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ABSTRACT

The available experimental evidence demonstrates the extreme
nonlinear material behaviour of reinforced concrete
structures. These nonlinear effects are attributed to the
collective behaviour of the constituent materials in addition
to factors such as cracking, crushing, aggregate interlock,
creep, shrinkage, bond slip and rate of loading. Analytical
methods have been improved in the past two decades as a
result of the availibility of more powerful computers. It is,
therefore, feasible to model these nonlinear features in
order to conduct an analysis of the behaviour of reinforced
concrete structures. The present research is concerned with
some of these nonlinear effects. These include the
formulation of a constitutive model for the three-dimensional
stress-strain relationships of concrete and the mathematical
modelling of cracked and crushed concrete. The proposed
models have been implemented into a finite element system for
the	 analysis of reinforced and pre-stressed 	 concrete
structures.

Chapter One is a general introduction to structural
nonlinearities and the finite element method. The structure
of the thesis is also outlined. Chapter Two reviews available
theoretical approaches used for the formulation of the
concrete behaviour and assesses their relative advantages.
The theory of plasticity is discussed in greater depth as it
forms the foundation of the work in Chapter Three.

A three-dimensional concrete yield surface is developed in
Chapter Three. This yield surface is used in the theory of
hardening plasticity to establish the incremental
constitutive relationships for concrete. Furthermore, this
model is extended to represent the strain-softening effect in
concrete. The hardening and softening rule which has been
developed is based on experimental results obtained from the
literature. The results of the proposed model are compared
with these experimental data.

The cracking and crushing of concrete have been studied in
Chapter Four. A rough crack model is developed for concrete
and crack stress-displacement relationships due to aggregate
interlock are formulated. A mathematical model is proposed
for the effect of dowel forces in cracked reinforced concrete
structures. The effect of bond stress between a steel bar and
concrete has been introduced by a tension-stiffening factor
and suitable formulations has been proposed. The results from
the crack related models have also been compared with
experimental data from the literature. Finally, stiffness
matrices for cracked plain and reinforced concrete have been
developed using a smeared crack approach.

The concrete constitutive model and the crack model developed
in Chapters Three and Four have been implemented into a
finite element program for the numerical analyses given in
Chapter Five. This implementation has been carried out for
plane stress and axisymmetric solid stress problems. A
reinforced concrete beam and a prestressed concrete reactor
vessel have been analysed and the results compared with
experimental data. Finally Chapter Six presents the overall
conclusions and recommendations for further research.
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CHAPTER ONE

INTRODUCTION

1.1 General

The nature and behaviour of reinforced concrete is extremely

complex and except in limited circumstances its behaviour is

nonlinear. Current design methods are usually dictated by

international codes of practice which seek to simplify the

behaviour of reinforced concrete structures to provide

practical methods for design.

Certain types of structure such as nuclear pressure vessels,

offshore structures,	 large span bridges and earthquake

resistant	 structures,	 however,	 require special design

considerations. The nonlinear characteristics of these

structures is required to be known in order to determine

their ultimate load behaviour.

Modern computational techniques, in particular the finite

element method,	 offer general and powerful analytical

techniques in which important parameters affecting the

nonlinear behaviour of reinforced concrete structures can be

conveniently and systematically varied. These techniques

provide verification of the design codes. The finite element

Piethod can trace the entire history of structural behaviour

up to the failure limit and may be used for studying

constitutive assumptions and their effects on the overall

structural performance rather than the development of a new

design method.
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In general, the design procedure is based upon good practice

to determine an initial structural configuration. Once this

configuration is known, a refined finite element analysis may

be carried out to determine internal forces and moments which

enables the designer to check the concrete dimensions and

steel requirements. An ideal analytical procedure should

accommodate both material and geometrical nonlinearities. The

main obstacles impeding the development of an implicit

analytical approach are an adequate description of the

mechanical properties of concrete and steel and 	 their

interaction. These obstacles give rise to associated

computational complexities. Research continues to remove both

these obstacles.

1.2 FinIte Element Method

The finite element method is a solution technique for

structural analysis in which a domain of arbitrary shape and

boundary condition is simulated by an assemblage of finite

elements interconnected at a finite number of nodes for which

a solution is available within the laws of continuum

mechanics. The technique relies on minimising the total

potential energy to achieve an approximate solution.

The total potential energy P, due to an arbitrary nodal

displacement iS, is the summation of the internal strain

energy P, and potential energy of the external loads 
e To

achieve equilibrium, the total potential energy P, must be

zero.
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Thus

=i-	
e
	 (1.1)

where	 P1	 T a dv	 (1.2)

T F dv + 5 6T T ds	 (1.3)

in which C is the strain tensor, a stress tensor, F is the

vector of body force and T is the vector of surface

traction.

The internal displacement u, at any point within the element

can be expressed in terms of nodal displacement 6, by means

of the displacement function N, as

u = N 6	 (1.4)

Differentiation of Eq. 1.11 establishes the relationship

between the strain c , and the nodal displacement 6, as

= B 6	 (1.5)

In which B is the strain matrix. The element stress tensor

a, is related to the strain tensor c, by means of modular

matrix D

a =Dc
	

(1.6)
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Combining Eq's. 1.1 to 1.6, leads to

6 T ( J BT D B dv) - 6T(JV F dv +	 T ds) =0 (1.7)

dividing Eq. 1.7 by	 produces the general stiffness

relationships

f:K6
	

(1.8)

where	 =	 F dv +	 T ds

total applied loads, and

	

K =	 BT D B dv

= stiffness matrix

For known applied nodal loads f, the nodal displacements

are calculated from Eq. 1.8 which can be used in Eq's. 1.5

and 1.6 to calculate the element strains and stresses. This

procedure is termed the 'Displacement Method'.

In nonlinear finite element analysis the total applied load

f, is added in increments of Af and for each load step the

increments of nodal displacement M, are related to the load

increments by the tangent stiffness matrix Kt, as

Kt 6
	

(1.9)

In addition, for every load step the residual forces 11), are

calculated as

=	
BT a dv - f
	

(1.10)
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for every incorrect stress and displacement non-zero residual

forces are obtained. The residual forces il, are applied as

additional nodal forces to bring the forces associated the

assumed displacement into nodal equilibrium. For each load

increment an iterative procedure such as Newton-Raphson must

be performed until negligible residual forces are obtained

thus satisfying equilibrium.

1.3 Objectives of the Research

Although the fundamentals of the finite element method of

structural analysis are well established, the application of

the method to investigate the nonlinear behaviour of

structures is a current subject of research activity. This

thesis concentrates on the nonlinear material behaviour of

concrete. This nonlinearity is observed in all reinforced

concrete structures and it is essential to consider its

effect for an exact analysis.

Nonlinear material behaviour can be separated into time-

independent effect and time-dependent effects such as creep

and shrinkage. This thesis is concerned with time-independent

nonlinear effects, namely the stress-strain relationships and

cracking of reinforced concrete. Concrete properties vary

widely and depend upon such factors as design mix, curing

cycle and the rate of loading. Concrete is generally In a

biaxial or trlaxial state of stress unlike the steel

reinforcement which is usually subjected to an uniaxial state

of stress within structural elements prior to cracking.

During the formation of sharp cracks the steel reinforcement
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can be subjected to kinking and shear as a result of the

relative movements of crack surfaces. A major part of the

research reported in this thesis is, therefore, related to

establishing general constitutive relations for concrete

subjected to multiaxial loading.

Although concrete is strong in compression, reinforced

concrete structures which are subjected to tensile stresses

can crack at relatively low load. Cracks can propagate at

increasing	 load which then affect local stresses 	 and

displacements as well as the overall structural behaviour.

Consequently	 a further part of this investigation	 is

concerned with modelling the behaviour of cracked reinforced

concrete. This requires a mathematical definition of

aggregate interlock, dowel action of steel reinforcements and

tension-stiffening effects due to bar-to-concrete bond. It is

also essential to adopt suitable procedures to represent

crack propagation so that a numerically stable solution is

achieved.

1.11 Outline of the Research

The work reported in this thesis is concerned with the

establishment of constitutive equations to represent the

stress-strain behaviour of concrete. A mathematical

description of the behaviour of cracked reinforced concrete

13 also given. The theoretical work has been Implemented

within the finite element method to enable the analysis of

concrete structures to be undertaken. The chapters which

follow the Introduction are now briefly described
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1) Chapter Two represents a review and summary of the

different constitutive models for concrete. The subject

of constitutive laws governing the behaviour of the

concrete material is classified into four groups:

elastic, plastic, plastic-fracturing and endochronic.

These models are described and their merits are assesed.

Throughout this chapter the performance of each model is

reviewed.

ii) The concept of the theory of hardening plasticity is

used to describe the constitutive equations of concrete

subjected to a multi-axial state of stress in Chapter

Three. Firstly, a triaxial failure surface is developed

for which the shape can be defined by the appropriate

strength properties of concrete. Secondly, the

incremental stress-strain relationships of concrete are

obtained using a flow rule and the consistency condition

for plastic flow. Finally, an isotropic hardening law is

used to model the nonlinearity in the pre-ultimate

region. The uniform expansion of the loading surface is

controlled by the hardening parameter , which is

mathematically defined as a function of non-recoverable

strains. Furthermore, the proposed model is extended to

define the post-ultimate behaviour of concrete. This is

achieved by a progressively collapsing failure surface

after the ultimate strength is reached. The collapse of

the failure surface is monitored by the hardening

parameter 8, which has a value less than unity in the

strain-softening region and progressively decreases with

non-recoverable strains. The results are compared with

published work.
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iii) Chapter Four considers the subject of cracking in

concrete and the effects of steel reinforcement on the

behaviour of cracked concrete. A crack theory is

developed by considering aggregate interlock between

crack surfaces of concrete. The mathematical model for

the interlock shear transfer is obtained empirically.

The effects of dowel forces due to bars crossing a crack

and the tension-stiffening which results from bar-to-

concrete bond are included in the theory. Stiffness

matrices which represent the effects of	 aggregate

interlock, dowel action and tension-stiffening are

developed for cracked plain and cracked reinforced

concrete elements.

iv) Chapter Five deals with the application of the

constitutive laws developed in Chapter Three and the

cracking models developed in Chapter Four using the

finite element method for the analysis of reinforced

concrete structures. The proposed material model is used

for the analysis of plane stress and axisymmetric

problems. The proposed material model has been

incorporated into a general purpose nonlinear finite

element system called LUSAS.

The crack mechanism in reinforced concrete structures

has been dealt with using the 'smeared' crack theory

rather than the 'discrete' crack approach. That is, the

effect of cracking is considered by modifying the

constitutive relations for uncracked concrete and an

8



average effect of the cracks being introduced into the

theory. This has been achieved by using the proposed

crack theory developed in Chapter Four.

The steel reinforcement has been modelled as isolated

members interconnected to the concrete elements in the

numerical examples which are presented in Chapter Five.

The reinforcement was assumed to be rigidly bonded to

the concrete at the nodal points. It is an approximate

method which ignores the bond slip between steel and

concrete. Analytical results obtained from the proposed

concrete model are compared with published experimental

data.

v) In Chapter Six the general conclusions from this

research are considered together with recommendations

for further research.
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CBAPTER TWO

REVIEW OF LITERATURE

2.1 Introduction

Many different constitutive models have been developed in the

last two decades to define the stress-strain relationship of

concrete subjected to different states of stress. Both

empirical and theoretical approaches have been adopted to

represent the complex stress-strain behaviour of concrete.

The theories which have been developed can be classified into

the following groups: elastic, plastic, plastic-fracturing

and an endochronlc theory of plasticity. These groups include

a wide range of concrete models which vary in simplicity,

accuracy and applicability. At the present time, however,

research is needed to describe special features such as the

behaviour of high strength concrete and microcracking. In

addition, new experimental evidence is needed to understand

the general behaviour of concrete subjected to dynamic and

non-proportional loading.

2.2 Review of Different Theories for the Concrete Modelling

2.2.1 Elasticity Theory

Elastic and nonlinear elastic models, in general, obey the

Hookean formulation either in the form of incremental or

total stress-strain relationships given as

10



(2.1)

or	 do	 D dc
	

(2.2)

The constitutive matrix relating stresses to strains is

obtained by approximate or empirical techniques which avoid

the use of' more theoretical concepts such as yield surface,

flow rule or intrinsic time which are commonly used in the

plasticity and eridochronic theories.	 As a result, the

variable	 material stiffness matrix is obtained without

resorting to complex equations.

The majority of elasticity models, however, are primarily

limited to concrete material subjected to monotonic or

proportional loading only. There are two types of nonlinear

elastic formulation in this category known as the 'secant'

and the 'tangential' relations. The 'secant' or 'total'

formulation relates the current stress state to the current

strain state and assumes that there is a unique relationship

between them at any loading level. The disadvantage of this

type of modelling is that it is 'path-dependent' which is

not the case for a granular type material such as concrete.

These models may be applied during monotonic or proportional

loading.

The incremental formulation also known as 'hypo-elastic'

assumes that the Increments of stress and strain are linearly

related by a modular matrix which is dependent on the current

state of stress or strain or both. This type of formulation

Is 'path-dependent' and provides a more realistic method for

predicting the concrete behaviour under general loading

conditions.
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2.2.2 Plasticity Theory

Experimental evidence show that the nonlinear deformation of

concrete is inelastic and by implication only a portion of

strain would be recovered upon unloading. The recoverable

portion of strain is elastic while the irrecoverable portion

can be represented by the plasticity theory. At each stage of

loading, therefore, the deformation is the summation of

elastic and inelastic ( or plastic ) strains, Fig. 2.1, and

may be written as

C	 eP
	

(2.3)

or	 dc = d	 + dc
	

(2.)

The elastic portion of strain is defined by the Hookean law.

The plastic portion of strain is defined by a flow rule as

follows

ag
dc = dA
	

(2.5)

where	 g	 the plastic potential, and

= proportionality parameter

According to the plasticity theory the material flows

plastically when a certain limiting stress state is reached.

This limiting stress is defined by a surface in the stress

space known as the yield surface, f(cJ). Plastic flow occurs

when

f(a)	 0
	

(2.6)
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The stresses must remain unchanged during the plastic flow

which requires the stress vector to remain on the yield

surface. This requirement is known as the 'consistency

condition' and may be expressed as follows

df	 da =0	 (2.7)
aa

Combining these assumptions, the elasto-plastic stress-strain

relationship is given as

da = DeP dc	 (2.8)

where	 DeP	 De -

De = elastic modular matrix,

D	 = plastic modular matrix

	

De	 f De
aa

=	 ,and

	

A+	 De

A	 hardening modulus

There are two types of plasticity model, elastic perfectly

plastic and elastic strain-hardeninig plastic. Most plastic

models use the concept of 'associated plasticity' where it is

assumed that the plastic potential g, has the same shape,

size and configuration as the yield surface f. It is only

required, therefore, to define the yield surface for an

associated plasticity model. The accuracy of a plasticity

model depends upon how accurate the yield surface can

13



represent the material strength.

2.2.3 Plastic-Fracturing Theory

The concept of 'progressively fracturing ? solids was

developed by Dougill [1] for heterogeneous materials such as

rock and concrete which contains many fractures. It was

suggested that cracks propagate at different rate from many

fracture sites implying a general process which causes a

reduction in the stiffness of the material. It was proposed,

therefore,	 to	 treat	 stable progressive	 fracture	 in

heterogeneous solids within the theory of continuum

mechanics. Dougill's theory assumes that fracturing causes an

irreversible degradation of elastic moduli and leads to a

decline of stress at increasing strain and the deformation is

reversible upon complete unloading, Fig 2.2.

The theory of plasticity considers nonlinearity effects as a

dissipation of energy due to dislocation and sliding of

material particles while the fracturing theory associates

nonlinearity to progressive fracturing which results in the

loss of stiffness. Concrete exhibits energy dissipation,

however, by both fracturing and yielding. The former prevails

at low hydrostatic pressure and the latter dominates the

material behaviour at high hydrostatic pressure.

Bazant and Kim [2] developed a technique by combining the

hardening plasticity and the progressively fracturing

theories to propose a theory of 'plastic-fracturing' for

concrete, Fig 2.3. Increments of stress for the plastic-



fracturing theory are combination of stresses - due to the

elastic and the plastic deformation and the decrement of

fracture stresses. The deviatoric and hydrostatic stress

increments are given as

(2.9)ds	 2G( de	 - de	 ) - ds

da	 = 3K( dc - dc	 )	
fr

- da (2.10)

akk
where	 a	 = - = mean normal stress,

3

C	 - = mean normal strain,
3

1
ajj -	 ô1i

= deviator of stress,

ejj = Cjj -

= deviator of strain,

= Kronecker delta,

K	 = bulk modulus,

G	 = shear modulus, and

1, j = 1, 2 or 3

indices	 fr	 and	 p1	 indicate	 plastic	 and	 fracture

respectively.

Plastic strains are obtained from the flow rule and a yield

surface. The decrement of fracture stresses is calculated by

a flow rule in conjunction with a surface analagous to the

yield surface . This yield surface is defined in the space of

strains and is called the 'fracture surface'.
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By combining Eq's 2.9 and 2.10 the incremental stress-strain

relationship of concrete is obtained as

da	 DePf d
	

(2.11)

epf	 el	 p1	 fr
where	 D	 D	 -D	 -D

Del = elastic modular matrix,

= plastic modular matrix, and

Dfr = fracture modular matrix

2.2. 11 Endochronic Theory

The endochronic theory is a novel form of constitutive

relation for time-independent as well as time-dependent

inelastic materials. The major difference between this theory

and those previously described is that the incremental

stress-strain relationship is nonlinear. This theory is a

special case of viscoplasticity in which the plastic rate

coefficient depends on stress and strain as well as strain

rate [3]. The theory was originally proposed by Schaperg [II],

and Valanis [5] showed the capablities of this theory to

model the loading and unloading irrevesibility.

The endochronic theory is characterised by the use of a non-

decreasing scalar variable known as 'intrinsic time'. The

.ncrements of this variable depend on strain increments and

are assumed to control the magnitude of the inelastic strain

increments. The first application of this theory to concrete

was proposed by Bazant and Bhat [6] which was later improved

to	 overcome	 the problems concerning 	 its	 uniqueness,
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stability, continuity and energy dissipation during a load

cycle [7,8]. The most recent endochronic theory for concrete

has been suggested by Bazant and Shieh [8] in which the

incremental stress-strain relationship is written in the form

of deviatoric and hydrostatic relations and given as follows

ds1	
de	 + dede 1 =	 +

2G

dc
de	 =	 + dA + dA' + dA"

3K

akk
where	 a	 =	 = mean normal stress,

3

kk
c	 = mean normal strain,

3

1

S jj	 -	
âjj

deviator of stress,

ejj = ejj - - au

deviator of strain,

= Kronecker delta,

K	 = bulk modulus,

G	 = shear modulus,

1	 'I'
de	 -	 d	 increment of plastic

2G ejj	
deviatoric strain,

de	 dK	 = increment of fracture
ejj	

deviatoric strain,

(2. 12)

(2. 13)
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= plastic loading function,

fracture loading function,

d	 plastic intrinsic time,

dK	 = fracture intrinsic time,

dA	 inelastic dilatancy parameter due to shear,

dA'	 hydrostatic compaction parameter due to

compressive mean normal stress,

dA"	 shear compaction parameter due to deviator

of strain, and

1, j = 1, 2 or 3

2.2.5 General Remarks on Different Theories for Concrete

Modelling

In the previous sections different theories for modelling the

stress-strain relationships of concrete were described. The

stress-strain laws are in general classified into two groups:

The 'total' stress-strain formulations and the 'incremental'

stress-strain formulations.

The first group comes under the category of nonlinear

elasticity theory ( section 2.2.1 ). The main advantage of

this type of formulation is the numerical simplicity in its

application. The principal disadvantage is its range of

application which is limited to monotonic and proportional

loading regim because of inherent stress path-independent

characteristics.

The second group includes	 hypo-elasticity, 	 plasticity,

plastic-fracturing, 	 and	 endochronic theory.	 All these

theories produce constitutive relations which are path-
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dependent and offer a more realistic approach for the

representation of' concrete nonlinear behaviour without

restriction on the range of application.

The application of the hypo-elasticity theory is limited by

the number of parameters required to adequately model the

concrete behaviour. This limitation has lead to the use of

linear elastic incremental stress-strain relationships with

the tangential elastic moduli. Furthermore, uniqueness is not

always satisfied in the hypo-elasticity theory when an

arbitrary loading criterion Is introduced to distinguish

between loading and unloading. This may lead to a

discontinuity at or near neutral loading.

Currently, the theory of plasticity is the basis for the most

reliable type of constitutive laws for practical application.

The use of the normality rule and the convexity of the yield

surface guarantee a stable material law in accordance with

Drucker's postulate which assures the uniqueness of the

solution. The main shortcoming of the plasticity theory is,

however, its inadequate capability to treat strain-softening

in concrete.

The plastic-fracturing theory offers an attractive

alternative to the theory of plasticity accounting for

strain-softening and unloading stiffness degradation. The

main difficaulty in applying the plastic-fracturing theory is

the large number of material parameters which have to be

determined as well as the formulation of an unsymmetrical

modular matrix which causes analytical difficulties
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The endochronic theory offers a very powerful method for

predicting concrete behaviour but this theory is complex and

requires many material dependent constants. In addition,

because of its nonlinear Incremental stress-strain

relationship it requires very small load increments and a

more complicated computational technique compared with the

other incremental theories.

In the following sections the available concrete models which

are based upon the theory of plasticity are reviewed.

2.3 Concrete Models Based on the Theory of Plasticity

In section 2.2.2 the principles of the theory of plasticity

were described. It was mentioned that there are two types of

plasticity models the 'elatic-perfectly plastic' models or

the 'work-hardening plastic' model.

