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". . the spread, both in width and depth, of the 
muitifarious branches of knowledge during the 

last hundred odd years has confronted us with a 
queer dilemma. We feel clearly that we are only 

now beginning to acquire reliable material for 
welding together the sum total of all that is 

known into a whole; but , on the other hand, it 
has become next to impossible for a single mind 
fully to command more than a small specialized 

portion of it. 

"I can see no other escape from this dilemma 
(lest our true aim be lost for ever) than that some 
of us should venture to embark on a synthesis of 
facts and theories, albeit with second-hand and 

incomplete knowledge of some of them -and at the 
risk of making fools of ourselves. 

"So much for my apology. " 

Erwin Scbrodinger, 1944. 
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ABSTRACT 

This research addresses to some of the fundamental problems in systems science. The 
aim of this study is to: 

(1) provide a general conceptual framework for systems evolution; 
(2) develop a formal model for evolving systems based on dynamical systems theory; 
(3) analyse the evolving behaviour of various systems by using the formal model so far 

developed. 

First of all, it is argued that a system, which can be recognized by an observer as a 
system, is characterised by some emergent properties at a certain level of discourse. These 
properties are the results of the interactions between the systeas components but not reducible 
to the individual or summative properties of those components. Any system is such an 
emergent and organized whole, and this whole can be defined and described as an emergent 
attractor. To maintain the wholeness in a changing environment, an open system may undergo 
radical changes both in its structure and function. The process of change is what is called of 
systems evolution. 

On reviewing the existing theories of self-organization, such as "Theory of Dissipative 
Structure", "Synergetics", "Hypercycle", "Cellular Automata", "Random Boolean Network" 
et al., a general conceptual framework for systems evolution has been outlined and it is based 
on the concept of emergent attractor for open systems. The emphasis is placed on the structural 
aspect of the process of change. 

Modem mathematical dynamical systems theory, with the study of nonlinear dynamics 
as its core, can provide 

(a) the concept of "attractor" to describe a system as an organized whole; 
(b) simple geometrical models of complex behaviour, 
(c) a complete taxonomy of attractors and bifurcation patterns; 
(d) a mathematical rationale for the explanations of evolutionary processes. 

Based on this belief, a formal model of evolving systems has been developed by using the 
language of mathematical dynamical systems theory (DST). Attractors and emergent attractors 
are formally defined. It is argued that the state of any systems can be described by one of the 
four fundamental types of attractors ( i. e. point attractor, periodic attractor, quasiperiodic 
attractor, chaotic attractor) at a certain level. The evolving behaviour of open systems can be 
analyzed by looking at the loss of structural stability in the systems. For a full analysis of 
systems evolution, the emphasis is put on the nonlinear inner dynamics which governs 
evolving systems. 

In trying to apply this conceptual framework and formal model, the evolving behaviour 
of various systems at different levels have been discussed. Among them are Benard cells in 
hydrodynamics, Brusselator in chemical systems, replicator systems in biology (hypercycle), 
predator-prey-food systems in ecology, and artificial neural networks. The complex dynamical 
behaviour of these systems, like the existence of various types of attractors and the occurrences 
of bifurcation when the environment changes, have been discussed. In most of the examples, 
the results in previous studies are cited directly and they are only re-interpreted by using the 
conceptual framework and the formal model developed in this research. In the study of artificial 
neural networks, a simple cellular automata network with only three neurons has been 
constructed and the activation dynamics has been analysed according to the formal model. 
Different attractors representing different dynamical behaviour of this network have been 
identified ( point, periodic, quasiperiodic, and chaotic attractor). Similar discussions have been 
applied to a coupled Wilson-Cowan net. 

It is believed that the study of systems evolution is one of those attempts to bring 
systems science out of its primitive stage in which it ought not to be. 
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Systems science is still in a primitive stage, even more primitive than it ought to be. 
Peter Checkland, 1991 

Chapter 1 Introduction 

1.1 Focus of Study 

Not everybody agrees that systems science is a legitimate field of scientific 
inquiry. For some people who usually are associated with the so called systems 
community, however, the legitimacy of systems science has been justified [Klir, 1991; 
Rodriguez-Delgado, 1992]. The objects of study for systems science are systems and 
associated problems. It is argued that systems science has developed within a 
movement starting early this century which is usually referred to as systems movement 
[Checkland, 19811. The development has led to the current situation: professions of the 

so called systems scientists have been created, educational institutions devoted to 

systems science established, conferences regarding systems science held regularly, 
systems related academic journals published. All these seem to justify that systems 
science has been legitimated.: - 

The affirmative view regarding the legitimacy of systems science is accepted in 

this research: systems science is a legitimate field of scientific research and its objects of 
study are systems. It studies the concept, properties and taxonomy of systems; it 

explores principles and mechanism concerning the structure, function and evolution of 
systems; it develops methods and methodologies for the understanding of systems; it 

applies ideas, techniques and methodologies about systems to solve problems arising 
from sciences, engineering and human activities. The scope of systems science include 

systems philosophy, systems theory, systems methodology and techniques, and 
systems practice (for the structure of systems science, chapter 2 gives a summary in a 
diagram). The focus of this study is about concepts, principles and models of systems 
evolution and it belongs to the category of systems theory. 

However, systems science is still in a prin-dtive stage, even "more primitive than 
it ought to be" [Checkland, 19911. Compared with classic sciences like physics, 
chemistry, and astronomy etc, systems science still lacks rigourously defined concepts, 
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fundamental laws and principles, well established methods which can rival classic 
sciences in generating testable hypothesis and produce useful predictions [Flood, 1990; 
Checkland, 199 11. One notable example of the unmatured systems science is the lack of 
a rigourously defined and universally accepted concept of "system". For different 

people, even the same people at different time, the concept of system means different 

things. 
This research does not intend to solve all these problems in systems science. It 

mainly concerns systems evolution at the theoretical level and hence can be categorised 
as the fundamental study in systems science. 

1.2 Objectives of Study 

Systems evolution is not a totally new concept. The idea that systems can 
evolve can be traced back, at least , to one of the early holistic thinker C. J. Smuts 
[Smuts, 1926]. Of course, discussions about the evolution of specific systems, i. e. 
biological systems evolution, have been widely known since Darwin [Darwin, 1859]. 
Another important work related to systems evolution is Bergson's "Creative Evolution" 
[Bergson, 19111, it advocates a general argument about evolution at the philosophical 
level. Before Bergson, Spencer discussed this problem in his "First Principles" 
[Spencer, 1971 (edited version) ]. 

This study does not aim to continue the argument originated by those work 
mentioned above. It aims to study the fundamental concepts, mechanism, principles 
and models of systems evolution within the domain of systems science. In general, a 
system is an entity which is regarded as an organized whole. It will change its internal 

structure to maintain its entity as a whole in a changing environment. This is defined as 
systems evolution. Certain conditions must be met if a system is to evolve: it must be 

open, nonlinear, non-equilibrium, with microscopic fluctuations within the system and 
external perturbations from its environment. This topic has been touched by several 
important strands of thinking in modem systems research, like the theory of dissipative 

structures, synergetics et. al. 

