
This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: http://openaccess.city.ac.uk/7959/

Link to published version:

Copyright and reuse: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk
CREDIBILITY THEORY AND

EXPERIENCE RATING IN GENERAL INSURANCE

Mohamed Barakat Hamed Kandil

A Thesis Submitted For The Degree
of Doctor of Philosophy

The City University
Mathematics Department
(Actuarial Science)
London

March 1983
Table of Contents

Acknowledgements

Page 6

Abstract

Page 7

Chapter One: Introduction

1.1 Risk and Insurance

Page 8

1.2 Different Views of Insurance and Nature of Insurance

Page 9

1.3 Rating Insurance

Page 11

1.4 Claim Definition in Fire Insurance

Page 12

1.5 Experience Rating

Page 13

1.6 Meaning of Credibility

Page 15

1.7 Historical development of credibility theory for experience rating

Page 18

1.8 Purpose and outline of study

Page 19

Chapter Two: Rate Making and Characteristic of Fire Insurance

2.1 Problem of rate making

Page 22

2.2 The Characteristic of Fire Hazard

Page 26

2.3 Fire Insurance Coverage

Page 29

2.4 Factors Considered in Classifying and Rating

Page 32

2.5 Common Statistical Tests of Significant Differences

Tables

Page 37

APPENDIX (2.1)

Page 50

APPENDIX (2.2)

Page 52
CHAPTER THREE : EXPERIENCE RATING AND CREDIBILITY

3.1 Introduction
3.2 Credibility Experience Rating - Classical Approach
 3.2-1 Some Properties of z
 3.2-2 Adjustment for self rating
3.3 Determination of the level of full credibility
 3.3-1 Level of full credibility for the number of claims
 3.3-2 The Criteria for Full Credibility In Terms of Mean and Standard Deviation
 3.3-3 The Level of Full Credibility For the Pure Premium
 3.3-4 Credibility of Pure Premium (Independent of Distribution Assumption)
3.4 Credibility Multisplit Plan

CHAPTER FOUR : A BAYESIAN APPROACH TO CREDIBILITY AND COLLECTIVE RISK THEORY

4.1 Individual Risk Theory and Collective Risk Theory
 4.1-1 Limiting Distribution of $F(S,qt)$ when the number of Claims Have A Poisson Distribution
 4.1-2 Limiting Distribution of (S,qt) when the number of claims have a Negative Binomial Distribution
4.2 Bayesian Approach To Credibility
 4.2-1 Application of Bayesian Theorem
 4.2-2 The Distribution of The Number of Claims is Binomial
 4.2-3 The Distribution of the Number of Claims is Poisson
 4.2-4 The Distribution of the Size of Claim is Exponential
4.2-5 The Distribution of the Pure Premium

4.3 A Distribution Free Credibility

CHAPTER FIVE: CREDIBILITY APPROACH TO RATE MAKING IN GENERAL INSURANCE

5.1 Introduction

5.2 Elements of Rate Making

5.3 Premium Calculation Principle

5.4 Preliminary Assumption

5.5 Requirement and Construction of the Premium Function φ

5.6 Experience Rating and Credibility Premium

5.7 Modifying Formula for Credibility Premium

5.8 Level of Full Credibility for Modifying Formula

APPENDIX (5.1)

CHAPTER SIX: EXPERIENCE RATING, AN EMPIRICAL STUDY

6.1 Introduction

6.2 Source and Choice of The Data

6.2-1 Claim Data

6.2-2 Underwriting Information

6.2-3 Claim Reporting

6.2-4 Claim Settlement

6.2-5 Treatment of The Data For the Economic Effect

6.3 Preliminary Statistical Study For Experience Rating

6.3-1 Statistical Test For Homogeneity of the Claim Experience Over The Groups of Each Class
6.4 Experience Rating

APPENDIX (6.1)

Conclusion

Bibliography
ACKNOWLEDGEMENT

I would like to express my thanks and deep gratitude to Professor Bernard Benjamin for supervising this work and for his assistance throughout the study.

My thanks also to The City University and to The Institute of Actuaries for the library facilities offered to me.

My thanks are also due to the Al-Shark Insurance Company for their financial support.

Finally, I thank Ms. Mary Williams for typing the manuscript.
Abstract

The efficient use of available data to forecast future performance is one of the central concerns of modern business. In general insurance, especially, profit or loss depends upon charging the correct premium for the individual risk underwritten.

When a new contract is signed, the insurer may know very little about the individual characteristics of the risk he has insured, and the premium charged is based upon prior statistics gathered from a large collective of similar, but also somewhat heterogeneous contracts grouped together under the same group rate. However, as the individual contract continues over several years, experience data can be gathered to reflect individual risk characteristics.

A simple but effective approach to estimating an experience rated premium is provided by credibility theory. Credibility theory is concerned with the weight to be given to the small amount of recent individual experience as compared with the mass of the data from the past collective experience.

This research was undertaken to review different views and approaches to experience-rating in line with credibility theory considering fire insurance as an example of application; also to develop a mathematical formula for experience rating for the pure premium keeping in mind the conditions and the facilities available in the Egyptian market. The formula developed takes into account the variability of the claim amount and the claim frequency. Two classes of non-industrial fire insurance are analysed and tables for the credibility factors involved in the developed formula are constructed.
CHAPTER ONE

INTRODUCTION

1.1 Risk And Insurance

Risk is a universal feature of modern economic life. In everyday life we face a great number of risks. Risk has been defined simply as uncertainty [Willet, 1951]; but other authors refer to it as uncertainty in regard to loss [Denenberg, 1964]. In insurance, risk is generally referred to as the possibility of financial loss. From that point of view, risk concerns the state of some financial relationship between an insurer and the insured, while uncertainty is simply a state of mind [Pfifer, 1956]. Another definition of risk has been given as "... Risk is an invariable deviation from expectation which may or may not reflect a reduction or disappearance in value ..." [Atherton, 1964]. This sort of risk of an economic nature most of the people wish to avoid, and they try to find ways for handling such risks.

Risks may be classified as speculative risk or as pure risk [Blanchard, 1961] according to their nature. Risk is said to be speculative if there is a possibility of both loss and gain as in gambling or in commercial activity. Risk is said to be pure risk if there is only the possibility of loss as in fire, flood, death There are direct causes of pure risks such as fire, flood and indirect causes or conditions which lie behind the occurrence of loss which we call hazards.

Hazard increases the likelihood of loss and may make the loss more severe. The basic types of hazard are physical, criminal and
those due to social behaviour (other than criminal).

As a matter of fact there is no escape from the presence of risk, but the degree of risk may be reduced. There are ways of meeting risk such as avoidance, prevention, distribution and transfer.

1.2 Different views of insurance and nature of insurance

Insurance is one of the ways of dealing with risk. There is a wide range of different views as to the nature of insurance; one definition of insurance is that of risk transfer [Head, 1967] which is the promise of payment by the insurer and the premium payment by the insured. Another definition is in terms of techniques. Mehr and Commak (1966), for example, define insurance as ... social device for reducing risk by combining a sufficient number of exposure units to make their individual losses collectively predictable. The predictable loss is thus shared proportionately by all those in the combination. Also, Mehr and Hedges [1963] say a device will be deemed to be insurance if it applies the law of large numbers so that the requirement for future funds to cover loss is predictable with reasonable accuracy, and it provides some definite method for raising these funds by levies against the units covered by the scheme.

In accordance with this view the essential feature of insurance is the manner in which losses are predicted and shared.

A third suggestion is that a complete definition should include a combination of these criteria [Willet, 1951]. As an example Rigel and Miller (1966) define insurance "... Insurance is the transfer of risk with added features 1 - combination of risk 2 - estimation of future losses ...".
Insurance, on the basis of its function as described above, is the creation of the counterpart of risk, which is security. Insurance does not decrease the uncertainty for individuals as to whether or not the event will occur, nor does it alter the probability of occurrence, but it does reduce the financial loss connected with the event. In fact, an insurance contract provides a valuable factor in the freedom from the burden of uncertainty. While it is theoretically possible to insure all possibilities of financial losses (for pure risks), some are not insurable. The main characteristics of insurable risk are:

1. There must be sufficiently large numbers of homogeneous exposure units to make losses reasonably predictable.

2. The loss produced by risk must be capable of financial measurement; also the type of losses must be relatively difficult to counterfeit.

3. The loss must be accidental.

4. The loss must not be catastrophic.

Insurance may be divided into two major divisions: life and non-life insurance. Non-life insurance can be subdivided into certain classes on the basis of the perils insured against or the fundamental nature of a particular programme. In general, non-life insurance has some common features:

1. The claim size is not known in advance.

2. The premium charge may change from year to year.

3. More than one claim can arise under the same policy.
In our study we are concerned with the problem of estimating the pure premium (expected claim per policy) using fire insurance claim data from the Egyptian market.

1.3 Rating Insurance

Insurance is usually classified as a service and the rate (premium rate) of insurance is the price per unit of insurance (unit of exposure). Like any other price, it is a function of cost of the services and of market conditions. However, in insurance, unlike other services, the transactions are exchanges of money for money, not money for goods or services which directly meet needs.

It is an exchange of money now for money payable in the future, contingent on the occurrence of certain events insured against.

The main purpose of rate making is to determine the price for the service which will bring in sufficient funds for paying future losses, covering the costs of operation and providing a margin for contingencies and profit. The major problem we face in rating is the fact that, the amount of loss which will occur is unknown, which means that the cost of the operation is unknown. The only solution to this problem is the estimation of the future loss using past experience as a basis.

We have to distinguish between rate and premium. The rate is the price per unit of protection; the premium is the rate multiplied by the number of units of protection purchased. The premium the insured pays is called "gross premium" and is composed of two parts - one part is designed to provide for the payment of losses called the "pure premium" (when expressed as a percentage it is called expected loss ratio). The second part is called loading and covers the expenses
of the operation. In our study we are more concerned with the estimation of the pure premium.

A satisfactory rate should satisfy criteria as to adequacy, reasonableness, equity, stability, flexibility, and provide for incentive for loss prevention. For achieving these criteria, the risk should be classified in such a way that the rate provides for an equitable distribution of cost by being closely adjusted to the inherent hazard of the individual risk. This problem will be discussed in more detail in Chapter 2.

1.4 Claim Definition in Fire Insurance

The insurance device does not prevent loss, but it reduces the uncertainty of loss. Actually the contract of fire insurance presupposes the existence of some physical object which is capable of being destroyed by fire, and upon this loss the insured has the right of indemnity.

Some writers define fire as a "combination in which oxidisation takes place so rapidly that a flame or glow is produced. Furthermore, the fire must be hostile, that is, it must be of such a character that it goes outside its normal confines" [Green, 1964]. If the fire escapes its confine, it becomes hostile and all losses resulting from it are covered by the insurance contract.

Most fire losses are partial but total losses are not uncommon. It is easy to determine that the fire has occurred, but it is difficult to determine how much the insured has lost by fire.

When we come to the point of studying the fire losses (claims)
it is important to divide the fire risk into qualitative homogeneous classes according to the factors which increase the possibility of loss. The main factors are:

1. Location
2. Occupation (by type, and operation)
3. Exposures (the chance of loss from outside sources)
4. Construction (i.e. materials)
5. Fire protection

Having grouped the claim data into homogeneous classes of risk, and having determined the levels of risk in each class, the problem is to determine the expected loss per policy for each class using the past experience.

1.5 Experience rating

The term "experience rating" is used to refer to a prescribed method for determining the risk rate depending in whole or in part on the risk's own experience. Risks whose rates have been determined in accordance with such a procedure are said to be experience rated [Paul Dorweiler 1934].

The object of experience rating is to determine a more equitable rate for the individual risk based on the evidence presented by its own experience. It is recognised that individual risks within a class are not alike and that there exists inherent differences due
to variation in the physical and moral hazard factors affecting the risk experience. Some of these differences are of such a nature that it is difficult to define them and they can not be associated with conditions measurable in advance.

These differences can not be assumed due to chance. Experience rating is considered as the most practical method to recognise the variation produced by such factors.

Experience rating is applicable whenever there is a large variation among the risk categories which make up the classification, and where the risk categories are of such a nature that they may be expected to develop individual risk experience of appreciable evidential value. Most lines of casualty insurance have classifications somewhat nonhomogeneous as a result of the merger of the experience available and the lack of knowledge of the risk elements entering into the composition of hazard.

There are two forms of experience rating plans, in which the risk experience is used to determine the risk rate.

1 - Prospective experience rating
2 - Retrospective experience rating

Prospective experience rating is used to determine rates for a period in the future. Retrospective experience rating is used to
determine a final rate to apply to a past period. Both methods present a definite way of recognising variation in the inherent hazard of risks.

The essential operation of experience rating consists of comparing the risk experience and class experience on a common premium and loss basis, assigning to the risk experience a weight depending on the size of the risk experience and to the class experience the complementary weight. The adjusted rate or experience rate may be looked upon as a weighted average of the rate indicated by the risk loss experience, and the manual rate i.e. the rate indicated by the class experience.

1.6 Meaning of credibility

The weight used in the experience rating formula mentioned above is called the credibility factor. Credibility as it was originally introduced into actuarial science, is a measure of credence that the actuary considers should be attached to a particular volume of data for the purpose of rate making.

Thus we may say that the loss experience under a new class of insurance is "too small to be credible" implying that the experience which will develop in the future may well be very different from that so far collected, and also implying that we have more confidence in our prior knowledge based in other data such as current rates for similar classes.
Also, we may say that the experience is fully credible which implies that the experience is adequate to establish the rate without reference to the previous rate.

In many cases, the volume of data is too small to be fully credible, but large enough to have some credibility.

A scale of credibility can be established which gives a credibility of zero to data too small to be of any use for rate making and one for credibility to data which are fully credible.

It is a fact that credibility is not an inherent property of the data which can be calculated by a simple mathematical rule such as for the mean and standard deviation, but it is the amount of credence which can be given to the volume of the data for the specific purpose for which the data are to be used.*

When we come to consider the revision of any important set of rates for a class of insurance such as fire insurance, we normally have a volume of data which is fully credible for the purpose of determining the overall rate level which is required. However, each of these major classes includes a very large number of subclasses and there will never be sufficient data to provide credible rate revision for each individual rate. Most rating systems contain a pattern of association between various rates. As an example, in

* The credibility weight to be given to a certain volume of data in experience rating formula is not the same weight to be given to the same data if they are used for some other purpose, such as independent rating.
fire insurance the rate may have five types of classification:

1. Location
2. Construction
3. Occupancy
4. Protection
5. Outside exposure.

If there are three subclasses in each classification, there will be \(3^5 = 243\) subgroups of the data, no one of which could individually be credible. If it is assumed that the change in rates according to the first type of classification (location) raises or lowers all rates in equal proportion, then by grouping all data by location only with a necessary adjustment to reflect differences in distribution by the other classifications, we can establish the location differential with a reasonable degree of credibility.

By regrouping the data in another way, other classification differentials can be determined.

In fact, credibility theory is concerned with establishing measures and standards of full credibility. In practice, the choice of too high a standard for full credibility would considerably delay the response to changes in risk factors, and may lead to overall inadequacy of premium levels. The standard of full credibility is not normally important in itself, but it is important as a means of introducing consistency in the rate making procedure and in
establishing a relationship in respect of reliability between different volumes of experience.

1.7 Historical development of credibility theory for experience rating

Credibility theory for experience rating is largely an invention of North American actuaries. It was first introduced by Witney 1918 for experience rating, in particular for workmens' compensation insurance, where some industrial companies with a large number of employees and favourable safety records pressed for the recognition in their insurance premium of their apparently superior claim record.

Since then the theory has had wide application by different workers in different branches of property and casualty insurance. Michelbacher (1918) was the first to apply the theory for workmens' compensation. Wheeler (1930), Perryman (1932), Wittic (1958), Bailey (1959) and many others have applied the theory to automobile rate making. Hurley (1954 & 1959) applied the theory for fire insurance and multiple peril rating problems.

The problem of full credibility and partial credibility was discussed by Perryman (1937), Kormes (1952), Hurley (1954) and Longely-Cook (1962).

Witney's theoretical structure for experience rating remained the only one available until 1942, when Bailey presented a new theoretical foundation based upon Bayesian probability. Despite the fact that Bayesian probability was unpopular at that time and Bailey's
view did not get wide acceptance and although his approach to the problem was different from Whitney, the results are the same and confirm the value of early work.

Mayerson (1964) resurrected Bailey's work by relating it to modern Bayesian statistics, where the basic credibility equation is developed from a principle now known as conjugate prior analysis. The Bayesian approach to the theory soon becomes acceptable.

Bailey's original results were generalised by Jewell (1974) who showed that the basic credibility equation \([Z\alpha + (1-Z)E]\) could be derived for many conjugate priors of the exponential family.

Buhlmann (1967) contributed to the theory by proving that the basic credibility equation was a least square estimate under the conditions explained in Chapter 4.

Currently, credibility theory is viewed as a method for estimating various moments or parameters of the probability distribution of total loss. It does not matter whether one derives estimates of the quantities from the classical approach [Whitney] or from Bayesian principles, because in the most important cases the revised estimates have the familiar form "\(Z\alpha + (Z-1)E\)". However, it is important to recognise that ultimately these credibility adjusted values are used to tell the insurer what he should charge in future.

1.8 Purpose and Outline of Study

Determination of the rates of premium to be charged for insurance cover in a given line of insurance is an important aspect of
insurance company policy. Prospective experience rating takes into consideration past experience, in lines of credibility theory, as an efficient procedure for rate determination and rate revision.

The research aim in this study is to review the practical aspect of credibility theory for experience rating and to develop a mathematical formula for experience rating for the pure premium considering fire insurance as an example.

The research includes six chapters. The first chapter is an introduction which includes the definition of different terms usually used in insurance, literature and in some places in this study. The aim of this chapter is to indicate the nature of insurance business.

The aim of the second chapter is to discuss the rating problem and the factors to be taken into account for classification in fire insurance with reference to data from the Egyptian market. Classical statistical tests of significance are suggested to test the correctness of the classification.

The classical approach to credibility theory review is discussed in Chapter 3. In Chapter 4 the collective risk theory approach and the Bayesian approach to credibility are discussed and appraised.

In Chapter 5 a mathematical formula for experience rating for the pure premium is developed in the lines of the Buhlmann credibility formula using the principles developed in Chapter 3 and Chapter 4. The experience rating formula has three components:
1 - Average claim outgo,
2 - Variability of the claim amount,
3 - Variability of the claim frequency.

Each component has a credibility coefficient.

A simple explicit formula is obtained for determining the level of full credibility for each of the three components.

In Chapter 6 there is an empirical study for two classes of non-industrial fire insurance using data from the Egyptian market. The primary claim amount is obtained using a multisplit plan with an initial amount £1500 for class I and £8000 for class II and a discounting factor 0.6. A credibility table is then constructed for each of the credibility factors involved in the experience rating formula. The table is left in raw form and can be modified in the light of such a specification as the level of self-rating.
2.1 Problem of rate making

An insurance premium is the price for a promise to indemnify the insured against financial losses resulting from the contingency insured against. The premium reflects the underwriter's assessment of the expected claim experience, the necessary expenses and a margin for profit. It is customary to express the premium as a rate per one, per hundred, or per thousand units of exposure. The choice of unit of exposure depends on two considerations:

"First, that it should be conveniently ascertainable, and second, that it should accurately reflect the scope and degree of the obligation which the insurance carrier undertakes" [Michelbacher, 1925].

The selection of unit to measure the extent [Morwbrey, 1921] of the hazard involved in an insurance transaction is not difficult. It is the measurement of the quality of the hazard which gives rise to problems. Even within a line of insurance it is expected that the probability of loss is much greater for some risks than others. It is fair, therefore, to require from some a correspondingly higher rate of premium. The economic function of insurance has been defined as the safe and equitable distribution of the burden of contingent loss. "Equitable" means distributing the loss among the insured in accordance with the inherent hazard or risk distribution of those who enter into the general pool. The mean of the risk distribution when insurance is conducted as a business is the premium which is paid in advance.
Also, market conditions have a great effect. The presence of competition between the insurance companies makes it necessary to match the premium rates as closely as possible to the risk by the subdivision of risks into homogeneous subgroups. There must, however, be a limit since if the process of relating premium to risk were to be carried to its extreme, each policy holder would be called upon to pay his own claims.

As far as may be practical, the risks are divided into classes, without unnecessarily destroying the reliability of the class experience. The policies in each of the classes are treated as of "equal" hazard and each risk would take the average hazard of the class.

The rate making plan for a given line of insurance would therefore provide as a first step a scheme for the appropriate grouping of the risks according to the various degrees of hazard. In order to put this into practice and to successfully perform the task of determining the rates, the following conditions are to be fulfilled:

a. The plan should provide for identification of claim producing possibilities.

b. It should be possible to recognise the expenses of management attributable to the individual risk.

c. A method should exist for measuring the claim producing potentiality.

d. It should be possible to relate the measurement of the claim producing potentiality to the unit of exposure, and hence to assess the variation in premium.

Furthermore, it is not sufficient to assume the existence of a function that will express the condition of each of the elements of risk.
Instead, what is essential for the successful rating plan is that this function assumes a simple expression for practical purposes.

The fact is that there are rapid changes in the economic and social conditions which have enormous influence on the three types of hazard (legal, moral, physical) attached to risk. It would be reasonable for the rating plan to be responsive to changes in these conditions. The extent to which responsiveness is to be built into the rating plan would, however, depend upon the implication of the change for the expected claim experience of the risk on the one hand, and the requirement of the stability of rates on the other hand. The exact nature of the combination of stability and responsiveness would vary from one line of insurance to another.

As multiple classification is an accepted principle for rating and experience rating in all lines of insurance, there are two requirements for successful application of this principle.

1. A suitable classification system.
2. Availability of a sufficient volume of accurate data on exposure to loss and losses realised covering a considerable period of time, and indefinitely known circumstances, which may be expected to show little or no change in time.

In some lines of insurance, none of these requirements are satisfied. On these lines the rate quoted is largely a matter of personal and intuitive judgment.

The types of rating plans are few in number but there are innumerable detailed differences. Common rating plans are:
a. Class rates: class rates are used for large groups of homogeneous risks such as automobile insurance and dwelling fire insurance. Class rates provide an excellent method of sharing losses and expenses among a large number of policy holders, and are also the most reliable method of predicting future losses. On the other hand, they do not recognise individual differences, which might be significant.

b. Individual rates: individual rates are used for risks which do not fit within a class of homogeneous risks, i.e., there are so many individual rating characteristics that a class rate cannot account for the variables in an equitable fashion. A rate which is designated for an individual risk is able to reflect better its actual loss experience, such as a large risk which has enough exposure units to reflect its losses in the premium. Most commercial risks fall within this category, although some smaller commercial risks may be class rated for partial coverage.

The advantages of individual rating plans are obvious. This results in rates which are fairer to large risks, encourage safety programs and other means of loss reduction, because reduced losses are reflected directly in the premium. Of course, there are disadvantages, and one of them is that it is easy to give too much rate reduction.

c. Schedule rates: schedule rates are developed by comparing lists containing the average characteristics of all risks of the same general type. Each risk has its rate adjusted by the degree to which it varies from the standard. If a risk is better in some categories, it gets credit; if it is worse in others, it gets a debit. The total of the variances determines the extent of modification made for the individual risk as compared with the standard rate.
Schedule rating, rather than class rating, is commonly used with commercial fire risks because frequency of loss is low but the severity of loss is high.

There are two disadvantages of schedule rating: (1) it is dependent upon the judgment of the person making the inspection, and (2) it places emphasis only on physical factors.

d. Experience rating: Experience rating is developed in the same way as schedule rates except that modifications are made for the past loss experience of the policyholder rather than for his physical characteristics. Such a plan requires a fairly large risk and a reasonable loss frequency. This method is used for larger commercial risks for such coverages as liability, burglary, and workman's compensation.

Experience rating plans assume that immediate past loss experience will continue in the future and they are considered a prospective rating system.

e. Retrospective rates: Retrospective rates use the experience of the current period to determine the rate for that period. The insurer collects a deposit premium when the policy is written, and at the end of the period, calculations are made to determine if the policyholder will get a partial return of his deposit, or if he has to pay an additional premium. A maximum premium is stated at the outset.

2.2 The Characteristic of the Fire Hazard

Basic fire policy cover properties against loss or damage by fire, lightning and damage caused by removal of property for protection against insured peril.
Fire hazards may be divided into two broad classes, physical and psychological (moral). Physical hazards are those material factors which may give rise to fire or contribute to its spread. Psychological hazards are the intangible human qualities which may have the same result.

I - Physical hazard is easier to detect than moral hazard because physical characteristics are specific and objective; many are capable of quite precise measurement. Common physical hazards such as lighting power generating, power transmission, heating, ventilating systems are found in greater or less degree in all sorts of risk. Rates in fire insurance depend to a great extent on the physical characteristics of the risk insured such as the construction elements of the building, occupancy, degree of police or fire protection, exposures from adjacent buildings, climatic and weather conditions, location and facilities for controlling or minimizing loss.

All elements of physical hazard are susceptible to inspection and study. In many cases the insurance company may ask the insured to make some minor changes to reduce or eliminate hazard. The investigation of most large claims shows that the insured did not meet the insurance company's requirements. Table (2-1) shows the distribution of the claims from year 1970 to 1979 according to the cause of the fire "for direct insurance by the company under investigation".

From Table (2-1) it can be seen that 0.712 of the amount of claims is due to physical factors affecting the risk. The most important factor is electrical shortage due to poor electrical connections and is represented by 0.39 of the number of claims (Chart(2-1) shows the percentage of the amount of loss and the number of claims for the years 1970-1979).
Table (2-2) shows the average of claim and loss ratio for each class of business in urban and rural areas. It can be seen that industrial projects have the highest loss ratio and the largest loss average per accident. The projects insured in this class are individually rated and have large amounts of unit of exposure, which make the insured have the power to influence the insurance company to make the rate very low. Also, the class of storage (warehouse) is higher than the rest of the class and this is also due to the large amount of units of exposure involved. At the same time, the loss ratio for this class and the average loss per accident in the urban areas are higher than the loss ratio and the average loss in the rural areas because the average amount exposed to risk in each storage is larger for urban than for rural areas. The average per storage in urban areas is £E684,290 and in rural areas £E246,848. In the other classes the loss ratio for rural areas is slightly larger than that of the urban areas except for the classes of woodwork, food industry and hotels.

II - Psychological (moral) hazard is the most difficult to detect, and yet, may be the most dangerous. In spite of its potential severity, its true nature is seldom understood. Psychological hazard can be divided into two classes: voluntary and involuntary.

Voluntary hazard is synonymous with "moral turpitude" as purposefully causing or increasing fire losses, failure to take measures for extinguishing or preventing the spread of fire, and defrauding the insurance company by the exaggeration of loss. Purposeful fire is the common* type of moral hazard. While the number of accidents from this cause is 1.73% of the total number of the accidents for the period 1970-79, the amount of claims is 11.11% of all claims for

* see Table (2-1)
this period; this demonstrates the potential severity of this cause. The average claim per accident is also the second highest average per accident of all classes.

Involuntary (moral) hazard comprises those intangible elements in human character and skill which do not reflect on the honesty of the person involved but which, nevertheless, are strong in their effect on fire loss. Common types of this sort of hazard are negligence of ordinary protection of the property against loss, carelessness, incompetent management, and lack of trust. To some extent these qualities of hazard can be detected by evidence which can be observed by the producer or the insurance inspector. The easiest type of moral hazard to observe is poor housekeeping, poor maintenance and irresponsible conduct. From Table (2-1) it is seen that accidents caused by cigarettes represent 37% of the total number of accidents during the period (1970-1979). The Chart (2-2) also shows the high frequency of this cause during this period.

It is difficult to contain the moral hazard in the rating structure and the insurance company should reject the risk if it has a large degree of this element. Ownership (private or public ownership) presents another hazard which has an element of turpitude. Table (2-3) shows that the loss ratio for public ownership is more than the loss ratio for private ownership.

2.3 Fire Insurance Coverage

Fire insurance on building and content of building and industrial manufacturing in Egypt is one of the oldest and most established lines of insurance. Fire insurance coverage constitutes the third largest share of non life insurance premiums. Table (2-4) shows the growth of
the non life insurance market and the amount of fire insurance premium in the period 1970-1979.

Commercial fire insurance is more subject to large losses and is more sensitive to changes in the economic conditions of the country. Fire losses tend to increase as the economic condition worsens.

Coverage of fire insurance in the Egyptian market can be divided into two parts:

1. Industrial risks
2. Non-industrial risks

Most industrial risks are individually rated because they are very large and complicated risks. Industrial risks constitute 55% of the premiums paid during the period of the investigation. Non-industrial risks include building construction, building content, retail shops, warehouses, woodwork, metalwork and garages. Table (2-5) shows the distribution of the premiums between the classes for the company under investigation.

The basic fire policy covers property against loss by fire, lightning and damage caused by removal for protection. The added perils of extended coverage are common in commercial fire policies. Perils of extended coverage are as follows: windstorm, hail, riot, vandalism, aircraft, vehicle, smoke, earthquake, sprinkler leaking and water leaking. A fire policy can be extended to cover consequential losses such as loss of profit and third party liability. A small proportion of industrial risk is insured against such risks. Non-industrial risk is not accustomed to extended coverage. It seems to the writer that the insurers underestimate or misunderstand the extended
coverage. Not less than 10% of the reported claims were not paid because the cause of the damage was not covered, though it could have been covered at the outset by the appropriate addition to premium. (Table (2.6) shows the distribution of the unpaid claims in relation to the cause of the accidents.

From Table (2.6) it can be seen that damage by water represents a substantial number of unpaid claims. While the insured has no right to apply for the claim (his contract has not any clause to indemnify him against the cause of damage) but he did apply, this means that he did not understand the condition of the contract or was misled.

Always an insurance company tries hard to secure insurance to cover the true value (i.e. the actual value of the property); but often, it is difficult to ascertain the actual value, particularly as to equipment and stock, also inflation has a great effect upon this problem. Table (2.7) shows the number of those proved to be underinsured and the average fraction of full cover of insurance for the underinsured in years 1970-1979.

Often with a multiple location policy the insured will have stocks in more than one location in the country, and the insurance company will discover that his insurance cover is much less than the actual value of his total stocks. In some cases, the sum insured is only 15% of the stock and while the claim is the full indemnity for the loss. Most of these cases are discovered only when the event of loss occurs and the insurance company makes its investigation to assess the amount of claim. In these cases the insurance company applies the co-insurance clause (average clause) which indicates that the policy holder will share every loss to the percentage extent that his insurance cover is deficient.
Commercial fire rates are customarily given as annual rates for each £E1000. Some policies are written for more than one year and the insured obtains a reduction if he pays the premium in advance for the whole period covered by the policy. Table 2-8 shows the rate of reduction.