The elastic-perfectly plastic model consider concrete to be a

ductile material and assumes it behaves elastically until the

stresses reach a yield surface and the concrete can flow

plastically on that surface before fracture takes place. The

initial behaviour is modelled by either linear or nonlinear

elasticity models ( section 2.2.1 ). The plastic flow is

represented by a flow rule. The increments of stress are

represented by an elasto-plastic stiffness matrix C Eq. 2.8 )

in which the hardening modulus A, is zero. It is assumed

that crushed concrete loses its resistance against further

deformation and the current stresses reduce to zero, Fig 2.It.
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The observation of experimental 'esults suggests that the

nonlinear behaviour or concrete begins at about 30-60 percent

of the ultimate strength.	 This type of behaviour	 is

characterised by work-hardening plasticity and is a

gener'alisation of the perfectly plastic model. In this

approach, the limiting elastic behaviour is modelled by an

'initial yield surface'. Any state of stress within this

surface implies elastic material behaviour. A subsequent

surface called the 'loading surface' is developed which

replaces the initial surface when the material is stressed

beyond the elastic limit surface. Any state of stress within

this new surface is treated elastically. Further plastic

deformation will result if loading is continued beyond this

surface and a new loading surface will be developed. The.

process continues until an ultimate failure surface is

reached when failure or partial failure occurs by crushing or

cracking, Fig. 2.5.

The success of both perfect and work-hardening plasticity

models relies on how accurately the failure surface represent

the ultimate strength of' concrete. The predominant nonlinear

behaviour of concrete, from very low stress level, suggests

that a work-hardening plasticity model provides a more

realistic representation of the overall concrete behaviour.

In the following sections a review of the available yield

surfaces is presented and some work-hardening plasticity

concrete models are critically reviewd.
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2.3.1 A Review of the Available Yield Surfaces

The development of yield surfaces has been the subject of

research since the mid-ninteenth century. Many failure

surfaces have been proposed for use in plasticity models in

general or merely to set a criterion for failure of the

material. These surfaces vary in their degree of complexity

and their application is limited to certain type of material.

Rankin [9] proposed a failure model known as the 'tension-

cut-off'. The model has three planes perpendicular to the

stresses 01, 0, and 0 3 Fig 2.6. This surface is still used

to distinguish between compressive and tensile type of

failure. Later, Tresca [10] stated that the yielding begins

when the maximum shear stress reaches a certain value.

Von Mises [11] used the octahedral shear stress insteasd of

the maximum shear stress as the critical value. The effect of

hydrostatic pressure was not considered by Tresca and

Von Mises. Therefore, the failure surface must represent a

cylindrical surface with hexagonal or circular deviatoric

sections, respectively, Fig's. 2.7 and 2.8.

Mohr [12] suggested a failure surface which is governed by

the limiting shear stress r. The simplest form of Mohr

envelop is the straight line envelop of Coulomb [13], given

as

c - a tan
	 (2. l'I)

where	 c	 cohesion, and

angle of friction
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According to the Mohr-Coulomb theory, the critical failure of

material will occur for all states of stress for which the

largest of the Mohr's circles is just tangent to the envelop,

Fig. 2.9. Experimental evidence of Richart et al [14],

however, shows that a concrete failure envelop cannot be

represented by straight lines. A more realistic shape would

be a curved envelop for all the circles corresponding to the

various states of stress representing failure, Fig. 2.10. A

hydrostatic and deviatoric representation of the Mohr-Coulomb

criterion is given in Fig. 2.11.

An approximation to the Mohr-Coulomb law was presented by

Drucker and Prager [15]. For this approximation a smooth

cross-section was obtained by simple modification of the

Von Mises yield criterion. The resulting equation is as

follows

f(I1 J2 ) = cu 1 +	 - k	 (2.15)

where	 I.	 = first stress invariant,

J2	 second stress deviator invariant, and

a and k constants

This model, which has been used in soil mechanics, has the

advantage of using two stress invariants unlike the previous

models, Fig. 2.12. A comparison between the surface of

Drucker and Prager and of Mohr-Coulomb is given in Fig. 2.13.

The idea of using two stress invariants was later adopted by

Bresler and Pister [16]. They proposed their formulation in
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terms of the octahedral stresses as follows

2
Toct	 a0t	 foct\a-b	 ^c-

f01
(2.16)

where	 oct
	 = octahedral normal stress,

T00t
	 = octahedral shear stress,

fc
	 = uniaxial compressive strength

of concrete, and

a, b, and c	 material constants

This criterion has shown good agreement with the experimental

results of McHenry and Karni [17] and has been successfully

used for the biaxial failure modelling of concrete [18]. Its

accuracy, however, is not so good in the case of general

triaxial loading [19]. The main reason may be attributed to

the exclusion of the third stress invariant in this

formulation.

Willam and Warnke [20] suggested a 'three parameter' failure

surface for concrete in the tension and low compression

regions. The surface has straight meridians and a non-

circular cross-section. The failure surface is constructed by

fitting an elliptic curve to the tensile meridian r 1 at

o 00, and the compressive merdian r 2 at 0 60 ° , where 0

is the angle of similarity, Fig. 2.1 11. The general elliptic

trace is expressed in polar coordinates as

U+ V
r(0) =

	

	
(2.17)

W

2k



where	 U	 2r 2 (r - r)cosO

V - r 2 (2r 1 - r2 )[4(r - r)cosO + 5r -

W	 14(r - r)cos 2O + (2r 1 - r2)

The terms r 1 and r 2 are obtained as functions of uniaxial and

biaxial compressive strength and uniaxial tensile strength of

concrete, Fig. 2.15. The general criterion for failure is

written in terms of the average stresses aa and Ta and the

angle of similarity 0, and given as

1	 aa	 1
T, 0)	 + _____	

a - 1	 (2.18)
Z	 f0	r(0) f

where	 0a	 = average normal stress,

Ta	 = average shear stress,

r(e)	 meridian of failure surface ( Eq. 2.17)

Z	 = a function of concrete strength, and

uniaxial compressive strength of concrete

Fig. 2.16 shows the fit of this surface to triaxial strength

data [21]. A good fit is shown in the low compression region.

The model, however, deviates from the experimental values at

high compressive stress. Willam and Warnke [20] proposed an

Improved formulation to include the high compressive region

by replacing the straight meridians r 1 and r2 , by second

order parabolic curves expressed in terms of the average

hydro8tatic pressure aa, given by
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(2. 19)

(2.20)

a
a

fe

aa

to

+a2()

+ b2(a)

r i (aa ) = a 0 + a1

ri(aa) = b 0 + b1

where	 a0, a1, a2, b0, b1, and b2 	 material parameters

Fig. 2.17 shows the agreement between the results obtained

from the improved version and the triaxial strength data of

Launay and Gachon [21]. The failure surface is known as the

'five-parameter' model and the failure criterion is given by

1	 Ta
f ( aa, Ta 0) =	 - 1

r(aa, 0)	 fC

(2.21)

where r( Ga O)is given by Eq. 2.17 while r 1 and r2 are

obtained from Eq's. 2.19 and 2.20.

The general elliptic yield surface of Willam and Warnke [20]

was later used by Kotsovos [22] to obtain a failure surface.

He used the experimental results from the Concrete Material

Reseach Group at the Imperial College to define the meridians

of the failure surface in terms of the octahedral normal and

shear stresses a0 and t0 , in the following forms

0.7211

0.91111 (a0 + 0.05) 	 for 0 = 60°
fc	to

0.857

Toe(a0)	
for0=Q°

to	to

(2.22)

(2.23)
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Fig. 2.18 shows the fit of Kotsovos's model to triaxial

failure test results.

Ottosen [25] proposed a failure criterion which involves the

three stress invariants I, J 2 and J 3 as follows

J	 1;!-	 I
f(1 1 , j2 , cos3O) = A	 + x	 2 + B	 1 - 1

f	 f
C	 C

(2.211)

where	 A, B = shape parameters,

a function of the angle of similarity O,and

uniaxial compressive strenght of

concrete

Parameter A and B determine the curved shape meridians and A

is used to define the trace of the failure surface in the

deviatoric section. The function of A was proposed in the

following form

1
A = K 1 cos[ - cos 1 ( K2 cos3O )]	 for cos3 >00

3

(2.25)

ir	 1
A	 K 1 cos[ - - - cos (-K, cos3 O )] for cos3 >60°

I	 33
(2.26)

The constant parameters A, B, K 1 and K2 were obtained from

biaxial and triaxial failure test results. Fig. 2.19 shows a

comparison of Ottosen's failure surface with experimental

results.
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Hsieh et al [28] suggested the following yield criterion

involving the stress Lnvariants	 and J 2 , and the maximum

principal stress	 given as

f(1 1 , J 2 cY.) = A	 + B	 + C 1 + D	 - 1

(2.27)

where the upper bar notation indicates normalisation with

respect to the uniaxial compressive cylinder strength of

concrete. Parameters A, B, C and D are material dependent and

are obtained from biaxial and triaxial test results.

Fig's. 2.20 and 2.21 give the comparison of this surface with

experimental results.

Later, Chen and Schnobrich [31] proposed equations for the

tensile and compressive meridians based on the test results

and the least square fitting of Ottosen [25]. The results are

expressed in terms of p and which are measures of the

deviatoric and the hydrostatic stresses, respectively

/

	

= -6.4899 + 2.9458 ( 5.0343 - -	 for 00°
fc	 c

(2.28)
1/2

-3.6199 + 2.9458 (1.6907 -
	

for 0=600

(2.29)

where	 p =	 and

I
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The ultimate strength surface was obtained by fitting

hyperbolas to the corners of the Mohr-Coulomb failure locus

on the deviatoric plane, Fig. 2.22. The failure criterion is

defined as

f ( cYij )	 - [ ( 1 - s 2 0	 + s 2 e	 P 2 ]

(2.30)

where	 S	 71/3

p1, 2 = some function of Pt and P 0 , and

01	 angle of similarity

Nilsson and Glemberg [32] proposed a closed yield surface

which is generally suitable for granular material exhibiting

strain-softening and dilatancy at low hydrostatic pressure

and hardening and compaction at high hydrostatic pressure.

The surface is defined by a general ellipsoidal surface as

2	 2	 1/2

F =

	

2c -	 - i ) + ' TO ) - 1 }
b(0)-

(2.31)

where	 = octahedral normal stress,

octahedral shear stress,

= yield surface intersection with the

hydrostatic axis in the compression zone, and

= yield surface intersection with the

hydrostatic axis in the tension zone
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The deviatoric semi-axis b(e), is oltained in terms of the

corresponding values of b(0) atO equals 00 , b 1 , and 0 equals

600 , b 2 , using the elliptic deviatoric trace of Willam and

Warnke [20] given by Eq. 2.17, Fig. 2.23.

In summary, Von Mises or Tresca types of failure surface are

pressure independent and are suitable for pure shear problems

in compression. They are usually augmented by Rankine type

failure criterion ( tension-cut-off ) to model tensile

failure. The Drucker -Prager surface is probabaly the

simplest pressure dependent failure criterion, but it is not

very suitable for concrete modelling. Firstly, the meridians

are straight and secondly, the surface is not dependent on

the angle of similarity 0 . The Bresler and Pister criterion

has parabolic meridians while the deviatoric section is

independent of 0. On the other hand, the three-parameter

surface of Willam and Warnke is dependent on 0 , but the

meridians are linear which makes it inadequate for high

compression regions. The more refined surfaces of Willam and

Warnke ( five-parameter surface ), Ottosen, Kotsovos,

Hsieh et al, Chen and Schnobrich, and Nilsson and Glemberg

constitute both a nonlinear meridian and a 0 dependence. Most

of these models are in close agreement with test results and

satisfy the basic requirements for characterising a stable

failure surface for concrete. These requirements include

smoothness, convexity, symmetry and curved meridians.

2.3.2 Work-Hardening Plasticity Models

Work-hardening models assume that material yield at some

stress level below the ultimate strength level which
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corresponds to an initial yield surface. Further intermediate

yield surfaces develop as a result of plastic deformation and

the process continues until the ultimate yield surface is

achieved ( section 2.3 ).	 A work-hardening plasticity

formulation,	 therefore,	 requires	 three	 fundamental

assumptions to be established:

i) the shape of the initial yield surface,

ii) the evaluation of the subsequent loading surface, and

iii) a flow rule to evaluate the plastic deformation and its

direction.

There are three general hardening rules, i.e. isotropic,

kinematic and mixed hardening. The first rule assumes a

uniform expansion of the initial yield surface as plastic

flow occurs. In kinematic hardening, the yield surface is

translated as plastic flow continues, thus maintaining the

shape and size of the initial yield surface. Finally, mixed

hardening is a combination of both the first and the second

rules. In what follows, some different hardening plasticity

models for concrete are described.

Chen and Chen [33] assumed that the criterion for failure of

concrete is dependent on the deviatoric stress and the

hydrostatic pressure and proposed the following yield

criterion
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in which the positive and negative signs indicate the loading

surface in compression-compression and tension-compression

states of stress, respectively. The constant parameter 	 is

assumed to be three and a and are material constants

expressed in terms of the uniaxial and biaxial strength of

concrete. Fig's. 2.2 14 and 2.25 show a triaxial representation

and a fit of experimental results for this model. The

variation of the yield surface for the initial elastic limit

up to the failure surface is defined by the parameter T,

where	 t	 represents the elastic limit and T = T

represents the ultimate failure surface. A subsequent loading

surface is represented by the condition

T < T (

The incremental plastic stress-strain relationship is

obtained from the flow rule and is given as

Ba	 Ba
dc	

ij	 mn da	 (2.33)
______________	

mn

I Bf
H

Ba	 Ba
rs	 sr

It is assumed that the total incremental strain is the

summation of the incremental elastic and plastic strains. The
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incremental elastic-plastic stress-strain relationship is

obtained from Eq. 2.33 as

______ ______ 1
kl	 Idc1	 [1 +
	 _____	

I 
dakl	 (2.3k)

	H/ rs

	 sr

where	 gradient of yield surface,
3a.

13

Hulk	 elastic compliance matrix, and

df
H	

= /de 5 dEr

= strain hardening rate

To obtain the hardening parameter H, the concept of the

effective stress and effective plastic strain is used as

follows. The effective stress is given as

f(ci..) = F(c)
	

(2.35)

and the effective plastic strain is obtained as follows

= fdc 
=	

dc	 (2.36)

Experimental results are used to obtain the plot of F versus

c from which the hardening parameter H, is the slope of this

curve at each stress level [33]. This model has been used

successfully in finite element analysis [35-38].
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successfully in finite element analysis [35-38].

Similar isotropic hardening plasticity models were developed

by Chen and Schnobrich [31], where the expansion of the yield

surface is introduced into Eq. 2.30 by a hardening parameter

, as

=	 - [(l - s 2 o)P 1 + S2 e P 2 1

(2.37)

The hardening parameter w, is defined in terms of an

equivalent	 uniaxial stress	 aeq	 and a peak	 stress

corresponding to the current stress level 	 as

	

(&) = aeq	
(2.38)

I cY	 I

The hardeninig modulus A, in Eq. 2.8 is obtained as

ar	 aw
- ___ ___

ax

	

f H	 far	 at

-	 aw	 Ia	
m 

iI 3c	 aa.
0	 13	 13

where	
H = daeq

dceq

(2.39)

E = initial Young's modulus,

Et = tangential Young's modulus, and

= equivalent uniaxial plastic strain scaling

factor
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Argyris et el [39] developed a mixed hardeninig plasticity

model for concrete based on the five-parameter surface of

Willam and Warnke ( Eq. 2.21 ). This model is represented by

1	 T

raTa 0, a,	 ______________	
a -	 (2.140)

r(cYa_aclü,0)	 fe

(VP'wHere	 a	 - a' C 1,

=	 ( 6P,

= effective plastic strain,

VP = volumetric effective plastic strain, and

= maximum hydrostatic translation

The term a represents a translation of the yield surface

along the hydrostatic axis C kinematic hardening ) and the

parameter defines an expansion of the yield surface

(isotropic hardening). An incremental work-hardeninig stress

strain relationship was obtained using a flow rule. A modular

matrix similar to that given by Eq. 2.8 was used with a

hardening modulus A, given by

f at	 f a	 at	 af	 af
A= f	 - ___ ___ ___ ___ ___

3a	 a) /ij ji
Vp

(2.111)

Argyris et al [39) have not proposed any suitable formulation

for the variation of the hardening parameters a and , with

•the plastic strain.
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pk
d4 = de + dc1 (2.113)

Hsieh et al	 [140] expressed the isotropic hardening 	 as

a function of an effective plastic strain E, and the

kinematic hardening by the term which characterises the

movement of the centre of the yield surface. They introduced

these parameters into Eq. 2.27 and represented their failure

criterion as follows

f(a1 ., T)	 A	 + B	 + C	 + D Ii - T(E)

(2.'42)

where	 a .	 = a. -

	

lj	 JJ	 13
= a function of plastic strain

To obtain the incremental relationships the increment of

plastic strain	 is decomposed into increments of plastic

strain due to isotropic hardening ds,	 and kinematic

hardening den, as

= M dc	 + (1 - M) dc

where	 M = a constant parameter

The hardening parameters corresponding to the two types of

hardening were obtained using the concept of the effective

plastic strain, Eq. 2.36. The incremental stress-strain

relationship was proposed as follows
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da 1	= ( C1i1 - Ejiki ) d6 1	 (2.1414)

C.	 C	 Gijmn kirs mnrs
Ejiki:	

I	

-	
'" iCG	 c(1 - M) -	 'rv - H M— mnrsj

rs	 aT

(2.145)

af	 af
where	 G	 -	 -

mn rs

A	 slope of T - C curve,

= effective plastic strain,

corresponding to den, and

c	 = constant parameter

2.11 Conclusions

The following conclusions may be drawn from the review

presented in this chapter.

1)	 Elasticity based models are restricted to proportional

loading and path-independent materials if they are used

in the 'total' form. The hypo-elasticity models are

also limited in their application by the number of

parameters required to represent the material behaviour

adequately. In addition, they may produce unrealistic

results for cyclic loading.

ii) The plastic-fracturing model relies on many material

parameters and the incremental modular matrix is

unsymmetrical which makes it unfavourable for finite

element applications.
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iii) The endochronic theory of plasticity results in a

nonlinear relationship between the increments of stress

and strain which may produce a great deal of complexity

in its application. This theory also depends on many

material parametres to represent the concrete behaviour.

iv) The theory of plasticity together with a suitable yield

surface and an adequate hardening model seems to be the

most reliable option for concrete modelling.

v) The five-parameter surface of Willam and Warnke produces

an adequate failure surface for concrete. The choice of

the material constants for the definition of the yield

surface is, however, an important task. It is,

therefore, required to investigate the best values for

these parameters to achieve the optimum fit.

vi) The isotropic expansion of the yield surface for

representing the material strain-hardening would appear

to be adequate for concrete. The use of kinematic

hardening requires many assumptions which may not be

realistic due to the lack of experimental results and

may lead to unnecessary complications.

vii) The isotropic hardening parameter , proposed by Argyris

provides a simple and realistic representation of'

concrete hardening without resorting to concepts such

as, 'equivalent' uniaxial stress for the representation

of the triaxial state of stress. An explicit function is

needed, however, to determine the variation of 	 with
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the development of plastic strain.

viii)The use of a plasticity model to represent strain-

softening in concrete requires immediate attention.
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Fig. 2.1	 Characteristic	 uniaxial	 response of	 plastic
material.

Fig. 2.2
	

Characteristic uniaxial response of fracturing
material.
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Fig. 2.3
	

Characteristic	 uniaxial response of	 plastic-
fracturing material.
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Fig. 2.5	 Loading surfaces of concrete in biaxial plane.

11



(a) Hydrostatic Section
	

(b) Deviatoric Section

r

a3

a1

a2

Mises (J=

:a (max. sh

= cons

02

03

Mises

;ca

Fig. 2.6	 Rankin's maximum principal stress criterion.

/ Lirteof pure
shear (0=0)

(a) Hydrostatic Section 	 (b) a3 _O Plane
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Fig. 2.8	 Three dimensional representation of Von Mises and
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Fig. 2.10 Curved Mohr-Coulomb failure envelope for concrete.
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Fig. 2.11 Representation of Mohr-Coulomb failure criterion.
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Fig. 2.12 Representation of Drucker-Prager failure criterion.
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Fig. 2.13 ComparIson between Mohr-Coulomb and Drucker-Prager
failure criteria.
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Fig.. 2.21 Comparison of Hsieh et. al. failure criterion with
experimental results.
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Fig. 2.22 Chen and Schnobrich failure surface: hyperbolic
curve fitting to the corners of Mohr-Coulomb
failure surface.

vb(e)

ciO/fCU	 F=const.
IE; U

(a)

- cii	 U

(a) Hydrostatic Section
	

(b) Deviatoric Section
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CHAPTER THREE

THE MATHEMATICAL MODELLING OF THE
STRESS-STRAIN RELATIONSHIP OF CONCRETE

3.1 Introduction

Concrete	 behaviour	 depends on the properties of	 the

constituent cement, sand and aggregate as well as the

interaction between them. 	 Kotsovos and Newman [Ill] state

that the nonlinear behaviour of concrete is related to

mortar-aggregate interaction and is caused by the gradual

breakdown of the bond between them through the expansion of

the pre-existing microcracks. The observations made by other

investigators	 [112_1114]	 indicate that the	 deformation

behaviour and stiffness of concrete are largely dependent on

microcracking in concrete. The experimental evidence of

Kotsovos and Newman [145,1t6], Kotsovos [23], Newman [2],

Kuper et al [26] show that the stiffness of concrete under

multiaxial compression is totally related to the growth of

microcracks, which are initially localised and gradually

interconnect into a continuous pattern.

The fact that concrete is composed of different materials

and the direction of microcracking is influenced by the state

of stress, suggests that concrete should be treated as an

inhomogeneous and anisotropic material. Such a

representation, however, presents considerable complexities

involving	 experimental information, 	 which is not	 yet

forthcoming.	 It is reasonable,	 therefore, to consider

concrete material to be homogeneous and isotropic. The micro

514



effects are, therefore, averaged and continuum mechanics laws

are applicable. Such an idealisation is justifiable when

considering the randomness of the constituent materials and

the localised discontinuities.

In this chapter a mathematical model for the triaxial stress-

strain relationship of concrete is developed by the author

assuming homogeneous and isotropic material behaviour. The

theory of hardening plasticity is used for this purpose. At

first, a triaxial failure surface for concrete is developed

which has a non-circular base and curved meridians. The work-

hardening in concrete is modelled by the isotropic hardening

expansion of the surface followed by the contraction ( or

gradual collapse ) of the yield surface to represent the

strain softening in concrete after the ultimate strength has

been achieved. The incremental stress-strain relationship is

derived using a flow rule and the consistency condition.