In this study, the objective is to establish a conceptual framework and a formal 

model for systems evolution. It starts with the careful examination of several definitions 

of systems. It is accepted that a recognized system is an organized whole. Starting from 

this, a dynamical model is employed to described a dynamical system so that the system 

can be defined and described by an attractor which is the result of the interactions of the 

system's parts. A system is always an emergent whole. To maintain the organized 

whole, the system will evolve in a changing environment. This is what systems 

evolution is all about. Systems evolution defined as such is different from the concept 
13 



of evolution defined by Spencer et. al. Systems evolution does not necessarily mean 
that systems evolve progressively, i. e., evolve from lower stage to higher stage, 
because "progressiveness" is very difficult to justify, especially from the functional 

point of view. A system that can survive in environment El is not necessarily superior 
than a system that survives in environment E2. However, the grand tendence of the 
evolution of the universe is towards the increase of complexity. 

It is believed that there are some general principles, mechanisms and patterns 
underlying all processes of systems evolution. Several schools of thought about self- 
organization have made progresses in discovering patterns and establishing principles 
about systems evolution, like "order through fluctuations", "slaving principle" etc. It 

will be desirable to construct a general conceptual framework of systems evolution 
based on the concept of emergent attractor and it should embrace all the known 

principles and patterns. 

It is also the aim of this study to construct a formal model of systems evolution 
by using mathematical dynamical systems theory (DST). The. recent development in 

mathematical dynamical systems theory has been noticed by its progress in nonlinear 
dynamics and its pervasions in such diverse field as physics, chemistry, ecology, and 
economics etc. [Stewart, 1989; Thompson, 1986]. It provides a means to study the 

complex dynamical behaviour of nonlinear systems. For the study of systems 
evolution, DST can provide a dynamical model which is often used in systems science. 
It can also provide a fon-nal definition and classification of attractors which correspond 
to different state of systems. The techniques of bifurcation analysis in DST are also 
very useful for exploring patte ms and stages during systems evolution. Above all, the 

concept of structural stability seems to be the essential concept related to systems 
evolution. For the above accounts, this study sets out to build a formal model for 

systems evolution by using the language of DST. 

Another aim of this study is to apply the conceptual framework and formal 

model so far developed to analyse the evolution process of systems in various fields or 
at different space-time scales. Systems to be considered include some well known 

examples in hydrodynamics, laser, biology, ecology and neural networks. 

To summarise, the objective is to explore the concepts, principles, models and 
examples of systems evolution. It includes the construction of a conceptual framework, 

the developing of a formal model and the discussion of some applications. 

1.3 Scope and Limitations of Study 

14 



The study of systems is often confronted with the problem of choosing between 

a structural description or a functional description of systems [Kampis, 19871. A 

structural description method is adopted in this study to avoid the pitfall of the 

controversies around the functional description of biological evolution. The discussion 

is centred in exploring the structural change of dynamical systems. 

Usually, any discussion of systems evolution can not avoid using concepts like 
"entropy", "order" and the relations between them. This is touched briefly in this study 
only to describe systems evolution explanatorily: an open system can change from a 
less ordered state to a more ordered one by absorbing negative entropy from its 

environment. Study of the thermodynamics of systems evolution is another line of 
research worth pursuing [Weber et. al, 1988; Swenson, 1989a], but it is not the main 
concern of this study. 

The structural description of systems evolution is based on the belief that, in 

principle, the state of any dynamical system can be described by relations between its 
internal variables [Thom, 1975]. However, this method has been attacked and rejected 
by some people like Berlinski [Berlinski, 1976]. Although Belinski's argument that 
early dynamical models do not describe the complexity, discontinuity and nonlinearity 
of complex systems has been resolved by the progress in mathematical DST, some of 
his critical comments are still appropriate for the study of systems evolution. In 

practice, not every dynamical system can be described by a group of dynamical 

equat ions as stated in chapter 4. This is especially true for some social-economic 
systems which are usually difficult to describe mathematically. Even if dynamical 

equations are given for some systems by related classical sciences, they may not be 

always in the standard form stated in the formal model. Mathematical DST itself needs 
development: it is not always possible to find solutions for a particular system, 
especially analytical solutions. 

Apart from the limitations of the formal model arising from describing systems 
and from DST, there are serval restrictions set by the development of systems science 
as a whole. Although every effort has been made to ensure that, in this study, the 
consistence of the meanings of some of the important concepts like systems, emergent 
properties, attractors, order, evolution etc is maintained, there still lacks a consensus 
on universally accepted fundamental concepts. They may still mean different things for 
different people, not only in references cited, but in some other current discussion on 
this topic as well. 

In trying to apply the conceptual framework and formal model so far developed, 

some examples in various classical areas of science have been cited directly. For those 
examples, they are only re-interpreted in this thesis and hardly any new results are 
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reported. Two original examples in neural networks are studied according to the formal 

model and some novel results are achieved. However, the aim of this study is to 

explore one of the fundamental properties of systems, i. e. systems evolution, the two 

original models are chosen and analysed only to show that neural systems can evolve 
when environment changes and the framework and formal model developed in this 

research can be applied to their analysis. For reasons thus mentioned, they are not fully 

analysed as some other much studied models such as the Lorenz model. The "big 

pictures" of the evolution process of these two systems have not been obtained. 

It will be a very bold and unjustifiable claim that this study has established a 
general theory of systems evolution, but it is true that this study tries to contribute to 
systems science at the fundamental level by addressing to one of the fundamental 

problems concerning the properties of systems, Le systems evolution. It is an attempt, 
among many others, to get systems science out of its present primitive stage. No matter 
how far this study has covered toward that goal, the study of systems evolution is one 
of the most important area of research to bring systems science to its maturation 

1.4 Outline of Study 

After a brief introduction to basic concepts of systems, systems description, 

systems science, evolution and systems evolution etc. in chapter 2, the scope of 
systems science is mentioned. The problem of systems evolution is viewed within the 
framework of this new dimension of our modem sciences. The conflict between the 
pessimistic view of the universe implied in the second law of thermodynamics and the 
optimistic one provided by Darwin's theory of evolution is believed to be solvable 
when we take an open systems' point of view. The state of an open dynamical system 
is jointly decided by the inner dynamics of the system and the interactions between the 

system and its environment. Evolutionary behaviour of systems is the necessary result 
of the joint action of both the inner dynamics and environmental impacts when certain 
conditions are satisfied. It is argued that systems evolution is one of the general 
properties of open dynamical systems. 

In chapter 3, various schools of thoughts about self-organization have been 

reviewed which have provided with the general framework for discussion of systems 

evolution. Brussels school's work on non-equilibrium thermodynamics, Eigen's work 

on hypercycle, Varela et. al's work on autopoiesis, Haken's work on synegetics, 
Wolfram etc. 's work on cellular automata, they all look at the same problem, i. e., the 

evolutionary behaviour of open systems, but from different points of view. Although 

these work are originated in different fields, like the theory dissipative structures in 

non-equilibrium thermodynamics, autopoiesis and hypercycle in biology, synergetics 
16 



and self-organized criticality in physics, and cellular automata in mathematics and 
computer simulation, they all have reached the same conclusion that open systems can 
exhibit complex evolutionary behaviour. Different aspects of the process have been 

stressed in different schools, they all have contributed to lay the foundation for talking 

about the evolutionary process from the systems point of view. By synthesizing these 
strands of thought, a more general conceptual framework about systems evolution is 

established based on the concepts of attractor, emergence and organized whole. 

