series, Veenstra and $@arargued that the correlation and
unit root results all provided evidence that theesecould have common properties.
Veenstra and Franses proposed the use of the VAdeInmo order to describe these
properties, where this would have explained theatttaristics of the underlying six
freight rate series through their own lagged valuéd®ere this was somehow restricted
to reflect the common features. In order to test dssumption that the series were
cointegrated, Veenstra and Franses performed opit tests on the un-weighted
differences between all possible combinations o tut of the six series. As an
alternative to this pair-wise approach, Veensti lranses investigated cointegration
amongst all six variables in one step using useJtiteansen (1991) test for this
purpose. Veenstra and Franses noted that Grangeedemtation Theorem, outlined
in Engle and Granger (1987), suggests that shouclrdaegration relation between a
set of series exist, then the VAR can be writtera &&ector Error Correction (VEC)
model, and vice versa. Based on the results okttests, Veenstra and Franses thus
concluded that there were five cointegrating relahips within the sample set and
then obtained the estimated cointegration paras&tghin the VEC model using the

Ordinary Least Squares methodology.

The results from this analysis indicated that diolyr adjustment coefficients were
significantly different from zero, where, in thebsg@quent forecasting exercise, all
other parameter were set equal to zero. Veensttdeanses (1997) highlighted the
fact that a common phenomenon when modelling ofregght rates is that different
freight rates exhibit quite similar patterns, whehes similarity may indicate the
existence of a common stochastic trend within th& det. To this end, Johansen
(1991) established that a condition for one comnend to exist for six freight rates

would be that there are five cointegration relagiomthe set of freight rates. Veenstra
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and Franses therefore once again considered thespEcification of their VAR (1)
model in order to find an expression for the stetibarend, and to discover a way of
calculating that trend. Veenstra and Franses nibi@dthe stochastic trend could not
be forecasted as it was, by definition, a randonkwweocess, and therefore simply
portrayed the unexplained part of the data once d@terministic or common

relationships within the provided data set had lreemoved.

Veenstra and Franses (1997) then moved on to lbtledorecasting performance of
the specified VAR model, where the forecasting #ignavas derived on the basis of
the general VAR (1) model used above. VeenstraFaadses confined their forecast
analysis to dynamic forecasts from 1 up to 18 plrimhead and forecasts for 1 period
ahead for the each of the 18 periods and then cmdphese forecasts with the naive
forecasting method, where the observation in tlewipus period was used to provide
the forecast for this method. Veenstra and Frafm@sd that the forecasts did not
appear to pick up the actual freight rate movemedmawever, they observed that the
realized observations were usually well within 886 forecasting intervals. Veenstra
and Franses noted that these results may be asuld o€ the fact that longer term
forecasts for VAR models tend toward the estimaedrage of the series in the
model. Another reason why the model may not haviopaed well in the long term
was illustrated by the stochastic trend describbdve. Veenstra and Franses
therefore concluded that their proposed multivarMEC model with 5 cointegration
relations was defeated by a naive forecasting egfyatfor both the short- and

long-term forecasts of these series.

Veenstra and Franses (1997) thus reached the somtluhat an economically
meaningful structure exists in a set of ocean dii freight rates. Further, the results
did not seem to be in conflict with the efficientarket hypothesis as it applies to
ocean freight rates as, even though there appdae tong-run relationships between

freight rates, they found that such relationshipsidt result in improved forecasts.

As with the previous papers, there are doubts deggthe efficiency of the tests used
to determine whether the data series are statiorlrthe data series are not
non-stationary, then the results of the cointegratinalysis will be spurious. In fact

traditional maritime economic theory, such as Zaosig1966), amongst others,
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argues that due to supply and demand fundameriiteight rates are in fact mean

reverting, with more recent partial equilibrium dites, such as Adland and Cullinane
(2006), adding that freight rates are stationatyisbeing said, this research argues
that due to the lag between the ordering and dglisenew vessels, freight rates are

in fact fractionally integrated.

2.3.3.4 Kavussanos and Nomikos (1999) and the Issue  of Unbiasedness

The focus changes somewhat now to examine theactien between futures and spot
prices, where Kavussanos and Nomikos (1999) inya&td the Unbiased

Expectations Hypothesis of futures prices in tleggfit future markets. Cointegration
techniques, which were employed in order to exarthreehypothesis, illustrated that
futures prices provided unbiased forecasts of sedlispot prices superior to those
generated from Error Correction, Autoregressiveedrated Moving Average

(ARIMA), Exponential Smoothing and Random Walk misdédHence, Kavussanos
and Nomikos argued that it appeared that userbeofreight futures market, i.e. the
Baltic International Freight Futures Exchange (BEX; market, received accurate
signals from these markets as to the future doactif spot freight rates and could
therefore utilise the information generated by ¢hiesight futures prices to guide their

decisions in the physical market.

Kavussanos and Nomikos (1999) argued that priceodesy is one of the main
reasons for the extent to which future contraatgwireflect unbiased expectations of
the spot price on the date of delivery is importanmarket participants. One should
note that by price discovery, the authors meantpitoeess through which market
participants are able to use futures prices tocaisr’ future equilibrium prices in
spot markets. If futures prices are not unbiaseectsts of these equilibrium prices,
then they may not perform this price discovery reféiciently as they do not
represent accurate predictors of expected spaghfreates. Several studies, including
Lai and Lai (1991) in various FOREX markets, Chowgh(1991) in commodity
markets, and Crowder and Hamed (1993) in the airés market, found that the
unbiased expectations hypothesis held in that éstyrices were unbiased forecasts
of the realised spot prices. On the other handhisied and Adkins (1994) found that
the Unbiased Expectations Hypothesis failed ingiharterly Treasury bill, Eurodollar

71



and Treasury bond futures markets. One shouldthateone of the common features
of these studies was their use of cointegratiohrtieies due to the fact that spot and
futures price series followed a non-stationary pssc According to Kavussanos and
Nomikos, the Unbiased Expectations Hypothesis mpresed of two suppositions,
namely, that the price of a freight futures cortizefore the date of maturity is equal
to the expected spot freight rate on the date dlintg and, that the expectation of
the spot freight rate is formed rationally. The haus examined this notion
empirically by testing the parameter restrictiorhatt(ﬁl;ﬁz) = (0;1) in the
following expression:

S =B +B,R ., +E ;£ ~iid(00?) (2.23)

If futures were an unbiased predictor of the futspet price, then the current futures
price would contain all the relevant informatiomueed to forecast the next period’s

spot price, where these were denoked,, and S, respectively, in Expression (2.23)

above. In addition, investigated the short run dyicaproperties of spot and futures
prices with the aim of identifying the speed witthieh spot and futures prices

responded to deviations from their long-run relagiap.

Kavussanos and Nomikos (1999) then tested for egiation using Johansen’s
estimation procedure, outlined in Johansen (198Bgre under this specification, the
joint distribution of spot and futures prices cae tbescribed as a Vector Error
Correction Model (VECM). One should note that wispiot and futures prices follow
a non-stationary process, cointegration is a nacgssondition for the Unbiased
Expectations Hypothesis to hold. If this is not tase, then spot and futures prices
will tend to drift apart over time and thereforeutes prices cannot be unbiased
predictors of the realised spot prices. It is im@or to realise that although
cointegration is a necessary condition for the dséd Expectations Hypothesis, it is
not a sufficient condition, i.e. it does not neecedg mean that the hypothesis holds,
as demonstrated by Hakkio and Rush (1989). Befoeeaan test for cointegration,
one needs to establish that the component datsdetlow a non-stationary process
both in terms of seasonal and ordinary unit rdotrder to test this, Kavussanos and
Nomikos employed the methodology outlined by Hydlep et al. (1990) to test for
seasonal unit roots, and the Augmented Dickey-Falhel Phillips-Perron tests to test
for ordinary unit roots, where the these were dgwed by Dickey and Fuller (1981)
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and Phillips and Perron (1988), respectively. Témuits of these tests indicated that
the underlying series exhibit no seasonal units,oobwever, all series were found to
be first-difference stationary. Once this was id&, cointegration techniques were
used by Kavussanos and Nomikos to test the Unbi&sgectations Hypothesis,

where three steps may be distinguished in thisga®cFirst, the authors arrived at a
well-specified VECM; second, the existence of a ntagrating vector was

investigated within this VECM using the maximum atmece tests proposed by
Johansen (1988); and finally, once the existenddetointegrating relationship had
been established, the Unbiased Expectations Hypistiweas investigated by testing

the parameter restrictions th@ =0 and £, =1 in the cointegrating relationship

using the Likelihood Ratio statistic outlined irhdmsen and Juselius (1990). If these
restrictions hold, then the price of the futurestcact is an unbiased predictor of the

realised spot price.

The results obtained by Kavussanos and Nomikos9)l@@licated a VECM model
with lags of 1, 2 and 3 for the one-, two- and ¢ineonths data, respectively, was
well-specified and that a cointegrating relatiopstiid exist between spot and futures
prices. In the case of the one- and two-monthsrdstyrices, Kavussanos and
Nomikos found that the null hypothesis that the ldabd Expectations Hypothesis
held could not be rejected, hence futures pricesam two months prior to maturity
were unbiased predictors of the realised spot @riewever, in the case of the
quarterly futures prices, the restriction was rgdand therefore futures prices three
months prior to maturity provided biased forecadtthe realised spot prices. Possible
reasons for this included thin trading, as propokgdGilbert (1986), or that this
bias reflected imbalances between long and shodgihg demand in the
market, particularly for non-storable commoditias, proposed by Kolb (1992) and
Deaves and Krinsky (1995).

Kavussanos and Nomikos (1999) then tested the dstieg performance of
futures prices to test whether the findings of MI889), Kumar (1991) and Hafest
al. (1992), who found that, broadly speaking, futyvases provide superior forecasts
of the realised spot prices than do forecasts fedt@rnative models, hold in the

shipping market. Kavussanos and Nomikos (1999) ewatpfutures price forecasts
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with those generated by bi-variate VECM, univari&@BIMA and Holt-Winters
Exponential Smoothing, as outlined in Holt (195@y aVinters (1960), models. The
results obtained indicated that for the two- angdbmonths horizons, futures prices
outperformed the other models considered; howdwerthe one-month horizon, the
VECM provided marginally better forecasts than fimgires prices. Kavussanos and
Nomikos (1999) concluded that the results obtaimed two major implications, the
first of which was that participants in the futun@srket received accurate signals
from futures prices, which could then be used tadgutheir physical market
decisions. The second implication was that fordhe- and two-month periods, the
“average” hedger could use this market to effidieribrecast realised spot rates

without having to paying any form of risk premium.

Once again there are doubts regarding the effigi@idhe tests used to determine
whether the data series are stationary or ndbelfiata series are not non-stationary as
proposed by Kavussanos and Nomikos, then the sestithe cointegration analysis
will be spurious. In fact, traditional maritime ewnic theory, such as was outlined
in Zannetos (1966), amongst others, argues that tduesupply and demand
fundamentals, freight rates follow a mean reverspracess, while more recent
literature, such as Koekebakkeat al. (2006), suggests that freight rates follow a
stationary process. This being said, this researghes that due to the lag between
the ordering and delivery of new vessels, freigiies instead follow a fractionally

integrated process.

2.3.3.5 Kavussanos and Nomikos (2003) and Granger C  ausality

Kavussanos and Nomikos (2003) extended their eanimk by, in addition to
investigating the price discovery relationship e ffreight futures market, as in the
earlier work, investigating the causal relationshgiween spot and futures prices in
the Baltic International Freight Futures ExchangFFEX) market. The authors
argued that futures prices must lead the underlgpa prices in order to fulfil their
price discovery role. This was illustrated in papéy Stoll and Whaley (1990),
Wahab and Lashgari (1993), Hung and Zhang (199%)lae (1995), amongst others,
where the overall conclusion was that causalityvbet spot and futures prices can

run in one or both directions, where, in all cadesyres prices contribute to the
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discovery of new information regarding the futumevdl of spot prices in the

underlying market.

In order to establish these relationships, Kavussaand Nomikos (2003) used the
VECM, first proposed by Johansen (1988), and thedsen statistics, developed by
Johansen (1991), using the methodology outline&Granger (1986). Before being
able to establish cointegration between varialides, must first establish the degree
of integration for each of the underlying variablesnce the authors used Augmented
Dickey-Fuller, Phillips-Perron and KPSS tests,ilatited to Dickey and Fuller (1981),
Phillips and Perron (1988) and Kwiatkowslat al. (1992), respectively, to test

whether spot and futures prices were non-station@ihe results of these tests

indicated that both spot and futures prices folldves | (1) process, that spot and

futures prices were cointegrated and that futunesep tended to discover new
information more rapidly than spot prices. Follogithis, Kavussanos and Nomikos
compared the forecasting performance of the restitactor Error Correction Model
(VECM) with that of Vector Autoregressive (VAR), Aaregressive Integrated
Moving Average (ARIMA) and Random Walk models, wdnéhe accuracy of these
forecasts was assessed using the Diebold-Mariatofitst outlined by Diebold and
Mariano (1995). The results of these assessmedisated that, as long as futures
prices were formulated as a VECM, these providedoae accurate forecast of the
realised spot prices than the other models, thepeimjirming the results of their

earlier paper, i.e. Kavussanos and Nomikos (1999).

As with the previous papers, there are doubts deggrthe efficiency of the
Augmented Dickey-Fuller test, where Harris (19963 &Maddala and Kim (1998),
amongst others have criticised this test on theslthat they are not powerful enough
in rejecting the null hypothesis of a unit rootrtpaularly in cases where there is mean
reversion which is long relative to the sample tangraditional maritime economic
theory, such as outlined in Beenstock and Verg¢1t@89), amongst others, argues
that this is indeed the case in the shipping markehis being said, this research

addresses this issue by arguing that freight eates$ractionally integrated.
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2.3.3.6 Kavussanos and Visvikis (2004) and the FFA  Market

Another paper that looked into the forecasting pogfdutures prices with respect to
spot prices was that by Kavussanos and Visviki®420however, in this case, unlike
previous studies, this was in the Forward Freigite&ment (FFA) market. A further
difference is that Kavussanos and Visvikis extenthedexamination by investigating
the volatility of the series, where the volatiltpmponent shall be examined later in
this literature review. The ultimate aim of thisearch was to investigate the lead-lag
relationship, in terms of both returns and volatjlibetween the spot and futures

markets in the shipping industry.

In terms of the returns, Kavussanos and Visvik@0@ began by determining the
order of integration of the underlying spot andufes prices using Augmented
Dickey-Fuller, Phillips-Perron and KPSS tests, wehe¢hese were developed by
Dickey and Fuller (1981), Phillips and Perron (1p88d Kwiatkowski et al.(1992),
respectively. The results of these tests suggdsedboth the daily spot and FFA
series were first-difference stationary. Havingabbshed this, Kavussanos and
Visvikis then tested for cointegration between tlea series using the Johansen
procedure, developed by Johansen (1988), the sefultwhich indicated that spot
and FFA prices were integrated across all routexoAling to Granger (1988),
should series be cointegrated, causality betweesehes should exist in at least one
direction, therefore the authors implemented than@Ger Causality test in order to
establish the direction of this causality finding-directional relationships between
spot and FFA prices, however, FFAs played a leadolg in incorporating new
information. Kavussanos and Visvikis therefore doded that FFA prices played a

crucial price discovery role in the shipping masket

Once again the lack of power with regard to théstésr stationarity causes concern
here. If the data series are not non-stationammn tine results of the cointegration
analysis will be spurious. In fact traditional nteme economic theory, such as
Zannetos (1966), amongst others, argues that duesuggply and demand
fundamentals, freight rates are in fact mean rengerivhere more recent literature,

such as Adland and Cullinane (2006), suggestsftbight rates follow a stationary
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process. In contrast, this research argues thatadtie lag between the ordering and

delivery of new vessels, freight rates are in feattionally integrated.

2.3.3.7 Other Papers on Non-Stationarity and Cointe  gration

In addition to the research discussed above, a#s¥arch on this topic, amongst
others, included significant papers by Kavussai®9§), Glen and Rogers (1997),
Haigh (2000), Kavussanos and Nomikos (2000b) andgftHand Holt (2002).

Kavussanos (1996), while investigating volatilitythe spot and time-charter markets
for dry-bulk vessels, also tested for stationanitythe freight rate series examined.
Results from the Dickey-Fuller and Augmented DickepMler tests, attributed to

Dickey and Fuller (1979) and Dickey and Fuller (198espectively, indicated that

the logarithms of the spot and time-charter freigites followed ar (1) process.

Furthermore, Glen and Rogers (1997), when testimgcbintegration between the
component freight rates of the SSY Capesize Inded, Kavussanos and Nomikos
(2000b), when investigating the relationship betwspot and futures prices, used
Augmented Dickey-Fuller and Phillips-Perron testghere the latter was first
developed by Phillips and Perron (1988), to teststfationarity of the underlying time
series. The results of these tests suggested|titatnaponent freight rate series were
first-difference stationary. Providing yet more pap of this phenomenon, Haigh
(2000) and Haigh and Holt (2002) both, when alstirtg for cointegration between
spot and futures prices in the freight market, thtimat the results of the Augmented
Dickey-Fuller test showed that both the underlygpgt and futures freight rates series

were integrated of order one.

Once again there are doubts regarding the effigi@idhe tests used to determine
whether the data series are stationary or ndbelitata series are not non-stationary as
proposed by these papers, then the results of dh@egration analysis will be
spurious. In support of this criticism, traditiorrakritime economic theory, such as
outlined in Beenstock and Vergottis (1989), amormgsers, argues that due to supply
and demand fundamentals, freight rates are imfi@ein reverting; where this research
extends this argument by proposing that due toldgebetween the ordering and

delivery of new vessels, freight rates are in feattionally integrated.
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2.3.3.8 Concluding Comments

These papers all had one thing in common, i.e.thiet found that freight rates were
non-stationary, which therefore enabled the respeeiuthors to use cointegration to
try and determine the relationship between frerghés and some other variable. This
enabled the authors to better understand the bmlraei freight rates, and improve on

their ability to model this stochastic variable.eTtmajor assumption here, as stated
previously, was that freight rates followed a(i) process. This means that freight

rates are no longer considered to be mean revedimgsult completely contrasting
traditional maritime theory, as outlined in, foragxple Zannetos (1966), and freight
rates would no longer be assumed to be constrautbd a upper and lower bound.
As a result of this, interesting new models, sushARIMA and VECM, were

introduced to try and increase the accuracy ofjfrerate forecasting, although the
accuracy was still surprisingly low and many papsmgued that the most accurate

method of forecasting future spot freight rates wa®ok at the futures market.

2.3.4 Critique of Non-Stationarity and Cointegratio n

This research does not agree with this assumptfonoa-stationarity. As stated
above, traditional maritime economic theory, susloatlined in Zannetos (1966) and
Beenstock and Vergottis (1989), amongst otherdesstthat supply and demand
constraints are such that freight rates will ilfat# mean reverting properties. The
reason for this is that any dramatic increaseaight rates will be accompanied by an
increase in the supply of shipping services as-shipers take their tonnage out of
lay-up and increase the speed at which their vesael operating. This is because
ship-owners do not want to miss out on the chaaaatn high returns. The reverse
will apply if freight rates fall, i.e. ship-ownexsill begin to lay-up their vessels and
operate their vessels at a greatly reduced freaglktin order to minimise costs such
and bunkers and the cost of wages. On the demaedogithings, if freight rates
increase dramatically, charterers will begin toklat other substitute methods of
transport, such as air, therefore causing a dezreashe demand for shipping
services. Therefore these factors all combine éater a mean reverting process, as
discussed in Tvedt (1997) and Tvedt (1998).

78



In addition to this, Schwert (1989) illustrated tlmv power of the Augmented
Dickey-Fuller and Phillips-Perron tests, develogdDickey and Fuller (1981) and
Phillips and Perron (1988), respectively, partidylain the case of stationary
processes where there is a large negative unit irodhe moving average term.
Furthermore, more recent papers using partial guim models, such as those by
Adland and Cullinane (2006) and Koekebaklatral.(2006), have proposed that spot
freight rates are stationary, at least in the d¢éitheir distribution, however, these

results are not conclusive.

This research aims to settle this dispute by pptirat freight rates follow a mean
reverting process but that the mean reversion psoise'delayed’ in that freight rates
display a long-memory and therefore this proced$ mat happen as quickly as
authors such as Tvedt (1998) and Koekebagkkeral. (2006) may have implied.
Therefore, the level of freight rates may exceedupper and lower constraints that a
stationary process suggests. Hence, this reseaeththat the answer to the question
of whether freight rates are stationary or not Isssnewhere in the middle of
stationary and non-stationary process, i.e. frergkgs are fractionally integrated in

that they are integrated of a fractional order leetwvzero and one, i.6<d <1.

2.3.5 Stationarity and Partial Equilibrium Models

As discussed above, Schwert (1989)’s argumentthigimost commonly used tests
for non-stationarity, i.e. the Augmented DickeylEuland Phillips-Perron tests,

attributed to Dickey and Fuller (1981) and Phillgnsd Perron (1988), respectively,
lack accuracy casts doubt on many of the statemmegtsding the non-stationarity of
freight rates. Additionally, traditional maritime@omic theory, such as outlined in
Zannetos (1966) and Beenstock and Vergottis (1988)gests that freight rates are
constrained by an upper and lower limit due to dyaamics of the supply and

demand functions in the shipping markets. Recentyy literature has re-opened the
debate regarding the structure of the freight padeess. This literature is examined in

the discussion below.
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2.3.5.1 Tvedt (1997) and the Geometric Mean Reversi on Process

Tvedt (1997) examined the structure of freight sads a geometric mean reversion
process, which was then used to address the gunedtlmow to value a VLCC tanker.
Tvedt argued that as the value of an asset iseinfled by the future discretion of its
owner to adjust its use or properties in replytteisastic events, in this case changes
in the underlying freight rates, freight rate unagity would have been of paramount
importance to the market for VLCC vessels. Theefofvedt believed that the
improved valuation of these vessels was a sufficreotivation for a search to
correctly describe the stochastic nature of theetlgohg freight rate. One should note
that the demand function for shipping servicesneldstic due to the high relative
costs of substitute transportation. Furthermore,shpply function, in the short-run,
will also be relatively inelastic when there areidie vessels available, with the only
increase in supply here coming from the increaspegd and efficiency of the vessels
concerned. This inelasticity of supply is primardye to the lag experienced, where
this is generally longer than a year, between tlterong of new tonnage and its
delivery. On the reverse side, if freight rates exeeptionally low, vessels may enter
lay-up; resulting in a decrease in supply, howeskould the underlying freight rates

pick up, this short-run supply can be reintrodutethe market.

Tvedt (1997) argued that as a result of this iniég of demand and the short-term
upper limit to supply, freight rates may increagevéry high levels. This being said,
these higher freight rates will act as a triggar ghip-owners to start ordering new
vessels, however, as a result of the lag discuabetie, there would be a delayed
effect to the supply function. Consequently, Tvpdiposes that although these very
high freight rates would only be a temporary ocence, they may persist for some
time. On the reverse side, if freight rates fedl tow, then ship-owners may be forced
to scrap their vessels, due to liquidity shortagesulting in a decrease in the level of
supply and a resultant increase in freight ratesedT therefore argued that freight
rates are bounded by an upper limit beyond whicirtehers may seek alternative

transportation, and a lower limit beyond which sbypners will cease trading.

Tvedt (1997) noted that, for the lack of a bettevdel, some practitioners in the
shipping industry used the Black-Scholes modeét foroposed and used by Black
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and Scholes (1973), to approximate the value ofplEnoptions written on the

underlying freight rates. Tvedt (1997) highlightbe fact that one of the fundamental
assumptions for this Black and Scholes model is e underlying prices follow a

stochastic process described by a Geometric Brownigtion. This being said, Tvedt

postulated that there was no reason to assumééigtit rates in the shipping market
should follow this Geometric Brownian motion. Thasgument was supported by
Bjerksund and Ekern (1995) who suggested that &moght rates followed an

Ornstein-Uhlenbeck process and that cost were aonstvhere the reason for this
assumption was that this process has mean reversiperties. Tvedt (1997) noted,
however, that, as discussed above, should freajbs ifall to levels where operational
costs are not covered, ship-owners would eitheufapr scrap their vessels; another
constraint here is that freight rates may not bgatiee. Tvedt therefore rejects the
Ornstein-Uhlenbeck process as it fails to take anotof this since the process is not
downward restricted; as well as the fact that bseathe process is normally

distributed around the given mean, it often givegative values if volatility is high.

Following the limitations of the above processegedi (1997) therefore proposed
that freight rates may have been best described IBeometric Mean Reversion
process. This process, like the Ornstein-Uhlenljgokess suggested by Bjerksund
and Ekern (1995), has mean reversion propertiesever, unlike the Ornstein-
Uhlenbeck process, it also fulfils the requiremeinbeing downward restricted in that
zero is an absorbing level. Furthermore, the Geomitean Reversion process may
have proved to be a reasonable approximation #setéact that freight rates in the
spot market often stayed at a moderate level, vel#tively low volatility for long
periods, followed by periods of high freight ratesd volatility. This process secured
that the mean reversion would be strong when fteigges were low, and vice versa;
and, due to the geometric nature of the last témmprocess also related high rates to

high volatility, and vice versa.

Bearing the above in mind, Tvedt (1997) noted #idiough the Ornstein-Uhlenbeck
and Geometric Mean Reversion processes may not praveded the best Markov

specification of freight rates, these processesrgeto a very small class of stochastic
differential equations that are analytically sollabTvedt therefore argued that

choosing the most appropriate specification of @esefor valuation purposes will
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always involve a trade-off between analytical t@adity and goodness of fit to the

observations of the series in question.

The most important thing to note, with respecthis tthesis, is that Tvedt (1997)
assumed that freight rates followed a mean revensaitern. When freight rates are
high, even though demand is relatively inelasticarterers will utilise substitute
forms of transportation, while, when the reverspliap, ship-owners will scrap, or at

the very least lay-up, their vessels.

Some important concerns regarding Tvedt (1997)tha¢ this paper was purely
theoretical and did not give any considerationh® émpirical characteristics of the
data concerned. Additionally, this paper used lyigieichnical stochastic models,
which are not easily implemented by laymen in tleddf Finally, this paper only

considered the valuation of one specific type afsed which raises queries as to
whether results from these models would be gematak or not. Therefore, this
research feels that further research into thisctgprequired.

2.3.5.2 Tvedt (1998) and Valuation Assuming Station ary Freight Rates

In a later paper, Tvedt (1998) examined the streatd the underlying freight rates in
the Baltic International Freight Futures Index (BEX) derivatives market. Tvedt
argued that while some practitioners used eitheBilack or Black-Scholes formulae
developed by Black (1976) and Black (1976), respelst to price these options.
This being said, Tvedt (1998) argued that the belhawf the underlying freight

index, i.e. the Baltic Freight Index (BFI), mosbpably did not follow the Geometric
Brownian motion assumed by these models, hencetTpregosed that practitioners
should have considered other pricing models forstlipping models, where this was

set out as the aim of Tvedt’s paper.

In Chapter 3.3 of Gray (1990), Gray argues thatltheof 553.5 experienced by the
BFI in 1986 represented the lowest income levellath a ship-owner would have
continued to operate in the market, before layipgheir vessel. On the reverse side,
Gray believed that, historically, there appearetidcan upper resistance level in the

BFI of 1,650, beyond which increased supply capacitie to more efficient vessel
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use and the entry of combination carriers from oHeetors, has a dampening effect
on freight rates. Therefore, taking into accoumisthapparent upper and lower limits,
it appeared that the underlying freight rates fefld a mean reversion process. These
market dynamics would have obviously affected thki@ of any derivatives in the
market, hence Bjerksund and Ekern (1995) assunadfke underlying freight rates
for the optioned being valued followed an Ornstgimenbeck process, i.e. that the
freight rate process was normally distributed dvat freight rates gradually reverted
to a constant mean level after any shock.

Tvedt (1998) thus felt that the appropriate proctssdiscussing the underlying
freight rates of the BFI should have had mean moemproperties and been restricted
downwards by the laying-up of vessels, as had logssussed in Mossin (1968) as
well as Dixit and Pindyck (1994). Hence, Tvedt (8p@rgued that the increment of
the BFI was given by a mean reversion process avitabsorbing level, i.e.:

dX, =k x[a - In(X, - A)|x[X - AJdt+o[X, - A]dz,  (2.24)
One should note that in Expression (2.24), is the index value at timg dZ, is the

increment of a standard Brownian motion; amd a and o are constants. This

process had mean reversion properties, thLIB,(Df(t —/1) was abovear , the trend of

the process would have been negative, and viceavekdditionally, the mean
reversion was stronger for high values of the BiSl,opposed to low values, for the

same absolute deviation Iln‘(xt —/1) from a, and the process exhibited increasing

volatility as the index level rose.

Tvedt (1998) concluded that freight rates revertiedvnward if they were above
average, and vice versa, where the mean reversimperpy was due to frictional
capacity adjustments to changes in the demandcifppisig services. This would thus
have influenced the value of any derivatives onuhéerlying index via the variance
of the futures price process.

Some important things to note about this papettatthis paper is purely theoretical

and does not give any consideration to the empicbaracteristics of the data
concerned. In addition, this paper uses highlyneah stochastic models, which are
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not easily implemented by laymen in the field. Hyathis paper considers the
valuation a futures index, which although linkedhe underlying freight rate process,

leaves room for further research into the structdithat process itself.

2.3.5.3 Tvedt (2003) and the Dollar-Yen Effect on S tationarity

In yet another later paper, Tvedt (2003) propokes freight rates and second-hand
ship prices in the dry-bulk shipping market follosv stationary process when

transformed from US dollars into Japanese yen. fTfpeaposes that the random walk

hypothesis, i.e. that freight rates follow &fl) process, can be rejected in most

cases. The results obtained by Tvedt confirm thesotal maritime economic theory,

which argues in favour of stationarity in freightes.

Tinbergen (1931) introduced the concept that higlght rates trigger the ordering of
new vessels, which in turn causes downward pressutbe prevailing freight rates.
This being said, as a result of the lag in theveeyi of these vessels, this fall in freight
rates will not be instantaneous and high freigleéganay prevail for a short while. In
the reverse instance, excess capacity may caugétfrates to fall to lower levels,
where the rate of reversion to the mean level dgjpend either on the speed at which
demand catches up with the excess capacity andibegumn is restored, or whether
excess tonnage is destroyed through scrapping.cbmesept of the ‘mean reverting’
nature of freight rates suggests that freight radesa part of their stochastic nature,
have a downward trend when freight rates are highhave an upper bound, and vice
versa, as was discussed in Beenstock and Vergdb®&#9) and Hawdon (1978). This
assumption of mean reversion in freight rates hesnbused in theoretical asset
valuation papers by Bjerksund and Ekern (1995)Taratit (1998), amongst others.

With very few exceptions, the evidence from thepphg literature, as presented by
Berg-Andreassen (1996), Veenstra and Franses (1&8¥)Glen (1997), amongst
others, tends towards the fact that freight rateshe dry-bulk shipping markets
follow a random walk process. In contradistinctioms stated previously, the
traditional maritime economic theory, as well as #arlier studies by Tvedt, i.e.
Tvedt (1997) and Tvedt (1998), does support thenmeaersion hypothesis.

84



Tvedt (2003) uses the Augmented Dickey-Fuller =g, Dickey and Fuller (1981), to
test for unit roots in the data, and found thatewlldenominated in US dollars, the
data series follow a random walk process, thus icoinfg the random walk

hypothesis outlined in the earlier literature. Hoere when all observations are
converted from US dollars to Japanese yen, thdtsesange and dry-bulk freight
rates appear to be stationary around a trend. idddity, the random walk hypothesis
was also rejected, at the 5% level of significannethe case of the Baltic Freight
Index, although in the cases of new-building andosd-hand vessel prices, one
cannot reject this hypothesis. The fact that ongldcmot reject the random walk
hypothesis in the case of the vessel prices mayrasult of the fact that prices in the
second-hand market may have been less influencethdéymarket fundamentals,
where Tvedt (2003) argued that these were largeleimmed by the development of

the Asian economies.

Tvedt (2003) therefore concludes that by changimegghipping market perspective
from US dollars to Japanese yen, which Tvedt arguey be a more realistic
approach, given the fact that the market is dorethaély Far East players, freight rates
in the dry-bulk market appear to be stationary. divalso adds that although
non-Asian ship-owners generally consider intermatioshipping as a US dollar
industry, this perception may be somewhat mislegdéince yen dominated prices
probably better reflect fundamental changes in igustry, thus giving better
feedback to market agents. Furthermore, investirggshipping asset probably means
that the ship-owner will have to take a long-position a yen-related asset, thus
implying that there would be substantial excharage risk for a ship-owner wishing

to maximise their US dollar fortune.

The first of the main concerns with this papethigttthe unit root test implements has
been shown to be deficient, as outlined in Sch\&89). In addition, the fact that
this paper converts freight rates from a US ddllaa Japanese yen denomination is
highly irregular. The convention in internationdligping is that all international
freight rates are denominated in US dollars, whienethis denomination, the results
do not vary from the previous literature supporting random walk hypothesis.
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2.3.5.4 Adland and Strandenes (2004) and Stochastic  Freight Rates

Extending the earlier literature, Adland and Steareb (2004) presented a stochastic
extension to the classical partial equilibrium med# the spot freight rate market. In
order to do this, supply was based on a microecan@analysis of the supply
characteristics inherent in a given fleet and otk as well as the stochastic
ordering and demolition behaviour. These supplyattaristics were then combined
with stochastic demand to form a model, which wasurn used simulate scenarios
for the future VLCC spot rate.

Adland and Strandenes (2004) argued that two sshoblthought had arisen

regarding the behaviour of freight rates in thet gtpping market. The first of these
focused, in line with the classical literature, modelling the demand and supply
functions in the shipping market. This was donengi®ither static supply / demand
models, as was the case in Zannetos (1966), NoandnWergeland (1981) and
Evans (1994), or dynamic econometric models, suchhase models outlined in
Eriksen and Norman (1976), Strandenes (1986), Beekhsand Vergottis (1989) and
Lensberg and Rasmussen (1992). The other schoasddcon modelling the freight
rate directly as a stochastic model, which incluthes Ornstein-Uhlenbeck process
proposed by Bjerksund and Ekern (1995), Tvedt (12&d Martinussen (1993); the
Geometric Mean Reversion process proposed by TvwE®97); and the

non-parametric model proposed by Adland (2003).aAdl and Strandenes (2004)
noted that both supply/demand and stochastic moda® limitations in that a

supply / demand model relies on a large number afables, a large set of
simultaneous equations, and weak econometric mogbkre a general discussion of
these limitations can be found in Birkeland (1998).the case of the stochastic
models, however, these disregard all informatioh emabedded in the current spot

freight rate level and past freight rate process.

Adland and Strandenes (2004) bridged these twoatstod thought by modelling the
interaction of the supply and demand curves in achststic partial equilibrium
framework, in combination with microeconomic moduwll of the time-varying shape
of the supply curve. This model incorporated ststibaordering and scrapping

dynamics into the supply curve as well as trackamtesponding changes in the fleet.
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As the term partial equilibrium implies, Adland aBttandenes only looked at freight
rate equilibrium within a sector of the bulk shipcwor, i.e. the VLCC sector. In
addition to this, the potential for short-term di#nces in freight rates across different
geographical regions is ignored, i.e. it is assuthatithe spot freight market within a

particular sub sector behaves as a single markbeishort-term.

The supply function, derived by Adland and Stram$e(2004), conformed to the
classical shape proposed by Koopmans (1939) andefas (1966) amongst others.
Having created a starting point for the supply tiorg the next step in modelling the
supply function was to model the dynamic resporigtis function to changes in the
freight market in which the vessel operates. Th& ftem examined in terms of the
response of the supply function was the level ohmging, where Dixit (1992)
provided a general discussion of the optimal paintvhich to scrap one’s vessel.
With this in mind, Adland and Strandenes (2004)uach that scrapping volume
follows a stochastic Poisson process, in whichettigected number of ships scrapped
in the time interval, denoted , was a function of the prevailing freight market

conditions on dateé; . The authors assumed that was the average scrapping rate
and S; was the number of ships scrapped, such Iﬂﬁﬁ;): A; [A was the expected

number of scrapped vessels in the next time inkera, conditional on the

information set available on datg. Therefore, according to the Poisson distribution
with the parameten; [, the probability thak vessels will scrapped during the next
time interval A was:

e (1.0

k
P(S, =k)= kl )fork: 0;1;2;... (2.25)

The next item relevant to the supply function wass level of deliveries, where if it is
assumed that new-building projects cannot be a@tely postponed or cancelled,
then the number of new-buildings that will be deted in the next period is known
with certainty. However, this is not the case iagbice, where, if freight markets are
poor, then ship-owners are able to negotiate fojepts to be delayed or cancelled,
whereas, if freight markets are in a good positibven these projects may also be

accelerated. Therefore Adland and Strandenes pedptsat the number of new
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orders follows a stochastic Poisson process, wieraverage contracting rate during

the time intervalA is a function of freight market conditions on date

Adland and Strandenes (2004) assumed that thegeveoatracting rate would be,
where O; was the number of new VLCC orders placed, such E(@A):yj A
Therefore, according to the Poisson distributionthwhe parametery, (A, the
probability thatk new orders would be placed during the next tinberiral A was:

-y;A k
P(o, =k)=#fork= 0:1;2:...  (2.26)

When looking at the demand side of the model, Adilamd Strandenes (2004)
highlighted the fact that the exact shape of thenated function could not be
determined empirically, as demand is exogenoushé¢onmtarket, hence the demand
function will always have to be based on suppasitdone. However, the authors
argued that it did not seem fair to assume thaslhiag@e of the demand function would
be dependent to some extent on the prevailing lebdreight rates. Therefore,
Adland and Strandenes assumed that the demandiciunaas a simple linear
function with respect to freight rates, where tlops of the function was calibrated so
as to replicate historical volatility in the markéhe authors assumed that demand for

VLCC services followed a simple discrete procesobows:
D, =nla+BX,,+¢) (2.27)
One should note that in Expression (2.27) abovedenoted the stochastic demand

for shipping, Where£~N(O;s). Adland and Strandenes noted that a potential

limitation of this model was that this demand pszcdid not allow for seasonality in
the demand for oil transportation, even though ithia well known feature of tanker

markets, as outlined in Kavussanos and AlizadefZR0

Adland and Strandenes (2004) concluded that thegieip developed and estimates
empirically a stochastic equilibrium model of th&&ZC market, where this model
could be applied to any other bulk shipping sukkesediowever, the authors noted

that simulations revealed that the Poisson procsssd not fully account for
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occasional large jumps in level of orders or numbgkrscrappings, therefore the

addition of a jump process may be necessary tapagtis behaviour.

While this current research does not disagree Wiland and Strandenes (2004)
regarding the fact that freight rates following @an reverting process, it proposes
that this mean reversion occurs with a lag duénéodelay between the ordering and
delivery of new vessels. Therefore, this reseagelsfthat freight rates do not follow a
stationary process, as suggested by Adland anchd&tnas, but instead follows a

fractionally integrated process.

2.3.5.5 Adland and Cullinane (2006) and the Partial  Equilibrium Model

The discussion the stationarity of the underlyirgight rate process in the shipping
markets was continued by Adland and Cullinane (20@ghich examined the
dynamics of the freight rates in the tanker marks®hg a general non-parametric
Markov diffusion model. The results indicated thia¢ spot freight rate dynamics in
the market could be best described by a non-lisemhastic model. The authors also
illustrated that the spot freight rate in the tankwmarket did illustrate mean reversion;
however, this was only mean-reverting in the taiflshe distribution, and that the
volatility of freight rate changes increase witle flevel of the freight rate. The result
regarding mean reversion in the tails of the distion, which implied that the spot
freight rates process behaves like a Martingale owest of its empirical range, may
explain why non-stationarity is difficult to rejeovver short samples, yet spot freight
rates are globally mean reverting as implied by itina economic theory, as

discussed by Koopmans (1939) and Beenstock anier1989), amongst others.

Adland and Cullinane (2006) argued that, apart ftbeywork done in Tvedt (1996)
and Tvedt (2003), where the spot freight rate wasletiing in a stochastic partial
equilibrium framework, spot freight rate models hbden restricted to simple
parametric models adopted from financial econorc®titxamples of these included
the Geometric Brownian motion, outlined in DixitdaRindyck (1994), embedded in
Black and Scholes (1973)’s Black-Scholes modelsl use some practitioners; the
Ornstein Uhlenbeck process, outlined in Vasicek7{}9 which was used by
Bjerksund and Ekern (1995) and Tvedt (1997); ardldignormal process, described
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by Brennan and Schwartz (1979), which was usedviedi (1997). In their work,
Adland and Cullinane (2006) proposed to extend teeent literature on
non-parametric modelling of economic variableshte maritime market, where this

was examined for the first time.

Adland and Cullinane (2006) contributed to the txgs literature in at least two
important ways. First, the use of a fully functibmaethodology enabled them to
investigate the spot freight rate dynamics in th@@ng market in a generalised
framework, i.e. it enabled the data to speak frbwmiselves rather than imposing
some ‘arbitrary’ parametric restrictions on the adaSecond, previous evidence
regarding the stationarity of spot freight ratesgaiss was ambiguous at best, where
preliminary unit root tests either failed to rejdoe null of non-stationarity, as was the
case for Berg-Andreassen (1996) and Glen (1997pngst others, or provided
results where the statistics were very close taejection threshold. Koekebakket

al. (2006) proposed that this failure to reject naatisharity was partially due to the
short-coming of the empirical tests, as discusse&chwert (1989), and that such
findings are contrary to the classical maritime repuics concept that prices in a
freight market must revert towards the long-ternstgpas outlined by Zannetos
(1966). Adland and Cullinane (2006)’s findings sesfgd that spot freight rates were
locally non-stationary over the range of the prece®vertheless, the existence of a
non-linear mean reverting trend in the tails of th&tribution was sufficient to pull
the series back into the middle region and detezngliobal stationarity. This result
was consistent with other empirical findings forodkiterm interest rates in the
non-parametric literature, as discussed in Ait-8ahf1996) and Jiang (1998),

amongst others.

Adland and Cullinane (2006) modelled the dynamicl@von of the spot freight rate
process as a general Markov stochastic differeatjghtion, hence:

dX, =p( X, ) dt+o( X) dZ  (2.28)
In Expression (2.28) abov&, was a one-dimensional standard Brownian motion,

where 4 and o were the drift and diffusion functions, or the targaneous

conditional mean and standard deviation, respdgti@ne should note thay and o
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were known values of the contemporaneous valukeo§pot freight rate, denotexi,

. As the Brownian components of this expressionew&aussian, the distributions of
the process, i.e. the marginal and transitionakidies, were entirely characterised by

the drift and distribution functions, i.e; and o, and, by the Markov property, the

properties of long transitions could be derivediteyating the short transition. The
most general approach to estimating stochastiereffitial equations is to avoid any
functional form specifications of the drift and fddion terms; hence

Adland and Cullinane noted that the recent findnicgd turned to non-parametric
estimation of the model in Expression (2.28).

The spot freight rates used by Adland and Culling2@06) were defined as the
arithmetic average of the time-charter equival@@g) spot freight rates for selected
round voyages for a hypothetical generic vesseé dlthors outlined three reasons
for choosing a TCE spot freight rate, which is nuead in US$ per day, rather than
the actual spot freight rate, which is measurédakeeiin Worldscale or US$ per tonne,
itself. The first of these was that the TCE measwuas used for the valuation of
contingent claims, as discussed by Tvedt (1997, tane-charters with embedded
options. Second, the TCE spot freight rate wastyeomparable to the time-charter
rate; therefore any empirical results could be usednodel the term-structure of
freight rates. Finally, while over-the-counter {iei derivatives in the tanker market
are settled against the Worldscale rate, by udnegTiCE rate the authors avoided

difficulties associated with the annual changenen\Worldscale schedule.

Adland and Cullinane (2006) noted that given thatestimators for the drift function
outlined in Expression (2.28) were based on th@&rmapson of stationarity, it was
essential to establish that the time series adtertds assumption. In order to ensure
this, the authors performed an Augmented DickeyeF{ADF) test, first developed
by Dickey and Fuller (1981), where the lag lengtlaswchosen based on a
minimisation of the Scwhartz Information Criteriooytlined in Schwarz (1978). In
the empirical literature, even a slight rejectioi the null hypothesis of
non-stationarity, which was not the case here, wespreted as strong evidence of
stationarity, as demonstrated by Ait-Sahalia (19@@&)ongst others, due to the low

power of the ADF test. For this reason, Adland @udlinane (2006) also reported the
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results for the KPSS and Phillips-Perron unit rdests, first discussed by
Kwiatkowski, et al.(1992) and Phillips and Perron (1988), respedtivEhe results of
these latter tests supported the authors argurhanttanker spot freight rates were
stationary, where these results were consistenh \lie empirical results in
Kwiatkowski, et al.(1992).

Despite the fact that there was little support iariime economic theory for any
particular functional form of the drift function éhMarkov stochastic differential
equation in Expression (2.28), Adland and Culling@606) proposed that the
potential for supply adjustment, through new-buigdand demolition, guaranteed that
extremely high or low freight rates were not susble in the long-run. Therefore,
the spot freight rate could not exhibit the asyripédly explosive behaviour that
would be implied by a non-stationary process, asdyointed out by Zannetos (1966)
and Strandenes (1984), freight rates should regesdrds some long-run equilibrium
related to cost. However, a flaw with this argumehtstationarity is that the long
production time for new vessels means that supply @nly very slowly adjust to
unexpected changes in demand, as highlighted bykdtmdkey et al. (2006).
Moreover, due to the high volatility of spot freigtates, it is relatively difficult to
detect such slow-speed mean reversion in high émecyidata, a fact highlighted by
Dixit and Pindyck (1994).

Adland and Cullinane (2006) argued that the shdpleeodiffusion function was more
certain, with the characteristic hockey-stick shapehe short-run supply function,
described in Koopmans (1939), being well-estabtishie that it is once again
described in Zannetos (1966) and Devanney (1973)ngst others, where the option
to lay-up and the upper limit to capacity in th@rtrun leads to a short-run supply
function that is near perfectly elastic at low ffa rate levels and close to perfectly
inelastic at full capacity. Furthermore, Zannet@866) points out that demand is
assumed to be highly inelastic with respect tagfierate levels due to the relatively

high cost of substitutes.

Despite the fact that Adland and Cullinane (2006ngrily provided a descriptive
analysis, the authors considered two specific mgplotheses, viz., that the spot freight

rate was a Martingale; and, that the conditiorahdard deviation was constant. One
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should note that both of these hypotheses weretegjeAll the drift unction appeared
to be non-linear, with the speed of mean reversioreasing in conjunction with the
freight rate level, in a manner similar to the lognal process, first described by
Brennan and Schwartz (1979), which had been appi¢ide VLCC market by Tvedt
(1997). This being said, while there was statifliicgignificant mean reversion in the
tails of the distribution, it was not possible tgect Martingale behaviour over the
majority of the range of the spot freight rates. skated previously, this non-linear
behaviour may explain why non-stationarity couldd®een difficult to reject over
short samples, yet the spot freight rate process glabally mean reverting. The
results in the tanker sectors confirmed Adland #&dlinane (2006)'sa priori
expectation of increasing conditional standard akswn in the spot freight rate level.
On this basis, the constant volatility specificaticuch as the Ornstein-Uhelnbeck
process, attributed to Vasicek (1977), used iretiréier research by Tvedt (1997) and
Bjerksund and Ekern (1995), was rejected.

Adland and Cullinane (2006) concluded that the pgpevided empirical evidence
that the spot freight rate was locally non-statrgraver the range of the process with
a drift very close to zero; however, the existeata non-linear mean reverting drift
in the tails of the distribution was sufficientgall the series back to its middle region
and determine global stationarity. The authors @sgphasised the importance of
Martingale behaviour of the spot freight rate seriever most of its range,
highlighting that this disputed linear mean revegtimodels and explained the
difficulty in rejecting non-stationarity in shorasples. Furthermore, the authors also
found a statistically significant level effect inet conditional volatility of spot freight
rate changes, which suggested that the diffusiontions of some parametric models

were incorrectly specified.

Criticism regarding this research include the taett, as highlighted by Adland and
Cullinane (2006), there are doubts regarding thicieficy of the ADF and
Phillips-Perron tests used to determine whethed#ta series were stationary or not.
This raises the gquestion as to whether the resulbio-stationarity for a portion of the
distribution was a spurious result. In addition, ilethis current thesis does not
disagree with the traditional maritime economic otlye regarding freight rates

following a mean reverting process, it proposesifia mean reversion occurs with a
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lag due to the delay between the ordering and @siiof new vessels. For these
reasons, this research proposes that spot freaggs i the shipping sectors follow a

fractionally integrated process.

2.3.5.6 Koekebakker et al. (2006) and Mean Reversio n

In some of the recent maritime economic literaitirngas argued that empirical tests
of stationarity often conclude that spot freighiesafollow a non-stationary process.
This argument is in contrast with traditional miang# economic theory, which argues
that freight rates cannot exhibit asymptoticallyplesive behaviour, as would be

implied by non-stationarity.

Koekebakkeret al.(2006) argued that when freight rates are high jtbrease in the
supply of transportation will inevitably bring fgit rates down to a level that yields a
normal economic profit and vice versa. This woully that, in the long-term, one
would expect freight rates to be highly correlatath long-term costs, hence, in an
economic equilibrium setting, one would expectftiegyht rate to be a mean reverting
variable. Thus, the authors argued that the freogininot exhibit the asymptotically
explosive behaviour implied by a non-stationarygess. In support of this argument,
Koekebakkeret al. noted that there were studies that confirmed angaiment, for
example Zannetos (1966) and Strandenes (1984),gsnhothers, despite the fact that
most empirical studies on the behaviour of freigites in the maritime economics
literature, such as Berg-Andreassen (1996) and @l@87), concluded that the spot

freight rate, or its time-charter equivalent (TCE)non-stationary.

