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Abstract 

This thesis considers axisymmetric Rayleigh-Benard convection 

in an infinite horizontal layer of fluid heated from below. 

major emphasis is placed on a study of the effect of 

rotation of the layer, where both the stationary and overstable 

cases are analysed. 

In Chapter 2, a numerical solution of the linearised equations 

which govern the non-rotating fluid with rigid boundaries, is 

presented. 

In Chapter 3, the non-rotating layer is perturbed by making 

the elevation of the lower plane a small slowly varying function 

.1 of the radial coordinate. The modified amplitude equation is found 

and at the central axis the matching with a local solution in terms 

of Bessel functions is carried out. 

In Chapter 4, the effect of rotation is incorporated and 

the numerical scheme of Chapter 2, is modified to solve the 

appropriate linearised equations. 

In Chapter 5, the non-linear amplitude equation is derived 

for the rotating layer with rigid boundaries in the case when 

the system is subject to the exchange of stabilities. The 

matching process with a solution in terms of Bessel functions 

near the axis of rotation is described in Chapter 6, and is 

shown to lead to the possibility of'phase-winding' effects. 

associated with variations in the wavelength of convection. 
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In Chapter 7, it is shown that when the rotating layer 

is subject to overstability a pair of amplitude equations 

governs the motion away from the axis of rotation. Again 

one of the main interests lies in how the solution matches with 

that valid in the neighbourhood of the axis. 
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CHAPTER 1 

Introduction 

This is a study of axisymmetric Rayleigh- Benard convection, 

based on the formal extension of the conventional linearised stability 

theory. 

As a starting point for this discussion, we have available 

several previous studies. The theoretical foundations of the 

onset of the thermal instability in an infinite horizontal 

layer of fluid heated uniformly from below, were laid by Rayleigh 

(1916), who proved the validity of the principle of the 

exchange of stabilitiesfor the case of two free boundaries. The 

proof in the general case for this problem is due to Pellew 

and Southwell (1940), and Chandrasekhar (1954) has also discussed 

the characteristic value problem for high order differential 

equations which arise in studies of the linear theory of hydro- 

dynamic stability. 

It is well known that the resulting cellular convection 

flow is not uniquely determined by the equations of motion and 

boundary conditions if the layer is infinite in horizontal 

extent. An infinite degeneracy was first found in the early 

linear theories which apply for infinitesimal flow amplitude. 

Malkus and Veronis (1958) gave a complete discussion of finite 

amplitude cellular convection in a layer of fluid with stress- 

free boundaries and later SchTuter, Lortz and Busse (1965) 

generalised the method of Malkus and Veronis, for the steady 

state by considering the whole manifold of solutions. Furthermore, 

they treated the problem for both rigid and free boundaries. 
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Kuppers and Lortz (1969) and Kuppers (1970) have also used 

the same approach to consider the case when the layer is rotating 

about a vertical axis. Newell and Whitehead (1969) have 

shown how a continuous finite band-width of modes can be 

readily incorporated into a description of Rayleigh-Benard 

convection with free boundaries. 

1.1. Effect of Lateral Walls 

The linear stability of a quiescent, three dimensional 

rectangular box of fluid heated uniformly from below is 

considered by Davis (1967), where the influence of lateral 

walls on the convection process is determined. Later, Drazin 

(1975) was able to illustrate some of Davis's ideas analytically 

by a linear analysis of a simplified two-dimensional model with 

rigid side walls and free upper and lower boundaries. Brown 

andStewartsm (1977) have now incorporated non linear effects 

in a theoretical study of convecti6n in a shallow rectangular 

box and their results also confirm DavWt- prediction that 

-the preferred motion is one with rolls parallel to the shorter 

side of the box. 

Non-linear aspects of the problem with lateral walls were 

first described in the paper of Segel (1969) using a multiple- 

scale perturbation analysis-Segel (1969) shows that distant 

side-walls cause a slow amplitude modulation of the cellular 

convection and this idea was used in a description of the 

effect of inperfectly insulated distant side walls on the 

transition to finite amplitude convection by Daniels (1977, 

1978).. Here the aspect ratio, 2L, is large compared with 1, 
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and the upper and lower surfaces are taken to be free. 

Hall and Wall. ton(1977) have considered a similar problem 

for finite values of L. More recently, the effect of 

perfectly insulated side walls on the wavelength-. of the 

convection pattern has been investigated by Cross, Daniels 

Hohenberg and Siggia (1980); variations in wavelength are 

represented by a class of phase-winding solutions which 

evolve as the Rayleigh number increases above its critical 

value. An alternative geometrical effect has been studied 

by Eagles (1980) who considered the modifications to the 

classical Benard problem obtained by making the elevation 

of the lower plane a small slowly varying function of the 

horizontal coordinate. Convection then occurs first in the 

region of maximum depth, since the value of a 'local 

Rayleigh number' is greatest there. 

Various cylindrical situations have been considered 

by Zierep (1958,1959,1961,1963) and theoretical predictions 

of the roll pattern and critical Rayleigh number based on 

linearised theory for a circular cylinder with a stress-free 

outer wall by Charlson and Sani (1970,1971). Joseph (1971) 

has also given an analy-tic, solution of the linearised equation 

for axisymmetric flow in a cylinder with a rigid outer wall in 

terms of Bessel functions. 
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Non-linear numerical and theoretical studies of uni- 

cellular motion have been described by Liang, Vidal and Acrivos 

(1969) and Jones, Moore and Weiss (1976). Brown and Stewartson 

(1978,1979) have made a theoretical study of finite amplitude 

convection in a shallow cylinder of fluid bounded by stress- 

free planes and have demonstrated how the onset of convection 

in the form of concentric rolls can be described by matching 

the solution of a non-linear amplitude equation in-the main 

body of the layer to a linearised solution in terms of Bessel 

functions near the centre. The singularity which develops in the 

amplitude equation as the centre of cylinder is approached, 

leads to an unexpectedly large cell amplitude there and also 

to an effective increase in the critical Rayleigh number (over 

that predicted by linear theory) at which finite amplitude 

convection spreads throughout the cylinder. 

Experimentally, Schmidt and Milverton (1935) established 

preliminary results for the classical Benard problem confirming 

the general prediction of the linear stability theory for the 

*onset of steady convection and more recently Rossby (1969) has 

considered the onset of convection in both rotating and 

non-rotating cylinders. Much experimental work has been done 

in this area. Axisymmetric solutions, in the form of concentric 

rolls, have been observed experimentally by Koschmieder (1966) 

and Hoard, Robertson and Acrivos, (1970). 
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1.2. Effect of Rotation: 

In the classical problem of Benard it has been shown 

that the principle of the exchange of stabilities is valid 

and theory, in agreement with experiments, shows that when 

the critical adverse temperature gradient is surpassed, a 

cellular pattern of motion must ensue. But when external 

forces are present the principle of the exchange of stabilities 

is not always valid, and depending on circumstances, instability 

can set in by the alternative mode of overstabil. ttýy and 

oscillations of increasing amplitude. Chandrasekhar (1953) 

has shown that overstability can arise when the fluid is 

subject to rotation and the theoretical expectations are 

further described in the paper by Chandrasekhar and Elbert 

(1955). A linearised solution in terms of Bessel functions 

for the onset of stationary convection in an infinite cylindrical 

geometry was first considered by Muller (1965). 

Non-linear effects in the rotating case were first considered 

by Veronis (1959) who assumed disturbances of uniform amplitude 

in an infinite rectangular Cartesian framework with, stress- 

free, upper and lower surfaces. His results established the 

possibility of non-linear motions at subcritical values of the 

Rayleigh number, and these were further discussed in a subsequent 

paper (Veronis 1966). The solution of the non-linear steady state 

equations in an infinite horizontal rotating fluid layer has also 

been investigated for large Prandtl numbers by Kuppers and Lortz. 

(1969) and for finite Prandtl numbers by Kuppers (1970). 
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The effect of side walls on the rotating linear Benard 

problem has been considered by Davies, Jones and Gilman (1971) 

and later by Daniels for both the exchange case (1977a) and 

the overstable case (1980). For stress-free horizontal surfaces, 

the forms of the amplitude equations for both stationary and over 

stable motions, incorporating spatial modulation and non-linear 

effects, were given by Daniels (1978) in order to discuss a 

finite amplitude motion in-the form of two-dimensional rolls in 

rotating system bounded by distant side walls. More recently, 

Daniels (1980) has studied the effect of centrifugal acceleration 

on axisymmetric convection in a shallow rotating cylinder or 

annulus. Only the case of stationary convection was considered. 

In our study we shall neglect this effect, although it is expected 

that it could be incorporate'din the analysis in a fairly straight- 

forward manner. 

The experimental results of Nakagawa and Frenzen (1955) and later 

Goroff (1960), have confi med the theoretical work of Chandrasekhar 

(1953), the experiments showing that either the stationary or 

oscillatory instability sets in as convection of increasing 

amplitude as the Rayleigh number increasesbeyond its critical 

value. More recently Rossby (1969) has. also confirmed the 

existeance of the subcritical instability-predicted by Veronis 

(1959), and has,,. provided a comprehensive set of results for 

widely varying values of the Rayleigh number, Taylor number and 

Prandtl number. Axisymmetric solutions, in the form of concentric 

rolls, Aave been observed experimentally in the rotating case by 

Koschmieder (1967). 
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In the present study attention is also restricted to 

axisynpetric solutionsof the governing equations in the cylin- 

drical geometry. 

The classical theory of Benard convection in an infinite 

layer is based upon the Oberbeck-Boussinesq approximation in 

which the thermal expansion of the fluid is neglected except 

where coupled with the gravitational acceleration, g. The 

resulting equations of motion are 

V. = 0, 

( Tt* -p k -Vp* +V. V2 U* 

(1.1) 
30 +(2.0* 'K v2 e*, 
atgl 

92 13 32 , With 2 =--2 ++ --T, 'V. U* = 
au* 

+ U* 
+ 

aw* 

a r* r* a r* : az* a r* r* az* 

where u*, p*, 6* and p are the velocity, pressure, temperature 

and density, V is the coefficient of viscosity and ý is thermal 

diffusivity; ý. is the vertical unit vector and r*, z* are the 

cylindrical polar co-ordinates. The equation of state is taken 

as 

Po {1 - ao W- lo*) 1, 

where a0 is a constant and p. is the constant density at temperature 

e* which is taken as the temperature of the lower surface of the 
0 

layer. 
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In Chapter 2, the equations (1.1) are linearised with 

respect to small disturbances to obtain the classical Benard 

problem, first discussed by Rayleigh (1916). A numerical method 

of solution based on integration across the layer is used 

to obtain the neutral stability curve for the case when both 

bounding surfaces are rigid and the results are compared with 

those already obtained by Chandrasekhar (1961), using an altern- 

ative scheme of solution. The same numerical method forms the 

basis of the method used in later Chapters (4,6) to investigate 

the properties of the rotating Benard problem. 

In Chapter 3, a modified linear Benard problem is considered 

in which the lower boundary is taken as 

d e2G(c 
L*), 
d 

where c is a small parameter and. d is-thedepth of the layer. We 

refer to this as the non-parallel plane problem. The linear 

amplitude equation is found in the region rý d' = O(e) and the 

-outer solution is matched with an appropriate solution near the 

centre, wherer, */d' = 0(l), given in terms of Bessel functions. 

It is found that the matching conditions are different from 

those which apply to the non-linear problem investigated by 

Brown and Stewartson (1978). 

In Chapter 4. the numerical solution of Chapter 2 is 

extended to include the effect of rotation (see Chandrasekhar 

1961). The neutral stability curve is calculated for various 

speedsof rotation, measured by a Taylor number, T, in the case 

when convection arises through an exchan. ge of stabilities and 



both bounding surfaces are rigid. Both the main eigenfunctian 

and a'related function needed in the calculationsof Chapter 

5 are determined at the marginal state. 

In Chapter 5, the non-linear equations governing stationary 

convection in the rotating layer near the critical Rayleigh 

number are expanded in a sequence of inhomogeneous linear 

equations. dependent uponthesolution of the linear stability 

problem (Chapter 4). The non-linear amplitude equation is 

derived for the case of rigid boundaries and it is found that 

for certain ranges of the speed of rotation and Prandtl number 

of the fluid, subcritical instability is possible, as in 

the model problem with stress-free boundaries considered by 

Veronis (1959). ý 

An asymptotic analysis for T>>1 is carried out in order 

to provide a check on the numerical computation of the amplitude 

equation coefficients. 

The solution of Chapter 5 provides an 'outer solution' 

of the problem. This must be matched to a solution (which pan 

be expressed in terms of Bessel functions) near the axis of 

rotation in order to complete the analysis and determine the 

boundary condition for the amplitude function involved in the outer 

solution. It is found that the matching procedure at the 

centre is essentially unaltered from that described by Brown 

and Stewartson (1978) for the non-rotating layer with stress- 

free boundaries. Thus the main features of the Brown and 

Stewartson study apply to the rotating case also. 
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The matching allows a phase winding effect (see Cross, Daniels, 

Hohanberg and Siggia 1980) which is analysed in detail and 

indicates a possible variation in wavelength of the roll 

pattern. This is characterised by the 'Iphase winding, parameter" 

which arises from a non zero value of the amplitude function 

at the origin-.,, in the matching process. Finally, supercritical 

and subcritical-solutions of the amplitude equation are found 

numerically and the possible roll patterns are determined for 

several rotation rates. 

In Chapter 7, we consider the non-linear structure of flow 

at the onset,. -, of convection in a rotating fluid layer with stress- 

free boundaries, when the disturbance leads to overstability. 

As in the investigation of Chppter 6 and of the exchange case in 

the non-rotating layer by Brown and Stewartson (1978)9the 

main interest concerns the way in which a linearised solution 

at the centre matches, and provides boundary conditions for 

the solution of-the non-linear amplitude equations that govern 

the solution in the outer zone. The details of the analysis 

are found to be quite different from those of the exchange 

case and the complete description of the non-linear equilibrium 

state requires a subdivsion of the outer zone into three 

regions, which are considered in § 7.4. In the equilibrium 

state, the amplitude of the motion at the centre is found to 
-i 

be unusually large3of 0('Il. n(R-R )I ), where R is the critical Cc 
Rayleigh number. This chapter is the subject of a joint paper 

with Dr. P. G. Daniels. 
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CHAPTER 2 

Linear Benard Convection in Cylindrical Geometry 

Let (r*, ý*, z*) denote cylindrical coordinates and 

consider a horizontal layer of fluid which is confined 

between two rigid boundaries z* =0 and z* = d. Gravity 

acts in the negative'z* direction and the flow field extends- 

from r* =0 to r* = -. The lower surface is kept at a 

constant temperature 6* and the upper surface at a constant 0 
temperature e* such that 0* > 0*. The velocity component 101 

v* is taken to be zero throughout and an axisymmetric motion 

is assumed so that 0. The governing equations for 

this system are given by the Oberbeck-Boussinesq approximation 

(1.1) . The dimensionless coordinates, velocity components, * 

temperature and pressure are defined as follows: 

(u*, w*) = ý(u, w)(r, z, t)/d, (2.1) 

0 e* + (e* - e*)z/d + Kve(r, z, t)/a gd 9 (2.2) 

2 
p* = p* + 0* _ 0* 2 

0- PO gz ipo gao( i 0)z*/d+p 0ý p(r. z, t)/d (2.3) 

2 
r= r*/d, z= z*/d, t =. 'Kt*/d, (2A) 

where pol. s aconstant basic pressure and po is the constant 

density'at temperature 0* and a is the coefficient of thermal 
00 

expansion of the fluid, while g is the acceleration due to 

gravity and K iS the thermal diffusivity of the fluid. The 

velocity components are u*, w* and t* is time, e* is the 

temperature, p* is the pressure. 

Let- 



2.1. Perturbation equations 

The full setof equationsaf motion (1.1), with (2.1) - 

(2.4) , are linearised for a small amplitude of disturbance 

and may be written in the form 

.2+m+ 
DW 

r ar az 

3u 2u 
.a (V u- )+IP- = 0, 

at 72 zr 

Dw 23 
. a(V w +0) +p=0, at az 

36 2 
DIC -V 6- Rw = 0, (2.1.4) 

222 
-+ 
är 2r ar DZZ 

where 

R= gaod 
3 (6* - 6*)/KVs 

01 

i5 the Rayleigh number, 

a V/K 

is the Prandtl number and v is the kinematic viscosity which 

is assumed to be constant. 

The boundary conditions are 

6=u=w= Oat z ='O, 1. 

15 
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2.2. The equations governing the marginal state and 

eigenvalue problem 

A steady solution of the linear equations (2.1.1 )- 

(2.1.5) for axisymmetric flow has been considered by Zierep 

(1959) where the lower and upper planes were taken to be stress- 

free, while in our study the boudaries are assumed rigid. 

Let us now suppose that the perturbations have the forms: 

u=J, (ar)f(z ) exp(iwt), 

w= JO(ar)g(z) exp(iwt), 

JO(ar)h(z) exp(iwt), 

(2.2.1) 

where JO is the zeroth order Bessel function and wis a complex 

number in general and a is a real number. We set w=0 on the 

assumption that the principle of the exchange of stabilities 

is valid (Chandrasekhar 1953). Substitution of (2.2.1) 

into equations (2.1.1). - (2.1.5),, leads to a set of ordinary 

differential equations as follows: 

Dg uf =0, (2.2.2. ). 

D2ha2h+ Rg =0 (2.2.3') 

D4g- 2a 2D2g+ 
«4 9-a2h=0, (2.2.4 ) 

where 
d 
az (2.2.51). 
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The boundary condifions are 

f=g=0 at z=0,1. (2.2.6) 

Eliminating f(z) and g(z) between these equations we obtain 

(D2 - a2)3 h+ Ra2h = 0, (2.2.7) 

h= D2h = D(D2 - a2) h=0 at z=o. 1. 

Wb have a sixth order ordinary differential equation and we 

have to satisfy six boundary conditions, three at z=0 and thre*e 

at z=I.. The boundary conditions are homogeneous and so we 

have an eigenvalue problem for R(for given a). The lowest 

eigenvalue for R, i. e. the minimum with respect to a of the 

eigenvalues so obtained, is the critical Rayleigh number at 

which instability sets in. 

The desired solution 6f(2.2.7)- (2.2.8 ) can be made unique 

by the normalisation condition 

at z=j (2.2.9) 

17 



2.3. Numerical Solution of the Eigenvalue Problem and 

Neutral Curve 

Although the order of the equation (2.2.7). is six, it is 
I 

convenient to introduce a system of twelve first order 

differential equations. This is done by introducing the 

twelve variables. 

Lh ; h(1 (YI 
Iy2y7 12 DR' TR 

ah(s) 
'T R 

where 

(n) n=1,2, ... � 5. 

denotes the order of differentiation respect to the variable, z. 

From (2.2.7) and (2.3.1) 

y" =h 

I Yi ý Yi+i 1,2, 

y6l = a2(a4- R) Y, - 3a4Y3 + 3a2 Y5, 

The assumption made in (2.3.1) implies that 

ah Y7 aRl 

Yj = Yi+l (i = 7,8, ..., 12), 

2 y, + (a6 - 012R)Y7 
3C12Y 

11 Y12= -a- 3a2yg + 

18 



A convenient form of this formulation is 

DY=BY (2.3.2) 
., / 

where Y= (yi) tr (i = 1,2, ..., 12), 

and,.. tr, denotes transpose, B is a matrix of order (12,12), 

D is d 
a-z 

The boundary conditions are 

Y4- Ot 2 YZ ý0 at z=0,1 . (2.3.3) ' 

The method involved use of a fourth order Runge-Kutta 

scheme, where three linearly independent integrals of the 

equation (2.3.2) were found, each satisfying the boundary 

conditions (2.3.3). at z=0. These were called Y(11, Y12 , 1, 

Y{31 with initial values Yk 
01, 

where Yk 
{')denotes the kth 

component of Y{'). Because. of linearity 

Y{41 = Y{I) + CI. 1{2} + C2 Y{3), (2.3.4) 

is the eigenfunction and satisfies in (2.3.3) ' at z=0, for all 

values of C, and C2- 

We now choose C, and C2 such that the first two conditions 

of (2.3.3) are satisfied at z-= 1, in other words 

Yi 
{ l} +C, y-, 

{ZI 
+ C2 Yl 

{3} 
= Ob 

y3 
{3 1+C, 

1 
y3 

(21 
+C2 y3, 

{s1 
= 

at z=1 (2.3.. g 
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where 

{21 {3} {3} {21 
Yi Y3 Yi Y3 ý0 at z (2.3.6) 

This condition is checked in the course of the computations. 