2.4 Factors Considered in classifying and rating

The first factor considered in rating is the location. The location can have an important effect on the desirability of the property from a fire insurance standpoint. Cities and towns are graded according to fire protection classes. The factors which establish the grading of a city are:

i availability of water and water pressure.

ii fire department, personnel, equipment, efficiency.

iii police protection

These factors together measure the anticipated ability to control the fire. Egypt is divided into two regions:

i Region A (urban area)
 1 - City of Cairo
 2 - City of Alexandria
 3 - El Hay El Efringy of Esmalia
 4 - El Hay El Efringy of Sues

ii Region B (rural area)
 Rest of the country

Table (2-9) shows the amount of premium in each region for each class of insurance.
In addition, four major factors are used in classifying and rating for commercial fire risks. These four factors must be considered by the insurance rating bureau engineers who establish the rates. The four major factors are construction, occupancy, protection and exposure (the COPE factors) (Robert B. Holton, 1973 p. 384-388).

1 - Construction:

A basic consideration in rating and underwriting is the construction of the building insured or containing the property insured. Various types of material may be used such as wood, steel, cement. This material may be classified as fire resistive, semi-fire resistive and combustible.

Egyptian rating organisation groups building construction into two groups (Appendix (2.1) presents the rates in force from 1970-1979).

a - Fire-resistive construction which constitutes 98% of the insured property.
b - Buildings constructed of frame wood or a percentage of frame wood. This class is divided into three categories:
i wood amounting to 25% of construction material.
ii wood amounting from 25% to 50% of construction material.
iii wood amounting from 50% to 100% of construction material.

Other factors may enter into the construction consideration too. One of these is the number of fire divisions in the building and whether the partitions which divide the building into sections are properly restricting the spread of fire. This factor is of vital interest in selecting risks as well as in rating.
2 - Occupancy :-

The use of a building and the type of business within it, constitutes the occupancy. Multiple occupancies are common in commercial buildings, so the underwriter must identify all occupancies. Many considerations enter into the occupancy factor. The type of operation performed is critical, inherent hazards in such operations as spray painting, cooking, furniture refurnishing and the handling of the inflammable liquids and gases. The materials being used are important. Some materials are more inflammable than others. Other materials are more susceptible to damage by smoke or any water which is used to extinguish a fire.

Smoking, cooking, air-conditioning equipment, heating, wood working and many other potential hazards of occupancies also must be considered. Even a vacant building has its hazards, even when those caused by people and operations in other occupancies are not present; the unique hazard of vacancy does exist.

Rate organisation divides equipment or materials involved in industrial hazards into 6 groups as in Appendix (2.2).

3 - Protection (Loss Prevention) :-

Loss prevention factors measure the reduction of risks by the reduction of the chance that a loss will occur or by reducing its severity if it does occur. Protection can be divided into two elements: (1) public protection, which is an element of location referred to earlier, (2) private protection. Private protection refers to the insured's effort to protect his property by, for example, the installation of an automatic sprinkler system and alarms, watchman
services, portable extinguishers, chemical systems and other means of preventing, detecting and extinguishing fires. Usually, this private protection results in premium reduction. In Egypt the amount of reduction is determined by the rating organisation engineers on their own individual basis.

4 - Exposure :-

The chance of loss from an outside source is called exposure. The outside source may be another building, a railroad, or many other exterior exposures. An exposure may be presented from other occupancies in the building, so a great deal of information must be secured about such occupancies. In addition, the degree of exposure is important, involving the question of distance between risks, fire division, the openings through stair wells and air ducts, and all other factors which could prevent or contribute to the spread of fire. The degree to which the outside sources expose the risk to loss is important in underwriting and rating.

It would seem that this factor is under-estimated by the insurance inspector in the Egyptian market, because in many cases the cause of the accident is outside exposure, and outside exposure, such as a main electric box near the object insured is rated as a standard risk as also is a window in a shop looking on to a light shaft full of waste, which is easy to notice.

Rating organisation in Egypt divides the country into two regions as already stated. For each class of risk the organisation establishes specific rates for each region. Each class of risk consists of a number
of categories (risks) which are assumed to be homogeneous and have the same amount of hazard on average.

At this point the question arises as to whether the classification is correct i.e. whether the categories are correctly grouped, and whether this question can be answered statistically.

Since the rating plans are designed to adjust the price of insurance for each class on the basis of the loss experience of each class, the loss portion of the premiums (pure premium) should approximate to the loss payments. There are two reservations to this assumption:

1 - The hazard of any risk (category) as measured by the expected loss cost per exposure unit may differ from that of the class because of the crudeness of the classification (grouping).

2 - Due to chance fluctuation alone, the actual loss of any category (risk) may differ from what would be expected even if its hazard were known; in other words, even if the risk were perfectly classified, there would be no reason to expect that the actual losses in any year would be equal to the expected losses.

3 - A third reservation should also be mentioned, namely that the pure premium which is the loss portion of the office rate is itself an estimate of the hazard of the group and the expected loss determined on the basis of this premium seldom reflects the true average hazard. Furthermore, even if it did, errors in the application of the rate would distort the result.

For the present, it will be assumed that the pure premium is a true estimate of the class hazard and that rates are applied correctly.
The only types of variation that will be considered, therefore, will be those due to the crudeness of the rating classification and to chance.

2.5 **Common statistical tests of significant differences**

Statistical theory is largely concerned with sampling from populations; and much of the observation of insurance experience is a sampling process (David Haston, 1960). In our study the population will consist of all people who are potential users of a given line of insurance. This population is divided into subpopulations (classes = strata) so that the risk units (categories) in each class are homogeneous. A sample of size \(N \) is drawn, where \(N \) is the number of policyholders. The loss of each policyholder is observed, and assigned to its class, and these losses make up the sample data, assuming that the forces producing the actual losses are to continue to operate without limit of time.

We want to apply statistical tests to examine the homogeneity of the classes. A statistical hypothesis is made about a parameter or a measure defining the risk class. This hypothesis may state for example that the expected losses per exposure unit of risk (for any category in the class) are equal to those of the class which may be calculated from the pure premium. Chance fluctuation alone will cause the sample values to vary around the hypothecated parameter. In other words differences are expected. The validity of the statistical hypothesis is tested by deciding whether the difference is greater than can be accounted for by chance i.e. is significant. A decision can then be made as to whether the category was or was not properly classified.
But this is always a probability statement. It cannot be stated that the category is definitely not a member of that class. All that can be said is that if the hypothesis is true, the probability of drawing such a deviant is very small. On the other hand, if the difference is not statistically significant, the hypothesis that the risk is properly classified is accepted, but again this statement is only a probability statement. What is meant, is that if the classification is correct, the chance that the actual losses of the risk would differ from those expected on the basis of the class rate by as much as, or more than, is observed, is greater than the critical level of significance.

Usually the level of significance is set at a probability of .01 or .05 but if it is needed to be less conservative, it can be moved up to .1 or .2. It has to be borne in mind also that in rejecting the hypothesis because the observed difference of observation from hypothesis is larger than expected by chance e.g. beyond a chance of .05 may be false. Since a chance of .05 means that the event must occur once in twenty times and the observation may indeed be just this occurrence [Type I error]. Also, in accepting the hypothesis because the difference is small may equally be in error since the difference may, in fact, be a large deviation from a difference true rate (Type II error). The likelihoods of the two types of error are related, one increasing as the other decreases, with a change in the level of significance chosen. It is not possible to eliminate either one without making the other a certainty. (The two types of error are indicated in Table [2-14]).
<table>
<thead>
<tr>
<th>ACTION</th>
<th>Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>True</td>
</tr>
<tr>
<td>Accept hypothesis</td>
<td>Correct</td>
</tr>
<tr>
<td></td>
<td>Not True</td>
</tr>
<tr>
<td>Not accept hypothesis</td>
<td>Type I error</td>
</tr>
<tr>
<td></td>
<td>Correct</td>
</tr>
</tbody>
</table>

The only solution to this problem is to effect a compromise. Usually one type of error is more important in practice than the other, and the probability of that type of error is fixed at a desired value, the probability of the other type being held at a minimum by choosing an appropriate test of significance and, if possible, an appropriate sample size. These tests are valuable in that they indicate whether it is reasonable to believe that the risk is properly classified.
Distribution of claims according to the cause of fire

TABLE (2.1)

<table>
<thead>
<tr>
<th>CAUSE OF LOSS</th>
<th>PERCENTAGE</th>
<th>AVERAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Of all claims</td>
<td>excluding extremes</td>
</tr>
<tr>
<td>CIGARETTES</td>
<td>14.24</td>
<td>27.02</td>
</tr>
<tr>
<td>ELECTRICAL SHORTAGE</td>
<td>11.62</td>
<td>22.05</td>
</tr>
<tr>
<td>CHIMNEY SPARKLE*(l)</td>
<td>13.19</td>
<td>4.86</td>
</tr>
<tr>
<td>PURPOSE*(l) FIRE</td>
<td>11.11</td>
<td>10.70</td>
</tr>
<tr>
<td>EXPLOSION</td>
<td>6.06</td>
<td>11.50</td>
</tr>
<tr>
<td>TECHNICAL FAULT</td>
<td>5.41</td>
<td>10.26</td>
</tr>
<tr>
<td>SELF INTERACTION</td>
<td>3.39</td>
<td>6.43</td>
</tr>
<tr>
<td>DIRECT FIRE</td>
<td>3.31</td>
<td>6.29</td>
</tr>
<tr>
<td>FLAMMABLE LIQUID</td>
<td>0.25</td>
<td>0.47</td>
</tr>
<tr>
<td>VANDALISM</td>
<td>0.14</td>
<td>0.26</td>
</tr>
<tr>
<td>DAMAGE BY WATER</td>
<td>0.06</td>
<td>0.11</td>
</tr>
<tr>
<td>CHEMICAL INTERACTION *(g)</td>
<td>31.22</td>
<td>0.05</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

* within the period of the investigation, there were three very extreme accidents
 a - one accident in 1978 amounted to 2,201,200 *(e)
 b - two accidents in 1975: one amounted to 750,143 *(g) and the other one resulted in three claims amounting to 397,910 *(e).
Graph (2.1)a

Percentage of number and amount of loss because of cigarettes

--- percentage of number of claims

--- percentage of amount of claims

Graph (2.1)b

Percentage of number and amount of claims because of electrical shortage
Average claim and loss ratio for each class of business

TABLE (2.2)

<table>
<thead>
<tr>
<th>Class of insurance</th>
<th>Urban area</th>
<th>Rural area</th>
<th>Urban & rural areas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>Loss Ratio</td>
<td>Average</td>
</tr>
<tr>
<td>Residential building</td>
<td>416</td>
<td>.025339</td>
<td>694</td>
</tr>
<tr>
<td>Hotels</td>
<td>1248</td>
<td>.041569</td>
<td>2949</td>
</tr>
<tr>
<td>Stores & shops</td>
<td>1705</td>
<td>.133083</td>
<td>1359</td>
</tr>
<tr>
<td>Wood work</td>
<td>2439</td>
<td>.249415</td>
<td>9819</td>
</tr>
<tr>
<td>Metal work</td>
<td>432</td>
<td>.012786</td>
<td>260</td>
</tr>
<tr>
<td>Cinema & theatres</td>
<td>801</td>
<td>.15050</td>
<td>0</td>
</tr>
<tr>
<td>Garages</td>
<td>6991</td>
<td>.225305</td>
<td>333</td>
</tr>
<tr>
<td>Warehouses</td>
<td>9972</td>
<td>.455199</td>
<td>5839</td>
</tr>
<tr>
<td>Rice & flour mills</td>
<td>2585</td>
<td>.309849</td>
<td>3067</td>
</tr>
<tr>
<td>Food industry</td>
<td>2280</td>
<td>.031197</td>
<td>7949</td>
</tr>
<tr>
<td>Textile industry</td>
<td>889</td>
<td>.080741</td>
<td>3850</td>
</tr>
<tr>
<td>Other industry</td>
<td>7444</td>
<td>.720407</td>
<td>29930</td>
</tr>
</tbody>
</table>

\[
\text{Average} = \frac{\text{amount of claims}}{\text{no. of claims}}
\]

\[
\text{Loss Ratio} = \frac{\text{amount of claim}}{\text{amount of premium}}
\]
Loss ratio for public and private ownership

TABLE (2.3)

<table>
<thead>
<tr>
<th>YEAR</th>
<th>LOSS RATIO</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PUBLIC</td>
<td>PRIVATE</td>
<td>PUBLIC & PRIVATE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>.4666</td>
<td>.0614</td>
<td>.3838</td>
</tr>
<tr>
<td>78</td>
<td>.1520</td>
<td>2.4310</td>
<td>.5379</td>
</tr>
<tr>
<td>77</td>
<td>.2115</td>
<td>.0830</td>
<td>.1872</td>
</tr>
<tr>
<td>76</td>
<td>.1759</td>
<td>.0325</td>
<td>.1527</td>
</tr>
<tr>
<td>75</td>
<td>.4240</td>
<td>.8823</td>
<td>.4871</td>
</tr>
<tr>
<td>74</td>
<td>.0987</td>
<td>.0753</td>
<td>.0960</td>
</tr>
<tr>
<td>73</td>
<td>.1196</td>
<td>.0353</td>
<td>.1109</td>
</tr>
<tr>
<td>72</td>
<td>.1337</td>
<td>.0172</td>
<td>.1244</td>
</tr>
<tr>
<td>71</td>
<td>.1774</td>
<td>.0657</td>
<td>.1574</td>
</tr>
<tr>
<td>70</td>
<td>.0850</td>
<td>.0750</td>
<td>.0838</td>
</tr>
</tbody>
</table>

\[
\text{Loss Ratio} = \frac{\text{amount of loss}}{\text{amount of premium}}
\]
The total amount of premium paid for the class of non life insurance and the total premium paid for the class of fire insurance

TABLE (2.4)

<table>
<thead>
<tr>
<th></th>
<th>NON LIFE* INSURANCE</th>
<th>FIRE INSURANCE*</th>
<th>PERCENTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>79669</td>
<td>17129</td>
<td>21.5</td>
</tr>
<tr>
<td>78</td>
<td>69748</td>
<td>13662</td>
<td>19.6</td>
</tr>
<tr>
<td>77</td>
<td>50893</td>
<td>9825</td>
<td>19.3</td>
</tr>
<tr>
<td>76</td>
<td>43494</td>
<td>8218</td>
<td>18.8</td>
</tr>
<tr>
<td>75</td>
<td>38272</td>
<td>8064</td>
<td>21.1</td>
</tr>
<tr>
<td>74</td>
<td>29165</td>
<td>6241</td>
<td>21.4</td>
</tr>
<tr>
<td>73</td>
<td>18874</td>
<td>5703</td>
<td>30.0</td>
</tr>
<tr>
<td>72</td>
<td>16298</td>
<td>4476</td>
<td>27.5</td>
</tr>
<tr>
<td>71</td>
<td>16273</td>
<td>4451</td>
<td>27.3</td>
</tr>
<tr>
<td>70</td>
<td>15145</td>
<td>4237</td>
<td>28.0</td>
</tr>
</tbody>
</table>

* amount in £1000
<table>
<thead>
<tr>
<th>Class of insurance</th>
<th>Premium (Public)</th>
<th>Premium (Private)</th>
<th>Total</th>
<th>Percentage of the class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential building</td>
<td>1303686</td>
<td>713996</td>
<td>2017682</td>
<td>.0621437</td>
</tr>
<tr>
<td>Hotels</td>
<td>367064</td>
<td>470565</td>
<td>837629</td>
<td>.0257986</td>
</tr>
<tr>
<td>Stores & shops</td>
<td>1847435</td>
<td>1077251</td>
<td>2924686</td>
<td>.0900787</td>
</tr>
<tr>
<td>Woodwork</td>
<td>68488</td>
<td>42877</td>
<td>111365</td>
<td>.0034300</td>
</tr>
<tr>
<td>Metalwork</td>
<td>186282</td>
<td>68942</td>
<td>255244</td>
<td>.0078608</td>
</tr>
<tr>
<td>Cinema & theatres</td>
<td>15389</td>
<td>19160</td>
<td>34549</td>
<td>.0010641</td>
</tr>
<tr>
<td>Garages</td>
<td>626227</td>
<td>294607</td>
<td>920834</td>
<td>.0283613</td>
</tr>
<tr>
<td>Warehouses</td>
<td>6090183</td>
<td>1303339</td>
<td>7393522</td>
<td>.2277172</td>
</tr>
<tr>
<td>Rice & flour mills</td>
<td>520723</td>
<td>0</td>
<td>520723</td>
<td>.0160380</td>
</tr>
<tr>
<td>Food industry</td>
<td>2691161</td>
<td>159179</td>
<td>2850340</td>
<td>.0877892</td>
</tr>
<tr>
<td>Textile industry</td>
<td>7635293</td>
<td>198537</td>
<td>7833830</td>
<td>.2412785</td>
</tr>
<tr>
<td>Industry</td>
<td>5886992</td>
<td>880635</td>
<td>6767627</td>
<td>.2084399</td>
</tr>
<tr>
<td>Total</td>
<td>27238923</td>
<td>5229088</td>
<td>32468011</td>
<td>1.0000000</td>
</tr>
</tbody>
</table>

Distribution of the premium between the classes of insurance
The distribution of unpaid claims according to the cause of the accident

TABLE (2.6)

<table>
<thead>
<tr>
<th>Year</th>
<th>Damage by Water</th>
<th>Liability</th>
<th>Accident</th>
<th>Vandalism</th>
<th>Electrical Surge</th>
<th>Other Causes</th>
<th>Total</th>
<th>Total no of claims</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>16</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>34</td>
<td>.109</td>
</tr>
<tr>
<td>78</td>
<td>12</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>36</td>
<td>.105</td>
</tr>
<tr>
<td>77</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>11</td>
<td>42</td>
<td>.120</td>
</tr>
<tr>
<td>76</td>
<td>12</td>
<td>8</td>
<td>3</td>
<td>12</td>
<td>10</td>
<td>20</td>
<td>65</td>
<td>.240</td>
</tr>
<tr>
<td>75</td>
<td>14</td>
<td>5</td>
<td>2</td>
<td>-</td>
<td>5</td>
<td>4</td>
<td>30</td>
<td>.136</td>
</tr>
<tr>
<td>74</td>
<td>11</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>10</td>
<td>6</td>
<td>40</td>
<td>.172</td>
</tr>
<tr>
<td>73</td>
<td>16</td>
<td>6</td>
<td>12</td>
<td>3</td>
<td>8</td>
<td>3</td>
<td>48</td>
<td>.180</td>
</tr>
<tr>
<td>72</td>
<td>13</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>38</td>
<td>.151</td>
</tr>
<tr>
<td>71</td>
<td>18</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td>10</td>
<td>5</td>
<td>50</td>
<td>.231</td>
</tr>
<tr>
<td>70</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>9</td>
<td>31</td>
<td>.154</td>
</tr>
</tbody>
</table>

* The insurance contract in Egypt does not indemnify the insured against damage by electrical surge
Average fraction of full cover of insurance for under insured

TABLE (2.7)

<table>
<thead>
<tr>
<th>Year</th>
<th>Average proportion of full insurance for under insured *1</th>
<th>No. of cases</th>
<th>Number of cases as a percentage of total number of claims</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>.4466</td>
<td>48</td>
<td>16.2</td>
</tr>
<tr>
<td>78</td>
<td>.5546</td>
<td>40</td>
<td>13.0</td>
</tr>
<tr>
<td>77</td>
<td>.6400</td>
<td>18</td>
<td>6.1</td>
</tr>
<tr>
<td>76</td>
<td>.2976</td>
<td>6</td>
<td>2.9</td>
</tr>
<tr>
<td>75</td>
<td>.6527</td>
<td>18</td>
<td>9.5</td>
</tr>
<tr>
<td>74</td>
<td>.7167</td>
<td>20</td>
<td>10.4</td>
</tr>
<tr>
<td>73</td>
<td>.7104</td>
<td>10</td>
<td>4.6</td>
</tr>
<tr>
<td>72</td>
<td>.5721</td>
<td>16</td>
<td>7.5</td>
</tr>
<tr>
<td>71</td>
<td>.4711</td>
<td>16</td>
<td>9.6</td>
</tr>
<tr>
<td>70</td>
<td>.7094</td>
<td>18</td>
<td>10.6</td>
</tr>
</tbody>
</table>

*1 Average insurance for the under insured = \[\sum \text{sum insured} \times \text{fraction of full insurance} / \sum \text{sum insured} \]
Rate of reduction for period more than a year

TABLE (2.8)

<table>
<thead>
<tr>
<th>Period In Years</th>
<th>Reduction per unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>.125</td>
</tr>
<tr>
<td>3</td>
<td>.1667</td>
</tr>
<tr>
<td>4</td>
<td>.1875</td>
</tr>
<tr>
<td>5</td>
<td>.2000</td>
</tr>
<tr>
<td>6</td>
<td>.208</td>
</tr>
<tr>
<td>7</td>
<td>.214</td>
</tr>
<tr>
<td>8</td>
<td>.218</td>
</tr>
<tr>
<td>9</td>
<td>.222</td>
</tr>
<tr>
<td>10</td>
<td>.229</td>
</tr>
</tbody>
</table>
The total premiums paid in each region for each class of insurance

TABLE (2.9)

<table>
<thead>
<tr>
<th>Class of insurance</th>
<th>Urban area A</th>
<th>Rural area B</th>
<th>Total A+B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential building</td>
<td>1821457</td>
<td>196226</td>
<td>2017682</td>
</tr>
<tr>
<td>Hotels</td>
<td>780567</td>
<td>57063</td>
<td>837629</td>
</tr>
<tr>
<td>Stores & shops</td>
<td>2690772</td>
<td>233911</td>
<td>2924686</td>
</tr>
<tr>
<td>Woodwork</td>
<td>88026</td>
<td>23339</td>
<td>111365</td>
</tr>
<tr>
<td>Metalwork</td>
<td>236741</td>
<td>18483</td>
<td>255224</td>
</tr>
<tr>
<td>Cinema & theatres</td>
<td>31920</td>
<td>2629</td>
<td>34549</td>
</tr>
<tr>
<td>Garages</td>
<td>682594</td>
<td>238240</td>
<td>920834</td>
</tr>
<tr>
<td>Warehouses</td>
<td>4556553</td>
<td>2836970</td>
<td>7393522</td>
</tr>
<tr>
<td>Rice and flour mills</td>
<td>133478</td>
<td>387245</td>
<td>520723</td>
</tr>
<tr>
<td>Food industry</td>
<td>2411733</td>
<td>438609</td>
<td>2850340</td>
</tr>
<tr>
<td>Textile industry</td>
<td>7698992</td>
<td>134837</td>
<td>7833830</td>
</tr>
<tr>
<td>Other industries</td>
<td>6137689</td>
<td>629938</td>
<td>6767627</td>
</tr>
<tr>
<td>Total</td>
<td>27270522</td>
<td>5197489</td>
<td>32468011</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Rate for £1000</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>1 - Building construction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>constructed of fire resistive material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a - residential only</td>
<td></td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>b - all or part of the building used as retail shop or warehouse</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>ii</td>
<td>constructed of frame wood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a - frame wood constitutes up to 25% of construction material</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>b - frame wood constitutes up to 50% of construction material</td>
<td></td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>c - frame wood constitutes over 50% of construction material</td>
<td></td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>2 - Furniture</td>
<td></td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>jewellery and valuable objects if they constitute more than 25% of the sum insured</td>
<td>1.875</td>
<td></td>
</tr>
<tr>
<td>3 - Hotels</td>
<td></td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>for building construction</td>
<td>1.875</td>
<td></td>
</tr>
<tr>
<td>ii</td>
<td>for furniture</td>
<td>4.125</td>
<td></td>
</tr>
<tr>
<td>5 - Public places</td>
<td></td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>construction</td>
<td>1.875</td>
<td></td>
</tr>
<tr>
<td>ii</td>
<td>furniture</td>
<td>4.3125</td>
<td></td>
</tr>
<tr>
<td>7 - Churches & Mosques</td>
<td></td>
<td>.72</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>construction</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>ii</td>
<td>furniture</td>
<td>2.75</td>
<td></td>
</tr>
<tr>
<td>Rate for £E1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.9</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.25</td>
<td>2.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.125</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8 - Hospitals & Schools
i construction
ii furniture

9 - Building under construction
Appendix 2-2

Group I

Acetin acid in plastic tanks
Aluminium oxide
Arsenic oxide
Beer
Carbon dioxide bottles
Carbrolactum in iron barrels
Carbon tetrachloride
Copper
Fashion shops
Formica
Freon bottles
Grain
Graphite powder
Iron
Iron oxide
Lead
Magnesium oxide
Nickel oxide
Rice
Shoe shop
Thread (cotton, silk, man-made fibre)
Tin
Wheat grain
Wood paste
Group 2

Animal food
Artwork shops
Bicycle retailer
Bookbinder
Bookshop
Calcium cyanide
Calcium nitrate
Calcium phosphate (super)
Carpet retailer or warehouse
Chocolate
Coffee
Coffee shop
Diaries
Dried dates
Dry cleaners
Electrical equipment retailer
Fragrant odours
Furniture shops and warehouses
Hairdresser
Jewellers shop
Lighting equipment
Medical wholesaler
Optician
Oxygen bottle
Painting
Paper in warehouses
Pastry shop
Peanuts
Pharmacy
Photographer
Plumber
Printers
Public houses
Raw wool
Red or yellow mercuric oxide
Restaurant
Shoe repair
Sports
Stationary
Sugar in warehouses
Sulphur dioxide
Tailor
Tea
Tobacco retail shops
Unlicenced grocers
Watch retailer
Wines
Wool fibre
Group 3

Aluminium bicarbonate
Aluminium sulphate
Ammonium hydroxide
Animal hair
Antimony pentoxide
Baker
Black mercury oxide
Borax
Calcium hydroxide
Calcium oxide
Calcium sulphate
Cement
China
Copper sulphate
Dusting powder
Electrical workshops
Ferrous chloride
Ferrous sulphate
Fertilizer
Fire arms
Flour
Glass
Glue
Hatter
Insecticides (paste or powder)
Ironmonger
Jasmine (paste)
Licenced grocers

Lime water

Methyl chloride

Nicotine sulphate

Nylon

Pastry shop with baking facility

Photo equipment

Plastics

Polyethylene (granules)

Potassium bicarbonate

Potassium bromide

Potassium chloride

Potassium sulphate

Potassium persulphate

Records

Red lead oxide

Silk fibres

Sodium bicarbonate

Sodium bromide

Sodium hypersulphate

Sodium persulphate

Sodium silicate

Sodium sulphide

Starch

Synthetic fibres

Talcum powder

Trichlorethylene

Zinc Powder
Group 4

Ammunition
Amylcetate
Anhydrous acetic acid
Barium
Bitumen (asphalt)
Benzyl acetate
Butter
Camphor
Candles
Cellulose fibres
Cork
Ethyl acetate
Fish oil
Fish fat
Formic acid
Fruit spirit
Fur
Henna
Hexa methylene
Hydrochloric acid
Industrial odours
ISO propyl alcohol 76%
Liquid paint (not cellulose)
Lubricants
Man made silk fibre
Matches
Medical cotton
Methylchloride
Napthalene
Potassium hydroxide
Sheep fat
Shoe polish
Sodium hydroxide
Spirits 70% alcohol
Stearic acid
Sulphuric acid
Tar
Vaseline
Vegetable oil
Wood
Zinc oxide
Group 5

Acetic acid
Alcoholic beverage
Ammonium nitrate
Aniline
Calcium carbide
Chromic acid
Concentrated extract (inflammable)
Ethyl alcohol
Hydrogen in iron cylinders
Insect killer (aerosol)
Liquid paraffin
Man-made wool fibre
Metal varnishings
Nitric acid
Nitro benzene
Oxalic acid
Phosphric matches
Raw rubber
Red phosphorous
Sodium nitrate
Turpentine oil
3.1 Introduction

Experience rating is one of the possible methods of trying to reach reasonable premiums by starting from a hypothetical value (say p_0) and subsequently correcting it by using actual claims experience as it emerges.

Witney (1918) established the basis for experience rating and arrived at an analytical formula which is known as the credibility formula for experience rating.

$$p = p_o + z(p_1 - p_o) \quad (3.1-1)$$

where

- p_1 = the existing class rate
- p_o = the rate indicated by the current experience
- z = the allowed percentage of the difference between the existing rate and the rate developed from the recent experience of the risk
- p = the final rate for the risk

Actually, the formula (3.1-1) has some important advantages:

1. It presents a functional relationship between the existing rate and the current experience.

*"reasonable premiums, means at least that the mean premium should not be too far from the actual expected value of claims, and also should not show too much random fluctuation. (R. E. Beard et. al. Risk Theory". Cambridge University Press, 1979)
2 - the credibility factor \(z \) is a function of the data used in experience rating, which would make the credibility formula respond to the indication of the current experience.

The current experience, and consequently \(z \), will depend on four factors:

1 - Risk-exposure
2 - the degree of hazard
3 - the degree of risk homogeneity within the class
4 - credibility of the existing rate.

It is evident that the larger the number of units of exposure, the larger the credence that can be given to the risk-experience. Also the same relationship holds in the case of the hazard; the larger the degree of the hazard, the larger the number of the accidents for the same exposure and therefore the more trustworthy the average. The standard deviation can be taken as a measure of dispersion. If the risk is homogeneous within the class, it means that the standard deviation is small, and the risk-experience that departs from the average can be regarded as due to chance rather than to any inherent variability in the degree of hazard. The final factor to be taken into account, is the credibility of the existing rate. It would be wise to give greater weight to the existing rate if it is established upon sufficient experience.

Development in the use of formula (3.1-1) can be divided into two approaches

1 - classical approach
2 - risk theory approach
3.2 Credibility Experience Rating - Classical Approach

It is common practice for an insurance company to adjust their current rate using their past experience. The most popular formula used is

\[\theta = \frac{A - E}{E} \] \hspace{1cm} (3.2-1)

where:
- \(A\) = Actual losses during the period of experience
- \(E\) = Expected loss (earned pure premium during the period of experience)
- \(\theta\) = Amount of adjustment (modification factor)

Formula (3.2-1) is simple and logical, but it does not account for the number of claims or the number of units of exposure during the period of the experience rating. Multiplying formula (3.2-1) by a credibility factor would account for factors which affect the rate adjustment (Perryman, 1938) such as:

1. Number of units of exposure
2. Number of claims
3. Amount of actual loss

The basic credibility formula for modification of the rate is

\[\theta = \frac{zA + (1-z)E}{E} \] \hspace{1cm} (3.2-2)

The numerator of (3.2-2) is the weighted mean of the previously expected loss ratio and the observed actual loss ratio.

Formula (3.2-2) can be written in the form
Formula (3.2-3) consists of three terms (Perryman, 1938):

1 - unity corresponding to no change from existing rate
 for instance, if $z = 0$.
2 - $-z$ being the credit if the actual loss is zero i.e. $A = 0$.
3 - $+z \frac{A}{E}$ being the change for the actual loss A compared with
 expected loss.

Also formula (3.2-2) indicates for two extreme values

$z = 0$ which indicates zero credibility value for the current
experience.
$z = 1$ which indicates full credibility for the current
experience when a large volume of risk experience is
available.

The main problem is to determine z. There is no agreed statistical
techniques available to determine z. Most of the methods used for
determining z are empirical and although they worked in practice,
they were hard to justify mathematically (Mayerson, 1964).