Koekebakkeret al.(2006) argued that these findings that freighggdtave a unit root
is, perhaps, not surprising for at least threearesasThe first of these is that most time
series of freight rates are found to be highly is&est, a finding outlined by Adland
and Cullinane (2006), which, as Dixit and Pindyd®44) highlighted, makes the
hypothesis of a unit root difficult to reject. Teecond reason lies in the choice of the
model, where the most commonly used test, i.e Aingmented Dickey-Fuller test,
developed by Dickey and Fuller (1981), is basea tinear additive model displaying
symmetric adjustment. Adland and Cullinane (200¢pliad non-parametric

estimation techniques to illustrate that the dafin of the spot freight rate process is
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mean reverting; however, this was found to onlyHgecase in the tails of the freight
rate distribution, with the process exhibiting uribt behaviour over the majority of
its empirical range. Adland and Cullinane argueat tion-linear behaviour in freight
rates could explain why non-stationarity may bdidift to reject over short samples
and yet the spot freight process was proved toldigally mean reverting and overall
stationary. Koekebakkgeet al. (2006) thus argued that in a non-linear envirentn
traditional unit root tests are inherently unsuiafor testing for non-stationarity. The
final reason for the lack of surprise in the fingénwas that even if the assumption of
non-stationarity does not hold in the strictestsgerit may be convenient from a
technical standpoint as stationary processes gieally more complicated to deal
with as far as investment decisions in the shippmugystry are concerned. For these
reasons, the authors set out the main objectitieeopaper, the assessment of whether

the non-stationarity property put forth in the engail literature was robust.

To this end, Koekebakkeet al. (2006) argued in favour of non-linear stationarity
being the natural null hypothesis for testing tteelsastic property of shipping freight
rates. The most popular tests at the time wereadinmit root tests, which take
non-stationarity as their null hypothesis and tds$ against a linear stationary
alternative; however, the authors also consideretiraot tests against a non-linear
stationary alternative. Koekebakkest al. proposed that a standard way to have
proceeded with this empirical work was to first gpine Augmented Dickey-Fuller
and / or Phillips-Perron tests, and then confirreséhresults using the KPSS test,
which has a null hypothesis of stationarity, whitre latter two tests were developed
by Phillips and Perron (1988) and Kwiatkowstd al.(1992), respectively. This being
said, Schwert (1989) illustrated that both the Awegted Dickey-Fuller and
Phillips-Perron tests lack power, while Caner anfiaK (2001) in addition to Kuo
and Tsong (2005), amongst others, showed that #®Xtest also has undesirable
properties. Kapetanip®t al. (2003) suggested a unit root test, named the KSG t
against a non-linear globally stationary expondgtemooth transition autoregression
(ESTAR) process, which was found to find to havedysize and power properties
relative to the traditional Augmented Dickey-Fultest when the process is stationary
and highly persistent. Kapetanios and Shin (2008yestigated efficiency

improvements using GLS-detrending and found thaS@ketrending could improve
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the power performance of the KSS test. Koekebaldtaal.(2006) used both the KSS

test and the point-optimal version in the empirait of the paper.

Using the standard Augmented Dickey-Fuller testelké&bakker et al. (2006) found

that only the Suezmax data series showed evideinsttionarity around a constant
mean, however, if one added a trend to the altemditypothesis, the test statistics
could not reject the null of non-stationarity fdris market. For the KSS test, the
results were very different from the linear unitotraests, as the test statistics
suggested that all freight rates were non-lineatistary for both the constant and
constant with drift alternatives, where the authamsved at this same result when
using both the original and the point-optimal vensi of the test. Koekebakket, al.

concluded that although traditional linear unit troests still suggested that freight
rates are non-stationary, when the authors emplayadn-linear unit root test, the
results suggested that freight rates across all $hipping sectors are stationary, in

line with classical maritime economic theory.

While this current research does not disagree Witdekebakker et al. (2006)
regarding freight rates following a mean reverforgcess, it proposes that this mean
reversion occurs with a lag due to the delay betvibe ordering and delivery of new
vessels. Therefore, this research feels that fraigtes do not follow a stationary
process, as suggested by Koekebaklkt¢ral, but instead follows a fractionally

integrated process.

2.3.5.7 Concluding Comments

Given the findings discussed in this section, oae thus conclude that the general
consensus among these six papers is that freigds should follow a stationary
process. Any disagreement between these paperenslymregarding the form of
stochastic differential model which the freightergrocess follows. In their research,
Adland and Cullinane (2006) and Koekebakledral.(2006) went further by arguing
that the reason for the empirical literature whicbhved that freight rates followed a
non-stationary process was that the tradition&airunit root tests are flawed, hence
Koekebakkeret al. proposed the use of the non-linear KSS unit rist, illustrated
by Kapetanioset al.(2003).
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2.3.6 Critique of Partial Equilibrium Models

Although these papers conformed to classical magiteconomic theory, none of
these papers allowed for the fact that the meagrsean process is delayed due to the
lag between the ordering and delivery of new vesdal addition to this, stochastic
models, as was pointed out by Adland and Strandd@684), disregard all
information that is not embedded in the current $maght rate level and past freight
rate process.

Koekebakkeret al.(2006) highlighted the fact that it is possibleriodel freight rates
as process with long memory, although non-lineaaitgd long memory have rarely
been jointly analysed in the general econometrierdiure. Kapetanios (2006)
illustrated that stationary threshold and Markovutsiwng models may exhibit long
memory properties, i.e. slowly decaying auto-caaee, which means that non-linear
models may be incorrectly taken to be long memooyn-stationary processes.
Furthermore, Adland and Cullinane (2006) propo$ed freight rates only followed a
stationary process in the tails of the respectisiution.

This research aims to address these issues byntpaki the possibility that long
memory may be responsible for the confusion regarthe stationarity of freight rate
process. The research then goes on to look at eth#th same can be said regarding
the volatility of freight rates, before examinirgetconcepts of whether these may be
as a result of the presence of conditional skewaedskurtosis, as is discussed in the

following sections of this literature review.

2.4 The Issue of Volatility in the Shipping Freight Markets

An understanding of the concept of uncertainty riscial for the decision-making
process in any industry, it is therefore crucial ptayers in a market to be able to
calculate risks, as measured by the volatilityhef price series being examined, and if
possible, minimise these through the use of somersified portfolio of assets. The
research by Engle (1982) provided the first insigkd the modelling of volatility in
the financial markets with the development of thetokegressive Conditional
Heteroscedasticity (ARCH) family of models, theremabling market participants to
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gain a better understanding of and enabling themedace their risk exposure. The
shipping industry in particular is highly dependent a number of external factors,
over which it has no control. As a result of thasKk of direct control, freight rates in

the shipping markets are exceptionally volatilethwiolatility increasing as ship-size

increases as smaller ships are more versatile,candoperate in multiple markets,

whereas, for example, a VLCC tanker is limitedha ports it can visit and the cargo
it can carry. In addition to this, the demand foipping services is a derived demand
and therefore is exogenous to the market, additiget@olatility of freight rates.

Despite this fact, there has been very little reseaegarding the modelling of the
volatility of freight rates. There are, howeverreld seminal papers on modelling
volatility in the shipping markets, which shall leeamined in more detail below.
Beginning with Kavussanos (1996), which provideel finst empirical examination of

the nature of volatility in the shipping marketsistreview moves on to examine the
later work on the topic in Kavussanos and Visvi@d804), as well as giving a brief
overview of other work on the area, and then cateduby providing a critical

analysis of the contribution of this thesis.

2.4.1 The ARCH Family of Models and the Shipping Ma rkets

As stated above, Engle (1982) provided the firsigint into the modelling of the
structure of volatility in the financial marketspwever, there is very little in the
maritime economic literature regarding the modgllaf the volatility of freight rates.
The following subsections provide a detailed actamfrthe two seminal papers on
modelling the volatility of freight rates, i.e. thmapers by Kavussanos (1996) and
Kavussanos and Visvikis (2004), as well as givinghare brief account on other
literature on the topic. One should note that #ek lof literature on this topic does
indicate that this is an ideal area for furtheesgsh.

2.4.1.1 Kavussanos (1996) and the Introduction of V  olatility Models

When introducing the concept of modelling the Jbtgt of freight rates to the
shipping literature, Kavussanos (1996) statedabdition to allowing one to estimate

the volatility of prices over time, the use of Atggressive Moving Average (ARCH)
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models over a simple assumption of constant vagiaghcoughout the estimation
period, as would be used by Ordinary Least Squgdéss), allowed for improved
estimation results. In this paper, the author edeédrthe use of ARCH class models to
investigate the volatility of freight rates in tspot and time charter markets for dry
bulk vessels, thereby investigating two keys issudg first of these issues was
whether a market effect existed in terms of whethervolatility of freight rates was
higher in the spot or time charter market? The iseéessue was whether a size effect
existed for volatility, i.e. was there a differenoetween the volatility of spot freight

rates for smaller and larger vessels?

Kavussanos (1996) explained that the process ddibgian ARCH model requires
three steps. The first of these is specifying thiedtional mean of the variable being
studied, in this case freight rates. The secong &especifying the conditional
variance of the variable, once again in this casmlit rates. Having completed the
two prior steps, the final step requires that theditional density of the error term in
the regression equation is specified. Kavussandsdnthat freight markets are

perfectly competitive, where the market-clearingtdpeight rate is a function of:
FR= 7 RiPRiK ] 229)
One should note that in Expression (2.29), ab&R,, IP,, Pb and K, denote the

spot freight rate level, the level of industriabguction, the price of bunkers and the
size of the world fleet at timeg, respectively, while the signs of the partial datives

of each variable are given above the respectivéabiar In contrast, Kavussanos
determined the market clearing time charter freigiie, where a one-period time-

horizon was assumed, as a function of: the follgwin
76,= 1 & (M) 6P| @0

In Expression (2.30), aboveéC,, Et(FRM) and Et(quﬂ) denote the time-charter

freight rate and the expected value of the spagliterates and bunker prices in the

following period, respectively, where this is alladuated at time .
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Kavussanos noted that these two expressions ceulevritten as follows:

Y. =xbte e ~ N(O;h)
231
LLz-gjlnh—(%thtef (231

Kavussanos highlighted that in Expression (2.3bpva, £, denoted a white noise

error term, with the usual classical propertiesjlevhL denoted the corresponding

log-likelihood function, after omitting the irrelaat constant.

Given the arguments above, Kavussanos (1996) tloééacconometric theory argues
that, although the Ordinary Least Squares (OLS) amakimum Likelihood
Estimation (MLE) procedures may provide the Bestelar Unbiased Estimators bf
and h in ExpressionError! Reference source not found, above, which are the

parameters of interest, if the assumption thatvélméance ofe,, or equivalentlyy, ,

which is given byh, is constant fails, this creates problems withs¢hestimation
procedures. The reason for this is that, despéadabt that the estimated parameters
would remain unbiased and consistent, these estthy@rameters will no longer be
efficient. Furthermore, any of the estimated varemof these estimated parameters
will be biased estimators of the true varianceshefse parameters, as outlined in
Pindyck and Rubinfeld (1991). Kavussanos (1996)edghat these difficulties may
be overcome should one use ARCH models, wheredhance of the data series is
conditioned on the available information set, imjoaction with the conditional

mean.

In order to address this issue, Kavussanos (19@f)oped that the most appropriate

parameterisation forh, was the Generalised Autoregressive Conditional

Heteroscedasticity (GARCH) model developed by Bsley (1986), Bollerslev

(1986) whereh, is expressed as a linear functionpofalues of past squared errors

andq past values of the conditional varianchs,i.e.:

Y. =Xb+g ;& ~N(0:h)
h =a, +Zip:1ai€lz—i +Ziq:1ﬁlh4 (2.32)

G-
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One should note that in Expression (2.32), abayg>0 anda;;3 =20 so as to

ensure the non-negativity of the variance, W@{lai +Ziq:l,8I <1 so as to ensure
the stationarity oh,. Kavussanos (1996) noted that the MLE estimatefieimean
and variance equation parameters, i.ea; and §;, are asymptotically superior, in

terms of efficiency, to those obtained by using @ieS procedure on the GARCH
model, as the parameters achieved through the QLifaion do not achieve the
Cramer-Rao lower bound, a fact outlined in Engl@8¢). Kavussanos (1996) went
further to note that the MLE estimation procedwgenon-linear and is achieved by
solving the first-order conditions with respect tte GARCH parameters using a
numerical optimisation method. Additionally, Kavaess argued that the GARCH
formulations would capture the tendency for largadll) swings in the freight rate to
be followed by large (small) swings of random dii@t, i.e. volatility. This is a
phenomenon that was widely covered in the mariteeenomic literature, for
example in the research by Adland and Cullinan®g§20amongst others. Another
important consequence of these models, highlighyeldavussanos (1996), is that the
parameters in these models may be estimated usitagibal data and then be used to
model and thereby forecast future volatility pattein the respective data series being

examined, in this case spot and time-charter ftewmfes.

Prior to estimating the models, Kavussanos (193%Gfopmed Dickey-Fuller and
Augmented Dickey-Fuller tests, attributed to Dickayd Fuller (1979) and Dickey

and Fuller (1981), respectively, to test for stadioty in the data series, and found

that all variables followed ah(l) non-stationary process, apart from the logarittfim o

the vessel fleet, which was stationary. Followihip,t Kavussanos used the Johansen
procedure, outlined in Johansen (1991), to testcontegration, where the results
indicated that the variables within each equatiomdd out to be cointegrated.
Kavussanos thus concluded that this had two manhigations. First, the regressions
were related through a long-run economic relatignsiand, second, inferences
regarding linear restrictions on the parameterddcbe made through the classical

distribution theory.
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Following this, Kavussanos (1996) specified thedibonal means of the dependent
criteria, using the OLS procedure, which was dooeoaling to standard statistical
criteria; and then, subsequently, modelled the -tiamgying error volatilities, utilising
the ARCH / GARCH estimation procedure. The resultiscated that the demand-side
variable, i.e. world industrial production, had igndficant and positive effect on
freight rates; while the supply-side variables, banker prices and the size of the
fleet, had a significant positive and negative intpaon freight rates, respectively,
Kavussanos noted that the use of monthly data medjtinat the dynamic specification
of the equations in order to account for the shamt-dynamics present in the
conditional means, where this was achieved by dicly one or two lags of the
dependent variables. Kavussanos found that a dynaspecification of the
expectations of freight rates, the current and ddggalues of freight rates, and one
period lag of time-charter rates were sufficientcapture the driving forces in the
conditional mean of the time-charters. In addittonthis, tests of exogeneity in
relation to the logarithm of freight rates couldt meject the null hypothesis, which
thereby legitimised the use of the OLS and ARCHirestion procedures.

Kavussanos (1996) also found that standard statisiagnostic tests indicated that
the fit of all the equations was good; that the@swo serial correlation, with the
exception of the Capesize category; and that, neige, the data series illustrated no
skewness. This being said, however, Kavussano$irdidthat there was significant
kurtosis in the equations and that heteroscedstippeared to be a common finding
across all equations. Kavussanos argued that tienfj of ARCH effects and
leptokurtosis in the OLS results justified the uske ARCH models for these
regressions, where the appropriate specificatian these was determined using

likelihood ratio tests. Kavussanos gave the apjaitgspecification for the models as

follows: the aggregate freight rate was modellethgisan ARCH(l) model; time-
charters were modelled usingGaARCH(Z;:I) model; and the three weight categories

were modelled using GARCH(l;]) model. The author found that re-run diagnostic

tests indicated that the use of the models hadkddive problem of heteroscedasticity;
that serial correlation statistics improved whempared to those from the OLS
estimation; while the same applied regarding tivelte of skewness and kurtosis in
the models. Having modelled the conditional vargantor each market in question,
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Kavussanos extracted these time-varying measurgskofas well as their behaviour

examined over time, and compared these acrosgldeant markets.

Kavussanos (1996) concluded that risk in the frerglte and time-charter markets
was not constant over time, which was manifestethbyneed for ARCH modelling
of the conditional variances, where such time-vagyiisk were considered to be a
combination of industry-specific risk and idiosyatic risk. However, the author
argued that so long as the market participant \waed with more than one option,
this risk could have been diversified. Kavussangs aoted that there was a clear
tendency for volatility clustering, where volatlitvas high during, and just after,
periods of large external shocks; and, that vaatdppeared to be higher in the
time-charter market than in the spot freight marRéte reason that the author gave
for this disparity in volatility between the twopgs of market was that as time-charter
freight rates reflected future expectations, thesge more sensitive to changing
perceptions of the future market. This would hawant that a risk-averse ship-owner
would have, if presented with a choice betweernloetypes of market, exploited this
information by preferring the spot market over tigtertering, although this would
have meant a lower return. When comparing volatiitbetween different sizes of
vessels, Kavussanos found that risk premiums wemerglly higher for larger
vessels, where this was due to the limitationshim trades in which larger vessels
could participate; therefore, a risk-averse shimewwould most probably have

invested in smaller vessels rather than larger.ones

Once again there are doubts regarding the effigi@iche tests used to determine
whether the data series are stationary or ndbelfiata series are not non-stationary as
proposed by Berg-Andreassen (1996), amongst othbes) the results of the
cointegration analysis will be spurious. In fa@ditional maritime economic theory,
such as outlined in Zannetos (1966), amongst qtlaegsies that due to supply and
demand fundamentals, freight rates are in fact nreaerting, while more recent
research, such as Adland and Cullinane (2006) attgatethey are stationary. This
being said, this research adds another dimensitimetdebate by arguing that, due to
the lag between the ordering and delivery of newsebs, freight rates are in fact
fractionally integrated. If this is the case, thiha correct model to use would not be

the GARCH model proposed by Kavussanos (1996)thmitFractionally Integrated
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Generalised Autoregressive Conditional Heterosdmiys (FIGARCH) model,
developed by Balilliget al. (1996a), where this is a notion that forms onethaf

hypotheses explored in this research.

2.4.1.2 Kavussanos and Visvikis (2004) and Volatili  ty Revisited

A later study on the volatility of freight rates svahe comprehensive study by
Kavussanos and Visvikis (2004), which examined ldzal-lag relationship between

spot and futures markets, in this case the ovecoliater Forward Freight Agreement
(FFA) market, for both the returns and volatilitigisthe price series. The section of
this paper that dealt with the relationship betwesrns is discussed above in the
section on non-stationary models, with the focus raeing on the modelling of

volatility. Kavussanos and Visvikis argued thattts practical level, the better one
understood the mean and variance dynamics of aegspdhe better one could

improve risk management and budgeting decisions.

In an earlier study, Working (1970) argued that@rdliscovery refers to the use of
prices from one data series in order to predict ghees in another data series.
Working continued by stating that this lead-lagt@nship between price-movements
in the derivatives market and the underlying spatkat illustrates how quickly the
one market reflects new information, such as shaelative to the other, in addition
to illustrating the degree to which the two markaats linked. Bollerslevet al.(1992)
moved this argument from the first to the highemmeats, by arguing that volatility
spill-overs from the one market to the next arosengrily as a result of the
realisation that speculative price changes wenagoiterwoven with higher moment
dependencies. Kavussanos and Visvikis (2004) daree treasons for this lead-lag
relationship being of interest to academics. Th&t ©f these was that the issue was
related to market efficiency, where if the futurearket is efficient, the volatility of
the futures prices will give unbiased estimatesadtility of future spot prices. The
second reason was that the derivatives market dwald been potentially used as a
tool for price discovery. The final reason was thatolatility spill-overs did exist
from the one market to the other, then the votatitiansmitting market could have
been used by market participants as a vehicleicé pliscovery in order to cover their

risk exposure. Kavussanos and Visvikis noted thiargpapers interested in this said
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relationship between markets in terms of higher ewts i.e. with respect to the
time-varying volatility spill-overs, included Ng drPirrong (1996) and Koutmos and

Tucker (1996), amongst others.

Kavussanos and Visvikis (2004) investigated thiadi#ag using a multivariate
Vector Error-Correction-Generalised AutoregressiMenditional Heteroscedasticity
(VECM-GARCH) model, where the variances and covariances ofutiterlying
series were allowed to vary over time, where tmabéed the authors to allow for
volatility spill-overs. This procedure also ensurduht there was an efficient
econometric specification, in addition to improvimgrket analysis and any forecasts
that were made. This model used had the follownmgnfwith augmented positive
definite parameterisation, as outlined by Badteal.(1990):

H=A'A+B'H B+C¢ £\, C+3 y b, & & y, 'y B 2

+E(z.) E

In Expression (2.33), abové is a(2>< 2) lower triangular matrix of coefficient8

(2.33)

andC are(2>< 2) diagonal coefficient matriceg;, and y;, <1, wherek =1 ; 2 for

stationarity; SL and S2 are matrices, which contain parameters of spiraeffects;

u,_, andu,,_, are matrices whose elements are lagged squared terms, where
u,,_, represents the volatility spill-over effect frometspot to the derivatives market

andu,, , represents the volatility spill-over effect frormet derivatives to the spot

market;(zt_l)2 is the lagged squared basis; dads a(2>< 2) vector of coefficients

of the lagged squared basis. The conditional veesnwere considered to be a
function of their own lagged values, i.e. the effet old ‘news’; their own lagged
error terms, i.e. the effect of new ‘news’; ancdgded squared basis parameter; while
the conditional covariance was considered to henation of the lagged covariances
and the lagged cross-products of the residualthidnmodel, the volatility spill-over
effects between the spot and derivatives markeittlities could be tested through the

coefficients of the two matriceSL and S2.

Prior to estimating the model, Kavussanos and Wisvi(2004) found that the

diagnostic tests results indicated that there wagss skewness and kurtosis in all
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prices series; however, the excess kurtosis seeis bf a greater magnitude in the
spot price series. The results also indicatedttieakt was significant serial correlation
and heteroscedasticity; while Augmented Dickey-@ulhnd Phillips-Perron tests,
attributed to Dickey and Fuller (1981) and Phillgpsd Perron (1988), respectively,

indicated that the price series followed ki) process, where these test results were

confirmed using the KPSS test, developed by Kwiatka, et al.(1992).

When looking at the lead-lag relationship betwepat sand derivative volatilities,
Kavussanos and Visvikis (2004) noted that, ovetak, coefficients of the lagged
error terms in spot variance equation were highan those in the variance equation
for the derivative for all routes, thus implyingatithat past shocks, or new ‘news’ had
a greater impact on the spot rather than the derevaolatility. This being said, the
coefficient of the lagged variance in the spotaace equation was lower than that for
the derivative variance equation across all routaess implying that informed agents
in the market would have used past volatility, & mews’, more in the derivative
market than in the spot market. The coefficientthefvolatility spill-over effects, i.e.

sl,, ands2, ,, would have picked up the effect of the laggedased forecast errors,

or the residuals, of the spot equation in explgnire volatility of the derivative rates,
and vice versa, respectively. A volatility spill@vifrom market to another, in general
terms, would mean that any piece of informatiort tisareleased by the volatility
transmitting market will play a superior informatioole and therefore, has an effect
on the market that receives the volatility spileovKavussanos and Visvikis found
that there were no volatility spill-overs on Routesand 1A, a finding that was
consistent with Kawalleret al. (1990), amongst others. This being said Kavussanos
and Visvikis (2004) found that there were bi-direcal volatility spill-overs on
Routes 2 and 2A, a result that was found to beistam with the empirical work of
Chan et al.(1991), amongst others. In their empirical analyie authors noted that

the persistence of the volatility in the spot aedivchtives markets, following a shock
in the respective market, as measuredbfy-c/, , showed that the unconditional

variances were stationary, i.e. that the persistefactors were less than one.
Kavussanos and Visvikis (2004) therefore concludkdt derivatives markets
discovered information more rapidly, when compéarethe spot market, and that for
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practical purposes, information coming from prigscdvery vehicles could be used

by market participants in the decision making pssce

As with the previous research, there are, oncenagaiubts regarding the efficiency
of the tests used to determine whether the datassare stationary or not. If the data
series are not non-stationary as proposed by Bedreassen (1996), amongst others,
then the results of the cointegration analysis Ww#l spurious. In fact traditional
maritime economic theory, such as outlined in Z&osg1966), amongst others,
argues that due to supply and demand fundameriteight rates are in fact mean
reverting, while more recent research, such as &loahker et al. (2006) argue that
they are stationary. This being said, this reseadtis another dimension to the
debate by arguing that, due to the lag betweenotlering and delivery of new
vessels, freight rates are in fact fractionallyegrated. If this is the case, then the
correct model to use would not be the GARCH modelppsed by Kavussanos
(1996), but the Fractionally Integrated Generaliskdtoregressive Conditional
Heteroscedasticity (FIGARCH) model, which this asé will explore.

2.4.1.3 A Few Other Papers on ARCH Models and Volat ility

Other papers in the shipping literature to havedube Autoregressive Conditional
Heteroscedasticity (ARCH) family of models, firsbposed by Engle (1982), include
the papers by Kavussanos (1997), Kavussanos antkb®ii2000b) and Kavussanos
and Nomikos (2000a). In the first paper, Kavussgi@97) used different forms of
the Generalised Autoregressive Conditional Hetedasticity (GARCH) model, first
proposed by Bollerslev (1986), to examine the dyinaraf conditional volatilities in
the market for second-hand vessels. In this arglysavussanos introduced two
different types of volatility modelling to the siping literature. In the first type, a
time series model was fitted to each price sevib®re the respective time series was
described in terms of its own past values and @ast terms; however, in this case,
no attempt was made to understand the underlymigtatal economic variables that
help determine ship prices. The second type of mosked was where prices were
explained in terms of other underlying structuratiables. Kavussanos concluded
that there was some support for the use of GARCldeatsowith respect to modelling
second-hand vessel prices, where structural vasaklch as interest rates and time-
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charters, did appear to have a role in explainirgconditional variance of the series.
The author noted that there appeared to volatlitgtering in the data and that there
were differences in the nature of the volatiliies different size vessels. Kavussanos
finally proposed that a comparison of these difieresk levels between different
sizes of vessels could have been used as a ta@ilipyowners to guide their holdings

of different sizes of vessels in their dynamic wagyportfolios.

In the second paper examined here, Kavussanos amikds (2000b) used GARCH
and augmented GARCH models to investigate the hedgffectiveness of freight
futures on the Baltic International Freight FuturEgchange (BIFFEX) across
different shipping routes. The authors found thahetvarying hedge ratios
out-performed alternate market specifications duoing the risk inherent in a market
participant’s spot position; however, this reduetim risk was not of the same
magnitude as experienced in other markets examimedte literature. The reason
given for this was that these freight futures cactis were employed as a cross-hedge
against the fluctuations of individual routes onagigregate index. In addition to this,
there was large inherent basis risk and freigte fatctuations may have not been

accurately tracked by futures prices.

In a later paper, Kavussanos and Nomikos (2000&e amgain examined the
time-varying hedge ratios generated using GARCH andmented GARCH-X

models, and then compared these with constant hedies. Kavussanos and
Nomikos found that in- and out-of-sample testingesded that the GARCH-X

specification provided a greater reduction in tlsk fevels, compared to the other two
specifications. However, once again, these moadksdfto reduce the level of risk in
the spot position to the extent experienced inroth&rkets in the literature, and, once
again, the reason given for this was the heterageneomposition of the underlying
index. The authors suggested that the index mag hnaeded to be restructured in

order to improve the hedging effectiveness of teaht futures contract.

As with the seminal papers, the papers raise sameeens regarding the regarding
the efficiency of the tests used to determine wérethe data series are stationary or
not. If the data series are not non-stationaryrapgsed by Berg-Andreassen (1996)

amongst others, then the results of the cointegratnalysis will be spurious. In fact
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traditional maritime economic theory, such as oetli in Zannetos (1966), amongst
others, argues that due to supply and demand fuerdaits, freight rates are in fact
mean reverting, while more recent research, sud¢foakebakkeret al. (2006) argue
that they are stationary. This being said, thigaesh adds another dimension to the
debate by arguing that, due to the lag betweenotdering and delivery of new
vessels, freight rates are in fact fractionallyegrated. If this is the case, then the
correct model to use would not be the GARCH modelppsed by Kavussanos
(1996), but the Fractionally Integrated Generaliskdtoregressive Conditional

Heteroscedasticity (FIGARCH) model, a hypothesisl@ed here.

2.4.1.4 Concluding Comments

Therefore one can see that the overall consensubkeiriterature was that using
Autoregressive  Conditional Heteroscedasticity (ARCHand Generalised
Autoregressive Conditional Heteroscedasticity (GARCmodels, developed by
Engle (1982) and Bollerslev (1986), provided thestreffective means of modelling
volatility in shipping freight markets. These maglelere also all based on the
assumption that freight rates followed a non-stetry process; however, this may not
in fact be the case, as was illustrated by Koekiedralet al. (2006), amongst others.
One should note that this, and other short-cominfishese papers are discussed in

fuller detail in the section below.

2.4.2 Critique of the Models for Modelling Freight Rate Volatility

The major flaws with the methodologies used abore tavo-fold. Firstly, these
models were based upon the assumptions that tightfreate process was either
stationary or non-stationary. As the research sets to prove, this may not
necessarily be the case, and in fact the freiglkt peocess may follow a fractionally
integrated process. The second problem with theeflsagsed in the papers above is
that they ignore the problem of the potential exise long-memory, or persistence, in
volatility. Koekebakkeret al. (2006) briefly mentioned the problem of persistenc
levels of freight rates, discussed in the critiqgienodels of levels of freight rates
above, and therefore it may be of interest to labkthe use of the Fractionally

Integrated Generalised Autoregressive Conditionaterbscedasticity (FIGARCH)
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model, developed by Baillieet al. (1996a) to further examine the issue of the

persistence and structure of volatility in the gtdirate series.

The first advantage of the FIGARCH model is thalibws for long memory in the
second conditional moment of the process being &emin that it assumes a
hyperbolic rate of decay for the volatility, unlikbe Generalised Autoregressive
Conditional Heteroscedasticity (GARCH) model, pregd by Bollerslev (1986)
which assumes that volatility decays exponentiallfnis being said, unlike the
Integrated Generalised Autoregressive Conditionakerbscedasticity (IGARCH)
model, developed by Engle and Bollerslev (1986)ichvtlassumes that volatility does
not decay, the FIGARCH model does allow for thentwal decay of volatility. A
further advantage of the FIGARCH model is that waHofor the simultaneous
comparisons of numerous potential models that cagstuce the features of the
process, a characteristic outlined by Conrad andkasos (2005). For these reasons,
the hypothesis that freight rate volatility is besbdelled by a FIGARCH model is

examined in Chapter 6 of the thesis.

2.5 A Review of Fractionally Integrated Processes

Having examined the literature on the first- andosel-moments of the freight rate
process in the previous sections, as well as tienede behind this thesis’ argument
that freight rate levels and volatility follow aafitionally integrated process, this
section examines the application of fractionalliegrated process in other markets.
The original work on fractionally integrated prosesas performed by Hurst (1951)
who investigated this issue in the context of asialy river flow data. Following this,
Adelman (1965) applied this concept to the financrearkets, where Adelman
proposed the use of long memory models to modead-fan cycles in the macro
economy. Since then, the use of long memory presassfinance has been extended

to asset pricing models, exchange rates and intertes.

2.5.1 Long Memory Processes in Asset Pricing Models

Traditionally, asset pricing models assumed thatkhthere have been one unit root

in the nominal price of an asset, then the contisiyocompounded rate of return,
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which is the fist difference of the price of theseis could be expected to be stationary
and was assumed to be uncorrelated so that it whspproximated as a martingale.
Therefore, from the conventional asset pricing faamif p; was the price of the asset
in question ana; were the fundamentals in perigdhen:

p=> EEX, (234)

j=0;oo
One should note that in Expression (2.34), abdvelenoted the discount factor,

where0< & <1.

Baillie (1989) and Campbell and Shiller (1987) raaged this expression to reveal
the following model:

Ap, = ( P _Ext) (2.35)
The authors noted that if the price and fundamentare bothl (1) processes, then

Expression (2.35) implied that a cointegrating tiefeship existed between the asset
price and the fundamentals. Any failure to find thegular form of CI(1;1)
cointegration between prices and fundamentals rhagy hot have necessarily been

interpreted as a rejection of the asset price mduglthe case may have been that a
form of ClI (1;1—d)cointegration may have been apparent where residuai the
cointegrating vector were(d ), where0<d <1, rather thanl (0). This would have

implied a lower response to shocks and a longee trequired to adjust back to

equilibrium, i.e. a fractionally integrated long mery process.

2.5.2 Long Memory Processes and Stock Returns

Another financial application that has benefitezhirthe introduction of long memory

processes has been stock returns. For example,Gretmne and Fielitz (1977) and

Aydogan and Booth (1988) used the original resca‘mdge(RT / sr) statistic,

outlined in Hurst (1951), to test for long memarycommon stock returns, where the

components of this statistic were defined as fadiow

R =ggng{i(yj - J‘y)}-os,._ip{i( Y W)} (2:36)

j=1 j=1
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And:

{E)st] oo

One should note that in Expressions (2.36) and7f2above,R;, s; andy denote

the sample range, sample standard deviation andlsanean, respectively.

In a later study, Lo (1991) compared the resultsveen a modified rescaled range
statistic and the original rescaled range stafistéscribed above, using returns from
both value and equally weighted CRSdices for the period between July 1962 and
December 1987. The modified rescaled range statiséed by Lo may be calculated

in the following manner:

Q=1 (239
a:(a)

Where:
q
oi(g)=c,+2> w,(gc (2.39)
j=1

It is important to note that in Expression (2.38pove,c; is the j th-order sample

autocovariance of/, ; while w; are the Bartlett window weights of the following:

wj(q):l—[#-} for g<T (2.40)

(a+1)

In this study, Lo (1991) found that the results whesing the regular rescaled range
statistic were statistic, while the results fromingsthe modified rescaled range
statistic were insignificant. Lo attributed thisffdrence in results to the short-term
persistence within the returns series, and alsorteg that there was no long-range
persistence when using annual returns for the gdratween 1872 and 1986.

2.5.3 Long Memory Processes and Exchange Rates

Meese and Singleton (1982) and Baillie and Boler¢lL989), amongst many others,

provided evidence that the logarithm of nominaltextge rates contained a unit root

™ One should note that the acronym CRSP standbdoEentre for Research in Security Prices, which
is part of the Graduate School of Business of thvétsity of Chicago.
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and that the approximate rate of return was untae@. This evidence indicated that
a martingale model would be appropriate. Cheung93)L9 however, provided
contrary evidence that long memory existed in tten&h Franc / US Dollar exchange
rate in addition to providing some marginal evidenof long memory in the

UK Pound / US Dollar exchange rate.

A major issue in this literature was the speed djistment of exchange rates to
shocks from disequilibrium. In their paper, Bailaed Bollerslev (1989) found that
while seven nominal exchange rates exhibited natestary properties in their
uni-variate time series representations, theses rals® appeared to be tied together
through one cointegrating vector. This being s&ldkkio and Rush (1991) and
Sephton and Larsen (1991) found mixed results asth® existence of a
cointegrating relationship between the same sewxahange rates. Furthermore,
Diebold et al. (1994), using the same daily exchange rates oveteayear period,
noted that the application of the Johansen proegdwtlined in Johansen (1991), to
test for cointegration was sensitive to whethenatran intercept was included in the
vector autoregression, and concluded that therensasointegration between these
spot exchange rates. Baillie and Bollerslev (199ayided evidence that a linear
combination of these same exchange rates exhibitedy decaying autocovariance,
which is characteristic of long-range dependence.

Another area of interest in the literature on lamgmory processes in financial
markets was the properties of real exchange ratelstle potential validity of

Purchasing Power Parity (PPP) as a long-run phenomehowever, there has
generally been little support for PPP. Kim (199@parted some evidence of
cointegration between nominal exchange rates aladive prices, having used the
Johansen test, while Diebol@t al. (1991) estimated Autoregressive Fractionally
Integrated Moving Average (ARFIMA) models for anhueal exchange rate data
using maximum likelihood estimation (MLE) methodgjooutlined by Fox and

Tagqu (1986). The results in this study illustratedt shocks take a long time to
return to equilibrium, however, this time-frame fimite, thereby being very

supportive of the PPP doctrine. Further supporivieence was provided by Cheung
and Lai (1993) who tested for fractional cointegnatbetween nominal exchange

rates and relative prices, using annual data ®p#riod between 1914 and 1972; and
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Steigerwald (1996), who provided yet more evidesfd@PP in a unit root framework.
In contradistinction, Crato and Rothman (1994bnhfbevidence of mean reversion in
UK real exchange rates, when estimating ARFIMA nedy MLE. Baillie (1996)
argued that the PPP issue was one of the best ée@pnfresearchers being misled by
the low power of unit root tests, resulting in @®hers abandoning PPP without

paying sufficient attention to the econometric @auares.

2.5.4 Long Memory Processes and Interest Rates

Another area in which there have been some integeapplications of long memory
processes is the interest rate markets. Shea (E3%ih)ated fractional process on a
set of interest rates using the Geweke and Pomteiakd (1983)Geweke and Porter-
Hudak (1983)procedure. Shea also discussed the implicatiadidahg memory would
have had on the variance bounds tests that wowiel fesult from the term structure.
Some of the initial work done by Shea (1991) appedo provide evidence of long
memory in interest rate spreads and some intesgstievels. Backus and Zin (1993)

found evidence of long memory using various timgese including, but not only,

AR (1) unit root and fractional white noise processd®e &uthors also discussed the

implications of the presence of fractional integnatin the context of term structure,
and upon comparing the implied forward rates andesponding yields on maturities
of n-period bonds, concluded that this assumption o lmemory did not compare
favourably with the alternatives. Backus and Zitedothat the estimation of various
ARFIMA models for bond series was relatively inclusive. Crato and Rothman

(19944a) found a contrary result, when full Maximurkelihood Estimation was used

to estimate aARFIMA (0; d;1) model for annual bond yields and the conclusios wa

reached thatd =0.81 and was significantly different from one, i.e. ally

non-stationary process.

2.5.5 Long Memory Processes and Volatility

A final application of long memory processes wasassned with the volatility of
asset prices, where the work by Dirgt al. (1993), amongst other, provided an

additional stylised fact for asset pricing. Follogi along this train of thought,
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Baillie, et al. (1996b) applied a Fractionally Integrated Genseali Autoregressive
Heteroscedasticity (FIGARCH) model to exchangesaBollerslev and Mikkelsen
(1996) applied a Fractionally Integrated Exponén@generalised Autoregressive
Conditional Heteroscedasticity (FIEGARCH) model tstock prices; and
Breidt, et al. (1993) and Crato and de Lima (1994) found evidesfce®ng memory

stochastic volatility in stock prices and excharages, respectively.

2.5.6 Concluding Comments

As one can see there has been a lot of interdshgnmemory processes in financial
markets. The aim of the research is to introduce ¢bncept to a different type of

financial market, i.e. the shipping market, whére anderlying is a service and not an
asset. The presence of long memory can be defm#éukgpersistence of the observed
autocorrelations, where Baillie (1996) argued thiae extent of the persistence is
consistent with an essentially stationary procbss,where the autocorrelations take
far longer to decay than the exponential rate assmtwith the ARMA class.”

Classical maritime economic theory suggests theiglit rates follow a mean
reverting process, however, as Koekebakketr al. (2006) pointed out, “the
persistency of the spot freight rate process iseaduly the fact that the supply cannot
generally react to changes in demand with sufficseed and magnitude to eliminate
all demand shocks that bring the freight rate afvagn levels that yield a normal
return to investment...”. Koekebakkest al. gave two main reasons for this, i.e. that
there is a lag between the ordering and deliverpeat vessels; and, that from the
theory of investment under uncertainty it is nawa}s optimal for an investor to
respond to a positive demand shock as investorddwtgpically require an option
premium to react, where freight rates would exdead-term average costs. For these
reasons, the research believes that freight rasgsimfact follow neither a stationary
process, where this was suggested by Adland aniih@ng (2006), amongst others;
nor a fully non-stationary process, as was sugdebte Berg-Andreassen (1996),
amongst others, but may instead follow somethindetween, i.e. the argument

freight rates follow a fractionally integrated pess.
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2.6 The Impact of Conditional Higher Moments

Having examined the literature regarding the charatics of the first- and
second-moments of freight rates in the shippingketarin the previous sections, this
section moves on to examine the concept of comditidigher moments and its
previous application in financial markets. As tigsa relatively new concept to the
financial markets, there is no literature on thgidcan the shipping markets; for this
reason, this literature review focuses on the impmdcconditional skewness and
kurtosis on other financial markets. Bearing tmsmind, focuses on three seminal
papers, i.e. those by Harvey and Siddique (1999hol& et al. (2005) and
Ledn et al.(2005), as well as looking at the practical agilan of these concepts by
Bali, et al.(2008).

2.6.1 Harvey and Siddique (1999) and Conditional Sk ewness

Harvey and Siddique (1999) provided the first déston regarding the estimation of
conditional skewness. In this paper, the authofel® negative skewness as the
phenomenon where, after the returns had been sthselh by subtracting the mean,
any negative returns of a given magnitude wouldehlaad a higher probability of
occurring than positive returns of the same mageitwr vice versa. Following this,
Harvey and Siddique argued that by modelling theddmnal skewness, one is better
able to understand the performance of financialetasswvith skewed return
distributions, whereas conventional models assummranal distribution of asset
returns. The authors highlighted the fact that tdaescept would be of particular use
for pricing options, where it is well-known thattklistributions of the returns tend to

be negatively skewed.

In order to explore this phenomenon, Harvey andli§ice (1999) introduced, for the
first time, the Generalised Autoregressive Condaio Heteroscedasticity with
Skewness (GARCHS) model, where:

ht :ﬁ0+ﬁlh[—l+ﬁ2£tz—l (241)

S Vot NSatVE, (2.42)
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One should note that in Expressions (2.41) and2j2above h, = Var,_,(r,, ) and
st:Skewt_l(rM;t). Harvey and Siddique then tested the performaricehis

GARCHY 1,1} model and compared the results to those for theefdised

Conditional Heteroscedasticity in Mean (GARCH-MXagxponential Generalised
Conditional Heteroscedasticity in Mean (EGARCH-M) odels, using

GARCH-M(L,1) and EGARCH-M(1,1,]) specifications. This was done using returns
from the S&P 400, DAX 30 and Nikkei 225 stock irec The authors found that any

asymmetry in the variance disappeared once thesioei of conditional skewness
was accounted for, thereby providing a betteofithte data series.

A limitation of Harvey and Siddique (1999)’s appehais that the model does not
account for the presence of conditional kurtosise ©ould therefore argue, as was the
case in Brookset al. (2005) and Lednet al. (2005), that a vital piece of the risk
picture has been omitted and that while one hasiogr improved on the assumption

of normality, they do not have a understandinghefttue risk position.

2.6.2 Brooks, etal. (2005) and Conditional Kurtosis

Brooks et al.(2005) took a different approach to that of Haraeg Siddique (1999),
where instead of focussing on conditional skewntées; instead focused on the issue
of conditional kurtosis. They argued that the feet assets returns are leptokurtic
implies that extreme market movements, in eitheeation, will occur with greater
frequency, thus leading to a systematic underetbmaof the true riskiness of a
portfolio. Brooks et al. (2005) went further to propose that by modellirngs t
conditional kurtosis, one should be able to beiteterstand the distribution of asset
returns and ensure that the portfolio construasosuch that the risk structure will be

optimal.
In order to examine this characteristic of the dBtaoks et al.(2005) introduced the

Generalised Autoregressive Conditional Heterosdeitgsand Kurtosis (GARCHK)

model to allow for the estimation of this conditkurtosis.
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In Brooks et al.(2005)’'s GARCHK model:
=y, +& (2.43)

t

g=Ag ;& ~t (2.44)

h =a,+agi+ah_, (2.45)

£D4

K =fy+ B5-+ Bky (2:46)
A :w (2_47)
k —3

) [M] 2.48)

t

In Expressions (2.43) to (2.48), aboe,= ,u4;t/hf, h, andk, are the conditional
variance and Kkurtosis, respectively; while denotes the degrees of freedom.

Furthermore, one should note that:

[y, = A2 "tz (2.49)

t

= 4—3\42 2
Hay /]t (Vt _2)(\/t _4) ( 50)

Having outlined this model, Brookst al. (2005) then estimated this GARCHK
model using returns from the S&P 500 and FTSE 4i0@k and the US and UK
bond indices, and then tested the performanceesetimodels using diagnostic tests.
The results obtained indicated the strong pres€B8&CH style dependence in
conditional kurtosis. In addition to this, the marhbased specification tests indicated
that there still remained some features within daga which had not been captured,;
however, they argued that since other studies baddf similar results, this did not

indicate a problem.

As was the case for Harvey and Siddique (1999){w@grh, above, a limitation of
this methodology is that the model does not accdontthe joint presence of
conditional skewness and kurtosis, and in fact igadhe presence of conditional
skewness. One could therefore argue, as was tleeicabe papers by Harvey and

118



Siddique (1999) and Le¢et al.(2005), that a vital piece of the risk picture hagn
omitted and that while one has certainly improvedtize assumption of normality,

they do not have a understanding of the true rosition.

2.6.3 Leon, et al. and Joint Conditional Skewness and Kurtosis

Ledn et al. (2005) extended the concepts introduced by HaavelySiddique (1999)
and Brooks et al. (2005) by combining the concepts of conditiona¢wkess and
kurtosis into one model. Furthermore, Ledt al. (2005) argued that by using a
Gram-Charlier series expansion of the normal derfsiiction, it became easier to
estimate the respective likelihood function, thuaking the model more easily
applicable, in addition to the fact that this emablone to account for both
time-varying skewness and kurtosis. The authorpgsed that this application would
be useful should one wish to estimate the volgtiltlkewness and kurtosis, where
these are unknown parameters in option pricing mspdehich account for

non-central skewness and kurtosis.

In order to do this Legnet al. (2005) introduced the Generalised Autoregressive
Conditional Heteroscedasticity with Skewness andtdSis (GARCHSK) model, as
well as the Non-Linear Asymmetric Generalised Aegpessive Conditional
Heteroscedasticity with Skewness and Kurtosis (NAR&AISK) model. The authors
specified the NAGARCHSK model, which would nest tBARCHSK model when

B, =0, as follows:
r :Et_l(rt)+£t ;£ ~N(O ;aﬁ) (2.51)

t

g=hn, ;0 ~N(0:3 ;gll, {0h) (252
h=5,+B (e + BN +BN, (253)
ST WIS, (254)
k =0 +0/1i,+0K ,  (2.55)
Ledn et al.(2005) noted that, in Expressions (2.51) to (2.55))ve,E[_l(-) denotes

the conditional expectation on an information défperiod t—1, which in turn was

denoted asl,, in Expression (2.52). Furthermore, Leet al. established that
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E.(7)=0, E.(n)=1, E4(n?)=5 andE_(7{) =k, where boths, andk, are
driven by a GARCH (1;1) structure. Therefore it kkbbe stated thas, and Kk,

represented the skewness and kurtosis, respectindlich corresponded to the

conditional distribution of the standardised retgyre, .

Ledn et al.(2005) then tested the performance of the GARCIHB&K NAGARCHSK
models using returns from the British Pound, Jagangn and German Mark versus
the US Dollar exchange rates, as well as retuims the S&P 500, NASDAQ 100,
DAX 30, IBEX 35 and MEXBOL stock indices. Havingtiesated these models, the
authors then compared the results to those for s$kendard Generalised
Autoregressive Conditional Heteroscedasticity (GARCmodel and standard
Non-Linear Asymmetric Generalised Autoregressivenditional Heteroscedasticity
(NAGARCH) models, respectively. This was done oa liasis of a likelihood ratio
test, the properties of the conditional varianees] the in-sample predictive ability,
where the latter was evaluated on the basis ofrib@ian absolute error and median
percentage absolute error of the respective forecd@be results obtained indicated
the significant presence of conditional skewnessl &urtosis, and that the
specifications allowing for time-varying skewnessl &urtosis outperformed those

with constant third and fourth moments.

As Leon et al. (2005) appears to have addressed the main amtiocfsshe GARCHS
and GARCHK models, which were outlined in Harveyd adiddique (1999) and
Brooks et al.(2005), respectively, namely that the other twprapches did not take
into account joint skewness and kurtosis, theraitgmtially underestimating the true
risk in the market. For this reason, this thesiap this approach to examining these

same concepts in the shipping market.

2.6.4 Bali, et al. (2008) and Value-at-Risk Estimation

The final paper examined in this section is Bali al. (2008), which provided a
practical application of conditional skewness anddsis, in terms of how it could be
applied to the concept of Value-at-Risk (VaR). Buwghors argued that the fact that

the distribution of asset returns are generallyvgkk fat-tailed and peaked around the
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mean, implies that the traditional value-at-risktmeelology, which assumes a normal
distribution for these, would result in an undamation of the true VaR and hence

result in an underestimation of the risk involved.

Using returns from the CRSP value-weighted indeadj, Bt al. (2008) estimated nine
different types of Generalised Autoregressive Comaal Heteroscedasticity
(GARCH) models with constant and then with autoeegive skewness and kurtosis
parameters, using the skewed generalisddstribution (SGT), first proposed by
Theodossiou (1998). Having estimated the modelscatallated the respective VaR
for each, Bali et al. found that the conditional SGT-GARCH models with
time-varying skewness and kurtosis outperformedeahwith constant skewness and
kurtosis. The authors continued to discuss thergdgas of the SGT distribution over
other distributions; however, this is not strictBlevant to this thesis and therefore

will not be discussed further.