The developing of a formal model of evolving system is reported in chapter 4. 
With the mathematical preparations introduced Appendix 1, the effort is put to construct 
a formal model of evolving systems by using the language of dynamical systems 
theory. An open system can be modelled by a group of dynamical equations with 
parameters representing the constraints of the environment. The invariant sets implied 
in these dynamical equations decide the macroscopically stable state of the system, Le, 

attractors that prescribe the macroscopic behaviour of the system. An evolutionary 
process is characterized by the loss of structural stability of the dynamical system and 
described by various bifurcation patterns through which one type of attractor is replaced 
by another. It is shown that general patterns, principles, and fundamental mechanism 
can be manifested in this formal model. 

In chapter 5, several examples of the application of the general framework and 
fon-nal model are reported. Some well studied examples like Benard cells, Brusselator 

etc are re-interpreted by using the proposed model. Structural aspects of systems 
evolution are stressed 

Chapter 6 is devoted to the discussion of the complex behaviour of (artificial) 

neural networks as adapting and evolving systems. A simple 3-neuron cellular network 
is shown to exhibit evolution behaviour: it changes from one type of attractor to another 
while the network as an organized whole is maintained. Same analysis has been done 
for a coupled Wilson-Cowan nets. 

The last chapter concludes this thesis by reviewing the progress that has been 

made in this study towards the understanding of the complex behaviour of open 

systems. Further problems worth studying are mentioned. It is argued that systems 

research is a new kind of human endeavour which fits our modern times. In a 

constantly changing world, to understand the transformation of the world is very 
important'llie study of systems evolution can help us understand the evolving universe 
of which we are only a part. 

Appendix I is about the introduction of modem mathematical dynamical 

systems theory. The last twenty years has seen the development of dynamical systems 
17 



theory which was mainly inspired and kindled by the discovery of "chaos" within 
deterministic dynamical equations. It has now become explicit that nonlinear dynamical 

systems can exhibit extremely complicated behaviour and this is consistent with the 

belief that complexity is the intrinsic property of open systems (they usually are 

nonlinear, non-equilibrium). Basic concepts, principles and theorems in mathematical 
dynamical systems theory are introduced and some recent advances of the study of 

nonlinear dynamics are reviewed. 
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Chapter 2 Systems Research and Systems 
Evolution 

2.1 Systems and systems science 

2.1.1 The concept of systems 

The terin "system" has different meanings under different circumstances for 
different people. It is often loosely defined as a group or combination of interrelated, 
interdependent, or interacting elements forming a collective entity or organic whole. 
Two points are quite essential in any definitions of systems: the first is that there are 
components which are interrelated or interacting, the other is that a system is a unity, an 
organized whole. In a formal way, a system S is defined as: 

S= (E, R) 

where E represents a group of elements, R the relations between them. 

A more easily understood verbal definition of system can be given as this: 

A system is an assembly of components, connected together ill 
an organized way. The components are affected by being in the 
system and the behaviour of the system is changed if they leave 
it. This organized assembly does something and has been 
identified as a particular interest. ["Systems Behaviour", Open 
university, pp 18] 

In this definition, the dialectic relationship between components and the whole 
is stressed. 

What is not explicitly expressed in this definition is that the whole usually 
possesses some properties which do not come from the properties of individual 

elements, or the summative properties of all the elements. These properties, not 
reducible to the parts or the sum of parts, are called emergent properties. Thus a system 
is such an organized and emergent whole. It becomes conceivable that "the whole is 

more than just the sum of the parts" only when these emergent properties are taken into 

account. 

Stressing the emergent properties of systems, Swenson gives a lengthy 
definition of emergence, or how emergent properties have emerged: 
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Emergence 
The spontaneous transformation of a set of components 
(generalized 'atomisms'or ýarticles)Jrom an incoherent state, 
where the space-time correlation between them is confined to 
mean fi-ee path and mean relaxation collision times, to a coherent 
state exhibiting novel, global, dynamical space-time behaviour, 
viz., space-time correlations, between atomisnis many orders of 
magnitude greater than mean free path -relaxation times, 
inaccessible to, not locatable in, and not reducible to the 
individual or summative behaviour of the separate atomisms; the 
spontaneous creation of a new set of macroscopic constraints 
that reduce accessible microstatesfrom some initial set Mn to 
some much smaller subset Ms to yield a new irreducible level of 
dynamical space-time behaviour. By the transformation Mn to 
Ms emergence is always a progressive asymmetrical time- 
dependent transformation of matter away from equilibrium. 
'Spontaneous" means 'goes by itself without exogenous 
(outside) 'Mak-er'. e. g., since Newtonian machines are explicitly 
specified and constructedfrom without, they are not emergent. 
[Swenson, 1989a]. 

This definition stresses not only the irreducibility of the emergent properties to 

properties of parts, it also emphasises the spontaneity of the process in which a system 
is assembled from separate parts. According to this definition, Newtonian machines are 

explicitly excluded from having emergent properties. This restricts the meaning and 

applicability of the term "emergence" to describe mechanical systems. A car is 

composed of many parts, and as a whole, it can serve as a transportation tool but not 
any the component parts have this property. It would be more appropriate to call 
Swenson's definition of emergence as the definition of 'self-organization' process for 

natural systems. Emergent properties of a system can be defined as what are resulted 
from the interactions of the parts, but "inaccessible to, not locatable in, and not 
reducible to the individual or summative behaviour of the separate atomisms". 

Arthur Koestler expressed his view on the definition and meaning of the term 

of systems in a book "The Ghost in the Machine" [Koestler, 1967]. Considering the 

property of a system as a whole, he proposed to define a system as a "holon" which 

means a whole of elements functioning as an element in a larger whole. In that case, a 

system is a whole, coming into existence through the organizing of elements and 

serving as an element in a bigger holon (system). It has not become a universally 
accepted definition of systems or a popular word in systems community. Recently, 
Checkland argues that the confusion arising from expressing systems ideas in systems 
literature should mainly be blamed for the use of the word "system": it means both for 

parts of the real world perceived to be complex whole (like 'the education system') and 
for the abstract notion of a whole (a model) [Checkland, 1988,1991]. He advocates the 

use of "holon" for the abstract notion of a whole. 
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The term "system" discussed so far is apparently about the abstract notion of a 
whole. It is used in this study to mean an organized whole about some real-world entity 
perceived by human beings. It needs to be stressed here that 

(1) a system is an emergent whole, the whole results from the 
interactions of many interdependent elements, or parts, or subsystems; 

(2) a system is always a model of a certain perceived entity. 