Finally, the analytical results of the proposed constitutive

relationship are compared with the published uniaxial,

biaxial and triaxial experimental data.

3.2 Work-Hardening Plasticity for Concrete

Plasticity occurs when time independent irreversible

straining takes place once a certain stress level known as

the yielding limit is reached. The yielding ot the material

is assumed to take place when the following criterion is

satisfied
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f(a)	 0
	

(3.1)

where	 .	 stress tensor

The yield criterion is represented by a surface in stress

space, Fig. 3.1. Ideally, plasticity does not cause material

degradation and upon unloading the initial material

properties, i.e Young's modulus and Poissons's ratio, are

restored, Fig. 3.2. The plastic strains are conveniently

characterised in terms of the yield surface using a flow rule

as follows [117]

dc = dA

	

	
(3.2)

3cr.
3.3

where	 dA	 the magnitude of dc v , and

3f
= the direction of dE

3cr.
13

Progressive yielding, such as in the case of work-hardening

materials, may be represented by a hardeninig parameter ,

which is introduced into Eq. 3.1 as

f (a1	)	 0	 (3.3)

This implies that there are an infinite number of yield

surfaces between the initial and the ultimate yield surface,

Fig. 3.3. In this study the parameter , represents the

Isotropic hardening which defines the shape and the size of

the initial and the subsequent yield surface.
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For each stage of loading, therefore, there is a yield

surface which can be reached by elastic behaviour beyond

which plasticity takes place. This process continues until

the peak stress corresponding to the ultimate yield surface

is reached, Fig. 3.4. The concrete material may be liable to

crack after its stress level reaches the ultimate yield

surface providing the state of stress is in the tensile

region. In the compression region, however, concrete exhibits

strain-softening.and this characteristic cannot be adequately

described by the work-hardening concept. In order to account

for the strain-softening in concrete, the technique proposed

by Argyris et al [39] is adopted in this study. This

technique enables the gradual collapse of the ultimate yield

surface after the compressive strength has been achieved.

The following are the important stages which have been

developed by the author to establish a triaxial concrete

constitutive model within the concept of work-hardening

plasticity.

1)	 A triaxial yield surface is developed,

ii) A failure criterion is proposed to represent the initial

yield limit and the subsequent expansion and

contraction of the yield surface,

iii) An isotropic hardening rule is adopted here and the

explicit expressions for the hardening parameter , are

proposed to monitor the variation of the yield surface

with plastic flow,
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iv) A flow rule satisfying the normality condition is used

to relate the inelastic strains to the current stress

level, and

v) A	 three	 dimensional	 incremental	 stress-strain

relationship for concrete behaviour is developed.

3.3 The Proposed Triaxial Failure Surface

In the subsequent sections of this chapter a failure surface

is developed which is able to predict the ultimate strength

of concrete subjected to a triaxial state of stress. This

surface is derived from the experimental results of previous

investigators. It should be noted, that normally experiments

are conducted by applying proportional loading under uniform

stress or strain conditions which is not necessarily the case

in actual structures. It is common practice, however, to

predict the ultimate behaviour of the structural components

subjected to non-uniform stress or strain conditions by

assuming uniform loading condition. There is littel

justification for this hypothesis.

The general shape of the yield surface that is proposed here

is shown in Fig. 3.5. It is basically a conical shaped

surface with a non-circular base and curved meridians. This

surface is mathematically defined in terms of the hydrostatic

and the deviatoric stresses. The meridinal planes pass

through the equl-sectrix = o a3 ) and the deviatoric

planes are normal to it, Fig. 3.6. It is a requirement to

have a three-fold type of symmetry at an equi-pressure cross-
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-2
= m1 + m2	 + m3 t

(3.14)

section ( deviatoric-sectLon ) to satisfy material isotropy.

This means that only a sextant of the stress space need be

considered. If the yield surface is constructed in principal

stress space and	 > 0, the region to be considered is

bounded by the tensile meridian p t, , for	 =	 > a, and the

compressive meridian p, for 01 > 0 2 = 0 3 . These meridians

correspond to 0	 00 and 0 = 600, respectively, where 0 is

the angle of similarity, Fig. 3.6a. The yield surface must be

continuous [20] to produce a unique gradient which is used to

determine the direction of the inelastic strains, i.e. the

normality rule. The yield surface should also be convex [20]

to assure material stability according to Drucker's postulate

[48,'I9].

In the following sections explicit mathematical formulations

for a yield surface are produced. The mathematical definition

of the variables used is given in Appendix A.

3.3.1 Meridianal Definition of the Proposed Yield Surface

The following functions are proposed to describe the tensile

and compressive meridians of the yield surface, Fig. 3.6b.

The stresses are normalised with respect to the uniaxial

compressive strength of concrete ecu' as follows

7; = n 1 + r'2 
C 

+ n3	 (3.5)
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where	 = hydrostatic component of stress,

= deviatoric component of the compressive

meridian,

deviatoric component of the tensile

meridian, and

m 1 ,m 2 ,m 3 ,n 1 ,n 2 , and n 3 = material parameters

The upper bar notation in Eq's. 3.1 and 3.5 refers to
normalisation with respect to concrete uniaxial compressive

strength.

Standard test results are used by the author to define the

material parameters, e.g. uniaxial tensile and compressive,

and equal biaxial compressive strength of concrete. That is

to say, that the uniaxial compressive strength lies on the

compressive meridian and the uniaxial tensile and biaxial

compressive strengths lie on the tensile meridian. In

addition to these points, two more values in the high

compressive region are used. Finally, both meridians must

pass through a common apex i.e

=	 t=°	 at	 =O	 (3.6)

There is, therefore, enough information to obtain the six

material parameters in Eq's. 3.L and 3.5, Fig. 3.7a. Using

the strength ratios cit e and abc defined as

f	 f
a	 =	 and	

be
tu	 abe =	 (3.7)
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where f uniaxial compressive strength of concrete,

uniaxial tensile strength of concrete, and

biaxial compressive strength of concrete

The applied constraints may be summarised as shown in

Table 3.1.

Table 3.1 Boundary conditions used for the yield surface

Type	 -
ofTest	 0

U.0	 600	 -i//3

B.0	 00	
bc""	 "bc"

U.T	 00	
tu1'1('	 2cL/t3

A.P	 60°	 cO	 )c0

A.P	 00	
to

where	 U.C. = uniaxial compression,

U.T. = uniaxial tension,

B.C.	 biaxial compression, and

AeP. = arbitrary point in the high

compression region

App1ying	 the above boundary conditions and rearranging

Eq's. 3.k and 3.5 in terms of	 and	 , the tensile and

compressive meridians become

= a 1 + a2 /a3 + a
	

(3.8)

= b 1 + b2 /b 3 + b
	

(3.9)
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where

1
a 1 = -	 a + -(ct +cx )

2(ctbC-cttU) 2
	 16 be tu

2	 2
2(abC_atU)(1bC_/tC)_1(bC_atU)(2aC_3O)

a =2	
2v'3[(2ctbc+ctU)(/bC_v'tO)_/^(cLbC_cttU)(2cbC_ItO)]

a 22

	

____	 bc
a3 

= (i - ctbC 2J +16 _.i - -
	\a2J 3a2	a2 a2

2
a - -

a2

1	 1
b 1 = - _( 1_v' T ) b 2 + -

16

( 2/_ 3 12 o) eO
b =2	

6[(1_/T)	 cOTcO

b3	

()2

2
b = - -

b2

a-a3a

a2a

Concrete material dilates at low hydrostatic pressure and

compresses at high hydrostatic pressure. This behaviour is

typical of granular materials and the associated effects can

be modelled using a closed yield surface. Argyris et al [391
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have suggested that the conical failure surface be closed by

an elliptic cap, Fig. 3.7b. A similar closed yield surface is

used by Nilsson and Glemberg [32:1. The conical yield surface

is closed by two elliptic caps in the triaxial compression

zone, Argyris et al [39]. The minor axes of these ellipses

are defined by an additional parameter , along the equi-

sectrix and the major axes by two points on the compressive

and tensile meridians	 c1 
and	 ' respectively, which

corresponds to	 on the equi-sectrix, Fig. 3.7b. Thus the

hydrostatic dependence In the cap zone is controled by

-	 -	 I	 ,	 -	 2
=	

ti	 /i - (	
1	 (3.10)

V	 'i-cI

- - I ____
=	 i /1 - ( -	 -	 J	 (3.11)

V	 "	 -

The shape and size of the elliptic cap depends on the choice

of and , however, at present there is insufficient

experimenal evidence in triaxial loading at high compression

to define these parameters adequately. The choice of the

values of these parameters, therefore, relies somewhat on

intution. It is suggested to use values of 1L 1 and 5.5 for

and	 respectively.

Results obtained from the proposed Eq's. 3.8 and 3.9 for the

meridians of the yield surface are compared with published

experimental results of concrete [14,21,29,50,51]. These

comparisons are shown in Fig's. 3.8a to 3.8e. It appears that

a reasonable correlation may be achieved provided the correct
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parameters are selected. The obvious problem is the choice of

these parameters. It is, therefore, proposed that the

following values to be used

	

abc	 1.2,

- 0.1,

	

c0	 to = 6.0,

	

c0	
Ij.14, and

•t0 =

These parameters have been obtained from a 	 regression

analysis carried out by the author using selected

experimental results obtained between the years 1928-197)4.

The resulting equations for the meridians are as follows

= -6.214141 + 11.2157 /2.2790^ 0.117)4)4	 (3.12)

= -3 . 0696 + 3.7522 [0.76119+ 0.5330 	 (3.13)

The comparison of the results obtained using the above

equations and obtained from experimental work [1)4,19,21,

23,211,27,29,50_5 11] is given in Fig's. 3.9a to 3.9c.

3.3.2 Deviatoric Definition of the Proposed Yield Surface

The general equation for the deviatoric variation of the

yield surface for an arbitrary value of the angle of

similarity 0, between 0°and 60°, is proposed. The equations

are obtained by fitting a general elliptic curve between

and	 in the deviatoric section of the yield surface.
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The geometry of such an elliptic curve, in the X-Y plane, is

shown in Fig. 3.10. The condition for convexity 	 > t" )

is automatically satisfied and to have continuity	 must

coincide with the Y-axis and the direction of c 
must be

normal to the elliptic curve, Fig. 3.10. The general form of

an ellipse is considered to be

x2 + a	 + b XY + c X + d Y + e = 0 	 (3.114)

To define the unknown parameters a, b, C, d and e in the

above equation the following boundary conditions must be

satisfied:

1)	 The ellipse must pass through points A and B, Fig. 3.10

ii) The tangent at A and B must be perpendicular to the

direction of	 and	 ' respectively, Fig. 3.10.

The above conditions are used to obtain four of the unknown

parameters in terms of the fifth parameter e. This unknown

parameter is then obtained by means of a regression analysis

to achieve the best fit to the experimental results of Launay

and Gachon [21,30,55].

Having established the ellipse in the cartesian coordinate

system X .-Y, the polar equation of 	 for the variation of 0

can be easily obtained by replacing X by	 s1rz0 and Y	 by

The final result after some algebraic manipulation

( see Appendix B ) is as follows
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A cosO + B sinO
=	 (,0)	

A cos 2O + B sinO cosO + sin2O

(3.15)

3 (2_)
where	 A =	 , and

2(2t_)2

B
2(2t_)2

The comparison between the results of Eq. 3.15 and the

experimental strength data of Kupfer et al [26] and Launay

and Gachon [21] for the biaxial case 	 2	 o section ) and

the	 triaxial case ( deviatoric section ) are shown	 in

Fig's. 3.11a, 3.11b and 3.11c, respectively.

3.1$ The Proposed Failure Criterion

The failure criterion adopted here compares the deviatoric

component ' of the stress tensor 	 with the corresponding

deviatoric component of the yield surface	 The failure

criterion is satisfied when p reaches	 This condition is

defined as follows

f(a)	 cuu
	 (3.16)

where	 p	 =

-
Pu

Cu

= deviatoric component of the yield surface

given by Eq. 3.15, and

= uniaxial compressive strength of concrete
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It has been previously stated that plasticity in concrete

occurs at some stress level below the ultimate and failure is

achieved by progressive yielding of the material. This

phenomenon	 is	 incorporated into the 	 yield	 criterion

( Eq. 3.16 ) by an isotropic hardeninig approach, which

assumes that the Initial yield surface ( the elastic limit )

and thereafter any subsequent yield surface ( loading

surface ) has basically the same geometrical shape as the

ultimate yield surface. The intermediate yield surface is

defined by the uniform reduction of the ultimate yield

surface according to the ratio of the current stress position

vector H, to that of the corresponding maximum value Rmax

Fig. 3.12.	 Introducing the hardening parameter 13, into

Eq. 3.16, the intermediate yield criterion is written as

f(c11 8) =	 -	 'cu u = 0	 (3.17)

where	
Pu =

u - - , and8

R
8=

R
max

The geometrical representation of the intermediate yield

surface is illustrated in Fig. 3.13.

In the pre-ultimate state of stress the value of the

hardening parameter 8, Is less than unity and increases to

represent the progressive yielding until it reaches the
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maximum value of unity, which corresponds to the peak stress

level.	 Thereafter,	 strain-softening is represented 	 by

assuming a progressive reduction of	 until some residual

value 
r' 

is achieved. This process implies the gradual

collapse of the yield surface rather than the case of ductile

material, for which the ultimate yield surface remains

unchanged or the case of brittle material, for which the

failure surface suddenly collapses and the stress level drops

to zero. These extreme cases may be considered as the upper

and lower bounds of the proposed strain-softening material.

Fig. 3.1 1! shows the variation of the parameter with the

deformation.

3.5 Mathematical Definition of the Proposed Hardening and

Softening Parameter

The hardening and softening parameter , is developed in this

section in order to define the initial and the subsequent

yield surfaces.

The experimental results of previous investigators [23,21!,

26,51,56,57] indicate that initial yielding corresponds to

30-60	 percent of the ultimate strength	 of	 concrete.

Thereafter,	 the stress-strain behaviour of concrete is

nonlinear upto a peak stress followed by strain-softening.

The variation of the parameter 	 is, therefore, attributed to

the development of inelastic strains. Thus,	 is expressed as

8 = f(c)
	

(3. 18)

where	 f(c)	 a function of inelastic strain
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E p	 Pii ii (3.20)

In this study a scalar quantity of the plastic strain, e.g.

the	 effective plastic strain is used to quantify the

parameter	 as follows

= f(s)
	

(3. 19)

and

J dc	 dc

where	 c. . = tensor of total plastic strain,13

= tensor of plastic strain increment, and

= effective plastic strain

The schematic variation of with is shown in Fig. 3.15.

The following regions are distinguished for the development

of Eq. 3.19 ( see Fig. 3.15 )

1)	 material hardening exists when:

and

ii) material softening exists when:

u > 8 >=r	 and C >C
p	 p,u

where	 = hardening parameter at initial yielding,

= hardening parameter at peak stress,

= residual hardening parameter,

c p	= effective plastic strain, and

effective plastic strain at peak stress
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The experimental results of Kupfer et al [26] and Ahmad [58]

are used to determine the mathematical function f(c) for the

variation of . These experimental results are used to

calculate R and 1max ( Fig. 3.12 ) at each stress level,

hence the ratio

R

Rmax

and the plastic strain tensor c, is calculated as

	

p -	 e

	

cii -	 -

(3.21)

(3.22)

where	 c11 = total strain tensor,

= total elastic strain tensor, and

= total plastic strain tensor

The effective plastic strain c, is obtained by substituting

the result of Eq. 3.22 into Eq. 3.20. A series of data are

generated in this way and the mathematical formulations of

are obtained by curve fitting techniques ( least square and

error minimisation ) using the experimental data. The result

is as follows

=	 +	 x +	 +

_(i.o	
i)c6

for 0< X < 1.0

(3.23)

for	 X>1.0

(3.21)
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e
where	 X

C
p,u

effective plastic strain,

Cpu = effective plastic strain at peak stress,

C 1 	 0.35

C 2 	 1.5208

C 3 	 =-1.0916

C 11	 = 0.2208

C 5 	 1.17, and

C 6 	 = 3.61

the value of Cr,u is dependent upon the state of stress at

the peak stress level. A relatively simple method is proposed

in the following section to evaluate this parameter. From a

regression analysis of data the initial and residual values

of	 are found to be

= 0.35 and	 = 0.115r

The fit of Eq. 3.20 to the experimental results [26,58] is

given in Fig. 3.16.

3.5.1 Determination of the Effective Plastic Strain at Peak

Stress

The concept of the effective plastic strain c, is discussed
in section 3.5. In this section a technique is proposed for

the calculation of the effective plastic strain at peak

stress Cp,u	 for the use in Eq's. 3.23 and 3.2 11. At first,

the relationship for the determination of	 ( Eq. 3.20 ) is
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rearranged and is expressed in terms of the octahedral normal

and shear strains ( see Appendix C ). The resulting

formulation is as follows

/7E	 +	 (3.25)

where	 plastic octahedral normal strain, and

plastic octahedral shear strain

The ultimate effective plastic strain 	 is now obtained

from Eq. 3.25 by replacing c and y by their corresponding

ultimate values	 and	 respectively. At this stage

the ultimate plastic octahedral normal and shear strains

and	 are calculated from the following equations

(3.26)= E O, u - CO,u

p	 -	 e
1 0,u - 1 0,u	 10,u

where	 co,u = ultimate octahedral normal strain,

given by Eq. 3.26

1O,u = ultimate octahedral shear strain,

given by Eq. 3.27

e ___=	 = ultimate elastic octahedralu,u	 3K0
normal strain,

e	 - TO,u	
ultimate elastic octahedral

0,u - 2G0
shear strain,

K0	initial bulk modulus, and

= initial shear modulus

(3.27)
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The author proposes the use of Ahmad and Shah's formulations

[59] for the calculation of the ultimate octahedral normal

and shear strains 6O,u and They obtained their

relationships using the experimental results reported in

References [26,51,52,60,61] and given as

0975(a0's

\f I
0.197877 e	 CU	

O,uuni	 (3.28)

10,u = -.8629 + 12756(r0,
	

(3.29)
\f	 1 °'

Cu

where	 cOUuni = 0.0016 148 + 0.000114

'0,uuni = 0.0011775 fO.128l7
cu

a	 = octahedral normal strength,0,u

= octahedral shear strength, and

= concrete uniaxial compressive

strength in ksi

Eq's. 3.25 to 3.29 are combined to calculate cp,u provided

the ultimate octahedral stresses a,, and T,, , are known.

These quantities are obtained geometrically from a known

stress location, e.g. and ( point A in Fig. 3.17 ). The

ultimate values are predicted assuming proportional loading

and extending the current stress vector until it intersects

the ultimate yield surface at point B, Fig 3.17. The stresses

corresponding to this point 	 and	 ( Fig.3.17 ), are used

to calculate the ultimate octahedral stresses a 	 and T0,u	 j,u

for use in Eq's. 3.26 to 3.29 . Therefore,
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1
a =—f0,u	 cu

1

=	 'CU u

(3.30)

(3.31)

e	 p= dc1 + dc1 (3.32)

3.6 Incremental Stress-Strain Relationship for Concrete

In this section an elastic-plastic constitutive relationship

for the incremental stress-strain behaviour of concrete is

developed. The strain increments are decomposed into elastic

and plastic components as

where	 dc1 = increment of strain tensor,

d4 = increment of elastic strain tensor, and

dE	 = increment of plastic strain tensor

The increments of stress are related to the elastic strain

increments using Hook's law, Fig. 3.18, as follows

e	 e
da	 = Djjkl dEki

where	 ijk1 = elastic modular matrix

(3.33)

Combining Eq. 3.32 and Eq 3.33, results in

da	 = D j kl ( dE ki - d 1 )	 (3.31)

The increments of plastic strain are defined by a 'flow rule'

C normality rule ) [ 148, 149,62_65]. Such a rule satisfies the
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dc	 dAii
13

(3.35)

plastic flow requirements that the shape of the plastic

potential g, remains unchanged and the stress vector stays on

the surface g while the plastic strains continuously

increase. Inelastic strains, therefore, make no contribution

towards the elastic strain energy. This condition requires

the plastic strain increments to be perpendicular to the

surface g, Fig 3.19. The flow rule is, therefore, given as

where	 g	 = plastic potential,

= direction of the normal, and
3a.

13

dA
	

= proportionality parameter

The magnitude of the plastic strain increment depend upon the

proportionality parameter dA which must always be positive.

This parameter remain to be obtained.

During plastic flow the yield surface must remain unchanged

to ensure that the stress path describes a trajectory on the

yield surface. This requirement is known as the 'consistency

condition' and is written as

df(c 1	) = 0
	

(3.36)

or

3fT	
3f

df =	 dc11 + — d8 = 0
	

(3.37)
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at	 at
dG	 =--d13

aci ii
af

- - -
a13

(3.38)

where	 f	 current yield surface,

the gradient vector of the yield
13	 surface, and

af
- = the change of yield surface with the

hardening parameter,

The derivation of	 and - is given in Appendix D.

The consistency condition Eq. 3.37, may be written as

where	 dc	 d1

From the flow rule dc can be expressed as

g	 ag
dc	 dA	

T -

Jaa .
V	 ij	 ii

(3.39)

Combining Eq's. 3.38 and 3.39 yields the following

Taf	 ata	 ag	 ag

3 3c /a.
d)d1 = - -	 ____ ____

ii	 p

(3.1O)
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dG. . = DeP
13	 ijkl

(3.142)

atT
Pre-multiplying Eq. 3.314 by	 and combining the results

13

with Eq's. 3.35 and 3.140 to solve for dA results in

ukl
mndA=

T	
e	 ____g	 ag	 a' !_. t	 +	 Dkl

p	 ij	 ij	 3mn	 k1

(3.141)

The incremental stress-strain relationship of concrete is

obtained by substituting Eq. 3.35 into Eq. 3.314 in

conjunction with Eq. 3.141. The result is given as

where	 DeP	 e
ijkl = Djjkl - ijkl

= elastic-plastic modular matrix,
e

Djjk l = elastic modular matrix, and

ag_____ _____ e
'ijmn	 Drskl

D	 -	 inn	 rs
ijkl -

T
af a	 ag	 ag	 arT	 ag______ ______ ______ e 	 ______

	

ac /a u v aa	 aamn	 rs
+	 D

= plastic modular matrix

A general incremental stress-strain relationship for concrete

may be written in tensorial form by assuming an associated
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flow rule, i.e g = f, and by substituting the yield surface

gradient -, and the elastic modular matrix	 in Eq. 3.42.
o.