Let 2 {41 14} 
Qa Y2 -Y4 at z (2.3.7) 

Then the co4dition that Q vanfshes at z* 

is equivalent to the usual secular determinant which leads 

to a relation between a and R. Applying Newton's method 

we obtain the new approximation for R, 

RR aQ (2.3.8) 
new = old 

Q/ -5-R' 

and the iteration scheme is started from an initial guess 

Ro. This iteration method, thus provides the value of R 

(for given a). 

Two different step sizes (6z = 0.025,0.0125) were 

used to check the accuracy of the scheme (see Table 2.1). 

As already stated, we are interested in the critical 

Rayleigh nunber, Rc, for the onset of instability and this 

is determined by the condition 
dR 

= 0; the corresponding da 

value of a is denoted by aC. We used a minimization 

routine to find (a 
c, 

Rc) with ac = 3.1163 and Rc = 1707.763. 

2fl 



h (z) 
(6z 0.025) 

h (z) 
(6z = 0.0125) 

0.0 0.0 

0.025 '0-. 06837345 0.06837346 
0.05 0.13701257 0.137013265 
0.075 0.20597489 0.20597500 
0.1 '0.27512703 0.27512716 

0.125 0.34418078 0.34418093 
0.15 0.41272558 0.41272573 
0.175 0.48025764 0.48025779 
0.2 0.54620623 0.54620638 
0.225 0.60995719 0.60995734 
0.25 0.67087398 0.67087413 
0.275 0.72831657 0.72831671 
0.3 0.78165812 0.78165824 
0.325 0.83029979 0.83029999 
0.35 0.8736377 0.8736886 
0.375 0.91130444 0.91130452 
0.4 0.94271809 0.94271815 
0.425 0.96755090- 0.96755090 
0.45 0.98550528 0.98550531 
0.475 0.99636534 0.99636536 
0.5 1. 1 

Table 2.1: Numerical results with 

different step sizes. 

a=3.116, R= 1707.762 

21 



Comparison of the results given in Table 2.2 with those 

obtained. bya di-fferent. method byChandrasekhar (1961) 

shows adequate agreement between the two methods. In 

later work we shall use the constants ac and Rc which are 

to be interpreted as the final values obtained above. Finally, 

the neutral curve for marginal stability is constructed 

in the (a, R) plane in figure 2.1., and typical temperature 

profile and velocity profiles are given in figures 2.2 , 2., 3 

and. 2.4 , where the normalization condition (2.2.9)' has 

been adopted. 

R Q 
1.0050 5807.125 -0.3x 0- 

18 

2.0010 2176.320 -0.6xlO- 
18 

3.0060 1710.921 -0.2xlO- 
17 

3.1163 1707.763 -0.5xlo- 
17 

4.00099 1879.627 -0.4xlO- 
16 

5.3680 2746.389 -0.2xlO- 
15 

5.99 3405.826 -0.4xlO- 
14 

6.016 2437.547 -0.6xlO- 
13 

7.001 4920.349 -0.8xlO- 
13 

8.001 7087.065 -0.100- 
12 

Table 2.2. The exact eigenvalue for the 

first even mode of instability. 
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Figure 2.1: Neutral curve based on numerical results. 
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Figure 2.2: Temperature profile for a=3.1163, R= 1707.763. 
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2.4. Numerical Solution of Inhomogeneous Equat 

In the preceding section the eignfunction, h(z) 

satisfying (2.2.7) - (2.2. *8) is obtained numerically for 

different values of a and R. Here we are interested in 

finding 1h 
with a=a and R=R. since we shall use 

3a cc 

this in chapter 3. We start by deriving the system for which 

ah is the solution. 

This is done by differentiation of (2.2.3) - (2.2-4) with 

respect to a, and we-set 

dR 0. ý_a 

Let 

ah 11 ý9 G l-f 
= D ct 0 Gct 0 Da 

From (2.2.3) - (2.2.4) and (2.4.1), 

D2H a2H +RG 2a h, (2.4.2) 
0c0c0c 

D4G - 2(x2 D2%+a4GO-rctýH . =4a D2g-4a3 g+2ach. (2.4.3) 
0c Ic ,c0cc 

The boundary conditions are 

Go =D Go = Ho =0 at z=. 0,1 (2.4.4) 
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If, in addition, h is assumed to satisfy (2.2.9) then Ho =0 

at z and thjs renders the solution of (2.4.2)' - (2.4.4) 

unique. Otherwise, the solution of H0 can contain an 

arbitrary multiple of h(z). 

In contrast to (2.2.2) - (2.2.4)", the system (2.4.2) - 
(2.4.4) is inhomogeneous. By construction, it must have the 

solution H=7 , and in combination with the basic linear 
0 41 

system (2.2.2) ý- (2-2.4) gives -an i'ntegral rel aition 

betW'een g and h as follows. 

We multiply equation (2.4.2) by h and (2.2.3) by H 
o; 

subtraction and integration from z=0 to z=1, now yield 

1 fl 
(gH 

0-hG0) 
dz 2ac/Rc 

ih2 
dz, (2.4.5) 

00 

and from a similar treatment of the other equations 

(gHo -hG )dz =2 
fol 

g(2D 
2g 

-2 62 g+h)/,, cdz. 
(2.4.6) 

0c 

Combining (2.4.5) and (2.4.6) we find that 

222 I {2g(2D g- 2ac g+h)/ac- 2a 
ch /R 

cI 
dz =0 (2.4.7) 

0 

where 

9 (a 2h-D2 h)/ c Rc 
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The condition (2.4.7) is the consistency condition 

which is satisfied by h(z) when a=ac and R=Rc, and this 

was checked by Simpson's method in the numerical calculations. 

Eliminating, G0 (z) between (2.4-2) and (2.4.3), or from 

differentiation of (2.2.7) - (2.2.8) with respect to a, we 

obtain: 

(D2-CX2)3H +R a2 HO=2a 13D4h-6a2D2h+(3ct4 -R )h), (2.4.8) 
c0cccccc 

Ho = D2H0 = 0. at z=0,1, (2.4.9) 

D(D2-a2)HO = 2a h at z=0,1, (2.4.10) 
cc 

and also we set Ho =0 at z=J; the solution for H0 is even 

about z=J. 

The numerical method used here is similar to that used 

for (2.2.7), but in this case (inhomogeneous) we have to add 

one particular solution of (2.4.8) to the complementary solutions, 

and this is done by setting 

y+y 
c 

where 

yc= Y{l} +AY 
{2} 

+B Y{I} I 

the constants A and B are found from the condition (2.4.9) at 

z=1, and the automatic satisfaction of the boundary condition 

(2.4.10) at z=1, provides a check on the calculations. 
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It should be noted that in order to apply the fourth 

order Runge-Kutta scheme to (2.4.8) with step size sz, the 

function, h, on the right-hand side of the equation (2-4.8)ý 

is first calculated at intermediate mesh- points equivalent 

to the division of one step into intervals 6z16,6z/3,6z/2. 

The solution for Ho is inc 
. 
luded in figure 4.4 below. 
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CHAPTER 3 

Non-Parallel Plane Problem in Cylindrical Geometry 

In this chapter we are interested in the Benard 

convection problem associated with the lower plane being of 

the form z= e2G(er), in cylindrical polar coordinates 

(r, ý, 

A two-dimensional version of this problem has been 

analysed by Eagles (1980). We refer to the new problem as the 

non-p'arallel plane problem in contrast to the parallel plane 

problem of chapter 2, where the lower plane is given by z=0; 

in both cases, the upper boundary is z=1. it is assumed that 

G(6.: r) is bounded and for e sufficiently small the surfaces do 

not intersect (Figure 3.1 ). We choose G(O) =0 and G 

positive for r=-, the excess of the Rayleigh number above 

RC is assumed O(e2), and the deviation- of the lower surface 

from the planar case is O(e2). 

The space co-ordinates, velocity components, pressure 

and temperature are made dimensionless with respect to the 

fluid depth, d, at z=0, in the usual manner ((2.1) - 

and the velocity component v is taken to be zero. 

-- - -- ----------- 
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The Governing Equations of Motion 

The full set of equations in the Obbrbeck-Boussinesq 

approximation for viscous, incompressible, axisymmetric flow 

can be expressed as follows: 

v 
r + -ý + wz r 

0ý 

ut - a(V2U +pr= -(UU r+ WUZ) 
r2 

Wt - a(V2W +e + Pi = -(Uwr + wwz)' 

at - V2e Rw (Uer + wez)' 

V2 
2+ 

3r2 r 3r DZ2 

where 

q= 3u, uz = 3u etc. r 3F 3z 

We define the slow variable, s, by s= er, where c is a small 

paranieter--ý- 

The boundary conditions are 

0 at z=1, C2G(s). 
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3.2. Analysis of the Base Flow and The Steady-State 

Non-Periodic Solution 

For steady flow in the parallel plane problem, which 

is given by e=0, in the above, there is a solution of the 

fo rm 

U=0, W= 

e-0,0= constant 

for v-ýO-, 'we. )Aenote the, vel. qcity components of the steady-base flow by 

(U 
sI 

Ws) and pressure, temperature by ps, 6s respectively. 

The boundary conditions for the base flow are 

us = ws = es = 0. at z=1, 
(3.2.1) 

Us = Ws = 0, es= RE2G(s) at z= C2G- 

We also add the condition that 

us -,,. 0a nd Ws -)- oass (3.2.2)- 

For c small but different from zero we expand the perturbations 

us IWS, 0s and ps in powers. of e and write 

Lis = U, + ä2 u2 + F3 U. 3 ........ 
2 3 

tis 

OS 

= 

=c 

wi 

0, 

+ 

+ 

t 

ý2 

W2 

02 

+ 

+ 

ý 

ý 

W-3 

ei 

....... 

....... 9 

(3.2.3) 

PS « 2 r;, P1 + ý P2 + E: P3 ....... 2 
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The functions Uip Wig 6 i. Pi for i=1,2, .., are 

considered to depend on the two variables z and s. 

Substituting the form of expansions (3.2.3 ) 

into (3.1.1 (3.1.4 ), replacing 9 by e -L , and ar -Os 
equating powersof e, we obtain a set of partial differ- 

ential equations as follows. 

From (3.1.1 ), we find that 

M+s( aui 
+)0 (i 1 2,3). 

G2 Ds - G2 

From (3.1.2, ) and (3.1.3 

32U, a2U i+l api 

aZ2 DZ2 as 

apý Gpi a2W. 
1-a0, 

= 01 -- cr (0i+ 
DZ2 

1 )= 0 
az az 

Finally from (3.1.4 ) 

0, = 0,326, +RW=0 (i 
.=2,3) 

9 3Z2 
i 

32 a2e, 4 H 62 1 362 
;tz +- +RW4 - W2 -=0. 

3S2 s as BZ2 3z 

Now we define the boundary conditions on Uis Ois Wis 

(i = 1,2,. 39 ... 

(3.2.4 

(3.2.5) 

(3.2.6 

(3.2.7 )) * 

(3.2.8. ) 
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From (3.1.6 ) 

ui =Wi=0i=0 at z=1. (3.2.9) 

The boundary conditions on z= 1ý2 G, for Uil, W9 i 

ei (i 1,2s ... ), are given by expansion of 

USIWs0s about z=0, and the details of this work 

4regiven for Us only; we have 

us (s, 62G) =eU, (S, O)+62 U2(S 0)+e3 

(GU, z + U3)Z=o + C4(G U2z+U4)z=o + (3.2.10)*. 

Therefore, since Us (s, F. 2 G) =0, 

Ul «2 U2 «2 09 

on z=Q 

where 

GUjZ+U3, =GU2Z+U4ýos 

iz = 
aui 

(i = 1,2,4). 
DZ 

(3.2.11) 

Similar arguments provide boundary conditions for Wi and 

ei on z=o. 

The results are 
W, = W2 =G Wjz + W3 =G W2Z +'W-4 = Os 

0, = Gelz 4 03 = G02Z+*04=62-RG = 0, 

on z0 
(3.2.12) 
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where 

ao iNi 
eiz =- and W iz ý 

;z ;z 
(i = 1,2). 

The solutions of the equations (3.2.4) - (3.2.8) 

subject to the boundary conditions (3.2.10) - (3.2.12) 

are listed below 

U, = U2 «2 09 

Wl = W2 ý W3 ý 09 (3.2.13)*. 

01 «3 03 «2 P1ý09 

02 = R(I - z) G, (3.2.14) 

P2 = aR G(z - Z2 12) + B(S), (3.2.15) 

U3 = R(Z3 Z4 
dG 

+ cF-l(z2_z)/ 
dB (3.2.16)*. 124-Z'8) U-s 2 -d-s' 

W4 = Rf (Z) (-d-2-G+ 1 LG)+CF-I f2(Z)(d2B +I 
do) 

9 (3.2.17) 
dS2 S ds dS2 s ds 

Where f1 and f2 are given by 

fl ý z51120 +z 2/ 
16 - Z4 /24' 

f2 '2 d- 2 /2 - Z3 13* 
(3.2.18) 

In obtaining these solutions, P2 was first found in the 

form (3.2.15)9 where B(s) is an unknown function at this stage. 
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In order that U3 -)- 0 as s--, we see from (3.2.16) that 

dG 
-ý- 0ass (3.2.19) 

ds 

and 

dB 
-0 as s (3.2.20) 

d. s 

I 
From the condition W4 =0 on z=1, and (3.2.19) we find 

that 

dB G + (7aR/20) L 
«ý 0' (3.2.21) 

ds ds 

and thus 

B -AR120 ) G(s) + const. (3.2.22) 

Substituting (3.2.22) into (3.2.15) - (3.2.17), provides 

the explicit forms Of P29 U39 W4' Summarising, the expansions 

for the base flow, pressure and temperature can be written 

as follows: 

US = C3R(l-Z4 + Z3 - 7Z2 G+ (3.2.23) 124 116 140+Z'20)L 
ds 

WS = e4(Z5 5Z4 + 7Z3 - 3Z2)(d2G +1 
LG)R/ 

120 +... (3.2.24) 
1 

dS2 s ds 

es = RE2(1 - z) G...... . (3.2.25) 

ps = RuF2(Z - Z2/ 
2- 7/ 20) G ýý ***" (3.2.26) 
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It is noted that as s we have zero fluid velocity 

and just a linear temperature variation. 

3.3. The Disturbance Equations in Matrix Form 

We continue with the case where the equation of the 

lower boundary is 

Z= c2G(s) 

where, s, = cr. In equations (3.1.1. ), - (3.1.4) we set 

A u (r, z, 

Iw (r, z, t), 

0=0 

psp (r, z, 

(where the minus sign with the perturbed pressure is merely 

for convenience) to obtain the equations for small disturbances 

U, 14 , cý p; these are assumed to be suffciently small for 

non linear products of these terms to be neglected in the 

governing equations. The functions Us, Ws, es, ps are the. 

steady solutions of (3.1.1) - (3.1.4) which are given in 

(3.2.23) - (3.2.26). - 
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Upon substitution of (3.3.1) , into (3.1.1) - (3.1.4) we 

then obtain the linearised system, 

au +ý+ aw 
= 0, (3.3.2) 7Wr r az 

au 

u (3.3.3) +u 
lu u -US +ý 

'US 
+W 

aU 
+cr (V20 - s ar 3r az s az Pr -r; 2 

aw 
+ 'u 2-w 

+0 
ws 

+ý 
ws 

(V2-. +W ýw +W+ (3.3.4) 
s ar ar az s az z 

+U 2-6 +Us+ý 
"s 

+WW+ V2& Tt s ar 7F az s ý-z Re (3-. 3.5) 

wi th 

V2 +l3+ 
32 

r ar 
Dr2 ; Z2 

and 

0 at z ciG(s). (3.3.6) 

We now introduce the notation 

au ae u azs e ly (3.3.7) 

40 



and in equation (3.3.3) we write 

V26 = 
22U 

+I 
ýu 

+ ! 
-U. 

(3.3.8) 
ar2 r ar az 

a6 

Then (3.3.3)' expresses -ý-z in terms of*U, U, W, p and 

their derivatives with respect to r and t. We next note 

that the derivative with respect to z of (3.3.2), may be 

written as 

32ý 
+ 

az rar 
(3.3.9). 

The equations (3.3.2)' - (3.3.6)ý may be written in the 

following forms: 

wuu f4i 1 a-u ap -a 
"F2 2 az ;r s ar s ar aFF 

aus 

u+W+ 

a-1 
au 

Tat 

Dw w 
ON. , awS 

32 -a ! P- (1 + 
L) ü+ (--:! -W). u+(U -- + Cy-a-r2 Dz r ar ar rs ar S ar -Z- 

a all 
5r) W+ i-t +60 ý 

-+ aes 
ý, 

+ 
aes ý 

+(u a 
ý-z = WSO ar U az wsarT+ 

at 

au =ü az 

(3.3.10) 
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+ az r ar 

A 

ae 0. az 

In our analysis we shall ignore powers of n for 

n ý, 3. With this assumption and from (3.2.23) - (3.2.26. ) 

we observe that 

us = 0, ws = 0,0 
s=E2R 

G(l - 

Now we introduce the extended flow vector 

tr 
2P-9 $, 

ar T'" Tr ý-r 

where tr denotes the transpose and U, e are given in 

(3.3.7).. S, ubstitution of (3.3.11), -in equations (3.3.10) 

and differentiation of 

Tj 

az 5z , @z with respect to the variable, r, shows 

that the equations (3.3.10) may be written as 

DU 0-1 L U- '2-1 ýu 
5 -z ari -t 
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32ý + + 
azar ar ar 

; 2; ft ae 
s 

-= -R -LW -L (a2-) +a2+ aW 
, (3.3.13) 

azar ar ar ; rat ar az 

I ýu 

3z 

1ý 
32W 
az ar 

= -LU, 

326 a0 
ýFaz ar 

where L is a linear operator 

D2 
2+12.1 2 (3.3.14') 

ar r ar r 

This formulation enables us to write the equations (3.3.13) - 

in matrix form, which is convenient for later manipulation. 

The form is similar to that used by Eagles (1980). Now we 

replace P by a ý'in (3.3.13) and it is easy to show that 

0 au au - 
-=AU+B. -= ,, (3.3.15) 
az at 
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where 

o 1 0 -L 0 0 

L 0 0 0 L 1 

0 0 0 0 X- L 

1 0 0 0 0 0 

0 0 0 -L 0 0 

0 0 1 0 0 0, 

and 

(1 + r2G)R 

Also 

a-l 00 

0 CF- 

00 

0 

where 0i Lthe-zero. matri x-, bf onder (3j 3 ). We can wri te the 

matrix A in the form 

'. 
A, - L A2 +R (1 +e A=2 G) A3 

(3.3.16) ' 

(3.3.17. ) 

(3.3.18. ) 
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where 

DA2 = 

o 1 0 0 O 

0 0 0 0 0 1 

0 0 0 0 0 0 

1 0 0 

0 0 0 0 

0 0 1 

o 0 0 1 0 0 

-1 0 0 0 1 0 

0 0 0 0 0 1 

o 0 0 

51 1 0 0 

0 0 0 

0 

A3"ý 

o o 
o 0 0 

0 -1 0 

0 

45 
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From(3.3.6) 

ýW 

u0 at z 
ar ar 

On z= c2G, we have, for example, 
;W=0, so that 

ar 
A 

;W= aW(r, o) + c2 G ; 2W(r, O) 
. ...... (3.3.20) 

ar ;r ; z; r 

and so to the order of approximation considered here, 

Ew 
=0 at z=D. (3.3.21) 

'ýr II 

The complete set of boundary conditions can be 

conveniently labelled as follows: 

Y, : The last three components of U are 

zero at z=1 and z ii o.,,, 

or alternatively 

cu=0 at z=0, and z=1 (3.3.. 22) 

where 
00 

C 

l- 
01 3_J 

and 13 is a unit matrix of order 
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3.4. Expansion Procedure and Outer Solution 

If G(s) =0 (or. e= 0) then we have the standard 

linear parallel plane problem of chapter 2, so that we may 

expect that the critical disturbance of the plane problem will 

have a corresponding perturbed solution in the non-parallel 

case. 