3.2-1 Some Properties of z

Witney in his paper (1918) arrives at two expressions as approx-
imations for the value of z, called first and second approximations.
The first approximation is the one most known and since applied.
\[z = \frac{p_n}{p_{n+k}} = \frac{E}{E+k} \quad (3.2-4) \]

where \(k \) is a constant

Actually \(k \) is a function in \(E \) as it is from Witney derivation, it is assumed constant for practical applications.

Perryman (1938) says the value \(k \) is determined from consideration of the "swing" it is desired to give to the plan.

Expression (3.2-4) gives \(z \) a value between 0 and 1, continually increasing as \(E \) increases but never quite reaching unity. In fact, if \(z \) is plotted as a function of \(E \), \(z \) moves along a branch of the hyperbola which has \(z = 1 \) as an asymptote.

From equation (3.2-4), \(z \) must satisfy the conditions

1 - \(z \) should not be less than zero or greater than unity
 \[0 \leq z < 1. \]

2 - \(z \) should increase as the size of the risk increases.

3 - as the size of the risk increases the percentage charge for any loss of given size should decrease.

Condition (1) is directly obtained from the relation between \(z \) and \(E \). Also condition (2) can be derived from the same relationship, since as \(E \) increases, \(z \) asymptotically approaches to 1 (point of self rating).

For condition (3), if we go back to the third part of equation (3.2-3)

* "Swing" of the plan is defined as the credit of the debit granted on the basis of a given loss record. Paul Darweiler "A Survey of Credibility in Experience Rating" PCAS XXI 1934 (1-25).
we find that the risk charge is $z \frac{A}{E}$, so that if E is increased for any given A (amount of loss), the risk charge will decrease with the increase of E. This condition can be expressed mathematically as

$$i \ - \ 0 < z < 1$$

$$ii \ - \ \frac{dz}{dE} \geq 0 \text{ not negative}$$

$$iii \ - \ \frac{d}{dE} \left(\frac{z}{E}\right) \leq 0$$

which satisfy equation (3.2-4), where k is greater than zero. Equation (3.2-4) is known as the k-formula.

3.2-2 Adjustment for self rating

It has been shown that formula (3.2-4) for z gives values that approach unity as E increases, but never reaches this value. However, for practical reasons it is often desirable that for risks over a certain size the credibility z be exactly unity, i.e. in terms of equation (3.2-2), ignoring the existing rate when a certain size of the risk experience becomes available. When the size of experience reaches this point the risk is said to be self-rated. Considering E as a measure for the risk experience, the E_s is the self-rating point. If the point of self-rating is fixed, equation (3.2-4) would be modified to indicate this condition. There are several approaches to this modification. The obvious one is putting equation (3.2-4) in the form

$$1 - z = \begin{cases} \frac{E}{E+k} & \text{if } E < E_s \\ 1 & \text{if } E \geq E_s \end{cases}$$

(3.2-6)
which implies a sudden change at the point E_s and this is not desirable.

2 - draw a straight line from an arbitrary point $(E_Q, E_Q/E_Q+k)$ to the self rating point (E_s, L) [Fig. 1].

\[z = \frac{E}{E+k} \quad \text{if } E < E_Q \]
\[= \frac{k}{(E_Q+k)(E_s-E_Q)} \left(\frac{E}{E_Q} + \frac{E_Q}{E_s-E_Q} \right) \quad E_Q \leq E \leq E_s \]
\[= 1 \quad \text{if } E > E_s \]

This also would have discontinuity at E_Q and E_s.

3 - instead of using an arbitrary point E_Q, draw a tangent from the point $(E_s, 1)$, touching the curve $z = \frac{E}{E+k}$ at $E = E_Q$.

66
\[z = \frac{E}{E+k} \quad \begin{cases} \text{if} \quad E < E_Q \vspace{1em} \\ \text{if} \quad E_Q \leq E \leq E_s \vspace{1em} \\ \text{if} \quad E > E_s \end{cases} \] \hspace{1em} (3.2-8) \]

This expression will have discontinuity at \(E_s \).

4 - It would have been better, while making the change, to have drawn a curve (i.e. second degree parabola) touching the line \(z = 1 \) at \(E = E_s \) and also touching the curve \(z = \frac{E}{E+k} \) at \(E = E_Q \).

A simple parabola of the \(m \)th degree

\[z = 1 - \frac{H(E_s-E)^m}{E_s - E} \]

where \(H \) is constant and \(m \) not less than one, will touch \(z = 1 \) at
\(E = E_s \) and \(z = E/E+k \) at \(E = E_Q \)

\[\text{if} \quad \frac{k}{E_Q+k} = H(E_s-E_Q)^m \]

and \[\frac{k}{(E_Q+k)^2} = mH(E_s-E_Q)^{m-1} \]

from which \(m = \frac{E_s-E_Q}{E_Q+k} \) and \(H = \frac{km}{(E_s-E_Q)^{m-1}} \) \hspace{1em} (3.2-9)

Then we can either chose \(m > 1 \) and then

\[E_Q = \frac{E_s-mk}{m+1} \] \hspace{1em} (3.2-10) \]

and \(H = \frac{k(m+1)^{m+1}}{m^m(E_s+k)^{m+1}} \)

or chose \(E_Q \) which must be less than \(E_Q = \frac{E_s-k}{2} \), then \(m \) and \(H \) can...
be calculated from formula (2.2-6).

If \(E_Q \) is taken as zero \(m = \frac{E_s}{k}, H = E_s - \frac{E_s}{k} \)

Then by taking \(\frac{E_s}{k} > m > 1 \) or \(0 \leq E_Q < \frac{E_s - k}{2} \)

we can obtain an equation of a simple parabola (not usually second degree) which touches the hyperbola \(z = \frac{E}{E+k} \) at \(E = E_Q \) and the line \(z = 1 \) at \(E = E_s \).

Formula (3.2-1) would be

\[
\begin{align*}
 z &= \frac{E}{E+k}, \quad 0 \leq E \leq E_Q \\
 &= 1 - H(E_s - E)^m, \quad 0 \leq E \leq E_s \\
 &= 1, \quad E > E_s
\end{align*}
\]

To determine which parabola (or which value of \(E_Q \)) other conditions have to be called upon.

Probably for most purposes the second degree parabola obtained by putting \(m = 2 \) will be satisfactory and in this case

\[
E_Q = \frac{(E_s - 2k)}{3}
\]

\[
H = \frac{27k}{4(E_s + k)^3}
\]

and \(z = 1 - \frac{27k(E_s - E)^2}{4(E_s + k)^3} \)

Also, it will be recognised that cases (1), (2) and (3) can be obtained by appropriate choices of \(m \) and \(E_Q \) and case (4) can be obtained by
putting $m = 1$. Note also that if $E_Q = 0$ we use the parabola all the way from 0 to E_s in place of the original hyperbola.

5 - In the previous forms k is constant; this form is suggested.

$$z = \frac{E}{E + k_E} \quad (3.2-12)$$

where k_E is decreasing as E increases. k_E has the following properties

$$k_E = k \quad \text{for } E \leq Q$$

$$\frac{dk_E}{dE} = 0 \quad \text{at } E_Q \text{ and } E_s$$

$$k_E = 0 \quad \text{at } E_s$$

This form is suggested also by Perryman (1938).

6 - Mark Kormes (1952) suggests another approach to the point of self-rating, where z would begin with a certain size of risk and would reach self-rating ($z = 1$) for another size, both lower and upper limits being selected by judgment.

$$z = \frac{E + f_k}{E + k} \quad (3.2-13)$$

where f is a function of E which varies from 0 when $E = E_Q$ to 1 when $E = E_s$. The conditions for f are

i) \(\frac{df}{dE} = 0 \quad E = E_Q \text{ and } E = E_s \)

ii) \(\frac{dz}{dE} > 0 \quad \Rightarrow f = 0 \quad E < E_Q \)
\[\frac{d}{dE} \frac{z}{E} < 0 \quad \Rightarrow \quad f = 1 \quad E > E_s \]

Condition i) leads to a Bernoullian differential equation

\[\frac{df}{dE} = Af^2 + Bf \]

which has a solution

\[f = \frac{c}{1 + e^{a + bE}} \]

To determine \(c, a \) and \(b \), select \(f_1 \), \(f_2 \) and \(f_3 \) at suitable equidistant values of \(f \); then we have the following relation

\[c = \frac{2f_1f_2f_3 - f_2^2(1+f_2)}{f_1f_3 - f_2^2} \]

\[b = \frac{1}{n} \ln \frac{f_1(c-f_2)}{f_2(c-f_1)} \]

\[a = \ln \frac{(c-f_1)}{f_1} \]

where \(n \) is the number of units on the \(E \) axis between two consecutive values of \(E \) corresponding to \(f_1 \), \(f_2 \) and \(f_3 \). Choice of the three values of \(f \) will always be determined by practical requirements.

7 - Robert Hurtey (1954) used another method for determining the self rating point

\[z = \frac{E-c}{E-c+k} \quad (3.2-14) \]

which has the same original form (equation 3.2-14)
The Hurley procedure is that c is constant determined so that the credibility curve will start at the statistical norm for zero credibility. The point E_Q of 67% credibility in linear interpolation over (c, E_S) would coincide with the corresponding 67% value from the above equation.

Thus

$$0.67 = \frac{E_Q - c}{E_Q - c + k}$$

$$E_Q = c + 0.67(E_S - c)$$

so that $k = 0.33(E_S - c)$

z is modified for self-rating at E_S by multiplying by

$$\alpha = \frac{(E_S - c) + 0.33(E_S - c)}{(E_S - c)} = 1.33$$

thus $z = \frac{1.33(E - c)}{(E - c) + 0.33(E_S - c)}$

3.3 Determination of the level of full credibility

It is known that the expected claim experience is a stochastic process. It depends on the variation in the size of claims and the number of claims during the experience period. Mowbray (1914) defined the dependable (credible) pure premium as

"one for which the probability is high that it does not differ from the absolute (true) pure premium by more than an arbitrary limit"
which may be selected in view of the other factors referred to.

From this definition, credible premiums would be expressed in
probabilistic form within a certain fixed percentage of the true
value; the definition in this form involves two parameters:

1 - the probability \(p \) of the fully credible premium.
2 - the percentage of deviation allowed from the true premium.

3.3-1 Level of full credibility for the number of claims

The empirical probability of any accident in any class is the claim
frequency obtained by dividing the total number of claims by the number
of exposures. If \(q \) equals the probability of an accident and \(p = 1-q \),
and the number of units of exposure is \(n \), the probability of \(m \) accidents
will have a binomial distribution

\[
p_r(m) = \binom{n}{m} q^m (1-q)^{n-m} \tag{3.3-1}
\]

with mean \(nq \) and variance \(nq(1-q) \).

The probability that the number of claims in \(n \) exposure units will be
within ±100k of \(nq \) will be

i.e. \(p = p_r((1-k)nq \leq nq \leq (1+k)nq) \tag{3.3-2} \)

where

\[
p = \sum_{r=(1-k)nq}^{r=(1+k)nq} \binom{n}{r} q^r (1-q)^{n-r}
\]

Since the binomial distribution tends to the normal * distribution
* when \(n \) is large, the normal distribution can be used to approximate to
the binomial probabilities, but \(q \) should be moderate; if \(q \) is very small
or close to 1 the binomial distribution is quite skewed, and it takes
a larger \(n \) to get a reasonable degree of approximation than when \(p \) is
moderate.
as \(n \to \infty \)

\[
p = \frac{1}{\sqrt{2\pi npq}} \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2npq}} \, dx
\]
(3.3-3)

Let \(t = \frac{x}{\sqrt{npq}} \)

\[
p = \frac{1}{\sqrt{2\pi}} \int_{0}^{t} e^{-\frac{t^2}{2}} \, dt
\]
(3.3-4)

If the criterion for full credibility is to be \(p = 1 - \alpha \), from the standard normal distribution table we can determine the value of \(t = a \) which corresponds to probability \(1 - \frac{\alpha}{2} \).

\[
a = \frac{\alpha}{2} = \frac{knq}{\sqrt{npq}}
\]
(3.3-5)

From (3.3-5) we determine the number of units of exposure \(n_s \) which are required for full credibility.

\[
n_s = \left(\frac{a}{2}\right)^2 \frac{p}{qk^2}
\]
(3.3-6)

In this formula for \(n_s \) it is assumed that:

1 - The probability of hazard is constant throughout the period of observation.

2 - The normal error at the critical region is sufficiently close to the binomial at the critical area (Mowbray 1914).

These conditions in practice are not totally satisfied. The
probability q is usually very small so that the frequency distribution is skew and not symmetrical as is assumed. Also, if the period of experience is long it would be doubtful if the probability of hazard is constant. Also, from equation (3.3-6), it can be seen that credible number of units of exposure depend on

i - accident frequency

ii - the value of $k\%$ (the allowable departure from the expected value).

iii - the probability integral adopted

If probability integral and accident frequency are constant, the volume of exposure varies inversely as the square root of the allowable variation. With fixed values for the allowable departure and the probability integral, the required number of units of exposure varies inversely with the accident frequency (q) (Wheeler 1930). With a given accident frequency and a fixed value for the allowable departure, n_s varies directly with the probability integral and in a ratio greater than the square.

Also (3.3-6) can be written in the form

$$qn_s = \left(\frac{a_1 - \alpha}{2}\right) \frac{p}{k}$$

$$m_s = \left(\frac{a_1 - \alpha}{2}\right) \frac{p}{k}$$

$$m = \text{number of accidents.}$$

where m_s is the number of claims which can be used instead of the number of exposure units as a requirement for full credibility.

In the above discussion it is assumed that the number of claims from
The units of exposure are m_i and m_i is equal to 0 or 1. If m_i takes the values 0, 1, 2, ... during the experience period (one year).

Let the period of experience be divided into very small intervals of length s such that no more than one accident would happen in any one interval. The probability of any accident in any interval will be q/s (for any one unit of exposure).

From equation (3.3-1), the probability of r accidents at the interval s would be rewritten

$$\binom{n}{r} (1 - \frac{q}{s})^{n-r} \left(\frac{q}{s}\right)^r$$

(3.3-8)

Let $n \to \infty$ as $\frac{q}{s} \to 0$ and $\lambda = \left(\frac{q}{s}\right)n \implies \left(\frac{q}{s}\right) = \frac{\lambda}{n}$.

The expression (3.3-8) can be written

$$\frac{n(n-1)...(n-r+1)}{r!} \left(\frac{\lambda}{n}\right)^r \left(1 - \frac{\lambda}{n}\right)^{n-r}$$

$$= \frac{1(1 - \frac{1}{n})...(1 - \frac{r+1}{n})}{r!} \lambda^r \left(1 - \frac{\lambda}{n}\right)^{r} \left(1 - \frac{\lambda}{n}\right)^{n}$$

as $n \to \infty$ this expression tends to

$$\frac{\lambda^r e^{-\lambda}}{r!}$$

which is a poisson distribution, and in this case the expectation of the number of claims will equal the variance of the number of claims and once again the n_s requirement is
Dropkin (1959) and Leroy J. Simon (1960) studies indicate that the distribution of claim frequency where there is a possibility of multiple claims per unit of exposure, is not a poisson distribution because their studies indicate that the mean and variance of the frequency distribution are not equal as in the poisson assumption. They suggest the negative binomial or Pearson type III as the claim frequency.

3.3-2 The criteria for full credibility in terms of mean and standard deviation

It would be easier if the criteria for full credibility could be represented in terms of the mean and standard deviation of the frequency distribution of claims.

Let \(\mu \) and \(\sigma \) be the mean and the standard deviation of a normal random variate \(x \). Then the probability that an observation differs from the mean by less than \(\delta = k\mu \) is given by

\[
p = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\delta}^{\delta} e^{-\frac{x^2}{2\sigma^2}} \, dx.
\]

Let \(t = \frac{x}{\sigma} \)

\[
p = \frac{2}{\sqrt{2\pi}} \int_{0}^{\frac{ku}{\sigma}} e^{-\frac{t^2}{2}} \, dt
\]
From the Table of the standard normal distribution we can determine for a given value of \(p \) the value of \(z \) as a function of \(p \).

Thus if \[\frac{k \mu}{\sigma} \geq f(p) \quad \therefore \quad \frac{\sigma}{\mu} \leq \frac{k}{f(p)} \quad (3.3-10) \]

In rate making or experience rating, the number of observations is large, say \(n \), so if the frequency distribution of the individual observations is not normal, the frequency distribution of the mean usually tends to be normal. If the mean for one observation is \(\mu \) and standard deviation is \(\sigma \), the mean of \(n \) observations will be \(\mu \) and the standard deviation \(\frac{\sigma}{\sqrt{n}} \). The original problem is the value of \(n \) for credible premium i.e. how large \(n \) should be so that the probability \(p \) that the variation of the mean of the \(n \) observations from the true value is less than 100k%.

i.e. \[\frac{\sigma}{\mu \sqrt{n}} \leq \frac{k}{f(p)} \]

i.e. \[n_s \geq \frac{\sigma^2}{\mu^2} \frac{(f(p))^2}{k^2} \quad (3.3-11) \]

Expression (3.3-11) determines the minimum value for \(n \).

3.3-3 The level of full credibility for the pure premium

In the above discussion it has been assumed that with a credible accident frequency the pure premium is credible, but the pure premium is the product of the accident frequency and the average claim. Let

\[A = \sum_{i=1}^{n} X_i \]

\[A = \text{Total amount of claims} \]
\(X_i \) = amount of \(i \)th claim for \(i \)th unit of exposure

\(n \) = number of units of exposure,

where \(X_1, X_2, \ldots, X_n \) are independent random variables and they are independent of \(n \).

\[
\begin{align*}
E X_i &= \mu \\
\text{var} X_i &= \sigma^2
\end{align*}
\]

Accident frequency = \(\lambda \)

Accident frequency standard deviation = \(\sqrt{\frac{\lambda}{n}} \)

The pure premium \(\pi = \mu \lambda \)

As before we assume that the \(\mu \) has a normal distribution with average

\[
E(\mu) = \mu \quad \text{var}(\mu) = \frac{\sigma^2}{n\lambda} \quad \text{(number of claims \(n\lambda \))}
\]

\[
\therefore E(\pi) = \mu \lambda
\]

\[
\text{var} \pi = \mu^2 \frac{\lambda}{n} + \lambda \frac{\sigma^2}{n\lambda}
\]

Thus

\[
\frac{\text{variance of } \pi}{(\text{mean of } \pi)^2} = \frac{1}{n\lambda} + \frac{\sigma^2}{n\lambda\mu^2} = \frac{1}{n\lambda} \left(1 + \frac{\sigma^2}{\mu^2}\right)
\]

using formula (3.3-11)

\[
\lambda n_s \geq \frac{2(f(p))^2}{k^2} \left(1 + \frac{\sigma^2}{\mu^2}\right) \tag{3.3-12}
\]

From (3.3-10) it can be seen that the number of claims required for full credibility for the pure premium is increased by \((1 + \frac{\sigma^2}{\mu^2}) \) of the number of claims required for credibility of accident frequency.
If the variation of the size of claim is ignored, formula (3.3-12) would be the same as formula (3.3-7).

3.3-4 Credibility of pure premium (independent of distribution assumption)

In the above discussion, it was assumed that the expected number of claims was very large so that the average claim cost is approaching normal distribution and the claim frequency was approximately normally distributed. Also, it was assumed that the pure premium was approximately normally distributed. The approximate normality of the pure premium is the implication of the Central Limit Theorem. It should be noted that the density of the product of two normal random variables, both of which are normal, is not normal. Mayerson (1963) has derived a criterion for full credibility for a pure premium based only on the moments of the distribution of the number of claims and on the moments of the claim amount distribution, without making any assumption about the specific form of either distribution.

For certain p and k, a classification is fully credible if

$$p_r \{ (1-k)E(A) \leq A \leq (1+k)E(A) \} \geq p,$$

which is equivalent to

$$p_r \{ \frac{-kE(A)}{\sigma A} \leq \frac{A-E(A)}{\sigma A} \leq \frac{kE(A)}{\sigma A} \} \geq p,$$

The problem is to find the percentile of the distribution $\frac{A-EA}{\sigma A}$. The Cornish-Fisher expansion expresses a percentile a_p of the distribution of $\frac{A-E(A)}{\sigma A}$ as a percentile of the standardised normal.
distribution α_p plus certain correction terms, which adjust for the
departure from normality of the distribution of A. The expansion is

$$a_p = \alpha_p + \frac{\gamma_1}{6} (\alpha_p^2 - 1) + \left[\frac{\gamma_2}{24} (\alpha_p^3 - 3\alpha_p) - \frac{\gamma_3}{36} (2\alpha_p^3 - 5\alpha_p) \right]$$

where

$$\gamma_1 = \frac{E[(A-E(A))^3]}{\sigma_A^3}$$

$$\gamma_2 = \frac{E[(A-E(A))^4]}{\sigma_A^4}$$

where $E(n) = \lambda$, $E[(n-\lambda)^r] = \lambda_r$, $r = 2,3,\ldots$

$E(X) = \mu$, $E[(X-\mu)^r] = \mu_r$, $r = 2,3,\ldots$

$E(A) = \lambda \mu$

$E[(A-E(A))^2] = \mu_2 \lambda + \mu^2 \lambda_2$

$E[(A-E(A))^3] = \mu_3 \lambda + 3\mu_2 \mu \lambda_2 + \mu^3 \lambda_3$

$E[(A-E(A))^4] = \mu_4 \lambda + 3\mu_2^2 (\lambda_2 - \lambda + \lambda^2) + 3\mu_3 \mu \lambda_2 + 6\mu^2 \mu_2 (\lambda_3 + \lambda \lambda_2) + \mu^4 \lambda_4$

The distribution of A would be skew, with a long tail on the right-hand side. Therefore, for values of p of interest

$$a(1-p)/2 > a(1+p)/2$$

Let

$$\frac{kE(A)}{\sigma_A} = a(1+p)/2$$

For simplicity, use only two terms of the expansion
\[
\frac{kE(A)}{\sigma_A} = \alpha_p + \frac{E[A-E(A)]^3}{6\sigma_A^3} (\alpha^2 - 1)
\]

\[
: \quad \frac{k\mu\lambda}{\sqrt{\mu_2\lambda + \mu_2\lambda^2}} = \alpha_p + \frac{\mu_3\lambda + 3\mu_2\mu_1\lambda + \mu^3\lambda_3}{6(\mu_2\lambda + \mu_2\lambda^2)^{3/2}}
\]

\[
k\lambda = \alpha_p \sqrt{\frac{\lambda^2}{\lambda} + \frac{\mu_2}{\mu}} + \frac{\alpha-1}{\sigma} \lambda^3 + \frac{3\lambda_2}{\lambda} \mu_2 + \frac{\mu_2}{\mu^2 + \mu^3}
\]

(3.3-14)

if terms involving the third moment are ignored, we get the following equation:

\[
\lambda = \frac{\alpha_p}{k^2} \left(\frac{\lambda^2}{\lambda} + \frac{\mu_2}{\mu} \right)
\]

(3.3-15)

Formula (3.3-10) is a special case of (3.3-13). If we put in

(3.3-11) \(\lambda_2 = \lambda \) (i.e. the variance and the mean of the frequency
distribution of the number of claims are equal), then we get

\[
\lambda = \frac{\alpha_p^2}{k^2} (1 + \frac{\sigma^2}{\mu^2})
\]

Also, if we take \(\lambda = \lambda_2 \) and \(\mu_2 = 0 \), i.e. we do not take account
of the variation in the size of claim, we arrive at formula (3.3-9)

\[
\lambda = \frac{\alpha_p^2}{k^2} \frac{1}{k^2}
\]

This method is more appropriate for the computation of the pure
premium, since it takes account of both variation in the frequency
of the number of claims and the variation in the size of the claim
and also there is no need to make an assumption about the underlying
probability distribution.
3.4 Credibility multisplit plan

In the work developed earlier in this Chapter, we have been dealing with the case of an experience rating plan with no splits, that is, where all losses are given equal weight. From time to time the insurance company faces a very large payment in one claim, which needs more attention. In an ordinary credibility plan a single loss of, say, 10000 gets as much weight as ten losses of 1000 each; it is both theoretically and practically desirable to give the very large losses much more weight.

In the ordinary split plan, (both actual and expected) losses are divided into "normal" and "excess" i.e. the experience on losses limited to certain amount per claim form the normal part, and the experience on losses in excess of this certain amount forms the "excess" part. The expected losses are divided in the same way (from the available statistics) and the final rate is the sum of the adjusted rates for each of the two parts.

A multisplit plan consists of different ways of dividing the total losses into "normal" and "excess" ; it reduces all losses to normal (for distinction we will call it primary loss) and excess using the following formula:

Let \(S_0 \) = an amount regarded as the normal claim amount.
\[a \] = a real number less than one used as a discounting factor for effecting a decreasing weightage to the different strata of an individual claim amount.
\(S_i \) = individual claim amount (expected or actual).
$S_{1n} = \text{"primary" component of } S_i$

$$= S_0 \sum_{i=0}^{r-1} a^i + R a^r$$

$$= S_0 \frac{(1-a^r)}{1-a} + R a^r$$

where $r = \text{the integer part of the real number } \frac{S_i}{S_o}$

$$R = S_i - rS_o$$

$S_{ie} = \text{the excess component of } S_i$.

Note that the maximum discounted value would be $\frac{S_o}{1-a}$.

In this case the modification factor (3.2-2) may be split into two parts:

$$\frac{E_n}{E} Z_n A_n + (1-Z_n) E_n + \frac{E_e}{E} Z_e A_e + (1-Z_e) E_e$$

$$= \frac{Z_n A_n + (1-Z_n) E_n + Z_e A_e + (1-Z_e) E_e}{E_e}$$

where E_n, A_n, Z_n denote normal expected loss, actual loss and credibility respectively, and E_e, A_e, Z_e denote the actual excess loss, expected excess loss and credibility for the excess loss noting that $E_n + E_e = E$ and $A_n + A_e = A$ where

$$Z_n = \frac{E_n}{E_n + K_n}$$

and $$Z_e = \frac{E_e}{E_e + K_e}$$.
By making \(k_e \) much larger than \(k_n \) we gave much less credibility to the excess losses. \(Z_n \) and \(Z_e \) can be modified to attain the self rating point in accordance with the principles set out in paragraph (3.2-2).
4.1 Individual risk theory and collective risk theory

The risk theory approach to insurance has been developed by European actuaries, especially Scandinavians.

The two most general formal models of insurance, collective risk theory and individual risk theory, have both been developed in this field. Risk theory provides a logical context within which current insurance problems may be ordered and analysed. Beard (1975) summarises general insurance problems in this statement -

"... There are two aspects of general insurance in which knowledge of the structure of the element of the risk variation is needed; first in the rate fixing process and second in the question of financial stability, and this can be generalised respectively into the knowledge of the mean and the variance of the risk involved ...".

In this study the first aspect of the risk process (rate fixing) will be our concern.

Individual risk theory, sometimes called classical insurance theory uses the individual policy as a basic unit of analysis. A claim probability can be associated with each unit of risk (policy). The claim amount will be limited to the maximum company liability as specified in the policy. Let X_k be a random variable measure for the claim arising from the kth policy. Then $\sum_{k=1}^{N} X_k$ will be the total
amount of the claim occurring from all the policies in force. However, according to the central limit theorem, the sum of the random variables will be normally distributed if the number of the policies is large.

Collective risk theory was first introduced by Filip Lundberg (1909) and developed by many others including Esscher (1932), Ammeter (1948), Cramer (1955). In this approach the individual policy structure is disregarded and instead the portfolio is considered as a whole - the claim process can be described in terms of a sequence of random numbers which have time parameters. For simplicity, formal treatment can be as follows:

(a) operational time: the length of any time interval will be measured by the expected number of claims q_t arising during this period, given the number and types of claims in force with the company.

(b) frequency distribution for claims: given the above definition of the operational time, the probability of exactly "n" claims in time interval t is $P(n/q_t)$.

(c) distribution of total amount of claims occur within the time t is $S(t)$ where $S(t)$

$$S(t) = X_1 + X_2 + X_3 + \ldots + X_n$$

$S(t)$ is a random variable with distribution function

$$F(S, q_t) = P(S/q_t, S < S) \quad (4.1-2)$$

$F(S, q_t)$ is the product of the probability that a certain number of claims occur (frequency) and the probability that these claims will be of a certain size (severity).
It is assumed that

1 - \(X_i \) in equation (4.1-1) are independent and each has a distribution function \(P(x) \) [\(P(x) \) is the distribution of a single claim].

2 - The number of claims \(n \) is independent of the size of the claim \(x \).

Then the distribution function in the expression (4.1-2) takes the form

\[
F(S, qt) = \sum_{n} P(n/q) P_n^*(x)
\]

where \(P_n^*(x) \) is the \(n \)th convolution of \(P(x) \) with itself which is the conditional probability that if the number of claims is exactly \(n \), the sum \(S \) of these \(n \) claims is less than \(S \). As has been said before, the distribution of each \(x \) is independent of \(n \) (number of claims).

The moment of the distribution \(P(x) \) will be denoted by

\[
C_i = \int_{0}^{\infty} x^i dP(x)
\]

and the moment generating function will assume to exist and will be denoted by

\[
M(\theta) = \int_{0}^{\infty} e^{\theta x} dP(x)
\]

The main problem in this approach is to determine the compound function \(F(S, qt) \). The mean of \(F(S, qt) \) is the pure premium which is our concern. In the next two sections we will attempt to find the mean and variance of \(F(S, qt) \) when \(t \) is very large (limiting distribution of \(F(S, qt) \)).
4.1-1 The distribution of $F(S, qt)$ when the number of claims have a Poisson distribution:

Let t be the number of units of exposure in force for the entire accounting period (noting that a policy in force for the entire accounting period adds one to t and policies in force for part of the period will add a fraction to t). Let n be the number of losses having a Poisson distribution, and the probability of loss is q, i.e. the expected number of losses at the operational time t is qt. Then

$$P(n/t) = P(n/qt) = \frac{(qt)^n e^{-qt}}{n!}$$

from 4.1-3

$$F(S, t/qt) = \sum \frac{(qt)^n e^{-qt}}{n!} p_n^x(x)$$

(4.1-6)

The expression (4.1-6) is called a generalised Poisson function or compound Poisson function [Beard et al (1978), Miller and Hakman (1974)] since the moment generating function of two independent random variables is the product of the corresponding moment generating function; it follows that the moment generating function of the nth convolution $p^*_n(x)$ is $[M(t)]^n$

The moment generating function for the compound Poisson process in (4.1-6) is
\[\phi(\theta) = \sum_{n} \frac{e^{\theta t} [qt]^n}{n!} \int e^{\theta x} d\mu^n(x) \]

\[= e^{-qt} \sum_{n} \frac{[qt]^n [M\theta]^n}{n!} \]

\[= e^{-qt} e^{qtM(\theta)} \]

\[= e^{qt[M(\theta)-1]} \]

\[\therefore \quad E(S) = qt C_1 \quad E(S^2) = [qt C_1]^2 + qt C_2 \]

Since \(\text{Var}(s) = E(S^2) - [E(S)]^2 \), \(qt C_2 \)

Let \(y = \frac{S - qt C_1}{\sqrt{qt C_2}} \)

when \(t \) is very large, \(y \) has a normal* distribution \(N(0,1) \), hence \(S \) has an approximate normal distribution \(N(qt C_1, qt C_2) \), and the average claim per policy \(\frac{S}{t} \) has a normal distribution \(N(q C_1, q C_2/t) \)

4.1-2

Distribution of \(F(S,qt) \) when the number of claims have a negative binomial distribution:

In many practical problems the mean and the variance of the number of claims distribution are not equal which is the case for the Poisson distribution Longley-Cook (1962), Dropkin (1959), Simon (1950 & 1961) and Hewitt (1960). Show that the negative binomial is more appropriate for the claim frequency than the Poisson distribution.