This relationship is given by

E
da

	

	 (Cjjkl -	 ijkl dEki
(1 + v)(l - 2))

(3.13)

1
where	 Cjjkl	 _(l_2v)(â jk 6 jl+6 11 6 jk ) +	 ij6kl

2

K 6. .6	 + K [(6. -+1)6 fll +(6kl+1)6 l rik1 ] +ijkl	 lijkl	 2	 ij	 ki

K3(6. i +1 ) (6 k1.i.1)n j	 kl '

11jj	 X5	 +

K2 2
K- ___

1	 - 1 -2v

K 2	[(1+v)w + 2npJ2](1-2v)

K	 = (1-2v)2
3

2
(A)	 =-

3

af a	 a

ap a	 ai1

af a

x=---
a	 2	 aJ2

*

p
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I

E
p

a( 1+v)( l-2v)

[(1+v)(3w+ l4ii J 2 ) w+ 4 ( 1-v)* 2J+( 1-2v)J]
a

	

	 E,
(1+v)(1-2)

h	 y (3w+ 1hpJ2 )w + 141p 2J +J5

af a
I

cp

1 2	 2	 2
122331	

- 2(ii 11 n 22 +r 2233 -i-3311),

1 2	 2	 2
J 5	J4 + —(n12+n23+n31)

2

= the hardening parameter

= concrete uniaxial compressive strength

E	 = Young's modulus , and

= Poisson's ratio

Explicit expressions for , x tJ, and y are given in

Appendix D. The derivation of Eq. 3.I3 is fully explained in

Appendix E.

3.7 Comparison of the Proposed Constitutive Model with
Experimental Results

In this section some experimental results found in the

literature are compared with the numerical results obtained

from the proposed constitutive model. 	 The experimental
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results of Kupfer et al [26] , Kotsovos [ 66 ], and Kotsovos

and Newman [ 116,67] form the standard against which the

proposed material model has been assessed.

In most cases it is extremely difficult to simulate the

loading history applied to the specimens in the actual

experiments. Comparisons, therefore, have been conducted for

certain test cases in which the strain rate is controlled for

a given principal stress ratio. Four types of loading have

been investigated and these are; the uniaxial compression;

the equal biaxial compression; the triaxial compression; and

the triaxial extension tests.

Fig's. 3.20a and 3.20b show the fit of uniaxial and equal

biaxial compression curves. 	 Some deviation between the

mathematical model and the uniaxial test case can be

observed. The proposed model does not predict the lateral

strains accurately. However, the peak stresses are in very

close agreement with the corresponding experimental values.

Fig's. 3.21a, 3.21b and 3.21c show the fit of triaxial

compression curves. The hydrostatic pressure was applied by

imposing equal strain increments in the principal directions

until the prescribed confining pressure was achieved.

Then, the lateral pressure was fixed and only the axial

stress	 was increased.	 It is noted that	 very	 close

correlation	 exists	 between the experimental	 and	 the

analytical results, particularly for high strength concretes.

Fig's. 3.22a, 3.22b and 3.22c show the fit of triaxial

extension curves. The hydrostatic pressure was applied in a
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similar way to the triaxial compression tests. For this

series of tests, however, the lateral pressure was fixed and

the axial stresses were gradually removed until the applied

stress was reduced to zero. A reasonably good fit is achieved

while the prediction of the general trend of the curves is

considered to be satisfactory.

Fig's. 3.23a to 3.23e compare the volumetric response of the

proposed concrete model with the uniaxial, biaxial and

triaxial compression experimental results. The proposed

analytical model produces excessive dilation, especially near

the ultimate strength. This shortcoming could be improved by

using a non-associated flow rule and introducing an

independent hardening parameter to control the movement of

the cap zone according to the variation of the plastic

volumetric strains. However, a lack of experimental results

prevents a reasonable theoretical model to be proposed to

describe this effect.

3.8 Conclusions

A failure surface containing all three stress invariants has

been proposed. This surface is defined by curved meridians

and a non-circular base which changes from nearly triangular

to a more circular shape with increasing hydrostatic

pressure. This surface is closed by an elliptic cap in the

compression zone to control the material dilation. The

mathematical model of the yield surface is obtained by

fitting curves to the available experimental strength data.

The resulting yield surface conforms with the generally

accepted shape requirements and was found to closely fit
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published biaxial and triaxial strength data.

An isotropic hardening and softening model has been developed

to control the expansion and contraction of the yield surface

during plastic flow and in the strain-softening region. The

hardening paramete , is defined in terms of the effective

plastic strain This parameter monitors the movement of

both the conical surface and the elliptic cap.

An incremental stress-strain constitutive relationship has

been developed using the proposed yield surface in

conjunction with a flow rule. The results of this model are

compared with a selection of experimental test results. The

proposed model agrees qualitatively, well with all the test

cases and the prediction of the peak stresses is favourable.

The deviations from the experimental results are observed in

relation to the lateral strains and in particular to the

volumetric response. The material dilatancy according to the

model appears to be too abrupt at the instant of material

instability. These discrepancies are attributed to the use of

an associated flow rule and lack of an independent volumetric

hardening parameter to monitor the movement of the yield

surface.
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Schematic representation of a yield surface.
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Schematic	 representation of plastic
	 material
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Fig. 3.5	 General shape of the proposed failure surface.
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Fig. 3.6	 Deviatoric	 and hydrostatic sections 	 of	 the
proposed failure surface.

(a) Outside Cap Zone 	 (b) Inside Cap Zone

Fig. 3.7	 Schematic	 representation	 of	 the	 boundary
conditions for the proposed failure surface.
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Fig. 3.10 Geometry of the proposed failure surface at the
deviatoric section.
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CHAPTER FOUR

FRACTURE MODELLING OF CONCRETE AND EFFECT
OF DOWEL ACTION AND TENSION-STIFFENING

11.1 Introduction

Cracking contributes towards the nonlinear behaviour of

concrete. In order to represent more closely the behaviour of

concrete, the effects of cracking must be accounted for in the

COnstitutive equations.

Plain concrete is assumed to fail by fracturing when a

limiting stress or strain criterion is satisfied. Fracture in

concrete is defined as 'cracking', when the limiting stress

or strain is tensile or defined as 'crushing', when the

limiting stress or strain is compressive. Crack planes are,

in general, formed perpendicular to the direction of maximum

principal stress or strain depending on the fracture

criterion used. Once cracking has taken place and the crack

surfaces move relative to each other, some forces normal and

parallel to the direction of the crack would be transmitted

to the adjacent concrete. This phenomenon is due to the

irregularities and roughness of the crack planes. Force

transmission is partially related to the 'friction' between

the two surfaces of a crack and the wedging action of the

aggregates and is known as the 'aggregate interlock'. It is

very unlikely that cracks form through aggregate since the

harden cement matrix is lower in strength than the aggregate.

Usually, cracks form in the cement and along the edges of the

aggregate particles. Shear displacements are resisted by the
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aggregate particles bearing against the opposite crack

surfaces when lateral movement of the opposite crack planes

occur, Fig. 14.la.

Crack planes may be crossed by reinforcement bars in

reinforced concrete, which could in general be at any

arbitrary angle to the crack direction. Such reinforcement

provides further resistance against the relative

displacements of the crack planes by a phenomenon called

'dowel action', Fig. 11.lb. The other mechanism that influence

the force transmission across the crack planes is the bonding

action between concrete and reinforcement. Tensile forces may

be transmitted to adjacent concrete due to bar-to-concrete

bond which is counteracted by the compressive forces in

concrete. That is, concrete provides confinement which limits

the steel deformation or makes it stiffer. This phenomenon is

known as 'tension-stiffening', Fig ILic.

In the case of crushing, unlike cracking, concrete loses its

stiffness and is no longer capable of transmitting any force

upon further loading and total material disintegration is

assumed.

In this chapter the fracture behaviour of concrete is

studied. First, a general criterion for the fracture of

concrete is proposed using the ultimate strength surface

proposed in Chapter Three. The cracking process has been

studied and it is suggested that the strain normal, to the

crack direction to be used to monitor the opening and closure

of the cracks. The smeared crack approach is adopted here and

combined with the rough crack concept to model the behaviour
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of a cracked concrete element. The problem of shear transfer

has been studied and the constitutive equations relating the

crack forces to the crack displacements are developed. These

equations are obtained by curve fitting techniques using some

experimental data published in the literature. A mathematical

model is proposed for the effects of dowel action which

relates the dowel forces to the crack displacements. The

tension-stiffening effect is considered by introducing a

factor to modify the material properties of steel

reinforcement. Such a factor is obtained by considering the

mechanism of the forces acting on a bar due to the presence

of concrete bond stresses. Finally, the equations governing

the behaviour of a crack and the reinforcement crossing the

crack are combined with the equations of the solid concrete

between the cracks to develop the cracked concrete stiffness

matrix. Such matrices are developed for a plain concrete

element and a concrete element with uniformly distributed

steel reinforcement.

11.2 The Proposed Fracture Criteria

It has already been stated that fracturing takes place when

the state of stress or strain reaches a critical value. In

this study a stress criterion is proposed to determine the

fracture of concrete subjected multi-axial loading. The

failure criterion proposed in Chapter Three is used to define

fracture. Fracture, therefore, is assumed to occur when the

following condition is satisfied.
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p -	 i5	 0
	

(14.1)

where	 p

ultimate strength given by Eq 3.15, and

= concrete uniaxial strength

Two possibilities may arise after the criterion for

fracturing has been satisfied, fracture may be caused by

'cracking' or It may be caused by 'crushing' depending upon

the state of stress. It is, therefore, required to make a

distinction between the states of stress on the yield

surface. The criteria for distinction of the states of stress

are developed in Appendix F. It is assumed that concrete

would crack, when the yield surface is reached and one of the

principal stresses is tensile or the concrete crushes, when

all the principal stresses are compressive and either the

residual yield surface defined by r is reached or the most

compressive principal strain has exceeded a prescribed limit.

These two conditions may be represented in the following way

i)	 Cracking

> C2

i	 fcu u and or

c1 <	 C2

and a >

Ii) Crushing

if	 fcu u

C1

and	 or

C1 <	 C2

and a	 0

121

<

and	 or

C3 < 2c



where	 a limitLng hydrostatic stress in compression

zone ( see Appendix F),

	

C2	
a limiting hydrostatic stress in compression

zone ( see AppendiK F),

maximum principal stress,

minimum principal strain,

= residual value of hardening parameter, and

	

Cpu	 peak uniaxial strain of concrete

1$.3 The Adopted Procedures for Cracking

A crack is proposed to form normal to the direction of the

maximum principal tensile stress, when the cracking criteria

are satisfied. It is assumed that upon cracking partial

failure occurs. The cracked concrete can still deform without

overall collapse after the formation of the first set of

cracks. It is possible, therefore, that the critical cracking

criteria are met in other directions when subsequent cracking

occurs. The second cracks are usually assumed to be normal to

the direction of the first cracks. This is an assumption

which may not necessarily hold for concrete since the

direction of the principal stresses may change during loading

of a structure. Non-orthogonal cracking is, therefore, used in

this study. It is possible that due to the capability of

cracked concrete to withstand further loading, the cracks may

close or reopen. A crack is assumed to close when the strain

normal to the crack direction Cnn 	 is compressive or reopen

when is tensile. It is, therefore, proposed that new sets

of cracks can form provided the cracking criteria are

satisfied and at the instant of cracking not more than two
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sets of crack are open. Possible crack formations for non-.

orthogonal cracks are shown in Fig. 14.2.

lt. 1I Crack Idealisation in Concrete

There are two main approaches used in the finite element

method for the treatment of cracked concrete structures and

these are the 'smeared' and 'discrete' crack idealisations.

The smeared crack approach assumes that cracks are uniformly

distributed over the area of a finite element and considers

an average effect of the crack properties over that element,

Fig. 14.3a. The cracked concrete is considered to be

anisotropic with the crack directions as the axes of

anisotropy ( local material coordinates ). The properties of

the cracked concrete are modified in the material coordinate

system and transformed to the global axes in order to

assemble the overall stiffness of the structure.

The discrete crack approach treats each crack individually by

changing the element topology in order to embody the crack

formation. A change of direction of the nodal coordinates may

also be necessary if the direction of a crack changes,

Fig. 14.3b. The application of the discrete crack approach,

therefore, causes complications and requires considerable

computational time.

The smeared crack approach has been used in this study for

its simplicity and practical application. Such a method has

been successful when used in the finite element analysis of
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structures [68-72].

11.5 Fracture Treatment in Concrete

There are two approaches in characterising the behaviour of

cracked concrete within the smeared crack concept and these

are the 'smooth' and the 'rough' crack techniques. The former

technique neglects the effect of friction due to aggregate

interlock and surface roughness. It assumes that upon

cracking only shear displacement takes place and crack

surfaces	 behave	 smoothly without any	 shear	 stresses

transmitted.	 Gervenka [73] and Loov [711] applied this

technique to concrete by reducing the shear modulus G, to

zero after cracking takes place, Fig. 1l. 14b. Disregarding

friction was thought to be on the safe side for the limit

state design. Later, shear transfer across cracks was

introduced by Franklin [75], Zienkiewicz et al [76] and

Mueller [77] in the finite element analysis of concrete

structures by maintaining the full shear modulus after

cracking, Fig 11. 14c. A more realistic method, however, which

is still used is to reduce the shear capacity of the cracked

concrete by a shear retention factor ct[69,71,78], Fig. 4.11d.

Later, Cedolin and Dei Poli [72] suggested the use of a

variable shear retention factor a, whose variation was

dependent upon the change in the strain normal to the crack

direction.

By ignoring friction on the crack surfaces or considering the

shear transfer in the cracked concrete by the reduction of'

the shear capacity of cracked concrete may result in an

unsafe design [79]. These approaches ignore the normal forces
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which act on the crack planes as a result of shear

displacement. These forces impose additional tensile stresses

in the crossing reinforcement bars, which if ignored may

result in the design of insufficient steel reinforcement. A

more realistic approach would be to consider the effects of

shear dilatancy in the cracked concrete and to model the

shear and normal stresses on the crack in terms of the

corresponding displacements, Fig J4.5. Some empirical

formulation have been proposed for the calculation of these

stresses [80-82]. Wairaven [83,8k] in particular has

proposed a theoretical approach to define the fundamentals of

the cracked concrete mechanism. His formulations fit the

experimental results well. Such a good correlation was

achieved, however, at the cost of a great deal of

mathematical complexity, which make these equations

unfavourable for practical use.

The general behaviour of cracked concrete is studied in the

following sections. An attempt is made to determine the

stress-displacement relationship of a crack by fitting curves

to the results obtained from published experiments conducted

on small specimens. These stresses are then combined with the

stresses from the solid concrete between the cracks to

determine the overall behaviour of cracked concrete.

Unlike cracking, where concrete is considered partially

collapsed, the crushing type of failure causes total

disintegration of the material resulting in the sudden loss

of stiffness. It is, therefore, proposed that the stresses

are reduced to zero upon crushing and no further resistance
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may be offered by concrete towards any deformation.

Fig's. 4.6a and 14.6b show an intact concrete specimen and a

crushed specimen.

11.6 The Proposed Models for a Cracked Concrete Element

In this section the three phenomena related to cracked

reinforced concrete are considered. These are the aggregate

shear transfer, the dowel action, and the tension-stiffening

effect. In each case the mechanism of failure of cracked

concrete with reinforcement crossing the crack is considered

and a mathematical formulation is proposed to describe the

corresponding behaviour. The experimental results of previous

investigators have been used whenever applicable to obtain

the material parameters and to verify the performance of the

proposed models.

11.6.1 Aggregate Shear Transfer

Consider a single crack, Fig. 11.7, with local axes defined by

the normal direction n, and the tangential directions s and

t, respectively. The surface roughness is attributed to the

aggregate asperities, which are assumed to be more

significant than the crack plane undulation. Thus the crack

planes are assumed to be flat. It is further assumed that the

aggregate particles are randomly situated on the crack

surface so that no preferred direction exists. It is,

therefore, justifiable to use the same relationships for

shear stresses in both the t and s directions. Hence, a two-

dimensional crack is studied, Fig. 11.8. It is assumed that

the normal and shear stresses 	 and	 on the crack are
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developed only when the two crack surfaces are displaced an

amount 'S and ó, relative to each other and the crack

asperities have made contact with each other. The proposed

formulations must, therefore, satisfy the following

conditions.

i) When 
'Sn	

0 the concrete is in a solid state and no crack

exists,

ii) 'Sn should always be positive for a crack to exist,

iii) The contact points can be developed between the two

cracks provided 'Sjt is positive. Therefore, for 'S	 > 0n
,,	 cr	 cr

and 'S	 afl	 ann	 0,

iv) For 'St = constant and 'Sn increasing, the number of

contact points decreases resulting in a reduction of

and

v) For .S = constant and 'St increasing, the number of

contact points increases resulting in an increase of

and a, and

vi) The asperities may break down as a result of a large

shear displacement which reduces the rate of increase of

and a. Finally, some stresses remain which is due

to pure friction between the two crack surfaces.

In addition, the proposed formulations must be continuous

since there are an infinite number of contact points.
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1$.6.1.1 The	 Proposed	 Cross	 Crack	 Stress-Displacement

Mathematical Model

Prior to the development of the mathematical models, it is

worth considering some experimentally obtained

characteristics of crack behaviour. The results of Loeber[85]

and Paulay and Loeber [86] show that at constant normal

displacement	 , the shear stress a, increases as the

shear displacement &, is increased. At early stages the

slope of	 versus	 is fairly small but becomes steeper as

increases, before finally reducing to zero, Fig )-t.9. This

kind of behaviour was also observed in the experimental

results of other investigators such as Walraven et al [87].

This behaviour may be explained in the following way. During

the early stages of the crack displacement, contact points

have not fully developed , therefore, small stresses exist

on the crack. Higher shear stresses are expected as the shear

displacement is increased and more contacts are made. It can

also be seen that as the normal displacement 	 decreases

steeper	 curves occur which reflect the higher 	 crack

stiffness due to increased contact area between the two

cracks. The ultimate shear stress capacity 	 is reached

when a large shear displacement has been taken place. A

gradual decrease in 	 is attributed to the variation of

and is considered to be independent of 	 Wairaven showed

theoretically that the maximum shear stress 	 at

constant crack width	 increases as the maximum aggregate

particle size Dma	 is increased [8,87]. Similar behaviour

was observed by Wairaven for normal crack stresses

[81,87].
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The following mathematical models are proposed for the

variation of normal and shear stresses 	 and	 with the

crack displacements c5	 and	 These relationships are

obtained by a regression analysis of the experimental results

reported in Ref's. [8 14,87] and are proposed in the following

form

	

cr	 or	 ( -
	 1	

)	

(4.2a)

	

a n t	ant,u	

1 + m1 rn2

	

ci cr	 acr	

(1 -

	 1	

)	

(4.2b)

	

nfl	 nn,u	

1 + n1

a or
where	 aer	

=	 nt,O
nt , U

1 + m 3 5

= ultimate shear stress,

or
or___________=

1 + n3 n

= ultimate normal stress,

or = m5

or
limiting value of	 when S +0,

cr

= limiting value of	 when
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m1

in 2	m9 + m106

in 3	 2.9335 - 61.6351x103 Da

in 11	 = 1.2830 + 6.6224x103 Dmax

in 5	 2.05,

m 6	0.56,

m7	1.2272 - 1 14.1339x10 3 Da

=-2.0375 + 7.8263x10 3 D,

m9	2.2'155 - 17.3866x10 3 D,

m b	 1.6305 - 13. 119 113x10 3 D,

fl i	 = fly, (Se,

(1 2	 =fl9+fllO6fl,

(1 3	 2.3588 - 35.6138x103 Dax

= 2.5056 - 31.0107x103 Da

= 2.00,

= 0.56,

n 7	= 0.3217 - 2.81136x10 3 D,

'8	 =-1.31115 - 12.1207x10 3 Dax

n 9	= 1.28 110 + 12.5100x10 3 D,

= 3.0162 - 25.9231x10 3 D,

tcu = concrete uniaxial compressive

strength, and

D	 = maximum aggregate particle sizemax

Fig's. 1t.lOa to 11. lOd show the comparison between the

experimental results of Wairaven [811,87] and the proposed

theoretical model for different concrete grades, crack widths

and maximum aggregate size. The fit of the experimental

values is satisfactory. Fig. 11.11 shows the fit of the

proposed model to the experimental results of Loeber [85]
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together with the suggested bilinear equations of Loeber

[85] . It appears that a better correlation exists at low

crack widths. The proposed theory provides a reasonably

accurate model, considering the scatter of the experimental

results and the variation of upto ^145 percent for the shear

stress values obtained on either side of the test specimen

[85].

11.6.1.2	 The	 Crack Stiffness Matrix due to Aggregate

Interlock

The shear and normal stresses on a crack 	 and	 are

functions of the normal and shear displacements 6n 
and

given by Eq's. 4.2a and 4.2b. These equations can be written

in a genera]. form as

cr	 . ,	 .
= LtUtUfl

= f' (6	 6 )
tin	 n t'n

(14.3)

(14.14)

The incremental crack stresses can be related to the

increments of displacements in a manner similar to that for

uncracked concrete as follows

cr
dunn	 Knn

cr
uafl	 Ltfl

K t	 d6n

Ktt	 d6t

(14.5)
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af
n

where	 -

11

a

Kt
t

a
- , and

a

The parameters Knn Knt Ktt and	 are known as the crack

'stiffness coeficients' which are dependent on 6 n 
and 6	 The

explicit expressions for these coeficients are obtained by

differentiation of Eq's. 4.2a and 4.2b with respect to 	 and

These expressions are given in Appendix G.

iI.6.2 Dowel Action

If cracks are crossed by reinforcement bars and the crack

planes are subjected to shear displacement, the shear forces

are partly counteracted by the surface roughness and

irregularities and partly be the steel bars by flexure. This

counteraction of the bars is called 'dowel action',

Fig. 1I.lb . The dowel force Fd, is assumed to act normal to

the bar direction. It is possible to simulate the dowel

action by considering a block of concrete with a single

reinforcement bar casted in the block, Fig. 1I.12a. The dowel

force may be idealised by the application of a force

normal to the bar which results in a bar deflection of

This deflection Is equivalent to the crack shear
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displacement. The stress distribution in concrete,

Fig. 11.12a, indicates that the concrete immediately below the

bar crushes which in turn causes an increase in the bar

delection.atconstant dowel force.This type of behaviour

suggests that an elasto-plastic behaviour may be assumed for

the variation of Fd with t, Fig. 14.12b.