We assume G(s) remains 0(l) for r O(c-1), and 

look for a steady solution of (3.3.15 in this region of 

the form 

e' ctcr v (z, s) + C. C., (3.4.1) 

wi th R=Rc+ C20 0, 
(3.4.2) 

where c is fixed by the size of the depression in the lower 

surface (Z= C2G ), and ao is an arbitrary parameter which 

represents an O(C2) variation in R about Rc, and the symbol 

C. C. denotes the complex conjugate. Now we expand the complex 

function V in powers of e: 

Z, S) +c '2Fý, z, s) + c3F3(. z, s) . ...... (3.4.3). 

On substituting (3.4.1), "- (3.4.3) in (3.3.15)' - (3.3.18),; 

and equating powers of cn, we obtain a set of partial 

differential equations: 
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Lo F, = 0; 3.4.4ý) 

Lo F 2=-i ot c 
ý, 2 Li 

. 
fi yl (3.4.5)' 

Lo E3 = (RC G+ßo) A3 Ei i ac A, 2 Li, F2 A2 L2 Fl (3.4.6) 

C+ 
-G 

Fz0 at z=0, C F3,0 at z 

where 

Lo LA1 + a2 A.. 2 + Rc A3 
az c -1 

and 

Li = 
ýa 
s -1-4 

2 L2 '2 as, 2 +s 
as - -S29 (3.4.8) 

are linear operators and y1 is given by (2.3.221). 
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In (3.4.4. ) - (3.4.6 ), the boundary conditions on the 

lower surface, Z= C2G, are obtained by means of a 

Taylor expension of V about z=0, using the fact that 

the last three components. of V are zero dn z= e2G. 

From (3.4.3. ) we obtain on z=0 

fIj =f ij .= 
af .1i +f= az 

On z=1, 

1,2,3) 

4,5,6) 

(3.4.9) 

where f ii denotes the jth component of Fi (z, S). 
-I 

3.5. Adjoint Operatorand Adjoint Eigenfunction 

To solve equations (3.4.4).. to (3.4.6) we introduce 

the idea of the adjoint operator (see for example Eagles 

(1980)). 

The adjoint operator is defined by 

d+ Atr, dz - 
and 

X OPY2 

AO 

i=4,5,6 

(3.5.1) 



where the boundary conditions denoted by Y2 are 

that the first three components of X are zero at z=0 

and z=1, and, trdenotes the transpose. 

Let X be the nontrivial solution of (3.5.1)' 
., 

then 

P. Y=w (Z) ; Y, (3.5.2) 

has a solution if and only if 

1XW 
dz = 0, (3.5.3) 

i-- 
0 

where d A. 

yj is given in (3.3.22) and X is an adjoint eigenfunction. 

The condition (3.5.3), is called the adjoint condition 

and we shall use, it below, 

The proof of (3.5.3)ý in conjunction with (3.5.1)., and 

(3.5.2). is first given. 

Let k F =0 ; yj (3.5.4) 

and Z* E =0 ; y2 (3.5.5) 

where F / 0, E ý 0. 

The inner product of this vector space is defined by 

tr t. r W> -tr <E Y><E. EW dz. (3.5.6),. 

0 
i 
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dY 
ýut --AYW dz -- 

from (3.5.6. ) and integration by parts gives 

I tr tr i_ f1 dEtr tr fEW dz =E YI fd=zz- Y+E AYI dz. (3.5.7) 

0 

Since the integral in (3.5.7) is a constant and not 

a vector, it will have the same value as its transpose, 

which is 

dEtr 
Y+ Etr A'Y Itr dz. Zi 

From matrix algebra we find that 

OE 
+ Atr E) dz <Y 

tr E >- (3.5.8)* -CTZ- 

From (3.5.5)', Z* E=0, therefore 

E tr W dz =E 
tr 1 (3.5.9) f 

09 
0 

where E tr y denotes the matrix product' 
0 

6 
Ee 
0=1 j 

YjIOS 
1 

and the values of ej and yj are given by the boundary 

conditions, y1, and -y 2 
which imply that 

E tr Ydz11=' Et rW dz =0- 0f 
0 
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3.6. Solution of the Disturbance Equations and 

Derivation of the Amplitude Equation. 

A general solution of (3.4.4) can. be written as 

(s) fi (Z), 

where 

Lo f*j(7) = 0; 

and f,, (z), is the critical eigenfunction of the standard 

parallel plane. problem, a, and Rc being given by Table 2.2. 

(3.6.1) 

(3.6.2) 

Let f ii (i = 1,2, denote the jth component of 

fi(z).,, the solution fij is given in (2.2.2) - (2.2.4) 

and thus, 

f g(Z)' f16 ý* h(z). (3.6.3) 
14' 

f(Z)' f15 

The solution given in (3.6.1) also contains an amplitude 

function, A(s), which is determined by asolvability condition 

obtained at higher order (O(C2)). Using (3.6.1).,. ' equation 

(3.4.5) becomes 

Lo f, 
2 =-iac Al LI, {A - (s)j yl (3.6.4) 

and has a solution for F2, if the adjoint condition: 

ia L {A(s)) fe tr dz=O, (3.6.5) 
c1 

0 



is satisfied. This is the case, since from the parallel 

plane problem (Eagles 1980) 

a tr I±' (ý2f, ) dz = 0. (3.6.6)* 
i 

In fact (3.6.6) is equivalent to the solvability condition 

which we derived in (2.4.7).., From the boundary conditions 

on F23 (3.4.5)s and the right-hand side of (3.4.5), F2 

may be expressed as 

dÄ (3.6.7) f2 (Z' s) = -' (2-s + 
As ) f2 4' ýl f19 

where Al(s)itanunknown function at this stage, and 

2ac Az I,,.; yl. (3.6.8) 

It should be noted that the system (3.6.8) is equivalent 

to the inhomogeneous system (2.4.1) - (2.4.3)*P and we 

find that 

f 
24 'ý F0 (Z), ý 

5' =G0 (Z), f 
26 = HO(z), (3.6.9) 

where the numerical solutions of H0, G0, F0 are given in § 2.4. 

From (3.6.1)-' and (3.6.7), : equation (3.4.6 ) may be written 

as 

L: F =-ia AI (-i fLA+Af A+A f. (R G(S)+B (3.6.10) 
04 C -2 -2 11 

11L2 
-3-1 C0 

C (f3 +GF, 
Z)=O at z=0, C0 at z 

where L: and L. are given in (3.4.8). ". 
12 
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A solution for. F3 exists if the. adjoint condition is satisfied 

1 a, tr *'fa, tr(ý3±j)dz=fa, tr 1. 
-acL, (L, A) if (A2 ±2)dz+(oo+R c 

G)A fo, 
- 

F3 10 

. 
0 

(3.6.11) 

From the boundary condition, (3.6.10), at z=0, we may set 

5= -G A 
ýffl 

(3.6.12) Z-Z + A2 (S) f I" 

Hence 

, tr 11 =6 
dfik 

Ff -} GA 
-3 0k dz z=0 (3.6.13) 

k=1 

where f k(z) is the kth componen, ý of the adjoint eigenfunction and 

, 
flk is'the kth component of fl(z). The equation (3-6.11) 

may be rearranged as 

d2A 1 dA A 
ý2)+Aý(b - CRC)G+b ß0}=0 (3.6.14) a (=ds '+ -ý us 

and this is the amplitude equation for A(s). 

Here 

I 

a= -a c a, tr (A2 f2)dz, 

0 

b= 
jlf a, tr (A3 f 1) dz, (3.6.15) 

0 

6 dfik 
c= IE fk dz lz =0 k=4 

,I 



Now let 
(3.6.16) 

A0 (s) =As. 

From (3.6.14) we see that 

eAo 

d S2, 
+(6 1+62: 

1 

G) Ao = 0, 
'' 

(3.6.17) 

where 
býo. 

'a-, *' ., 
b*. ":, dR 

c >0 and < aa 

The equation (3.6.17) is similar to 

(1980) in the two dimensional case where 

are defined at s= 4- -. In our case, we 

the boundary condition at the centre, s 

investigate this condition in the next s 

procedure. 

that obtained by Eagles 

the boundary conditions 

have no information about 

0, and we shall 

ection by using a matching 
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3.7. The Inner Solution and Matching Procedure 

In the neighbourhood of r=0 the function G (s) tends to 

zero and we look for a linearised solution of (2.1.1)', - (2.1.4)9 

in which R= Rc and the components of the disturbance are gi'ven in 

terms of Bessel functions. An equivalent solution has been 

found in the stress-free case by Brown and Stewartson (1978). 

One solution is I 
h(z) Jo (acr), u=f(z) JO(acr), w= g(z) Jo(acr) 

and a, second solution can be found by writing 

P(Z) (ar) +rf J'(ar), 
00 

ý(Z) J (ar) +rg J(ar), 
00 

R(Z) 10 (ar) +rh Jo(ar); 

On substituting (3.7.1)* into equations (2.1.1) - (2.1.4), with 

R=R and a=a, we obtain a set of differential equations Cc 
which are given as follows9 

D 2A (X2 RR 2ah, (3.7.2) 

D 4ý 2a9- D2ý + a4 a2 4cc D'ýg - 4a3'g + 2ahs 

with boundary conditons 

0 at z=0,1 . (3.7.3) 

t 
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Comparing these equations and boundary conditions with those 

which we obtained in (2.4.1)*-'- (2-4.3) we see that we may 

take 

ah, af 
,ý=a 3a aa 3a 

Discarding other solutions which are exponentially large as 

r the general solution for Q in the inner zone may now 

be written in the form 

01=x Jo(a 
c r)h+p[J 0 

(a 
c r)R+rjo (acr)h}s (3.7.4)* 

where the numerical solutions of h and R are given in § 2.3., 

and § 2.4., and Ao U, are arbitrary constants. 01 denotes the 

inner solution and we use e to denote the solution already 

found. In order to match (3.7.4 ), with the outer solution 

(3-4.1), we need the behaviour of the amplitude function 

A0 (s) as s -* 0, which is found to be 

A0'a+bs....... (S -> 0) , (3.7. ý. ' 

where 5, S are arbitrary constants and s= cr. 

From (3.4.1),, (, 3.6.1) and. -, (3.6.16 ) in the outer 

region where G(s) ý 0, eo is given by 

e 
ia r aA 

sT 
{h A- ie 0R...... }+ C. C. (3.7.6) 

00 as 

97 



Now the asymptotic expansion of (3.7.4) for large. r is 

2 
-3p 

AA 

7ra 
cr 

)h cos r+ vAcos r-v rh sin r), 3.7.7) 

where 
ac r 

On substituting (3.7.5) into (3.7.6) we obtain 

oo :- ela cr /s 15h+cBrh - iGcA) + C. C, (3.7.8) 

and so comparing (3.7.7) with (3.7-8),,, we,., see that a 

match of the terms in, h and rh is secured. if, respectively, 

i= (- ' )ýh - 
Ll)e-jz'-, (3.7.9) 2Trotc 8oLc 

c' 6-(lira iý p e*" = 

It should ý--also , be noted that the terms in A then match 

automatically. Therefore, from matching condition (3.7.9) 

we can list the boundary conditions for the amplitude equation 

as: 

-i 7r A0 (0) = bl e -7-- , 
(3.7.10) 

ei ir b2 
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where bý and b2, are real constants. Note that these conditions 

are quite different from those which apply to the non-linear 

problem studied by Brown and Stewartson (1978). 

3.8. Investigation of the Amplitude Equation 

As a check on the analysis thus far, we start with 

G(s) = 0, and look for a solution of the system 

A" +ý61 A (s) 
00 

-! v 

A0 (0) = ble Z 

i ir 
Ao (0)= b2e 

<< 00 ), 

where 61 >0 and bl, b2 are real quantities. 

From (3.8.1), we find that 

- 
ilT IT 

0 
A=be -4 cos, 

d 
S+N*,,, e sin Sý s. 

The outer solution (3.7.6) may now be expressed as 

0 -, 
1 

{D cos(cýr- Z)(h-c61 R)+D. cos(ar- 1-)(h+F-612» 
1,1 

where D1 (bl-63)/2, D2 (bl., + b3)/2, 

ai = ac -c+ 61 cs 9 a. 2' 01C 

b2= b3* 

(3.8.1) 

(3.8.2) 

(3.8.3) 

(38.4) 

r' 



Now using the asymptotic expansion of the Bessel function 

Jo(ar) , for large r, we see that the result (3.8.3) is 

indeed consistent with the asymptotic form of an arbitrary linear 

combination constructed from the two roots a *2 als a2 and 

corresponding eigenfunctions hj(z), h2(Z) of the system 
(2.2.7) . '- (2.2.8) - when R-> Rcq which can be written as 

a -. DhJ (a r) +DhJ (a r). (3.8.5) 
011012202.. 

This result confirms that the linear Benard convection Problem 

in the parallel plane case can be expressed in terms of Bessel 

functions every where, as the analysis of§ 2 suggests. Also it- 

suggests that the matching conditions (3.7.9) are the correct 

ones. 

Now suppose G(s) J 0, and define 
I 

G 'I G(s), l(S) ' -6-2 

so, that the amplitude equation is given by 

A" + (B, l -G Ao =0 0 

where GI> 

In view of the conditions (3.7.10 *, we set 
1T 

Ao e7 (A,. + iA 2) (3.8.8) 
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where Al(s) and A2(S) are assumedreal functions. 

Then 

Al(0 b. 19 A2(O. ) 20 

A. 
l(0m) = 0'9 A2(O )= bý, 

Let 

A A, +iA 29 

and 

ý(S) ýý (S) 

Then ý and ý satisfy the equations 
I 

R" (61 - G., )ý - 
P- ý= 

2 ý'R' + ý" R=0 

with boundary conditions 

R (0) = bp ý(G) = 01 

b R' (0) = 0, (0) -2- 1. 
* 

b, 

from (3.8.10) 

.= C/P2. 

I 

(3.8.9) 

(3.8.10) 

(3.8.11) 
ý 

(3.8.12) 

f-I I 



where c, is an arbitrary real constant, and the boundary 

conditions (3.8.11) at s=0, imply that 

b, b2, 

Hance 

b, b2 f ds 

Now if we impose the condition that -R -* 0 (s then we 

need to choose c=0, and so then 

R" + (61 - GI)R =0 

R' (0) = 

ý0 (s + 

(3.8.13) 

(3.8.14) 

This system is the same as the linear form considered by Eagles, 

(1980), where the function GI(s) is taken to be 

G I(s) = tanJ12 s 
/2 

For 61 = J, there is a solution of (3.8.14) 

sech 
s 

V2 

(3.8.15) 

(3.8.16 )' 

KI 



in which R-* 0 as s -),. -, representing a distribution of 

convection cells concentrated near the centre. 
I 

'The value of. corresponds to an effective increase in the 

critical Rayleigh number caused by the decrease in depth of 

the layer as s-*-% and we expect the solution (3.8.16) to 

develop into a finite amplitude solution of the full non- 

linear equation for 61 >j (see Eagles 1980). Further increase 

in a, beyond Gl(-) = 1, is likely to introduce the possibility 

of further solutions of (3.8.16) which have non-zero amplitude 

at infinity and solutions with b2 non-zero must also then be 

envisaged. 

We can defin6 a local Rayleigh number by 

RL =1-3 C2 G(S) R, 

where 

Positive s>0 
G(s) 

0S= -U 

It is well known that the base flow in the parallel plane problem 

(G(s) =0, 'or. c=0), is unstable for R> Rc = 1707.763 

(Table 2.2. ), and that for R> RCa pattern of convection cells 

or rolls is set up. In the non-parallel plane case we see that 

the local Rayleigh number is larger near s=0 than at s so 

that the convection cells occur in the centre more readily than 

away from the centre and the positive value of G(s) for 

s>0, causes an effective increase in the critical Rayleigh 

number over that for the plane case where G(s) 
63 



Finally, it'shodld bepointed out that the boundary - 

conditions at s=0 for the linear amplitude equation (3.6.17 

differ from those which apply to the non-linear problem investigated 

by Brown and*Stewartson (1978). We shall consider the effect of 

non-linear terms in Chapter 5. 
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Rotating Linear Benard Convection. in Cylindrical Geometry 

In this chapter we shall consider the effect of rotation 

on the linear Benard problem studied in Chapter 2. 

In the stress-free case the effect of rotation has been 

considered by Muller (1965'), who found a steady state solution 

in terms of Bessel functions for the linear equations that govern 

axisymmetric motion. The present aim is to use a numerical approach 

to obtain a solution for the case when the boundaries aýe rigid. 
I 

Let (r*, ý*, z*) denote cylindrical polar coordinates with 

z* axis perpendicular to the two parallel planes z* =0 and 

z* d. These planes are rotated about the z* axis with a constant 

angular velocity, n. The gap between the planes is filled with a 

fluid with constituent properties as given in Chapter 2. The 

relevant equations of motion and heat transfer in the 0! -B approx- 

imation are given in (1.1 ). The space coordinates, velocity 

components, pressure and temperature are non-dimensionalised as 

fol 1 ows: If 

(U*, 0) = k(U, W)(r, z, t)/d, 

Y* = or* + KV(r, z, t)/d, 

0* = 0* +(e* - 0*)z*/d+KVO(r, Z, t)/a gd 
3 

0* 0 

p* = p* -pg Z* + ip ga (0* - o*ýz* 2 /d+Ip n2 r *2+ 
PO K2 

P(r, z, t), 00 ifi 02 000d 

rl C; 



and r, z, t are non-dimensional coordinates and time, defined 

by 

r=r*/d, z=z*/d, t=rt*/di. 

The governing equations in the Oberbeck-Boussinesq 

approximation are then given by 

au + ýl + aw = 0, 5-r F 3z 

2u 
+ U _LU +W 

IU V2, ý =- 'aP + ar DZ r gr 

DV 
+ 

v 
uA+w 

v 
-L 

v 
+ -aTlu +a (V4-, u ar az r2 

aw+ 
- u 

2w 
+w 

aw 
- . --ýMR, + ci W. W + 0), i t ar az az 

30 
+ 7t *u 2-6 +w ar az Rw +V2o 

where V2 
2+ 

.1 
a- +32 2r 3r azz 

(4.1) 

(4.2) 

(4.3) 

(4.4). 

(4.5) 

and the Prandtl. number,: a, Rayleigh, number,. R, and-Taylor number, 

T, are defined by 

1K, R=a 9d 
ý(O* 

- OW , T=4p2d4/ 2* (4.6) 
001 KV v 

The boundary conditions are 

e=u=v=w=0 at z=0, z. = 1. (4.7) 

In this chapter attention is restricted to the linear form 

of the equations (4.1) (4.5); " solutionsof the full non-linear 

system are discussed in Chapters 5-7. 
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The Analysis into Nomal Modes 

Following the procedure of Chapter 2, we analyse the 

disturbances u, v, w, 0 in terms of Bessel*' functions, and 

consider perturbations characterized by a particular wave 

number a. Thus we set 

. wt J'O(m. r-) k) el 

Jo (%r) (af ,, h) e 
iwt 

9 

where f, k, h, are functions of the variable z, and -, denotes 

(4.1.1) 

the differentiation of a function with respect to the appropriate 

varidble. In contrast to the simple Benard problem (Chapter 2), 

the principle of the exchange of stabilities is not generally 

valid in the rotating case (Chandra: sekhar 1953), when either 

stationary or overstable convection can arise first as the 

Rayleigh number increases, depending on the values of the Prandtl* 

number, cr, and Taylor number, T. Here we fix attention on the 

stationary case and therefore set 41 = 0-, in order to determine 

the neutral stability curve. 

(4.1) 

On substituting (4.1.1) into the linear form of equations 

- (4.5) we obtain: 
&h- 

«2: h aRf = 0, 

Dý k- ct2*k T4 = 0, 

Dýf - 2a2-b 2' f+a 4' f+ah+TýDK = 0, 

(4.1 . 2) 
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where 
d 

dz 

The boundary conditions (4.7 ) become 

Df =h=K=0 at z=0,1 . 

