

City, University of London Institutional Repository

Citation: Ncube, C. (2000). A requirements engineering method for COTS-based systems

development. (Unpublished Doctoral thesis, City University London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/7861/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Requirements Engineering Method for COTS-

Based Systems Development

Cornelius Ncube

Submitted for Examination of Doctor of Philosophy

Centre for Human-Computer Interaction Design

School Of Informatics

City University

London

May 2000

Table Of Contents - Volume 1

Abstract ... 13

Chapter 1: Introduction: Requirements Engineering for COTS-Based

Development Paradigm
.. 14

1.1 Introduction .. 15

1.2 How current requirements engineering research fails COTS-based systems
development ... 17

1.3 Thesis scope ... 19

1.4 Thesis objectives and hypotheses
.. 21

1.5 Research contributions .. 22

1.6 Thesis outline ... 22

Chapter 2: Current State-of-The-Art and Trends in COTS-Based Systems

Development .. 25

2.1 Introduction ..
26

2.2 The problem and its setting ..
26

2.3 The shift to packaged-based systems development paradigm 27

2.4 Current trends in packaged-based systems development 28

2.4.1 Enterprise Resource Planning (ERP) 29

2.4.2 Component-Based Software Engineering (CBSE)
30

2.4.3 COTS-Based systems Development (CBD) ... 34

2.5 Current requirements engineering trends ... 34

2.6 Current problems with COTS-based development ... 38

2.6.1 Why COTS software selection is problematic .. 39

2.6.2 The problems of requirements in COTS software selection 39

2.6.3 Constraints on the COTS software selection process 40

2.7 COTS software product evaluation and requirements engineering 42

2.8 Problems with current COTS software evaluation processes 43
2.8.1 Emerging COTS software evaluation strategies 44

2.9 Current COTS-based system development methods .. 46

2

2.9.1 The Off-The-Shelf Option (OTSO) method ... 46
2.9.2 The COTS-based Integrated Systems Development method (CISD) 48
2.9.3 The Infrastructure Incremental Development Approach (IIDA)

............ 50

2.9.4 The IusWare method .. 52

2.9.5 Feature Analysis evaluation method .. 53

2.9.6 Summary of the current COTS-based methods 55

2.10 Decision-Making techniques ... 56

2.10.1 General difficulties with current decision-making techniques 57

2.10.2 Current proposed decision-making techniques .. 58

2.10.2.1 The Multi-Attribute Utility Theory (MAUT) 58

2.10.2.2 The Multi-Criteria Decision Aid (MCDA) 59

2.10.2.3 The Weighted Score Method (WSM) .. 60

2.10.2.4 The Analytical Hierarchy Process (AHP) 62

2.10.2.5 The Outranking method ... 64

2.10.3 Limitations of the current decision-making techniques 66

2.11 Chapter summary and conclusions ... 68

Chapter 3: Requirements Engineering Process and Method for COTS-Based

Development .. 70

3.1 Procurement process problems ... 72

3.1.1 The study method ... 72

3.1.2 Organisations' current procurement processes .. 73

3.1.3 Data gathering method ... 74

3.1.4 Results .. 74

3.1.5 The generic process model ... 76

3.1.5.1 A brief description of the U level generic processes 78

3.1.5.2 Detailed description of the W and A level generic process 80

3.1.6 Analysis of results .. 89

3.1.7 Validation of the findings .. 91

3.2 Acquiring requirements for COTS product selection ... 94

3.2.1 Study method ... 94

3.2.2 Results
.. 95

3

3.2.2.1 Lessons learned, problems encountered and suggested

solutions ... 95
3.2.2.2 Discussion ... 103

3.3 PORE: a requirements acquisition method for COTS-based systems
development ... 104

3.3.1 PORE Templates ... 106

3.3.2 Template 1: paper evaluation template .. 107

3.3.3 Template 2: hands-on evaluation template .. 109

3.3.4 Template 3: user trial template .. 111

3.4 The PORE process model .. 113

3.5 Summary and chapter conclusions .. 114

Chapter 4: Interleaved Requirements Acquisition and COTS Software

Product Selection .. 116

4.1 PORE iterative approach ... 117

4.2 Goal-based process guidance ... 119

4.3 PORE's multi-layered process guidance ... 122

4.3.1 Situation-based guidance ...
123

4.4 Models for guiding the PORE process .. 124

4.4.1 Product model .. 124

4.4.1.1 Rationale for a software product model 130

4.4.2 The requirement model ..
131

4.4.3 The compliance sub-model ..
135

4.5 PORE's method box .. 137

4.6 Process situation rules ... 138

4.7 PORE's process chunks ... 140

4.8 Summary and chapter conclusions .. 145

Chapter 5: Process Advisor prototype tool Design and Development 147

5.1 Architecture ... 148

5.1.1 Process engine .. 149

4

5.1.2 The process advisor .. 151
5.1.3 The inference engine .. 152
5.1.4 Database ... 152

5.2 Demonstrating PORE's process guidance ... 158
5.3 Summary .. 173
5.4 Chapter Conclusion ... 173

Chapter 6: Evaluating the PORE Method ... 175

6.1 Overview of the empirical studies ... 176
6.2 Three case studies to evaluate PORE

.. .. 177

6.2.1 Evaluation of PORE in organisation A .. 178
6.2.1.1 Results and lessons learned ... 181

6.2.2 Evaluation of PORE in organisation B .. 182

6.2.2.1 Results and lessons learned .. . 185

6.2.2.2 Discussion .. . 186

6.2.3 Evaluating PORE in organisation C 187

6.2.3.1 What was done before demonstration sessions 188
6.2.3.2 What was done during the demonstration sessions 193

6.2.3.3 What was done after demonstration sessions 194

6.2.3.4 Results .. 195
6.3 Expert evaluation of PORE ... 198

6.3.1 Study method ... 198
6.3.2 Results .. 200
6.3.3 Summary of the results .. 203

6.4 Summary and Chapter Conclusions .. 210

Chapter 7: Discussion and Conclusions .. 211

7.1 Summary .. 212
7.2 Testing the thesis hypotheses .. 213

7.2.1 Testing hypothesis H1 ... 213
7.2.2 Testing hypothesis H2 .. 214

5

7.2.3 Testing hypotheses H3 - H6 .. 214

7.3 Contributions to research on requirements engineering for COTS-based

systems development ...
216

7.4 Discussion .. 218

7.4.1 Multiple COTS selection ... 218

7.4.2 Supplier view ...
220

7.4.3 The buy vs. build Decision .. 221

7.4.4 Application service providers .. 221

7.4.5 Requirements for product evolution .. 222

7.5 Future work to improve PORE ..
223

7.6 Future research directions for requirements engineering for COTS-based

systems development paradigm ...
224

7.6.1 COTS software simulation environments ..
224

7.6.2 A shared knowledge development process ..
225

7.6.3 The `soft' issues - training and education ...
226

References ...
228

Bibliography ..
23 8

Glossary ...
240

6

Thesis Tables

2.1 Summary of process covered by current COTS development methods 55

2.2 List of criteria that the product should meet and scores assigned to each

criterion .. 60

2.3 Example of the weighted score method ... 61

2.4 An example of applying the AHP method ... 63

2.5 Criteria for accessing combined techniques .. 65

2.6 Link between current COTS development methods and decision-making

techniques .. 66

3.1 Overview of distribution of problems experienced by organisations A, B&C. 90

3.2 Problems that are not addressed by current COTS development methods......... 93

4.1 An example of mapping between requirements and product features 136

4.2 A sample list of some of the identified PORE situations 140

5.1 A sample of the requirements database ... 153

5.2 A sample of the product feature database .. 154

5.3 A sample of the PORE situations ..
155

5.4 A sample of the PORE method box .. 156

6.1 The seven situations used in the expert evaluation study 198

6.2 The background of the experts ..
199

6.3 Knowledge provided by the experts .. 200

6.4 Analysis of fit between theory and experts knowledge
..................................... 202

6.5 Number of times the experts advice matched with PORE's advice 203

7

Thesis Figures

1.1 Focus of the thesis ... 19

1.2 The structure and relationships between the thesis chapters 24

2.1 Paradigm shift from bespoke custom build systems to package-based
development ... 28

2.2 A spectrum of packaged-based systems development .. 29

2.3 Impact of components in the Component-Based Software Engineering

development process .. 33

2.4 A COTS-based triad development approach ... 41

2.5 Influence of COTS evaluation on the requirements acquisition and architecture

design processes .. 43

2.6 Principles of a decision-making problem .. 56

3.1 Current focus on COTS development ... 72

3.2 The typical high-level procurement process of organisation A 75

3.3 Current procurement process of organisation B 76

3.4 The basic U generic process model 78

3.5 Example of a design rationale tailored for product evaluation 100

3.6 A sample of the AHP method to weight requirements 102

3.7 An outline of the PORE process model for product selection 105
3.8 Part of template 1 for product selection using supplier data

.............................
108

3.9 Part of template 2 for use during supplier-driven product demonstration 110

3.10 Part of template 3 for use during product user trials ... 112

4.1 Overview of the PORE's iterative process ... 118

4.2 Graphical depiction of a route map showing PORE's high-level processes 121

4.3 The three levels of process guidance which form the PORE process triplet..... 122

4.4 The PORE software product meta-model and its primitive concepts and the

meta-relationships linking the meta-concepts ... 125

8

4.5 Example of an instantiation of the product meta-model showing a

requirements management tool's components, its connection with other

products and between components and the dependency relationships 129

4.6 The requirement model and its abstract meta-concepts and meta-relationships 132
4.7 The structure of the compliance model and the relationships between

requirement, product and compliance sub-model .. 135

5.1 Overview of the prototype tool architecture .. 149

5.2 PORE's process engine algorithm ... 150

5.3 The involvement of the user in the process advisor tool 151

5.4 The relationships and links between the theory components and the prototype

tool implementation ... 157

5.5 Screen-shot of process advice chunk to acquire atomic customer requirements 160

5.6 Screen-shot for setting the limit values ... 161

5.7 Screen-shot of dialogue between the tool and the requirements engineering

team ... 164

5.8 Screen-sot of the state of the requirement model and product model after

completing process chunks 1.4 & 1.5 .. 164

5.9 Screen-shot of the analysis process chunk .. 166

5.10 Screen-sot of compliance checking scores .. 168

5.11 Screen-shot of non-discriminating requirements or product information advice

presented to the team ... 169

5.12 Screen-shot of all product eliminated advice ..
172

6.1 Activities performed at each stage of the process and the relevant PORE

templates that were applied in organisation A ... 181

6.2 Activities performed at each stage of the process and the relevant PORE

templates that were applied in organisation B ... 185

6.3 An example of an underwriters first draft of the scenario model 189

6.4 An example of a storyboard showing a stakeholder scenario 190

6.5 Scenario based test case generation for the underwriter's new risk scenario.... 192

6.6 The process activities that were performed before product demonstration

sessions .. 193
6.7 Process activities that were performed after product demonstration sessions... 195

9

7.1 Simulated environment for evaluating COTS products 225

7.2 A vision of a shared knowledge development process as the cornerstone of the

future success of the packaged-based system development paradigm 226

10

Acknowledgements

Throughout my PhD study, there have been many influences and encouragements,

blind alleys, moments of despair and disappointments. During this period of many

uncertainties, I have received tremendous support and encouragements from many

people. I would like to thank my supervisor, Dr Neil Maiden for his inspiration,

dedicated help, encouragement, insight, advice and guidance. Thanks as well to the

School of Informatics, City University, for their funding. I also thank various people

who provided help and took part in the studies, in particular Suzanne Robertson from

Atlantic Systems Guild, Ms Jane Smith from Quintec Associates Ltd, Mr Andrew

Moore from Technical Management Consultancy Limited, Daniel Mulhall from Jago

Managing Agent and Dr Lamia Jamal-Aldin from Sussex University. Thanks also to

my colleagues at the Centre for HCI Design, especially Professor Alistair Sutcliffe, Dr

Kulwinder Kaur-Deol, Dr Mark Ennis, Dr Peter Faraday, Dr Helen Sharp, Dr Julia

Galliers, Ms Stephanie Wilson, Ms Elizabeth Bromley, Ms Maia Dimitrova, Ms

Marina Krumbholz, Ms Raquel Monja, Mr Nedim Dedic, Mr Hu Jiawei. Thanks also

to Ms Beverly Copeland, Nigel Mitchem and Pete Boyd and Ms Nonhlanhla Zulu for

their various acts of support. Finally, I wish to thank my friends and family for their

ongoing support.

11

Declaration

The author grants the power of discretion to the university library to allow the thesis

to be copied in whole or in part without further reference to the author.

12

Abstract

An increasing number of organisations are procuring off-the-shelf software products

from commercial suppliers. However, there has been a lack of methods and software

tools for such requirements acquisition, product selection and product procurement.

This thesis proposes a new method called PORE (Procurement-Oriented

Requirements Engineering) which integrates existing requirements engineering

techniques with those from knowledge engineering, feature analysis, multi-criteria

decision-making and argumentation approaches to address the lack of guidance for

acquiring requirements to enable evaluation and selection of commercial-off-the-shelf

(COTS) software. PORE is designed in part from conclusions drawn from real-world

case studies of requirements acquisition for complex software product selection. Such

studies are reported in this thesis. The PORE method is part goal-driven and part

context-driven, in that it exploits models of the candidate COTS software and

customer requirements as well as process goals to guide a requirements engineering

team. The method's approach and mechanisms is demonstrated using a well-known

commercial electronic-mail system. A number of studies are presented to provide

validation for the method. These include three studies in three different organisations

to select COTS software products and one study of requirements engineering experts

to elicit their knowledge. The results from these studies demonstrated that the method

is usable and effective. The thesis concludes with a discussion of future work to

improve the PORE method and future research directions on requirements

engineering for COTS-based systems development.

13

Chapter 1

Introduction:

Paradigm

Requirements Engineering for COTS-Based Development

This chapter introduces the research problem and gives the outline of the

thesis.

1: Overview: COTS-Based Development and Requirements

Chapter 1

Overview: COTS-Based Development and Requirements

Engineering

1.1 Introduction:

The world of computer systems development is being revolutionised by the use

prefabricated, packaged commercial-off-the-shelf (COTS) software products. Despite

this interest in COTS software, there is currently no absolutely agreed definition of

what constitutes a COTS product. However, Carney & Long (2000) propose a

mechanism that characterises COTS software products `in a reasonably specific

manner'. The definition that is used in this thesis is that provided by SEI (1999)

which defines a COTS product as software `that is sold, leased or licensed to the

general public; that is available in multiple identical copies and that is used without

modification of its internals (i. e. source code); that is supported and evolved by the

vendor who returns the intellectual property rights'. Typical examples of COTS

software product under this definition are e-mail packages such as Eudora, Pegasus

and Out Look Express; anti-virus systems such as Dr Solomon, F-Prot and Sophos;

requirements management tools such as RequisitePro, DOORS and Cradle;

enterprise-wide applications such as SAP/R3, BAAN and PeopleSoft.

This use of COTS software products transforms the way organisations develop their

IT systems. COTS software products range in size from small stand-alone packages to

very large enterprise-wide packages. The COTS product market is growing very fast

(Maiden et al. 1999). It is estimated that there are more than 300 COTS vendors

competing in the UK market alone. A worldwide market of over $52bn by year 2002

is predicted (Evolving Enterprise, 1998). In 1997 the Fortune Magazine (1997)

estimated that 20 000 companies world-wide paid $10bn to COTS vendors and

Dataquest (1997) estimated that 41% of these companies have 1-4 COTS packages

with 39% of them having more than 5 packages.

Developing systems using COTS products has a number of important benefits to

customers (McGrew & Viega, 1999). Some of the proven or predicted benefits are:

15

1: Overview: COTS-Based Development and Requirements

" reduction in development time - competing organisations need to keep one step
ahead of their competitors, therefore there is a need to produce their computer
systems as quickly as possible;

" reduction in lines of code to be written - COTS products provide functionality

that developers would otherwise have to write. By employing COTS products, the

code that would have been required to implement that functionality is saved;

" reduction in the complexity faced by developers - COTS software products

provide abstractions that hide complexities that a developer would otherwise have

to tackle.

Not only can the use of COTS software help reduce development time, it can

potentially lead to fewer errors in the non-COTS developed portions of the system.
As organisations continue to move towards COTS-Based Development (CBD),

systems development will become more like traditional manufacturing: developers

will code less but design and integrate more (Voas 1998). However, today's computer

systems are more complicated than ever and the time pressures to get them done and

put into use is greater (McGrew & Viega 1999).

Therefore, in order to reap the benefits of COTS-based development - reduced time-

to-market, less coding, more user choice and lower costs, there is a need for the

software development industry to rethink their systems development processes and

strategies. There is no reason why this industry cannot learn from traditional

engineering disciplines like manufacturing, electrical or electronics engineering,

where prefabricated components have been used for many years. The use of COTS

software products implies the need for new approaches to system development.

However, inspite of the boom in the use of COTS products, most organisations

experience major problems in their implementation. Forrester Research (1997)

estimated that for every $1 spent on a COTS software package, $9 is spent trying to

integrate it, and this integration accounts for 30% of IT development budgets. One

reason for these problems is inadequate requirements engineering (acquisition) and

COTS product evaluation and selection, although they are rarely recognised or treated

as such.

16

1: Overview: COTS-Based Development and Requirements

In a COTS-based development process, early evaluation and selection of candidate
COTS software products is one of the key aspects of the system development life-

cycle. Its success largely depends on the accurate understanding of the capabilities

and limitations of the individual candidate products. To achieve this success, the

evaluation and selection of the candidate software products must begin at the same

time as the acquisition of initial customer requirements. To gain a reasonable level of

confidence in the results of the product evaluation and selection process, rigorous

methodologies to guide evaluation and selection of products and acquisition of

customer requirements are needed. However, there are few methods or tools that

guide the requirements acquisition for COTS software evaluation and selection

processes. This lack of methods means that there is no systematic process of acquiring

customer requirements and expressing them in way that enables effective evaluation

and selection of COTS software products. In short, current requirements engineering

methods and research do not address COTS-based development issues.

1.2 How current requirements engineering research fails COTS-based

systems development

As requirements engineering continues to be an area of growing importance, recent

high profile system failures such as the London Ambulance Services in 1992 (Dowell

& Finkelstein 1996) have served as examples of system failures due to an inadequate

requirements engineering and selection processes. Indeed, Fred Brooks (1987) told us

more than a decade ago that `no other part of the work than requirements

engineering, so cripples the results if done wrong' and this still is and continues to be

the case today.

Indeed, it is a widely agreed view in the systems development community that errors

generated during the requirements engineering phase are the most expensive to fix

(Boehm 1981). Various studies have shown that fixing an error after the system has

been delivered costs in orders of magnitude more than fixing it at the requirements

engineering stage. Compared to other phases of system development, these symptoms

reflect, by a large margin, the lack of adequate approaches to requirements

engineering. The implication is that generating error-free requirements has a high cost

17

I: Overview: COTS-Based Development and Requirements

leverage and that even small improvements would be worthwhile. This has even more
serious consequences in the COTS-based systems development.

This lack of any requirements engineering focus is particularly more surprising given
the new opportunities that CBD offers the requirements engineering process. For

example, stakeholders or customers often have prior knowledge of candidate products
during the requirements acquisition phase, so acquisition can focus on the

requirements that can be used to best discriminate between competing COTS products

and products can be rejected as relevant new requirements are acquired (Finkelstein et

al, 1996). Indeed, the success of any CBD development largely depends on the

successful selection of candidate products and the inadequate identification and

acquisition of customer requirements can significantly affect the resulting system. In

CBD, requirements are the cornerstone for selecting candidate products to be included

in the final system. These products are selected according to their degree of

compliance to customer requirements. However, most current research largely focuses

on integration of selected COTS products (Vigdar et al 1996, Brown et at 1995),

architecture and design (Shaw 1996, Garlan et al 1995) and not on how these products

are selected in the first place.

There is an implicit assumption that COTS products meet customer's requirements.

However the selection of the right product is often a non-trivial task and requires a

careful balancing between customer requirements, product functional capabilities and

system architecture. These issues are rarely adequately addressed in CBD research.

There is little practical process guidance and methods provided to requirements

engineers to assist in acquiring requirements for selecting preferred products from the

myriad available in the market. Organisations also do not know how to do the

selection process. Rather than approaching the selection of COTS products with the

attitude `what COTS products exist in the market and how can we use them'

organisations instead, define strict requirements that either exclude the use of COTS

or that require large product modifications to satisfy them (Vigder et al. 1996).

Defining requirements in too detail establishes an artificially too high baseline on

selection and evaluation of products and may lead to unjustified elimination of

candidate products that might have provided reasonable subset of the proposed system

functionality (Vigder et al. 1996).

18

1: Overview: COTS-Based Development and Requirements

One typical example of this problem was a criteria used by a national airline when

selecting a voice recognition COTS systems. The criterion was that if a product
demonstration by the product supplier went wrong, that product would be

automatically rejected and eliminated from the candidate list. One candidate supplier

was invited to demonstrate their product to main stakeholder at the airline site. At that

time, this particular vendor was the preferred supplier but the demonstration went
badly wrong. The airline lost confidence in their product and the product was

automatically eliminated without determining whether it met essential customer

requirements. The COTS product selection `often takes place very early in the process

where requirements are fuzzy' (Kontio 1996). The problem with COTS software

selection is that organisations ignore or don't pay much attention to the importance of

customer requirements. This thesis aims to fill in that gap!

1.3 Thesis scope

This thesis addresses requirements engineering for the COTS-Based Development

(CBD) paradigm. It focuses on the processes of requirements acquisition and product

evaluation/selection. Traditional procurement issues such as invitation to tender and

bid assessment are not within the scope of this thesis but issues such as contract

production, supplier evaluation/selection and systems procurement management are

covered although not in detail. Traditional systems development life-cycle issues such

as systems design, development and maintenance are also not explicitly covered.

Figure 1.1 shows the focus of the thesis research.

Procurement
Activities

Procurement
Management

Bid Assessment
and Evaluation Product Evaluation

und Selection

Invitation Supplier
To Tender Product Evaluation

Acceptance

Contract
Production

Focus of
the thesis Requirements

Engineering

Systems
Development

Activities

Integration

Systems
Design

Implementation
Interface
Design

19

1: Overview: COTS-Based Development and Requirements

Figure 1.1: Scope of the thesis. Traditional procurement activities such as ITT

and bid assessment and systems development activities such as design,

implementation and testing are not within the scope of the thesis.

This thesis also:

" Does not address the buy vs. build decisions. Custom building systems allows

organisations to ensure that the resulting system exactly meets the customer

requirements. On the other hand, building systems using COTS software which is

bought off-the-shelf in the market is often cheaper and faster although it may

sometimes require that an organisation modify its business process to conform to

the application's processes. However, this thesis focuses on buy vs. buy decisions

rather than on buy vs. build decisions;

" Does not cover application service providers (ASP). An ASP is a business

solution that helps organisations and individuals gain access to software

applications via the internet. ASPs aim to meet the needs of business organisations

of all sizes that do not have the time, money or resources to purchase, deploy and

manage applications. However, lessons learned and techniques developed in this

thesis can help organisations and individuals to select a suitable application

service provider;

" Does not address software reuse. Software reuse can be characterised as the

process of building or updating software systems using existing source code.

During software re-use, developers have access to in-house source code with

similar functionality within an application domain. In CBD developers do not

have access to the software product's source code. The COTS product is used as is

and once developers have access or modify the product's internal, its no longer a

COTS product and they loose all contractual arrangements;

" Does not handle COTS software product evolution. Product evolution can be

characterised as the process of adding new features to successive versions of the

product or to legacy software. COTS software products are supported and evolved

by the vendor who returns the intellectual property rights. Product evolution is

therefore beyond the scope of this thesis.

" Does not address multiple COTS selection. This thesis focuses on the selection of

a single COTS software product. The rational for this is that there is a need to first

20

I: Overview: COTS-Based Development and Requirements

understand the problems encountered in a single product selection before

considering problems of multiple product selection. Also, the problems of

multiple COTS selection are too big to be covered as part of a PhD study and are

worth another major research undertaking of their own. For these reasons,

multiple selection is not within this thesis' scope.

1.4 Thesis objectives and hypotheses

The main objective of this thesis is to develop a requirements engineering method for

CBD and the associated processes, techniques, models for guiding the process, and

guidelines for requirements engineering and COTS software product selection and to

evaluate it in real-world product selection situations. The 6 hypotheses that structure

the research are:

H1 New problems arise in the requirements engineering-related phases of CBD that

are not addressed in current requirements engineering research.

H2 It is possible to design more effective methods by directly addressing current

problems in the requirements engineering phases for COTS-based development;

H3 This method's guidance can be applied in part or in whole to real-world software

product selection tasks;

H4 This more effective method can form an essential part of a successful product

selection task;

H5 The method's guidance is perceived to be useful and usable by people involved in

the product selection task;

H6 The method's advice is at least as good as current expert advice.

21

1: Overview: COTS-Based Development and Requirements

1.5 Research contributions

This thesis has implications for requirements engineering for COTS-Based

Development process:

"a method, PORE, is proposed to fill the gap in requirements engineering methods

and to provide guidance in the use of customer requirements in COTS software

evaluation and in helping people choose or select software packages;

" an interleaved requirements acquisition and COTS software product

evaluation/selection process model is proposed;

"a process model that identifies key decisions points that should be made in any

CBD process is defined;

" five generic processes for achieving each decision point and a sequence for

undertaking each process is defined;

"a software product model, a requirement model and compliance model that

models compliance relationships between customer requirement and product
features are proposed;

" strategies for guiding the CBD process using models, goals and process situations

are defined;

"a prototype process advisor tool for guiding a requirements engineering team is

developed.

1.6 Thesis outline

The remaining six chapters describe how the aims of the research were met. Chapter

2 reviews related work. It discusses the lack of requirements engineering approaches

for CBD and argues for the need of new methods, process models and techniques.

Chapter 2 also describes other CBD and requirements engineering research. It

concludes with an assertion that there is currently a lack of relevant theories and

methods for CBD.

Chapter 3 reports two studies that were carried out to investigate hypothesis Hl,

which states that `new requirements engineering problems arise in CBD that are not

addressed in current requirements engineering research'. The first was an empirical

22

I: Overview: COTS-Based Development and Requirements

study carried out in 3 different organisations. In total, 21 hours of interviews were
undertaken. The second was a case study that involved selecting and recommending
COTS requirements management system to a customer. The problems identified and
lessons learned during these studies served as the conceptual origins of the PORE

method that addresses hypothesis H2.

Chapter 4 further investigates hypothesis H2 and describes the need for process

advice and guidance in COTS-based development process. It proposes a method that

utilises an iterative process of requirements acquisition and product selection and

situated process guidance for guiding the requirements engineering team during

requirements acquisition and product selection. The chapter concludes by

recommending a software tool for handling the large number of process situations that

may arise.

Chapter 5 further elaborates hypothesis H2 and outlines the design and
implementation of the process advisor prototype to deliver the requirements

engineering team with process guidance and advice. The chapter also describes why a

tool is needed. The tool acts as a collaborative advisor to the requirements engineers

and is designed to integrate with existing requirements management tools.

Chapter 6 tests hypotheses H3 - H6 and describes the PORE method evaluation

results. The evaluation is divided into two parts. Part 1 tests hypotheses H3 -H5 and

describes case studies in 3 organisations that used the PORE method to procure COTS

software products. Part 2 tests hypothesis H6 and describes expert evaluation of

PORE's process advice and guidance. Two requirements engineering experts were

presented with 7 process `situations' and asked to describe what they would do and

what techniques they would use to solve the situation. The experts' results were

compared with predicted advice and guidance provided by the method.

Finally, Chapter 7 summarises the research and contributions described in this thesis

and propose future work needed to further refine PORE. This chapter also discusses

why multiple COTS software product selection is beyond the scope of the method;

why the PORE method should include supplier's view; the buy vs build argument and

how lessons and techniques developed in this thesis can be applied in choosing

23

1: Overview: COTS-Based Development and Requirements

application service providers. The chapter concludes with a vision for possible

requirements engineering for COTS-Based Development future research directions.

Figure 1.2 shows the structure of the thesis.

Chapter 1
Overview of COTS-based development and
requirements engineering
State of the art in requirements engineering for CBD
How current RE fails CBD

Chapter 2
Review of relevant work related to CBSE and discusses the
lack of RE research for CBSE
Argues for a paradigm shift in systems development. Propo
a method that utilises an iterative process for requirements
acquisition and product selection

Chapter 3
Discuses two studies carried out to investigate
hypothesis 2.
Identifies problems associated with CBD which
are used as the origins of the PORE method

Chapter 4
Describes the need for process guidance for
CBD process
Proposes models and techniques for
guiding requirements engineering team and
situated process guidance

Chapter 5
Outlines the design and implementation of the process
advisor prototype tool
Describes why a software tool is needed

Chapter 6
Presents and describes method evaluation studies
and presents the results and conclusions from the
studies

Chapter 7
Summarises research results and
contributions
Presents conclusions and future work
and research directions

Figure 1.2: The structure and relationships between the thesis chapters

24

Chapter 2

Current State-of-The-Art and Trends in COTS-Based Systems Development

This chapter provides background knowledge for the thesis and details

relevant research.

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

Chapter 2
Current State-of-The-Art and Trends in COTS-Based Systems

Development

2.1 Introduction

This chapter discusses the current state-of-the-art and trends in software packaged-
based systems development. Firstly, a brief statement of the problem for adopting the

packaged-based development paradigm is made. Relevant literature associated with

packaged-based systems development, requirements engineering and decision-making

techniques is discussed. This then leads into an identification of current trends in

packaged-based systems development research and the lack of recognition of the

importance of requirements engineering. The chapter concludes by identifying areas

of theoretical and empirical weakness in requirements engineering and decision-

making techniques for package-based systems development.

2.2 The problem and its setting

As modern complex software systems become more expensive, organisations are

increasingly shifting their system development processes away from bespoke

development to package-based systems development. Cheaper packaged software

products that can be purchased off-the-shelf and integrated into systems to perform

most required functionality are now available in the market. Extensive application

packages that satisfy most of the customer's requirements can be now purchased and

tailored to meet the customer's needs. Organisations view the use of packaged

products as having the potential to reduce the cost and time to develop and deploy

software intensive systems. Oberndorf (1999) suggests that organisations that adopt

the packaged-based systems development paradigm are `attracted and motivated by

the prospect of adopting best commercial practices, leverage of commercial

investments and new technologies'. However, the success of packaged-based systems

development largely depends on the successful selection of software products that

meet essential customer requirements. Given the complexities of today's software

26

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

intensive systems, the cost and risk of selecting the wrong software product due to
inadequate requirements acquisition and product evaluation processes is large.

However, despite the recognised importance of requirements engineering to software

product evaluation and selection, this importance is not reflected in current research

trends for packaged-based development.

2.3 The shift to packaged-based systems development paradigm

Paul's (1994) observation of traditional system development paradigms concluded by

stating that these systems development paradigms `usually lead to systems that are

built for one hypothetical point in time and thus confronting users with a paradox of

static systems designed to function in a dynamic environment'. This observation

further states that these traditional development approaches are inadequate for the

modern complex dynamic systems, for they are 'inherently static in their nature' and

are not adaptive enough for the today's constantly changing environment. Paul further

states that today's organisational factors and environments have an 'infinite time

horizon' and change more rapidly than systems can be 'planned, developed and

implemented' using the traditional approaches which are `finite time horizon driven'

due to their project-based nature. The results of traditional systems development are

systems that are forced to adapt to changing circumstances. One of the fundamental

problems with traditional development approaches is that they require systems to be

built to exact specifications, thereby resulting in systems that are built for `one

hypothetical point in time', whereas those same systems are required, or expected, to

work over some `time continuum', i. e. in a continuously changing business

environment. In today's dynamic systems environment, this is guaranteed to cause

major problems and `user disappointments'.

Figure 2.1 below depicts the paradigm shift from traditional development approaches

to packaged-based systems development. In the traditionäl development paradigm,
80% of the system is custom built and only 20% is packaged-developed. In contrast,

in the packaged-based development paradigm, 80% of the system is packaged-

developed and only 20% is custom built. In the packaged-based development

paradigm, the entire systems development process - requirements acquisition, design,

implementation, maintenance - undergoes radical change (Carney, 1998). In a

27

2: ('orient-Sluts-of-'I'hc-Art and 'I'rends in ('(YfS-based Systems I)e 'clopment

traditional (level ohment i)1)CC., s like the watci all, all requirements come first. In the

packaged-hascd approach however, requirements are defined iteratively and many

rcyuireinents only hecomc known after several iterations, as the system i. s being

developed.

I ruliu"mal ýIrcrI I Il rni

XII'; HC. hul, r ýJC ingnnrni

ýIcý rltýýnnrni

r. ýý. ý iý ýýý
iýýiý

I, ick; icr-hawd JCVCI(pmrnl

XI) I'ii ku{tc Icvclupmcnl

lr kr

ýIrý rlnplilt ni

Figure 2.1: Paradigm shift from bespoke custom-built systems to packaged-

based development, (Dean et at 1997). In the traditional development most of the

system functionality is custom built and only a small part of' the system is

purchased of the shell'. In the packaged-based development, most of the system

f'unctionality is procured off-the-shelf and only the system functionality that is

unique to the customer is bespoke built.

2.4 Current trends in packaged-based systems development

Packagcd-hasel dwcluhment covers COTS-Based 1)evc1opmrnt (('131)). ('omponcnt-

Based Software Engineering (CBSI;) or even Enterprise Resource Planning, (I. RI')

package development. However, there are suhlIC differences het veers these lornts of

packaged-hased development and their perceived nmeanirig. Currently there are no

gencrtlly agreed del'initions. However, a closer look at Ilhe packaged-hased

development concept, Current state-ol-the art and research trends reveals that the

concepts fall into three types - Enterprise Resource l'lunnin, t, ' clet'elo/, incnI, C'U7: S-

husecl deu'elojmi ent and Compunc'rn! -haled Jeu'elopnneiil - as indicated in figure ?.?

below (Oherndorl I999, Dean cl al I998).

2'

2: ('urrrný St, itc oI-'I hr art and 'I'ren(k in COTS-Bascd Sy. sIenth I)rvrlohincnt

('nnq, nur It COTS 4 .. _ º ERP

Many products
selected to he
integrated to
provide customised
system functionality

Focus is on integration

COHHA

e applic ll, 'I
that provides common
functionality

Focus is on tailoring

e. g. e-mail package

One enterprise-wide
solution

Focus is on changing
the way business is
done through BPR

,i `AP H,

Figtirc 2.2: A spectrum of' packaged-based systems development adopted from

Oberndorf (1999) and Dean el al (I998). AS you move from the far left hand side

of' the spectrºnn to the far right, the size of the packages generally increases and

vice vers. º. I1ººwtieVer, it is not always ease to explicitly determine the boundaries

between the components, COTS and E11, i. e. when ('O'FS stops and an FRI'

begins or when a component slops and a ('(YI'ti start?

I'Iir sccti()nti h1-icily' dl. SI. SS CLh C(MCcl)t (ICJ)lCtrd in l12l11-c 2.2. Scctiun

2.4.1 ciiscusscs Ihr use of I: RPs, section 2.4.2 discusses cuiiiponrnl-basal

cicvek)ptncnt (CBS[) and scclioii 2.4.3 discusses COTS-hased develop ment (('UI)).

2.4.1 Enterprise Resource Planning (ERP) systems

Ihr. world of business systems development for large or`Lanisaliuns is being

rrvOIlit ion ised by the use of' CntcrhriSc-wiclr, Uff-(I1r-she1l' packaged al)I)licalicn

S)I'twarc SOIutiOIIS. I I)CSC vrrv IaILC, introratcti park<<iw. s are tlrsi(Inc(i toi tI II), liornt

the way ol. tni. S ItR)nS achieve their business objectives through IT. Today, diese

INackagcs Mime business activities lot hall' of (lie world's toop 500 companies and

their market has been rstiniatcd by Evolving Enterprise (I°i°») to he well over

SIOhillicýn and w owin`e. t: volvin"Enterprise (I°)°)K) further estintatcs that currently,

there are more than 3OO I: RI' vendors competing in the II IK market alone and predicts

a world4vide NRI' market of m ore than SUM by the year ? UO2. In 1997 the I ootunr

Mapatinc (I997) c, tiniatcd that '_O OOO companics tiýilId i(Ie paid SI(Ihn to FR 1)

vcnd i. and I)ataclurst (1997) r,, tinnatcd tlii it 4I'% of IIic c co mpanIcs Imvr 1-4 [RI'

I) 'kaocs vv itlt 39'/ of them having more than 5 packaocs. I", KI's turns on changing

2)

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

the way business is done through business process re-engineering (BPR) by providing
functionality for the complete spectrum of business functions in an organisation
(Brinkkemper 1999). However, one of the major drawbacks of ERP's is that

organisations that wish to implement them have the prospect of undergoing a major

global business process and system re-engineering in order to adhere to their precise

processes. Forrester Research (1997) estimates that for every $1 spent on an ERP

package, $9 is spent trying to integrate or configure it, and that integration and

configuration accounts for 30% of IT development budgets.

Developing systems from ERP packages requires higher levels of organisational

change than do other types of package development. Organisations have to change

their business processes, organisational structures and business strategies. Davenport

(1996) states that `organisations that do not make the required changes have been

faced with the prospect of ending up with a failed implementation after spending

large sums of money, time and resources'. A broad distinguishing feature of ERP

packages is that they are comprehensive, highly integrated, complex systems that are

very difficult if not impossible to modify in order to support the already existing set of

an organisation's business processes without running into major difficulties.

It can be very expensive, time-consuming and impractical to tailor an ERP system.

External consultants who tailor ERP systems often have insufficient understanding of

the user organisation's business requirements nor the budget or time to understand the

organisation's current processes and future requirements. Further more, implementing

an ERP system is a very long process and there are few methods or software tools to

guide the evaluation or configuration of these packages. The direct consequence of

this lack of methods, tools and process guidance is that most ERP implementations

disappoint and fail to adequately meet customer requirements when first installed.

2.4.2 Component-Based Software Engineering (CBSE)

Grundy (1999) defines the component-based software engineering (CBSE)

development process as `the process of building applications from discrete, inter-

related software components that are often dynamically plugged into running

applications and reconfigured by end users or by other components'. Brown & Short

30

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

(1997) define a component as `an independently deliverable set of reusable services'.

By `reusable services' this definition implies that components have capabilities that

other components may wish to use. In order for this to happen, a component must

have a specification that describes what it does and how it will behave when its

services are required by other components. The other important element of this

definition is the concept of `independent delivery'. Independent delivery refers to the

context awareness of a component, i. e. independently deliverable components should

typically not be aware of the context in which they are being used. The implication is

that components are expected to collaborate with one another to accomplish a

solution. From this point of view, Brown & Short's definition is much closer to

Grundy's definition of component-based software engineering. However, currently

there is no general agreement over what constitutes a component, although different

definitions are emerging.

In the summary report of the 1" International Workshop on Component-Based

Software Engineering, Brown & Wallanau (1998) put forward three representative

definitions that define a component:

0a non-trivial, independent and replaceable part of a system that fulfils a

clear function in the context of a well-defined architecture.

"a run-time, dynamically bindable software package of one or more

programs managed as a unit and accessed through documented interfaces

that can be discovered at run-time;

"a unit of composition with contractually specified interfaces and explicit

context dependencies only and can be deployed independently and is

subject to composition by a third party.

Ning (1999) further defines a component as `an encapsulated, distributable and

executable piece of software that provides and receives services through well-defined

interfaces'. Ning and Brown & Wallnau's definitions seem to agree with that of

Grundy and Brown & Short. Although these definitions seem to describe

approximately the same concept, the key feature that seems to characterise a

31

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

component appears to be the notion of `component autonomy', i. e. the ability of a

component to be deployed or to execute independently.

Current research in component-based software engineering focuses mainly on

component infrastructure capabilities and middleware solutions for connecting

components in order to provide system functionality and communication among the

components (Brown 1998). A number of component infrastructure technologies have

been developed and there seem to be three specific infrastructures on which some

measure of standardisation is beginning to occur and for which many components,

tools and methods are now available:

" the Object Management Group's (OMG) Common Object Request Broker

Architecture (CORBA);

" Sun's Java Beans and Enterprise Java Beans;

" Microsoft's Common Object Model (COM) and Distributed Common Object

Model (DCOM).

Each of these component infrastructure approaches relies on underlying services to

provide the communication and co-ordination necessary to construct applications. The

component infrastructures act as the `road map' that allows components to

communicate and to share an understanding of how to use the infrastructures. These

infrastructures enable components to be easily replaced by other components offering

new or enhanced functionality (Schmidt & Assmann, 1998) whenever they become

available. Figure 2.3 depicts the impact of components in Component-Based Software

Engineering.

32

?: Currrnt -Staue-of-'fhe-Art and Trends in ('O I'S-Based Sy. sicm. ti I)cvvrlohnicnt

Legacy

ilII(rali'm
hnuluýý

tipccilicatiun and iudi"pcndcncc
lion

I: ucapsul
I ii t" tmcut

l.
l ic

-- - lirnlcrliun
bu. tiinc+c scrcý

cumpuný"nts ('omponcnt-
Based Sut"tuuare

J , igineei in} ýdaplablr

bud ý_" \ý ap1)Ik IIiunti Build,

and asticmbký

It"durcd r I' IS and
ime-lo-nia kt"I

1": ýululiun through ISusincs. ý scrcirc
J)II1g and-plat based appliraliom %.

Figure 2.3: Impact of components in the ('iºmponent-Ratted Software

Engineering development process. Adapted from the Butler Group, Seplemher

1998.

Although rOmfMunclit-basal SOftwarr cnCinrcrinzC is usually associated with specific

technulo, "irs such is CORBA, ActivcX/('OM/I)('OM or. laval3cans (Kruchicn I998),

('BSE also describes the creation and deployment of software-intensive systems

assembled from components as well as the development 01' such coýmlpoonent. s. ('ßS[:

largely involves crafting the right set of primitive components from which to huild

families of systems. Another current and popular view of ('IUSIk: is that eoiuhooncnts

are hindry units that are independently pioduiced, acquired and deployed. NO that

interact to form a functioning system. 'I hi. s assumption that software components are

binary units is further enforced by current popular coiuponcnt-teased technologies

such as ('OM, ('ORBA and .
Iaval3eans) that support encapsulation 01' SO-called

binary components (Nine 1999, Wallnau Io)98).

A closer i11sf)CC1Rm of' currrnt rescarch reveals Ihal coiiiponrnt-hased software

engineering is rotirr aNHU the (Icvrlohment and intCW' IIio n 01' 'run-linty dynamic

hindahIC' binary uOltwarc components than the integration of medium toi (arge scale

hackages such I: RP systems. The ('1351: development process is a developer-centric

haracligin and I1R)St rryuircnlrntS rnginccring is mainly focused on iCgtiiICIllents for

developing the coil lho)nents (e. ýg. (handy 199 9) and not on requirements for

33

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

evaluating and selecting the components to be included in the integrated system. This

thesis develops a method that provides process guidance for acquiring requirements
for evaluating and selecting components in the CBSE development process.

2.4.3 COTS-Based systems Development (CBD)

Sections 2.4.1 and 2.4.2 briefly discussed the state-of-the-art and research at the two

extremes of the packaged-based development spectrum depicted in figure 2.1. This

next section discusses the COTS-Based Development (CBD) which lies between the

two extremes of the spectrum. This development paradigm is the main focus of this

thesis.

As with components, there is no generally agreed definition of what constitutes a
COTS product. Various attempts have been made to try to provide a general definition

of a COTS product (e. g. Oberndorf 1997, Vigder et al 1997, Kontio 1996, Brown et al
1995). The definition of a COTS product that this thesis adopts is one that is

suggested by the Software Engineering Institute (SEI) COTS-Based Initiative which
defines a COTS product as:

`a product that is sold, leased, or licensed to the general public; that is offered by a

vendor trying to profit from it, that is supported and evolved by the vendor who

retains the intellectual property rights; that is available in multiple, identical copies;

that is used without modification of its internals' (SEI 1999).

A COTS software product is an application that provides common functionality as

opposed to an ERP package, that aims to provide an enterprise wide solution. An e-

mail package is a typical example of a COTS product. However, as shown in figure

2.2, at the extremes, it is difficult to distinguish between COTS and ERP packages.

2.5 Current requirements engineering trends

`When the Software Crisis was discovered in the 1960s, considerable effort was
directed at finding the causes of the problem' states Dorfman (1999). The

investigations that followed the discovery of the `software crisis' determined that

34

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

requirements deficiencies were among the `most important contributions to the

problem' and that requirements `inadequencies' play a major and expensive role in

many project failures (Dorfman 1999). The process of discovering `requirements' is

referred to as requirements engineering. There have been many definitions of

requirements engineering that have been proposed. Zave (1994) defines requirements

engineering as `that branch of systems engineering that is concerned with the real-

world goals, services provided by, and constraints on large and complex software

intensive systems. It is also concerned with the relationship of these factors to precise

specifications of the system behaviour, and to their evolution over time across systems

families'. Costello & Liu (1994) further define requirements engineering as `the

process of conceptualising, specifying and validating the specification of the required

behaviour of the system'. Gause & Weinberg (1989) define requirements engineering

as `the part of system development in which people attempt to discover what is

desired' while Sommerville (1992) define requirements engineering as `the process of

establishing the services the system should provide and the constraints under which it

must operate'. Another relevant definition is that offered by Davies (1990) who

defines requirements engineering as `the analysis and documentation of both user

needs and the external behaviour of the system to be built'. Jarke et al. (1993) define

requirements engineering as `embedding systems within their environment rather than

on the prescription of the system's functionality and structure'. This definition

stresses the distinction between requirements engineering and other phases of systems

development.

Different requirements engineering methods have emerged over the years to try and

"alleviate" the problems. Dorfman (1999) divides the requirements engineering

methods that have emerged roughly into four categories:

" process oriented methods that take the primary viewpoint of the way the

system transforms inputs into outputs with less emphasis on the data itself

and control aspects. Examples are Structured Analysis, (SA), structured

analysis and design technique (SADT), SSADM, formal methods such as

VDM and Z;

35

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

" data oriented methods that emphasise the system state as a data structure,

primary examples are Entity Relationship modelling and JSD;

" control-oriented methods that emphasise synchronisation, deadlock,

exclusion, concurrence and process activation and deactivation. Primary

examples are flowcharting;

" object-oriented methods that base requirements analysis on classes of
objects of the system and their interactions with each other.

Recent high profile system failures such as the London Ambulance Services in 1992

(Dowell & Finkelstein, 1996) have served as examples of system failures due to an
inadequate requirements engineering process. It is a widely agreed view in the

computing community that perhaps the greatest outstanding problems in the

development of software intensive systems lie in the area of requirements

engineering. Indeed, Fred Brooks (1987) told us more than a decade ago that `no

other part of the work than requirements engineering, so cripples the results if done

wrong' and this still is and continues to be the case today. It is a generally agreed

view that errors generated during the requirements engineering phase are the most

expensive to fix. Indeed various studies have shown that fixing an error after the

system has been delivered costs in orders of magnitude more than fixing it at the

requirements engineering stage. Compared to other phases of system development,

these symptoms reflect, by a large margin, the lack of adequate approaches to

requirements engineering. Their implication is that generating error-free requirements
has a high cost leverage and that even small improvements would be worthwhile.

Although complex and continually changing requirements is not a unique

phenomenon to packaged-based systems development, market volatility and

requirements instability have more severe consequences in packaged-based
development than in traditional development. Basically there are three types of

situations that can cause instability (Watts 1989):

" Unknown requirements in which the users think they know what they want
but discover during the initial evaluation of the candidate products that

their real needs are not what they had thought;

36

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

" Unstable requirements in which while the users may know their general

requirements, their specific requirements might remain fluid until much
later in the development process;

" Misunderstood requirements in which even though the requirements are
known and stable the customers and requirements engineers do not

understand them in great detail. The requirements may be misunderstood

because of the large size of the system, or because the system is so

complex (e. g. a submarine or warship) that it is difficult for the

requirements engineers or customers to focus their attention on one aspect

of the system at a time, or to visualise the perceived interactions between

system functionality.