* because the moment generating function of \(y \) tends to \(e^{-\theta/2} \) when \(t \to \infty \), which is the moment generating function for the standard normal distribution.
In the case of the negative binomial

\[
P(n/t, \alpha) = \frac{n^{\alpha-1}}{n!} \left(\frac{\beta}{t+\beta} \right)^{\alpha} \left(\frac{t}{t+\beta} \right)^n
\]

where \(\frac{\beta}{t+\beta} = q \quad \text{and} \quad (1-q) = \frac{t}{t+\beta} .

From (4.1-3)

\[
\phi(\theta) = \sum_n \frac{n^{\alpha-1}}{n!} \left(\frac{\beta}{t+\alpha} \right)^{\alpha} \left(\frac{t}{t+\alpha} \right)^n \int e^{\theta x} dp^* n(x)
\]

\[
= \sum_n \frac{n^{\alpha-1}}{n!} \left(\frac{\beta}{t+\alpha} \right)^{\alpha} \left[\frac{tM(\theta)}{t+\beta} \right]_n
\]

\[
= \left(\frac{\beta}{t+\alpha} \right)^{\alpha} \left[1 - \frac{tM(\theta)}{t+\beta} \right]^{-\alpha}
\]

\[
= \left[1 - \frac{t(1-M(\theta))}{B} \right]^{-\alpha} \quad (4.1-8)
\]

\[
E(S) = \frac{at}{\beta} C_1 \quad E(S^2) = \frac{at}{\beta} C_2 + \frac{(\alpha+1)at^2 C_1^2}{\beta^2}
\]

\[
\text{Var}(S) = \frac{at}{\beta} C_2 + \frac{at^2 C_1^2}{\beta^2} = \frac{at(\beta C_2 + tC_1^2)}{\beta^2}
\]

Let \(y = \frac{S}{E(S)} = \frac{S_B}{C_1 \alpha t} \)

\(y \) is dependent on \(t \)

and limit \(t \to \infty \)

\[
\int_0^{\infty} e^{\theta y} dy = \frac{1}{(1-\theta/\alpha)^{\alpha}}
\]
i.e. \(y \) has a limited distribution, which is a gamma distribution with parameters \(\alpha, \beta \) where \(\alpha = \beta \). \(S \) will have an approximate gamma distribution with parameters \(\alpha \) and \(\frac{\beta}{\psi_1} \).

Hence the average claim per policy \(\frac{S}{\psi} \) will have a gamma distribution with parameters \(\alpha \) and \(\frac{\beta}{\psi_1} \).

The objective of credibility theory from the Bayesian viewpoint is to find the posterior distribution of the pure premium i.e. the distribution for average claim per policy.

4.2 Bayesian approach to credibility

The formula (3.1-1) has been accepted because it is logical and reasonable to give the indication of the large volume of data more consideration or weight than the indication of a small volume of data. The problem of determining the normalising constant \(k \) has not got a proper statistical solution. The Bayesian approach was first introduced to credibility theory by Bailey (1945 & 1950) and clarified by Mayerson (1964). Bailey shows that equation 3.1-1 is an exact Bayesian forecast under certain assumptions, and the normalizing constant \(k \) can be determined statistically in terms of the mean and variance of the posterior distribution.

The restriction we have in the Bayesian approach is that we have to know the distribution of the process which generates the data, and the prior distribution of the population parameters at the outset. The first is called the likelihood distribution.

The question which should be asked is for what prior distribution
can we say that the current data are fully credible i.e. for what prior distribution can we say that the posterior distribution is independent of the prior distribution because of the large size of the data? The choice of the prior distribution should be that one which underlies the previous rate for the class of risk in question. Once the prior distribution has been chosen, the prior distribution and the distribution of the data can be combined together using the Bayes theorem to obtain the posterior distribution.

Since in (4.1-3) it is assumed that numbers of claims and the individual claim amount distribution are independent, then we can proceed to the Bayesian estimation of the parameters of each distribution.

4.2-1 Application of Bayesian theorem

Let \(\theta \) be the parameter of risk class, have prior distribution \(F(\theta) \) and let \(\bar{y} \) be the sample statistic which summarizes all the sample information involving \(\theta \).

Then the posterior distribution is the conditional density of \(\theta \) given the observed value \(y \) of the statistic \(\bar{y} \)

\[
f(\theta | y) = \frac{f(\theta, y)}{f(y)}
\]

(4.2-1)

But \(f(\theta, y) = f(\theta)f(y|\theta) \)
and the marginal distribution

\[
f(y) = \int_{-\infty}^{\infty} f(\theta, y) d\theta = \int_{-\infty}^{\infty} f(\theta)f(y|\theta) d\theta
\]

hence the posterior density can thus be written
\[f(\theta/y) = \frac{f(\theta)f(y/\theta)}{\int_{-\infty}^{\infty} f(\theta)f(y/\theta)d\theta} \quad (4.2-3) \]

where \(f(y/\theta) \) represents the likelihood function.

Let \(m_\theta \) be the mean of \(\theta \), \(\sigma_\theta^2 \) the variance of \(\theta \).

Let \(m_y \) be the mean of \(y \), \(\sigma_y^2 \) the variance of \(y \).

Bailey (1950) suggests \(E(\theta/y) \) as estimates of \(\theta \). It should be noticed that \(E(\theta/y) \) is a function of \(y \) only; it may be called the regression function of \(\theta \) on \(y \)

\[E(\theta/y) = \int_{-\infty}^{\infty} \theta f(\theta/y)d\theta = a + by \quad (4.2-4) \]

(Note that \(E(\theta/y) \) is not always a linear function).

\[= \int_{-\infty}^{\infty} \frac{\theta f(\theta,y)d\theta}{f(y)} = a + by \quad (4.2-4) \]

\[= \int \theta f(\theta,y)d\theta = (a + by)f(y) \quad (4.2-5) \]

By integrating both sides in respect to \(y \)

\[\mu_\theta = a + by \quad (4.2-6) \]

Multiply (4.2-5) by \(y \) then integrate on \(y \)

\[E(\theta,y) = a\mu_y + bE(y^2) \]

\[\rho_{\theta y}\sigma_\theta \sigma_y + \mu_\theta \mu_y = a\mu_y + b(\sigma_y^2 + \mu_y^2) \quad (4.2-7) \]

From (4.2-6) and (4.2-7)

\[a = \mu_\theta - \rho_{\theta y} \frac{\sigma_\theta}{\sigma_y} \mu_y \]
\[b = \rho_{\theta y} \frac{\sigma_{\theta}}{\sigma_y} \]

Thus \[E(\theta/y) = \left(\mu_{\theta} - \rho_{\theta y} \frac{\sigma_{\theta}}{\sigma_y} \mu_y \right) + \rho_{\theta y} \frac{\sigma_{\theta}}{\sigma_y} y \]

Let \[A = \rho_{\theta y} \frac{\sigma_y}{\sigma_\theta} \]
\[B = \mu_y - A \mu_\theta \]

\[E(\theta/y) = \mu_{\theta} - \frac{\rho_{\theta y}^2}{A} (B + A \mu_\theta) + \frac{\rho_{\theta y}^2}{A} y \]

\[= (1 - \frac{\rho_{\theta y}^2}{A}) \mu_{\theta} + \frac{\rho_{\theta y}^2}{A} y - B \quad (4.2-8) \]

where A and B are coefficients of the regression line \(E(y/\theta) \).

From (4.2-8) it can be seen that the credibility \(z \) which is given to the observed data in equation (3.1-1) is the square of the correlation coefficient between \(\theta \) and \(y \) when the data are combined with prior knowledge. It should be noted also that this has the desired property \(z(\Xi_{\rho^2}) \leq 1 \).

In Chapter 3 we discussed two cases. 1- when the distribution of the number of claims is binomial. 2- when the distribution of the number of claims is Poisson.

We will discuss these cases again from the point of view of the Bayesian approach.

4.2-2 The distribution of the number of claims is binomial.

In this case the likelihood distribution (distribution of the
observations) is binomial, because of potential difficulties in
combining the likelihood function and the prior density function.
Bayesian statisticians have developed the concept of conjugate prior
distributions which essentially are families of distribution that ease
the computational burden when used as prior distributions. This concept
adds another restriction to this approach. The form of the likelihood
function would restrict the prior distribution to a certain family
of distributions.

If the distribution of the number claims \(F(n/q) \) is binomial,
then it would be helpful if the prior distribution \(F(q) \) is assumed to
be a Beta distribution.

\[
\begin{align*}
F(n/q, t) &= \frac{t!}{n!t-n!} q^n(1-q)^{t-n} \quad (4.2-9) \\
F(q) &= k q^r(1-q)^{m-r} \quad (4.2-10) \\
k &= \frac{1}{\beta(r+1, m-r+1)} \\
\\
f(q/n, t) &= \frac{k q^{n+r}(1-q)^{t+m-n-r}}{\int_0^1 q^{n+r}(1-q)^{t+m-n-r} dq} \\
&= \frac{q^{n+r}(1-q)^{t+m-n-r}}{B(m+r+1, t+m-n-r+1)} \quad (4.2-11) \\
\\
E(q/n, t) &= \int_0^1 q f(q/n, t) dq \\
&= \frac{B(n+r+2, t+m-n-r+1)}{B(n+r+1, t+m-n-r+1)} \\
&= \frac{n+r+1}{t+m+2} \quad (4.2-11)
\end{align*}
\]
which is linear in \(n \), so we may write

\[
E(q/n, t) = \frac{t}{t+m+2} \frac{n}{t} + \frac{m+2}{t+m+2} \frac{r+1}{m+2}
\]

or

\[
= z \frac{n}{t} + (1-z) \frac{r+1}{m+2}
\] \hspace{1cm} (4.2-12)

where \(z = \frac{t}{t+m+2} \) \hspace{1cm} (4.2-13)

Since \((q) \) has

mean \(\mu_q = \frac{r+1}{m+2} \)

and variance \(\sigma_q^2 = \frac{(r+1)(m-r+1)}{(m+2)^2(m+3)} = \frac{\mu_q(1-\mu_q)}{(m+3)} \)

Note that, for fixed values of \(m, z \to 1 \) as \(t \to \infty \), so we may write \(z \) in terms of the mean and the variance of \(f(q) \)

\[
z = \frac{t \sigma_q^2}{(t+m+2) \sigma_q^2}
\]

\[
= \frac{t \sigma_q^2}{(t-1) \sigma_q^2 + (m+2) \sigma_q^2}
\]

\[
= \frac{t \sigma_q^2}{t \sigma_q^2 + \mu_q(1-\mu_q) \sigma_q^2 + \mu_q(1-\mu_q) \sigma_q^2}
\]

\[
= \frac{t}{(t-1)+k}
\] \hspace{1cm} (4.2-14)

where \(k = \frac{\mu_q(1-\mu_q)}{\sigma_q^2} \)

Note that equation (4.2-14) corresponds to equation (3.2-1) and we do
not need to make any assumption about the normalising constant k.

4.2-3 The distribution of number of claims is Poisson

If the distribution of the number of claims is \(f(n/q, t) \) and is a Poisson distribution, it is convenient that the prior distribution \(f(q) \) be a gamma distribution

\[
f(n/q, t) = \frac{(n/q)^n e^{-nq}}{n!} \quad (4.2-15)
\]

\[
f(q) = k q^{r-1} e^{-aq} \quad (4.2-16)
\]

\[k = \frac{a r}{n} \] , the posterior density function for \(q \)

\[
f(q/n, t) = \frac{q^{r+n-1} e^{-(t+a)q}}{\int_0^\infty q^{r+n-1} e^{(t+a)q} dq}
\]

\[= \frac{(t+a)^{r+n} q + q^{r+n-1} e^{-(t+a)q}}{\int_0^\infty [(t+a)q]^{r+n-1} e^{-(t+a)q} dq}
\]

\[= \frac{(t+a)^{r+n}}{I_{t+a}} [(t+a)q]^{r+n-1} e^{-(t+a)q} \quad (4.2-17)
\]

hence \(E(q/n, t) = \int_0^\infty q f(q/n, t) dq \)

\[= \frac{1}{I_{t+a}} \int_0^\infty [(t+a)q]^{r+n} e^{-(t+a)q} dq
\]

\[= \frac{1}{t+a} \frac{I_{t+a+1}}{t+a} = \frac{n+r}{t+a} \]

which is linear in \(n \), so we may write
\[
E(q/n,t) = \frac{t}{t+\alpha} \cdot \frac{n}{t} + \frac{\alpha}{t+\alpha} \cdot \frac{r}{\alpha}
\]

\[
= z \cdot \frac{n}{t} + (1-z) \cdot \frac{r}{\alpha} \quad \text{(4.2-18)}
\]

Hence \(z = \frac{t}{t+\alpha} \) \hspace{1cm} \text{(4.2-19)}

Since \(f(q) \) has mean \(\mu_q = \frac{r}{\alpha} \) and variance \(\sigma_q^2 = \frac{r^2}{\alpha^2} \),

hence the normalizing factor \(\alpha = \frac{\mu_q}{\sigma_q} \) \hspace{1cm} \text{(4.2-20)}

4.2-4 The distribution of the amount of claim is exponential

Exponential distribution is one of the classical examples of collective risk theory [Hickman (1975), Lundberg (1909)].

Let \(f(x/\delta) \) be the distribution of claim amount. The prior distribution is the same as for Poisson distribution i.e. a gamma distribution.

The density function for individual claims

\[
f(x/\delta) = \left(\frac{1}{\delta}\right) e^{-\frac{x}{\delta}} \quad x > 0 \quad \text{and} \quad \delta > 0 \quad \text{(4.2-21)}
\]

If exactly \(n_0 \) claims occur such that

\[
S_0 = x_1 + x_2 + \ldots + x_{n_0}
\]

the likelihood function is:

\[
f(S/\delta_0,n_0) = \left(\frac{1}{\delta}\right)^{n_0} e^{-\frac{S_0}{\delta}}
\]

then the conjugate prior distribution will be
\[f(\delta) = k \left(\frac{1}{\delta} \right)^n e^{-S_1/\delta} \]

and the posterior distribution for \(\delta \) is

\[
\begin{align*}
 f(\delta/n' = n_0+n_1, S' = S_0+S_1) &= \frac{\left(\frac{1}{\delta} \right)^{n-1} e^{-S'/\delta}}{\int_0^{\infty} \left(\frac{1}{\delta} \right)^{n'-2} e^{-S'/\delta} \frac{d\delta}{\delta^2}} \\
 &= \frac{S'_1(n'-1)}{\sqrt{n'-1}} \left(\frac{1}{\delta} \right)^{n'} e^{-S'/\delta} \quad (4.2-23)
\end{align*}
\]

Using equation (4.2-4)

\[
E(\delta/n', S') = \frac{S'_1(n'-1)}{\sqrt{n'-1}} \int_0^{\infty} \left(\frac{1}{\delta} \right)^{n'-1} e^{-S'/\delta} \frac{d\delta}{\delta^2}
\]

\[
= \frac{S'}{\sqrt{n-1}} \int_0^{\infty} S', n'-2 \left(\frac{1}{\delta} \right)^{n-3} e^{-S'/\delta} \frac{d\delta}{\delta^2}
\]

\[
= \frac{S'}{\sqrt{n-1}} \frac{n'-2}{n'-1}
\]

\[
\frac{S'}{n'-2} \quad (4.2-24)
\]

which is linear in \(S' \) (total amount of claims).

Since \(S' = S_0 + S_1 \), and \(n' = n_0 + n_1 \), then we may write

\[
F(\delta/n', S') = \frac{S_0}{n_0} \left(\frac{n_0}{n'-2} \right) + \frac{S_1}{n_1} \left(\frac{n_1'-2}{n'-2} \right)
\]

\[
= \frac{S_0}{n_0} z + \frac{S_1}{n_1} (1-z) \quad (4.2-25)
\]
where \(z = \frac{n_1}{n_1 + n_2 - 2} \)

The exponential case for claim size is simple because the distribution has only one parameter. The problem is more difficult if the claim size distribution has more than one parameter. Miller and Hackiman (1974) demonstrate an example for the gamma distribution as the claim amount distribution.

\[
f(x/\gamma, \delta) = \left(\frac{\gamma}{\delta}\right)^{\gamma - 1} \frac{x^{\gamma - 1}}{\Gamma(\gamma)} e^{-\frac{x}{\delta}} \quad x > 0 \text{ and } \gamma, \delta > 0 \quad (4.2-26)
\]

which has a mean \(\delta \).

A conjugate prior for the parameters \(\gamma, \delta \) has a density function

\[
f(\gamma, \delta/n, S_1) = k(\gamma)^{-n} \left(\frac{\gamma}{\delta}\right)^{\gamma + 1} p^{\gamma - 1} e^{-\left(\frac{\gamma}{\delta}\right)} S_1
\]

where \(p = \frac{n}{\sum_{i=1}^{n} X_i} \)

as has been seen above the posterior distribution would have the same form as the prior distribution. The posterior distribution for \((\gamma, \delta)\) is

\[
f(\gamma, \delta/n', S') = k'(\gamma)^{n'} \left(\frac{\gamma}{\delta'}\right)^{\gamma + 1} p^{\gamma - 1} e^{-\left(\frac{\gamma}{\delta'}\right)} S' \quad (4.2-27)
\]

The problem is to obtain the marginal distribution for \(\delta \) only; that makes it necessary to examine the likelihood contours of equation (4.2-26).

Miller and Hackiman (1975) show that the density function for
\[\delta \text{ should be of the form} \]

\[p(\delta/n', S') = c \left(\frac{1}{\delta} \right)^{n' \gamma + 1} \exp\left(-\frac{Y}{\delta} S' \right) \]

If the posterior distributions for the number of claims and the amount of claims have been found, the posterior distribution of the pure premium can be found easily by compounding both posterior distribution of the number of claims and the amount of claims.

4.2-5 The distribution of the pure premium

The posterior distribution of the pure premium i.e. the posterior distribution for \(E[n]E[S/n=1]/t \) i.e. the expected claim payment on a single unit of risk during the policy period.

For the case where the number of claims has a Poisson distribution and the size of claims is exponential, the posterior distribution for \(q \) and \(\delta \) [probability of claim, expected size of claim] from equation (4.2-17) and (4.2-23)

\[
\begin{align*}
\mathcal{L}(q, \delta/n, n', r', S', t) &= \frac{(t+a)}{r+n} \left((t+a)q \right)^{r+n-1} e^{-q(t+a)} \\
&= \frac{S'(n'-1)}{(n'-1)} \left(\frac{1}{\delta} \right)^{n'} e^{-S'/\delta} \quad (4.2-27)
\end{align*}
\]

Let \(\mu = q\delta \) and \(v = \delta \); we want the distribution of \(\mu \).

\[\phi(q, \delta) = \psi(u, v)|J| \]

where \(|J| = \frac{1}{\delta} \)

101
which is a member of the Pearson type VI family of distributions. The importance of that distribution is that it summarises all the information available about the risk parameters that determine the pure premium. Developing the posterior distribution for the pure premium for a two parameter distribution needs more advanced mathematical techniques, numerical integration and graphical display to guide the selection of the prior distribution for the parameters.

Jewell (1974), using measure theory and advanced mathematical technique, has developed the posterior distribution for the simple exponential family of risk models and proves that the credibility mean of such a process is exact Bayesian.

4.3 A Distribution-free credibility model

In the above work we have made some assumptions about the distribution of the claim amount and number of claims. Now using the collective risk model, without assumptions about the distribution of the claim amount and the number of claims, we try to show that the credibility equation (3.2-1) is a least square estimate for the pure premium and to obtain \(z \) and \(k \) using the Bayesian approach. This problem was first discussed by Buhlmann (1967) and Taylor (1975).

Assume that the insurance portfolio of a particular line of
insurance consists of n classes.

The risk within each class is homogeneous but may differ from class to class. Let

\[x_i = \text{the loss ratio of the } i^{th} \text{ class, } x_i \text{ is a random variate} \]
and these variates are mutually independent, and identically distributed.

\[\theta_i = \text{the parameter which characterises the distribution of } x_i. \]

Let \(F(x_i/\theta_i) \) be the distribution of \(x_i \) and \(p(\theta_i) \) is the distribution of \(\theta_i \).

Also let \(E(x_i/\theta_i) = \mu(\theta_i) \), and \(\hat{\mu}_i \) is the estimate of \(\mu(\theta_i) \).

Also let \(\bar{x} = \frac{x_1 + x_2 + \ldots + x_n}{n} \)

noting that the credibility formula (3.2-1) is a linear approximation of \(\mu(\theta_i) \). Following the lines of Bulhmann(1967) we try to show that (3.2-1) is a least square approximation for \(\mu(\theta_i) \) for some value of \(z \).

Let \(1-z = a \) and \(z = b \)

\[\hat{\mu}_i = a + bx_i. \] (4.3-1)

Then we want to choose \(a \) and \(b \) which minimize \(\phi \), where

\[\phi = \iint [\hat{\mu}_i - \mu(\theta_i)]^2 f(x_i/\theta_i) f(\theta) \, dx \, d\theta \] (4.3-2)
i.e. we want the rates of a and b which satisfy the condition

\[\frac{\partial \phi}{\partial a} = \frac{\partial \phi}{\partial b} = 0 \]

\[\frac{\partial \phi}{\partial a} = \int \int 2[a + bx_i - \mu(\theta_i)] f(x_i/\theta) f(\theta) dx \, d\theta \]

\[= 2 \int [a + b \mu(\theta_i) - \mu(\theta_i)] f(\theta) d\theta \]

But \[\int_\theta \mu(\theta_i) f(\theta) d\theta = E_\theta[\mu(\theta)] = \bar{x} \] (4.3-3)

hence

\[a = (1-b)\bar{x} \] (4.3-4)

\[\frac{\partial \phi}{\partial b} = \int \int 2x_i[a + bx_i - \mu(\theta_i)] f(x_i/\theta_i) f(\theta) dx \, d\theta \] (4.3-5)

Now let

\[x_i = \bar{x} + [\mu(\theta_i) - \bar{x}] + [x_i - \mu(\theta_i)] \]

and the integrant factor

\[a + b(\mu(\theta_i) - \mu(\theta_i)) = b[x_i - \mu(\theta_i)] + (b-1)[\mu(\theta_i) - \bar{x}] \].

The two substitutions used in (4.3-5) by Taylor (1975)

\[\frac{\partial \phi}{\partial b} = \int \int_\theta [\bar{x} + b(\mu(\theta_i) - \bar{x}) + (x_i - \mu(\theta_i))] \]

\[[b(x_i - \mu(\theta_i)) + (b-1)[\mu(\theta_i) - \bar{x}]} f(x_i(\theta_i) f(\theta) dx \, d\theta \]
Multiplying the two factors of the integrand, and integrating term by term, all the terms will vanish except two,

\[
\frac{3\phi}{3B} = \int \int \left[(b-1)(\mu(\theta_i) - \bar{x})^2 + (x_i - \mu(\theta_i))^2 \right] d(x_i/\theta_i) d\theta
\]

\[0 = (b-1) \text{var}_\theta[\mu(\theta)] + b E_\theta[\text{var}(x_i/\theta)]\]

hence

\[b = \frac{\text{var}_\theta[\mu(\theta)]}{\text{var}_\theta[\mu(\theta)] + E_\theta[\text{var}(x_i(\theta))]} \quad (4.3-6)\]

and the credibility relation would be

\[\mu_i^n = (1-z)\bar{x} + zx_i \quad \text{and} \quad z = b \quad (4.3-7)\]

Since \(x_i\) are independent and are identically distributed, then

\[\text{var}_\theta[\mu(\theta)] = E[\bar{x} - \mu(\theta)]^2 = \frac{1}{n} E[\mu(\theta_i)^2] = \frac{1}{n} E[\sigma^2_\theta] \]

\[z = \frac{n}{n+ \frac{E[\sigma^2_\theta]}{\text{var}[\mu(\theta)]}} \quad (4.3-8)\]

where \(k\) is the normalising constant,

Let

\[v = E[\sigma^2_\theta] \]

\[w = \text{var}[\mu(\theta)]\]
hence \[k = \frac{E(\sigma^2_0)}{\text{var}(\mu(0))} = \frac{v}{w} \] (4.3-9)

The normalising constant \(k \), is the same as that which Whitney (1918) hinted about in his work; using the normal distribution for the class hazard and a mixture of arguments calling on Bayesian and maximum likelihood techniques Whitney finds that

\[k = \frac{p(1-p)}{e^2} \]

where \(p \) is the indicated class hazard, and \(e \) being the variation of hazard within the class. Also Jewell (1972) arrives at the same form for \(k \). Also, it will be noted that there is a similarity between (4.3-9) and the \(k \) factor in (4.2-14) [Beta-Binomial case] and (4.2-20) [Gamma-Poisson case].

\(z \) in (4.3-8) satisfies the property \(0 \leq z \leq 1 \).

Since \(v, w > 0 \) also if \(v \to 0 \), i.e. the variation within risk class is very small, then \(z = 1 \), which implies that \(x_i \) provides a good estimate for \(\mu(\theta_i) \). Also, if \(\text{var}[\mu(\theta)] \) is very large, \(k \to 0 \), and since \(\text{var}[\mu(\theta)] \) measures the variation between risk classes, which implies \(k = 0 \) and \(x_i \) is the only estimate for \(\mu(\theta_i) \).

Also, if \(v \) is very large, then \(z \to 0 \), which means that there is a very large variation within the risk class, and implies that there is little information about \(\mu(\theta_i) \). The same result obtains \(\text{var}[\mu(\theta)] \) is very small, i.e. there is little variation between risk classes, and \(\bar{x} \) would be a good estimator for \(\mu(\theta_i) \).

Buhlmann(1968) has adopted this procedure for experience rating leading to two very useful properties, i.e.
1. sum of correct premium over the portfolio = expected income by the experience rating formula from the portfolio.

2. sum of correct premiums over any part of the portfolio is characterised by claims experience = expected income by experience rating from the same part of the portfolio (which means impossibility of antiselection).
5.1 Introduction

In fire insurance as well as other forms of general insurance, it is known that there are many factors affecting individual risk experience (discussed in Chapter two). Almer (1975) summarises the statistical problem of general insurance in the following way:

1 - Insurance risk depends on several dominant parameters
2 - All risk groups are non-homogeneous, composed of unknown homogeneous sub-groups, and the risk in different sub-groups will often vary by 20% to 50% or even more.
3 - The "risk a priori" varies from year to year and generally has a marked trend.
4 - Claims amounts are determined not only by sums insured, but principally by random circumstances in the risk situation preceding actual accident.
5 - The distribution of claim amounts varies with risk group and period. Some statistical results seem to derive from the structure of the risk situation (with or without actual claims experience).

These points are coupled with the problem of paucity of data. For independent rate making, an experience rating plan is needed to provide a rating plan which is responsive to change over time and ensures an equitable treatment to individual risk. Various experience rating plans have these features, which would satisfy the fundamental
In this case, a simple model for premium calculation would exist such that

i. premium income = value of the claim outgo

\[\text{premium income} = \int v^t C_t \, dt \]

(5.1-1)

where \(v \) is a discount factor, \(C_t \, dt \) the claim outgo in the interval \((t, t+\delta t)\).

ii. premium = rate \times \text{number of the units of exposure}

or \(\text{rate} = \frac{\text{premium}}{\text{number of units of exposure}} \).

In general insurance, the period of contract is usually short (which is in contrast to normal long term of life insurance) so it is customary to ignore the discount factor \(v \) in (5.1-1); hence (5.1-1) is reduced to

\[\text{premium income} = \int C_t \, dt = C \]

(5.1-2)

In fire insurance, like any other lines of non-life insurance, the total claim outgo is determined by the individual circumstances for each case, which is not known at the time of fixing the rate. It has been shown in Chapter 3 and 4 that claim outgo depends on two elements.

1 - The occurrence (or non-occurrence) of the event that causes loss in respect of the insured.

2 - The extent of the loss, which determines the amount of claim paid by the insurer.

Thus, let \(x \) be a random variate having the value 1 or 0 according
1 - Each unit of loss (in monetary terms) should contribute to the risk adjusted rate an amount equivalent to the amount of information it provides regarding future losses of the same risk for the same amount of exposure.

2 - The risk premium should not fluctuate widely from year to year.

3 - One unit of loss (in monetary value) should not increase the adjusted rate by more than one unit.

It should be noted that criteria 2 and 3 impose limitations on criteria (1).

Also the plan would be expected to make an explicit use of the available experience of the class as well as of the individual risk.

Rating and experience rating for fire insurance does not depend only on statistical analysis but also on the engineering assessment of the risk.

This chapter will be devoted to the description and development of the mathematical models necessary to estimate the pure risk premium.

5.2 Elements of rate making

The perfect solution for rate making would be where the claim experience is known at the time of rate making with complete certainty -
to whether there is an event of claim or not, respectively and let
S be the amount of a claim given that an event of claim has occurred.
Then the claim outgo, C = xS , is also a random variable having a
compound distribution function F(x, S). The pure risk premium ; is
a function of this compound distribution which assigns a non-negative
number to each risk C.

\[
\text{Premium} = \phi[F(x, S)] .
\]

Actually \(\phi \) relates the claim producing possibility to the variation
in the premium (different forms of the function \(\phi \) will be discussed
in the next section). Since S and x are independent random
variables, the relationship can be written in the form

\[
F(x, S) = B(x) \cdot G(S)
\]

where \(B(x) \) represents the cumulative probability function of the
variable x and \(G(S) \) is the cumulative probability function of S given
\(x = 1 \).

From the above discussion, it can be seen that \(\phi \), \(B(x) \) and \(G(S) \)
constitute the basis for rate making.

5.3 Premium Calculation Principle

If the distribution of the amount of claims \(F(x, S) \) is known, the
amount of the premium can be calculated according to the following
possible principles:

1 - The expected value principle (net premium principle)

\[
\phi(C) = (1+\lambda)E(C)
\]
2 - The standard deviation principle

\[\phi(C) = E(C) + \alpha \sqrt{\text{var}C} \]

3 - The variance principle

\[\phi(C) = E(C) + B \text{var}C \]

4 - The zero utility principle

The premium \(\phi(C) \) is arrived at as a result of the equation

\[E(\mu[\phi(C) - C]) = \gamma \]

where \(\mu(\omega) \) is the utility function of the company profit; this function should satisfy the following requirements:

a - \(\mu(\omega) \) has to be continuous

b - \(\mu(\omega) \) has to be non-decreasing

c - \(\mu'(\omega) \) has to be non-increasing

This function measures the profit achieved by the company. The constant \(\gamma \) represents the safety loading including the profit desired or expected by the Company.