Eliminating K(z) and f(z) between the equations (4.1.2). - we 

find that 

ti{hl = 

and 
h= D2h = D(D 2 

-a 
2 )h = 0, 

DI {D 4_ 3a 2D2+R+ 2a 4}h=0 

(4.1.4)1 

at z=0,1 

where Jtj is the linear operator, 

L, = (D 
2_ 

a2 )((D 
2_ 

a2) 
"-T 

D2+a2 RI. 

The equation (4.1.4). and the boundary conditions (4.1.5) 

constitute an eigenvalue problem for R, for given a and T. The 

problem of determiningthecritical Rayleigh number for the onset 

of instability as stationary convection, at a given Taylor number 

T, reduces to that of finding the lowest value of R as a function 

of a. 

The Aesired solution of (4.1.4)-(4.1.5) can be madeiunique by 

adding the normalization condition 

h=1 at z=1. (4.1.7) 
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4.2. Numerical Solution of the Eigenvalue Problem 

The method used here is similar to that developed for the 

non-rotating problem in 5 2.3, but in view of the order of the 

operator (4.1.6. ) we now set 

(7) hn ýh 
(7) 

yl') = (h h ..., h , 
L, 

..., ), 
61 

aý DR 

where 

(ri) n=1,2, ..... � 7. 

denotes the order of differentiation of the appropriate function 

with resDect to the variable, z. 

From equations (4.1.0 and (4.2. -l). - we find that 

Y'l -2 Yi+l (i = 1,2, 7. ) 

Y18 = a4(R-a4) yl+OL2(T+4d4-R)y, -(T+6a4)y5+4 a2YI, 

Yll Yi+i (i =9...... 15), 

ct4yl-a2y3+4a2yl5-(T+6ot4 4-a2'(T+4a4-R)yl,, +cL4(R-a4)yg. (4-. 2.2) Y16 )yl 
3 

The equations (4.2.2) can be expressed in matrix form as 

A Y, (4.2.3) 
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Where A is a matrix of order (16,16) and 

.1=ý 
Yý , Y, 9 ..... 9y 16 

]. tr 

The boundary conditions are 

y3ý 09 

3a2 y6 + oL 
2 (262 +R)Y4 =0 at z=0,1 (4.2.4) 

2 
y4 - (1 y2. ý0* 

In order to solve the equations (4.2.3) - (4.2.4)1 using a 

fourth-order Runge-Kutta., scheme (see § 2.3), starting values, 

yi(O) for i=1,2 . ..... 16 are specified and each yi(z) 

calculated at equally spaced values of z up to z 

Three different step sizes (Sz = 0.05, -0.025,0.0125) were 

used to check the accuracy of the scheme, as in the earlier 

computation of 9 2.3. 

Four'linearly independent solutions Y{01Y UJ 
9YW9Y 

{4 } 
of 

(4.2.3 ), each satisfying the boundary conditions (4.2.4. ) at 

z=0 are computed. Then the functi6n 

y 
{5.1 

=Y 
{1 1+ 

a, K{ 
2'1 

+ 
{3 

+aY 
{4 

(4.2.5) 3 
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satisfies the conditions (4.2.4 ) at z i- 0, for all values 

of ai (i = 1,2,. 3 ). We now choose ai such that the first 

three conditions of. (4.2.4) are satisfied at z=1. 

We then set 

{5} 
a2 Y, y ., at z (4.2.6), 

24 

where yi denotes the ith component of Y 
(51 

and the final 

boundary condition, Q, =0 at z=1, leadi to a relation 

between a and R for given T. To obtain Q, = 0, Newton's method 

is applied in the fom 

Rnew = Rold 'Ql/ 
. 
&C. 
DR 

(4.2.7), 

This iý'eration method thus provides the values of R on the 

-neutral stability curve at given values of a and T. The lowest 

value- of R and the associated value' of a, at'fixed T, provides 

the critical Rayleigh- number' and wave number for a given 

rotation rate. The numerical results are given in Table 4.1.. *, 

and comparison of these results with those obtained by a 

different method by Chandras-ekhar (1961) shows adequate 

agreement between the two methods. 
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T Rc oLc 

10 1712.675 3.121 

100 1756.348 3.161 

500 1940.199 3.319 

1000 2151.341 3.484 

2000 2530.125 3.747 

5000 3468.493 4.266 

104 4712.04 4.789 

3x10 4 8324.61 5.795 

10 5 16719.42 7.172 

Table 4.1': Critical Rayleigh number for the 

case when both bounding surfaces 

are rigid and the onset of instab- 

ility is as stationary convection. 
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Table 4.1 shows that the system is more stable as the 

speed of rotation increases, since RC is an increasing 

function, of T. Finally, the profiles of h, f, k are 

shown in Figures 4.1, - - 4.3. 
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Figure 4.1: Typical temperature Profiles for 
different rotation rates. 
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4.3 NumeHcal SolUtion of the Inhomogeneous Equation 

In the preceding chapter the eigenfunction h(z), satisfying 

(4.1.4 (4.1.5) is obtained for different values of 
h R and T. Here we wish to find -L at a =a and R=R 

aa cc 
(for given T). The method of solution of this problem is 

similar to that of § 2.4. 

Let Af 
-=H, 

2t=F, 
= K. 

3a 3a 3a 

From (4.1.2) 

?2 
D'H -a li aRF = 2oth + Rf, 

D2K-a2K T' DF = 2ak, 

D4F - 2a2 D2F + a4F + aH + T'DK = 4aD 2f 
- 4a 3f-h. 

The boundary conditions are 

(4.3.1) 

(4.3.2) 

F DF =K=H=0 at z=0,1. (4.3.3) 

If, in addition, h is assumed to satisfy (4.1.7) then 

at (4.3.4) 

and this renders the solution of (4.3.2) unique. Otherwise, the 

solutionf& H can contain an arbitrary multiple of h. 
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The consistency condition is similar to (2.4-7) and 
is given by 

12 (2ahl/R-"' ý-4afVf+4 CL3f2 ea +2hf)dz = 0, (4.3.5) 
0 

with c and R= Rce 

Eliminating F and K between (4.3.2), (or by direct 

differentiation of (4.1.4) - (4.1.5) with respect to a') we 

obtain: 

. t, 
fHl = 2(%(D2(4D 4 -12(x2D2+T+12 CL4 -R)+2a'(R-2 a4 )lh, (4.3.6) 

where z3. is given in (4.1.6) and also 

D'H =09 

D(D? -M? )H = 2ah, (4.3.7) 

D3 {D 4 
-3(12 D2+R+2 (14 }H=2aDz(3D3-4a2)h. at z=0,1 

The solution for H is even about z=J. 

The numerical method used here is similar to that in §2.4. 

We set 
1= 

-Yc + -Yp 
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where Yp is a particular solution of (4.3.6) and 

Y= Y"}+ by2. 
ý+ 

b Y{31+ bY 
{41 

c12: .3-* 

Each YM (i 1,2, .. 4) is the complementary solution given 

in (4.2.5) the constants bi(i = 1,2,3) are found from the 

first three conditions (4.3.7). at z : -.: 1, and automatic satis- 

faction of the last boundary condition (4.3.7) at z=1, 

provides a check on the calculation. As we have already 

mentioned ( §2.4), in order to apply the fourth-order Runge- 

Kutta" scheme to (4.3.6)* with stbp size, 6z, the function, 

h, on the Hght-hand side of equation (4.3.6) is first calculated 

at intermediate mesh points equivalent to the division of one step 
6z 6z - 6z into intervals g-, The profiles of H, F, K are shown 

ih Figures 4.4. - 4.6. 

79 



X10- 

H 

8- 

6 

I- 
x lo- 1 
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CHAPTER 5 

Rotating Non-linear Benard Convection 

Exchange ofStabilities. 

The linear theory for an infinite rotating layer of fluid 

which is bounded between two rigid planes z=0 and z=1, is 

given in Chapter 4. Now we consider the non-linear structure 

of the flow at the onset of convection in a rotating layer 

when the disturbance has an axisymmetric form and the ex. change 

of stabilities occurs. In this investigation the analysis is 

based on the linear stability problem (Chapter 4). 

The governing equations of motion and heat transfer are 

given by the Oberbeck-Boussinesq system (4.1) - (4.5), and 

the boundary conditions are given by (4.7). 

5.1. Expansion Procedure and Outer Solution 

The critical Rayleigh number, RC, is calculated for 

different values of the Taylor number T, in table 4.1. 

For consideration of slightly supercritical flows we 

set 
R C2 (5.1.1)9 

where a is a constant factor introduced for convenience, and 

use a multiple-scale method in which slow spatial and time 

variables are defined by 

cr, C2t 1 . 2) , 

and 

01) 



Rotatinq non-linear Benard convection with 

stress-free boundaries was considered by Veronis (1959), and 

the possibility of non-linear motions at subcritical values 

of the Rayleigh number were discussed in-a subsequent paper 

(Veronis 1966). For stress-free horizontal surfaces, the 

forms of the non-linear amplitude equations, incorporating 

spatial modulation, for-both stationary and over stable motions, 

in a rotating system bounded by'distant side-walls, were given 

by Daniels (1978), More recently, Daniels (1980) has made 

a theoretical study of the effect of centrifugal acceleration on 

axisymmetric 'exchange convection' in a shallow rotating 

cylinder or annulus where upper and lower surfaces are assumed 

to. be stress-free. Here the boundaries (z = 0, z= 1) are taken 

to be rigid. 

We eliminate the pressure between equations (4.1) - 

and away from the centre. the solution may be expanded in the 

form 

u Ul U 2. U3 

v Vl V2 V3 
(r, z, t) ý- E +t2 +e3 ý +... 

Wl ýy2 w3 

el 62 63 
LJLJ 

Here uis vi, wi, ei (i = 1,2,3) are functions of r, z, s and 

On substituting (5.1.1), - (5.1.3) into the continuity 

equation (4.1), the vorticity equation derived by eliminating 

the pressure, and the heat transfer equation 

equating terms of order c, C2, C3; we obtain a set of linear 
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partial-differential equations as follows:. 

u ir 
+w iz 

Vir + vizz Tlu 
I= ý2iq 

0 irr+ 0 izz +RAý e3i, 

u irrz + uizzz -w irrr - wirzz -0 ir + Tlv, 
Z = Wo 

where u3u 
aui 

etc ir T-r' uiz ý az- 

and ýli, 02ill 03ill 04i are functions to be defined below. 

The boundary conditions are 

ui =Vi=Wi= 9i =0 at z=0,1; i=1,2,3. 

At order c(i = 1) we find that 

1,2,3,4 

and the solutions for up vj, wl, 81 which satisfy the 

boundary conditions (5.1.5) are given by 

(ul, vj) =tA (s; i)eiar + A* (s, fle- iar )(Dfl, kj), 
00 (5.1.6) 

(wj, el) = i{ A (s, fleiar ;... A* (s, fle- iotr}(-, fl hj) , 00 

where fl, kl,, h, are functions of z and AO is an amplitude 

function which is assumed to be a complex function of s and 

A* is the complex conjugate of*A . From the equations 00 
(5.1.4, i= 1) and (5.1.6), we find that 



D2h, - Ct2 hl -A fl = 0, 

D2k, - CC2 kl - TýN, = 0, 

D4f, - 2a2D2fl+ct4f, + ahl + TýDk, =0 

where Dd dz 

The critical wave number, aC, and Rayleigh number, R 
CS 

must be determined from solution of these equations which 

satisfies the conditions 

h, = f, = Df, = k, =0 at z= 

and at which 
dR 

= 0. dcx 

Eliminating, k, and fl, between the equations (5.1.7), we 

have',, 
tlfhl} = 0, 

wheretlis the linear operator (4.1.6), and the boundary 

conditions are 
hl = Phl = D(D2-a2)hl = 0, 

at z=0,1 
D3 { D4-3(%2D2+R+2a41h, = 0. 

The required solution of (5.1.9)-(5-1-10) is given by the 

critical eigenfunction h(z), for a=ac and R=Rc, as 

determined numerically in § 4.2, and it will be assumed 

that this is normalised by (4.1.7). The functions f, and 
R k, are given in terms of h, by (4.1.2). The condition 

L 
=0 do- 

is equivalent to the consistency condition (4.3.5), wo; ch we- 

shall use in the subsequent analysis. 
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T 

At order E: 2 (i = 2) the functions ý12, ý229 ý329 ý42 are found 

to be 

ý12 ,l cir -fl' 1'e B, + C. C 

ý22 ial A2 Ele2iar- B2 k, e 
ictr I+C. C 

0 
ý23 a{E A2 e2icir 3 

12 
2 

iar 
- 2E* 1" 

4-A +B e hl}+C. C (5.1.13) 
0 0 

ý24 e 
iar 

{(B2+ 
;)A0 

as 
(a 3f ctf + 

aA 
0 hjj 

as 

+ iaE2 A2 e2pir+ C. C (5.1.14) 
0 

wl)ere C. C denotes the complex conjugate and Ei (i = 1,2,3,4) 

are functions of z which are given in terms of the basic eigen- 

function and their derivatives with respect to variables, z, 

as follows: 

El = (fl' k, f, kj)/cr, E2 f'l' - fl fl ' 

E3 = f, hi h, fl, E4 = fl h, + hl f, 

al so 
aAA aA A 

0 +B2=2 0+ 
as s as s 

The particular solutions for U2, V29'W29 02 are, 

U2ý- i{ (fj Bl/ + 
aF2 

)eictr+f2'1 A2 e2i«ýl + C. C Pt DZ 0 

lar 
a{ F2 e. 42 f2, A2 e2iar, + C. C, 

2 

V2 K2 e 
iar 

+ k2l A2 e2-ictrl.. + C. C, 
0 

Aý et'-f H, e'ar +h21 Aj 
. 

e2ictr+ JA, 19 h221- CC 



where F2 9 ý12 , K., are functions of z, s and i, while 

f2j, k2l, h. 1, h. 2are functions of z only. The functions 

F2 , H2 , K2 satisfy equations of the form (5.1.7) but 

with three zero right-hand-sides replaceý by Ej, ý2 and 23, 

respectively, where 

4 

E, j B2 h, 

E2 -a B2 k, + T' fl BI/a, 

(hl + a3fl) 
aA 

0- (2af ")' 
aA 

0 -(B, /(x)fl (4 )+ct3B 
as 1 as 2fl 

Multiplication of the equation (5.1.7), for hl, by Hz and 

that for Hý , by hl, subtraction and integration from z=0 

to z=1, now yields 

ac Rc (F2 h, flH2)dz El h, dz, (5.1.22) 

00 

and from similar treatment of the other equations, 

1r1 

-Tý 
l(k, F2' - fl' K2)dz = Jo E2 kldz, (5.1.23) io- 

and 

T' 
f1 (ý fI-ki F2) dz+cic f 

-h, F fo, 
E fldz. (5.1.24) (lH2fl 2)dz= 

13 

00 

y 
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C.. ombining these three results we find that in order that 

the solution at order C2 be consistent we must have 
1 f 
(R 

c 
E, h, - E3 fl) dz =0 (5.1.25) 

0 

S. Ubstitution from (5.1.21) shows that this reduces to 

.- aA A 
0+ "2-) 12 ý09 (5.1.26) 

as 2s 

and is satisfied, since 2=0 by (4.3.5). 

We may set 
aA A 

aS 
'r3l +0 T329 H2 ý 'o 

S 

DA A 9A A 
F2=-Ds2: T2, +-2-. T22, K2=---2 Tjj+ 0 T12 (5.1.27) 

s as s 

and the functions T129 T22 and T32 then satisfy equations of thero-rn, 

(5.1.7) but with the three zero right-hand sides replaced by 

91= -ach, 

g2 = TI fll/ac -ac kj, (5.1.28) 

93 "a3f fl (4) /a 
cc 

The functions T31,1`21, TI, also satisfy these equations, but 

now the right-hand sides of (5.1.7) are replaced by 

-2ot c 
hl, 

922 '*-- -2a c 
kl+Tlf /a 

c9 
(5-1 

. 79) 

933 "ý -2a f1 3a3 fl_f(4 
)/a 

cc-c1c 

, r! 



The boundary conditions are 

T32 = T22 -= T'22 -= T12 = 01 

0 at z=0,1 (5.1.30) 
T31 = T21 = T2', = T, 1 =0 

and it is easy to show that 

T31 = 

and 

T32 = -H/2, (5.1.32) 

where the numerical solution of H is given in A. 3. 

The functionsf2l, k2l, h2l satisfy the equations 

(2)_ 
ý21 4a2 h2l - 2a R f2l = -a E 

cccC 30 

(2) 

_ k2l 4a2 k2l - T' f2, =a El (5.1.33) 
cc 

(4) (21) 

F- 8a2 fýj + 16a4 2a h =a 21 cC 
f2l+ 

c 21+Tlk2l c 
E29 

where Ei(i = 1, 2,3) are given in (5.1.15), and 

f2l = h2l = k2l = f2", = 0 at z=0,1. 

The numerical, solution of the system (5.1.33) - (5-1.34) 

is found by use of the Runge-Kutta scheme. 
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Finally, the function h22 satisfies 

h 
(2) 

= 2(% E 
22 C 4' 

h22 =0 at z=0,1 

and the solution is also found numerically. 

(5.1.35) 

Thus all functions wh_ich are involved at order c and c2 

are now determined and the amplitude equation for AO(s-,; T4) can 

be derived. 

5.2. Derivation of the Amplitude Equation 

At the order C3 3) the solutions for U39 VV W39 039 

which satisfy the boundary conditions (5.1'. 5), are given by 

. ar +- 
2iar - iar - 2i ar 

P3 el C'e+ Ploz e+ PJJZ e' + C. C 2 

w Plo e 
lar 

+ 2P, l e2lc'r+ 3 012 e 
3iar. }+ C. C 

V3 e 
iar 

+ P2, e 
2iar 

+ P22 
e 

3iar + C. C 

ziar 3i ar P3,, 
e"r + 

P3, 
e+ 

ý32 e C. C 

where El. ý2 are functions of s, ý, z and each Pij (i=1,2 j3 
and j=0,1,2) is a function of z, s and 

On sustituti on of (5.2.1 ) into (5.1.4), (f or i=3) and 

equating the coefficients of e 
iar 

on both sides of the 

we find that, the functions Pla, P20 and P30 satisfy equations 

of the form (5.1.7), but the three zero right-hand sides 



V 

and X3 (see Appendix I), where the replaced by ý101%2 

functions R1, R29 R3 depend- on the functions found numerically 

in §4.2 and §5.1, and on the amplitude function A0 and its 

partial derivatives. 
4 

The consistency condition at this stage which provides 

the amplitude equation is 

fo" 
(R 

c 
X, hl - X2k, - fl X3)dz = 0. (5.2.2) 

From this condition we find that 
DA a3 a4 9A 92A 

a, .0 -a2A JA 12- A-0 -a- 0+ýa AO=O, (5.2.3) 
00 ST 0Tas5 a)-s 6 

where the coefficients ai(i = 1, ..., 6) have to be calculated 

from the formula 

f, 5i(z) dz, (5.2.4) 

and the functions 5i (i = 1,2, ..., 6) are given in Appendix I. 

The amplitude equation (5.2.3) is similar to that of 

Daniels (1978), for a bounded rotating system with upper and 

lower surfaces sýtress-free, althou. gh 'there the curvature terms 

are neglected. Brown and Stewartson (1978) have found the 

same equation in a shallow cylinder of fluid bounded by stress- 

free planes. In contrast to the equation (3.6.17), where 

T=0, the equation (5.2.3) is a general form of the amplitude 

equation in which non-linear effects are included. 
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It can be shown (see appendix II) that, as in the 

non-rotating case (3.6.17) the coefficients a3, a4, a5 

are reldted by 
4 

a4 = a,, . a4 :,, -4a3' (5.2.5) 

The numerical results for the amplitude coeffici6nts for 

different values of the Taylor number are given in Table 

5.1 and figures 5.5-5.8 'below. 

It should be noted that the coefficient of the non- 

linear term, a2l, changes sign for different values of the 

Prandtl number and Taylor number (Table 5.2, Figure 5.1) so 

that, as in the, stress-free ýase (Veronis 1959, Daniels 1978) 

subcritical instability can occur. 
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Figure 5.1: Stability boundaries in the q, T plane. 