Another major primary cause of volatility in the CBD is that not only do the user

needs change during the time it takes to develop the system, the COTS products

themselves may change due to the supplier releasing a new version of the product into

the market. Indeed the user's needs may mature because of an increased knowledge

brought on by more understanding of the products. Their needs may even shift to a

new set of requirements because of unforeseen organisational, environmental or

market pressures (e. g. such as new competition or new technology). Another cause of

volatility is that requirements are a product of the contributions of many individuals

who may have conflicting goals and needs. As this thesis posits, a parallel iterative

process of requirements acquisition and product evaluation and selection can address

most of the problems of volatility and instability. The notion of a life-cycle with

requirements acquisition completed before the design stage can not deal with the twin

problem of volatility and instability and therefore not satisfactory for the COTS-based

systems development paradigm.

Most requirements in COTS-based development will only become known after initial

product evaluation and as the system is being developed or products are integrated.

This is especially true when multiple COTS products are used in the development of
the system since their interactions will have significant influence on the eventual

products to be selected and the overall design of the system (Carney 1998). Also some
COTS products impose additional requirements on the system and these `derived'

37

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

requirements are usually unforeseen, although no less important than the original

requirements. Therefore, when several COTS products are to be included in a system,

it is possible that some requirements or product capabilities can be loosened without

substantially affecting the system functionality or its performance (Carney 1998).

This means that not only many requirements or required product capabilities can be

left undefined, but that they can be left undefined until fairly late in the development

process (Finkelstein et al 1997, Vigder 1997) when available product capabilities are

known. This can only be achieved by an iterative process of requirements acquisition,

product evaluation and selection, and system architecture definition and design, as

this thesis suggests.

2.6 Current problems with COTS-based development

Although building systems from COTS products offers organisations the opportunity

to reduce the development time and cost of software systems (Oberndorf 1997), there

are still many problems that organisations need to overcome. For example, in a

COTS-intensive system, many products from different vendors have to be integrated

and tailored to provide complete system functionality. In many cases these COTS

products will be developed at different times, by different vendors or suppliers with

many different styles of use in mind. Organisations will have very limited access to

product's internal design and its pre-defined options for customising its behaviour.

Customers cannot influence the release cycle of new versions and are left to rely on

the long-term viability, integrity and ability of the product's producer (Brown &

Wallnau 1998). Also, the life-cycle of the individual products is in the supplier's

hands. As COTS products are typical living systems (i. e. they are born, breath and

eventual die), their updates, revisions, changes to their internal architecture and the

decision to stop supporting them are determined by the product's vendor (Carney

1999) and not by product user. Therefore in assembling these COTS products into an

integrated business system, organisations are placed in a situation over which they

have no control. However, the impact of some the mentioned problems can be

minimised if adequate attention is paid to the process of requirements acquisition and

product evaluation and selection.

38

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

2.6.1 Why COTS software selection is problematic

Successful selection and effective integration of COTS products that meet customer

requirements is problematic for a number of reasons:

" lack of defined process. Most organisations are under pressure to develop

systems faster and cheaper, and do not use well defined repeatable

processes (Kontio 1996);

9 previous lessons are not learned. The lack of well defined processes makes

planning and the use of appropriate evaluation methods, techniques and

tools difficult. As a result, lessons from previous experiences are not learnt

(Kontio 1996);

" evaluation criteria are sometimes vague and open to different evaluators'

interpretations (Kontio 1996);

" evaluators tend to focus on the product's technical capabilities at the

expense of the non-technical or soft factors such as business issues,

supplier issues and contractual issues (Powell et al 1997);

" lack of access to COTS product's internals due to their black-box nature

makes it difficult to understand them and makes evaluation hard (Dean

1999);

" continuous product updates. Rapid changes in the product market place

and user needs makes COTS evaluation difficult (Oberndorf 1999). For

example, a new release of the product may have a feature that is not

available in the product that is currently being evaluated, yet the user can

demand that such functionality be included in their new system.

2.6.2 The problems of requirements in COTS software selection

Although, organisations experience different kinds of problems during COTS-based

systems development process, most of these problems are due to inadequate

requirements engineering and product evaluation and selection process, although they

are rarely recognised as such. The requirements engineering process for the COTS-

based development process is affected by problems that are very different from those

of traditional systems development processes. The existing traditional development

39

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

life-cycle processes offer developers very little practical guidance to assist in the

selection of specific products from the myriad available (Fox et al 1997).

Furthermore, in traditional systems development, system requirements are defined in

minute detail and then the system is built to the exact specification that matches those

requirements. But in a COTS-based development, requirements need to be much more

flexible and less specific (Thomas 1999, Place 1999). If requirements are too specific

and inflexible it might be impossible to find COTS products in the market that

adequately meet the requirements. Also, the notion of `requirements' in COTS-based

development is divided into what this thesis characterises as Type A requirements and

Type B requirements. Type A requirements are characterised as the set of those

requirements that the final system composed of COTS products must satisfy. Type B,

on the other hand, are characterised as the independent set of requirements that govern

the selection of each product that is included as part of the system.

2.6.3 Constraints on the COTS software selection process

In a COTS-based development process, the system is constrained not only by the

constantly evolving requirements and market instability but also by the capabilities of

the COTS products currently available in the market place. As figure 2.4 depicts, in a

COTS-based development, requirements engineers should take great care to consider

overlaps, dependencies and associations between products in the market, customer

requirements and system architecture, since these all influence each other (Thomas

1999). Each of these should be considered simultaneously and iteratively and the

system customers must accept the possibility that the resulting system might be a

compromise among these concerns.

40

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

Traditional Development COTS-Based
approach Approach

Architecture
and design

Customer

requirements

Umu an System
System context trn architecture

COTS
roducts

implementatio

Figure 2.4: A COTS-based triad development approach (adapted from SEI

1999). Traditional systems development follows a strict sequence of activities. In

the COTS-based paradigm there is a constant, simultaneous and iterative trade-

off between acquiring customer requirements, evaluating and selecting products

and the design of the system's architecture. In a traditional process, a system

specification is produced up-front. In contrast during COTS-based development,

the system specification may be the last activity to be performed after the

requirements, products and their capabilities are known. The notion of

development `life-cycle' is also affected by the paradigm shift. Some activities

such as contract production, evaluation, wrapping, bridging, have no analogy in

the traditional life-cycle, yet they are of prime importance in the COTS-based

development. Within this triad approach, the method described in this thesis

does not explicitly deal with the design of the system's architecture. The method

explicitly deal with customer requirements and COTS products.

In the traditional development process, the method of defining systems requirements

is more straight forward: the desired system is described through a set of specified

conditions that the system must meet. Requirements are fixed before building the

system. However, defining requirements for the COTS-based development is very

different since some systems requirements must be flexible enough so as to

accommodate the fluctuations of the market place and the unforeseen constraints
inherent in COTS-products. Since COTS products are usually developed with the

software market place rather than the needs of specific developers in mind,

requirements for the CBD process need to be more flexible and less specific (Place

41

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

1999). The consequences of narrowly specifying system requirements, as in

traditional development, are that there might be no COTS products in the market that

match those requirements. COTS product vendors usually design their products to

meet requirements that they perceive to be the most likely to cover a wide market and

make sales (Wallnau 1998). In COTS-based development, other factors such as

market demands may determine which customer requirements are satisfied unlike in

traditional development where requirements drive systems capabilities. Therefore

defining requirements in great detail, as in traditional processes, establishes an

artificial high baseline for evaluating and selecting the required COTS products

(Vigder 1998). Too detailed requirements will lead to an unjustified elimination of

candidate products that might otherwise provide reasonable system functionality

(Dean & Vigder 1997). Therefore, in COTS-based development, initial requirements

should be defined at a much more abstract level and detailed requirements should

only be determined at much later stages of the process (Finkelstein et al 1997).

2.7 COTS software product evaluation and requirements engineering

Competing products are evaluated against requirements to determine products that

sufficiently meet customer requirements. For this purpose, requirements must be

defined in such way that will enable evaluation. Overly specified requirements can

jeopardise evaluation and therefore prevent the selection of otherwise suitable

products. Extensive evaluation of the COTS products is required not only to ensure

that the product has the functionality to perform the required task within the system,

but also to determine that the additional unwanted functionality inherent within the

product will not interfere with the intended functionality of the system (Vigder et al

1996). However, most COTS-based development problems are largely due the

unavoidable friction between customer requirements and the capabilities of the COTS

software products. The activities of evaluating COTS products are closely tied to the

activities of requirements acquisition and designing of the system architecture, as

shown in figure 2.5. The evaluation activities usually span the entire lifetime of the

system, i. e. they begin before the system is designed, continue as the system is being

built, and even after it is deployed.

42

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

2.8 Problems with current COTS software evaluation processes

The importance of requirements engineering in the COTS product evaluation process
is not reflected in the current state-of-the-practice. The present state-of-practice in

COTS evaluation is poor (Oberndorf 1998), disconnected from the requirements

acquisition process, and does not reflect the diversity of techniques and methods

needed for product evaluation (SEI 1998). Some of the general misconceptions about
COTS evaluation include:

" that evaluating a product is a one-time activity, with several products

compared against a common set of usually weighted criteria (e. g Kontio

1996);

" that evaluation is a form of acceptance testing, where requirements are

specified, and products evaluated for conformance with the requirements
(e. g. Vidger et al 1996);

" that a common standard practice of evaluation can be defined and then re-

applied for all COTS product evaluation session (e. g. Kontio 1996).

The influence of evaluation in requirements acquisition and architecture design is

depicted in Figure 2.5. The figure contrasts the traditional development that does not
include product evaluation and the COTS based approach in which product evaluation
is the integral part of the development process.

Traditional Development COTS-Based COTS product
approach Approach evaluation infurma

üerative requirements
acquisition and archuecn

Requirement
trade-offs

cquisitio Requirements

acquis" in

architecture
y Architecture

design
COTS
evaluation

implementatio

Figure 2.5: Influence of COTS evaluation on the requirements acquisition and

architecture design processes (SEI 1998). This shows the contrast between the

traditional approaches, which do not include the evaluation process, and the
COTS based approach in which product evaluation is an integral part of the

43

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

development activities. In the traditional development processes, requirements

are specified, then high level architecture design is produced, followed by detail

design and ultimately implementation (i. e. waterfall design). In contrast, in the

COTS-based development process, there is a constant simultaneous trade-off

between requirements acquisition, product evaluation and architecture design.

Another mistaken assumption about COTS product evaluation is the idea that product

evaluation is a one-off event for each selected product. Rather, there are evaluation

activities that precede evaluation for the selected product and evaluation activities

after the product has been selected (e. g. Carney 1998, Thomas 1999). Some

evaluation activities are even performed concurrently (Dean 1999). This multi-stage

evaluation process usually happens when there are several candidate products to be

considered and where new versions of these products are emerging in the market

sufficiently rapidly to justify deferring some aspects of the evaluation until more

information is known. It is this multi-stage evaluation that is important to ensure that

product evaluation does not depend upon perfect and complete product knowledge or

customer requirements.

2.8.1 Emerging COTS software evaluation strategies

Two product evaluation strategies seem to be emerging from current practice (Tran &

Liu 1997):

" strategy 1 is where requirements for different parts of the system are

acquired and product alternatives that implement these different parts of

the system are evaluated against core essential functional, non-functional,

system architecture and integration requirements;

" strategy 2 is where alternative integration configurations are evaluated

using core system architecture, interoperability and integration

requirements.

44

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

However, these strategies have some undesirable side effects. The problem is they

create dependence relationships among selection decisions and among products and

customer requirements. However, the strategies help to partition requirements into

two levels or sets - requirements for evaluating products that implement different

parts of the system (i. e. Type A requirements for strategy 1) and requirements for

evaluating the overall system composed of the selected products (i. e. Type B

requirements for strategy 2). This realisation of different levels of requirements for

product evaluation is one of the main reasons this thesis is advocating a process that is

able to support iterative concurrent requirements acquisition and product evaluation.

The iterative process provides a flexible link between product evaluation,

requirements acquisition and system architecture design.

Tran & Liu (1997) also suggest three further important areas of COTS product

evaluation:

" functionality evaluation that evaluates both the functionality of the

individual products and integration of these products;

" interoperability and architecture evaluation which ensures that selected

candidate products can be integrated according to their specification;

" performance evaluation which addresses the performance of the integrated

products in supporting system level functionality.

Tran & Liu (1997) also identify two approaches for organizing the COTS product

evaluation process - the Comprehensive Evaluation (CE) and the First-Fit Evaluation

(FE), with other evaluation approaches falling in between these two extremes:

" in the Comprehensive Evaluation (CE) approach, all sets of the candidate

products are evaluated through all identified stages. This results in a

prioritised list of product sets ranked by their overall performance. The CE

approach ensures that an optimal product set will be selected for the final

integration at the cost of additional evaluation time and resources.

" the First-Fit Evaluation (FE) approach on the other hand, ensures minimal

cost to the evaluation effort by eliminating product sets that failed in a

45

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

particular evaluation stage and selecting the first one that passes all the

evaluation stages even though the selected product might not be the

optimal solution.

However, the drawback of both the strategies and the approaches is that they fail to

recognise the advantages of requirements-driven evaluation and the positive impact

requirements have on the evaluation process. This failure to recognise the impact of

requirements in COTS-based development is also evident in current methods being

developed. The following section gives an overview of five methods. However, this is

not a complete set of all currently available methods.

2.9 Current COTS-based systems development methods

A range of COTS-based development methods has been proposed. The following

sections describe 5 such methods, and their limitations and weaknesses.

2.9.1 The Off-The-Shelf Option (OTSO) method

The Off-The-Shelf Option method (Kontio 1995) aims to address the problems

associated with the selection process for off-the-shelf products. OTSO supports the

search, evaluation and selection of COTS products. The method attempts to provide

specific techniques for defining evaluation criteria, comparing the costs and benefits

of alternative products, and consolidating the evaluation results for decision making.

The OTSO evaluation criteria definition process decomposes requirements for COTS

products into a hierarchical criteria set categorised into four groups:

" functional requirements for the COTS product;

" required product quality characteristics;

" business concerns such as cost, vendor stability, etc;

" relevant product architecture.

The main characteristics of the OTSO method are:

46

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

"a defined, systematic process that aims to cover the whole selection
process;

"a systematic method for deriving detailed off-the-shelf (OTS) evaluation
criteria from the system goals;

"a method for estimating the relative effort or cost-benefits of different

alternatives;

"a method for comparing the `non-financial' aspects of alternatives,
including situations involving multiple criteria.

The OTSO method identifies five factors that primarily influence the selection of a
COTS product:

" the application requirements such as functional and non-functional

requirements. The requirements specification, is used as the basis for

interpreting these requirements;

" the application domain and architecture requirements which may pose

additional constraints for the evaluation. The application environment may

rule out some incompatible alternatives; software architecture or design

may make integration of some alternatives impractical and application

domain may have some specific characteristics that are not addressed by

COTS products developed for other domains;

" cost requirements - project objectives and constraints such as budget and

schedule may influence the selection;

" availability of required (or not required) features in potential COTS

candidates may affect the selection of the product;

0 an organisation's system infrastructure and maturity should be considered

when defining an evaluation process.

However, even though OTSO realises that the key problem in COTS selection is lack

of attention to requirements, the method does not provide or suggest any solution.

The main focus of the method is on defining the evaluation criteria but it does not

offer guidance on how to acquire the application requirements against which to

evaluate the products. The method assumes that requirements already exist since it

47

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

uses a requirements specification for interpreting the requirements. As already

mentioned before, the idea of having a requirements specification implies that

requirements are defined then signed off and frozen. However, this assumption is

false in the COTS-based development paradigm.

2.9.2 The COTS-based Integrated Systems Development method, (CISD)

The COTS-based Integrated Systems Development (CISD) method (Tran & Liu

1997) aims to address various aspects of the CBSE development process. In

particular, CISD addresses problems and costs associated with identification and

integration of COTS products. CISD is a procurement-centric method that aims to

provide an accurate reflection of the development steps associated with the

implementation of component based integrated systems. CISD attempts to generalise

the process of selecting, evaluating and integrating COTS products. The method

consists of three key phases - product identification, product evaluation and product

integration:

0 the product identification phase includes the process of collecting and

understanding overall system requirements, identifying and classifying

COTS products into sets and prioritising them for subsequent evaluation.

The major activities. for this phase include: (1) the requirements analysis

and classification stage that encompasses the process of understanding the

system requirements and prioritising them into various application and

service domains; (2) the product identification stage which collects

information on candidate COTS products and groups them into different

combinations or sets for further evaluation; (3) the product prioritisation

stage that includes the review of all candidate product sets to generate a

prioritised list for further evaluation.

" the product evaluation phase includes the process of evaluating and

comparing the product sets to select the most optimal combination for

integration. The goal of this phase is to compare and identify an optimal

set of collaborative COTS products for the initial integrated system. The

phase includes the following evaluations:

48

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

" evaluating the functionality of individual products and product sets, i. e.
the actual verification and validation of the overall capabilities of
individual products and sets of products;

" evaluating the architecture and interoperability of products, i. e.
evaluating the connectivity and architecture of candidate products.
Main issues addressed include: (a) the interactions of products along
identified critical system paths; (b) the extensibility of the overall

integrated architecture, and (c) the compliance with the required

standards by the integrated products;

" evaluating the performance of individual products and product sets, i. e.

performance evaluation of all interacting products to provide detailed

understanding of their impact to the overall system's performance.

" the product integration phase includes building of necessary product

adapters and enhancements to the selected product sets to implement the

required system functionality.

Although the CISD method's product selection, evaluation and integration processes

can be performed iteratively, it integrates development-centric approaches, such as the

waterfall and spiral with procurement-centric approaches. The method is generally a

waterfall-style process in that each stage depends on the results of the previous stage

(Dean 1999) and does not offer solution on how to acquire customer requirements for

COTS-based development. The CISD method heavily depends on having a complete

predefined set of requirements. The product identification phase is dependent on the

COTS product meeting these predefined requirements, and this is a drawback if the

requirements are less than fully defined.

49

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

2.9.3 The Infrastructure Incremental Development Approach, (IIDA)

The Infrastructure Incremental Development Approach (IIDA) method (Fox et al.
1997) combines the classical development model and the spiral process model to

accommodate COTS-based infrastructure development. Each stage of the

development cycle is augmented with a series of prototypes for COTS product

evaluation and integration. It is this close coupling of prototyping and development

that characterises the IIDA method. Although IIDA method combines the waterfall

and spiral model like the CISD described above, the key difference is that IIDA

emphasises the establishment of product compatibility and completeness rather than

product-level specification.

The IIDA also strongly emphasises testing and is heavily prototype-oriented. It

provides a prototype-driven approach to COTS selection and integration and

specifically focuses on addressing infrastructure development of large distributed

information systems and not of applications. The method uses Analysis Prototypes to

identify leading candidate products in each product family. Product families are

defined as a group of products that perform similar functions and/or provide related

services. Design Prototypes are used to exercise the product to determine its

functional capabilities and how well it performs in accordance with its documentation.

The IIDA is a tailored lifecycle that preserves the benefits of existing structured

processes for software development while adapting to the particular characteristics of
integrating COTS products. The IIDA is a combination of the classical waterfall
development model (Royce 1987) and the spiral development model (Boehm 1988). It

is an iterative and incremental approach to infrastructure development where each

version of the infrastructure is an increment that is integrated into the existing
infrastructure baseline. With each version, development proceeds in time-sequenced

stages with iterative feedback to preceding stages.
The main stages of IIDA are:

" Definition and Analysis Stage in which: (1) enterprise requirements and

standards, system architecture and technical strategies are defined and

50

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

refined; (2) version-specific functional infrastructure requirements are
established by considering business application areas, architectural
imperatives and technology availability.

" Functional Design Stage in which: (1) services included in the target and

current versions are identified and defined; (2) prototypes are used to

identify leading candidate COTS products.

" Physical Design Stage in which: (1) interfaces between applications and
infrastructure are defined (APIs are established); (2) COTS and to-be-built

components are identified; (3) prototypes are used to select and

characterise COTS components; (4) design is calibrated for scaling and

performance considerations; (5) structure of each to-be-built component

and its interfaces is defined.

" Construction Stage in which: (1) to-be-built components are constructed;
(2) glue code is developed and the unit is tested; (3) COTS component,

glue code, and built components are integrated into the infrastructure using

the demonstration prototype as a test bed.

" Test Stage in which infrastructure versions are tested prior to being

integrated and tested with business applications

Although IIDA includes COTS evaluation and integration in its development process,

it is not clear how requirements are used in the evaluation process. The underlying

assumptions of the method are heavily influenced by traditional development

processes and therefore suffer from the same shortfalls and problems. Its main focus

is on infrastructure development but not developing systems from COTS products.

As with the COTS-based Integrated Systems Development Method (CISD) described

above, IIDA is essentially a waterfall model with each stage dependent upon

successful completion of the previous stage.

51

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

2.9.4 lusWare -A methodology for the evaluation and selection of software
products

The IusWare method (Moriso & Tsoukias, 1997) is based on the Multicriteria

Decision Aid (MCDA) approach and encompasses such activities as comparison

assessment and selection of software products. The method defines an evaluation

process that consists of two main phases - designing an evaluation model and

applying it. The design phase activities include:

" identifying actors relevant to the evaluation, their role, the purpose and

objectives of the evaluation and the resources available;

" identifying the type of the evaluation required - either a formal description

of products or the ranking of products from the most preferred to the least

preferred or a partitioning them into two sets of best and rest products;

" defining a non-redundant hierarchy of evaluation attributes, often

corresponding to characteristics of quality models;

" associating a measure, a criterion scale and a function to transform the

measure scale into the criterion scale for each basic attributes;

" choosing an aggregation technique for aggregating values on criteria for

recommending selection;

In the application phase, attributes of products are measured and the measures are

transformed into values on criteria and aggregated in a recommendation. In order to

produce reliable recommendations, the method defines the following key points:

" designing of verification activities to check the independence of the

product being evaluated;

" the aggregation technique is not considered to be a constant, but a key

variable of the evaluation model, to be chosen consistently with the other

components of the model;

" the methodology assumes that judgement is always present in an

evaluation and the ultimate goal is to formalise its use and to merge

measurement and judgement. For this the method identifies where a

52

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

judgement is involved and `compels the actors participating in the

evaluation process to openly declare and discuss subjective choices.

Although IusWare is a methodology for evaluating and selecting software products, it

does not at any stage deal with the issue of requirements for product evaluation. The

method presents an evaluation process model which involves defining a hierarchy of

evaluation attributes together with a decision-making model that is based on the

MCDA approach but assumes that requirements are already known. This is the

fundamental weakness of the method.

2.9.5 Feature Analysis evaluation method

The Feature Analysis evaluation method (Kitchenham 1996, Kitchenham & Jones,

1997) attempts to put rationale and structure behind a `gut feeling' for selecting the

right product. The main important part of the feature analysis is:

" to help clarify the important features of the product in the context of the

environment in which it will be used;

" to help identify the differences between the products; and

9 to provide an explanation of why a decision was made to select it.

The features of the feature analysis method are:

" Iterative Procedures - feature analysis is a shortlisting activity that is

performed iteratively. Each iteration reduces the number of candidate

products and each iteration can vary the set of features being assessed, the

individuals making the assessment, or the evaluation criteria. The starting

point of each iteration and the number of iterations depend upon the

number of products and the amount of effort available for performing the

activity;

9 Comparative Framework - the common framework is used for making

comparative evaluations. The framework is expressed in terms of a set of

common mandatory and/or desirable properties, qualities, attributes,

characteristics or features for each type of product;

53

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

" Subjective Judgement Scales - products are judged by how much
support they actually provide to achieve each customer requirement, i. e. to

what degree does the product meet the requirement. The method devises a

scale for assessing the degree of support that a product provides for a

specific feature. Those products that possess a feature that score highly on
the scale are judged to be "good" and those that do not score highly are
judged to be "less good";

" Product Assessment - once each product has been "scored" for each
feature in the framework using some common judgement scale, the results

are compared to decide their relative order of merit;

" Feature Complexity - features chosen for evaluation may be very

complex. The method decomposes them into sub-features that are

conceptually simpler and the sub-features are further decomposed.

However, there is no rule that says when to stop decomposing, therefore it

is very easy to generate a large number of features.

Feature analysis is based on identifying the requirements that users have for a

particular task/activity and mapping those requirements to features that a product

aimed at supporting that task/activity should possess. Products are compared feature

by feature. Evaluators assess how well the identified features are provided by a

number of alternative products. However, the method does not offer any solutions as

to how to address the requirements acquisition problems. Also, the method does have

several significant drawbacks and limitations. Its main limitations are:

" Subjectivity - feature analysis is based on judging products against some

"evaluation criteria" that are identified subjectively. Such evaluations are

likely to be biased and context dependent;

" Inconsistency - there is also a problem of inconsistency in scoring

between different assessors. If different assessors evaluate different

products, they may have different degrees of familiarity with and

understanding of the product. In addition, they may interpret the scale for a

particular feature in different ways;

54

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

" Collating Scores - producing a set of scores for all the features for a
specific product is, unfortunately, not the end of the story. The various

scores have to be collated and compared to decide the relative order of
merit of the methods or products and this could result in a biased final

score.

2.9.6 Summary of the current COTS-based methods

Almost all the methods discussed above do not adequately deal with the problems of

requirements acquisition. Those that recognise the problem of requirements do not

offer or propose any solutions. Also, most of these current COTS-based development

methods have processes that identify strict requirements which either exclude some

COTS products or that will require large modifications to the products in order to

satisfy the requirements. Table 2.1 below shows the main COTS-based development

processes that are covered by the current methods. The table shows that almost all the

currently available methods have an overall weakness in dealing with requirements

engineering. None of the methods adequately address the issue of requirements

acquisition, while almost all of them focus on the product evaluation/selection

process.

Product

Identification

Requirements

Acquisition

Evaluation/

Selection

Integration Design and

Development

Testing Decision

Analysis

OTSO

CISD

LIDA

lusWare

Feature

Analysis

4 addresses the issue fully, - does not deal with the issue, * deals with issue but not fully

Table 2.1 Summary of the processes that are covered by the current COTS-

based development methods. Table 2.1 shows that almost all current COTS-

based development methods do not address requirements acquisition. Most of

these methods address evaluation issues.

55

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

2.10 Decision-Making techniques.

Another critical issue for the COTS-based development process is the issue of product

assessment and decision-making. In order to select or recommend a suitable required

COTS product, the evaluated alternatives must be ranked according to their perceived

relative importance to meet the customer's requirements. Decision-making techniques

have been used for this purpose.

Making a decision that does not help to achieve the goal of selecting the required

product can lead to long lasting user disappointments. Decision-making in product

evaluation is a very complex process that combines probability judgements that may

be affected by the evaluator's beliefs and underlying preferences. Figure 2.7 depicts

the principles of decision-making in product evaluation and selection that the users

usually have to contend with, represented as a hierarchy of three levels taken from

Saaty (1990). At the first level is the main goal for the decision making process (e. g.

selecting a suitable product among the alternatives). At the second level there are

some criteria for selecting the product. The suitable product will be judged by these

criteria. At the third level are the actual alternative candidate products in which the

criteria will be applied to achieve the main goal.

Criteria

Figure 2.6 Principles of a decision-making problem. The figure clearly shows

how complex decision-making becomes if there are many products to compare

and criteria to apply to each product.

56

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

2.10.1 General difficulties with current decision-making techniques

Anderson (1989) describes factors that give rise to problems in evaluating and
assessing COTS products:

" that there is a large number of product attributes or features that have to be

considered;

" that various combinations of hardware platforms, operating systems and
application software need to be considered;

" that there is rapid technological changes in all aspects of computing, the
business environment and the needs of the users;

" that most users lack the technical expertise or time to develop criteria,

measurements and testing procedures for performance assessments and to

conduct the actual evaluations;

" that there are considerable variation in performance between the attributes

of each product and across the products for each attribute.

Currently, a number of decision-making techniques that can be used in COTS product

evaluation and assessment are available in the market. However, almost all of these

techniques are not suitable for assessing software products due to their fundamental

underlying assumptions in their judgement value system. Most currently existing

traditional decision-making approaches rely on compensatory models such as the

linear weighted score model which sums the weighted ratings of the product's

capability attributes to arrive at a single score for each product. These models

incorporate some means of scaling and weighting the importance of various product

attributes to give a mathematical means of combining magnitude and significance for

the overall evaluation of the product. Scaling addresses issues of magnitude and is

based on a numerical system in which the highest number represents a very good

score and the lowest number represent a lower score with the mid-point representing

an average score. With weights, values are given to the product's attributes based on

their relative importance or significance to the user. The end result is either an

aggregate total score for the product or a group of scores representing various

attributes of the product. However, aggregate total scores tend to mask individual

attributes of the product that may represent particular strengths or weaknesses in a

57

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

product. These models are problematic in that they can permit very good performance
on one attribute to offset poor performance on another (Anderson 1989).

Definitions of all criteria are required so that all COTS alternatives can be compared

against a common yardstick. Anderson (1989) suggest three factors or conditions in

which comparative conclusions about the quality of the ith and jth products can be
drawn:

" the frequency with which the attribute performance of the ith product,

weighted by attribute importance, exceeds that of jth product, (e. g.

outranking);

" the extent to which there is substantial differences in quality between the

two products on the one attribute that could be glossed over by aggregates

or averages;

" from the sheer magnitude of differences between the attribute ratings.

Once the evaluation of alternative products has been done, a common approach for

consolidating the evaluation results and for ranking the alternatives is needed. The

techniques summarised below all attempt to consolidate the evaluation results or rank

the alternatives in one way or another.

2.10.2 Current proposed decision-making techniques

Various decision-making techniques have been proposed. The following sections
2.10.2.1 - 2.10.2.5 give brief discussions of five such decision-making techniques.

2.10.2.1 The Multi-Attribute Utility Theory (MAUT)

The MAUT decision-making model deals with choosing among a set of alternatives

which are described in terms of their attributes (MacCrimmon, 1972). A typical multi-

attribute decision problem is choosing among software products described by such

attributes as cost, usability, functionality, size, portability, supplier capability etc. To

deal with the multi-attribute situations, the MAUT technique requires information

about:

58

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

" the decision-makers preference among values of a given attribute (i. e. how

much does s/he prefer a commercial database over a proprietary database),

and;

" the decision-maker's preference across attributes (i. e. how much important

is the database than cost). A marginal value function is associated with

each criterion and a global value function is computed in an additive or

multiplicative form.

The MAUT technique asks the decision-maker for an assessment on the strength of

preferences. The decisions may the be reduced to a number of independent attributes

that involve making trade-offs between different goals or criteria. MAUT uses a

reductionist approach to a problem and it is up to the decision-maker to split the

problem into a number of dimensions that are perceived to be independent. This

independence is essential for MAUT because without it, certain attributes could be

over represented in the final result. This is the fundamental weakness of the method.

2.10.2.2 The Multi-Criteria Decision Aid (MCDA)

The MCDA approach is in the category of the utility theory. Morisio et al (1997)

proposes the following advantages for using MCDA in COTS product evaluation and

selection:

" the MCDA approach makes explicit reference to the decision process so as

to take into account the different actors involved in the process, their

different objectives and the partiality of the information provided;

9 the MCDA approach allows to handle judgements based on qualitative,

partial information and the subjective nature of the problem of evaluating

and selecting software products. This is done by adopting appropriate

specific techniques to help in the decision making process (including

multi-attribute utility theory, multi-objective interactive techniques and

out-ranking technique) and provide the evaluator with both formal and

substantial reasons for any choice;

" the MCDA approach combines strictness (non-redundancy of the set of

criteria, appropriateness of the aggregation procedure, etc) with flexibility,

59

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

different problem statements, different aggregation techniques, custom

evaluation attributes and measures.

With MCDA, a list of criteria that the product should meet is established first, then

scores are assigned to each criterion based on its relative importance in the decision.

Each alternative is then given a number of scores according to how it fully meets the

criterion. For the scores, a scale of 1 to 5, or 1 to 7, etc can be used. An example is

shown in Table 2.2. The main weakness of the method is that if the criteria set is

large, it quickly becomes very complicated.

Criteria Possible

Points

Product A Product B Product C

Cost 30 25 20 15

Functionality 40 35 10 20

Supplier 20 15 5 10

Usability 10 5 3 2

Total 100 80 38 47

Table 2.2 A list of criteria that the product should meet and scores assigned to

each criterion. In the example, product A is rated 25 out of 30 points for the

"cost" criterion, while product C is rated a little less favourable. Once all the

alternatives have been assigned their points for each criterion, all points for each

alternative are added together and the alternative with the highest total is the

one chosen. In the example above, this would be product A.

2.10.2.3 Weighted Score Method (WSM) or Weighted Average Sum (WAS)

The WSM/WAS is an aggregation technique and the most commonly used technique

in many decision-making situations. Its `weights' are trade-offs between the criteria,

i. e. they are ratios between the scales of each criterion. `Criteria are defined and each

criterion is assigned a weight or a score' (Kontio, 1996).

The scales themselves represent preferences relative to each attribute. The

WSM/WAS technique is a fully compensatory model in that each preference relative

to a criterion can be totally compensated for by a countervailing preference on another

60

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

criterion. This trade-off between criteria may result in any big difference that may

exist being compensated for, so that an indifferent situation is created instead of the

actual incomparability situation (Morisio et al 1997). This scenario is one of the many

weaknesses of this technique. Although weighting methods seem very diverse, they

all have the following characteristics:

"a set of available alternatives with specified attributes and attribute values;

"a process for comparing attributes by obtaining numerical scalings of

attribute values (intra-attribute preferences) and numerical weights across

attributes (inter-attribute preferences);

" an objective function for aggregating the preferences into a single number

for each alternative;

"a rule for choosing or rating the alternatives on the basis of the highest

weight.

Table 2.3 below shows an example application of the WSM and its limitations

Criteria Weight Score Product A Product B Product C

Ease of use 2 3 3 3

Compatibility 4 1 5 2

Cost 3 3 5 1

Functionality 5 4 4 3

Security 4 1 2 5

Supplier 5 2 5 3

Score 53 94 67

Table 2.3 Example of the weighted score method. The criteria weights were

assigned using a scoring method by assigning a value of between 1 and 5 to each

criterion. The overall score of each alternative was calculated using the following

formula (Kontio, 1996):

scores = (weight] * scoreaf)
J=l

where a= alternative, n= number of criteria, j= criteria

The problem with the method is in assigning the scores. For example, the

security and compatibility could be interpreted as twice as important as ease of

use, whereas in reality this might not be the case.

61

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

However, WSM/WAS techniques have serious limitations that are often ignored when
they are applied in COTS product evaluation and assessment (Kontio 1996):

" As the Weighted Score Method produces real numbers as results, these

results can easily be interpreted as if they represent the true differences

between the alternatives. In actual fact, the resulting scores only represent

relative ranking of the alternatives and the differences in their value does

not give any indication of their relative superiority;

9 Assigning weights for the criteria is very difficult when the number of

criteria is large. If the number of attributes is large, it is very difficult to

mentally cope with the dependencies between individual attributes.
Assigning scores instead of weights is even more limiting because it

effectively sets predetermined lower and upper limits to the weights that

can be assigned to the criteria;

0 It is very difficult to define a set of criteria and their weights so that they

are either independent from each other or if they overlap, their weights are

adjusted to compensate for the overlap.

2.10.2.4 The Analytical Hierarchy Process (AHP)

The AHP (Saaty 1990) is a multiple criteria decision-making technique that is based

on the idea of decomposing a multiple criteria decision-making problem into a

hierarchy. The decisional goal is decomposed into a hierarchy of goals and ratio

comparisons are performed on a fixed ratio scale. The overall priorities are computed

using an eigenvalue technique on the comparison matrix. The factors are arranged in a

hierarchic structure descending from an overall goal to criteria, sub-criteria and

alternatives in successive levels as shown in figure 2.6. At each level of the hierarchy,

the relative importance of each product attribute is assessed by comparing them in

pairs. The rankings obtained through the paired comparisons between the alternatives

are converted to normalised rankings using the eigenvalue method, i. e. the relative

rankings of alternatives are presented in ratio scale values which total to one as shown

in the Priority Vector column of Table 2.4. The technique suggests that comparing

62

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

criteria in pairs result in more reliable comparison results and that in this way, it is

possible to avoid the problem of having to assign absolute values to alternatives, but

only their relative preferences or values are compared. A typical application of the
AHP method is shown in Table 2.4. Functionality is shown to have the highest total

score and priority vector and therefore ranked more important.

Level 1 Priority Vector

Cost Functionality Usability Technical Supplier Total Scores Priority Vector

Cost 1 4 5 4 6 20 0,339

Functionality 0.25 1 7 7 7 22.25 0.377

Usability 0.2 0.143 1 5 3 9.343 0.158

Technical 0.25 0.143 0.2 1 4 5.593 0.095

Supplier 0.167 0.143 0.333 0.25 1 1.893 0.032

59.079 1

Table 2.4: An example of applying the AHP method.

Frair (1995) proposes the following four steps in applying the AHP method:

(1) Build a decision hierarchy by breaking the general problem into individual

criteria;

(2) Gather rational data for the decision criteria and alternatives and encode using the

AHP rational scale (i. e. user pairwise comparison input);

(3) Estimate the relative priorities (weights) of the decision criteria and alternatives

(i. e. either using the AHP software tool or a spreadsheet);

(4) Perform a composition of priorities for the criteria which gives the rank of the

alternatives relative to the top most objective (i. e. in table 2.4, functionality is

ranked highest).

However, the AHP technique has some fundamental drawbacks when applied to

COTS product evaluation. One of its main problems is that it assumes total

independence between the product attributes, i. e. in order to do a pair-wise

comparison, the technique assumes that the product attributes/features are

independent of each other and this is rarely the case with software requirements. Also,

especially for large complex systems, it is difficult to apply the AHP technique as its

63

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

calculation model involves a very high number of pair-wise comparisons. The large

number of individual assessments is also one of its main weaknesses. Even if the

overall duration of the assessment sessions are not very long, the repetitive

assessments cause tiredness and boredom. Furthermore, the assumption that there

should be complete comparability and the imposition of the ratio scales at all levels of

the hierarchy is very demanding (Kontio 1996).

2.10.2.5 The Outranking method

In the outranking method (Fenton 1994) a global preference relation is computed via

direct aggregation of the preference structure and then exploited to compute the

prescription. There are many aggregation and exploiting procedures that enable the

evaluator to tune the technique to the problem situation. Unlike other techniques, the

outranking technique distinguishes between classification and choice and solves the

problem of sorting factors. Outranking methods 'seek to enrich the dominance

relation between products without having to make the strong assumptions necessary

for other MA UT methods' (Fenton 1994). An outranking relation is defined by Fenton

(1994) as `a binary relation S on A such that aSb if, given what is known about the

decision maker's preferences and given the quality of the valuations of the actions and

the nature of the problem, there are enough arguments to decide that a is at least as

good as b, while there is no essential reason to refute that statement'. The outranking

relation is not necessarily complete or transitive, i. e. aSb # bSa. The outranking

method has two main steps:

(1) build the outranking relation

(2) exploit the relation with regard to the chosen problem statement

The following example taken from Fenton (1994) illustrates how to build the

outranking relation and therefore how the method works:

Let (gl, g2, g3, g4) be set of criteria as shown in Table 2.5. Each criteria maps

actions into some ordered set. The seven actions represent different combinations of

validation and verification techniques. For example action 1 might represent the

64

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

combination formal proof and code inspection, while action 2 might represent the

combination formal proof and static analysis.

Action gI: effort required g2: potential for detecting critical
faults

g3: coveraged achieved g4: tool support

I Excessive Excellent Good Yes
2 Considerable Excellent Average Yes
3 Considerable Good Good Yes
4 Moderate Good Good No
5 Moderate Good Average Yes
6 Moderate Reasonable Good Yes
7 Little Reasonable Average No
Weight 5 4 3 3

Table 2.5 Criteria for assessing combined V&V Techniques. Taken from Fenton

(1994).

The first thing to do in applying the outranking method is to assign a weight pi to

action g;. In the table above, effort required is assigned a weight of 5 and tool support

is assigned weight of 3. Next, for each ordered pair of actions (a, b) the weights of all

those criteria gj for which gj(a) > gi(b) are added. For example, for the pair (1,2) in

Table 2.5, action 1 is at least as good as 2 with respect to the criteria g2, g3, and g4.

The sum of the weights is 10. This is called the concordance index and is written

c(a, b)2. Morisio et al (1996) also define the concordance index as `the majority

strength to be reached in order to be able to establish the outranking relationship

with a certain degree of confidence that is calculated using the relative importance of

each criterion'. The idea is that a is preferred to b if c(ab) > c(b, a). The preference

structure is restricted by defining a concordance threshold t. The idea is that for a to

be preferred to b we must have c(ab) zt and t should be set sufficiently large. In the

example of Table 2.5, if t= 12, then action 2 is preferred to action 1. Next, the

preference structure is refined to take into account of types of situations such as, for

criterion gl (effort required), it should never be allowed that an action a to outrank

action b if gl(a) = excessive and gl(b) = little. This means that irrespective of the

values of other criteria, b is so 'superior' to a with respect to gl that a veto is put on it

being outranked by a and this called a discordance. Generally, a discordance set Dj is

defined for each criterion gj. This is an ordered set of pairs (x, y) such that if g/a) =x

and gi(b) = y, then the outranking of b by a is refused. Marisio et al (1996) further

defines the discordance as the `minority strength not to be reached in order to be able

to establish the outranking relation that is computed using the relative importance of

65

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

each criterion'. Once the concordance threshold and the discordance sets have been
defined, the outranking relation S is defined as aSb, i. e. action a outranks b provided
that:

(1) c(a, b) >_ t, and

(2) for each criterion gj, (g, (a), gi(b)) 0 Dj holds.

2.10.3 Limitations of the current decision-making techniques

The current decision-making techniques suffer from similar problems as those

experienced in current COTS-based development methods. The link between the

current decision-making techniques and the current COTS-based development

methods is shown in Table 2.6. Two methods do not use decision analysis in their

development process while the OTSO method uses three techniques in various

degrees.

OTSO CISD IIDA IusWare Feature Analysis
MAUT - - - -
MCDA ,ý - - ýf -
AHP - - - -
WSM/WAS 1

- - _
Outranking

Table 2.6: The link between current COTS-development methods and decision-

making techniques. Some methods do not have a decision-analysis process while
those that have, the process is not adequately defined.

Therefore the selection of a decision-making technique for COTS evaluation and

assessment should be done with care. This thesis suggests that a requirements-driven

evaluation approach will have a positive impact on the evaluation and assessment

process. Current decision-making techniques do not adopt a requirement-driven

approach to product selection decisions and are therefore inadequate and not suitable
for the COTS based decision-process. The fundamental criticism of these techniques

is their underlying theory and their value judgement system, i. e. where the values

come from.

66

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

For example, the idea of producing a single number from the individual scores (e. g.
by some arithmetic combination formula such as weighted ranking) is misleading
because many different combinations of numbers can produce the same aggregate
score. Furthermore, certain features may attract higher average scores than others
because an assessor may understand them better and be more able to recognise

support in the product. There are also deeper reasons concerning the nature of the

ordinal scales that are usually used to assess product features. For instance, a score of
4 is not necessarily twice as good as a score of 2.

As an example, suppose that a four criteria model for software quality is adopted

using the following weights given by the client: cost (weight = 0.3), functionality

(weight = 0.4), supplier capability (weight = 0.2) and usability (weight = 0.1), as

shown figure 2.6 and in Table 2.2. Then when the WSM/WAS technique is used, the

significance of these weights is that a unit of functionality is twice the unit of supplier

capability, which is twice the unit of usability, etc. This is however, not necessarily

correct since the immediate consequence is that a preference of four units in usability

can completely compensate for an inverse preference of one unit of functionality.

What is more, if the evaluations of the four criteria are not measures but arbitrary

values which simply represent an order of alternatives, then there is an obvious

contradiction between the nature of the information and the aggregation principle of

the WSM/WAS technique which is unacceptable.

Therefore, the concluding view of this thesis is that most of the current decision-

making techniques available are not adequate for COTS-based evaluations and

assessments due to their underlying assumptions and their judgement value systems.

There is a need for new requirements-driven decision-making techniques for the

COTS-based development paradigm.

67

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

2.11 Summary and chapter conclusions

As organisations are increasingly shifting the development of their systems away
from bespoke development to COTS-based development, this chapter has highlighted

the current trends in COTS-based systems development research activities. This

chapter concludes that there is a surprising lack of requirements engineering for

COTS-based development. There is very little interest in the intersection of
requirements engineering and product selection, in spite of the greater use of COTS

products. Requirements are a cornerstone of effective COTS-based development. For

example, requirements become criteria for product evaluation and selection; they are

embedded in the legal contract. Requirements even provide acceptance criteria to

check that the product being purchased and the system developed from the products

will meet the customer requirements. When building systems from COTS products,

the consequence of inadequate requirements acquisition and product evaluation is

large because requirements changes can often incur great additional costs to the

customer. However, despite the importance of requirements engineering to COTS-

based development, this is not reflected in the current range and focus of commercial

techniques, methods, tools and research efforts.

Research into requirements engineering for the COTS-based development process is

also rare. One exception is Potts (1995) who identifies the need for requirements

engineering for off-the-shelf software products. Finkelstein et al (1997) provides a

review of important factors and research ideas for procuring COTS products but does

not offer any concrete solutions. Tepandi (1995) identifies numerous factors that

influence COTS product procurement practices but also does not provide any

guidance or prescriptive processes. Most current COTS-based development methods

such as that of Kontio (1996), Tran & Liu (1997), Fox et al (1997) Morisio &

Tsoukias (1997) and Kitchenham & Jones (1997) and research such as of Garlan et al

(1995), Brown et at (1995) and Vidger et al (1996) support systems design and

integration, but neglect the requirements acquisition and product evaluation and

selection processes which precede design and integration. These methods and efforts

provide very little practical guidance to developers to achieve the advantages of
COTS software or to assist in the requirements acquisition process for selecting

specific products.

68

2: Current-State-of-The-Art and Trends in COTS-Based Systems Development

There is a need for process definition for COTS products usage, and new lifecycle

models for COTS requirements acquisition, evaluation, selection and integration.

Requirements acquisition for COTS product evaluation and selection is complicated

by the intrinsic nature of COTS software special characteristics such as complexity,

incompatibility, inflexibility and transience, i. e. periodic updates (Fox et al 1998).

Product updates often add new functionality that is not compatible with the other

system components. On the other hand, remaining with older versions of the COTS

product may cause future interoperability problems with upgrades to other products.

Therefore, new methods and techniques for requirements acquisition and product

selection and for guiding the COTS-based systems development process are needed.
This thesis proposes a new method, PORE, (Procurement-Oriented-Requirements

Engineering) to address the lack of requirements engineering methods for COTS-

based development. The method supports and guides the requirements acquisition and

product evaluation and selection processes for COTS-based development paradigm.

PORE uses an iterative process of requirements acquisition and product

evaluation/selection as its main novel approach and integrates existing requirements

engineering techniques with those from several other disciplines. PORE is designed in

part, from conclusions drawn from real-world case studies of requirements acquisition

for complex software product selection.

The following chapters describe the research and case studies that contributed to

development of the PORE method for COTS-based development. The following

chapter reports on how data about current COTS software procurement and problems

was gathered.

69

Chapter 3

Requirements Engineering Process and Method for COTS-Based Development

This chapter describes studies undertaken in procuring COTS-software

Products and presents a case for the need of new methods and process

guidance.