11.6.2.1 The Proposed Dowel Force-Displacement Mathematical

Model

Several investigators have attempted to obtain the

relationship between force and dowel deflection [83,811,88-

92] . In this study the model proposed by Dulacscka [92] is

used to predict the dowel force Fd. Some modifications are

made, however, to the original form of the equations. The

original dowel force-displacement relationships were given as

follows

kA

Fd,u

Fd	 fFd I\
where	 A	 =	 Itan(

Fd, uV 	 Fdu 2

= dowel displacement,

Fd	 = dowel force,

Fdu = ultimate dowel force,

= bar diameter,

= concrete uniaxial compressive

strength, and

k	 = 1.11123x103

(11.6)
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0bc	
angle between reinforcement bar and the

normal to the crack direction,

crack normal displacement,

crack shear displacewment,

= bar diameter,

concrete uniaxial compressive strength,

f	 = steel yield stress, and

a, b and k	 constants ( see above )

A comparison between the theoretical dowel stress proposed by

Eq. 14.8 and the experimental results of Paulay et al [93] for

different bar sizes has been made, Fig 14.1l. A reasonable

correlation is achieved particularly for the smaller bar

sizes and the comparison is considered satisfactory.

A comparison between the contribution of the dowel shear

stress T d ( Eq. 11.8 ), and the total shear stress on the

crack surface of specimens with embeded bars ( after Walraven

et al [87] ) is shown in Table 14.1. It can be seen that in

all the cases the dowel force contribution is less than 10

percent of the total shear stress and thus of minor

importance. A similar conclusion was made by Wairaven [814].

Eleiott [911] conducted tests on specimens with dowel action

alone and specimens which combined the effects of aggregate

interlock and dowel action. The investigation showed that

about 12 percent of the stiffness was provided by dowel

action and about 88 percent by aggregate interlock. The

results obtained from the proposed model, therefore, are

consistent with the experimental results of Eleiott.

135



0
be

Table 14.1 A comparison of the contribution of shear stress

due to dowel force with shear stress due to

aggregate interlock. ( Experimental results of

Wairaven et al [87] versus Eq. 14.8)

No. of	 'S	 T	 T	 ____

	

bars	 t	 n	 d	 1

(mm)	 (mm)	 (N/mm2)	 (N/mm2)	
1

	2	 0.10	 0.131	 0.152	 5.35	 2.84

	

2	 0.30	 0.320	 0.162	 6.75	 2.37

	

2	 0.50	 0.493	 0.1314	 6.87	 1.95

	

14	 0.10	 0.127	 0.308	 6.36	 1.96

	

14	 0.30	 0.136	 0.322	 8.27	 3.89

	

14	 0.50	 0.1486	 0.271	 8.71	 3.11

	

6	 0.10	 0.1214	 0.1468	 7.38	 6.314

	

6	 0.30	 0.313	 0.1485	 9.29	 5.22

	

6	 0.50	 0.1479	 0.1411	 9.55	 14.30

	

8	 0.10	 0.121	 0.628	 8.27	 7.59

	

8	 0.30	 0.310	 0.651	 10.00	 6.51

	

8	 0.50	 0.1472	 0.5514	 -

Detail of the test specimen

( Mix No.5 of Wairaven et al [89] ) :

- V

= 38.2	 N/mm2,

= 1460.0 N/mm2,

= 8 mm,

Ash = 36000 mm2

shear area, and

Dax = 32 mm
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(11.9)

('4.10)

11.6.2.2 Dowel Stiffness

The geometry of a cracked reinforced concrete element and the

associated dowel forces are shown in Fig. 11.15a. The dowel

force Fd, Is resolved into normal and shear components acting

on the crack surface when the reinforcement bar is inclined

to the crack direction at an angle e bc 
These components are

transformed Into the corresponding stresses using the cross-

sectional area of concrete A, Fig. '1.15b. It should be

noted, however, that Eq. 11.8 gives the component of the dowel

force parallel to the crack direction. The dowel stresses

are, therefore, given as

d	 Fda
nt	

A
C

F
a d	_.—tanO

A	
c

C

alternatively

pF
ad
nt	 Ab

nF
d	 r d1.a	 .- Lan
nfl	 A

where	 p = ---
A

= steel ratio,

A5 = area of steel,

A0	area of' concrete, and

Ab	 area of' one bar

(11.11)

(11.12)
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The dowel stress increments are related to the displacement

increments using the dowel stiffness matrix as

d	 H
nfl	 nfl

d
dct

H	 dts
nt	 n

H tt	 dtst

()4.13)

d
BOnn

where
ats

n

d

Ht =

nt
Htt = - , and

atst

Ht =

The parameters Hat, Htt and Ht are known as dowel

'stiffness coefficients. The explicit expressions for these

coeficients are obtained by differentiation of Eq's. 14.11 and

11.12 with respect to	 and 6. These expressions are given

in Appendix H.

11.6.3 Tension Stiffening

Prior to the development of cracks there is a full continuity

between the reinforcement bars and the surrounding concrete,

which is provided by the steel to concrete bond. The concrete

in the vicinity of a crack is no longer capable of carrying

138



any tensile stress as a result of cracking and the full load

is taken by steel. The concrete between the cracks, however,

is still able to carry some tensile stress. The tensile

stiffness of concrete reduces gradually as the bond slip

between reinforcement bars and the surrounding concrete takes

place [95]. In general, concrete between the two adjacent

cracks partially resists the tensile stress which otherwise

would be imposed on steel bars. Concrete, therefore, prevents

some of the steel deformation. This effect would be enhanced

if compressive stresses were present in the concrete close to

the reinforcement bars. This phenomenon is known as 'tension-

stiffening'. In summary, although tension-stiffening is

related to concrete it may be included in the properties of

steel reinforcement bars.

Previous investigators have introduced tension-stiffening

effects by modifying concrete properties [78,96] or by
changing the steel properties [97-99]. More recently, Bazant

and Oh [100] used fracture mechanics laws to characterise the

tension-stiffening in terms of an equivalent cross-sectional

area of steel bars. Such an area represents an equivalent

'bond free' steel bar which produces the same axial extension

as the actual bar with the bond stresses present.

I.6.3.1 The Proposed Tension-Stiffening Factor

Consider a block of concrete with an embeded bar which is

subjected to an increasing pull-out force, Fig. 11.16a. Bond

slip 
b' 

takes place over a certain length of the bar upon

increasing the pull-out force. The steel bar becomes

separated from the surrounding concrete, as a result of this
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slip over the bond slip length L 5 . The bond over the bond

slip length is assured by friction arid interlock between the

concrete and the reinforcing bar ribs. The variation of bond

stress Tb, over this length is non-uniform, Fig. 14.16b. To

obtain a simple and approximate solution, however, the bond

stress is assumed to be uniform and of magnitude of Tb, over

the bond slip length, Fig. 'I.16c.

The bond slip length is obtained in accordance with the

equation proposed by Bazant and Cedolin [101]. This length

is, therefore, given as

L	
b	 s	 (k. lii)

Ub (1 + n p)

where	 L3 = bond slip length,

= steel stress at the crack,

Ab = cross-sectional area of a bar,

Ub = WS4.tb

bond force per unit length of a bar,

Tb	 bond stress,

bar diameter,

= E5

E0

= ratio of the steel Young's modulus to that

of concrete, and

p = percentage of steel reinforcement

The equilibrium of forces is then considered for a bar

crossing a crack in accordance with the technique used by
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Gambarova [81] . The average steel strain for the length of a

bar bounded between two adjacent cracks can be described in

terms of the steel stress and bond slip length. From such a

consideration, the tension-stiffening parameter is

deduced as follows

s' Ub (1 + n p)2
a	 =	 (14.15)

2A	
s +
	 Ub n p (1 + n p)

S
where	 s' =

eQs eb

s	 = crack spacing,

0bc	
the angle between the normal to the

crack and the bar,

Ub = bond force per unit length,

Ab = cross-sectional area of a bar,

n	
=	 , and

E0

p	 percentage of reinforcement

The derivation of	 is given in Appendix I and is used to

modify the steel properties as follows

*
E =a E

S	 t S

where	 E5	 initial steel Young's modulus,

E = steel Young's modulus with

tesion-stiffening effect, and

tension-stiffening parameter

(14.16)
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The evaluation of the tension-stiffening factor ct, for the

experimenal results of Wairaven [8 14] and Walraven et al [87]

is given in Fig. 11.17. It can be seen that the effective

*
Young's modulus of steel E 5 , may be many times larger than

the initial value E5.

It is concluded that when high bond characteristics exists,

i.e. for a smaller steel ratio, a higher tension-stiffening

factor is achieved. The value of tends to unity as the

bond slip length L 5 , approaches its limiting value s/2,

i.e. the one half of the crack spacing. This limit indicates

that the bar between the two cracks is completely separated

from the surrounding concrete.

11.7 The Proposed Crack Concrete Stiffness Matrices

In this section, the theoretical developments proposed in the

previous sections for the different features of a cracked

concrete element are combined with the properties of solid

concrete to form the stiffness matrices, which represent the

response of an element of concrete with cracking. The

implementation of the developments is presented in two parts.

The first part deals with plain concrete elements in which

the reinforcement bars are idealised at the boundaries of a

concrete finite element, e.g. using bar elements. In this

case the properties of the solid concrete between the cracks

are only combined with crack properties caused by aggregate

shear transfer. In the second part, a reinforced concrete

element is considered in which the reinforcement bars are

uniformly distributed over the area of' concrete. In this case
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cr	 or
1nt = 2Cnt S

(14. 18)

the effects of dowel forces and tension-stiffening as well as

the effects of aggregate interlock are introduced.

1$.7.1 The Stiffness Matrix of a Cracked Plain Concrete

Fig. l .18a shows a finite element mesh for plain concrete

which includes a cracked zone. Consider an element of plain

concrete within the cracked zone where a system of parallel

cracks Is running at an angle 0cr 
through the element,

Fig. 1t.18b. Using the concept of a smeared crack, it is

possible that the effect of the sharp cracks is distributed

uniformly over the tributary area of a gauss point. The

relative displacements in the crack could be, therefore,

transformed into equivalent crack strains as

cr =	 (14. 17)
nfl	 S

or
where	 Cnn	 crack normal strains,

or1nt = crack shear strains,

crack normal displacement,

= crack shear displacement, and

s	 = the average crack spacing

In the absence of reinforcement bars the stresses in the

uncracked concrete c 0 , are the same as the stresses in the

crack a 0' , and equal to the normal stresses a. The increments

of stress are also equal, therefore
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sc	 cr
dc=dc	 +dE (14.20)

F	 s-	 daCt'

	

nt	 ml

	

0	 da

Ftt s i 	 dT

0

0

0

da sc = dGr' = dY
	 (1'. 19)

The average strains in concrete are the sum of strains in the

uncracked concrete 5c, and strains due to the cracks cr

therefore

At this stage the constitutive equations developed for a

crack are used , i.e. Eq. 11.5. If this relationship is

inverted the crack flexibility matrix is obtained as

d6	 Fn	 nfl

Ft

F

	

nt	 nn

cr

	

F t t	 dot

(11.21)

where
	

F =

= crack flexibility matrix, and

K	 crack stiffness matrix from Eq. 11.5

Combining Eq's. 11.17, 11.18 and 11.21, yields

I	 cr'
InnI	 (F
	 s -

1dcJ =

	 0

s-i

(11.22)
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or simply

= cr dar
	

(4.23)

where	 cr = F

= crack flexibility matrix

Combining Eq's. 11.19 and 11.23, gives

= Cer th	 (1.211)

By using the Hook's law the uncracked concrete strains may

be written as

dc5' =	 dcy5°
	

(f.25)

where	 Cc	 DSC

= solid concrete flexibility matrix

Combining Eq's. 11.19 and 11.25, gives

dc5° = C8° dY
	

(11.26)

D5° may be obtained from the elasto-plastic relationship

developed In Chapter Three ( Eq. 3.113 ) if the stresses and

strains are large, otherwise it is acceptable to use the

linear elastic modular matrix D e . Combining Eq. 11.20, 11.211

and 11.26, the flexibility matrix for cracked concrete CCC,

is obtained as
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CC
da=D	 d (11.28)

dc	 do
	 (14.27)

where
cc	 sc	 crC	 =C	 +

From Eq. 11.27 the constitutive law for cracked concrete is

given by

where
	 DCC =

The matrix DCC is the incremental stiffness matrix of a

cracked plain concrete element in the local crack coordinates

n and t. It should be, therefore, transformed to the element

coordinate system by means of a transformation matrix T, for

use in a finite element method, as

cc	 =TTDCCT
"elem

The transformation matrix is given as

	

c2
	

Sc

	

c2
	

-Sc

	

-2SC
	

2SC

where	 C	 COSGCr

S	 = sinO C r , and

0cr = crack angle C see Fig. 11.18)

(.4.29)

(11.30)
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In Eq's. 1I.17_ 14.30, the superscripts refer to crack (or), solid

concrete (sc) and cracked concrete (cc).

1L7.2 The Stiffness Matrix of Cracked Reinforced Concrete

The relationships which have been used between stresses and

displacements in cracked reinforced concrete are those

proposed by Bazant and Gambarova [80] . A modification for the

dowel stresses and tension-stiffening effect has been

incorporated, however, in accordance with the suggested

methods by Bazant and Oh [10.0] and Walraven [8k] and Wairaven

and Reinhardt [89], respectively.

Consider a panel of reinforced concrete where reinforcement

bars are uniformly and densely distributed, Fig. lI.19b . In

the uncracked zone, the separate stiffnesses of the concrete

and steel can be combined into an equivalent stiffness for a

reinforced concrete element. Since the stresses and strains

in the concrete and the bars are the same, therefore

dc	 Drc dE
	

(k.31)

rc	 Sc	 5
where	 D	 =D +D

= reinforced concrete modular matrix,

DSC = solid concrete modular matrix, and

= steel bars modular matrix

may be obtained from Eq. 3.k3 and D 3 is given as follows
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= E 1 TT D T
	

(4.32)

p E51	 o	 o

where
	 S	 0
	

o	 0

0
	

o	 0

modular matrix of the 
1th system

of reinforcements,

I
	

1,2 .....

= number of reinforcement systems,

E51 = Young's modulus of the 1th reinforcement

system,

pi
	 = percentage of steel of the 1th

reinforcement system,

T
	

transformation matrix for angle

( see Eq. J4.30 ), and

= angle of the 1th reinforcement system,

( see Fig. 4.19 )

The cracked reinforced concrete stiffness matrix is obtained

In a similar way to the plain concrete stiffness matrix but

account is now taken of the effects of dowel action and

tension-stiffening. Consider an element of reinforced

concrete with a set of reinforced bars at angles of bcl and

0bc2 to the direction of normal to the crack, and a set of

parallel cracks running at angle of 0cr to the x-element

axis, Fig 4.19b. The average strains are the sum of the

strains in the solid concrete and in the cracks and are given

as
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cr	 Sc
de	 dc	 + dc ('1•33)

Sc	 ScSC 
= C	 dawhere	 dc

cr

()4.3'1)

(14.35)

Sc	 cr	 dadd	 =dc	 + ('1.36)

Unlike plain concrete the stresses in the uncracked concrete

must equal the sum of stresses in the cracks crCl', and

the stresses due to the dowel action	 Therefore,

From Eq's. '1.13, 14.17 and '1.18, the dowel stresses for a bar

system is given as

da d	H
nfl	 nn

dcJ	 =	 0

dT nt	 tn

o	 Ht	 dE

o	 0	 dC

o	 Htt s-
	

dy

('1.37)

The summation of the dowel stresses due to all the bars is

dad = Dd dEer
	

(4.38)

where	 Dd =
	

H1

H1 = dowel stiffness matrix for the ith

reinforcement system ( see Eq. '1.37 ), and

i	 = 1,2, .... n

= number of reinforcement systems
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cr	 crdc= Dd C	 d (14.39)

Sc
dc	 [ C	 + Cer I da50 (14.1411)

Substituting Eq. Ij.35 in Eq. 11.38 gives

and combining Eq. !1.3'1 and Eq. 14.37 yields

Sc	 d cr	 cr
dc	 I+D C	 Ida (11. 110)

where	 I = unit matrix

Inverting Eq. 14.40 and substituting the result in into

Eq. 11.35 gives

cr	 er E I + Dd cr 
]_1 daS
	

(11.111)

Combining Eq's. 11.33, 14.311 and 11.111, produces

r Sc +D C
de = j C
	 + Ccr [	

d er _i } da5C

alternatively

de = ccd dcySC

('1. '12)

(11. 113)

where	 ccd	 cracked concrete flexibility matrix

with dowel force effect included

It should be noted that if the effect of dowel action is

neglected Eq. 14. 142 reduces to
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ccdda=[D5 +C (11.148)

The effect of reinforcement bars can now be introduced by

assuming that the total stresses a, are equal to the

summation of the stresses in the solid concrete and

stresses in the steel reinforcement bars 
S The increments

of stress are, therefore, given as follows

dG = dasc + da5
	

(J4.15)

From Eq. k.43 it is concluded that

1
da 5 °	 c	 dc
	 (J4.146)

and the steel stresses are

da3 = D3 de
	 c4.'I7)

D 5 is obtained in a similar way to Eq. 4.32, but the Young's

modulus of steel bars E, is replaced by E from Eq. 4.16

to include the tension-stiffening effect. Also, DS must be

transformed to the crack coordinate system by the

transformation matrix T, Eq. 1 .3O. The stiffness of the

cracked reinforced concrete is obtained by combining

Eq's. k.45 to 1L'17, as follows
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alternatively

dcy =	 de
	

(4.49)

where Dr = cracked reinforced concrete stiffness

matrix including dowel action and tension-

stiffening effects

The matrix must be transformed to the element

coordinate system by means of a transformation matrix T, for

use in a finite element method, as

rccd	 TT Drc	 T	 (4.50)D 1	=

In Eq's. 4.31 to 4.50, the superscripts refer to reinforced

concrete (rc), solid concrete (sc), steel (s), crack (cr),

dowel (d), cracked concrete with dowel effect (ccd), cracked

concrete (cc) and cracked reinforced concrete with dowel

effect (rccd).

4.8 Conclusions

The following points are concluded from this chapter

i) Fracture in concrete occurs when the fracturing

criteria are satisfied. Fracture is by cracking in the

tensile region, where concrete is partially failed, or

by crushing, where total failure of concrete takes

place. A stress criterion is proposed for the

definition of fracture based on the proposed yield

surface developed in Chapter Three.
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ii) A smeared crack approach is more favourable for use in

the finite element method in comparison with the

discrete crack approach. This is due to computational

simplicity and relatively easy computer programming.

iii) The shear transfer due to the aggregate interlock has

an important effect on the behaviour of cracked

concrete and is best modelled by considering normal and

shear stresses on the crack surfaces. Suitable

mathematical models are proposed to represent the

aggregate interlock effect. Close correlation of the

resulting equations with the published experimental

results confirm their validity.

iv) Dowel action makes some contribution towards resisting

the shear stresses in cracked reinforced concrete. Its

contribution, however, is small compared with aggregate

interlock. Some existing models have been modified to

enable a reasonable representation of dowel stresses in

cracked reinforced concrete. The comparison between the

results of the proposed model and the experimental

evidence is considered satisfactory.

v) The effect of bar-to-concrete bond is introduced within

the concept of tension stiffening which involves the

modification of the steel properties. It was found that

the modified steel Young's modulus may be several

times greater than the initial value before cracks were

formed
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vi) Cracked stiffness matrices of cracked plain and

reinforced concrete were obtained by combining the

stiffness of the solid concrete between the cracks and

the stiffness of cracks. In the case of the cracked

reinforced concrete, dowel stiffness and tension-

stiffening effects were also introduced. These matrices

were assembled in a form suitable for use in the finite

element method.
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(a) Aggregate Interlock

(b) Dowel Action

(a) Bond Action

Fig. 1.1	 Representation of different mechanisms for cracked
reinforced concrete.
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(a) First Crack Formed
	

(b) First	 Crack Open
and Second	 Crack
Formed

(c) First Crack Closed
	

Cd) First	 and Second
Cracks Closed

	

(e) First Crack Closed
	

(f) Second Crack Closed
and	 Second Crack
	

and Second	 Crack

(g) First	 and Second	 (h) First Crack Closed,
Cracks Closed	 and	 Second Crack Open

	

Third Crack Formed	 and Third	 Crack
Formed

Fig. 1L2

	

	 Possible crack formations and crack opening and
closure.
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(a) Smeared Crack

A
(b) DIscrete Crack

Fig. 11.3	 Crack idealisation in the finite element method.
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1

(a) Solid Concrete
	

(b) Gcr = 0

(c) G	 = G
	

(d) G	 = aG

Fig. LL.1
	

Schematic	 representation of	 different	 crack
models.

• •st

"I

-

Fig. L.5	 Rough crack representaion.
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(a) Solid Concrete	 (b) Crushed Concrete

Fig. 14.6
	

Crushed concrete representation.

Fig. 14.7 Three-dimentional	 representation of a
crack.

single

Yl n

or
ann

or
0nt

4ant
ocr

nfl

.-c6n

Fig. 14.8
	

Two-dimentional representation of a single crack
and associated crack stresses and displacements.
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Fig. 11.9
	

General shear stress-displacement behaviour of
cracked concrete.

160



o	 =16mm	 F =13.N'mm2
max	 cu

10 .

(A)

8.

7..
(+)

	

0	

, *

.00	 .50	 1.00	 1.50	 2.00	 2.50

Shear DisP1acementS(mm)

0	 =16mm	 F	 13.4N'mm2
max	 Cu

9

8 • 	( A)
E

	

	 S=.i
7

z	 (V)

6.

t;	 s.