Subcritical instability in the exchange case occurs 

below the boundary shown: 

, rigid-rigid case (Present work) 

----------- free-free case (Daniels 1978) 

Note that the effect of rigid horizontal planes is to 

substantially reduce the region of subcritical instabilitY. 

In the free-free case overstability is preferred below the 

boundary C4andra§ekh&r (1961) ; the correspondinS 

boundary in the rigid-rigid case is not available, although 

it is known, for example, that there is a slight preference for 

overstabil'ity when a=0.025, T= 104 (Chandrasekhar 1961). 
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The Modified Amplitude Equation ý 

In view of (5.2.5) and the transformation 

0 
A= A01 Zl' s' e'XO, (5.2.6) 

the amplitude equation (5.2.3) may be reduced to the form 

aA a2A 1 
- ý- + A- 

s 
AIA12 7 sgn(Z), (5.2.7) 

s 

where 

-a2/a4, 

.r= ('a4/al)t, (5.2.8) 

o= -a4/a6 

and the coefficiektal, a2, a4, a6 are given in Table 5.1, while 
XO is an arbitrary constant. The transformation (5.2.6) remoyes 

the curvature terms from the equation (5.2.3) as in the non- 

rotating study of Brown and Sýewartson'(1978)6. ln order to 

consider the subcritical case. 
We take 

a4 
i6 <0 and this changes the 

sign'ýof the A term, in equation (5.2 -7). 



5.3. Asymptotic Analysis fOr T>>l: 

Leading Order Structure 

The numerical results for the critical Rayleigh number and 

wave number and the coefficients of the amplitude equation given 

in Tables 4.1 and 5.1 can be checked to scme extent by comparison 

with an asymptotic approach for high Taylor number Tý>I. 

It emerges that there are three different regions when 

Tý>l (see Figure 5.2). Further, symmetry properties about z 

can be used to restrict attention to O< z<J. The inner 

boundary layer region (III) has the familiar scaling 

associated with small Ekman number flow near a rigid boundary, 

the thickness, in terms of T, being O(T-1) (see Greenspan 

1968). It also emerges that there is a middle layer region 
i 

(II) where z= 0(17-ý7)- and finally, concentration of viscous 

action into narrow layers means that elsewhere the fluid behaves 

in an essentially inviscid manner, region (I). 

We shall solve equations (5.1., 4, i = 1,2) in these 

three different regions and use the method of matched 

asymptotic expansions(Van. -Dyke 1964) to connect the solution 

in the various regions. 

We set a=a Ti- + a, Tý2 + Tý> I 
.27 

R=R0T. 3, + R, T'17 + (5.3.1) 
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where a and R are the wave number and Rayleigh, number 

respectively and a, i, Ri (i = Q, 1) are unknown values 

which have to be found. The leading order scalingsin (5.3.1) 

are suggested by comparable results for the stress-free case 

(Daniels 1978).. The second order terms do not appear in the 

stress-free case, but in general, expansions in powers of T . 12 

are suggested by the relative scaling of regions II and III. 

The asymptotic expansionsin the three different regions for 

h(z), the solution of (5.1.9), are given by I 

11 
In I: h(z) =h0 +T -rT2 h, +T-rh2 . ..... (5.3.2) 

where z is-0 (1) and hi(i=O, 1,2, is a function of z. 

In II: hýzj = T- 12H 
0+ 

T-6H, +T H2+* (5.3.3) 

-1 
where z, is 0(l), z=T rzl, and each Hi ('i=0,1,2,.. ) is a function 

of z 1. 
43 

In III: h(Z2) T0+T+T ýz + (5.3.4) 

I 

where Z2 is 00) z T-V-Z2 and each Hi(i=0,1,2,.. ) is a function of 
Z2- 

Again, the relative scaling of regions II and III suggests that 
-1 the expansions of h in each region proceed in powers of T T2. 
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On substitution of (5.3.1) - (5.3.2) into (5.1.9) with 

T >> 1 we find that 

L3{-hol = 0, (5.3.5) 
1 

where 
L3 

d2 
- a2(a4 -R (5.3.6) 

dzz 000 

In view of the normalisation condition (4.1.7) and the boundary 

conditions imposed by matching with II and the symmetry of h 

about z (h 
0 

(0) = 0, dh 
0=0 and ho= I at z 

dz 
the appropriate 'first mode' solution of (5.3.5) is 

h0= sin wz, (5.3.7) 

where 7T2 + a2(a4 ;R0. (5.3.8) 
000 

From 
1 

substitution of (5.3.1) and (5.3.3) in (5.1.9) with 

Z= Zj f6 we find that 

L4 I[ly «'2 ob 

where 

.1 (5.3.9) 

L4 ý 
d4 

- a2 
d2 (5.3.10) ý-Z-ý 0 dzz* 

I I' 

The required solution of the equation (5.3.9) is 

ýH0= A' + B' z, + C'e-aozls 

where A', B', C' are arbitrary constants. 
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1 
From substitution of (5'., 2o'. I)and (5.3.. 4)with z= T-7 Z2 

in (5.1.9) - (5.1.10), we find that 

L5 {H0)=0, (5.3.12) 

k 

wi th 

2= p(2) = p(3) = R(7) =0 at Z2=0i(5.3.13) 
0000 

where 

L= 
d4 

4 
d4 

4-+1 (5.3.14) 5 ýi2 'aZ2 

and 
dnA 

, (n) 
-0 

(n = 2,3,7) 
0 dzn 2 

The requiredsolution of (5.3.12) is given by 

-Z2 

Z3 
72- Z2 

X10 + X2o Z2 + ý3o 
2+e 

(Elo COS V2 

+En 
ý2 

20 S' V2 

where xi(,, E ko(' =1,2,3ý4and k=l, 2) are 

arbitrary constants. Using the boundary conditions 

. 
(5.3.13) the solution of (5.3.15) becomes 

-Z2 

++ Z2/2 - Alo (cos 
z2 

- sin 
Z2 

)e ý2 

0 lo 20 Z2 19 2 V2 /2 

(5.3.16) 
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The next step is to complete the matching of the solutions 

in regions I, II and III. 

From (5.3.11) and matching with (I), i. e. -zl and z we 

have B' = 0. (5.3.17) 

Matching between II and III, i. e., z, 40 and, z2 also 

implies that 

A' + C' = 0, 

so that 
0 
ZI 

HO = A' e (5.3.19) 

Here it should be noted that the assumption that A' + C' 0, 
-1 

so that h= O(T I) in region III, leads to an inconsistency. 

Also, in (5.3.16) we require 

Alo =0 and ý20 = aoA's 

and hence 

Ro = aoA' Z2** (5.3.20) 

Therefore, the leading order struct6re is now given by (5.3.7), (5.3.19) 

and (5.3.20) and we shall find higher order solutions in the 

following section, which determine A' and the values of a, and R,. 
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5.4. Asymptotic Analysis for T>>. l 

Higher Order Structure 

In region I at second order, we find that 

L3{hj) =a {al(6a4 -- 2R )-Rla }h 
00000 

where L3 and h0 are given in (5.3.6) and (5.3.7) respectively. 

The general solution of (5.4.1) which is even about z is 

given by 

a 
hl=Bsinffz --0a,. (6(14-2R (5.4.2) 27r 0*00 

and from normalization condition (4.1.7) 

I 

Therefore, h(z) in region I can be expressed as 
01 1 

h(z) = sin7rz - J-2--TOr-(aj(6a4 - 2R )-Rla )(z-i)cosnz)T-f2+ 
000 

(5.4.3) 

In region II at second order, we find that 

L4{Hj) = 2a aH 
(2) (5.4.4) 

010 

where L4 and H0 are given in (5.3.1.0) and (5.3.20). The required 

solution of (5.4.4) is given by 

H, = A, + B, z, +(Cl + A' a, zl)e-. aozl (5.4.5) 
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Matching between region I and region II, i. e., zl-). -, 

z-+O, now implies that 

B, = Tr (5.4.6) 

and also 
a 

A' =0 {al(6a4 -2R )-Rla (5.4.7) 41r 000 

In region III at second order, we obtain from (5.1.9)9 

(5.1.10), (5.3.4) 

L, s{Kl} = 

wi th 

(5.4.8) 

q(2)_ p(3) J7) 
H, H0 at Z2=0 

(5.4.9) 

and, from third order, 

L51H21 = 4a2 R(6) + Ot2 R(2) (5.4.10) 
.0000 

whe re 
p12) = 

.2 fli =0 at z2 
00 

ý17)_ aCt2 R(5) 
= 0. 

00 

From fourth order, 

L5ý63}=40t2RJ6 )+8(x 
Oll A( 6)+C, 2n (2 42a 

a, A(2)9 (5.4.12) 
000000 

with A(2) 0 H3 =39 

p(3)= a2 fll 
3+ 

2a a, H at z2= 0 (5.4.13) 
00 

p(7)= ` 
3 3a2 R(5) + 6a ct, R(5) 

00 
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The general solution of (5.4.8), (5.4.9) is given by 

jj(ýOs 
Z2 H, 11+ X21 Z2 + 

X11 
Z2-x - sin z 2)e -Z2/ý2 

22T V2 (5.4.14) 

where Ail (i=I, 2) is an arbitrary constant. 

Matching with region II impliesthat 

-A'a2 0 

and 

B+ A'al - cx 10C, 

Ci + Al = 

Details of the solution for R2 are not required in order 

to determine a, and R1, the necessary conditions actually 

arising from the solution for R 
3. which, from (5.4.13), can 

be expressed as 

Z2 z2 
232 HYý, ý13+X23 Z2+ ý33 Z 
2+ 

X43 Z2 +(E 13 
COS 

V2 
+E23sin 

12 
)e, /2 +p. j 

where X'3, E k3 (i=1,2,., 4 and k=1,2) are arbitrary constants 

and P. I, denotes a particular integral which is given by 

(5.4.15) 

(5.4.16) 

(5.4.17) 

(5.4.18) 
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aý 3CL4 2 

_6 Z4 
Z2 

P. I A' 2 +A' 0 Z2 0- Vi, ýs in -- (5.4.19) 
41 2V2 V2 

Now we apply the boundary conditions (5.4.13) and list 

only those conditions which are necessiry for our purpose of 

determining a, and Rj: 

/2+ 
E' -A' 0L2 (5, /2 CL4 +2(%1)-a2 6ý33+ = (E13 23) 011 00 

ý21 «ý 0 

(5.4.20) 

E13 + E23 = 9A'ot4 /29 (5.4.21) 
0 

also matching with region II, i. e. z, -* 0, 

Z2 -* 00, gives 

3/6)C, +(0,2a, A')/2. (5.4.22) ý33 
0 

From (5.4.6), (5.4.16) and (5.4.20) - (5. '4.22), we 

find that 

A' = (TrV2)/(2ct2), (5.4.23) 
0 

and then (5.4.7), implies that 

a2 *4 fal(60t4 2R )-R, '-a -41T2= 0. (5.4.24) 
0000 

A second relation between ais Ri(i=O, 1) comes 

from the fact that LR 0 and this fixes the value da 

of ai, Ri(i = 0,1) uniquely as follows: 
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R From (5.3.1), the asymptotic expansion of 
L is given by 
da 

dR j. dR U dR, 
_ 

dR0 da ,)+.. 
----} (5.4.25) T+T-1 2(ý 

da 0 OLO dcto dao 

If ýR 
= 0, from first and second orders we have da 

dRO 
daO = 09 (5.4.26) 

dR, dRO dal 

0-. 
aa-0 . 

(5.4.27) 
da daO 

From (5.4.26) and (5.3.8) we obtain 

2122 
ao Ro (5.4.28) 

and from (5.4.22),. (5.3.8) and (5.4-27), we find that 

al =(-Tr2 /2 )/(3a7) 
0 

(5.4.29) 

R, =(-47r2)/(a4/2). 
0 

Thus the asymptottic expansion for the Rayleigh number and wave 

number, when Tý>I, are given by 

31 
2 

R z; 3 
2 13 7 

T3 Tr 26T 12 
+ 

15- (5.4.30) 
T6 -3(2'y 7r T 

12 
+ 

Ile shall use the results (5.4.30) below. 

It is noted that similar expansions are derived by Homsy and 

Hudson (1969), although their approach avoids consideration 

middle layer which is essentially a thermal boundary layer. 
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The numerical results (Table 4.1) are compared with the 

asymptotic results (5.4; 30) in Figures (5.3) - (5.4). 

Of course, the asymptotic expansions of functions fj(z) 

and kl(z), which satisfy equations (5.1.7), can also be cal- 

cul ated f rom: -. the known f orm' of h (z) . 

The asymptotic expansion of the fUnctionýs H, h21 and hZ2, which 

satisfy equations (4.3.2), (5.1.33) and (5.1.35) respectively 

are given by 

-1-1 
H (Z) ýoo+. h1, + 

in I: h 21 (7-) «*2 hoo +T r2 

-1'-; 5A 
`T 'J' hoo +T 1-2 h h22 (Z) "2 

where z= 

in II: 

-1-1 
Hoo +T H1, 

T>>l (5.4.31) 

-1-Z1- 
h21 (Z 0=T 12 Moo +TT Hp +.., Tý> 1 

-i-- Iý A 

22 
(Z, ) 

00 

where z= Tý, z, and z, o(1 

(5.4.32) 
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H (z2 T3 foo +T 12 fil '+. 

in III: lh2l(Z2) 

ýT 
? 

00 
+ T>> 1 (5.4.33) 

-7 -4 
h22(Z2) 

=T 
12 f 

00 
+T3 fii+ 

where z=T4 Z2 1 Z2 

From the equations (4.3.2'), (5.1.34) and (5.1.36) and (5.4.3l)- 

(5.4.33) and the results of§ 5.3 and 95.4, the analytical forms 
-A-A&- of the functions h ii, 
h ii, 

h 
ii, 

H 
ii, 

H ii, H 
ii and f ii, 

f 
ii, 

f 
ii 

(i = 0,1, - 2) can be found in each region. Thus, the asymptotic 

expansions of all functions which are involved in the integrand 

(5.2.4) are found. 
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5.5. Asymptotic_Expo: nsions of the Coefficients of the 

Amplitude Equation for T>>l 

From (5.2.4) and appendix I, the iýtegýand. &'(z) i=1,2,.. 6, 
. 1, 

can now be expanded asymptoticaly for T>>l. 

We may set 

-1A- ýL -Ii- 
a. =T7f6 (z ) dZ2 +T6 J6 biý(zl)dzl+ D (z)dz, (5.5.1) 2 

01,2,3, 

..., 6) 
.9 C2 

where A and6 are large parameters, introduced to ensure convergence 

of the integrals a. nd bij (i = 13, ... 96 and 1,2,3) are 

expansions of Di (i = 1,2 . ..... 6) in each region. Substitution 

of the asymptoiic exp, ansions of D ii into (5.5.1) and retaining 

terms of leading order and second order we find that 

-I 
al C7 )/9+(9 +T 

12 
79 t 

-2 -5 
a2 36014)- 1T T4ý 87r2 V2TTT 

0 

a 0T 12 1...... 36 Tr (5.5.2) 

5 
a. 6a2)- 12 

0T3 
(36 a0T+ 

whereao is given in (5.4.28) and 

a4 = a. =. -4a 3, (see 5.2.5) 



It should be noted that the major contributions are from the 

inviscid region and only the leading terms in (5.5.2) are the 

same as in the stress-free case (Daniels 1978). The asymptotic 

behaviour is shown in figures (5.5) - (5.8) where a comparison 

is made with the numerical results given in Table 5.1. 
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Figure 5.7: The (a3, T)-relation for a=l. 

------------- Asymptotic result. 

Numerical result. 
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CHAPTER 6 

Non Linear Rotating Benard Problem: 

Matching at the Axis of Rotation and Solution of the 

Amplitude Equation 

For stress-free horizontal boundaries the amplitude equation 

is also of the form (5.2.7) and is, in fact, of the same form 

as that derived by Brown and Stewartson (1978) for the non- 

rotating problem with stress-free boundaries. A linear inner - 

solution for the stress-free case can also be constructed in 

terms of Bessel functions of the same form as that found 

by Brown and Stewartson: 

o= (ajo(acr)+bri 
0 

(acr))sin7tz 

except that the characteristic equation relating ac and RC now 

also depends on the Taylor number, T. Thus matching between the 

inner and outer zones in the stress-free rotating problem follows 

exactly as in the non-rotating problem studied by Brown and 

Stewartson and leads to a boundary condition for A at s=0. 

of the form A(O, T) = 0. We now establish that a similar 

condition applies in the case of rigid boundaries. 

6.1. Inner Solution and-Matching Process 

Following the method used in section 3.7. in the neighbourhood 

of r=0 we work in terms of the variables r and -r and a 

solution of (4.1) - (4.5) in which the non-linear terms are 

119 



neglected. In view of (4.1.1) one solution is given by 

(u, V) =J0 (adr) (f 

(w, 6) = Jo (a 
c 
r)(a c 

f,. h), 

where f, k, h are given in (4.1.1), witha =a and R=R9.1 
0 

is the zeroth order Bess6l function. A second solution (cf. (3.7.1)) 

i 

where 

H (z) Jo (a 
cr) + rh (z) J' (a r) 0c 

ah 
ga 

and similar expressionscan be found for. the other components of 

the motion (cf. (3.7.1)). Discarding other solutions which 

are exponentially large as r4ý-, the general solution for 

in the inner zone may now be written in the form 

)h+ii { HJO( 'c 01 =xi-( acr ä r)+riol(a r)h), 

(see 3.7.4), where the numerical solutions for h and H are given 

in§ 4.2, § 4.3, andx, 11 are functions oft .,, ej denotes the inner 

solution and we useeo to denote the outer solution already found. 

In order to match - (6.1.3) with the outer solution (5.1.3' 0 

component), we need the behaviour of the amplitude function A 

(which satisfies (5.2.7)), as s-*O, which is found to be 
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A -. a + bs +sgn(Z) alal ý in S+O(S2 ins)(s -* 0), 

where a and b are functions of 

From (5.1.3), (5.1.6) and (5.2.7) in. the outer region 00 

is given by 

r .2 
9A iý 

00=(IZIsý1 {c(Ae'4+ C. C)h +c (Ts e +. C. C)H + ... I 
(6.1.5) 

s= er, r=ar-w 
c4 

where we take X in (5.2.6) for convenience 
04 

00=(E )1{((A+C. C)cosr4 + i(A-C. C)sin r4)h+E((3A + C. C) 
rIZI aA* 

as 
cosr + i( 

as - C. C)sin^r)H+... ) (6.1.6) 

where C. C denotes complex conjugate. Now the asymptotic 

expAnsion of (6.1.3) for large r is 

r)l{(x -L )h cos 4r+p Hcos r4-lj'r sin r). 8ac 
(r>1 (6.1.7) 

from (6.1.4) and comparing (6.1.7) and (6.1.6) we see that a 

match of the terms hi Cos rý, hd Cos rý, 
hi 

sin rA, hr' sin rA 
rr 

is secured if respectively, 

a- a* =0 

(a + a*)d (ýIC06 0, ITa c 
Ga 

c 

b+ b* +jai (a + a*) sgn (Z) lne 
3 

i (b - b*) 0" +p (12L) 1= 0- 
7ra c 

Here * denotes complex conjugate. It should also be noted that 
HH COS the terms in i sin r, -ir match automatically. 
rr 

121 



From the matching conditions (6.1. '8), we find that a is real and 

a3. - -ASgn(- ý)(b+b*)/lne. 

First suppose thatl bl = 0(l), which is consistent with 

the assumption that JAI in (5.2.7) is 0(l) when 

s 0(l); then 
1 

a 0(-lnE: )-. 
3 

Thus equation (5.2.7) should be solved in the form of a series 
. 11, 

for A in ascending powers of (-lnE': ) Owith the first approximation 

having 

a=0, (6.1.11) 

so that in the limit e+ 0, the boundary condition for A is given 

by 

A (0, -r )=0, 

This condition is the same as that in the case of a non-rotating 

layer with stress-free boundaries, as studied by Brown and 

Stewartson (1978). 
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6.2 Phase Winding Effects 

In section (6.1) we restricted ourselves to the assumption 

that (6.1.10) implies that a=0 in thp limit c -* 0. * Here we 
I 

extend the work of § 6.1, to'consider the result that a= 0(-Inc)-T 

in more detail. In order to do this, the formal structure of 

the solution of the amplitude equation (5.2.7) is considered in 

various regions (Figure 6.1) corresponding to different orders 

of magnitude of s. For example, it is clear that ifa=O((-Inc) Tit 

the expansion (6.1.4) is not uniformly valid and may fail when 

s=O((-Jnc)-T1). As we have already mentioned', the amplitude 

function, A, should be expa . nded in the form of a series in 

ascending powers of (-lne)-Tl, and this is done in three different 

regions I, II, III (Figure 6.1) as follows. 