3: Requirements Engineering Process and Method for COTS-Based Development

Chapter 3

Requirements Engineering Process and Method for COTS-Based

Development

Two studies were carried out to investigate hypothesis 1:

H1 New problems arise from COTS-Based Development and procurement-

oriented requirements engineering that are not addressed in current requirements

engineering research.

The first was a study of three organisations which was carried out to inform the author

as to how COTS-based systems are developed. Previous work had indicated that there

is general lack of methods for developing systems from COTS software. Therefore an
introductory study of 3 organisations' procurement processes was undertaken to gain

more comprehensive knowledge about software procurement. The study investigated

all stages of the procurement processes focusing on the selection of COTS software

products and the stakeholders' perception of the selection process. Studies on the

procurement of bespoke systems had been carried out, for example Tepandi (1995),

Kemp (1995) and Potts (1996). These studies provided useful knowledge on methods,

techniques and problems faced in the procurement of bespoke systems but not COTS

software selection.

In addition, little knowledge existed about requirements for selecting COTS products

and predominant requirements acquisition and product selection problems. Previous

studies on COTS-based development tended to focus on systems integration,

evaluation, design and architectures (e. g. Vigder et al 1996; Brown et al 1995; Garlan

1995) rather than on methods for acquiring requirements for product selection as
depicted in figure 3.1. Therefore, a second substantive study was undertaken of the

selection of a COTS requirements management system for the UK MoD. The study
helped the author to gain knowledge about requirements acquisition for COTS

software product selection and common problems that arise. The problems and

71

3: Requirements Engineering Process and Method for COTS-Based Development

lessons learned during the studies informed the design of a first prototype method for

requirements acquisition and COTS software product selection.

Lain & Vickers (1997)
Powell et at. (1997)
Frankel & Orr (1996)
Zaremski & Wing (1996)
Clements et al. (1995) DIRECTION
Kontio (1996)

EVALUATION REQUIREMENTS
ENGINEERING

SYSTEMS Lf SYSTEMS

Brown et al. (1995) Garlan (1995)
Vidger et al. (1996) Fox et at. (1996)
Zarretta & Brown (1994) Tran & Liu (1997)

Oberndorf (1997)
Dean & Vidger (1997) Brown & Short (1997)

Figure 3.1: Most work in COTS-development focuses on systems design, systems

integration and evaluation but none on requirements engineering.

3.1 Procurement process problems

3.1.1 The study method

The first study involved conducting 3 interviews with experts from 3 organisations.

The first organisation (Organisation A) was a large defence organisation responsible

for the procurement of large naval platforms and their software systems. These

platforms have both information systems handling large amounts of data and real-time

systems with critical performance requirements seldom known to commercial

suppliers. A senior procurement executive described his task, responsibilities and

problems. The second organisation (Organisation B) was an international airline. Its

information management division provides software systems for all activities within

the organisation including crew scheduling, rostering and flight planning. A cross-

functional team with experiences in systems operations and information management

recounted their experiences from the recent procurement of an interactive voice

response system to improve cabin crew scheduling. The third organisation.

(Organisation C) was a small consulting organisation with over 20 years of experience

72

3: Requirements Engineering Process and Method for COTS-Based Development

in requirements definition for systems procurement in both the private and public
sectors.

3.1.2 Organisations' current procurement processes

Organisation A- organisation A is a defence procurement agency responsible for

generating high level operational requirements for all types of ships, submarines and
naval aircraft and their weapons, sensors and communications. The organisation is

also responsible for generating the business case to achieve the endorsement of the

operational requirements and the release of funds from the UK treasury. Its main task
is to generate a comprehensive, coherent requirement specification for any of the navy

platforms that covers the issues from design and build, and through service to
disposal.

The organisation's procurement process start from the assumption that at some point

in the future, a gap in the capabilities needed by the armed forces to meet the task laid

down by the government has been identified. The current procurement process is

based on what is called the Downey Cycle which came from a report done in the mid-

60's (1966) for the RAF procurement division. The Downey study produced a model

which says how a procurement should be done. The Downey Cycle is designed to

take progressive stages to provide accountability in greater detail at one stage so that

the organisation does not commit large sums of money until they can justify what they

are going to get. The Downey Cycle divides a 10 - 15 year military procurement

programme down into sizable chunks so that firm control on technology, programme

and financial risks is retained.

Organisation B- the procurement process of organisation B starts by the Operations

Division raising the business case which is then passed on to the Information

Management Group (IMG). The IMG then conducts a project review to review the

technical feasibility of the project. If the project passes the review it is then passed to

another IMG steering group known as the Investment Review Group (IRG) who look

at the justification for the project. If the IRG are satisfied with the project, the IT

director signs the project and passes it to the operations director who is the end users.

73

3: Requirements Engineering Process and Method for COTS-Based Development

Only after this stage can the users begin the process of procuring the right COTS

software product.

Organisation C- organisation C is a small consulting house with over 20 years of

experience in requirements engineering for systems procurement both in the public

and private sector. Two interviews were conducted with the lead consultant. The

consultant recounted his experiences and problems both in requirements definition for

procuring software systems and the problems with the procurement processes. The

lead consultant discussed the major causes of the problems at the all process levels in

many organisations both in the public and private sectors. The following section

describes how data was gathered from the three organisations.

3.1.3 Data gathering method

Data about procurement processes and problems was gathered from both documents

and participants in the processes. Documents were examined for work flows,

information use and business processes. Examples of documents examined include IT

design documents from Organisation-B and current procurement procedures from

Organisation-A. Interviews were conducted with groups and individuals in all 3

organisations. Some individuals were interviewed twice. During unstructured

interviews participants were asked more open-ended questions about procurement

processes and problems. Structured interviews asked more specific questions. At the

end of each interview participants were shown the author's current version of the

process model and asked to comment. All interviews were tape-recorded. In total 21

hours of interviews were undertaken. The following section describes the results of

the case study.

3.1.4 Results

The data gathered from organisations was synthesised to produce the organisations'

current procurement processes. Figure 3.2 shows the current procurement processes of

organisation A. At the highest level, the procurement process is sequential but at the

lower levels there are sub-processes and feedback loops. These sub-processes and
feedback loops only appear sequentially if they have to, i. e. only if the output of

74

3: Requirements Engineering Process and Method for COTS-Based Development

process one is required as input to process two. The main procurement processes are

the concept study, feasibility study, contracting, building and management,

acceptance, service, mid-life modifications and disposal. All the processes access a

requirements database which once created will be used and needed for the next 30 -
60 years.

The problem with organisation A's current process is that it is a sequential process

due to the way the UK treasury is involved: "basically one thing is done and then

stop, go get the treasury for authority to go the next stage and then start again".

However what is needed is a concurrent process so that some parts of the process

could be going on while others are waiting for treasury approval.

C

I/

a

f

t

m
a
a
a
8
C
m
C
a
t

i'i'i' L W1 Ti
1rnd clan qudiCN

r
I
e

cveluWiým
I

ýý,

Ir

Muidiia u

- r
y

a nnm a

T L

J

hid
cirilicwim

/

m
ýcd1«

(InM1Uý1I1M
e
n

aelaYlnn 1

WM W

mid-Ilfc
midII1c Ikm

reMAtnbcm

Myxmm

IIIT(MMYI

Figure 3.2: The typical high-level procurement process of Organisation A

extracted from the organisation's documents and data gathered during the

interviews. The process is characterised by a continuous justification to the

treasury for funding at every stage. Also there is another parallel process of the

support contractor who handles the ITT.

75

3: Requirements Engineering Process and Method for COTS-Based Development

Figure 3.3 below shows organisation B's current high level procurement process. It is

sequential similar to organisation A's process. The figure shows that the management

and market analysis processes are performed in parallel to all other processes. The

market analysis is done by a dedicated team who continuously scan the market for

new products that are available and then inform the user groups whenever there is a

need to develop a new system.

Business Case
Dehnnion

Market
Analysis

Pnwluct
Identification Prmurement

Management

Requirements
Acquisition

Tender Invitations

Pr duct
Evaluation/Selection

Contract Neplianon

Figure 3.3: Current procurement process for Organisation B synthesised from

the documents and information gathered during experts interviews.

The data gathered from the 3 organisations were structured and synthesised into a

simple generic process model. The problems identified during this case study

informed the design of this generic process model and its sub-processes. The

following section describes the generic process model, the generic process and their

sub-process and the problems associated with each generic process.

3.1.5 The generic process model

The data gathered from the 3 organisations was structured using a basic process

model derived from existing literature (e. g. Finkelstein et al. 1996, Konito 1996,

Tepandi 1995). The data was synthesised into a generic process model that is intended

to be applicable to many software product procurement domains both in the public

and private sector. The generic process model describes the most fundamental

processes undertaken during product procurement. Processes and problems were

76

3: Requirements Engineering Process and Method for COTS-Based Development

defined at 3 levels, the universal (U), worldly (W) and atomic (A) levels according to
Watts' (1989) process model:

" universal (U) level processes describe general guidance for actors in the process.
Each describes a uniform sequence of processes;

" worldly (W) level describes processes that are more relevant to requirements
definition for systems procurement, since each guides the sequence of tasks such as
procurement tasks. In their operational form, the W-level processes look like

procedures which define who does what, when and where;
" atomic (A) level processes are specific to individual methods, procedures,

techniques and tools which enable W-level processes.

The main purpose of the U model is to describe the basic COTS product procurement

process steps and to provide general guidance on the roles and order in which the

processes can be performed. The U model assumes a relatively uniform orderly

sequence of steps that present a general process flow and a high level overview of

understanding the procurement process. The processes of the U model are

progressively decomposed into W and A levels of detail that are needed to guide the

procurement teams and to represent what is really being done.

Figure 3.4 depicts the 6 generic U-level processes: managing system procurement,

requirements acquisition, supplier selection, software package selection, contract

production and package acceptance. Figure 3.4 also shows a sequence that is often

adhered to, although not all the processes are performed in each procurement. For

example, software package selection does not take place if a bespoke system is being

procured. Management takes place throughout the procurement process. Other

process can also be concurrent, for example supplier selection and software package

selection processes often take place together.

77

3: Requirements Engineering Process and Method for COTS-Based Development

Requirements acquisition, definition and validation

Supplier selection

Software package selection

Contract production
time

Package acceptance

Management of
system

procurement

Figure 3.4: The synthesised model process used to structure the interview data

Each U level generic processes are described in the following two sections. Section

3.1.5.1 provides a brief description of each process and section 3.1.5.2 gives a
detailed description of each process with its associated typical problems.

3.1.5.1 A brief description of the U-level generic processes

This section gives a brief high level description of each U level generic process.

Management of system procurement - this is the process from the concept stage to

when a product or system is selected. The management team itself may be contractor

personnel as in most cases with Organisation A or may be from an internal cross-

functional team as in organisation B or a combination of organisation and contractor

personnel as is sometimes is the case in both organisation A and B. What is important

is that the management team should be set up first and very early in the process.

Ideally, the team members should have between them all the necessary skills and

experiences needed in the whole procurement activities and should remain with the

project all the time. The team should also ideally have a stakeholder representative

with them and should have access to people with specialist knowledge, skills or

expertise.

Requirements acquisition - this process determines or identifies the customer's core

requirements and accesses the critical system issues that the selected product should
meet. Major activities are the determination of user or operational requirements, core
system requirements, architecture requirements, supplier and contractual

78

3: Requirements Engineering Process and Method for COTS-Based Development

requirements. The process is managed by the procurement management team. The

requirements identification team itself may be a contractor team as with organisation
A or a internal cross-functional team as with organisation B, or a combination of both.

Supplier selection - this process establishes supplier evaluation criteria, evaluates

supplier proposals and ranks them for selection. The supplier evaluation team can be

selected from the management team and teams can be established for each proposal

area (i. e. technical, cost estimation, management skills, etc.). Ideally each evaluation

team should possess all of the necessary skills and be knowledgeable about the area

they are evaluating. It is important for the team to document the selection criteria and

the basis and rationale for selecting the preferred supplier. This process can be

performed in parallel with other processes, e. g. package selection.

Package selection - the package selection process determines whether a product will

meet customer's core requirements. The selection team determines the product

evaluation and selection criteria based on the customer requirements. The selection

process itself will require learning enough about the candidate products in order to

determine the best product that meet the customer's core requirements with minimum

risks. By the end of this process, primary and back-up products would be selected.

The evaluation criteria and rationale for selecting or rejecting a product should be

documented.

Contract production - when a product that meets the customer's requirements has

been selected or a supplier that meets the evaluation criteria has been identified,

licensing and contractual agreements are then negotiated. At the end of this process a

contract is produced that covers all aspects of the product procurement including

terms and conditions, costs, payments, technical support, upgrades, contract

termination terms, and in case the supplier goes out of business what should happen.

Conditions, criteria and rationale for awarding the contract should be documented.

Product acceptance - the objective of this process is to confirm that the procured

product meets end-user requirements and expectations. The product can be deployed

at the customer site and end-to-end testing performed in a realistic setting. During this

stage the operational readiness of the product will be reviewed. The review will focus

79

3: Requirements Engineering Process and Method for COTS-Based Development

on functional completeness, product reliability and performance. Depending on

whether the product meets the acceptance tests, it will then be accepted into service or
the supplier may be7requested to carry some minor modifications in order for the

product to be accepted.

The results reflect the different foci of the 3 organisations. Organisation-B purchases

commercial off-the-shelf systems to integrate with existing systems. Procurement is

undertaken by system development staff. In contrast, organisations A and C have

complex infrastructures which organise and manage the procurement of complex

software systems. Different procurement tasks are undertaken by different roles. The

influence of these differences on procurement processes and problems are reported

later in this section. Feedback from participants at the end of interviews on the U-

level process model was positive, in that all participants agreed with the definition and

importance of each U-level process.

The W-level processes and problems are presented using informal descriptions rather

than formal notations. The following section provides detailed descriptions of each

process together with the typical problems associated with each process.

3.1.5.2 Detailed description of the W and A level generic processes

This section describes in detail the W-level processes presented in figure 3.4.

Important problems that arise during each process are listed. Each problem is coded

either A, B or C to indicate which organisation experienced it.

Management of system procurement - the following typical problems were found

for this process:

Problem P1.1: poor relations between supplier and customer (A, Q. This problem is

greater in public sector procurement because supplier-customer relations are often not

recognised as important. In contrast, most private sector organisations now realise the

benefits of developing long-term partnerships with suppliers.

80

3: Requirements Engineering Process and Method for COTS-Based Development

P1.2: lack of planning (A, B, Q. Procurement often fails because of a lack of

planning which incorporates sound procurement practices. Reasons for this include

lack of relevant management experience and inadequate procedures. The result is poor

procurement processes, often leading to selecting products that fail to meet customer

requirements.

P1.3: failure to adhere to planned procurement processes (A, B, Q. External pressures

to deliver the system in a certain time period often lead to abandonment of the

original procurement plan. In particular, important processes perceived as non-critical,

such as supplier demonstrations, are missed in order to meet more critical deadlines.

The consequence is failure to gather all relevant information, which in turn

impoverishes decision-making during supplier and package selection.

P1.4: failure to obtain approval from all stakeholders (B). Important stakeholders in

the required system, such as those who finance the procurement, are not always part

of the procurement team. As a result it is difficult to obtain their agreement for

important decisions, hence procurement is sometimes stalled or even abandoned.

P1.5: enforced justification and approval at each stage of the procurement process (A,

Q. Current procurements are often organised so that justification and approval has to

be sought before each task. This inhibits effective planning and causes delays.

Some participants recommended other processes that might avoid the reported

problems. These processes include:

" more familiarisation with the organisation's procurement plans (A, B);

" identification and documentation of potential risks during procurement (A,

B);

" definition of milestones and deliverables with the supplier before

procurement starts (A);

" putting change control mechanisms in place to approve and fund changes

to the original procurement plan (A).

81

3: Requirements Engineering Process and Method for COTS-Based Development

According to participants, management of the procurement process can be improved

through the inclusion of people with diverse roles (B). These include people with

extensive experience of the problem domain and commercial products, managers to

co-ordinate procurement, and trouble-shooters who look for hardware and architecture

problems. Their participation is not encouraged at the moment (B).

Requirements acquisition, definition and validation - the following typical

problems were found for this process:

P2.1: failure to acquire contractual requirements (A, B, Q. Contractual requirements

refer to all requirements which are not about the product, for example requirements

about the supplier and the legal contract with the supplier. Most requirements

engineers are unaware of the importance of contractual requirements in system

procurement and fail to acquire them.

P2.2: contractual requirements often conflict with other requirements on the product

(A, Q. This makes it difficult to produce a complete and consistent requirement

specification.

P2.3: customers do not have the contractual right to change the procured software

system once it has been delivered (A, B). However, requirements often change due to

external factors such as new legislation. The supplier often charges the customer for

such changes, thus increasing development costs.

P2.4: failure to determine core system requirements first (B). Core requirements are

those requirements that are critical to success of the system and often do not change.

However, organisations often fail to differentiate between core and non-core

requirements.

Requirements acquisition is often similar for bespoke, procured and off-the-shelf

systems. However, off-the-shelf systems provide additional opportunities. Useful

processes to consider are:

" determine core system requirements first (A, B);

82

3: Requirements Engineering Process and Method for COTS-Based Development

" determine cornerstone products (B);

" determine the current system architectures and map requirements to them
(B). The architectures determine how selected packages might be

integrated with existing systems;

" meet other customers and users, even those in other applications and
industries who have similar requirements and technologies, as they can be

useful sources of new requirements (B). Also contact vendors for
demonstrations and use the internet to gather information (A, B);

" understand the system requirements in the context of the off-the-shelf

systems available (A, B). Any requirements that will require custom-built

software should be identified (B). This product-led requirements

acquisition is often used for commercial, non-software products (B);

0 acquire requirements about the supplier and the contract as well as the

product (A, B, C).

During the interviews participants gave examples of important contractual

requirements to acquire. Supplier requirements include information about the supplier

organisation (number of employees, annual turnover, stability (A, B)), its customers

(number, application domain experience (B)), training available and supplier-

customer relations (previous purchases, strategic alliance, relations to individuals in

the organisation (A, B)). Requirements about the contract include the degree of

change possible (price, timetable, delivery (A)), the payment method (fixed,

installments (A, C)) and the nature of the contract (A, Q. Such information provides a

basis for guiding contractual requirements acquisition (C).

Supplier selection - the following typical problems were found for this process:

P3.1: the invitation-to-tender (TTT) document given to suppliers often contains vague
information (C). This is because the people who produce the ITT often do not

understand requirements. This allows suppliers to interpret requirements to their own
benefit and to the detriment of the customer.

83

3: Requirements Engineering Process and Method for COTS-Based Development

P3.2: syntactic analysis of the ITT document by suppliers (C). This leads to failure by

the supplier to meet all actual customer requirements. The legal keyword is "shall"

because it imposes legal obligations on the supplier to meet these requirements. As a

consequence suppliers often attempt to change "shall"s to "will"s. This problem is

often compounded by the customer' failure to understand such legal keywords.

P3.3: there is often a failure to isolate requirements more liable to change (C). This is

because changing requirements are often not identified before producing the ITT

document.

P3.4: supplier selection criteria are often too cost-driven (A, B, Q. This is in order to

meet financial constraints. The result is that systems that meet more customer

requirements are not selected.

P3.5: requirements engineers often lack expertise in bid assessment and supplier

evaluation (A, Q. This is due to a lack of relevant training.

P3.6: bid assessment criteria are sometimes distorted (A, B, Q. Decision makers have

hidden motives and agenda, and as a consequence might distort criteria, weightings

and their application during supplier selection.

P3.7: supplier selection criteria are often too simplistic (A, Q. This is because people

lack guidance and expertise in supplier selection. For example, one criterion is

whether the supplier has developed a similar system before, regardless of whether or

not the system developed was successful. As a consequence the same unsuccessful

suppliers are rewarded.

P3.8: there is a lack of guidelines for assessing supplier capabilities (A, B, Q. For

example one indicator worth considering is the supplier's ranking according to the

supplier's capability maturity. However, lack of guidelines means that supplier

assessment is problematic.

84

3: Requirements Engineering Process and Method for COTS-Based Development

P3.9: supplier selection criteria are designed to maintain the status quo (A, Q.
Selecting suppliers regardless of previous success is an often-used criterion that

maintains the status quo.

The interviewees proposed the following processes to overcome these problems:

" establish cross-functional evaluation teams for different areas of the evaluation
including, for example, user representatives and external experts on candidate

suppliers and products (B). The team should have the pre-requisite combination of
skills, knowledge and experience to evaluate proposals (A, B, C);

" determine technical evaluation criteria (C). Use technical requirements as a baseline

for determining a list of candidate suppliers with a background matching the

technical requirements (A, B, Q. Look at both the supplier's technical credentials,

personnel, background, experience, availability and present workload (A, B);

" determine management evaluation criteria, i. e. how will the supplier manage the

project (A). Look at the supplier's past performance reports, commitment to the

proposed project and key personnel (A, Q. Consider how the supplier will plan and

control costs (A, C);

" determine cost evaluation criteria (A, B). Look at missing and uncosted elements

and estimate whether costs are as expected (A). Evaluate candidate suppliers'

financial credentials with regard to financial capabilities to perform the task, current

financial position and credit performance (A);

" rank bids according to the above technical, management and financial requirements

(A, B). Select a manageable number of bids (A). Negotiate with each supplier to

obtain the most favourable deal (A). Use of sophisticated decision making

techniques which recognise the complexities of the decision-making process (B);

" document supplier selection recording the basis and rationale for the selection (B).

Record individual bid evaluations and debrief unsuccessful bidders (A). Inform

them of selected bids and criteria for selecting them (A).

85

3: Requirements Engineering Process and Method for COTS-Based Development

Software package selection - the following typical problems were found for this

process:

P4.1: important decision makers are not involved in all activities during software

package selection (B). The selection process can involve large numbers of

stakeholders, all of whom should reach some level of consensus over the final

selection. However, due to the failure of key decision makers to be involved

throughout, consensus and agreement are difficult to achieve. Indeed, decision makers

are sometimes biased towards software packages which they have reviewed over

those which they did not see.

P4.2: software package selection is often too short-term and does not consider longer-

term implications of the selection (B). Organisations lack long-term procurement and

purchasing policies. One result is being locked into the incorrect suppliers on the basis

of requirements for one product. This can have important implications for an

organisation's future business processes, standards, system architectures and

requirements.

P4.3: failure to consider all relevant selection criteria (A, B, C). There are few methods

and techniques available to guide acquisition of all requirements needed to make

informed software package selection. The consequence is that organisations purchase

the wrong packages.

P4.4: customer organisations often lack experience in software package selection (B).

As a result the process of package selection is impoverished.

P4.5: there are few standards for describing off-the-shelf software systems (B). As a

result it is difficult and expensive to integrate off-the-shelf systems from different

suppliers.

The interviewees proposed the following processes to overcome these problems:

" determine package evaluation criteria equivalent to core system requirements (B);

" use compliance with open architecture standards as an evaluation criteria (B);

86

3: Requirements Engineering Process and Method for COTS-Based Development

" determine classes of package to be procured, to reduce the search space (B). These

might be domain-independent, domain-specific or application-specific packages;

" evaluate candidate software packages against criteria equivalent to requirements
(B);

" have suppliers give demonstrations of their software packages (B);

" document risks associated with each candidate package (B);

" select best-fit package(s) according to their fit with customer requirements (B).

Stakeholders who should be involved in software package selection include future

end-users, managers of the procurement process and system architectures responsible
for ensuring systems integration. Important criteria include the package's fit with
functional and non-functional requirements, its price, its hardware configurations and

the ease of integration with other systems.

Contract production - the following typical problems were found for this process:

P5.1: the supplier often aims to produce a system which meets the minimum number

of customer requirements (A, Q. The ITT document which provides the basis for

supplier bids must be open to interpretation in order to enable a range of suppliers to

bid. However this freedom gives the supplier opportunities to produce a product

which meets a minimum of requirements. Furthermore, it is not in the interests of the

supplier to define complete requirements. Suppliers often choose which requirements

to meet.

P5.2: suppliers can profit from project over-runs (A, Q. Most legal contracts include

a time period during which the software package must be implemented. Conflicts over

the contract enable suppliers to delay this implementation until the customer has to

capitulate to obtain the purchased system.

P5.3: customers lack expertise in negotiation and contract administration (A, Q.

Again there is a lack of relevant procurement training for IT staff. As a result the

process is not understood, not achieved with satisfaction, and ill-managed. Some

organisations pass contract administration to legal departments which specialise in the

87

3: Requirements Engineering Process and Method for COTS-Based Development

task, however this makes communication of requirements more difficult. This is

because contractual experts might not understand the requirements.

P5.4: contract arrangements between suppliers and customers are adversarial (A, Q.

This makes systems procurement even more difficult, especially in light of increased

use of fixed price and cost-plus contracts. Pitfalls are possible with both.

To overcome these problems both suppliers and customers must aim to generate a

partnership that will enable shared risk-taking. Participants identified the following

important sub processes:

" negotiate contract terms and conditions (A);

" negotiate conditions and criteria for awarding contract (A);

" establish upgrade and extra technical support (A, B);

" establish primary and subcontractor responsibilities (A);

" negotiate licensing agreements and legal issues (A, B);

" negotiate price and paying conditions (A, C);

" negotiate contract termination conditions (A, Q.

Again stakeholders who should participate are diverse (A, B). They include

procurement officials to advise on licensing and agreements with suppliers, customer

and supplier purchasers who will negotiate costs, customer and supplier contract

experts, legal representatives from both the customer and supplier, and those

responsible for establishing contract acceptance criteria.

Package Acceptance - the following typical problems were found for this process:

P6.1: acceptance criteria are often too ill-defined to enable endorsement or rejection

of the delivered system (A, B, Q. Acceptance criteria must be derived from

requirements to formulate questions to ask about the delivered system or scenarios for

it to handle. However, there is a lack of methods and techniques for defining

acceptance criteria.

88

3: Requirements Engineering Process and Method for COTS-Based Development

P6.2: there is a lack of people with sufficient expertise in generating and checking
acceptance criteria (A, Q. Reasons include lack of training and failure to recognise
the importance of acceptance criteria.

Acceptance checking can take a long time if modifications to the delivered system are

needed. For large systems it can take several years (A). However, recommended

processes to overcome this include:

" developing package acceptance criteria (A, B);

" conducting end-to-end system testing to check that the package works in

an integrated system (A, B);

" conducting system operational readiness reviews (A, B);

" demonstrating the system to users (B);

" obtaining user acceptance (A, B).

3.1.6 Analysis of results

Analysis of the findings reveal several common themes in the processes and problems
for procuring software systems in all the 3 organisations:

"a lack of systematic planning of product selection and requirements engineering

processes, despite their complex nature (e. g. P1.2, P5.2);

"a lack of information about procurement processes, actors in these processes,

possible problems, solutions to them, candidate suppliers and software packages,

and few relevant useful standards (e. g. P1.3, P3.9);

" actors lack the skills and expertise for procuring software systems (e. g. P3.6, P4.4);

"a failure of involvement of important decision-makers throughout the process (e. g.

P 1.4, P4.1);

"a failure of actors to recognise the importance of non-product contractual

requirements (e. g. P2.1);

"a failure of actors to recognise the importance of unchanging core requirements
(e. g. P2.4);

" the conflict between supplier and customer (e. g. P3.2, P5.5).

89

3: Requirements Engineering Process and Method for COTS-Based Development

It is interesting to note that, at a broad level, findings were different for each

organisation. Organisation B has few guidelines for procuring its numerous COTS

systems. In contrast organisations A and C have extensive experience of system

procurement and complex structures to manage this procurement. This is reflected in

the data and in the problems as shown in Table 3.1. Organisation-B's problems are

different to those of organisations A and C. Organisation B reported fewer problems

during procurement management, supplier selection, contract production and product

acceptance, and more problems during package selection. This is indicative of the

diverse nature of the requirements engineering problems that are encountered in a

packaged-based development but that are not usually experienced in traditional

development processes.

Organisation Organisation Organisation
A B C

P1.1: poor relations between supplier
and customer
P1.2: lack of planning
P1.3: failure to endure to planned
procurement processes
P1.4: failure to obtain approval from ,f
all stakeholders
P1.5: enforced justification and
approval at each stage of the
procurement process
P2.1: failure to acquire contractual '

requirements
P2.2: contractual requirements often J J
conflict with other requirements
P2.3: customers do not have
contractual rights to change the
procured software once it has been
delivered
P2.4: failure to determine core system
requirements first
P3.1: the invitation-to-tender
document given to suppliers often
contains vague information
P3.2: systematic analysis of the ITT
document by suppliers
P3.3: there is often a failure to isolate
requirements that are more liable to
change
P3.4: supplier selection criteria is too
often cost-driven
P3.5: requirements engineers often
lack experience in bid assessment and
supplier evaluation
P3.6: bid assessment criteria is
sometimes distorted
P3.7: supplier selection criteria are

90

3: Requirements Engineering Process and Method for COTS-Based Development

often too simplistic
P3.8: there is lack of guidelines for q
assessing supplier capabilities
P3.9: supplier selection criteria are q
designed to maintain the status quo
P4.1: important decision makers are 'I
not involved in all activities during
software package selection
P4.2: software package selection is
often too short-term and does not
consider long-term implications of the
selection
P4.3: failure to consider relevant
selection criteria
P4.4: customer organisations often
lack experience in software package
selection
P4.5: there are few standards for
describing off-the-shelf software
systems
P5.1: the supplier often aims to
produce a system which meets the
minimum number of customer
requirements
P5.2: suppliers can often profit from
project over-runs
P5.3: customers lack expertise in
negotiation and contract administration
P5.4: contract arrangements between
suppliers and customers are often
adversarial
P6.1: acceptance criteria are often too
ill-defined to enable endorsement or
rejection of the delivered system
P6.2: there is a lack of people with
sufficient expertise in generating and
checking acceptance criteria

22 15 24

Table 3.1 Overview of the distribution of the problems experienced by

organisations A, B and C. The table shows that organisations A and C

experienced almost 90% of the problems.

3.1.7 Validation of the findings

Similar problems were found in the failed implementation of the London Ambulance

Service's (LAS) Computer Aided Dispatch (CAD) system (Dowell & Finkelstein

1996). The following section uses this case study to demonstrate the problems
identified from organisations -A, -B and -C.

91

3: Requirements Engineering Process and Method for COTS-Based Development

The LAS CAD system was developed to replace manual procedures to provide

command and control functions and management information. It consisted of a

combination of CAD software and hardware, an electronic gazetteer and mapping

software, communications interface software, radio systems, mobile data terminals

and an automatic vehicle location system. Its success was dependent on accurate

information, reliable technologies and full co-operation of all users. It aimed to

automate as much of ambulance command and control as possible. However, the

system collapsed and was abandoned in November 1992.

Reasons for system failure included poor requirements definition and procurement.

When the LAS management distributed an ITT document, 35 suppliers responded

expressing interest and received a full requirements specification from the LAS. In

response 17 suppliers submitted firm bid proposals. LAS management compared

these proposals and one consortium (Systems Option, Apricot and Datatrak) was

selected. However failures in the tender and bid evaluation process contributed to the

overall system collapse. The procurement process was ill-planned and ill-managed

(P1.2) and subject to outside financial and political pressures to improve LAS

performance (P1.3). Changes in the procurement team made it difficult to achieve

consensus decision-making (P1.4). Furthermore the team had inappropriate skills for

the task (P1.5). During requirements acquisition there was a failure to acquire

contractual requirements (P2.1). Indeed the specification was too prescriptive and left

no scope for flexibility in system design. There were no standards available to

structure the requirement specification for procurement purposes (P4.5).

During package selection, criteria for both supplier and software package selection

were too simple (P3.4). Criteria from the ITT document were vague (P1.4). Cost was

the overriding selection criterion (P3.4). The system manager and contract analyst

responsible for software package selection lacked relevant experience (P3.6). Claims

made from the suppliers about previous successful system developments were

misleading (P3.9). The lack of expertise in contract production led to poor contract

development (P5.3, P5.4). As a result contractor responsibilities were not established.

Contract termination conditions were not negotiated and there was no established

contract acceptance criteria (P1.6). When the system was delivered there was little

evidence of system acceptance testing (P6.1,6.2).

92

3: Requirements Engineering Process and Method for COTS-Based Development

In short, the LAS CAD fiasco demonstrates the consequences of poor requirements

engineering for COTS product procurement. It supports findings reported above and
indicates that the problems are widespread in practice. The LAS fiasco also indicates

that the problems exist at many organisational levels and each problem is associated

with a specific organisational level.

The problems reported above are not addressed by currently existing COTS

development methods. Also most current requirements engineering do not explicitly

address most of these problems as shown in table 3.2.

OTSO CISD IIDA IusWare Feature
Analysis

Volere Rational
Process

SSADM SSA

131.1
P1.2
P1.3
P1.4
P1.5
P2.1
P2.2
P2.3
P2.4
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6
P3.7 ýI
P3.8
P3.9
P4.1
P4.2
P4.3
P4.4
P4.5
P5.1
P5.2
P5.3
P5.4
P6.1
P6.2

Table 3.2. Most problems identified in table 3.1 are not explicitly addressed by

current COTS software development and requirements engineering methods.

New methods that address these problems are therefore required.

93

3: Requirements Engineering Process and Method for COTS-Based Development

As shown in table 3.2, developing systems from COTS software presents customers
with new problems that that are not normally experienced in traditional development

processes (H 1). The study reported above shows that there is need for new methods to

address the new problems and therefore hypothesis 1 (H1) is accepted. However, to
further test hypothesis 1, a second study was undertaken to acquire requirements for

selecting a COTS product and to evaluate and select the preferred product. The

lessons learned during this study, the problems experienced and the proposed

solutions to the problems informed further design of the new method. The study also
identified techniques that are needed for this process. The study is described in the

next section.

3.2 Acquiring requirements for COTS product selection

3.2.1 Study method

The customer was the MoD Procurement Executive (PE). The PE wanted new

methods and software tools with which to manage requirements for a new naval

platform which would take 20 years to develop. The aim of the study was to acquire

requirements about and recommend commercial requirements engineering methods

and software tools for trial by the PE.

The study had 11 weeks to make a recommendation to the PE. It was decided that,

where possible, commercial product selection procedures would be adhered to. No

research ideas or techniques from disciplines outside the fields of systems or
requirements engineering were used.

Requirements acquisition took place from both MoD documents and stakeholders.

Five meetings with between 6 and 10 stakeholders took place over a 3-week period.

Each meeting was divided into a review of the current requirements document and

acquisition of new requirements from the stakeholders. The final requirements

document contained 133 atomic requirement statements.

To save time, market research to identify candidate products was undertaken in

parallel with requirements acquisition. An initial version of the requirements
document was transformed into a questionnaire and sent to over 30 candidate

94

3: Requirements Engineering Process and Method for COTS-Based Development

suppliers to determine the coverage of their products, (see Appendix 3a). From the

supplier responses, a shortlist of 6 candidate products was produced. Next, a set of 35

complex test cases for product evaluation was developed from the final requirements
document, (see Appendix 3b). A prototype was developed to test the accuracy and

viability of the test cases. All the shortlisted suppliers were invited to demonstrate

their product against the 35 test cases, but only 5 attended the demonstration sessions.

During each evaluation session, 3 members of the team using both quantitative scores

and qualitative comments recorded product feature compliance with each

requirement. After each evaluation, the team members agreed the final product-

requirement compliance scores. These scores were then investigated using methods

such as weighted scores to produce relative ranking of the products (see Appendix

3c). As a result, trial use of two requirements engineering software tools was

recommended.

3.2.2 Results

The requirements engineering team experienced many problems. In particular, the

requirements acquisition and product selection processes were problematic, even

though the customer was content with the recommendations. As hypothesis one (H1)

states, the lessons learned and problems encountered are seldom experienced in the

traditional development processes. The next section outlines the lessons that were

learned and 11 of the many problems that were encountered and proposes possible

solutions to each of the 11 problems. The problems that were encountered and

proposed solutions to these problems inform the design of the new method.

3.2.2.1 Lessons learned, problems encountered and suggested solutions

This study provided a range of lessons and problems about the nature of acquiring

requirements for COTS software product selection.

Lesson-1: acquire in more detail those requirements that enable effective

discrimination between products.

Problem: too much time was spent acquiring and modeling requirements that were

met by all 5 evaluated products. Most of these requirements did not enable effective
discrimination between the products. In contrast, the requirements that enabled

95

3: Requirements Engineering Process and Method for COTS-Based Development

effective product selection were not modeled in sufficient detail. For example,
requirements about the product's compatibility with Microsoft WordTM and AccessTM

products were less detailed but were more important and key to the selection of a
product.
Solution: requirements acquisition and product evaluation should be both iterative

and concurrent. The selection team can then become familiar with requirements and

products at the same time, thus making both requirements acquisition and market

research more flexible and responsive. This can be achieved using a range of

techniques. One such technique is card sorts. Card sorts are simple to use and can be

used to acquire requirements which discriminate between products (Maiden & Rugg

1996). The requirements engineer writes candidate product names on 3"x5" cards and

asks stakeholders to use the cards to sort the products into categories. Criteria for

these sorts (e. g. "compatible with MicrosoftTM Word") indicate customer requirements

which discriminate between products. Product categories (e. g. "compatible" and "not

compatible") indicate product compliance to these requirements. A useful variation,

card sort triage, requires the stakeholder to describe the similarities between two

products and their common differences with a third product. Card sort techniques also

fit well with laddering (Rugg & McGeorge 1995), in which the stakeholder is asked to

describe common categories and classes of products and their features to discover

important but non-discriminating customer requirements, thus avoiding time-

consuming acquisition of less important requirements. Discriminating requirements

then provide a starting point for more thorough requirements acquisition using other

techniques such as those reported in Maiden & Rugg (1996).

Lesson-2: requirements must be as measurable as possible to enable effective product

selection.
Problem: for most requirements it was difficult to measure product-requirement

compliance, thus making product selection problematic. One reason was that

requirements were not verifiable, in that their fit criteria were not expressed as logical

expressions or quantifiable tests recommended by current commercial requirements

standards (e. g. Mazza et al. 1994).

Solution-1: making requirements measurable is very difficult than its usually

perceived. The recommended solution is to pre-empt how the requirements will be

used during product selection, for example as questions in questionnaires sent to

96

3: Requirements Engineering Process and Method for COTS-Based Development

suppliers, or as evaluation test cases during on-line product demonstrations, g then

tailor the verifiable fit criteria for these requirements accordingly. However, this

cannot always be done effectively for a large number of customer requirements, so the
focus should be on requirements which enable effective product discrimination. An

iterative approach is essential for success: use techniques reported in lesson-1 to
determine requirements which discriminate between products, define fit criteria for

these requirements, then re-evaluate product-requirement compliance using these

criteria. Several iterations might be needed to determine precise and measurable fit

criteria for the requirement, to evaluate the degree of product compliance to the

requirement.
Solution-2: another solution is to use contrived acquisition techniques to acquire

quantitative scores for product-requirement compliance. One such technique is

repertory grid analysis, in which stakeholders are asked for attributes applicable to a

set of entities and values for cells in an entity-attribute matrix. Advantages from using

this technique include the representation of requirements in a standardised,

quantifiable format which is even amenable to statistical analyses as a basis for

justifying product selection decisions.

Lesson-3: use software prototypes to aid generation of test cases for product

evaluation.

Problem: generation of measurable test cases is difficult without prior knowledge

about candidate products or prior extensive experience of test case generation.

Solution: the solution is to use a software prototype to aid generation of test cases. If

a software prototype exists, the selection team can undertake mock evaluations of the

prototype using first-draft test cases as if the prototype was a candidate product. This

may lead to some refinement of the test cases themselves, so as to make them more

measurable. This can enable the evaluation team to determine the correct responses to

complex data base queries used during product evaluation. However, most projects

will have to develop such a prototype. Rather than generate a single, integrated

prototype, a more cost-effective approach might be to generate several smaller, partial

prototypes or concept demonstrators of desirable but discriminating product features

with which to develop verifiable fit criteria.

97

3: Requirements Engineering Process and Method for COTS-Based Development

Lesson-4: structure the requirements in way that makes it easy to formulate test cases.
Problem: the hierarchical structure of the requirements is incompatible with the
sequential structure of the test cases, and this makes test case generation difficult. For

example, the requirement that the product be configurable to customer needs was
included in all 35 test cases in order to evaluate how configurable all of the functions

of each product were. However, this weakened the link between requirements and test

cases, and made test case management more difficult.

Solution: the obvious solution is to acquire requirements using use cases and

scenarios so that the requirements are more amenable to test case generation. For

example, Graham's (1996) SOMATiK approach proposes seamless decomposition of
goals into tasks which achieve these goals, then generation of use cases which are

equivalence classes of task scripts and of scenarios which are equivalence classes of a

use case (p131). SOMATiK's seamless transformation is both practical and effective.
Graham reports its successful use on over 20 projects at Swiss Bank Corporation. The

SOMATiK software tool even generates simple software prototypes which can be

useful during test case generation, thus also providing at least a partial solution to

problems reported in lesson-3.

Lesson-5: the scope of the product under evaluation is difficult to define.

Problem: requirements management tools are complex and depend on other products

such as data base management systems. In order to undertake a complete product

evaluation, these other dependent products have to be evaluated which in turn makes

the evaluation more complex and time-consuming.

Solution: LORAL's revision of the spiral process for COTS product selection

(Walters 1995) recognises the need to select cornerstone products first, then integrate

other products around them. However, guidance for detecting and selecting these

products is still needed. One simple solution is to use checklists to see whether

customer requirements are essential, stable and urgent, and whether each candidate

product will have a long period of use, meets essential rather than non-essential

requirements, needs modification, is currently available, and adheres to current

product standards. It is also important to determine dependencies between products,
for example "Can this function be achieved without additional products? ". If the

answer is "no", ask follow-on questions such as "Are the additional products available

with the core product? ", "Where are the additional products available from? " and

98

3: Requirements Engineering Process and Method for COTS-Based Development

"How much configuration of these products is needed? ". Such questions are
embedded in new method's templates to encourage the requirements engineer to ask

the right question at the right time during requirements analysis.

Lesson-6: stakeholder representatives should be present during product evaluation.

Problem: sometimes there is a need to ask detailed questions during the evaluation

session using information about the problem domain. Such problem domain

information may not always be acquired from stakeholders prior to evaluation or

recalled by the team members during an evaluation session.
Solution: the solution was to have a stakeholder representative with a good

understanding of the problem domain available during each evaluation. This gave the

team the advantage of being able to ask more detailed questions during each

evaluation.

Lesson-7: techniques are needed to record information during product evaluation.

Problem: the large number of requirements made product-requirement compliance a

complex task. The team made over 1500 compliance decisions during a total of 18

hours of product evaluation. However, it did not use techniques to record the rationale

for these decisions. This made agreement of product-requirement compliance scores

within the team members after each evaluation session very difficult because all the

reasons for all of the scores have not been recorded.

Solution-1: record rationale for product-requirement compliance scores during the

evaluation using, for example, design rationale techniques such as discussed in Moran

& Carroll (1996) and demonstrated in Figure 3.5. To save time, each product-

requirement compliance test, the properties of each product and the requirement

statements can be entered into the tool before evaluation begins. The use of a scribe

who is independent of the evaluation process is recommended to record rationale

during each evaluation. Video tapes of the evaluation session are another means of

recording information. Video tapes can even be linked to design rationale diagrams by

including a time reference to when a product-requirement evaluation took place.

Solution-2: detecting dependencies between product features is essential for effective

product selection, so rationale diagrams can be extended to show key dependencies

which inform selection. Figure 3.5 shows that two product features (access rights for

individual users, tailorable user profiles) belong to two versions of the same product.

99

3: Requirements Engineering Process and Method for COTS-Based Development

Since the team has to choose one version or the other, a logical operator'OR' is added

to the diagram. Such dependencies have an important impact on the selection of
decision-making techniques, as reported for lesson-8.

Solution-3: another solution is to use feature analysis techniques from non-software

product procurement (e. g. Kitchenham & Jones 1997) to obtain product-requirement

compliance scores in a more systematic way. The DESMET approach (Kitchenham

1996) proposes taxonomies of desirable features derived from expertise of DESMET

consortium members to draw on during product selection. The DESMET approach

treats each product feature as independent of any other feature of the product,
however this is not often the case for even simple software products, so this approach

should be used with care.

Requirement Requirement - Product Back rg ound
Statements Product Compliance Properties Information

Scores
T Document,

Access rights for __.
Document,

para-2
3.2c: the system individual users
shall restrict user strong

Product
access to
re uirement version-1 q
statements ý. Score weak Tailorable user

I
OR

according to the
'

=6/7 profiles Product level of the user s strong version-2 identifier
9

3.2d: the system Access rights and
shall restrict codes can only be set- How many stron
access to by system manager ý-S

system managers
can be defined requirement

statements -4n

according to strop
attributes of the Access codes for

statement requirements
according to type

Figure 3.5: Example of a design rationale tailored for product evaluation. It

enables the user to record product-requirement compliance scores and their

reasons, as well as references to other scores, requirements and product

properties. For example, the product was awarded a score of 6 out of 7 for

compliance to requirement 3.2c. Positive reasons for this score include the

product's provision of access rights for individual users and tailorable user

profiles. However these access rights and codes can only be set by the system

manager. Furthermore, different product properties are available from two

100

3: Requirements Engineering Process and Method for COTS-Based Development

different versions of the product. The 'OR' link between them indicates that only
one of the two versions can be selected. This, in turn, influences both the

selection to be made and the techniques to use to aid the making of that decision.

Lesson-8: weighting requirements for product selection can be problematic.
Problem: one stakeholder weighted all of the customer requirements using simple

percentage scores. However, these weightings were sometimes inconsistent and led to

confusion about what were the most essential customer requirements.
Solution: use more sophisticated requirements weighting methods such as multi-

criteria decision-making techniques. One such technique, the Analytic Hierarchy

Process (AHP) has received some interest in the requirements engineering (Karisson

& Ryan 1997) and software engineering (Kontio 1996) communities. AHP was

developed for multiple criteria decision making situations. It supports hierarchical

structures common when modelling system requirements. Rankings and weightings

are obtained through paired comparisons of requirement statements which are

converted to normalised rankings using the eigenvalue method, which means that the

relative rankings of alternatives are presented in ratio scale values which total one

(Saaty 1990). However, one strong assumption for use of the AHP is that all criteria

(i. e. requirements) are independent. This was not the case in this case study. Indeed, it

is not the case for most system requirements, therefore results from AHP analyses

might be unreliable when there are dependencies between system requirements. One

alternative solution is to use the outranking methods. Outranking methods seek to

enrich dominance relations between criteria without having to make the strong

assumptions needed for the AHP (Fenton 1994). There are several formal definitions

of outranking methods, however all involve building the outranking relation then

exploiting it with regard to the current problem.

Lesson-9: weighting requirements for product selection can be time-consuming.

Problem: thorough use of AHP as recommended in Saaty (1990) would have

required, on estimate, over 42000 individual paired comparison scores. Clearly, time

constraints on product selection would have made this impossible.