Gerber 1974 mentions other principles.

5 - The mean value principle

Let \(v(\omega) \) be a continuous strictly increasing function, then one defines

\[\phi(C) = v^{-1}E(v(C)) \]
6 - The maximal loss principle

For \(p > 0, q = 1 - p > 0 \) one sets

\[
\Phi(C) = pE(C) + q \max(C)
\]

where \(\max(C) \) denotes the right end point of the range of \(C \).

The principle of calculating the premium is additive, if the premium assigned to the sum of two independent risks is the sum of the premiums that are assigned to the two risks individually, i.e. the premium in fire insurance is additive if the total premium for two houses insured separately is equal to the premium for the two houses insured as one object.

Principles 1 and 3 fulfil the requirement of additivity. Principle 2 (standard deviation principle) does not satisfy this requirement. Additivity of the premium is to be considered desirable both in regard to practice and theory.

The utility function (and the principles 5 and 6) are very interesting in theory, but in practice may be of very little importance. The fulfilment of the additivity requirement depends on the utility function (note that if the utility function is linear, the resulting premium is equivalent to the expected value principle). In the following sections, more properties of the first three functions will be discussed in more detail.
5.4 Preliminary assumptions

The symbols we will use in the following work will be the common symbols used in most literature concerning this subject.

Let \(v \) be the parameter that represents the claim producing possibility (the set of hazards associated with risk) in respect of claim frequency or claim severity. In general, \(v \) will be a vector or set of descriptive statements which characterise the risk elements in respect of one of these two aspects of heterogeneity, associated with a specific class.

For convenience, the specific risk can be represented by \(R(v_1, v_2) \), where \(v_1 \) represents the claim frequency and \(v_2 \) represents the claim severity. \(R(v, \cdot) \) would represent specific risk only in respect of claim frequency and \(R(\cdot, v_2) \) would represent specific risk only in respect of claim severity. \(R(\cdot, \cdot) \), or simply \(R \), would denote a risk randomly selected from the class.

\[
p(v_1, v_2) = \text{risk premium (or rate for only one unit of exposure for the risk } \ R(v_1, v_2).\]

\[
p = \text{the class premium for } R \ (\text{collective premium}).
\]

Actually true risk premium is unknown and will remain so for a given risk (the only exception is if the risk can be observed over a very long period of time, and the claim experience during this period is stationary, i.e. the risk condition remains unchanged over the course of time). Usually engineering assessment of risk plays a major part in determining the risk premium. At the same time the class premium

* i.e. severity relative to the other risks in the class
can be determined more accurately from the claim statistics.

Let \(B(X/v) \) = cumulative probability function for \(R(v_1, \cdot) \) for random variate \(x \).

\[
B(X/v) = \text{cumulative probability function for } R(v_1, \cdot) \\
\text{for random variate } x.
\]

\[G(S/v) = \text{cumulative probability function for } R(\cdot, v_2) \]

for random variate \(S \)

and let \(g(S/v) \) represent the probability that a loss occurs and a claim presented to the insurer and his liability would not exceed the amount \(S \).

\(B(x) \) and \(G(S) \) are the cumulative probability function for \(R \), i.e., for a risk taken at random from the class.

\(\theta(v,v_2) \) is the structure function of the class with respect to the claim frequency and claim severity. \(\theta(v_1,v_2) \) represents the frequency distribution of the group \((v_1,v_2)\) over the class and

\[
\theta(v_1, \cdot) = \sum_{v_2} \theta(v_1,v_2) \\
\theta(\cdot,v_1) = \sum_{v_1} \theta(v_1,v_2)
\]

respectively the structure functions with respect to claim frequency and claim severity. From Chapter 4 it can be seen that

\[
B(x) = \frac{\sum B(x/v) \theta(v_1)}{\sum \theta(\cdot, \cdot)}
\]

\[
G(S) = \frac{\sum G(s/v) \theta(\cdot, v)}{\sum \theta(\cdot, \cdot)}
\]
It would be convenient to study the relation between $R(v_1, v_2)$ and R.

Let $\pi(v_1) = E[x/v]$, $\pi = E[x]$

$$\pi = E[x] = E[E[x/v}] = E[\pi(v)] \quad (5.4-1)$$

where π and $\pi(v)$ are the mean values of the distribution of x, for R and $R(v_1, \cdot)$ respectively.

Also, let $\mu(v)$ and μ be the mean values of the conditional distribution of S, for $R(\cdot, v)$ and R respectively, then

$$\mu = E[S/x = 1] = E[E[S/v, x = 1}]$$

$$\therefore \mu = E[\mu(v)] \quad (5.4-2)$$

In general, the higher order central moments are denoted by

$$\mu_r(v) = E[[S-\mu(v)]^r/v, x = 1]$$

$$\therefore \mu_r = E[[S-\mu]^r/x=1]$$

$$= E([[S-\mu(r)] + [\mu(r)-\mu]]^r/x=1) \quad (5.4-3)$$

In particular, the second central moment ($r=2$) is of more interest

$$\sigma^2(v) = \mu_2(v)$$

$$\sigma^2 = \mu_2$$

$$= E[\sigma^2(v)] + \text{var}[\mu(v)] \quad (5.4-4)$$

The following results will be used in the following work.
1 - \(\text{var}(x) = \mathbb{E}\{\text{var}(x/v) + \text{var}(\mathbb{E}(x/v))\} \)

\[= \mathbb{E}\{\pi(x)(1-\pi(x))\} + \text{var}(\pi(x)) \]

\[= \pi(1-\pi) \quad (5.4-5) \]

Since \(\pi = \mathbb{E}(\pi(x)) \)
and \(\text{var}[\pi(x)] = \mathbb{E}\{\pi^2(x)\} + \mathbb{E}^2(\pi(x)) \)

\[\begin{align*}
2 - \mathbb{E}\{xS/v_1,v_2\} &= (v_1)\mu(v_2) \\
\mathbb{E}\{xS\} &= \mu \quad (5.4-6)
\end{align*} \]

\[\begin{align*}
3 - \text{var}\{xS/v_1,v_2\} &= (v_1)\sigma^2(v_2) + \mu^2(v_2)\pi(v_1)[1-\pi(v_1)] \\
\text{var}[x,S] &= \pi\sigma^2 + \mu^2\pi(1-\pi) \quad (5.4-7)
\end{align*} \]

For proof of relations 2 and 3 see Appendix (1).

5.5 **Requirement and construction of the premium function \(\phi \)**

From the elementary principle of insurance, as far as practical, the risks are divided into classes \(R(v_1,v_2) \) differentiating the hazard of various risks. Therefore, all risks with specification \((v_1,v_2) \) may be treated as equal hazards. Hence, each risk \(R(v_1,v_2) \) would be charged the average premium of the group \((v_1,v_2) \). The obvious value for \(\phi \) is

\[\phi[B(x),G(S)] = \mathbb{E}[xS/v_1,v_2] \]

and the premium of this risk is

\[p(v_1,v_2) = \pi(v_1)\mu(v_2) \quad (5.5-1) \]
The function ϕ should satisfy the following properties:

1 - For a large number of risks, for each group (v_1, v_2) the resulting premium is such that

$$\text{total premium income} = \text{total claim outgo}$$

2 - The risk premiums are unbiased in aggregate

3 - The function ϕ is iterative (the function $\phi(p = \phi(x))$ is iterative if and only if $\phi(x/y)$ is a risk and $\phi(x) = \phi[\phi(x/y)]$ for any pair of risks x and y). This property can be described in our case as applying the function ϕ first within the group (v_1, v_2) then between the different groups; if the resulting premium is equal to the class premium, then the function ϕ is said to be iterative.

4 - The function ϕ should be additive (mentioned in 5.3)

5 - The function ϕ should have a provision for fluctuation over a short period of time. To ensure sufficient reserve to meet the fluctuation over time, this provision is affected by the insurance company's policy for retention and re-insurance.

a - Expected value principle

$$\phi[B(x/v_1), G(S/v_2)] = (1+\lambda)E[xS/v_1, v_2]$$

$$= (1+\lambda)\pi(v_1)\pi(v_2)$$

The expected value principle is often used in life insurance but it
is seldom used in property and casualty insurance because of the heterogeneity of the claim experience. This principle is unbiased but not iterative.

b - The standard deviation principle

\[\phi[B(x/v_1), G(S/v_2)] = E[xS/v_1, v_2] + B\sqrt{\text{var}[xS/v_1, v_2]} \]

\[= \pi(v_1)\mu(v_2) + B[\pi(v_1)\sigma^2(v_2) + \pi(v_1)(1-\pi(v_1))\mu^2(v_2)]^{\frac{1}{2}} \]

This principle makes specific provision for the contingency, and takes into consideration the variability of claim size. The standard deviation principle is most frequently used in property and casualty insurance.

At the same time it is not unbiased, not iterative and not additive.

c - Variance principle

\[\phi[B(x/v_1), G(S/v_2)] = E[xS/v_1, v_2] + B\text{var}[xS/v_1, v_2]. \]

Hence \[p(v_1, v_2) = \pi(v_1)\mu(v_2) + B[\pi(v_1)\sigma^2(v_2) + \pi(v_1)(1-\pi(v_1))\mu^2(v_2)] \]

Also the class premium

\[p = \pi\mu + B[\pi\sigma^2 + (1-\pi)\mu^2] \]

The variance principle is unbiased and also iterative. To prove that it is unbiased - since

\[E[p(v_1, v_2)] = \pi\mu + BE[\text{var}[xS/v_1, v_2]] \]
By using equation (5.4-4) and (5.4-7) and ignoring terms containing \(\text{var}[\pi(v_1)] \)

\[
E[p(v_1, v_2)] = \pi \mu + B[\pi \sigma^2 + \pi(1-\pi) \mu^2] - B\pi^2 \text{var}[\mu(v_2)] = p
\]

Since the last term is of very small order.

To prove it is iterative, apply \(\phi \) function twice, firstly within the groups and secondly between the groups.

\[
\phi[\phi[B(x/v_1), G(x/v_2)]]
\]

\[
= E[p(v_1, v_2)] + B \text{var}[p(v_1, v_2)]
\]

\[
= E[\pi(v_1)\mu(v_2) + B[\pi(v_1)\sigma^2(v_2) + \pi(v_1)(1-\pi(v_1))\mu^2(v_2)]]
\]

\[
+ B \text{var}[\pi(v_1)\mu(v_2)] + B[\pi(v_1)\sigma^2(v_2) + \pi(v_1)(1-\pi(v_1))\mu^2(v_2)]
\]

dropping terms containing \(B^2 \)

\[
= E[\pi(v_1)\mu(v_2) + B[\pi(v_1)\sigma^2(v_2) + \pi(v_1)(1-\pi(v_1))\mu^2(v_2)]]
\]

\[
+ B \text{var}[\pi(v_1)\mu(v_2)]
\]

\[
\approx \pi \mu + B[\pi \text{E}[\sigma^2(v_2)] + \pi(1-\pi)\text{E}[\mu^2(v_2)]]
\]

\[
+ B[\pi \text{var}[\mu(v_2)]]
\]

\[
\approx \pi \mu + B[\pi \sigma^2 + \pi(1-\pi)\mu^2]
\]

Thus \(\phi \) is iterative.

Also, the variance principle takes into account the variability in the distributions of \(x \) and \(S \). While the variance principle satisfies
all the conditions [from 1 to 5] and has much consideration in favour of it, it is not as popular as the standard deviation principle. It should be noted also that the expected value principle is contained in the variance principle as a special case when $B = 0$. Buhlmann (1970) shows that in the case of zero utility, if the utility function is quadratic then the variance principle is the first approximation for the premium.

In the following work we shall base our consideration on the variance principle because of favourable theoretical and practical properties.

5.6 Experience rating and credibility premium

In practice, we have observation

$$D_n = \{x_1, x_2, ..., x_n, S_1, S_2, ..., S_n\} \quad (5.6-1)$$

about a risk $R(v_1, v_2)$, (the case $n = 0$ signifies that no experiences are available for the risk) and it is required to estimate the risk premium $p(v_1, v_2)$ for $R(v_1, v_2)$ by taking into consideration the experience D_n. Also we have to consider two facts

1 - the claim frequency is too small i.e. $\pi(v_1)$ is too small.

2 - the claim amount distribution (distribution of S) is usually heavily skew with a long tail on the right-hand side.

These facts have great effect on the efficiency of the estimates of $\pi(v_1), \mu(v_2)$ and $\sigma^2(v_2)$ derived from the actual experience D_n. The efficiency of these estimates would be very low even with
moderate size of experience, which consequently affects the reliability of the estimate of $p(v_1, v_2)$ [since this estimate constitutes a component of the premium].

As has been shown, in experience rating a compromise is to give to the estimate from the data weight only to the extent of its credibility, and use the experience available for other groups of the class.

The classical approach to credibility, discussed in Chapter 3, introduces an arbitrary choice of the formula for experience rating as well as in the formula for the partial credibility. The only criticism of that approach concerns the method of obtaining the normalising factor. At the same time, the Bayesian approach discussed in Chapter 4 has a sound theoretical property, but requires knowledge of the distribution of the claim process which is difficult to obtain.

Buhlmann's credibility formula discussed in (4.5) provided a logical statistical basis for experience rating and found a statistical measure for determining the normalising factor. However, this formula can be adopted directly in such situations where only one of the two elements of the claim, claim frequency and claim severity, is relevant.

In order to avoid having to repeat assumptions, it will be convenient to describe in outline the credibility formula for experience rating before suggesting the modified formula which accounts for both elements of claim process in the following section.
Let \(y \) be a random variate, having a cumulative probability function \(F(y/v) \) for \(R(v) \) and \(H(y) \) for \(R \) (Note the equivalence between this notation and the notation in Chapter 4).

The variance principle for the risk premium and class premium is given by

\[
p(v) = \mu(v) + B\sigma^2(v)
\]

and

\[
p = \mu + B\sigma^2
\]

Taking account of the experience, \(p(D_n) \) the credibility premium, where \(D_n = \{y_1, y_2, \ldots, y_n\} \)

is defined to be

\[
p(D_n) = E[p(v)/D_n] + B\text{var}[\mu(v)/D_n]
\]

\[
= E[\mu(v)/D_n] + B E[\sigma^2(v)/D_n] + B\text{var}[\mu(v)/D_n]
\]

(5.6.1)

This formula can be broken into two parts

a - an approximation part

\[E[p(v)/D_n] = E[\mu(v)/D_n] + B E[\sigma^2(v)/D_n]\]

b - a fluctuation part

\[B\text{var}[\mu(v)/D_n]\]

The approximation part has the following properties

1 - It approximates the risk premium \(p(v) \) with the minimum square error over the entire class (see 4.5).

2 - It is the only approximation whose mean, over all such risks \(R \), which have the same experience as \(D_n \) is equal to the mean
risk premium over this part of the whole class (Buhlmann 1961).

3 - It approaches the risk premium \(p(v) \) asymptotically for every group \(v \) (Doop 1949).

4 - The fluctuation part \(\text{var} \left[\mu(v)/D_n \right] \) approaches zero asymptotically.

5 - The risk premium is equal to the class premium when there is no experience for the risk \(n = 0 \) and it converges to the risk premium for a very large claim experience \(n \to \infty \).

The experience rating premium \(p(D_n) \) has three components.

These components can easily be determined using Bayesian theory (explained in Chapter 4) if the distribution function \(F(y/v) \) and the structure function \(\theta(v) \) are known, but this is not so in our case.

Each term of the formula (5.6-1) can be approximated by appropriate credibility formula of the type in (4.5) and by an appropriately chosen "linear" function as follows:

a - approximation to expected value part

\[
E[\mu(v)/D_n] \approx a + b\bar{y}
\]

where \(\bar{y} = \frac{1}{n} \sum y_i \) \hspace{1cm} (5.6-2)
can be approximated by

\[z \bar{y} + (1-z \bar{y}) \mu \]
\[\mu = E[\mu(v)] \]

and \[z \mu = \frac{n}{n+k} \mu \]

From (4.3-8) we get

\[k = \frac{E[\sigma^2(v)]}{\text{var}[\mu(v)]} \]

b - approximation of variance part

\[E(\sigma^2(v)/D_n) = c + d \sum^2 \]

where \[\sum^2 = \frac{1}{n-1} \sum^n_{i=1} (y_i - \bar{y})^2 \]

\[\sum^2 = \frac{1}{n-1} \sum^n_{i=1} (y_i - \bar{y})^2 \]

\[\sigma^2 \sum + (1-\sigma^2)E[\sigma^2(v)] \]

where \[z_\sigma = \frac{n-1}{n-1+2k_\sigma^2} \]

and \[k_\sigma = \frac{E[\sigma^4(v)]}{\text{var}[\sigma^2(v)]} \]

c - approximation of fluctuation part

\[\text{var}[\mu(v)/D_n(v)] = E[\mu(v)] - (a+b\bar{y})^2 \]

can be expressed as

\[(1-z \mu)\text{var}[\mu(v)] \]

125
Then the credibility premium

\[p(D_n) = \left\{ z_{\mu} \bar{y} + (1-z_{\mu})E[\mu(v)] \right\} + B \left\{ z_{\sigma^2} \sum \right\} + (1-z_{\sigma^2})E(\sigma^2(v)) + B(1-z_{\mu})\text{var}[\mu(v)] \]

using equation (5.4-5) and (5.4-3)

\[p(D_n) = \left[z_{\mu} \bar{y} + (1-z_{\mu})\mu \right] + B\left\{ z_{\sigma^2} \sum \right\} + (1-z_{\sigma^2})\sigma^2 \]

\[+ B(z_{\sigma^2}z_{\mu}) \text{var}[\mu(v)]. \] (5.6-10)

The last term is very small and would have little effect if ignored.

For determining the size of experience required for self-rating, \(n_m \) for expected value, and \(n_{2\sigma} \) for the variance component of the credibility formula may be given by the inequality

\[p_r((1-k)\mu \leq \bar{y} \leq (1+k)\mu) \geq 1-p \] (5.6-11)

and \[p_r((1-k)E[\sigma^2(v)] \leq \sum \leq (1+k)E[\sigma^2(v)]) \geq 1-p \] (5.6-12)

\(k, p \) have the same meanings as in (3.3-1) [\(k \) represents the percentage deviation on either side of \(\bar{y} \) or \(\sum \), and \(p \) is the probability of deviation]. Since the claim distribution is heavily skew, \(n_{S_\mu} \) and \(n_{S_\sigma} \) will be large even for moderately stringent \([k, p] \) requirements calling upon the central limit theorem for solving this inequality since

\[\text{var}[\bar{y}] = \frac{1}{n} E[\sigma^2(v)] + \text{var}[\mu(v)] \]

\[= \frac{1}{n} A + B \] (5.6-13)
where \(A = E\sigma^2(v) \) and \(B = \text{var}[\mu(v)] \)

and \(\text{var}^2 = \frac{1}{n} [E[\mu^4(v)] - \frac{n-3}{n-1} E\{\sigma^4(v)\}] + \text{var}[\sigma^2(v)] \)

\[
= \frac{2}{n-1} E[\sigma^4(v)] + \text{var}[\sigma^2(v)]
\]

\[
= \frac{1}{n-1} A' + B'
\]
(5.6-14)

where \(A' = 2E[\sigma^4(v)] \), \(B' = \text{var}[\sigma^2(v)] \)

then

\[
a - n_{S\mu} = \frac{AC}{1-BC}
\]
(5.6-15)

where \(C = \left[\frac{ap}{k\mu}\right]^2 \)
(5.6-16)

where \(ap \) = percentile of the normal distribution with zero mean and unity variance

\[
b - n_{S\sigma^2} = 1 + A'C'/(1-B'C')
\]

\[
C' = \left[\frac{ap}{kE(\sigma^2(v))}\right]^2
\]
(5.6-17)

5.7 Modifying formula for credibility premium

The credibility premium (5.6-10) accounts only for one element of claim process. From the principles developed in (5.5) the following formula which can account for the two elements of the claim process (claim frequency and claim severity) can be introduced.
\[p(D_n) = E[p(v_1, v_2)/D_n] + B \text{var} [\pi(v_1)\mu(v_2)/D_n] \]

\[= E[\pi(v_1)\mu(v_2)/D_n] + B E[\pi(v_1)\sigma^2(v_2)/D_n] \]

\[+ B[\pi(v_1)(1-\pi(v_1))\mu^2(v_2)/D_n] \]

\[+ B \text{var} [\pi(v_1)\mu(v_2)/D_n] \tag{5.7-1} \]

It should be noticed that, this equation has four components. The first component represents the expected value part. The second and third terms represent the variance part, and the fourth term represents the fluctuation part.

Each of the four terms of equation (5.7-1) will be estimated by a linear function of the data \(D_n \).

a - First Component

We approximate \(E[\pi(v_1)\mu(v_2)/D_n] \) by \(a + b(\bar{XS}) \)

where

\[\bar{XS} = \frac{1}{n} \sum_{i=1}^{n} x_i S_i \]

Using the result of (4.3) we can express this part as

\[z_{\pi\mu} \bar{XS} + (1-z_{\pi\mu})\pi_{\mu} \tag{5.7-2} \]

where

\[z_{\pi\mu} = \frac{n}{(n-1)+k_{\pi\mu}} \tag{5.7-3} \]

\[k_{\pi\mu} = \frac{E[\text{var}[\pi(v_1)\mu(v_2)]]}{\text{var}[\mu(v_2)\pi(v_1)]]} \]
\[
\frac{\pi \sigma^2 + \pi(1-\pi)\mu^2}{\pi \text{var}[\mu(v_2)] + \mu^2 \text{var}[\pi(v_1)]}
\]
(5.7-4)

b - The Second Component

\[B \pi E[\pi(v_1)\sigma^2(v_2)/D_n]\] can be replaced by

\[B \pi E[\sigma^2(v_2)/D_n]\]

Let \(n' = \sum_{i=1}^{n} x_i\).

Then \(E[\sigma^2(v_2)/D_n]\) can be approximated by \(c + d\sum_{i=1}^{n} (S_i - \bar{S})^2\) where

\[\sum_{i=1}^{n} = \frac{1}{n'-1} \sum_{i=1}^{n} (S_i - \bar{S})^2\]
(5.7-5)

Then the approximation is

\[z_{\sigma}^2 \sum_{i=1}^{n} + (1-z_{\sigma}^2)E[\sigma^2(v_2)]\]
(5.7-6)

where

\[z_{\sigma} = \frac{n'-1}{(n'-1)+2k_{\sigma}^2}\]

and

\[k_{\sigma}^2 = \frac{E[\sigma^4(v_2)]}{\text{var}[\sigma^2(v_2)]}\]
(5.7-7)

c - The Third Component can be similarly approximated by

\[\mu^2 B E[\pi(v_1)(1-\pi(v_1))/D_n]\]
Then \(E[\pi(v_1)(1-\pi(v_1))/D_n] \div C_2 + d_2 \gamma^2 \)

\[
\gamma = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})
\]

\[
\frac{n}{n-1} \times (1-X) \quad (5.7-8)
\]

Thus the approximation can be expressed as

\[
z_{\pi(1-\pi)}^2 + (1-z_{\pi(1-\pi)}) E[\pi(v_1)(1-\pi(v_2))]
\]

(5.7-9)

where

\[
z_{\pi(1-\pi)} = \frac{(n-1)}{(n-1)+2k_{\pi(1-\pi)}}
\]

(5.7-10)

\[
k_{\pi(1-\pi)} = \frac{E[(\pi(v_1)(1-\pi(v_1))]^2}{\text{var}[\pi(v_1)(1-\pi(v_1))]}
\]

(5.7-11)

d - The Fourth Component

\(\text{var}[\pi(v_1)\mu(v_2)/D_n] \) can be written as

\[
\text{var}[\pi(v_1)\mu(v_2)/D_n] = E[(\pi(v_1)\mu(v_2)-E(\pi(v_1)\mu(v_2))/D_n)^2]
\]

From the approximation of the first terms

\[
E[(\pi(v_1)\mu(v_2) - (z_{\pi\mu} \bar{X}S + (1-z_{\pi\mu})\pi\mu)/D_n]^2)
\]

\[
= E[(\pi(v_1)\mu(v_2) - z_{\pi\mu} \bar{X}S - (1-z_{\pi\mu})\pi\mu]^2
\]
according to equation (5.7-3) for z_{μ}

$$\text{var}[\pi(v_1)\mu(v_2)/D_n] = (1-z_{\mu}) \{\pi \text{var}[\mu(v_2)]$$

$$+ \mu^2 \text{var}[\pi(v_1)]\}$$ \hspace{1cm} (5.7-12)

From (5.7-2) and (5.7-6) and (5.7-9) and (5.7-12), the modifying credibility formula would have the form

$$\{z_{\mu} X_S + (1-z_{\mu})\pi\mu + \pi B(z_{\sigma^2} \sum z + (1-z_{\sigma^2})E(\sigma^2(v_2))$$

$$+ \mu^2 B(z_{\pi(1-\pi)} \gamma^2 + (1-z_{\pi(1-\pi)})E[\pi(v_1)(1-\pi(v_1))])$$

$$+ (1-z_{\mu})B(\pi^2 \text{var}[\mu(v_2)] + \mu^2 \text{var}[\pi(v_1)]) \}$$ \hspace{1cm} (5.7-13)

$$= z_{\mu} X_S + (1-z_{\mu})\pi\mu + \pi B(z_{\sigma^2} \sum z + (1-z_{\sigma^2})\sigma^2)$$

$$+ \mu^2 B(z_{\pi(1-\pi)} \gamma^2 + (1-z_{\pi(1-\pi)})\pi(1-\pi)) + R_o$$ \hspace{1cm} (5.7-14)

where $R_o = B(\pi^2(1-z_{\mu}) - \pi(1-z_{\sigma^2}) \text{var}[\mu(v_2)]$

$$+ \mu^2(z_{\sigma^2-z_{\mu}})\text{var}[\pi(v_1)]$

which can be ignored.

The modifying formula has three components

a - the first component represents the expected value of claim experience, and has credibility coefficient z_{μ} for the average claim outgo.

b - the second component accounts for the variability of the claim severity S, and has a credibility coefficient z_{σ^2} for the
variation of the claim outgo.

c - The third component accounts for the variability in claim frequency \(x \), and has credibility for the variation of the number of claims.

Hence, the suggested formula takes into consideration the two elements of the claim process.

5.8 Level of full credibility for the modifying formula

a - For the first component, the expected value component

since \(E\left[\frac{1}{n} \sum x_i S_i\right] = \pi \mu \)

and \(\text{var}\left\{\frac{1}{n} \sum S_i x_i\right\} = E\{\text{var}(XS)\} + \text{var}\{E(XS)\} \)

\[
= \frac{1}{n} \left\{ \pi \sigma^2 + \pi(1-\pi) \mu^2 \right\} + \frac{n-1}{n} \pi^2 \text{var}[\mu(v_2)] \\
+ \mu^2 \text{var}[\pi(v_1)]
\]

\[
= \frac{1}{n} A + \frac{n-1}{n} B
\] \hspace{1cm} (5.8-1)

where \(A = \pi \sigma^2 + \pi(1-\pi) \mu^2 \)

and \(B = \pi \text{var}[\mu(v_2)] + \mu^2 \text{var}[\pi(v_1)] \)

Let \(a \) be the percentile of the distribution of

\[
T = \frac{\frac{1}{n} \sum x_i S_i - \pi \mu}{\sqrt{\text{var}\left\{\frac{1}{n} \sum x_i S_i\right\}}}
\] \hspace{1cm} (5.8-2)
The \([k,p]\) requirement

\[p_r\{a_{p_1} \leq T \leq a_{p_2}\} \geq 1-p \] \hspace{1cm} (5.8-3)

where \(p_2 - p_1 = 1-p\)

since for positively skew distribution

\[a_{1-p/2} > |a_{p/2}| \]

For the relevant values of \(p\) required for full credibility a conservative estimate value of \(n_{s\mu}\) may be obtained from

\[a_p = \frac{k_{\pi\mu}}{\sqrt{\text{var}\left[\frac{1}{n}\sum x_i\right]}} \] \hspace{1cm} (5.8-4)

i.e.

\[n_{s\mu} = \frac{(A-B)C}{(1-BC)} \] \hspace{1cm} (5.8-5)

\(a_p\) would be obtained in terms of \(n_p\), the corresponding percentile of the normal distribution with mean zero and variance unity, and some correction terms by using the Cornish-Fisher expansion as suggested by Mayerson in (2.3).

The second component has \(\sum^2\) as the underlying statistic

\[\sum^2 = \frac{1}{n'-1} \sum_{i=1}^{n'} (S_i - \bar{S})^2 \] \hspace{1cm} (5.8-6)

Then

\[E(\sum^2) = E(\sigma^2(v_2)) \]

and

\[\text{var}(\sum^2) = \text{var}[\sigma^2(v_2)] + \frac{2}{n'-1} E[\sigma^4(v_2)] \]
= A + \frac{1}{n'-1} B

where

A = \text{var}[\sigma^2(v_2)]

B = 2E[\sigma^4(v_2)]

and \(n_{\sigma^2}^2 \), the level for full credibility for this component is

\[n_{\sigma^2}^2 = \frac{1 + BC}{1 - BC} \]

where \(C = \left[\frac{a p}{k E[\sigma^2(v)]} \right]^2 \)

The third component \(\gamma^2 \)

\[\gamma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x}) = \frac{n}{n-1} \bar{x} (1-\bar{x}) \]

\[E \gamma^2 = \text{E}[\pi(v_1)(1-\pi)] \]

\[\text{var} \gamma^2 = \text{var}[\pi(v_1)(1-\pi)] + \frac{2}{n-1} [\pi(v_1)(1-\pi(v_1))]^2 \]

\[= A + \frac{1}{n-1} B \]

where

A = \text{var}[\pi(v_1)(1-\pi(v_1))]

B = 2E[\pi(v_1)(1-\pi(v_1))]
The level of full credibility is

\[n_{s\pi}(1-\pi) = \frac{1 + AC}{1 - BC} \]

\[C = \left[\frac{a_p}{kE_{\pi(v_1),(1-\pi(v_1))}} \right]^2 \]
Let \(n \) be the number of accidents having a probability distribution \(B(x) \) and let \(S \) be the amount of claims paid in particular accidents having a probability distribution \(G(S) \).