A limitation of this approach is that one must aseuthe SGT distribution, an
assumption which in itself may be flawed, in aduitito the fact that the use of this
distribution makes the likelihood-function used testimate the models
computationally complicated, a fact discussed bgn_et al. (2005). The advantage
of approach outlined by Legmt al.is that the use of the Gram-Charlier expansion
solves this computational problem, thereby makihg toncepts of time-varying

skewness and kurtosis easier to implement.

2.6.5 Concluding Comments

One can therefore conclude that there is evidencasupport of the view that
incorporating time-varying skewness and kurtosisaaf asset returns series, as
opposed to just assuming constant skewness andslkgjrtdoes have significant
benefits in terms of reducing risk and correctlycipg assets. This thesis aims to
contribute to the literature by giving it a praatidimension in a market in which the
underlying asset is a service through the estimatiothese models in the shipping
freight market context.
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2.7 Forecasting Levels and Volatility in the Shippi ng Context

Having examined the theoretical foundations and ieocap considerations for
modelling shipping freight rates, this section esv$ the literature on the practical
applications of these estimation procedures insthipping freight markets. In this
context, two seminal papers are considered, namalghelor et al. (2007) and
Angelidis and Skiadopoulos (2008), with the ultimaim of outlining the benefits of
forecasting freight rate levels and volatility, agll as outlining the possible
limitations of past research on these topics.

2.7.1 Batchelor, et al. (2007) and Forecasting Frei ght Rate Levels

Batchelor et al. (2007) extended the earlier work by Cullinane @9%mongst
others, by testing the performance of alternativievariate and bi-variate linear time-
series models in terms of generating short-terreciasts of spot freight rates, and
corresponding rates fixed in the Forward Freighte&gnent (FFA) market. In this
regard, Batchelgret al. (2007) used both daily spot and FFA prices on Ranxa
Atlantic routes for the period between 16 Janua®@7land 31 July 2000, and
Panamax Pacific routes for the period between h@alg 1997 and 30 April 2001.

Before going any further, BatcheJoet al. (2007) first tested the data series for
stationarity using Augmented Dickey-Fuller and RpstPerron and KPSS unit root
tests, outlined in Dickey and Fuller (1981) and lipis and Perron (1988),

respectively. The results of these tests indicdtet both spot and FFA prices

followed anl (1) process. This being said, Batchelet al. (2007) noted that the

Augmented-Dickey Fuller and Phillips-Perron testsl Ineen previously criticised for
their lack of power in rejecting the null hypothesif a unit root when it is false. In
order to address this issue, the authors also mmiéed the KPSS test, developed by
Kwiatkowski, et al.(1992), which confirmed the previous results. Hgvestablished
this, Batcheloret al. (2007) considered four different time series medelorder to
identify the model that provides the most accusdtert-term forecasts of spot and
FFA prices in the market. These were an Autoregredategrated Moving Average
(ARIMA) model, developed by Box and Jenkins (1978)ms (1980)'s Vector
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Autoregression (VAR) model; a Vector Error CorrentiModel (VECM), outlined in
Engle and Granger (1987); and a restricted VECM.

Batchelor et al. (2007) initially estimated the models over thesample period
between 16 January 1997 and 30 June 1998, whevasitfound that the VECM
models provided the best in-sample fit for the dagh Having established this, the
authors then generated independiniperiod ahead forecasts over the out-of sample
period between 1 July 1998 and 31 July 2000, ferAtlantic routes, and 1 July 1998
and 30 April 2001, for the Pacific routes. Batchmekt al.then assessed the forecast
accuracy of these models using the conventionak Rman Squared Error (RMSE)
metric, where it was found that while the randomkwautperformed the ARIMA
models, this was not the case for the VECM modesprovide a better picture of the
performance of the models, the authors then teshed significance of any
outperformance by applying the Diebold-Marianoistat, outlined in Diebold and
Mariano (1995), to test the null hypothesis tha¢ tRMSE metrics from two
competing models were equal. On this basis, Batchet al. (2007) concluded that,
in terms of the out-of-sample forecasting perforcegnVECM models were not
helpful in predicting forward rate behaviour, bt kelp predict spot rates, a finding

that the authors argued was more consistent witkehafficiency.

A limitation that may apply to this paper is théete are doubts regarding the
efficiency of the tests used to establish the ratiemarity of the data series.
Furthermore, classical maritime economic theorychsas outlined by Zannetos
(1966), amongst others, as well as the partiallégum models proposed by Adland
and Cullinane (2006), amongst other, suggest thagHt rates follow a mean
reversion process. This thesis adds another dimensithis debate by proposing that
the delay in the mean reversion process, outliediddand and Cullinane (2006) and
Koekebakker et al. (2006), suggests the freight rate are insteadtidraaly

integrated, and therefore tests the forecastingopeance of Autoregressive
Fractionally Integrated Moving Average (ARFIMA) neld, against alternative

models, which assume stationarity or non-statityamespectively.
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2.7.2 Angelidis and Skiadopoulos (2008) and Forecas ting Volatility

Angelidis and Skiadopoulos (2008) noted that tbetélation of shipping freight rates,
i.e. the freight rate risk, is an important soustenarket risk for all participants in the
freight markets. In order to gain a better undewditag of this risk, the authors
examined which volatility models provided the b&secast of the true risk in the
market by calculated the respective Value-at-Ri&kR) for Moving Average (MA),
Exponentially Weighted Moving Average (EWMA) and ffdient types of
Generalised Autoregressive Conditional Heterosdeitgs(GARCH) models as well
as standard non-parametric estimation techniqusely, Historical Simulation (HS)
and Filtered Historical Simulation (FHS).

Angelidis and Skiadopoulos (2008) argued that auate calculation of the VaR in
the freight rate markets is important for at lghste reasons. The first of the reasons
given was that this would enable the market padicis to quantify the level of the
freight rate risk to which they are exposed to sot@ develop effective hedging
schemes to mitigate this risk. The second reasa thva an understanding of the
possible extreme fluctuations of freight ratesniportant since freights are currently
viewed as an alternative investment by many hedgdd, which are now beginning
to expand their presence in the market. The fieason given was that the VaR could
be used to set the margin requirements in theHteagchange derivatives market so
as to ensure it grows even further. The authorkligigted the fact that the ultimate
aim of the research was to shed light on what nte#fihmuld be preferred to calculate
VaR in the freight markets; where previous literatin other markets provided mixed
results as to the best method, where this depemtiseodata set, the confidence level,

and the period under scrutiny.

In order to evaluate the performance of the modelgstimating the true VaR,
Angelidis and Skiadopoulos (2008) followed the noeitiogy outlined in previous
papers by Lopez (1998) and Sarratal.(2003) and conducted the backtesting in two
stages. The first of these stages involved theotiferee formal statistical tests, which
were outlined in Christoffersen (1998), in orderveerify the accuracy of the VaR
estimates; while the second stage involved constigu@an appropriate loss function

so as to choose the best VaR method among the thaéspass the statistical
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backtesting criteria from the first stage. Angedidand Skiadopoulos (2008)

constructed the loss function in the second stageuhe Expected Shortfall (ES).

In order to perform this whole procedure, Angelidisd Skiadopoulos (2008) used
daily price data from four indices published by Baltic Exchange for the period
between 1 March 1999 and 30 October 2006. Havitighated the volatility of the
underlying price series and calculated the respedtaRs and ES, noted that only the
estimates for the tanker index passed any of thiésstal tests. In order to compare
the loss functions for the different models, theéhats implemented the Modified
Diebold-Mariano (MDM) test, proposed by Haryey al.(1997), where these results

indicated that in almost all cases, the simplestparametric models were preferred.

There appear to be a number of limitations in gaper, in that the results from only
one of the four indices used passed the first stgéhe backtesting process.
Furthermore, Angelidis and Skiadopoulos (2008) db appear to take the fact that
freight rates may exhibit conditional skewness kmdosis. A final limitation may be
that the authors did not consider whether the uyidervolatility exhibited any form
persistence. This thesis aims to address thesesidsy using spot freight rate data
from routes themselves, rather than indices, a$ agelncorporating models which
account for both persistence and conditional skewaad kurtosis.

2.7.3 Concluding Comments

It becomes apparent from this research that iefsdely important for participants in
the shipping markets to have an understandingeofitture behaviour of freight rates,
both in terms of levels and volatility. This beisgid, there is room for improvement
on the previous research in that the assumptido #s degree of stationarity in the
underlying spot freight rates was based on potintiaited test, a fact outlined by
Schwert (1989), amongst others. Furthermore, pdpefsdland and Cullinane (2006)
and Koekebakkeret al. (2006) both outline that any mean reversion thay mccur
will occur with a delay due to the supply and dedhdygnamics within the shipping
markets. This thesis addresses these issues loglutng the concept of fractional

integration, thereby adding another dimension ¢odiébate.
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When looking at the research on forecasting thetiity of freight rates, this
research appears to have been limited by the dhleati®n process, as well as the fact
that volatility in the freight markets may exhilitme persistence. Another limitation
may be that the underlying spot freight rates mlag axhibit conditional skewness
and kurtosis. This thesis addresses these issuesihg spot freight rate data from
routes themselves, rather than indices, as welicasporating models which account

for both persistence and conditional skewness anos.

2.8 Summary and Contribution

This chapter reviews the somewhat limited settefditure on the structure of freight
rates in the shipping market, as well as introdusmse new concepts from other
financial markets. This literature review beganexamining the existing research on
the structure of the first moment of these freigites, where a conflict has arisen as
to the exact degree of integration of these speiglit rate levels. Traditional
maritime economic theory, such as was outlined byétbn (1978) and Beenstock
and Vergottis (1989), amongst others, examinedsthegcture of the demand and
supply functions in this market, arguing that thectfthat demand and supply
continually re-adjust, over the long-run, to an iguum level would imply that
freight rates are mean reverting. Following thighwhe development on new test for
unit roots and the concept of cointegration, tlendrin the literature, for example
papers by Berg-Andreassen (1996) and Glen and R¢e©7), where the result of
these tests indicated that instead freight ratdewed a non-stationary process. As
these tests came under criticism, for example paper by Schwert (1989), more
recent research proposed the implementation ofapatjuilibrium models, where
once again freight rates were assumed to be sséayiorwhere the presence of
statistically significant unit roots were attribdte the weakness of the respective unit
root tests. This thesis provides an alternate damento the ongoing debate by
proposing a middle ground in that it argues thatght rates follow a fractionally
integrated process. The rationale behind this as tihe dynamics of the supply and
demand functions in the shipping markets are shah s supply is fixed in the
short-run, due to the delay in the delivery of reapacity, freight rates are capable of
exhibiting long memory. This being said, as newntme is delivered in the

longer-term, freight rate levels will revert to theean, where this a characteristic of
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fractionally integrated processes. One should tiwag as far as the author is aware,

this is examined for the first time in a shippirantext.

The literature on the second moment of freights;aite. freight rate volatility, once
again is flawed in that the models used were bageth the assumptions that the
freight rate process was either stationary or riatiemary. As the research sets out to
prove, this may not necessarily be the case, ardcinthe freight rate process may
follow a fractionally integrated process. A secgrdblem with the models used in
the papers above is that they ignore the problenthefpotential existence long-
memory, or persistence, in volatility. Koekebaklatral.(2006) briefly mentioned the
problem of persistence in levels of freight ratiscussed in the critique of models of
levels of freight rates above, while Kavussano®97)%lso mentions this issue with
regard to the volatility of freight rates. In order address these issues, and thereby
add a new dimension to the existing literatures thiesis examines, using the same
rationale, in terms of the supply and demand dyoanm the market, as for the first
moment the concept of persistence in freight rafatiity by introducing, as far as
the authors are aware, for the first time, the ephof the Fractionally Integrated
Generalised Autoregressive Conditional Heterosdeiys (FIGARCH) model,
developed by Balilliget al.(1996a), to the shipping literature with the ubit@ aim of
determining whether this provides a better undedsiey of the structure of volatility,

and therefore risk, in this market.

The final section of literature, where this exandiniee third and fourth moments of a
price series, introduced the concepts of conditiak®wness and kurtosis to the
financial literature. The rationale behind this wast the assumption of constant
skewness and kurtosis resulted in a misunderstgradirto the true extent of the risk
exposure of market participants. This thesis examthese issues for the first time in
the shipping literature, and further contributeghe literature in that this is the first
time, to the best of the author’'s knowledge, thase concepts are being applied in a
market in which the underlying good provided iseavge, thereby adding a new

dimension to the debate.

Having outlined the three main hypotheses in Chiahtand thoroughly reviewed in

the literature on these issues in this chaptes, thesis continues by outlining the
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methodologies and data to be used to test thesetlieges in Chapters 3 and 4,
respectively. Following this, each hypothesis Wwélindividually tested in Chapters 6,
7 and 8 of the thesis.

128



3 Methodology

3.1 Introduction

Traditional methods, which address the investméning and decision making
processes generally involve some form of forecgstiith respect to the underlying
data series. The ultimate aim of applying thisha shipping markets is to determine
the future direction of freight rates, and the rig&ing standard time series models. A
wide variety of methodologies have been appliethto shipping markets with this
aim in mind of providing a better understandingtloé underlying freights and the
risks associated with participating in these markehere these are discussed in more
detail in Chapter 2 of the thesis. The aim of #@stion is to outline and fully discuss
the methodologies that will be used in this thesighlighting where these will extend
on the existing literature, thereby providing aacé understanding as to the true
structure of the different moments of freight rafelsis is essential for all participants
in the shipping market as freight rates form thsidéor all investment and planning
decisions, both for the direct participants in tharket, i.e. the ship-owners and

charterers, and for auxiliary parties, such as bah&dge funds and maritime lawyers.

The chapter begins by outlining the various methagles used in the thesis to
analyse the structure of the freight rate levelsSaction 3.1. In Section 3.2, the
chapter continues to highlight how one can anatiisestructure of the volatility of
the freight rate process, while Section 3.3 analyke higher the moments, i.e. the
skewness and kurtosis, of the freight rates bydhcing the concept of conditional
skewness and kurtosis and the methodology for amaythese. Section 3.4
concludes by outlining the methodologies that Wwél used to analyse the process of

forecasting the different moments of freight rates.

3.2 Determining the Structure of the First Moment

As mentioned above, the ultimate aim of any formmeskearch in finance is to be able
to forecast the future direction of the underlyisgries. This section presents the

methodology for understanding the processes defitine first moment of freight
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rates, i.e. the spot freight rate levels. To d#te, shipping literature has mainly
focussed on the ideas that freight rates are e#fadionary or non-stationary, hence,
this section outlines one model of freight rateelsvfor each scenario, i.e. the
Autoregressive Moving Average (ARMA) and the Augnessive Integrated Moving
Average (ARIMA). The ARMA model would conform to dhgeneral and partial
equilibrium theories outlined in Chapter 2, as thisdel assumes that the underlying
freight rates are stationary. In contrast, the ARIvhodel would conform to the
non-stationary theories, in that this model assutm&tsthe underlying freight rates are

non-stationary.

As discussed in Chapter 2, the shape of the supple in the shipping market, in
addition to supply being fixed in the short-termat Inot in the long-term, imply that
freight rates should be fractionally integrated.tfis end, this section also introduces
the Autoregressive Fractionally Integrated Movingefage (ARFIMA) model to the
shipping literature, where, to the best of the atghknowledge, this is for the first

time in this literature.

3.2.1 A Brief Discussion on AR and MA Processes

Following the structure in Greene (2003), beforeklng at the structure of the
ARMA and ARIMA models, one first has to define tAaitoregressive (AR) and
Moving Average (MA) components of the models. Stgrtwith the AR process,
assume that one is given the following model:

Ye=Hutey,te (3.1)
In the model in Expression (3.1), the varialyleis considered to be autoregressive of

order one, i.e. AR(1), as, under certain assumgticggarding the model, the

following expression will hold true:
E[ %[y |=1roy. (32
Following this, the model in Expression (3.1) cameralised to a®R (p) process

by rewriting the model as follows:

YeSHY @Yt @Yot T @Y, (3.3)
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In Expression (3.3), abovey denotes the number of autoregressive, or lagged
dependent variable, terms. Alternatively, one coudlvrite this model more

compactly by using the lag operator, hence:

C(L)y,=u+e (3.4)
In Expression (3.4), abové;(L) denotes the polynomials in the lag operator, where
Cc(L)= (1—qolL—qo2L2 -...~, Lp) and denotes the number of autoregressive terms in

the model. Moving on from this definition of the ARRocess, one can now look at
the MA process.

Consider the following MA(1) specification:
Y, =u+E —Os_, (3.5
The model in Expression (3.5) can be generaliseal MA(g) process in a manner
similar to that for theAR (p) process, i.e.:
Y, =uU+E O -0 ,—..—0¢& , (3.6)
One should note that in Expression (3.6), abaydgenotes the number of moving

average, or lagged error, terms. Once again, onagearite the MA process more

compactly using the lag operator, where:
y,=u+e-D(L)e, (3.7
In Expression (3.7), abov@(L) denotes the polynomials in the lag operator, where

D(L) :(491L—6?2L2 —...—Hqu) andq denotes the number of moving average terms

in the model.

The discussion continues in the next section tabéish how one can combine these

two processes to form ARMA and ARIMA models of tiyggoropriate orders.

3.2.2 The ARMA and ARIMA Models

Having examined the AR and MA process, one can amnkhese to form an

ARMA (p g) model, which hap autoregressive terms aganoving average terms.
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The ARMA ( o1 q) model, in its most general form, is thus speciisdollows:

Vi =HT @Yt PoYnt T G, yt—p+£t_81£t—l_82€t— 2"'_6q£t—q (3.8)
As with the AR and MA process, this model can heriteen in a more concise form

using the lag operator, hence:
C(L)y,=u+&,-D(L)e, (3.9)
In Expression (3.9), aboveG(L) and D(L) denote the polynomials in the lag

operators, where these are defined in the notesEfmressions (3.4) and (3.7),
respectively. One should note that one of the uyitgr assumptions for the ARMA
model is that the data series being modelled isos&y? Therefore, should one
apply the ARMA model to a non-stationary data serike results would be spurious.
The reason for this is that is one is using a riatiemary data series, when one
regresses one variable on another, and the twabtas are related over time, then
one could find that the model has a high measufé,aven if the two variables are
completely unrelated.

In order to rectify this issue, one could eithekméhe data series stationary by taking
the appropriate number of first differences urtéd tlata series becomes stationary, or
more simply, one could run an ARIMA model. The ARAMnodel is similar to an
ARMA model in that, as with the ARMA model, it hpsautoregressive terms agd
moving average terms. However, where the ARIMA nhatiffers is that it has an
extra component, denoted) where this illustrates the number of times theese

would have to differences in order to make it stadry, also known as the order of

integration, denoted (d) . One should note that for the ARIMA moddlmust be an
integer. TheARIMA (p g) model can therefore be specified, in its most gene
form, as follows:

Ay, =u+@Ay  +. +@ Ay +ebe .0 ., (3.10)

As with the previous models, this model can betemitmore compactly through the

use of lag operators, where:

c(U)|(a-1)" v, |=u+&-D(L)  (3.12)

12 One should note that stationarity is defined int®e C1 of Appendix C.
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In Expression (3.11), abov& (L) and D(L) denote the polynomials in the lag
operators, where these are defined in the notesEfmressions (3.4) and (3.7),

respectively, anq1- L)GI y, =Ay, is thed™ difference ofy, .

As far as the application of the ARMA and ARIMA nedsl is concerned, both these
models have found widespread use throughout theafitre, with ARIMA models

being used in a number of papers, such as Kavussambd Nomikos (1999). The
following section introduces to the concept of fraeal integration and its application

to modelling spot freights rates levels.

3.2.3 The Definition of Long Memory

Before going any further, one needs to define wkameant by long memory
processes. Hurst (1951) first introduced the conoépong memory, in the area of
hydrology, when seeking to understand the persistai streamflow data and the
design of reservoirs. A number of definitions eXwstthe property of ‘long memory’,

such as those by Rosenblatt (1956) and Taqqu (18dWever, for simplicity, this

thesis focuses only on the definition given by Matleind Hipel (1978).

Given a discrete time series procegs, this process is defined as possessing long

memory if the following quantity in non-infinite,vere the quantity is:

lim j_i_n\pj\ (3.12)
In Expression (3.12), abovey; denotes the autocorrelation function at Jagone
should note that this time series procegs,is said to be a fractionally integrated
| (d) process, where0.5<d < 1, if:

(1-L)"=¢, (3.13)
In Expression (3.13), abové, denotes the lag operator, andis a stationary and

ergodic process, where the spectrum is bounded pasitively bounded at all

frequencies. Wher@<d < 0.5, ande, is | (0) and therefore covariance stationary,

as the autocorrelations for the process are altipesand decay hyperbolically, one
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can argue that the process possesses long memthratiit satisfies the condition in
Expression (3.12). In contrast, whefr8.5<d < 0, the sum of the absolute values of
the autocorrelations tends to a constant, henceptbeess has short memory
according to this condition. The final importansedo note is where th¢=0, and

the process is therefore a stationary and invertkfiRMA process. In this case, the

autocorrelations are geometrically bound, in (mts cm™, for large values of and

where0<m<1, therefore the process is a short memory processdmes not fulfil

the condition in Expression (3.12).

3.2.4 The ARFIMA Model

As mentioned in Section 3.1 above, the first issneountered when attempting to
address the investment timing and decision maknoggsses is how to forecast the
future direction of prices. Traditionally, investonave used the ARMA and ARIMA
processes to fulfil this purpose; however, the sstign that freight rate processes are
mean reverting would cause this method of forengsid be inaccurate. In order to
correct this, this research proposes, for the fiims¢ in the shipping literature, the use

of ARFIMA processes to fulfil any forecasting needs

The existence of cycles in the freight rate marketggest that the series are long-term
dependent, with persistence being exhibited inntean return generating process.

This suggests that one should useARFIMA( g, & 9 model, where-0.5<d <1,
rather than arARIMA( g ¢ 9 model, whered 21 and an integer. One should note

thatd here is the order of integration, or, in other dgyrnumber of differences one
has to take, in order to make the process stafoamad hence enable one to use a

normal ARMA model.

Characterising the returns generating processasiaal element of asset and risk
management, the asset pricing process and cowdtblp allocation. Contrary to the

random walk hypothesis, i.e. that returns follomaadom walk and therefore cannot
be predicted, several studies, such as Lo (19949, that there is evidence of
long-horizon predictability in stock returns. Logaed that such evidence may be

symptomatic of a long-range dependent, long-memooynponent in stock market
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prices, allowing asset returns to exhibit significautocorrelation between distant
observations. There is no reason that this shoatdapply to the shipping market,

where freight rate processes display many of thtufes of stock returns.

In order to account for this long memory, this egs@ introduces the ARFIMA, for
the first time, to the shipping literature. The ARFA model, first introduced by
Granger and Joyeux (1980), Granger (1980), Gra(f#81) and Hosking (1981),
parameterises the conditional mean of the returasemting process as an

ARFIMA( p d g process, where this is specified as follows:

o(L)(2-L)" (v, -u)=6(L)e, (3.14)
In Expression (3.14), abovd, denotes the fractional differencing parameter, rehe

-0.5<d <1, L denotes the lag operator agiL) and 8(L) denote the polynomials

of the lag operators, where all the rootsgff.) and 6(L) lie outside the unit root
circle, ande, is white noise. One should note that the Wold dgmmsition and the

autocorrelation coefficients for this process wvall exhibit a very slow rate of
hyperbolic decay, where the higher the valualothe slower the rate of decay. In
addition, one should note that whet®.5<d < 0.E, the process is covariance
stationary, and that as long ds<1, the process will exhibit mean reversion, while
should 0.5<d < 1 then the process would be fractionally integrabgdeffectively

non-stationary in terms of the covariance.

Baillie (1996) highlights the fact that a numberdaferent methodologies have been
proposed for estimating the parameters of the AR¥Hbdel, for example, Geweke
and Porter-Hudak (1983) suggest a semi-paramesicnator of the fractional
differencing parameterd, in the frequency domain, while Robinson (199(3oal
suggests a semi-parametric estimatod,dut this time it is in the time domain. This
being said, this thesis uses the maximum likelihestimation (MLE) approach,
where Sowell (1986) and Sowell (1992) propose aaceMLE of the ARFIMA

process with unconditional Normally distributedtdibancesg, .

13 Should one require more information, a much moetaited discussion of the various MLE
methodologies is provided by Baillie (1996).
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The proposed log-likelihood function is then:
(= —%Iog(Zﬂ) —% log|Q| ——;Y Q7Y (3.15)

In Expression (3.15), abov{aQ}i_j = Vil where y denotes the autocovariances of

the ARFIMA process, an¥l represents &-dimensional vector of the observations on

the processy, .**

In contradistinction, Whittle (1951) finds that tla@itocovariance matrixQ , from
Expression (3.15), may be diagonalised by trangfugnthe vectorY in this log-
likelihood function into the frequency domain, herane could approximate the log-
likelihood by using the following log-likelihood fction:
T-1 T-1
0 :ZIog[(Zﬂ) f (wJ}Z[IT (@)/ (o )] (3.16)
i=1 i=1

In Expression (3.16), above, (a)j) denotes the periodogram evaluated at frequency

w, , andT denotes the sample period.

Fox and Taqqu (1986) provide an alternate frequatmyain approximation of the
MLE, which is the one used in this thesis, whereytmumerically minimise the

following quantity:

m

Z{I(a)j )/f (a)j; 6?)} (3.17)

j=1
In Expression (3.17), above(a)j) denotes the periodogram evaluated at frequency

w;, , and the summation is overfrequencies.

ARFIMA models are preferred to the more traditioA®IMA or ARMA models

used in the literature as these two other modedsmas that the price process is
stationary and non-stationary, respectively. As toeed before, this research
believes that the price process is neither statjonar non-stationary, but is in fact a

1 Sowell (1992)'s full MLE requires the inversion afT xT matrix of non-linear functions of the
hypergeometric function at each iteration of theximasation of the likelihood. The method to do this
requires that all the roots of the autoregressimlyrpmial must be distinct, and that the theorética
mean parametery/ , must be either zero or known. This means thdahoabh it is theoretically

appealing, it is very computationally demandingréfore rendering it undesirable for this research.
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fractionally integrated process. This means thapukl the process indeed be
fractionally integrated, one was to use either &IMA or ARMA model, the price

process would be misspecified, and one’s forecastdd be inaccurate, rendering
them useless. This may be the reason for the lewldeof accuracy in forecasts

traditionally achieved for freight rates.

ARFIMA models have been used to model long memaigepprocesses in a wide
range of financial markets as well as well as foeirt original purpose in the

geophysical sciences. Crato and Rothman (1994aamua&FIMA (O; d;l) process to
model annual bond yields and find that this prodeisws a statistically significant
fractionally integrated process. Sowell (1992) uaesARFIMA (3;d;2) process to
model US real GNP; Baillieet al. (1996b) model inflation rates using ARFIMA
models; and Baillie and Bollerslev (1994b) use ARFIMA (2; d;O) process to
model the forward premium in exchange rates. Toathtbor's knowledge, there has

been no previous work on the use of ARFIMA modelthe shipping freight markets,

thereby making this a ripe area for further redearc

Having determined the different structures of theM¥, ARIMA and ARFIMA
models, the following section examines the tesettermine whether a data series is

fractionally integrated or not.

3.2.5 Tests for Fractional Integration

As standard unit root testScan only distinguish between(0) stationary and (1)
non-stationary processes, the need arose for awilesth would enable one to
determine if a process is(d), where0<d<1. Several tests arose, the most

commonly used of which is the test proposed by Rsidn (1994). This being said,
this research uses the LM test first proposed lgfsiin (2005) as it has a number of
advantages over other tests in that it is a timmaalo test, as opposed to a frequency
domain test, and can be used for multivariate nsodehe main objective of this

15 Three standard unit root tests, namely the AugeteBickey-Fuller, Phillips-Perron and KPSS tests,
proposed by Dickey and Fuller (1981), Phillips defron (1988) and Kwiatkowskét al. (1992),
respectively, are outlined in detail in Section@2Zppendix C.
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Lagrange multiplier (LM) test is to test whethetirae series, where the time series is

denotedy, , is I(d) , against the alternate hypothesis tlyatis I(d +6?), where
@#0. Therefore, if one was to difference the obserie@® series, this would be

equivalent to testing whetheg = (1- L)y, is I (0) as opposed to(8).

This test may be used as a tool for preliminaryadatalysis, such as testing for
stationarity, etc., where this test may indicateatMinansformation of the data would
be required to make the data stationary. Howewes,test may also be applied after

modelling to ensure that the fractional differemmoplemented is sufficient to render
the process stationary, 60), where this is the context in which it shall bedisn
this thesis. Therefore, this thesis uses this tiesdetermine if the data series are
fractionally integrated prior to implementing theRRIMA models, and then tests
the residuals from the AFRIMA models for statiobarusing this test after

implementing the models.

This test is carried out, in general terms, a®Wd, where one was to observe a time
series{y, ;t =1;...;n}, which is generated by:

(1-L)"y, =& l(t21) ;t=0;£1;+ 2;.. (3.18)
In Expression (3.18), abové([) denotes the indicator function whike is | (0),
which means that, is covariance stationary with a spectral densigt is bounded
away from zero at the origin. One should also rtbé& the procesy, generated by

Expression (3.18) is well defined for all valuesdadnd 8. An important point is that
the process outlined in this expression allowsaamiform definition, valid for all
values of bothd andd, whereas the alternative definition, without tliantation
included in the expression, would only be valid ébt 80(-1/2;1/2) with partial
summation being required in order to generate aga®with an order of integration

outside this range.
In order to perform the test, one would assumel@evaf d, which is known a priori,

and then test the following hypothesis:
H,:6=0 (3.19)
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This hypothesis is tested against the altern&tived # 0, where an example of this

would be to test the unit root hypothesis, whichdisne by settingd =1 in
Expressions (3.18) and (3.19). It is important tienthat the assumption that the
value ofd is knowna priori, is made without any loss of generality and that the
specification of a particular value aof exactly specifies the null hypothesis since
6 =0 in Expression (3.19).

One should note that the Gaussian log-likelihoodicion of the model in

Expression (3.18) would be:

E(B;Z):—gln(ZHIZD——;  (1-L)C ys 7 (1-1) "y, (3.20)

t=1
Hence, the score would be:

ol(6,% n e e
(019 )‘azo;zi:_;(ln(]‘_l-))xtz Xt_tr(z S10) (3.21)

. d n * ' * t-1 .-
In Expression (3.21), above, =(1-L)" y,, S;o =2 L, XX Xu =2 L 07 % s
and £=n"Y" xX is a consistent estimate df = E(gtet') under the null

hypothesis. In the case of a univariate time sgeties score in Expression (3.21),

normalised by\/ﬁ , reduces to Tanaka (1999)’s univariate time dorsaore statistic:
n-1
s, =V i'p(i)  (3:22)
=1

In Expression (3.22), above)(j) is the th order sample autocorrelation with

respect to the process.

The Nielsen (2005) test has a number of advantages similar tests used in the
literature. The first of these advantages is thatrhodel can be extended to allow for
deterministic terms, a different value @fand & for each variable. In addition, this

test works in almost exactly the same manner as Theaka (1999) and

Robinson (1994) tests for fractional integrationfubther advantage of this test over
others is that Nielsen (2005) argues that the megdest is a time domain test, as
opposed to a frequency domain test, where Tan@@09jlsuggests that time domain
tests are superior in terms of finite sample proger One should also note that

Nielsen (2005) compared the finite sample propemiethe Nielsen test with those of
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Breitung and Hassler (2002)750(d) test, finding that the Nielsen test had higher

finite sample power than the Breitung and Hasstst when testing for fractional
integration, where should one wish to examine $isae further, a detailed discussion
can be found in Nielsen (2005).

3.3 Determining the Structure of the Second Moment

Having outlined a selection of models to be usedetermine the structure of the first
moment of freight rates, thereby enabling one ttemd@ne the structure of the
underlying spot freight rate levels process, thmigonow changes to the issue of the
risk inherent in the market. In order to be ablectorectly gauge the market risk
exposure for participants in the shipping markete onust have some idea of the
structure of the second moment, or the volatilidy, the underlying freight rate
process. This section outlines a number of mettomies that will be used in this

thesis, with the ultimate goal of being able tousslthis market risk exposure.

This section begins by outlining the standard Aegoessive Conditional
Heteroscedasticity (ARCH) and Generalised Autoregive Conditional
Heteroscedasticity (GARCH) methodologies, propodey Engle (1982) and
Bollerslev (1986), respectively, describing thesedetail and briefly discussing
examples of their application, in both the shippiibgrature and the broader finance
literature as a whole. Following this, this sectimoves on to discuss the issue of
persistence in volatility, introducing the Integét Generalised Conditional
Heteroscedasticity (IGARCH) model, first outlined Engle and Bollerslev (1986),
and then concludes by introducing, for the firstdiin the shipping literature, the
Fractionally Integrated Generalised Conditional dfescedasticity (FIGARCH)
model, introduced by Baillieet al. (1996a), and discussing the methodology for

implementing this model to model the volatilitysifipping freight rates.

3.3.1 The ARCH, GARCH and IGARCH Models

In the financial markets, most studies on the Wdlabf the underlying series focus
on the ARCH family of models, where the ARCH models first introduced by
Engle (1982). ARCH models have been used to modkltility in inflation, as in
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Coulson and Robins (1985), amongst others; the &racture of interest rates, as
illustrated in Engle et al. (1987), amongst many others, and the behaviour of
exchange rates, see Domowitz and Hakkio (1985)ngstoothers; as well as many
other markets. The ARCH methodology has also bese in the shipping freight
markets, where Kavussanos (1996), Kavussanos (E@@i7iKavussanos and Nomikos
(2000b), amongst others, use this model to exanmieevolatility of the underlying

freight rates.

The simplest of the ARCH family of models is themple ARCH model,
first proposed by Engle (1982), where the ARCH pBesg denotetﬁgt} may be

specified as follows:
& =z0, (3.23)

One should note that, in Expression (3.23), abayes distributed as a standard
normal distribution, i.e.E,,(z)=0 and VAR ,(z)=1, where E_(J and

VAR_l([)] denote the conditional expectation and variandé waspect to the same
information set. In additiong, is a positive time-varying and measurable function
with respect to the information set at tihel. Therefore, one can state that, by

definition, the ARCH, or{gt} process is serially uncorrelated, with mean zero;

however, the conditional variance of the processptedo?, changes over time.

A restriction of thiSARCH(q) model, is that, in its classical form, the coruditl

variance is postulated to be a linear functionhef iagged squared innovations. This

implies that Markovian dependence will only datekog periods, i.e£?,, where

i =1...;2. Bollerslev (1986) solves this problem by allowifog a more flexible lag

structure in theGARCH(p;q) model, where this is formally defined as follows:
o=w+a(L)e?+pB(L)o? (3.24)
In Expression (3.24), abové, denotes the lag operator, hence one can see that

a(L)saL+a,l’+. . +a, L% and B(L)=BL+B,L°+...+BL° . In order to

ensure that thsﬁet} process is stable and covariance stationary, hall roots of
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[1-a(L)-B(L)] and[1-B(L)] are constrained such that they lie outside the uni

circle. This stationarity condition implies thatetheffect of the past squared
innovations on the current conditional variancd ddcay exponentially with the lag

length, i.e. the impact of past shocks will decayamentially over time.

Engle and Bollerslev (1986) extend this model bwguarg that should the

autoregressive lag polynomial-a(L)-A(L), contain a unit root, then the
GARCH(p;q) process will be integrated in variance. Therefdine, corresponding
IGARCH( p;d) model will be given, succinctly, by:

p(L)(1-L)eZ =w+[1-B(L)]v, (3.25)
In Expression (3.25), abovey(L)=[1-a(L)-B(L)](1- L)™, whereL, a(L) and
,B(L) are defined above, is of order—L1. It is worth noting that, while shocks to the
conditional variance for th€ARCH( p;q) model defined in Expression (3.24) decay

exponentially, these will persist indefinitely fitis IGARCH( p;q) model.

The following section examines the concept of foawl integrated variance, using

the FIGARCH model, and discusses how this modelldvbe implemented.

3.3.2 The FIGARCH Model

As mentioned in Sections 3.2.3, above, the concéplong memory was first
introduced by Hurst (1951). Following this, Gran@¢&980), Granger (1981), Granger
and Joyeux (1980) and Hosking (1981) proposed thet concept could be
implemented, in terms of modelling the levels aof tmderlying series, through the
use of the ARFIMA model. This section examinesithplementation of this concept
in terms of modelling the variance of the undenyuhata series, through the use of
Baillie, et al. (1996a)'s FIGARCH model. This means, that in casitrto the

GARCH( p;q) model, where shocks dissipate exponentially, aed@ARCH( p;q)

model, where shocks persist indefinitely, the resgoof the conditional variance to

past shocks decays at a slower, hyperbolic rate.
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Baillie, et al. (1996a) extend the ARCH literature by proposinat,tlin addition to

being abIeGARCH( p;q) processes, which are integrated in variance, anenwdel
GARCH(p;q) process, which are fractionally integrated in aace. Therefore, in a
manner analogous to tRFIMA (g d q) process for the mean, one can define the
FIGARCH( p;d;q) process f0|{£t} as follows:

o(L)(1-1)" 2 =w+[1-B(L)]v, (3.26)

In Expression (3.26), above, the first differengeemator in Expression (3.25) has

been replaced with the fractional differencing eper, denoted!, whereO<d <1. In

addition, in Expression (3.26), all the rootseffl.) and[1-B(L) |, whereL, ¢(L)
and B(L) are defined above, lie outside the unit root eircAn alternative

representation for theFIGARCH(p;d;q) model is attained by rearranging the

parameters in Expression (3.26), where:
[1-B(L)]o? =+ 1-B(L) - ¢(L)(1-L)" &7 (3:27)
Therefore, the conditional variance gf is simply given by:
ot =af1-p(0)] H-[r )] P(L)(+1)) el B29)
As with all of the ARCH-type models, in order fdretFIGARCH(p;d;q) to be

well-defined and the conditional variance to beifpes all the coefficients in

Expression (3.28) must be non-negative. As mentioabove, unlike for the

GARCH( p;q) and IGARCH( p;q) models, shocks to the conditional variance, in

the case of th&IGARCH( p;d;d) model, will decay at a hyperbolic rate.

One can now move on from the development of the aihdd the actual

implementation. As with the other ARCH-type modeise FIGARCH(p;d;q) is

estimated using the MLE approach, where estimdtdsegarameters are obtained by

maximising the following log-likelihood function:

((8:6,.8,.....6,) = =057 log( 21)- o.i[ logoy)+efo?]  (3.29)
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In the log-likelihood function in Expression (3.29})ove,{£1,£2,... ,gT} denotes the

sample andB'E(w,d;,Bl,ﬁz,...,ﬂp;qol,wz,... ,qoq). In addition, the MLE approach

assumes conditional normality of the process. Omeuls note that, where the

standardised innovations = z,0," are leptokurtic and not i.i.d. normally distribdte

through time, the robust Quasi-Maximum LikelihoostiBhation (QMLE) procedures,
proposed by Weiss (1986) and Bollerslev and Woodgri(1992), may be used to
allow for asymptotically valid inference.

FIGARCH models have been widely used in the finalnmiarket literature, with areas
ranging from crude oil markets, see for exampleda al. (2009), amongst others,
to the exchange rate markets, as in Kilic (200@pmrgst others. However, to the best
of the author’s knowledge, this is the first tinmatt this model is being implemented

in the shipping literature.

3.4 Determining the Structure of the Higher Moments

Having examined the structure of the first and sdcmoments of shipping freight
rates in the previous sections, this section exdahé analysis of the structure of
freight rates by outlining the methodology to exaenihe higher moments of the
underlying data series. The concepts of time-varyskewness and kurtosis are
relatively new to the financial markets literatuaed this is, to the best of the author’s
knowledge, the first application of these conceptthe shipping literature. Despite
this novelty, the literature, as discussed in Céra@ of the thesis, seems to be
unanimous in outlining the importance of understagdthe risk structure for

participants in these markets.

This sections begins by analysing the initial asiglyf conditional skewness in the
form of Harvey and Siddique (1999)'s Generalisedtofegressive Conditional
Heteroscedasticity with Skewness (GARCHS) modethdin moves on to examine
the issue of conditional kurtosis using Brookst al. (2005)'s Generalised
Autoregressive Conditional Heteroscedasticity anmtéSis (GARCHK) model. This
section concludes by examining the Generalised ragtessive Conditional

Heteroscedasticity, Skewness and Kurtosis (GARCHS K proposed by Leqret

144



al. (2005), and indicating some previous empiricalliagppions of these concepts in

the financial markets literature.

3.4.1 The GARCHS Model

As mentioned above, the focus of the methodologd usere changes from merely
modelling the conditional volatility to modellingge higher moments as well. Harvey
and Siddique (1999) introduce the concept of agtessive conditional skewness
through the introduction of the GARCHS model. Tissuamption here is that excess

returns, which they denote ag..,, have a non-central conditional t-

distribution, which allows one to estimate timeyrag skewness of either sign. This
distribution is defined by two time-varying paraerst i.e. the degrees of freedom,

denotedv,,,, and the non-centrality parameter, denadgd, where the conditional

variance is used as the scale parameter controthegdispersion of the data.
Harvey and Siddique use the conditional variancstamdardise the returns to have
unit variance, with a non-zero mean, and then lisednditional mean and skewness

to calculate the respective,, andd,,, for the series.

t+1

The sample likelihood function for this non-centralistribution, with unit variance,
can be calculated as follows:

2
Vi -0

LI exp 2

€(£t+1 Zt; @) =

l/t+1+:|-

t= Via 2
I £ 2
( 2 )ﬁ(j
1
g, )2

. i 2
© V... +i+1)( I,
% r t+1 t+1 1
; ( 2 j( i!] ) &’

= t+1
t+1 +

(3.30)

In Expression (3.30), abové, denotes the Gamma function, whilke,, and 9,

t+1
denote the degrees of freedom and the non-cegtnaditameter, respectively, as

discussed above. One should note #)gt determines the shape and, therefore, the

skewness of the distribution.
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The GARCHS model was developed so as to allow ler $pecification of the

conditional variance and skewness as an autoregega®cess as follows:
h=B8+Bh.+B£L (3.31)
S=VotiSatyEL, (3.32)

In Expressions (3.31) and (3.32), abolg= Var,_,(r, ) ands, =Skew, (1, ).

One should note that the variance and skewned®iGARCHS model needs to be
constrained in order to ensure that they are siatyg and in the case of the variance,
positive. In order to achieve this, Harvey and 8jdd impose the constraints that

0<ﬁ1<1’ 0<:32<1’ :81+:82<1’ _1<y1<1’ _1<y2<1and_1<y1+y2<1'

In order to allow for the estimation of the moddhrvey and Siddique estimate the
central conditional variance and then use the reoge relation, proposed by
Kendall et al. (1991), to obtain the non-central skewness andaneg from the

central moments as follows:
My =My =341, + 217 (3.33)
M, = -5 (3.34)
In Expressions (3.33) and (3.34), aboyg,and y, are the central moments, about

the mean, while, and 4, are the non-central moments, about zero.

Following this, Harvey and Siddique (1999) calcelat,, and d,,, by solving the

following system of nonlinear equations:

i l(v—l)}
u :(;vjz[rz(lja (3.35)
2
v(2v—3+52)

m—z} (3.36)

H3 :/11[

Harvey and Siddique then set the initial conditlorexriance and skewness, denoted

h, ands,, respectively, to the conditional variance andwsiess and estimate the
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parameter set, Wher@:[a;ﬁ; y]. This is done by maximising the log-likelihood

function outlined in Expression (3.30), above.

3.4.2 The GARCHK Model

Brooks et al. (2005) look at a different aspect of the highemmeats, where they
argue that, following the research by Mandelbrd6@), it is almost universally
accepted that asset returns are leptokurtic, assggpto normally distributed. For this
reason, they introduce the GARCHK model, whichvafidor the kurtosis to develop
over time in a manner that is not fixed with redptecthe variance, in order to

examine the impact that conditional kurtosis hassset returns.

This model proposes that if one was todgt wheret =1;2;...;T, be independently
distributed as central Studenttsvariates, withv, degrees of freedom, then one

could extend Bollerslev (1986)'s GARCH model, inigfh Bollerslev considers a

time-varying transformation of,, denoted,. This extension would result in a new

process, which may have any desired variance, deimpt and kurtosis, denotek] .

This transformation would be given by the following
g’ =M€g (3.37)
In Expression (3.37), above, are the analogues of the disturbances 8GARCH

model. Following this, one can define the time-wagytransformation as a function of
the conditional variance and kurtosis of the datges, i.e.:

_[ kN
A = (ﬁ] (3.38)

In Expression (3.38), abové, andk, denote the variance and kurtosis, respectively.

Following this, Brooks et al. (2005) define the conditional variance, denoted

h, = i, , as follows:
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In Expression (3.39), abovd, andv, denote the time-varying transformation and
the degrees of freedom, respectively. The conditidiourth moment, denoted
K, =l Is defined, in turn, as:
3'/2
L =AS ;
S (RPY) )

In Expression (3.40), abovd, andv, denote the time-varying transformation and

(3.40)

the degrees of freedom, respectively. It is worbhing that Expressions (3.39) and
(3.40), above, arise from the moment-generatingtfan for a centrat-distribution,

in which all odd moments are zero, by definitiomo&ks, et al. then rearrange

Expression (3.39), above, to obtain the time-vayyimnsformation as a function of
the conditional variance and the time-varying degref freedom, hence:

Y2
A= {M] (3.41)

Vt
In Expression (3.41), above), and v, , once again, denote the time-varying

transformation and the degrees of freedom, respgfi while h, denotes the

conditional variance. Following this, Brookat, al. define the conditional kurtosis as

K, = /,14;t/h[ , and then substitute Expression (3.41) into (3td@ttain the conditional

kurtosis as a function of the degrees of freedotimat, therefore:

3(v,-2)
k=L (3.42)
(v.~4)

In Expression (3.42), above, denotes the degrees of freedom &ndlenotes the

conditional variance. Following this, Expressiomd@ is rearranged to determine the

degrees of freedom as a function of the conditi&natiosis, hence:

_2(%,-3
V=g G43)

In Expression (3.43), above,, and k, denote the degrees of freedom and the

conditional kurtosis, respectively. Expression8%93.to (3.43) illustrate that there is
no fixed relationship between the conditional vace and kurtosis and therefore
these may vary freely over time as the conditidkattosis depends only on the
degrees of freedom, whereas the conditional vagiasmso depends on the time-
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varying transformation. This process means thatheg are not directly functionally
related, one is able to parameterise the conditioagdance and kurtosis terms
individually, as desired. One should note thatehsra degrees of freedom restriction

in thatv, >4, if the requirement for the existence of a secand fourth conditional

moment is to be met.

Brooks et al.(2005) highlight that in order to estimate thegmaeters of these terms,

one should note that the Jacobian of the transﬂ:brumaart”//lt =&, is:

1
J=—1== (3.44
) (3.44)

One should recall that, in Expression (3.44), abokeand &, denote the time-

varying transformation and the analogues of theuthances of &# GARCH model,

respectively. The density &f is then obtained by taking the Studertttéensity for

&, into which one would substitui;au//lt =¢,, and then multiplying this by the

.
Jacobian, therefore:
f (gtD) -1 r[(vt +1)/2]

A Ty, /2] (1+ £ /A Y, )(V‘ﬂ)/z

(3.45)

One should note, once again, that, in Expressio#b)3¢,’, A, andv, denote the

analogues of the disturbances adf@ARCH model, the time-varying transformation

and the degrees of freedom, respectively, whilelenotes the Gamma function.
Following this, one can determine the log-likelidofminction for thet™ observation

by substituting forA, in Expression (3.45), and then taking logarithrhthe resultant

function. The log-likelihood function is therefore:

r=tog[r{{v.+1/3 ]~ tog r{v,/§]-3 logh]- logv.~ 3

v, +1 £ (3.46)
- log #———
2 h(v.-2)

In Expressions (3.46), above,, I andv, denote the analogues of the disturbances

of at-GARCH model, the Gamma function and the degredseefiom, respectively.

In addition, the degrees of freedom are a functibthe conditional kurtosis, hence,
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should one maximise the log-likelihood functionistivould yield the MLE estimates

for all the parameters of the model.

Brooks et al.(2005) finally formalise the GARCHK model, which described using

the following series of expressions:
Yi=Vote  (3.47)

el=Ae, & ~t (3.48)

Vi

h=a,+aegf+a,h , (3.49)

524

= fot B+ Bk, (350)

t-1

_2(%,-3
V, = W (3.51)

Y2

t

In Expressions (3.47) and (3.52),’, A,, h,, k, andv, denote analogues of the

disturbances of #GARCH model, the time-varying transformation, ttenditional

variance, the conditional kurtosis and the degree$reedom, respectively. One
should note that the parameters in this model stienated using QMLE estimation.
The first point to note regarding the model is tlest a result of Expression (3.42),

there is a degrees of freedom restriction in that 4, if the requirement for the

existence of a fourth moment is to be met. In aoldito this, Expression (3.42) also

implies thatk, — 3 asv, - «, while k, -~ « asv, - 4 in the model. One should
also note that it is sufficient that, >0, a,>0, 8,>0, 5,>0, a,20, 5,20,
h, >00t andk, >30t. The final issue to note for the GARCHK modelthsit the

initial values for the conditional variance and tksis series are set such that every
element is equal to their respective unconditimadlies.