Solution: use the AHP for specific purposes only. To avoid a combinatorial explosion
in the number of individual paired compliance scores to be made, use multi-criteria
decision-making techniques to weight customer requirements but not to determine

101

3: Requirements Engineering Process and Method for COTS-Based Development

product compliance to these requirements. When doing this, only use the AHP if

underlying assumptions for its use are met, that is there are few if any
interdependencies between customer requirements (i. e. the criteria) or between

product features (the alternatives). Furthermore, to ensure its cost-effective use, use

the AHP when other, simpler decision-making techniques are inappropriate or when a

more sensitive analysis is needed to resolve disagreements or to support critical

decisions about discriminating product features (lesson-1) or cornerstone products

(lesson-5). Figure 3.6 shows use of the AHP technique to weight top-level

requirements. However, a word of caution is needed: AHP should be used for

weighting requirements but not product-requirement compliance. This is due to very

large number of paired comparisons needed for product selection. During the study it

estimated that over 42000 individual paired comparison scores would have been

needed to use the AHP technique for product selection! Clearly time constraints do

not permit this.

top-level
requirements

Requirements Requirements Requirements Procurement Technical Total Priority
Capture Modelling Management Management Features Scores Vector

Requirements
Capture 1 0.5 0.25 1 1 3.75 0.115

Requirements
Modelling 21 0.5 3 I 7.5 0.229

Requirements
Management 42 1 3 2 12 0.366

Procurement
Management 1 0.333 0.333 I 0.333 2.999 0.092

Technical
Features 11 0.5 3 I 6.5 0.98

Totals 32.749

the number 4 indicates that
requirements management is

four times more important final requirement

than requirements weightings

acquisition

Figure 3.6: A sample of using the AHP method to weight requirements.

However, care must be taken when applying the techniques, as there is a

possibility of having a large number of pair-wise comparisons.

102

3: Requirements Engineering Process and Method for COTS-Based Development

Lesson-10: product evaluation is a team game, so it should be treated as such.
Problem: biases are always possible when scoring product-requirement compliance.
One post-evaluation analysis of individual and agreed product-requirement
compliance scores revealed a trend towards agreement with one team member more
than the others, possible due in part to the different experiences of the members.
Solution: one solution is to use reference products with which all participants are
familiar, such as commercial products or, in the team's case, the in-house

requirements engineering tool. Such products enable the evaluation team to calibrate

product-requirement compliance scores before undertaking each individual evaluation

test case. However, no one reference product will always have all of the product
features to be evaluated, so be prepared to use several reference products to calibrate

scores, although this does mean that the evaluation will often take more time. Card

sort triage techniques from lesson-1 can also be adapted to ask for quantitative

measures of similarity and difference between two candidate products and the

reference product. It is also possible to include such reference products in design

rationale diagrams (lesson-7) to record rationale for product-requirement compliance

scores.

Lesson-11: beware of the supplier's sales pitch and focus on the product.
Problem: a requirements management tool is a complex COTS product. A proper

evaluation needs effective demonstration by supplier representatives. However; the

quality of the demonstrations varied considerably across products. However, the law

of the marketplace does suggest that the supplier gets what it deserves, but this does

not ensure that the customer purchases the product most compliant with its needs.

Solution: the solution was to stick to the script imposed by the test cases to ask the

same questions to all candidate suppliers. More flexible follow-up questions were

useful coaxing additional information out of these representatives.

3.2.2.2 Discussion

The problems reported above are not experienced in the traditional development

process. These problems are also not addressed by currently existing COTS-based

development and requirements engineering methods. Therefore hypothesis 1 (H1) is

supported.

103

3: Requirements Engineering Process and Method for COTS-Based Development

However, in spite of the reported problems, product selection was successful and the

customer was content with the recommendations. However the product selection

process could have been improved. The reported problems as well as those not

reported here are used to propose the simple techniques to improve requirements

acquisition for COTS selection. The lessons learned provide new and important

knowledge about selecting COTS software products. In turn this knowledge and the

suggested solutions to the problems are brought together in the design of the first

version of a new integrated, template-based COTS development method that is aimed

at addressing the problems. This method is described next.

3.3 PORE: A requirements acquisition method for COTS-based systems

development

To investigate hypothesis 2:

H2 It is possible to design more effective methods which directly address current

problems in requirements engineering for COTS-based development, a new method

called PORE is developed. The PORE (Procurement-Oriented Requirements

Engineering) method integrates techniques for requirements acquisition and product

selection with process guidance for choosing and using each technique. The method

draws on techniques from different disciplines already indicated in some of the 11

lessons learned and reported in section 3.5.2:

" knowledge engineering techniques such as card sorting and laddering (e. g. Rugg &

McGeorge 1995) which are useful when acquiring information about categories of

products, suppliers, procurement contracts and hierarchical information about

product properties as well as the requirements themselves, see lessons 1 and 2;

" techniques from feature analysis (Kitchenham & Jones 1997) to aid when scoring

the compliance of each product to each requirement, see lesson 7;

" MCDM techniques (e. g. Saaty 1990) and outranking methods to aid decision-

making during the complex product ranking and selection process, see lesson 8;

" design rationale techniques (e. g. Buckingham-Shum & Hammond 1994) to record

and aid this decision-making process, see lesson 7.

104

3: Requirements Engineering Process and Method for COTS-Based Development

PORE also includes guidelines for designing product evaluation test cases, see lessons
3,4 and 5, and organising effective evaluation sessions, see lessons 6 and 11. These

techniques and guidelines are presented as a series of templates for requirements

acquisition and product selection at different stages in the product selection process.

The PORE method exists at two levels. Level 1 is the simple template level and Level

2 is the more complex process level. Section 3.3.1 below discusses Level 1. Level 2 is

discussed in chapter 4 to further investigate hypothesis 2. Figure 3.7 depicts an outline

of the PORE method.

Products . '..
""SS ".. "

. '.
I

"ý under "ý ý. '. '. .
ý. ý.. ...

"' consideration

compliance mappings III'

Acquired ;. ".
requirements '"'"'"'

Template- I Template-2

Paper Evaluation: (n) Hands-on Evaluation: (3-6)
using supplier data selected products

demonstrations

.. ý iý"-

,.

ý

Template-3 time t

User-Trial: (2-3)
selected products
actually used

Figure 3.7: An outline of the PORE process model for product selection. At the

beginning of the process there is a large number of candidate products under

consideration and few customer requirements acquired. Using supplier

information obtained using template 1, products are evaluated against customer

requirements and those that do not sufficiently meet the requirements are

rejected. As a result, the number of candidate products is iteratively reduced and

the number and detail of customer requirements increases.

105

3: Requirements Engineering Process and Method for COTS-Based Development

3.3.1 PORE templates

PORE supports iterative requirements acquisition and product selection/rejection until

one or more products are compliant with a sufficient number of customer

requirements. It divides this process into stages and, in the first version, provides three

templates for three key stages of the process, see Figure 3.7. Each template defines

the product information and customer requirements to acquire, and the techniques for

acquiring this information and making decisions about it. At the beginning of the

process there are few customer requirements but a large number of candidate

products. Guided by the templates, non-compliant products are filtered out using
different techniques that are provided in the PORE method box. Over some time, and

after a number of iterations, the number of customer requirements increases and the

number of candidate products decreases as products are rejected. The 3 templates are:

" Template-l, to guide the requirements engineer when acquiring essential customer

requirements and product information sufficient to select and reject products as a

result of supplier-given information;

" Template-2, to guide the requirements engineer when acquiring customer

requirements and product information sufficient to select and reject products from

supplier-led demonstrations using test-cases for individual requirements;

" Template-3, to guide the requirements engineer to acquire customer requirements

and product information sufficient to select and reject products as a result of

customer-led product exploration, (i. e. user trial). The full details of all PORE

templates are provided in appendices 3d - 3f.

The iterative nature of the requirements acquisition and product selection processes

means that each template might be used several times during a product selection

process. The following three sections describe the three PORE templates in more

detail. The templates are further used as basis for evaluating the PORE method in

chapter 6.

106

3: Requirements Engineering Process and Method for COTS-Based Development

3.3.2 Template-1: paper evaluation template using supplier response data

This template is to be used during the early stages of requirements acquisition and
product selection, when the evaluation team relies on supplier data in sales brochures,

technical documents, telephone conversations, responses to questionnaires and
information on the internet, as well as internal or public market analyses. The main
objectives of template 1 are:

" to provide the evaluation team with guidance when acquiring core
essential customer requirements;

" to provide the evaluation team with guidance when identifying candidate

products that currently exist in the market ;

" to provide the evaluation team with guidance when acquiring product and

supplier information that is necessary to select and reject non-compliant

products;

" to provide guidance when comparing product information provided by

suppliers against the most core critical high level customer requirements
for product-requirement compliance checking;

9 to provide technique guidance for gathering customer requirements and

product information;

" to provide guidance to initially screen many products and to shortlist one

or more products for detailed evaluation.

Template 1 provides guidance for selecting techniques and ways for gathering

customer requirements, product information, type of information and other

information necessary for effective product evaluation and selection. It also provides

guidelines and instructions to the requirements engineer or evaluation team on how to

apply the template. Due to a lack of detailed and accurate data, the requirements

engineers should be prepared to sometimes backtrack on selection decisions made

earlier if important new information becomes available. Template 1 recommends the

use of simple criteria for product selection which require quantitative information

about products (e. g. how many users can use the product at the same time?) and
Boolean responses to product-requirement compliance questions (e. g. is the product

compatible with MicroSoft Word?). A segment of the template is given in Figure 3.8.

107

3: Requirements Fni-, irtrering Process and Method for COTS-Based Development

It outIines the types of product information and customer requirements to acquire, and

simple techniques to use. The 11111 template f-0r this stage includes more techniques to

use, guidelines for technique use and simple frames fur describing product

information and customer requirements of different types. The f-ull template is

described in appendix 3d.

INFORMATIONAND RI-, OI'IREMI: NTS TO ACQI WIRF:

" BASIC PRODUCT AND SUPPLIER INFORMATION:
"TECHNICAL PRODUCT FEATURES (e. g. current smion nunihcr and Isrrind since Iasi R'ti: I, ri:
" TECHNICAL SUPPORT ARRANGEMENTS for the Io di ct (e. g. elicrn, in, aritri 'inrnt, And ust, rust
for technical support. training cost and a ailahility. run-time tee,. i, , puree co k' : o; iit ilde. evthi sent
SUpport pros'ided and policies on upgrades and fixes):

"I IIS"I'ORICAL INI ORMA'I'ION about the product ; itid supplier le g to Inn. ' ttie , ulýlýtier h a, hren in
business. how long has the product been available. supplier annual turn ser and customer Naso mother of
products . sold. number (f emhl vee,. supplier references. trick record in Ilie business sector):
" ESSENTIAL I [N(' I IONAI. 1 5ER RI': OI'IRIAII'N I

.
S. ; tL luired ho m , t, ikeliolilei, sind mleri\ckl twill

candidatr product,.

'I'I[: ('HNIOlIF SI; OIf1: NCI: 'FO ITSI::

I. GATHER PRODUCT INFORMA'T'ION: read product documentation to , eather basic product
information:

\('Q(JIRE C'USTOM11: R REQUIRI MI: N'I; S: acquire first-pass essential customer reyuirrntrnlý using,
simple techniques such as hrailist orniing and interviewing (Maielen & Rugg 1996l, if possible 1%itla iit
rrtrrence to candidate products. Acquire functional reulter Than nom-funiti mal requircntenl. ti, since
products are easier to evaluate for functional requirements ;u this stage;
3. UINFLOP A QVI; SI'IONNAIRE to ask each supplier how much this product is compliant vo ills r; iL li ., t

these essential user requirements. Also use this questionnaire to provide basic supplier amt product
inturntation. I)esien the questionnaire to elicit sufficient inlorm; tlion without it hecoonun" too lung aild
difficult to complete. 1)i. strihute it I0 all suppliers, set a deadline for replies and receive reslxmses.

Responses from suppliers should he quantitative, enumerative or hog lean so that an; tlv"is of responses is

tiintpºer:

-1. (&'l' l'O KNOW'I'H1: CANllll)A'I'G PRODUCTS: f'antili; trise voýui'sckes ssith IMnlucts using'
&Irtn<mstr. ui(in copies:
5. IN 1LUn'I I QUESTIONNAIRE RI SPONSI; S to reject products which are nom-compliant ý\ iil

essential customer requirements:
6. I)ISCOVER MORE ('USTONIFIR REQ1,11RIEMI; N I'S from product information elicited linen

questionnaire responses. Often candidate products have desirable hr lpr'rlie. s nt discovered darin. '

requirements acquisition. These requirements should he explored will) the cttstunter at this stage. I ,r
techniques such as structured inter\ iews. prototype walkthrow_hs using product (lein mnsu; ttion copies irid

scenarios 01' he use of the dli. scovered requirement:
7. ACQUIRE MORI: CUSTOMER REQUIRIiMEN'IS \which enable liscrinlin; ttion here cen products
Ie�nn ? l. The template proposes iterative use of: (i) card sorts to acquire requirements whoop enable

(lisrrimination between products: (ii) rejection of products clue Ice 1u0r hrukºucl-reyuirentent cO mhli; in. c,
ti.: A('QUIRIi I": 'I'AII. IiU C US'1'OMER RI'. Ql11RI? MIiN'I'S usinýL scenario, ', as ;t ha"u" liar ile, is"niný' t'm

rases for product evaluation using Template-2 (lesson 4).

I)FCISION-MAKING Tf CHNIOt IES TO USI.:

I)r isiun In; ikin Qt this , Ia, Lc is , Irli`_hlti, r\\ard. FI ve .iisIIdI; III, I; [IC 11)1 I)nalurItI, ICII IJ). r iIt
ICICC Iitm tI iII I, iinhlr ILCI, W I I; ihIe und, when mire i nililrý. Ie i_n IJ(ItM; ilr ICL IM iyur,

108

3: Requirements Engineering Process and Method for COTS-Based Development

Figure 3.8: Part of the template for product selection using supplier data.

3.3.3 Template-2: hands-on evaluation template

It is common to have supplier-led product demonstrations during product selection.
Such demonstrations are often the first chance for the evaluation team to undertake
more complex product-requirement compliance tests. Template 2 is used in the

second stage of the evaluation process when conducting detailed product evaluations.
Its main objectives are:

" to provide process guidance when acquiring customer requirements and

product information sufficient to select and reject products from supplier-
led demonstrations using test-cases for individual atomic requirements;

" to provide guidance when organising evaluation sessions of selected

products when the suppliers are brought in-house for demonstrations;

" to provide guidance when designing test-cases for individual requirements

that are used during each product demonstration session;

" to provide technique guidance for decision-making for recommending one

or more products to the customer.

Among other things, this template guides the evaluation team in determining

product's technical and functional capabilities that meet the customer requirements. It

encourages the requirements engineer to explore product compliance with individual

requirements. Effective preparation of the product evaluation tests is critical. One of

the difficulties of product selection or evaluation is the formulation of test cases. This

problem is caused by the traditional hierarchical structure of requirements which

result from the acquisition phase. Before test cases can be designed, requirements

need to be structured in other ways. One way is to structure the requirements by their

type. One advantage of structuring requirements according to their type is that certain

requirements types are mapped to certain types of product features. Therefore, the

evaluation team can use requirements types to organise test cases design according to

these types. The template provides process guidance on what the evaluation team

should do before, during and after each product demonstration session. It places more

109

3: Requirements Engineering Process and Method hr C(YTS-Based Development

emphasis on technique use than on the information tu acyºiire. Part Of the tenipl. ºte is

shown in Figure 3.9. The f1111 template for this stage is much more coo plex as
described in Appendix 3e.

TO DO BEFORE 'ITHk DEMONSTRATION SESSION:

I. DEVELOP SIMPLE WORKING PROTO'IYPES OIF THE RI: QUIRI: I) SYSTEM Ire dis m rr ; rnd
acquire further customer requirements prior to product euluatirm. Use the prototype to irnhrno e ; Ind
rlesi2n Of-test cases for prrxluct evaluation (lesson 3):
2. HAVE STAKEHOLDER REPRESENTATIVES IRESENT during each (Icntun. Str. rtiun tu tiu
prei iuu. tily-unfýýreseen requirements or to provide important donlain inlornratioýn (lesson (,):
3. WORK WITH STAKEHOLDERS TO WEIGHT CUSTOMER RFFQUIREMI. N'I; S. IFieyuirenlenws

are hierarchical use the AHP (lessons 8& 9) on sntall.. self-contained clusters of reyuirentents will] Ievv
dependencies to other requirements. This will avoid an e. elmenti. rl increase in the number of vVeigghlin�
decisions to he made and ensure the. suitability of the AIIP:
4. MAKE COMMERCIAL SOFTWARE TOOLS AVAILABLE. For example Saaly's I:. yIpert ('Iruice anal
Karlssmn & Ryan's (1997) tool. to calculate requirement weightings with the AllP (lesson K):
5. PROVIDE EFFECTIVE UNITS OF MEASURE for product-requirement compliance . Core, 1111, W-di
iterative refinement and evaluation of verifiable fit criteria fror reyuirenrrntý ýýItiý h ýhýýriniin; rte k toern
products (lesson 2).

DURING EACH DEMONSTRATION SESSION:

t Ir nSi: Fm. ASK QUESTIONS ABOUT THE PRODUCT to determine c rnentone pnaluct, Ili,, (
7. ONLY ALLOCATE COMPLIANCE SCORES IF THE I'llODt(' I' PROPER 111 S ; dkl .
DEMONSTRATED. Do not score unsubstantiated claims shout the product (lesson II
ti. If it is difficult I0 wore or compliance USE REFERENCE MODEI. S (lesson I 11. A iclcrrnrc i wtIL I
describes well-known, prototypical properties Of .1 product and e. xentlplau- compliance scores liar rotnman.

erydal tasks:
1). RECORD DECISIONS BEHIND COMPLIANCE SCORES using video and comm11tercial design

rationale software tool's (lesson 7). Flave an independent scribe record fliese rationale eluting the
evaluation. 'I-ime-stanch each prouluct-reyuirenlent compliance tealure , () that the r Bonale can he linl. <<I
to the video record.

AFTER EACH DEMONSTRATION SESSION

I0. ACQUIRE MORI CUSTC)MER R[: QUIRIiM1: N"1'S using (lilIrrens 101 IIIOf slic card . or tin, '
technique (lesson ? l. One example is to ask slakeholders 10 grade the decree of riinipliancc of pi slug
(carols) tai requirements (categories). These grades can he quantitative e. g. l() 71 or qualitative (Lood,

averace or poor fit). Also use Wage sorting techniques descrihed in lesson I;
I I. USE LAI)DERING TIiCHNIQ[II: S tu discover Iuriher important but non-discrinunaninýg custoinrr
rryuirennentS.

Figure 3.9: Part of the template for use during a supplier-driven product

denmonstration.

I (1

3: Requirements Engineering Process and Method for COTS-Based Development

3.3.4 Template-3: user trial template

After product demonstrations in template-2, the evaluation team may recommend that

the customer implement one or two products in the working environment for trial use
for a limited period. The objective of this template is to guide the requirements

engineering team to acquire customer requirements and product information sufficient

to select or reject products as a result of customer-led product exploration. The

template encourages the requirements engineers to explore product suitability in a

more realistic environment. During this stage, the team looks, among other things, for

the product's compatibility, integrability, or interoperability capabilities and that it fits

into the organisation's existing system architecture without causing too much

disruptions. The product is assessed for compliance with customer usability

requirements, amount of time needed for training or how easy it is to learn and use the

product. Also gathered at this stage is the information about how much tailoring,

gluing, wrapping or bridging will be required in each product and the amount of

bespoke elements to be developed. At the end of this process stage, template 3 guides

the team to select one or both products for production use. Part of the template is

shown in Figure 3.10 and the full template is described in Appendix 3f.

111

3: Requirements Engineering Process and Method for COTS-Based Development

TO DO BEFORE THE PILOT PROJECT
1. Over a limited period, install the selected products in the user environment;
2. Design test cases to test the following: interoperability, integrability, usability,

performance, reliability, learning curve and training.;
3. Work with main stakeholders to weight each category
4. Design a score sheet for allocating compliance scores;
5. Assemble an evaluation team composed of stakeholder representatives that will

allocate scores during the duration of the pilot project. The team must have all the
required technical skills as well as the application domain knowledge;

6, If possible negotiate to have a supplier representative on site during the duration of
the pilot project to help with technical problems or have a dedicated contact person
from the supplier.

TO DO DURINGTHE PILOT PROJECT

7. Each evaluation team member allocates scores'on the interoperability, integrability,
usability, performance, reliability and the learning curve of each product. For
usability Nelson's Usability Heuristics can be used;

8. Record all decisions behind all scores;
9. Record all the problems experienced during this period including the quality of the

supplier's response to technical queries, help desk and technical support;
10. Identify and acquire new requirements and required product features.

TO DO AFTER THE PILOT PROJECT
11. Collate all scores for each product into one. final score;
12. Rank each product and select the preferred one;
13. Negotiate with the supplier to include the new features that were identified during the

pilot project;
14. Negotiate contractual and legal issues with the supplier including licensing

arrangement. The contract should spell out all the parties' rights and obligations..

Figure 3.10 Part of the template for use during user trials

Because of the iterative nature of the requirements acquisition and product selection

each template might be used several times during a product selection process. The

templates are applied iteratively in cycles of Acquire customer requirements and

product information, Analyse acquired requirements and product information, Decide

and Reject and are linked into the generic process model that is shown in figure 4.2.

Each iteration reduces the number of candidate products as shown in figure 3.7.

Different iterations may vary the set of features being assessed, the individuals

making assessment, techniques or the evaluation criteria to be used.

112

3: Requirements Engineering Process and Method for COTS-Based Development

3.4 The PORE process model

The reported studies reveal deficiencies in current requirements engineering processes
for COTS product selection. It is surprising that similar studies have not been

reported. Their value is clear. Empirical studies can reveal little-known requirements
for new techniques, methods and tools. Indeed, more studies of current work practices

might see more solutions which meet the real needs of requirements engineers. The 21

hours of elicited information reported in section 3.2 aim to redress the imbalance a
little and are an important source of empirical data about current processes and

problems, and a guide for future method development.

The results enabled the population of W-level processes of the PORE process model.

The lack of guidance in current requirements engineering methods and COTS product

procurement means that a model such as PORE can provide support for real-world

processes. PORE is being developed using NATURE's process modelling language

(e. g. Grosz et at. 1996). This language is flexible and enables description of both

planned and unplanned processes. PORE is composed of a set of contexts. Each

context is an association of a situation to a decision which might be taken and a

process to undertake. Situations refer to the current state of the requirement (e. g. the

ITT is complete) or the procurement process (e. g. supplier selection is finished).

Processes are linked to these contexts to guide their use throughout the process.

Dividing PORE into a set of situated W-level and A-level processes makes it

potentially less prescriptive and more flexible and usable.

The PORE model was populated with processes elicited during the studies and

designed to overcome elicited problems reported in sections 3.3 and 3.5.2. First there

is a clear need to improve the process of acquiring requirements (e. g. problem P2.1).

One possible solution is to use templates to guide acquisition process. Each template

is, in essence, a frame with labeled slots to be filled by users. The templates are used

to define both requirements for the software package and the degree-of-fit of each

candidate product to these requirements. The template slots also enable the definition

of dependencies between requirements (e. g. Dobson & Strens 1994). These

dependencies are critical to an effective decision making during supplier and software

package selection.

113

3: Requirements Engineering Process and Method for COTS-Based Development

The requirements templates also improve the use of multi-criteria decision analysis
(MCDA) techniques for supplier and software package selection (see problem P4.3).

Although MCDA techniques have been used in software product evaluation methods
(e. g. Kontio 1996), these methods do not provide guidance on how to apply them. The

PORE templates overcome these limitations through guided requirements acquisition

and product selection. The PORE method process provides W-level process guidance
for technique use as well as A-level techniques such as `requirement templates' linked

to MCDM decision support software tools (e. g. AHP).

3.5 Summary and chapter conclusions.

The experiences and problems that are reported in this chapter indicate the need for

new process guidance that is not covered in the existing methods. As COTS-based

systems development becomes more widespread, stakeholders are more likely to

express customer requirements in the form of what product capabilities are currently

available in the market. Software products, and indeed software components will,

provide the basis for a lingua franca for communicating a large number of implicit

customer requirements already operationalised in off-the-shelf software products. As

a consequence, requirement specifications need to be sufficient to enable effective

product selection rather than complete with respect to the user's needs. This, in the

opinion of this thesis, provides one of the greatest challenges for software engineering

researchers and vendors in the near future.

The studies results show that requirements engineering for COTS-based system

development have problems that are seldom experienced in the traditional system

development. The first study identified 29 major problems that are not addressed by

current requirements engineering and COTS-based development methods. The second

study identified similar problems of which eleven were reported. The study identified

a range of problems about the nature of requirements acquisition for COTS-based

systems development that are not experienced in traditional development. Evidence

has been found to support hypothesis HI.

To improve the situation, new methods, techniques and tools and guidance for

acquiring requirements for COTS product evaluation and selection are needed. PORE

114

3: Requirements Engineering Process and Method for COTS-Based Development

is one such method. However, since the problems identified in this chapter are very
large and the complete PORE process is too long, the remainder of this thesis

concentrates on the two iterative processes of requirements acquisition and product

selection. The rational for choosing to concentrate only on these two processes is that

compared with other processes, there is very little theoretical understanding of

requirements acquisition for COTS product evaluation and selection. This thesis aims

to fill this gap! This part of the PORE approach in which this thesis concentrates, has

three main components that are fully described in chapter 4:

"a process model that identifies 3 essential goals that should be achieved by

any COTS-Based Development process and prescribes four generic

processes to achieve each of these goals as well as guidance and sequence

in which these goals should be achieved

"a method box that includes methods, techniques and tools that are

available to undertake and achieve each of the process goals

"a product model, requirement model and compliance model that provide

semantics and syntax for modeling software products, requirements and

compliance mapping.

These three components are integrated into an approach that provides a requirements

engineering team with a coherent process guidance for an iterative COTS-based

development process. In the next chapter, a theory of interleaved requirements

acquisition and COTS software product selection is described to provide a theoretical

basis for process guidance.

115

Chapter 4

Interleaved Requirements Acquisition and COTS Software Product Selection

This chapter describes the need for process guidance for COTS-based

development process and proposes techniques and models for guiding

the requirements engineering team during requirements acquisition and

product evaluation. The chapter concludes by recommending a software

tool.

4: Interleaved Requirements Acquisition and COTS Software Product Selection

Chapter 4:

Interleaved Requirements Acquisition and COTS Software Product

Selection

A central contribution of this thesis is that the iterative process model for COTS-
based systems development that this research predicts will improve requirements

acquisition and product selection beyond the observed current practices reported in

chapter 3:

" H2 It is possible to design more effective methods, which directly address

current problems in requirements engineering research.

In this chapter, section 4.1 describes the PORE's iterative process which interleaves

requirements acquisition and product selection. Section 4.2 describes goal-based

process guidance. Section 4.3 describes a multi-layered process guidance that

identifies 3 levels of guidance. Section 4.4 describes models for guiding the PORE

process. Section 4.5 describes PORE's method box. The method box includes

methods, techniques and tools that help undertake the PORE process. Section 4.6

describes process situation rules that help infer current process situations based on the

state of the compliance model. Section 4.7 describes the PORE process chunks which

link the process situations, models and rules to provide situated process guidance.
Section 4.8 provides summary and chapter conclusion.

4.1 PORE's iterative process

At the heart of PORE method is the iterative process of parallel requirements
acquisition and product evaluation/selection. The iterative process is depicted in
figure 4.1.

117

4: Interleaved Requirements Acquisition and COTS Software Product Selection

Increasing number and detail

of requirement statements Decreasing number of
enables candidate products

customer product
requirements selection "" iterations "" filtering
requirements candidate
acquisition products

inform

Figure 4.1. Overview of the PORE's iterative process of requirements acquisition
and COTS product selection. Customer requirements enable COTS product
selection and candidate COTS products inform requirements acquisition in
small iterations.

The iterative process enables the team to reject COTS software products that do not
meet core customer requirements. For example, at the beginning of the process, there

could be many products and few customer requirements. As the selection process

proceeds, the number of products is reduced and the number of customer

requirements increases with customer requirements enabling product evaluation and

product evaluation informing requirements acquisition.

The process model depicted in Figure 4.1 is the central component of the PORE

approach. The process model is part goal-driven and part context-driven. The goal-
driven part identifies critical, unavoidable decisions that have to be made about

product selection at key points in the process. It prescribes processes to achieve these

decisions or goals in a predetermined sequence. In contrast, the context-driven part

reflects the realisation that it is difficult to prescribe sequences of lower-level

processes to achieve higher-level goals, let alone which are the best techniques to use

to achieve them. For example, information about customer requirements, software

products, suppliers and procurement contracts is often not available to the evaluation
team in the order in which it is needed, so the sequence of the acquisition, analysis

and decision-making processes cannot be pre-determined. Furthermore, requirements

acquisition and product selection processes are often performed simultaneously, in

that the successful completion of one process often depends on the successful

completion of the other. For this, PORE guides the requirements engineering team

using information about the current context, or `situation'. These situations are

modelled using properties inferred from models of the customer requirements,

118

4: Interleaved Requirements Acquisition and COTS Software Product Selection

software products and compliance relations between requirements and product
features defined by the requirements engineering team.

One of the main features of PORE's iterative approach is that it encourages the

requirements engineering team to acquire, describe and analyse customer

requirements at the same time as acquiring, modelling and analysing the candidate
COTS software product. Advantages of the approach are two-fold. Firstly, acquired

requirements enable COTS software selection and secondly, short-listed COTS

software products can inform subsequent requirements acquisition to aid further

software selection. This results in concurrent requirements acquisition and product

evaluation with the processes of requirements acquisition and product evaluation

performed in small simultaneous iterations. To provide process guidance for

selecting/rejecting products, PORE provides three essential goals and 5 generic

processes that must be performed in an iterative sequence to achieve each goal. The

following section describes the 3 essential goals.

4.2 Goal-based process guidance

PORE defines 3 essential goals to select or reject candidate products according to

compliance with:

" atomic customer requirements, (Goal 1);

" complex non-atomic requirements, (Goal 2);

" non-functional requirements such as architectural, reliability or usability

requirements, (Goal 3).

The requirements engineering team should achieve these goals in a sequence. The

sequence is designed to take account of real-World constraints such as the time needed
to achieve each goal, and the availability of software product information at each

stage. Atomic customer requirements (Goal 1) such as functional requirements are

used in earlier stages of the process stages because its easy to determine their

measurable fit criteria and to test for the presence or otherwise of a product's
functional feature, (either the feature is present or not). In contrast, complex non-

atomic functional requirements (Goal 2) and non-functional requirements (e. g.

architecture and usability requirements, Goal 3) are used to evaluate a small number

of short-listed products later in the process due to the complex and time-consuming

nature of the compliance evaluation.

119

4: Interleaved Requirements Acquisition and COTS Software Product Selection

To achieve each of the 3 essential goals, PORE prescribes 5 generic processes which
are essential to undertaking the iterative process:

(1) identify candidate COTS products - this process is essential for identifying

candidates COTS products that are available in the market using guidance
provided in Template 1 and recommended techniques such as the internet, market
surveys or trade shows;

(2) acquire information about customer requirements, software products, suppliers
and procurement contracts from stakeholders - the process is essential for

acquiring system requirements from main stakeholders and information about
products and their suppliers that were identified in process 1;

(3) analyse acquired information - once the team has acquired information from

stakeholders, they then analyse it for completeness and correctness before making

critical decision;
(4) use decision-making techniques to analyse and determine product-requirement

compliance - once the team has analysed the acquired information for

completeness and correctness, this process determines the degree of product-

requirement compliance using Multi-Criteria Decision Making (MCDM)

techniques;
(5) reject one or more candidate products that are non-compliant with customer

requirements- this process rejects those product that have been found not to

comply with the customer's requirements as defined by the essential process goal.

Figure 4.2 shows a route-map based on the notation in Assar et al. 1999 that links the

3 essential goals and the five generic processes. The 5 generic processes are also
integrated and linked to the 3 PORE templates.

120

4: InlciIc t ed Requirements Acqui. silion and ('(YI'S Sollearc I'r. nIurl S Irrsinn

Market
Start

survey Based on
Usi to iques for eliciting customers system requirements

expe is Using p oject Using chniques for eliciting customer's contractual roquiroments

techniques for eliciting customer's supplier requirements

Identify
Product By eliciting core

Acquire re uirernents first
B dentifying Information
pro t features Analyse

By identifying Acquired
supplier information Using additiona

Information
By implementing

requirements

in work environment strategy lisrr q
By product discnm
demonstration

stratogy
More candidate products Select

Product
Make

By trade-off

anal sis
Decision

By recommendation
y

delivery

End

Fig-ur"c 4.2: (graphical depiction of a route map showing J)ORE's 5 generic

processes. The achievement of each essential goal is a broad sequence. ill %% hich

file first processes of identifying of candidate ('O'FS products and acyui. tiitiººn of

information from stakeholders can he performed in parallel. The last process is

the selection of one or more candidate products. Fach process can he rulwatc'(I

nutty times.

The ORICr in which the five hmcesscs are undertaken is comexpdriven. that is

determined by the current process situation. J)ORI: 's '. siliwIion. c' are defined as in

Buchman (I o)87) which states that (. 011/., S(, n/' nr/inii r/e/)CI /, ill

rr/)0/! i/. s ilialeriul c ire runslruýc e, s '. For exannlplr. IIIe I ii st process i, to aryuire
information from stakeholders and assume that the current situation is that there is nu
information from stakeholders (i. e. product information and c(istunler rCLIMIenirnts).

Likewise, the last process of a successful process is the selection Of one or More

candidate products. This mains that the Current process situation is that cuinlpielc and

correct stakeholder information is availahle to mahle decision inakinii. I lowever. the

sequence of the intcrvenin`i1 processes i. s not Ipiechetefllllned, and each process can he

repeated many times.

Furthermore, the 'current situatic)n' restricts the sequences of these processes (hilt arc

permissible. For example, il" the "analyse acquired Intorination process reveals that

Ihere is inSufliciell t iii forma Iion to make decisions about product regltiirVntrnl

compliance, then the team is advised to acquire more inl, 01-nnatioýn. It the leant i,,

unable to discriminate between candidate products, then it is adkiced to Itirtltel.

121

4: IntcrIca cd Requirements Acqui. tiilinn acid ('01'S Solt trc I'rnýlurl ScIrrtioýn

analyst the customer rryuircmcnts iron! sOItwarc product information. As this example

show, the ('OTS-bused dcvclopnwnt pnwes. 5 can he very C(Mulj)lCX. J)ORI: 7. s cunlext-

dIriven I)1 CCss is nmde inure complex by the large number of Situahon. S iWicli nay

arise at any point in the process and the many tcchniyues from dillrrrnt discilulincs

that are available toi achieve each situation. PORI': IprOwides a 1111.111i-layered (process

guidance through this complex . space of situations and techniques.

4.3 PORE's multi-Iayered process guidance

I i"wc 4.3 depicts PORE's multi-layered Iýnýresý guidance nmo del. At any point in the

process, three levels of `iuidancc are provided. At the first Irvel, the pr'e' model

hrov! des guidance to achieve each of the essential process goals described ittsection

4.2. The situation model provides guidance at (lie other two levels. At Ilie second

level, it recommends tcchniyucs(s) to use to undertake the process by inferring'

grncral properties about the requirements, puodnct and UUIII)liance steh-ntudeIs. At th e

third level, it recommends the content locus, i. e. 'current situation'. for applying each

technique teased can inferences about the current Contents of the r'qIuirrnu"nt,. puodlict

and Compliance sup-models.

I
, tlualinn'ill, inýnlrl nlrirn, inad rtiullim, I'l-c., ,

ýýýiý ýI VIII ýi ýý"ý

IIIIIII p111ý(pll'i

lila ý

Illodd

111111VIIll's

ý1111('l'ý ý

11'ý'ý11111P1

It'1 ý11111'illl'

III"'I Il

H

I1111(ýl'ý

ýý ý1111'll

111 1 1ý IIl l' s
ý11ý III

i .
llll

Figure 4.3: The three levels of process guidance that Form the PORE process

triplet. The current process goal is inferre(l From Ilie process m odel. The

tiulº- technique to achieve this process is inkm'rud fFOnº prolwrtit's ºº1' the situation

nºudeI N% hieb is composed of the requirements .. uh-tiiodel. IIºc product soh-model

and the compliance . sub-model. The I'ººcuti of this Iechniiluc'. s appliculion is

inferred from properties ol'the situation ii deI content.

122

4: Interleaved Requirements Acquisition and COTS Software Product Selection

This multi-layered process guidance is given to the requirements engineering team in
the form of a triplet:

{process-goal, situation, techniques-to-use)

The goal-driven process model described in section 4.2 specifies the process-goal part
of the triplet, the context-driven processes specify the techniques-to-use and the

situations for which the techniques are applied are inferred from the properties of the

situation model. The definition of the current process triplet changes as new
information is added to the sub-models and new inferences about the properties of the

situation model are made. Of the three triplet elements, the process-goal part changes
least and the situation changes most during each instance of a process.

The process defines a large number of possible 'situations' that are possible at any

point. In addition, a large number of processes and techniques to be used in a single

situation can sometimes be recommended.

4.3.1 Situation-based guidance

PORE uses a set of rules to infer the current state of the situation model. These rules
infer properties about customer requirements, product features and compliance

relationships between the product features and the requirements. From the inferred

current situation(s), other PORE rules determine the next process goal to be achieved

and recommend the most suitable method, technique(s) or tool(s) to achieve the goal

chosen from the method box.

To demonstrate the importance of situated process guidance, consider two simple
example situations:

Situation-1: if the requirements sub-model contains a number of requirements which

are all compliant with the product features of several products, then the PORE process

model advises the team to acquire more customer requirements which enable more

effective discrimination between products. The PORE method box then recommends
techniques such as card sorts that are more effective for acquiring such discriminating

requirements.

123

4: Interleaved Requirements Acquisition and COTS Software Product Selection

Situation-2: if the requirements sub-model contains a small number of behavioural

requirements, then the process guidance advises the team to acquire more behavioural

requirements, and the method box recommends techniques such as use case analysis
and user walkthroughs of product demonstration copies.

In both examples, effective technique selection is determined by both the process
goals and the situations inferred from the properties of current state of the

requirements, product and compliance sub-models.

Two questions that arose during design of PORE were (i) how to model product-

requirement compliance? and, (ii) what features of software products and attributes of

customer requirement attributes to model in order to define the situations that can

effectively guide the PORE process? The solution is 3 sub-models - the product sub-

model, the requirements sub-model and the product-requirement compliance sub-

model - which are at the heart of the PORE method. All 3 sub-models, when

combined, provide a model of the current situation (i. e. the situation model). The

following sections define and describe each sub-model.

4.4 Models for guiding the PORE process

This section describes the 3 sub-models. Section 4.4.1 presents the software model

and its meta-concepts, section 4.4.2 presents the requirements model and its attributes,

and section 4.4.3 presents the product-requirement compliance model together with

compliance mappings. The 3 sub-models are modelled using an existing modelling
technique, the Unified Modelling Language (UML) (Rumbaugh et at. 1998).

4.4.1 Product model

During product selection, not all product information is available to the team, so the

PORE approach is pragmatic and encourages the team to first model observable rather

than non-observable features of the product. PORE also encourages to model product
features that are directly acquired from suppliers through interviews, questionnaires

and other acquisition techniques. These real-world limitations are an important

constraint on the design of the product sub-model to ensure that it is both usable and

useful.

To enable effective COTS product evaluation and selection, there is a need to model

critical features of software products in three parts:

124

4: Interleaved Requirements Acquisition and COTS Software Product Selection

" the product model models the observable behaviour of the product, and in

particular, how the user interacts with the product.

" the product model also models the product's articulated goals using goal-
based requirements methods (e. g. Anton 1997);

" it also models the product's architecture using architecture modelling

techniques such as those reported in Shaw (1996), Garlan et al. (1995) and
SEI (1998).

Figure 4.4 depicts the software product meta-model.

<decom ses-into conflicts-with>

Goal
0.. " 0^" Object

CnmlNamevrenQ " <concems I"""
CxwlType: string

DbjeclNu
n. pt GoalDiscriptlon: string "

ObjecNme. MrinQ
has> ObjectStwe: xrcing 1""

AwnnID string

with 0�*
1

is-connected-to>

0" "° Action J. '*
Product O" Event
Product AaionID: string I�+ usex> 1 xl: llls> I

EventlMstring AcionNuine: string
Pnductld: string EventTypestring FeutweNaine: string
Maine: string AcyionID: string ends> I Fuw. hionNwne: string 1
SupplierlD. string ActionRuk: string
PnAmiVesion: integer , el

d
ctVei

" O.! O I " Pn u currency Agent .. * .
"

I
<hus effects on 1.. pCr urms> Function

Q

0.. " AgemlDstnng
AgentNwne string
AgentTypeatnng achieves 1.. "

performs FunuMMNwne: string
ix-ti> ActionlD: string 1" r FewumNwrot string

1 0.1 <ix-part-of ix-connected-to> CýenpmentNwne: string

10 I.. "
z ý

<wrder tukex
0'" Software compon o Function 1",

CompimentNwnestriny
PnductN: mte: string

I.. M has>

11

depends-on>

has>

Feature
Software

FeuturcNume: string conipone ProductNume: string
FeatureType: string

I.. *
Action

Figure 4.4: The PORE's software product meta-model and its primitive concepts

and the meta-relationships linking the meta-concepts.

To enable a requirements engineering team to model the properties of the software

product, the PORE approach uses modelling concepts such as goals to be achieved,

objects to be used, actions taking place, events, agents to perform actions, components

involved in actions, functions to achieve actions, features to undertake functions and

125

4: Interleaved Requirements Acquisition and COTS Software Product Selection

relationships between meta- concepts (Sutcliffe et al. 1998). These meta-concepts are
instantiated during the requirement-product compliance mapping process. The

purpose of the meta-model is to model different situations as the instances of the

meta-model in order to enable situated requirements acquisition and product
evaluation processes by the inference of requirements, product and compliance sub-
model properties.

The primitive concepts of the product model are described:

"a goal is a high-level objective that the system should meet (Darimont & van
Lamsweerde 1996). Goals are achieved by actions performed by agents. The goals

are decomposed into alternative combinations or logical sub-groupings and may

sometimes conflict with each other (Anton & Potts 1998). A typical example of a

goal for a requirements management tool is to 'manage requirements documents';

" an action is a process linked to the attainment of a goal. Each action can be

cognitive, physical, system-driven or communicative. Each action can involve one

or more agents, use one or more objects and may result in a state transition which

may change the state of the object. Actions are linked to each other using action-
link rules (Maiden et al. 1998). In a requirements management tool, an example of

an action is Create requirement or Copy requirement;

" an agent is a type of object which performs or processes actions (Darimont & van
Lamsweerde 1996). Each agent has certain features that determine its capabilities

to perform the desired actions and are responsible for completing and/or satisfying

goals through performance of actions. Each agent is either a human agent or a

software component, thus enabling the requirements engineering team to model

the system boundaries (degree of automation) of each product. A word processor
is an example of an agent in a requirements management tool;

" an object is something of interest in the domain. Object instances can evolve from

state to state through the application of actions. Each state of an object at some

time is defined as a mapping from an object to the set of values at that time of all

126

4: Interleaved Requirements Acquisition and COTS Software Product Selection

features of the object. Objects are modelled in use cases to describe both the

product's information features and the customer's information requirements. A

requirements document is an example of an object;

" functions are a mode of action by which the product fulfils its purpose. They are

the services and capabilities provided by the product and specify what the product
is capable of performing. Functions define the behaviour of the product and the

fundamental processes or transformations that the product and the hardware

components of the system perform on inputs to produce outputs. The behaviour of

a product's function can be mathematically characterised as a function that

receives some input x and produces some output y. An example of a function is

the `function Filter' that a requirements management tool can use so that only

those requirements that match the user's specified criteria are displayed;

"a software component is an independently deliverable set of software services

available to users or to other components (Brown & Short 1997). A software

product itself can also be a component. Components interact or collaborate with

each other through connectors to accomplish solutions or to undertake complex

functions. The structural features of components collectively form the

component's architecture (Shaw 1996, Garlan et at 1995). A database, word

processor, configuration tool and version management tool are components of a

typical requirements management tool.

0a product feature is distinctive or characteristic element of a software product or

component. Product features are characterised or specialized as functions, actions

or software components. Typical examples of features of an e-mail product

include Address book, Dictionary, Auto reminder, Auto spell check,

Sending/Receiving new mail, etc.

In addition to the meta-concepts, relationship types between meta-concepts arc also

specified:

127

4: Interleaved Requirements Acquisition and COTS Software Product Selection

" connectors facilitate interaction between products or components of a product in

order to form executable structures. Examples of connectors include protocols,
procedure calls, remote procedure calls, buffers, event broadcasts, constructs, etc.
Connectors are further divided into types such as data-carrying connectors,
control-oriented connectors and hybrid forms that exhibit both characteristics to

some degree;

9 dependencies: the product sub-model defines dependence relationships between

components. One component X is dependent on another component Y if

component X contains a call to component Y, that is X is a dependent of Y. In its

simplest form, dependence relationship is a link between X and Y indicating that
X depends on Y to achieve its goal. This form of dependence may result in a

sequence of achieving goals and may remain static, i. e. remaining the same over
the lifetime of the products or may be dynamic, existing only when required or
demanded. The dependence relationship needs to be modelled in order to
determine scope of the product being evaluated and to avoid adverse effects such,
for example, if Y fails to achieve its goal, X will be adversely affected since it

depends on it. The type of freedom allowed between X and Y determines

dependence types.

Ray (1996) and Kaasboll & Motschning (1996) identify the following types of
dependency relationships that may exist between X and Y:

" functional dependencies in which the correct behaviour of one component requires

the correct operation of another component (e. g. functional dependencies between

the word processor and the database);

" trigger dependencies that define timing associations between two components
(e. g. between the configuration manager and the version control manager);

" precedence dependencies in which one component has to complete its operations

before another one starts its operation;

" constraint dependencies that constrain or restrict the behaviour of one component
by another component;

128

4: Interleaved Requirements Acquisition and COTS Software Product Selection

" some other dependence relationships are linking, i. e. X is linked to Y; Import and
Export, i. e. X imports or export data from and to Y; Integration, i. e. X integrates

with Y to allow bi-directional exchange of data through interfaces.

These dependency relationships, in combination with component connectors, provide
a simple but useful basis for modelling COTS software products as exemplified in

Figure 4.5:

Operating
$yctemt

RM tool
Word processor version 2.2
version 6 QXl MIMA'IGI

Proýecl
management

bwl &P-I-y Configuration

r`"°I`
management

Y un pnx: urenxn l
vrrcion 24 GMNOCbI gement munu

(lull
ItCý1G1dll'Y

QII'GMIItGGt Dambase nqIGltiawy GMIMGMM
QA and Testing bl version 3.1 GMIkG"M

hurl Version
manager
version 4.1

k-led
uu

CAD/CAM
tail

Figure 4.5 An example of an instantiation of the product meta-model showing

requirements management tool's components and the product's connection to

other products and the connection between components and the dependency

relationships. The boxes represent other products or components. The

components determine the scope of the product but they are all independently

developed as indicated by their different version numbers. The figure also show

that the requirements management tool can be linked to other software products

via different connectors described above and that the requirements engineering

tool itself evolves independently of its components and the products that it is

linked to.

The major consequence of dependency relationships is that although component X

and component Y may co-exist and are tightly coupled to each other, they can change

and evolve individually and independently, at different speeds and in separate non-

129

4: Interleaved Requirements Acquisition and COTS Software Product Selection

synchronised life-cycles. A typical example is the components of a requirements
management tool. Most requirements management tools have a database to store
requirements, a front-end word processor to enter requirements into the database, a
configuration management tool and version manager to control and manage
requirements changes. Each of these components have independent evolution cycles
that are not dependent on the existence of the other components since they are more
likely to be developed by different suppliers with different development strategies and
directions. This is a source of risks and the scope of the dependence needs to be
identified during requirements acquisition and product evaluation.

4.4.1.1 Rationale for a software product model

PORE's software product sub-model enables the evaluation team to model the

complexities of COTS software products. Software products often interact with users
during tasks (e. g. updating a requirement statement), have internal system functions

(e. g. checking requirement compliance with a standard) and have increasingly

complex system architectures to support user tasks and internal system functions.

