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Abstract: We propose a new family of complex PT -symmetric extensions of the

Korteweg-de Vries equation. The deformed equations can be associated to a sequence

of non-Hermitian Hamiltonians. The first charges related to the conservation of mass,

momentum and energy are constructed. We investigate solitary wave solutions of the

equation of motion for various boundary conditions.

1. Introduction

PT -symmetry has served as a very fruitful guiding principle to identify potentially interest-

ing non-Hermitian Hamiltonians, which may constitute physically relevant non-dissipative

systems. The interest in these type of configurations has started with a numerical obser-

vation made in [1], where it was found that the Hamiltonian

H = p2 − g(iz)N+1 (1.1)

possess a real, positive and discrete eigenvalue spectrum for integers N ≥ 1 with coupling

constant g ∈ R
+, despite it being non-Hermitian H 6= H† and unbounded from below, for

N = 4n − 1 with n ∈ N. The virtue of PT -symmetry results from the fact that whenever

the Hamiltonian and the wavefunctions are left invariant under a PT -transformation the

eigenvalues are guaranteed to be real. However, the anti-linear nature of the PT -operator

is responsible for the fact that such a guarantee can not be provided by the PT -symmetry

of the Hamiltonian alone [2, 3]. Unlike as for linear operators, for the PT -operator its

two dimensional representation can be realized, in which case one speaks of broken PT-

symmetry. One is then in a situation in which the corresponding wavefunctions are not

PT -symmetric and the eigenvalues occur in complex conjugate pairs. Nonetheless, even

though PT -symmetry of the Hamiltonian can not guarantee the reality of the spectrum, it

pre-selects a subclass of promising non-dissipative systems. For recent results and a review

see for instance [4, 5, 6].

http://arXiv.org/abs/math-ph/0701036v1
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PT -symmetric Deformations of the KdV Equation

A couple of month ago Bender, Brody, Chen and Furlan [7] have applied the above

principle to identify interesting extensions of the Korteweg-de Vries (KdV) equation [8]

ut + uux + uxxx = 0. (1.2)

The scaling properties of this equation for x → αx, t → βt, u → γu are well known, e.g. [9]

γ

β
ut +

γ2

α
uux +

γ

α3
uxxx = 0, (1.3)

and it has been remarked already at least thirty years ago that the KdV equation remains

invariant under a PT -transformation t → −t, x → −x, see for instance p. 414 in [9]. This

is of course just the particular case α = β = −γ = −1. However, this property has only

been exploited in the above mentioned spirit in [7], where the KdV equation has been

extended to the complex domain in a PT -symmetric manner

ut − iu(iux)ε + uxxx = 0 ε ∈ R. (1.4)

One may think of equation (1.4) as being obtained from (1.2) by a scale invariant defor-

mation

ux → −q̂(qux)ε ε ∈ R, (1.5)

of the second term. When the deformation parameters scale as q → α/γq, q̂ → γ/αq̂,

equation (1.4) has the same behaviour under scaling as (1.3) for all values of ε. The special

case q = q̂ = i yields a PT -symmetric expression for α = β = −γ = −1. Intriguingly, the

equation (1.4) were found to possess interesting solitary wave solutions and two conserved

charges were also constructed.

2. A new PT -symmetric deformation of the KdV equation

It should be mentioned that complex extensions of the KdV equation have been studied

before, see e.g. [10, 11, 12] and in passing even some special cases of equation (1.4) have

been dealt with for instance in [13]. However, only few properties have been studies for

the latter and PT -symmetry has not been adopted as a guiding principle. Motivated by

the interesting findings in [7] and the usefulness of PT -symmetric complex deformations in

other contexts, see e.g. [4, 5, 6], we extend here its application. We suggest that instead

of deforming the second term in (1.3), by the same principle one may equally well deform

the last term or possibly all terms. We shall demonstrate that the former case possesses

some advantageous features when compared with the previously outlined deformation.