Let \(\phi_x(t) \) be the probability generating function for the random variable \(x \) and \(\phi_S(t) \) for \(s \).

\[
\phi_x(t) = \sum x^n b(x)
\]

\[
\phi_S(t) = \sum t^n g(s)
\]

Let \(n \) be the number of accidents occurring, and let \(z \)

\[
z = S_1 + S_2 + \ldots + S_n
\]

the probability generating function for \(z \) is

\[
\phi_z = \sum_{z=0}^{\infty} t^z \{ \text{probability of paying } z \}
\]

\[
= \sum_x \sum_{S_1} \sum_{S_2} \ldots \sum_{S_n} t^{S_1+S_2+\ldots+S_n} g(S_1)g(S_2)\ldots g(S_n) b(x)
\]

\[
= \sum_x \phi_x \{ \phi_S(t) \}
\]

but the moment generating function \(\phi_x(t) \) is related to the probability generating function through the relation

\[
\phi_x(t) = m_x(\log(t))
\]
Thus we can get the moment generating function of \(z \) as

\[
m_z(t) = \phi_x(\phi_s(\exp(t)))
\]

(3)

to obtain the moment we differentiate 3 with respect to \(t \), at \(t = 0 \)

\[
m_z'(t) = \phi_x'(\phi_s(\exp(t)))\phi_s'(\exp(t))\exp(t)
\]

(4)

\[
m_z''(t) = \phi_x''(\phi_s(\exp(t))) \cdot \phi_s''(\exp(t))^2 \cdot \exp(2t)
\]

\[
+ \phi_x'(\phi_s(\exp(t))) \cdot \phi_s'(\exp(t)) \cdot \exp(2t)
\]

\[
+ \phi_x'(\phi_s(\exp(t))) \cdot \phi_s'(\exp(t)) \cdot \phi_s''(\exp(t)) \cdot \exp(t)
\]

(5)

Note that at \(t = 0 \) \(\exp(t) = 1 \), also \(\phi_x(1) = 1 \)

also \(\phi_x'(t)|_{t=1} = E(x) \)

\(\phi_x''(t)|_{t=1} = E(x^2) - E(x) \)

\[
= \text{var}(x) + E^2(x) - E(x)
\]

(6)

The same conditions exist for \(\phi_s(t) \).

\[
\text{from (3) we get}
\]

\[
E(z) = \phi_x'(1) \cdot \phi_s'(1)
\]

\[
= E(x) E(s)
\]

(7)
from (5)

\[E(z^2) = \phi''(1) [\phi'(1)]^2 + \phi''(1)\phi''(1) + \phi'(1)\phi'(1) \]

\[= [\text{var} x + E^2(x) - E(x)]E^2(s) + E(x)\text{var}(s) + E^2(s) - E(s) \]

\[+ E(x)E(s) \]

\[= \text{var}(x)E^2(s) + \text{var}(s)E(x) + E^2(s)E^2(x) \quad (8) \]

Therefore

\[\text{var}(z) = \text{var}(x)E^2(s) + \text{var}(s)E(x) \quad (9) \]

since

\[\text{var}(z) = E(z^2) - E^2(z). \]
6.1 Introduction

Credibility theory approach to experience rating has been widely applied by casualty actuaries in the United States for a long time. In practice, for rate revision, the theory was applied to a heterogeneous collection of risks in the portfolio. While this credibility approach can handle a heterogeneous collection of risks, this approach in fire insurance is criticized by Hurley (1954) because it does not differentiate between classes. It would be logical and desirable to divide the total portfolio of lines of insurance into broad classes which would have several advantages.

1 - The credibility tables would be more appropriate to the inherent hazard of the class.
2 - The handling of the data for rating or rate revision would become easier by dividing the data into groups.
3 - The treatment of the risk would be easily understood by the management who are not equipped with actuarial and statistical knowledge.

In chapter two we discussed different factors affecting the claim experience; according to these factors it would be convenient to first divide the data according to the protection group [protected = area A, unprotected = area B].
Secondly, since many factors affecting the risk are relevant to the type of occupancy, the risk is subgrouped according to the occupancy.

Other factors such as construction, private protection and special features not relevant to occupancy would be considered.

It is the practice in fire insurance to divide the sum insured covering a property into two parts:

1 - sum insured for the construction cover
2 - sum insured for the content cover

and the rate would be different for each part. From the data collected from the non-industrial fire branch, it is found that the property is either covered for content or for the construction.

If the number of occupancies covered are very large, broad grouping according to Appendix 2.2 would be helpful for handling the data.

If one fire division has more than one occupancy, it would be charged the higher rate for the more hazardous part and accordingly will belong to the category of the hazardous occupancy.

6.2 Source and Choice of Data

In Egypt, the Association of Insurance has the responsibility of fixing the insurance rate for different lines of insurance, and by the Law the insurance companies must follow their rates. There are no detailed statistical data to ensure that the rates have sound scientific justification. Each company working in the market is
represented at the Association of Insurance. The decision for any change concerning the rate (increasing or decreasing, moving some category of risk from one class to another class) are taken by these representatives, relying upon their experience and wise judgement. The information they have is restricted to the amount of premiums collected and the total claim payment for a calendar year grouped in lines of the reinsurance treaty (the Association has the responsibility of fixing the level of retention for the insurance cover).

By the end of each year, each of the insurance companies in the market do some statistics in lines of the reinsurance cover [group the risks according to the lines of reinsurance cover] and determine the loss ratio relating the premium earned in the calendar year to the amount of claim paid during the year [not according to the date of accident occurrence].

It was proposed at the outset of the study to investigate the loss ratio for different groups of non-industrial fire insurance in the Egyptian market on the lines of credibility theory. Because of the difficulty of obtaining data, particularly detailed underwriting statistics for the different groups of this branch, the study is limited to the development of the experience rating formula for the pure premium and obtaining the credibility tables for the minimum number of contracts and claims required for that purpose. Also, for the same reason mentioned, the study is limited to one company of the three direct companies working in the market. Its share of fire insurance business in the market is 33% (according to the statistics of the Egyptian insurance organisation during the period of investigation).
The data is collected for a period of 10 years (1970-1979). During the period of investigation the rate did not change. The data collected consists of underwriting data and claim data.

6.2-1 Claim data

When a claim is presented to the company, a file would be opened and given a reference number in serial. At the same time the claim would be registered in the reporting book. Any action concerning the claim would be in the claim file [i.e. the history of the claim at the claim file]. When the claim was settled, the amount of settlement is registered at the reporting book and the claim file is closed and archived. All information obtained about claims is gathered from the original claim file. This information can be classified into two groups:

1) Underwriting Information

1 - date of policy in force.
2 - date of termination of the contract.
3 - the sum insured.
4 - amount of premium.
5 - location (we give code 1 for Area A and code 2 for Area B).
6 - occupancy (rate group and category). We give a code number for each rate group and another code for each category within the rate group.
7 - construction. We give codes for the different types of construction.
8 - public or private owned (we give code 1 for private ownership and code 2 for public ownership).
II Claim Information

1 - Date when the accident occurred, date when the accident was reported.

2 - Date of claim settlement.

3 - Total amount of claim consisting of three parts
 i - Amount of claim paid = C
 ii - Expense directly related to settlement of the claim = E
 iii - The recovery from the accident = R
 Total amount of claim = C + E - R

4 - Adequacy of the insurance

5 - Cause of the accident (given a code for each cause of accident)

6 - Any outside exposure contributing to the loss (given a code for each outside exposure cause)

Table (6.1) was used for recording this claim information.

6.2-2 Underwriting information

The only sources found for underwriting information are

1 The underwriting department
2 Central fire reinsurance department

The underwriting department does not keep information about the
Form used for gathering of claim data
Table (6.1)

<table>
<thead>
<tr>
<th>UNDERWRITING INFORMATION</th>
<th>CLAIM INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of contract</td>
<td>In Force from to</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

144
policy for more than three years and it was found difficult to get
the information required in the limited time available. The
reinsurance department does keep the underwriting information for
a longer period.

Any policy underwritten, renewed, or any action concerning the
underwriting is reported to the reinsurance department. The
department has four books:

1. New business
2. Renewal
3. Cancellation
4. Alteration

It has been found that the only way to get the required information
is through these books. The information obtained was:

1. Date the policy came into force.
2. Date the policy terminated.
3. Sum insured.
4. Premium
5. Location
6. Occupation (rate group)

For many contracts there is difficulty in getting the right
information for the sum insured and for the amount of the premium
at the same time. The only information we can rely upon is the
number of contracts for each group of business which we used in the
model developed in chapter (5). In the class of warehouses we face
a different problem. The contract may cover more than one warehouse
in different locations with a fixed amount for the total cover and
maximum amount of cover per warehouse (the contract is subject
to monthly reports for the average value of commodities in the warehouse during each month). Neither the number of warehouses nor their locations are in the contract. This situation would suggest that it is necessary to rate the contract according to the individual characteristics.

The total number of contracts during the period of the investigation amounts to 72521 contracts, from this total (66085) belong to the two classes of business studied, 1 - construction and content of residential buildings (class I). 2 - small businesses and retail shops (class II).

The number of claims settled or in the process of settlement was 149 for class I and 293 for class II.

6.2-3 Claim reporting

The fire insurance policy requires the insured to give immediate written notice to the insurer within 15 days of the accident at most. The insured should send to the company proof of loss including the time and the origin of loss, the interest of the insured and all other parties in the property, the actual cash value of the items damaged by the fire, the assessment of loss and all other insurance contracts, if any, in operation. It was observed that almost all claims were reported within the first and second day from the accident (for the industrial branch the situation is different, especially for small losses). Only two cases were observed which were presented after a long period from the accident occurrence.
6.2-4 Claim settlement

As soon as a claim is reported to the company, the property is inspected by a trained employee from the claims department who assesses the amount of damage and the actual value of the property.

If the amount of the claim is large, the company uses a specialised adjustor for this purpose.

Accidents or damages reported are not claims if the hazard causing the loss is not covered by the contract. This class of reported claims amounted to 10 % of the total number of claims reported.

Most claims were settled near to the claim department's assessment of the amount of the claim. Delay in claim settlement does not have a great effect on the amount of claim [Table (6.2) shows the distribution of the number of claims settled over time during the period of investigation]. The common reasons for delay of claim settlement are

1 - The insured does not agree with the company assessment of the damage.
2 - The property is greatly under-insured and the insured is not satisfied with the company assessment of the actual value of the property.

In most cases, it is found that the settlement is within 10 % of the company's assessment of the loss. From Table (6.2) it can be seen that 66.6 % of claims are settled within 6 months, 23.4 % are settled within a year, and 10 % are settled in a period of more than a year, which corresponds to the percentage of the
<table>
<thead>
<tr>
<th>Period</th>
<th>Trading shops and small businesses</th>
<th>Construction and content</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Percentage</td>
<td>Number</td>
</tr>
<tr>
<td>0-1</td>
<td>29</td>
<td>9.9</td>
<td>26</td>
</tr>
<tr>
<td>1-2</td>
<td>41</td>
<td>14.0</td>
<td>33</td>
</tr>
<tr>
<td>2-3</td>
<td>34</td>
<td>11.6</td>
<td>13</td>
</tr>
<tr>
<td>3-4</td>
<td>37</td>
<td>12.6</td>
<td>22</td>
</tr>
<tr>
<td>4-5</td>
<td>18</td>
<td>6.1</td>
<td>15</td>
</tr>
<tr>
<td>5-6</td>
<td>17</td>
<td>5.9</td>
<td>7</td>
</tr>
<tr>
<td>6-9</td>
<td>46</td>
<td>15.7</td>
<td>13</td>
</tr>
<tr>
<td>9-12</td>
<td>36</td>
<td>12.3</td>
<td>8</td>
</tr>
<tr>
<td>12-18</td>
<td>23</td>
<td>7.8</td>
<td>3</td>
</tr>
<tr>
<td>18+</td>
<td>12</td>
<td>4.1</td>
<td>6</td>
</tr>
</tbody>
</table>

293 146 439
number of claims of under-insured property during the period.

6.2-5 Treatment of the data for the economic effect

For analysis of data collected over a long period of time (more than one year) it would be appropriate to treat the data to eliminate the economic effect. Economic effect on claim experience can be summarised in

1 - Inflation effect
2 - Change in risk factor

The sum insured and the amount of claim are subject to an inflation effect.

This effect can be eliminated by using a suitable index. For the amount of claim, we used different index numbers for different groups of risk.

For building construction and buildings under construction we used the index number for the construction material. For the content of residential buildings, hotels and public places we used a household index.

For small businesses and retail shops we used the wholesale index number [Table (6.3) shows the different index used and Table (5.4) shows the weight used as a multiplier for each year]. Treatment of the claim data for changes in risk factors is ignored since the rate did not change during the period of investigation.
Price Index

Table 6.3

<table>
<thead>
<tr>
<th>Year</th>
<th>Building Material</th>
<th>Household</th>
<th>Wholesale Price Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>100.0</td>
<td>100</td>
<td>100.0</td>
</tr>
<tr>
<td>71</td>
<td>104.5</td>
<td>104</td>
<td>100.4</td>
</tr>
<tr>
<td>72</td>
<td>104.5</td>
<td>104</td>
<td>101.2</td>
</tr>
<tr>
<td>73</td>
<td>105.3</td>
<td>109</td>
<td>108.1</td>
</tr>
<tr>
<td>74</td>
<td>113.0</td>
<td>128</td>
<td>123.6</td>
</tr>
<tr>
<td>75</td>
<td>129.1</td>
<td>138</td>
<td>132.9</td>
</tr>
<tr>
<td>76</td>
<td>138.9</td>
<td>142</td>
<td>143.3</td>
</tr>
<tr>
<td>77</td>
<td>149.1</td>
<td>156</td>
<td>156.7</td>
</tr>
<tr>
<td>78</td>
<td>163.7</td>
<td>185</td>
<td>179.7</td>
</tr>
<tr>
<td>79</td>
<td>187.8</td>
<td>190</td>
<td>197.0</td>
</tr>
<tr>
<td>80</td>
<td>205.8</td>
<td>209</td>
<td>229.0</td>
</tr>
</tbody>
</table>

Source: Egyptian Agency for public mobilisation and statistics - The annual statistical yearbook (1970-1979)
Weight multiplier for each year

Table 6.4

<table>
<thead>
<tr>
<th>Year</th>
<th>Building Construction</th>
<th>Household</th>
<th>Wholesale Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>2.058</td>
<td>2.09</td>
<td>2.296</td>
</tr>
<tr>
<td>71</td>
<td>1.969</td>
<td>2.01</td>
<td>2.281</td>
</tr>
<tr>
<td>72</td>
<td>1.769</td>
<td>2.01</td>
<td>2.263</td>
</tr>
<tr>
<td>73</td>
<td>1.954</td>
<td>1.917</td>
<td>2.118</td>
</tr>
<tr>
<td>74</td>
<td>1.821</td>
<td>1.633</td>
<td>1.853</td>
</tr>
<tr>
<td>75</td>
<td>1.594</td>
<td>1.514</td>
<td>1.723</td>
</tr>
<tr>
<td>76</td>
<td>1.482</td>
<td>1.472</td>
<td>1.598</td>
</tr>
<tr>
<td>77</td>
<td>1.380</td>
<td>1.340</td>
<td>1.461</td>
</tr>
<tr>
<td>78</td>
<td>1.257</td>
<td>1.130</td>
<td>1.274</td>
</tr>
<tr>
<td>79</td>
<td>1.096</td>
<td>1.1</td>
<td>1.162</td>
</tr>
<tr>
<td>80</td>
<td>1.000</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>
6.3 Preliminary statistical study for experience rating

The distribution of the amount paid, by frequency and by amount for the two classes studied are given in Table (6.5) and Table (6.6).

The important feature that emerges from Table (6.5) and (6.6) is that the distribution underlying the data is highly skew.

Many probability functions were tried to find a good fit to the observed distribution of the claim amounts.

Finally, the following function was suggested for class I

\[f(s) = \frac{1}{B(a,b)} x^{a-1} \left(1-x\right)^{b-1} \]

where \(a = .34 \) and \(b = .4 \).

The area under the distribution function is approximated by the following formula:

\[
F(x < X) = \frac{1}{B(a,b)} \int_0^X x^{a-1} \left(1-x\right)^{b-1} dx
\]

\[
= \frac{1}{B(a,b)} \sum_{i=0}^{b-1} \binom{b-1}{i} x^{a+i-1}
\]

\[
= \frac{1}{B(a,b)} \sum_{i=0}^{b-1} \binom{b-1}{i} x^{\frac{a+i}{a+1}}
\]

Table (6.7) presents the observed and expected frequencies. An \(\chi^2 \) test is used to examine the goodness of the fit.
\[\chi^2 = \sum \frac{(E-O)^2}{E} = 11.6 \]

with 7 degrees of freedom; the test confirms that the fit is not very bad.

For class II, many distribution functions were tried, but we could not find any one to fit the data because of the irregularity of the frequency.

For class I - An important feature emerges from Table (6.5) - that the number of claims exceeding the amount £1500 is 11% of the total number of claims for this class, but these account for over 60% of the total amount paid. The largest 8 claims account for about 40% of the total amount paid.

At the same time 89% of the amount of claims are less than or equal to £1500. It is decided to compute the primary claim amount by using the multisplit formula

\[S_p = S_0 \left(\frac{1-a^r}{1-a} \right) + R a^r \quad (6.3-1) \]

where \(S_0 = 1500 \)

\[r = \frac{S}{S_0} \quad (S \text{ is the observed amount of claim}) \]

\[R = S - r S_0 \]

\[a = 0.6 \]

For class II - An important feature emerges from Table (6.6) - that 10.85% of the total number of claims exceed £8000, but account for about 60% of the total amount of claims. The largest 8 claims
Observed frequency distribution for class I

Table 6.5

<table>
<thead>
<tr>
<th>Interval</th>
<th>Frequency of no. of claims</th>
<th>Total amount of claim paid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of claims</td>
<td>Percentage</td>
</tr>
<tr>
<td>0-100</td>
<td>56</td>
<td>38.4</td>
</tr>
<tr>
<td>100-200</td>
<td>25</td>
<td>17.1</td>
</tr>
<tr>
<td>200-300</td>
<td>13</td>
<td>8.9</td>
</tr>
<tr>
<td>300-600</td>
<td>18</td>
<td>12.3</td>
</tr>
<tr>
<td>600-1000</td>
<td>10</td>
<td>6.8</td>
</tr>
<tr>
<td>1000-1500</td>
<td>8</td>
<td>5.5</td>
</tr>
<tr>
<td>1500-2500</td>
<td>8</td>
<td>5.5</td>
</tr>
<tr>
<td>2500+</td>
<td>8</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>146</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Mean = 519.863

Variance = 611051.016
Observed frequency distribution of claims for class II

Table 6.6

<table>
<thead>
<tr>
<th>Interval</th>
<th>Frequency</th>
<th>Percentage</th>
<th>Total amount of claims</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-200</td>
<td>79</td>
<td>26.96</td>
<td>6539.2</td>
<td>.81</td>
</tr>
<tr>
<td>200-400</td>
<td>36</td>
<td>12.28</td>
<td>10728.8</td>
<td>1.33</td>
</tr>
<tr>
<td>400-600</td>
<td>29</td>
<td>9.90</td>
<td>14375.5</td>
<td>1.78</td>
</tr>
<tr>
<td>600-1200</td>
<td>25</td>
<td>8.53</td>
<td>23167.1</td>
<td>2.87</td>
</tr>
<tr>
<td>1200-1800</td>
<td>26</td>
<td>8.87</td>
<td>27086.4</td>
<td>4.59</td>
</tr>
<tr>
<td>1800-2400</td>
<td>20</td>
<td>5.83</td>
<td>41745.7</td>
<td>5.17</td>
</tr>
<tr>
<td>2400-3000</td>
<td>13</td>
<td>4.44</td>
<td>34119.9</td>
<td>4.22</td>
</tr>
<tr>
<td>3000-4000</td>
<td>13</td>
<td>4.44</td>
<td>45943.4</td>
<td>5.64</td>
</tr>
<tr>
<td>4000-5000</td>
<td>10</td>
<td>3.41</td>
<td>44784.7</td>
<td>5.55</td>
</tr>
<tr>
<td>5000-6000</td>
<td>5</td>
<td>1.71</td>
<td>25630.4</td>
<td>3.17</td>
</tr>
<tr>
<td>6000-8000</td>
<td>6</td>
<td>2.05</td>
<td>40506.3</td>
<td>5.02</td>
</tr>
<tr>
<td>8000-10000</td>
<td>10</td>
<td>3.41</td>
<td>85918.1</td>
<td>10.64</td>
</tr>
<tr>
<td>1000-15000</td>
<td>6</td>
<td>2.05</td>
<td>72479.7</td>
<td>8.98</td>
</tr>
<tr>
<td>15000-20000</td>
<td>7</td>
<td>2.39</td>
<td>119456.2</td>
<td>14.79</td>
</tr>
<tr>
<td>20000+</td>
<td>8</td>
<td>2.73</td>
<td>205091.0</td>
<td>25.39</td>
</tr>
<tr>
<td>Total</td>
<td>293</td>
<td>1.00</td>
<td>807572.4</td>
<td>100.00</td>
</tr>
</tbody>
</table>

mean = 2796.2491

standard deviation = 5128.582
Observed and Expected frequency for the class of building construction and content

Table 6.7

<table>
<thead>
<tr>
<th>Probability</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Observed</td>
</tr>
<tr>
<td>0- 100</td>
<td>38.4</td>
</tr>
<tr>
<td>100- 200</td>
<td>17.1</td>
</tr>
<tr>
<td>200- 300</td>
<td>8.9</td>
</tr>
<tr>
<td>300- 600</td>
<td>12.3</td>
</tr>
<tr>
<td>600- 800</td>
<td>6.8</td>
</tr>
<tr>
<td>1000-1500</td>
<td>5.5</td>
</tr>
<tr>
<td>1500-2500</td>
<td>5.5</td>
</tr>
<tr>
<td>2500 ></td>
<td>5.5</td>
</tr>
</tbody>
</table>

146 146
The mean and variance for groups of Class I

Table 6.8

<table>
<thead>
<tr>
<th>group*</th>
<th>No. of contract</th>
<th>No. of claims</th>
<th>$\pi(v_1)$ Mean of X</th>
<th>$\pi(v_1)[1-\pi(v_1)]$ Variance of X</th>
<th>$\mu(v_2)$ Mean of S_p</th>
<th>$\sigma(v_2)$ Variance S_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>group (1)</td>
<td>14623</td>
<td>38</td>
<td>0.0026</td>
<td>0.00259</td>
<td>573.228</td>
<td>586789.336</td>
</tr>
<tr>
<td>group (2)</td>
<td>9214</td>
<td>48</td>
<td>0.0052</td>
<td>0.00518</td>
<td>198.506</td>
<td>131722.484</td>
</tr>
<tr>
<td>group (3)</td>
<td>2820</td>
<td>10</td>
<td>0.0035</td>
<td>0.00353</td>
<td>935.756</td>
<td>722812.532</td>
</tr>
<tr>
<td>group (4)</td>
<td>9161</td>
<td>25</td>
<td>0.0027</td>
<td>0.00272</td>
<td>432.535</td>
<td>295946.727</td>
</tr>
<tr>
<td>group (5)</td>
<td>1628</td>
<td>25</td>
<td>0.0154</td>
<td>0.01512</td>
<td>660.263</td>
<td>920378.516</td>
</tr>
<tr>
<td>group (1)</td>
<td>37446</td>
<td>146</td>
<td>0.0039</td>
<td>0.00388</td>
<td>465.675</td>
<td>453814.578</td>
</tr>
</tbody>
</table>

group (1) building construction

group (2) content of offices and residential flats

group (3) building under construction

group (4) public places

group (5) hotels
The mean and variance for groups of Class II

Table 6.9

<table>
<thead>
<tr>
<th>Group*</th>
<th>No. of contract</th>
<th>No. of claims</th>
<th>$\pi(v_1)$</th>
<th>$\pi(v_1)[1-\pi(v_1)]$</th>
<th>$\mu(v_2)$</th>
<th>$\sigma(v_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean of X</td>
<td>Variance of X</td>
<td>Mean of Sp</td>
<td>Variance</td>
</tr>
<tr>
<td>Group (1)</td>
<td>6090</td>
<td>44</td>
<td>.0072</td>
<td>.9928</td>
<td>2136.011</td>
<td>13906582.250</td>
</tr>
<tr>
<td>Group (2)</td>
<td>12636</td>
<td>142</td>
<td>.0112</td>
<td>.9888</td>
<td>1394.518</td>
<td>11359272.563</td>
</tr>
<tr>
<td>Group (3)</td>
<td>7204</td>
<td>56</td>
<td>.0078</td>
<td>.9922</td>
<td>4165.603</td>
<td>121904533.000</td>
</tr>
<tr>
<td>Group (4)</td>
<td>1412</td>
<td>26</td>
<td>.0184</td>
<td>.9816</td>
<td>4941.223</td>
<td>28677650.750</td>
</tr>
<tr>
<td>Group (5)</td>
<td>1297</td>
<td>25</td>
<td>.0193</td>
<td>.9807</td>
<td>4832.534</td>
<td>35190485.500</td>
</tr>
<tr>
<td>Total</td>
<td>28639</td>
<td>293</td>
<td>.0102</td>
<td>.9898</td>
<td>2643.534</td>
<td>33047581.250</td>
</tr>
</tbody>
</table>

according to the rate groups in Appendix (2.2)
account for over 25% of the total amount paid.

The multisplit formula (6.3-1) is used to compute the primary for class II with

\[S_0 = 8000 \]

\[a = 0.6 \]

The number of contracts in force during the period of investigation, number of claims and the mean and variance of the two variables of the pure premiums \(x \) and \(S \), for each group within the two classes (\(S \) represents the primary) are presented in Tables (6.8) and (6.9).

6.3.1 Statistical test for homogeneity of the claim experience over the groups of each class:

Three statistical tests suggested for this purpose are

I. Test of the homogeneity of claim occurrence
II. Test of homogeneity of the variation of the amount of claim
III. Test of homogeneity of average amount of claim

I - Contingency analysis for claim frequency

For each class, we test the hypothesis \(\pi_{ij}(v_1) = \pi_{kj}(v_1) \) by testing the independence of the following contingency table [Everitt 1977].
<table>
<thead>
<tr>
<th>group</th>
<th>no. of contract with claim</th>
<th>no. of contract without claim</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>38</td>
<td>14585</td>
<td>14623</td>
</tr>
<tr>
<td>(2)</td>
<td>48</td>
<td>9166</td>
<td>9214</td>
</tr>
<tr>
<td>(3)</td>
<td>10</td>
<td>2810</td>
<td>2820</td>
</tr>
<tr>
<td>(4)</td>
<td>25</td>
<td>9136</td>
<td>9161</td>
</tr>
<tr>
<td>(5)</td>
<td>25</td>
<td>1603</td>
<td>1628</td>
</tr>
<tr>
<td>Total</td>
<td>146</td>
<td>37300</td>
<td>37446</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>group</th>
<th>no. of contract with claim</th>
<th>no. of contract without claim</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>44</td>
<td>6046</td>
<td>6090</td>
</tr>
<tr>
<td>(2)</td>
<td>142</td>
<td>12494</td>
<td>12636</td>
</tr>
<tr>
<td>(3)</td>
<td>56</td>
<td>7148</td>
<td>72024</td>
</tr>
<tr>
<td>(4)</td>
<td>26</td>
<td>1386</td>
<td>1412</td>
</tr>
<tr>
<td>(5)</td>
<td>25</td>
<td>1272</td>
<td>1297</td>
</tr>
<tr>
<td>Total</td>
<td>293</td>
<td>28346</td>
<td>28639</td>
</tr>
</tbody>
</table>

The test statistic is

$$\chi^2 = \sum_{i=1}^{5} \sum_{j=1}^{2} \frac{(n_{ij} - E_{ij})^2}{E_{ij}}$$

where $i = 1, 2, 3, 4, 5$ for the group

$j = 1, 2$ with claim, without claim

n_{ij} = the number of the observation in row i in Column 5

$$E_{i1} = P_{i} \times n_{i}, \quad P_{i} = \frac{\text{number of claims}}{\text{total number of contracts}}$$

$$E_{i2} = P_{j} \times n_{j}, \quad P_{j} = \frac{\text{number of contracts without claim}}{\text{total number of contracts}}$$

$$P_{i} + P_{j} = 1$$
For class I \(\chi^2 = 74.227 \), with 4 degrees of freedom; the test is significant at all levels.

For class II \(\chi^2 = 31.0613 \), with 4 degrees of freedom; the test is significant at all levels.

II Bartlett test for the homogeneity of the variance

The hypothesis tested is \(\sigma_i^2(v_2) = \sigma_j^2(v_2) \). This test is suggested by [Bryant 1960]. For simplicity let \(\sigma_i(v_2) = \sigma_i \), the test statistic is

\[
\chi^2 = \frac{\sum_{i=1}^{5} (n_i-1) \ln \sigma - \sum_{i=1}^{5} (n_i-1) \sigma_i^2}{1 + \frac{1}{3(k-1)} \left[\frac{1}{\sum_{i=1}^{5} n_i-1} - \frac{1}{n} \right]}
\]

where \(k = 5 \)

- \(n_i = \) the number of claims in group \(i \)
- \(\sigma_i = \) the variance of claims in group \(i \)
- \(\bar{\sigma} = \frac{\sum (n_i \sigma_i^2)}{\sum n_i-1} \)

For class I \(\chi^2 = 39.17 \), with 4 degrees of freedom; the test was significant at all levels.

For class II \(\chi^2 = 251.43 \), with 4 degrees of freedom; the test was significant at all levels.
III Non exact test for the homogeneity of mean when the variances are not equal

This test is suggested by Snedecor (1958). The hypothesis tested is \(\mu_1(v_2) = \mu_2(v_2) \) and \(\sigma_1 \neq \sigma_2 \), for simplicity.

Let \(\mu_1(v_2) = \mu_i \). The test statistic is

\[
F(v_1, v_2) = \sum_{i=1}^{s} \frac{c_i(\mu_i - \mu_c)^2}{k-1} \cdot \frac{1}{1 + \frac{2(k-2)}{k^2-1} \sum \left(\frac{1-c_i/\sum c_i}{n_i-1} \right)}
\]

where \(k = \) number of groups

\[
c_i = \frac{n_i}{\sigma_i^2}
\]

\[
c = \sum_{i=1}^{s} c_i \mu_i
\]

\[
v_1 = k-1
\]

\[
v_2 = \frac{1}{\frac{3}{(k^2-1)} \left(\sum \left(\frac{1-c_i/\sum c_i}{n_i-1} \right)^2 \right)}
\]

For class I \(F(v_1, v_2) = 4 \) with \(v_1 = 4 \) and \(v_2 = 40.65 \).
The test is significant at all levels.