Modelling techniques such as task modelling from human-computer interaction (e. g.

Johnson 1992), functional modelling from software engineering (e. g. Dardenne & van

Lamsweerde 1993) and architecture modelling from system design (e. g. Garlan 1995)

are all drawn on to model a software product at these three levels, (i. e. behaviour,

functional and architecture levels).

The product's architecture provides a description of the components and the complex

interrelationships between the components (Garlan 1995). Components are the

building blocks of the product or system and the architecture is the topological

interconnections of the components and is concerned with how components interact,

co-ordinate, co-operate and communicate with other components. From this

architectural lens, a software product can be viewed abstractly as a configuration of

the components and connectors. The components are connected in a way that enables

the system to meet its requirements. The selection of the components and interfaces

has a big impact on how the original requirements will be met.

130

4: Interleaved Requirements Acquisition and COTS Software Product Selection

Product architectures are concerned with both the functional and non-functional
requirements/attributes of the system. The non-functional attributes are mainly
concerned with the ability of the product to integrate with other products at
application level while the functional attributes are concerned with the data level
integration. The product's architecture helps to reason about some architecture

properties such as physical distribution of components, process communication, and
synchronisation between components and processes. Some other examples of

architectural properties that are critical in a COTS-based development process that
involves integration of many products are flexibility, reliability, portability, openness,
data interchange, migration, standards, platform issues, functional, data management,

security, user development, interoperability (e. g. Brown 1998; Carney 1998; Was

1998).

Furthermore, there are strong dependencies between the product's behaviour

properties, its functions and its architecture, and these dependencies need to be

modelled in order for the requirements engineering or evaluation team to make

effective decisions about product-requirement compliance. For example the

observable behaviour of the product largely depends on its functions; functions

determine operations to be performed; operations determine observable properties and
the displayed results. The product achieves its functional goals through its structural

or architectural and basic properties that act as glue between the product, its

operational environment and the hardware components of the enterprise system. Also

stakeholders often express the requirements for their systems in terms of its

behaviour, functions and architecture, therefore it makes it easy to determine product-

requirement compliance if software products are modelled using the same constructs

as customer requirements. As a consequence, PORE's product model enables each

software product to be modelled in these three different ways to improve the

effectiveness of compliance checking.

4.4.2 The requirement model

A requirement is a capability that a software system must supply or a quality that a

system must possess in order to solve or achieve an objective within the system's

conceptual domain. It is a 'measurable statement of intent about something that the

product or system must do or a property that a product must have or constraint on the

system', (Robertson & Robertson 1999). A critical factor in successful acquisition of

131

4: Interleaved Requirements Acquisition and COTS Software Product Selection

requirements is to understand not only what the system under consideration should do

(functional requirements), but also the way in which it should provide its services
(non-functional requirements). A broader view of requirements acquisition, therefore,

goes beyond the description of what the system is expected to do (system's

functionality) and include system properties and constraints under which the system

must operate (non-functional requirements). In the COTS-based development process,

this view is taken even further to include information about product suppliers such as

the supplier's technical capabilities, application domain experience and ISO standard

certification (supplier requirements) and legal issues involved in product procurement

such as negotiating contract terms and conditions and licensing arrangements

(contractual requirements). The PORE method uses the requirement sub-model to

both acquire and elaborate the requirements statements and to check requirements-

product compliance during the iterative process of requirement acquisition and

product evaluation/selection. Figure 4.6 depicts the meta-concepts and meta-

relationships of the requirement model.

depends-on>

Requirement

o.. w

I RequirementlD: string
Type: string
Description: string
Priority: string p". w

0w
Source: string has- relationship-with>
Fit-criteria: string

0.. *1 U Z-, 2b, o.. *
linked-to> /\ conflicts-with>

Functional II Non-functional

requirement requirement

Figure 4.6: The abstract meta-concepts and meta-relationships of the

requirement sub-model.

132

4: Interleaved Requirements Acquisition and COTS Software Product Selection

The following requirement meta-concepts are defined:

Requirement type is a special class of requirements having the same characteristics
(Thayer & Dorfman 1997). Typical examples of requirements are functional, non-
functional or global requirement types (Robertson & Robertson 1999):

" functional requirements are actions that the product must be able to take.
They specify the purpose of the software or what it has to do to provide

services to the users and the functions that the product must be capable of
performing. They are the `fundamental subject matter of the system';

" non functional requirements are the `behavioural properties that the specified

functions must have, such as performance or usability.

" global requirement types are `requirements or constraints that apply to the

product or system as a whole', i. e. `the purpose of the product or system or the

customer of the system is a global requirement'. Typical examples are:

" project constraints that `identify how the eventual product must fit into

the world. For example the product might have to interface with or use

some existing hardware, software or business practice, or it might have to
fit within a defined budget or be ready by a defined date'.

" project drivers that `are the business- related forces. For example the

purpose of the product is a project driver, as are all of the stakeholders -
each for different reasons'.

" project issues that `define the conditions under which the project will be

done'.

Requirement attributes are `descriptive information associated' or attached to a

requirement that provide specific important details and information about a

requirement. An attribute has a label, (i. e. the name of the attribute such as risk,

priority, type, author, owner, ID number, version, status, revision number, description,

fit criteria, etc.) and value (i. e. information assigned to the attribute label such as text

or number, e. g. the value of the priority could be Low, Medium or High). Most

attribute information is project-related and can help in planning, communicating and

monitoring development activities through the development life-cycle.

133

4: Interleaved Requirements Acquisition and COTS Software Product Selection

Requirement measurable fit criteria (Robertson & Robertson 1999) enables the

team to determine whether or not a solution satisfies the original requirement. The fit

criteria are benchmarks, or goals that determine whether the eventual solution

satisfies the requirement. Fit criteria are `precise, quantified goals or testable

statements of the requirement that contain numbers or measurements that the solution
has to meet'. For functional requirements types, fit criteria `are the yardstick that is

used to test whether or not the function has been successfully carried out'. Fit criteria
for non-functional requirements types `quantify the necessary behaviour or quality of

the system'. Fit criteria `provide some quantified targets that when tested, will reveal

the solution's degree of conformance with the requirement'. Each requirement has a
fit criteria and the fit criteria depends on the action being required, (Robertson &

Robertson, 1999). Requirements must also be verifiable, i. e. it must be possible to

have some kind of verification that checks the end product and give a true or false

binary answer (Stevens & Martin, 1998). The objective of verification is proof of non-

conformance as efficiently as possible.

In addition to meta-concepts, there are many relationships identified between

requirements. Requirement relationships maintain important linkages between

requirements and from requirements to all development products that emanate

downstream from them. The links makes it easy to ascertain the impact of any

changes, and to determine the requirement status. Some of the identified relationships

are:

" decomposes-into which maintains links between a parent high-level

requirement and the lower-level detailed requirements which originated from

this requirement;

" linked-to which determines all other requirements which are linked to this

requirement;

" conflicts-with that identifies requirements which are in conflict with this

requirement;

" has-relationship-with which identifies requirements that have association

relationship with this requirement;

" depends-on which keep track of requirements that have an impact on other

requirements or requirements that use the same information or have a change

134

4: Interleaved Requirements Acquisition and COTS Software Product Selection

effect on other requirements. Dependency relationships might exist where

solution to a particular requirement has a positive or negative effect on

solutions to other requirements. Cross-referencing requirements captures these
dependency relationships. Some requirements, especially global constraint

requirements, have an impact on all other requirements.

4.4.3 The compliance sub-model

A prerequisite for effective product selection is compliance between one or more
features of each candidate product and one or more customer requirements.
Compliance is defined as a mapping between a problem (i. e. a customer requirement)

and a potential solution to that problem (i. e. a product feature). The compliance sub-

model enables the mapping of customer requirements to product features and to check

the degree of compliance between the requirement and the product feature. The

product-requirement compliance sub-model provides an essential basis for technique

selection and use. The compliance meta-model is depicted in Figure 4.7.

Customer
requirement Product-requirement

Feature
RequirementlDatring compliance
Description: string
Type: string

110.. * RequirementlD: string
F t N i

0�* 1.. 1 FealureName: string
Priority: string

ea ure ame: str ng Produ : string
Sourcestring ProductName: string FeaturretypeeType: string
Fit-criteria: string

ComplianceScore: integer

Figure 4.7: The structure of the compliance meta-model, and the relationships

between the requirement, product and compliance sub-models.

Figure 4.7 depicts the relationship between the product sub-model and the

requirements sub-model described earlier. The compliance sub-model models the

degree of compliance between the customer requirements and the candidate COTS

product. Compliance is modelled as a set of relationships between customer

requirements and product features. Attributes on each relationship have values to

indicate whether or not there is compliance. In order to be able to choose between

product features, there is a need to measure the degree of compliance and confidence

135

4: Interleaved Requirements Acquisition and COTS Software Product Selection

between requirements and product features. A simple numerical measurement scale is

used to determine the degree of confidence as shown in Table 4.1.

The goal of compliance mapping is to map customer functional requirements to a

product's technical features based on the following mapping assumptions (Zaremski

and Wing, 1996): associated with each product feature, PF, is a signature PFsig and a

specification of its behavior, PFspec. Signatures describe a feature's type information

and specifications describe the feature's dynamic behavior. Therefore given product
feature, PF = (PFsig, PFspec) and requirement, R= (Rtype) the generic compliance

mapping algorithm, Map is defined:

Map: ProductFeature, Requirement --ý Bool
Map (PF, R) = map (PFsig, Rtype) A map (PFspec, Rtype)

PF and R map iff the signature and specification of the product feature matches the

requirement type. Table 4.1 shows an example of mapping between requirements and

product features:

Re uirementID FeatureName ProductName Com lianceScore
Rl AddressBook ExpressOutLook 4
R25.1 Calendar Eudora 2
R20 AutoReminder ExpressOutLook 5
R20 AutoReminder Pine 0
R 10.5 0
R5 SpellChecker Communicator 3
R5 S ellChecker ExpressOutLook 5

Table 4.1: An example of compliance mapping between requirements and

product features. The figure shows that requirement R1 is mapped to product

features AddressBook with a compliance score of 4, R20 is mapped to 2 product

features with a compliance score of 5 for one product and 0 for the other. R10.5

is not mapped to any product feature. The degree of compliance indicates how

strongly the product feature meets the customer requirement.

As mentioned earlier, the requirements acquisition and product selection depend on

the successful completion of other processes. At any point in the iterative process,

there are mappings between requirements and product features. The mappings provide

the evaluation team with the context or situations that guide them about what to do

136

4: Interleaved Requirements Acquisition and COTS Software Product Selection

next. These situations are modelled using inferred properties of the current sub-model
of the customer requirements, software products and compliance relationships defined
by the evaluation team and provide situated process guidance described in section
4.3.1.

The three sub-models described above are integrated into hybrid situation-driven

approach that provides a requirements engineering team with a coherent context-
driven process guidance. However, PORE's context-driven process guidance is made

more complex by the large number of techniques from different disciplines that are

available to achieve each process goal. PORE identifies numerous techniques,

methods and tools to acquire and analyse information, and to make complex decisions

and select candidate products and makes them available through its method box. For

each technique, method and tool, where available, PORE gives information sources

about the technique, advice about the technique's use and where possible, prototypical

examples of its use. The following section describes the PORE method box.

4.5 PORE's methods box

COTS-based development is a multi-disciplinary paradigm that requires techniques,

methods and tools from many disciplines. This is seldom the case with the traditional

systems development paradigms. PORE's method box includes methods, techniques

and tools that are available to help undertake and achieve each of the situations and

processes. PORE templates (described in chapter 3) provide guidance for selecting the

most suitable method, technique or tool from the method box. Some of the techniques,

methods and tools available in the PORE method box and integrated within the

iterative PORE process are:

" knowledge engineering techniques such as card sorting and laddering (e. g.

Rugg and McGeorge 1995) which are useful when acquiring information

about categories of products, suppliers, contracts and hierarchical

information about product properties and customer requirements;

" feature analysis techniques (Kitchenham & Jones 1997) for aiding when

scoring the compliance of each product feature to each customer

requirement;

137

4: Interleaved Requirements Acquisition and COTS Software Product Selection

" MCDM (Multi-Criteria Decision Making) techniques such as AHP (e. g.
Saaty 1990) and the out ranking method (e. g. Fenton 1994) for aiding in

the decision making process during the complex product ranking and
selection process;

" COTS-based development methods such as OTSO (e. g Kontio 1995) for

product evaluation and selection, CISD (e. g. Tran et al. 1997) and IIDA

(e. g. Fox et al. 1997) for product identification and integration and
IusWare (e. g. Moriso et al. 1997) for decision analysis.

" requirements engineering methods such as Volere (e. g. Robertson 1997)

for aiding the requirements engineering process and equirements

acquisition techniques such as ACRE (e. g. Maiden and Rugg, 1996) for

acquiring customer requirements;

" product (or component) identification tools such as the internet or Agora

(e. g. Robert et al. 1998) for identifying products or components available
in the market;

" methods such as ATA (Architecture Trade-off Analysis) for analysing

architectures and SAAM (Software Architecture Analysis Method, SEI

1998) for evaluating software product architectures.

The above list is not exhaustive. The PORE approach is designed to allow additions

of relevant techniques as and when they become available in the market place. The

techniques are divided into groups that deal with specific situations during the

process. As well as integrating these techniques, PORE also provides rules that infer

the current process goal and situation and, therefore, the technique to help solve the

situation and meet the process goal. The following section describes such process

situation rules.

4.6 Process situation rules

The situation rules infer the current situation by inferring properties about the current

state of the compliance sub-model from attribute values of requirements, product
features and product-requirement compliance relationships. Different situation rules
infer process goals, different properties of the situation model and properties about the

138

4: Interleaved Requirements Acquisition and COTS Software Product Selection

semantic contents of the requirement, product and compliance sub-models. The
inference is made possible using the meta-schema. Several rules infer properties about
the contents of the product sub-model, and in particular, missing goals, actions,
functions and components from a software product sub-model, so that a compliance
check to a behavioural or functional requirement can be made based on complete
information. The situation rules are defined in the form of a logical implication, IF

<condition> THEN <action>, that are expressed in Visual Basic implementation

statement as shown in the examples below and in more detail in chapter 5. Complex

rules that infer properties about the collective contents of the requirement, product
and compliance sub-models are defined. For example, one undesirable property is that
there are compliance relationships between all product features in the product sub-
model and all requirements in the requirement sub-model. This means that there are

no effective discrimination requirements or product features. This is expressed by the
following rule as a Visual Basic code:

If lisProduct. ListCount >1 Then
Call produceAdvice("NonDescriminatingRequirements", "Insufficient
descriminating requirements or product features")

Rules that infer model content properties are specified to determine the current
`situation' of the process guidance, that is to infer the situation part of process triplet
described in section 4.3. The rules were derived from the interviews undertaken with
experienced software engineers reported in chapter 3 as well as from basic research.

The PORE rules infer situations that trigger process chunks (see Appendices 4a &

4b). For example, in the process chunk 1.5 given in section 4.6, the rule that detects

that there are insufficient requirements to enable product selection (where insufficient

is defined to be below a predefined threshold number of requirements) and therefore

infers the situation insufficient(requirements) is expressed as below:

ElseIf RequireVal < Requirementlnsufficient Then
Call produceAdvice("InsufficientRequirements", "Insufficient
requirements")

End If

Different types of rule sets infer properties about the relationship values of the

compliance sub-model from attribute values of requirements and product features.

139

4: Interleaved Requirements Acquisition and COTS Software Product Selection

The rules infer compliance sub-model properties to guide the process chunks defined

above to achieve their goals. So far the rules that have been specified infer situations
that guide the trigger of process chunks (see Appendix 4a) and the selection of

techniques to achieve all of 5 PORE's generic processes (identify, acquire, analyse,

make decision, select and also see Appendix 4c). Table 4.2 lists an example of such

situations. A complete list of situations that can arise during product selection is given
in Appendix 4d. The following section presents and discusses the PORE process

chunks and how they combine all the PORE components to provide the requirements

engineering team with effective process guidance.

Situation Name
Empty requirement model
Empty product model
Insufficient customer requirements
Insufficient candidate products
Insufficient product features
Insufficient supplier requirements
Insufficient contractual requirements
Insufficient architecture requirements
Insufficient behaviour requirements
Insufficient functional requirements
Non-discriminating requirements
Non-discriminating product features
No compliance mapping relationship
Small decision making space
All products rejected

Table 4.2 An example of some of the situations identified in PORE. A full list of

the situation that can arise is given in Appendix 4d. The situations were

identified through real-world COTS product selection case studies and through

interviews with experienced systems developers.

4.7 PORE's process chunks

The definition of PORE's process chunk is based on the process view of the

NATURE process modelling formalism (Rolland & Grosz 1994, Plihon & Rolland

1995). Each process transforms a product (e. g. a requirements model) from an initial

situation into a result which is the target of the intention of the process chunk (e. g. an

improved requirements model). PORE's situation model and rules are linked and

140

4: Interleaved Requirements Acquisition and COTS Software Product Selection

integrated through process chunks to provide situated process guidance. Each process
is modelled as a collection of process chunks that are combined in different sequences
to form different processes to achieve different goals (see Appendix 4e). Each PORE

process chunk has 6 attributes:

Process-Chunk:

Name: Unique-identifier

Goal: (the goal to be achieved by the process chunk)

Process: (generic processes for achieving the goal)

Situation: (property (sub-model))

Input-information: (content(situation sub-models)

Technique: (technique in PORE method box)

End-Process-Chunk

The process chunks are also combined and linked with the process triplet (see section

4.3.1) to provide multi-layered process guidance (see section 4.3). The goal of each

process chunk is the process goal to be achieved through the application of the chunk.

Each process itself is either goal-driven or context-driven, but not both. If it is goal-

driven, the process defines one or more goals to undertake to achieve the process. If it

is context-driven, the context is defined using one or more inferable properties of the

current situation model. The input information is the content of the requirements,

product and compliance sub-models that is manipulated in the process. The technique

attribute defines one or more techniques that available in the PORE method box to

achieve the process goal.

The high-level process-chunk given below illustrates the goal-driven process depicted

in Figure 4.2.

Process-Chunk:
Name: 1
Goal: Reject COTS software non-compliant with goal
Processes: Identify candidate COTS products and Acquire-information
THEN

Analyse-compliance THEN
Determine-non-compliant-product THEN
Reject-non-compliant-product

Situation: None
Input-information: None
Technique: None

End-Process-Chunk

To complete each cycle of rejecting COTS software products that are non-compliant

with some subset of customer requirements, the four processes in the process chunk

141

4: Interleaved Requirements Acquisition and COTS Software Product Selection

are undertaken in a strict sequence characterised by the 'THEN' statements in the

chunk. However, the processes of identifying candidate COTS products and acquiring
customer requirements can be done in parallel. As this chunk describes a high-level

process, it has no triggering situations, no prerequisite information input, and no

specific techniques to recommend.

To achieve the three essential process goals defined in section 4.2, four high-level

process chunks are defined. In turn, each chunk defines process sub-goals to be

achieved. To illustrate this with an example, the high-level process chunk to achieve
the first essential goal, which is `to reject products that are non-compliant with
essential, atomic functional requirements', is described below. The example is further

illustrated using an example which aims is to reject e-mail products that are non-

compliant with requirements `the system shall enable the user to maintain a

customised address book, and the system shall operate on Windows-NT and MacOS

version 8.1'.

To provide process guidance, the process chunk specifies 9 fine-grain process goals to
be achieved before the higher-level process goal can be achieved. Each of the 9 sub-

goals corresponds to one of the four coarse-grain processes defined in Figure 4.2, (i. e.

acquire information, analyse acquired information, determine product-requirement
compliance and reject one or more products). The process goals define the <goal-

process> part of the process triplet. However, the order in which the goals are

achieved is context or situation-dependent, that is, it depends on the properties
inferred about the situation model and its contents. The example of the process chunk
is given below:

Process-Chunk:
Name: 1.1
Goal: Reject software products non-compliant with essential-goal-1
Processes: Acquire customer-atomic-requirements

Acquire contractual-requirements
Acquire supplier-requirements
Acquire product-information
Analyse product-requirement-compliance
Analyse supplier-requirement-compliance
Analyse contractual-requirement-compliance
Determine non-compliant software products
Reject one or more non-compliant products

Situation: None
Input-information: None
Technique: None

End-Process-Chunk

In turn, to achieve the goal 'acquire atomic customer requirements' a large number of

situated processes are defined. One such situation, empt)y(requirement-sub-model)
defines that the requirements model contains no requirements with which to check

142

4: Interleaved Requirements Acquisition and COTS Software Product Selection

compliance with each product. In this situation, PORE recommends the use of a range
of techniques which include interviewing, brainstorming and use case analysis to
acquire a first collection of atomic essential functional requirements for the customer's
future system. The process chunk that achieves this situation is shown below:

Process-Chunk:
Name: 1.2
Goal: Acquire atomic-functional-requirements
Processes: none
Situation: empty (requirements sub-model)
Input-information: none
Techniques: {interview, use-case analysis, brainstorm)

End-Process-Chunk

At the same time, the process model also recommends the requirements engineering
team to acquire product-information, product-contract information and supplier-
information for all candidate products, for similar reasons. At the beginning of the

process, the product sub-model contains no information about candidate products, that
is the situation is empty(product sub-model). The process then recommends the use of
techniques such as questionnaires, data analysis and other diverse information sources
to acquire the essential product, supplier and contract information:

Process-Chunk:
Name: 1.3
Goal: Acquire product-information
Processes: none
Situation: empty(product sub-model)
input-information: none
Techniques: (questionnaire, internet, data-analysis)

End-Process-Chunk

The situations for the above two process chunks (i. e. 1.2 & 1.3) are very simple to

infer and the recommended techniques are obvious. However, other process chunks

are more complex and lead to the recommendation of less obvious process guidance.
For example, the next process chunk is linked to the situation 'no-

discriminating(requirements)'. This happens if the requirements sub-model contains

insufficient number of customer requirements that enable the team to discriminate

between candidate products. For example if the number of customer requirements that

have product-requirements compliant mapping relationship is lower than a

predetermined threshold. In this situation, the process model recommends that the

team acquire more customer requirements which help to discriminate between

products using the card sorts technique. Using the card sort technique, a member of

the requirements engineering team writes all candidate product names on 3"x5" cards

and asks stakeholders to use the cards to sort the products into categories. Criteria for

sorting such as "product compatible with MicrosoftTM Word" indicate customer

requirements that discriminate between products. Product categories such as

143

4: Interleaved Requirements Acquisition and COTS Software Product Selection

"compatible" and "not compatible" indicate product compliance to these
requirements. Card sorts are a very efficient technique in this situation because only
requirements that discriminate between at least two products are acquired. Examples
of discriminating customer requirements which might be acquired using card sorts
include "the system shall have a UK-English spell checker"; "the system shall allow
the user to set a tailored vacation message", and "the system shall allow the user to
predefine the font and character size for displayed messages". The process chunk for
this is:

Process-Chunk:
Name: 1.4
Goal: Acquire atomic-functional-requirements
Processes: none
Situation: no-discriminating(requirements)
Input-information: content(sub-model(requirements))
Techniques: (card-sorts)

End-Process-Chunk

The contents of the process triplet for process chunk are:
{Acquire-atomic-functional-requirements, no-discriminating-
requirements, card-sorts)

Another example of a more complex process chunk defines the situation
"insufficient(behaviour-requirements)", which exists when the requirements sub-
model contains an insufficient number of behavioural requirements to enable product
selection. This process chunk recommends the acquisition of more behavioural

requirements using two techniques. The first technique is use case analysis for tasks
that achieve essential functional requirements (Maiden et al. 1998). The second
technique is to use available product demonstration copies as ready-made system
prototypes. Software suppliers often offer free simple demonstration copies of their

products. The simple product demo copies provide partial working prototypes with

which side-by-side product comparisons and facilitated requirements acquisition (e. g.
Sutcliffe 1997) can be performed:

Process-Chunk:
Name: 1.5
Goal: Acquire atomic-functional-requirements
Processes: none
situation: insufficient(behaviour-requirements)
Input-information: content(sub-model(requirements))
Techniques: (analyse-use-cases, walkthrough-product-demonstration-
copies)

End-Process-Chunk

Appendix 4f gives the full set of process chunks defined in PORE. The intention is to
be able to add more chunks as the method evolves. Although process chunks combine
all the method components to achieve each process goal, the iterative nature of the

144

4: Interleaved Requirements Acquisition and COTS Software Product Selection

PORE process makes detecting these chunks very complex. Therefore approaches for
guiding the iterative process are needed.

4.8 Summary and chapter conclusions

The theory describes the iterative process guidance using goals, models and

situations. The process guidance suggested aim to solve the problems identified in

chapter 3. Templates provide the requirements engineering team with process

guidance about what to do at three key stages of the process. Templates provide more

course grain guidance unlike other process guidance techniques. Goals provide the

requirements engineering team with guidance to reject candidate products that are

non-compliant with essential customer requirements. Three such high-level goals are
defined and five generic processes for achieving each goal are also defined. Products

are selected or rejected according to their compliant with the customer's requirements.

To enable effective product-requirement compliance mapping, three models are

defined. Process chunks and situation rules enable to infer process guidance and

situation and the techniques to be used.

The process guidance approaches for guiding the COTS-based development process

suggested in this chapter are novel. In particular, they address the lack of process and

method guidance for requirements acquisition and COTS software product selection

processes which must take place before system design. However, one of the problems
is that the iterative process of requirements acquisition and product

evaluation/selection is very complex. At any point in this complex process, a large

number of possible situations can arise. For example, stakeholders may define a large

number of requirements, so the requirements sub-model can give rise to a large

number of different situations. The requirements engineering team can also evaluate a
large number of software products, so the product and compliance sub-models as

well, can give rise to a very large number of situations. In addition, PORE can

sometimes recommend a large number of processes and techniques to use in a single

situation. To handle this scale of complexity, the theory suggests that a software tool
is needed that has a computational model to detect situations and generate process

guidance. A prototype concept demonstrator known as PORE Process Advisor is

145

4: Interleaved Requirements Acquisition and COTS Software Product Selection

therefore developed to demonstrate tool support for the PORE approach. The main

components of the tool are a process engine which analyses the current set of goals to

be achieved (stored in the goal agenda), model properties (inferred by the situation

inference engine) and instructions from the requirements engineering team to

recommend process advise in the form of the process triplet, i. e. {process-goal,

situation, technique-to-use}. The PORE Process Advisor tool is developed with MS

Access and Visual Basic. It is designed to integrate with existing software tools such

as Rational's RequisitePro requirements management tool (for requirements

management) and CREWS-SAVRE tool (e. g. Maiden et al. 1998) for generating

scenarios.

Although the method described above addresses hypothesis H2, the effectiveness of

the method can not be tested at this point. This is done in chapter 6. Therefore, at this

point, hypothesis H2 cannot be fully accepted or rejected.

The following chapter, chapter 5, presents and describes the concept demonstrator

tool, PORE Process Advisor.

146

Chapter 5

The PORE Process Advisor prototype tool Design and Development

This chapter outlines the design and implementation of the process

advisor prototype tool that aid in the process of providing the

requirements engineering team with process guidance and advice

5: Process Advisor prototype tool Design and Development

Chapter 5

Process Advisor prototype tool Design and Development

This chapter outlines the design and implementation of the PORE Process Advisor

prototype tool. The tool is a concept demonstrator that exists to demonstrate the
feasibility of tool support for the PORE method to provide requirements engineering
teams with process advice and guidance according PORE. As described in chapter 4,

at any time during the process, a large number of situations can be generated and a
large number of process chunks and techniques can be recommended. Some process

situations are complex. A software tool is needed to detect them. To handle the scale

and complexity of these situations the software tool has a computational model that
infers situations to generate process guidance. Section 5.1 describes the tool's

architecture and its main components, functionality and interface. Section 5.2

describes its implementation and examples. Section 5.3 presents a `scenario

walkthrough' to demonstrate how the components of the tool are linked and how

process advice and guidance is computed.

5.1 Architecture

The PORE concept demonstrator prototype tool was built with MS Visual Basic and

Access under Windows 95. The prototype tool is designed to be linked or integrated

with other tools including Rational's RequisitePro requirements management tool and

City University's CREWS-SAVRE scenario walkthrough prototype (Maiden et al.

1998). The tool's components are shown in Figure 5.1:

"a process engine that determines the goals to be processed (discussed in

section 4.2 & 4.3);

"a database that stores: (a) situations inferred from the situation model

(discussed in section 4.4 & 4.5); (b) process chunks which prescribe

process techniques; (c) a method box that provides process guidance;

"a process advisor that provides guidance and advice provided in the

method box (discussed in section 4.6);

148

5: Process Advisor prototype tool Design and Development

" an inference engine that uses process situation rules to infer situations that
trigger process guidance (discussed in section 4.7 & 4.8).

process process

advisor engine

inference
database engine

Figure 5.1: Architecture of PORE process advisor prototype tool. The figure

shows static associations between the prototype's 4 main components that are

linked to provide process guidance and advice to the evaluation team.

The following sections provide a detailed description of the prototype's 4 main

components.

5.1.1 Process Engine

The process engine algorithm links: (a) situation rules that infer process situations that

trigger process guidance and advice; (b) situation model from which the rules infer

situations; and (c) process chunks that prescribe process techniques and presents

process guidance and advice. The process engine it analyses the current set of goals to

be achieved, the model properties that are inferred by the situation inference engine

and the instructions from the requirements engineering team to recommend process

advise in the form of the process triplet, (<process-goal, situation, technique>)

modelled as process chunks. Its main function is to check whether processes have

been completed successfully by checking that the situations that triggered the process

do not currently exist. If the situations no longer exist, the algorithm logically

identifies new processes to be undertaken to achieve the next process goal. It uses the

current goal to be achieved and the current situation to recommend suitable

techniques from the method box, then presents this triplet to the process advisor.

149

5: Process Advisor prototype tool Design and Development

Whenever the evaluation team requests advice, the process engine algorithm does

three basic computations:

" it infers whether the processes in the current-process lists have been

completed successfully. It does this by attempting to infer whether the

situation or the many situations that triggered these processes still exist;

" if these situations no longer exist, it identifies new processes to undertake

to achieve the next ordered goal;

" it uses the lists to compile process advice from the method box and present

it to the team.

A more precise specification of the process engine algorithm is shown in Figure 5.2

below.

DO accept-advice-request
" COPY new-goalprocess-list TO old-goalprocess-list
" COPY new-contextprocess-list TO old-contextprocess-list
" SET new-goalprocess-list=[]
" SET new-contextprocess-list=[]

DO check-current-advice (**to check whether previous processes complete")
" REPEAT FOREACH process In new-contextprocess-list
"" RETRIEVE process-chunk WHERE goal=member[old-contextprocess-list]
"" IF situation of process-chunk=true
""" ADD process to new-contextprocess-list
"" ENDIF
" ENDREPEAT
ENDDO
DO check-new-contextprocess-list
" IF new-contextprocess-list. []
"" GO TO PREPARE-ADVICE
" ENDIF
ENDDO

DO determine-new-advice (""to determine new processes to complete"")
" WRITE next goal-driven process to new-goalprocess-list
" REPEAT FOREACH process In next-goaldriven-process
" RETRIEVE process-chunk WHERE goal=process(next-goaldriven-process)
" IF situation of process-chunk=true
"" ADD process to new-contextprocess-list
" ENDIF
" ENDREPEAT
ENDDO

DO PREPARE-ADVICE (*"to determine technique/process guidelines")
" REPEAT FOREACH process In new-contextprocess-list
"" RETRIEVE process-chunk
"" WRITE technique to new-technique-list
" ENDREPEAT
" DO show-advice
ENDDO

Figure 5.2: PORE's process engine algorithm

150

5: Process Advisor prototype tool Design and Development

5.1.2 The Process Advisor

The process advisor uses situation rules to produce process guidance and to determine

what advice, techniques, tools and methods to recommend to the requirements

engineering team. It also validates the advice to be recommended based on the

current state of the situation model. The process advisor analyses the current set of

goals to be achieved, properties of the situation model that are inferred by the

situation inference engine, and instructions from the requirements engineer to provide

process guidance and recommend advice about what to do next. Guidance and advice

is given using the <situation, advice, technique> triplet. The job of the process advisor

is to handle the reasoning portion of the prototype tool. Instead of the tool providing

the team with a list of all current situations, the process advisor uses the situations

stored in the database to guide them based on the specific situations and defined

process logic. The process advisor iteratively provides the team with guidance and

tailors the advice based on the information provided. Figure 5.3 below depicts how

the user interacts with the process advisor

request

advice current pnMtAN

Process Process
prow advice advisor engine

Triplet:
Triplet: Igmi. situutinn.

I situ. uionadvice. technique) request
technique) (Situation. eurent situation

technique

Inference -Ou .. �n. aýwb ýýe engine
requirement

Requirements and product
information

engineering
team

Figure 5.3. The involvement of the user in the process advisor tool. The figure

shows the information flows between the 4 main components of the prototype.

When the user requests advice the process advisor determines current process.

The process engine then uses the detected current process to determine current

situation using the inference engine. The inference engine infers the current state

of the compliance model to determine the current situation. The process engine

then passes the triplet <goal, situation, technique> to the process advisor. The

process advisor uses the triplet to produce advice which is presented to the user.

151

5: Process Advisor prototype tool Design and Development

5.1.3 The Inference Engine

The inference engine is the most important component of the prototype tool. It acts as
the control unit and does all the reasoning about the current state of the models and
what advice to offer next. The reasoning consists of matching the current situations to
the process goal and suitable techniques to handle the situation. Advice is then given
in the form of a triplet and processed as process chunks. The inference engine uses

several rulesets to guide the process logic reasoning. Rules are fired in two ways:

" in response to a specific situation, which in turn depends on the data

entered by the team or generated by a rule that has been executed in the
inference engine, or

" executed to attain a specific goal, i. e. specific goal directs the process,

giving it a focused and tightly controlled execution strategy.

The situation rules are represented in the form of a logical implication, IF

<condition> THEN <action>. The rule conditions assert process goals that match the

conditions. The goals asserted persist as long as there are situations that remain

relevant to the goal. The inference engine identifies rules that apply to the current goal

based on the inferred situation. The rules then trigger process advice that guides the

team to add new information into the databases, although the team might not

necessarily follow the advice.

5.1.4 Database

The database is the operationalisation of the PORE's situation model described in

section 4.5 of chapter 4. The database stores the inferred situations and includes the

method box which holds information about available techniques, methods and tools.

The database is developed using MS Access. MS Access was chosen because it is a
COTS product that is available in the market and integrates easily with Visual Basic,

the development environment for the prototype. The database consists of a number of
individual tables. Tables 1-4 show examples of the requirements table, feature table,

advice table and techniques table respectively.

152

5: Process Advisor proloiypc tool Design and I)cvclopinrnl

Tahlc 4.1 shows the requirements database table that ifl)J Irnnrnt part of tlic

rcyuircmcnt modcl shown in Figure 4.6 in chapter 4

RequirementID I Type I Description Priority Source I Fit-criteria
Al Functional The system shall send a High l_B The systeiio s
Rio NonFunctional The system shall have a High LB The system
R100 Functional The system shall allow the Low LB The system
R101 Functional The system shall enable to Medium SG The system
R102 Functional The system shall enable Medium MN The system
R103 Functional The system shall enable Medium LB The system
R104 Functional The system shall be able High MN The systems s
R105 Usability The system shall enable Low SG The system
R106 Functional The system shall allow the High SG The system
R107 Functional The system shall be able Low MN The system
R108 Functional The system shall have a High LB The system
R109 Functional The system shall enable to Medium MN The system
R11 NonFunctional The system shall hide Medium LB The systems s
R110 Functional The system shall allow to High LB The system
R111 Functional The system shall allow to High MN The system
R112 Functional The system shall allow to Low SG The system
R113 NonFunctional The system shall have Medium SG The system
R114 Functional The system shall enable High MN The system
R115 Functional The system shall be able High MN The system
R116 Functional The system shall have a Low SG The system
R117 Functional The system shall enable High LB The system
R118 NonFunctional The system shall store all Low SG The system

'f'ahle Example of the requirements database as represented) in the PORE

database. lach requirement has a unique identifier and type as 5110w) ill I'igºi1('

4.6.

'fhc fullowino tahlc shows il sample oI'the Ip1-ud111ct t'ratuu-CS as (Irlfined in the I)IMI(Ict

mctai-model. 'ftc tiihlc shows that pmo lucl Ieaturrs ale specialised into components,

functions Or ICtiUns, indicated by the Feature type.

153

-5:
!r cess Adl\ kor prof of ype tooI I)rsi !n and I)c eIopitirnt

FeatureName ProductName Feature-Type
AddressBook OutLook Component
Addresses OutLook Function
Apointments Pegasus Function
AutoReminder OutLookExpres Function
AutoReminder Pegasus Function
AutoReminder Eudora Function
AutoSpellChecker OutLookExpres Function
AutoVacationRepl OutLookExpres Function
AutoVacationRepl Pine Function
AutoVacationRepl OutLook Function
AutoVacationRepl Eudora Function
Calender OutLookExpres Component
Calender Communicator Component
Calender Pegasus Component
Calender Eudora Component
Diary OutLookExpres Component
Diary Pegasus Component
Dairy Eudora Component
Dictionary OutLookExpres Component
Dictionary Eudora Component
Dictionary Pegasus Component
Dictionary OutLook Component

Table 5.2: Example of the product feature table. The 1'eattlITS . 11T Mapped if)

requirements in the requirements sub-nºdel to cIeIcrnºine Iºrýºýlurl rý ýluirý nýý nt

compliance. The table also shows which product possesses Ihr Ce. 11iilt and Iheir

type.

I'lic I I! O\V in`! tuhic show" a sanlpIc of Illy 'pi-oc '. SS cilu(Ili(J/o' and

advice for `=uicling the rccluircinrnts cu incering , hoot Mmal lo do nr. \t. I'lic

situations' are key too the process ruiWtnrr and ad\ irr Ili; it i" pl-c"cillcd lo 111L,

rcyuirriucnts enonrrrin`i team and Wr scIcctin , ýuitahlr Irrliniyuc', nu'tliudti Or took

I'noin the method hox. The situations are part of I'ORk Pl CSIý Chunk,, and part ut IIic

multi-layered process `guidance that is `_iv'en U) lime recluirrnnrnt, engineering IC LII1 III

the I, 01-111 of triplet.

154

5: Process Advisor pnit(itppc tooI J)esiL, n ant I)cvelohnicIII

SituationName
EmptyRequirements
EmptyProducts
InsufficientRequirements
InsufficientProductFeat ures
Non DescriminatingRequirements
EmptyFeatures
InsufficientSupplierRequirements
Insufficient ContractuaIRequirements
InsufficientArchitectureRequirements
Insufficient UsabiIityRequirements
NoComplianceMapping
DecisionMaking
Non DescriminatingProduct Features

Advise
Acquire customer requirements
Identify candidate products
Acquire more customer requirements
Do more detailed product analysis
Acquire detailed discriminating requirements
Acquire product features
Acquire more supplier requirements
Acquire more contractual requirements
Identify and acquire more architecture requirements
Acquire usability requirements
Determine compliance mapping
Determine product ranking
Acquire more product features

'fahle 5.3: Example of the N)RE situations. The situations and ad ice are

inferred by the rules in the process chunks.

I'm rarh , itu. itio n, PORF idcntilic stiitil)lc ad\ic'. I'll I)lt)&C ý CH. L'111i" ; 111(1 slic

II1ICIcnrr CI1 inc IIIfCI Current situation usiI situation rulLS and III(currCnt 'talc Ot

the situiitiun inudel and the 1) -OCcss rCCo Illnirn(l,, , uitahlr : IRIv ILT tu llir IC I11

about what to do next. New situations and advice arc added. ; I, they hecunnr re Ire ant.

I'hc h)IIUwing tahlc sh()ws how the POJ' I, :i ctliui hox is in1111cinrnled. H IL, table

shows inIurntatiOn , thout trrhniclucs and ittrtIfl)(I" llmt arc I)n)v idC(l in tut'

ti ituthud and the process situations that the Irchnitlues aini to s tI C. IAistin! CM ,, s

based (Ic%, Clohn1cnl mcthOuls discussed III sec"t10i) 2.9 and ddrrisiUýn-makin, l techniques

discussed in section 2. I0 arc also included in Ilir I'OKI: method hox. I Iic table also

shows (inks hetwtwcett the techniques or methods in (lie method hox and the process

situations identified in 'fahle 5.3. This link i,, indicated by the omttnoýn altrohste

SiluaticinNanýc' that is defined in h0lh tahles.

i, -,

5: Process Advisor prototype tool Design and I)rvrlopment

Brain Storming No requirements Brainstorming. htm, ACRE
Scenario Analysis Insufficient requirements Scenario. htrn, ACRE
OTSO No candidate products OTSO. htm
CISD Evaluate COTS products CISD. htm
Feature Analysis Identify more requirements FA. htm
IIDA Evaluate products IIDA. htm
lusWare Decision analysis IusWare. htm
Interviews Insufficient requirements Interviews. htm, ACRE
Card Sorting Non discriminating requirements Cardsort. htm, ACRE
Prototype Analysis Insufficient requirements or product Prototype. htm, ACRE
Product Demo Insufficient product information Product-demo. htm
Architecture Analysis Insufficient architecture Arch-Analysis. htm
Use Case Walkthrough Insufficient requirements Use-case. htm, ACRE
Questionnaire Insufficient or no product information Qurstionnaire. htm
Internet No products, All products eliminated Internet. htm
Market Survey Insufficient or no products Market-survey. htm
SAAM Insufficient architecture SAAM. htm
ATAM Insufficient architecture ATAM. htm
RAD Insufficient requirements RAD. htrn, ACRE
Compliance Mapping No compliance mapping Compliance. htm
AHP Decision-Making AHP. htm
MCDA Decision-Making MCDA. htm
Out Ranking Decision-Making OutRanking. htm
Weighted Score Method Decision-Making WSM. htm

Table 5.4: Sample of the information ah0ul lechuiques and ºncillo I that are

provided in the PORE method box.

The method hOx includes currently available techniques t: id Method" III I Ill ; Iddi "

process situations. For each techni(Iue, the inethti(I hux itirntilirs the siIIiat)I1(S) in

which the technique is suitahie. The method hux is d signed sO that ne method" anal

techniques can he added, as they heco nic avail. ahie in life nnarkei. The mclhod 1)()\ i"

designed to he linked to the huhlicly availahie A('RI. Iranlework (Ma (Icii N, I: u; g, g

It)%). I'igure 5.4 helow shows the link hetween sonic of the Wks tilgt

operaticýnali. ses the PORF models and the thheory eotttl)MIC111" dcsc ihed in e'h; iplem 1.

156

5: Process Advisor pruloivpr Iouol I)e i'n an&l I)rvrl<il)nirnl

(:. D. _

irkrýý
I1ý"1 n"ý. i, iii

I ýý.

r. ýýý .. r.
rir ICI

i _.. __. _

l

t

7,77, .. ý

Process (')al Situation ldvicc I'('chni(lu('
kcjCCI 1,11(11 t, IH0O- (MC .N 1111' N(mw

C(1111)II; IIII VA' Il 1118l I

; 1rytli1C II11 is ItIlIC60nal Illnll (ICylli IeIIl i cyllirr; Itt111lic Cll"IoliCr Ii sill Stornlill u. II\c' I. I

IcquilcnICIIK suh-Irltl '1) ILttctlollal rcyllirrntcnts ilitervk \s. wert tlwý
Aryuirr aulnlii lutictilm; ll Insut7icirnl lunrtio: ml Acquire th ou-c IL11101lm; ll II -r; l t. \c; llklhruu ll.
requirclltcnls rctquirclllcflls Iiquircnlerll" ýIluclulrll inlrr\irN'.

ccli ii 1, : ul: Il\SIS.
Acquire product information I? mpty (product suh- ItIrnlify ralidi(lair Our liunn; lirr. intcrnet.

ntuilel) products and acquire m; lrkrl Nit v rv
I, rnlhlrl and supplier
inllrnl: llilln

/\m quirm 17Iodu t information [list] I Iicieilt (product I)IImolt. I et; llls mull
''sis

\' lk-IluIohiL'll-I11iI1111Ct-

IItII)rltl; IlIt11I) tll l'; Illdid; lle prlllllil'Is lll'Illllllt. ll; llloll l'llpies.

1ä1111 I(% Ill'Ni-IoI 1111t1-11

Analyse acquired Note - -- None None

rt'tl 11ilclllc171 s and product
i [)lot niat loll

Anal\,, e product-requirement Su((icirnl (requirements An; llvsr ; lryu ted Ilrodurl SceIu iu-; 1nä1\ i
. lit

cony liancc and Ilrtulucl inl lmiltitm; Intl rfiteli; l. Ilrtulurl prototype
fl lilrlut tlil111) Ic\IIIirelnenlti It)[

CO 1111) ICI
Determine requirement- Nt tequircntcnl-prculucl Deterlninr-rulnhlivlrr ('nlnl\li; ulc(-cIleekll. I.
product 011117 fiance Compliance) nut \ 1i11 L' 111111 IIl; lill c-N; IIIýIIll oll l'Il

Analyse ptoducl-requirement Non-tliserimin; lliltz At IIIlc innre ducnnlln; lling (': Inl sorts
Curl, lliullce rct uirl'Ih1iuiiS l'11S10llll'I ICl II ICHIiIll\

Sclect/Reject tmc or mt, rc Small tlccisitm Space Mike \Irci, ilms ; Ihnul
Oill I:: ull

ill
.

\1(Il\.

nlln-ctnnhli; lnl hruthlcis hnnlurt-rryuirrnlrnl \I II'

rnnllli; lnrr
Redo icyuirrnlrnl/product All products eliminated I)II del; lilrll : In; ll)sis 111 1011' l lull l\ II

111 Illl'1711i\' Ill'\1'
ulJi I IL lu hf 1,

Ills' l'; Illl duale I/rlllllll'Iti --

rr id I uil r
III. I1h1. d. 11.1 11I\ -I

l l wl \ '\ I l

VIP,

I n\ rl yI

I, nl\lurlti Irr If' '\
ý utilnn Irr lnlrnlr ý

r nl. ll ,

-

....,.
\11 1111 0 IWX

Figure 5.4 The relationships and links between the incthºni cunºpººnunts and (lit,

tool implementation.

'Ihr CJSC study I'n)n1 chapter 4 is used toi demonstrate PORJ s Ipnuceti, ; '[II&M c and

the undcrIvingColl hutill lonal nlrrhanisnis. It w ports ICyui'iliun uI I. C(IMR HICIll, to

select a COTS electronic-nail system f, ur a Lill] versitýý oIlic"e. the Iý, Iluýý in, e e\alilliles

157

5: Process Advisor prototype tool Design and Development

show snapshots of processes that were needed to make key selection decisions. For

each snapshot, relevant process goals, process chunks, situations, computed advice

and situation rules that infer the relevant situations are described.

5.2 Demonstrating PORE's Process Guidance

At each stage of the process, the IF-THEN-ELSE Visual Basic code segment that
implements the rules that infer the current state of the situation model (i. e. situation)

and that trigger the relevant process chunk is shown.

As described in chapter 4, the first key decision to make in the PORE process is to

reject candidate products according to goal-l:

" to reject candidate COTS products that are non-compliant with, atomic customer

requirements.

To achieve this goal, all 5 PORE goal-driven generic processes have to be completed

for the goal. At any stage, the relevant generic process that is currently being

undertaken is indicated by shading that particular process. The diagram below shows

that no process is currently being undertaken.

Identify
Product ye g lýdnncore

Acquire to ulrements first
B dennrying Information Analyse

By idenMylny
p feature s

Using additions Acquired
supplier lnfoimefion

requirements
Information

Bylmplementlnp
strategy In work environment using

Byp dlsalm
demonstration strategy

More candidate products Select

Product
Make

Bytrsd"N Decision
analysis

The goal-driven generic processes are specified in process chunk 1.1 below.