The second part is stressed by Ashby, Checkland and many others. It reflects 
the perspectivism in talking about systems: systems do not exist in the real-world and 
they are only models of certain entities perceived by certain observers. Gaines defines a 
system as "what is distinguished as a system" [Gaines, 1979] and this definition, 

sounds tautological, reflects the essential feature of the term "system". The properties 
discovered in a model, however, are believed to represent the properties of the real- 
world entity modelled. 

Rosen analyses the term "system" from another standing point. He argues that 

"the word 'system' is never used by itself; it is genet-ally 
accompanied by an adjective or other modifier: physical system; 
biological system; social system, economic system; axiom 
system; religious system; and even "general" system. This usage 
suggests that, when confronted by a system of any kind, certain 
of its properties are subsumed under the objective, and other 
properties are subsumed under the "system, ' while still others 
may dependent essentially on both. The objective describes what 
is special orparticular; i. e., it refers to the specific "thinghood" 
of the system; the "system" describes those properties which are 
independent of the specific "thinghood. " [Rosen, 1986] 

Parallel to the thinghood, he coined a word "systernhood" to describe those 

system related properties. He goes further to argue that systems theory is the study of 
systernhood related properties. 

Another term is proposed in this study to describe a special kind of systems 
whose state changes over time, i. e. dynamical systems. The term suggested is called 
"attractor". Originally it is a mathematical term defined for a special invariant set for a 
flow on a manifold, it has been extended to describe the state of general time-dependent 

systems [Thom, 1975; Ruelle, 1989; Swenson, 1989a]. An attractor is a time- 
independent (time-asymptotical) state that attracts initial conditions from some region 
around it. To use attractors to represent a dynamical system stems from the use of 
dynamical models to describe the state of a system. The formal definition of an attractor 
will be given in chapter 4, but the following properties of an attractor can be mentioned 
briefly here: it is invariant, i. e. time-independent; it reflects certain emergent properties 
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of a dynamical process modelled, hence represents a whole; it describes a global 

process resulted from some local interactions. 

To summarise, a system is recognized as an organized whole and it is an 
emergent entity through the interactions of its components. 

2.1.2 Systems science 

Once it is clear what a system is about, the domain of study for systems science 
can be defined. The definition given in a recently published textbook of systems science 
by Klir is appropriate 

Svstems science is a science whose domain of inquiry consists I- of those properties of systems and associated problems that 
emanatefi-om the general notion of systemhood [Klir, 19911. 

Systems science, if it exists, has grown from an intellectual movement which 
started in 40's this century and is usually referred as "systems movement" [Checkland, 
1981]. There are many strands of thought each with a different background that have 
formed this movement. One common and essential characteristic of all these ideas, 

methods, models etc. which appeared in this movement is that it is accepted that some 
properties of a conceived entity can not be reduced to its composing elements, all the 
elements and their relationships should be considered simultaneously and the entity can 
only be understood as a whole as a result of these relations. A prototype of such an 
entity is the organic unit in a biological system. The striking feature of this systems 
movement is that problems related to "systemhood" have been studied and stressed. 

As to the characteristics of systems science, Klir argues that it is essentially 
different from classical sciences, such as physics, chemistry, biology and astronomy 
et. al. Those classical sciences study problems related to thinghood, i. e., problems 
associated with specific physical properties. In contrast, systems science addresses 
problems which arise from across a wide range of domains and are independent of their 

physical traits. Classical sciences study entities, systems science studies relations; 
classical sciences study thinghood while systems science is concerned about 
systernhood. He argues that systems science and classical sciences are orthogonal to 
each other and they together form a two-dimensional sciences which characterises the 
present informational society [Klir, 1985b]. It is stressed in this study that systems 
science is about systemhood and it is principally different from classical sciences. 

As to problems that systems science is trying to study, two of them are very 
important: isomorphism between systems and the relation between parts and whole. 
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Isomorphism, or isomorphic relation among systems, was the central problem 
for general systems theory -- one of the most important schools of thought in systems 

movement -- in early days [von Bertalanffy, 1968]. It is about the equivalence relations 

among all systems of interest: if two systems are proved isomorphic, then they share 
the same properties, Le, understanding one means that the other is also understood. In 

the terminologies developed so far, isomorphic systems have the same systernhood 
related properties. Isomorphic relations are proved to exist in many cases, for example, 
a pendulum as a system is isomorphic to an electrical circuit with certain structure and 
their behaviours can be described by the same type of dynamical relations. However, if 
isomorphic relations are extended to embrace too broad a spectrum of systems, as they 

usually are, they will become either meaningless or useless. This is one of the reasons 
that general systems has been sharply criticized [Berlinski, 1976]. 

The most important relation between parts and whole is about emergence: how 

the emergent properties of the whole have emerged from interactions of the parts. Due 

to the emergence in all kinds of systems, systems are recognized as systems and these 
systems are organized in a hierarchical way: systems at certain level are emergent 
entities from subsystems at one level below which are emergent entities of sub- 
subsystems a further level below. The problem of emergence in dynamical systems will 
be discussed in the following chapters by resorting to a dynamical model. 

Another relation between parts and whole is called "self-similarity" or "self- 
isomorphic" in structure. It is argued, notablely in Miller's "Living Systems Theory", 

that certain properties of the whole are isomorphic to that of parts as a sub-whole 
[Miller, 1978]. Miller has discovered that at different levels of living systems, i. e., 
cells, organs, organisms, groups, organizations, societies, super-nations, the same 
types of subsystems can be identified, such as reproducer, boundary, distributor, 

encoder, and decoder etc., totally 19 subsystems. Another isomorphic relation between 

the whole and parts has also been discovered recently: the self-similarity in spatial- 
temporal behaviour between parts and whole. In fractals, the shape of a whole is 
identical to that of the part, as discovered by Mandelbrot [Mandelbrot, 1983]. In chaotic 
systems, chaotic attractors are discovered having Cantor-set-like self-sin-lilar structures 
[Zeeman, 1988; Thompson et. al, 1986]. However, the isomorphic relation in structure 
between parts and whole is not as universal as the emergence problem in systems. 

To my own opinion, the scope of systems science is very broad and it can be 

structured as having the following epistemological levels: systems philosophy, systems 
theories, systems methodologies, and systems practices: 
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Systems philosophy is about systems thinking and general discourse 
based on ideas about systems. It concerns about problems like holism 

versus reductionism, synthesis and analysis etc. and it is the overview of 
systems thinking and standing point. 

Systems theories are about ideas, conceptual frameworks, general 

principles and models concerned about systems. They include theory of 
general systems (GST, Cybernetics, Living Systems Theory etc), theory 

of systems evolution (Theory of dissipative structures, Synergetics, 
Hypercycles etc. ), and concepts of systems. They discuss the following 

problems. 
ElementM concepts: system, structure and function, subsystems 

and supersystems, information and entropy, systems description etc. 
Properties of systems: emergence, wholeness, stability, adaptability, 

hierarchy, equifinality, instantiality etc.. 
Typology of systems or taxonomy of systems.: according to what 

criteria what kind of systems can be grouped together, or forming a 
hierarchical structure. 