To fix ideas, let sgn(Z) 1 in (5.2.7) and also assOme 

steady flow, so that ! 
-A = 0. Then 3T 

in I: A(s) = AO, +cA 02 
+j2 A 

03 . ....... 

where c= (-Ine)-T, s= 00) (6.2.2) 

and each A 
Oi 

(i = 1,2, ... ) is a function of 

In II: A(si) ; -. Alo + ý2 A20 +ý3 A30+---t (6.2.3) 

where s, = ; si, sl= 00) (6.2.4) 

and each A- (i 1,2, isa function of sl. io 

In III, where r 0(l) or s O(c), (linear zone) the solution 

is given in terms. of Bessel functions, J0 (a 
C 

H, the e 

component being given by (6.1.2). 

In the main zone, I, it is actually convenient to reform-Onte 

the expansion (6.2.1) by setting 

A= R(s) ei5(s) (6.2.5) 
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then from (6.2.1) and (5-2.7), we find that for the supercritical 

case 

d2R d62 

d S'2 ds) 
)Rs (6.2.6) 

dý 
C/ 2 

ds R (6.2.7) 

where c is an arbitrary constant. I 

The expansionsof R, 6 , c. in terms of t-, equivalen't to (6.2.1) 

above, are then given by 

2 
R (s) =R+R+ -'ý 0c R2 

.2 0 (S) +q 00 +E el . ........ 
(6.2.8) 

Z*2 
£Ci ý2 . 

................ 

where Rite 
i (i = 0,1, ... ) are functions-of s and each cl(i = 1,29.. ) 

is a constant. The leading term, y , in the expansion fore is constaht 

since if this were not the case the form (6.2.8) combined with the require- 

ments that R0-... 0 as s-:, -O would lead to an unacceptable behaviour 

of b'at the origin. 

Upon substitution of . 
(6.2.8) into (6.2.6) and (6.2-7), and from 

leading and higher orders, we find that 
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d2R 
0 0(1 ): + Ro = R3/S «) ý(G. 2,. 9 ) 

ds2 0 

d2R1 
O(Z): -- + R, =3R2R1/s dS2 0 (6.2.10) 

dOO C I/R2., 9 
ds 0 

(6.2.11) 

O(E2 ): d2R2 de 22 
+ Rý =R( 0)+3R (R R +RD/s. (6.2.12) 

dS2 0 ds 002 

From (6.1.12) we require R0 (0) = O; then from (6.2.9 ), the behaviour 

of RO as s-*O is given by 

R-aS- S3 /6 + a2 S4 (1-2 + 
1,. 

(s -> 0) (6.2.13) 

a, being the gra , dient of RO at the origin. 

Equation (6-2.11)9 and (6.2.13) imply that 

00 - -ý cl/(a2S) (S ->. 0). 

We note that we now have 

A= e'ý{ R0+ Z(R, +; i a0R0) +. --} (6.2.15) 

in the region where s 0(l), and comparing (6.2.1) with (6.2.15) 

we see that 

Re iy 
01 0 

Aoý = e'Y(Rl +0R0 

(6.2.16) 

(6.2.17) 
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whereY is an arbitrary constant. 

Now cons-i. der region II , where substitution of (6.2.3) into 

(5.2.7), gives, from leading orderand, higher orders, 

O(Z): 
d2A10 

ý 0, 
dS2 

1 

"2 
d2A 

2o 
O(z ): _ 

-=0, 
dS2 

1 

d2A0 
O(E ): -+ Alo = 0, 

dS2 

d2A 
2 

0( ý4): 
4o +A «2 A, 

OIAIOI/S2 20 ýS2 
1 

(6.2.18) 

From the leading order solution it is clear that the expansion 

of A begins 

19) 

where 5, B are'arbitrary complex constants. 

Matching with the linear zone (III), gives 

ä- ä* = 

I 
2 

b+ b* - (a + a*) I a- (6.2.20) 

it also suggests'. that the constant and p in (6.1.3) have the 
form 3 

2 
)L C 

where are 0(l) constants. 
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I 

Comparing (6.2.15) and (6.2-. 19) we see that a match of the 

two regionsI and II is achieved if 

b=e ar. (6.2.21) 

and 

R1 (0) cosy + a, sin -y = a, 

r, 
(6.2.22) 

R (0) siny, - a, 
Cos Y= 0* 

Elimination of Rj(O) between these equations gives 

-cl =a aj sin (6.2.23) 

and from (6.2.20) - (6.2.23), we find that 

4 
3 

a, siny cosy (6.2.24) 
C, 'ý 

and this is what we shall refer to as the Phase winding parameter, 

since iis, value determines the variation in the phase of the 

complex amplitude functionkwith s. This, in turn, corresponds 

to a variation in the wavelength of the; roll pattern. It is 

easy to show from (6.2.24) that 
.4,4 

11ý. 
1 -. 5.7 

c . <3 2 a, 

so that the phase winding is restricted by an upper bound which 

depends on the slope of the main 0(l) solution for R at the 

origin. The value of this slope is determined in section 6.3 

below. 
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In the outer zone, I, we now have 

where 

A= (Ro 

cl 
ds (6.2.25) 

0f R2 
0 

If R0- si as s4-, (correspondi'ng to a finite amplitude motion 

with AO = 0(l)) then 

cl lns 

so that the phase winding effect due to a non-zero value of 

leads to an extra roll in a distance given by 

c lns = O(l) 

or 

s- exp { (-I ni) (6.2.26) 

The possible variation in wavelength of the roll pattern 

characterised by the phase winding parameter cl, arises from 

the non-zero value of A at the origin in the matching process, 

and has been discussed in detail for a two-dimensional layer by 

Cross, Daniels, Hohenberg, Siggia (1980). Here the effect is 

only evident over a long length scale (6.2.26), because of the 

small magnitude of A(O) =a= 0(_eý). 
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It should be noted. that ase. 40, the present structure 

is consistent with the initial onset of motion in the form 

of the linear Bessel function profile, JO(ptcr), everywhere. 

For, asc. -)-O, the outer zones I, II move oýf to. infinity, 

due to their radial scaling with 6(r=O(i- 1) 
and r 0(C1(-lnd) 

7 

and the solution where r= 0(l) is dominated by the form (6.1.1) 

6.3. Solution of the Amplitude Equation 

In this section we consider numerical and asymptotic solutions 

of the amplitude equation (5.2.7). In view of the argument in 

96.2 and from the leading order terms in (6.2.1), we can 

write 

A(s) elyRO(s). 

For . supercritical Rayleigh numbers R satisfies 

d '2 R 
0+ Ro - sgn(Z) R /s = 0, 

dJ 

and fOr subcrftical Rayleigh numbers, R satisfies 
0 

d2R 
'- R- sgn(Z) R3JS = 0. 

ý_ST 0 
(6.3.2) 

Also R (0) 0. 
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Supercritical Solutions 

(i) Z>, O 

Here sgn(&) = 1, and R0 can be expended as a power series in 

s as s+O: 

R a, (s-s 3/6 +a2s4 /12 +s5 (6.3.3) 1p 

where a; is an arbitrary constant and 

dRo 
= a, (s--O) 

ds 
(6.3.4) 

The value of a, plays a crucial role in the analysis of section 

6.2, its value providing an upper bound on the amount of phase 

winding, or wavelength variation. If we regard a, as known, (6.3.1). 

(6.3.3) and (6.3.4) constitute an. initial value problem for RO. 

In this way solutions for RO can be computed by marching from 

the origin, using the Taylor series expension (6.3.3) for the 

first few steps, and observing the behaýiour of RO as s-+, *. A 

fourth order Runge-Kutta scheme was used (cf. (2.3)) and several 

profiles of RO for different values of aý are given in figure 

6.2. If a, is too large, RO tends to infinity at-, a finite 

value of s, while if a, is too small the solution for R0 passes 

through zero and oscillates as s-ý- .- The required solution, which 

is likely to represent a stable flow pattern is the intermediate 

one for which 

Ro- sl. as s-ý- (6.3.5) 
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and an iteration process- based on successive adjustment of 

the value of a, was used to obtain this solution which is 

shown in Fig. 6.2. The required value of a, was found to 

be 

0.88659. 

I 

(6.3.6) 

We now discuss in some detail the asymptotic expansion 

of RO when s is large. 

As can be seen from figure 6.2, there are three possible 

behaviours of RQ which correspond to the cooves (a), (b), (c) 

in figure 6.2.. The appropriate asymptotic forms of each curve 

are as follows 

3 

(a) Ro Sj __L S- 2 
8 

si (so - S) (s-+. s, (b) R 
b. 0 

R0ý. sin(f(s)) (s 

In (6.3.9), a is-an arbitrary constant and 

f(S)7 s( S-t -) 

(6.3.7) 

(6.3.8) 

(6.3.9) 
. 

indicating a balance between the linear terms in (6.3.1). However, 

the nonlinear tpm does have a significant effect on the asymptotic 

structure and it emerges that, f(s) may be written as 

f(s) = s+ b lns+c (6.3.10) 

and 

Ra sin' ffl +Is hj{f)+ý12 hj{fj + ... (6.3.11) 0. 
(s4ca) 



on substitution of(6.3.10) - (6.3.11) in (6.3.1), and from 

leading order and higher order terms, we find that 

0(l): a sin f-a sin f=0 

0(l): L6 V1,1 = a3 sin 
3f 

+ 2a b sin f (6.3.12) s 

dh d2h 
o( 1 -. ): L6 * {h21 = 3a2 hlsin f +2 -1-2b -1 j-2 

df df2 

+, a. b cosf + a. b2 sin f (6.3.13) 

where L= d2 
+ 1. (6.3.14) 

6- ýf2 

From the right-hand side of the equation (6.3.12) and the form 

of the operator (6.3.14) it can be seen that the general solution 

of (6.3.12) contains a secular term. This must be avoided by 

choosing the coefficient of sin f on the right-hand side of 

(6.3.12) equal to zero. It is then found that 

a2. (6.3.15) 

The particular solution of (6.3.12) is given by 

hip =Ci sin3f (6.3.16) 

where 

cl = a3 /32 

and h., (f)'. = a, sinf + b, cos f+ a3 /32 sin3f. -(6.3.17) 
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From substitution of (6.3.17) in the right-hand side of 

(6.1.13), and equating the coefficientsof sin f and cos f to 

zero we find that 

33 51 5 
a, =-a, b, =-a. (6.3.18) 

16 256 

Hence the asymptotic expension of R0 is given by 

a sin f+ a3/ 
3 51 

2COS f sin3f 
0 sf= sinf+ 25, a +: -ýj +.... (6.3.19) 

(s 
whe re 

s-i a2 1ns+6-, (6.3.20) 

and a.,,, C, are arbitrary constants. 

The result (6.3.20) indicates how the wavelength 

of oscillation varies with s. If w is the local wavelength 

near s= so, so that 

s+b lns =n Tr 
00 

(w + So )+b ln(w +s0)= nit+7r (6.3.21) 

then 

it(l - bs, '), (s 
0 -* -) 

(6.3.22) 
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The numeric al results (Fig. 6.2, c) exhibit this behaviour, 

as shown in Table 6.1. The values of b obtained using (6.3.21) 

and the values of, the amplitude of the oscillation a (see 

Table 6.1) are also found to be consistent with (6-3.15). 

w b 

s Numerical Asymptotic (ir-w)/ln(l+ 
s 

a 

resul ts results 

6.1 - 3.6 3.36 -0.49 -1.08 

9.4 3.3 3.29 -0.49 1.06 

12.72 3.2 3.25 -0.47 -1.06 

15.9 3.2 3.22 -0.43 1.06 

19.2 3.2 3.21 -0.42 -1.058 

22.4 3.19 3.20 -0.42 1.057 

25.6 3.18 3.19 -0.41 -1.056 

28.8 3.17 3.18 -0.41 . 1.055 

31.9 3.17 3.18 -0.41 -1.054 

35.1 3.16 3.17 -0.405 -1.054 

38.3 3.16 3.17 -0.395 -1.054 

41.5 3.15 3.16 -0.393 1.054 

44.6 3.145 3.156 -0.3925 -1.053 

47.8 3.144 3.154 -0.3923 1.053 

50.9 3.1445 3.153 -0.3922 -1.053 

54.1 3.1443 3.149 -0.3921 1.052 

57.3 3.1443 3.145 -0.3921 -1.052 

60.4 3.1443 3.145 -0.3921 1.052 

I 
Table 6.1: Comparison between numerical results and asymptotic results' 

for a, = 0.8 
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Z<0 
In this case numerical solutions of the equation (6.3.1) can be 

found as in section (i) although all solutions for different values 

of a,, now oscillate as s-ý. ; (Fig 6.3). 

The only possible behaviour of R6 as s--, - is given by 

R=a sinf + a3/' 
3 51 

.- sin§f - sinf + 16-5 azcosf (6.3.23) 
0s 16 

(s 00) 

where 

f(s) = s+b lns. +C 
and b. a2. (6.. 3.24) 

Again the numerical results and asymptotic results are found to 

be in good aareement. 
P. 
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-Subcritical Solutions 

(i 

Numerical solutions can be obtained using the method of 

section (i), but now all solutions of R0 in equation (6.3.2), 

for different values of a, , are unbounded (Fig. 6.4). 

It is easy to show that % are increasing functions of s. 

From (6.3.2) 

1 21 2 S; 
Roý RO, ds ý=R 

(0) +R+ -j 
s 

(6.3.25) 
00 

and 

+2 R, ' R RO/s) (6.3.26) 
00 

therefore R' is positive and R" is also positive. Hence R 
00 

and R,, ' are increasing functions of s. The solution for Robecomes 

unbounded in the form (6.3.8) at a finite value of s= so. 
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(ii) Z 

The numerical solutions for different values of a, are given 

in Figures 6.5 - 6.7, but it seems likely that all such solutions 

correspond to unstable motions. 

In general, the asymptotic form of R0 as s- is given by 

Ro - S' +a cos (/ 2s+b (6.3.27) 

although there is a family of eigenfunctions which decay ex- 

ponentially as s4. , with 

-S c -3s R6- c(e -Ue (6.3.28) 

where a, b, c are arbitrary constants. SolOtions 

(6,. 3.28) occur at a discrete set of values of the 

parameter al = RO(O) and the first three such values, and 

corresponding eigenfunctions, are shown in figures 6.5 - 6.7. 

Each eigensolution''is characterized by the number of zeros 

it possesses for 0,, ý. s< -. 

-1 
Note that, in practice, the shooting method used to obtain 

the solutions in figures 6.5 - 63 inevitably leads to the eventual 

divergence into the form (6.3.27) although in each case the region 

of exponential decay, -(6.3.28), is clearly, visiible. 
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Figure 6.6: Profile of RO (Subcritical Solution for < 0) 
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6.4. Roll Pattern 

In view of (6.2.6) - (6.2.8) the amplitude function, 

A, may be expressed as 

(Y+C e0 
A-R e (6.4.1) 

where R and o, ) satisfy equations (6.3.1) and (6.2.11) 
0 

respectively and s= cr is 0(l). Here the second order term 

e., in the phase of A is included in order to indicate any 

possible change in wavelength of the roll pattern. 

From (5.1.6), (S. L6) and (7.4.1), the stream function 
z 

C. u. dz, is given by fo 

2cR,, -f(z) ds, cos {cc r- 
14L 

+y+cc, 
sc4fR2 

0 

. 
(6.4.2) 

where the numerical solution of f(z) is. given in § 4.1, and 

C, is the phase winding parameter related to y by (6.2.24), 

and y itself is an arbitrary constant. 

The discussion in 9 6.3, indicates that when sgn E 

and for supercritical Rayleigh numbers there is a stable 

solution of the system in which a,, the slope of RO at 

the origin is given by (6.3.6). Using the corresponding 

solution for R., theyoll patterns obtained from (7.4.2) for 

various values of the parameter y and for given values of 

e, T, a, are shown in figures 6.8,6.11. 
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CHAPTER 7 

Non-linear Rotating Benard Convection: 

Overstability 

In this chapter we restrict attention to stress-free 

boundaries. As the Rayleigh number is increased in the 

rotating case, the system is initially prone to over- 

stability for certain ranges of the Prandtl number and 

speed of rotation (Chandrasekhar 1953). The motion that 

develops at the critical Rayleigh number is oscillatory in 

time and the stationary structure of the type described 

in chapters 5 and 6 is no longer relevant. In the present 

chapter, we consider the overstable situation and discuss 

the formation of an oscillatory axisymmetric finite amplitude 

equilibrium state. 

Following the approach of Brown and Stewartson (1978,1979) 

it is found. that the flow domain can be subdivided into 

a central region near the axis of rotation where a linearised 

solution can be constructed in terms of Bessil functions (7.1.2) 

and the remainder of the flow where non-linear effects-are 

significant and can be incorporated in a pair of amplitude 

functions for A, and A2. Amplitude equations for the over- 

stable case incorporating spatial modulation were derived 

by Daniels (1978) in order to discuss a finite amplitude 

motion in terms of two-dimensional rolls in a rotating system 

bounded by distant sidewalls. Here these equations are further 

modified by the influence of curvature effects. 



The expansions are based on a small parameter C where 

R- Rc =0 (c), 

R is the Rayleigh number and Rc is the critical Rayleigh 

number at which overstability, first occurs. The radial 

co-ordinate, r, non-dimensional'ised with respect to the 

height of the layer, is then subdivided into the central 

zone (Figure 7.1) where 

0(l ) (7.2) 

and the outer zone where 

er = O(l). (7.3) 

The additional subdivisions of the outer zone are then 

defined by an inner region where 

0<X<l (7.4) 

and an outer region where 

+ in 11 nel (7.5) 
2 (1 

and ý is a parameter in the range -I <ý <I to be defined 

in (7.2.6) below. The inner region (7.4) provides a vital 

link between the central zone (7.2) and the main outer zone 

(7.3) and the rather unusual definition of the local co- 

ordinate X is a novel feature of the asymptotic structure. 

The amplitude of the disturbance at the centre of the layer 

is found to be unusually large, 
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(7.6) 

This is considerably larger than even the unexpectedly large 

value found by Brown & Stewartson (1978) in the exchange 

case. Away from the centre, the disturbance has the more- 

familiar size of 0(d). 

The results are discussed in §7.5. 

7.1 Linearised Solution 

The equations that govern the axisymmetric motion relative 

to the rotating frame and in which the coupling of the 

density variation with the centrifugal acceleration is 

neglected are given in (4.1) - (4.5). The horizontal surfaces 

at z=0 and z=1 are assumed to be stress-free. 

The boundary conditions at these surfaces are then 

w= 1-u 
= 

1-v 
=0 at z=0 and z Bz az 

The basic state is one of rigid body rotation with a uniform 

vertical temperature gradient. 

The linearised versions of the equations (4.1) - (4.5) and the , 
boundary conditions (7.1.1) are satitfied'by normal mode solutions 

of the form 

(o, w) = (a, b) JO (ar)e'wtsin n7rz + c. c. 