Process-Chunk:
Name: 1.1
Goal: Reject products non-compliant with goal-1
Processes: Identify products AND Acquire information from

stakeholders THEN
Analyse acquired information THEN
Determine non-compliant products THEN
Reject one or more non-compliant products

Situation: None
Input-information: None
Technique: None

End-Process-Chunk

158

5: Process Advisor prototype tool Design and Development

To complete each cycle (i. e. to reject products non-compliant with customer's atomic
requirements), the four processes of chunk 1.1 are undertaken in a strict sequence as
indicated by the `THEN' statements in the chunk. As this chunk describes the high-
level generic process, there are no triggering situations, information input and
recommended techniques. Each process in turn has a unique process chunk, thus
specifying hierarchies of context-driven processes.

At this stage of the process, when the requirements engineering team asks for advice,
the process engine analyses the instructions from the prototype's user and the current
sets of goals to be achieved. It then uses the inference engine to analyse the situation

model properties. The inference engine in turn uses the situation rules to reason about
the current state of the situation model to infer current situations. It then matches the

existing situations to the current process goal and techniques and presents them to the

process engine. The process engine then uses the rules to trigger the relevant chunks

and presents the chunk to the process advisor in the form of <process-goal, situation,

techniques> triplet. The process advisor analyses the contents of the triplet and uses

the `situation' part of the triplet to recommend guidance and advice to the team about

what to do next. This advice is presented to the requirements engineering team in the

form of <situation, advice, technique> triplet. At this stage the team might choose to

follow the advice as presented or to ignore it.

At the beginning of the process to select an e-mail software package the RE team asks
for advice and guidance from the process advisor tool. The process engine examines
the situation model and deduces that the requirement sub-model, product sub-model

and the compliance sub-model are all empty. The inference engine then infers the

situations: empty(requirements sub-model) and empty(product sub-model) using the

following situation rules:

If RequireVal =0 Then
Call produceAdvice("EmptyRequirements", " Empty requirement
model")

If ProductVal =0 Then
Call produceAdvice("EmptyProducts", "Empty product model")

159

5: Process Advisor prototype tool I)r. tiiýýn anal I)rýrlýyýinrnt

It recommends the use of the techniques (iniervieur, use-("rlse u, IulVSis, hrr! in. crnimin,, '/
for requirements acquisition and (i, iiernel, inarkel sun ev, lit ciiIw j for

identifying candidate products. The process engine then triggers process chunks I

and 1.3 to he processed and present them to the process advisor as Irihlrt. s.

Process-Chunk:
Name: 1.2
Goal: Acquire atomic-functional-requirements
Processes: none
Situation: empty(requirements sub-model)
Input-information: none
Techniques: (interview, use-case analysis, brainstorm)

End-Process-Chunk

Process-Chunk:
Name: 1.3
Goal: Acquire product-information
Processes: none
Situation: empty(product sub-model)
Input-information: none
Techniques: {questionnaire, internet, market-survey)

End-Process-Chunk

The process advisor uses the advice triplet 'situations' Part to COJUPPute Ihr advice that

is then presented to team to ' identify callduI(lte and to 'tu qu ilt' tilti/lilt

fimcliouial requirements'. The advice is presented to the RI: team in the Itn'in

<situation, advice, techniques> as shown in Figure 5.5.

hp. iba

Process
...,.. ... r I ý. I ýr. N, i. v.. 4 rn my

aý advice as ýi : ý.,. nnr. yrn

utlJ lur . I, ulrnq Iý, uý Iw+l rryuX. m. rmý e
ýýýlillý

.. r �ýi

n. nm n. n. iýl ýnl
.r........

. htlýlb"

a,. el. ril. luli rýinrrl"ý. r"r-. f R4J unJ1ý'wn

.

`e.

r"

I! Mum IV ýlorr. M nr. u
I i

'
f

Ctlq': -aflhId m P-duds

- --

Cdd Prod- l'm. luva.
I $3dcI H. 9Xnný""ný"_...

J

L'_rr femur. .nV, r. lur. l

l 1 60

5: Process Adv isor prototype tool I)csipn and 1)rvrloplt enl

Figure 5.5: Process advice provided the prototype tool advising the evaluation

team to identify more candidate COTS products and to acquire atomic customer

requirements. The advice includes suitable techniques for solving the situation

and description of each technique's strength and weaknesses.

'I'Itc RE tcam followed the process advice and ýpuitiance and executed tlhe i1 Ilie
five generic processes, i. e. iclenli/i' /)roduct. c cmcl urc/1rire i! ilormel1io, n //On/

. siakc'holclers, as indicated below:

Identify
duct _ .. _.. _, eliciting core By

Acquire a uuemenls first
ý, ý, enrýlyrr, v Information

pro t features ý_

ý

Analyse
By adenb ywq Acquired
supplier inlormatron equir

anentS
Hy unplement

i

ieategy fs Information

strategy in work environment Usinr7

_By
pioducf r65cnnt llrn, f

ýýdemonsfr, rtion tifr; tlegy
More candidate products Select ý

Product
Make.

ey nade on Decision
analysis

Aftcr this, an initial hrainstonning session with three stakeholders was held 10 acquire

first-cut requirements for the office e-mail system. 'I'Ihe stakeholders were rxlperirnced

users Of, electronic mail and the internet. A facilitator chaired [Ile sr''iol1 and elicited

as many requirements gis hossihlc. At the same lime, candidate products availahle in

the market were identified. To mahle effective product evaluation Ilhe team "et

process parameters. The RE tram set a inin1n1U111 number 01' riistunirr regiiireinents.

products and product features as shown in Figure 5.6. 'I'hr team will he advi"ed to

excrute the next process only if'the parameters . set out have heeii net.

Ple�5e input nomirnurn fr etures Crý

Please input minimum Fioducts tp

PIeace input minimum Requiroments 45ý

Subnl' ., ', nc91

duct / By eliciting core
Acquire uuemenls ms(

ir, oenmym Information
Pro t lectures

t Analyse

By adenbtywy Acquired
ý ! lsinq additona

supplier in formation
regwremenfs

Informatl0
By unplemennnq
in work envrronmený strategy

By pioducl

IOI

5: Process Advisor prototype tool Design and Development

Figure 5.6: Setting minimum values for candidate products and customer
requirements. This will help the team to decide when to start analysing the
acquired information.

The following rules are processed to determine if the number of acquired
requirements and product information is greater than the set limits:

If Not txtFeatureValue. Text = "" Then
Featureslnsufficient = txtFeatureValue. Text

End If

If Not txtProductValue. Text = "" Then
Productlnsufficient = txtProductValue. Text

End If

If Not txtRequirementValue. Text = "" Then
Requirementlnsufficient = txtRequirementValue. Text

End If

During the brainstorming session, 28 key customer requirements were elicited. These

requirements were then entered into the requirements database, thus changing the

state of the requirement sub-model. A market survey was done using the internet and

questionnaire to identify candidate products and acquire product information.

Information about products and their features received from suppliers was entered
into the database, thus also changing the state of the product sub-model. After

entering the information and therefore changing the states of the product and

requirement sub-models, the team signaled their completion and asked for process

advice and guidance.

The number of acquired customer requirements and the number of candidate products
identified and the number of product features was lower than the predefined limits,

the inference engine inferred the situations: `insufficient requirements', 'insufficient

candidate products' and `insufficient product features' by triggering the three rules:

ElseIf RequireVal < Requirementlnsufficient Then
Call produceAdvice("InsufficientRequirements", "Insufficient
requirements")

End If

E1self ProductVal < Productlnsufficient Then
Call produceAdvice("InsufficientProducts", "Insufficient
products")

End If

162

5: Process Advisor prototype tool Design and Development

ElseIf FeatureVal < Featureslnsufficient Then
Call produceAdvice("InsufficientProductFeatures", "Insufficient
product features")

End If

The process engine uses the current situations 'insufficient requirements', 'insufficient

candidate products' and 'insufficient product features' to infer that the original

process goal 'acquire information from stakeholders' has not been met. Based on

these situations, the inference engine recommends the techniques: (use-case-analysis,

use-case-walkthrough, scenario-analysis, interviews, product-demo-copies) for

requirements acquisition and (internet, market-analysis, request for-information,

questionnaire] for identifying more candidate products. It then triggers process

chunks 1.4 & 1.5 and presents them to the process advisor:

Process-Chunk:
Name: 1.4
Goal: Acquire atomic-functional-requirements
Processes: none
Situation: insufficient(functional-requirements)
Input-information: content(sub-model(requirements))
Techniques: (analyse-use-cases, walkthrough-product-
demonstration-copies}

End-Process-Chunk

Process-Chunk:
Name: 1.5
Goal: Acquire product information
Processes: none
Situation: insufficient(products-information)
Input-information: content(sub-model(product))
Techniques: {internet, market-analysis, request-for-information)

End-Process-Chunk

The process advisor then used the current situations to advise the team to 'acquire

more atomic customer functional requirements', and to 'acquire more candidate

products information' using the recommended techniques. The advice provided to the

requirements engineering team becomes the new goals for the process chunks. Figure

5.7 shows the advice as presented by the prototype tool to the team.

163

>: Process Advisor prototype tool Ue. tiiýýn and Urvrlopnirnl

ýýýIý2
.> Uell ýIi ý IýýItt

Mubmrt I ýýferl'Ln.. Fiýtceýs A. clýý: c
IV

LI ýi, ýri 111 l11t. t. iýnýýý

fpI, tnre Lhnrk
I

.....

_UrrHrtr
f'rp('F. 91 Ali, ý9P

male Fmenv;

Y.. v'{ýýi a -". ninnýiý, nýýýi+nýnr hiýýý'. fiýýýýnl n"ý

f-h-q-,

ha :0V. ralkhiOuu_n
t4(?
ibc

iý; InJC. fýýrpd iMFr.! Fws

I ý' InRT& VUAng? t nod . \. rl r.., s,

. "nn, ýo>nerveit

5amngm

nn ý. ", ýn, dyýnwd nh a,,, ý_w, ud , nr"m,., iy

JanMnrlr.

t; aqunaa rno murr anno
,.

I

tot 3t'ip

SSre nqU

t ný .. urn4HS : roinm, mu errýýin I, aMHkM1 bn, ýi

f1ý,

Sc tu n fl 4u nlonu

t, ct"i i: nndidnto Frc"duaca ; yid Frcduc+icaniac
I

Gdd F. ýcluiionýon.
l

_Lrýtrir

Fnneun-d Frndu-I

Figure 5.7: Dialogue between the PORE Process Advisor and the requircillell(s

engineering team to seek guidance From the process engine. '1'hc Process A(l% kur

engine detects that there are insufficient requirements and thcrcl'ººrc MIN ist's Illu

requirements engineering team to acquire ºnºn"c customer regUircntcnts and

recommends sonne suitable techniques.

Ihr teani followed the recommended advice and enteral more , tcgfuirr(I w(itilIcuieil K

and product infonnatloll intO the database as shown in Figurr 5.8. 'I'Iii, cl , iii c the

state of the product and requirements sub-models.

Po. w d rnný. n Inrn. v

. I....
F.. "r. n«s ýi<, +IUCt. An,){", rrlnrrrnwnrr

r: d+ýUlJO+a V'rýduýfi f n. ýýIrý1 Fa. e+rir. a _u., a «, ar V'+oyuurrnanla

"... ci +r .. Tj' n II II r1L'ý
." dtx i. I 11 nrILJ

F IJ. qli

ý

Iy 11 I1

n. ip, l nn dII. n

bl mnpulcOnt TIýo. nlnn, anmued. l vVn It Flan' m)n'Lgr
gnu nr«O lFFlrrrlinll nný,. +, err�r,... n. nn nnnýi, rd nl, t ummýlr

Fx . u. /ýulýWn r ýi Tlirru n . lam nln"w rln rn . 1, npl. Urinn rua rý ' .ý

,:. unlit n, ..
, n\aw, M. +nr lnr. rr nnri nnnr. nllnMlnn

olicý III.
_MO

lr
' IF.. ialpm 41101101k4. lI.. ur rrr r0 I. rriu. u aarý 11., 1101«a. ntl., lIII

Ilýo? \ý? Inl», 1'"nll mlln. r lnlanl+nnn+na 111111 nrln, narea nl a. nrl. lc n YC a

nnq«I c" 1'11 4041,, In , null 1,111 "« In 11.0L.. ln+nlý,. l ý nll. '.

F(cIlIOItII IIavI. lell II. e 001100 al.,, 011,1411,0111 . Innl Also Cl<', 1

.. wI L"wl. w. ,I
1 I'nw ayr ý nllnll11wlr1 r" »I, Irýi, n r1,, nrrnM

"IlVýrfiln'. 0011 1(0 il, a vlým .11,11 nln 1111011 . 1,1114 f1,

I, rl,, lnnl. '; ', _Inn1'"(1
.. lal,,, u 1.1«1.1.., II,, nlr T1, «" . «n 11,11 wll1, w.,. 4

". rl., a II, y.. l4+n"\I1ml11111""«010111, "OIlI. n. rr MJ. a F, v da+n

r,,, I.. F .In.... niJn Tn.. . rnlln, nl, in r, nýJr s1

[IC, I C10Me: rnlll x11 t oll n4err0Vn rln J$ I 1, c v rctnm : 11011 mn0Ulr urn
1.0, \" rlýnll 1111.0.11 l. 1,. +l, rr. ý. rr. 1,, I nnU 1110,1 m... 11,

"1111
.f .f +1... \+rr..

AIM 1-14 rr. 1
..
ýýýý "rxý,. ý em viýau.. ý.. 1

164

5: Process Advisor prototype tool Design and Development

Figure 5.8: The description of the requirement sub-model and product sub-
model after completing process chunks 1.4 and 1.5.

The requirements engineering team requests further process advice and guidance. The

inference engine infers that the total numbers of acquired requirements, products and

product features are now greater than the set limits and infers the situation `sufficient

information' using the following rule:

If ((FeatureVal > Featureslnsufficient) And (ProductVal >
Productlnsufficient) And (RequireVal >
Requirementlnsufficient)) Then Call
produceAdvice("SufficientInformation", "Sufficient
Information")

End If

This indicates that the previous situation no longer exists. The process engine then

determines the next goal-driven process to 'analyse acquired information' which is

specified in process chunk 1.6.

Process-Chunk:
Name: 1.6
Goal: Analyse acquired information
Processes: Analyse product-requirement-compliance
Situation: None
Input-information: None
Technique: None

End-Process-Chunk

The process engine presents the triplet <analyse-acquired-information, sufficient

information, scenario-analysis> to the process advisor. The process advisor advises

the team to analyse acquired customer requirements and product information. The

process engine triggers process chunk 1.7 to be processed:

Process-Chunk:
Name: 1.7
Goal: Analyse product-requirement-compliance
Processes: None
Situation: sufficient(requirements and product information)
Input-information: None
Technique: {scenario analysis)

End-Process-Chunk

The advice is presented to the team as shown in Figure 5.9 below. The advisor also

presents the process history showing all the process chunks and advice that have been

recommended so far.

165

5: Process Advisor prototype tOiul I)rsi,, n ; 111,1 I), vclnlunrnl

., re-iFlOas... rtnse , wmuue : nanpýn ml, n-. viN nevr

ý ýýX: Scný InlnýmM, m anMh

u. ri{aeý, eqýnwiýinnimrýnn nnýl r, iýttrzný"r nýnsa?

echný: tues

(nano ýneNS1':

:, eaeserv

J
J

[pm, "n lo Ma n for

J

I+Cýýrgrl crilihrýnrYOn

In, irllýtieM nrfýrirrm, ýiýrr,

we Owr. nrort mamýc crrý. ý

arnl,. n

rn N'n%Mrr. uyl. Zl. n

! rr
lMt0uc1 ýra0 gNphtpwt

Nl. +ýf

,ý ýý

Figure 5.9: The inference engine has detected that there is sufficient inFormalioll

and advises the team to proceed to the next process and analyse the acyuired

inl'ormation. The figure also shows the history o1' the process act il ities

recommended so far.

The requirements engineering team then executes the Sccond geli rir Iýrurý. ý ý, I tlk

goal-driven process as shown below:

Identify
Product ý_ `-

Acquire
- By elicrtrng cnio

e ur emene. rrr, a
B dentrlYrng Information
pro t lectures

By identifying
supplier information hon

By implementing

Analyse

Using addmona Acquired
requirements

Ir1I0ffIlA11011ý

in work environment strategy

--
Byptaducl

- ýý --ý detnonstr. l! lýrrr
:. Ir. nr "ýll

More candidate products Select

ý

Produ ct
-

Make
By trade on Decision
analysis

Ilaving f, ollowcd the advice, the team indicates that it ha" O)IIII)Iricd , inalv. ing the

actIuirccl rccIuilen ents ianci product information and asks I'Or fuitlicr ad ice and

guidance. The process engine determines that the goal Inas been achieved and cheeks

fur current situation. The inference engine fires the situation rule IIhat dIeeterniinrs

lýruclurt requircmcnt compliance mapping.;.

100

5: Process Advisor prototype tool I)csiln und DCr CIopitient

Ehe tiituKºtiün rule detects that there are no compliance niappin`es and infers tlºe

situation `nu (product -rccluirw) iC/It rnnrf)li(Inrr)' then rrr0ninnrnRi. s the trrlhniyues

(cnný/ýlruncr rheckli. ct. crnn/ýliuýýcc' ýculklluýýýr, ýýIlJ. 'I'hr process enw, ine uses Ilu" current

Situation to determine the current process goal. 'cleler-nninr ý, rr, rluý l rý ýýrýiýrmrn!

compliance' and presents the triplet to the pruccss advisor. 'Ihr Inures adlv-11,01,

advises the team to determine 'ýýro lrýrl regieirenieii! com liaio '', that I. S. to ddete"riii ne"

those products that possess features that meet customer's rcyuirrnHcnts. 'Hie pit eeSS

engine triggers process chunk I. 8:

Process-Chunk:
Name: 1.8
Goal: Determine product-requirement-compliance
Processes: none
Situation: no(product-requirement compliance)
Input-information: none
Techniques: (compliance-checklist, compliance-walkthrough)

End-Process-Chunk

The team follows the process advice and executes the 11111(1 ; ýýýal ýIrivril ; CelleOr

I)rox; css as shown hclow:

Identify
Product By eliciting core

Acquire requirements bist
B aentilying Information Anal
pro t features yse

Qy identitying
Using additional

Acquired

supplier inlormalion
Byimplementing

r requirements
Information

strategy in work environment Usmy
BY product drscmn (rnq
demonstration\ ,; (r, r(r, ýly

More candidate products Select
Product

=-ý
Make

----- By trade-off Decision
analysis

The team sclcctcd some essential I"unctional legtiirciucnt. s too check il Uhrre are a nv

products that comply with them. For each selected rryuiic meat. the train delined tlhe

degree of' compliance required hased on stakeholder reyuirennrnts. 'I'lse inl'c"rc"nc, r

engine checks for compliance relationships to:

(a) determine pro ducts that have features that are tnappLd toý rºistunºrr rrºluirrnºrnts;

(h) determine requirements that have no compliance nºappin; p to any product Iralurr;

(c) determine when a product feature has no compliance nºappint-, to, cu"toiilei

requircmcnt.

107

5: Process Advisor prototype tool Ursii"n and I)i i Iol)ni III

It does this by executing the following situation rules:

For Itr =1 To requirementSelecLed. CounL
frmProductRequirementCompliance. 1isRequireComp. Acid Item
requirementSelected. Item(Itr)
compScoreSQL = "Select * from compliance where RequirementlD
(Select RequirementlD from requirement where RequirementText

& frmProductRequirementCompliance. lisRequireComp. List(Itr
I) & 111)"

Set rstCompScore = dbs. OpenRecordset(compScoreSQL)
Do While Not rstCompScore. EOF

frmProductRequirementCompliance. lisFeatureComp. Addltem

rstCompScore. Fields ("FeatureName")Value
frmProductRequirementCompliance. lisProdComp. Addltem

rstCompScore. Fields ("ProductName"). Value
frmProductRequirementCompliance. 1isScoreComp. Acid Item
CStr(rstCompScore. Fields ("ComplianceScore"). Value)

rstCompScore. MoveNext
Loop
Next
rstCompScore. Close
Exit Sub

in

f: i,, ure 5.10 shows the results ctf executing the ahuVe rule attýl the inlerac'tiuit hei ICn

the team and the tool to obtain process guidance.

snlar,,. n Vt., r, nnan u. Mc

requirement

t

I

T"B ýýsýe nt enell "Mo IOclenle Greifs of inNrl6age6 ame
Thrs ý: ý. i-.,,; gym soll neon o Ný ýnrcý hnnrd

loinrýooný Pr f"" F-d,, c l Flow,,. . "n9ýýýý^ý O """",

product

. ýý., ýsu> Caetls ý
ýýil. nýkC. Fora-. f. Ilnt

. aennr[I I11

4 nr6 Tr, Moro M. -
I

,.. 1 n In A, 1Vý1"

ICal IIIc
i, hlk.

Figure 5. I0: Compliance checking scores. The diagram Show, 111-11 Im' Iwodock

ºneet the requirement to enable copying messages but that Outl. uukF\Iºrus% has

a higher score than Eudora. Il also shows that I'or cn: ºtiºº) I)r: ºI't. ý ui nºýýýaýý. ý

two products have equally scores.

/\licr determining compliance rrlilt iunshi1) ntappinis, the inlrri'i T rn'tnr diCICi 11111 I

that I"Or each sclecte l requirement, there is inure tltatn une I)IO(Iurt that Itas ýýýtttlýliaiie

168

5: Process Advisor pl tc type Io l Ue. tii_n anal I)evi'I inent

rclatR)l1 hip. In some cases, the products have siinilau. compliance scoores. It Ilhen

determined that there are insufficient requirements tHit discriminate between

candidate products using the following situation rnIc:

It IIsProduct. List Cuunt =, I Then
Call produceAdvice("NonDescriminatingRequir(-ments",
"Insufficient descriminating requirements or product features")

recProduct2. Close
Exit Sub
End if

It then inferred the situation 'no effect/re and

reecommendcd 'card sorts' as the preferred technique and presented this to IIIe process

engine. The process engine used the inferred situation Io determine the next Iproc"ess

goal 'cniýrlvscproduct reyuirei i nt rnýýr/ýliuý e'. It Then presented the Iri[)ICI n IIiee

process advisor and Tired process chunk 1.9:

Process-Chunk:
Name: 1.9
Goal: Analyse product-requirement compliance
Processes: none
Situation: no-discriminating(requirements)
Input-information: content(sub-model(requirements))
Techniques: (card-sorts)

End-Process-Chunk

The process advisor then advised the team to acquire Hore custcintrr rrytiirc nýý ntý tlý: ýt

discriminate hetween products using card sorts as shown heh w.

. aron Hirnaa

ýrmrnrt anaol_lnnnx
(

Alk rh�ne. ., nrnv,.
ý!

! 'h..

COmFhnrlCp Chwrk
ý

h (1, ý, (ý, nrvY Cnrnplrn ,ý

r'rocy'1.1'epcq
_..

Trr: hrrýyirw `th. vrýylh nrirl WrnYru, . r. InrrrXr,: lwm, irw4rt(Iwwr. ur

ýý ýý
iron

i. nrtl ýtr.. rnnq I. Irn

ýrlenl dwccnmrnn. rno reg rrrernarrtt rar, ; rnnylh Lr. +r In rr dwl&i. d ptnrd. r.

r. Irili itYUnlrrrn rv rk rnri xnrnrrrl irinxlnrulwrr. fi .ý l'Mt'hNyýl1 ý'

ira cinrnrle. i rJi.. crýrrýýnýnr "I rýrluýrwri-aril rrnlrýrn "4lnnnmr.
Turn /. nwlý.. .,

, iýnrfi"ýnl r. rn(lYrýý

I ýiuH

. . "rrnrý n, t r. wr.. lrrlnrw F

.... I. nrrlun>t

Merl
»I sr, r. r. ý. 16r�rnw. Ný or"Inl�rr. rnn�r.

Fý«Iýrm Trr /Anus Alr. nu uwlr4n ý. ý Iýl_J
r.. l

NJH f, nnAla 118 r'nonuc+eI 4tlYr'ýna�c1 Fawuas..
J Jd

j

169

5: Process Advisor prototype tixol 1)e. sit, n aril I)e eI ýhnirnt

11igure 5.11. Non-discriminating; requirements advice as presented to the team.
The team is advised to use card sorts as .r technique for acquiring discriminating

requirements or product information

Using card sorts, a member of the team writes the names of caindidale ('()'I'S product"

on 3"x5" cards and asks stakeholders to use the rant" to sort the s llwmv inlu

categories. Criteria for these sorts (e. g. "coml)ttihic with Mirro. solt"" \Vurd") in(Iicalc

customer requirements that discriminate between (INS sobtware products. S)liware

categories (e. g. "compatible" and "not conlhatible") indicate 1)IOdurt coýnililiank-r to

these requirements. Card sorts are it very efficient technique in this situation because

they only acquire requirements that discriminate between at least tvvo ('()'IS ', 01M are

products. Examples of discrimiuaUing customer rrcluirrnirntS Mild) au argluirCLI

using card sorts include "the sv'stem . chin/ luive u Ilk-Lni'li. sh .. /, rll rh((At'l., the

. V_ 'S'leet shall allow the user to sCt tt tuilOr('uI i'ti<'utinii 11rCNRI1 ý(01. " 1' NV5IIIn . N//(///

I1/ II, the user to /)reclcC%int, 1/tcý /inn! a/Id ("licrru(lc/' size. /0 r rli. spluv-ed III(Ss(1ge. s"

The team followed the advice and accluii'ed sufficient dIiSCº'iininalin, " rrgluirriiºcnlý, and

entered them in the database, Ulis changing the state cºI' the rryuireilIcntý soh nºu d el.

When the team asked for advice, the inference engine detrrnºinrs that there ate' nu

now than one product that has compliance relationship Iu each essential lc(IMICHºent.

and therefore infers that there is discrimination between hnºdtic h. 'I'1K' IM)CL ss engine

then determines that the "oal his been ntcl anti addrrYsrs Ihhe UCXI Cual dI'IVL"n J)Ii cr"5,

to select/t'cjcct One 001' more flan-CO)n1I)Iiant-1)1U(Ill "t. 5 as inoliraled III 111L. (hill-li'Mil

heI w:

Identify
Product By nl cling rom

Acquire mquiroment ! ""r
B dentirymg Information Analyse
pro t features

ý... , ýý Acquired
, ur ýpncr rnlnrný, ýhon

s! ng addrhona

By rmplementr09 0togy enls t1ý Information

1; 1 1 '1,1,111,
in work envuonment\

turogy \ ll.

More canditlate products ---/-Select Product
M.

Doaý

170

5: Process Advisor prototype tool Design and Development

When the team asked for process advice, the inference engine inferred the situation
that there is a `small decision space', that is the number of requirements, candidate

products, product features and compliance relations are small enough to be amenable

to decision analysis. The process engine determines the next process goal `reject one

or more non-compliant products', presented the triplet to the process advisor and

triggers process chunk 1.10:

Process-Chunk:
Name: 1.10
Goal: Reject one or more non-compliant-products
Processes: none
Situation: small(decision-space)
Input-information: None
Technique: (Analytic-Hierarchy-Process, Outranking-process,
MCDA)

End-Process-Chunk

It recommends the set of techniques (Analytic-Hierarchy-Process, Outranking,

MCDAJ. The process advisor advises the team to remove from the list (i. e. reject)

those products that do not comply with `essential atomic functional requirements'.

After this advice, if a suitable product is found the inference engine infers the

situation `Product meets customer requirements' using the following situation rule:

If lisProduct. ListCount =1 Then
Call produceAdvice("RecommendProduct", "Product meet customer
requirements")
recProduct2. Close
Exit Sub

End If

If a suitable product is not found, the team executes the next process iteration and the

first process of the goal-driven generic process is performed again. The iterative

process makes it possible that when the goal-driven process to reject one or more non-

compliant products is addressed, all products could be rejected. When this happens,

the inference engine infers the situation `all products eliminated' using the following

situation rule:

If lisProduct. ListCount =0 Then
Call produceAdvice("Al1ProductsElliminated", "All products

elliminated")
recProduct2. Close
Exit Sub

End If

171

5: Process Advisor prototype tool I)esien ands I)evelohment

It then recommends technique set (prnchcc! -J)ro! o! v e, interne!, cluiu unulr. ci. c, niarket-

. surve J. The process engine determines the next process-g<º, ºI rrclo prodin i (n1cl

rc yýcirenienl. c wialvsis or iclentifv ncºv reyuirc-Iiirnls or r(Ficliclut(' /)r0(/ll(/s' and
triggers process chunk 1.11:

Process-Chunk:
Name: 1.11
Goal: Redo analysis or identify new candidate product:;
Processes: none
Situation: all products eliminated
Input-information: None
Technique: (product -prototype, internet, data-analysis, market
survey)

End-Process-Chunk

The process advisor provides the team with the advice to 'redo l /rrirrºrºrn! -/), O(III(r

analv. vis, acquire /III Ssing requirements or iulenli/v /1('W rurºrli(l(Ur /)rO lur1. s'. 'I lw ti"ant

can relax the strictness of the requirements if possihic so that inure product" ww ill Iia\e

compliance mapping to requirements. The process ad ice is presrntr(l tu IIK Ic tiii : I5

shown in Figure 5.12 below:

f 'ý ýýen ýrniýs

ýý... wvv M*n w

ý .. 1. r.. ý .. rrx:..., r.... r.. r.. r, ý_,.., . x... ý_J
-:. -.. -... ý Yý.

1'veyrnýyux >rrenyrl. nnrl WenYr. rrr nll lwrrrJUr rY eNx Yxeb. l

r

ýýý

=gtln r)inrlýrý. r ýýýýýnýrvmmýnrt en erýsiýOl in Jý!

r . rem r. rY
orYp rror

JJ

ýt ýIr n lo Me1111Apr-_

*.. <w"rme.

n... nne

_ý

Aid Cefd, n, l* P. 000C1s) -f oMrac*w4r"I
I Gdd 04QS1. N*r* 6rrri*"enn.. nd rvne.. ý.

I

Figure 5.12: MI products eliminated. The team is ad iue(I to tike a nuiiilwr ui

options, such as either to redo analysis ººI' inl'ornialion, acºluiree fiv%% information

or relax some requirements to enable selection.

17 2

5: Process Advisor prototype tool Design and Development

5.3 Summary

The scenario walkthrough presented above demonstrates how the main components of
the theory are linked together by the process engine algorithm and the situation rules

which infer properties of the requirement, product and compliance sub-models to

drive process guidance. The PORE's process chunks encapsulate knowledge about

good and best practice. This knowledge is derived from diverse sources, from

textbooks about decision-making techniques to data from interviews with experienced

requirements engineers. Situated guidance is needed because the order of processes

cannot be predetermined, which in turn depends on what information is available and

when. Furthermore, the method box includes techniques drawn from diverse

disciplines, to reflect the multi-disciplinary nature of acquiring requirements for

COTS software selection.

5.4 Chapter Conclusion.

An overview of the PORE process advisor is presented in this chapter. The process

advisor prototype has four main components. The database handles all the problem

domain knowledge required to carry out an effective COTS-based development

process. Knowledge about customer requirements, products and techniques is held in

an integrated database. The process algorithm drives the process logic to direct the

computational mechanism. The inference engine and the process engine infer and

provide process advice and guidance using situation rules to inform requirements

engineering team what to do next. The guidance and advice is presented in the form of

a triplet, <process goal, situation, technique> and processed as process chunks.

The PORE prototype tool explores the process guidance and advice to assist the

requirements engineering team undertaking COTS product evaluation. The tool aims

to provide process guidance and advice to the team in a readily understood way by

allowing the engineers to ask for or request advice at any stage of the process. A goal-

driven process advisor allows the team to select and request advice and guidance on

demand. However, the tool has some limitations. For example, it does not yet address

issues such as what happens if the combination of the process situation and process

goal is equal to zero, how to come out of a situation, what happens if there is no

process chunk or does the tool always do what the team want, how do you remove

173

5: Process Advisor prototype tool Design and Development

products from the list so that they are not considered in the next iteration, etc. We aim
to solve these limitations and other issues in the future versions of the method.

The effectiveness of the process guidance and advice remains to be evaluated. The

following chapter describes a partial evaluation of the PORE method to test its

usability, usefulness, and effectiveness. The partial evaluation of the method does not
in anyway reflect the author's opinion of the importance of method evaluation. Rather

it indicates the limitation of time and resources needed and available for such an

evaluation during the research study.

174

Chapter 6

Evaluating the PORE method

This chapter describes studies carried out to evaluate the PORE method.
Three case studies in three different organisations and one controlled

study of experts is described to test the usefulness and usability of the

method.

6: Evaluating the PORE Method

Chapter 6

Evaluating the PORE Method

The PORE method was developed to cover a significant set of requirements
acquisition and product selection issues for COTS-based systems development.

Therefore, only some parts of the method could be evaluated in this thesis. The parts
that were evaluated included the first 2 PORE templates and the situated process

advice and guidance. The aim was to gather evidence to test hypotheses H3 - 116. The

method was evaluated by comparing its predicted aspects with observations made in

empirical studies of experts and case studies of the method's use in practice.

6.1 Overview of the empirical studies

The studies provide data about the application of the PORE templates and the

usefulness, applicability and repeatability of the PORE method and its processes,

advice and guidance. The evaluation was separated into two parts. In part 1, three

case studies of PORE's use in real-world COTS product selection exercises were

carried out to test hypotheses H3-H5. In part 2, the usefulness, applicability and

repeatability of PORE's process guidance by expert evaluation was carried out to test

hypothesis H6. Experienced requirements engineering consultants who procure COTS

software products were run through example scenarios and asked to comment on what

they would do in that situation and what techniques they would use. Their response

results were compared with the advice offered by the PORE process.

This chapter is organised as follows. Section 6.2 describes the three case studies

carried out in three different organisations, A, B and C. Organisations A and B tested

hypotheses H3 and H4. Organisation C tested hypothesis 113 - 115. A brief description

of each organisation and their problems is given. Section 6.3 describes experts

evaluation of PORE that tests hypothesis H6. Seven representative process chunks

that cover the three PORE templates and the whole process are given to experts as

situations and the experts are asked to comment on the advice provided. Section 6.4

provides a summary 'Of the PORE method evaluation, as a basis for future research.

176

6: Evaluating the PORE Method

6.2 Three Case Studies to Evaluate PORE

Three case studies were carried out to evaluate PORE's templates. These three
evaluations were carried out in three different organisations.

Organisation A is an international bank who were purchasing a new dealerboard

system. This system provides dealers with an efficient telecommunications system,

and was required to have voice-recording capabilities. The system is now used by the
dealers to trade through their brokers and banks. For a number of years the bank has

implemented its systems using an ad-hoc process without using any methods or
following any guidelines. The result of the ad-hoc system implementations was that

dealers were using outdated, inflexible systems. The bank were therefore looking to

replace the existing dealerboard system with a more advanced, flexible system that

will meet their ever-growing needs and needed advice on how to proceed with the

selection of the new system.

Organisation B is an international merchant bank who were installing an anti-virus

security system at its international head office in London and at branches throughout

the world. The bank was experiencing a number of security problems in its operations
including:

" files missing from user machines;

" corruption of files and data in transit from its international branches;

0 consistent virus being received on its main central server machines.

These problems were further exacerbated by the bank's provision of internet access to

all its employees who were then consistently installing unauthorised, infected

software on their personal machines or on the bank's network systems. The bank was

also continuously receiving e-mail attachments from other organisations which could
be virus carriers. The bank was therefore looking to increase their security by

implementing a robust anti-virus system that will meet all its security requirements

and needed advice about how to proceed.

177

6: Evaluating the PORE Method

Organisation C is a Lloyds of London Managing Agent syndicate. The insurance

syndicate wanted to purchase a document management system comprising of two

main components -a document scanning system and a document management
system. At the time the syndicate was using a combination of a paper-based manual

system and software systems which were developed in-house. Due to the changes in

the insurance market and directives from Lloyds, the syndicate was required to
implement an IT system that will directly link to Lloyds' document management

systems. System interoperability and integration were therefore key issues. The

syndicate needed advice on how to proceed with the selection of the required system.

For ease of reference, each part or item of the PORE template that was applied during

the study is indicated as Tl. x or T2. x (e. g. T1.2 indicates that item 2 of template 1, i. e.

acquire customer requirements, was used and T2.1 indicates that item 1 of template 2,

i. e. develop simple working prototype of the required system, was used).

6.2.1 Evaluation of PORE in Organisation A

An evaluation team was set up to select and recommend a suitable off-the-shelf
dealing room system to the bank's management. The team surveyed the market using

the internet and trade journals to determine the current state of the dealerboard system

market and to identify candidate systems (Ti.!). The team also visited other merchant

banks that had recently implemented similar systems (Ti.!). The team conducted
informal interviews with the users in these banks to gather information and problems

they had encountered during the selection of their systems. To identify the limitations

of the current system and to gain more understanding about how dealers work and use

the dealerboard system, the team observed them working. The team also conducted

informal interviews with the IT staff to gather their experiences and problems with the

current system (T1.2).

During these initial interviews, the team identified the following problems with the

current system:

178

6: Evaluating the PORE Method

" the current system was not Y2K complaint. Many features and processes

of a dealerboard system are date-dependent;

" the current dealerboard stations were desk-mounted and physically bolted

onto specially constructed desks. This proved inflexible, impractical,

inconvenient and costly to relocate the stations;

" the current system had poor security measures. Dealers were issued with

smart cards that are programmed to operate the dealerboard system. The

smart cards contain vital information about the organisation's trading and
if this information were to fall into the wrong hands or the bank's

competitors, it could be harmful to the bank;

" the current system was centrally administered. All the information about

each dealer and stockbrokers numbers is programmed into the smart cards.

However, if any of the cards needs to be changed or updated, they had to

be physically removed and put into a specially designed computer for re-

programming;

" the current dealerboard system was not compatible with current

technologies;

" the current dealerboard systems was linked to the central switch via

dedicated wires with specially designed connectors that only worked with

the current system.

The team used information about these problems to identify initial system

requirements and to develop a questionnaire to acquire dealerboard systems

information (T1.3). The questionnaire was sent to all candidate suppliers to request

information about their products (T1.3). The questionnaire stated the purpose of the

exercise, closing date for responding and basic information about the organisation and

their reason for needing a new system (T1.3).

Eleven suppliers responded to the questionnaire. The team then used the information

provided by the suppliers to conduct an initial evaluation (T1.5). Products were

assessed on how well they met initial atomic customer requirements (e. g. goal 1).

Three products were selected for the more detailed evaluation (Tl. 5). The three

suppliers were asked to demonstrate their products at the bank. This was intended to

179

6: Evaluating the PORE Method

allow the suppliers to demonstrate the products in a more realistic environment (T2.6)

and to allow stakeholders to attend the demonstration session (T2.2).

To enable an effective product evaluation, customer requirements were ranked using
weighted score method (T2.3). The team asked members of the risk management
department and the IT support staff to weight requirements according to their

perceived importance (T2.3). The team then collated and analysed the scores to

provide a final weighted score for each requirement.

Before each demonstration, the team asked the candidate supplier to install a simple

working system and to connect it to the organisation's main switching system. This

was intended to demonstrate compliance with systems compatibility requirements
(T2.1). Two suppliers agreed with this arrangement but the third supplier refused and

was subsequently eliminated from the selection process. It took approximately eight

weeks for the remaining two suppliers to adequately set up and configure their

systems before the demonstrations.

During the demonstrations, stakeholders attended the demonstration sessions but only

the evaluation team leader, IT support manager, and heads of the risk management

groups were allowed to score products on their compliance with customer

requirements (T2.7). However, the stakeholders were allowed to ask questions during

the demonstration and they gave significant contributions (T2.2). New requirements,

which were not previously identified came up as a result of this (T2.6).

After each product demonstration, the team members collated the product's scores

into a single final score and ranked them. In the ranking, product A scored higher than

product B, but the difference in the scores was small. After careful consideration of

the soft requirements such cost, maintenance, technical support and discussions with

the main influential stakeholders, the evaluation team recommended product B as the

preferred option. Figure 6.1 below indicate the process activities that were performed

and the templates that were applied during these activities.

180

6: Evaluating the PORE Method

Identify curren
problems and
requirements

Tl Developed Evaluating an Supplier
and distributed selecting product. demonstration Rocummenc

questionnaire using supplier of selected preferred
TI information products product

Identify
candidate

dealer systems
TI

TI T2 T2

Figure 6.1: Activities performed at each stage of the process, and the PORE

templates that were applied at these stages.

6.2.1.1 Results and Lessons Learned

The objective of the case study was to recommend a suitable dealerboard system. A

preferred product was recommended, and so the aim of the study was achieved. The

PORE templates were applied and found to be useful in providing guidance and

advice during the selection process. Techniques recommended in template 1 were

very useful in identifying candidate products and acquiring customer requirements.

Template 2 provided useful guidance in conducting detailed product evaluation.

Some important lessons were learned about the PORE method:

e Lesson 1- use weighted scores to evaluate selected products. PORE

provided advice and guidance of using weighting methods. Using this

guidance, users were asked to rate the importance of their requirements

and product attributes. The ratings were then converted into a qualitative

weight score for particular features of the dealerboard system;

" Lesson 2- treat the product evaluation as a team effort. PORE advises that

stakeholder representatives be present throughout an evaluation to

contribute unforeseen requirements and this was useful;

" Lesson 3- there was a clear need for guidance. PORE offered a number of

templates to guide the team to acquire requirements and evaluate and

select products. The templates were used and were perceived to have

greatly aided the study.

181

6: Evaluating the PORE Method

The results show that the PORE templates are usable and were used and that the
advice and guidance provided is useful.

6.2.2 Evaluation of PORE in Organisation B

To recap, organisation B was an international merchant bank installing an anti-virus
security system at its international head office in London and at its branches

throughout the world. The bank was experiencing a number of security problems
throughout its operations. The bank was therefore looking to increase its security by
implementing a robust anti-virus system that will meet all its security requirements
and needed advice about how to proceed with purchasing an off-the-shelf system.

An evaluation team was set up to find and recommend a suitable system to the bank

management. The team used the PORE templates in the selection of the preferred

system. PORE's template 1 guidance was used to identify candidate products by

conducting a market survey (T1.1). Techniques that were applied included:

" browsing the internet and sending a general call on it to special interests

groups who provided a list of suppliers and users of anti-virus software;

9 contacting and visiting customer organisation both within and outside the

banking sector who have implemented similar anti-virus systems;

" visiting trade shows and exhibitions such as Infosecurity'97, Networhs'97,

Secure Computing'97 and Windows NT'97. A large number of anti-virus

suppliers were identified at the shows and a large quantity of supplier and

product information was gathered;

" reading relevant computing journals. This helped to identify security

products that were being advertised and published independent surveys

about the capabilities of the current anti-virus products;

9 requesting marketing information and product demonstration copies
directly from the suppliers.

In parallel to this, the team also identified and acquired core, essential customer

requirements (T1.2). Two techniques recommended in PORE's template I were used:

182

6: Evaluating the PORE Method

" brainstorming -a brainstorming session was conducted with all

stakeholders at the bank's London branches. The brainstorming session

lasted for about three hours and at the end, a list of essential requirements

were identified;

" interviews - after the brainstorming sessions, a number of structured and

unstructured interview sessions were held with senior IT officers of the

organisation's international division who were responsible for procuring

the organisation's software products. Interviews were also held with the IT

manager of the London office to determine their local requirements. On

average, each interview session lasted for about two hours.

During the product identification phase, a total of 49 products currently available on

the market were identified. The first-pass essential customer requirements acquired

during the brainstorming and interview sessions were structured into a questionnaire

(see Appendix 6a) that was sent either by e-mail, fax or post to all 49 candidate

suppliers (T1.3). The questionnaire asked suppliers to indicate the degree of

compliance of their products to each of the essential customer requirements. The

questionnaire was divided into 5 sections: - basic product information, supplier

information, product's requirements coverage, supplier's technical support

arrangements, and contract conditions. A covering letter was also sent with the

questionnaire. The letter stated the deadline for responses to the questionnaire and

explained the process to be used for initial evaluation, and deadlines for being

informed of the evaluation team's decision.

Of the 49 questionnaires sent out, only 5 suppliers responded by the deadline time.

Using the information provided by the suppliers in their questionnaire responses, (see

Appendix 6b) the team evaluated the five products against atomic customer

requirements (T1.5). To achieve this, the main stakeholders were asked to prioritise

each requirement as essential, desirable or optional. After this paper evaluation, I

product was rejected and eliminated from the candidate list as it did not comply with

most essential customer requirements (T1.9). The four remaining products progressed

to second stage of the evaluation - the supplier-led product demonstrations (T2).

183

6: Evaluating the PORE Method

To organise and conduct supplier-led product demonstrations, the team used guidance
from PORE's template 2. The four suppliers were invited, (see Appendix 6c) to

demonstrate their products to the evaluation team. Before each demonstration session,

the team developed acceptance test cases (see Appendix 6d) using atomic customer

functional requirements, (T2.1). During each product demonstration, the presence of a

product feature and that feature's degree of compliance with atomic customer

requirements was sought using test cases (T2.5). The team members awarded scores
between 0 (not present or non-compliant with customer requirement) and 7 (present

and fully compliant with customer requirement) to each required product feature

(T2.7). All the demonstration sessions were tape and video recorded (T2.9). PORE's

template 2 also recommends that a stakeholder representative be present during all the

demonstration sessions (T2.2). However, this was difficult because relevant

stakeholders were not always available.

After each product demonstration session, the individual team member's scores were

collated and an overall score of the product was produced. To determine the best-fit

product, the main stakeholders were asked to rate each requirement in percentages to

indicate their importance. After the product demonstrations, the product-requirement

compliance scores were then multiplied by the percentage rate score to determine the

overall ranking of each product. After producing overall ranking of the products, one

product was strongly recommended for trial use within the organisation. The product

met most of the organisation's requirements although the other two products had high

scores and were recommended as possible alternative solutions. Figure 6.2 shows the

activities that were performed and the templates that were applied during these

activities.

184

6: Evaluating the PORE Method

Identify curren
problems and
requirements

Ti
Developed Evaluating an

and distributed selecting products
Recomment

questionnaire using supplier

*

preferred
TI information product

Identify
candidate
anti-virus
systems

T1

TI T2 T2

Figure 6.2: Activities performed at each stage of the process and the relevant
PORE template that was applied.

6.2.2.1. Results and Lessons learned

The exercise succeeded in recommending a software product to the bank. PORE

templates were applied to achieve this success. The templates were very useful in

acquiring customer requirements, identifying candidate product and suppliers,

gathering supplier and product information, and evaluating and selecting products.

However, the use of the first version of PORE was not completely successful. For

example there was a very low response to the questionnaire by the suppliers. PORE

does not provide any guidance on what to do if this happens. Other lessons learned

about the PORE method are:

" Lesson-1: use the questionnaire in combination with other techniques to

elicit initial supplier and product information;

" Lesson-2: the questionnaire must be short and precise. One of the

problems that might have affected the supplier responses is that the

questionnaire was too long (15 pages). Suppliers may not have been

willing to invest a lot of effort and time without being certain that there

will be some benefit to them in the end;

" Lesson-3: ask product documentation to be included with the

questionnaire response. This will enable the team to compare the results

provided on the questionnaire response with actual product descriptions;

185

6: Evaluating the PORE Method

" Lesson-4: determine the scope and boundary of the product being

evaluated. It was very difficult to determine or understand how other

systems were associated with the products being evaluated. This made
developing test cases very difficult due to the fact that the requirements

engineers were required to have knowledge of these systems;

" Lesson-5: be aware that not all requirements can be accurately tested due

to legal issues. The anti-virus association prohibits anti-virus vendors to
deliberately introduce virus to customer machines for the purposes of

testing. This made it difficult to test the effectiveness of the products' virus
detection capabilities;

" Lesson-6: time constraints need to be considered as part of PORE. The

time it takes from the start of PORE to finish varies from project to project

and the method might be unnecessarily too long for some types of projects.