Let us start by using the same PT -symmetric deformation principle

ux → −i(iux)ε ε ∈ R (2.1)

as employed in [7], albeit now for the last term. This amounts to replacing the third

derivative as

uxxx → iε(iux)ε−2
[

(ε − 1)u2
xx + uxuxxx

]

. (2.2)

– 2 –
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In this way, simply applying (2.2) to (1.2), we obtain a new PT -symmetric deformation of

the KdV-equation

ut + uux + iε(ε − 1)(iux)ε−2 u2
xx + ε(iux)ε−1uxxx = 0. (2.3)

At first sight the deformation (2.3) appears to be far less appealing than the deformation

(1.4). In the latter the effect of the deformation was simply that the nonlinear term of the

KdV-equation has become somewhat more nonlinear, whereas in (2.3) we have replaced

the linear term by two highly nonlinear terms. Nonetheless, as a trade off the deformation

(2.3) has some very attractive features, which are not present in (1.4). For instance, having

a physical application in mind we expect the deformed equation to be at least Galilean

invariant just like its undeformed counterpart (1.2). This property is lost in (1.4), but

instead (2.3) is Galilean invariant, as it remains invariant under the transformation

x → x − ct, t → t, u → u + c, (2.4)

where c is the velocity of the moving reference frame. Furthermore, it was difficult to

construct conserved quantities for (1.4). Only two charges could be constructed so far and

in addition they turned out to be complicated infinite series. We shall now demonstrate that

this task is surprisingly simple for (2.3), despite its high degree of nonlinearity by relating

it to a Hamiltonian formulation, which seems also impossible for (1.4) as it appears to be

a non-Hamiltonian dynamical system.

3. PT -symmetric deformations from a Hamiltonian formalism

As we remarked, the PT -symmetry analysis, which led to (1.4), was carried out directly for

the equation of motion. Recalling that (1.1) was obtained as a deformation of the standard

harmonic oscillator and that this principle has been applied to various Hamiltonian systems,

it appears highly desirable to perform deformations for the KdV system also on the level of

a Hamiltonian. This will enable us to relate these systems to the arguments, which allow

statements about the reality of the spectrum by utilizing PT -symmetry as outlined in the

introduction. In the equation of motion this property enters more indirectly and it is less

clear which kind of conclusions can be drawn from the symmetry property.

It is well known for a long time that the KdV-equation can be formulated as a Hamil-

tonian system [14, 15, 16, 17]. Thus in this spirit and in more direct analogy to the

construction of (1.1), we propose to study the new non-Hermitian Hamiltonian density

H =u3 − 1

1 + ε
(iux)ε+1 ε ∈ R. (3.1)

For ε → 1 we recover the standard Hamiltonian density for the KdV-equation. Clearly H
in (3.1) is PT -symmetric, since it remains invariant under the transformation: t → −t, x →
−x, i → −i and u → u. Similarly as in the standard quantum mechanical setting, outlined

in the introduction, PT -symmetry can be utilized to ensure the reality of the energy E,

which follows trivially with H(u(x)) = H†(u(−x))

E =

∫ a

−a
H(u(x))dx = −

∫ −a

a
H(u(−x))dx =

∫ a

−a
H†(u(x))dx = E†. (3.2)

– 3 –
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Let us now derive the corresponding equation of motion by invoking the variational

principle for the Hamiltonian H(u) =
∫

Hdx

∂u

∂t
=

∂

∂x

(

δH(u)

δu

)

=
∂

∂x

(

δ
∫

Hdx

δu

)

=
∂

∂x

(

∑∞

n=0
(−1)n

dn

dxn

∂H
∂unx

)

. (3.3)

Evaluating (3.3) for H in (3.1) yields

ut + (−3u2 + ε(iux)ε−1 uxx)x = 0, (3.4)

or when not written as a conservation law

ut − 6uux + iε(ε − 1)(iux)ε−2 u2
xx + ε(iux)ε−1uxxx − κ = 0, (3.5)

where κ is a constant. Note that (3.5) is almost (2.3), but corresponds to a deformation of

the scaled KdV equation (1.3), with α = β = 1, γ = −6 and κ = 0, which, depending on

the context, is also frequently used in the literature for convenience.