U.'
a,

(0)

....
Proposed Theory

Experimental
z

Results (84,873

.00	 .50	 1.00	 1.0	 2.00	 2.50

Shear OispL.ac.ement,6(mm)

(a)

Fig. 11.10 Comparison of the proposed aggregate interlock
model with experimental results.
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Fig. 11.11 Comparison of the proposed aggregate interlock
model with theoretical and experimental results of
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Fig. l .12 Model representation of dowel force-displacement
relationship.

Fig. 11.13 Non-dimensional dowel force curve.
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Fig. l .1k Comparison of the proposed dowel force model with
experimental results.
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Fig. .15 Schematic	 representation of dowel force	 and
stresses on a cracked concrete element.
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Fig. p1.16 Actual and idealised bond stress distribution for
an embedded bar subjected to pull-out force.
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Fig. l .18 Cracked plain concrete with smeared cracking.
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CHAPTER FIVE

IMPLEMENTATION OF THE PROPOSED CONCRETE CONSTITUTIVE
AND FRACTURE MODELS AND ASSOCIATED ANALYTICAL RESULTS

5.1 Introduction

The development of the constitutive equations and fracture

models of concrete have been discussed in the previous

chapters. These models are proposed to represent the multi-

axial stress-strain relationship of concrete in the pre and

post ultimate load levels and simulate different fractured

concrete mechanisms for the concrete material which has

exceeded its permissible strength. The validity of these

equations has been investigated in comparison with the

experimental results of previous investigators which have

been carried out on small concrete specimens and subjected to

idealised loading under laboratory conditions. This chapter

is aimed at verifying the performance and capability of the

proposed concrete models in relation to experimental results

of large scale concrete structures.

The proposed constitutive equations presented in Chapter

Three and the fracturing model produced in Chapter Four have

been implemented into a general purpose finite element

program called LUSAS. The LUSAS system is used for the

analysis of the plane stress and the axisynunetric solid

stress reinforced and prestressed concrete structures. The

analytical results are compared with the experimental results

whenever applicable.
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5.2.1 Nonlinear Analysis in LUSAS

The LIJSAS system has the capability of dealing with two types

of nonlinearities encountered in the structural analysis :-

(i) geometrical nonlinearity, when the strain-

displacement relationships are nonlinear, and

(ii) material nonlinearity, when the stress-strain

relationships are nonlinear.

The latter type of nonlinearity requires an incremental and

iterative solution procedure. There are three incremental

procedures in the LUSAS system :-

(i) pure incremental solution,

(ii) incremental with the	 Newton-Raphson

iteration, and

(iii) incremental with the modified Newton-Raphsan

iteration.

There are also facilities to combine these techniques with

the 'line-search' and 'arc-length' methods for a particular

problem solved.

5.2.2 LUSAS Element Library

There are many different types of elements available in the

LUSAS element library. Most of these elements can have

isotropic, anisotropic and nonlinear material properties as
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well as varying geometric properties. Most elements are

numerically integrated. Different type of elements can be

mixed to simulate a structure as long as they have the same

degrees of freedom. In the following the elements that have

been used in this study are briefly described

(i) Bar Element - BAR2 and BAR3

This type of element is used to model the

reinforcement bars. BAR2 and BAR3 are two and

three noded curved isoparametric elements in two-

dimensions which can accommodate varying cross-

sectional area at each node, Fig. 5.1. Each node

has two degrees of freedom and the node

coordinates are defined with respect to X-Y axes.

The material properties for this element can be

defined by a linear elastic or Von Mises elaso-

plastic constitutive model. The loading can be

applied as concentrated load, constant body

force, and body force potential at each nodes or

as initial stresses at gauss points.

(ii) Plane Membrane Element - QPM8

This type of element is used to model concrete in

the state of plane stress, such as beams and

panels. QPM8 is a two-dimensional isoparametric

element with higher order models capable of

modelling curved boundaries, Fig 5.2. This

element has eight nodes with two degrees of

freedom at each node. The thickness at each node

can be defined independently. The element can
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therefore have a varying thickness if required.

The node coordinates are defined with respect to

X-Y axes. There are several linear and nonlinear

material models available to this type of element

such as orthotropic, orthotropic plane strain,

anisotropic, Von Mises elasto-plastic and a

nonlinear concrete model. The proposed concrete

model is used to define the material properties

of the plane stress concrete elements. QPMB

elemnet is capable of adopting concentrated load,

constant body force and body force potential at

each node and face load at each side of the

element.

(iii) Axisymmetric Membrane Element - BXM3

This type of element is used to model

cicumferential cables as axisyminetric membranes

with equivalent thickness in the axisymmetric

problems. BXM3 is a straight or curved

axisymmetric element which can accommodate

varying thickness. The Y-axis is considered as

the axis of symmetry, Fig 5.3. This type of

element has three nodes with two degrees of

freedom at each node. The node coordinates are

defined with respect to X-Y axes. A linear

elastic or Von Mises elasto-plastic material

model may be used with this type of element. The

loading can be applied as concentrated load,

constant body force, and body force potential at

each nodes.
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(iv) Axisyinmetric Solid Element - QAX8

This type of element is used to model solid

concrete structures subjectd to axisymmetric

state of stress, such as cylindrical structures.

QAX8 is an isoparametric element with the higher

order models capable of modelling curved

boundaries. The element formulations apply to a

one radian segment of the structure with the Y-

axis as the axis of symmetry, Fig 5.4. QAX8 has

eight nodes with two degrees of freedom at each

node. The node coordinates are defined with

respect to X-Y axes. There are several linear and

nonlinear material models available for the use

with this of type element such as orthotropic,

isotropic and Von Mises elasto-plastic models.

The propsed concrete model is used to define the

material properties of axisymlnetric 	 concrete

elements. The loading can be applied as

concentrated load, constant body force and body

force potential at each nodes and as face load at

each side of the element.

5.3 The Finite Element Implementation of the Proposed

Concrete Model

The proposed constitutive equations developed in Chapter

Three are incorporated into the LUSAS system for the finite

element analysis of reinforced and prestressed concrete

structures. The concrete model has been implemented in the
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da.. =Dij	 ijkl d kl (5.1)

LUSAS system for the use in conjunction with plane stress

and axisymmetric solid elements. The implementation of the

concrete model was carried out in two stages :-

(i) The development of routines to calculate the

modular matrix D, for a given state of stress a,

in the pre-solution and

(ii) The development of routines to calculate the

stresses a, for a given set of strain increments

de in the post-solution.

The routines developed in stage (i) are used to calculate the

element stiffness matrix k, in the pre-solution and the

routines developed in stage (ii) are used in the post-

solution to calculate the element stresses a.

The constitutive equations developed in Chapter Three are

used to assemble the modular matrix D, and the incremental

stress-strain relationship of concrete

E
where	 Djjkl =

	 . + v ) ( 1 - 2'v )	
Cjjkl - 11 ijkl

(5.2)

( see Chapter Three, Eq 3.43 for parameters definition )

A symmetrical modular matrix is directly obtained from

Eq. 5.2 for the use in the pre-solution of the finite element
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analysis. In the post-solution, however, two possibilities

may arise during a finite change of strain ic, and these

are :-

(i) stress level is below the current yield surface,

i.e. f(cy ,)<O (elastic state), or

(ii) stresses violate the yield criteria and exceed

the current yield surface, i.e. f(c1,)>0 (plastic

state).

These two cases must be treated separately. A simple elastic

modular matrix De, may be used to obtain the stress

increments corresponding to an strain increment in the

elastic state. In the plastic state, however, an elasto-

plastic modular matrix Dep must be used. In the case of

plastic yielding, attention must be paid to the problem of

transition from the elastic to plastic zone [20,47,104]. The

problem may be examined by considering a concrete material

which is loaded such that the stresses have reached point A

inside the current yield surface C elastic zone ), Fig. 5.5.

Upon further elastic loading a new stress level is attained

which violates the yielding criterion, point B, Fig. 5.5. In

this case, part of the strain increment c, should be treated

elastically and the remaining part of it elasto-plastically.

The transition problem can be solved geometrically by

intersecting line AR with the current yield surface at point

C, Fig. 5.5. The solution results in a percentage of the

strain increment r, which is sufficient to promote the

stresses from point A to point C on the yield surface. The

elastic stress increment	 is therefore given as
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r

e=J	
DedcErDec	 (5.3)

The remainig strain increment (l-r)c, would contribute

towards the elasto-plastic stress increment a, given as

ep =
	 Dep d E (l-r) DeP E

	
(5.4)

The total change of the stress increment is given as

=	 e +
	 ep
	 (5.5)

Such approximation is admissible if infinitesmal strain

increments are used. The use of Eq. 5.4 for relatively large

strain increments, however, produces a stress change such

that

f(a+Aa,) y 0	 (5.6)

This implies a departure from the current yield surface which

results in an over-stiffening of the structure, Fig. 5.6a. It

is very important to preserve the yield criterion during the

plastic flow. An alternative solution is the sub-incremental

technique where the elasto-plastic strain increment (l-r)tC,

is subdivided into a number of smaller increments so that the

final stress position would be much closer to the yield

surface [1041, Fig. 5.6b. The number of sub-increments may be
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calculated as follows

Af(o)
+1
	

(5.7)
v . f (a)

where	 m	 = number of sub-increments,

f(a) = excess stress corresponding to stress at

point B,

f(a) = yield stress corresponding to point B, and

v	 = a percentage of the yield stress used as

the tolerance limit ( 1 percent has been

used in this study )

After m number of iterations a stress level corresponding to

point D' is achieved, Fig 5.6b. The drift away from the yield

surface at point D' is corrected by applying a stress

adjustment decrement Acladjl to the stresses at point D'. Such

a correction is achieved by assuming that the stress changes

in the direction of normal to the yield surface [104] as

( tF

adj =-f)-;

a	 cY

(5.8)

where	 F = excess stress at point D' (Fig. 5.6b), and

- = direction of the normal to the yield surface

at point D'

The adjustment of the stress level may be carried out at the

end of iteration to bring the stresses back to the yield
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surface. An additional refinement may be achieved by

introducing the stress adjustment at each cycle of the sub-

incremental iteration.

The computational procedure described above is suitable for

the pre-ultimate state of stress when the material hardening

is assumed to be governed by the isotropic hardening rule. In

the post-ultimate state of stress, however, the concrete
4

material exhibits strain-softening which is modelled by

assuming a progressive collapse of the yield surface. The

numerical technique adopted for the strain-softening state of

stress involves a reduction of the stress level until the

stresses reach the current or collapsed yield surface. The

stresses are reduced such that the stress decrements remain

in the direction of the normal to the yield surface in

accordance with Eq. 5.8. Once the state of stress has reached

the collapsed yield surface the strain increment iC, is

applied using the elasto-plastic modular matrix and the sub-

incremental technique. A flow chart showing the numerical

procedure adopted here is given below
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Flow Chart Representing the Numerical procedure Adopted
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5.4 Material Modelling of the Fractured Concrete

The fracture in concrete is classified into 'crushing' type

of failure in the compressive state of stress and 'cracking'

type of failure in the tensile state of stress. The fracture

criteria developed in section 4.2 are used to identify the

nature of fracturing in concrete.

5.4.1 Compressive Failure

A gauss point is assumed to fail by crushing when the

compressive failure criterion ( Section 4.2 ) is satisfied or

the least principal strain has reached the limiting value of

where Cpu is the ultimate uniaxial compressive strain of

concrete. A crushed gauss point is assumed to lose its

stiffness completely and unable to sustain any further load.

The Young's modulus of a crushed gauss point is set to zero

to represent total failure of concrete.

5.4.2 Tensile Failure and Crack Formation

A gauss point is assumed to fail by cracking when the tensile

failure criterion ( Section 4.2 ) is satisfied and at least

one of the principal stresses has exceeded the limiting

uniaxial tensile strength of concrete A cracked gauss

point loses its stiffness partially and is assumed to be in

the orthotropic state of stress with the crack directions as

the axes of orthotropy.

Cracks are allowed to form normal to the direction of the

offending principal stress. A further violation of the
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cracking criterion results in the formation of subsequent

cracks. The subsequent cracks form a non-orthogonal set of

cracks with the initial crack owing to the rotation of the

principal stress directions resulting from the continuous

stress redistribution ( see Fig. 4.2, Chapter Four ). A set

of orthogonal cracks may only form if the principal stresses

violate the cracking criteria Simultaneously. A minimum angle

of thirty degrees between the initial and the subsequent

crack planes is used as the threshold angle of rotation of

principal stress direction before a new crack is allowed to

form. This requirement prevents the formation of unrealistic

cracks which may initiate as a result of small rotation of

the principal stress direction. It should be noted that such

policy may, however, result in excessive tensile stresses in

the vicinity of an existing crack untile a valid crack is

allowed to form.

Each gauss point of an element is allowed to embed upto two

in-plane cracks in the case of plane stress elements,

Fig. 5.7, or two in-plane ( circumferential ) and one out-of-.

plane ( radial ) cracks in the case of axisymmetric elements,

Fig. 5.8.

5.4.2.1 Cracked Concrete Properties

The tensile cracks are represented by the smeared crack

approach C see Chapter Four ). The smeared cracks are

uniformely distributed over the area of the cracked gauss

point, hence the averaged smeared strains may reasonably be

interpreted as a measure of the discrete crack displacements.

186



The material properties of a cracked gauss point is assumed

to be the combination of the stiffness properties of the

cracks, as a media, and the solid concrete between them. It

is further assumed that the stiffness of a gauss point,

containing the maximum allowable number of cracks ( two for

plane stress and three for axisymmetric elements ), reduces

to the contibution of the crack stiffnesses alone.

The solid concrete between the cracks is assumed to behave

elastically and the crack stiffness is obtained from Eq. 4.5.

Such an approach results in the gradual release of the

normal stress perpendicular to the crack plane and the shear

stress parallel to the crack direction, while the other

stresses remain unchanged. It follows that the stress states

of the solid concrete between the cracks are reduced to :-

(a) the uniaxial stress states parallel to the crack

direction for a singly cracked plane stress element,

Fig. 5.9a, and

(b) the biaxial stress states parallel to the crack and

circumferential or radial directions for a singly

cracked axisymmetric solid element, Fig. 5.9b, or

(C) the uniaxial stress itates parallel to the

circumferential or radial directions for a doubly

cracked axisymmetic solid element, rig. 5.9c.

The use of Eq. 4.5 produces an unsymmetrical stiffness matrix

which requires a non—symmetrical solver in the solution stage

of the finite element method. The lack of such facilities in

187



the LUSAS system leads to the simplification of Eq. 4.5 by

ignoring the off-diagonal terms, namely Kt and Kt,

resulting in

crdcy	Knfl	 nfl

dacr
nt	 0

o

K t t	 dSt

(5.9)

The stiffness matrix of a cracked gauss point is obtained by

ignoring the dowel action and the tension stiffening effects

of the reinforcing bars and in accordance with the

procedure proposed in Section 4.7.1 ( see Eq. 4.28 ). It

should be noted that Eq. 4.28 is valid for cracked concrete

with only a single crack layer present. The stiffness of a

cracked concrete with several crack layers may be obtained by

transforming the crack stiffnesses to a common coordinate

system C using Eq. 4.29 ) and combining them with the

stiffness of the solid concrete.

5.4.2.2 Crack Opening and Closing

The stresses and strains normal to an existing crack change

during the course of the loading history owing to stress

redistribution and stress release in the adjacent concrete

which may in turn result in loading, unloading and reloading

of the cracks. The increment of strain normal to the crack

plane is used to determine whether a crack is opening

or closing.

The loading of a crack ( opening ) is governed by the normal

component of the crack stiffness matrix	 Fig. 5.10. A
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crack is assumed to be fully opened when the Knn retains a

very small value. It is assumed that a crack unloads

( closing ) such that the crack normal stress nn return

towards the zero stress state and reloads ( re-opening )

along the same path until the crack normal stress reaches the

stress level prior to the crack closing, Fig. 5.10. A fully

closed crack is achieved when the zero stress state has

reached.

It is assumed that a gauss point loses its stiffness when the

maximum allowable number of cracks has reached and all the

cracks are fully opened. Furthermore, The stiffness

properties of a gauss point containing a fully closed crack

is assumed to reverse back to its properties prior to the

existance of that crack with a reduced shear capacity defined

by the shear retention factor .

5.4.2.3 cracking Verification

To verify the analytical cracking predicted by the proposed

fracture model, four test cases were devised which included a

single concrete element subjected to prescribed deformation

such that known crack patterns can be anticipated. These test

case are

(a) Test 1, a single concrete element is subjected to an

increasing uniform uniaxial stretching until all the

gauss points are cracked simultaneously normal to the

direction of stretching, Fig. 5.11a,

(b) Test 2, a single concrete element is subjected to

an increasing uniform equal biaxial stretching until all
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the gauss points are cracked simultaneously normal to

the directions of stretching and such that all the

cracks are orthogonal, Fig. 5.11b,

(C) Test 3, a single concrete element is subjected to shear

deformation until a synunetrica]. inclined single crack

pattern is formed, Fig. 5.11c, and

(d) Test 4, a single concrete element is subjected to a non-

uniform stretching in opposite directions followed by a

uniform stretching in the orthogonal direction until a

symmetrical crack pattern comprising of single cracks,

and double orthogonal cracks are formed, Fig. 5.11d.

The crack patterns appear tQ be consistent with the applied

deformations and the fracture model is believed to predict

concrete cracking accurately.

5.5	 Modelling of the Reinforcement Bars

5.5.1 The Material Behaviour of Steel Bars

The nonlinear stress-strain relationships of steel

reinforcement bars is modelled by the Model 62 in the LUSAS

finite element system [102]. The material model uses the

Von Mises yield surface and an isotropic work-hardening to

represent the elasto-plastic material behaviour. The material

behaviour is defined by the initial stress, Young's modulus,

and the Poisson's ratio of steel and a series of linear

sections to model the material behaviour in the work-

hardening zone, Fig. 5.12a. The actual stress-strain curve of

steel is mapped into a uniaxial yield stress versus effective
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E

iE
E5

(5.10)

C

L. = C. -
1.	 1	 E5

(5.11)

plastic strain curve. Each hardening section is defined by

its slope and the effective plastic strain at that point,

Fig. 5.12b. These quantities are defined as follows

where	 = slope of the 1th hardening section,

th
= effective plastic strain at the i

hardening section,

-
1	 i-i

E-
p•_•

1	 i-i

= the actual stress of the 1th point,

= the actual strain of the 1th point, and

E5 = initial Young's modulus of steel

5.5.2 Finite Element Idealisation of Steel Bars

The reinforcement bars are assumed to be isotropic material

capable of resisting normal stresses along the axial

direction of the bar. The reinforcement bars are, therefore,

modelled by isolated bar elements C see section 5.2.2 ) which

are assumed to be rigidly connected to the concrete elements

at the nodal points. The rigid connection is an approximation

to the actual bond between steel and concrete. Further

191



refinement is required to model the bar-to-concrete bond and

the possible slip between them.

5.6 Numerical Analysis and Examples

tn this section an attempt is made to investigate the

capability of the proposed concrete model in predicting the

behaviour of reinforced and prestressed concrete structures

and to verify the analytical performance of the proposed

constitutive equations. Two problems are selected from the

published experimental results for this purpose which

comprise of a reinforced concrete beam subjected to a central

point load and a prestressed pressure vessel subjected to

internal pressure. These examples provide sufficient

information to assess the plane stress and axisymmetric solid

stress capability of the proposed models in predicting the

deformational behaviour and the load carrying capacity of the

structures as well as the crack formation and propagation

upto the failure load.

The structures have been discretised by the elements which

have previously been described. A 3 X 3 gauss point

integration rule has been used in the finite element analyses

to avoid zero energy rotations of the gauss point inherant

with the 2 X 2 integration scheme. The material properties of

the concrete and steel reinforcement bar elements have been

defined by the proposed concrete models and the Von Mises

elasto-plastic model respectively. The steel reinforcement

bar elements are assumed to be rigidly connected to the

adjacent concrete elements. The Arc-Length method has been

used for the automati load incrementation to avoid the
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critical points where small increase in load is matched by a

large increase in displacement leading to solution

divergence. Such critical situation may arise following

substantial crack formation in the structure leading to major

loss of structure stiffness. Both structures have been

analysed using one Newton-Raphson iteration followed by ten

Modified Newton-Raphson iterations combined with the Line-

Search method	 to improve on possible poor	 solution

convergence	 in	 the presence of considerable material

nonlinear ities.

5.6.1 Plane Stress Flexural Beam

The behaviour of reinforced concrete beams in bending has

been studied by many researchers for the ultimate load

carrying capacity and crack pattern [105-107]. As a result,

there is an ample experimental evidence on load-deflection,

cracking, and failure load of simply supported reinforced

concrete beams which provide a very useful background for

analytical work.

The experimental results reported by Bresler and Scordelis

[107] are used to investigate the material nonlinearities in

concrete beams which are mainly caused by cracking. Beam

No. OB-1 has been selected amongst many beams of different

size and matrial strength [107] for the finite element

analysis. This beam has a rectangular cross-section and

reinforced with four No. 9 bars ( diameter 1.128 in ) and no

web reinforcement. The beam was simply supported and central

concentrated point loads	 were applied until failure was
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achieved, Fig. 5.13. A finite element mesh is prepared to

discretise one half of the beam due to symmetry of the

structure. Concrete has been modelled by 36 QPM8 elements and

the reinforcement bars by two layers of BAR3 elements

consisting of 6 elements per layer. The size of the elements

was varied to achieve a finer mesh near the centre of the

beam where the crack distribution is denser, Fig. 5.14. The

loading was applied by concentrated loads at the top left

hand node upto failure. The details of this beam which have

been used in the analysis are given in Table 5.1.

Table 5.1	 Details of the Flexure Beam OB-1 used in the

Finite Element Analysis.