The next section looks at the joint estimation ofditional skewness and kurtosis,

with the idea that if one can incorporate both luése into one model, one can

generate a better understanding of the underlyatg series.
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3.4.3 The GARCHSK Model

A disadvantage of the GARCHS and GARCHK modelséat,twhile the GARCHS
model allows one to model the conditional skewrséssdata series, it does not allow
one to model the conditional kurtosis, and vicesadior the GARCHK model. This
means that, essentially, one is unable to joirgtymeate the higher moments of a data
series using either of these models. This issuedslved by Lednet al. (2005),
whose GARCHSK model enables one to jointly estinthte conditional variance,
skewness and kurtosis of the underlying data sefiesadditional advantage of the
GARCSK model is that the likelihood function is bdson a Gram-Charlier (GC)
expansion of the normal density function, in a nensimilar to that suggested by
Gallant and Tauchen (1989), which makes it easieestimate than the likelihood

function based on the non-centralistribution used by Harvey and Siddique (1999).

Ledn et al.(2005)'s GARCHSK model is given by:
r, = Et_l(rt)+£t |, ~(0;a€2) (3.53)
g =V ;n, ~(0) ;&f1, Hoh,) (354

h =B, + B+ BN, (3.55)

S=VotVIL Y5, (3.56)

k,=0, +I/,+0k_, (3.57)
In Expressions (3.53) to (3.57), abO\Ea;l([)] denotes the conditional expectation on
an information set till period—1, where this in turn is denotdd_,. Leon, et al.
establish thak,_, (nt) =0, E (’L)Z =1, E (/7t)3 =s, andE (/7t)4 =k,, where
both s, andk, are driven by &5ARCH(L1) structure. This means that andKk,

represent to the skewness and kurtosis corresppalithe conditional distribution of

the standardised residuals, denafedwherer, = £,h™?, respectively.

Leon, et al. go on to obtain the density function for the staddsed residuals,

denoteds,, which is conditional on the information availalaletimet -1, by using a
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GC series expansion of the normal density funcéind truncating this at the fourth

moment. Therefore, the density function will bed@bws:

k-3

— - (nt-ei+ 3 =g(n)u(n) (358

o{n ) =efn) 1+ 030

In Expression (3.58), aboveg([) denotes the probability density function (pdf)

corresponding to the standard normal distributighile 41/([)] is the polynomial part

of the fourth order, corresponding to expressiamveen the brackets. One can argue

that this is not really a density function in thimt; some of the parameter values in

Expressions (3.53) to (3.57), the density funct'@(‘[)] might be negative, and,

similarly, the integral ofg(0J on O is not equal to one.

To solve this issue, Leoret al. propose a true pdf, denote‘c{[)], where this is

obtained by transforming the density functiglﬁ[)] using the method outlined in

Gallant and Tauchen (1989). Looking at the spesiifio obtain this well defined

density everywhere, the polynomial part of the dgrfanction, i.e.gl/([)], IS squared,
and then divided by the integral gf([)] over [1, where the latter is to ensure that the

integral of g([)] is equal to one. This means that the resultingnypiiibe as follows:

2

(ﬂ(ﬂt){l"';(/?ts‘?/?t)‘*‘kf(/?f‘ 6722+ ?)

o(n.)w?(n.)

f(n1)= - (3.59)

t t
In Expression (3.59), above, all the terms areedmed above, with the exception of

the terml", , which is defined as follows:

2
s> |k -3
r,o=1+— (t ) (3.60)
3! 41

In Expression (3.60), abovs, andk, are as defined above.

Following this, the log-likelihood function, aftemitting unessential constants, can

be defined as the following:

0, = —%m h, ——;qt +|n[¢/2(/7t)]—|n[rt] (3.61)
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One should note that the log-likelihood functiorfimed in Expression (3.61), above

is for one observation corresponding to conditiaisiribution £, = h¥?y, , where the

pdf for this conditional distribution ik"*f (’L"m)- As one can see, this likelihood

function is clearly much easier to estimate tham density function proposed by
Harvey and Siddique (1999), which is based on a-asmral t-distribution. An
additional advantage is that the pdf in Expresgi®®9) nests the normal density

function, which would occur whers, =0 and k, =3, while that based on the

non-centrat-distribution does not.

3.5 Conclusion

This chapter examined the various methodologies whilhbe used in this thesis to

gain a better understanding of the underlying stinecof the different moments of
freight rates in the shipping markets. As outlirezbve, this thesis introduces the
concepts of fractional integration and conditiorsklewness and kurtosis to the
shipping literature, and therefore may provide &greater understanding of the
structure of freight rates. In addition, this clephtroduces the methodology that will
be used to gain a better understanding of the dutlimection of spot freight rates
across the different vessel types, and a greaseghninto the potential risk exposure
faced by participants in these markets. Given this following chapters will provide

an empirical application of these methodologies @nolvide an insight into the

meaning of the results of these empirical studies.
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Appendix 3.A — A Discussion on Stationarity

Brooks (2002) and Tong (1990) highlight the fadttthere are two main forms of
stationarity for a data series. A data series fsdé as a strictly stationary process if

the distribution of the values of the data ser@rains constant across time, i.e.:
P{y}=P{w. Ok (@AIL

In other words, for a data series to be strictitishary, the probability that the

variable y, falls within a particular interval must be the sanmow as any other point

in time. In contrast, a data series is defined @weakly stationary process if it satisfies

three conditions, the first of which is that it llmsonstant mean, i.e.:
E(y)=¢ (A2
The second condition is that the data series a@ongariance, hence:
E(yt —/1)( Y, —/1) =g?<w (3.A3)

The third, and final, condition is that the dataesconstant autocovariance for each
lag, in other words:

E(v, ~4)(%, ~#) =V, DLt (3A4)

One should note that the autocovariance is defasathe extent to which the value of

y, is related to its previous values, where, for akise stationary series, this will
depend only on the difference betwegrandt,, hence one could state that the

covariance betweeg, andy,_, will be the same as that fo,_, and y,_..

This thesis uses three main tests to determine h@hdhe underlying process is
stationary or non-stationary, where the first adsh is the Augmented Dickey-Fuller
(ADF), first proposed by Dickey and Fuller (198Epr this ADF test, assume that
one is given the following model:

, P
DAy, =ay,_, + >§5+Z§01Ayt-i +&  (3.AD)

i=1
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In Expression (3.A.5), abovéy, =y, - Vy,, anda = p—1. One then estimates this

model and performs the following hypothesis test:
H,:a=0
H.:a<0 (3.A.6)
One should note that in Expression (3.A.6), abtwe nhull hypothesis implies that the
underlying process is non-stationary, as opposéldetalternate hypothesis, where the
underlying process would be stationary. This tespeérformed using the standard
t-ratio for a regression coefficient, i.e.:
{ = a
“ SEa)

(3.A.7)

In Expression (3.A.7), abovey denotes the estimate of the coefficient while

SE(d@) denotes the standard error of the coefficient. €meuld note that this test

statistic does not follow the conventional Studertdistribution, and must be
compared with critical values outlined in Dickeydafuller (1979).

The second, alternative, test is the Phillips-Re(RP) test, first proposed by Phillips
and Perron (1988), who argue that this is an imgment on the ADF test in that it is
non-parametric. For the PP test, assume that ayeasn the following model:

Dy, =ay.,+x5+e  (3.A8)
In Expression (3.A.8), abovéy, =y, —Vy,_, anda = p—1. One then estimates this

model and performs the following hypothesis test:
H,:a=0
(3.A.9)
H,:a<0
Once again, one should note that in Expression.93,./Above, the null hypothesis
implies that the underlying process is non-statipgnas opposed to the alternate
hypothesis, where the underlying process wouldté@gosary. This hypothesis test is

based on the following test statistic:

. =ta(ﬁJ—T( f,—¥o) SE(@)

(3.A.10)

f, 2f)%s
In Expression (3.A.10), above;, SE((i') andt, denote the estimate, standard error

and t-ratio of the coefficientr , respectively, where theratio is calculated in the
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same was as outlined in Expression (3.A.7), swl@énotes the standard error of the
test regression as a whole. In additipy,is a consistent estimate of the error variance
in Expression (3.A.8), wherg, :(T - k) 32/T and k denotes the number of

parameters, and, denotes an estimator of the residual spectrurquéecy zero.

The final test of stationarity discussed here i KPSS tests, first proposed by
Kwiatkowski, et al. (1992), where the KPSS test statistic, which isagrange

multiplier statistic, is based on the residualsrfritne following model:
y,=xd+¢&  (3.A.11)

One then tests the following hypotheses:

H, : Underlying process is stationary

. . _ (3.A.12)
H, : Underlying process is non-station.

This test is performed using the following LM s$éis, where:
LM =Ys()°/(T*1) (3A.13)
t
In Expression (3.A.13)f, denotes an estimator of the residual spectrunguéecy

t
zero and S(t) is a cumulative residual function, wherg(t)=> & and
i=1

E =Y, — xt'é'(o). This statistic is then compared to the reportétital values for the

LM test, where these are presented in Table 1 a6 of Kwiatkowski et al.(1992).
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4 Description of Data

4.1 Introduction

Having outlined the methodology to be used in tiesis in Chapter 3, the aim of this
chapter is to present the data that will be usemhtidyse the structure of freight rates.
These data series were collected from Clarkson pgBigpintelligence Network, a

database of all relevant data series for the shipmdustry. In order to model the
structure of freight rates, prevailing weekly spates on shipping routes for five
different types of vessels were selected, with dample period extending from 13
January 1989 to 26 June 2009, comprising 1,068redsens. Of the five types of

vessels, three tankers, i.e. VLCC, Suezmax andn#xatankers, and two dry bulk
vessels, i.e. the Capesize and Panamax dry busledsesvere selected in order to give

a balanced perspective of the tramp shipping market

In addition to evaluating the spot freight levedsoxies for freight rate returns were
calculated for each of the respective vessel daetéess using the formula in

Expression (4.1) below:

r=—— (4.1)

One should note thaR, denotes the freight rate in peribdwhile d denotes the

order of fractional integration, which is estimatesing Autoregressive Fractionally
Integrated Moving Average (ARFIMA) models. The mador using these proxies
for freight rate returns is that should one wishnimorporate an ARFIMA model into
the mean equation for the volatility model, usitenslard returns would automatically
render the series stationary as one inherentlyerdiffices the series to generate
standard returns. This would therefore imply thaty aractionally integrated

properties would have been removed.

One small point to note before going any furthethet the manner in which freight
rates are quoted differs across sectors. In tHeetagector, freight rates are quoted in
terms of the Worldscale (WS), which can then beveded into US$ per tonne, and

according to the route, using the Worldscale Bashkich is revised annually. In
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contrast, dry-bulk sector freight rates are singpleted in terms of US$ per tonne,

regardless of the route on which the goods arep@amed.

In the case of the VLCC data series, these aredb@sehe spot freight rates for the
transportation of crude oil on a 270,000DWT VLCG@Ker, where the port of loading
is Ras Tanura (Saudi Arabia) and the port of disghas Rotterdam (Netherlands).
For the Suezmax data series, these are based osnptitefreight rates for the
transportation of crude oil on a 130,000DWT Suezrtenker, where the port of
loading is Bonny (Nigeria) and the port of disclearg Off the Coast of Philadelphia
(United States). As regards the Aframax data setlesse are based on the spot
freight rates for the transportation of crude al an 80,000DWT Aframax tanker,
where the port of loading is Sullom Voe (United gaom) and the port of discharge
is Bayway (United States). In the case of the lndkriers, for the Capesize data
series, these are based on the spot freight ratethé transportation of ore on a
165,000DWT Capesize tanker, where the port of logis Tubarao (Brazil) and the
port of discharge is Rotterdam (Netherlands); anallf for the Panamax data series,
these are based on the spot freight rates for thesportation of coal on a
70,000DWT Panamax dry bulk carrier, where the pbibading is Hampton Roads
(United States) and the port of discharge is in Améwerp-Rotterdam-Amsterdam
range (Belgium and Netherlands).

One should note that voyage freight rates, as @upts trip-charter rates were used
as limitations regarding the availability of thetalaneant that should trip-charter
freight rates have been used, the sample would bega dramatically smaller, for
example, data across all Capesize trip-charteresoig only available on Clarkson
Shipping Intelligence Network, at the weekly freqag, for the period between 17
July 2009 to the present. Furthermore, trip-chdreght rates are not available for
the tanker sector, therefore, so as to ensure aanipy and consistency between
sectors, voyage freight rates, which are reporteih lbor the tanker and dry-bulk
sectors are preferred. A second possible issued®dfae route selection process. The
routes used in this thesis were selected on thengsothat they maximised the size of
the sample set, while ensuring that there wasaeiffi liquidity on these routes so as
to justify their inclusion. A final possible issuegards the use of raw spot freight

rates as opposed to the log of these freight rdtas.is not necessarily a concern as
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the models in this thesis were also run on therahlogarithms of the respective data
series in order to take account of the fact theigfit rates can never be negative. One
should note that the results from these estimatihgot differ significant from those

presented het®

Having outlined the routes and data sample petioel,next section of the chapter
examines the characteristics of the spot freighe tavels, while the subsequent
section looks at the descriptive statistics for freeght returns. The chapter then
investigates the conditional properties of the datiausing Ljung-Box statistics and,

finally, reviews the findings.

4.2 Description of Spot Freight Rates

Examining firstly the evolution of the tanker spioeight rates, as illustrated in
Figure 4.1, freight rates for the tanker marketeveziatively stable for the ten year
period up to 2001 when they experienced the first geries of peaks which followed
over the next seven or eight years. The first peaRcides with the initiation and the
process of accelerated phasing out of single-hule#ters in favour of the double-
hulled alternates, as a result of the amendmetitetdlarpol Convention. This led to
reduction in the number of vessels in the tanleatfand a consequent decrease in the
supply of tanker services and a resultant dramiatiease in freight rates as a result
of the shape of the supply curve. The second pealesponds to the second Gulf
War in 2003 as well as a further amendment to therpel Convention which
increased the scrapping schedule of single-hudeddrs, with corresponding effects
on the price of oil and supply of shipping servicasd therefore freight rates. This
peak then leads on to the further peaks resultiog fan increased demand for oil,
increased oil prices and the development boom ima&land therefore an increased
demand for transportation services for the oil eeedlhese series of peaks were
followed by an unprecedented collapse in the fieigte market in late 2008, caused
by both the world undergoing arguably the most seeeonomic slowdown since the
Great Depression, combined with massive over-andeduring the previous peaks

resulting in a huge number of new tankers entdahedleet thus increasing the supply

% The results from these estimations are not predemére due to space constraints and are available
from the author upon request.
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Figure 4.1 — Evolution of Tanker Spot Freight Rateg13 January 1989 to 26 June 2009)
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Figure 4.2 — Evolution of Dry-Bulk Spot Freight Raes (13 January 1989 to 26 June 2009)
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of vessels to record levels and causing an extiearad sudden fall in freight rate
levels. One could also argue that these peaks maytibuted to the rescaling of the
Worldscale rates in January, however, this is abbttb be a major factor as many of
the peaks occur in the middle of the year.

When changing focus to look at the dry bulk markieg¢ picture is somewhat more
tranquil, as illustrated in Figure 4.2, in thatidi® rates remained relatively stable at
fairly low levels until 2003. During the period beten 2004 and 2005, a first peak is
found, corresponding with increased demand for codities driven by the growth of
the Chinese economy. The correction in the markes then followed by a massive
increase in freight around the end of 2006 andrimaigg of 2007, driven by a rapid
increase in the demand for commodities by Chinagestion in world ports leading
to tonnage being tied up, and a dramatic increaséheé price of commodities.
However, as was the case in the tanker market,amatic slowdown in world
economic growth, as well as over-ordering, led goeatreme a fall in freight rates,
although in this case, continued demand for comtresdsuch as coal and iron ore, by

China led to a much faster and somewhat greateveeg.

Having examined the evolution of freight rates, @a@ now begin to focus on the

descriptive statistics in Panel A of Table 4.1 biain a more detailed picture of the
dynamics of the spot freight rates. Studying them&tatistics, the mean spot freight
rate was found to range between WS64.436 and W6822cross the tanker market,
while in the dry bulk market, mean freight rateseviound to range between $10.38
and $10.65 per ton. A size effect is observed hetere larger vessels have lower
mean freight rate levels in both markets. Thisodal given that larger vessels are
expected to benefit from cost-advantages, sincg dne able to carry much larger

cargoes and therefore incur lower costs per tonaofo. In addition to this, there

again appears to be a size effect in terms oftdredard deviation of spot freight rates
in the tanker market. This may be due to the flaat larger vessels are only able to
operate on fewer routes owing to cargo and potricésns, hence the supply of

vessels is fairly constant and freight rates reddyi stable. In the case of smaller
vessels, they are free to choose the routes orhwhéey operate, and as such freight
rates will fluctuate on routes as the supply ofset¢s alters. In the case of the dry bulk

market, the size effect in the standard deviatismsversed. In this case, restrictions
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in terms of the cargo they can carry and the portghich they can operate entail that
vessels may spend time unemployed, resulting ictdations in supply and hence
freight rates. This is not necessarily the cash wmaller vessels as they have greater
flexibility with respect to cargoes they can caayd ports from which they can

operate and therefore the supply of vessels is rmarke stable.

Moving on to the spot freight rate distributionPanel A of Table 4.1, all five data
series exhibit large and significant positive skess) This implies that there would be
a higher probability of earning a freight rate ktess of the mean level than below it.
A possible reason for this positive skewness is tifia shape of the supply curve in
the shipping market is so shaped that it is redfivilat for a large part, before
bending steeply upwards. This indicates that imogerof excess supply, freight rates
are unlikely to fall far below the mean level, wka&s in periods of supply shortage,
freight rates are expected to be well above thenmtaus positively skewing the
freight rate distribution. In addition to this ptige skewness, spot freight rates are
also found to exhibit significant excess kurtosisnce there will be fat-tails in the
distribution, which implies a higher probability ekxtremely high or low freight rates,
which can once again be explained by the shapeeasupply function in the shipping
markets, in a manner similar to that for the skesgn€inally, the Jarque-Bera statistic
confirms this in that one can reject the null hyyesis of normally distributed spot

freight rates at all conventional levels of sigraince for all five data series.

This analysis of the structure of spot freight sate concluded by examining the
guestion of whether the data series are statiomanpt by performing three standard
unit root tests on the spot freight rate levelg thsults of which are presented in
Table 4.2. These tests are performed on the Hestightere is a constant but no trend,
as there appeared to be no trend in the data, lieogeld not be trend stationary. In
the dry bulk market the Augmented Dickey-Fuller ®D Phillips-Perron (PP) and
KPSS tests developed by Dickey and Fuller (198mh)llips and Perron (1988) and
Kwiatkowski, et al.(1992), respectively, are unanimous in concludivaj the CPSZ
and PNMX data series are non-stationary; howewethe tanker market, the picture
is not as clear. In this case, the ADF and PP tesits agree that the VLCC, SZMX
and AFMX data series are stationary, a conclusmoditiect conflict with that of the

KPSS test, which indicates that these same spghfreate series are non-stationary.
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Table 4.1 — Descriptive Statistics for Spot FreighRates and Returns

Panel A — Descriptive Statistics for Spot Freight R ates

VLCC SZMX AFMX CPSZz PNMX
Observations 1068.000 1068.000 1068.000 1068.000 1068.000
Mean 64.436 108.743 142.682 10.377 10.647
Variance 906.249 2498.052 3451.005 86.856 64.482
Standard Deviation 30.104 49,981 58.745 9.320 8.030
Skewness 1.938 1.802 1.551 2.490 2.444
(0.000) (0.000) (0.000) (0.000) (0.000)
Kurtosis 8.453 6.909 5.351 9.666 9.136
(0.000) (0.000) (0.000) (0.000) (0.000)
Jarque-Bera 1991.701 1257.871 674.112 3080.334 2739.112
(0.000) (0.000) (0.000) (0.000) (0.000)
Panel B — Descriptive Statistics for Freight Rate Returns
VLCC SZMX AFMX CPSz PNMX
Observations 1068.000 1068.000 1068.000 1068.000 1068.000
Mean -0.026 -0.005 -0.002 0.063 0.039
Variance 0.684 0.713 0.598 0.194 0.178
Standard Deviation 0.827 0.845 0.773 0.440 0.422
Skewness 0.315 0.521 0.482 0.047 -0.433
(0.000) (0.000) (0.000) (0.527) (0.000)
Kurtosis 8.474 6.185 8.267 11.882 8.018
(0.000) (0.000) (0.000) (0.000) (0.000)
Jarque-Bera 1351.253 499.797 1275.624 3511.140 1154.020
(0.000) (0.000) (0.000) (0.000) (0.000)

Note 1: VLCC denotes the weekly spot freight rdtesa 270,000 DWT VLCC tanker carrying crude
oil from Ras Tanura (Saudi Arabia) to Rotterdamtfi¢dands).
SZMX denotes the weekly spot freight rates for &,080 DWT Suezmax tanker carrying
crude oil from Bonny (Nigeria) to off the coastRifiladelphia (USA).
AFMX denotes the weekly spot freight rates for &an080 DWT Aframax tanker carrying
crude oil from Sullom Voe (UK) to Bayway (USA).
CPSZ denotes the weekly spot freight rates fors® DWT Capesize bulk-carrier carrying
iron ore from Tubarao (Brazil) to Rotterdam (Nethrds).
PNMX denotes the weekly spot freight rates for @88 DWT Panamax bulk-carrier carrying
grain from the Hampton Roads (USA) to Antwerp-Rattan-Amsterdam (Benelux).

Note 2: The sample period for the data used fos thble extends from 13 January 1989 to
26 June 2009, with a total of 1,068 observations.

Note 3: The mean, variance and standard deviatidtanel A are weekly figures; whereas the mean,
variance and standard deviation in Panel B areaizeal.

Note 4: The spot freight rates for the VLCC, Suezmiad Aframax tankers’ data series are denoted in
Worldscale units.

Note 5: The spot freight rates for the Capesize Radamax bulk-carriers’ data series are denoted in
US$ per metric tonne.

Note 6: The data used for this table is all souritedh the Clarkson Shipping Intelligence Network
(www.clarskons.ngt

Note 7: Figures in parentheses denote the respgethalues, where for the skewness and kurtosis

tests the null hypothesis is that these statistiesequal to zero and for the Jarque-Bera testliat the

data series is nhormally distributed.
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Table 4.2- Unit Root Test for Spot Freight Rate Legls and First-Differences

Panel A — Unit Root Tests for Spot Freight Rate Lev  els

VLCC SZMX AFMX CPSZ PNMX
ADF Test -5.064 -4.597 -4.232 -2.116 -2.196
t-value at 1% -(3.436) -(3.436) -(3.436) -(3.436) -(3.436)
t-value at 5% -(2.864) -(2.864) -(2.864) -(2.864) -(2.864)
t-value at 10% -(2.568) -(2.568) -(2.568) -(2.568) -(2.568)
Phillips-Perron Test -5.163 -5.166 -4.998 -2.827 -1.918
t-value at 1% -(3.436) -(3.436) -(3.436) -(3.436) -(3.436)
t-value at 5% -(2.864) -(2.864) -(2.864) -(2.864) -(2.864)
t-value at 10% -(2.568) -(2.568) -(2.568) -(2.568) -(2.568)
KPSS Test 1.321 1.946 2.233 1.959 1.819
t-value at 1% (0.739) (0.739) (0.739) (0.739) (0.739)
t-value at 5% (0.463) (0.463) (0.463) (0.463) (0.463)
t-value at 10% (0.347) (0.347) (0.347) (0.347) (0.347)

Panel B — Unit Root Tests for Spot Freight Rate 1~ *' Differences

VLCC SZMX AFMX CPSZ PNMX
ADF Test -17.042 -22.905 -23.938 -8.911 -16.923
t-value at 1% -(3.436) -(3.436) -(3.436) -(3.436) -(3.436)
t-value at 5% -(2.864) -(2.864) -(2.864) -(2.864) -(2.864)
t-value at 10% -(2.568) -(2.568) -(2.568) -(2.568) -(2.568)
Phillips-Perron Test ~ -32.372 -34.196 -35.253 -26.181 -27.732
t-value at 1% -(3.436) -(3.436) -(3.436) -(3.436) -(3.436)
t-value at 5% -(2.864) -(2.864) -(2.864) -(2.864) -(2.864)
t-value at 10% -(2.568) -(2.568) -(2.568) -(2.568) -(2.568)
KPSS Test 0.029 0.028 0.031 0.028 0.038
t-value at 1% (0.739) (0.739) (0.739) (0.739) (0.739)
t-value at 5% (0.463) (0.463) (0.463) (0.463) (0.463)
t-value at 10% (0.347) (0.347) (0.347) (0.347) (0.347)

Note 1: See notes from Table 4.1.

Note 2: ADF test denotes the results from condgctthe Augmented Dickey-Fuller test for
stationarity (Dickey and Fuller (1981)).
Phillips-Perron test denotes the results from oetidg the Phillips-Perron test for stationarity
(Phillips and Perron (1988)).
KPSS test denotes the results from conductingthimtkowski, Phillips, Schmidt and Shin
test for stationarity (Kwiatkowsket al.(1992)).

Note 3: The null hypotheses for the ADF and PhsHiRerron tests are that the data series contains a
unit root, i.e. is non-stationary.
The null hypothesis for the KPSS test is thatdhi series is stationary.

Note 4: The figures in parentheses denotetthalues for the respective data series at the given
levels of significance.
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This conflict in the results of the unit root teéds the tanker market illustrates the
need for further examination and lends supporhéogroposal that a third alternative,
i.e. fractional integration needs to be investidaténally, to check the order of the
non-stationarity, should freight rates indeed be-sw@tionary, these three unit root
tests were performed on the first-differences ef $pot freight rates, where all three
tests were unanimous in both markets and acros&tlseries in concluding that the

first differences of the spot freight rates ardictery.

4.3 Description of Freight Rate Returns

Moving on to examine the higher moments of the $pmght rate series, the focus
now changes to the characteristics of the freighirns. These freight rate returns are
the returns on spot freight rates for the dateesatescribed in Section 4.1 above and
are calculated using the formula in Expression)(4fiove. Figure 4.3 and Figure 4.4
portray the evolution of the freight rate returnsiothe sample period, with higher
volatility in returns being observed during theipds coinciding with the peaks in
spot freight rates discussed in Section 4.2 abOwe. should also note that it evident
from the figures that in the latter part of the pdanperiod there is significant
volatility clustering, which gives a preliminaryditation that there may be GARCH

effects within the freight rate returns.

To be more specific, Panel B of Table 4.1 presémsdescriptive statistics for the
freight rate returns series. The mean returnshertanker market are found to range
between -2.6% and -0.2% p.a., while the standavéhtien of these returns is found

to range between 84.5% and 77.3% p.a. This is eoufuitive as economies of scale
should imply that larger vessels earn higher ratutuae to cost savings. A possible
reason for this observed anomaly may be that largsesels are only able to operate
on fewer routes because of cargo and port restnti This reduced flexibility in

comparison with smaller vessels may mean that Weng hit to a greater extent by
the global economic slowdown and fall in spot flrgigates, thus causing periods of
unemployment and uncertainty in returns. Anothasoa for negative returns may be
that the delivery of large numbers of brand newseks ordered at the peak of the
market, led to an oversupply of vessels acrossrhakket, thus driving down freight

rates and returns. A final possible explanationtfi@se negative returns in the tanker
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Figure 4.3 — Tanker Freight Rate Returns (13 Januar 1989 to 26 June 2009)
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Figure 4.4 — Dry-Bulk Freight Rate Returns (13 Janary 1989 to 26 June 2009)
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market may be the rescaling of the Worldscale measuhere these are rebased
annually, therefore smoothing out the effect oféashort-term peaks in the market.
In the dry bulk market, the picture is once aga#wersed in that the expected
economies of scale entail that CPSZ vessels etumseof 6.3% p.a. that are much

higher than the 3.9% p.a. earned by PNMX vessdis fesult may differ from that
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for the tanker market in that the increased flditibof bulk carriers in terms of the
cargoes they carry means that they are less sideeyot price changes in a particular
underlying cargo and any over-supply can be spraadss different markets.
Nevertheless, the same effects regarding the stmviations of these returns are
observed in the dry bulk market as in the tanketketawhere decreased flexibility in
terms of cargoes and ports means that larger wessel more exposed to the

prevailing freight rates on those routes on whiaytoperate.

As a word of caution, one should note that meaurmstin Panel B of Table 4.1 may
be biased upwards as a result of taking arithmetiopposed to log returns. The
reason for using arithmetic returns, as opposedddgaoeturns, is that, should one wish
to incorporate an ARFIMA model into the mean equatior the volatility model,
taking the differencing the logs of the respectegies to generate standard returns

would render the series stationary.

Having determined the basic statistics regardicgtion and dispersion of the freight
rate returns, it is worth noting that all tanketadaeries exhibit significant positive
skewness, ranging from 0.315 to 0.521, at all cotiweal levels of significance,

implying that there is a higher probability obsagspositive than negative returns.
This is logical in that the shape of the supplyeuior shipping services is such that it
is relatively flat for a large part, before bendisigeply upwards indicating that in
periods of high demand, huge returns can be exgetitas positively skewing the

distribution. The picture is somewhat differentie dry bulk market, where although
the distribution of the CPSZ returns is found tcsipeely skewed, this figure is

insignificant at all conventional levels of sige#ince, while the distribution of the
PNMX returns is found to be significantly negativekewed, thus implying a greater
probability of negative than positive returns. lddaion to this, significant excess

kurtosis was observed for both market and all dataes, with levels of kurtosis

ranging between 6.185 and 8.474 in the tanker maakel 8.018 and 11.882 in the
dry bulk market. This implies that the probability extreme positive or negative
returns is greater than would be the case underraally distributed returns series.
Once again, this is logical given the shape ofsilngply curve and the long duration
of cycles in the shipping markets. To conclude #mglysis, Jarque-Bera statistics

were calculated for all data series, where thesmniomously rejected the null of
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Figure 4.5 — Distribution of VLCC Returns vs. Normd Distribution

Distribution of Standardised VLCC Freight Rate Retu rns vs. Normal Distribution
(13 January 1989 to 26 June 2009)
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Figure 4.6 — Distribution of SZMX Returns vs. Normd Distribution
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Figure 4.7 — Distribution of AFMX Returns vs. Normd Distribution

Distribution of Standardised AFMX Freight Rate Retu  rns vs. Normal Distribution
(13 January 1989 to 26 June 2009)
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Figure 4.8 — Distribution of CPSZ Returns vs. Norm&Distribution

Distribution of Standardised CPSZ Freight Rate Retu  rns vs. Normal Distribution
(13 January 1989 to 26 June 2009)
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Figure 4.9 — Distribution of PNMX Returns vs. Normd Distribution

Distribution of Standardised PNMX Freight Rate Retu  rns vs. Normal Distribution
(13 January 1989 to 26 June 2009)
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normality in favour of the alternative of non-nodigadistributed returns across all
arket and data series and at all conventional sewEkignificance. One should note
that to make a graphical comparison of the distidouof the returns against the

standard normal distribution, the returns weredasagised as follows:
r
sr=—— (4.2)
o

In Expression (4.2)sr, andr, denote the standardised returns and returns attim

respectively, whilez and o denote the mean return and the standard deviatitire

returns, respectively. These results are also preden graphical form in Figure 4.5

to Figure 4.9.

4.4 Ljung-Box Statistics and Conditional Moments

Having performed the descriptive analysis aboveungjBox statistics were
calculated for the respective freight returns wehpect to the first, second, third and
fourth moments, the results of which are preseritedlable 4.3. These were
calculated on the standard returns of each daiassand at the first, twelfth and

twenty-fourth lags. Examining these results, anghanticular Panel A, one can see
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that, at the first lag, there is no significantaaatrrelation in spot freight rates for the
SZMX and AFMX data series, whereas the test indgahat there is significant
autocorrelation for all data series in the dry bol&rket at all conventional levels of
significance and for the VLCC data series at thed¥ 10% levels of significance.
However, at the twelfth and twenty-fourth lags, ttesults become unanimous in
rejecting the null of no autocorrelation at all eentional levels of significance.When
looking at the second moment and the issue of tondi variance in Panel B of
Table 4.3, the Ljung-Box are almost unanimous acnoarkets, data series and lags in

rejecting the null of no ARCH effects at all contienal levels of significance, where

the only exception was th@* (1) for the VLCC data series, where any ARCH effects

are only significant at the 5% and 10% levels a@n#gicance. This implies the
existence of conditional volatility, in addition tine suitability of GARCH-type

models with respect to model the variance of tha daries.

Panel C of the table presents the results for #@meation of the existence of
conditional skewness. This argues that skewnessoisconstant, as assumed in
Bollerslev (1986)'s traditional GARCH model, Badliet al. (1996a)'s FIGARCH
model or Brookset al.(2005)'s GARCHK model, but varies across time. Tésults
indicate that in the tanker market, there is na@ence of conditional skewness at the
first lag; as opposed to the dry bulk market; hosvewhen looking at higher orders
the results are unanimous in rejecting the nulldtlypsis of no conditional skewness
in favour of the alternative at all conventionaldés of significance, thus providing
strong evidence of conditional skewness at grelags. This would indicate the
appropriateness of GARCH-type models that incogocanditional skewness, such
as the GARCHS model proposed by Harvey and Siddi$j@@9) or the GARCHSK
model used here and originally proposed by L.ebml.(2005).

Finally, Panel D of Table 4.3 presents the redoltshe tests for conditional kurtosis,
where in a manner similar to that for conditionkéwness, this would argue that
kurtosis is time-varying as opposed to static asumed in the traditional
GARCH-type models, as well as in Harvey and Siddi¢l099)'s GARCHS model.
The results for these Ljung-Box tests are somewtiaed in that the null hypothesis
of no conditional kurtosis for the first lag cannbé rejected at any level of
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Table 4.3 — Ljung-Box Tests for the Freight Rate Sees

Panel A — Tests for Autocorrelation

VLCC SZMX AFMX CPSZ PNMX
Q(l) 8.846 2.059 0.722 98.137 54.290
(0.003) (0.151) (0.396) (0.000) (0.000)
Q(12) 65.942 78.062 97.525 173.910 66.061
(0.000) (0.000) (0.000) (0.000) (0.000)
Q(24) 83.206 106.926 167.642 200.813 91.068
(0.000) (0.000) (0.000) (0.000) (0.000)
Panel B — Tests for Conditional Volatility
VLCC SZMX AFMX CPSZz PNMX
Qz (1) 6.316 16.520 7.945 60.645 33.227
(0.012) (0.000) (0.005) (0.000) (0.000)
Qz (12) 200.721 147.685 66.478 265.776 230.484
(0.000) (0.000) (0.000) (0.000) (0.000)
Qz (24) 251.708 258.020 80.545 612.058 327.206
(0.000) (0.000) (0.000) (0.000) (0.000)

Panel C — Tests for Conditional Skewness

VLCC SZMX AFMX CPSZ PNMX
Q*(1) 0.102 0.023 0.145 16.041 11.027
(0.750) (0.880) (0.703) (0.000) (0.001)
Q*(12) 182.547 44.359 48.365 34.849 41.065
(0.000) (0.000) (0.000) (0.000) (0.000)
Q°(24) 187.337 63.773 52.679 102.206 54.058
(0.000) (0.000) (0.001) (0.000) (0.000)

Panel D — Tests for Conditional Kurtosis

VLCC SZMX AFMX CPSZ PNMX
Q*(1) 0.000 0.188 0.044 8.152 1.835
(0.992) (0.665) (0.834) (0.004) (0.176)
Q*(12) 201.575 35.158 42.038 19.052 23.211
(0.000) (0.000) (0.000) (0.087) (0.026)
Q*(24) 202.052 60.729 42 527 108.766 25.803
(0.000) (0.000) (0.011) (0.000) (0.363)

Note 1: See the respective notes from Table 4.1.

significance for the first lag of all but the CP8dta series. At the level of the twelfth
lag, the picture is somewhat clearer in that th&istdor the tanker data series
unanimously reject the null hypothesis at all corianal levels of significance, while

those for the CPSZ and PNMX data series rejecintiieat the 10%, and 5% and
10%, levels of significance, respectively. At tiveehty fourth lag, the waters are
somewhat muddied again in that the null hypothears be rejected at any levels of
significance for the VLCC, SZMX and CPSZ data seran only be rejected at the
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5% and 10% level of significance for the AFMX datxies, and cannot be rejected at
any levels of significance for the PNMX data serig$hough the picture may not be
as clear as desired, there does appear to be semene suggesting the
appropriateness of a model that incorporates comdit kurtosis, such as Brogkst

al. (2005)'s GARCHK model or, once again, Le@t al.(2005)'s GARCHSK model

used in this research.

4.5 Concluding Comments

In summary, the unit root tests performed provideged results, which support the
need for further examination as conducted in furtbeapters. In addition, it is

proposed that these results lend support to thenagt that, due to the nature of
supply and demand in the shipping freight ratess¢hmay illustrate non-stationary
characteristics in the short-term, as supply isdix this period, however, as supply
is able to adjust in the long-term so freight ratescome mean reverting; a

characteristic of fractionally integrated processes

When looking at the specifics (second, third andrtfto moments) of freight rate
returns, there appears to be strong evidence dlittmmal volatility, skewness and
kurtosis. This indicates the need to employ a maslath as the GARCHSK model,
that incorporates conditional volatility, conditelrskewness and conditional kurtosis

when examining the second, third and fourth momehtkese returns.
Having examined the characteristics of the dathetased in the empirical analysis,

the thesis continues to begin this analysis. T®ehd, the following chapter examines

the hypothesis that spot freight rate levels aetionally integrated.
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5 Dynamics of the First Moment

5.1 Introduction

Having outlined the methodologies to be used aedctiaracteristics of the relevant
data series in Chapter 3 and 4 of the thesis, céisply, this chapter seeks to provide
an empirical analysis of the structure of the firmtment of spot freight rates. The
correct structure of freight rates is of greatiegt in that freight rates play a pivotal
role and form the basis of almost every functioant the determination of the price
of the transport service through to the price afosel-hand vessels. Therefore, a
correct model for freight rates is vital for allrpeipants in the shipping market, from
the ship-owners and charterers themselves, riglioam through the market to ship-

brokers, maritime lawyers and other auxiliary peeti

As discussed above and in Chapter 1, the argurhanfreight rates are fractionally

integrated is supported by the characteristichefsupply and demand functions in
the shipping markets. In the short-run, the sugplye is relatively inelastic as ship-
owners may only reduce capacity through the layipgf vessels and are unable to
increase the overall supply capacity of the madket to the time needed to introduce
new tonnage to the market. As a result, in the tgluor, the supply of vessels is
unable to adapt to short-term increases or desgeaseemand, thus resulting in
freight rates exhibiting non-stationary characterss However, when looking at the
long-run, the picture changes quite dramaticallyhiat ship-owners are now able to
reduce the overall capacity in the face of fallilogg-term demand through the
process of scrapping vessels and new tonnage maybeoordered thus enabling
them to increase the overall capacity of supplyuhtong-run demand increase. This
would imply that freight rates in the long-term waduillustrate stationary

characteristics as freight rates revert to meanl¢esas demand and supply adjust. If
one was to look at the overall process, this coatmn of short-run non-stationary
characteristics and long-run stationarity wouldersble a fractionally integrated

series. This would entail that, although shocks massist, a fact contrary to the
intuition of the stationary hypothesis, they willemtually revert to the long-term

mean, contrary to the non-stationary hypothesis.
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This chapter therefore presents the results obuarmodels used to ascertain certain
of the dynamics of freight rates in the shippingight markets, in particular as
regards the first moment of freight rates and isracteristics. Using the data
presented in Chapter 4, Autoregressive Moving AgeréARMA), Autoregressive
Integrated Moving Average (ARIMA) and Autoregressi¥ractionally Integrated
Moving Average (ARFIMA) models are estimated toedetine the true level of
integration of freight rates. This is done to pdwvian alternative hypothesis to the
partial equilibrium theorem, which argues thatdtgirates are stationary, such as, for
example, Adland and Cullinane (2006) and Koekebagkke al. (2006), amongst
others, and the non-stationary and cointegratienrfms, as outlined in, for example,
Hale and Vanags (1989) and Berg-Andreassen (19€97gh are presented in the
literature review in Chapter 2.

As the ultimate aim of any empirical analysis inafince is to be able to forecast the
future direction of the underlying series, follogithe initial analysis above, the
sample was sub-divided into in-sample and out-offga periods, with the aim of
forecasting the spot freight rate levels. The fasting of freight rates has been a
source of academic interest for a number of ydarsnstance Batchelpet al.(2007)
test the performance of the Autoregressive Integrafloving Average (ARIMA),
Vector Autoregressive (VAR) and various forms ofcW Equilibrium Correction
models in predicting daily spot and Freight Forw#&dreement (FFA) prices on
Panamax Atlantic and Pacific routes. In terms oéc¢asting the spot prices, they find
that all models outperform the random walk, witle thossible exception of the
ARIMA model on one of the routes. This ties in witlte results from the study by
Adland and Cullinane (2006), which reports sucaeg®recasting spot freight rates
with ARIMA models. In contradistinction, Kavussaramsd Nomikos (1999) compare
joint forecasts of spot freight rates and BIFFE&idht future$’ for VECM, ARIMA,
VAR and random walk models, finding that the VECMasl gives the most accurate

forecast of spot freight raté&For this purpose, forecasts from ARMA, ARIMA and

7 Baltic International Freight Futures Exchange (BEX) contracts were futures contracts
representing the expected future value of a reseefreight index traded on the London Internationa
Financial Futures Exchange. However, due to sustiailow trading interested, trading on these
contracts was terminated in April 2002 (Kavussaano$ Nomikos, 2003).

18 A more extensive review of the forecasting litaratcan be found in Chapter 2 of the thesis.
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ARFIMA models are performed, the accuracy of whaie then compared using

standard forecast evaluation techniques.

Following this, section two of the chapter providebrief outline of the methodology
used, while section three summarises the charsitsriof the relevant spot freight
rate levels. Section four presents the resultdHermodels across the entire sample
period, where the forecasting results and compasisb accuracy between models are
presented in section five, and section 6 concludes.

5.2 Methodology

This section provides a brief overview of the melttlogy used in this chapter, where
a more detailed description can be found in Chaptef the thesis. The shipping
literature proposes two alternative hypothesesrdegg the stationarity of freight
rates, where one set of literature argues for cstatity and the other for non-
stationarity. Depending on which hypothesis is gdollowed, the standard technique
is to use either ARMA models, for the stationarpbthesis, or ARIMA models, for
the non-stationary hypothesis, to provide a thémakstructure for the price series. A
problem with using these methodologies is thats @asoposed here, the data is neither
stationary nor non-stationary in the traditionahs® but is fractionally mean
reverting in that the mean reversion process iayael, a concept briefly discussed in
Koekebakkeret al.(2006). This research, for the first time in shigpresearch, uses

an ARFIMA model to model freight rates.

The ARMA model, in its most general form, is spexfas follows:

p(L)y, =u+6(L)uy  (5.1)
One should note that if the underlying proceshi®oARMA model is non-stationary,
then this model becomes inappropriate. In orderetaify this problem, one could

either make the process stationary by taking thpragpiate number of first

differences until it becomes stationary, or rurARFIMA model.

The ARIMA model, in its most general form, is sgied as follows:

(1-L)g(L)y, =6(L)u (5.2)
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In the ARIMA model, the integrated component isedetined by the level of
integration, which is equivalent to the numberiofes that one has to difference the
series in order to achieve stationarity. ARMA an®IMA models have found
widespread use throughout the literature, with ARINhodels being used in a

number of shipping papers, such as Kavussanos amikids (1999), amongst others.

A third alternative is the ARFIMA model, where thian be expressed, in its most

general form, as follows:
(1-L) ¢(L)y, =6(L)u  (5.3)
In Expressions (5.1) to (5.3), the lag operatorsth® autoregressive and moving

average parameters in the respective modelgpfir¢=1-¢L -@L*-...-gL° and
H(L) :61L+¢92L2+...+0qu, respectively. Furthermoré, in Expressions (5.2) and

(5.3), denotes the normal lag operator. This prewithe framework for the hypothesis
that freight rates are fractionally integrated hattit allows one to estimate series in
which the mean reversion process is delayed. Taetiénal difference parameter
measures this delay, where the higher the valué,farhere-0.5<d < 1, the longer

this delay in mean reversion.

The final piece of methodology to be covered is Mielsen test for stationarity,
developed by Nielsen (2005). This tests the hymihthat the residuals from an

ARFIMA model are integrated of order+6, i.e. | (d +0). The null hypothesis here

is thatd =0, which implies by taking the fractional differensghered indicates the
level of fractional integration, of the residuatsrh that ARFIMA model, this series
will become stationary. An advantage of this testresimilar alternatives is that this
test is a time domain test, as opposed to a frayugomain test, where this has been
suggested to provide superior results in termshef finite sample properties, as
discussed in Tanaka (1999).

One can now move on to look at the methodologias whll be used to evaluate the
accuracy of the forecasts, and to compare thesessanodels. To this end, five
methods are used, namely: 1) the Mean Absoluter E¥f8E), 2) the Mean Absolute
Percentage Error (MAPE), 3) the Percentage of Ctore Direction Predicted

179



(CDIR), 4) the Root Mean Sqaured Error, and 5)Ttheil’'s U, also known as Theil's
inequality coefficient, as outlined in Theil (195&8)ne should note that Theil's U, is
constructed such that the statistic is confinetietdetween zero and one. The closer
the statistic is zero, the better the forecasthdhat if the statistic is equal to zero,
there is a perfect forecast as the actual and dste@lues are equal; whereas, if the

statistic is equal to one, the forecast value isanwvay close to the actual value.

The first of these, i.e. the MAE, is calculatedhe following manner:
1 &y A
MAE:WZ‘(M -y G4
i=1

Following this, one can calculate the MAPE as folo

[yia Y ]} 55
Yi

In order to calculate the CDIR, one must first deiee whether the sign of the

M
MAPE =100x {%Z

i=1

forecast matches the sign of the actual valueswhen an increase (decrease) in the
forecast matches an increase (decrease) in thal aetiues, where if this occurs, it is

denotedc, here, therefore:
1 M
CDIR=—>'C, (5.6)
M =
Moving on, the RMSE is calculated as follows:

RMSE:\/ﬁi( y-y) 67

i=1

Finally, Theil's U may be calculated as follows:

B
\/“ji(y?)zj/,\ji(xf)z

i=1 i=1

Theil's U=

(5.8)

In Expressions (5.4) to (5.8) denotes the actual observed value at time'

denotes the forecasted value at timandM denotes the forecast horizon.

Having laid out the foundations of the methodolsdie be used, one can now move

on to examine the data to be used and estimatadldels described.
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5.3 Description of Data

Having established the methodology to be used i\ émpirical analysis in the
previous section, this section provides a very fbosammary of the relevant
descriptive statistics for the respective dataesefivhere the complete analysis can be
found in Chapter 4 of the thesis. The data set uséuis chapter comprises five data
series of spot freight rate for five different velstypes across the tanker and dry-bulk
sectors, namely VLCC, Suezmax (SZMX) and AframaxrNKX) tankers, and
Capesize (CPSZ) and Panamax (PNMX) dry-bulk ves3éls sample extends from
13 January 1989 to 26 June 2009, thus comprisib@globservations, where all data
was collected from Clarksons Shipping Intelligendetwork. To enable ex-post
forecasts to be made, each series is further suttedi into an in-sample period,
extending from 13 January 1989 to 26 September 200Bthus comprising 768
observations, and an out-of-sample period, extgnfitom 3 October 2003 to 26 June
2009, giving a forecast horizon of 300 observatiomsich equates to roughly one

third of the sample.

The descriptive statistics for the respective dsddes indicate that there is a size
effect in terms of the mean freight rates and steshdeviations. In addition, all data
series exhibit large and significant positive skessias well as significant excess
kurtosis, a fact supported by the fact that theeseare found not follow a normal
distribution. To conclude, the Ljung-Box statistigadicate the presence of
autocorrelation in the data series up to th® 24y, across all data series, with the
exception of the *llag of the Suezmax and Aframax data series, fhugtrating the
appropriateness of autoregressive models for madeihe structure of freight rates
in the shipping markets.

One should note that these models were also ruthematural logarithms of the
respective data series in order to take accoutiteofact that freight rates can never be
negative. One should note that the results fronsethestimations did not differ

significant from those presented Here

¥ The results from these estimations are not predemére due to space constraints and are available
from the author upon request.
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5.4 Empirical Results for the In-Sample Period

Having outlined the methodology to be used andbéisteed the characteristics of the
data in the sections above, this section presdmsempirical results from the
estimation of the ARMA, ARIMA and ARFIMA models ovehe entire sample

period. This is done with the intention of throwihght on the structure of the first
moment of the freight rate dynamics, i.e. the meauation, and, in particular, on the

issue of the level of integration in freight rageéls.