Evolution of systems: how systems change: patterns of changes, 

mechanism underlying changes, general principles etc. 
Systems methodologies: methods and techniques, Operational Research 

(like Mathematical Programming, Networks and Flows etc. ), Game 

Theory, Decision Theory, Systems Analysis, Systems Engineering 

approach, Soft Systems Methodology et. al. 
Systems practices: applications in various fields, like engineering 

systems management, ecological systems analysis, man-machines 

systems et. al.. 

The structure of systems science can be illustrated in figure 2.1.1. 

In this study, special interest is paied to the dynamical behaviour of open 

systems: how a system changes its structure in a changing environments, what is the 

mechanism for that change, what the general principles for all those changes. These are 
problems to be discussed in the following chapters. This study is hence about the 

evolution of systems and it belongs to the category of systems theory. 
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2.2 Systems science and the science of complexity 

2.2.1 Organized complexity 

Systems science is sometimes described as the science of complexity [Klir, 

1985a, 1985b; et. al, 1988]. Although there have been discussions centered around 

complexity for many years, there is still no rigourous definition about what 
"complexity" actually is. It can only be understood intuitively. The concept of 
complexity is generally related to "a large number of components" and "complex 

relationships" of systems. The multi-facets of complexity have been revealed by Klir 

[Klir, 1985a], and other concepts like "hierarchy", "emergent property" are closely 
related to the concept of complexity. What is more important of complexity for the 
discourse of systems science is the concept of "organized complexity" proposed by 
Weaver in an important paper "Science and Complexity" [Weaver, 1948]. 

According to Weaver, the complexity of a system depends both on the number 
of composing components and the randomness involved. The degree of the complexity 
of the system is decided by the number and degree of interrelations of these 

components, and the degree of randoms involved. He identified two types of 

complexity: disorganized complexity and organized complexity. Sciences, with 
different domains of study, address to the problems of simplicity and complexity. 
Weaver classifies three categories of study according to the degrees of complexity 
involved and this classification is illustrated in figure 2.2.1 as follows: 
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Figure 2.2.1 Different types of complexity 

Physics mainly deals with systems possessing organized simplicity where 
physical laws, found or to be found, are believed to exist to govern the movement of 
systems, like Newton's kinetic laws, gravitational law etc.. The non-organized 
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complexity, possessed by systems with very large number of components which are in 

random state, can be tackled by probabilities and statistics. The example is the ideal gas 

where the inner dynamics of the system is expressed by the law of molecular thermal 

movement. Although the movement of every molecule is governed by kinetic laws, it is 

meaningless and also impossible to describe the movement of individual components in 

practice. However, the collective behaviour of the system is relatively simple: the 

system as a whole can be described in a collective way, like the distribution of energy, 

speed etc.. Between these two extremes of systems lies a large amount of systems 

which have a fairly large number of components and there are strong interconnections 

among them. In this case, there is another type of complexity which arises from the 
interrelations between a large number of components and it is defined as the "organized 

complexity". Examples of organized complexity conceived by Weaver include 
biological systems, social systems etc. This problem has not been touched effectively 
by classic sciences, at least not until recently, and, as to be shown, the problem of 
organized complexity is what systems science sets to attack. 

Remember what has been said about systems and systems science: systems are 
organized wholes of parts. What is important is how those parts interact to each other 
so that a whole can emerge to exhibit some novel properties. When the number of 
components become fairly large and the interdependent relations between them very 
complex, organized complexity has to be addressed to. As a matter of fact, it will be 

shown in the forthcoming chapters that even a system with only few components but 

complex relations can exhibit complex behaviour. This belongs also to the problem of 
organized complexity, but unforeseen by Weaver. 

Dealing with systems with organized complexity can be traced back to the early 
stage of the development of systems science. From the theoretical aspects, general 
systems theory (GST) has set out to find a new way of looking at the problem of 
biological systems which could not be described properly within the domain of classic 
sciences [Bertalanffy, 1968]. To study a biological system, usually many variables 
must be considered simultaneously: the complex behaviour of a system arises from the 
interconnections between its forming components and all of them have to be taken into 

account. This was one of the main concerns when Weaver introduced the concept of 
"organized complexity". In Bertalanffy's GST, he meant to establish a general theory 

which, in principle, can deal with the problem of organized complexity arising from all 
systems. Among those properties of general systems, "equafinality" is a concept which 
illustrates the characteristics of organized complexity [Bertalanffy, 1968]. 

Systems engineering is regarded as another important contribution to the 
development of systems science. According to Checkland [Checkland, 19811, systems 
engineering belongs to the "hard way" of systems thinking in systems science. It 

27 



concerns about the principles, methods and techniques applied in organizing large 

engineering projects from the systems point of view: problems of technology, finance, 

manpower and their management are intertwined with each other and all of them must 
be considered together simultaneously. This is another example of organized 
complexity. The techniques and skills of the management of one large scale engineering 
problem are transferable to others and here fies the general principles and techniques of 
systems engineering. The techniques of operational research belong to those 
mathematical techniques which form the hard core of systems engineering. 

In the mean time, there is a strand of thought which is called "soft system 
methodology" (SSM). The essence of it is that human factors are involved in 

conceiving, modelling, analysing and designing systems. On account of the "soft" 

aspect of systems science, another factor of the complexity of systems is touched: the 
subjectiveness in describing systems. As argued by Flood, the concept of complexity 
has its subjective meaning [Flood et. al, 1988]. The complexity of a system is always 
conceived by human beings and therefore, apart from the number of components of a 
system and the interrelations between components, the viewer's standing point must be 

taken into account when talking about the problem of systems complexity. This is of 
vital importance when systems thinking is applied to analyse social-economic systems. 
However, the subjectiveness of complexity is not the main concern in this study. 

Systems science is about the organized complexity of systems and hence the 

organized complexity is sometimes called systems complexity. In discussions about 
properties of a system, it is imperative to look at the complexity the system exhibits. 
Growth, adaptability, evolution are behaviours resulted from the organized complexity 
of biological systems. Large spatial span, long time duration, large financial and human 
involvement are the characteristics of organized complexity of large engineering 
systems. The growth, equilibrium-seeking, recession are phenomena observed in 

modem economic systems, which intrinsically involve natural and human source, 
industries, agriculture, education and many other sectors, and political system which 
strongly influences the economic behaviour. They are complex not only in the spatial- 
temporal scale that goes beyond the scope of classic sciences: they are complex in the 

sense that they can not be understood by merely resorting to the properties of their 

components. The macroscopic behaviour of a national economy do not merely depend 

on the behaviour of one or a handful of commercial firms or companies, it is the result 
of the how all different sectors, -- agricultural, industrial, comericial etc. --, are 
connected to each other and also how they are affected by the international economic 
environment. These complex behaviours are the reflection of the systems' organized 
complexity and can only be analyzed by adapting a systems point of view. 
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When the components and interactions of components are changing in the 
passage of time, the problem of complexity becomes more complex: dynamical 

complexity of systems is hence entering discussion. 

In Benard hydrodynamics experiment, when a thin layer of viscous liquid is 
heated uniformly from below, with its upper surface exposed to a cooler air, organized 
spatial-temporal patterns, Le, the hexagonal cells, can emerge from the previously 
homogeneous state if the temperature gradient imposed exceeds a critical point [Haken, 
1983a; Swenson, 1989a]. 