3.1 Integrals of motion and conserved quantities

Having seen how to obtain the PT -symmetrically deformed KdV equation (2.3), or more

precisely its scaled version (3.5), from a Hamiltonian principle, we shall demonstrate next

that is has further interesting properties, which are absent in the deformation (1.4). As

mentioned, for (1.4) the authors of [7] could only construct the two first conserved quantities

in form of complicated infinite sums. Here we find instead that for (3.5) these quantities

can be computed in a straightforward manner. Assuming to have a conserved quantity of

the form I(n) =
∫

T (n)dx, all we have to verify is whether its Poisson bracket with the

Hamiltonian is vanishing, see e.g. [14]. Viewing I(n)(u) and H(u) as functionals of u we

have by definition

dI(n)

dt
=

∫

δT (n)

δu

∂u

∂t
dx =

∫

δT (n)

δu

(

δH

δt

)

x

dx =:
{

I(n),H
}

. (3.6)

Let us now employ (3.6) to establish that

I(1) =

∫

udx, I(2) =

∫

u2dx and I(3) = H(u), (3.7)

are indeed preserved under an evolution in time. We find that these quantities are conserved

when we invoke as standard boundary condition the non-compact or compact case for

u, ux, . . ., that is being either vanishing at infinity or periodic in space, respectively. This

is easily seen by computing

dI(1)

dt
=

{

I(1),H
}

=

∫

(3u2 − ε(iux)ε−1 uxx)xdx = 0, (3.8)

dI(2)

dt
=

{

I(2),H
}

=

∫
(

4u3 − 2ε

1 + ε
(iux)ε+1 − 2εu(iux)ε−1uxx

)

x

dx = 0, (3.9)

dI(3)

dt
=

{

I(3),H
}

= −
{

H,I(3)
}

= 0. (3.10)

– 4 –
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The last conservation law follows trivially from the anti-symmetry property of the Poisson

brackets. We can also be more explicit and compute the corresponding flux. Constructing

vanishing Poisson bracket amounts to seeking solutions of the conservation law

T (n)
t + X (n)

x = 0, (3.11)

with −X (n) being the nth flux and T (n) being the nth conserved density. Then I(n) =
∫

T (n)dx is a conserved charge provided the appropriate boundary conditions hold. The

case n = 1 corresponds to the equation of motion itself as can be read off directly from

(3.4). For the case n = 2 we may re-write (3.9) as a conservation law in the form

(

u2
)

t
+

(

2ε

1 + ε
(iux)ε+1 + 2εu(iux)ε−1uxx − 4u3

)

x

= 0. (3.12)

We can also be more concrete about T (3) = H and compute the associated flux

X (3) = (
ε2

2
− ε)(iux)2ε−2u2

xx + 3
(

εuuxx − 2u2
x

)

u(iux)ε−1 − iε(iux)2ε−1uxxx − 9

2
u4, (3.13)

thus confirming (3.10). At this stage it is not clear whether there exist higher conserved

quantities. However, we suspect that similarly as for most cases of the modified KdV

equations and the generalized KdV equations only three charges exist. We recall that the

equation ut+upux+uqx = 0 is only integrable, i.e. possesses an infinite amount of conserved

quantities, for the cases q = 3, p = 1, 2; q = 1, p ∈ N and q ∈ N, p = 1, see e.g. [9].

3.2 Solutions of the equations of motion

We shall now construct solutions of the equations of motion (3.5). One may expect to find

a rich variety of different types of solutions similarly as for the standard KdV equation.

Over the years several methods have been developed to find such solutions ranging from

minimizing the sum of the conserved charges [18], the inverse scattering method [19],

Hirota’s bilinearization method [20], etc. Some methods demand as a prerequisite the

model to be integrable. As this feature is not guaranteed for the model at hand, in fact the

conjecture is that the model is not integrable, our aim is here just to obtain a first impression

in order to indicate that the above family of equations deserve further attention. Following

a simple procedure which has turned out to be useful for the standard KdV equation, we

may integrate (3.5) directly by assuming the solution to be a steady progressing wave

u(x, t) = w(kx − ωt) = v(x − ct), (3.14)

with c = ω/k. Substituting (3.14) into the equation of motion (3.5) yields after some

straightforward manipulations

v(n)
x = e

iπ(4n+3ε+1)
2(1+ε)

[

ε + 1

ε
(v3 +

c

2
v2 + κv + κ̂)

]
1

ε+1

, (3.15)

with κ̂ being an additional constant of integration and n labeling the various branches of

the function. Separating variables then yields

x − ct = e
iπ(4n+ε−1)

2(1+ε)

(

ε

ε + 1

)
1

ε+1
∫

dv

(v3 + c
2v2 + κv + κ̂)1/(ε+1)

. (3.16)
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Apart from computing the integral in (3.16), the main problem is here that we need to

solve the equation for v in order to obtain v(x − ct). This is only possible in very few

exceptional cases, but the knowledge of the inverse function (x − ct)(v) in some domain

will be valuable as it provides the information about the kind of general behaviour which is

possible. For convenience we choose the dispersion relation and the constants of integration

to be parameterized as

c = 4k2(2 − m), κ = 4k4(1 − m) and κ̂ = 0. (3.17)

This choice is guided by the known solutions for ε = 1 and leads naturally to three quali-

tatively different cases.