As result PORE should have alternative routes to allow tailoring the

method.

In spite of the reported lessons, overall results show that some parts of the PORE

templates were applied successfully and the advice and guidance they provided was

useful.

6.2.2.2 Discussion

The results of the two reported studies provide support for both the usability and the

usefulness of PORE, and indicate possible improvements for the future versions of it.

Evidence was found for the two templates, which were found to provide advice and

guidance. The selection process was successful. A preferred product was

recommended in both cases. Some lessons were learned that perhaps should be

incorporated into the method. Partial evidence was found for the predicted use of the

recommended techniques. The general sequences of process activities were found to

hold and repeatable as expected. Therefore support has been found for hypotheses 113

& H4, stated in the thesis objectives:

113: PORE method guidance can be applied in part or in whole to real-world

software product selection task;

186

6: Evaluating the PORE Method

H4: PORE's effectiveness can form an essential part of a successful product
selection task.

Having gained support for the usability and usefulness of the PORE method, the
evidence to support PORE's effectiveness is general and weak. The following two
studies test for the effectiveness of PORE, beginning with organisation C.

6.2.3 Evaluating PORE in Organisation C

To recap, organisation C was a Lloyds of London Managing Agent syndicate. The
insurance syndicate wanted to purchase a document management system comprising

of two main components -a document scanning system and a document management

system. The syndicate needed advice on how to proceed with detailed COTS software

product evaluation and selection.

The requirements engineering team that included the syndicate's IT manager

shortlisted the initial candidate products, chosen from the document management

system directory. Candidate products were shortlisted using their price range,

technical specification, supplier suitability and recommendations from other insurance

syndicates. The team also considered the following critical constraints as selection

criteria:

" the product's ability to run on the current Windows NT network architecture;

" the product's ability to be customisable using the Visual Basic development

toolkit;

9 the product's ability to handle Case Processing for the claims department.

The shortlisted suppliers were invited to give product presentations to the evaluation

team at the customer site. After each presentation the team realised that more detailed

product demonstration against detailed functional requirements and specific selection

criteria were needed. The team also realised that they needed to involve stakeholders

in the process so as to elicit their specific functional requirements. For process

guidance in eliciting stakeholder requirements and for organising the product

demonstration, the team applied PORE's template 2 to acquire more detailed

187

6: Evaluating the PORE Method

stakeholder requirements and to conduct supplier-led product demonstrations. To test
for the presence of support for key predictions stated in hypothesis H5, it was further
hypothesised that:

Hypothesis A: the use of scenarios will help in discovering more stakeholder

requirements;
Hypothesis B: weighting requirements will help to achieve compliance scores that

more closely reflect the customer's critical requirements;
Hypothesis C: having stakeholder representatives present during product
demonstration sessions will help in discovering more previously unforeseen

requirements.

To test the 3 hypotheses A, B, & C, the team divided the work to be done into two

stages - requirements acquisition and product evaluation. Process guidance from

template 2 further divided the work to be done into three categories:

" what to do before the demonstration sessions;

" what to do during demonstration sessions,

" what to do after demonstration sessions.

6.2.3.1 What was done before demonstration sessions.

Before the demonstration sessions, the team and stakeholders undertook the following

tasks to discover and acquire more requirements:

" developed a simple paper based prototype (T2.1);

" developed scenario models that depict current sequence of tasks performed by the

stakeholders that will be affected by the new system (T2.1);

" conducted a series of interviews to identify and acquire stakeholder requirements

using identified scenarios.

The first interviews were conducted with the following stakeholders: - two

underwriters, the re-insurance assistant, the claims manager and his assistant, the

compliance officer and the managing director. Each of these stakeholders described

188

6: Evaluating the PORE Method

their current work as a scenario. For each scenario, the sequence steps taken to

achieve that scenario were discussed and a first draft of the scenario model was
produced. The stakeholders were further asked to brainstorm their work scenarios
without describing specific requirements. One example of a first draft of the

underwriter's textual scenario model is shown in Figure 6.3.

Underwriter Processes New Risk Scenario

This scenario describes how the underwriter deals with a new risk/proposal from a broker

I Broker presents underwriter with new risk

2 Underwriter takes a photocopy of the documentation

3 IF risk is to be written THEN
3.1 Underwriter enters details in the risk system giving risk unique identifier

3.2 Risk is filed away in current risks file

4 Risk is filed away in metal cases

Figure 6.3. An example of an underwriter's first draft of the scenario model.

The scenario model shows the sequence of tasks performed by the underwriter

when processing a new risk from the insurance broker.

After the first scenario based interview had identified some initial requirements, the

team conducted a second interview in which scenario models were shown to various

stakeholder representatives. Each stakeholder representative was asked to

walkthrough each scenario and to elaborate the work done. The main aim of the

second scenario based interview was to identify and elicit specific requirements and to

elaborate the initial requirements that have already been identified.

A third interview was conducted using pictorial storyboards, which depicted the

scenarios. The pictorial storyboards show possible ways that the stakeholders would

use the future system. Additional new requirements and ideas were elicited. When all

relevant scenario storyboards were produced for each scenario, the new elicited

requirements were added to the relevant picture/frame as shown in the example in

Figure 6.4. Stakeholders were then asked to `walkthrough' the storyboards to check

relevant requirements. More new requirements were identified during the scenario

storyboard walkthroughs. Those requirements that the stakeholders agreed with were

approved and those that they did not agree with were further investigated. When all

stakeholders were satisfied with all the requirements, they were made to sign and

189

6: Evaluating the PORN MetIi d

approve the requirements document. The requirements dou"unicnt contained it total OI
43 requirements statements.

1 2 3 4

º
MAr vvýi1"Y

Rrneii ii iii a. unl r. icl/Irr. uc 1'ndcncrilcr .. ins cnnlian/vcaly
I tnJclwnlci inJcce. lhr Clip iii SI/Ir ni : "nr) ihr "ýýýin "ii ý"

ihr r t trnýnl l
Is lC d

. Iýpili ý' in Ilir rick wi nu. Yea, ii t ilS inp . iýý ýd r
tire teneie: d

. itoninL axured/rrucwretl i ralt .i nest lrisinn

"
k' 9 //rr eilrau 01,111,11,111"A t6r N lh, r vrrn ýhrr/I rdl�M thr

k. 21 9 llu, is icm h roll rillun" IN, V jut t tt / /I
�rrrr"r rirk aip rrh, R irr nil urrr r., ýýrrnrrm /Oll, n, rr rr r

r. ie un rr p1 /l T r (1 i
n re/erent e nitnhrr. tart. q rrý uil rh, ý'I it r it Jrp il ýr nit rp rvrlr

riýrinc i irmrJ dnr
rrrirrr-rrl/rrvr.. tart/ rl. rrrrr rrr r u . rrrrr rrl. rr r.. rr rrrh"rrrrýrr

r nrr, nl mirk rhr rr, u. lr hrrilnr

5 6 7 /t

. 'ndcncrucr rlicckýinrmcn .; nJcnýinrr disciitis die. onlrart

R? S, 11 1h, er. ýtrrri ýItrdl lurrr Nit R _'i') /h, iretrnt drall enulrlr-ir
rlit t tu r/rn ek that rin r" /into hint to rinn rirurl1 all ihr ritt n/ rr
rrrnnrd pruprrlr hr lnr" allurrdul' ý ijtit/r /Oit'r, i/ n Jununrril �nit

t6rru ru prý, r e i, rr tie/ r i. ck rn. rtimirnl vinJurr

Figure 6.4. An example of a storyboard showing a . stakeholder . ýrý n: u'iýº. I : ýiainl;

requirements are attached to relevant frames iºI' the slur. board.

Alter identifying and eliciting the core CUSI Onºer ºrgluirrnºrfKK. ilk' (c; inº ; iLcd ilk

stakeholders to weight them J2.2). A fourth interview was Heil <<, nduLeieii in vvIºich

stakeholders were asked to group, rank and prioritise their rryuircºnrnts and Own

place each requirement in one of four catc(-, orie

0 hsscntial and mandatory - Very I ligh Priority;

" If11p rtant - High Priority;

" Would Be Nice - Mccliunn Priority;

" Don't ('arc - Low Pr101. ity.

Aller this, the tram asked the stakchokier to rank cacti rcquiremcni \\ itl1in cacti ;! F0IIp

and category. The VOLERE method rryuirrnfcnl IrniI)! Utr (Ruhet kon, 1ý1ýºtii vv, P,

90

6: Evaluating the PORE Method

used to provide measurable fit criteria for each requirement (T2.5). Sonne functional

requirements were iteratively refined into simple atomic statement to ensure that no

requirement contained any AND/OR statements. One such refinement example is

shown below:

Identifier R5.9.1
Description The system shall warn the user before overwriting risk slips
Type Functional
Priority High
Source Andy (Underwriters)
Scenario Underwriter renews Contract/Treat
Measurable fit Criteria: The system shall allow the user to overwrite a risk slip if a risk slip with the

same risk reference number exists

After the requirements were weighted, ranked and prioritised, the team used them to

generate test cases for detailed product evaluation. The test cases were criterion by

which the team judged the presence or otherwise of a required feature in each product

and the degree of compliance of that feature to a customer requirement. Scenario

models were used to design the test cases and structure the evaluation sessions. The

evaluation questions were formulated around the scenarios by combining the scenario

models and customer requirements in the test cases. An example test case is shown in

Figure 6.5. While the test cases were being developed, shortlisted suppliers were

informed by telephone, then by formal letter of the aims and format of the evaluation

sessions.

191

6: Evaluating the PORli Method

1 2 3 4

Rnikcr .. vc. risk slip r
unJerwner

ndrrwritcr duds Jciail, rout nuA
slip Isis n. A aysicn, Ichich gcncr. itca
unique n. k rei numhrr

I ui Iru ýýniri a. uiqý. ii. A

a. ih. entci. ý... A ict muulx. ý.
agn. s anJ J. nes n.

I itýk. iwinri . ". ýný
the nýA . Lp

5 6 7

1'ndcrw rncr inJcxes the clip bý
typing in the n, A rcl number. v-,
ut accuuni.. -mcdhc".... 1,1

f'lido" riet chcckc im ice Sehne
lie ncýý risk P i'ccs. c

I ldrncnier emery risk
Shp w 111ukcr

Re(j11) Requirement Description Compliance C011111u nt
Score

Il?. 9.1 'Ihr s stem shall index a risk slip 0-I-2-3-4-5
by risk reference number, year of
account anal ; Iýsureýl/reasýurrýl

R329. I 'I'hr system shall ask user what 0-1-2-3-4-5
type of document has been
"Canned before , a\ ine the image,
r. 2. Treaty. Slip. Contract

R329.2 The s_v, tenl shall store the ilna,
-, r (1-1-2-3-4-5

in the correct directory dep ndinr
on the response flow time tisem' ill

R 32.9. I
RI7.9 'I he system shall force file user to 1)-1-_'-3-4 -5

check that an ilnace has been
scan tied pre perle beiere all ml Hing
them to process it new risk

R3
.9 The , vstcnt shall aIio ý the user to O-1-2-3-4-5

attach ne pages to an existing
imaged document

Figure 6.5. Scenario-based test case generation for the ii cid º ýý rile r'ý in risk

scenario. The table shows the compliance scores of hehlten II - 5. s%iiIº II - n(p

compliance and 5= total compliance

192

6: Evaluating the PORE Method

Figure 6.6 shows the activities that were performed at this stage.

Tal came

models

Shonhct
Second ird. wenari

SaPkel ,I
Supplier

F

ment.
velo! x requirements

uite requirement walkthmugh t>-
candidate sensation. scenario prix itisadon

acquivtion ucqui%ition requirements
products

ntervie
to

intervie acqui%ition
interview

Srty
Devel intervi

Mipplier
paper ba inviwti an
prototype

Figure 6.6. The activities performed before product demonstration sessions. All

activities involved both the evaluation team and relevant stakeholders.

6.2.3.2. What was done during the demonstration sessions.

Three suppliers were invited to give product demonstrations. Each evaluation session

was planned to last for 2 hours. Of the stakeholders that were interviewed, three were

nominated as representatives of their respective business sections - underwriting,

claims and re-insurance - and were asked to attend each supplier demonstration

session (T2.2). However, several other stakeholders attended the demonstration

sessions partly, out of curiosity and partly because they were encouraged by the

management as a way of selling the new initiative to them to overcome resistance to

the new system. During the demonstrations, only the three members of the evaluation

team scored the products. Each team member scored the product independently using

the test cases. One team member was chosen to lead the evaluation session during the

demonstrations. Each member awarded a score of between 0 and 5 depending on

whether the feature was demonstrated and the degree it complied with the customer

requirement (T2.7, also see Appendix 6e). Only the three evaluation team members

were allowed to ask questions about the product during the demonstration (T2.6) but

stakeholder representatives were consulted to provide domain specific information

and clarification (T2.2). A scribe was assigned to record all the key decisions and

some questions that arose during the demonstration (T2.9).

193

6: Evaluating the PORE Method

6.2.3.3. What was done after demonstration sessions.

At the end of each demonstration session, the three evaluation team members agreed a
final score for each product's compliance to each requirement. When there were
disagreements, each member explained their reason for awarding the score. The

recordings made by scribe were also consulted for clarification on some of the
decisions. After this process, final agreed scores for the product were produced and

entered into a spreadsheet to calculate the product's overall ranking. From the

ranking, the team judged and agreed that although all products met the customer's

requirements, one product ranked higher than most. From this information, the team

made the following recommendations:

" that the syndicate must obtain working copies of the first two products and install

them in their working environment for a limited period (e. g. 6 weeks). This would

enable prospective users to familiarise with the product for further evaluation and

to discover new requirements (template T3). This would also enable the users to

judge which product performs better in a realistic business environment;

" that once the products have been installed, the IT manager must obtain feedback

from users to further elicit new requirements (T3);

" that during this period, much attention should be paid to non-functional

requirements such as integration requirements, interoperabilily requirements,

(since the chosen system will be integrated with Lloyds of London IT systems),

training requirements, usability requirements, interface requirements, training

support, costs and quality of provided (since this is a new system unfamiliar to

most users, T3);

" that legal advice must be sought for negotiating a contract with the final chosen

supplier. The contract should be based on stakeholders' requirements;

" that all stakeholders who attended the demonstration sessions were further

interviewed to identify further requirements (T2.10).

At the end of the selection process, the team interviewed and sent a questionnaire to

five key stakeholders that were involved in the process to get feedback about the

selection process. The stakeholders were asked eight specific questions that were

designed to test the effectiveness of PORE's template 2 (see Appendix 60. The results

194

6: Evaluating the PORE Method

of the interview and questionnaire are summarised below. Appendix 6f presents the
detailed results from the questionnaire. The process activities that were performed
during this stage are shown in Figure 6.7 below:

Cnnduýled
Prnd ced Pndwxd

Mule final pýlad denw
final agnzd pndux ý°Inlnendwiona interviews/

pndmx sco rankMgs IiUCMtllMil: llfe

Figure 6.7. Process activities performed after product demonstration sessions

6.2.3.4. Results

All five stakeholders who were sent the questionnaire and interviewed indicated that

the product demonstration sessions gave them more knowledge about the capabilities

of document management product that they previously did not have, (see Appendix

6g). Specifically, the stakeholders indicated the following key benefits:

" four stakeholders indicated that:

(i) the scenario based interviews were useful in helping them identify most of their

requirements;
(ii) use of scenario models to breakdown requirements by task was very useful;

(iii) scenario models helped to ensure a common understanding of requirements

between the requirements engineer and themselves;

" four stakeholders indicated that product demonstrations were informative and

quiet helpful;

" four stakeholders indicated that they felt more involved in the selection process

than in any other project they have previously done;

" all five stakeholders indicated that the method provided an cxccllcnt way of

systematically filtering out the non-compliant products;

" all five stakeholders indicated that they would use PORE again if they were to

select a product in the future.

These results therefore, strongly support hypotheses A and C:

195

6: Evaluating the PORE Method

Hypothesis A: the use of scenarios will help in discovering more stakeholder

requirements;
Hypothesis C: having stakeholder representative present during product
demonstration sessions will help in discovering more previously unforeseen

requirements.

Evidence to support Hypothesis B: weighting requirements will help to achieve

compliance scores that more closely reflect the customer's critical requirements.

although present, its weaker. However, the stakeholders also provided a number of

potential shortfalls of the method and some suggestions, (see Appendix 6g):

" four stakeholder indicated that the demonstrations sessions were too long and not

well organised;

" two stakeholders indicated that the questioning of suppliers by the evaluation

team was too aggressive and intimidating;

" two stakeholders indicated that the process was too long and a long period of tinmc

elapsed between the starting and finishing the project;

" one stakeholder indicated that all product demonstrations should have been done

within the same week.

Most stakeholders commented that the structure and organisation of the evaluation

sessions was not properly organised. Particularly, they commented on the fact that

some requirements were tested several times during the evaluation sessions and this

created unnecessary excessive pressure on the product demonstrator. For example. the

demonstrators were frequently asked to scan a document, index it using a reference

number provided by the evaluators and then asked to retrieve that same document. On

more than one occasion, the demonstrator was unable to perform this simple task due

to either technical incompetence or technical problems and this led to very long

periods of waiting in silence. Although these requirements were critical, the

stakeholders felt that they slowed the evaluation process and felt that they could have

been tested at a later stage using evaluation copies of the software and the focus

during the evaluation sessions should have been on core functional requirements.

196

6: Evaluating the PORE Method

However, these faults were due to the way the team applied the method, not due to a
weakness in the method itself.

Stakeholders also suggested some improvements to template 2. Particularly, they felt

that it would be helpful if both the stakeholders and product demonstrators have a

product familiarisation session before the formal evaluation sessions. The

familiarisation sessions should involve the evaluation team members, all stakeholders

and suppliers and would provide:

" an opportunity for questions and answers between stakeholders and suppliers

without the problem of disrupting the formal evaluation;

" an assessment of the generic capabilities of the product and for the evaluation

team to familiarise with the product before formal evaluation;

"a vehicle for new requirements that help distinguish between candidate product

which can then be tested during formal evaluation. The formal evaluation will

then focus on evaluating those requirements that help discriminate between

products.

The results of the reported study provide evidence for the usefulness of PORE

guidance and indicate possible improvements for the future versions of it. Evidence

was found for template 2's guidance which was perceived to be useful and beneficial

by all stakeholders who were involved in the study. Some lessons were learned that

perhaps should be incorporated into the method. Partial evidence was found for the

predicted use of the recommended techniques. The general sequence of process

activities was found to hold and repeatable as expected. Therefore support has been

found for hypotheses H5:

Hypothesis 5: PORE guidance is perceived to be useful and usable by people

involved in the product selection task.

197

6: Evaluating the PORE Method

6.3 Expert Evaluation of PORE

6.3.1 Study Method

The PORE method, process guidance and advice were also tested using expert
evaluation to obtain direct feedback on its effectiveness, usefulness, repeatability and
applicability in different situations. Seven focused requirement acquisitions and

product selection scenarios were selected for evaluating process guidance and advicc.
The scenarios provided descriptions of product selection 'situations' that can arise
during the process. The situations were described in sufficient detail to allow product

evaluation implications to be inferred and reasoned about, (see Appendix 6g). Table

6.1 lists the seven situations that were used.

Situation Situation Chunk
No customer requirements Process-Chunk 1.2: This chunk determines that

there are no requirements and advises the team to
acquire customer requirements and recommends
relevant techniques to use

No candidate products Process-Chunk 1.3: this chunk advises the team to
identify candidate products existing in the market
and recommends suitable techniques

Insufficient product and supplier information Process-Chunk 1.4: this chunk advises the team to
acquire information about identified candidate
products and their suppliers. It recommends
techniques to use.

Non or insufficient discriminating requirements Process-Chunk 1.5: this chunk determines that
there are insufficient requirements and advises the
team to acquire more discriminating requirements
and recommends relevant techniques

A large number of products identified, reduce Process-Chunk 1.8: this chunk advises the team to
products to a manageable list reject least compliant products using information

provided by suppliers so as to reduce the number
to a manageable list.

Evaluate in detail shortlisted products Process-Chunk 1.9: this chunk advises the team to

evaluating in detail the shortlisted products by

conduct supplier-led product demonstrations
Decide and select final preferred products from Process-Chunk 1.10: this chunk advises the team
the shortlisted ones to reject non-compliant products from supplier-

led demonstrations
Fable 6.1: The seven situations used in the evaluation study

Three situations described acquiring customer requirements from stakeholders and

product information from suppliers. One situation described the identification of

candidate products that are currently existing in the market. Three more situations

198

6: Evaluating the PORE Method

described the evaluation and selection of products that comply with customer
requirements. The seven situations were chosen so that they would provide coverage
of all parts of the method. The full description of the situations is given in Appendix
6h.

Two requirements engineering consultants from two different organisations took part
in the evaluation. Before hand, both completed questionnaires (see Appendix 6g)

about their background. Results are described in table 6.2. One engineer had 30 years

of experience in requirements engineering, the other had 8.5 years. They have

experience of requirements engineering and COTS product selection in a variety of

application domains.

Requirements Engineer Expert 1 Expert 2

Experience

Years in requirements engineering 30 8.5

Requirements elicitation and acquisition 1l

Requirements modelling

Requirements measurement

Requirements weighting '1

Requirements engineering techniques and methods

Product & Supplier Evaluation

COTS software product identification techniques

COTS software product evaluation and selection

Supplier evaluation

Experienced in customer representation during product evaluation

Software procurement process

Decision-Making Analysis

Decision-making in software product evaluation

Decision-making techniques

Decision-making tools

Table 6.2: The background of the two requirements engineers. The symbol "SI"

indicates that the requirements engineer has the relevant experience.

The engineers were given a brief overview description of the research and the high-

level PORE process for selecting a COTS software product. They were also given a

199

6: Evaluating the PORE Method

description of the scenario that was described in chapter 3 to select and recommend an
office e-mail system. The engineers were then given the product selection situations
one by one and asked to describe what they would do in that situation, and what
techniques they would use. While they were describing their solutions, their
conversations were audio taped for reference. After all the situations had been

completed, the engineers were asked to comment on the high-level PORE process that
they were shown at the beginning.

6.3.2. Results

Table 6.3 gives the solution provided by each engineer for each situation (see
Appendices 6i & 6j). The table also shows the method's predicted solution to each

situation, which is compared to the solution provided by each requirements engineer.

Situation Theory Prediction Expert 1 Expert 2
At the beginning of the (1) acquire customer (1) find out why they are (I) find out why customer
process, the customer has requirements doing the project in the need to purchase the
expressed the need to (2) Techniques: first place and quantify system or product
purchase one or more off-the- brainstorming, use it; (2) identify the
shelf solutions. However, cases, interviews (2) use requirements stakeholders
there are no customer meta-model (3) identify what
requirements identified so far (3) start with project capabilities you want in
that the e-mail package blast off to help the package
should meet. Some (4) look at the first eight (4) identify high level
stakeholders are familiar with items of the requirements
some e-mail packages. So requirements template (5) think about high level
what would be your next IT architecture and
objective and what infrastructure
techniques would you use to (6) determine what
reach this objective? packages are available
At this point in the process, (1) identify candidate (1) identify candidate (I) have a pure
you have not identified any products products requirements specification
candidate products that (2) Techniques: (2) Techniques: interact, before identifying the
would meet customer internet, market survey, trade papers, other capabilities to avoid bias
requirements. However, vendor conferences, organisations, market into products
some stakeholders suggested other organisations survey (2) go to e-mail vendor
3 possible e-mail packages conference to identify
available. So what would be products
your next objective and what (3) visit vendors that have
techniques would you use to been shortlistcd
reach this objective? (4) talk to other users

(5) get the users to try the
product
(6) don't force people to
use the product
(7) use prototype as a
technique
(8) involve users in the
selection process

You have now identified 30 (1) acquire product and (1) use what the web has (1) list requirements in
candidate products in the supplier information told you priority
market. Access to these (2) Techniques: (2) down load product (2) get marketing
products and their suppliers is questionnaire, request- summaries from the weh literature

200

6: Evaluating the PORE Method

excellent. Furthermore during for-information (3) send requests to the (3) get vendor literature
the requirements acquisition companies (4) match capabilities to
process, over 45 essential (4) talk to other people customer requirements
requirements have been send questionnaire (5) make sure that users
elicited. However, you have are involved
insufficient product and (6) shortlist on user
supplier information. So what requirements
would be your next objective
and what techniques would
you use to reach this

objective?
At this stage in the process (1) Acquire (1) apply our idea of tit (1) not all products will
you have identified that a discriminating atomic criteria, i. e. if there is meet requirements exactly
large number of the 30 requirements customer requirement the same
candidate products offer (2) Technique: Card 'send message' you (2) determine how well
similar functionality to meet sorts determine if product each product meets the
the office employees' sends message according requirements
requirements. For example all to the customer (3) determine how well
the e-mail packages meet the requirement each product meet the
requirements 'the system core requirements
shall send messages' and 'the (4) use other requirements
system shall receive like cost, customer base to
messages'. The problem is discriminate
that these requirements do
not help you to discriminate
between the packages. So
what would be your next
objective and what
techniques would you use to
reach this objective?
Because of time pressure, (1) Reject least (I) pick 10 key (I) match the

you are unable to examine in compliant products requirements and use requirements and use
detail all of the 30 candidate using supplier them to eliminate the compliance scores to

products you have identified. information products eliminate the product
low would you reduce the (2) Technique: use core from the list

number to a manageable list atomic functional (2) have a structured way
and on what basis would you requirements of dealing with product
base your decision to remove elimination
the product from the list. (3) record why you took
What would be your next that decision and at what
objective and what point so that you can go
techniques would you use to hack to it later if need be

reach this objective? (4) have a group decision
and let everybody sign up
to it

At this stage in the process, 6 (I) conduct supplier-lcd (I) do the products (1) do more detailed

candidate products have been demonstration sessions satisfy the requirements analysis
shortlisted. The process, (2) Technique: test equally? (2) get people to try out or

which led to short-listing cases, compliance (2) use ordering for short use the product

these products, was trouble scores, listing (3) have a structured
free although some suppliers (3) involve stakeholders process in advance on
who were not shortlisted how you arc going to do
were not happy with their the selection
rejection. I low would you (4) have a vendor
conduct evaluation sessions demonstration
as a basis for selecting a final (5) use demos for short
preferred product from the 6 listing

shortlisted? What would be (6) consider non-technical
your next objective and what issues as well
techniques would you use to
reach this objective?
At this stage of the process, (1) Reject non- (I) use stake holders to (I) use differentiation

you have conducted the compliant product(s) priorities the products factors between the
evaluation sessions of the 6 from supplier-lcd requirements
shortlisted products. How evaluation (2) base it on how your
would you decide which demonstrations understanding
products to reject from the (2) Techniques: (3) use soft issues like the

201

6: Evaluating the PORE Method

short-list and on what basis Decision-making supplier capability
would you select the final techniques (4) get stakeholder
product(s)? What would be representatives to
your next objective and what brainstorm prcfcrrcd
techniques would you use to products
reach this objective? (5) stakeholders to decide

which one to select
fable 6.3: The expert knowledge provided by each engineer for each situation.

To determine the fit between the experts' advice and PORE's own process guidance,
the following five degrees of fit were applied between the guidance and either

expert's advice.

Condition A- expert-PORE advice matches iff the expert provided information

which exactly matches PORE's process advice and technique(s);

Condition B- expert-PORE advice mismatch iff the information provided by the

expert does not match PORE's process advice and techniques;
Condition C- equivalent match occurs iff the information provided by the expert is

an analogous substitution for the process advice and techniques provided by PORE;

Condition D- expert-PORE match but the matching is too course, i. e. the expert's

advice is too general but covers that provided in PORE;

Condition E- expert-PORE match but the matching is to narrow, i. e. the advice
provided by the expert does not include all the advice provided in PORE.

Table 6.4 shows the application of the five degrees of fit to PORE and the 2 experts'

advice. For each situation, the expert indicates what advice they would recommend,
i. e. what they would do next when in that situation and what technique they would

choose to use in that situation.

Situations Expert 1 Expert 2

Advice Technique Advice Technique

Situation 1 C, D B C, D B

Situation 2 A A C, D A,

Situation 3 C, E A C, D C, D
Situation 4 B B B B

Situation 5 A, E A, E C, D C, D

Situation 6 C, D C, D C, D C, D

Situation 7 B B C, D B

202

6: Evaluating the PORE Method

Table 6.4: Analysis of fit between process advice from PORE and two

experienced requirements engineers.

The matching of predicted process advice with that provided by experts was
investigated further. There were two occasions in which the experts' advice matched

exactly with that given by PORE, three occasions in which advice did not match at all

and in the remaining situations the experts gave equivalent advice. Results show that

most advice given by experts was more general and is included in the advice provided
by PORE. The number of predicted advice matched to that given by experts is shown
in table 6.5 below. The results show that the method predicts most advice and

guidance that the experts would provide in similar situations.

Predicted Match Frequency

AA 2

BB 3

CDCD 4

CDA 1

CDE 1

CDB 3

TOTAL 14

Table 6.5: The number of times the advice given by the experts matched with

advice that PORE gives.

The following sections give brief descriptions of the expert's coinnicnts for each

situation (see Appendices 6i & 6j).

6.3.4 Summary of the results

Situation 1: no customer requirements identified - both experts gave equivalent

match (C) but course process advice (D) and mismatch techniques (B).

El recommended first of all to determine the purpose of the project. This helps to

"identify the boundaries and scope of the system". The expert went on to say that

203

6: Evaluating the PORE Method

"without knowing the reason for the system it makes it very difficult to figure out

which products should be identified and to be included in the candidate list". For this,
El recommends to use the idea of `project blast off, which is a "joint application
development meeting where the stakeholders gather enough facts to ensure that the

project has a worthwhile objective, is possible to achieve and has commitment from

the principal stakeholders". The expert did not recommend any other specific

techniques for acquiring the stakeholders initial requirements.

E2 recommended that the first thing to do is to: (1) identify "why the customer wants

to go for the off-the-shelf solution in the first place"; (2) identify "everybody that has

a stake in the system and what are the requirements for the customer who is actually

paying for the system"; (3) identify "people who have been using the old system and

elicit their problems and frustrations".

From this, E2 suggests:

" getting a high level understanding of the needs before starting to look for

candidate products and their capabilities;

0 determining what the existing IT infrastructure and what are the plans for

upgrading it;

" determining high level architecture and an understanding on how that

infrastructure is going to develop over the next following few years.

Once this has been done, the expert suggests to:

" look at what packages are available out in the market;

" identify the package attributes and try to match them to the initial

requirements elicited from the different stakeholders that are going to use the

package.

The expert does not suggest any specific techniques to use at this stage but

recommends looking at or talking to other people who have used similar packages

before.

204

6: Evaluating the PORE Method

Situation 2: no candidate products yet identified - El provided information that
exactly matched PORE's process advice and techniques (A), but E2 provided
equivalent (C) but course process advice (D) and mismatch techniques (B).

El `if the candidates products are not yet known, the internet is the obvious first place
for find out about what products are available in the market'. The expert went on to
say that before the internet it used to take "a lot longer to identify existing products
because you used to go to trade papers and a list of contacts". Contacting other large

organisations and asking them what they are using or conducting a market survey are
other ways of identifying candidate products that the expert recommends.

E2 observes that "there is no reason why you cannot identify candidate products while

you are eliciting high level requirements". However, with much larger products unlike
e-mail packages, E2 suggests that there must be a "pure requirements specification
that does not have any bias towards any product" before you can start identifying

candidate products. Having a requirements specification that outlines what product

capabilities are required before identifying existing candidates products avoids bias

"in the way that you elicit the capabilities of the products". For e-mail packages, the
best thing to do is to:

(i) go to the e-mail package conference and ask every participating vendor;

(ii) obtain all the vendor literature and on the basis of the customer requirements

review most of the product but concentrate of 3-5 packages.

For larger COTS products such as ERPs the best thing to do is to visit vendors that

have been shortlisted, talk to other people or organisations that are already using the

product. From these collect both favourable and unfavourable experiences of product

use. It is very important to involve the stakeholders very early on in the process and at

every stage of the process.

Situation 3: insufficient product and supplier information - El provided

equivalent (C) but narrow matching advice (E) and exact matching techniques (A). E2

provided equivalent(C) but course match for both advice and techniques (D).

205

6: Evaluating the PORE Method

El: The product information depends on the results of searching the internet. This

expert suggests that the ideal way to obtain product and supplier information that cost
less is to "down load product information from the internet". However, the expert

observes that "accessibility to some products may be very difficult". In this case the

expert suggests sending "a request for information to the supplier or actually visiting

them". "However, the key issue is to try to get a blanket picture of what capabilities

are available" says the expert. Another way of obtaining product information that is

suggested by the expert is if during requirements acquisition process the business

events that the COTS product has to support have been identified, "you can then make

a questionnaire based the business events and their responses that the customers want

satisfied and send it to suppliers".

E2 suggests that from the identified products "you need to shortlist them to a

manageable number of 4 or 5 products". To do this, "you need to get products

marketing or vendor literature and then identify features of the products that will be

definitely excluded". Examples of features of products that can be used to exclude

them are like "if the customer works on NT and the product only works on

workstation". In this way, "products can be very quickly eliminated using supplier

marketing literature". Once you have short-listed them to a manageable list, you can

do a more detailed analysis, matching capabilities of each product against each of the

customer requirements. However, you need to be "careful when short listing products

using marketing information, because this might result in excluding ideal products

unless there is an adequate representation of the user requirements". The expert

further observes that "if there is a sensible representation of customer core

requirements you will find that a number of products will not actually meet the

requirements. If they all meet them you then need to weight them on how well each of

them do meet the requirements and take the top high scoring ones. However, this can

be quiet a very subjective process".

Situation 4: no discriminating requirements - both the advice and techniques

provided by both experts did not match that provided by PORE (i3).

El recommends using `fit criteria' to discriminate between products by asking each

product to satisfy that fit criteria. For example, if the system has a requirement to send

206

6: Evaluating the PORE Method

messages, you need to know what `send messages' means in terms of the customer

requirements but not what the product can do to send messages. Once you have

defined what `send messages' means in terms of customer requirements, you can then
determine if the product sends messages according to the customer's requirement
definition of sending messages. However, the expert did not suggest any specific

techniques.

E2 observes that it's "highly unlikely that all products will meet the requirements in

exactly the same way. Some products will meet the requirements better than others".
The expert suggests "focusing on these differentials and to weight each product on
how well they meet each requirement". In this case the expert suggests "prioritising

the requirements in order to determine which are more important and which products

are mapped to those requirements and how well they meet those requirements". The

expert also recommends using other types of requirements other than functional ones

to "differentiate between products". Such examples of requirements that the experts

recommend using are maintenance requirements, cost of the product, or the supplier's

capabilities and customer base. In this case its highly unlikely that you will get all

products that meet all these requirements equally and therefore, the non-functional

requirements differentiate most. The expert does not suggest any specific technique to

use in this situation.

Situation 5: reduce the number of candidate products to a manageable list - El

provided advice and techniques that matched (A) that provided in PORE. However,

the advice was too simplistic (E). E2 provided equivalent (C) but course matching

information for advice and techniques (D).

E1 recommends choosing about "10 key requirements and do a quick check on all

candidate products and see if you can eliminate some of them based on these key

requirements".

E2 recommends first weighting and prioritising all customer requirements, then

matching each product to functional and non-functional requirements, and allocating

compliance scores. After allocating compliance scores, "select the top 5 or 6 products

207

6: Evaluating the PORE Method

and record the reasons for making the selection decision and at what particular point
you took that decision so that you can later back track to the decisions made earlier".

Situation 6: evaluate in detail shortlisted products - both experts provided
equivalent (C) but course information for both advice and techniques (D).

E1 suggested that "the key thing is to determine if all of the shortlisted products

satisfy the 10 key requirements in exactly the same way". The expert further

recommends to use a simple ordering scheme with probably three stages like meets

perfectly, meets adequately, does not meet at all. This scheme enables comparisons
between the products and a basis for comparing them.

E2 recommended analysing the requirements in more detail and scoring products

against those detailed requirements. The expert also suggested that ideally, you have

to have "established a method on how you are going to do the selection of the

candidate products before you start the selection process". "You need to establish in

advance how you are going to shortlist products, what techniques are you going to use

to shortlist products, how are you going to record decisions and how are you going to

make the final selection", says the expert. Without doing this, the expert suggests that

a lot of time can be spent "wondering on non-important tasks". Once the products

have been shortlisted into a manageable number, the expert recommends to "have

vendor demonstrations and get people to use the products if possible". The vendor
demonstrations can be used as a filtration exercise. For a large COTS product, things

like the compatibility of the vendor's culture to the customer buying the product and

vendor's flexibility to accommodate requests could be very significant selection

factors.

Situation 7: deciding and selecting the final preferred product - the advice and
techniques provided by El did not match with that provided in PORE (13). Expert 2

provided advice that is equivalent to PORE's (C) but suggested techniques that did

not match that provided in PORE (B).

El recommended to "re-involve the stakeholders and show them the list of final

products". Once the stakeholders have been shown the list, you need tell them that "its

208

6: Evaluating the PORE Method

not a definitive list and show them the differences between the products". When they
have seen the products, "you then obtain feedback on their satisfaction/dissatisfaction
about different requirements". The expert also recommended "involving stakeholders
which have political influence and to look at the degree of influence of each
stakeholder". This will help you "decide which product you are going to give more
priority".

E2 suggested that "if a quantitative selection judgement cannot be made, you then

need to make a qualitative judgement such as how well do the customer organisation

get on with the supplier or is the supplier going to be able to respond to request for

customisation or can we work with this supplier". The expert also recommends
identifying "the differentiation factors between the products on how well they meet

the requirements". To this, the expert suggested considering "soft issues or getting a

group of stakeholder representatives together, describe to them the capabilities of each

product and have a brainstorming session with them to identify what soft issues they

would use as criteria". Once this is done, "you then get a group consensus as to how

the products should be weighted for final selection". In this way "you can come up

with some factors that can be used to discriminate the products and make the decision

based on that".

The results of the reported expert evaluation provide evidence for the usefulness of

PORE guidance. The evidence suggests that PORE's advice is as good as that

provided by the experts and in some cases it is even more directed than that of

experts. Partial evidence was also found for the predicted use of the recommended

techniques. Therefore support has been found for hypotheses 116, stated in the thesis

objectives:
Hypothesis 6: PORE advice is at least as good as expert advice and in some cases is

more fine grained and directed than the experts.

209

6: Evaluating the PORE Method

6.4 Summary and Chapter Conclusions.

In summary, this chapter has discussed the evaluation of major components of the
PORE method through case studies and experts evaluation. First the guidance

provided by the first two PORE templates was evaluated using three case studies

carried out in three different organisations. Both case studies were to select and

recommend a COTS product. The PORE templates were found to be usable and were

used. The advice and guidance provided in the templates was found to be useful.
Important additional improvements to the templates were suggested. The usefulness

and effectiveness of the advice and guidance provided by PORE was evaluated

through expert study. Seven representative situations (scenarios) that covered all parts

of the PORE method were presented to two requirements engineering experts and

were asked to say what they would do if they were in that situation. The information

given by the experts was compared for fit with that given by PORE. The results show

that there is significant match but that most advice and guidance given by experts was

general and already included in that given by PORE. The expert study showed that the

PORE method is effective and beneficial in selecting COTS products. The results of

the case studies and expert study therefore provided support for the theory

predictions.

210

Chapter 7

Evaluating the PORE method

This chapter summarises the thesis research and concludes with a
discussion of possible future directions.

7: Discussion and Conclusions

Chapter 7

Discussion and Conclusions

7.1 Summary

This chapter summarises the work reported in this thesis and presents the benefits of

the approach taken in providing solutions to the requirements engineering problems
for COTS-based systems development. The research proposed an iterative parallel

process of requirements acquisition and product selection. It also proposed the use of

process goals, models and situations as a means of providing the evaluation team with

process guidance. This chapter also describes some limitations of the method

developed in this thesis and proposes future work that is needed to improve it.

Particularly, the proposed method needs to be improved to address issues such as

multiple COTS selection, the buy vs. build decisions, selection of application service

providers (ASP) or internet service providers (ISP), the involvement of product

suppliers as key stakeholders in selection process, the evolution of both the COTS

product and the system developed from the COTS products and the lease vs. rent vs.
loan decision. The chapter concludes by identifying future research directions on

requirements engineering for COTS-based development paradigm.

The deliverables of the research are:

" two empirical studies of packaged-based development that demonstrated the need

for a coherent method for acquiring requirements and selecting software products.

The studies identified many unsolved problems and a general lack of requirements

engineering research for packaged-based systems development;

" an iterative process model of requirements acquisition and product selection to

guide evaluation activities during product procurement. The model dynamically

provides process advice based on goals to be achieved and techniques to be used
in a context defined by the current state of the compliance relationship between

the requirement model and the product model;

212

7: Discussion and Conclusions

" an approach demonstrated by four case studies which identified the usability and
repeatability of the method and usefulness and effectiveness of the advice

produced by the method.

In chapter one, the aims and approaches of this thesis were outlined. The objective

was to develop a method to help address the problems of requirements engineering for

COTS-based systems development. To structure and drive the research, 6 hypotheses

were identified. Chapter two summarised previous and current trends into two main

research areas. Research on requirements engineering has focused on methods,

techniques and tools for bespoke systems development but has ignored packaged-
based systems development. On the other hand, research on packaged-based systems
development has focused on the architecture, design and integration, but has ignored

the requirements acquisition and product selection phases which must precede design

and integration.

7.2 Testing the thesis hypotheses

The research was driven by 6 hypotheses which are described below.

7.2.1 Hypothesis H1

Hypothesis Hl stated that `new problems arise in the requirements engineering

related phases of COTS-Based Development that are not addressed in current

requirements engineering research'. This was investigated in chapter 3 through two

studies of packaged-based development processes. The first was a study of three

organisations which developed COTS-based systems. The study was carried out to

gain more comprehensive knowledge about software procurement. The second was a

substantive study of the selection of a COTS requirements management system. The

study identified problems which arise during requirements acquisition for COTS

software selection. The first study identified 29 major problems that were experienced

by all 3 organisations at all stages of the procurements process. Of the 29 problems,

only 8 were found to be partially addressed by current COTS-based development and

requirements engineering methods described in chapter 2. The second study also

213

7: Discussion and Conclusions

identified these problems and reported on all of the problems in detail. As such
evidence was found to support for hypothesis H1.

7.2.2 Hypothesis H2

Hypothesis H2 stated that `it is possible to design more effective methods which
directly address current problems in requirements engineering for COTS-based

development'.

This was investigated in chapters 3 and 4. Chapter 3 describes a new method that

exists at two levels. The first level is a simple template-based process. The second
level is an iterative process of customer requirements acquisition and COTS software

product selection discussed in chapter 4. The features of the method directly address

problems that were identified and described in chapter 3. The method has four main

components:

" an iterative process model;

"a goal-based process guidance;

"a multi-layered situated process guidance;

"3 essential models for guiding the selection process.

The method solves problems identified in studies reported in chapter 3. The

effectiveness of the method in addressing the identified problems and the evidence to

support hypothesis H2 is demonstrated in chapter 6.

7.2.3 Testing hypotheses H3 - H6.

Chapter 6 reported tests of hypotheses 113-116 through evaluations of the PORE

method. Three case studies in 3 different organisations and one exercise with

requirements engineering and COTS software experts were carried out to test the

usability and effectiveness of the PORE method. Three studies of the use of PORE to

select and recommend a COTS product were used to test hypotheses 113 - 115. The

first two studies (organisation A and B) tested hypotheses 113 & 114:

214

7: Discussion and Conclusions

Hypothesis H3 stated that `the PORE method guidance can be applied in part or in
whole to real-world software product selection tasks'.

Hypothesis H4 stated that `The PORE method can form an essential part of a

successful product selection task'.

Hypotheses H3 & H4 were tested through 2 studies in two different organisations to

select off-the-shelf software products. The first was a study to purchase a new
dealerboard system for an international bank. The second was to purchase an anti-
virus security system for an international merchant. In both cases, the requirements

engineering team applied guidance from PORE's template 1 to identify candidate
COTS products and to acquire essential customer requirements. PORE's template 2

guidance was used to organise and conduct supplier-led product demonstrations and
to recommend the preferred products. In both studies, PORE's guidance guided the

team to a successful conclusion. Therefore, support for hypotheses 113 has been found

and the hypothesis is accepted. Partial evidence to support hypothesis 114 was also
found and therefore this hypothesis needs to be further tested. This evidence further

strengthen support hypothesis H2 in that the PORE method which is designed from

identified problems led to a successful product selection.

The third study (organisation C) tested hypothesis 115 which stated that 'PORE

guidance is perceived to be useful and usable by people involved in the product

selection task'. This was tested through a study to select a document imaging and

management system for a Lloyds of London insurance syndicate. During each product

demonstration session PORE's template 2 provided the team with guidance and

advice on how to score product-requirement compliance. At the end of each
demonstration session, template 2's guidance was used to collate the product's scores.
After all shortlisted products have been demonstrated, template 2 was used to rank the

products. A preferred product was selected and used.

At the end of the process, the team distributed a questionnaire to 5 stakeholders who

were involved in the process to elicit their comments and perceptions about the

usefulness of PORE's process guidance. All 5 stakeholders indicated that the process

guidance was useful. They all indicated that the method provided a useful way of

215

7: Discussion and Conclusions

systematically filtering out non-compliant products. The stakeholders also indicated

that they would use PORE again if there were to select another software product in

the future. From this evidence it was possible to accept both hypotheses 114 and H5.

Hypothesis H6 stated that `PORE'S advice is at least as good as expert advice'. This

was tested through elicitation of knowledge from experts in requirements engineering

and software package selection and an expert critiquing of the PORE method. Two

requirements engineering consultants from two different organisations with 38.5 years

of experience between them in requirements engineering and COTS product selection

in a variety of application domains took part. The experts were presented with 7

focused requirement acquisition and product selection scenarios that were chosen to

provide coverage of all parts of the method. The experts were asked to described

what they would do in that situation and what techniques they would use. At the end

of the study, the experts' results were compared with PORE's predicted advice and

guidance. In 2 cases the expert advice matched exactly that is provided by PORE; in 3

cases the expert advice did not match that provided by PORE; in the remaining 9

cases, the advice provided by experts was either narrow or to general than that

provided by PORE. Overall, the advice provided by PORE included that provided by

the experts and in some cases it was better than that of experts. The evidence therefore

supports the acceptance of hypothesis H6.

The remainder of this chapter discusses contributions of the thesis research and

possible future work in PORE and future research directions.

7.3 Contributions to research on requirements engineering for COTS-based

systems development

This research has improved and contributed to our understanding of the problems of

requirements engineering for COTS-based systems development. The research

highlighted existing requirements acquisition and product selection issues that are

important in informing the development of methods and tools for COTS-based

systems development.

216

7: Discussion and Conclusions

The deliverables of this research are:

"A method, PORE, is proposed to fill the gap in requirements engineering methods
and guidance for the CBD development process. The method supports an iterative

process of requirements engineering and product evaluation/selection;

"A process model that identifies key decisions points that should be made by any
CBD process and four generic processes for achieving each decision point and a
sequence of achieving these decisions is developed;

"A software product model, a requirements model and a situation model that

models compliance relationships between software product and customer

requirements;

" Strategies for guiding the COTS-Based Development process using models, goals

and situations from a range of disciplines;

"A concept demonstrator prototype process advisor tool for guiding and advising

requirements engineers;

" Empirical evidence to support the usability and usefulness of the PORE method

advice and guidance.