One should note that, prior to these estimationggmented Dickey-Fuller (ADF),
Phillips-Perron (PP) and KPSS tests for unit roethere these are attributed to
Dickey and Fuller (1981), Phillips and Perron (1p88d Kwiatkowski et al.(1992),
respectively, are performed on the five spot freighes levels, where the results of
these tests are presented in Panel A of Tablerd@hiapter 4, and re-presented for
convenience in Table 5.1. The results for theseethmit root tests are somewhat
mixed. In the case of the tanker data series, ¢selts of the ADF and PP tests
indicate that one can reject the null hypothesia ohit root at all conventional levels
of significance, while, in contrast, the results the KPSS test indicate that one
should reject the null hypothesis of stationarity al conventional levels of
significance. When looking at the results for theg-blulk market the picture is
somewhat clearer with all three tests agreeing fileéght rates are non-stationary,
with the exception of the PP test on the PNMX dakeere one can reject the null

hypothesis of a unit root at the 10% level of sigance®

Beginning the main analysis, in order to test whi¢lthe hypotheses regarding the
order of integration for freight rates holds, ARMARIMA and ARFIMA models are
estimated. Beginning with the ARMA and ARIMA modeldhe appropriate lag
structure for these models is established by esiignanodels with different lag

structures using Maximum Likelihood Estimation, wéhe lag structure varies from

an ARMA (0;0) to anARMA (3;3), in the cases of the ARMA models, and from an

ARIMA (0;10) to anARIMA (3;1;3), for the ARIMA models. The best lag structure

for each respective data series and model-tydeeis ¢stablished using the respective

2 These results are discussed in more detail in @hapof the thesis.
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Table 5.1 — Results for Unit Root Tests of Spot Fight Rate Levels

VLCC SZMX AFMX CPSZ PNMX

ADF Test -5.064 -4.597 -4.232 -2.116 -2.196
t-value at 1% -(3.436) -(3.436) -(3.436) -(3.436) -(3.436)
t-value at 5% -(2.864) -(2.864) -(2.864) -(2.864) -(2.864)
t-value at 10% -(2.568) -(2.568) -(2.568) -(2.568) -(2.568)
Phillips-Perron Test -5.163 -5.166 -4.998 -2.827 -1.918
t-value at 1% -(3.436) -(3.436) -(3.436) -(3.436) -(3.436)
t-value at 5% -(2.864) -(2.864) -(2.864) -(2.864) -(2.864)
t-value at 10% -(2.568) -(2.568) -(2.568) -(2.568) -(2.568)
KPSS Test 1.321 1.946 2.233 1.959 1.819
t-value at 1% (0.739) (0.739) (0.739) (0.739) (0.739)
t-value at 5% (0.463) (0.463) (0.463) (0.463) (0.463)
t-value at 10% (0.347) (0.347) (0.347) (0.347) (0.347)

Note 1: VLCC denotes the weekly spot freight rdtesa 270,000 DWT VLCC tanker carrying crude
oil from Ras Tanura (Saudi Arabia) to Rotterdamtfig¢dands).

SZMX denotes the weekly spot freight rates for 8,080 DWT Suezmax tanker carrying
crude oil from Bonny (Nigeria) to off the coastRifiladelphia (USA).

AFMX denotes the weekly spot freight rates for &an080 DWT Aframax tanker carrying
crude oil from Sullom Voe (UK) to Bayway (USA).

CPSZ denotes the weekly spot freight rates for|s0 DWT Capesize bulk-carrier carrying
iron ore from Tubarao (Brazil) to Rotterdam (Netards).

PNMX denotes the weekly spot freight rates for @88 DWT Panamax bulk-carrier carrying
grain from the Hampton Roads (USA) to Antwerp-Rattan-Amsterdam (Benelux).

Note 2: The sample period for the data used fos thble extends from 13 January 1989 to
26 June 2009, with a total of 1,068 observations.

Note 3: The data used for this table is all souritedh the Clarkson Shipping Intelligence Network
(www.clarskons.nét

Note 4: ADF test denotes the results from condgctthe Augmented Dickey-Fuller test for
stationarity (Dickey and Fuller (1981)).

Phillips-Perron test denotes the results from cotidg the Phillips-Perron test for stationarity
(Phillips and Perron (1988)).

KPSS test denotes the results from conductingthimtkowski, Phillips, Schmidt and Shin
test for stationarity (Kwiatkowsket al.(1992)).

Note 5: The null hypotheses for the ADF and PhsHiRerron tests are that the data series contains a
unit root, i.e. is non-stationary, whereas the hyjpothesis for the KPSS test is that the data
series is stationary.

Note 6: The figures in parentheses denote theahtivalues for the respective data series at the given
levels of significance.

Log-Likelihoods, Akaike Information Criteria (AlC)and Schwartz-Bayesian
Information Critreria (SBIC), where the latter twwethods were first developed by
Akaike (1974) and Schwarz (1978), respectively.

In the case of the ARMA model, the best lag speaiion, across all data series, is

found to be a”ARMA (L1), the results for which are presented in Table B2e

should note that this implies that, should freigites be stationary, as implied by an
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Table 5.2 — Results for Final ARMA Models of Spot Feight Rate Levels

o(L) Y, =u+6(L)u

VLCC ARMA (1;1)

SZMX ARMA (1;1)

AFMX ARMA (1;1)

C PSZ ARMA (1;1)

PNMX ARMA (1;1)

Q(24)

Constant

AR(1)

MA(L)

LL
AIC
SBIC

Sum AR
Sum MA

8844.083

(0.000)

64.123
(0.000)

0.942
(0.000)

0.089
(0.006)

-3900.947

4.477
4.497

0.942
0.089

10411.634
(0.000)

108.601
(0.000)

0.933

(0.000)

0.106

(0.001)

-4499.333

5.599
5.618

0.933
0.106

11103.872
(0.000)

142.604
(0.000)

0.935
(0.000)

0.085
(0.009)

-4670.215
5.919
5.938

0.935
0.085

17435.569
(0.000)

11.771
(0.005)

0.990
(0.000)

0.252
(0.000)

-1629.667
0.220
0.239

0.990
0.252

19196.988
(0.000)

11.545
(0.002)

0.990
(0.000)

0.162
(0.000)

-1486.964
-0.048
-0.028

0.990
0.162

Note 1: See notes from Table 5.1.

Note 2: LL, AIC and SBIC denote the log-likelihogdskaike Information Criteria (Akaike (1974)) andi8vartz-Bayesian Information Critera (Schwarz (19.78
Note 3: The figures in parentheses denote the cagp@-values for the null hypothesis that the coeffitisrequal to zero.
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Table 5.3 — Results for Final ARIMA Models of Spofreight Rate Levels

(1-L)g(L)y. =6(L)u
VLCC ARIMA (1;1;2) SZMX ARIMA (1;1;1) AFMX ARIMA (1;1;2) CPSZ ARIMA (1;1;1) PNMX ARIMA (1;1;1)

Q(24) 94.339 104.381 207.054 316.864 129.421

(0.000) (0.000) (0.000) (0.000) (0.000)
AR(1) 0.864 -0.310 0.515 0.687 -0.714

(0.000) (0.350) (0.000) (0.000) (0.000)
MA(1) -0.822 0.387 -0.511 -0.481 0.853

(0.000) (0.230) (0.000) (0.000) (0.000)
MA(2) -0.111 -0.180

(0.001) (--) (0.000) (--) ()
LL -3905.064 -4511.362 -4660.085 -1622.091 -1481.669
AIC 4.492 5.628 5.908 0.207 -0.056
SBIC 4518 5.648 5.934 0.227 -0.037
Sum AR 0.864 0.310 0.515 0.687 0.714
Sum MA 0.933 0.387 0.691 0.481 0.853

Note 1: See notes from Table 5.2.



Table 5.4 — Results for ARFIMA (0; d; 0) Models ofSpot Freight Rates

d
(1_ L) Y =4
VLCC SZMX AFMX CPSZ PNMX
ARFIMA (0;d;0) ARFIMA (0;d;0) ARFIMA (0;d;0) ARFIMA (0;d;0) ARFIMA (0;d;0)

d 0.500 0.499 0.499 0.500 0.500

(0.000) (0.000) (0.000) (0.000) (0.000)
LL -4138.234 -4664.164 -4812.768 -2238.102 -2011.735
AIC 7.751 8.736 9.015 4.193 3.769
SBIC 7.752 8.737 9.016 4,194 3.770

Note 1: See notes from Table 5.2.

ARMA model, then the previous period’s freight satend white noise disturbances
do indeed have an impact on the current level efght rates. In the case of the

ARIMA model, the lag structures which best desatiltiee underlying series are an

ARIMA (1;1;2) for the VLCC and Aframax data series, andARIMA (1;1;1) for the

Suezmax, Capesize and Panamax data series, this fesuvhich are described in
Table 5.3. This would suggest that the differenetvben the current and previous
periods’ freight rates does have an impact on tineent freight rate level, and that for
the Suezmax, Capesize and Panamax data seriesthenfyrevious period’s white
noise disturbance term impacts on this currenglfterate, whereas, for the VLCC
and Aframax data series, the previous two peri@isdrs have an impact on the
current freight rate. One should note that the wamg that the sum of the
autoregressive and the sum of the moving averagidents must be less than one

is met for all cases.

As far as the ARFIMA models are concerned, givenrthixed results from the unit
roots tests presented in Table 5.1, above, a prelim ARFIMA (0; d;O) model is
run on each data series to determine if the daitesseere fractionally integrated, the
results for which can be found rable 5.4, where this specification for the models
was chosen so as to ensure that any real lag dgsadid not interfere with this
process. This process is in essence merely cheakiether the series are fractionally

integrated white noise. This model would be expdss follows:

(1-L)"=u, (5.9)
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In Expression (5.9), denotes the lag operator, whilelenotes the order of fractional

integration. The results for these models are umans in that all five data series are
found to be fractionally integrated of the ordkr 0.5, thus providing a preliminary

indication that freight rates follow a fractionaliytegrated process. This being said,
this result could not be confirmed until the sta#ioty of the corresponding residuals
series has been established. To this end, theeMigést, first developed by Nielsen
(2005), is used, where this tests whether the wakideries is integrated of order
d + 8, where the null hypothesis is th@t 0.>* Therefore, this would correspond to a
stationary series should the estimated value ®d{parameter be close to zero under

the null hypothesis tha# =0.

The results of these tests are presented in PamélTable 5.5, where in essence
what this test does is establish whether the rafsdof each data series are stationary
or not. To establish this, the null hypothesis ttatd=d is tested, where if this
holds, i.e.8=0, then the residuals will be integrated of ordier The procedure
involves changing the values df, where in this case the valued€thanges by 0.01,
and then calculates the correspondingnlue for the respective value @f The range
of values given for each of the respective levélsgnificance represents the range of
values ford at which one cannot reject the null hypothesese €an thus see that
these results indicate that the residuals forailes, with the exception of those for
the Panamax data series, are found to be nonfsayioThis is indicative of two
facts: first, that the data series are not whitesen@and therefore do indeed contain
some information; and second, that there is a flgba need to include some lag

dynamics to the model.

In order to address the latter issue, ARFIMA modgeith lag structures are now
estimated. However, due to the complexity of thenjgotations, as well as the fact
that the order of the autoregressive coefficientstfie ARMA and ARIMA models

was never more than one, while the order of theingoaverage coefficients was

more than one in only two case®RFIMA (0;d;1) , ARFIMA (1;d;0) and

ARFIMA (1; d;1) models were estimated. As with the ARMA and ARINWodels,

the correct lag specification for each data sewas selected on the basis of the

% This test is discussed in more detail in Chaptef tBe thesis.
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Table 5.5 — Results for Nielsen (2005) Tests on Rasls of ARFIMA Models

Panel A — Results for Preliminary ARFIMA (0;d;0) Mo  dels

VLCC SZMX AFMX CPSZ PNMX
Change in d parameter 0.01 0.01 0.01 0.01 0.01
Value of d with highest p-value 0.50 0.41 0.38 0.71 0.00
Values of d where cannot reject H,:6=0 at 1% 043<d<057  034<d<048 031<d<045 064<d<077  000<d<0.05
Values of d where cannot reject H,:6=0 at 5% 0.44 <d < 0.55 0.36 <d < 0.46 0.33 <d <0.43 0.66<d<0.75  0.00<d<0.03
Values of d where cannot reject H, : 6 = 0at 10% 0.45 < d < 0.54 0.37 <d < 0.45 0.34 <d <0.42 0.67<d<0.75  0.00<d<0.02
Panel B — Results for Final ARFIMA (p;d;q) Models

VLCC SZMX AFMX CPSZ PNMX
Change in d parameter 0.01 0.01 0.01 0.01 0.01
Value of d with highest p-value 0.00 0.01 0.01 0.00 0.00
Values of d where cannot reject H,:6=0 at 1% 0.00 < d < 0.05 0.00 <d < 0.07 0.00 < d < 0.07 0.00<d<0.05  0.00<d<0.05
Values of d where cannot reject H,:6=0 at 5% 0.00 < d < 0.03 0.00 < d < 0.05 0.00 < d < 0.05 0.00<d<0.04  0.00<d<0.04
Values of d where cannot reject H, : 6 =0at 10% 0.00<d<0.02  000<d<004 000<d<0.05 000<d<003  0.00<d<0.02

Note 1: See notes from Table 5.2.

Note 2: H,:8=0, i.e. the given value affor the respective data series is the true valuk where the series would be stationardif 0 and£=0.
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Table 5.6 — Results for ARFIMA (p; d; q) Models ofSpot Freight Rates

VLCC SZMX AFMX CPSZ PNMX

ARFIMA (1,d;0) ARFIMA (1;d;0) ARFIMA (1,d;0) ARFIMA (1;d;1) ARFIMA (1;d;1)
AR(1) 0.183 0.205 0.156 0.514 0.471
(0.000) (0.000) (0.000) (0.000) (0.000)
MA(1) -0.268 -0.334
(=) (=) (=) (0.000) (0.000)
d 0.855 0.809 0.831 0.879 0.929
(0.000) (0.000) (0.000) (0.000) (0.000)

LL -948.494 -1255.488 -1337.915 -342.800 -260.112

AlC 1.782 2.357 2.511 0.649 0.495
SBIC 1.785 2.360 2.514 0.653 0.498

Note 1: See notes from Table 5.2.

Log-Likelihood, AIC and SBIC criteria. For the takseries, the best model

specification was found to be &RFIMA (1; d;0) , while for the dry-bulk series, this

was anARFIMA (1;d;1), where the results for all these series are suisegain

Table 5.6.

The results suggest that only the previous perifsdights rates have an impact on the
current freight rate levels in the tanker sectongmeas, in the case of the dry bulk-
sector, both the previous period’s freight rateelsvand the white noise disturbance
terms have an impact on the prevailing freight fatels. Furthermore, all series are
found to haved < d <1, indicating fractional integration, where the \eduord range
from 0.831, for the Aframax series, to 0.929, foe Panamax data series. It appears
from these results that while all series are faadlly integrated, the dry-bulk series
appear to exhibit a higher order of fractional gnegion than the tanker series, which
may be as a result of the fact that there is mioter-changeability in terms of the
cargoes that these vessels carry, whereas, the maglandard across tankers. This
would imply that imbalances in supply and demandhea dry-bulk sector would
persist for longer as vessels may change routesefse, however, no conclusions
regarding fractional integration in the series cendrawn until the residuals have
been tested for stationarity. To this end, the ltesaf the Nielsen test for the final
ARFIMA models are presented in Panel B of Table. 9bese indicate that one
cannot reject the null hypothesis, across all datés, that the true value d@fanges
between 0.00 and 0.07, at the 1%, 5% or 10% lexetsgnificance. In addition, the
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value ofd with the highesp-value is 0.00 for the VLCC, Capesize and Pananadx d

series and 0.01 for the Suezmax and Aframax sérles.results thus provide strong
evidence as to the stationarity of the residuals.

Having estimated the models, these models are toempared using the same
methods as for the forecasts, where the resulthasfe in-sample comparisons are

presented in Table 5.7. The results for the VLC@G daries suggest that although the
ARMA (1;1) provides the best MAE and RMSE, th&RFIMA (L d;0) model

provides the best MAPE and CDIR, while one is uedbl distinguish between the

models on the basis of Theil's U. As far as thezZ&umx data series is concerned, the

ARIMA (1;,1;,1) model provides the best MAE, MAPE and CDIR as aggothe

ARFIMA (1;d;0) model, which provides the best RMSE, and one iseoagain

unable to make a comparison between the modeld@rbasis of Theil's U. To

conclude the comparison of the tanker series, ékalts for the Aframax data series

indicate that theARIMA (1,1;2) model provides the best MAE and MAPE, while the
ARFIMA (1;d;0) provides the best CDIR and RMSE, where one is lenab

distinguish between thARIMA (;1;2) and ARFIMA (1; d;0) models on the basis of

the Theil's U, although this statistic indicatestthoth these models fare better than

the ARMA (1;1).

In terms of the dry-bulk sector, the results fax @apesize data series suggest that the

ARFIMA (1; d;l) model fares best across all statistics, with tkeeption of the
CDIR, where this is equal for thARFIMA (1;d;1) and ARIMA (;1;1) models,

although once again these are better thanARMA (1) model. To conclude this

comparison, the results from the Panamax data sseseggest that the

ARFIMA (1;d;1) model provides the best MAPE, while tARMA (L;1) gives the

best MAE and CDIR figures, and th&RIMA (1;1;1) model the best RMSE and

Theil's U statistics.

Although the mixed results from this comparisonsomewhat disappointing, they do

provide something of an answer to the hypothesthat except for the case of a few

190



Table 5.7 — In-Sample Model Comparison Results

Panel A - VLCC In-Sample Model Comparison
ARMA ARIMA ARFIMA

Mean Absolute Error 5.258 5.294 5.273
Mean Absolute Percentage Error 7.773% 7.766% 7.713%
Percentage of Correct Direction Predicted 57.371% 56.995% 57.934%
Root Mean Squared Error 9.365 9.434 9.399
Theil's U 0.066 0.066 0.066

Panel B - SZMX In-Sample Model Comparison
ARMA ARIMA ARFIMA

Mean Absolute Error 9.835 9.707 9.809
Mean Absolute Percentage Error 8.237% 8.027% 8.125%
Percentage of Correct Direction Predicted 53.333% 53.803% 52.958%
Root Mean Squared Error 16.416 16.382 16.360
Theil's U 0.069 0.069 0.069

Panel C - AFMX In-Sample Model Comparison
ARMA ARIMA  ARFIMA

Mean Absolute Error 11.481 11.297 11.428
Mean Absolute Percentage Error 7.567% 7.320% 7.404%
Percentage of Correct Direction Predicted 50.704%  50.798%  51.549%
Root Mean Squared Error 19.269 19.156 19.153
Theil's U 0.063 0.062 0.062

Panel D - CPSZ In-Sample Model Comparison
ARMA ARIMA  ARFIMA

Mean Absolute Error 0.487 0.475 0.473
Mean Absolute Percentage Error 3.854% 3.643% 3.630%
Percentage of Correct Direction Predicted 58.122%  59.531%  59.531%
Root Mean Squared Error 1.115 1.108 1.102
Theil's U 0.040 0.040 0.040

Panel E - PNMX In-Sample Model Comparison
ARMA ARIMA  ARFIMA

Mean Absolute Error 0.491 0.492 0.493
Mean Absolute Percentage Error 3.921% 3.943% 3.903%
Percentage of Correct Direction Predicted 58.873% 57.277%  57.653%
Root Mean Squared Error 0.975 0.971 0.979
Theil's U 0.037 0.036 0.037

Note 1: See notes from Table 5.2.

Note 2: Figures for the MAE are measured in Wordisainits for the VLCC, Suezmax and Aframax
data series, and $ / tonne for the Capesize arahRandata series.

Note 3: Comparative AIC, SBIC and Log-Likelihoodudts can be found in Table 5.2, Table 5.3 and
Table 5.5, respectively.

statistics, the ARIMA and ARFIMA models outperfortine ARMA specification,
thereby suggesting that freight rates do not followtationary process. In addition,

the fact that the data is somewhat limited, botterms of length and frequency, may
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also suggest that, should the sample length hase &lele to be greater, the ARFIMA
model may have been preferred as Maddala and K&88(1point out that there is a

greater chance of mean reversion as the samplthlenggeases.

5.5 Forecasting Spot Freight Rate Levels

Having examined the in-sample performance of tfferéint models, and provided a
preliminary conclusion as to the order of integmatof spot freight rate levels, this
chapter now focuses on the forecasting performarickhe ARMA, ARIMA and
ARFIMA models, in terms of forecasting spot freidgaels in the tanker and dry-bulk
sector. Having established the best specificationseach of these models in the
section above, each of these models is used ttecose-period ahead forecasts of
freight rate levels for each data series, overaineof-sample period, i.e. 3 October
2003 to 26 June 2009. In order to make this comaparicorresponding MAE, MAPE,
CDIR, RMSE and Theil’s U statistics were calculatedeach model type across each

data series, the results of which are present@dlite 5.8.

Beginning with the tanker sector, the results lfier VLCC data series indicate that, on
the basis of the MAE, MAPE, RMSE and Theil’s U nias; the ARMA (;1) model
provides the best forecasts, whereas the CDIR ateficthat theARIMA (1;1;2)
provides the best forecast of direction. Continuithg results for the Suezmax data
series illustrate thaBRMA (L;1) once again provides the best MAE, MAPE and
RMSE figures, although thARIMA (1;1;1) model provides the best Theil’s U figure

and one is unable to distinguish between the madetgy the CDIR. To conclude the

comparison of the tanker series, the results ferAframax data series show that the

ARIMA (1;1;2) provides the best forecasts, on the basis of th& MRMSE and
Theil's U metrics, even though tRMA (L1;1) provides the best MAPE and one is

unable to distinguish between tARMA (1;1) and ARIMA (1;1;2) on the basis of the

CDIR. There therefore seems to be something ofea affect in the tanker market,
where freight rates for larger vessels exhibit mpegsistence, in terms of their
autocorrelation. This is logical in that these e¢ssare limited as to the routes on

which they can operate and therefore are more gtistee to market conditions.
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Table 5.8 — Comparison of Forecasting Performance

Panel A - VLCC Out-of-Sample Model Comparison
ARMA ARIMA ARFIMA

Mean Absolute Error 9.425 9.708 9.661
Mean Absolute Percentage Error 10.998% 11.141% 11.125%
Percentage of Correct Direction Predicted 66.221% 57.333%  58.333%
Root Mean Squared Error 15.292 15.532 15.474
Theil's U 0.081 0.082 0.081

Panel B - SZMX Out-of-Sample Model Comparison
ARMA ARIMA ARFIMA

Mean Absolute Error 19.708 19.753 20.506
Mean Absolute Percentage Error 12.566%  12.654%  13.062%
Percentage of Correct Direction Predicted 50.167%  49.667%  50.333%
Root Mean Squared Error 27.518 27.532 28.414
Theil's U 0.084 0.084 0.086

Panel C - AFMX Out-of-Sample Model Comparison
ARMA ARIMA  ARFIMA

Mean Absolute Error 18.804 18.674 18.825
Mean Absolute Percentage Error 9.321% 9.411% 9.345%
Percentage of Correct Direction Predicted 55.853% 56.000%  55.000%
Root Mean Squared Error 30.289 29.696 30.242
Theil's U 0.074 0.073 0.074

Panel D - CPSZ Out-of-Sample Model Comparison
ARMA ARIMA  ARFIMA

Mean Absolute Error 1.293 1.280 1.295
Mean Absolute Percentage Error 6.180% 6.074% 6.164%
Percentage of Correct Direction Predicted 58.528% 61.000% 59.667%
Root Mean Squared Error 2.079 2.061 2.081
Theil's U 0.043 0.042 0.043

Panel E - PNMX Out-of-Sample Model Comparison
ARMA ARIMA  ARFIMA

Mean Absolute Error 1.212 1.213 1.222
Mean Absolute Percentage Error 6.154% 6.150% 6.160%
Percentage of Correct Direction Predicted 54.000% 51.333% 51.667%
Root Mean Squared Error 1.776 1.775 1.783
Theil's U 0.040 0.040 0.040

Note 1: See notes from Table 5.2.
Note 2: Figures for the MAE are measured in Wordisainits for the VLCC, Suezmax and Aframax
data series, and $ / tonne for the Capesize arahRandata series.

Changing focus to the dry-bulk sector, the resatts more uniform here in that the

ARIMA (1;1;1) model is preferred across all metrics and dataesemwith the

exception of the CDIR for the Capesize data seaied the MAE for the Panamax

193



data series, where tf8RMA (1;1) model is preferred. There therefore appears to a

sector effect in that, with the exception of thaakhax data series, the tanker data

series indicate that thaRMA (1;1) model is preferred, while for the dry-bulk sector,

the ARIMA (1;1;1) model is preferred. This coincides with the argotmebove that

there is more inter-changeability in terms of tlaegoes that dry-bulk vessels carry,
whereas, the cargo is standard across tankers.widukl imply that imbalances in
supply and demand in the dry-bulk sector would ipefer longer as vessels may
change routes. One should note that a possiblerrdasthe poor performance of the
ARFIMA models in this forecasting exercise may battsimpler models tend to
forecast better than more complex ones. Howeveecésting freight rates has been
such a source of academic interest exactly becthseprocess is exceptionally
difficult. Furthermore, the poor forecasting penfance of the ARFIMA models
should not take away from the fact that they prexadother dimension to the analysis
of freight rates, and therefore further attemptagislifferent sample periods and a

different underlying series may yet provide betéesults.

One should further note that, in the interestsoblustness, further one-step, two-step
and four-step ahead forecasts were generated dosub-periods between 3 October
2003 and 11 August 2006 and 18 August 2006 andu@é 2009, corresponding to
the first- and second-halves of the total out-ofygke horizon; as well as the
sub-periods between 3 October 2003 and 16 May 2683 May 2008 and 26 June
2009, corresponding to the periods pre and postriudiit crisis. The start of the credit
crisis was calculated as the date at which theidalty Index reached its record
maximum before beginning to dramatically fall, 28 May 2008. The results of the
first two sub-periods and pre-crisis analysis wiaidy consistent with those for the
total forecast period presented above, across tieestep, two-step and four-step
ahead forecasts, while those for post-crisis periodicated that the ARIMA
specification was generally preferred across aliadseries, with the ARFIMA
specification fairing slightly better.
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5.6 Conclusion

The chapter examined the first moment of freigiésaand, in particular, examined
the hypothesis that spot freight rate levels ametionally integrated. This hypothesis
argues that freight rates exhibit long-memory,hesghort-run dynamics of the supply
and demand functions for shipping services are sihett supply is unable to

sufficiently adjust for changes in demand, thusulteyy in freight rates exhibiting

non-stationary characteristics. Nonetheless, whbekihg at a more long-term time
frame, supply is able to adjust to changes in deinand freight rates revert to the
mean, thus illustrating behaviour more characierisf a stationary series. This
chapter presented a third alternative, i.e. thafradtionally integrated freight rates,
whereby freight rates would exhibit long-memorythat shocks to freight rates would
persist, in a manner contrary to stationary proaegsbut would eventually revert to

the mean, unlike non-stationary processes.

In order to test this hypothesis fully, standard woot tests were performed on five
data series, where three of these data seriesfivenehe tanker market and two from
the dry-bulk market, and where the results of thests were inconclusive leading to

the conclusion that further examination was necgs$a order to determine whether

the data series were merely fractionally integratddte noise, ARFIMA(O;d;O)

models were estimated, and the residuals tested tise¢ Nielsen test for stationarity.
The results of these tests indicated that the weatsd of the models were
non-stationary, hence it was concluded that tha dais not white noise and therefore

had some information content within it.

Given these findings, ARMA and ARIMA models of difent orders were estimated,
with the best model for each class being selectethe basis of the respective log-

likelihoods and AICs and SBICs. It was observed Hwioss all five data series and
two models, one should never need more than an ARMAor ARIMA (L,11),

therefore, when running the ARFIMA models, the dosion was drawn that this
type of lag dynamic should be sufficient. The restdr these ARFIMA models were

unanimous in determining significard-parameter, which measure the level of

fractional integration, wher®.5<d < 1.C, thus indicating that the data series exhibit
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long-memory. In order to test the stationarity bkde residuals, and therefore
double-check that these results were not spurldigtsen tests were performed on the
respective residuals, unanimously indicating thatresiduals were stationary, and, as
a result, that the ARFIMA model results were natrgpis.

The models were then compared using MAE, MAPE, CIRRISE and Theil's U
statistics, for both the in-sample and out-of-sa@riods. The results for in-sample
comparisons were somewhat inconclusive, howevas iproposed that both the
ARMA and ARFIMA models outperformed the ARMA modglghere it is postulated
that limitations in the size of the sample may haamtributed to a lack of a
conclusive results. In terms of the forecastinggrerance of the models, the ARMA
models were found to outperform the ARIMA and ARRNhodels for the VLCC
and Suezmax data, however, as these results a¥d baghe assumption that freight
rates are stationary, these results may be somefidaed. For the Aframax,
Capesize and Panamax data series, the ARIMA medsls found to outperform the
ARMA and ARFIMA models.

This research thus concludes that there are sooumds for the hypothesis regarding
the long-memory nature of freight rates therebyjaliag an alternative dimension to
debate as to the true nature of the structure effitet moment of freight rates. As
mentioned in the introduction to this chapter, ahahwis has a profound impact not
only on the primary users of ships, i.e. ship-ownand charterers, but also on the
wide number of auxiliary parties in the shippingrkeds. In addition to this, it may
also provide an insight into other markets, fortanse, the real estate market, in
which the underlying asset in the market is alsaeal asset, or other such

service-based industries.

In the following chapter, the issue of fractionatieigration in terms of the volatility of
freight rate returns is examined. To this end, foaally Integrated Generalised
Autoregressive Conditional Heteroscedasticity (FRE) models are compared

with more standard techniques.

196



6 Volatility and the Dynamics of the Second Moment

6.1 Introduction

Having examined the nature of the first momentreifght rates in Chapter 5 of the
thesis, this chapter expands on these conceptelagasvon the traditional models of
freight rate volatility through the use of Fractadly Integrated Generalised
Autoregressive Conditional Heteroscedasticity (FRE&H) models. The results
obtained are then compared to more standard modfleislatility from the shipping
literature. By doing this, a better understandifghe structure of freight rates, with
particular reference to the second moment of speiglits and the degree of
persistence therein, is obtained. The structureegght rate volatility and the degree
of persistence, in terms of this volatility, is statered to be one of the most crucial
issues in the shipping industry. By accurately ntlodgthis volatility, one is able to
better understand their potential risk exposuretaedoeriod for which this exposure

will exist.

In the shipping market, freight rates play a piVotde, and form the basis of almost
every function, from the determination of the prafehe transport service through to
the price of second-hand vessels. Therefore, @ctomodel for freight rate volatility
is vital for all participants in the shipping matkigom the ship-owners and charterers
themselves, right down to ship-brokers, maritimeylers and other auxiliary parties.
This follows because, by reducing the risk exposidithe ship owners, one is passing

that risk reduction down the line to the ancillparties concerned.

Therefore, any model that can accurately forecaggtit dynamics and volatility, and
then the transition between periods of increasing decreasing dynamics and

volatility, will be of significant value.

Looking at the shipping literature, discussed inrendetail in Chapter 2, traditional
fundamentals models have suggested that freiglet rate mean reverting, where
these models are outlined by Hawdon (1978) and €eek and Vergottis (1989),
amongst others. However, research in the 1990dudimg the research by
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Berg-Andreassen (1996), Glen (1997) and KavussandsNomikos (2003), amongst
others, found that freight rates were not meanrtingbut followed a random walk
process, and therefore were non-stationary in $evel contradistinction, the most
recent research, such as Adland and Cullinane (286 Koekebakkeret al.(2006),
propose that the original fundamentals models ofvdtam and Beenstock and
Vergottis were in fact correct and propose thaigfrerates are stationary, and that
contrary conclusions were as a result of the apptin of an incorrect test. As
discussed in Chapter 5, this research puts forwfardthe first time in a market in
which real assets are traded, the proposal thatriberer may in fact lie somewhere
between the two rival conclusions, i.e. that freéightes are fractionally integrated.
The rationale behind this statement is that, tketfaat the supply of shipping is fixed
in the short-term and that the demand functiorligtively inelastic combine to create
a situation where freight rates do not immediatadjust to the equilibrium level, but
do adjust eventually. This is in essence the deimiof a long memory, or
fractionally integrated process. Having establistied the spot price levels of freight
rates are fractionally integrated, as illustrated Ghapter 5, Bollerslev (1986)'s
Generalised Autoregressive Conditional Heterosdmilys (GARCH), Engle and
Bollerslev  (1986)'s Integrated Generalised Autoesgive  Conditional
Heteroscedasticity (IGARCH), as well as Baillet al. (1996a)’'s FIGARCH models
are run to determine whether the same can be stidegpect to the volatility of the

underlying freight rates.

Once again, if this hypothesis is true, it enaloiegket participants to better forecast
freight rate volatility, which in turn can lead tmcreased profits for market
participants due to better investment-making cdpwaland greater risk reduction.
This can also have run-on effects on other marlastsnost of the commodities traded
in the world are transported by sea. A better wtdading of the transport costs
involved enables charterers to better forecasis ¢bhsts and potentially pass on these
cost-savings to other participants in other markiB&tter forecasting of freight rates
enables a better understanding of investment timwigch could then be applied to
other markets in which real assets are tradedddiitian to this, there are of course
policy and decision making implications.
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In order to provide body to the hypotheses, sediram of this chapter presents the
methodologies applicable to the research questBmttion three of the chapter
presents the data as well as descriptive statistesction four examines the
implementation of FIGARCH models in the shipping rkes and section five

provides a conclusion.

6.2 Methodology

Having outlined the rationale and the aims of ttiapter in the previous section, this
section provides a brief account of the methodolmglge used in this chapter, where
a more detailed discussion can be found in Chdptef the thesis. These are three
main methodologies used to estimate the volawlitireight rates, the first of which is
the GARCH model, first proposed by Bollerslev (128this GARCH model may be

specified as follows:
[1-a(L)-B(L)]g =w+[1-B(L)]v,  (6.1)
In Expression (6.1)L denotes the lag operator, hengél)=a L +a,l* +...a L
and B(L)=BL+B,L*+...B,L°, wherem=max{ p; ¢ andy=¢&’ - his mean zero
serially uncorrelated; thus, thb/t} process may be readily interpreted as the

‘innovations’ for the conditional variance.

The second model used, i.e. the IGARCH model, dpesl by Engle and Bollerslev
(1986), is an extension of the GARCH (1;1), where tGARCH model may be

represented as follows:

p(L)(1-L)& =w+[1-B(L)]v, (6.2)
h=aw[1-p(0)] +H{-[-8()] (V) (-1} ©3)
In Expressions (6.2) and (6.3), aboyL)=[1-a(L)-B(L)](1-L)" is of order
m-1. In addition, the autoregressive lag polynomiata(L)~-B(L), contains a

unit root and all the roots a@h(L) and| & B(L)] lie outside the unit root circle.
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The final extension to the ARCH model examined heré¢he FIGARCH model,
proposed by Balilliget al. (1996a), which is simply obtained by replacing finst
difference operator, outlined in Expression (6.@jth the fractional difference

operator, denoted, where0<d <1, hence:
o(L)1-L)' & =w+[1-B(L)]v  (6.4)

h=a1-A(0] +H{1-[-8(0)] o) (- 1)} ©5)
In Expressions (6.4) and (6.5), above, the autessive lag polynomial,
1-a(L)-pB(L), contains a unit root and all the rootsgffiL) and| +B(L)] lie

outside the unit root circle. The argument behimel wtilisation of this model is that
the squared innovations of the current conditiomatiance would have a slow
hyperbolic rate of decay. This would mean that kkow volatility would persist

longer than in the case of the GARCH model, butld/i@ventually decay, unlike in

the IGARCH model, hence the use of the term longiorg. One should note that no
further models, such as those that take into adasymmetry, as this investigation is
only concerned with the degree of integration dmetdfore incorporating any other

dynamics into the equation may distort this analysi

6.3 Description of Data

Having established the methodology to be used i\ émpirical analysis in the
previous section, this section provides a very fbsammary of the relevant
descriptive statistics for the respective dataesefivhere the complete analysis can be
found in Chapter 4 of the thesis. The data set uséuis chapter comprises five data
series of spot freight rate returns for five differ vessel types across the tanker and
dry-bulk sectors, namely VLCC, Suezmax (SZMX) andafmax (AFMX) tankers,
and Capesize (CPSZ) and Panamax (PNMX) dry-bulkelesThe sample extends
from 13 January 1989 to 26 June 2009, thus comprikj068 observations, where all

data was collected from Clarksons Shipping Intehice Network.
Calculated descriptive statistics indicate thatehe are contrasting size effects in the

tanker and dry-bulk sectors, where, in the tanlketcs, larger vessels are found to

exhibit lower returns, which may be as a resulthe reduced flexibility of these
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vessels with respect to smaller vessels. The revsrfound in the dry-bulk sector,
however this is attributed to the increased fldiibof dry-bulk vessels, which may
enable the vessels to take advantage of economgEsle. Returns, across all vessel
types, are found to exhibit excess kurtosis andifsignt positive skewness, with the
exception of the Panamax data series, where reamnsiegatively skewed. These
findings are supported Jarque-Bera statistics, avlttlee null hypothesis of normally
distributed returns is rejected in all cases. Resubm the Ljung-Box tests on the
squared returns indicate the presence of signifia®CH effects, at the®} 12" and
24" |ags, across all vessel-types. This finding inttisahe appropriateness of ARCH-
type models for modelling the volatility of the pestive returns. Furthermore, the
existence of volatility clustering in the freiglate returns gives further indication that
there may be GARCH effect, thus indicating the ssitg of the GARCH-type

modelling.

One should note that these models were also ruthematural logarithms of the
respective data series in order to take accoutiteofact that freight rates can never be
negative. One should note that the results fronsethestimations did not differ

significant from those presented Hére

Having outlined the characteristics of the dataesethe next section focuses on the
estimation of the respective models, giving insighto the applications and

implications of these results.

6.4 Empirical Results

6.4.1 Introduction

Having outlined the methodologies to be used aadtHaracteristics of the data in the

sections above, this chapter examines the isspersfstence in and the structure of

the second-moment of spot freight rates. In ordeachieve this aimGARCH(L1),

IGARCH(3,1,0 and FIGARCH(1d;0 models are estimated and the results

% The results from these estimations are not predemére due to space constraints and are available
from the author upon request.
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compared, in order to determine which model, aneretiore, which theory of

persistence, best fits the data. One should natetlie mean equations for all models

of tanker freight rate returns follow akRFIMA (1; d;O) process, while those for the

dry-bulk returns follow anARFIMA (1; d;1), where these specifications were

obtained Chapter 5 of the thesis. This sectiongmssthese estimations and discusses
the potential implications for participants both time shipping market, and in the

financial markets in general.

Before examining the results, it is worth definimpat is meant by persistence in
volatility. The first observation is that the degraf persistence is equal to the sum of
the coefficients of the previous volatility, dendte, and the previous forecasting

variance, denote@, and is generally denoted as= a + 5. As discussed above, the
previous volatility reflecting squared “news” abdbé returns, also known as shocks

to, and is denoted?; while the forecasted variance reflects past mfation as to the
evolution of volatility, and is denoteld_,, as discussed in Kanegt al. (2009). The

second observation to note is that persistencefisatl as the rate at which the lagged
squared innovations in the conditional variancecfiam decay (Baillie et al.

(19964a)), or in simpler terms, the rate at whicbcés to volatility decay.

A further point to make in this discussion is wrégard to the properties that the
volatility models have in terms of their assumpsidor persistence. The GARCH
model assumes that the conditional variance istitstary” in that shocks to the
conditional variance function will decay exponeliyiaand therefore there is almost
no persistence. In complete contrast, the IGARCHehassumes that the conditional
variance is “non-stationary” in that shocks to ttwditional variance function will
not decay and therefore will persist indefinite\s mentioned above, the FIGARCH
model occupies the middle ground in that shocki¢oconditional variance function
will decay hyperbolically; hence one has a levelpefrsistence in between that
proposed by the GARCH and IGARCH models. It is Wopbinting out that the
GARCH and IGARCH models are indeed “special’ cadethe FIGARCH model, in
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that the GARCH model is equivalent to a FIGAREp d; ) model, whered =0;

while the IGARCH model is equivalent to a FIGAR(lg; d; ) model, whered =1.

The final point that should be noted here is thag to computational issues and to
ensure consistency across models, each of the msdestimated using the two-step
approach. This entails first estimating the meam#éqn, olARFIMA component, for
each model, where this is generated using then®tomn each data series. Following
this, the variance equation is estimated and tepecive conditional volatility for
each data series is calculated.

The following sub-sections present the resultshes¢ models and provide a critical
evaluation of their meaning and implications foe @tructure of freight rate returns

and the risk-profile of the shipping markets.

6.4.2 Results for the ARFIMA-GARCH Models

This analysis begins with the GARCH model, wheresults for the
ARFIMA (1;d;0)-GARCH(1L1) models, for the respective tanker series examined

here, and ARFIMA (1; d;1)-GARCH(L1) models, for the dry-bulk series, are

presented iriTable 6.12° These results for all the mean equations in theRGA
models across all data series suggest that therlongaverage return for the

respective freight rates, denotgd has no significant impact upon the returns for
these series. Additionally, the first-order autoesgive coefficient, denote@R (1)

here, which measures the impact that previous gbsrion this case the previous
week’s, freight rate returns have on the curreturns for that vessel class, is found to
be both significant, indicating that these do irléave an impact on the prevailing
returns, and larger for larger vessel types achmdbh sectors. This size effect is
logical in that the restrictions, both in termsloé size of the vessel, and thus where it
can operate, and the commodities that these vesselsarry, mean these vessels are
more likely to operate on specific routes and ttogee be more dependent on the

returns on that route. Finally, the first-order nmgy average coefficient, denoted

% 0One should note that due to computational isshesmean and variance equations are estimated
separately, however, this should not significaaffgct the results.
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Table 6.1 — ARFIMA-GARCH Model Results

(L)L) (v -n)=u
u =z0, ; z~iidN(0; 3
o(L)(1- L) =w+[1-B(L) ]y,

VLCC SZMX AFMX CPSz PNMX
u 0.004 0.006 0.005 0.002 0.002
(0.363) (0.221) (0.165) (0.577) (0.345)
AR(1) 0.194 0.171 0.098 0.410 0.143
(0.000) (0.000) (0.001) (0.000) (0.004)
mMaQ) 0 T T 0.013 0.159
() () () (0.802) (0.005)
w 0.000 0.000 0.007 0.000 0.000
(0.492) (0.594) (0.006) (0.100) (0.273)
a 0.053 0.020 0.267 0.112 0.120
() (----) () (----) ()
;i 0.947 0.980 0.258 0.867 0.840
(0.000) (0.000) (0.268) (0.000) (0.000)
) 1.000 1.000 0.526 0.980 0.960
(0.000) (0.000) (0.000) (0.000) (0.000)
Log L 923.215 849.513 842.936 1674.744 1658.511
AIC -1.727 -1.589 -1.577 -3.134 -3.104
SBIC -1.726 -1.588 -1.576 -3.133 -3.103
Note 1: VLCC denotes the weekly spot freight rdtesa 270,000 DWT VLCC tanker carrying crude
oil from Ras Tanura (Saudi Arabia) to Rotterdamtfig¢dands).
SZMX denotes the weekly spot freight rates for &,080 DWT Suezmax tanker carrying
crude oil from Bonny (Nigeria) to off the coastRifiladelphia (USA).
AFMX denotes the weekly spot freight rates for &0080 DWT Aframax tanker carrying
crude oil from Sullom Voe (UK) to Bayway (USA).
CPSZ denotes the weekly spot freight rates for|s0 DWT Capesize bulk-carrier carrying
iron ore from Tubarao (Brazil) to Rotterdam (Netaerds).
PNMX denotes the weekly spot freight rates for @88 DWT Panamax bulk-carrier carrying
grain from the Hampton Roads (USA) to Antwerp-Ratten-Amsterdam (Benelux).
Note 2: The sample period for the data used fos table extends from 13 January 1989 to
26 June 2009, with a total of 1,068 observations.
Note 3: The data used for this table is all souritedh the Clarkson Shipping Intelligence Network
(www.clarskons.nét
Note 4: Figures in parentheses denote the respeptiwalues for the null hypothesis that the
coefficients are not significantly different frorern.
Note 5: gp=a+ [

MA (1), which denotes the impact that past residuals bave current returns, and

is only estimated for the dry-bulk sector, is foundoe insignificant for the Capesize

data series, and significant for the Panamax datass The fact that this is significant

for the smaller vessel class, for which there aoeenowners, may be an indication of
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a lack of transparency in the way in which inforioatregarding market conditions is

assimilated between market participants.

Moving onto the variance equations for the modéis,long-term average conditional
volatility, denotedw, is only significant for the Aframax data seri&his implies that

in this case, average volatility over the previqesiods does have a significant
impact on the volatility currently experienced iretmarket. In terms of the volatility
during the previous period, i.e. shocks in the eeipe markets, as measured by the
a coefficient, these appear to have some impacthenvolatility of freight rate
returns, although, with the possible exception led Aframax series, this impact
appears to be relatively small. Furthermore, tlagneears to be a size effect in this
respect, as well, where smaller vessels are mgresexi to shocks than larger vessels.
This may be as a result of the fact that, as lavgesels operate on fewer routes, the
frequency of these shocks is diminished. Lookinthatimpact of past variance on the

volatility of the freight rates, denotefl, the impact of these is found to be very large

and significant for all data series but the Afransaxies, where these are found to be
insignificant, hence past shocks are found to pldgrge role in the risk exposure of
market participants.

The persistence of volatility in the market, i.be ttime it takes for the impact of

shocks, both past and present, to decay, whicheasuared by the coefficient,
wheregp=a + [, is found to be very large and significant, whevéh the exception

of the Aframax data series, this is close to ondicating a very slow rate of decay
for the shocks, not at all consistent with the GAREpecification, thus indicating
that either IGARCH or FIGARCH models may be morprapriate in these cases, as
these take this slow decay into account. Additignahe persistence in volatility
appears to be greater for larger vessels, whiamost probably as a result that, as the
trading opportunities are more limited for largerssels, freight rates, and therefore
returns, will take longer to adjust to shocks. Giuld note that the calculated
annualised conditional volatility for each dataie®ris graphically presented in
Figure 6.1, where one can see that for the VLCCSunekzmax data series, where the
coefficients measuring persistence are highestvitatility appears to exhibit the

“explosive” characteristics generally attributed rfon-stationary data series, hence
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Figure 6.1 — Conditional Annualised Volatility for the GARCH Models

(a) VLCC Data Series (b) SZMX Data Series

VLCC Conditional Volatiity
SZWX Conditional Volatiity
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lending further support to the hypothesis of peesise in the volatility of spot freight

levels.

In order to test these results, residual diagnestiere calculated for each of the data

series, where these results can be found in TablelGe results of these tests indicate

that there appears to be a size effect in thati¢igeee of skewness and kurtosis of the

residuals is lower for larger vessels than smaléssels, as well as a sector effect, in

that these measures tend to be larger in the teadator than in the dry-bulk sector,

where these measures are supported by the resultsef Jarque-Bera test, where the

null hypothesis that the residuals are normallyridisted is rejected in all cases.

Looking at the results for the Ljung-Box statistiosne can observe that the
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Table 6.2 — ARFIMA-GARCH Standardised Residual Diagostics

VLCC SZMX AFMX CPSZ PNMX
Average 0.006 0.011 0.014 0.007 0.005
Variance 0.997 0.989 0.999 1.008 1.000
Skewness 0.964 1.275 1.888 0.496 0.304
(0.000) (0.000) (0.000) (0.000) (0.000)
Kurtosis 6.630 7.056 15.154 5.980 6.740
(0.000) (0.000) (0.000) (0.000) (0.000)
Jarque-Bera 751.826 1021.232 7207.840 438.888 638.736
(0.000) (0.000) (0.000) (0.000) (0.000)
Q1) 5.972 1.972 1.297 0.001 0.354
(0.015) (0.160) (0.255) (0.978) (0.552)
Q(12) 27.774 33.900 42.932 15.699 9.140
(0.006) (0.001) (0.000) (0.205) (0.691)
Q (24) 36.611 46.952 92.677 26.712 23.125
(0.048) (0.003) (0.000) (0.318) (0.512)
Q*(1) 0.150 4.522 0.299 1.280 0.015
(0.699) (0.033) (0.585) (0.258) (0.902)
Q*(12) 11.401 12.160 8.146 13.640 5.399
(0.495) (0.433) (0.774) (0.324) (0.943)
Q*(24) 17.399 18.531 11.618 21.483 10.640
(0.831) (0.777) (0.984) (0.610) (0.991)

Note 1: See notes frofirable 6.1.

null-hypothesis of no ARCH effects cannot be regdcacross all data series and

across all lags, thereby indicating that thieFIMA (1; d;0)-GARCH(1;1), in the case

of the tanker sector, andRFIMA (1;d;1)-GARCH(L]), for the dry-bulk sector,

models are well-specified and have removed any AREGétts present in the data.

Although these models are well specified, the that there is such a high degree of
persistence, in terms of the volatility, is probbm as this is not characteristic of
GARCH models. For this reason, alternate GARCH-typmlels, i.e. the IGARCH
and FIGARCH models, which take this persistence adcount, are evaluated in the
following sub-sections, where, in the following sen, the results for the IGARCH

models are examined.
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Table 6.3 — ARFIMA-IGARCH Model Results
p(L)A-L) (v -4)=y,
u =20, ; z~iidN(0;]
p(L)(1-L) & =w+[1-B(L)]v,

VLCC SZMX AFMX CPSZ PNMX
U 0.004 0.006 0.005 0.002 0.002
(0.363) (0.221) (0.165) (0.577) (0.345)
AR() 0.194 0.171 0.098 0.410 0.143
(0.000) (0.000) (0.001) (0.000) (0.004)
way e 0.013 0.159
(=) (=) (----) (0.802) (0.005)
w 0.000 0.000 0.006 0.000 0.000
(0.390) (0.197) (0.002) (0.178) (0.459)
0.947 0.979 0.167 0.870 0.857
(0.000) (0.000) (0.261) (0.000) (0.000)
2 1.000 1.000 1.000 1.000 1.000
(=) () (=) () (=)
Log L 923.19 849.45 825.18 1672.746 1653.961
AIC -1.727 -1.589 -1.543 -3.131 -3.095
SBIC -1.726 -1.588 -1.542 -3.130 -3.094

Note 1: See notes frofirable 6.1.