Breadth of the beam, b	 9 in

Cross-sectional area of the	 2reinforcement bar, A5	 4.0 in

Young's modulus of concrete,
3,35xl06 psi

Poisson's ratio of concrete,
0.18

Concrete uniaxial compressive
strength, f	 3,500 psi

Concrete uniaxial tensile
strength, f	 348 psi

Shear retention factor, a 	 0.5

Ultimate uniaxial compressive
strain of concrete, cpu	 0.0022

Young's modulus of steel, E 5	28x106 psi

Poisson's ratio of steel, vs	 0.3

yield stress of steel, f	 60,000 psi
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The load versus central deflection obtained from the finite

element analysis is given in Fig. 5.15. The analytical

results indicate an initial linear response corresponding to

the uncracked beam behaviour followed by some losses in the

beam stiffness due to crack formation. The slope of the curve

remain almost unchanged up to the maximum load of 55.0 kips

followed by a sharp increase in deformation upon application

of further loads where it is assumed that the beam has

reached its failure load. A definite transition exists

between the uncracked and cracked beam behaviour marked by a

kink in the load-deflection curve. The crack initiation

corresponds to a load of 15 kips followed by gradual crack

propagation towards the support point. The development of

cracks and crack growth is shown in Fig. 5.16. It can be seen

that as the loading increases the cracks spread along the

length of the beam and the depth of the existing cracks

increases. The crack propagation ceased to continue at load

of 50 kips while the cracks grew deeper inclining towards the

point of appliction of the load. The experimental and

analytical crack pattern prior to the failure of the beam is

given in Fig. 5.17. The depth of the analytical cracks agrees

closely with the depth of the actual cracks at this high load

level. The overall deformational behaviour and the ultimate

load carrying capacity of the beam compare accurately with

the experimental results indicating satisfactory response

from the proposed concrete and fracture models. 	 The

analytical results suggest that the beani has failed by the

formation of	 f].exural cracks which agrees with	 the

experimental evidence.
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5.6.2 Axisymmetric Solid Stress Reactor Vessel

An extensive research has been carried out at the reseach

laboratory of the University of Illinois to investigate the

response and modes of failure of prestressed concrete reactor

vessels subjected to internal pressure [108,109]. A total

number of 16 small scale cylindrical vessels with both

circumferential and longitudinal prestress were pressurised

internally to failure. The main variables were the end-slab

thickness and the magnitude of the prestressing forces.

The reactor vessel PV9 [109] has been selected for the finite

element analysis. This vessel consists of a slab of 9 in

thickness and wall of 5 in thickness. The pressure vessel

has been prestressed both longitudinally and laterally. The

longitudinal prestress was provided by 30 number of 0.5 in

diameter strands anchored at each end of the wall and the

circumferential prestress by 0.192 in diameter wire wound

around the cylinder at a spacing of 0.33 in. A total force of

750 kips was applied to the strands and the prestress force

in the circumferential wires was measured at 4.1 kips per

wire, Fig. 5.18. A finite element mesh has been prepared to

simulate one half of the vessel with the axis of symmetry

along the centre line of the cylinder. A total number of 28

QAX8 elements have been used to model the concrete. The

longitudinal prestress tendons were modelled by a single BAR2

element of equivalent cross-section and the circumferential

prestressing wires were modelled by 8 BXM3 membrane elements

of an equivalent thickness. The prestressing forces were

simulated	 by	 initial stresses of 127.3	 ksi	 applied

longitudinally and 116.5 ksi applied laterally and the
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internal pressure was applied as face loads to the edges of

the inner elements, Fig. 5.19. The details of the vessel used

in the finite element analysis are given in Table 5.4.

Table 5.2	 Details of the Pressure Vessel PV9 used in the

Finite Element Analysis.

External diameter of the
vessel, r	 40 in

Height of the vessel, H	 80 in

Thickness of the end-slab, t 	 9 in

Thickness of the wall, t i,,	 in

Equivalent cross-sectional area of 	 2
the longitudinal membrane, A 1	0.9375 in

Equivalent thickness of the
hoop membrane, th	 0.087 in

Young's modulus of concrete, E	 4.3x106 psi

Poisson's ratio of concrete,	 0.15

Concrete uniaxial compressive
strength, cu	

7,300 psi

Concrete uniaxial tensile
strength,	 446 psi

Shear retention factor, a	 0.5

Ultimate uniaxial compressive
strain of concrete,	 0.0022

Young's modulus of steel, E 5	28x106 psi

Poisson's ratio of steel,v5	0.3

yield stress of steel, f	 225 ksi

Initial longitudiani
prestressing stress, P 1	127.3 ksi

Initial hoop prestressing
stress, h
	

116.5 ksi
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The analytical load-deflection curve for the mid-point of the

end-slab of the vessel is illustrated in Fig. 5.20. The

defelections are measured from the prestressed configuration.

The analytical response indicates a linear behaviour before

the crack formation, leading to a highly nonlinear region

between 450 to 650 psi where major radial cracking occurs.

The finite element results show a large increase in

displacement upon application of a small pressure beyond 650

psi The general trend of the analytical load-deflection curve

appears to be in agreement with the experimental results

although the ultimate load carrying capacity fall below the

predicted experimental value of 887 psi [109]. The initial

crack formation occurs at a pressure of 350 psi The crack

formation and growth is illustrated in Fig. 5.21. It can be

observed that the radial cracks initially form at the centre

of the end-slab and spread towards the wall of the pressure

vessel as the internal pressure is increased while the

circumferential cracks grow deeper into the slab. The

proposed analytical radial cracks propagate up to the inside

face of wall of the vessel at pressure of 682.3psi while, the

lumped-mass analytical results presented in [109] shows full

penetration of the crack to the outside face of the wall of

the vessel at a pressure of 666 psi. These crack patterns are

compared with the experimental evidence [109] in Fig. 5.22.

The comparison confirms that a more realistic cracking is

obtained from the proposed analysis. The analytical results

indicate the presence of extensive radial cracking in the

vessel which suggests flexural type of failure. A similar

type of failure was concluded from the exprerimenati results

of vessel PV9 [109], which verifies the validity of the
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proposed analytical approach.

5.7 Conclusions

The proposed concrete constitutive equations and fracture

models have been implemented into the LUSAS finite element

system. In implementing these models the effects of dowel

action and tension-stiffening have been ignored. The

aggregate interlock model developed in Chapter Four was not

fully implementd owing to the limlitations in the solution

facilities in the LUSAS system. The simplified fracture

model, however, offers a rea'listic approach in representing

crack tensile softening in concrete.

The concrete models have been tested for plane stress and

axisymmetric solid stress problems and in most cases the

structures deformational behaviour, load carrying capacity

and crack formation are in good agreement with the

experimental results.
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Fig. 5.1 Two-dimensional two and three noded bar elements.

x

Fig. 5.2	 A two-dimensional eight noded 	 plane	 stress
element.
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Fig. 5.3 A three noded axisyinmetric membrane element.

x

Fig. 5.4 An eight noded axisymmetric solid element.
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Fig. 5.5	 Deviatoric	 representation	 of transition from
elastic zone to plastic zone.
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Fig. 5.6	 Schematic representation of the stresses returned
to the yield surface.
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(a) Single Radial Crack	 (b) Single Circumferential
Crack

(C) Double Circumferential 	 (d) Radial and Circumferential
Cracks	 Cracks

Fig. 5.8

	

	 Crack representation for axisynunetric solid stress
elements.
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(a) Reduction of Plane Stress State
to Uniaxial Stress State

(b) Reduction of Axisymnietric Stress State
to Biaxial Stress State

(C) Reduction of Axisymmetric Stress State
to Uniaxia]. Stress State

Fig. 5.9 Stress	 states of the solid concrete between
cracks.
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Crack normal strain, En

Fig. 5.10	 Crack loading and unloading.
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(a) Actual Stress-Strain Curve

Effective plastic Strain

(b) yield Stress Versus Effective
plastic Strain Curve

Fig. 5.12	 Schematic representation of the steel elasto-
plastic model 62 in LUSAS.
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Fig. 5.14	 Finite element mesh of the flexural beam.
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Fig. 5.18	 Details of the section and the prestressing
arrangement of the reactor vessel.
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Fig. 5.19	 Finite element mesh of the reactor vessel.
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Fig. 5.19 Continued
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Fig. 5.20 Comparison between the analytical and
experimental central load-deflection curves of
the reactor vessel.
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Fig. 5.21	 Analytical	 zones of tensile failure of the
reactor vessel.
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EXPERIMENTAL CRACK PATTERN
AT INTERNAL PRESSURE 	 700.0 PSI 11O9

LUMPED — MASS ANALYTICAL CRACK PATTERN
AT INTERNAL PRESSURE	 666.0 PSI (1091
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AT INTERNAL PRESSURE	 682.3 PSI

Fig. 5.22	 Comparison	 between	 the	 analytical	 and
experimental crack pattern of the reactor vessel.
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CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

A review of the methods available in the mathematical

modelling of concrete constitutive relationships has been

carried out and their relative advantages and weaknesses have

been identified. The outcome of this investigation indicates

the need for a concrete model which encompasses the most

prominent features associated with a predominantly geological

material. The nonlinear features are due to microcracking,

stress path dependency, volumetric dilatancy and strain-

softening. The development of a realistic concrete model

must, however, succumb to the restrictions imposed by the

scarcity of of the experimental results as well as practical

aspects required for the application of the model in a

numerical analysis. The available experimental results are

often obtained under idealised laboratory conditions and in

general do not provide a sound basis for understanding the

concrete behaviour subjected to non-proportional loading,

high hydrostatic pressure and true triaxial loading

conditions. The preliminary review of the literature reveals

that the theory of plasticity together with a yield surface

suitable for concrete, combined with a realistic hardening

rule embraces the most recognised material characteristics of

concrete without sacrificing the overall objectivity required

for the numerical application.

The present research has concentrated on developing a
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concrete model using theory of the hardening plasticity and

an associated flow rule. This is despite the fact that a

realisic representation of the shear dilatancy in concrete

requires the adoptation of a non-associated flow rule. In

view of the lack of experimental evidence to fully

characterise the shear dilatancy in concrete as well as the

numerical complexity associated with the use of a non-

associated flow rule, namely an unsymmetrical modular matrix,

the simple approach adopted here is justified. The current

development has been conducted mainly in the same direction

as that of previous investigators.	 There has been a

particular emphasis, however, on correlation with

experimental results to obtain explicit definitions for the

material parameters without loosing the flexibility of the

proposed model.

A failure surface has been developed which relies on the

three stress invariants and contains all the basic features

generally recognised by other investigators and validated by

experimental results. These features include curved

meridians, non-circular deviatoric section and hydrostatic

pressure dependency. The general shape of the surface has

been formed by applying boundary conditions defining the

concrete properties and a unified relationship is obtained by

finding the best fit to a wide range of the experimental

results.

The hardening and softening in concrete has been modelled by

an istropic hardening rule using the concept of the effective

plastic strain. The variation of the hardening parameter with
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the effective plastic strain is obtained from the biaxial and

triaxial experimental data. The harding parameter is used to

monitor the expansion and contaction of the yield surface in

the pre and post ultimate stress levels.

An incremental constitutive model has been developed using

the proposed failure surface, isotropic hardening/softening

rule and an associated flow rule. The validity of the model

has been compared with published experimental results. The

overall performance of the proposed model agrees favourably

with the experimental results although some discrepancy

observed in the volumetric response of the model. The

volumetric deviation of the results obtained from the

proposed model and the experimental data is attributed to the

inadequacy of the hardening rule in modelling volumetric

dilatation as well as the need for a non-associated flow

rule.

The problem of tensile and compressive failure in concrete

has been investigated and a stress base failure criterion has

been developed. It is recognised that the prime cause of

nonlinearity in most concrete structures is the cracking and

its propagation. Three main phenomena have been identified

with crack formation in concrete and these are shear transfer

across the crack interface due to aggregate interlock, dowel

action and the effect of bar-to-concrete bond. These features

have been investigated in detail and particular attention is

paid to the aggregate interlock and interface shear transfer.

The stresses across a crack are obtained in terms of the

relative displacements of crack surfaces and explicit

relationships of these stresses have been derived from the
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experimental evidence. The effects of dowel action and

tension stiffening are included by developing suitable

mathematical models representing the mechanism of the forces

acting	 on a block of cracked concrete with	 embedded

reinforcement bars. The contribution of the dowel action and

aggregate interlock in resisting shear are 	 compared. This

comparison indicates that shear is mainly resisted by

aggregate interlock and the dowel action has a negligible

effect. The crack related models have been verified by

comparing them with experimental result.

The concept of a smeared crack has been used in implementing

the crack properties in the material behaviour of concrete

instead of the discrete crack approach. The latter concept

requires the change of element topology to incorporate the

crack formation along the element edges. This may lead to

numerical difficulties and will increase the computer run

time. The development of cracked concrete properties has been

carried out for two types of analyses, where concrete and

steel reinforcement bars are discretised separately and

where, due to uniformity of steel disribution, they are

combined into a composite element. The former case combines

the effect of aggregate interlock with the solid concrete

properties while in the latter steel properties are

introduced and combined with the effects of dowel action an

tension-stiffening to obtain the plain and reinforced cracked

concrete stiffness matrices respectively.

The proposed constitutive relationships and the fracture

models have been implemented into the LUSAS finite element
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The results agree very well with the experimental data.

The proposed resaech work can be summerised as follows

(a) A nonlinear constitutive relationship has been developed

for concrete. The salient features of this model are

stress path dependency, modelling of stress hardening as

well as strain-softening and capability to represent

uniaxial, biaxial and triaxial stress states.

(b) The shear aggregate interlock in cracked concrete has

been modelled in terms of relative crack displacements

and the effects of dowel action due to bar kinking and

deformation is related to crack movements. A tension-

stiffening parameter representing the bond between steel

bar and cracked concrete has been derived.

(c) The proposed concrete and fracture models have been

implemented into a finite element system and the models

have been verified for plane stress and axisymmetric

solid stress problems.

6.2 Recommendations for Further Research

The following recommendations are suggested for future work

(a) Improvement of the constitutive equations by introducing

a non-associated flow rule for a better representation of

volumetric dilatancy in concrete.
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(b) Introduction of a kinematic hardening rule and extension

of the proposed concrete model for application in dynamic

analysis.

(c) Modification of the material dependent parameters to

include the effect of rate of loading for impact

analysis.

(d) Investigation of the performance of the non-orthogonal

crack model against the rotating crack model.

(e) Implementation of reinforced concrete composite element

in the finite element method for the analysis of shell

structures.

(f) Implementation of a non-symmetrical solution technique

for complete representation of aggregate interlock.

(g) A parametric study of the effects of dowel action and

tension-stiffening on the overall analytical solution.
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APPENDIX A

DESCRIPTION OF THE MATHEMATICAL RELATIONS USED
FOR THEORETICAL DEVELOPMENT IN CHAPTER THREE

A.1 Mathematical Definitions

The state of stress at a point can be defined by the stress

tensor as

from which the invariants of stresses are

=
1	 ii

12 = —(I - a. .a. )13 ij

1
13 = _(2a.Ja.kak. - 3I 1a jfjj - I)

(A.2)

(A .2)

(A 3)

The deviatoric stress tensor is widely used in the stress-

strain relationships of material and is defined as

= 
a1 - 6ifkk"3
	

(A.5)

where	 = Kronecker delta

Invariants of the deviatoric stress tensor are defined as



J1
= S..	 0
	

(A.6)

	

sijsji	 (A.7)

J3 = sijsjkSki
	 (A.8)

To describe a point in stress space the Haigh-Westegard

coordinate system is used Fig. A.1. The following

relationships can be obtained from Fig. A.1

I
= IUNi= J-

p = IiwI =

1	 1f3J
O=—cos	 /2

3	 2 J2

(A.9)

(A. 10)

(A. 11)

The hydrostatic axis, n 	 <1/3 1/3 1/3> , is represented

by	 and the deviatoric axis is defined by P which is always

perpendicular to . The deviatoric plane is generated by

varying 0 normal to the direction of and intersects the

stress axes at equal inclinations. The sign convention used

in this study is tension positive and compression negative.
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Fig. A.1	 Haigh-Westegard coordinate system.
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APPENDIX B

ELLIPTIC TRACE OF THE YIELD SURFACE

B.1 Derivation of the Elliptic Trace

The geometrical representation of the elliptic yield surface

is shown in Fig. B.1 with regard to X-.Y axes. The general

form of such an ellipse is

f = X2+aY2+bXY+cX^dY+e
	

(B.1)

Taking derivatives with respect to X and Y

af
= 2X + bY + c

ax

ar
= 2aY + bX + d

(B.2)

(B.3)

The direction cosine at a point P on the curve is given as

(B.1)
(B.5)

where

= (2x + bY + c)/R

= (2aY + bX + d)/R

2 /
)+1VaxJ

(B.6)

At point A;	 0,	 NAy = 1.0,	 X = 0 and Y =

Substituting these values in Eq's. B. 11 and B.5 gives
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+ c = 0
	

(B.7a)

2P a + d = H
	

(B.7b)

At point B;	 B,X = /3/2,	 B,Y	 0.5,	 X = F3p 0 /2	 and

Y =	 /2. Substituting these values in Eq's. B. 14 and B.5

gives

+ 2c + = /3R - 2/
	

(B.8)

20a + / 0 b + 2d = H
	

(B.9)

Eliminating R from Eq's. B.8 and B.9 yields

+	 - c + (3d = IN0 	 (B.1o)

At point A; X	 0 and Y	 Substituting these values in

Eq. B.1 gives

+ • t c1 = -e
	

(B. 11)

At point B; X = /3p 0 /2 and Y	 Substituting these

values in Eq. B.1 gives

+	 + 2Ic + 2 0 d	 -( I e + 3)	 (B.12)

Parameters a, b, c and d may now be expressed in terms of the

fifth parameter e by solving Eq's. B.6, B.1O, B.11 and B.12

simultaneously. These parameters are expressed as follows
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30(2P0_Pt)

2(2t_)2

(B. 17)

1
a	

e + 2(2t-)2

	 (B. 13)

(B. 1k)b=—	 e+
2(2t-)2

/3
c=--	 e-	 and2

2(2t_)

(t.1.2)
d=-	 e-

2(2t_)2

(B. 15)

(B. 16)

Experimental results of Launay and Gachon [21,30,55] are used

to find a suitable value for the parameter e by means of

regression analysis. It is found that e = 0 produces the best

fit for these data. Substituting for e in Eq's. B.13 to B.16

results in the following parameters

b 
=
	

2(2t-)2

	 (B. 18)

c = _tt)
	 (B. 19)

d = - 0a	 and
	

(B.20)

e =0
	 (B.21)

The polar equation of the ellipse is obtained by substituting

Eq's. B.17 and B.l8 in Eq. B.l and replacing X and Y by

sine and	 respectively.	 This yields the polar

equation as follows
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A cosO + B sinO

=

	

	
(B.22)

A 005 2 0 + B sinO cosO + sin2O

where	 A=a ,and

B=b
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Fig. B.l	 Geometry of the proposed elliptic yield surface.
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Eq's. C.2 and C.3 can be written as

2	 2	 2	 2
= [c +e +c + 2(cc +cc +cc)]/9

APPENDIX C

DERIVATION OF	 IN TERMS OF OCTAHEDRAL STRAINS

C.1 Derivation of

The expression for the effective plastic strain, c, could be

written as

C - fCC
p - y ij ii

=	
+ p2 + p2
	

(C.1)

where	
p	 p = plastic principal

1' C 2 , £3

strains

Plastic octahedral normal and shear strains are defined as

+	 +1

3

Yp - i/P2PP2PP2
03

(C.2)

(C.3)

2	 2 2 2
y	 2[ +c + - (ec +cc +cc)]/9

(C.il)

(C. 5)
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Adding Eq ts. C. and C.5 and using Eq. C.1 yields

cp /2 +E 2	(C.6)
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APPENDIX D

DERIVATIVES OF YIELD SURFACE AND
EXPRESSIONS	 FOR , ,	 AND

D.1 Derivatives of Yield Surface

Equation of the yield surface is expressed as

= p -	 u =	 (D.1)

where	 u =

= - , and
U

alternatively

2J -f	 (I ,J2 ,J 3 ,)	 (D.2)
2	 cuu 1

The expression for	 is given as

A cosO + B sinO

=	 A	 + B sinO cosO + sin2O

(D.3)

(2-t)
where	 A	 =

2(2t-)2

/c
B	 =

2(2t-)2
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= a 1 + a2 tfa3 +

=b +b2 Jb3+b
C	 1	 4u

}fo r	 1'

=	
/- (	

\21

- c

J 

for

2

ci / i ( u -
E1	 1c1

a 1 ,a2 ,a 3 ,a,b 1 ,b 2 ,b 3 and b = material constants

-	 Ii
=
r3

0	
J3 "

3	 (44-;- 3/2)'

-a- kk

1

= 3ij5ji

J3 = 31j5jk8k1

Sj j = ajj - ifkk3 and

= Kronecker delta
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Eq. D.3 could be written as

M
p
	 (D.LI)

N

where	 M = (A coso + B sino)t ,and

N = A cos 2 O + B sine cose + sin2

Taking derivatives of the yield surface, Eq. D.2, with

respect to ,	 yields

____	 ar 31J 2	 Bf
=	 +-	 +-	 (D.5)

3cj	 i a.	 3J Do..	 3J Do.ij	 1	 ij	 2	 13	 3	 ij

Using the chain rule of differentiation, 	 the gradient

direction is given as

=	 +x
30.	 3a•	 c1.

ij	 ii	 13	 ij

f
where	 =--- ,

3u

1	 f

=+;,

=

u

311

30	 =
ii

(D.6)
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a 2 - S	 , andij
ij

aj	 2
—J 65ikkj -
	

2 ii3ci
ij

Therefore

2
____ -	 + Xs. + hI)(s. s	 -	 j 6

aci..	 ij	 ikkj	 2ij
13

or lj +	
(D.7)

ii

2
where	 =	 - .JPj 2 , and

T1 1 	 XS1j +

D.1.1 Calculation of

From Eq. D.6 the expression for 	 is as follows

-	 a
	 (D.8)

Using Eq's. D.2, D.3 and D. 1 it is deduced that

- = -f-	 cu
apu

1 1a M 	 N \
(%- N - - M I

a I

(0.9)

(0.10)
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where	 ap

-=--+--,

a

3N	 N	 N

-=--+--,

aM	 fA	 aB
coso + - sine

)'

aM	 'aA	 aB

cosO + - sin0=	

)	

+ A cosO + B sjO

3N	 3A	 2- - cos 0 ^ - sinOcosO
ap0

3N	 3A	 aB
- = -	 + - sinOcosO

=

ac	 2(2t_)3

p	 pt-p

3A

2(2t_)3

aB	
and

2(2t_)3
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3.t	 a2a

- 2/ + a

=	 b2b

2/ +

} for
Tu>1

and

-
- -	 - 2

-

for

3pC 	 -= -

	 c1 -

1

31 -
1	 Cu

1u>C

(D.11)

D.1.2 Calculation of X

From Eq. D.6 the expression for x is as follows

1	 3f
x=

3J2
(D. 12)

The expression for	 is obtained from Eq. D.9. Using

Eq's. D.3 and D. 11 yields

- 1 /3M	
(D. 13)
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where	 3M	 f3cosO	 sin0 \
A+	 BIPt

2	 2	 I
3cos 2 O	 3sinecose	 3sin2O

-=	 A+

3cos0
= -sine -

3sinO	 30
= cosO -

30
= -sin2O -

3J2	3J2

30
= j20 - ,

3j2

3sin0cos0	 30
= cos20 - , and

30	 3y'J3	 1

= - -i-- 4/2 sln3O

0	 0

It should be noted that as 0 - 0 or 0 - 60,

therefore, from L'hospltal rule

f(e)U _____
If	 =

2	
g(0)

where	 r(e), g(0) = functions of 0

0
- - - ,

0
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the limit of the function when 0 - a is given by

df(0)

dO
U ____________limit	 - __________e^a	 dg(0)

dO

Carrying out differentiation and substituting for 0 gives

when 0 -. 0°

,/ J 3114	 A-2
--,.