For class II \(F(v_1, v_2) = 5.547 \) with \(v_1 = 4 \) and \(v_2 = 69.44 \).
The test is significant at all levels.
6.4 Experience Rating

In Chapter 5, the following credibility formula was derived.

\[
\begin{align*}
\pi_{\mu} & = \frac{\bar{X}}{\sum_{i=1}^{n} z_{\pi_{\mu}} + (1-z_{\pi_{\mu}})\pi_{\mu}} \\
& + \pi B [z_{\sigma_{2}} \sum_{i=1}^{n} z_{\sigma_{2}} + (1-z_{\sigma_{2}})\sigma_{2}] \\
& + \mu^{2} B [z_{\pi(1-\pi)}^2 + (1-z_{\pi(1-\pi)})\pi(1-\pi)]
\end{align*}
\]

with

\[
\begin{align*}
z_{\pi_{\mu}} &= \frac{n}{(n-1)+k_{\pi_{\mu}}} \\
k_{\pi_{\mu}} &= \frac{\pi \sigma^{2} + \mu^{2} (1-\pi)}{\pi \text{var}[\pi(v_{2})] + \mu^{2} \text{var}[\pi(v_{1})]}
\end{align*}
\]

where \(n \) is the number of contracts,

\[
\begin{align*}
z_{\sigma^{2}} &= \frac{(n'-1)}{(n'-1)+2k_{\sigma^{2}}} \\
k_{\sigma^{2}} &= \frac{E[\sigma^{4}(v_{2})]}{\text{var}[\sigma^{2}(v_{2})]}
\end{align*}
\]

where \(n' \) is the number of claims,

\[
\begin{align*}
z_{\pi(1-\pi)} &= \frac{(n-1)}{(n-1)+2k_{\pi(1-\pi)}} \\
k_{\pi(1-\pi)} &= \frac{E[\pi(v_{1})(1-\pi(v_{1})]}{\text{var}[\pi(v_{1})(1-\pi(v_{1})]}
\end{align*}
\]

165
Table (6.4) and Table (6.5) are used for estimating the various parameters of this formula. The parameters for the three k formula are calculated and presented in Table (6.6).

Using the results in Table (6.6), the formula for the credibility coefficients for class I are

\[z_{\pi \mu} = \frac{n}{n+12.75918} \]

\[z_{\sigma^2} = \frac{n'-1}{n'+5.834} \]

\[z_{\pi(1-\pi)} = \frac{n-1}{n+3.5804} \]

For class II they are

\[z_{\pi \mu} = \frac{n}{n+17.833} \]

\[z_{\sigma^2} = \frac{n'}{n'+2.1158} \]

\[z_{\pi(1-\pi)} = \frac{n}{n+20.7677} \]

In Appendix (6-1) detailed tables are given for the three credibility coefficients and \(n(n') \) for each class. The tables can be used to know the minimum \(n(n') \) for given levels of credibility, and also to determine the credibility coefficient for a given \(n(n') \). These
tables are left in crude form and can be modified in the light of such specifications as the level of self-rating.

Table (6.11) and (6.12) give a summary of the relation between \((z,n)\) for classes I and II respectively, and graphs (6.3) and (6.4) present the relationship between the credibility coefficients and \(n(n')\).
The value of the parameters of \(k \) formulas

Table 6.10

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Class I</th>
<th>Class II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu)</td>
<td>465.675</td>
<td>2643.534</td>
</tr>
<tr>
<td>(\pi)</td>
<td>0.0039</td>
<td>0.0102</td>
</tr>
<tr>
<td>(\text{var}[\mu(v_2)])</td>
<td>48.285 (10^3)</td>
<td>21.14706 (10^5)</td>
</tr>
<tr>
<td>(\text{var}[\pi(v_1)])</td>
<td>0.71342 (10^{-5})</td>
<td>0.108953 (10^{-4})</td>
</tr>
<tr>
<td>(\text{var}[\sigma^2(v_2)])</td>
<td>85.20759 (10^9)</td>
<td>19.65023 (10^{14})</td>
</tr>
<tr>
<td>(E[\sigma^4(v_2)])</td>
<td>29.11526 (10^{10})</td>
<td>20.57166 (10^{14})</td>
</tr>
<tr>
<td>(\text{var}\pi(v_1))</td>
<td>0.68958 (10^{-5})</td>
<td>0.10352 (10^{-4})</td>
</tr>
<tr>
<td>(E\pi(v_1)^2)</td>
<td>0.21924 (10^{-4})</td>
<td>0.11267 (10^{-3})</td>
</tr>
<tr>
<td>(k_{\mu \mu})</td>
<td>13.75918</td>
<td>18.832</td>
</tr>
<tr>
<td>(k_{\sigma^2})</td>
<td>3.41701</td>
<td>1.55579</td>
</tr>
<tr>
<td>(k_{\pi(1-\pi)})</td>
<td>3.17932</td>
<td>10.88388</td>
</tr>
</tbody>
</table>
Relation between $n(n')$ and z for Class I

Table 6.11

<table>
<thead>
<tr>
<th>z</th>
<th>n for $z_{p\mu}$</th>
<th>n' for z_{p^2}</th>
<th>n for $z_{p(1-p)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0.3</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0.4</td>
<td>8</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0.5</td>
<td>12</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>0.6</td>
<td>18</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>0.7</td>
<td>29</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>0.8</td>
<td>50</td>
<td>28</td>
<td>26</td>
</tr>
<tr>
<td>0.9</td>
<td>112</td>
<td>62</td>
<td>58</td>
</tr>
<tr>
<td>0.99</td>
<td>1240</td>
<td>677</td>
<td>630</td>
</tr>
<tr>
<td>0.999</td>
<td>12525</td>
<td>6832</td>
<td>6357</td>
</tr>
</tbody>
</table>
Relation between $n(n')$ and z for Class II

Table 6.12

<table>
<thead>
<tr>
<th>z</th>
<th>n for $z_{\pi\mu}$</th>
<th>n' for z_{σ^2}</th>
<th>n for $z_{\pi(1-\pi)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.2</td>
<td>4</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>0.3</td>
<td>7</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>0.4</td>
<td>11</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>0.5</td>
<td>17</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>0.6</td>
<td>25</td>
<td>5</td>
<td>33</td>
</tr>
<tr>
<td>0.7</td>
<td>40</td>
<td>8</td>
<td>51</td>
</tr>
<tr>
<td>0.8</td>
<td>68</td>
<td>13</td>
<td>88</td>
</tr>
<tr>
<td>0.9</td>
<td>155</td>
<td>29</td>
<td>196</td>
</tr>
<tr>
<td>0.99</td>
<td>1706</td>
<td>309</td>
<td>2156</td>
</tr>
<tr>
<td>0.999</td>
<td>17228</td>
<td>3111</td>
<td>21760</td>
</tr>
</tbody>
</table>
APPENDIX (6-1)

TABLE (1)

\[
z_{\pi \mu} = \frac{n}{n + 17.833}
\]

<table>
<thead>
<tr>
<th>(z_{\pi \mu})</th>
<th>0.0</th>
<th>0.001</th>
<th>0.002</th>
<th>0.003</th>
<th>0.004</th>
<th>0.005</th>
<th>0.006</th>
<th>0.007</th>
<th>0.008</th>
<th>0.009</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td>0.02</td>
<td>0</td>
</tr>
<tr>
<td>0.03</td>
<td>0</td>
</tr>
<tr>
<td>0.04</td>
<td>0</td>
</tr>
<tr>
<td>0.05</td>
<td>0</td>
</tr>
<tr>
<td>0.06</td>
<td>0</td>
</tr>
<tr>
<td>0.07</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.08</td>
<td>1</td>
</tr>
<tr>
<td>0.09</td>
<td>1</td>
</tr>
<tr>
<td>0.10</td>
<td>1</td>
</tr>
<tr>
<td>0.11</td>
<td>1</td>
</tr>
<tr>
<td>0.12</td>
<td>1</td>
</tr>
<tr>
<td>0.13</td>
<td>1</td>
</tr>
<tr>
<td>0.14</td>
<td>2</td>
</tr>
<tr>
<td>0.15</td>
<td>2</td>
</tr>
<tr>
<td>0.16</td>
<td>2</td>
</tr>
<tr>
<td>0.17</td>
<td>2</td>
</tr>
<tr>
<td>0.18</td>
<td>2</td>
</tr>
<tr>
<td>0.19</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0.20</td>
<td>3</td>
</tr>
<tr>
<td>(z_{\mu})</td>
<td>0.</td>
<td>0.001</td>
<td>0.002</td>
<td>0.003</td>
<td>0.004</td>
<td>0.005</td>
<td>0.006</td>
<td>0.007</td>
<td>0.008</td>
<td>0.009</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>0.51</td>
<td>13</td>
</tr>
<tr>
<td>0.52</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>0.53</td>
<td>14</td>
</tr>
<tr>
<td>0.54</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>0.55</td>
<td>15</td>
</tr>
<tr>
<td>0.56</td>
<td>15</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>0.57</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>0.58</td>
<td>16</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>0.59</td>
<td>16</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>0.60</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>0.61</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>0.62</td>
<td>19</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>0.63</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>0.64</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>0.65</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>0.66</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>0.67</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>0.68</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>0.69</td>
<td>27</td>
<td>27</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>0.70</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>0.71</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>0.72</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>0.73</td>
<td>33</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>0.74</td>
<td>35</td>
<td>35</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>0.75</td>
<td>37</td>
<td>37</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>39</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>0.76</td>
<td>39</td>
<td>39</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>0.77</td>
<td>41</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>0.78</td>
<td>44</td>
<td>44</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>0.79</td>
<td>47</td>
<td>47</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>0.80</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>52</td>
<td>52</td>
<td>52</td>
<td>53</td>
</tr>
<tr>
<td>Z</td>
<td>0.</td>
<td>0.001</td>
<td>0.002</td>
<td>0.003</td>
<td>0.004</td>
<td>0.005</td>
<td>0.006</td>
<td>0.007</td>
<td>0.008</td>
<td>0.009</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>0.81</td>
<td>53</td>
<td>53</td>
<td>54</td>
<td>54</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>56</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>0.82</td>
<td>57</td>
<td>57</td>
<td>57</td>
<td>58</td>
<td>58</td>
<td>59</td>
<td>59</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>0.83</td>
<td>61</td>
<td>61</td>
<td>62</td>
<td>62</td>
<td>63</td>
<td>63</td>
<td>64</td>
<td>64</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>0.84</td>
<td>65</td>
<td>66</td>
<td>66</td>
<td>67</td>
<td>67</td>
<td>68</td>
<td>68</td>
<td>69</td>
<td>69</td>
<td>70</td>
</tr>
<tr>
<td>0.85</td>
<td>71</td>
<td>71</td>
<td>72</td>
<td>72</td>
<td>73</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>75</td>
<td>76</td>
</tr>
<tr>
<td>0.86</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>83</td>
</tr>
<tr>
<td>0.87</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td>91</td>
</tr>
<tr>
<td>0.88</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
</tr>
<tr>
<td>0.89</td>
<td>101</td>
<td>102</td>
<td>103</td>
<td>104</td>
<td>105</td>
<td>106</td>
<td>107</td>
<td>109</td>
<td>110</td>
<td>111</td>
</tr>
<tr>
<td>0.90</td>
<td>112</td>
<td>114</td>
<td>115</td>
<td>116</td>
<td>117</td>
<td>119</td>
<td>120</td>
<td>122</td>
<td>123</td>
<td>125</td>
</tr>
<tr>
<td>0.91</td>
<td>126</td>
<td>128</td>
<td>129</td>
<td>131</td>
<td>133</td>
<td>134</td>
<td>136</td>
<td>138</td>
<td>140</td>
<td>142</td>
</tr>
<tr>
<td>0.92</td>
<td>144</td>
<td>146</td>
<td>148</td>
<td>150</td>
<td>152</td>
<td>154</td>
<td>156</td>
<td>159</td>
<td>161</td>
<td>163</td>
</tr>
<tr>
<td>0.93</td>
<td>166</td>
<td>169</td>
<td>171</td>
<td>174</td>
<td>177</td>
<td>180</td>
<td>183</td>
<td>186</td>
<td>189</td>
<td>192</td>
</tr>
<tr>
<td>0.94</td>
<td>196</td>
<td>199</td>
<td>203</td>
<td>207</td>
<td>211</td>
<td>215</td>
<td>216</td>
<td>223</td>
<td>226</td>
<td>233</td>
</tr>
<tr>
<td>0.95</td>
<td>238</td>
<td>243</td>
<td>248</td>
<td>254</td>
<td>259</td>
<td>265</td>
<td>272</td>
<td>280</td>
<td>285</td>
<td>293</td>
</tr>
<tr>
<td>0.96</td>
<td>300</td>
<td>308</td>
<td>317</td>
<td>326</td>
<td>335</td>
<td>345</td>
<td>356</td>
<td>367</td>
<td>379</td>
<td>391</td>
</tr>
<tr>
<td>0.97</td>
<td>405</td>
<td>419</td>
<td>434</td>
<td>451</td>
<td>469</td>
<td>488</td>
<td>506</td>
<td>532</td>
<td>557</td>
<td>584</td>
</tr>
<tr>
<td>0.98</td>
<td>614</td>
<td>646</td>
<td>683</td>
<td>724</td>
<td>770</td>
<td>822</td>
<td>882</td>
<td>951</td>
<td>1031</td>
<td>1126</td>
</tr>
<tr>
<td>0.99</td>
<td>1240</td>
<td>1379</td>
<td>1553</td>
<td>1777</td>
<td>2076</td>
<td>2453</td>
<td>3120</td>
<td>4165</td>
<td>6254</td>
<td>12525</td>
</tr>
</tbody>
</table>
TABLE (2)

\[z_{\sigma^2} = \frac{n' - 1}{n' + 5.3534} \]

<table>
<thead>
<tr>
<th>(z_{\sigma^2})</th>
<th>0.0</th>
<th>0.001</th>
<th>0.002</th>
<th>0.003</th>
<th>0.004</th>
<th>0.005</th>
<th>0.006</th>
<th>0.007</th>
<th>0.008</th>
<th>0.009</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1</td>
</tr>
<tr>
<td>0.01</td>
<td>1</td>
</tr>
<tr>
<td>0.02</td>
<td>1</td>
</tr>
<tr>
<td>0.03</td>
<td>1</td>
</tr>
<tr>
<td>0.04</td>
<td>1</td>
</tr>
<tr>
<td>0.05</td>
<td>1</td>
</tr>
<tr>
<td>0.06</td>
<td>1</td>
</tr>
<tr>
<td>0.07</td>
<td>1</td>
</tr>
<tr>
<td>0.08</td>
<td>1</td>
</tr>
<tr>
<td>0.09</td>
<td>1</td>
</tr>
<tr>
<td>0.10</td>
<td>1</td>
</tr>
<tr>
<td>0.11</td>
<td>1</td>
</tr>
<tr>
<td>0.12</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0.13</td>
<td>2</td>
</tr>
<tr>
<td>0.14</td>
<td>2</td>
</tr>
<tr>
<td>0.15</td>
<td>2</td>
</tr>
<tr>
<td>0.16</td>
<td>2</td>
</tr>
<tr>
<td>0.17</td>
<td>2</td>
</tr>
<tr>
<td>0.18</td>
<td>2</td>
</tr>
<tr>
<td>0.19</td>
<td>2</td>
</tr>
<tr>
<td>0.20</td>
<td>2</td>
</tr>
</tbody>
</table>
TABLE (2) continued

<table>
<thead>
<tr>
<th>z_o^2</th>
<th>0.00</th>
<th>0.001</th>
<th>0.002</th>
<th>0.003</th>
<th>0.004</th>
<th>0.005</th>
<th>0.006</th>
<th>0.007</th>
<th>0.008</th>
<th>0.009</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.21</td>
<td>2</td>
</tr>
<tr>
<td>0.22</td>
<td>2</td>
</tr>
<tr>
<td>0.23</td>
<td>3</td>
</tr>
<tr>
<td>0.24</td>
<td>3</td>
</tr>
<tr>
<td>0.25</td>
<td>3</td>
</tr>
<tr>
<td>0.26</td>
<td>3</td>
</tr>
<tr>
<td>0.27</td>
<td>3</td>
</tr>
<tr>
<td>0.28</td>
<td>3</td>
</tr>
<tr>
<td>0.29</td>
<td>3</td>
</tr>
<tr>
<td>0.30</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0.31</td>
<td>4</td>
</tr>
<tr>
<td>0.32</td>
<td>4</td>
</tr>
<tr>
<td>0.33</td>
<td>4</td>
</tr>
<tr>
<td>0.34</td>
<td>4</td>
</tr>
<tr>
<td>0.35</td>
<td>4</td>
</tr>
<tr>
<td>0.36</td>
<td>4</td>
</tr>
<tr>
<td>0.37</td>
<td>5</td>
</tr>
<tr>
<td>0.38</td>
<td>5</td>
</tr>
<tr>
<td>0.39</td>
<td>5</td>
</tr>
<tr>
<td>0.40</td>
<td>5</td>
</tr>
<tr>
<td>0.41</td>
<td>5</td>
</tr>
<tr>
<td>0.42</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0.43</td>
<td>6</td>
</tr>
<tr>
<td>0.44</td>
<td>6</td>
</tr>
<tr>
<td>0.45</td>
<td>6</td>
</tr>
<tr>
<td>0.46</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>0.47</td>
<td>7</td>
</tr>
<tr>
<td>0.48</td>
<td>7</td>
</tr>
<tr>
<td>0.49</td>
<td>7</td>
</tr>
<tr>
<td>0.50</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

1
<table>
<thead>
<tr>
<th>z_0^2</th>
<th>0.001</th>
<th>0.002</th>
<th>0.003</th>
<th>0.004</th>
<th>0.005</th>
<th>0.006</th>
<th>0.007</th>
<th>0.008</th>
<th>0.009</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.51</td>
<td>8.8</td>
<td>8.9</td>
<td>9.1</td>
<td>9.5</td>
<td>10.0</td>
<td>10.8</td>
<td>10.8</td>
<td>11.5</td>
<td>12.2</td>
</tr>
<tr>
<td>0.54</td>
<td>8.8</td>
<td>8.9</td>
<td>9.1</td>
<td>9.5</td>
<td>10.0</td>
<td>10.8</td>
<td>10.8</td>
<td>11.5</td>
<td>12.2</td>
</tr>
<tr>
<td>0.56</td>
<td>8.8</td>
<td>8.9</td>
<td>9.1</td>
<td>9.5</td>
<td>10.0</td>
<td>10.8</td>
<td>10.8</td>
<td>11.5</td>
<td>12.2</td>
</tr>
<tr>
<td>0.59</td>
<td>8.8</td>
<td>8.9</td>
<td>9.1</td>
<td>9.5</td>
<td>10.0</td>
<td>10.8</td>
<td>10.8</td>
<td>11.5</td>
<td>12.2</td>
</tr>
<tr>
<td>0.60</td>
<td>8.8</td>
<td>8.9</td>
<td>9.1</td>
<td>9.5</td>
<td>10.0</td>
<td>10.8</td>
<td>10.8</td>
<td>11.5</td>
<td>12.2</td>
</tr>
<tr>
<td>0.62</td>
<td>8.8</td>
<td>8.9</td>
<td>9.1</td>
<td>9.5</td>
<td>10.0</td>
<td>10.8</td>
<td>10.8</td>
<td>11.5</td>
<td>12.2</td>
</tr>
<tr>
<td>0.64</td>
<td>8.8</td>
<td>8.9</td>
<td>9.1</td>
<td>9.5</td>
<td>10.0</td>
<td>10.8</td>
<td>10.8</td>
<td>11.5</td>
<td>12.2</td>
</tr>
<tr>
<td>0.66</td>
<td>8.8</td>
<td>8.9</td>
<td>9.1</td>
<td>9.5</td>
<td>10.0</td>
<td>10.8</td>
<td>10.8</td>
<td>11.5</td>
<td>12.2</td>
</tr>
<tr>
<td>0.67</td>
<td>8.8</td>
<td>8.9</td>
<td>9.1</td>
<td>9.5</td>
<td>10.0</td>
<td>10.8</td>
<td>10.8</td>
<td>11.5</td>
<td>12.2</td>
</tr>
<tr>
<td>0.69</td>
<td>8.8</td>
<td>8.9</td>
<td>9.1</td>
<td>9.5</td>
<td>10.0</td>
<td>10.8</td>
<td>10.8</td>
<td>11.5</td>
<td>12.2</td>
</tr>
<tr>
<td>0.70</td>
<td>8.8</td>
<td>8.9</td>
<td>9.1</td>
<td>9.5</td>
<td>10.0</td>
<td>10.8</td>
<td>10.8</td>
<td>11.5</td>
<td>12.2</td>
</tr>
<tr>
<td>0.72</td>
<td>8.8</td>
<td>8.9</td>
<td>9.1</td>
<td>9.5</td>
<td>10.0</td>
<td>10.8</td>
<td>10.8</td>
<td>11.5</td>
<td>12.2</td>
</tr>
<tr>
<td>0.74</td>
<td>8.8</td>
<td>8.9</td>
<td>9.1</td>
<td>9.5</td>
<td>10.0</td>
<td>10.8</td>
<td>10.8</td>
<td>11.5</td>
<td>12.2</td>
</tr>
<tr>
<td>0.76</td>
<td>8.8</td>
<td>8.9</td>
<td>9.1</td>
<td>9.5</td>
<td>10.0</td>
<td>10.8</td>
<td>10.8</td>
<td>11.5</td>
<td>12.2</td>
</tr>
<tr>
<td>0.78</td>
<td>8.8</td>
<td>8.9</td>
<td>9.1</td>
<td>9.5</td>
<td>10.0</td>
<td>10.8</td>
<td>10.8</td>
<td>11.5</td>
<td>12.2</td>
</tr>
<tr>
<td>0.80</td>
<td>8.8</td>
<td>8.9</td>
<td>9.1</td>
<td>9.5</td>
<td>10.0</td>
<td>10.8</td>
<td>10.8</td>
<td>11.5</td>
<td>12.2</td>
</tr>
<tr>
<td>0.82</td>
<td>8.8</td>
<td>8.9</td>
<td>9.1</td>
<td>9.5</td>
<td>10.0</td>
<td>10.8</td>
<td>10.8</td>
<td>11.5</td>
<td>12.2</td>
</tr>
</tbody>
</table>
TABLE (3)

\[z_{\bar{\pi}}(1-\pi) = \frac{n-1}{n+3.5804} \quad \text{Class I} \]

<table>
<thead>
<tr>
<th>(z_{\bar{\pi}}(1-\pi))</th>
<th>0.</th>
<th>0.001</th>
<th>0.002</th>
<th>0.003</th>
<th>0.004</th>
<th>0.005</th>
<th>0.006</th>
<th>0.007</th>
<th>0.008</th>
<th>0.009</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1</td>
</tr>
<tr>
<td>0.01</td>
<td>1</td>
</tr>
<tr>
<td>0.02</td>
<td>1</td>
</tr>
<tr>
<td>0.03</td>
<td>1</td>
</tr>
<tr>
<td>0.04</td>
<td>1</td>
</tr>
<tr>
<td>0.05</td>
<td>1</td>
</tr>
<tr>
<td>0.06</td>
<td>1</td>
</tr>
<tr>
<td>0.07</td>
<td>1</td>
</tr>
<tr>
<td>0.08</td>
<td>1</td>
</tr>
<tr>
<td>0.09</td>
<td>1</td>
</tr>
<tr>
<td>0.10</td>
<td>1</td>
</tr>
<tr>
<td>0.11</td>
<td>1</td>
</tr>
<tr>
<td>0.12</td>
<td>1</td>
</tr>
<tr>
<td>0.13</td>
<td>1</td>
</tr>
<tr>
<td>0.14</td>
<td>2</td>
</tr>
<tr>
<td>0.15</td>
<td>2</td>
</tr>
<tr>
<td>0.16</td>
<td>2</td>
</tr>
<tr>
<td>0.17</td>
<td>2</td>
</tr>
<tr>
<td>0.18</td>
<td>2</td>
</tr>
<tr>
<td>0.19</td>
<td>2</td>
</tr>
<tr>
<td>0.20</td>
<td>2</td>
</tr>
<tr>
<td>$Z_{(1-\pi)}$</td>
<td>0.001</td>
<td>0.002</td>
<td>0.003</td>
<td>0.004</td>
<td>0.005</td>
<td>0.006</td>
<td>0.007</td>
<td>0.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.51</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.52</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.53</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.54</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.55</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.56</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.57</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.58</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.59</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.60</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.61</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.62</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.63</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.64</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.65</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.66</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.67</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.68</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.69</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.70</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.71</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.72</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.73</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.74</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.76</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.77</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.78</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.79</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.80</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table (3) continued
<table>
<thead>
<tr>
<th>$z_{p(1-p)}$</th>
<th>0.</th>
<th>0.001</th>
<th>0.002</th>
<th>0.003</th>
<th>0.004</th>
<th>0.005</th>
<th>0.006</th>
<th>0.007</th>
<th>0.008</th>
<th>0.009</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.81</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>0.82</td>
<td>29</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>0.83</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>0.84</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>36</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>0.85</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>39</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>0.86</td>
<td>40</td>
<td>40</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>43</td>
</tr>
<tr>
<td>0.87</td>
<td>43</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>46</td>
<td>46</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>0.88</td>
<td>47</td>
<td>48</td>
<td>48</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>50</td>
<td>50</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>0.89</td>
<td>52</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>54</td>
<td>55</td>
<td>55</td>
<td>56</td>
<td>56</td>
<td>57</td>
</tr>
<tr>
<td>0.90</td>
<td>58</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>63</td>
<td>64</td>
</tr>
<tr>
<td>0.91</td>
<td>65</td>
<td>66</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td>71</td>
<td>72</td>
</tr>
<tr>
<td>0.92</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>84</td>
</tr>
<tr>
<td>0.93</td>
<td>85</td>
<td>86</td>
<td>88</td>
<td>90</td>
<td>92</td>
<td>93</td>
<td>95</td>
<td>97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.94</td>
<td>100</td>
<td>102</td>
<td>104</td>
<td>106</td>
<td>108</td>
<td>110</td>
<td>112</td>
<td>114</td>
<td>116</td>
<td>119</td>
</tr>
<tr>
<td>0.95</td>
<td>121</td>
<td>124</td>
<td>127</td>
<td>129</td>
<td>132</td>
<td>135</td>
<td>138</td>
<td>142</td>
<td>146</td>
<td>146</td>
</tr>
<tr>
<td>0.96</td>
<td>153</td>
<td>157</td>
<td>161</td>
<td>166</td>
<td>171</td>
<td>176</td>
<td>181</td>
<td>187</td>
<td>193</td>
<td>193</td>
</tr>
<tr>
<td>0.97</td>
<td>206</td>
<td>213</td>
<td>221</td>
<td>230</td>
<td>239</td>
<td>248</td>
<td>259</td>
<td>271</td>
<td>283</td>
<td>297</td>
</tr>
<tr>
<td>0.98</td>
<td>312</td>
<td>329</td>
<td>347</td>
<td>368</td>
<td>392</td>
<td>419</td>
<td>446</td>
<td>483</td>
<td>524</td>
<td>572</td>
</tr>
<tr>
<td>0.99</td>
<td>630</td>
<td>701</td>
<td>789</td>
<td>903</td>
<td>1054</td>
<td>1266</td>
<td>1584</td>
<td>2116</td>
<td>3174</td>
<td>6357</td>
</tr>
</tbody>
</table>
TABLE (4)

\[z_{\pi\mu} = \frac{n}{n+17.833} \]

<table>
<thead>
<tr>
<th>(z_{\pi\mu})</th>
<th>0.001</th>
<th>0.002</th>
<th>0.003</th>
<th>0.004</th>
<th>0.005</th>
<th>0.006</th>
<th>0.007</th>
<th>0.008</th>
<th>0.009</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.02</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.03</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.06</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.07</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.08</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.09</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0.11</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0.12</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0.13</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0.14</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0.15</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0.16</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0.17</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0.18</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0.19</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0.20</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>z_{mu}</td>
<td>0.000</td>
<td>0.001</td>
<td>0.002</td>
<td>0.003</td>
<td>0.004</td>
<td>0.005</td>
<td>0.006</td>
<td>0.007</td>
<td>0.008</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>0.21</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0.22</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0.23</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0.24</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0.25</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0.26</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0.27</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0.28</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0.29</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>0.30</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>0.31</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>0.32</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>0.33</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>0.34</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>0.35</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>0.36</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>0.37</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>0.38</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>0.39</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>0.40</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>0.41</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>0.42</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>0.43</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>0.44</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>0.45</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>0.46</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>0.47</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>0.48</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>0.49</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>0.50</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>0.51</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>0.52</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>0.53</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>0.54</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>0.55</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>0.56</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>0.57</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>0.58</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>0.59</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>0.60</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>z_{TH}</td>
<td>0.001</td>
<td>0.002</td>
<td>0.003</td>
<td>0.004</td>
<td>0.005</td>
<td>0.006</td>
<td>0.007</td>
<td>0.008</td>
<td>0.009</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>0.51</td>
<td>17</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>0.52</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>0.53</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>0.54</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>0.55</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>0.56</td>
<td>21</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>0.57</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>0.58</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>0.59</td>
<td>24</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>0.60</td>
<td>25</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>0.61</td>
<td>26</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>0.62</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td>0.63</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>0.64</td>
<td>30</td>
<td>30</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>0.65</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>0.66</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>0.67</td>
<td>34</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>0.68</td>
<td>36</td>
<td>36</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>0.69</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>39</td>
<td>39</td>
<td>39</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>0.70</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>0.71</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>0.72</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>0.73</td>
<td>46</td>
<td>46</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>0.74</td>
<td>48</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>0.75</td>
<td>51</td>
<td>51</td>
<td>52</td>
<td>52</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>0.76</td>
<td>54</td>
<td>54</td>
<td>55</td>
<td>55</td>
<td>56</td>
<td>56</td>
<td>56</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>0.77</td>
<td>57</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>59</td>
<td>59</td>
<td>59</td>
<td>59</td>
<td>59</td>
</tr>
<tr>
<td>0.78</td>
<td>61</td>
<td>61</td>
<td>61</td>
<td>62</td>
<td>62</td>
<td>62</td>
<td>62</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>0.79</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>66</td>
<td>66</td>
<td>66</td>
<td>67</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>0.80</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td>70</td>
<td>71</td>
<td>71</td>
<td>72</td>
<td>72</td>
<td>72</td>
</tr>
</tbody>
</table>
TABLE (4) continued