6.4.3 Results for the ARFIMA-IGARCH Models

Having examined the results for the GARCH modelth previous sub-section, the
results IGARCH models are now examined, where theselts are presented in
Table 6.3. It is important to note that the speatfions for the models differ, where an

ARFIMA (1; d;O)-IGARCH(l;l;O) specification was used for the tanker series, and

an ARFIMA (1, d;1)-IGARCH(L1,0 specification, for the dry-bulk series. One

should that, for reasons of brevity, the resultstf@ respective mean equations of
each data series are not presented here as thexaaty the same as those for the

GARCH models discussed above.
Looking at the variance equation, the long-run agervolatility, once again denoted

w, plays no significant role, with the exceptiontbé Aframax data series, in the

prevailing volatility of the spot freight returng,result consistent with that observed
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Figure 6.2 — Conditional Annualised Volatility for the IGARCH Models
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for the GARCH model. As far as the impact of paatiance is concerned, as

measured by thg coefficient, the results are very similar to thdsethe GARCH

model in that past shocks are found to play a famt and large role in the current

volatility experienced in the market, with the eptien of the Aframax data series,

where the coefficient is found to be insignificahbwever, this may just be an

anomaly of the data series used. One should nate thie ¢ parameter, which

measures the persistence of volatility, is consé@ito equal one, hence+ S =1,

for the IGARCH model, in that this model assume ttolatility persists indefinitely.

Once again, the estimated annualised conditionkdtilty for each data series is

graphically presented in Figure 6.2, where one lshoate that these are remarkably

similar to the generated conditional volatility inothe GARCH model, exhibited in
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Table 6.4 — ARFIMA-IGARCH Standardised Residual Diggnostics

VLCC SZMX AFMX CPSZ PNMX
Average 0.006 0.011 0.021 0.005 0.003
Variance 1.003 0.997 0.917 0.961 0.937
Skewness 0.968 1.274 1.660 0.478 0.343
(0.000) (0.000) (0.000) (0.000) (0.000)
Kurtosis 6.649 7.040 12.549 6.053 7.288
(0.000) (0.000) (0.000) (0.000) (0.000)
Jarque-Bera 759.263 1015.328 4548.450 455.291 839.132
(0.000) (0.000) (0.000) (0.000) (0.000)
Q1) 5.917 1.930 1.758 0.000 0.490
(0.015) (0.165) (0.185) (0.998) (0.484)
Q(12) 27.759 33.792 36.301 15.383 9.706
(0.006) (0.001) (0.000) (0.221) (0.642)
Q (24) 36.608 46.869 78.049 25.619 23.451
(0.048) (0.003) (0.000) (0.373) (0.493)
Q*(1) 0.139 4.546 1.655 0.796 0.080
(0.710) (0.033) (0.198) (0.372) (0.778)
Q*(12) 11.590 12.129 13.804 14.731 7.838
(0.479) (0.435) (0.313) (0.256) (0.798)
Q*(24) 17.583 18.500 17.482 20.094 13.987
(0.823) (0.778) (0.827) (0.691) (0.947)

Note 1: See notes frofirable 6.1.

Figure 6.1. A possible reason for this is that ioeihts measuring persistence for the
GARCH model are so close to one, that one is e¥iegt merely running an
IGARCH model, thus lending support to the persistemypothesis.

As was the case for the GARCH models, these reauttgested by calculating the
respective residual diagnostics for each datasedhe results of which are presented
in Table 6.4. The results of these tests indidad, tas was the case for the GARCH
estimations, there appears to significant skewardsexcess kurtosis in the residuals,
in addition to a size effect in that the degreslksd#wness and kurtosis of the residuals
is lower for larger vessels than smaller vessalsyell as a sector effect, in that these
measures tend to be larger in the tanker sectarithtine dry-bulk sector, where these
measures are supported by the results for the &dqta test, where the null-
hypothesis that the residuals are normally distetdus rejected in all cases. Looking

at the results for the Ljung-Box statistics, whighare calculated on the standardised
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residuals, one can once again observe that thehgpbithesis of no ARCH effects

cannot be rejected across all data series andsaalidags, thereby indicating that the

ARFIMA (1,d;0)-IGARCH(L10 , in the case of the tanker sector, and

ARFIMA (1; d;1)-IGARCH(1,1,0), for the dry-bulk sector, models are well-spedifie

and have removed any ARCH effects present in thee da

Although the characteristics of persistence witlard to the volatility are consistent
with the IGARCH model, the assumption that thisspgence is indefinite does not tie
in with traditional maritime economic theory. Tliggues the characteristics of supply
and demand imply that there will be periods ofljastable freight rates, followed by
periods in which freights rate may change drambyicahereby implying mean
reversion in the volatility of freight rate returris order to reconcile these two issues,
the following sub-section examines the resultgtierFIGARCH model, which argues
that, while there may be greater persistence imatWity than that implied by the
GARCH model, shocks will eventually decay at a sloate, unlike the infinite

persistence postulated by the IGARCH model.

6.4.4 Results for the ARFIMA-FIGARCH Models

Having examined the results for the GARCH and IGAR@odels in the previous
sub-section, the results for the FIGARCH modelraver examined, where these are
presented in Table 6.5. The models differ betwestoss of the freight markets, in

that anARFIMA (L, d; 0)-FIGARCH(1,d;0 model is estimated for the tanker sector

and anARFIMA (1 d;1)-FIGARCH(Ld;0 for the dry-bulk sector. As was the case

for the IGARCH model, the results of the respectivean equations are not discussed
here as they are identical to those for the GARGideh

Examining the results for the variance equatiom, litng-run average conditional
volatility, as measured by th® parameter, is found to be insignificant for alt bwe
Aframax data series, thus suggesting that this doéglay a part in the prevailing
volatility of freight rate returns. One should ndt@t, as a result of the specifications

for the model, noa or ¢ parameters are estimated, however, their imptioafi
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Table 6.5 — ARFIMA-FIGARCH Model Results
p(L)A-L) (v -4)=y,
u =20, ; z~iidN(0;]
ALY (1LY & = [1-B(L)

VLCC SZMX AFMX CpPSz PNMX
U 0.004 0.006 0.005 0.002 0.002
(0.363) (0.221) (0.165) (0.577) (0.345)
AR(1) 0.194 0.171 0.098 0.410 0.143
(0.000) (0.000) (0.001) (0.000) (0.004)
--------------- 0.013 0.159
MAL) () () () (0.802) (0.005)
w 0.000 0.001 0.001 0.000 0.000
(0.208) (0.355) (0.000) (0.303) (0.156)
0.504 0038 - 0.203 0.248
(0.000) (0.571) (=) (0.015) (0.001)
d 0.515 0.286 0.136 0.402 0.390
(0.000) (0.000) (0.000) (0.000) (0.000)
Log L 922.60 844.39 845.99 1677.873 1662.097
AIC -1.726 -1.579 -1.582 -3.140 -3.111
SBIC -1.725 -1.578 -1.581 -3.139 -3.110

Note 1: See notes frofirable 6.1.

should the specification change, would be as ableeethis reason, the only measure
of persistence presented here is the impact of pasance on the conditional

variance, denoted, the results for which suggest that past variaocehocks, has a

significant impact on conditional volatility in thease of the VLCC, Capesize and
Panamax data series, although the parameter foCé#pesize data series is only
significant at the 5% and 10% levels of significanm contrast, this parameter was
insignificant for the Suezmax and Aframax dataeserwhere the estimate for the
Aframax data series is not presented due to caonsissues. It is interesting to note
that the level of persistence, for those seriesravhigs is significant, is much lower
than for the GARCH and IGARCH models, implying tila¢ FIGARCH model has

taken account of and modelled this persistencectafedy. One should note that the
d-parameter measures the order of integration fer dbnditional volatility series,

where0<d <1. The results for this parameter indicate thatcthditional variance is

indeed fractionally integrated, where these vakmessignificant and range between
0.136, in the case of the Aframax data series,0abtl5, for the VLCC series. A size
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Figure 6.3 — Conditional Annualised Volatility for the FIGARCH Models
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effect is also observed here in that larger vesggear to exhibit more long memory
characteristics. As was the case for the discussiorthe GARCH and IGARCH
models, the evolution of the annualised conditior@htility for each data series is
graphically presented in Figure 6.3. Interestinglylike the generated conditional
volatility for the GARCH and IGARCH models, illusted in Figure 6.1 and
Figure 6.2respectively, the conditional volatility for theGARCH model appears to
more close resemble a stationary process, hendatesupport to the hypothesis that
freight rate volatility follows a fractionally intgated process.

Once again the results are tested by calculatiagehkidual diagnostics, summarised

in Table 6.6. The results of these tests indidad¢, tas was the case for the GARCH
and IGARCH models, there appears to be a sizetaffabat the degree of skewness
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Table 6.6 — ARFIMA-FIGARCH Standardised Residual Dagnostics

VLCC SZMX AFMX CPSZ PNMX
Average 0.005 0.016 0.017 0.009 0.513
Variance 1.021 1.035 0.998 1.019 0.474
Skewness 0.948 1.262 2.209 0.512 0.307
(0.000) (0.000) (0.000) (0.000) (0.000)
Kurtosis 6.537 6.605 18.367 6.158 6.667
(0.000) (0.000) (0.000) (0.000) (0.000)
Jarque-Bera 715.359 860.063 11355.765 489.414 614.048
(0.000) (0.000) (0.000) (0.000) (0.000)
Q1) 6.047 4.156 0.708 0.055 0.513
(0.014) (0.041) (0.400) (0.814) (0.474)
Q(12) 25.132 35.945 36.767 15.771 9.275
(0.014) (0.000) (0.000) (0.202) (0.679)
Q (24) 35.379 51.803 84.062 27.130 23.041
(0.063) (0.001) (0.000) (0.298) (0.517)
Q*(1) 0.665 0.495 0.035 0.000 0.065
(0.415) (0.482) (0.851) (0.998) (0.799)
Q*(12) 9.994 12.317 2.985 12.111 4.694
(0.617) (0.421) (0.996) (0.437) (0.967)
Q*(24) 14.771 20.826 4.771 23.576 11.060
(0.927) (0.649) (1.000) (0.486) (0.989)

Note 1: See notes frofirable 6.1.

and kurtosis of the residuals is lower for largessels than smaller vessels, as well as
a sector effect, in that these measures tend targer in the tanker sector than in the
dry-bulk sector. These findings are supported leyrtsults for the Jarque-Bera test,
where the null hypothesis that the residuals arenally distributed is rejected in all
cases. Looking at the results for the Ljung-Boxistias, one can observe that the null

hypothesis of no ARCH effects cannot be rejectedsscall data series and across all

lags, thereby indicating that t&RFIMA (1; d;0)-FIGARCH(1d;0), in the case of

the tanker sector, aRFIMA (1; d;1)-FIGARCH(1,d;0), for the dry-bulk sector,

models are well-specified and have removed any AREGétts present in the data.
In contrast to the findings for the GARCH and IGARGnodels, the FIGARCH

model appears to have reduced the persistencee afatfiditional volatility. This has
huge implications in that instead of finding thée teffects of shocks are felt
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indefinitely, thereby creating large risk expostwe market participants, as implied
by the findings of the GARCH and IGARCH models, H&EARCH model finds that

the effect of these shocks do eventually decalgpalih it is a slow process. Therefore
participants in the shipping markets can adjust rible expectations and hedging
strategies accordingly. Furthermore, this modeleapp to have reconciled the two
issues discussed above, i.e. the fact that traditimaritime economic theory suggests
that the volatility process should be mean revgrtiwhereas the results for the
GARCH and IGARCH models suggested that shocks & wublatility process

persisted indefinitely across time.

6.5 Comparison of Volatility Models

The previous section discussed the results, andithglications, from the estimation
of GARCH, IGARCH and FIGARCH models, however, tfosused on the results of
each model individual, making no comparison betw#en models. This section
provides a critical comparison between models \lign aim of determining which
best describes the structure of freight rate Vdati

In terms of the mean equations for each model,etre® identical in that the
underlying models and data series are identicalthla vain, the results for the
residual diagnostics in each model are consisianthat all models remove any
ARCH effects in the data series, thus implying tihaty are well-specified, while the
residuals are found to exhibit both significantipes skewness and excess kurtosis, a

finding supported by the results of the Jarque-Beaastics.

This being said, the analysis becomes more intagegthen looking at the parameter
estimates for the respective variance equationthiass where the differences begin
to manifest themselves. Although the results fag kbng-run average conditional
volatility, denotedw, are fairly consistent, in that this parameterfaand to be
insignificant for all data series but the Aframaeriss, this rapidly changes when
looking a parameters for persistence, i.e. fhand ¢ parameters. In the cases of the

GARCH and IGARCH models, these parameters, andaiticolar the3 parameter,

which measures the impact of past variance, amedfool be very large, and very close
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to one, thereby suggesting close to infinite p&eaie in volatility. In contrast, the

results for theg parameter in the FIGARCH model suggest that, whilecks to

volatility decay slowly, they do actually decay.€Ttuestion is thus raised as to which

of these arguments is correct?

Before addressing this question, one must re-wvigiat is meant by persistence.
Persistence measures the time taken for the implashocks to the conditional
volatility to decay. In this respect, the GARCH mebtas the least persistence in that
it assumes that the impact of these shocks decaymentially, hence the volatility
series is effectively stationary. At the other esfdthe scale, the IGARCH model
assumes that the impact of shocks to volatilitysiseindefinitely; hence the volatility
series follows a non-stationary process. The middbeind between these two
extremes is held by the FIGARCH model, where thpaah of shocks decays in a
hyperbolic fashion, thus one can argue that thalitional volatility of freight rate

returns is fractionally integrated.

To provide a more substantive evaluation of thet Inesdel, Akaike Information

Criteria (AIC), attributed to Akaike (1974), andethSchwartz-Bayesian Information
Criteria (SBIC), outlined in Schwarz (1978), ardcodated for each of the respective
models and data series, where these are presenteohfvenience in Table 6.7. These
AIC and SBIC criteria are unanimous in that botle amdifferent between the

GARCH and IGARCH models for the VLCC and Suezmataderies, and select the
FIGARCH model in the case of the Aframax, Capesind Panamax data series. A
possible reason for the indifference between moutelhe case of the VLCC and
Suezmax data series may be tigtl in the GARCH model for these series,
therefore one is effectively running an IGARCH mioden this basis, the conclusion

is drawn that the IGARCH model provides the bestinege of conditional
volatility for these series.

One should note that although information criteltaprovide a convenient means of
choosing between models, Brooks and Burke (20Qf)eathat these standard metrics
suffer from a lack of ability in that they do ndloav for the number of parameters in

the models to change, thereby leading to reduceztésting accuracy. In order to
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Table 6.7 — Results for the Model Selection Critea

Panel A - Akaike Information Criterion

GARCH IGARCH FIGARCH
VLCC Data Series -1.727 -1.727 -1.726
Suezmax Data Series -1.589 -1.589 -1.579
Aframax Data Series -1.577 -1.543 -1.582
Capesize Data Series -3.134 -3.131 -3.140
Panamax Data Series -3.104 -3.095 -3.111

Panel B - Schwartz-Bayesian Information Criterion

GARCH IGARCH FIGARCH
VLCC Data Series -1.726 -1.726 -1.725
Suezmax Data Series -1.588 -1.588 -1.578
Aframax Data Series -1.576 -1.542 -1.581
Capesize Data Series -3.133 -3.130 -3.139
Panamax Data Series -3.103 -3.094 -3.110

Note 1: See notes frofiable 6.1.

address this issue, the models are also compar€&hapter 8 on the basis of their

ability to accurately determine and minimise th&peetive Values-at-Risk.

A possible rationale for these conclusions relédethe characteristics of the sectors
in question. Vessels in the tanker market tendatoyca single commodity, i.e. crude
oil, as opposed to those in the dry-bulk marketerghvessels are capable of carrying
multiple commodities, and generally operate on femeites than those in the dry-
bulk market. They are therefore heavily exposedhocks on those routes, and are
unable to trade elsewhere should a shock occuikeudry-bulk vessels, which can
simply swap commodities; hence the effects of th&secks would logically last

longer in the tanker market than in the dry-bulkkea

One can therefore make the general conclusion@®RCH models are more suited
to providing insight into the structure of volatliin the tanker sector, while
FIGARCH models provide a better fit in this respkectthe dry-bulk sector.

6.6 Conclusion

The structure of freight rate volatility, and thegtdee of persistence in terms of this
volatility, is considered to be one of the mostctaliissues in the shipping industry,

as by being able to accurately model this volgtildne is able to better understand
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their potential risk exposure and the period foliclwhthis exposure will exist. This
chapter examined the structure of freight rate tidla with a particular focus on the
level of persistence within the volatility framewousing the GARCH, IGARCH and
FIGARCH frameworks. This chapter hypothesised theight rate volatility would
follow a hyperbolic rate of decay in that, althougiocks to volatility should persist
in the market, they should not persist indefiniteljhe rationale behind this
hypothesis is similar to those for the freight régeels discussed in the previous
chapter, i.e. that the characteristics of the sufyahction in the freight rate market
imply that although the level of supply is fixedtime short-term, the level of supply
can increase in the longer-term, thus causing Hteigtes to revert to their mean
levels. The same can be said for freight rate ityain the shocks to freight rate
returns, such as a sudden increase in freight duesto a lack of supply, would
persist up to the point that freight rates revettethe mean level, and then begin to

slowly discuss as the market entered a more syegvied.

One should also note that a correct model for fitergte volatility is vital for all
participants in the shipping market, and not oflipswners and charterers in that
freight rates form the basis for all activitiestime market, right down to ship-brokers,
maritime lawyers and other auxiliary parties. Tlabows because, by reducing the
risk exposure of the ship owners, one is passiagrbk reduction down the line to
the ancillary parties concerned. In addition, itMsrth considering this methodology
in other markets as well as shipping freight ragrkets (perhaps the only financial
market in which the good being provided is a s&)ias the modelling of freight rate
volatility can be readily applied to other marketsvhich real assets are traded.

In order to evaluate these issues, freight ratesfife vessel classes, i.e. VLCC,
Suezmax and Aframax tankers, and Capesize and Randmp-bulk vessels, were
collected for the period between the 13 Januar® Eg&l 26 June 2009. The reasons
for specifying the use of the GARCH, IGARCH and RRECH models is that each
assumes a different rate of decay for shocks tatiity where the GARCH models
assume an exponential rate of decay, the IGARCHetfsah indefinite rate of decay,
and the FIGARCH model a hyperbolic rate of decayeréfore, by determining the
best model for the data series, one can draw cesiocis as to the persistence of

shocks in volatility, and therefore the potentiskrexposure of involved parties.

218



Having run the models, it was found that past vexgaplayed a significant role in
determining the level of volatility in the shippirfgeight markets, and that lagged
returns are found to have an impact on the currenrns in the market. When
examining the results for GARCH and IGARCH moddig, tentative conclusion was
reached that shocks to volatility persisted indedly, regardless of vessel type. In
contrast, however, the results from the FIGARCH ei®duggested that shocks with
respect to freight rate volatility followed the lgypolic rate of decay hypothesised.

In order to address the question as to which model® correct, AIC and SBIC
measures were calculated and the models compariisdrasis. The results for these
measures led to the conclusion that, for the dti-lsector, the FIGARCH model
provides the best fit in terms of the structureatibty, while, for the tanker sector, the
IGARCH model is preferred.

Following this, Chapter 7 examines the questiowléther models which incorporate
conditional skewness and kurtosis, as well as dmelitional volatility measured here,

may provide a better understanding of the truereadfi the risk exposure of market
participants in the shipping freight rate markéts.example of a practical application
of the findings from both these chapters is giverChapter 8 of the thesis, where
these models are used to forecast volatility. Thidone by constructing a series of
forecasts of volatility, the accuracy of which aetermined by comparing Values-at-
Risk calculated using these forecasts with theahctialues-at-Risk incurred in the

shipping freight rate markets.
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7 The Impact of Higher Moments on Freight Rates

7.1 Introduction

The departure from normality of asset return dsttions has been well documented,
and has been reported on by Harvey and SiddiquEj12eird (1999), Brookst al.
(2005) and Baliet al.(2008), amongst others. To the best of the autkaswvledge,
this paper examines, for the first time in the pmg literature, the issues of time-
varying skewness and kurtosis in shipping freigité returns. From this, the aim was
to establish the most comprehensive model of detemgithe dynamics of the returns
distribution. These are crucial issues since shaile returns distribution be
negatively skewed, this would accentuate the lafteh side of the distribution,
entailing a higher probability of decreases thatraases in freight rate returns. In
addition, any excess kurtosis implies that moreegmé observations, i.e. extremely
high, or low, returns, are more likely to occur rthaould be the case under the

normal distribution, a crucial issue should onehwis minimise their risk exposure.

In the shipping market, freight rates play a piVotde, and form the basis of almost
every function - from the determination of the prif the transport service through to
the price of second-hand vessels. Therefore, @ctomodel for freight rate dynamics
is vital for all participants in the shipping matki#om the ship-owners and charterers
themselves, right down to ship-brokers, maritimeylers and other auxiliary parties.
This follows because, by reducing the risk exposidiae ship owners, one is passing

that risk reduction down the line to the ancillparties concerned.

A number of different methodologies have been psedoto deal with the issue of
return dynamics beginning with the Generalised Aedecessive Conditional
Heteroscedasticity (GARCH) models introduced by I&slev (1986), where,
although these allow for time-varying volatilitthey assume constant skewness and
kurtosis. Harvey and Siddique (1999) extend thisiehdwy proposing the Generalised
Autoregressive Conditional Heteroscedasticity witkewness (GARCHS) model in
which a time-varying skewness component is intreduahich allows for the joint

estimation of time-varying conditional variance asic®ewness, however, this model
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still assumes constant kurtosis. In a similar vBimoks et al.(2005) extend the basic
GARCH model in the Generalised Autoregressive Ciaomthl Heteroscedasticity and
Kurtosis (GARCHK) model by introducing a time-vargi kurtosis component.

However, this now assumes constant skewness. Tés kextension with respect to
these issues was proposed by Leénal. (2005), who introduced the GARCH with
skewness and kurtosis (GARCHSK) model, which alléarsthe joint estimation of

conditional variance, skewness and kurtosis, tmableng one to fully explore the
dynamics of the data series, and thereby enabliegt@ obtain a complete picture of

the returns distribution.

There are multiple advantages to being able toucapghe conditional skewness and
kurtosis of the data series, the first of whiclthat should the distribution of asset
returns be skewed, or if there is excess kurtasis, traditional assumption of
normality when estimating the Value-at-Risk wilsudt in an underestimation of the
risk. Secondly, it enables one to better descrite distributional properties of
financial asset returns, thus enabling one to beftelerstand the performance of
assets with these properties. Finally, one coulok lat the issue of portfolio
construction to determine if the risk structurdridy optimal, as well as the fact that
examining these properties would enable one toebgitice options in financial
markets where these properties exist.

In order to provide background to the hypothesesti@n two of this chapter presents
a critical review of the relevant literature, whikgection three examines the
methodologies applicable to the research questt@ttion four of the document
presents the data as well as descriptive statistiection five examines the
implementation of these models in the shipping mkwhile section six makes a

comparison with other more traditional models aactisn seven concludes.

7.2 Methodology

Engle (1982) provided the framework for the varietyARCH-type models presented
here through the development of the original ARCHdel. This framework was
extended by Bollerslev (1986), who presented taedsird GARCH|g; ) model used

in this thesis.
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This GARCH 0; g) model is represented as follows:

g=z/h ; N0 ) (7.2)

h =w+a(L)a2+ﬁ(L)h (7.2)
In this model,L denotes the lag operator, heng¢lL)=a,L +a,L* +...a,L" and
B(L)=pBL+pBL*+...B,L°. In order to ensure the stability and covariant¢he
{&} process, all the roots ¢t~ a ( (L)] and[1-B(L)] are constrained to lie

outside the unit circle. One should note that iIBARCH (1; 1) model, the sum of
a, andg, reflects the persistence of any shocks to vaiat{Baillie, et al. (1996a)).

This model enables one to generate volatility faseée which are comprised of the
weighted average of the constant long-run, or aeraariance, denoted) the
previous forecasting variance, denotedand the previous volatility reflecting the

squared news about the return, denatédKang et al. (2009)). This model could

alternatively be expressed as an ARM® () process irg/, where:
[1-a(L)-B(L)]& =w+[1-B(L)]v,  (7.3)

In the expression aboven= max{ p; o} andy=¢g’ - h is mean zero serially

uncorrelated; thus, th{e4} process may be readily interpreted as the ‘innomat for

the conditional variance.

The final extension to the ARCH model examined hisréhe FIGARCH model
proposed by Balillieet al.(1996a). This is simply obtained by including fhectional

difference operator, denotédwhere0<d <1, hence:
A(L)(1-L) & =aw+[1-B(L) v (74)
h=af1-A(0] +H{1-[+-B()] eV (- 1)} 75
Once again, the autoregressive lag polynoniialy (L)~ 3(L), contains a unit root

and all the roots of(p and[l ﬁ )] lie outside the unit root circle. The

argument behind the utilisation of this model iattthe squared innovations of the
current conditional variance would have a slow higpkc rate of decay. This would

mean that shocks to volatility would persist longjeain in the case of the GARCH
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model, but would eventually decay, unlike in theARBCH model, hence the term

long memory in this case.

The focus of the methodology used here changes fnenely modelling conditional
volatility to modelling the higher moments as weélarvey and Siddique (1999) were
the first to introduce the concept of autoregressionditional skewness through the
introduction of the GARCHS model. Following thisiddks et al. (2005) argue that,
following the research by Mandelbrot (1963), itaisnost universally accepted that
asset returns are leptokurtic rather than normdiyributed. For this reason, they
introduced the GARCHK model, which allows for thatosis to develop over time in
a manner that is not fixed with respect to thearase, in order to examine the impact
that kurtosis has on asset returns. Subsequergtyy let al. (2005) extend the work
done by Harvey and Siddique and Brooks,al. by jointly estimating the time-

variance skewness and kurtosis using their GARCH®idel.

This extends the literature in that it accounts both time-varying skewness and
kurtosis, whereas Harvey and Siddique only accéamtime-varying skewness and
Brooks et al only account for time-varying kurtosis. In additj the likelihood
function, is based on a Gram-Charlier (GC) seriggansion of the normal density
function, in a manner similar to that suggesteddajiant and Tauchen (1989). The
reason for this change is that this easier to eséirthe likelihood function based on
the non-centrat-distribution used by Harvey and Siddique. Labral’'s GARCHSK
model is given by:

(1-L) g(L)r, =6(L)e, (7.6)
e=n . n~03 g1, {0h,) @7
h=pB+Be.+Bh. (7.8)
S =Vt WhatVes, (7.9)
k =8+, + Ok, (7.10)
In Expressions (7.6) to (7.10), abO\EeM(-) denotes the conditional expectation on

an information set till periodd — 1 denoted a§_,. They establish thaE,_; (/7t) =0,

E.(n.) =1, E (qf) =5,andE_, (qf) =k,, where boths andk, are driven by a
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GARCH (1,1) structure. This means thgt and k, represent, respectively, the

skewness and kurtosis corresponding to the comditiodistribution of the

standardised residugl, = £h*?.

Lednet al go on to obtain the density function for the dendised residuals, denoted

1., which is conditional on the information availatd¢ timet — 1 by using a

Gram—Charlier series expansion of the normal degrigitiction and truncating at the
fourth moment. This density function is as follows:

a(nl1.2)=ofn )| 13 -n) + 5 - o7+ 3 =eln)un) 720

In Expression (7.11),¢)(-) denotes the probability density function, or pdf,

corresponding to the standard normal distributiehile ¢(+) is the polynomial part

of fourth order corresponding to the expressionvben brackets. They go on to state

that this is not really a density function in thittt some of the parameter values in

Expressions (7.6) to (7.10), the densg’;{/-) might be negative, and, similarly, the

integral of g(+) on O is not equal to one.

To solve this issue, Ledet al. propose a true pdf, denote‘c(o), which is obtained

by transforming the density functiog(+) using the method proposed in Gallant and
Tauchen (1989). Looking at the specifics, to obt#is well defined density
everywhere, they squared the polynomial part,w.é-.), and then divided by the
integral ofg(-) over [J, where the latter is to ensure that the densityction

integrates to one. Therefore, the resulting pdf is:

ol 1St -00)+ 5 2=+ 3] gt t(o)

HUAIME -

t

In this pdf, f (+), the terml", is defined as follows:

ro=1+3 4 (kff’) (7.13)
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Following this Leon et al define, after omitting unessential constants, the

log-likelihood function for one observation corresding to the conditional

distribution & = h?%;, , whose pdf ish!? f (’71| It—l)’ as:

It:—%Inht—%fyfﬂn(t/lz(/]t))—ln(rt) (7.14)

As one can see, this likelihood function is clea#gier to estimate than that based on
a non-centralt distribution, i.e. the density function proposeg bBlarvey and
Siddique, In addition to this, Expression (7.12stsethe normal density function,

which would occur wherg =0 andk = &, while the non-central does not. This

implies that the restrictions imposed by the norehahsity function with respect to
the more general density based on a Gram—Chadrgssexpansion are able to be
easily tested, should this be required.

Having outlined the rationale behind the study dreimethodology that will be used
to test this hypothesis, the following section met the characteristics of the data

that will be used for this analysis.

7.3 Description of Data

Having outlined the methodology to be used abovis, section briefly presents the
data used to analyse the higher moments of freaghs in the shipping markets. One
should note that a more detailed description of thata may be found iGhapter 4
The data set used in this chapter comprises fit@ skxies of spot freight rate returns
for five different vessel types across the tanket dry-bulk sectors, namely VLCC,
Suezmax (SZMX) and Aframax (AFMX) tankers, and Gape (CPSZ) and Panamax
(PNMX) dry-bulk vessels. The sample extends fromJaBuary 1989 to 26 June
2009, thus comprising 1,068 observations, where dalla was collected from

Clarksons Shipping Intelligence Network.

Calculated descriptive statistics indicate thatreéh&e contrasting size effects in the
tanker and dry-bulk sectors, where, in the tanketas, larger vessels are found to
exhibit lower returns, which may be as a resulthsf reduced flexibility of these
vessels with respect to smaller vessels. The revsréound in the dry-bulk sector,
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however this is attributed to the increased fldiibof dry-bulk vessels, which may
enable the vessels to take advantage of economhgesle. Returns, across all vessel
types, are found to exhibit excess kurtosis andifsignt positive skewness, with the
exception of the Panamax data series, where reamnsegatively skewed. These
findings are supported Jarque-Bera statistics, avlttlee null hypothesis of normally

distributed returns is rejected in all cases.

Results from the Ljung-Box tests on the squaredrmst indicate the presence of
significant ARCH effects, at the'112" and 24' lags, across all vessel-types, with the
possible exception of the'lag of the VLCC data series, where ARCH effects ar
only significant at the 5% and 10% levels of sigrahce. This finding indicates the
appropriateness of ARCH-type models for modelling volatility of the respective
returns. Furthermore, the existence of volatililystering in the freight rate returns
gives further indication that there may be GARCHe&tf thus indicating the necessity
of the GARCH-type modelling.

Looking at the characteristics of the third andrfbumoments, the results from Ljung-
Box tests performed on the third moment of theesesuggest that there is something
of a sector effect, at least at thelag of the series, in that thé' lag of the tanker
series do not exhibit significant conditional skess, whereas those for the dry-bulk
series do. This, however, does not carry acrosisetd?" and 24" lags, where all data
series, regardless of sector, exhibit significamtditional skewness. When examining
the results of these tests for the fourth momem, should note that the Panamax data
series does not exhibit significant conditionaltksis at the % and 24" lags, and any
conditional kurtosis at the T2ag is only significant at the 5% and 10% levels o
significance. One should also note that any cooliti skewness at the 1 2ag of the
Capesize data series is only significant at the 169%&l of significance, but is
significant at all conventional levels of signiffraze for the other lags. Furthermore,
one should note that the tanker data series dextobit any conditional kurtosis at
the ' lag of the series; however, all other lags of ¢hesries exhibit significant

conditional kurtosis at all conventional levelssggnificance.

One should note that these models were also ruthematural logarithms of the

respective data series in order to take accoutfteofact that freight rates can never be
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negative. One should note that the results fronsethestimations did not differ

significant from those presented Hére

Having outlined the characteristics of the dataesethe next section focuses on the
estimation of the respective models, giving insighto the applications and

implications of these results.

7.4 Empirical Results

7.4.1 Introduction

Having outlined the methodology and characteristitshe data to be used in the
analysis, this section presents the results oéthpirical work in which a comparison
was made between the performances of the standaRICE model developed by
Bollerslev (1986), the FIGARCH model, outlined irmilie, et al. (1996a), and the
GARCHSK model developed in the paper by Leétnal.(2005). Following the initial
examination of the Ljung-Box statistics in the dgsove statistics section, the three

models were estimated using quasi-maximum likekhestimation.

7.4.2 Results for the ARFIMA-GARCH Models

So as to avoid repetition, this sub-section pravidéorief summary of the results for
the ARFIMA-GARCH models, where a more detailed dssion of these findings
can be found in Chapter 6 of the thesis. Beginnwth actual empirical analysis of
the data, the results for which are presented iblelT®.1, the mean equation
coefficients suggest that, in all cases, returnspldy significant autoregressive
properties, while, for the Panamax data serieg, ya®reseen appear to the have a
significant effect on the current returns. In terofsthe variance equation, current
shocks appear to have a significant impact on tralitional volatility for all data
series, as does past variance, while the impashotks are found to persist almost

indefinitely, where this is measured by the sumthef @ and B coefficients. For

convenience, the evolutions of the conditional wli for each data series are

% The results from these estimations are not predemére due to space constraints and are available
from the author upon request.
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graphically presented in Figure 6.1, while the Itssof the residual diagnostics

indicated that the model is well-specified.

7.4.3 Results for the ARFIMA-FIGARCH Models

As with the results for the GARCH model, so as\oia repetition, this sub-section
provides a brief synopsis of the results for theFARA-FIGARCH model, where, as
before, a more in-depth review of these findings ba found in Chapter 6 of the
thesis. Begin with the results of the actual ersplrmodel itself, where these results
are summarised in Table 6.5, one should note leaimean equation coefficients are
identical to those obtained for the GARCH model \edboWhen looking at the
variance equation, past variance is found to haseaificant effect on the current
volatility, where, in this case, this coefficienteasures the persistence of volatility.
However, the difference between these models tsrthtaiis case, the rate of decay of
shocks to volatility is found to be much fasternhar the GARCH model. The
evolutions of the conditional volatility for eaclatd series are once again graphically
presented in Figure 6.3, while the results of #&dual diagnostics indicated that the

model is well-specified.

7.4.4 Results for the ARFIMA-GARCHSK Models

Having examined the results for the GARCH and FI@&Rmodels in the sub-
sections above, one should note that the GARCHSIKemis different from the
GARCH and FIGARCH models in that it enables onentwdel conditional skewness

and kurtosis in addition to the conditional varienghis section presents the results

from the estimation of th&RFIMA (L, d;0)-GARCHSK(L], in the case of the

tanker series, anBRFIMA (1; d;1)-GARCHSK( 1,3, for the dry-bulk series, models,

the results for which are presented in Table 7.1.

As was the case for the FIGARCH models, the resufltthe mean equation are
identical to the GARCH models in Chapter 6 and é¢fee do not need any more
discussion. Examining the variance equation, thagdmn average variance

parameter S, , is found to be significant at all conventionaldés of significance for
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Table 7.1 — Empirical Results for the ARFIMA-GARCHSK Model

M= U+ Uf L +E,
e =h"n. ;n ~N(0;] ;£t‘ |, ~( Oh)
h =B+ Bl + BN,
S = Vot VALY
k. =3, +0/,+Ik_,

Panel A — Results for the Mean Equation

VLCC SZMX AFMX CPSz PNMX
u 0.004 0.006 0.005 0.002 0.002
(0.363) (0.221) (0.165) (0.577) (0.345)
AR(1) 0.194 0.171 0.098 0.410 0.143
(0.000) (0.000) (0.001) (0.000) (0.004)
--------------- 0.013 0.159
MA(1)
() (-----) () (0.802) (0.005)
Panel B — Results for the Variance Equation
VLCC SZMX AFMX CPSZ PNMX
i 0.000 0.000 0.007 0.000 0.000
0 (0.008) (0.019) (0.000) (0.000) (0.525)
Ve 0.075 0.094 0.379 0.107 0.111
! (0.000) (0.000) (0.093) (0.000) (0.052)
i 0.907 0.892 0.079 0.855 0.837
2 (0.000) (0.000) (0.197) (0.000) (0.000)
Panel C — Results for the Skewness Equation
VLCC SZMX AFMX CPSZz PNMX
y 0.045 0.176 - 0.035 0.012
0 (0.009) (0.000) (-----) (0.081) (0.974)
. 0.007 0.010 0.000 0.005 0.006
! (0.083) (0.017) (0.558) (0.067) (0.875)
y 0.766 0.441 0.998 0.626 -
2 (0.000) (0.000) (0.000) (0.000) (-----)
Panel D — Results for the Kurtosis Equation
VLCC SZMX AFMX CPSZ PNMX
) 6.043 4.056 3.880 6.264 3.366
0 (0.000) (0.000) (0.041) (0.000) (0.000)
) 0.035 0.007 0.001 0.000 0.000
! (0.000) (0.000) (0.002) (2.000) (0.986)
) 0.157 0.702 0.759 0.167 0.900
2 (0.060) (0.000) (0.000) (0.000) (0.000)
LL 1975.023 1920.805 1911.193 2748.252 2690.728
AIC -3.697 -3.595 -3.577 -5.145 -5.037
SBIC -3.696 -3.594 -3.576 -5.144 -5.036




Note 1: See notes froiirable 6.1.
the VLCC, Aframax and Capesize data series anchat506 and 10% levels of

significance for the Suezmax data series. Howdwethe Panamax data series, long-
run average variance is found to be insignific@ne can thus state that expected
volatility is found to play a significant role impst freight rate volatility in all but the
Panamax market, where it appears that there algdoma size effect in the dry-bulk
market, which may be as a consequence of smakselsebeing able to minimise risk

by being able to take smaller cargoes.

The impact of shocks, as measured by feoefficient, is found to be significant at

all conventional levels for the VLCC, Suezmax arapé€size data series, at the 10%
level of significance for the Aframax data serie®l at the 5% and 10% levels of
significance. Once again there appears to be a edfieet, this time across both
markets, which may be as a result of smaller vesselng able to minimise the
impact of shocks as a result of being able to tskealler cargoes. Finally, past

variance forecasts, as indicated By, are found to have a significant impact on

volatility, at all levels of significance, for atlut the Aframax data series, where for
this data series the parameter is insignificaatlatonventional levels of significance.
It should be noted here that the level of persttein volatility is very high, thus
indicating that an IGARCH or FIGARCH model may bermappropriate in terms of

modelling the conditional volatility.

Changing focus to the higher moments, the skewmgpstion provides some

interesting results. The impact of the long-runrage skewness, denotgq, is found

to be significant at all conventional levels ofrsfgcance for the VLCC and Suezmax
data series and at the 10% level of significanaetifi®@ Capesize data series. In
contradistinction, the long-run average skewnes®usd to be insignificant, at all
conventional levels of significance, for the Aframand Panamax data series. The
size effect observed here may be caused by a temsisupply of vessels in the
markets for smaller vessels as larger vessels aoed to lay-up in poor market
conditions, thus skewing the distribution of freigate returns. Examining the impact

of shocks on the conditional skewness, as measoyethe y, coefficient, this is

found to be significant at all conventional levefssignificance for the Suezmax data
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series, at the 10% level of significance for theOQ@. and Capesize data series.
However, shocks are found to have an insignifiedigct on skewness for the smaller
Aframax and Panamax vessels. The same explanatigiven for this size effect as

above in that inconsistency in the supply of largessels may skew the distribution

of freight rate returns. Finally, forecasts of skess, as measured by, are found to

have a significant impact, at all conventional lew& significance, and therefore past
skewness is found to have an impact on currentitondl skewness, for all but the

Panamax data series.

To complete the analysis of the model estimatidres determinants of conditional

kurtosis are examined. The long-run average kwta$enoted),, is found to be

significant at all conventional levels of signifieze, with the exception of the
Aframax data series where it is significant at € and 10% levels of significance.

The impact of shocks on kurtosis, as illustrateddhbyis found to be significant, at all

conventional levels of significance, for the VLC&jezmax and Aframax data series,
but insignificant for the Capesize and Panamax dateges. A potential explanation
for this market effect is that should market coiodis deteriorate, dry-bulk vessels are
able to switch cargoes, say from iron ore to baxtus enabling them to be more
consistently employed and minimising the probapildf extreme returns. To
conclude the analysis of the determinants of cayrdht kurtosis, the impact of past

kurtosis forecasts, as measured &y is examined. The parametas is found to

significant at all conventional levels of significze for all but the VLCC data series.
This indicates that past conditional kurtosis hasgaificant impact on the current
conditional kurtosis for but the VLCC data serig3ne should note that the
conditional variance, skewness and kurtosis séoiesach vessel type generated by
the model are graphed in Figure TalFigure 7.5, respectively. One can see from
these graphs, that where the respective coeffiarg significant, there does appear
to be significant variation in the skewness andtdais of the series across time,
therefore indicating the appropriateness of moagithese moments conditionally. A
further point to note is that the conditional vada seems to be very close to that
obtained from the standard GARCH model, which aeplgically illustrated in Figure

6.1 in Chapter 6 of this thesis. The reason fos #imilarity is that the variance
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equation in the GARCHSK model is exactly the saséhat for the GARCH model,
hence the similarity in the conditional variance.
Figure 7.1 — Conditional Moments for GARCHSK Modelof the VLCC Series

(a) Conditional Variance (b) Conditional Skewses

VLCC Conditional Volatity
VLCC Conditional Skewness

250000
200000
200000
150000
150000
> 100000
2 H
100000 &
050000
050000
000000
1301969 130171991 1301108 13011995 1301997 13011999 13017001 1301206 130daces 13012007 1301/2008
0.00000
13011980 13011991 130V1993 13001995 1301997 130U1999 13012001 130L2003 13012005 13012007 130112009 0.50000
Time Time

(c) Conditional Kurtosis

VLCC Conditional Kurtosis

6000000
5000000
40.00000

3000000

Kurtosis

2000000

1000000

Ll | L l N ..L.. Hi okl il

0.00000
13001989 13011991 13011993 1301995 13011997 1301999 1302001 130U2003 13012005 13012007 13012009
Time

Figure 7.2 — Conditional Moments for GARCHSK Modelof the SZMX Series

(a) Conditional Variance (b) Conditional Skewses
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Figure 7.3 — Conditional Moments for GARCHSK Modelof the AFMX Series

(a) Conditional Variance

(b) Conditional Skewses
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(c) Conditional Kurtosis
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Figure 7.4 — Conditional Moments for GARCHSK Modelof the CPSZ Series

(a) Conditional Variance

(b) Conditional Skewses
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Figure 7.5 — Conditional Moments for GARCHSK Modelof the PNMX Series

(a) Conditional Variance (b) Conditional Skewses
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In order to test the results of the GARCHSK modeésidual diagnostics were
performed, with the results of these diagnostioss@nted in Table 7.2. Prior to
estimating the models, all data series displaygaifstant autocorrelations at all
conventional levels of significance and acrosdags. Examining the post-estimation
results for the % lag, any autocorrelation at this lag has been vemdor all but the
Suezmax data series; however, when looking at #feahd 24 lags, the results
become somewhat more mixed. At thé"12g, the autocorrelation for the Panamax
data series is found to have been removed In additie Capesize data series is
found to only display significant autocorrelation the 10% level of significance,
while the VLCC displays significant autocorrelatiah the 5% and 10% levels of
significance. However, for the Suezmax and Afrandeta series, significant
autocorrelation is found to persist at all convemdl levels of significance. The
picture changes once again at th& 2 in that the VLCC, Capesize and Panamax
data series are found to have had any autocooelatimoved, whereas the Suezmax
and Aframax data series still display significaotagorrelation at all conventional

levels of significance.
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Table 7.2 — Residual Diagnostics for the ARFIMA-GARCHSK Model

VLCC SZMX AFMX CPSz PNMX
Average 0.027 -0.002 0.027 0.019 0.017
Variance 1.090 1.077 1.123 1.330 1.118
1.062 1.324 1.689 0.531 0.289
Skewness
(0.000) (0.000) (0.000) (0.000) (0.000)
. 4.032 3.883 10.220 2.983 3.709
Kurtosis
(0.000) (0.000) (0.000) (0.000) (0.000)
923.024 982.077 5150.756 445.621 626.376
Jarque-Bera
(0.000) (0.000) (0.000) (0.000) (0.000)
Q(l) 0.212 4.869 0.339 0.817 0.005
(0.645) (0.027) (0.560) (0.366) (0.944)
Q(12) 21.750 36.874 44.332 19.144 4.619
(0.040) (0.000) (0.000) (0.085) (0.970)
Q(24) 31.348 48.500 93.969 30.060 19.516
(0.144) (0.002) (0.000) (0.183) (0.724)
Qz (1) 0.055 0.325 0.783 0.605 0.012
(0.815) (0.568) (0.376) (0.437) (0.913)
2 (12) 10.472 12.821 13.836 15.304 5.331
(0.575) (0.382) (0.311) (0.225) (0.946)
Qz (24) 16.751 19.996 18.009 19.564 10.532
(0.859) (0.697) (0.803) (0.721) (0.992)
Q3 (1) 0.225 0.000 0.004 0.346 0.008
(0.635) (0.994) (0.949) (0.557) (0.929)
Q3(12) 11.356 6.511 4.661 2.251 0.769
(0.499) (0.888) (0.968) (0.999) (1.000)
Q3 (24) 13.402 17.410 5.656 6.890 2.885
(0.959) (0.831) (1.000) (1.000) (2.000)
4 (1) 0.094 0.085 0.018 0.011 0.030
(0.759) (0.770) (0.894) (0.917) (0.862)
Q4 (12) 2.678 4.621 0.775 4.257 0.714
(0.997) (0.969) (1.000) (0.978) (2.000)
Q4 (24) 3.915 13.864 0.937 6.489 1.443
(1.000) (0.950) (1.000) (1.000) (1.000)

Note 1: See notes frofiable 6.1.

Changing focus to the ARCH effects, all seriespiaoestimating the model, with the
exception of the VLCC series, which only exhibitggnificant ARCH effects at the
5% and 10% levels of significance at ti&ldg, exhibited significant ARCH effects at
the £, 12" and 24" lags. Having estimated the model, however, any BRffects
are found to have been removed from all data seatiedl lags. Looking at the third
and fourth moments, the results of the Ljung-Bostden the standardised residuals
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indicate that any conditional skewness or kurttisid existed prior to the estimation

of the models has been removed.

One comes to somewhat of a conundrum here in itnetugh the GARCHSK model
does not account for the significant persistencéhefvolatility in the data series, it
does allow one to model the structure of the highements of the returns series. In
contradistinction, the FIGARCH model captures tkesstence in volatility, but does
not allow for the modelling of the higher momenastrade-off is therefore necessary
in either model. In order to determine the best eho& comparison of the

characteristics of each of the three models is nrattee following section.

7.5 Comparison of the Estimated Models

Having estimated the GARCH, FIGARCH and GARCHSK wledin the section
above, this section makes a comparison betweemtigels in order to select the
model that best fits the data. The first methodiusecompare the performance of the
models is to compare the characteristics of thalitomal variance. In addition to
this, likelihood-ratio tests are performed betwdes various models and the results
analysed. This section presents the results ofethmsalyses and provides a
recommendation as to which model may best modelctralitional variance of
freight rate returns.

Table 7.3 presents the descriptive statistics Hier donditional variance of the data
series, as evaluated using the GARCH model. Averagslitional variance was
found to range between 0.003 and 0.015, with tlegame conditional variance in the
tanker market being significantly higher than tfatthe dry-bulk market. This may
be as a result of limitations in the cargo that rhaycarried by tankers as opposed to
dry-bulk vessels. The variance of the conditioraiiance is found to be zero across
all data series. Looking at the distribution of ttenditional variance, all data series
were found to exhibit significant positive skewneas all conventional levels of
significance. In addition to this, the Aframax, @ajze and Panamax data series were
found to exhibit significant excess kurtosis, atcainventional levels of significance,
and the distribution of the conditional varianceswaund to be significantly non-

normal across all data series.
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Table 7.3 — Conditional Variance Statistics for theARFIMA-GARCH Model

VLCC SZMX AFMX CPSz PNMX
Average 0.015 0.015 0.013 0.004 0.003
Variance 0.000 0.000 0.000 0.000 0.000
1.837 1.374 14.049 4.050 2.946
Skewness
(0.000) (0.000) (0.000) (0.000) (0.000)
KUrtosis 3.751 1.377 261.640 19.076 10.901
(0.000) (0.000) (0.000) (0.000) (0.000)
1226.864 420.555 3081391.918  19113.411 6833.432
Jarque-Bera
(0.000) (0.000) (0.000) (0.000) (0.000)

Note 1: See notes frofiable 6.1.

Table 7.4 — Conditional Variance Statistics for theARFIMA-FIGARCH Model

VLCC SZMX AFMX CPSz PNMX
Average 0.015 0.015 0.014 0.004 0.003
Variance 0.000 0.000 0.000 0.000 0.000
3.802 4.672 14.391 4.926 2.984
Skewness
(0.000) (0.000) (0.000) (0.000) (0.000)
KUrtosis 21.617 36.667 274.107 32.224 11.153
(0.000) (0.000) (0.000) (0.000) (0.000)
23367.962 63714.944  3380364.208 50527.365 7120.077
Jarque-Bera
(0.000) (0.000) (0.000) (0.000) (0.000)

Note 1: See notes frofiable 6.1.