3.3 Analogues of the cnoidal solution

Let us first recall how to solve equation (3.16) for the case ε = 1, which should result into

an elliptic integral as we integrate the inverse of the square root of a cubic polynomial.

With the choice of constants (3.17) we may bring (3.16) into the usual form of an elliptic

integral

kx − ωt = ± k√
2

w
∫

−2k2

dt
√

t3 + 2k2(2 − m)t2 + 4k4(1 − m)t
= ±

φ(w)
∫

0

dθ
√

1 − m sin2 θ
, (3.18)

with φ(w) = arcsin
√

(1 + w/2k2)/m. From (3.18) we deduce therefore that w(kx − ct)

becomes the well known cnoidal solution for the KdV equation

u(x, t) = −2k2 dn 2(kx − ωt|m), (3.19)

with dn being a Jacobian elliptic function depending on the parameter m ∈ [0, 1], see

e.g. [21] for notation and properties. As (3.19) indicates for ε = 1, the cases m = 0, 1 are

special in general. For generic values of ε we evaluate (3.16) with the parameterization

(3.17) to

x − ct = e
iπ(4n+ε−1)

2(1+ε)

(

v(1 + ε)

ε

)
ε

1+ε

(

1

4k2(1 − m)

)
1

1+ε

(3.20)

×F1

(

ε

1 + ε
;

1

1 + ε
,

1

1 + ε
;
1 + 2ε

1 + ε
;

−v

2k2(1 − m)
;
−v

2k2

)

.

Here F1 is the Appell hypergeometric function defined via a double infinite sum as

F1(α;β, β′; γ;x; y) :=

∞
∑

m=0

∞
∑

n=0

(α)n+m(β)n(β′)m
n!m!(γ)n+m

xnym (3.21)

with (α)n :=
∏n

k=1(α + k − 1). Since we can not solve (3.20) for v let us plot (x − ct) as a

function of v and search for real solutions.

We depict our findings in figure 1. For ε = 1 we recognize the cnoidal solution (3.19).

For clarity we did not indicate the vanishing imaginary part in this case. For the other

– 6 –
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values of ε we find always two different types of solutions. The first resembles qualitatively

the cnoidal solution and is either real for v ∈ [−1/2k2, 0] or v ∈ [0, 1/2k2]. In figure 1 we

present ε = 3; n = 2, 4; k = 1/
√

2 for the former case and ε = 5; n = 2, 5; k = i/
√

2 for the

latter. The second type is more similar to the tan2 solution for ε = 1 to be discussed in

the next section. These solution are real either for v ∈ (−∞, 0] or v ∈ [0,∞). In figure 1

the former case is illustrated by ε = 3; n = 2, 4; k = i/
√

2 and the latter by ε = 5; n = 2, 5;

k = 1/
√

2.

Figure 1: (x-ct) as a function of v for ε = 1, 3, 5 for some particular branches.

3.4 Analogues of the tan2 solution

Next we consider the limit m → 0. Keeping the parameterization (3.17) we make the

further convenient choice k = ±1/
√

2, similarly as in the previous section, which amounts

now to the boundary condition κ = 1. Then the Appell hypergeometric function F1 reduces

to the Gauss hypergeometric function 2F1 defined as

2F1(α;β; γ;x) :=
∞
∑

n=0

(α)n(β)n
n!(γ)n

xn = F1(α;β/2, β/2; γ;x;x). (3.22)

Using furthermore the identity

2F1(α; 2β; 2α + β;x) = αx−αBx (α, 1 − 2β) , (3.23)

where Bz (α, β) is the incomplete beta function

Bz (α, β) =

∫ z

0
tα−1(1 − t)β−1, (3.24)

we obtain the simpler expression

x − 4t = e
iπ(4n+ε−1)

2(1+ε)

(

ε

ε + 1

)
1

ε+1

B−v

(

ε

ε + 1
,
ε − 1

ε + 1

)

. (3.25)