<table>
<thead>
<tr>
<th>$z_{\pi \mu}$</th>
<th>0.</th>
<th>0.001</th>
<th>0.002</th>
<th>0.003</th>
<th>0.004</th>
<th>0.005</th>
<th>0.006</th>
<th>0.007</th>
<th>0.008</th>
<th>0.009</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.81</td>
<td>73</td>
<td>73</td>
<td>74</td>
<td>74</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>76</td>
<td>77</td>
<td>77</td>
</tr>
<tr>
<td>0.82</td>
<td>78</td>
<td>79</td>
<td>79</td>
<td>80</td>
<td>80</td>
<td>81</td>
<td>81</td>
<td>82</td>
<td>82</td>
<td>83</td>
</tr>
<tr>
<td>0.83</td>
<td>84</td>
<td>84</td>
<td>85</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
</tr>
<tr>
<td>0.84</td>
<td>90</td>
<td>91</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>96</td>
<td>97</td>
</tr>
<tr>
<td>0.65</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
<td>100</td>
<td>101</td>
<td>102</td>
<td>103</td>
<td>104</td>
<td>104</td>
</tr>
<tr>
<td>0.66</td>
<td>105</td>
<td>106</td>
<td>107</td>
<td>108</td>
<td>109</td>
<td>110</td>
<td>111</td>
<td>112</td>
<td>113</td>
<td>114</td>
</tr>
<tr>
<td>0.67</td>
<td>115</td>
<td>116</td>
<td>117</td>
<td>118</td>
<td>119</td>
<td>120</td>
<td>121</td>
<td>122</td>
<td>124</td>
<td>125</td>
</tr>
<tr>
<td>0.68</td>
<td>126</td>
<td>127</td>
<td>128</td>
<td>130</td>
<td>131</td>
<td>122</td>
<td>133</td>
<td>135</td>
<td>136</td>
<td>138</td>
</tr>
<tr>
<td>0.69</td>
<td>139</td>
<td>140</td>
<td>142</td>
<td>143</td>
<td>145</td>
<td>146</td>
<td>146</td>
<td>150</td>
<td>151</td>
<td>153</td>
</tr>
<tr>
<td>0.90</td>
<td>155</td>
<td>156</td>
<td>158</td>
<td>160</td>
<td>162</td>
<td>164</td>
<td>166</td>
<td>168</td>
<td>170</td>
<td>172</td>
</tr>
<tr>
<td>0.81</td>
<td>174</td>
<td>176</td>
<td>178</td>
<td>180</td>
<td>183</td>
<td>185</td>
<td>187</td>
<td>190</td>
<td>192</td>
<td>195</td>
</tr>
<tr>
<td>0.92</td>
<td>198</td>
<td>200</td>
<td>203</td>
<td>206</td>
<td>209</td>
<td>212</td>
<td>215</td>
<td>218</td>
<td>222</td>
<td>225</td>
</tr>
<tr>
<td>0.93</td>
<td>228</td>
<td>232</td>
<td>236</td>
<td>240</td>
<td>243</td>
<td>247</td>
<td>252</td>
<td>256</td>
<td>260</td>
<td>265</td>
</tr>
<tr>
<td>0.94</td>
<td>270</td>
<td>274</td>
<td>279</td>
<td>285</td>
<td>290</td>
<td>296</td>
<td>301</td>
<td>307</td>
<td>314</td>
<td>320</td>
</tr>
<tr>
<td>0.95</td>
<td>327</td>
<td>334</td>
<td>341</td>
<td>349</td>
<td>357</td>
<td>365</td>
<td>374</td>
<td>383</td>
<td>393</td>
<td>403</td>
</tr>
<tr>
<td>0.96</td>
<td>413</td>
<td>424</td>
<td>436</td>
<td>448</td>
<td>461</td>
<td>475</td>
<td>489</td>
<td>505</td>
<td>521</td>
<td>538</td>
</tr>
<tr>
<td>0.97</td>
<td>557</td>
<td>577</td>
<td>586</td>
<td>621</td>
<td>645</td>
<td>672</td>
<td>700</td>
<td>732</td>
<td>766</td>
<td>803</td>
</tr>
<tr>
<td>0.98</td>
<td>844</td>
<td>889</td>
<td>940</td>
<td>996</td>
<td>1059</td>
<td>1131</td>
<td>1213</td>
<td>1308</td>
<td>1419</td>
<td>1545</td>
</tr>
<tr>
<td>0.99</td>
<td>1706</td>
<td>1897</td>
<td>2137</td>
<td>2445</td>
<td>2855</td>
<td>3430</td>
<td>4252</td>
<td>5728</td>
<td>8602</td>
<td>17228</td>
</tr>
</tbody>
</table>
TABLE (5)

\[z_{o \text{,}}^2 = \frac{n'}{n + 2.1158} \]

<table>
<thead>
<tr>
<th>(z_{o \text{,}}^2)</th>
<th>0.</th>
<th>0.001</th>
<th>0.002</th>
<th>0.003</th>
<th>0.004</th>
<th>0.005</th>
<th>0.006</th>
<th>0.007</th>
<th>0.008</th>
<th>0.009</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1</td>
</tr>
<tr>
<td>0.01</td>
<td>1</td>
</tr>
<tr>
<td>0.02</td>
<td>1</td>
</tr>
<tr>
<td>0.03</td>
<td>1</td>
</tr>
<tr>
<td>0.04</td>
<td>1</td>
</tr>
<tr>
<td>0.05</td>
<td>1</td>
</tr>
<tr>
<td>0.06</td>
<td>1</td>
</tr>
<tr>
<td>0.07</td>
<td>1</td>
</tr>
<tr>
<td>0.08</td>
<td>1</td>
</tr>
<tr>
<td>0.09</td>
<td>1</td>
</tr>
<tr>
<td>0.10</td>
<td>1</td>
</tr>
<tr>
<td>0.11</td>
<td>1</td>
</tr>
<tr>
<td>0.12</td>
<td>1</td>
</tr>
<tr>
<td>0.13</td>
<td>1</td>
</tr>
<tr>
<td>0.14</td>
<td>1</td>
</tr>
<tr>
<td>0.15</td>
<td>1</td>
</tr>
<tr>
<td>0.16</td>
<td>1</td>
</tr>
<tr>
<td>0.17</td>
<td>1</td>
</tr>
<tr>
<td>0.18</td>
<td>1</td>
</tr>
<tr>
<td>0.19</td>
<td>1</td>
</tr>
<tr>
<td>0.20</td>
<td>1</td>
</tr>
<tr>
<td>z^2_{0}</td>
<td>0.001</td>
<td>0.002</td>
<td>0.003</td>
<td>0.004</td>
<td>0.005</td>
<td>0.006</td>
<td>0.007</td>
<td>0.008</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>0.21</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0.22</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0.23</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0.24</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0.26</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0.27</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0.28</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0.29</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0.30</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0.31</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0.32</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0.33</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0.34</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0.36</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0.37</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0.38</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0.39</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0.40</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0.41</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0.42</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0.43</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0.44</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0.45</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0.46</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0.47</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0.48</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0.49</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

190
<table>
<thead>
<tr>
<th>$\frac{Z^2}{\sigma^2}$</th>
<th>0.000</th>
<th>0.001</th>
<th>0.002</th>
<th>0.003</th>
<th>0.004</th>
<th>0.005</th>
<th>0.006</th>
<th>0.007</th>
<th>0.008</th>
<th>0.009</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.51</td>
<td>4</td>
</tr>
<tr>
<td>0.52</td>
<td>4</td>
</tr>
<tr>
<td>0.53</td>
<td>4</td>
</tr>
<tr>
<td>0.54</td>
<td>4</td>
</tr>
<tr>
<td>0.55</td>
<td>4</td>
</tr>
<tr>
<td>0.56</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0.57</td>
<td>5</td>
</tr>
<tr>
<td>0.58</td>
<td>5</td>
</tr>
<tr>
<td>0.59</td>
<td>5</td>
</tr>
<tr>
<td>0.60</td>
<td>5</td>
</tr>
<tr>
<td>0.61</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0.62</td>
<td>6</td>
</tr>
<tr>
<td>0.63</td>
<td>6</td>
</tr>
<tr>
<td>0.64</td>
<td>6</td>
</tr>
<tr>
<td>0.65</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>0.66</td>
<td>7</td>
</tr>
<tr>
<td>0.67</td>
<td>7</td>
</tr>
<tr>
<td>0.68</td>
<td>7</td>
</tr>
<tr>
<td>0.69</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>0.70</td>
<td>8</td>
</tr>
<tr>
<td>0.71</td>
<td>8</td>
</tr>
<tr>
<td>0.72</td>
<td>9</td>
</tr>
<tr>
<td>0.73</td>
<td>9</td>
</tr>
<tr>
<td>0.74</td>
<td>9</td>
</tr>
<tr>
<td>0.75</td>
<td>10</td>
</tr>
<tr>
<td>0.76</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>0.77</td>
<td>11</td>
</tr>
<tr>
<td>0.78</td>
<td>12</td>
</tr>
<tr>
<td>0.79</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>0.80</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>$Z^2\sigma$</td>
<td>0.001</td>
<td>0.002</td>
<td>0.003</td>
<td>0.004</td>
<td>0.005</td>
<td>0.006</td>
<td>0.007</td>
<td>0.008</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>0.61</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>0.62</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>0.63</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>17</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>0.64</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>0.65</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>0.66</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>0.67</td>
<td>21</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>0.68</td>
<td>23</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>0.69</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>27</td>
<td>27</td>
<td>28</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>0.70</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>30</td>
<td>30</td>
<td>31</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>0.71</td>
<td>30</td>
<td>31</td>
<td>31</td>
<td>32</td>
<td>32</td>
<td>34</td>
<td>34</td>
<td>35</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>0.72</td>
<td>36</td>
<td>37</td>
<td>37</td>
<td>38</td>
<td>38</td>
<td>39</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>0.73</td>
<td>42</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>0.74</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>65</td>
<td>67</td>
<td>68</td>
<td>70</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>0.76</td>
<td>75</td>
<td>77</td>
<td>79</td>
<td>81</td>
<td>84</td>
<td>86</td>
<td>89</td>
<td>92</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>0.77</td>
<td>101</td>
<td>105</td>
<td>109</td>
<td>113</td>
<td>117</td>
<td>122</td>
<td>127</td>
<td>133</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>0.78</td>
<td>153</td>
<td>161</td>
<td>170</td>
<td>180</td>
<td>192</td>
<td>205</td>
<td>220</td>
<td>237</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>0.79</td>
<td>309</td>
<td>343</td>
<td>366</td>
<td>442</td>
<td>516</td>
<td>620</td>
<td>775</td>
<td>1035</td>
<td>1554</td>
<td></td>
</tr>
<tr>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3111</td>
<td></td>
</tr>
</tbody>
</table>
Table (6)

\[z_{\pi(1-\pi)} = \frac{n}{20.7677} \]
Class II

<table>
<thead>
<tr>
<th>(z_{\pi(1-\pi)})</th>
<th>0.</th>
<th>0.001</th>
<th>0.002</th>
<th>0.003</th>
<th>0.004</th>
<th>0.005</th>
<th>0.006</th>
<th>0.007</th>
<th>0.008</th>
<th>0.009</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>1</td>
</tr>
<tr>
<td>0.01</td>
<td>1</td>
</tr>
<tr>
<td>0.02</td>
<td>1</td>
</tr>
<tr>
<td>0.03</td>
<td>1</td>
</tr>
<tr>
<td>0.04</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0.05</td>
<td>2</td>
</tr>
<tr>
<td>0.06</td>
<td>2</td>
</tr>
<tr>
<td>0.07</td>
<td>2</td>
</tr>
<tr>
<td>0.08</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0.09</td>
<td>3</td>
</tr>
<tr>
<td>0.10</td>
<td>3</td>
</tr>
<tr>
<td>0.11</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>0.12</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0.13</td>
<td>4</td>
</tr>
<tr>
<td>0.14</td>
<td>4</td>
</tr>
<tr>
<td>0.15</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0.16</td>
<td>5</td>
</tr>
<tr>
<td>0.17</td>
<td>5</td>
</tr>
<tr>
<td>0.18</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0.19</td>
<td>6</td>
</tr>
<tr>
<td>0.20</td>
<td>6</td>
</tr>
</tbody>
</table>
TABLE (6) continued

<table>
<thead>
<tr>
<th>(z_{\pi(1-\pi)})</th>
<th>0.</th>
<th>0.001</th>
<th>0.002</th>
<th>0.003</th>
<th>0.004</th>
<th>0.005</th>
<th>0.006</th>
<th>0.007</th>
<th>0.008</th>
<th>0.009</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.21</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>0.22</td>
<td>7</td>
</tr>
<tr>
<td>0.23</td>
<td>7</td>
</tr>
<tr>
<td>0.24</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>0.25</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>0.26</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>0.27</td>
<td>9</td>
</tr>
<tr>
<td>0.28</td>
<td>9</td>
</tr>
<tr>
<td>0.29</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>0.30</td>
<td>10</td>
</tr>
<tr>
<td>0.31</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>0.32</td>
<td>11</td>
</tr>
<tr>
<td>0.33</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>0.34</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>0.35</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>0.36</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>0.37</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>0.38</td>
<td>14</td>
</tr>
<tr>
<td>0.39</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>0.40</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>0.41</td>
<td>16</td>
</tr>
<tr>
<td>0.42</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>0.43</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>0.44</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>0.45</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>0.46</td>
<td>18</td>
</tr>
<tr>
<td>0.47</td>
<td>18</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>0.48</td>
<td>19</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>0.49</td>
<td>20</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>0.50</td>
<td>21</td>
<td>21</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>$z_{\pi(1-\pi)}$</td>
<td>0.000</td>
<td>0.001</td>
<td>0.002</td>
<td>0.003</td>
<td>0.004</td>
<td>0.005</td>
<td>0.006</td>
<td>0.007</td>
<td>0.008</td>
<td>0.009</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>0.51</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>23</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>0.52</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>0.53</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>0.54</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>0.55</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>0.56</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>0.57</td>
<td>29</td>
<td>29</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>0.58</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>0.59</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>0.60</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>0.61</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>36</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>0.62</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>0.63</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>39</td>
<td>39</td>
<td>39</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>0.64</td>
<td>39</td>
<td>39</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>0.65</td>
<td>41</td>
<td>41</td>
<td>41</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>0.66</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>0.67</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>0.68</td>
<td>47</td>
<td>47</td>
<td>47</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>49</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>0.69</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>51</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>0.70</td>
<td>51</td>
<td>52</td>
<td>52</td>
<td>52</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>53</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>0.71</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>0.72</td>
<td>56</td>
<td>57</td>
<td>57</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>58</td>
<td>59</td>
<td>59</td>
</tr>
<tr>
<td>0.73</td>
<td>59</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>61</td>
<td>61</td>
<td>61</td>
<td>62</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>0.74</td>
<td>62</td>
<td>63</td>
<td>63</td>
<td>63</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>65</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>0.75</td>
<td>66</td>
<td>66</td>
<td>67</td>
<td>67</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>69</td>
<td>69</td>
<td>69</td>
</tr>
<tr>
<td>0.76</td>
<td>69</td>
<td>70</td>
<td>70</td>
<td>71</td>
<td>71</td>
<td>71</td>
<td>72</td>
<td>72</td>
<td>73</td>
<td>73</td>
</tr>
<tr>
<td>0.77</td>
<td>73</td>
<td>74</td>
<td>74</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>76</td>
<td>77</td>
<td>77</td>
</tr>
<tr>
<td>0.78</td>
<td>78</td>
<td>79</td>
<td>79</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>81</td>
<td>81</td>
<td>82</td>
</tr>
<tr>
<td>0.79</td>
<td>81</td>
<td>82</td>
<td>82</td>
<td>83</td>
<td>83</td>
<td>84</td>
<td>84</td>
<td>85</td>
<td>85</td>
<td>86</td>
</tr>
<tr>
<td>0.80</td>
<td>88</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>91</td>
<td>91</td>
<td>92</td>
</tr>
<tr>
<td>$z_{\pi(1-\pi)}$</td>
<td>0.00</td>
<td>0.001</td>
<td>0.002</td>
<td>0.003</td>
<td>0.004</td>
<td>0.005</td>
<td>0.006</td>
<td>0.007</td>
<td>0.008</td>
<td>0.009</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>0.81</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>95</td>
<td>96</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>98</td>
<td>99</td>
</tr>
<tr>
<td>0.82</td>
<td>100</td>
<td>100</td>
<td>101</td>
<td>102</td>
<td>103</td>
<td>104</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>106</td>
</tr>
<tr>
<td>0.83</td>
<td>107</td>
<td>108</td>
<td>108</td>
<td>109</td>
<td>110</td>
<td>111</td>
<td>112</td>
<td>113</td>
<td>114</td>
<td>114</td>
</tr>
<tr>
<td>0.84</td>
<td>115</td>
<td>116</td>
<td>117</td>
<td>117</td>
<td>118</td>
<td>119</td>
<td>120</td>
<td>121</td>
<td>122</td>
<td>123</td>
</tr>
<tr>
<td>0.85</td>
<td>124</td>
<td>125</td>
<td>126</td>
<td>127</td>
<td>128</td>
<td>129</td>
<td>130</td>
<td>131</td>
<td>132</td>
<td>133</td>
</tr>
<tr>
<td>0.86</td>
<td>134</td>
<td>135</td>
<td>136</td>
<td>138</td>
<td>139</td>
<td>140</td>
<td>141</td>
<td>142</td>
<td>144</td>
<td>145</td>
</tr>
<tr>
<td>0.87</td>
<td>146</td>
<td>147</td>
<td>149</td>
<td>150</td>
<td>151</td>
<td>153</td>
<td>154</td>
<td>156</td>
<td>157</td>
<td>159</td>
</tr>
<tr>
<td>0.88</td>
<td>160</td>
<td>162</td>
<td>163</td>
<td>165</td>
<td>166</td>
<td>168</td>
<td>170</td>
<td>171</td>
<td>173</td>
<td>175</td>
</tr>
<tr>
<td>0.89</td>
<td>177</td>
<td>178</td>
<td>180</td>
<td>182</td>
<td>184</td>
<td>186</td>
<td>188</td>
<td>190</td>
<td>192</td>
<td>194</td>
</tr>
<tr>
<td>0.90</td>
<td>196</td>
<td>199</td>
<td>201</td>
<td>203</td>
<td>205</td>
<td>208</td>
<td>210</td>
<td>213</td>
<td>215</td>
<td>218</td>
</tr>
<tr>
<td>0.91</td>
<td>221</td>
<td>223</td>
<td>226</td>
<td>229</td>
<td>232</td>
<td>235</td>
<td>238</td>
<td>241</td>
<td>244</td>
<td>247</td>
</tr>
<tr>
<td>0.92</td>
<td>251</td>
<td>254</td>
<td>258</td>
<td>261</td>
<td>265</td>
<td>269</td>
<td>273</td>
<td>277</td>
<td>281</td>
<td>285</td>
</tr>
<tr>
<td>0.93</td>
<td>290</td>
<td>294</td>
<td>299</td>
<td>304</td>
<td>309</td>
<td>314</td>
<td>319</td>
<td>324</td>
<td>330</td>
<td>336</td>
</tr>
<tr>
<td>0.94</td>
<td>342</td>
<td>346</td>
<td>354</td>
<td>361</td>
<td>367</td>
<td>375</td>
<td>382</td>
<td>389</td>
<td>397</td>
<td>406</td>
</tr>
<tr>
<td>0.95</td>
<td>414</td>
<td>423</td>
<td>432</td>
<td>442</td>
<td>452</td>
<td>462</td>
<td>473</td>
<td>485</td>
<td>497</td>
<td>510</td>
</tr>
<tr>
<td>0.96</td>
<td>523</td>
<td>537</td>
<td>552</td>
<td>567</td>
<td>583</td>
<td>601</td>
<td>619</td>
<td>638</td>
<td>659</td>
<td>681</td>
</tr>
<tr>
<td>0.97</td>
<td>704</td>
<td>729</td>
<td>756</td>
<td>785</td>
<td>816</td>
<td>849</td>
<td>886</td>
<td>925</td>
<td>968</td>
<td>1015</td>
</tr>
<tr>
<td>0.98</td>
<td>1067</td>
<td>1124</td>
<td>1188</td>
<td>1259</td>
<td>1339</td>
<td>1430</td>
<td>1534</td>
<td>1653</td>
<td>1783</td>
<td>1918</td>
</tr>
<tr>
<td>0.99</td>
<td>2156</td>
<td>2398</td>
<td>2760</td>
<td>3089</td>
<td>3607</td>
<td>4333</td>
<td>5422</td>
<td>7236</td>
<td>10866</td>
<td>21760</td>
</tr>
</tbody>
</table>
Conclusion

Nationalisation of insurance companies in Egypt has had a great effect in the insurance industry by eliminating the competition between companies and unifying the rates. After 1974 new economic laws have been in force which allow private investment to operate in the insurance market. This new situation would require the regulating body to lay down new rules governing the conduct of insurance business especially for rate fixing and rate revision. In addition, it requires the insurance company to develop methods of rate making which are not only consistent and sound in operation, but also can be presented to the insurance supervisory authority as producing rates both fair to the insurance company and to the insured public.

Experience rating is a sound and effective tool for rating and rate revision. It is a fair method for class rate modification because it is based on proven methods for measuring the effect of factors which influence the risk experience and can not be defined (such as moral hazard).

The present work provides a specific method for obtaining the risk component of the rate which is as accurate as possible for a particular risk. The method is backed by theory, which would eliminate personal bias, and thus ensure consistent rates. The parameters underlying the mathematical model are computed from the statistics of the collective, due weight being given to the risk experience. The final rate can be computed by reference to the expense of management and the reinsurance policy of the company. An analytical study of the expense of management and the designing of an information system for generating the required data on a scientific basis would be areas for further research.
AJNE, B. 1972
On Statistical Estimation of Costs of Claims

ALMER, B. 1963
Individual Risk Theory and Risk Statistics As Applied To
Fire Insurance

AMMETER, H. 1948
A generalisation Of The Collective Theory of Risk In
Regard To Fluctuating Basic Probability
SK, Vol. 31, p. 171.

AMMETER, H. 1960
Stop Loss Cover And Experience Rating
XVIth International Congress of Actuaries, p. 649.

AMMETER, H. 1963
Experience Rating : A New Application Of Collective Theory
Of Risk
AB, Vol. 2, p. 261
* ANDERSSON, H. 1963
Influence of Climate On Fire Damage

* ANDERSSON, H. 1971
An Analysis Of The Development Of The Fire Losses In The Northern Countries After The Second World War.
AB, Vol. 6, p. 25.

* ATHRTON 1963
Risk And Insurance 3rd. Ed.
West Publication Company, St. Paul, Minnesota, USA

* BAILEY, A. L. 1942
Sampling Theory In Casualty Insurance
CAS, Vol. 29, p. 50.

* BAILEY, A. L. 1943
Sampling Theory In Casualty Insurance

* BAILEY, A. L. 1945
A Generalised Theory Of Credibility

* BAILEY, A. L. 1948
Workmens' Compensation D-Ratio Revisions
CAS, Vol. 35, p. 26
* BAILEY, A. L. 1950
Credibility Procedures

* BAILEY, R. A. and SIMON, L. J. 1959
An Actuarial Note On The Credibility Of Experience
Of A Single Private Passenger Car
CAS, Vol. 46, p. 159.

* BAILEY, R. A. 1961
Experience Rating Reassessed
CAS, Vol. 48, p. 60.

* BEARD, R. E. 1957
Analytical Expressions Of Risks Involved In General Insurance
XVth International Congress of Actuaries

* BEARD, R. E., PENTIKAINEN, T. and PESONEN, E. 1978
Risk Theory : The Stochastic Basis Of Insurance

* BENCKERT, L. G. and STERNBERG, I. 1957
An Attempt To Find Expression Four Distributions Of Fire
Damage Amount
* BENJAMIN, B. 1977
General Insurance
Heinemann, London, U.K.

* BENKTANDER, G. 1957
On The Variation Of The Risk Premium With The Dimension
Of The House Within Fire Insurance.

* BIGER, N and KAHANE, H. 1978
Risk Consideration In Insurance Rate Making
JRI, Vol. 45, p. 121.

* BOHMAN, H. and ESSCHER, F. 1963
Studies In Risk Theory With Numerical Illustrations Concerning
Distribution Function And Loss Premiums

* BRAAKMAN, T. C. 1968
Experience Rating And Credibility

* BRYANT, E. C. 1966
Statistical Analysis, 2nd ed
McGraw Hall, New York, U.S.A.

* BUHLMANN, H. 1964
A Distribution Free Method For General Risk Problems
* BUHLMANN, H. 1967
Experience Rating And Credibility
AB, Vol. 4, p. 199.

* BUHLMANN, H. 1970
Mathematical Methods In Risk Theory
Springer-Verlag, Berlin, Heidelberg, New York

* BUHLMANN, H. and STRAUB, E. 1970
Glaubwurdigkeiti fuer Schadensaetze
Bulletin de l'Association des Actuaires Suisses
Vol. 70 (translated by C. E. Brooks, Actuarial Research
Clearing House).

* BUHLMANN, H. 1971
Credibility Procedure
6th Berkeley Conference In Probability And Statistics
University of California, USA.

* CRAMER, H. 1930
On The Mathematical Theory Of Risk
SK, Jubilee Volume.

* CRAMER, H. 1955
Collective Risk Theory, Survey Of The Theory From The Point
Of View Of Theory Of Stochastic Process.
SK, Jubilee Volume.
*DE GROOT, M. 1970
Optimal Statistical Decision
McGraw-Hill, New York, USA.

*DENENBERG 1964
Risk And Insurance
Prentice-Hall, Englewood Cliffs, USA

* DE VYLDER, F. 1979
Parameter Estimation In Credibility Theory

* D'HOOGHE, L. and GOOVERTS, M. S. 1975
Bayesian Inference In Credibility Theory

*DIXON, W. J. and MASSY, F. J. 1957
Introduction To Statistical Analysis
McGraw-Hill, New York, USA

*DOOB, J. L. 1949
Application Of The Theory of Martingales
Paris, CNRS, p. 23.

* DORWEILER, P. 1939
A Survey Of Risk Credibility In Experience Rating
* DROPKIN, L. B. 1959

CAS, 46, p. 165.

* DROPKIN, L. B. 1960

Automobile Merit Rating And Inverse Probability
CAS, 47, p. 37.

* ESSCHER, F. 1932

On The Probability Function In Collective Theory Of Risk
SK, Vol. 15, p. 175.

* EVERITT, B. S. 1977

The Analysis Of Contingency Tables
Chapman and Hall, London

* CABRAL, M. A. and GARCIA, J. D. 1977

Study of Factors Influencing The Risk And Their Relation To Credibility Theory
AS, Vol. 9, p. 84.

* GERBER, H. U. 1972

Iterative Premium Principles
Bulletin de l'Association des Actuaries Suisses, 72.

* GERBER, H. U. and JONSEN 1975

Credibility Formula With Geometric Weight Of The Updating Type.
Transactions Of The Society Of Actuaries, Vol. 27, p. 31.
* GOOVAERTS, M. J. and DE VYLDER, F. 1979
A Note On Iterative Premium Calculation

* GREEN, M. R. 1973
Risk And Insurance
South Western Publishing Co., Ohio, USA.

* HEAD, G. L. 1967
An Alternative To Defining Risk As An Uncertainty

* HOLTOM, R. B. 1973
Underwriting: Principles And Practices
The National Underwriter Company, Cincinatti, USA

* HOLTOM, R. B. 1975
Commercial Fire Underwriting
The National Underwriter Company, Cincinatti, USA

* HOUSTON, D. B. 1960
Risk Theory
JRI, Vol. 27, p. 77.

* HOUSTON, D. B. 1961
The Effectiveness Of Rating Classification
JRI, Vol. 28, p. 83.
* HOUSTON, D. B. 1964
Risk, Insurance and Sampling
JRI, Vol. 31, p. 54.

* HURLEY, R. L. 1954
A Credibility Framework For Gauging Fire Classification Experience
CAS, 41, p. 161.

* HURLEY, R. L. 1959
Multiple Peril Rating Problems
CAS, Vol. 46, p. 196.

* HEWITT, C. 1970
Credibility For Severity

* ITZAK VENEZIA 1979
Optimal Insurance Premium Rates When The Distribution Of Claims Is Known.

* JEWELL, W. S. 1972
The Credible Distribution

* JEWELL, W. S. 1975
Credible Means Are Exact Bayesian For Exponential Families
AS, Vol. 8, p. 77.
* JOHANSON, R. A. 1941

The Multi-Split Experience Rating Plan in New York
CAS, Vol. 28, p. 15.

* KAHN, P. M. 1975

The Credibility Theory and Application
Academic Press, New York, USA

* KORMES, M. 1952

Notes On Experience Rating Credibility

* LOIMARANTA, K. 1977

On The Calculation Of Variances And Credibility By Experience Rating
AB, Vol. 9, p. 203.

* LONGLEY-COOK, L. H. 1962

An Introduction To Credibility Theory
CAS, Vol. 49, p. 194.

* LUNDBERG, F. 1909

Uber die Theorie der Ruckversicherung
VIth International Congress Of Actuaries, p. 877.

* MAYERSON, A. L. 1963

The Use Of Credibility In Property Insurance Rate Making
CAS, Vol. 50, p. 197.
* Mayerson, A. L., 1964
 A Bayesian View Of Credibility

 On The Credibility Of The Pure Premium
 CAS, Vol. 55, p. 175.

* Mehr, R. I. and Hedges 1963
 Risk Management In The Business Enterprise
 Richard D. Irwin, Illinois, USA.

* Michelbacher, G. F. 1918
 The Practice Of Experience Rating
 CAS, Vol. 4, p. 293.

* Miller, R. B. and Hickman, J. C. 1974
 Insurance Credibility Theory And Bayesian Estimation
 Berkeley Actuarial Research Conference On Credibility,
 University of California, USA.

* Mowbray, A. H. 1914
 How Extensive A Payroll Exposure Is Necessary To Give
 A Dependable Pure Premium?

* Mowbray, A. H. 1918
 A New Criterion Of Adequancy Of Exposure
 CAS, Vol. 4, p. 263.
* MOWBRAY, A. H. 1922
 Classification Of Risks As The Basis Of Insurance Rate Making
 CAS, Vol. 8, p. 77.

* MOWBRAY, A. H. and BLANCHARD, R. H. 1961
 Insurance, Its Theory And Practice, 6th ed.
 McGraw-Hill, New York, USA

* PENTIKAINEN, T.
 The Theory Of Risk And Some Applications
 J.R.I., Vol. 47, p. 16.

* PERRYMAN, F. S. 1932
 Some Notes On Credibility

* PERRYMAN, F. S. 1938
 Experience Rating Plan Credibilities
 CAS, Vol. 24, p. 60.

* PHILLIPS, L. D. 1973
 Bayesian Statistics For Social Scientists
 Tomas Nelson, London, UK.

* PFEFFER, I. 1956
 Insurance And Economic Theory, 3rd ed.
 Richard D. Irwin, USA.
* RIEGEL, R. and MILLER, J. 1966
 Insurance, Applications and Practice. 5th ed.
 Prentice-Hall, Englewood Cliffs, USA.

* RASS, J. P. 1975
 Generalised Premium Formula

* SIMON, L. J. 1960
 The Negative Binomial And Poisson Distribution Compound

* SMICK, J. J. 1939
 Merit Rating - The Purpose Of Multi-Split Experience Rating
 Plan And The Present Experience Rating Plan
 CAS, Vol. 26, p. 84.

* TAYLOR, G. C. 1972
 Experience Rating With Credibility Adjustment Of The
 Manual Premium
 AB, Vol. 7, p. 311.

* WHEELER, R. A. 1930
 Credibility Automobile Rate Making

* WHITNEY, A. W. 1918
 The Theory Of Experience Rating
 CAS, Vol. 4, p. 274
* WILLET, A. H. 1951

The Economic Theory Of Risk and Insurance

The University of Pennsylvania Press, Philadelphia, USA.

* WITT, R. C. 1974

Credibility Standards And Pricing In Automobile Insurance

J.R.I., Vol. 41, p. 3.

In Arabic

The General Egyptian Organisation For Insurance, Cairo, Egypt.

The Egyptian Central Agency For Public Mobilisation And Statistics,
Cairo, Egypt.