Table 7.5 — Conditional Variance Statistics for theARFIMA-GARCHSK Model

VLCC SZMX AFMX CPSZ PNMX
Average 0.013 0.015 0.013 0.003 0.003
Variance 0.000 0.000 0.000 0.000 0.000
2.693 2.122 15.519 4.176 2.865
Skewness
(0.000) (0.000) (0.000) (0.000) (0.000)
Kurtosis 9.581 5.800 305.944 20.605 10.233
(0.000) (0.000) (0.000) (0.000) (0.000)
5376.168 2298.408 4208146.232  21997.791 6120.978
Jarque-Bera
(0.000) (0.000) (0.000) (0.000) (0.000)

Note 1: See notes frofiable 6.1.

Looking at the descriptive statistics for the caiotial variances obtained using the
FIGARCH model, as presented in Table 7.4, thesdteesnly differ slightly to those
obtained from the GARCH model. To this effect, #werage conditional variance is

found to range between 0.003 and 0.015, while theamce of the conditional
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variance is found to be zero. A market effect igwespect to the average conditional
variance is once again observed. In addition, thelitional variance is found to be
significantly positively skewed, at all conventidbri@vels of significance, across all
data series and all data series are found to benaonally distributed. Where the
results differ is in the fact that all data seras now found to exhibit significant
excess kurtosis. A possible reason for this diffeeebetween the two models may be
that, as the FIGARCH model captures the persistehtlee conditional volatility, it
also captures more of the dynamics of the conditiariance of freight rate returns.

The final conditional variance series to be exachimeas that of the GARCHSK
model, as illustrated in Table 7.5. Although therage conditional variance is still
found to range between 0.003 and 0.015, the averagditional variances for the
VLCC, Aframax and Capesize data series are foundbetdower. However, the
variance in the conditional variance is still fouttdbe zero. Changing focus to the
distribution of the conditional variance, all cotiainal variance series are found to be
significantly positively skewed and illustrate diggant excess kurtosis, at all
conventional levels of significance. A similar expation is given for this difference
between the results for the GARCH and GARCHSK sagven above. This is that as
the GARCHSK model captures the dynamics of the drighoments of the freight
rate returns, it effectively also captures moretleg dynamics of the conditional

variance of freight rate returns.

Having examined the characteristics of the condgiovariance, all that has been
established in terms of the selection of the bestlehis that the FIGARCH and
GARCHSK models are both preferred to the GARCH rholtheorder to provide a
definitive answer to this hypothesis, likelihoodivatests were performed on the
models, the results of which are presentedahle 7.6 The results for the comparison
between the GARCH are FIGARCH model are somewhaedin that the GARCH
model is preferred for the VLCC data series, ad agthe Capesize data series at the
1% level of significance, whereas the FIGARCH madeireferred for all other data
series. However, the GARCHSK model is preferred deh other models across all
data series. Therefore one can conclude from kasthe GARCHSK provides the

best determinant of the conditional moments infight rate returns markets.
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Table 7.6 — Likelihood-Ratio Test Results for Compason of Models

Panel A — Comparison of GARCH and FIGARCH Models

VLCC SZMX AFMX CPSZ PNMX
log L (GARCH) 924.412 850.050 844.368 1675.732 1654.546
log L (FIGARCH) 924.328 845.788 856.412 1678.321 1662.948
LR Statistic 0.166 8.525 24.088 5.179 16.805

(0.684) (0.004) (0.000) (0.023) (0.000)

Panel B — Comparison of GARCH and GARCHSK Models

VLCC SZMX AFMX CPSZ PNMX
log L (GARCH) 924.412 850.050 844.368 1675.732 1654.546
log L (GARCHSK) 1935.598 1902.352 1908.695 2748.177 2695.876
LR Statistic 2022.372 2104.603 2128.655 2144.890  2082.660

(0.000) (0.000) (0.000) (0.000) (0.000)

Panel C — Comparison of FIGARCH and GARCHSK Models

VLCC SZMX AFMX CPSZ PNMX
log L (FIGARCH) 924.328 845.788 856.412 1678.321 1662.948
log L (GARCHSK) 1935.598 1902.352 1908.695 2748.177 2695.876
LR Statistic 2022.538 2113.128 2104.567 2139.711 2065.855

(0.000) (0.000) (0.000) (0.000) (0.000)

Note 1: See notes frofirable 6.1.

7.6 Conclusion

This paper examines, for the first time in the pimp literature, to the best of the
authors’ knowledge, the issues of time-varying gkesg and kurtosis in shipping
freight rate returns in order to determine the numshprehensive model in order to
determine the dynamics of the returns distributlarorder to do this, the GARCHSK
model, the FIGARCH model, and the standard GARCHliehare estimated, using
freight rate returns from five different vessel @gpover 1,068 observations, and the
results compared by looking at the characteristtsthe respective conditional
variance and using likelihood-ratio tests.

In the quasi-maximum likelihoods estimations of tBARCH and GARCHSK
models, the GARCHSK model was found to capture nuréhe dynamics of the
respective data series based on these resultsthendonditional skewness and
kurtosis parameters were found to be significambss most of the data series. In
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addition, the results of the likelihood ratio testsformly indicated the superiority of
the GARCHSK model over the standard GARCH and #@®ARCH models, a fact
that was confirmed through a comparison of the aittaristics of the conditional
variance for the respective data series. Theretbi®paper can conclude quite firmly
that the GARCHSK model outperforms the GARCH an@&GARCH models in

capturing the dynamics of the data.

There are multiple advantages to being able toucaghe conditional skewness and
kurtosis of the data series - the first, is thatttes distribution of asset returns is
skewed, and there is excess kurtosis, and theréf@retraditional assumption of
normality when estimating Values-at-Risk will resul an underestimation of the
risk. Secondly, it enables one to better descrite distributional properties of

financial asset returns, thus enabling one to beftelerstand the performance of
assets with these properties. Finally, one coulok lat the issue of portfolio

construction to determine if the risk structurerigdy optimal, and examining these
properties would enable one to better price optionénancial markets wherever

these properties exist.

The following chapter examines the first of thesgamtages in that Values-at-Risk
are calculated using forecasts of the volatilityhaf underlying series, where these are
generated using the GARCH, IGARCH, FIGARCH and GARBK models
discussed in the thesis, in addition to some stahdalue-at-Risk methodologies. By
doing this, one first outlines a potential pradtiapplication of these models, but can

make actual real-world comparisons of the models.
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8 A Practical Application of Freight Rate Modelling

8.1 Introduction

The previous two chapters of the thesis focusedhenbehaviour of freight rate
volatility over the entire sample period, this cteapchanges the focus slightly by
examining the out-of-sample forecasting performavicie respective models, using
standard forecast accuracy measurements and thee-g&Risk methodology to
gauge which of the aforementioned models perforess. b

The reason behind the interest in the topic isgshgiping provides the primary means
of transportation for almost any good traded actbssvorld, therefore the process of
evaluating the correct structure of freight ratesessential for any participants in
world trade. As supply and demand shifts in thegfiemarket, so freight rates should
adjust to the equilibrium price level; however, dige constrains in terms of the
structure of supply in the market, this procesadjistment to equilibrium may be
delayed. As a result of this, accurate forecasfsitofe freight rates become essential
for both investment decisions for ship-owners arahKks that finance shipping
activities, as well as for charterers and otheilauy parties with respect to planning

their transportation requirements, where this wiltbessed in Chapter 5 of the thesis.

Obviously, however, parties in the financial maskate not only interested in the
future levels of prices alone but also with thegntial fluctuation in these prices
about the predicted levels, where these fluctuati@nown as the level of volatility in
the market, and represent the risk in the markeie Gommonly used method to
discern between models forecasting is to estintetedspective Value-at-Risk (VaR)
on a portfolio for the different models availablehere, as Christoffersen (2003)
points out, the VaR is defined as the dollar, aiceetage, loss that will be only be
exceeded a given percentage of the time over tleedst horizon. It is worth noting
that VaR has become a standard risk managemenanaohas been adopted by the
Basel Committee as a standard method to quantifkehaisk, however, any chosen
VaR methodology must be backtested so as to vesifgccuracy, for which a wide
range of tools can be applied, as highlighted iadBé1995a) and Basel (1995b).
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An extensive literature exists on the performantcée various VaR methodologies
in the conventional equity and bond markets, sof&luch include Brooks and
Persand (2003), Giot and Laurent (2003b), Kuesrl. (2006) and Leharet al.
(2002). In addition to this, a large literaturetbe issue also exists in the commodity,
energy and hedge fund markets, such as Cabedo apd (4003), Giot and Laurent
(2003a), Krehbiel and Adkins (2005) and Sadorsk@0@), amongst others. In
contrast, in the shipping markets there is, tolibst of the author’'s knowledge, a
relative dearth of literature on the topic, althbugecently Kavussanos and
Dimitrakopoulos (2007) apply a VaR approach to nlodgrisk in the tanker freight
markets, and Angelidis and Skiadopoulos (2008) yappé VaR methodology to
modelling Baltic freight indices in both the drydawet markets, with mixed results.
This chapter uses the VaR approach to distingthehbiest model, amongst those
discussed in Chapters 6 and 7, to forecast freajb volatility and seeks to extend
the literature by, unlike Kavussanos and Dimitrakdps and Angelidis and
Skiadopoulos, looking at both the tanker and drik boarkets, and looking at the
actual freight rate series on specific routes gmseed to merely the freight indices. In
addition, this chapter introduces the concept o teneralised autoregressive
conditional heteroscedasticity with skewness antokis (GARCHSK) model to the
VaR literature. One should note, however, that\th&ie-at-Risk here is not a true
Value-at-Risk as one is not trading a portfoliot bffectively measures the potential

loss (increase) in profits (costs) incurred byghg-owner (charterer).

Sections two and three of the chapter introduce rédevant methodologies and
describe the data used, respectively. Section 4slad the results of the VaR
estimation and some preliminary forecast statistigBile section 5 examines the
results from backtesting and discusses the besehsetection process. To conclude,

section 6 gives an overview of the paper and dsesithe findings.

8.2 Forecast Accuracy and Value-at-Risk Methodologi  es

In this section the various methodologies used ®asure the accuracy of the
volatility forecasts, in addition to the VaR metlotmbies, both for VaR estimation
and backtesting, are discussed. The models useestonating and forecasting spot

freight rate volatilities are exactly those used discussed in Chapters 5, 6 and 7 of

242



this thesis, however, these have been reviewedemmildand are not discussed

further in this chaptef?

8.2.1 Measuring the Accuracy of the Volatility Fore  casts

Having estimated the initial models over the in-pperiod, ex-post forecasts of
spot freight rate levels are estimated, and theltegvaluated using standard tests,
namely the Root Mean Squared Error (RMSE), in a@mhlito the number and
percentage of over- and under-predictions. The R Sfalculated as follows:

RMSEz\/ﬁi( y-y)  @®1

i=1

One should note that in Expression (8.41),denotes the actual observed volatility at
time i, y/ denotes the forecasted volatility at timeand M denotes the forecast

horizon.Continuing, the Percentage of Correctiome@ion Predicted (CDIR) is
defined as the percentage of forecasts in whichfdhecast correctly predicted an
increase or decrease in the actual volatility. ritheo to calculate the CDIR, one must
first determine whether the sign of the forecastcmes the sign of the actual values,
i.e. when an increase (decrease) in the forecasthegm an increase (decrease) in the

actual values, where if this occurs, it is denotecand M denotes the respective

forecast horizon, therefore:
1 M
CDIR=—>C (8.2
M=

One should note that in Expression (8.2), abdviedenotes the forecast horizon.
Having outlined these methodologies, one can navk lat how to calculated the
Value-at-Risk for the various models.

One should note that the accuracy of standard &steuetrics as applied to forecasts
of volatility are called into question. The readonthis is that using squared returns
as a proxy for actual volatility is inherently flad, where Lopez (2001) illustrated
that this proxy is over 50% greater or smaller thiaa actual volatility 75% of the

time. This being said, unfortunately no better prexists as yet, however, this thesis

% A more extensive discussion of the various mettamies can be found in Chapter 3 of the thesis.
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addresses this issue by evaluating the accuratliyeofespective Values-at-Risk for

each model with the actual Value-at-Risk incurred.

8.2.2 A Brief Look at Value-at-Risk

A commonly used tool to quantify market risk expesis the Value-at-Risk (VaR),
where as mentioned above, the VaR is defined addhar, or percentage, loss that
will only be exceeded a given percentage of the twwer the forecast horizon, where:

VaR{, =g x®*(a) (8.3)

t+ t+H

In Expression (8.3), aboveg/, denotes the standard deviation of the series at

forecast period, wherei=1,...;M and M is the forecast horizon, an@™(a)

denotes the inverse of the cumulative density fanctof the standard normal
distribution, wherea denotes the coverage rate. In addition to the GHARC
IGARCH, FIGARCH and GARCHSK models discussed ab®iskMetrics™ (RM),

developed by JP Morgan (1996), Historical Simulat{elS) and Filtered Historical
Simulation (FHS) methods were applied to replidhie volatility series. This sub-
section outlines the VaR methodologies, where theilebe used to differentiate
between these volatility models, as the best agproall be that which minimises the

risk exposure, and hence potential losses.

It is important to note what is meant by the VaRhe context of this thesis. As these
measures are not being used to trade a portfalithd case of ship-owners, the VaR
figure corresponds to the potential loss in terfneeduced profits from operating the
vessels; hence one could term it the Profit-at-Rigkis case. On the other side of the
market, from the charterer's point-of view, the VdiRQure corresponds to the
potential loss in terms of increased costs of frartation, hence one could term this

the Cost-at-Risk in this regard.

It is worth highlighting the fact that, as mentidneriefly above, the VaR estimation
is based on a standard normal distribution. Howewbat happens when the series is
not normally distributed, as the argument for tee af the GARCHSK model would
suggest? In order to address this issue, the CGoFisher (CF) expansion was applied

when estimating the GARCHSK model’s variable.
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The CF can be written as:

cF*(a) =0+ 2 (0,)-1)+$2 (0]~ ;]

Sl - o]

In the Expression (8.4), abové,; and ¢,; denote the conditional skewness and

(8.4)

kurtosis at forecast period respectively,dfl(a') denotes the inverse of the

cumulative density function of the standard normiigtribution, anda denotes the
coverage rate.
Having said this, one could therefore calculate @t VaR, which would be the

equivalent to the VaR for the GARCHSK model, asofwk:
VaR! =g’ xCE' (8.5)

t+i tH

In Expression (8.5), abovey’, denotes the standard deviation of the series at

forecast period, wherei=1,...;M andM is the forecast horizon, an@F*(a)

denotes the Cornish Fisher expansion, outlinedxipré&ssion (8.4), above, wheoe

denotes the coverage rate.

The RM methodology is similar to an IGARCH in thiatonstrains the sum of the
ARCH and GARCH parameters to equal one, howevdikauthe IGARCH model,
these parameters are fixed, as opposed to beimga¢stl by the model, hence for the
RM model, the forecasted variance will be:

o?=Ac?+(1-A)r> (8.6)
In Expression (8.6), abovey’, denotes the standard deviation of the series at

forecast period, wherei =1;...;M andM is the forecast horizorg? is the standard

deviation over the previous 52 weeks at tinemdr? is the squared return at tirhe

One should note that, in this chaptérjs fixed at 0.95, where this was taken as an
average of the values given for the monthly andydaequencies in JP Morgan

(1996), as the frequency of the data here is weekly

The HS methodology assumes that the distributiotooforrow’s returns, denoted

.., 1S well approximated by the empirical distributiof the past N observations, or

245



in other words, the distribution of,, is captured by the histogram bﬁﬂ_r} il. One

can thus state that the VaR, assume a coverag®frate using the HS technique,
will simply be calculated as tHE)Qx th percentile of this sequence of past returns,

which means that:
VaR?, = Percentn{{ L 1om} 8.7)

a N

In Expression (8.7), abov&/aR},, denotes the VaR at forecast poinl{ rm_r}

=1
denotes the distribution of returns over the hariza=1;...;N, anda denotes the

desired coverage rate.

In contrast, the FHS methodology still uses theesapproach of taking the empirical
distribution of the padi observations, however, instead of taking the iistion of
returns, it takes the distribution of the standsedi returns, where these are

standardised using the forecasted volatility, hence

5 rt+i—r
z, = (8.8)

t+i-1

t+i-1

In Expression (8.8), abové,,,_, denotes the standard return at forecast ppinj_,

t+i-7

denotes the return at forecast pointand o denotes the standard deviation at

t+i-1

forecast point wherer =1;...;N . One should note that set of standardised reiarns

denoted{ Zm_,} 11' The VaR using the FHS technique is thus calcdlatefollows:

VaR{, =0, x Percentile{{ ]7_+i_,} TN=1 ; 1007} (8.9)

a

In Expression (8.9)VaR/,; denotes the VaR at forecast pdi,r{tim_,} :':ldenotes the

distribution of the standardised returns over thezonr =1;...;N, anda denotes

the desired coverage rate.

The HS and FHS methodologies differ from the otfeehniques described in that
they do not make any parametric assumptions regarthe distribution of the

standardised returns. In addition to this, the HShmodology is also model-free in that
it does not rely on any parametric model to gemetia¢ variance of the standardised

returns. The advantages of the HS methodologyleeitt is easy to implement and
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that it does not need to incorporate any modellmgrder to calculate the risk
exposure. The fact that it is model-free is a di&firmdvantage if the models of
volatility are poor; however, the fact that it doest rely on a well-specified dynamic
model mean that there is no theoretically correety vof extrapolating anything
beyond the 1-day distribution. In addition, the p@mlength, denoted\ above, is
randomly chosen. This means that sholldoe too large, then the most recent
observations, which theoretically should be impartao determine the future
distribution, will carry very little weight. On thether hand, shoultl be too small,
one may not have incorporated sufficient largededs be able to calculate the VaR
with any accuracy. In contradistinction, the FHStloeology, by standardising the
returns, enables one to have the advantages ohdldel-based approach, while still
allowing one to follow what is a somewhat non-pagtm approach.

If one is to be confident as to the potential reséposure different models present,
then the accuracy of the VaR estimates is crutiathe following sub-section, the
issue of evaluating the accuracy of these VaR estisy using both statistical and

economic approaches will be discussed.

8.2.3 Testing the Accuracy of Value-at-Risk Estimat  es

Having calculated the variable, it is of courseeesisl to double check that these
estimates are correct. There are two main appreachthis backtesting process, the
first of which is the statistical approach, and skeeond, the economic approach. This
sub-section presents the methodologies utilisgebtiorm this backtesting.

Before going any further, one needs to establishtwsimeant by a violation of the
VaR. This occurs when the observed return exceeedsstated VaR for a given
observation, within the forecast horizon, and isoaknown as a hit. Ideally, the
fraction of violations, relative to the forecastizon, should be equal to the proposed
coverage rate, i.e. for a 1% VaR, the fraction ifations, or hit ratio, should be

equal to 1%. One should note that for a long pmsjta violation would occur when

VaR?

t+

>R, , while for a short position this would occur wh¥aR{,, <R, where

t+i

VaR?

t+i

denotes the VaR at forecast poinand R,,; denotes the return at forecast
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pointi. This would mean that one could define the seque@fd/aR violations for a

long position as:

1 if =VaR?, >r,,.
It+i _{ t+i t+i (810)

o if -VaR®, <r

t+i t+H

In contrast, the sequence of VaR violations foh@rsposition would be defined as:

|1 ifvaR{, <r,
%10 ifvaR® >t

t+i t+H

(8.11)

One should note that in Expressions (8.10) andLj81ldenotes a violation, O denotes

a non-violation and ., denotes the violation sequence at forecast poiflherefore,

t+i

. . M
one can construct a sequence of VaR wolaﬂonsotéelr{lm} g where M denotes

the forecast horizon, for the entire forecast hwrjzthus indicating where past
violations occurred. This “hit sequence” will belised in the statistical tests that

follow.

Moving on to examine the first approach to backbgst Christoffersen (2003)
outlines three main tests to ensure the statisacauracy of the VaR estimates,
namely the Unconditional Coverage (UC), Independefind) and Conditional
Coverage (CC) tests. These tests require the camtisin of three likelihood
functions, which will then be used to construcelikood ratio statistics. The first of
these is the likelihood function of the violatioegsience, which is assumed to be an

i.i.d. Bernoulli trial, where:
L(7)=(1-7)" (7)™ (8.12)
The second likelihood function is that for the erage rate, where:
L(a)=(1-a)"x(a)" (8.13)
In Expressions (8.12) and (8.13), aboi, denotes the number of non-violations
over the forecast horizorM, denotes the number of violations over the forecast
horizon, 77=M,/M , whereM denotes the forecast horizon akld +M ;=M , and

a denotes the desired coverage rate. If violatidnthe VaR are dependent across
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time, then the violation sequence can be descualseal first-order Markov chain with

the following transition probability matrix:

I MO;O |v|0;1 |
ﬁlz[{Too 7';\[01}=F-_7:T01 7?01}: Moo *tMos MoetMg,y (8.14)
1,0 11 1-rmy, 7y My, My,
L My +tMy Mp+M 11 |

Given the transition probability matrix in Expressi(8.14), above, the likelihood
function for the first-order Markov chain, whichtise final likelihood function to be

calculated, is given as follows:
) A Moo ~ Moa ~ M1 ~ M
L(A,) = (1= 710) " x(Ar0) % (1= 71) %711 (8.15)
In Expression (8.15), aboveyl,; denotes the number of observations with a
following ani, wherei; j =0 andi;j =1 for non-violations and violations of the
variable, respectively, and;; is calculated as illustrated in transition proligbi

matrix in Expression (8.14).

The Unconditional Coverage test evaluates whetherfrtaction of violations for a
risk is significantly different from the coveragate specified, or in other words,
whether a model overestimates or underestimategdRe In order to do this, the null
hypothesis that the proportion of violations, nekato the forecast horizon, is equal to
the desired coverage rate is tested using a lietlratio statistic, where:

In essence, what one is testing here is whethemthgel in question overestimates or

(8.16)

underestimates the “true” but unobservable VaR, thod the actual risk exposure.
The disadvantage of this test is that althoughstst for the degree by which the VaR
estimate differs statistically from the true valtigs estimate could still be dependent

over time, thus large losses could follow direetfter each other.
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The Independence test addresses the issue of ammmenth the VaR estimate by
testing the null hypothesis that the VaR violatisequence is independently
distributed, using the following likelihood ratitasistic:
LR,, =-2In ﬂ ~xh  (8.17)
L(I‘Il) ®

What the Independence test essentially establishebether losses in excess of the
predicted VaR will be followed by other extremedes, where, should this occur,
one’s risk exposure would be greatly increaseds thadressing the disadvantage of
the Unconditional Coverage test. However, whilddes this, it does not enable one
to determine whether the estimated VaR overestsmateinderestimates the true risk

exposure, as would be the case for the UnconditOogerage test.

The Conditional Coverage, which is the third, aimdlf statistical test, addresses both
these issues by testing the null hypothesis that wiolations of the VaR are
independently distributed, and that the averagebeurof these violations is correct.

This is done using the following likelihood ratitasstic:
LRy = LR+ LR~ x(;  (8.18)
This test basically addresses the disadvantagie dbrmer two tests and enables one

to ensure that one’s risk exposure is truly esthat

The second approach to backtesting the VaR estifioaigses on the economic
accuracy of the estimate. In order to do this, techniques are used, the first of
which is generating a loss function (LF), wherestisi in line with previous studies,
for example, those by Lopez (1998) and Saretal.(2003). The second technique is
to perform a Modified Diebold-Mariano (MDM) testrgposed by Harveyet al.
(1997). Two main justifications for looking at e@wnic differences between models
exist. The first of these is that often more thae onodel for the VaR will pass the
statistical tests described above; therefore lieseficial to be able to differentiate
between them on a different basis. The secondat dhe of the most important
criticisms of the VaR methodologies is that forseone can only see that a violation
has occurred, but one is not certain as to the malg of these violations, and
therefore the magnitude of the potential loss. [Blse function enables one to identify

the size of the potential losses, and thereforeemddthe described criticism of the
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VaR methodologies. Having calculated the loss fon¢ctthe MDM test enables one
to test whether there is a statistically significdifference between models, and thus

choose the model that best minimises the risk expasf the interested party.

In order to generate the loss function, one firseds to calculate the Expected
Shortfall (ES), which is also known as the ConditibvVaR (CVaR), where the ES is
defined as the average loss incurred for the vanatof the VaR. This means that for
a long position, the ES will be:

ES(a)=E[r|r < VaR(a)| (8.19)
In contrast, for a short position, the ES will be:
ES(a)=E[r|r 2 VaR(a)| (8.20)
In Expressions (8.19) and (8.20), aboxegdenotes the actual return at forecast point

and a denotes the desired coverage rate. Having caéollite ES, one can then

construct the loss function for the VaR model doves:
ol 2
LF, _M;[ri -ES,(a)]" (821
In Expression (8.21), abovéF, and ES, denotes the loss function and ES for the

gth VaR model, respectively, denotes the actual return at forecast paojnw

denotes the forecast horizon, amddenotes the desired coverage rate. One should

note the following regarding the loss function ixpEession (8.21), where for a long

position:
_|o, if ES, (a)<r,
" ~ES,(a) _{ri -ES,(a) ifr, <ES(a) 8.22)
While for a short position:
B _[o, if ES, (o) =T,
" ~ES,(a) _{ri -ES,(a) ifr,>ES (a) (8.23)

In Expressions (8.22) and (8.23), abotS, denotes the ES for thlgth VaR model,
respectively,r, denotes the actual return at forecast poiahda denotes the desired

coverage rate. One can thus state that the propossdunction will be equal to the
semi-variance of the variable. This means thatdls function will take into account
the magnitude of any returns that have exceeded/#ke and are greater than the
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calculated ES. One will then choose the best mamlelpng the different options
proposed above, as that which minimises the lasstifan, having passed all three of

the statistical accuracy tests discussed above.

Having generated the loss function for each moddlthen selecting the best model
based on this function, this process is doubledadcising the MDM test outlined in
Harvey et al. (1997). This test is an improvement on the previbiebold-Mariano
test, proposed by Diebold and Mariano (1995), at the latter test has a tendency to
commit too many type 1 errors, i.e. reject the myibothesis when it is in fact true.

This test compares forecasts from VaR models bijuating a second respective loss

function, denotecg(eQ) , Where these loss functions are calculated agvist
g(eq) =r,~ES,(a) (8.24)
In Expression (8.24),=1;...;M , wherei andM denote the respective forecast point

and horizon, respectively denotes theth VaR model, andr denotes the desired

coverage rate. Following this, the null hypothediequal accuracy in the forecasts of

two competing models, i.e. tha(di) =0, is tested, where:

d =g(e)-ofe) (825
In Expression (8.25), abovedenotes the respective forecast point, gvﬁdm) and

g(ez;i) denote the loss functions for the first and secomtlel, respectively. One

must note that in order to perform the test onetrfitet calculate some descriptive

statistics for the deviations, where the averagebeacalculated as follows:

_ 1 M
d==Yd (8.26)
M =

Therefore, the standard deviation of the deviatisitisbe:

Var(d) :# lM (¢.-d)° (8.27)

In Expressions (8.26) and (8.27), abovandM denote the respective forecast point

and horizon, respectively.
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The MDM test will then be given by:
M —1}“ d
M Var(a)

~t (8.28)

(M-1)

MDM :[

One should note that the benchmark model for coisgaras discussed above, will
be the model that minimises the loss function, igyassed all three of the statistical

accuracy tests discussed above.

Having outlined the various methodologies to bedusethis chapter in this section,
the following section briefly describes the datadis this chapter.

8.3 Description of Data

Having established the methodology to be used is émpirical analysis in the
previous section, this section provides a very fbsammary of the relevant
descriptive statistics for the respective dataesefivhere the complete analysis can be
found in Chapter 4 of the thesis. The data set uséuis chapter comprises five data
series of spot freight rate returns for five diffet vessel types across the tanker and
dry-bulk sectors, namely VLCC, Suezmax (SZMX) andafax (AFMX) tankers,
and Capesize (CPSZ) and Panamax (PNMX) dry-bullselss The total sample
extends from 13 January 1989 to 26 June 2009, dbonprising 1,068 observations,
where all data was collected from Clarksons Shipgdmmtelligence Network. This
being said, to enable ex-post forecasts to be nthdesample was then sub-divided
into an in-sample period, extending from 13 Janu&§9 to 26 September 2003, thus
comprising 768 observations, and an out-of-sameteg, extending from 3 October
2003 to 26 June 2009, thus comprising 299 obsemnsti

Calculated descriptive statistics indicate thatreh@re contrasting size effects in the
tanker and dry-bulk sectors, where, in the tanlketacs, larger vessels are found to
exhibit lower returns, which may be as a resulthef reduced flexibility of these
vessels with respect to smaller vessels. The revsrfound in the dry-bulk sector,
however this is attributed to the increased fldiibof dry-bulk vessels, which may
enable the vessels to take advantage of economhgeEsle. Returns, across all vessel

types, are found to exhibit excess kurtosis andifsignt positive skewness, with the
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exception of the Panamax data series, where reamnsegatively skewed. These
findings are supported Jarque-Bera statistics, avlttee null hypothesis of normally

distributed returns is rejected in all cases.

One should note that these models were also ruthematural logarithms of the
respective data series in order to take accouthteofact that freight rates can never be
negative. One should note that the results fronsethestimations did not differ
significant from those presented Hére

Having outlined the characteristics of the dataesethe next section focuses on the
estimation of the respective models, giving insighto the applications and
implications of these results.

8.4 Empirical Results

Having outlined the methodology and data to be usethis chapter in previous
sections, this section outlines the results frora tmplementation of these and
therefore gives an indication of the future directof the risk exposure encountered
by participants in the tanker and dry-bulk shippmarkets. These results are divided
into the process of generating the VaR estimate baaktesting these results from
first the ship-owner’s point of view and then frohe viewpoint of the charterer.

8.4.1 The Ship-Owner’s Point of View

As mentioned above, this sub-section examinesiskeexposure of ship-owners in
the tanker and dry-bulk market. This is done byngixéng the 1% and 5% VaRs on a
long position, with respect to the VLCC, Suezmakafax, Capesize and Panamax
data series, respectively. As briefly mentionedvab@ne should not interpret these
measures as the potential loss on a portfolio, apartfolio has been constructed
here, but instead should consider this to be thenpial loss in profits incurred by the

ship-owner should market conditions move agairstth

% The results from these estimations are not predemére due to space constraints and are available
from the author upon request.
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This research started this model evaluation probgssxamining the VaR results for
a long position on the VLCC data series, the resofitwhich are summarised in the
various panels in Table 8.1. Examining the 1% Vasuits, presented in Panel A, one
is only interested in those models which passedtdistical backtesting process, i.e.
the RM, GARCH and GARCHSK models. This would imghat that the VaR

estimates for these models neither over or underatds the true VaR and these
estimates are independently distributed. Examirimegrespective tests of economic
accuracy, i.e. the expected shortfall and losstfans, one is indifferent between the
models, while the results of the respective MDMtdeoutlined in Panel A of

Table 8.11 in Appendix 8.A, indicate that one camegect the null hypothesis that
there is effectively no difference between the eesipe loss functions. One can thus
conclude that in terms of both the statistical @wdnomic accuracy of the VaR
figures, one is indifferent between the RM, GARCihd aGARCHSK. In order to

differentiate between the models, the respectiveatios and RMSEs are examined,
where one is found to be indifferent between thel@®in terms of their hit ratios;

however, on the basis of the lower RMSE, the caictu is reached that the

GARCHSK model performs best in this case.

The picture changes drastically when looking atrdsaults for the 5% VaR results,
presented in Panel B of Table 8.1, where none ®MaR estimates for any of the
models passes the statistical backtesting proedsse although the VaR estimates
for the HS (200), FHS (200), FHS (400) and GARCHS®HKdels were found not to
significantly under or overestimate the “true” Vaikne of the VaR estimates for any
of the models were found to be independently disted. For this reason, one cannot
draw any conclusion as to which model providesmiost accurate estimate of the
risk exposure incurred by the ship-owner. This rsetirat ship-owners operating
VLCC vessels would have to rely on the more stimdé€o VaR measure should they
wish to calculate the respective risk exposurdis ¢context.

The analysis of ship-owners risk exposures consitoeexamine the VaR estimates
for a long position on the Suezmax data seriesrahelts of which are presented in
the various panels in Table 8.2. Beginning with 196 VaR results, presented in
Panel A, one should first note that the RM, IGAR@R GARCHSK models never

violated their respective VaR estimates and heneee vexcluded on the basis that
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Table 8.1 — Value-at-Risk Results on a Long Positiofor the VLCC Data Series

Panel A - 1% VaR Results on a Long Position for the ~ VLCC Data Series

Average  Hit CDIR RMSE LRUC  LRIn  LRCC ES LF
VaR Ratio
HS (200) 0315  1672% - o 0287 0003 0008 -0.374  0.552
HS (400) 0298  1672% - e 0287 0003 0008 -0.375  0.542
FHS (200) 0392 1672% - e 0287 0003 0008 -0.374 0552
FHS (400) 0439  0.669% - 0540 0001 0004 -0.450  0.084
RiskMetrics ~ -0.385  0.669% 77.181% 0.169 0540  0.841 0813  -0.433  0.149
GARCH 038 0.669% 78523% 0.168 0540 0841 0813  -0.433  0.149
IGARCH 0385 1003% 78.523% 0.167 0995 0002 0008  -0422  0.202
FIGARCH 0372 1.003% 68.456% 0.167 00995 0002 0008  -0422  0.202
GARCHSK 0447 0669% 73.154% 0.162 0540 0841 0813  -0.433  0.149

Panel B - 5% VaR Results on a Long Position for the ~ VLCC Data Series

Average  Hit CDIR RMSE LRUC  LRIn  LRCC ES LF
VaR Ratio
HS (200) 0.200  6.020% - oo 0432 0017 0043  -0276  2.543
HS (400) 0171 8.027% e e 0027 0018 0005 -0252  3.576
FHS (200) 0225  5.017% o oo 0989 0006 0023 -0.283  2.306
FHS (400) 0234 4013% o e 0418 0008 0021  -0310 1584
RiskMetrics ~ -0.272  2.341% 77.181% 0.169 0019 0005 0001  -0.303  1.757
GARCH 0273  2341% 78523% 0.168 0019 0005 0001  -0.303  1.757
IGARCH 0272 2341% 78523% 0.167 0019 0005 0001  -0.303  1.757
FIGARCH 0263 2341% 68.456% 0.167 0019 0005 0001  -0.308  1.633
GARCHSK 0.226 3.679% 73.154% 0.162 0272 0006 0013  -0.277  2.519

Note 1: VLCC denotes the weekly spot freight rdtesa 270,000 DWT VLCC tanker carrying crude
oil from Ras Tanura (Saudi Arabia) to Rotterdamtfig¢dands).
SZMX denotes the weekly spot freight rates for 8,080 DWT Suezmax tanker carrying
crude oil from Bonny (Nigeria) to off the coastRifiladelphia (USA).
AFMX denotes the weekly spot freight rates for &0080 DWT Aframax tanker carrying
crude oil from Sullom Voe (UK) to Bayway (USA).
CPSZ denotes the weekly spot freight rates for|s0 DWT Capesize bulk-carrier carrying
iron ore from Tubarao (Brazil) to Rotterdam (Nethaerds).
PNMX denotes the weekly spot freight rates for @88 DWT Panamax bulk-carrier carrying
grain from the Hampton Roads (USA) to Antwerp-Ratten-Amsterdam (Benelux).

Note 3: The sample period for the data used far thible extends from 3 October 2003 to 26 June
2009, with a total of 299 observations.

Note 4: The data used for this table is all souritedh the Clarkson Shipping Intelligence Network
(www.clarskons.nét

Note 5: Ave VaR, Hit Ratio, % Over and % Under denihe average VaR, percentage of violations
of the VaR, percentage of over-predictions andgr@ege of under-predictions, respectively.

Note 6: The fiigures in green and red denote wiogie can and cannot reject the null hypothesis for
the test of statistical accuracy, respectively.

Note 7: HS (200) and HS (400) denote the Historiiahulation results for the 200 and 400 week
horizons, respectively.

Note 8: FHS (200) and FHS (400) denote the Filtédéstorical Simulation results for the 200 and
400 week horizons, respectively.

Note 9: For ease of reference, the loss functiguréis have each been multiplied by'l@spectively.

these set too high a reserve for potential losshere this would mean that too much
money was set aside that could have been used lfernative investment
opportunities. Of the remaining models, the VaRinesies for the HS (200),
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Table 8.2 — Value-at-Risk Results on a Long Positiofor the SZMX Data Series

Panel A - 1% VaR Results on a Long Position for the ~ SZMX Data Series
Average Hit

VaR Ratio CDIR RMSE LRUC LRIn LRCC ES LF
HS (200) -0.262 2.007% - - 0.124 0.592 0.265 -0.308 0.203
HS (400) -0.245 3.010% - e 0.005 0.430 0.014 -0.279 0.516
FHS (200) -0.307 1.003% - - 0.995 0.776 0.960 -0.339 0.054
FHS (400) -0.330 0.334% - e 0.179 0.908 0.403 -0.379 0.000
RiskMetrics -0.400 0.000% 71.812%  0.162 N/A N/A N/A N/A N/A
GARCH -0.299 2.676% 60.403%  0.134 0.016 0.481 0.043 -0.282 0.484
IGARCH -0.376 0.000% 69.128%  0.151 N/A N/A N/A N/A N/A
FIGARCH -0.357 0.334% 62.416%  0.150 0.179 0.908 0.403 -0.317 0.147
GARCHSK -0.482 0.000% 68.792%  0.156 N/A N/A N/A N/A N/A

Panel B - 5% VaR Results on a Long Position for the ~ SZMX Data Series

Average  Hit CDIR RMSE LRUC  LRIn  LRCC ES LF
VaR Ratio
HS (200) 0211 7.023% o e 0129 0206 0142  -0256  0.925
HS (400) 0187  10.702% - eeee 0000 0009 0000 -0232 1673
FHS (200) 0.245  4.013% o e 0418 0297 0418  -0275 0576
FHS (400) 0.254  2.676% - oo 0044 0481 0102  -0.283  0.470
RiskMetrics ~ -0.283  1.338% 71.812% 0.162 0001 0712 0003  -0.300  0.274
GARCH 0212 7.692% 60.403% 0.134 0047 0045 0019  -0.231  1.707
IGARCH 0266 1.338% 69.128% 0.151 0001 0712 0003  -0.300  0.274
FIGARCH 0.252 3344% 62.416% 0.150  0.163 0382 0258  -0.268  0.698
GARCHSK .0.247 3679% 68792% 0.156 0272 0384 0375  -0.264  0.769

Note 1: See the respective notes from Table 8.1

FHS (200), FHS (400) and FIGARCH models were foluodpass the statistical
backtesting process, where the FHS (400) was feormmtovide the lowest potential
losses, as measured by the loss function. Thigylssid, subsequent MDM tests, the
results of which are presented in Panel A of Table in Appendix 8.A indicated
that one is statistically indifferent between tlespective loss functions for each of
these models. As one cannot calculate the respeBIMSE or CDIR ratios for the
non-parametric historical and filtered historicahslation methodologies, the FHS
(200) model was selected as providing the beghasti of ship-owners’ risk exposure

on the basis that its hit ratio was the closesihéodesired threshold of 1%.

Changing focus to the 5% VaR, the results for whach displayed in Panel B of
Table 8.2, the VaR estimates for the HS (200), F@80), FIGARCH and

GARCHSK models were found to pass the statistiegktesting process, where, of
these, the FHS (200) model was found to providesthallest loss function. In order
to provide a more sound basis on to which to drawrelusion as to the best model,

the results for the further MDM tests, which arensuarised in Panel B of Table 8.12
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in Appendix 8.A, indicate that the loss functionr fthe FHS (200) model is
significantly different from those for the other deds, hence the conclusion is
reached that the FHS (200) model provides theihdgatation as to the risk exposure
faced by ship-owners in the freight market.

To conclude the analysis of a ship-owner’s riskasxpe in the tanker sector, the VaR
estimates for a long position on the Aframax daaes, the results for which are
presented in Panel A of Table 8.3, are analysetbr8@roceeding any further, these
results indicate that the VaR estimate for the K#E) model was never exceeded,
leading to its exclusion on the basis that theltasucapital held in reserved could be
better utilised elsewhere. Having established thie results indicate that all
remaining models, with the exception of the GARClddel, passed the statistical
backtesting process, where of these, the GARCHSHemeas found to have the best
loss function. Subsequent MDM tests on these lasstions, the results for which are
displayed in Panel A of Table 8.13 in Appendix 8iAdicated that one cannot reject
the null hypothesis that there is effectively nfedtence between the loss functions
for the HS (200), HS (400), FHS (200), IGARCH andRECHSK models, while the
loss function for the GARCHSK model was found todignificantly different from
those for the RM and FIGARCH models, hence thedato models are excluded
from any further analysis. As one cannot calcutagerespective RMSEs for the HS
(200), HS (400) and FHS (200) models, the conctusias reached that the IGARCH
model provided the best evaluation of a ship-owsdsk exposure as the respective

hit ratio was closest to the desired threshold%f 1

Looking at the results for the 5% VaR, presenteBanel B of Table 8.3, only the HS
(200), FHS (200) and FIGARCH models were found &wehpassed the statistical
backtesting process, while, of these, the FHS (2@@jel was found to minimise the
respective loss function. In order to differentitween these models, MDM tests
were performed on each data series, where thealisrese outlined in Panel B of

Table 8.13 in Appendix 8.A. Based on these restiis,conclusion is reached that
there is a significant difference between the respe loss functions for the HS (200),
FHS (200) and FIGARCH models, hence the FHS (2af)ehis found to provide the

best evaluation of the potential risk exposuréharnarket.
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Table 8.3 — Value-at-Risk Results on a Long Positiofor the AFMX Data Series

Panel A - 1% VaR Results on a Long Position for the ~ AFMX Data Series

Average  Hit CDIR RMSE LRUC  LRIn  LRCC ES LF
VaR Ratio
HS (200) 0301  1.672% - e 0287 0651 0512  -0.330  0.282
HS (400) 0277 1.338% @ o e 0577 0712 0800 -0.347 0177
FHS (200) 0337  1.338% @ o e 0577 0712 0800  -0.343  0.195
FHS (400) 0437  0.000% - e N/A N/A N/A N/A N/A
RiskMetrics ~ -0.336  0.334% 23.154% 0.156  0.179 0908 0403  -0278  0.975
GARCH 0236 2676% 42617% 0122 0016 0481 0043  -0.288  0.790
IGARCH 0308 1.003% 25.168% 0.141 0995 0776 00960  -0.349  0.163
FIGARCH 0303 1.338% 38591% 0157 0577 0712  0.800  -0.299  0.634
GARCHSK 0378 0.334% 47.651% 0.146 0179 0908 0403  -0.351  0.155

Panel B - 5% VaR Results on a Long Position for the ~ AFMX Data Series

Average  Hit CDIR RMSE LRUC  LRIn  LRCC ES LF
VaR Ratio
HS (200) 0.169  6.020% - e 0432 0118 0217  -0.234  2.069
HS (400) 0158  7.358% - oo 0080 0618 0190 -0221 2513
FHS (200) 0190  4348% - oo 0597 0259 0460  -0.256  1.449
FHS (400) 0.240  2.676% - oo 0044 0481 0102 -0289  0.774
RiskMetrics ~ -0.237  1.672% 23.154% 0.156  0.002 0651 0009  -0.314  0.437
GARCH 0.167 7.692% 42617% 0122 0047 0045 0019  -0.216  2.703
IGARCH 0218 1672% 25.168% 0.141 0002 0651 0009  -0.330  0.282
FIGARCH 0214 4682% 38591% 0.57 0799  0.224 0463  -0.243  1.786
GARCHSK .0.186 7.358% 47.651% 0.146  0.080 0618 0190  -0.217  2.664

Note 1: See the respective notes from Table 8.1

To summarise the results for the tanker market,1#teVaR indicated that for the
VLCC data series, the GARCHSK model provided thestbevaluation of a
ship-owner’s risk exposure in the freight markeheneas for the Suezmax and
Aframax data series this was provided by the FH®)Y2and IGARCH models,
respectively. Therefore, it appears that at thieghold in the tanker, parametric
models generally outperform non-parametric modilscontradistinction, although
no conclusion could be reached as to which modaliged the best estimate of a
ship-owner’s risk exposure for the VLCC data seréssnone of the model passed the
backtesting process, the results for the Suezmak Aframax data series were
unanimous in their finding that the FHS (200) modetperformed all others, thus
indicating that at this threshold, non-parametpgedfications outperform parametric

specifications.

Changing focus to the dry-bulk sector, the VaR Itesan a long position with respect
to the Capesize data series are discussed, whese tan be found in summarised
form in Table 8.4. Panel A of the table presents iibsults for the 1% threshold,
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Table 8.4 — Value-at-Risk Results on a Long Positiofor the CPSZ Data Series

Panel A - 1% VaR Results on a Long Position for the =~ CPSZ Data Series

Average  Hit CDIR RMSE LRUC  LRIn  LRCC ES LF
VaR Ratio

HS (200) 0.141  5351% - e 0000 0238 0000 -0.169  2.153
HS (400) 0129  5351% - e 0000 0238 0000 -0176  1.940
FHS (200) 0220 0.669% - e 0540 0841 0813  -0.342 0018
FHS (400) 0.284  0.000% - e e e e

RiskMetrics ~ -0.185  1.338% 28523% 0077 0577 0712  0.800  -0.244  0.677
GARCH 0126 5017% 37.248% 0.053 0000  0.187 0000  -0.170  2.131
IGARCH 0163 2.676% 32.886% 0065 0016 0481 0043  -0210  1.197
FIGARCH 0170 2.676% 35570% 0074 0016 0481 0043  -0.205  1.283
GARCHSK 0224 1.338% 29.866% 0073 0577 0712  0.800  -0.207  1.249

Panel B - 5% VaR Results on a Long Position for the =~ CPSZ Data Series

Average  Hit CDIR RMSE LRUC  LRIn  LRCC ES LF
VaR Ratio
HS (200) 0091  11.371% - oo 0000 0000 0000 -0.141  3.310
HS (400) -0.080 13.043% - oo 0000 0000 0000 -0.137  3.565
FHS (200) 0148  2.676% - oo 0044 0481 0102 -0219  1.037
FHS (400) 0192 0.669% - oo 0000 0841 0000 -0.342  0.018
RiskMetrics ~ -0.131  5.017% 28523% 0077 0989 0031 0097  -0.174  2.021
GARCH .0.089 10.702% 37.248% 0.053  0.000 0012 0000  -0.138  3.495
IGARCH 0115 6.689% 32.886% 0.065 0202 0006 0010  -0.173  2.039
FIGARCH 0120 6.355% 35570% 0074 0301 0123 0178  -0.153  2.782
GARCHSK 0111  6.689% 29.866% 0.073 0202 0036 0049  -0.162  2.405

Note 1: See the respective notes from Table 8.1

where the results for the FHS (400) model are igdh@n the basis that there are no
violations; hence this model may overestimate thguired reserves, where this
capital may be better utilised for other investrsefiif the remaining models, only the
FHS (200), RM and GARCHSK models pass the statilstiicktesting process,
where the results of further MDM tests, presentedPanel A of Table 8.14 in
Appendix 8.A, indicated that one cannot reject thal hypothesis that there is
effectively no difference between the respectivas lftunctions. Therefore, in order to
differentiate between the models, one should |doth@ respective hit ratios, where
the RM and GARCHSK models were found to have tlesedt hit ratios to the
desired threshold of 1%, however the GARCHSK maoded found to have the lower
RMSE. On this basis, one can conclude that the GARC provides the best

approximation of the risk exposure faced by a siwmer in this context.

Examining the results for the 5% threshold, presenih Panel B of Table 8.4, the
only model that passed the statistical backtegpiragess is the FIGARCH model;
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hence one can conclude that this model providesbd#s evaluation of the risk

exposure.

To conclude the analysis of the ship-owner’s risgasure, this research discusses the
VaR estimates for a long position on the Panam#x skxies, the results of which are
presented in Table 8.5. The results for the 1%stiokl, outlined in Panel A,
indicated that only the FHS (200) and RM modelsspdsall three of the tests for
statistical accuracy, where the RM model was fotmdexhibit the lower loss

function.

In order to provide a definitive conclusion as thieh model provides the best
evaluation of a ship-owners respective risk expmsar further MDM test was

performed, the results of which is presented in ePaA of Table 8.15 in

Appendix 8.A, where these indicated that there waastatistically significant

difference between the two respective loss funstiddn this basis, the conclusion
was drawn that the RM model provided the best fBexin this instance. Changing
focus to the 5% threshold, the results of whichmesented in Panel B of Table 8.5,
only the FHS (200), RM and FIGARCH models were fbun have passed the
statistical backtesting process. Of these moda¢sRM model was found to minimise
the loss function, however, to provide a more def@ answer as to the preferred
model, further MDM tests, the results of which presented in Panel B of Table 8.15
in Appendix 8.A. The results of these further testdicated that there was a
significant difference between the loss functioristte RM and FHS (200) and
FIGARCH models, respectively. On this basis, thactasion was reached that the

RM model provided the best evaluation of the pa#énisk exposure in this context.