For ε = 1 (3.25) reduces further to x − 4t =
√

2 arctan(±√
v), which may be solved

for v, such that we obtain u(x, t) = tan2[(x − 4t)/
√

2] as a solution for the standard KdV

equation. For generic values of ε we depict (3.25) for various values of the parameters

– 7 –
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in figure 2. For ε = 1 we perceive the real solution x − 4t =
√

2 arctan(±√
v) in panel

(a). A qualitatively similar type of solution is obtained for instance for some branches

for ε = 5 as is seen also in panel (a). Panel (b) confirms that for v > 0 this solution

is real. (The solid line is on top of the dashed line) Interesting qualitatively different

types of solutions are obtained for instance for some branches for ε = 3, 11. We observe

from panel (c) that these solutions are very reminiscent of the one soliton solution, to be

discussed in the next section, albeit with the fundamental difference that they are not

vanishing asymptotically for large (x − ct). This is seen simply by using the property

B1 (α, β) = Γ(α)Γ(β)/Γ(α + β) of the incomplete beta function. For v → 1 we obtain in

(3.25) the definite values e
iπ(4n+ε−1)

2(1+ε)

(

ε
ε+1

)1/(ε+1)
Γ( ε

ε+1)Γ(ε−1
ε+1)/Γ(2ε−1

ε+1 ). This limit is finite

for the parameter range except for ε = 1, when limx→0 Γ(x) → ∞. In this case we obtain

a purely complex one soliton solution as can also be seen clearly in panel (b). Having

Galilean invariance for our equations, we may also move this function as v → v + 1, such

that the tails are located at v = 0 rather than v = −1, which is a more familiar setting.

Figure 2: (x-ct) as a function of v for ε = 1, 3, 5,11 for some particular branches and m=0.

3.5 Analogues of the one soliton solution

Next we take the limit m → 1 corresponding to the special case κ = 0, which implements

vanishing boundary conditions. Indeed, adopting the parameterization (3.17) the limit

m → 1 in (3.19) for ε = 1 yields the asymptotically vanishing single soliton solution

– 8 –
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u(x, t) = −2k2 sech 2(kx − ωt). Taking this limit in (3.20) for generic values of ε gives

x − ct = e
iπ(4n+ε−1)

2(1+ε)

(

ε

ε + 1

)
1

ε+1

(2k2)
1+ε

2−ε B− v

2k2

(

ε − 1

ε + 1
,

ε

ε + 1

)

. (3.26)

We depict this function for various values of the parameters in figure 3. The famous

one soliton solution is clearly visible for ε = 1. In the other cases we obtain again two

qualitatively different types of real solutions. One type being real in the finite ranges

v ∈ [−1/2k2, 0] and v ∈ [0, 1/2k2] exemplified by ε = 5; n = 1, 4; k = 1/
√

2 and ε = 3;

n = 2, 4; k = i/
√

2, respectively. The other type is real in the ranges for v ∈ (−∞, 0]

and v ∈ [0,∞), which we illustrated in figure 3 by ε = 3; n = 1, 3; k = i/
√

2 and ε = 5;

n = 2, 5; k = 1/
√

2, respectively.

Figure 3: (x-ct) as a function of v for ε = 1, 5 and ε = 3, 11 with k = ±1/
√

2 and k = ±i/
√

2,

respectively, for some particular branches with m=1.

4. Conclusions

Alternatively to [7], we proposed a new PT -symmetric complex deformed version of the

KdV equation. The suggested deformation allows for a simple non-Hermitian Hamilto-

nian formulation involving a Hamiltonian density very reminiscent to the prototype PT -

symmetrically complex deformed quantum mechanical system (1.1). The model (3.1) is

Galilean invariant and three charges, related to the conservation of mass, momentum and

– 9 –
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energy, together with their conservation laws, were constructed. We demonstrated that

there exist steady progressing wave solutions for these models and identified analogues to

the cnoidal and tan2 solution. However, we did not find asymptotically vanishing analogues

to the one soliton solution.

Clearly there are many important questions left to be answered. It would be interesting

to establish that there exist three and only three charges for the proposed deformation.

Besides solving the equations more explicitly it will be natural to seek for solutions on

some rays in the complex plane. It will be straightforward to extend these considerations

to the modified KdV and the generalized KdV equations. We shall leave these issues for

future investigations [22].

Acknowledgments. I am grateful to D.C. Brody for bringing reference [7] to my attention.

Discussions with C. Figueira de Morisson Faria are gratefully acknowledged.
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