This thesis has provided theoretical work that helps to undertake the process of
acquiring requirements for COTS-Based systems development. The importance of

requirements for COTS software selection has been widely recognised, for example

by Carney (1999) and Davies (1999). In traditional systems development paradigm,

requirements are elicited from users and analysed and then the system is developed

from these requirements. However, developing systems from off-the-shelf packages

requires a new approach and culture (Lattaze 1997). Requirements engineers,

developers and user organisations will need to be trained on how to acquire the

requirements. The iterative approach described in this thesis recognises that the

process of requirements acquisition and system development are intertwined. As such,

the stakeholders are interactively involved in both acquiring requirements and
developing the system. The advantages of this approach has been recognised, for

example, by Polydys (1999) and Swannson (1999).

)i7

7: Discussion and Conclusions

7.4 Discussion

This thesis addresses requirements engineering for COTS-based systems
development. The thesis focuses on the processes of the requirements acquisition and
COTS product selection. However, the thesis does not address issues related to

multiple COTS selection, the buy vs. build argument, Application Service Providers
(ASP), product suppliers as suppliers as key stakeholders and the evolution of the
COTS products and COTS developed system. Although, these issues are outside the

scope of the thesis, the PORE method and the techniques described in this thesis can

contribute in providing solutions to these problems. The following sections discuss

how PORE needs to be extended to contribute to these problems.

7.4.1 Multiple COTS Selection

In a multiple COTS system, many disparate products from different often competing

suppliers are integrated, glued and combined to provide system functionality that is

unavailable from any single suppler (Obendorf 1999). Evaluating and selecting COTS

software products for use in a multiple COTS system is far more complex and

difficult than evaluating single COTS software (Obendorf 1999). The selection

decisions in a multiple COTS system depend on the selection of other products

resulting in dependencies among selection decisions. Similarly, these products have

independent lives and evolve at different speeds and this has to be taken into account
during requirements acquisition and in the final selection decision. The key point in

multiple COTS selection is that the evaluation activity must be focused on integration

as a cohesive unit (Vigder et al. 1996). This has important implications on the

requirements engineering activities that are not addressed by current practices

including research described in this thesis. The requirements acquisition process must

be able to deal with requirements for selecting individual products and at the same

time deal with the requirements for the overall system to be produced from

assembling individual products. There is a need to identify requirements that deal

with the system as a whole, requirements that deal with individual products and those

that are common to both. To do this, two kinds of product evaluation and

requirements acquisition strategies are required (Carney 1999).

218

7: Discussion and Conclusions

In the first strategy, product alternatives to implement different parts of the system are

evaluated using essential customer requirements (e. g. functional, non-functional and

architecture requirements). In the second strategy, alternative ensembles are

evaluated using architecture requirements. For this, each product is evaluated in

relation to other products. In both strategies, the decision to select a product depends

on the selection of other products therefore resulting dependencies among selection

decisions, products and customer requirements. Also, the desired attributes of the

system are realised through the combination of the desired attributes of the individual

COTS products therefore creating more dependencies among product attributes.

Another characteristic feature of a multiple COTS development is that the usability of

the individual products might not be important but the emphasis is on the usability of

the resulting system developed from the selected products. The usability requirements

for each candidate product are less important in a multiple COTS selection than in a

single COTS selection.

As mentioned in section 1.3, the present version of PORE does not address multiple

COTS selection. In multiple COTS selection, two sets of requirements types need to

be identified - requirements that focus on evaluating alternative products and

customer requirements that focus on evaluating the system that is to be composed

from the selected alternative products. The present version of PORE focuses on

identifying customer requirements for selecting individual stand-alone products. The

future version PORE needs to be extended to address the multiple COTS selection.

The method needs to provide the requirements engineering team with advice and

guidance to identify the desired attributes (i. e. functional, non-functional and

architectural attributes) of the candidate products on one hand and the desired

attributes of the overall system on the other hand during the evaluation and selection

process. Also, new techniques, evaluation and selection strategies and new process

advice and guidance need to be identified and added to the future version PORE.

219

7: Discussion and Conclusions

7.4.2 Supplier View

In COTS-based development process, selecting a COTS product usually means
selecting the product's supplier as well. Therefore, in order to make a successful
COTS product selection, it is necessary for customer organisations to consider the

suppliers as stakeholders in the selection process. COTS product selection is just as
much a decision about business relationships as is about system functionality.

Supplier requirements or relationships are just as important as functional

requirements. In a system comprising of multiple COTS products that must be
integrated with each other, managing supplier relationships is just as important.

However, this is not addressed in the current COTS development methods including

the current version of PORE.

In a large-scale multiple COTS system, suppliers play a far more active role than just

as providers of commodity items as products are viewed. Therefore, the way in which

contractual or supplier relationships are handled is a key component in ensuring that

the solution/product being procured will meet the business/system requirement with

minimal risks. In the production of a multi-COTS system, the interest is not only in

integrating products but also in integrating suppliers as well. however, the method

described in this thesis does not adequately address the role of the supplier in product

selection and does not recognise suppliers as key stakeholders in the selection

process. The method ignores the influence of supplier issues which are far more than

can be simply accommodated solely by criteria involving factors such as supplier size

or financial health as in the present version of PORE. The PORE method needs to be

extended to appreciate the dualism of product and its supplier. The method needs to

appreciate that the decision to select a product should take into account not only its

integration with other products but also the integration of the suppliers of those

products as well. The current version of PORE solely focuses on the views of the

customer and therefore needs to be extended to include suppliers as key stakcholdcr

as well.

lln

7: Discussion and Conclusions

7.4.3 The Buy vs. Build Decision

Custom-building systems ensures organisations that the system is exactly as needed
even though the proposition to build is always potentially expensive and time-

consuming. On the other hand, buying off-the-shelf software is often cheaper but

sometimes may require that organisations have to modify their processes to conform
to the software. Which option is right for any organisation depends on the

organisation's technological expertise, financial status, the size of the organisation

and the uniqueness of the business. Therefore, when deciding which course of action
to take organisations need to carefully consider the costs and risks of both paths and

choose the one that provide more value over the long run. However, many currently

existing methods including PORE do not address the buy vs. build argument. Most

COTS-based development methods including PORE assume that the decision to buy

has already been made. The PORE method exclusively focuses on the buy vs. buy

decisions and ignores the fact that organisations may want sometimes want something
in the middle where some parts of the system are custom build and some parts are
bought off-the-shelf. Therefore, future version of PORE needs to be extended to
include trade-off analysis between buying an off-the-shelf solution and custom-
building it.

7.4.4 Application Service Providers

Application Service Providers (ASPs) rent applications to customers who access them

via the internet. The growth of the internet, intranets and extranets has revived the

concept of renting, leasing or loaning software. The rentable software concept is

growing and is giving organisations fast access to a variety of applications without

requiring a major upfront investment. Rentable software is aimed at organisations that

do not have the resources to install a complete system. By eliminating upfront costs, it

is possible for organisations to use applications without physically obtaining a copy

and having to bear the cost. Renting enables organisations to have access to

specialised applications that would otherwise be too expensive to implement. Renting

software is great for certain situations such as specialised applications like groupware

applications, project management applications, document management and change

control applications. One of the benefits of renting software is that organisations don't

221

7: Discussion and Conclusions

have to buy, store, install or maintain the software (Kay 2000). This also eliminates
the `antiquated model' of software licensing. Software licensing is wasteful and its

time-consuming to keep track of all upgrades. Most rented software share a common

sales pitch: save time, save money and save face by avoiding long-term commitment

to a single platform. A variety of models payment have been proposed. These include

pay-per-use (e. g. as in telephone services), flat rate on a monthly basis (e. g. as in

renting a house) or rent and pay per transaction. Although the ASP business model is

gaining popularity, currently, there are no methods that help customers to evaluate

and choose preferred service provider. The PORE method does not directly address

the problem of choosing an ASP. However some of the lessons learned and

techniques developed in this thesis can help organisations and individuals evaluate

and select a suitable application service provider. Future versions of PORE need to be

extended to directly address the problems of associated with choosing an ASP.

7.4.5 Requirements for Product Evolution

Three main factors generally influence products or systems evolution:

9 when its specification changes (i. e. a new version of the product);

" when customer's needs change (e. g. new requirements or regulations);

" when the product or system's operation environment changes.

In a COTS-based system, product evolution can result in far more serious

consequences than in a bespoke system. The problem for COTS-based development is

that there are two independently evolutionary cycles that take place simultaneously -
the evolution of the individual products and the evolution of the system itself. This is

even far more complex in a multiple COTS system in that different products from

different suppliers will be evolving independently of each other. However, although

these problems represent potential risks to customers, they are not generally addressed
by current methods when selecting COTS products. Most methods including PORE,

do not focus beyond the selection of the preferred product and address the problems

caused by the both the evolution of the customer's system and the supplier's product.
Another problem is that suppliers may find some incentives to adapt their products to

meet requirements for key larger customers at the expense of smaller organisations

7: Discussion and Conclusions

thereby leaving them with orphaned products. Therefore, when selecting COTS

products, it essential that due care must be paid to product's and system's
evolutionary requirements. Although PORE recognises the importance of contractual
requirements, these are not adequately addressed in the current version. The method
needs to be further extended to address these problems.

The following section describes future planned work that aim to improve PORE and
to address the problems identified in previous chapters and in sections 7.4.1 - 7.4.5.

7.5 Future work to improve PORE

The method reported in this thesis aims to address problems in requirements

engineering for package-based development. Since the technology constantly

changes, up-to-date research is required both on a short and long scale. The following

sections describes the envisioned short-scale and long-scale future work.

Although the thesis contributed useful research in requirements engineering for COTS

based development, the current version of the PORE method has some weaknesses

that were identified in the evaluation studies and some limitations that were discussed

in section 7.4:

" PORE takes too long use. PORE requires alternative pathways to allow tailoring

for faster use. The present version of PORE assumes that all parts of the method

should be performed in each case. However so far, the method has been applied

on limited scale, in small studies. A large, industrial scale use of PORE is needed

in order to be able identify different routes to enable it to be tailored.

" the PORE templates will be changed in light of results from the evaluation studies.
One solution would be to make the templates advice guide users on the different

pathways that they can take based on the size and complexity of the COTS system
being developed. At their present form, the templates provide similar advice for

all types of evaluations.

223

7: Discussion and Conclusions

" the PORE method and the prototype tool can be too complex. A comprehensive

tool is needed to support the PORE method.

" the PORE method needs to address multiple COTS selection. The present version
focuses on selecting a single COTS software product. The method also needs to

address the buy vs. build argument. The current version focuses on the buy vs.
buy decision. Customers need to be given an option to choose whether to buy the

solution off-the-shelf or to custom-build or to do both. At the moment PORE does

not give that choice. PORE recommends that stakeholder representatives should
be present during product demonstration. However, the present version does not
include product suppliers as key stakeholders. The method needs to include

suppliers as stakeholders in process as well. Although the lessons learned and

techniques developed in this thesis can help in the selection of application service

providers, the PORE method needs to be extended in order to understand and

adequately address the problems associated with choosing an ASP. PORE does

not address the problems associated with the evolution of both the COTS products

and the system itself. At present, the method focuses on selecting the preferred

product but does not deal with the development of the system or the update of the

COTS products after it has been procured. The method needs to be extended to

include product updates and evolution of the system as part of its process.

7.6 Future research directions for requirements engineering for COTS-based

systems development paradigm

Since this thesis is one of the first to explore requirements engineering for COTS-

based systems development, there are 3 possible future research directions. Each is

described in turn.

7.6.1 COTS software simulation environments

A more complete modelling and simulation environment is needed in order to

understand many competing, critical issues that arise during requirements engineering

for CBD. This environment model will take as input, customer requirements (both

224

7: Discussion and Conclusions

functional and non-functional), current legacy systems, software products and the

glueware software to explore the selection and integration of COTS products into

their environment. One critical success factor will be a plug-and-play environment in

which models of different COTS software products can be plugged in to explore their

consequences. The simulated environment would also allow to evaluate and predict

reliability of COTS based systems and to build reliability models of these systems and

could be incorporated into the PORE method process. The concept of this simulated

environment is depicted in figure 7.1.

Requirements

Met by
Functional Pi

amstrwn Constrained by
Current legacy Non-functional Incomplete

system(s) requirements COTS products:
S3 New system select and adapt

S2
ý' problems?

SI by legacy
IT infmtructurel

architecture
p *\,

constrain

need

ware Simulated Glue

environment J

Figure 7.1. A modelling and simulation environment that allows plug-and-play of

models of COTS software packages and to model reliability requirements of

COTS-based systems.

7.6.2 A Shared Knowledge Development Process

One of the lessons learned from the study carried out in organisation C described in

chapter 6 was that stakeholders indicated that suppliers should be involved in COTS

software package selection decisions. Indeed, since the COTS software products are

developed by suppliers who have control over them, it is essential to involve suppliers

in the process. Therefore, one `vision' is of a process whereby shared knowledge of

products, development skills and experiences, new techniques and methods is made

available to all participants in the process. This shared knowledge will result in a

supply chain of components/products, skills and experiences and personnel.

225

7: Discussion and Conclusions

Organisations will also have access to each other's development infrastructure along
the supply chain and share business strategies and objectives, expertise, ideas, risks

and information. Joint technology development programmes will be possible through

shared knowledge and close relationships. This vision of a shared knowledge process
is depicted in Figure 7.2.

UK MoD Royal
e g. BAe. Hugh".

e S. Navy e. g. GEC M. ovoni SEA, Boeing
Shared xtrategicu,

Customer t--º Prime
Contractor

ýý
buxinexx, rbjective .

Sub-Contractor e, cpertLwMeax and
risk management

shared product componenU
Supplier relmiunxhip.

product enmra<tu u ixxue,
knowledge base product base base xuppl, er integration

infrastructure,

Joint development

Pattern
architectures

1
Huw they

personnel

*--

Corporate Corporate build systemx, 14
skills knowledge base

fnovAedge

base shared information
knowlulge

concepts

Shared systems development knowledge and component/product supply chain

Figure 7.2: A vision of shared knowledge as the cornerstone for the future

success of the CBD paradigm.

7.6.3 The `soft' Issues: Training and Education

The techniques and knowledge from different disciplines required in the CBD process
for it to be a success will mean that it will be impossible for any individual to possess

all of the necessary skills and knowledge. As a result, the development team of the

future will be composed of team members from many backgrounds to form `smart

teams'. The project management and development skills that are required for the CBD

process are significantly different from those required for traditional systems

development. Organisations themselves will probably have to change the way they do

their business. For example, selecting a product to be included in the integrated

systems largely results in the selection of the product supplier (Carney 1999, Wallnau

et al. 1998). Therefore, in a COTS-intensive system, the integration of the different

products results in the integration of product suppliers (Oberndorf el al. 1997b, Vigdar

et al 1997). As such, the development organisation will need to manage not only its

relationships with the individual suppliers but also the relationships between the

226

7: Discussion and Conclusions

integrated suppliers (Allen 1998). As a result, this thesis identifies personal or `soft'

issues as another major research area. A different set of skills will be required and

therefore CBD principles need to be incorporated into the training and education of

systems developers and requirements engineers of the future, be it in universities,

colleges or organisation training programmes.

So to conclude, this research work provides important early contributions to research

on requirements engineering for COTS-based systems development. It is hoped that

the work reported in this thesis will be a useful basis for future work and will

encourage further research in this area.

227

Primary References

ANDERSON E. E. (1989). A Heuristic for Software Evaluation and Selection,
Software Practice and Experience, vol 19(8), August 1989

ANTON I. A. and POTTS C. (1998). The Use of Goals to Surface Requirements for
Evolving Systems, to appear in Proceedings IEEE International Conference on
Software Engineering, IEEE Computer Society.

ANTON I. A. (1997). Goal Identification and Refinement in the Specification of
Software Based Information Systems, PhD Thesis, Georgia Institute of Technology,
June 1997.

BOEHM, B. W. (1988). A Spiral Model of Software Development and Enhancement'
Computer, May 1988

BROOKS F. (1987). No Silver Bullet: Essence and Accidents of Software
Engineering, IEEE Computer, April 1987, pp10-19

BROWN W. A and WALLNAU C. K. (1998). An Examination of the Current State
of CBSE: A Report on the ICSE 98 Workshop on Component-Based Software
Engineering, Japan, 1998.

BROWN W. A. (1998). From Component Infrastructure to Component-Based
Development, Proceedings CBSE98 for ICSE98, Japan 1998.

BROWN A. W. and SHORT K. (1997). On Components and Objects: The
Foundations of Component-Based Development, Proceedings 5th International
Symposium on Assessment of Software Tools and Technologies, IEEE Computer
Society, 112-121.

BROWN A. W., CARNEY D. J. and McFALLS M. D. (1995). Proceedings SEI/MCC
Symposium on Use of COTS in Systems Integration', Technical Report CMU/SEI-95-
SR-007, Software Engineering Institute, Carnegie Mellon University, June 1995.

BUCKINGHAM S. S. and HAMMOND N. (1994). Argumentation-Based Design
Rationale: What Use at What Cost? ', International Journal of Human-Computer
Studies 40(4), 603-652.

CARNEY D. (1999). COTS Product Evaluation and System Design, The COTS Spot,
SEI Interactive, Volume 2, Issue 1, March 1999.

CARNEY D. (1998). Quotations from Chairman David: a little Red Book of Truths to
Enlighten and Guide on the Long March Toward the COTS Revolution; July 1 1998.

COSTELLO J and LIU D. B. (1995). Journal of Systems Software, 29: 39-63

DARDANNE A, van LAMSWEERDE A and FICKAS S. (1993). Goal-Directed
Requirements Acquisition, Science of Computer Programming 20,3-50

228

DARIMONT R. and van LAMSWEERDE A. (1996). Formal Refinement Patterns for
Goal-Driven Requirements Elaboration, Proceedings of 4th ACM Symposium on the
Foundations of Software Engineering (FSE4), San Francisco, Oct. 1996, pp 179-190.

DAVENPORT H. T. (1996). Holistic Management of Megapackage Change: The
Case of SAP, Proceedings 2"d Americas Conference on Information Systems,
Phoenix, Arizona, August 16 - 18,1996

DAVIES A. M. (1993). Software Requirements: Object, Functions, State, Prentice-
Hall

DATAQUEST (1997) http: //2artner6. p-artnerweb. com/dg/static/da. html

DEAN C. J and VIGDER R. M. (1997). System Implementation Using Commercial
Off-The-Shelf Software, Proceedings of the 1997 Software Technology Conference
(STC 97), Salt Lake City, Utah, May 1997

DEAN C. J. (1999). Timing the Testing of COTS Software Products, Testing
Distributed Component-Based Systems, 1sT International ICSE Workshop, LA,
California, USA, 17 May 1999

DOBSON J. and STRENS R. (1994). Organisational Requirements Definition for IT
Systems, Proceedings of Ist International Conference On Requirements Engineering,
IEEE Computer Society Press, 158-165.

DOWELL J and FINKELSTEIN A. C. W. (1996). A Comedy of Errors: The London
Ambulance Services Case Study', Proceedings 8`h International Workshop on
Software Specification and Design, IEEE, Computer Society Press, 141 -145

EVOLVING ENTERPRISE. (1998). Volume 1, Number 1, Spring 1998.

FENTON N. (1994). Out Ranking Method for Multi-Criteria Decision Aid: with
emphasis on its role in systems dependability assessment, Centre for Software

Reliability, City University, London, UK.

FINKELSTEIN A. C. W, SPANOUDAKIS G and RYAN M. (1997). Software
Package Requirements and Procurement, Proceeding 8`h International Workshop on
Software Specification and Design, IEEE Computer Society Press, Los Alamitos,
Califonia, 1996, pp 141-145

FOX G, LANTNER K and MARCOM S. (1998). A Software Development Process
for COTS-Based Information System Infrastructure (part 1), Cross Talk, March 1998

FORRESTER RESEARCH (1997) httl: //www. forrester. com/

FORTUNE MAGAZINE (1997) http"//www. r)athfinder. com/fortune/

FOX G., MARCOM S. and LANTNER K. (1997). A Software Development Process
for COTS-based Information System Infrastructure, Proceedings of the 5 ̀h

229

International Symposium on Assessment of Software Tools and Technologies
(SAST'97), pp133-143

FRAIR L. (1995). Student Peer Evaluations Using the AHP Method, Foundation
Coalition, Department of Industrial Engineering, University of Alabama Tuscaloosa,
1995

GARLAN D., ALLEN R. and OCKERBLOOM X. (1995). Architectural Mismatch or
Why it's hard to build systems out of existing parts, Proceedings 17th International
Conference on Software Engineering, IEEE Computer Society Press, 1995.

GAUSE D. C and WEINBURG G. M. (1989). Exploring Requirements, Quality
Before Design, Dorset House

GRAHAM I. (1996). Task Scripts, Use Cases and Scenarios in Object-Oriented
Analysis, Object-Oriented Systems 3,123-142.

GROSZ G., ROLLAND C. and MAIDEN N. A. M., Modeling Domain Knowledge for
Requirements Engineering: A Process View, Proceedings IFIP Joint 8.1/13.2
Conference on Domain Knowledge for Interactive System Design, Chapman Hall,
102-116.

GRUNDY J. (1999). Aspect-Oriented Requirements Engineering for Component-
Based Software Systems, Proceedings of the 4`h International Symposium on
Requirements Engineering (RE99), IEEE Computer Society,

JOHNSON W L., FEATHER M S., and HARRIS D R. (1992). Representation and
Presentation of Requirements Knowledge, IEEE Transactions on Software
Engineering 18(10) 853-869

KARLSSON J. and RYAN K. (1997). A Cost-Value Approach for Prioritising
Requirements, IEEE Software 14(5), 67-74.

KEMP A. (1994). Software Procurement and Superconcurrent Engineering, IEE
Computing and Control Engineering Journal, December 1994,

KITCHENHAM B and JONES L. (1997). Evaluating Software Engineering Methods

and Tools: Part 5, The Influence Of Human Factors, Software Engineering Notes
22(1).

KITCHENHAM B. (1996). DESMET: A method for evaluating Software
Engineering methods and tools, Technical Report TR96-09, Department of Computer
Science, University of Keele, August 1996

KONTIO J. (1995). OTSO: A Sysmatic Process for Reusable Software Component
Selection, Technical Report Number CS-TR-3478,1995, University of Maryland,
USA.

230

KONTIO J. (1996). A Case Study in Applying a Systematic Method for COTS
Selection, Proceedings of the 18`h International Conference on Software Engineering,
IEEE Computer Society Press.

KRUCHTEN P. (1998). Modelling Component Systems with the Unified Modelling
Language, Proceedings of the CBSE98 of the ICSE98 Conference, Japan, 1998

MAcCRIMMON R. K. (1972). Proceedings of Multiple Criteria Decision Making,
University of South Carolina, October 26-27,1972

MAIDEN N. A. M. and RUGG G. (1996a). ACRE: Selecting Methods For
Requirements Acquisition, Software Engineering Journal 11(3), 183-192.

MAIDEN N. A. M. and RUGG G. (1996b). ACRE: Selecting Methods for
Requirements Acquisition, Software Engineering Journal 11(5), 281-292.

MAIDEN N. A. M., MINOCHA S., MANNING K. and RYAN M. (1998). CREWS-
SAVRE: Scenarios for Acquiring and Validating Requirements, Proceedings 4th
International Conference on Requirements Engineering (ICRE98), IEEE Computer
Society Press.
MAZZA C., FAIRCLOUGH J., MELTON B., De PABLO D., SCHEFFER A. and
STEVENS R. (1994). Software Engineering Standards, Prentice Hall.

McGREW G and VIEGA J. (1999). Why COTS Software Increases Security Risks,
Testing Distributed Component-Based Systems, 1ST International ICSE Workshop,
LA, Califonia, USA, 17 May 1999

MORAN T. P. and CARROLL J. M. (1996). Design Rationale: Concepts, Techniques
and Use, Hillsdale NJ: Lawrence Erlbaum Associates.

MORISIO M and TSOUKIAS A. (1997). A Methodology for the Evaluation and
Selection of Software Products, Dipartimento di Automatica e Informatica,
Politicnico di Torino, Italy.

NING Q. J. (1999). A component Model Proposal, Proceedings of the CBSE99
Workshop of the ICSE 99 Conference, Los Angels May 1999.

OBERNDORF P. (1997). Facilitating COTS-Based Systems: COTS and Open
Systems, in Proceedings of the 51h International Symposium on Assessment of
Software Tools (SAST'97), IEEE Computer Society, Los Alamitos, California, June
1997

PAUL J. R. (1993). Why Information Systems Disappoint. In the Proceedings of the
XV International Conference on Information Technology Interfaces (V. Ceric and
V. H. Dobric, Eds.) (15-18 June, Pula, Croatia). University of Zagreb Computer
Centre, Zagreb, Croatia. pp. 19-24.

PLACE P. (1999). Requirements Engineering Roundtable, SEI Interactive, Volume 2,
Issue 1, March 1999

231

PLIHON V. and ROLLAND C. (1995). Modelling Ways of Working, Proceedings
7th International Conference on Advanced Information Systems Engineering,
CAiSE'95, Springer Verlag

POTTS C. (1995). Invented Requirements and Imagined Customers: Requirements
Engineering for Off-The-Shelf Products, Proceedings 2"d International Conference on
Requirements Engineering, IEEE Computer Society Press, 128-130.

POWELL A., VICKERS A., LAM W., WILLIAMS E. and COOKE B. (1997).
Evaluating Tools to Support Component Based Software Engineering, Proceedings
5th International Symposium on Assessment of Software Tools and Technologies,
IEEE Computer Society Press, 80-90.

RAY M. (1996). Dependency Diagrams, Cross Roads, The ACM Student Magazine,

vol 2(3), February 1996.

ROBERTSON S and 'ROBERTSON J. (1999). Mastering the Requirements Process,
Addison-Wesley

ROBERTSON S. (1998). Volere: Requirements Specification Templates, Edition 6,
Atlantic Systems Guild, http: //www. atlsysguild. com/GuildSite/Robs/Template. htm1,

ROLLAND C. and GROSZ G. (1994). A General Framework for Describing the
Requirements Engineering Process, IEEE Conference on Systems, Man and
Cybernetics, CSMC94, IEEE Computer Society Press.

ROYCE W. W. (1987). Managing the Development of Large Software Systems:
Concepts and Techniques, Proceedings of ICSE9, IEEE Computer Society Press,
1987

RUGG G. and McGEORGE P. (1995). Laddering, Expert Systems 12(4), 339-346.

SAATY L. T. (1990). The Analytic Hierarchy Process (AHP): How to make a
decision, European Journal of Operational Research, 48(1990), 9-26

SAATY L. T. (1990). The Analytic Hierarchy Process, New York, McGraw-Hill.

SCHMIDT R and ASSMANN U. (1998). Concepts for Developing Component-
Based Systems, Proceedings of the CBSE98 of the ICSE98 Conference, Japan, 1998

SEACORD C. R, HISSAM A. S and WALLNAU. C. K. (1998). AGORA: A Search
Engine for Software Components, Software Engineering Institute, Carnagie Mellon
University, USA.

SOFTWARE ENGINEERING INSTITUTE (SEI). (1998). Architecture Tradeoff
Analysis (ATA) and Software Architecture Analysis Method (SAAM), Software
Engineering Institute, Carnegie Mellon University, USA,
http: //www. sei. cmu. edu/ata/ata_init. html

232

SHAW M. (1996). Truth vs Knowledge: The Difference Between What a Component
Does and What We Know It Does, Proceedings 8th International Workshop on
Software Specification and Design, IEEE Computer Society Press, March 1996

SJAAK B. (1999). Requirements Engineering for ERP: Requirements Management
for the Development of Packaged Software, Proceedings of the 4`h International
Symposium on Requirements Engineering (RE99), IEEE Computer Society, June
1999

SOMMERVILLE I. (1992). Software Engineering, Addison-Wesley 4 ̀h Edition

SUCHMAN L. (1987). Plans and Situated Actions: The Problems of Human-Machine
Communication, Cambridge University Press.

TEPANDI J. (1995). Quality Requirements and Decision-Making in Software
Procurement, Tallinn Technical University, Estonia

THAYER L. R and DORFMAN L. (1997). Software Requirements Engineering, 2nd
Edition, 1997.

THOMAS B. (1999). Meeting the Challenges of Requirements Engineering,
Spotlight, SEI Interactive, Volume 2, Issue 1, March 1999

TRAN V. and LIU D. (1997). A Procurement-centric Model for Engineering
Component-based Software Systems, Proceedings of the 5`h International Symposium
on Assessment of Software Tools and Technologies (SAST'97), pp70-80

VIGDAR R. M, GENTLEMAN W. M and DEAN C. J. (1996). COTS Software
Integration: State of the Art, National Research Council, Canada, NCR Report
Number 39198,1996.

VIGDER R. M. and DEAN C. J. (1997). Architectural Approach to Building Systems
from COTS Software, Proceedings of the 1997 Center for Advanced Studies
Conference (CASCON 97), Toronto, Ontario, 10-13 November 1997

VOAS J. (1998). Maintaining Component-Based Systems, IEEE Software, vol. 15, no
14, pp 22-27, July/August 1998 Issue

WALLANAU C. K, CARNEY D and POLLAK B. (1998). How COTS Software
Affects the Design of COTS intensive System, SEI June 1998 Report.

WATERS N. (1995). Systems Architecture and COTS Integration, Proceedings of the
SEI/MCC Symposium on the Use of COTS in Systems Integration, SEI Special
Report CMU/SEI-95-SR-007, June 1995

WATTS S. H. (1989). Managing the Software Process, Addison-Welsey.

ZAVE P. (1995). Classification of Research Efforts in Requirements Engineering,
IEEE Symposium in Requirements Engineering

233

Secondary References

ACHOR C. B. and ROLLAND C. (1997). Introducing Genericity and Modularity of
Textual Scenario Interpretation in the Context of Requirements Engineering, CREWS
Technical Report, Centre de Recherche en Informatique, Universite de Paris 1, Paris,
France.

ALLEN P. (1998). Component-based Architecture: A Call for Pragmatism, in the
Proceedings of the CBISE98 of the CAiSE98, Pisa, Italy, June 1998.

BARON J. (1992). Thinking and Deciding, Cambridge University Press

BEUS-DUKIC L and WELLINGS A. (1998). The Requirements for COTS Software
Component: A Case Study, Conference on European Industrial Requirements
Engineerinhg, CEIRE'98,19-20 October 1998, London, UK

CARNEGIE MELLON UNIVERSITY, CBS Overview, Software Engineering
Institute, <URL: http: //www. sei. cmu. edu/cbs/overview. htm]

CARNEY D. (1997). Assembling Large Systems from COTS Components:
Opportunities, Cautions and Complexities, Software Engineering Institute, Carnegie
Mellon University, June 20 1997.

CLEMENTS C. P. (1995). From Subroutines to Subsystems: COTS-Based Systems,
American Programmer, v8 no. 11, Cutter Information Corp, November 1995

CLEMENTS P., KAZMAN R. and ABOWD G. (1995). Predicting Software Quality
by Architecture-Level Evaluation, Proceedings 5th International Conference on
Software Quality, Austin 1995,485-498.

CLEMENTS P. C. (1996). Coming Attractions in Software Architecture, Technical
Report CMU/SEI-96-TR-008, Software Engineering Institute, Carnegie Mellon
University, January 1996.

COLLINS D. C. (1972). Applications of Multiple Criteria Evaluation, in Proceedings

of Multiple Criteria Decision Making, University of South Carolina, October 26-27,
1972

EASTERBROOK S. (1993). Domain Modeling With Hierarchies of Alternative
Viewpoints, Proceedings of IEEE Symposium on Requirements Engineering, IEEE
Computer Society Press, 65-72

FOWLER P. (1998). Requirements engineering and industrial uptake, Proceedings
4th International Conference on Requirements Engineering (ICRE98), IEEE
Computer Society Press

FRANKEL Y. and ORR G. (1996). Commercial Off The Shelf (COTS) Software
Evaluation: Report for Maintaining and Upgrading the Ground System (MUGSy),
Technical Report, Goddard Space Flight Center, Greenbelt, Maryland, March 1996

234

GOTEL 0 C. Z. and FINKELSTEIN A. C. W. (1994). An Analysis of the
Requirements Traceability Problem. Proceedings of the International Conference on
Requirements Engineering (ICRE'94), pp 94-101, Colorado Springs, Colorado, USA,
April 1994

GREEN G. R. T. and BENYON D. (1996). The Skull Beneath the Skin: Entity-
Relationship Models of Information Artefacts, International Journal of Human-
Computer Studies 44(6), 801-828.

GREENSPAN S., BORGIDA A. and MYLOPOULOS J. (1986). A Requirements
Modeling Language and its Logic', Information Systems 11(1), 9-23.

HALL R. P. (1989). Computational Approaches to Analogical Reasoning: A
Comparative Analysis, Artificial Intelligence 39,39-120.

KOLODNER J. L. (1993). Case-Based Reasoning, Morgan-Kauffman.

LOUCOPULOS P. and KAVAKLI E. (1994). Enterprising Modelling and the
Teleological Approach to Requirements Engineering, Department of Computing,
UMIST, Manchester, UK

MAIDEN N. A. M. and SUTCLIFFE A. G. (1996). Analogical Retrieval in Reuse-
Oriented Requirements Engineering, Software Engineering Journal 11(5), 281-292.

MAIDEN N. A. M., SPANOUDAKIS G. and NISSEN H. W. (1996). Multi-Perspective
Requirements Engineering Within NATURE, Requirements Engineering Journal 1(3),
157-169.

MORRIS P., MASERA M. and WILIKENS M. (1995). Industrial Workshop on
Requirements Engineering: a Report on the Results Obtained, Technical Report
TP2 10, Ispra Italy.

MULLER P. C., de POORTER R., de JONG J. and van ENGELEN J. M. L. (1996).
Using the Internet as a Communication Infrastructure for Lead User Involvement in
the New Product Development Process, Proceeding 5th IEEE Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises', IEEE Computer Society
Press, 220-225.

NESEIBEH B, KRAMER J and FINKELSTEIN A. (1994). A Framework for
Expressing the Relationships Between Multiple Views in Requirements Specification,
IEEE Transactions on Software Engineering 20(10), 760 - 773

OBERNDORF P. A., BROWNSWORD L and MORRIS E. (1997b). Workshop on
COTS-Based Systems, Software Engineering Institute, Carnegie Mellon University,
Special Report CMU/SEI-97-SR-019, November 1997b.

PAULK M. C., CURTIS B., CHRISSIS M. B. and WEBER C. V. (1993). Capability
Maturity Model for Software, Version 1.1, CMU/SEI-93-TR-24, Software
Engineering Institute, Carnegie-Mellon University.

235

PLIHON V., RALYTE' J., BENJAMIN A., MAIDEN N. A. M., SUTCLIFFE A. G.,
DUBOIS E. and HEYMANS P. (1998). A Reuse-Oriented Approach for the
Construction of Scenario Based Methods, submitted to ICSSP98 Conference,

RANDELL B, RINGLAND G and WULF B. (1994). Software 2000: A View of The
Future, ICL and the Commision of the European Communities, April 1994

SOMMERVILLE I, RODDEN T, SAWYER P, BENTLEY R and TWIDALE M.
(1993). Integrating Ethnography into Requirements Engineering Process, Prceedings
of IEEE Symposium on Requirements Engineering, IEEE Computer Society Press,
165-173

SPANOUDAKIS G. and CONSTANATOPOULOS P. (1995). Integrating
Specifications: A Similarity Reasoning Approach, Journal of Automated Software
Engineering 2(4), 311-342.

STAVRIDOU V. (1997). COTS, Integration and Critical Systems, Proceedings IEE
Colloquium on CITS and Safety Critical Systems, IEE Digest 97/013, January 1997

SUTCLIFFE A. (1997). A Technique Combination Approach to Requirements
Engineering, Proceedings 3rd IEEE Symposium on Requirements Engineering, IEEE
Computer Society Press.

YU ESK. (1993). Modelling Organisations for Information Systems Requirements
Engineering, Proceedings of IEEE Symposium on Requirements Engineering, IEEE
Computer Society Press, 34 -41.

DAVIES M. A (1999). Making Requirements Management Work for You, Omni-
Vista Inc.

CARNEY D. (1999). Requirements and COTS-Based Systems: A Thorny Question
Indeed, The COTS Spot, SElinteractive, Vol. 2, Issue 2, June 1999

SWANSON D. B. and McMANUS G. J. (1997). C++ Component Integration
Obstacles, TRW, Inc.

236

Bibliography

Ncube C and Maiden N A. M. 2000, Selecting the Right COTS Software: Why

Requirements are Important, to be published as a chapter in a book entitled:
Component-Based Software Engineering: Putting the Pieces Together, an Addison-

Wesley Longman Publication, summer 2000

Ncube C& Maiden N. A. M. 2000, COTS Software Selection: The Need to make

Trade-offs Between Systems Requirements, Architectures and COTS/Components, to

appear in the proceedings of ICSE-2000, Limerick, Ireland

Ben Anchor C& Ncube C. 2000, Engineering the PORE Method for COTS Selection

with the MAP Process Meta-Model (to appear in the REFSQ*2000, in conjunction

with CAiSE 2000, Stockholm, Sweden

Ncube C and Maiden N. A. M. (1999). Guiding Parallel Requirements Acquisition and

COTS Software Selection, Proceedings of 4 ̀h International Symposium on

Requirements Engineering, Limerick, Ireland, June 1999

Ncube C and Maiden N. A. M. (1999). PORE: Procurement Oriented Requirements

Engineering Method for the Component-Based Systems Engineering Development

Paradigm, Proceedings of the 2nd International Workshop on Component-Based

Software Engineering (held in conjunction with ICSE'99), Los Angels, USA, May

1999.

Maiden N. A M, James L and Ncube C (1999). Evaluating Large COTS Software

Packages: Why Requirements and Use Cases are Important, Proceedings of the I"

International Workshop on Ensuring Successful COTS Development (held in

conjunction with ICSE'99), Los Angels, USA, May 1999.

Maiden N. A. M. and Ncube C. (1998). Acquiring Requirements for Commercial Off-

The-Shelf Package Selection, IEEE Software, 15(2), 46-56.

238

Ncube C and Maiden N. A. M. (1998). Why Model Software Products: Why, Guiding

the Component-Based Information Systems Engineering Process, Of Course!,

Proceeding of the CBISE'98 of the CaiSE'98, Pisa, Italy, June 1998.

Maiden N. A. M., Ncube C. and Moore A. (1997). Acquiring Requirements for

Commercial Off-The-Shelf Package Selection: Some Lessons Learned,

Communications of the ACM, 40(12), 21-25.

Ncube C. and Maiden N. A. M. (1997). Procuring Software Systems: Current Problems

and Solutions. Presented at 3rd International Workshop on Requirements

Engineering, Barcelona, Spain, June 97. CAiSE proceedings.

239

Glossary

NOTE: Words in italics are also defined in the glossary.

Term Definition
ACRE ACquisition of Requirements Framework that provides methods for

acquiring requirements from stakeholders and assists requirements
engineers to choose methods for requirements ac uisition.

AHP Analytical Hierarchy Process is decision-making technique that is based on
decomposing a multi-criteria decision problem into hierarchy and ranks
alternatives through pair-wise comparison between the alternatives.

All products eliminated All the products that were being considered have been found not meet
customer requirements and therefore have been rejected.

Atomic functional Individual requirements that have been decomposed to their lowest level.
requirements
Bespoke development System is developed in-house to provide specific functionality or services.
Candidate product A product that is being considered as a possible solution.
COTS-Based Is the process of developing systems using COTS software products. COTS
Development (CBD) software products are bought of the shelf and adapted or integrated to

provide system functionality.
Component-Based Is the process of building applications from discrete, inter-related software
Software Engineering components in which applications are developed by integrating existing
(CBSE) components.
Complex non-functional Non-atomic requirements that have dependency relationships with other
requirements requirements. Achieving each requirement may require achieving many

other supporting requirements.
Compliance checking Determining that a mapping relationship exists between a product feature

and a functional requirement.
" Compliance mapping Is a mapping between a problem (i. e. customer requirement) and a potential

solution to that problem (i. e. product feature).
Compliance model Models mapping between one or more customer requirements and one or

more product features. It models the relationship between the product
model and the requirement model.

Concurrent requirements Requirements acquisition enables product selection and product selection
acquisition and product informs requirements acquisition therefore resulting in concurrently
selection acquiring requirements and selecting products.
Context-driven process The next step to be performed in the process is driven by the context of the

product model
Contract production The process of negotiating a contract with the supplier of the product based
process on the customer requirements.
Commercial-Off-The- Software products sold, leased or licensed to the general public from a
Shelf (COTS) software commercial entity in the business of making a profit from the product; with
product multiple identical copies available to different organisations; where

integrators use the product without modification of its internals; and the
commercial entity provides product support and evolution

Customer The person/s paying for the development, and owner of the delivered
system.

Customer requirements Are the needs of the person paying for the system
Degree of compliance A score showing compliance mapping between requirement and product

features. The degree of compliance helps to prioritise the requirements
during product selection

Desirable A requirement or product feature that is not critical to the success of the
system.

Discriminating Those requirements that help to discriminate between candidate products.
requirements Help discriminate one product from another in terms of features provided.
Enterprise Resource Very large enterprise-wide off-the-shelf integrated packaged application
Planning (ERP) software solutions that require high levels of organisational changes in their

implantation.

240

Essential goals The goals that each COTS product selection process must achieve in order
for it to be a success.

Essential requirements Those requirements that the system can not do without. There are the core
functionality of the system and they are not met, the system would not
fulfil the needs of the stakeholders. Essential requirements are mandatory
and have a very high priority.

Expert evaluation Experts in requirements engineering and product selection determine the
usefulness and effectiveness of the advice and guidance provided by the
nronosed method

First-pass requirements The initial requirements identified by the requirements engineering team
and are used to determine the scope of the candidate products to be
identified in the market. First-pass requirements are usually very high level
and are the core of the user's needs.

Fit criteria Objective measure for defining the meaning of a requirement, and
eventually testing whether a given solution satisfies the original
requirement. It is an unambiguous test of whether a solution meets the
requirement. An objective measure that will enable testing to determine if
the goal has been met by the product.

Fixed-point scenario Is the idea that the at some point in time all the stakeholders know
everything what they want and agree with everyone else and everything
will remain the same for the entire duration of the system, e. g. producing a
requirements specification and freezing it before starting building the
system.

Functional requirement. An action that the product or system must be able to take, something that
the system must do.
Functional requirements are the fundamental subject matter of the system.

Generic process model Is the processes that are often undertaken although it's not necessary to
perform all the processes during product procurement

Global constraints Are the constraints that apply to the system as a whole. For example, the
customer for the system is a global constraint, as is the Purpose of the
System

Hands-on-evaluation Evaluation in more detail of shortlisted alternative products in the second
stage of the evaluation process during vendor demonstrations using test
cases for individual requirements

Inference engine Is the most important component of the of the process advisor prototype
tool. The inference engine represents the controller and is where reasoning
about the problem occurs and where decisions are made about what
happens next and uses several rulesets to guide the process logic reasoning

Insufficient requirements The currently identified requirements are not sufficient enough to enable
effective product evaluation or discriminating between candidate products.

Iterative process Iteratively rejects non-compliant products at the same time acquiring
detailed customer requirements, therefore resulting in the number of
acquired increasing and the number of candidate product considered
systematically decreasing

MCDA Multi-Criteria Decision Aid
Multi-layered process Provides three levels of process guidance at any point in the process by
guidance guiding the team to achieve process goals and which technique to use to

solve the current situation.
Non-functional Are the behavioral properties that the specified functions must have, such
requirements as performance, usability
Optional Not critical, can do without it
Packaged-based Building systems by integrating different software packages
development
Paper evaluation Evaluation and selection or rejection of products using information

provided by suppliers. The information provided by vendors is collected
and compared against customer requirements. The most critical high level
requirements are used for prod uct-re uirements compliance checking.

Paradigm shift Fundamental changing the way things are done
PORE Procurement Oriented Requirements Engineering method for guiding

241

requirements engineering team in acquiring requirements for selecting off-
the-shelf software products.

PORE method box A component of PORE that recommends techniques, methods and tools to
be used during product selection. The method box determine the relevant
technique that will be used to solve process situation

Process advisor The process advisor iteratively provides the team with guidance and
intelligently tailor the advice based on the information provided by the
process engine

Process chunk The way in which PORE delivers advice and guidance to the requirements
engineering team

Process guidance Advice prescribed by the method to the requirements engineering about
what to do next, based on the current state of the compliance model

Process logic engine Links together all the components of the process advisor prototype tool.
algorithm The process engine is responsible for detecting current situations and then

recommends process advice to the requirements engineering team.
Process triplet The process advice and guidance as given to the requirements engineering

team providing the process goal to be achieved, techniques to use and the
situation that provides context.

Procurement Purchasing the system from another organisation
Product The system that we are attempting to deliver. This could be a piece of

software, the installation of a package, a set of procedures, a piece of
hardware, a piece of machinery, a new organisation, or almost anything.

Package acceptance Checks the delivered package or system developed from the packages
process against customer requirements
Product evaluation The process of determining whether the product has the capabilities needed

to solve the problems
Product feature A capabilities that the product possesses
Product model A model showing the properties of a software product and its abstract meta

concept and their meta relationships.
Requirement A measurable statement of intent about something that the system must do,

or a property that the product must have, or a constraint on the system.
Requirement model A model showing the attributes of a requirement and its abstract meta

relationships
Requirements Is the first phase of requirements engineering process, which mines
acquisition requirements out of documents or elicits requirements from a face-to-face

communication between requirements engineer and stakeholders.
Requirement Other requirements that use the same information, or have a change effect
dependencies
Requirements Is the process of embedding systems within their environment rather than
Engineering on the prescription of the system's functionality or structure. It is the

process of establishing the services the system should provide and the
constraints under which it must operate.

Scenario is one specific ordering of events, the ordering of which is dependent on
the start - and end -events for each action.

Scenario model Is a model that depicts the sequence of tasks that are performed by a
stakeholder. The model describes a sequence of actions and events for a
specific case of some generic task which the system is intended to
accomplish.

Scenario walkthrough is a systematic way of traversing a scenario model and identifying relevant
impacts

Simultaneous trade-off Continuous evaluating the advantages and disadvantages between
stakeholder requirements, software products and the system infrastructure

Situation Is the current state of the compliance model inferred from the properties of
the product model and the requirement model.

Situation guidance The current situation determines what the requirements engineer should do
next in the process given as a process triplet

Situation model is dynamically constructed model that determines the next process goals
and techniques t apply based on the current situation inferred from the
compliance model

242

Situation rules Rules that infer the current state of the product model and requirement
model to determine compliance relationships between product features and
requirements

Software component Is a unit of software that can be independently deployed and composed
without modification according to a composition standard defined by a
software componentframework.

Software component Defines a standard for component composition and interaction and how
framework other entities interact with the component as specified by the component's

defined interfaces.
Stakeholder A person who has an interest in the successful development of the system

or other people or organizations who are affected by the system or whose
input is needed in order to build the system.

Storyboard Are pictorial representation of possible ways the stakeholders would use
the system. There are extensions of the text-based scenario models and they
are used in conjunction with the scenarios to capture what happens and
those that are involved in a pictorial way.

Supplier demonstration Is a detailed product evaluation in which suppliers of shortlisted products
are invited to the customer site to conduct a controlled demonstration of
their product to the evaluation team.

Template Systematic way of presenting process high level process guidance and what
techniques to use at each stage.

Typical problems The problems that were experienced by a particular organisation during the
process of procuring their software systems

User trial evaluation A final preferred product is installed at the customer site so that it can be
further evaluated in a more representative business environment.

243