In Belousov-Zhabotinsky reaction, the reactants are pumped in and products are 
flowed out constantly. When certain critical state is reached, chemical waves can 
appear suddenly and may be sustained by constant inflow and out-flow [Nicolis et. al, 
1977,19891. 

In the osmosis experiment, certain inanimate chemical reactants are put into 

certain chemical liquid. In the time span of minutes to hours, amazingly some complex 
patterns like trees, mushrooms, vegetables, and bearded goat et. al can be observed to 
grow up and they are reminiscent of the complex biological forrns which have been 
found in the natural world [Klir et. al., 1988]. 

In biology, self-aggregation phenomenon has been discovered in the insect 
population. In an experiment mentioned by Prigogine, larvae of a coleoptera are initially 

distributed at random on two sheets of glass. When an artificial nucleus is introduced in 

a peripheral region of the system, a cluster appears and the density around the imposed 

centre increases. When the initial density of the population is high, the system will 

choose a centre itself and the population grows at that point [Prigogine et. al 19841. 

In the social economic field, it has been demonstrated that urbanization happens 
in a way similar to the self- aggregation process in insect population. Commercial 

centres appear from a homogeneous area because of some random factors and they then 

start to attract people to immigrate there and further develop to large centres [Allen, 

1986]. 

In the computer experiment of cellular automata, the random initial conditions 
can lead to organized spatial-temporal patterns by following simple deterministic rule. 
Further more, artificial lives can be created by setting up simple initial conditions and 
simple rules and this is believed to provide some new insight into the emergence of 
complex systems in the universe [Wolfram, 1984; Langton, 1986,1989]. 
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2.2.2 Systems science and the science of complexity 

Although systems science deals with the problem of organized complexity, it 

does not do so exclusively. Since early 70's, the complex dynamical behaviour of 
systems in a wide range have been noticed and addressed by some classical sciences, 
Re physics, chemistry, biology etc.. Examples include those cited in last section, e. g. 
Benard Cells, Belousov-Zhabotinsky reactions etc., they were originally discovered, 
incidentally, by physicists, chemists and biologists who were puzzled when fist seeing 
them. Especially when the development in nonlinear dynamical systems studies have 

revealed that many systems can exhibit complex dynamical behaviour as such, the 
problem of complexity has been noticed and studied in almost all the classical areas of 
science. This study of organized complexity is called the "science of complexity". 

Institutions bearing the title like "complex systems", "nonlinear systems" etc. 
have appeared rapidly in recent years. One well-known example is the Santa Fe 
Institute in USA where physicists, chemists, biologists, computerists etc. are all 
involved in the study of organized complexity. Different from systems scientists whose 
main concern is about the complexity of abstract systems arising from the interactions 

of components, or systems complexity in general, scientists like those in Santa Fe are 
looking into some specific systems and study their dynamical complexity arising from 

the nonlinear relations between systems components. Problems under consideration 
include: nonlinear dynamical behaviour of physical systems (fluid, chemical waves, 
catalytic networks in gene dynamics etc. ), emergent computation of certain model 
systems (cellular automata, neural network, replicator systems etc. ), computer 
simulation exploring the mechanism underlying natural evolution (artificial life). The 

core of the "science of complexity" is about the nonlinear dynamics of systems which is 

sometimes referred to as the study of chaos [Stein, 1989; Jen, 1990; Langton, 1989; 
Langton et. al, 1992]. 

Systems science is overlapping with the science of complexity, but they are 
different. Systems science may discuss systems complexity from a general point of 
view, like emergent properties etc., the science of complexity concentrates on specific 
systems. Systems science is systernhood orientated while the science of complexity is 

more thinghood inclined. The best line of research seems to look at complex systems 
from both classical sciences and systems science point of view: through systems 
science, the general properties of complex systems can be applied in the study and 
some knowledge about other systems may be transferable, like dynamical models; 
through classical science, the problems associated with thinghood can be addressed by 

resorting to the specific physical form of systems. For a specific system, its organized 
complexity essentially depends on both systernhood and thinghood. 
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To study how a system's components are related to each other so that the 
system can exhibit rich complexities and to know what the state a system is in at a 
particular time is regarded as the study of the "being" of the system: its structure, 
organization, state etc. What is of special interest in this study is the dynamical 
behaviour of open systems, especially the process when an open system changes from 

one level of complexity to another or how a system in an disorganized state becomes, 

with the impact of its environment, organized. In other words, the main concern is 

about the "becoming" of systems in this study. The following section will trace the 
history of the study of becoming of various systems. 

2.3 Evolution and Thermodynamic Equilibrium: two extremes 

2.3.1 Reversible and irreversible process: the role of time 

It has been argued that one of the striking characteristics of Newtonian 

mechanism is that time plays no constructive role in all the processes happening in our 
machine-like world. Time is merely a parameter which has no direction [Prigogine et. 
al, 1984]. In the mechanical model of the universe, every system starts at certain initial 

conditions, follows certain trajectory defined by some universal laws, like the 
Gravitation Law, and goes on and on for ever. To know the future is just the same as to 
know the history: you just need to follow the trajectory prescribed by the equations 
along the time rather than to retrieve the trajectory by change the sign of time. The fate 

of the universe is defined for ever and what can be done is to try to find those universal 
laws and write the dynamical equations. The process of changes that happen in the 
universe is reversible in the sense that to change the time from t to -t in the equations 
does not change the form of equations, i. e., laws that govern the behaviour of the 
system remain the same. This is the picture of the world from the Newtonian 

mechanical Point of view. 

Thermodynamics studies the absorbing and dissipation of energy of systems. 
For the first time, time is assigned a direction along which the energy flows one way. 
It is common sense that when two iron bars, with one "hotter" than the other, are put 
together, they will eventually change to, through heat conduction, a state at which they 
are at the same temperature. No one has ever witnessed the reverse process in the 
nature, Le, the heat flows from one bar to another, which were at the same temperature 
at the beginning, and leads to the rise of temperature in one and decrease in the other 
without any constraints imposed from outside (say, deliberately introducing a heat 

gradient). The natural process of heat transfer is irreversible. Thermodynamics depicts 

a picture of the universe which is irreversible in the sense that "useful" energy is 
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constantly digested and the universe is moving to the "heat death" as the second law 

says. 

Irreversible process is also observed in the biological world, in galaxices etc.. 
Even before Darwin's theory of evolution brought about human's attention to the 
evolutionary process observed in the biological world, some people had argued that 
Newtonian mechanism was inadequate in describing the organisation of living matters 
[Prigogine et. al, 1984]. The processes of change in Newtonian world is reversible but 
the process of the growth of plants as well as the development of human organs are 
characterised by irreversible complexification. Those challenges to the doctrine of 
Newtonian mechanical view of the world have been noticed and stressed since 
Darwin's work on biological evolution. With the picture of a mechanical world on the 
one hand and an dynamical, complex world rich of changing behaviour and innovation 

on the other hand, there is a split imagine of the universe perceived by human beings. 