A
(D.114)

when 0 - 60°

/3 J 3 - -5A2+9B2-2/3AB+A+/3B
-
3j	 2 

J5/ 14 t	 (A^/B+3)2	
(D.15)

Limiting values of X at boundaries 0= 0° and 6d' may be

obtained by using Eq's. D.1 1I and D.15 in Eq. D.12.

D.1.3 Calculation of' 1'

From Eq. D.6 the expression for 4' is given as follows

af
'I)

	

	
(D. 16)

3(13

af
The expression for	 is obtained from Eq. D.9. Using

a

Eq's. D. 11 and D.3 yields
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fM
(D. 17)

where	 acoso	 asine	 -
-=	 B
3J 3	J3	 J3

aN	 acos2O	 3sinOcosO	 asin2O
-=	 A+	 —B+—	 ,and
aj3	aj3	aj3

acoso asino	 acos2O asin2o asinocose
The expressions for	 ,	 ,

ao
are obtained in the same way as in Eq. D.13 but replacing -

a

by - where
a

ao	 /	 i	 1

3 J3	 2 J' sin3o

	 (D. 18)

0	 °	
U	

0
It should be noted that as 0 - 0 or e - 60, - - -

0

therefore from L'hospital rule

f(0)
U _____

if	 -=
aj3	 g(0)

where	 f(0), g(0)	 functions of 0

The limit of the function when 0 - a is given by
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df(0)

dO
U____________

limit	 - =
O^a	 dg(G)

dO

Carrying out differentiation arid substituting for 0 gives

0
when 0 - 0

	

/3 1	 -	 A-2

- /2 't
J 3	6J	 A

(D.19)

I. 0when 0 - oO

/ 1	 -	 -5A2+9B2-2/3AB+A+/3B

3 J3/2 t
	

(A^/3B^3)2	
(D.20)

Limiting values of J at boundaries 0= O°and 6O may be

obtained by using Eq's. D.19 and D.20 in Eq. D.16.

D.2 Calculation of I

The relationship for y is as follows

I =

	

	 (D.21)
cp

Using Eq's D.2, D.3 and D.4 gives

1;;- 
=	 cu(u +
	 (D.22)
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N —M1
1 (3M	 3N \

where-=-- . .. -
	 I38	 N

3M	 3M 3	 3M
---i

38	 3	 38	 3p 38
C	 t

3N	 3N	 3N
= -- + --

3M	 3M	 3N	 3N
Expressions for -, -, - and - are given in section

D.1.1. The other derivatives in Eq. D.22 are obtained by

differentiating Eq. D.3 as follows

-	 _a2akU

38	
281a3 +

for	 Tu>1

-	 __________

- 28/b3 +

and

3p t	 - 1 u

-	
-

for

-	 -2 ,-	 -
c1u -

38 -	
-

1u>C
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As discussed in section 3.5 ( Chapter Three ) the expression

for the hardening parameter	 , is derived from the following

expressions

c1 +c 2 x+ c 3 x2 + c 11 x

_c5(1.O - i)c6

8:e

for 0< X < 1.0

(D.23)

for	 X>1.0

(D.214)

C

where	 X	 =
C
p,u

effective plastic strain,

Cpu = effective plastic strain at peak stress,

c 1 ,e 2 ,c 3 ,c,c 5 and c 6 = material constants

( see Chapter Three )

Differentiation of the above equations yields

(C 2 ^ 2c:: 14c X3)	
for 0<X<1.0

(D.25)

-1 C

c 7 ( 1.0 - X	 8

=	 for X>1.0

C	 x2 e'5 1.0 -	
)C6

p,u

(D.26)

where	 c7 = -c 5c 6 and

C8 =	 -1.0
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APPENDIX E

DERIVATION OF TENSORIAL ELASTIC-PLASTIC MODULAR MARTIX

E.1 Derivation of Tensorial D-Matrix

The	 incremental stress-strain relationship of 	 concrete

derived in section 3.6 is given by

T
g	 f	 ee	

DklDijmn	
mn	 rs	

i 
dc

11e	
fT	

e	 g	

j

d1	 Djjkl -

	 h +	 Dmnrs	
rsmn	

(E.1)

where	 d ij = tensor of stress increment

d	 = tensor of strain increment

Djkl = elastic modular matrix

3f
-	 gradient direction of the yield surface,

ii

= gradient direction of the plastic potential

surface , and

I	 T
jg	 g

h
ilacr	 a

V	 uv	 uv

Assuming associate flow rule, it is required that

g=f	 and

ii	 ii
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(E.3)

(A) +

Ci) +

Ci) + 1133

l2

23

1131

9f

mn

E.1.l Calculation	 De
ijmn	 'rskl

mn rs

The elastic modular matrix	 and yield surface gradient

could be written in matrix form as follows

Ee_______________
D1

(i-v)(i-2v)

l-\)	 \)	 0

i-v "	 0

1-v	 0

(i-2v)/2
Symm.

0

0

0

0

(1-2v)/2

0

0

0

0

0

(l-2v)/2

(E.2)

where E	 = Young's modulus

V	 = Poisson's ratio

2
(A)	 =--J2,

3

= X5j +	 ikkj

= second invariant of srtress deviator, 
s j_ ,

= stress deviator tensor, and

, X and P = given in Appendix D
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De
ijmn

mn

E

(l-v)(l-2v)

After some algebra manipulation it can be proved that

fl fl +	 +	 = 2pJ
	

(Ei)

Multiplying Eq. E.2 by Eq. E.3 and substituting Eq. E. 11 in

the resulting product, yields

( l+V)ci+2vJ2+( l-2v)ri11

l-2v)n22

(1+v)w^2qivJ2+(l-2v)n33

1
—(1-2v)n12
2
1
_(l-2v)r12
2
1
—(l-2v)n31
2

(E.5)

Using tensor notation ,Eq. E.5 can be written as

De.	
=	 E	

{[(l+v)
i.jmn a	 (1-v)(1-2v)

Inn

(E.6)

Similarly

fT	
E	 1

rskl	 {[(1-i.v) +2pVJ2]c5kl+—(l_2V)(Skl+1)flkl}

rs	 (1-v)(1-2')

(E.7)

Multiplying Eq. E.6 by Eq. E.7 gives
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e___ ___ e
D kl =

mn	 rs

1( 1-v)(1-2v)}
{K 6 .6	 + K [(6. . +1)6 kln jj + ( 6 k1 .1.1)6 ij n kl ] +lijkl	 2	 13

K (6	 +1)(6	 +1) 11. .n	 }
3 ij	 ki	 ijkl

(E.8)

where	 K = [(1+V ) +21PVJ2]2

K2	 (1-2v)[(1+v)w+2iPvJ2/2

K 3 = (1-2v)2/1I

arT
-	 ___ e ___

E.1.2 Calculation of 	 Dmnrs
mn	 rs

The product of De	may be obtained in the same way as
mnrs

rs
3fT

the derivation in section E.1.1. Multiplying Eq. E.5 by

IRfl

and making use of Eq. E. 14 gives

fT	
at'

De	=
mnrs

mn	 rs

E
[(1+v)(3w+14pJ2)ü +	 + (1-2v)JJ	 (E.9)

(1-v)(1-2v)

where	 J = —( 2+fl3+fl1) - 2(fl 11 fl 22	 22n 33	 33n11)
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.T

h	 'r I-
I! aY	 o.
V	 UV UV

(E. 10)

W+fl 22 	 l2	 23

where

Therefore

E.1.3 Calculation of h

The expression for h is given in Eq. E.1 as

where	 y = - - - ( see Appendix D )
a13	 c

The second part of Eq. E.1O is written as

.T

uv uv

w+rlll

W+T122

W+T1
33 

<W+Tlll

12

1131
(E.11)

Carrying out multiplication of Eq. E.11 and using Eq. E.1I

gives

f
= (3w+4pJ2 )w +	 + J5

aa
uv uv

(E.12)

1 2	 2	 2
J 5	J14 +

2

h = Y	 3+1pJ2)u +
	 24 + (E.13)
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E.1. 11 Elastic-Plastic Modular Matrix

It has been discussed in section 3.6 that the elastic-plastic

modular matrix can be decomposed into elastic and plastic

matrices as

De P	 _De	 DijkJ. - ijkl - ijkl (E. 14)

E
e__________________________

Dijkl

	

	 Cjjkl	 (E.15)
( 1 + v )( 1 - 2v )

1
where	 Cliki = _(1_2v)(jk6jl+Sjlâjk)+vSjjSkl

2

E	 Young's modulus ,and

V	 Poisson's ratio

Using Eq's. E.8, E.9 and E.13, the plastic modular matrix is

expressed as

E
- _____________________

ijkl -

	

	 11 ijkl	 (E.16)
( 1 + v )( 1 - 2'v )

where	 ijkl	 Kli.6kl+K2[(5..+1)6klfl..+(c5kl+1)6.flk1] +

K(6	 ^1)(6	 +1)fl. ri
ij	 ki	 ijkl'

l ii	 = Xs1+Ps.5

E
1_I	 =

cL(1+ )(1-2 )
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[(1+v) (3w+14pJ2)w-i-1I( 1-v)p 2J+( 1-2v)J]
a	 E,

(l+)( l-2v)

E	 Young's modulus ,and

Poisson's ratio

Substituting for Eq's E.15 and E.16 in Eq. E.1 1 , the elastic-

plastic modular matrix is obtained as

E
Dep:	 (C _v	 )

( 1 + \) )( 1 - 2 )	
ijkl	 ijkl

(E. 17)

The	 incremental elastic-plastic constitutive model 	 for

concrete is as follows

E
d

	

	 (Cliki - ' ijkl dckl
(1 +v)(1 - 2v)

(E. 18)
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APPENDIX F

CLASSIFICATION OF DIFFERENT STRESS
ZONES ON THE YIELD	 SURFACE

F.1 Introduction

It is required to know the correct state of stress when the

stress level reaches the yield surface so that a suitable

fracturing procedure can be adopted, e.g. fracture by

cracking or crushing of material. A state of stress on the

yield surface can be classified into the appropriate stress

zones provided the boundaries of the intersection between

planes of o = 0, a = 0 and a3 0 with the yield surface

are known, Fig. F.1. These boundaries are obtained in the

following section

F.2 Calculation of the Boundaries

Consider the intersection of plane a 1 = 0 with the yield

surface, Fig. F.2. The points of intersection can be fully

defined by the location of points B, C and D in the

compressive hydrostatic zone and B', C'and D' in the tensile

hydrostatic zone. The intersection points of the planes with

one zero principal stress and the yield surface form a

it-Plane which is normal to the hydrostatic axis, line U',
e.g. points A, B and C or A', B'and C'. A it-Plane is a plane

of constant hydrostatic pressure . The location of the

points which lie on a common it-Plane are, therefore, to be

defined by the distance of their TI-Plane from the origin,

i.e. the corresponding value of .
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Consider	 the	 two-dimensional	 representation	 of	 the

intersection points, Fig. F.3. The locations of A and A' are

obtained by the intersection of line Th' and meridians	 and

' respectively. These points correspond to the location of

B and C, and B'and C'. The locations of D and D' are obtained

by the intersection of the line 	 'with the meridians	 and

respectively.	 It can be shown that the angle	 of

inclination of	 ' with the i-axis ( line Y' )	 a, using

the geometry of tetrahedral OABC, is given by

a	 tan1/
	

(F.1)

Therefore, line	 ' is defined by

AA' =
	

(F.2)

The direction of line 5' is normal to the direction of line

AK'. The equation of line D5' is, therefore, as follows

DD' = -	 (F.3)

Intersecting lines given by Eq's. F.2 and F.3 and the

hydrostatic tensile and compressive meridians 	 and

( see Eq's. 3.8 and 3.9, Chapter Three ), establishes the

following values
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i)	 Location of D'

T1	 >0

ii) Location of A', B' and C'

T2 =
	 >0

iii) Location of A, B and C

C2	 <o

iv) Location of D

<0

F.3 Classification of the Stress Zones

The classification of the different stress zones on the yield

surface may be given as follows assuming 	 > a2 > a3 , where

a2 and a3 are the principal stresses
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T1 <
TTT

Stress Value
	 State of Stress

•c1

	 CCC

a1 < 0
	 CCC

ci <	 C2 
and

a > 0
	 TCC

TC C
C2 <

0 <	 < T2
	 TTC

	

< 0
	 TT C

T2 <	
< T1 and

	

a 3 > 0
	 TTT

where
	

c	 Compression, and

T = Tension
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(a) Three-Dimentional View

(b) Deviatoric View

Cc) Hydrostatic View

Fig. F.l Schematic representation of intersection between
planes of zero stress and the proposed yield
surface.
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D'

a
3

F.2	 Intersection of the plane
proposed yield surface.

Fig. of 01=0 with	 the
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a,

-	 I	 -

Ti T2	 C2	 Ci

Fig. F.3	 Two-dimensional representation of the intersection
points on the proposed yield surface.

263



APPENDIX G

EXPLICIT EXPRESSIONS FOR CRACK STIFFNESS MATRIX

G.1 Crack Stress-Displacement Relationship

It was discussed In section )4.6.1.2 that crack stresses may

be related to crack displacements via a crack stiffness

matrix K, as follows

	

d t'	 K

	

nfl	 na

K

	

nt	 tn

Kt	 dcS

Kt t	dot

(G.1)

a
where	 K

nn =
n

K
nt	 tSUt

Ktt

t

a

Kt -

=	 t'6n ,andnt	 t

at

The explicit relationships for f and	 are given by

Eq's. 4.2a and 4.2b C see Chapter Four ).
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,cr - cr
nfl - nn,u (1 -

1

)

(G.3)

1 + n 1

G.2 Derivation of	 Kt, Kt and

The relationships between crack stresses and displacements

are given by Eq's. 11.1 and 11.2 as follows

	

0 cr	 cr	 1 -
	 1	

m )
(	 1+m1

	

cit	 nt,u (G.2)

acr
where	 nt,O

nt , U

1 + m3 iS n

or
cr	 -	 °nn,O
nn,u -

1 + n3

= m5

= n5

Differentiating a	 and	 with respect to	 and	 would

produce the components of the crack stiffness matrix as

follows
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0cr

K
nfl

n

n	 n-i	 n n-i n
= [(i+n3 6 4 ) (n 7 n 8 6 8 +n1n10iogó)_n1n3n4(i+n162)S 4 	 2

n	 t cr
aflfl,O

[(i+ni6t2) (i+n3ô4) 2

(G.4)

n -1cr

K	
=	 lifl2 61:2	

cr
nt =
	

(i+n16t2)2	

1
(G.5)

cr

Ktn
U

	

in	 -	 in8-1	 rn rn-i rn

[(i+rn	
4) (rn7rn8 t5	 +rn1rn].og6)_m1rn3rn4(1+m162)6 4	 2=	 3n n	 t cr

cYfl1: Q

[(i+rn16t2) (1+jfl

(G.6)

and

rn-i
cr
Oflt = rn1m252	 cr

t, U
Ktt =
	

(i+rn16t2)2

(G.7)
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where

d
3 n

3sn

APPENDIX H

EXPLICIT EXPRESSIONS FOR DOWEL STIFFNESS MATRIX

H.1 Dowel Force-Displacement Relationship

It was discussed in section 14.6.2.2, that dowel stresses may

be related to crack displacements via a dowel stiffness

matrix, H, as follows

da	 Hnn

d
dant

Ht	 d6

Htt	 dat

(H.1)

nfl
Hnt -

3at
,

U

d

Htt	
36

t

= f(6,a) , and

ttt6n)

The explicit relationships the for	 and f functions above

are given by Eq's 14.11 and 14.12 ( see Chapter Four ).
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H.2 Derivation of	 11nt, 11ii and Htn

The	 relationships	 between dowel	 stresses	 and	 crack

displacements are given by Eq's. 4.11 and 4.12 as follows

d	 pFd

Ab

d	 pFd

nn =
	 tanO

Ab	
bc

(H.2)

(H.3)

R tw	 t
where	 Fd =
	 +	

Fdu

=	 0.2

t and Fd,u = defined in Eq. 4.8 (see Chapter Four)

Differentiating an and	 with respect to	 and

respectively, would produce the components of the dowel

stiffness matrix H as follows

and

d	 d
___	 nn

-	
6 + 0.2n

b&
_____	 nflnfl __________________

Ht	

=	
1 + t6 )

____
nt __________

=	 = tanobO

d
H= nt _________
tt	

tanObC

(H.4)

(H.5)

(H.6)

(H.7)
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Ulb-

A
ci

(1.2)

APPENDIX I

DERIVATION OF THE SLIP FREE LENGTH
AND THE TENSION STIFFENING FACTOR

1.1 Derivation of the Slip free Length, L3

Consider a bar of cross-sectional area Ab, crossing a sharp

crack in a block of concrete, Fig. I.ia. The bond stress

distribution Is non-uniform as shown in Fig. I.ib. The

distribution of bond stress is also affected by the normal

stresses at the bar-concrete interface. This effect is not

included here for simplicity. The idealised uniform bond

stress distribution is shown in Fig. I.ic. The actual and

Idealised shear stress distributions are shown in Fig's. I.ld

to e, respectively. By considering the equilibrium

conditions along the length of the bar, the steel and

concrete stresses at any point along the bar ( on the 1-

axis ) may be written as

- Ubi	
(1.1)

Ab

where	 a5 = steel stress at crack

Ub	 llctrtb

= bond force per unit length of bar

= bar diameter

Ab = cross-sectional area of' one bar ,

Ai 
= 3b
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Sb	 bar spacing , and

t	 plate thickness
p

The slip free length, L 5 , may be obtained from Eq. 1.1 by

replacing 1 by L5 to give

L =	 ( ci	 - a' )
	

('.3)

where	 a '= a (L3)S	 S

The stress is obtained from Eq's. 1.1 and 1.2 by

transforming steel and concrete stresses to the corresponding

strains and then eliminating Ubi between the resulting

equations. The result is as follows

E c0 (1) + p E3 c 5 (l) = p a5	(I.1)

where	 c0(l)	 concrete strain

e(1) = steel strain ,

E0	= concrete Young's modulus

E3	= steel Young's modulus , and

p	 = percentage of steel

The strains in steel and concrete are the same at the end of

the slipping segment ( i.e. from the crack face ).

Therefore

cc(Ls)	 c5(L8)
	

('.5)
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a (L )S S
C S ES

(1.6)

or

It can be deduced from the definition of cY( Eq. 1.3 ) that

a'S

ES

Substituting Eq. I.L into Eq. 1.7 results in

np
a' =	 a

1+np

(1.7)

(1.8)

where	 n = E5

Combining Eq. 1.3 and Eq. 1.8 results in

=
	 A b as	

('.9)
Ub(l + np)

It should be noted that as the stress a8 increases the slip

free length increases until it reaches half the bar length

enclosed between two adjacent cracks ( L 5 aproaches s'/2 ).

1.2 Derivation of the Tension Stiffening Factor, a

The average steel strain c, may be obtained by averaging the

total strain in steel enclosed by the cracks over the crack
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spacing. This operation may be carried out as follows

s'/2
1

C =

s'/2 J	
6(1) dl	 (1.10)

where	 1	 the distance along the bar measured from

the crack face

The steel strain may be written as follows by rearranging

Eq. 1.10

L3	 s'/2
1

C

s'/2 J	
6(1) dl + 

s'/2 I	 6(1) dl
0

S

(1.11)

Substituting Eq. 1.1 and 1.8 into Eq. 1.11, results

L5	s'/2

C
2	 -	

1) dl + s'E J	 1::P	
dl

s'E J	 AbS

(1.12)

Carrying out the integration, yields

2	 1 1	 nps'	
- -	 L2 (1.13)CTL+C

s'E5 [ 1+np	 2(1+np)	 2Ab sJ

Substituting for L3 from Eq. 1.9 gives
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c	 ____	
b	 a2 

+	
a 1	

(I.1U
2 [A

s'E5 2Ub(1+np)2	 2(1+np) sJ

The incremental coristitutive model for steel reinforcement

bars with tension-stiffening effect is obtained by

differentiating Eq. 1.14 with respect to O, therefore

s' Ub C 1 +	 )2

da	 E dE
2A a ^s'U np(1+np)	 S
b s	 b

(1.15)

From Eq. 1.15 it can be concluded that steel bar stiffness
*

containing the effect of tension-stiffening E 5 , is a

multiple of the steel tangential stiffness without the effect

of tension-stiffening, therefore

*
E3 

= cx t E5
	 (1.16)

where	 cx = the tension-stiffening factor

Therefore, a is given as follows

cx	
-	 s' Ub C 1 + n p )2

(1.17)
t - 2Ab a S + st Ub fl P ( 1+np)

S
where	 S1 =

0bc

s	 = crack spacing,

0bc 
= angle between the normal to the

crack and the reinforcement bar
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a5

(a) ReinforCment Bar Crossing
a Sharp Crack

UbI

(b) Actual Bond Stress Distribution

Ubr___

2L

(c) Idealised Bond Stress Distribution

ST
(d) Actual Steel Stress Distribution

___ _____________________ i
2L

Ce) Idealised Steel Stress Distribution

Fig. 1.1	 Reinforcement bar crossing a sharp crack and the
associated stresses.
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