To summarise the results for the dry-bulk sectiog, tesults for the Capesize data
series indicate that the GARCHSK and FIGARCH mogetvide the best evaluation
of the potential risk exposure at the 1% and 5%stholds respectively. In contrast,
the results for the Panamax data series indicdtatl for both thresholds the RM
model was preferred. There therefore appears todiee effect here, where for larger
vessels in the dry-bulk sector parametric models &ound to outperform

non-parametric models, and vice versa.
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Table 8.5 — Value-at-Risk Results on a Long Positiofor the PNMX Data Series

Panel A - 1% VaR Results on a Long Position for the ~ PNMX Data Series

Average  Hit CDIR RMSE LRUC  LRIn  LRCC ES LF
VaR Ratio

HS (200) 0154  3.679% - e 0000 0384 0001 -0.180  0.647
HS (400) 0143  4.682% - e 0000 0605 0000  -0.180  0.658
FHS (200) 0.260  0.669% = - e 0540 0841 0813  -0191  0.453
FHS (400) 0309 0.000% - e e e e

RiskMetrics ~ -0.179  1.672% 31.879% 0073 0287 0651 0512  -0.227  0.066
GARCH 0139  4.348% 34.228% 0.056 0000 0533 0000  -0.180  0.657
IGARCH 0.144  4682% 36.577% 0.057 0000 0020 0000  -0.182  0.602
FIGARCH 0174 3.010% 34564% 0072 0005 0248 0010  -0177 0712
GARCHSK 0129 9.030% 35.906% 0.044 0000 0000 0000  -0.090 5771

Panel B - 5% VaR Results on a Long Position for the ~ PNMX Data Series

Average  Hit CDIR RMSE LRUC  LRIn  LRCC ES LF
VaR Ratio
HS (200) 0.100 10.368% - e 0000 0002 0000 -0.143 1785
HS (400) -0.083 13.043% - oo 0000 0005 0000 -0.132  2.288
FHS (200) 0152 4.682% o oo 0799 0605 0847  -0.166  0.992
FHS (400) 0178 2341% e e 0019 0535 0053 -0.164  1.020
RiskMetrics ~ -0.126  5.017% 31.879% 0073 0989 0668 0912  -0.172 0818
GARCH .0.098 8361% 34.228% 0056 0015 0171 0020  -0.148  1.587
IGARCH 0102 8361% 36577% 0057 0015 0011 0002  -0.157  1.250
FIGARCH 0123  5017% 34564% 0072 0989 0668 0912  -0171  0.851
GARCHSK .0.067 16.388% 35.906% 0.044 0000 0002 0000  -0.115  3.359

Note 1: See the respective notes from Table 8.1

Having evaluated the ship-owner’s side of the pestuhe following sub-section
extends the analysis by examining the chartereiist of view by estimating the VaR
on a short position, where, to the best of the @ighknowledge, this is done for the

first time in the shipping literature.

8.4.2 The Charterer’s Point of View

As mentioned above, this sub-section examinesiskeekposure of charterer’s in the
tanker and dry-bulk sectors. This is done by exarginhe 1% and 5% VaRs on a
short position, with respect to the VLCC, Suezmixamax, Capesize and Panamax
data series, respectively. As briefly mentionedvabmne should not interpret these
measures as the potential loss on a portfolio, apartfolio has been constructed
here, but instead should consider this to be thenpi@al increase in transportation
costs incurred by the charterer should market ¢mmdi move against them.
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This analysis begins by examining the VaR estim&besa short position on the
VLCC data series, where the results for thesewarersarised in Table 8.6. Panel A of
the table examines the 1% VaR, where the VaR etsrfar the HS (200), HS (400),
FHS (200), FHS (400) and GARCHSK models are foungdss all three of the tests
of statistical accuracy, where the HS (200) and KBI®) models were found to
provide the best lost function. In order to furtiéferentiate between models, MDM
tests were performed on the respective models, evtiegse results are outlined in
Panel A of Table 8.16 in Appendix 8.A, the reswtswhich indicate that, with the
exception of the GARCHSK model, one is unable jeatethe null hypothesis that
there is effectively no difference between the eesipe loss functions. Having
established this, the conclusion is drawn thatthés model provides the hit ratio
closest to the desired threshold of 1%, the FH))4@odel provides the best

evaluation of the potential risk exposure facedlhgrterers.

Changing the threshold, the results for the 5% \Malich are presented in Panel B of
Table 8.6, indicate that the HS (200), HS (400),, RARCH and IGARCH model
all pass the statistical backtesting process, whigeHS (200) model minimised the
respective loss function. Given this, further MD&tis were performed, the results of
which are outlined in Panel B of Table 8.16 in Apge 8.A, in order to determine
the preferred model to evaluate the risk exposaced by charterers. These results
indicated that the loss function for the HS (20@swignificantly different from those
for the other four models; hence the conclusion kgashed that the HS (200) model

provided the best evaluation of the risk expostitlia threshold in this context.

The analysis continues by examining the VaR es@ém#&br a short position on the
Suezmax data series, the results for which are suised in Table 8.7. Beginning
with the results for the 1% threshold, which ardlioed in Panel A, only the

FHS (200), FHS (400) and GARCHSK pass the stagisbacktesting process, where
the FHS (400) model is found to have the lowess limmction. In order to further

differentiate between the models, MDM tests werdopmed on these models, the
results of which is presented in Panel A of TablE’8n Appendix 8.A, where these
indicated that, while one could not reject the rnylpothesis that there is effectively
no difference between the respective loss functionthe FHS (400) and GARCHSK

models, there was a statistically significant défece between the loss functions for
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Table 8.6 — Value-at-Risk Results on a Short Posiin for the VLCC Data Series

Panel A - 1% VaR Results on a Short Position forth e VLCC Data Series

Average  Hit CDIR RMSE LRUC  LRIn  LRCC ES LF
VaR Ratio
HS (200) 0453  1672% - e 0287 0651 0512 0729  4.026
HS (400) 0434  2.007% e 0124 0592 0265 0682 5790
FHS (200) 0552  1672%  —m e 0287 0651 0512 0729  4.026
FHS (400) 0592  1.003% - e 0995 0776 0960  0.891  0.727
RiskMetrics 0385 3.679% 77.181% 0.169 0000 0052 0000 0502  16.664
GARCH 0386  3.344% 78523% 068 0001 0034 0001 0530  14.484
IGARCH 0385  3.344% 78523% 0.67  0.00L 0034 0001 0530  14.484
FIGARCH 0372  4.348% 68.456% 0167 0000 0106 0000  0.465  19.881
GARCHSK 0515 2007% 73.154% 0162  0.124 0592 0265 0645  7.487

Panel B - 5% VaR Results on a Short Position forth e VLCC Data Series

Average  Hit CDIR RMSE LRUC  LRIn  LRCC ES LF
VaR Ratio
HS (200) 0306  4.348% v e 0597 0106 0235 0497  17.055
HS (400) 0261  6.355%  m e 0301 0426 0427 0429  23.388
FHS (200) 0364  3.010%  —m  oee 0089 0021 0016 0562  12.260
FHS (400) 0380  3.010%  —m e 0089 0248 0121 0587  10.690
RiskMetrics 0272  7.023% 77.181% 0169 0129 0560 0267 0405  25.995
GARCH 0273  6.689% 78523% 0.168  0.202 0494 0350 0416  24.738
IGARCH 0272  6.689% 78523% 0.167 0202 0494 0350 0416  24.738
FIGARCH 0263 8361% 68456% 0.167 0015 0049 0007 0373  29.840
GARCHSK 0252 8696% 73.154% 0162 0008 0216 0013 0365  30.884

Note 1: See the respective notes from Table 8.1

the FHS (400) and FHS (200) models. This being,shaling examined the

respective hit ratios for the remaining models, givén the fact that the hit ratio for
the FHS (400) models was closest to the desirexbhiotd of 1%, the conclusion was
drawn that the FHS (400) model provided the besiuation of the risk exposure
incurred by charterers in this context.

Looking at the results for the 5% VaRs, which amnmiarised in Panel B of
Table 8.7, only the FHS (200) and FHS (400) modeadse found to have passed all
three of the tests of statistical accuracy, whike EHS (400) minimised the respective
loss function. To further distinguish between thi¥ge models, a further MDM tests
was performed, the result of which, where thisuimmarised in Panel B of Table 8.17
in Appendix 8.A, indicated that there is a statelly significant difference between
the loss functions of these two models, thus leadinthe conclusion that the FHS
(400) model provided the best estimate of the agkosure of charterers in this

context.
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Table 8.7 — Value-at-Risk Results on a Short Posifn for the SZMX Data Series

Panel A - 1% VaR Results on a Short Position forth e SZMX Data Series
Average Hit

VaR Ratio CDIR RMSE LRUC LRIn LRCC ES LF
HS (200) 0.460 2.676% - - 0.016 0.481 0.043 0.606 3.609
HS (400) 0.395 2.676% - - 0.016 0.481 0.043 0.606 3.609
FHS (200) 0.524 2.007% - - 0.124 0.592 0.265 0.654 2.126
FHS (400) 0.604 1.338% - - 0.577 0.712 0.800 0.745 0.745
RiskMetrics 0.400 3.344% 71.812%  0.162 0.001 0.382 0.004 0.560 5.591
GARCH 0.299 8.696% 60.403%  0.134 0.000 0.023 0.000 0.392 18.697
IGARCH 0.376 3.010% 69.128%  0.151 0.005 0.430 0.014 0.584 4.477
FIGARCH 0.357 5.351% 62.416%  0.150 0.000 0.165 0.000 0.466 11.625
GARCHSK 0.561 1.672% 68.792%  0.156 0.287 0.651 0.512 0.702 1.249

Panel B - 5% VaR Results on a Short Position forth e SZMX Data Series

Average  Hit CDIR RMSE LRUC  LRIn  LRCC ES LF
VaR Ratio
HS (200) 0278  8.696% - e 0008 0638 0026 0400 17.783
HS (400) 0250 10.368% - e 0000 0508 0001 0376  20.697
FHS (200) 0339  5.017% - e 0989 0668 0912 0484  10.247
FHS (400) 0356  4.013%  —m e 0418 0297 0418 0527  7.378
RiskMetrics 0283 8361% 71.812% 0162 0015 0171 0020 0400  17.777
GARCH 0212 13.378% 60.403% 0.134 0000 0375 0000 0325  28.181
IGARCH 0266  9.699% 69.128% 0151 0001 0161 0002 0382  19.935
FIGARCH 0252 9.699% 62.416% 0150  0.001 0154 0001 0375  20.800
GARCHSK 0277 8361% 68792% 0156 0015 0171 0020 0399  17.907

Note 1: See the respective notes from Table 8.1

To conclude the analysis of the risk exposure fdiyedharterers in the tanker market,
the VaR estimates for a short position on the Alardata series are analysed, where
the results of this analysis can be found in T8u8e Looking at the results for the 1%
threshold, outlined in Panel A of the table, the (280), HS (400), FHS (200), FHS
(400) and GARCHSK models are all found to have gédke statistical backtesting
processes, where the FHS (400) model was foundinamise the respective loss
functions. Following this, the results of subseduBbtDM tests, where these are
summarised in Panel A of Table 8.18 in Appendix,8milicate that one cannot reject
the null hypothesis that there is effectively ntfedence between the respective loss
functions for these models. In order to distinguise best model from these, the
results for the respective hit ratios indicate ttat FHS (400) provided the hit ratio
closest to the desired threshold of 1% and theza®opreferred over other models in

this context.

Changing focus to the 5% threshold, VaR estimatesults, presented in Panel B of
Table 8.8, indicated that the HS (200), FHS (26®)S (400), RM, FIGARCH and
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Table 8.8 — Value-at-Risk Results on a Short Posifn for the AFMX Data Series

Panel A - 1% VaR Results on a Short Position forth e AFMX Data Series

Average  Hit CDIR RMSE LRUC  LRIn  LRCC ES LF
VaR Ratio
HS (200) 0380  2.007% - e 0124 0592 0265 0615 9621
HS (400) 0395  2.007% e 0124 0592 0265 0633 8743
FHS (200) 0435  1672%  —m e 0287 0651 0512 0680  6.676
FHS (400) 0655  1.003% - e 0995 0776 0960  0.820  2.225
RiskMetrics 0336 2676% 23.154% 0156 0016 0189 0023 0544  13.519
GARCH 0236  4.682% 42.617% 0.122 0000 0224 0000 0444  20.234
IGARCH 0308 3.010% 25168% 0141 0005 0430 0014 0543  13.547
FIGARCH 0303 3.679% 38591% 0157 0000 0384 000l 0490  16.924
GARCHSK 0418  1672% 47.651% 0146 0287 0651 0512 0680  6.676

Panel B - 5% VaR Results on a Short Position forth e AFMX Data Series

Average  Hit CDIR RMSE LRUC  LRIn  LRCC ES LF
VaR Ratio
HS (200) 0194  6.689% - - 0202 0161  0.166 0381 250961
HS (400) 0183  7.358%  —m o 0080 0258 0113 0366  27.559
FHS (200) 0226  6.020%  —m oee 0432 0359 0483 0402  23.900
FHS (400) 0316  4.682%  —m e 0799 0605 0847 0447  20.015
RiskMetrics 0237 5351% 23.154% 0156 0783 0238 0481 0414  22.770
GARCH 0167 10.368% 42.617% 0.122  0.000 0477 0001 0306 35313
IGARCH 0218 5686% 25.168% 0.141 0594 0066 0160 0410  23.081
FIGARCH 0214  7.023% 38591% 0157 0129 0206 0142 0355  28.778
GARCHSK 0201 6.355% 47.651% 0.146 0301 0675 0537 0373  26.804

Note 1: See the respective notes from Table 8.1

GARCHSK models all passed all three of the teststatistical accuracy. This being
said, the results of further MDM tests, where thase summarised in Panel B of
Table 8.18 in Appendix 8.A, led to the conclusibattthe loss function for the FHS
(400) model is significantly different from all ttegher respective models; hence one
can conclude that the FHS (400) model provides libst evaluation of the risk
exposure faced by charterers in this context.

One can thus conclude that, with the exceptiome®% threshold for the VLCC data
series, the FHS (400) model outperforms all othedats in terms of calculating the
risk exposure of charterers in the tanker markbts Tesult supports the findings of
Angelidis and Skiadopoulos (2008), who found thatn4parametric models
outperformed parametric models in the FFA markgerestingly, the results from the
ship-owner’s perspective, i.e. the long positioorespond with these results at the
5% threshold; however, at the 1% threshold forlding position, these suggested that

parametric models outperformed non-parametric nsodel
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Table 8.9 — Value-at-Risk Results on a Short Posiin for the CPSZ Data Series

Panel A - 1% VaR Results on a Short Position forth e CPSZ Data Series

Average  Hit CDIR RMSE LRUC  LRIn  LRCC ES LF
VaR Ratio
HS (200) 0209  3.679% - e 0000 0052 0000 0292 1727
HS (400) 0190  4.013% - e 0000 0076 0000 028  2.008
FHS (200) 0396  1338% - e 0577 0712 0800  0.368  0.446
FHS (400) 0548  0.334% - e 0179 0908 0403 0255  2.939
RiskMetrics 0185  4.682% 28.523% 0077 0000 0143 0000 0258  2.819
GARCH 0126  7.692% 37.248% 0053 0000 0661 0000 0215  4.873
IGARCH 0163 5.017% 32.886% 0065 0000 0187 0000 0250  3.112
FIGARCH 0170  5.017% 35570% 0074 0000 0187 0000 0247  3.277
GARCHSK 0244  3.344% 29.866% 0073  0.00L 0034 0001 0227  4.228

Panel B - 5% VaR Results on a Short Position forth e CPSZ Data Series

Average  Hit CDIR RMSE LRUC  LRIn  LRCC ES LF
VaR Ratio
HS (200) 0119  8361% - e 0015 0150 0018 0214 4951
HS (400) 0104 10.033% - e 0000 0062 0000 0198  6.046
FHS (200) 0214  3.384% e e 0163 0034 0040 0297 1590
FHS (400) 0270  1672% e e 0002 0060 0002 0270  2.399
RiskMetrics 0131 8361% 28523% 0077 0015 0171 0020 0203 5682
GARCH 0089 12.709% 37.248% 0.053  0.000 0209 0000 0170  8.237
IGARCH 0115 8696% 32.886% 0.065  0.008 0017 0002 0204 5613
FIGARCH 0120 9.030% 35570% 0.074 0004 0094 0004 0198 5984
GARCHSK 0119 9.699% 29.866% 0.073  0.001 0003 0000 0185  7.018

Note 1: See the respective notes from Table 8.1

Changing focus to the dry-bulk market, this redearow analyses the VaR estimates
for a short position on the Capesize data setiesrdsults for which are presented in
Table 8.9. The results for the 1% VaR, outlinedPamel A of the table, suggest that
only the FHS (200) and FHS (400) models passedtttestical backtesting process,
where the FHS (200) model is found to have the tdass functions. Results from
the subsequent MDM test, summarised in Panel Aatflel 8.19 in Appendix 8.A,
show that there is a significant difference betwtdentwo respective loss functions,
hence one can conclude that the FHS (200) modpkedotms the FHS (400) model
in terms of evaluating the risk exposure incurrgcalbarterers in this context.

The picture changes drastically when looking atrdsults for the 5% VaR results,
presented in Panel B of Table 8.9, where none ®MaR estimates for any of the
models passed the statistical backtesting proEesghis reason, one cannot draw any
conclusion as to which model provides the most l@telestimate of the risk exposure

faced by the charterer.
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Table 8.10 — Value-at-Risk Results on a Short Pogih for PNMX Data Series

Panel A - 1% VaR Results on a Short Position forth e PNMX Data Series

Average  Hit CDIR RMSE LRUC  LRIn  LRCC ES LF
VaR Ratio
HS (200) 0199  3.010% - e 0005 0003 0000 0216  0.496
HS (400) 0173  3.344% e e 0001 0001 0000 0217  0.492
FHS (200) 0352  1.003%  m e 0995 0000 0000 0215 0512
FHS (400) 0363  1338%  —m e 0577 0000 0001 0219  0.466
RiskMetrics 0179 2676% 31.879% 0.073 0016 0002 0001 0219  0.454
GARCH 0139 5686% 34.228% 0.056  0.000 0016 0000 0181  1.276
IGARCH 0144  4013% 36577% 0.057 0000 0002 0000 0209 0613
FIGARCH 0174  3.010% 34564% 0072 0005 0003 0000 0221  0.437
GARCHSK 0160 5.351% 35.906% 0.044 0000 0000 0000 0190  1.027

Panel B - 5% VaR Results on a Short Position forth e PNMX Data Series

A"\‘jﬁ?e R';go CDR RMSE LRUC  LRIn  LRCC ES LF
HS (200) 0106 12.709%  —r e 0.000 0004 0000 0150  2.509
HS (400) 0.096  13.378%  —er e 0.000 0003 0000 0148 2577
FHS (200) 0177  4.013% e e 0418 0000 0000 0197  0.863
FHS (400) 0213  3.344%  cen e 0163 0000 0000 0195  0.907
RiskMetrics 0126  7.023% 31.879% 0073 0129 0008 0010 0173  1.516
GARCH 0.098 12.709% 34.228% 0056  0.000  0.009 0000 0144  2.811
IGARCH 0102 12.709% 36.577% 0057 0000 0001 0000 0151  2.433
FIGARCH 0123  7.358% 34.564% 0072 0080 0019 0014 0166  1.791
GARCHSK 0.079 17.057% 35.906% 0.044 0000 0010 0000 0132 3591

Note 1: See the respective notes from Table 8.1

To provide the final piece of the puzzle, the Vafireates for a short position on the
Panamax data series are analysed, where thesésrasell summarised i&rror!
Reference source not found.The results for both the 1% and 5% thresholds,
presented in Panels A and B, respectively, aretlgxtiee same in that none of the
models are found to have passed the statisticatdstong process. For this reason, no
conclusion can be drawn as towhich model best ateduthe risk exposure faced by
the charterer when dealing with the Panamax daiesse

To summarise, the results for the dry-bulk marketthis respect, are somewhat
disappointing in that one can only reach a conclusn the case of the 1% threshold
for the Capesize data series. A recurring theme dpeear in this case, however, in
that, as was the case for the tanker sector, ncampric models were found to have
outperformed parametric models, once again lendingport to the findings of
Angelidis and Skiadopoulos (2008).
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8.4.3 Overview of Risk Estimation in the Shipping M arkets

Having looked at the risk exposure for both magntipipants in the shipping market,
this section brings the analysis together as a&vhidie first thing to note here is that
simple non-parametric models are found, as a whol@utperform the parametric
models in the majority of cases. This is interegts it is provides direct support for
the findings in a similar study by Angelidis andi&lopoulos (2008), where they
analysed the VaRs for a long position on freight rimdices and found that the
simplest non-parametric models almost always ofdpeed the more complex

parametric models.

The second interesting finding is that, in the w&n&nd dry bulk sectors, and with a
few exceptions, the FIGARCH and GARCHSK models etfggmed the other more
standard parametric models, regardless of theipodiéken. A possible explanation
for this is that both models take into account shape of the supply function in the
shipping market and the fact that supply is fixed the short-term, therefore
exacerbating this effect. Unfortunately, the res@dir the dry-bulk market are not as
uniform; therefore one cannot draw any conclusiasgo the best overall form of

model for these series.

In order to check for robustness, the out-of-sang@god was further sub-divided
into the pre-crisis and post-crisis periods, whbese extend from 3 October 2003 to
16 May 2008, and from 23 May 2008 to 16 June 2088pectively. The results for
the pre-crisis period support the findings over tbtal out-of-sample period in that
the long position provides mixed results as to Wheparametric or non-parametric
models provide the best evaluation of the risk expe faced by ship-owners in the
market. This being said, non-parametric modelsfawad to uniformly outperform
parametric models with regards to the short pasitiand thus provide the best
evaluation of the risk exposure incurred by charter Interestingly, however, the
results for the post-crisis period contrast sigaifitly with the other sample periods in
that, for the long position and with the exceptminthe 1% VaR estimates for the
Panamax data series, non-parametric models outperfzarametric models in
evaluating the potential risk exposure faced byp-shwners in the bulk shipping

sectors. The picture changes, however, when loo#inipe risk exposure faced by
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charterers, where, with a few exceptions, parametndels are found to outperform

non-parametric models.

8.5 Conclusion

The volatility of shipping freight rate returnsnstoriously difficult to forecast. This
chapter gave an insight into the future risk exp@saf participants in the shipping
freight markets, with a particular focus on thekemand dry-bulk sectors of the
market. This chapter also introduced the concefptdractional integration and
conditional skewness and kurtosis to forecastinatility, thereby extending the

shipping forecasting literature.

This chapter extends the literature on forecastwigtility by extending the work of
Kavussanos and Dimitrakopoulos (2007) and Angelahsl Skiadopoulos (2008).
This is because not only does it look at both #inekér and dry-bulk markets, as
opposedKavussanos and Dimitrakopoulegho only consider the tanker market, it
also examines the spot freight rate series, as ageixamining the risk exposure on
both long and short positions, unliRegelidis and Skiadopoulosho look at freight
rate indices and only consider long positions, amifloducing the concept of
fractional integration to the mix. In addition, shchapter introduces the concept of
conditional skewness and kurtosis to the VaR lites via the use of the GARCHSK

model.

Using data from five major ship sizes, across théhlthe tanker and dry bulk
markets, the chapter uses an out-of-sample pefficgixoyears to perform ex-post
forecasts of freight rate volatility, where theseetcasts are then used to calculate the
respective VaRs described above. Looking at thenasts of risk exposure, one can
see that, in the vast majority of cases, the noarpatric models outperformed the
parametric models, where overall, the filtered drisal simulation model generally
provided the best forecast of the VaR, regardldsth® position or sector. This
chapter has therefore provided a tool through wipelticipants in the shipping
markets can evaluate their potential risk exposwurieere both are essential for
making investment decisions and enabling ship-osvteplan the positioning of their

vessels.
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Appendix 8.A — Modified Diebold-Mariano Test Result s

Table 8.11 — MDM Tests on a Long Position for the MCC Data Series

Panel A - Modified Diebold-Mariano Tests on the 1% Value-at-Risk Estimates

MDM Stat t-stat p-value
RiskMetrics vs. GARCH (---)
RiskMetrics vs. GARCHSK (---)

Panel B - Modified Diebold-Mariano Tests on the 5%  Value-at-Risk Estimates
MDM Stat t-stat p-value
None (---)

Note 1: VLCC denotes the weekly spot freight rdtesa 270,000 DWT VLCC tanker carrying crude
oil from Ras Tanura (Saudi Arabia) to Rotterdamtfig¢dands).
SZMX denotes the weekly spot freight rates for 8,080 DWT Suezmax tanker carrying
crude oil from Bonny (Nigeria) to off the coastRifiladelphia (USA).
AFMX denotes the weekly spot freight rates for &0080 DWT Aframax tanker carrying
crude oil from Sullom Voe (UK) to Bayway (USA).
CPSZ denotes the weekly spot freight rates for|s0 DWT Capesize bulk-carrier carrying
iron ore from Tubarao (Brazil) to Rotterdam (Netherds).
PNMX denotes the weekly spot freight rates for @88 DWT Panamax bulk-carrier carrying
grain from the Hampton Roads (USA) to Antwerp-Rattan-Amsterdam (Benelux).

Note 3: The sample period for the data used far thible extends from 3 October 2003 to 19 June
2009, with a total of 299 observations.

Note 4: The data used for this table is all sourtedch the Clarkson Shipping Intelligence Network
(www.clarskons.nét

Note 5: Tests where the results have been leftkblaply that the resultant loss functions were
identical and, therefore, no test needed to beopaed.

Table 8.12 — MDM Tests on a Long Position for theZAMX Data Series

Panel A - Modified Diebold-Mariano Tests on the 1%  Value-at-Risk Estimates
MDM Stat t-stat p-value

Filtered Historical Sim. (400) vs. Filtered Historical Sim. (200) 1.015 2592 0.311
Filtered Historical Sim. (400) vs. FIGARCH 1.282 2592 0.201
Filtered Historical Sim. (400) vs. Historical Sim. (200) 1.424 2592 0.156

Panel B - Modified Diebold-Mariano Tests on the 5% Value-at-Risk Estimates
MDM Stat t-stat p-value

Filtered Historical Sim. (200) vs. FIGARCH 2.010 1.968 0.045
Filtered Historical Sim. (200) vs. GARCHSK 2.041 1.968 0.042
Filtered Historical Sim. (200) vs. Historical Sim. (200) 2.530 1.968 0.012

Note 1: See notes from Table 8.11.
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Table 8.13 — MDM Tests on a Long Position for the FMX Data Series

Panel A - Modified Diebold-Mariano Tests on the 1%  Value-at-Risk Estimates
MDM Stat t-stat p-value

GARCHSK vs. IGARCH 1.417 2,592 0.158
GARCHSK vs. Historical Sim. (400) 1.417 2.592 0.158
GARCHSK vs. Filtered Historical Sim. (200) 1.417 2592 0.158
GARCHSK vs. Historical Sim. (200) 1.632 2,592 0.104
GARCHSK vs. FIGARCH 1.724 2,592 0.086
GARCHSK vs. RiskMetrics 1.731 2592 0.084

Panel B - Modified Diebold-Mariano Tests on the 5%  Value-at-Risk Estimates
MDM Stat t-stat p-value

Filtered Historical Sim. (200) vs. FIGARCH 2.251 1.968 0.025
Filtered Historical Sim. (200) vs. Historical Sim. (200) 2.251 1.968 0.025

Note 1: See notes from Table 8.11.

Table 8.14 — MDM Tests on a Long Position for the BSZ Data Series

Panel A - Modified Diebold-Mariano Tests on the 1%  Value-at-Risk Estimates
MDM Stat t-stat p-value

Filtered Historical Simulation (200) vs. RiskMetrics 1.404 2.592 0.161
Filtered Historical Simulation (200) vs. GARCHSK 1.410 2.592 0.159

Panel B - Modified Diebold-Mariano Tests on the 5%  Value-at-Risk Estimates
MDM Stat t-stat p-value

None (=)

Note 1: See notes from Table 8.11.

Table 8.15 — MDM Tests on a Long Position for the ®MX Data Series

Panel A - Modified Diebold-Mariano Tests on the 1%  Value-at-Risk Estimates
MDM Stat t-stat p-value

RiskMetrics vs. Filtered Historical Sim. (200) 2.236 2.592 0.026

Panel B - Modified Diebold-Mariano Tests on the 5%  Value-at-Risk Estimates
MDM Stat t-stat p-value

RiskMetrics vs. FIGARCH 3.041 1.968  0.003
RiskMetrics vs. Filtered Historical Sim. (200) 3.041 1.968  0.003

Note 1: See notes from Table 8.11.
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Table 8.16 — MDM Tests on a Short Position for th&LCC Data Series

Panel A - Modified Diebold-Mariano Tests on the 1%  Value-at-Risk Estimates
MDM Stat t-stat p-value

Historical Sim. (200) vs. Filtered Historical Sim. (200) (--)
Historical Sim. (200) vs. Historical Sim. (400) -1.738 2,592 0.083
Historical Sim. (200) vs. Filtered Historical Sim. (400) 1.504 2592 0.134
Historical Sim. (200) vs. GARCHSK -1.738 2592 0.083

Panel B - Modified Diebold-Mariano Tests on the 5% Value-at-Risk Estimates
MDM Stat t-stat p-value

Historical Sim. (200) vs. Historical Sim. (400) -2.191 1.968 0.029
Historical Sim. (200) vs. GARCH -2.213 1.968 0.028
Historical Sim. (200) vs. IGARCH -2.213 1.968 0.028
Historical Sim. (200) vs. RiskMetrics -2.314 1968 0.021

Note 1: See notes from Table 8.11.

Table 8.17 — MDM Tests on a Short Position for th&ZMX Data Series

Panel A - Modified Diebold-Mariano Tests on the 1%  Value-at-Risk Estimates
MDM Stat t-stat p-value

Filtered Historical Sim. (400) vs. GARCHSK -1.140 2.592 0.255
Filtered Historical Sim. (400) vs. Filtered Historical Sim. (200) -1.842 2.592 0.066

Panel B - Modified Diebold-Mariano Tests on the 5%  Value-at-Risk Estimates
MDM Stat t-stat p-value

Filtered Historical Sim. (400) vs. Filtered Historical Sim. (200) -2.316 1.968 0.021

Note 1: See notes from Table 8.11.

Table 8.18 — MDM Tests on a Short Position for thAFMX Data Series

Panel A - Modified Diebold-Mariano Tests on the 1%  Value-at-Risk Estimates
MDM Stat t-stat p-value

Filtered Historical Sim. (400) vs. Filtered Historical Sim. (200) -1.417 2.592 0.158
Filtered Historical Sim. (400) vs. GARCHSK -1.417 2.592 0.158
Filtered Historical Sim. (400) vs. Historical Sim. (400) -1.417 2.592 0.158
Filtered Historical Sim. (400) vs. Historical Sim. (200) -1.417 2.592 0.158

Panel B - Modified Diebold-Mariano Tests on the 5% Value-at-Risk Estimates
MDM Stat t-stat p-value

Filtered Historical Sim. (400) vs. RiskMetrics -2.408 1.968 0.017
Filtered Historical Sim. (400) vs. Filtered Historical Sim. (200) -2.438 1.968 0.015
Filtered Historical Sim. (400) vs. Historical Sim. (200) -2.563 1.968 0.011
Filtered Historical Sim. (400) vs. GARCHSK -2.587 1.968 0.010
Filtered Historical Sim. (400) vs. FIGARCH -2.682 1.968 0.008

Note 1: See notes from Table 8.11.
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Table 8.19 — MDM Tests on a Short Position for th€PSZ Data Series

Panel A - Modified Diebold-Mariano Tests on the 1%  Value-at-Risk Estimates
MDM Stat t-stat p-value

Filtered Historical Sim. (400) vs. Filtered Historical Sim. (200) -2.140 2.592 0.033

Panel B - Modified Diebold-Mariano Tests on the 5%  Value-at-Risk Estimates
MDM Stat t-stat p-value

None (---)

Note 1: See notes from Table 8.11.

Table 8.20 — MDM Tests on a Short Position for theNMX Data Series

Panel A - Modified Diebold-Mariano Tests on the 1%  Value-at-Risk Estimates
MDM Stat t-stat p-value

None (--)

Panel B - Modified Diebold-Mariano Tests on the 5%  Value-at-Risk Estimates
MDM Stat t-stat p-value

None (--)

Note 1: See notes from Table 8.11.
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9 Conclusion

9.1 Introduction

This thesis aimed to provide an alternate lookhatdtructure of freight rates in the
bulk shipping sectors, which have been a constaunice of academic interest since
they were first discussed by Koopmans (1939). Teimg said, understanding the
nature of these prices is not merely an academarcese but does have definite
practical applications in that freight rates fotme frice for transporting goods by sea,
where over 7,500 million tonnes of goods were fpangd by sea in 2007. The
correct structure of freight rates is of great riegt in that freight rates play a pivotal
role, and form the basis of almost every functinrthe shipping markets, from the
determination of the price of the transport sertiweugh to the price of second-hand
vessels. Therefore, a correct model for freightgas vital for all participants in the
shipping market, from the ship-owners and charsetbemselves, right on down

through the market to ship-brokers, maritime lawyeand other auxiliary parties.

The aim of this research was to expand on thetioadi models of the structure of
freight rates through the use of Autoregressivectivaally Integrated Moving

Average (ARFIMA), Fractionally Integrated GeneratisAutoregressive Conditional
Heteroscedasticity (FIGARCH) and Generalised Awgossive Conditional

Heteroscedasticity with Skewness and Kurtosis (GABK) models. Once this was
done, these models were used to forecast spothfreige levels and freight rate
volatility, and then evaluate the underlying risikaugh the use of the Value-at-Risk
methodology. By doing this, one should have gaiaeoketter understanding of the
behaviour of the different moments of freight ratigereby enabling participants in
the shipping markets to have a better understandinigoth the direction of spot

freight rate levels, and the underlying risk.

This research is of interest to a number of diffierparties, both in terms of
participants in the shipping market, as well asfthancial markets as a whole. One
reason for this is that it adds another dimensiotiné debate as to the exact structure

of freight rates, as well as the degree of statipnaf these, as well as providing
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insight as to how the higher moments would affeeight rate risk as a whole. As
mentioned above, this is of interest to participantthe shipping markets as this kind
of understand is crucial for investment timing aanning decisions, as well as for
indirectly linked parties to be able to quantifyeith exposure to the market.
Interestingly, the fact that the shipping freighanket is perhaps the only financial
market in which the underlying asset is a servaewell as the fact that it may be
used as a proxy for world trade, means that thisketacan be of interest to

participants in other financial market.

Following this, the chapter continues by outlinithge rationale behind, as well as
highlighting the relevant empirical findings foragh of the hypotheses outlined in
Chapter 1 of the thesis, where the first sectioaldith the hypothesis that freight
rate levels follow a fractionally integrated progeBollowing this, the second sections
examines the hypothesis that freight rate volgtiitiso follows a fractionally

integrated process, while the third section examthe hypothesis that incorporating
conditional third and fourth moments of freightestimay give market participants a
better understanding of their potential risk expeshe fourth section summarised
the findings as to the performance of the variasis models, while the fifth section

summarises the overall findings and outlines prajso®r further research.

9.2 Hypothesis 1 — The Dynamics of the First Moment

This thesis began its analysis, in Chapter 5, bgstigating the proposal that freight
rates follow a fractionally integrated process. Tagonale behind this statement was
that in the short-term, the supply function forpgghing services is fixed, while demand
is relatively price inelastic; however, in the lenderm, as new vessels are delivered,
the supply function will expand accordingly. Thigams that in the short-term, freight
rates will exhibit non-stationary behaviour in thde to the fixed nature of supply, as
demand increases, so will freight rates, but ughéopoint where freight rates make
other, more expensive, alternative means of tranesjpan viable, as was illustrated in
Figure 1.3 in Chapter 1. However, as high freigites induce ship-owners to order
new vessels, and these vessels are delivered)yuattal between 18 and 36 months,
but this can be extended to over five years, tipplgufunction will shift to the right,

as illustrated in Figure 1.2 in Chapter 1, andgheirates will revert to their mean
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level. Thus, as has been shown, freight rates aanmeverting; however, this mean
reversion process will occur with a lag, where thiexactly how one would expect a

fractionally integrated process to behave.

In order to test this hypothesis fully, and givee inconclusive findings of standard
unit root tests, Autoregressive Moving Average (ARMAuUtoregressive Integrated
Moving Average (ARIMA) and Autoregressive Fractitipalntegrated Moving

Average (ARFIMA) models were estimated and the ltestompared using standard
forecast metrics, both in-sample and out-of-sam@ee should note that prior to

estimating the full ARFIMA models, and in orderdetermine whether the data series
were merely fractionally integrated white noise, ARA (O;d;O) models were

estimated, and the residuals tested using the éidisst for fractional integration,
outlined in Nielsen (2005). The results of thessstendicated that the residuals of
these models were non-stationary, hence it wasluted that the data was not white

noise and therefore had some information contethtinvit.

It was observed that across all five data seriegsthe ARMA and ARIMA models,
one should never need more than an AR[YA or ARIMA (1,11 ; therefore, when

running the ARFIMA( p; d; q) models, the conclusion was drawn that this typegf

dynamic should be sufficient. The results for thaB=IMA models were unanimous
in determining significantd-parameter, which measure the level of fractional
integration, where-0.5<d < 1.C, thus indicating that the data series exhibit fong
memory. In order to test the stationarity of thesgiduals, and therefore double-
check that these results were not spurious, Nietssts were performed on the
respective residuals, unanimously indicating thatresiduals were stationary, and, as
a result, that the ARFIMA model results were natrgpis.

The results for in-sample comparisons betweenhteetmodel types were somewhat
inconclusive, however it is proposed that both ARMA and ARFIMA models
outperformed the ARMA models, where it is postudatieat limitations in the size of
the sample may have contributed to a lack of alasive results. In terms of the
forecasting performance of the models, the ARMA aisdvere found to outperform
the ARIMA and ARFIMA models for the VLCC and Suezmdata, however, as
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these results are based on the assumption thglfneites are stationary, these results
may be somewhat flawed. For the Aframax, CapesiweRanamax data series, the
ARIMA models were found to outperform the ARMA aARFIMA models.

This research thus concludes that there are sooumds for the hypothesis regarding
the long-memory nature of freight rates therebyjaliag an alternative dimension to
debate as to the true nature of the structure effitet moment of freight rates. As
mentioned in the introduction to this chapter, ahahis has a profound impact not
only on the primary users of ships, i.e. ship-ownand charterers, but also on the
wide number of auxiliary parties in the shippingrkeds. In addition to this, it may
also provide an insight into other markets, fortanse, the real estate market, in
which the underlying asset in the market is alsaeal asset, or other such

service-based industries.

9.3 Hypothesis 2 — The Dynamics of the Second Momen t

Having established the dynamics of the first monanthe underlying freight rates,
the obvious next question was whether a similaucttre applies to the second
moment, or volatility, of these freight rates. lhist respect, the concepts of
stationarity, non-stationarity and fractionallyagtation could be extended from the
spot freight rate levels to the volatility of fréigrates, as illustrated in Bailliet al.
(1996a). This research proposes that, should shtchkke volatility decay in a

hyperbolic manner, as illustrated by news impaatveuB in Figure 1.7, where
AJ1-B,~(1-d) k™ |@T (k+ d=IT (KT (d™ ; k> 1, then the volatility series

could be argued to follow a “fractionally integrdteprocess. The rationale behind
this hypothesis is the same as for the spot fremfetlevels. Imbalances in supply and
demand in the short-term cause freight rate let@l$xplode”. Consequently, the
volatility, or standard deviation, of these freigtill also increase dramatically, until
such a time as the level of spot freight ratesilstas. As new vessels are delivered,
spot freight rates revert to the mean spot freighvel, and volatility stabilises,

however, this process of stabilisation occurs veithkag, due to the fixed nature of

supply in the short-term.
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One should note that the reasons for specifyingiieeof the GARCH, IGARCH and
FIGARCH models is that each assumes a differeré odtdecay for shocks to
volatility where the GARCH models assume an exptakemate of decay, the
IGARCH models an indefinite rate of decay, and R ARCH model a hyperbolic
rate of decay. Therefore, by determining the bestiehfor the data series, one can
draw conclusions as to the persistence of shocksolatility, and therefore the

potential risk exposure of involved parties.

Having run the models, it was found that past vexgaplayed a significant role in
determining the level of volatility in the shippirfgeight markets, and that lagged
returns are found to have an impact on the currenrns in the market. When
examining the results for GARCH and IGARCH moddig, tentative conclusion was
reached that shocks to volatility persisted indedly, regardless of vessel type. In
contrast, however, the results from the FIGARCH ei®duggested that shocks with

respect to freight rate volatility followed the lgypolic rate of decay hypothesised.

In order to address the question as to which model® correct, AIC and SBIC
measures were calculated and the models compariisdrasis. The results for these
measures led to the conclusion that, for the dti-lsector, the FIGARCH model
provided the best fit in terms of the structureatitity, while, for the tanker sector,
the IGARCH model was preferred. Although informatiariteria do provide a
convenient means of choosing between models, Bran&sBurke (2003) argue that
these standard metric suffer from a lack of abilitythat they do not allow for the
number of parameters in the models to change,liideading to reduced forecasting
accuracy. In order to address this issue, the maodefe also compared on the basis
of their ability to accurately determine and mirsenithe respective Value-at-Risk in
Chapter 8.

9.4 Hypothesis 3 — Conditional Third and Fourth Mom  ents

Moving on with the analysis of the moments, thisemrch examined the higher, i.e.
third and fourth, moments. Incorporating skewness leurtosis into models of price
series is well established, however, a relativedyv rintroduction to the financial

markets literature is the concept of conditionatvekess and kurtosis. This thesis
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adopted these concepts, and tested the hypothestisconditional skewness and
kurtosis also plays a significant role in the stowe of the underlying freight rates,
where, to the best of the author's knowledge, thislone for the first time in the
shipping literature and in the literature for maskie which real assets are traded. The
rationale behind this hypothesis is that the stapgbe supply function in the freight
markets is such that when one is positioned atagively price elastic portion of the
supply curve, the degree of skewness and excedsslaiwill be relatively low;
however, as the price elasticity decreases, as-sdran supply reaches its maximum
level, and freight rates shoot up, so will the @egof skewness and excess kurtosis,

resulting in an extremely fat-tailed, positivelyesked distribution.

Chapter 7 of the thesis presents the results frenptocess of testing this hypothesis,
where, in order to do this, the GARCHSK model, tfirgroduced by Lednet al.
(2005), the FIGARCH model, developed by Bajllet al. (1996a), and Bollerslev
(1986)’'s standard GARCH model were estimated, usiight rate returns from five
different vessel types over 1,068 observations,thadesults compared by looking at
the characteristics of the respective conditioraiiance and using likelihood-ratio

tests.

In the quasi-maximum likelihoods estimations of tBARCH and GARCHSK
models, the GARCHSK model was found to capture nuréhe dynamics of the
respective data series based on these resultsth@endonditional skewness and
kurtosis parameters were found to be significambss most of the data series. In
addition, the results of the likelihood ratio testsformly indicated the superiority of
the GARCHSK model over the standard GARCH and #@®ARCH models, a fact
that was confirmed through a comparison of the aittaeristics of the conditional
variance for the respective data series. Theretbi®paper can conclude quite firmly
that the GARCHSK model outperforms the GARCH an@GARCH models in

capturing the dynamics of the data.

There are multiple advantages to being able toucapghe conditional skewness and
kurtosis of the data series - the first, is thatttees distribution of asset returns is
skewed, and there is excess kurtosis, and theréf@retraditional assumption of

normality when estimating Values-at-Risk will resul an underestimation of the
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risk. Secondly, it enables one to better describe distributional properties of
financial asset returns, thus enabling one to beftelerstand the performance of
assets with these properties. Finally, one coulok lat the issue of portfolio
construction to determine if the risk structurdrigdy optimal, and examining these
properties would enable one to better price optimnéinancial markets wherever

these properties exist.

9.5 A Look at the Risk Exposure of Market Participa  nts

Having estimated the risk models in Chapters 6 @ridhapter 8 provided a practical
extension to the hypotheses outlined, by givingnaight into the future risk exposure
of participants in the shipping freight marketsthaa particular focus on the tanker
and dry-bulk sectors of the market. This chapteo ahtroduced the concepts of
fractional integration and conditional skewness kuadosis to forecasting volatility,

thereby extending the shipping forecasting literatu

This analysis extended the literature on forecgstolatility by extending the work of
Kavussanos and Dimitrakopoulos (2007) and Angelahsl Skiadopoulos (2008).
This is because not only did it look at both thaekexr and dry-bulk markets, as
opposed Kavussanos and Dimitrakopoulos who onlysiden the tanker market, it
also examines the spot freight rate series, as ageixamining the risk exposure on
both long and short positions, unlike Angelidis &ldadopoulos who look at freight
rate indices and only consider long positions, amfloducing the concept of

fractional integration to the mix.

Using data from five major ship sizes, across tbéhkthe tanker and dry bulk
markets, the chapter uses an out-of-sample peficgixoyears to perform ex-post
forecasts of freight rate volatility, where theseetcasts are then used to calculate the
respective VaRs described above. Looking at thenatts of risk exposure, one can
see that, in the vast majority of cases, the noarpatric models outperformed the
parametric models, where overall, the filtered drisal simulation model generally

provided the best forecast of the VaR, regardlésiseoposition or sector.
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This analysis therefore provided a tool through cihparticipants in the shipping
markets can evaluate their potential risk exposwurieere both are essential for
making investment decisions and enabling ship-osvteplan the positioning of their

vessels.

9.6 Summary and Proposals for Further Research

This thesis examined the structure of freight rateshe shipping freight market,
where, in particular, the concepts of fractionakgration, in terms of the first and
second moments, as well as conditional skewnesskantdsis, were introduced for
the first time in the shipping literature. The éswf this empirical analysis suggest
that, while shipping freight rate levels do appt&arfollow a fractionally integrated

process, forecasts of the spot freight rate lewelgcated that ARMA and ARIMA

specifications were found to outperform the frawtily integrated specifications,
although arguments do exist that simpler speciboatoutperform more complicated
models in terms of forecasting ability. When moiell freight rate volatility,

FIGARCH models were found to outperform other sppeaiions in the dry-bulk

sector, while the non-stationary IGARCH models wérend to provide a better
evaluation of volatility in the tanker sector. THi®ing said, when incorporating
conditional skewness and kurtosis into the pictumedels which account for this
outperform other specifications in this context. €Tonclude, when looking at
calculating the risk exposure faced by market pigents, the risk exposure incurred
by ship-owners was found to be better evaluatedguson-parametric models in the
tanker sector, and parametric models in the dri-Iselctor. This being said, when
evaluating the risk exposure faced by charterevs;parametric specifications were

found to outperform parametric models in both secto

As with any research, there are, however, somddtians in terms of the analysis
and findings presented above. One possible drawbbthkis research is that it does
not take into account the inflationary behaviour prices in the dry-bulk sector,
although Worldscale rates are adjusted each Jamuamder to take account of this
inflationary tendency. By modelling real insteadnaiminal freight rates, one could
remove this non-stationary and time-varying tresdthough this is left as an area for

further research. One should also note that tHiationary trend could also pose a
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possible reason for the level of persistence saefneight rate levels and returns.
Furthermore, this research utilise raw spot frengles levels themselves, as opposed
to using the natural logarithm of these seriesempindlly ignoring the fact that freight
rates can never be negative. This being said, veisémating the respective models
using these log series, the results for which arepnesented in this thesis due to
space limitations, the results were found not tifedisignificantly to the results

presented here.

Another possible limitation is the sample lengthe do a lack of availability of data,
and the fact that there is only one data sourcéad@ to researchers in the shipping
field. As with any single data source, this brimgsquestions as to the accuracy of the
data concerned, as there is no means of verifymegfiteight rates reported. One
should also note that the returns series used apt€ls 6, 7 and 8, may be biased
upwards as a result of using arithmetic, as opptse¢lde more standard log, returns.
The reason this approach is used is that, showddnash to incorporate an ARFIMA
model into the mean equation for the volatility rahdlifferencing the logs of the
respective series to generate standard returnsdwentler the series stationary. This
should, however, not significantly influence theoe of model for the volatility of
freight rates in that all returns series were gdatlentically. Finally, the accuracy of
standard forecast metrics as applied to forecdstslatility are called into question.
The reason for this is that using squared retuspraxy for actual volatility is
inherently flawed, where Lopez (2001) illustratbdttthis proxy is over 50% greater
or smaller than the actual volatility 75% of theé, however, unfortunately, no better
proxy exists as yet. This thesis addresses thi® iby evaluating the accuracy of the

respective Values-at-Risk for each model with tttei@ Value-at-Risk incurred.

To conclude, and given the fact that any resea@niongoing process, there is still
room for further analysis. A possible extensiorthis thesis would be to determine
whether the characteristics found with respectpot greights could also apply to
modelling second-hand prices in the second-hanal wssel market, as well as the
structure of Freight Forward Agreement (FFA) pric@se should note that, currently,
the relatively recent launch of the FFA contractsans that one is currently limited in
terms of the data set available, which could imtoause the problems discussed

above, and outlined by Schwert (1989); howevertime passes and more data
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becomes available, this problem should solve itskiis thesis has, for reasons of
brevity and also so as to ensure complete clanitierms of the findings, also not
explored fully the problem of asymmetry in the \tity of freight rates. A possible
extension in this respect could be to examine pipdiGation of Fractionally Integrated
Exponential  Generalised  Autoregressive  ConditionaHeteroscedasticity
(FIEGARCH) model to model freight rate volatility ithe shipping freight market,
thereby addresses this gap.
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