Systems science has been trying to portray a different picture of the world 
which can, quite possibly, provide some insights to bring to the end the confusion 

about order and disorder, reversibility and irreversibility. 

2.3.2 The second Law of thermodynamics 

Although the second law of thermodynamics is regarded by some physicists 
like Eddington as holding the supreme position among the laws of nature, it is too 

pessimistic a conclusion from the human's point of view. The claim that entropy 

always increases in every closed system implies that the universe is doomed to head for 

a 'horrific' state, i. e., the state of thermodynamic equilibrium: maximum disorder, the 

complete destruction of any structure and organization, and hence the system is both 

spatially and temporally homogeneous. It is extremely disappointing for people who, 

encouraged by the triumph of scientific rationality brought about by the classical 

sciences since Newton, have placed the human on the top of the nature. They believe 

in the unlimited power of human rationality inspired by classical sciences and tend to 

use it to create an ideal world with order, efficiency and justice. It is especially true for 

the twenty century people who are indulged in the success of the "industrial 

civilization". 

Thermodynamics is the macroscopic description of natural processes. Instead of 
describing systems by specifying the kinetic states of its components, it concentrates on 
the tendency of the change of state at a macroscopic level. It is the process not the state 
that is stressed. The Second Law, as formulated by Clausius, was originally about the 
energy consumption of closed thermodynamic systems but it is generally interpreted as 
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that free energy is spent and leveled out in any natural process. Entropy change is the 

quantity which characterises this process. As argued above, time is assigned a direction 
in thermodynamics along which free energy is always consumed and dissipated and the 
thermodynamic process is irreversible. This thermodynamic view has challenged the 

view of a static, reversible world represented by Newtonian paradigm. However, the 
tendency of evolution to disorder stated by the second Law is obviously contradictory 
to our observation that order and structure are growing in the biological world. This 
brings to the conflict with Darwin's evolutionary picture of the biological systems. 

2.3.3 'Me growing of order in the biological world 

Prigogine has argued that our scientific heritage includes two basic questions to 

which till now no answer was provided [Prigogine et. al, 1984]. One is the obvious 
contradiction between the static view of classical dynamics and the dynamical paradigm 
of thermodynamics, i. e., the direction of time [Coveny etc., 1990]. The other one is the 

relation between order and disorder. The famous law of increase of entropy describes 

the world as evolving from order to disorder while, biological or social evolution 
shows us the complex emerging from the simple. It has been a dichotomy facing 

philosophers and natural scientists for a long time. 

Unlike the tendency to go to disorder and stable thermodynamic equilibrium as 
claimed by the second law of thermodynamics, evolution, diversification, and 
instability are found common in the biological world. Darwin has been undoubtedly 
credited as the founder of the theory of evolution. This evolutionary paradigm has been 

strengthened and extended by some great discoveries in this century. The discovery of 
genes leads to the so-called Neo-Darwinism, Stanley L Miller's experiment on 
"primordial soup" which is believed to have exited on the surface of the earth hundreds 

of millions of years ago provides new clues about how life might have come into 

existence in this planet [Hogan, 1991]. Eigen's Hypercycle adds one new link to the 

evolutionary chain of the biological world, and the concept of Big Bang and the theory 

of an expanding universe complete the evolutionary continuum of the universe [Eigen 

etc., 1979; Hawking, 1988]. 

In recent years, phenomena of the emergence and growing of order have been 

observed in diverse fields ranging from simple physical system to complex human 

societies and a general awareness has been raised about the becoming of the universe. 
This has entered the research scope of human enquiring and it is believed that systems 
science holds a unique position to study the general patterns, fundamental principles 
and the basic mechanism underlying the evolutionary behaviour exhibited by various 
systems. 
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2.4 From Being to Becoming: the shift of emphasis in systems science 

2.4.1 Seeking a dynamical equilibrium 

As argued in Gao et al. [Gao et al, 1990], in the early stage of the development 

of systems science, the main interest was about the static organization and equilibrium 
state of self-stabilizing systems. This can be illustrated by analysing the development of 
one of the most important theoretical contributions to the systems science: cybernetics. 

Since its inception, cybernetics, was more or less identified as a science of self- 
regulating and equilibrating systems. The three basic concepts in early cybernetics are 
"feedback", "stability", and "state". It has been successfully argued that the mechanism 
underlying those "equilibrium seeking" systems, whether they be natural or artificial, 
biological or inanimate, is characterised as having a "negative feedback" loop (see 
figure 2.4.1). A quick look at the classic monograph on cybernetics, i. e. Wiener's 
"Cybernetics: infibi7nation and communication in animal and machine" [Wiener, 1948], 

or preferably, Ashby's "Designfor a brain" and "An Introduction to Cybernetics", will 
reveal this view [Ashby, 1952,19561. Thermostats, physiological regulation of body 

temperature, automatic steering devices, economic and political processes etc. were 
studied under a general mathematical model of this negative feedback loop. 

SYSTEM 
equilibrating 

INPUT 

FEEDBACK 

Figure 2.4.1 Equilibrium-seeking System 

OUTPUT 

Homeostasis is a concept originally introduced for living organisms which 
describes the phenomena that a stable state of the organism is maintained by some 
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organic regulating mechanism in such a way that they occur in an opposite direction to 

what -a corresponding external change would cause according to physical law. It is 

extended to phenomena of seeking equilibrium in any systems and serves as a synonym 

of "seeking for equilibrium". A system which reveals a purposeful, goal-seeking 
behaviour is usually described and analysed under this general framework. Related 

mathematical models have been developed to describe these phenomena. For example, 

a dynamical system can be modelled by coupled differential equations. 717he asymptotic 
behaviour of the solutions of these equations is employed to describe the system's 
behaviour of seeking a steady equilibrium state. Application of this framework can be 
found in physiology, biology, sociology, economics, the design of various 

serviomachines etc. [Buckley, 19681. 

However, less attention has been paid to the emergence and development of 
new ordered states in systems, either in early cybernetics or in the domain of systems 
science, until recently. The study of "becoming" occurring at all levels of the universe 
has greatly enriched our knowledge about the mechanism underlying these evolving 
behaviours. 

2.4.2 From homeostasis to emergent attractor 

Derivation-counteracting feedback has been served as the foundation of a self- 
regulating model which has been widely used in explaining, describing and designing 
huge ranges of systems seeking dynamic equilibrium. However, there are systems 
which change their structures and functions significantly over time. These phenomena 
include the outbreak of war between countries, the evolution of organisms, the rise of 
cultures of various types; in short, all processes of mutual causal relationships that 
amplify an insignificant or accidental initial kick, build up deviation and diverge from 

the initial condition. It is not fair to say that the phenomena of the breakdown of a 
system's structure and the appearance of a new one by deviation-amplifying feedback 
has totally escaped the cybemeticians' sight. Maruyama's paper in 1963 "The second 
cybernetics: deviation-amplifying mutual causal process" was the first, at least to the 
authors' knowledge, to discuss these phenomena [in Maruyama, 1968]. Examples cited 
in that paper include international conflict, the coming of a new town from a 
homogeneous area, the appearance of new type of culture in human history and 
morphogenesis in biology. These ideas have been shared by later thinkers in their 
discussions about the general evolution patterns except the terrn "initial kick" was 
replaced by other names like "fluctuation" [Nicolis et. al, 1977], "ignorance" [Allen, 
1989a]. More detailed discussion about this evolutionary behaviours in open systems 
appeared in later 70's after the appearing and development of several important schools 
of thought on self- organization, i. e., "Order Through Fluctuations" [Nicolis et. al, 
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1977; Prigogine, 1980; Prigogine et. al, 1984], "Synergetics" [Haken, 1983a, 1983b, 

19881, "Hypercycles" [Eigen et. al, 1979], "Autopoiesis" [Maturana and Varela, 1980; 
Zeleny, 19801, and "Theory of General Evolution" [Swenson, 1989a, 1989b]. 