(u, v) = (c, d) J' (ar)e'4)tcos n-ffz + c. c. 0 
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6--, 

where 

b= a(iW+a2+nZ, 12)/R, c=nnb/a, d=-caTl/(iw+a{a2+n27r2l), (7.1.3), 

and the frequency w and wavenumber a are related by the 

equation 
(iw+a(a2+n2. ff2} )2(iw+a2+n2, r2) (et2+n2. ff2)+(iWia2+n27r2) 

n2, r202T-(iw+a{OC2+n2U2})UU2R = 0. (7.1.4) 

The corresponding solution for w=0 was first given by Muller 

(1965). Equation (7.1.4) is the same characteristic equation 

as that first derived by Chandras6khar (1953) using rectangular 

Cartesian co-ordinates and thus the results of their analysis 

are immediately applicable. For certain values of the Prandtl 

number, a, and Taylor number, T, solutions of (7.1.4) for 

integer n, real a and Im(w) =0 first occur as the Rayleigh 

number is increased from zero with Re(w)ý 0 and overstability 

is said to occur. The lowest value of R corresponds to n=1 

and we define this critical value, and the corresponding values 

of a and w as 

OL 1-- a 

Thus at R=Rca non-zero oscillatory motion with 

aJO(acr)elwc sinffz + c. c. 

is possible and in the following sections we seek to determine, 

by. the inclusion of the non-linear terms in the basic equations 

(4.1) - (4.5), the finite amplitude form of the motion for 

Rayleigh. numýers slightly larger than R 
C 
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6 

7.2 The Amplitude Equations 

At large distance from the central axis the local radius is much 

greater than the wavelength of the assumed axisymmetric disturbance 

that evolves near R=RC, Thus curvature effects are of secondary 

importance and the wavelength has-thp almost constant value of 

I 
n/(Xc* It follows that the solution in this region can usefully 

be expressed in the form 

acr+iw t, -- 6ýd{Al(S, T)e' acr+iwct +A2(S, i)e-' c +C. c. }sinirz+cel+eie2 
+ 

ilr(iw +a2 + ff2 
U=ei cc {Ale 

ia 
c r+iw 

Ct-A2e-iacr+iwctl, +c. c. ) 
COS IT Z+eu 1+ Cý U2 

+.... 1 (7.2.2) 

where 

er, f= et, RC e6' (7.2.3) 

It is assumed that << 1 and 6 is a constant factor introduced for 

convenience. In the subsequent analysis it will be necessary to 

further structure the solution by assuming that ý, and k can 

I themselves be expended in powers of 11 ne I, but the requi red 

adjustments can be made within the framework of a single pair 

of amplitude equations for A, and A2. These equations arise from 

the compatability conditions that ensure bounded solutions for 
3 

the terms U2.625, ..... at order e2. The appropriate equations 

for two-dimensional rolls in Cartesian co-ordinates have already 

been derived by Daniels (1978) and we may immediately infer that 

in cylindrical co-ordinates the corresponding equations have the form 
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DA, 3A, 
112_ 11 +-+ is-1 Al = Ai{(Plr+ iiiii )6-(Ij 2r+iP2i)IA or aT as 

(113r + illj3i )I A 21 2} 
, (7.2.4) 

aA2 @A2 
A2 -(112r+iu2i)117"2 12- 

'(113r+iP3i') lk 1)1 (7.2.5) 

where v ors 'JnrP "ni (n = 1,2,3) are real coefficients which have 

complicated dependencies upon a and T and whose values are discussed 

I 
in more detail in the earlier study (Daniels 1978). In fact the 

only difference between (7.2.4), (7.2.5) and the equations given 

in this earlier work is the appearance of the curvature terms 

s1A, and S-1k. The coefficients of these terms can be deduced 

i 

from the reasoning that the linear forms of (7.2.4), (7.2.5) must 

be consistent with the asymptotic form of the Bessel function solution 

(7.1.2) as r--; this is only possible if the linear forms of 

(7-2.4), (7.2.5) are satisfied by A1,2= 0 
when 6=0 and it then 

follows that the coefficients of the terms VA1, and iI A2 MUSt 

I be ± J. These values were obtained by direct substitution of 

(7.2.1), (7.2.2) into the governing equations (4.1) - 

To simplify the systems (7.2.4), (7.2.5) we set 

or T, A112 = IJ2ý1 A192D 113rh2r, Pirl, (7.2.6) 

the analysis of Daniels (1978) suggesting that for the relevant 

values of a and T, vnr>Oýn = 0,1,2). Then the equations 

for the complex amplitude functions Al and A2 are 

3Al 
+ 

ýAl 
+i S-1 Al "- Ajý(1+iQj)-(I+iO2)jAjj2- (O+iO3)IA2 12), (7.2.7) 

3T 3s 

DA2 DA2 -1 12-(p+iE) IA112}(7.2.8) DT - -ý-s -js A2 --ý- A2 (1 +i E)2) I A2 3) 

0 
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0 

and if we write 

AI, Z = R1,2 (S, T)ei0l*2(SsT) 
(7.2.9) 

then the amplitude moduli R, and R2 satisfy the pair of 

simultaneous equations 

3R "-122 (7.2.10) -L + ýRl +iS Rl' Rj(I-Rj -ýR2 3 'r as 

(1 
22 3R2 LR2- 

S-1 R2 = R2 -R2 -ýRj 3T aS 

where it is believed that the parameter 0 lies in the 

range 

-1 (7.2.12) 

for all relevant values of a and T (cf-Daniels 1978); 

this will be assumed in the subsequent analysis. 

The phase functions and ý2 satisfy the equations 

+ 
3ý1 22 

(7.2.13) BT as ý 01 -02R, 03R2 

aO2 22 
ý -S ý 01- 02R2, - ()3R, (7.2.14) 

where-the coefficients 01,293 are functions of a and T. 

In 7.3 we will bridfly consider solutions of (7.2.10) - 
(7-2.14) in the form of travelling waves, but the main purpose 

of this chapter is to look for constant frequency equilibrium 

solutions, equivalent tb assuming that R, and R2 are independent 

of T, and with 
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ý192 ý 11192T + ý192(S)- (7.2.15) 

Then, if a, * 02 say, the quantit ty 

-1 - 
c +EP or 2 (c << (7.2.16) 

is the corrected frequency of the disturbance. 

Following the method of Brown & Stewartson (1978) for the 

non-rotating problem we now attempt a complete description 

of the non-linear finite amplitude equilibrium state that 

evolves for R> Rc by finding a solution of (7.2.10)-(7.2.14) 

that has acceptable behaviour at large distances (s -ý- -) and 

that matches with a valid solution of the governing equations 

in the neighbourhood of the central axis, where r= 00). 

Since R= Rc + O(e) it may be assumed that the amplitude of 

the motion in'the latter region is small and so the leading 

order term in the expansion of the solution there as c -*. 0 is 

given by the linearised form (7.1.6): 

(7.2.17) {a(T)elwct + c. c. I io(acr)sinffz, 

where a(T) << 1 is an unknown function Of T to be determined 

through matching with the solution of (7.2.1o)-(7.2.14). Other 

solutions of the; linearised equations which have exponential 

growth as r ->. - 
6st be discarded. It should be noted that our 

expansion procedure is really based on the assumption that non- 
linear effects first become important outside the central zone, - 
r= O(l), an assumption which is justified a posteriori.. An 

alternat, ive strategy would be to assume that the nonlinear terms 
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in the central zone solution themselves lead to a local 

compatability condition which fixes the value of a. However, 

there appears to be no obvious condition which can be 

applied directly as r -ý- - because of the decay of the Bessbl 

function solution (7.2.17). 

As a first step we consider the situation where P=0 since 

in this case the equations (7.2.10), (7.2.11) are uncoupled 

and thus, explicit solutions can be obtained for the outer 

zone in simple form. 

7.3 Solution for ý=0 

When ý=0 the general steady solutions of (7.2.10) and (7.2.11) 

are 

e {2f 
s 

. 
2S' 1 -1 -1 R, s-i Se., S ds' + Cil (7.3.1) 

and 
R2 S-ie-s{2fooe -2S'Sl-l ds' + C21-Is (7.3.2) 

s 

where C, and ý2 are arbitrary constants. As s -- the solution for 

R1 automatically approaches 1, irrespective of the value of C1. 

The solution for R2 approaches 1 only if C2 0 and otherwise R2 

decays'exponentially as s -)- -- 

We shall restrict attention to solutions with C2 =0 since it 

seems likely that all those solutions with C2 non-zero will 

be unstable. This is suggested by a stability analysis of the 

time-dependent versions of (7.2.10), '. (7.2.11). 
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dRi.. 
=22 dT Rl(l-R, -5R2 

dR 22 
dT 

Z. R2(1-R2 -PR, (7.3.3) 

in which the spatial dependence is ignored. If the equilibrium 

solution in which 

R, = R2 0+ 90 (7.3.4) 

is subjected to a disturbance of the form 

OT 
Rlo2ý (1 +p)-ý +ki. 2e , (k, 92 

<ý 1)1 (7.3.5) 

the growth rates are 

2(ý - 1) 
, (k2 = -kj) and a= -2, (k2 = kj), (7.3.6) 

(0 + 1) 

and so, from (7.2.12) are both negative. Thus the solution 

with Rj92 both non-zero (and equivalent to the choice C2 =0 

in (7.3.2) above) has the possibility of being stable. The 

other non-zero equilibrium solutions of (7.3.3), 

Rl = 0, R2 =I and Rl = I, R2 =0 (7.3.7) 

are definitely unstable. For example, in the second case 

(equivalent to fhe choice of non-zero C2 in (7.3.2)), if 

we set 

R, =1+ kle$l'r, R2 = k2eO2T (kl, 2<< 1), (7.3.8) 
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we find that 

a, : -- -2,02 ý- 1 (7.3.9) 

so that a2 ý" 0* 

From (7.3.1) it can be seen that the solution for R, 

exists only for s>s0 where 

2fSo2S' s1_1 ds' + C, =0 (7.3.10) e 

and, if s0 is 

C, - -21n so! (7.3.11) 

Thus the solution for Rlexists close to the central zone 

(s -* 0) only if C, >> 1 and then, from (7.3.1 ), R, << 1 for 

all s= O(l). The precise size of C, ts fixed by matching 

the outer zone solution (7.2.1) as s -* 0 to the central 

zone solution (7.2.17) as r ->. -. Setting C2 0 we have, 

from (7.2.1), (7.2.6), (7.3.1) and (7.3.2): 

0-Ei 112r-isinwz((Cj+21ns)-iS-ie 
iol+ia 

c r+iw ct 

+(-21ns)-is-ie'ý2-iacr+iwct + C. C. ) (7.3.12) 

where ý, and 02 take appropriate limiting forms which 
I may be deduced from (7.2.13), (7.2.14) and will be discussed 

in greater detail in § 7.4,,, Ve now set s= er and in view 

of the appearance of terms (Cl + 21n s) we also write 

C, = c, linel . ..... 
(E: 

-> 0), (7.3.13) 
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where cl is a finite constant. We then have 

a -jlnej-Ir-1112r-lsinffz{(cj-2 
21nr )-Ie' ý, +iacr +iuict 
ine 

+(2 + 21nr) -le'ý', -iacr+iwct +C. C. I. (7.3.14) 
1 n-e 

For s<<l we have r<<c- I so that lnr<<[lnel and we can express (7.3.14) 

in the form 

6- jlncj-ýr, '1112r-'si nirz{(c, -2) -1 e' ýj+iacr+iwct+2-le'02 

I 
-ia c r+iwct + c. c)+o(jlncj-2'0lnr)- 

It is important here that, variations in the limiting forms of 

and ý2 with r are O(Ilnel-1), and so do not influence the 

matching procedure at leading order. 

From (7.2.17), as r -* -, 

r-ieiwct sinffz cos(a r- 24-)a(T)V L+c. c. (7.3.16) 
c Ira C 

so that comparison with (7.3.15) gives 

-i ir 
a(T) / ý. je ý- = (c1-2)-iP2r-ielýl Ilnel -1, (7.3.17) 

IffoL 
c 

and 
11' 

a(T e 4q 2t2r-ie'ý211nej-l 
7ra 

c 

Taking the modulus of each side we have 

... (cl-2)-l = 2-1 (7.3.19) 
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and so 

cl = 

A measure of the amplitude of the motion at the central 

axis is 

"S lne 
112-r 

(7.3.20) 

(7.3.21) 

This indicates an extremely rapid growth in amplitude at 

the centre as the Rayleigh number increases above Rc and 

substantially larger than the non-linear motion in the outer 

zone. It is also significantly larger than the motion at 

the centre when stationary convection occurs (Brown and 

Stewartson 1978, chapter 6). Figure 7.2 shows the solutions 

(7.3.1), 7.3.2) for R, and R2 as functions of s, for c=0.1. 

The above results are obtained from the asymptotic limit of 

a full solution of the amplitude equations (7.2.10). (7.2.11)9 

available when 0=0. In order to find a solution for 

general values of 0 it is instructive to analyse the 

asymptotic structure in some deatil. The central zone is 

seen to provide a 'reflection condition' which fixes the 

amplitude of the 'reflected wave' R, through the value of 

C, given by (7.3.13) and (7.3.20). A consistent match is 

only'possible if C, is asymptotically large as e -o- 0 so 

that R1, given by (7.3.10), is asymptotically small in the 

outer zone where s= 0(l): 

Rl - s-i e +S 

2 llnel i 
(7.3.22) 
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The solution (7.3.22) is in fact only valid for s<jlnjlnej 

since the integral component of (7.3.1) eventually dominates 

C, as s increases, and R, then grows to achieve the same 

amplitude as RZ at infinity. 

The reflection condition at the-centre is perhaps more 

readily understood in terms of travelling-wave solutions of 

(7.2.10), (7.2.11). With 9=0, interactions between a wave 

component R2 travelling towards the centre and a reflected 

component R, travelling. away from the centre can be ignored. 

If we assume that an incident component is generated. in the region sl<s< 

s2 at T=0 by an initial disturbance in which 

R2(S$O) = D(S), (S14S'ýS2), R2(S90) =0 (S4SISSý'42)s (7.3.23) 

then an incident wave solution of (7.2.11) of the fom 

R2=s-i S 
S+T 2sl 1-1 e-i e- f2 

fs 
-e- s ds' +(S+T) 

(S+T){D(s+T) (7.3.24) 

is produced. This represents a wave which travels towards the 

centre, being confined to the region Sl-T4S4S2-T and being 

reflected at the centre over the period SVýT4S2. As s-1.0 the 

effect of the initial profile D diminishes and the integral 

part of (7.3.24) dominates the matching with the central zone 

where a non-zero a(T) is generated for sj,,: i<s2. The details 

are thus similar to those of the constant frequency case already 

described, with the result that a reflected wave solution of 

(7.2.10) of the fom 

16a 



R, - S-ies 
se 2S' 

s'-lds' + 411nel )-i 

is generated for T- SZ<S4T-Sj and T>Sj, R, being zero 

for other values of s. We see that for s= 0(l) the 

reflection damps the wave amplitude considerably, but 

sufficient remains to provoke the eventual return of the 

wave to finite amplitude as s ->. -. 

(7.3.25) 

The constant frequency equilibrium state can be regarded 

as that produced by the limit of (7.3.24) and (7.3.25) for 

large.. times, T, and for an initial disturbance D(s) extending 

to infinity (S2-'--), 

In the next section we show that the asymptotic structure found 

in this section for the case p=0 can be used to construct 

the constant frequency equilibrium solution for general values 

of 0. 
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7.4 Solution for general ý 

(i ) Outer zone s=0 (1 ): 

It can be shown that as s -0 the only possible steady non- 

zero solution of the full pair of nonlinear equations (7.2.10), 

(7.2.11) has the form 

R, =0, R2 '(2sllnsi)-l. (7.4.1) 

It follows that in the region where s= 0(l) the only 

acceptable structure consists of a solution in which R2 

is fully nonl*inear but R, is small and thus, at leading 

order, satisfies the linearised form of (7.2.10) in 

which R2 is regarded as a known function of s. We therefore 

set 

R2 = R2Q(S) +--- +11nel -2y R22 + ---I 
(E«l )9 

R, = llnel-YRI, + 

where the value of y remains to be detennined. 

The equationsfor R2o and Ril are 

dR20 3 + 
! 

-2-0 = R20 -R ds 2S 2o 

2 ý-Rll 
+ 

R" 
= Ril - PR20 R11. 

ds 2S 

(7.4.2) 

'- 

C 7.4.3) 

(7.4.4) 

(7.4.5) 
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The solution of (7.4.4) which satisfies the condition 

R2o-* 1 as s -*- is 

R20= e-S(2s)-I{ 
f 00 

e -2S' s'-lds')-I, (7.4.6) 
s 

and this has the behaviour 

R20 - (2sjlnsj)-i. as s--)-O. (7.4.7) 
The solution for R11 is, 

R11 = cjjjlnsjiýs-I es-ýI, 

2 
+ ds, (7.4.8) fs(R20 

2sTns 
0 

where cl., is an arbitrary constant, and this has the 

behaviour 

Ril - cil s-illnslio as s-i- 0 (7.4.9) 

Since O>-1 , R11 grows more rapidly, as s -*. 0, than does 

R20, leading to the possibility of a consistent match 

with the central zone solution where the inward and outward 

propagating components are of the same order of magnitude. 

In fact, this suggests that the value of yin (7.4.2), (7.4.3) 

1 can be determined by setting s=e in (7.4.7), (7.4.8) and 

requiring that Ri and, R2 are of equal magnitude. This 

gives 

jlncj-ý = llnel-' linello (7.4.10) 



, 'and thus 

y= j(1 +9). 

Transitional zone s= O(c x )., O<X<l: 

In fact it emerges that the solution (7.4.2), (7.4.3) where 

s= 0(l) does not match directly to the central zone solution 

(7.2.17). As s--*O, (7.4.2), (7.4.3) take the forms 

R (2slInsl)-i-' -('+0) )AC 
2 -j 

2 llnel s jlnsjl+ý . ..... (7.4.12) 

R, - jlncj-1(1+0)cjjs-ljlnsjýo . ...... ( s-ý. O c <<l (7.4.13) 

where the dominant term in R 221 which arises from a particular 

solution generated by a term pR R 2. in the equation for R 20 
111 

22' 

has also been include'd., The expansions fail where 

, Ins ,= 0(, ) (7.4.14) InE 

or, equivalently, where 

S= Ex I. x= 0(i ) 
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S -� 

The region where X= 0(l) merges into the outer zone as X+O, 

and where the solution must take the form (7.4.13), and into 

the central zone as X-1, where the solution must match with 

the Bessel function form (7.2.17). This transitional tone 

thus occupies the region 

0<X<1. (7.4.16) 

Locally, the amplitude functions R, and R2 can be written in 

the form 

Rl 2ý c-ýxjlnej-ý X-ýFl 2(0 + lo-'s 
(c 44I)s (7.4ol7) 

99 

where 

g= xi(l+2) 
(7.4.18) 

and, from substitution into (7.2.10), (7.2.11), the functions 

F, and Fý satisfy the coupled pair of nonlinear equations 

LF, 
_ JF, + F? + OF, F22 (7.4.19) 

dý 

dF2- JF2 - F2 2- OF2F, 2. (7.4.20) dý 

One boundary condition arises from matching with (7.4.1'2).. ýýs 

C-0. This requires 

F2 = 
"/j 

+ 0(&2) as & -* 0. 
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A second boundary condition arises from matching with the 

central zone solution (7.2.17) as & -* 1. We can expect 

Fl 2- al 2 'ý OP - e) as 9-1 (7.4.22) 
9» 

so that, writing s= er, we obtain 

Rl 2- r-ic-ijlnE: j-l al 2+ 0(r-ie -II lne I "41nr) (7.4.23) 
ss 

Thenjollowing an argument similar to that of (7-3-12) - 

(7.3.18) above, we arrive at the fomulae equivalent to 

(7.3.17) - (7.3.18): 

je- ýq- = al 112r e ei Ilnerit (7.2.24) 
«rac 

2i 
Ir 1 42 

llnel-I (7.4.25) 
aVi-a a2 112 r- e 

c 

Thus a, = a2, a reflection condition which supplies the 

second-boundary condition for the solution of (7.4.19). 

(7.4.20): 

F, = F2 at c=1. (7.4.26) 
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Note that, as in the solution for D=0, the amplitude of 

the motion at the centre is relatively large, with 

1a (-r) 1=/ 2ýoc 11 nE: 1 -ý F, (1 ), 
IJ2r 

where the value of FI(l) is to be-determined by the 

solution of (7.4.19) - (7.4.21) and (7.4.26). Cubic non- 

linearities in the central zone solution can be expected 
3 

to generate terms there of Q(Ilncl-T-) which have the 

asymptotic behaviour e ±ia cr r_ýlnr, (n+-), required to 

match with the correction term in (7.4.22). 

The values of ýj and 02 in (7.4.24),. (7.4.25) are the 

limiting forms, as X-i--l, of the solutions 

(7.4.27) 

ýl -- (02X-ý F, 
2+ 

03X-1F2 
2 

)dX + q, + n, T, fi 
x (0<X<l (TA. 28) 

F, )dX + q2 + 22 Ts e2 (E, )2X- F2 E)3X-1 
fx 

where q, and q2 are arbitrary constants. As X-1, 

fi = q, + n, r o(1 - x), ) 

h= q2 4 n2 Tý 0(1 - X) 
. 

The matching conditions (7.4.24), (7.4.25) give 

q2 = q, + IT 

(7.4.29) 

(7.4.30) 
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lk --7. - I- 

and 

"I = Q2 = ý' say, (7.4.31) 

so that the phase difference between the two components of 

the disturbance is fixed, but not the absolute phase, which, 

along with the frequency correction, 6, remains arbitrary in 

the infinite layer, resulting in an infinite set of non-linear 

solutions. Note that, in (7.4.29), the correction terms are 
Inr) 

so that variations of ol and 02 with r do not 0(1-X) =0 (P7ne 

affect the matching procedure with the Bessel function solution, at 

leading order. 

As X-*O, we have from (7.4.28). 

01 - 103lnX + q, + 

e2 --102InX + q2 + aT +O(l) ), 

In the outer zone appropriate forms for 01 and 02 are 

(7.4.32) 

s 
-O)S-03 1ý0 ds+ql, nT +f2 

1 (7.4.33) 
s2 

ý2 OT + (01+*+02 
f 

R20 ft+ý2* 

and matching with (7.4.32) implies that 

ql +1 03 lnllnel = ql, 

Z q2 -1 02 lnllncl = q2* 

(7.4.37) 
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Thus, from (7.4.30), the phase difference in the outer zone 

is determined to leading order. by 

q, - q2 * -1(02+03) lnllnel, (e<<l). (7.4.35) 

The solution of the transitional 'zone problem posed by 

(7.4.19) - (7.4.21) and (7.4.26) was solved numerically 

for various values of D by a Runge-Kutta scheme. The 

solution was started at C=0 using the Taylor series 

expansions for F, and F2 for the first few steps. These 

expansions begin 

F1 =C 

F -Vj - 
DC2 

C2 + 0(&4), (7.4.36) 
2 T2 (z+p) 

where c is an arbirtary constant to be determined from 

the numerical solution. Matching with (7.4.13) then gives 

C11 ýC 

and so completesthe leading order solution for R, in the 

outer zone. The value of c was guessed initially and the 
I 

solution computed from &=0 to C=1 where, in general, 

F, ý F2; appropriate adjustment of c was then incorporated 

in an iterative scheme and the computations continued until 

(7.4.37) 

F, = F2 at c=l t6 'within a prescribed toleranceý An initial 

estimate for c was provided'by its known val. ue when 0-0, for 

the solution of (7.4.19) - (7.4.21) and (7.4.26) is then 
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F, =j g(1 - ig2)-i, F2 ýýi 2 (7.4.38) 

so that 

Fl'(0) = J. (7.4.39) 

The result (7.4.39) can be extended by a perturbation expansion 

about p=0 and this yields the result 

c+ 17 P(l - ln2) . ..... (5 << (7.4.40) 

which was found to be in good agreement with the numerical 

computations given in Table 7.1. Solutions for F, and F2 

for various values of p are also shown in figure 7.3. Note 

also that the results (7.4.38), (7.4.39) are consistent 

with the solution of §7.3since when 5=0, X= &2 and from 

(7.4.38), (7.4.17) and (7.4.15) we recover the forms of 

(7.3.1) and (7.3.2) for smaýl s: 

s-i(21ns - 41ne)-', 'R2ogs-ij2lnsj-l. (7.4.41) 

One feature of the results worthy of comment is the general 

trend for an increase in amplitude with a decrease in the 

value of p, leading to a singular form of the present 

structure as Evidence for this is found in the 

structure at infinity (see (7.4.64), (7.4.65) below), in 

the near-zero value of y in (7.4.11), and also in the trend 

of the transitional zone solutions of figure 7.3. These 

suggest that the values of the amplitude functions at the 
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5 1c F, (I ) 

0.0 0.5 0.7071 

0.1 0.5073 0.6943 

0.2 0.5142 0.6832 

0.3 OA205 0.6733 

0.4 0.5265 0.6645 

0.5 0.5321 0.6566 

0.6 0.5373 0.6495 

0.7 0.5422 0.6430 

0.8 0.5468 0.6371 

0.9 0.5512 0.6316 

0.99 0.5549 0.6271 

0.5553 0.6266 

-0.1 0.4920 0.7218 

-0.2 0.4833 0.7391 

-0.3 0.4738 0.7595 

-0.4 0.4633 0.7848 

-0.5 0.4518 0.8164 

-0.6 0.4388 0.8581 

-0.7 0.4240 0.9164 

-0.8 0.4067 1.007 

-0.9 0.3856 1.191 

Table 7.1 : Numerical results for different 

values: of ý- 
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0 

centre, Fl(l) = F20), become infinitely large as 5 -+ -1 

and this is confirmed by the following description of the 

limiting structure. 

We set 

with A<<l (7.4.42) 

and define new variables 

222 
Y(E) = F, , Z(&) = F, - F2 + 1* (7.4.43) 

Then the equations (7.4.19), (7.4.20 become 

YZ =A 11 y2 + Zy jyj 4 

Z(Y -Z+ y' Z' + y2 - Zy + jyj, (7.4.44) 

and, from the boundary conditions (7.4.21), (7.4.26), 

Y=Z=0 at 0, (7.4.45) 

and 

z at (7.4.46) 

The solution divides into a core region 0<<1 where* 

from terms of O(A) in (7.4.44) it may be shown that a solution 

satisfying (7.4.45) is 
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1 o(A), Z=0 (A), (7.4.47) 

where C is an arbitrary constant. It emerges that C-1 

in order to match with a consistent solution in a boundary 

layer near = 1, needed to adjust the value of Z in (7.4.47) 

to the value given by (7.4.46). We define a local co-ordinate 

El = A-, (i --o (7.4.48) 

and set 

A-iy 0 
(Z, ) t 0(1), Z=Z 

O(zi)+0(ä 
i ). (7.4.49) 

From terms of O(A-1) in (7.4.44) we obtain 

1 (7.4.50) zY4 Yýs 
000 

and from terms of 0(l), 

Z2- go = -2y2 - 
J- f- 

. 
(7.4.51) 

040 

These two equations must be solved subject to 

Zo at 0 and ZO ,Y0 -* 0 as (7.4.52) 
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From (5.50) 

Ci 
Yo =a0 exp {-4 

fz0 d&, }, (7.4.53) 

0 

and then (7.4.51) becomes 

91 
1. Z'+Z2- IZO =- 2a 2exp{-8 Z dz, . (7.4.54) 

000 fo 
0 

to be solved subject to 

1 zo at 0 and Zo = O(&j- ) as cl (7.4.55) 

The value of a0 must be. chosen in order that Z0 decays as 

C, If a0 is too large Z0 reaches zero at a finite 

value of C, while if a0 is too small, Z0 as 

The required solution was thus achieved in a numerical solution 

of (7.4.54), (7.4.55) by a shooting method combined with a 

continual readjustment of. the value of a0. This leads to the 

final converged state in which 

z0- uý-, 
9 YO - 4V 

12 &1 -I as &I -* coo (7.4.56) 

which matches correctly with (7.4.47) provided that we set 

C=1. 

The numerical solutions for Z and Y are shown in Figure 
00- 

. 919 
7.4 and the value of a was found to be a2-6 00 4V2 
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Frpm (7.4.43) and (7.4.47) the value of c at g= -1 is 

1 
0.3535 ..... (7.4.57) 

and, from (7.4.49) and (7.4.53). the values of F, and 

F2 at c=I are 

(7.4.58) 

These predictions both compare well with the numerical 

results given in table . 7.1. 

(iii) 

It now remains only to consider the behaviour. ofthe amplitude 

functions for large s where, according to the results (7-4.2), 

(7-4.3), (7.4.6) and (7.4.8) we have 

R2 - fl 

(S. *. - -). 
R, jlncj-l(l+ý)rjje(l-5)s -"', Os-ý(l + (7.4; 59) 

where 10 is a numerical constant given by the finite part of 

as s Thus R, increases in size and eventually, in 

the neighbourhood of s=sc where 

sc = i(-L+-D-) {lnllntl + in(lnllncl (7.4.60) 
I-P 
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can no longer be neglected in comparison to R2 in (7.2.11). 

We define a local variable S by 

s 

and expand R, and R2 as 

(7.4.61) 

R, = R, (S) . ..... R2 = k(S) + (7.4.62) 

The'functionsýjaand R2 satisfy the full nonlinear equations 

(7.2.10), (7.2.11) except that, in view of (7.4.60), the 

curvature terms can be neglected, giving 

dIR, R, (1 - Ri 
2- 

PR 
2 dR 

-R 
2 

(1-R2 
2 

-5R, 
2 

). (7.4.63) 
dS 2), =2 OS 

Following the stability arguments given in 97.3 we restrict 

attention to solutions with 

R, 2 -)- (1 + as S (7.4.64) 

so that at infinity the inward and outward propagating 

disturbances are of equal sizes. The required solution-Of' 

(7.4.63) can then be computed backwards from S by 

applying a small negative increment to the value of ýj 

in (7.4.64). Precise forms for Rl. and §2 6s S used 

to start the numerical solution, are 
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-I + R192 - (I + X, 2 exp{-2(1-ý 
IS} (7.4.65) 

$ 1+5) 

where 

k2 =-ý (1 + il - p2)i )-I11 (7.4.66) 

and k, is an arbitrary constant, eqUivalent to an origin 

shift in S. 

For solutions with k, < 0, ý, decreases mon, otonically 'to 

zero andJ2 automatically approaches one as S 

Asymptotic forms are 

R, -, exp{(l - p)(S +S 0))9 (S 

R2 exp'{2(1-p)(S+S 0 
)}+. t e 

ý(s + so) 
(7.4.67) 

where the value. of the constant k can be determined from 

the numerical solution. The value of S0 is fixed by the 

requirement that the forms (7.4.67)must match with those, 

(7.4.59), as s ->. -. This implies that 

so = (J-P)-l (inc-DI (7.4.68) 
0 

and fixes the origin shift in the solutions for R, and 

It seems likely that in general k will'ýe non-zero and 

so will generate a further term in the zone where s 0(l) 
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which, for p<0 is larger than the term R22 in(7.4.2) (which 

matches with the second term in the eýpansion for ý2 in (7.4.67)). 

However, such a term remains uniformly smaller than RZO, even 

as s -*- 0, and therefore should not influence the matching 

procedure at the centre already detemined. 

When p=0 the solutions for R, ýand R2 -are 

ý, = ies(l + jeýs)t ý, = 1. (7.4.69) 

In this case c=J, So = -jln2, I=j and R22 = 0' It 

can also be verified that the solutions (7.4-69) are 

equivalent to the appropriate limiting forms of (7.3-1) and 

(7.3.2). Some numerical solutions for other values of ý 

are shown in Figure 7.5. 

Finally, we consider the'behaviour of the phase functions 

01 and 02 for large values of s. As s we have from 

(7.4.33) 

03 - n)s + ql, 

(s <s C) 9 
02 - 5T + (01 + 02 + 5)S + ý29 (7.4.70) 

with 41- 42 g6en by (7.4.35) However, these forms are adjusted 

in the neighbourhood of sc, so that for s> scs 
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3ý1 
-- 

3ý9 
-1) (7.4.71) 

as as 

This represents a corrected disturbance wavelength eqUal 

to 

(7.4.72) 
ac 

at infinity. 
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7.5. Discussion 

The structure of an axisymmetric finite amplitude equilibrium 

state for a rotating system when the Rayleigh number exceeds 

its critical value for overstability by a small amount, O(c), 

has been described. At infinity, the solution is taken to be 

that for which the two components of the disturbance, A, and 

A2, are of equal magnitude and the solution is seen to consist 

of several distinct regions in the limit as e -). 0. Near 

r= i(! ±P-)e-l lnllnel there is a region where, as r decreases, 
1-0 

the two components are adjusted so that. A,,. is damped almost 

to zero, and, where r= O(e- 1 ), is reduced to O(dllncl-1(1ý0). 

This region is dominated by the component A2 Of 0(d) because 

the central region of the flow acts as a poor reflector. The 

central region itself consists of two zones, first a trans- 

itional region where r= O(e X-1 ), (O<X<1), and the two components 

rise to comparable amplitudes again, of O(d(1_x)jlncj_I). These 

amplitudes become equal as X-, -l and this permits the solution to 

match with the Bessel function form in the innermost zone where 

r= 0(l), and the amplitude reaches a peak value of O(Ilncl-1). 

This indicates an intense motion near the axis of rotation as 

R increases above R and altýough a similar effect occurs in 
c 

the exchange case, there the corresponding amplitude is 

considerably weaker, of O(J'llincl-l'). 
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The present work does not address the question of stability 

in a comprehensive fash ion, although the indications are that 

the equilibrium state described is a stable one. Although 

the region where A, is small might at first sight be thought 

to be susceptible to the type of disturbance discussed in 

(7.3.7) - (7.3.9), it should be remembered that any natural 

disturbance to the equilibrium state will have to obey a 

reflection condition at the centre similar in form to that 

of the basic solution. Thus the component of the disturbance 

which gives rise to the positive growth rate of 1 in 

(7.3.9) will itself be significantly restricted and may there- 

fore not destabilise the solution. 
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APPrNnTY T 

In (5.2.2) the functions Rl. R2 and R3 can be expressed 

as follows: 

2 
aA 2A V-0 1 M, A- 

= hj-, -x, A JA j +otflA o- 
(2aH+hl)(- -i+ --'U)+ -M2(aH), X' 

at 00 a-s as 2S 

1 3A -1 A aA k, 2f 
I R2=u k, -=0+d x2AOIAof+s-oz(kl-aTl2)+ a 

--IITI, --42TI2-T'D(----+T22+T21)) at s as ot ot 

f, T21 a2A 
.)0 +{2aT, l-k, -T'D(- + 

Cli 

-I 
aA 1 D4(fl+aT21) ; 2A 

ý cy . (D2f, -(, 2f, ) -'a +; X3A IA f+{_ 
z- +(2aD2-3(x2)T21+3a2fl-T31a--SZ-O- aT. 00 ol 

4 
D (2f, +aT22+a, T21) aA 0A +{ +(2aD2- 3a3)T22+2a2fl-a3T2j-T32laS _. 

a(-. 2f, +T32+ 
a2 

sI 

(2(%3-2aD2)T22)1 

where D-d and a =a 9R=R UZ Cc 

The functions X19 X23, X3 are given by 

xi =a(2 h2, Dfl+h, Df21+ýlD h21-flD h22+2f2lDhl), 
0 i 

X2 =ct(k, D f2l-2! '2, Dfl-f, D K2, +2f2lDkl), 

X3 =a(2D2flD2f2l-flD3 f2l+2f2lD3f, +6a2f2lDfl+3a2flDf2l-Df2lD2f, -2DfID2f2l), 

Also the functions bi(i = 1,29 s6e. q. 6) in (5.2.4) are found to be 
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D, = 
Rlh2, 

- alfk 
2+fl (D 2f 

1-a 
2 fl)) 1 

D2 ---;: R hlxl+a. (klx2 + X3 fl) 

2 ahH 
D3 = kl-akIT12- 

2R +fl(2a3T22 -012fl+ T32-2ctD2T22)9 

2 flD4(fl+aT21) 
D4 = (hl+2ah, H) + 

a2 
-af I (3aT21+3cif 1+2D2T21) -T3, f 1+2ak, Tl I 

2 Tlk Df 
-kl 1 (--L + T21) 

aa 

2 Tlk D 2f f D4 
55 = hl+ 2ah, H + kl(aTr-kl+2aTl2)- 1 (--L + T22+T21)4--L--(2f, +aT22+T21) a cc 02 

+fl(-3a3T22+2a2fl-a3T2, -T32+2ciD2T22)'I 

D6 = ýlhjxj+ al(klx2+ flX3) 

where the numerical solutions of all functions involved in 

these expressions, are given in § 4.2, § 4.3 and § 5.1. 
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APPENDIX II 

Matrix Formulation of the Rotating Linear Problem 

The linearised equations (4.1) - (4.5) with (5.1.2) for leading 

order terms can be expressed (df. (3.3)) in the matrix form 

au 
= A. U 77 -- 

where U is a vector functions of s, T , r, z 

and 
tr U ap- 2.10 gU Ow 36 V} ar ar ar ar 

01 0 0 0 0 T' T 

L0 0 0 0 L 0 

00 0 0 0 -R -L 0 

00 0, 0 0 0 -L 

0 0 0 0 0 0 0 

00 0 0 L 0 0 0 

00 10 0 0 0 0 

0o 0 1 0 0 0 0__j 

32 
+ j 7r2 -r Tr - T2 

We can write the matrix A in the form 

A=LA, +R A2 +T A3 + A4 (IIA) 

where 

I-Q? - 



000 -1 000 

1000100 

0000 0-1 0 

00000 0-1 

0000 

0000 

0 
-1 000 
0000 

, A_, = 

0000 0000 -1 01000000 

000 0000 

l 

00000010 

-1 00 000o 00000 'o 00 

0 Aýp 
1000 IA4 ooooo6oo 

1000 
0000 

0 
0 0 0010 

-J L 
0001 

In (II. 1) the vector U may be expanded as 

U= 
lacr {cFo+ C2 F, + C3 F3 . ...... 1, 
e 

where each F (i=0,2, ... ) is a function of z, s, T. 

Substitution of (5.1.1) and (11-4), (11.5) into equation (II. 1) and 

from leading order terms and higher order terms, we find that 

'p f. = 0; Y, (11.6) 

aF F 
.0 f, = ia A1(2 -+ ; -Yj (11.7) 

c as s 

a2F 
01 

aF 
0- 

fo)+iac 
F21 (- 

-3: S! --Z+ TT -s -s Z' 

aF, F, 

. (2TS--+ f-) +a A2 fo ; yj (11.8) 

where 

-(TI A3 + A4 + Rc A2'- a2 A, ), (11.9) 
az c- 
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is a linear operator and the boundary conditions, yl, are 

defined in (3.3.22). 

We define 

1- +(Tý A3 + A4 +R A2 - a2 A tr f* az --cC Al) 

as an adjoint operator (ff- (3.5)) and find solutions of equations 

(11.6) - (11.8). 

From (11.6) 

F0=h0 (z) A0 (s, T), 

where the numerical solution of h0 is given in § 4.2, and A0 

denotes the amplitude of disturbance. *, To solve the equation 

(11.7), first we apply the adjoint condition (cf. (3.5)) which 

implies that 

(2 
DA 0, 

A0)1 
.1 ýtr, a ho dz =0 (11.11) T-s + t-- 

f 

0 

where ftr, a is the adjoint eigen function (cf. (3.5)). We 

remind the reader that this condition is equivalent to (4.3.5); 

therefore from (11.7), 

3A A 
0 

c 
(2 

aso +s 0)ý, + A, (s, T) hot 
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where the numerical solution of h, is given in §4.3. 

II 
From substitution of (II. 10) and (11.12), into equation (11.8) 

we find that 

F2=fA, L*(Ao)+ia (2 2- + 
i-)Allho-4. Alf(L*-3 )Ao)hl+oA2 fo, (11.13) 

c as s TS2 - 

where R is an arbitrary constant which is defined in (5.1.1) 

and L* is given by 

D2 
+IaI. j-ST -ý '5-S -j2 

Now fromitheýadjoint condition we find that 

a, tr 
A5, f ho dz 

32A 
o1 3A 0A0a0, A= 01 DSZ- 

+ -ý-S ; S-2 4fa, tr,,, 0 
A, f, h, dz 

0 

or 

32A 
01 3A A 

-- +00+A=0 3S2 S as 'ý7S2 0 

where we set 
1 a, tr 

-4 

f6A 
Ifh, dz 

fIa, tr 
A5, fN dz 
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Equation (11.15) is the'linear form of the amplitude equation 

for the rotating layer and it can be seen that in (5.2.3) 

a4, = a5, a4 = -4a3 

It should be noted that the numerical value of (11.16) is 

given in (5.2.8). 
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