The statement that every system tends to move to its thermodynamic equilibrium 
with maximum entropy and non functionary structure is obviously contradictory to the 
observed evolving world where order grows over time. Early cybernetics was unable to 

answer this question while it can analyse and describe the mechanism by which a 
system maintains its ordered structure and converges to a predetermined goal. This was 
noticed by some physicists like Schrodinger and systems thinkers like von Bertalanffy 
[Schrodinger, 1944; von Bertalanffy, 1968]. Distinction between closed and open 
systems was made that an open system can possibly evolve to higher ordered state on 
the expense of the environment's negentropy while a closed one is doomed to its 

maximum disordered state as indicted by the second law of thermodynamics. This was 
the first programme trying to fill this gap between the decrease of order in the universe 
predicted by thermodynamics laws and the increase of order observed in the biological 

world by adopting systems point of view but these ideas had not been fully developed 
in Bertalariffy's GST due to the lack of rigourous conceptual framework, intensive 

empirical study and powerful mathematical techniques. His main concern there was 
mainly about a system's structure, function, dynamic interaction between system's 
components, and equafinality behaviour of systems in general etc. In later 70's, studies 
on the spontaneous occurrence of coherent functioning structure from previously 
incoherent sets of components and the maintenance of the new ordered whole at a non- 
equilibrium state shed new lights on the evolutionary process observed at all levels in 

our universe [Nicolis et. al, 1977]. 

Independently developed in different fields, these schools of thought are all 
based on the principle that in a system which is open to the exchange of matter-energy- 
infon-nation (or matergon-information) with its environment, order can increase by 
importing negentropy from outside. In Prigogine's "theory of dissipative structures", 
for instance, the entropy change of an open system dS is split up into to two parts, i. e., 
entropy increase dSi, due to the irreversible process within the system, and the second 
part, dSe , the entropy import from its environment. Although in a system far from its 
thermodynamic equilibrium, dSj >0 always holds, when the negentropy excess 
certain level, say dSe < dSj' the total entropy of the system decreases, i. e., 
dS = dSi + dSe <0- 

The crucial role of microscopic fluctuations, or "initial kick" in Maruyama's 

term, within a system has been recognised and explored in depth in these theories 

mentioned above, especially in "Order Through Fluctuations". Chemically, it might be 

gradient in the kinetics of reactions, biologically genetic drift, economically the 
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appearance of new products, socially new ideas of creative individuals. These 
fluctuations are constantly testing the stability of the system. Below some critical point, 
they are absorbed by the system through its multiple feedback and feedforward 

networks. But in a nonlinear system, these fluctuations might be amplified by its 

complex inherent dynamics which are characterised by nonlinear interactions between 

components (including feedback or forward networks). When some of the fluctuations 

are amplified, the old structure of the system may collapse and new ordered state may 
emerge spontaneously (without a recognisable external factor deliberately designing the 

new structure). This phenomena, i. e. self-organization, is observed at all levels of the 

universe and is regarded as the fundamental property of all evolutionary process. 

2.5 Systems evolution (progressive change: unavoidable) 

2.5.1 Evolution in the Darwinian tradition 

Although Charles Darwin is regarded as the founding father of The Theory of 
Evolution, he himself, as Gould argues, had never used the term of "evolution" to 
imply any superiority of the new species over their ancestors. Darwin's theory of 
evolution goes nothing beyond "descent with modification" [Gould, 1975]. All species 
merely adjust themselves to fit the changing environment (if all anloeba is as well 
adapted to its environment as we are to ours, who is to say that we are higher creatures? 

-- Gould, 1975, pp36. ). It was Herbert Spencer who should be credited with the one 
who advocated of the popular vision of evolution as "progressive complexification". In 
his First Principle, he defines evolution as follows: 

Evolution is an integration of matter and concomitant dissipation 
of motion; during which the matter passes from an indefinite, 
incoherent homogeneity to a definite coherent heterogeneity 
[Quoted from Gould, 1975, pp36]. 

Darwin's theory is about evolution of biological species, Spencer extended this 

concept to describe the process of evolution in the universe, from the inanimate world 
to human society. If it is admitted that the current planet, including human species, has 

evolved from a primordial earth before the appearance of any biological molecules, it 

must be accepted that the general tendency of evolution is towards a progressive 
complexification although in some special cases, like in certain biological species, 
evolution does not necessarily always lead to the increase of complexity in systems. 
Some other people like Henri Bergson and J. C Smuts also share with Spencer the view 
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of universal evolution towards complexification [Bergson, 1911 (1975); Smuts, 1926]. 
The avoidance of defining evolution as progressive complexition is mainly caused by 

the concern that this kind of interpretation of evolution is highly controversial especially 
when is applied to the domain of human society which has inspired the Social 
Darwinism. Later in this study the concept of evolution will be discussed mainly from 

the structural point of view and it will be found that it is closer to the original meaning 
of Darwin's rather than that of Spencer, but systems evolution is defined to happen not 
just in biological systems, but in all systems at various level, such as physical, 
chemical, biological social systems etc.. 

The old theme about the evolution of biological species, in public's eyes, is 
implied in the famous doctrine "the survival of the fittest". In brief, the mechanism of 
evolution can be surnmarised as: 

Natural selection 
Random small variations ) Evolution of species 

( emergence of new species) 

It is implied in Darwin's original writing that the reason for evolution of 
biological species is to adapt to a changing environment, so there is no guarantee of a 
general improvement in the structure and function of the biological species. Evolution 
has no direction: only those which fit to the changing environment are selected and the 
nature is a "Blind Watch Maker" [Dawldns, 1986] 

Three points need to be mentioned here about Darwin's theory of evolution 
which are related to our study of systems evolution. 

First, the source of evolution is from the random small variations in species 
(gene drifts). This can be comprehended from the open systems point of view: 
evolution is originated in the system's inner microscopic fluctuations (random 

variations). Second, natural selection is to what kind of species is to survive in a 
changing environment. The emergence of new species and the selection by the 
environment can be understood from a broader sense about the relationship of systems 
and environment: the structure of systems must be compatible with constraints set by 

environment. The last point is about the time duration of evolution. It has been 
discovered that evolution is a gradual process full of "punctuated equilibrium" points, 
i. e., the time required for a species to evolve from one state to another is significantly 
short compared with the time it stayed in a stable state [Gould, 1975]. It implies that 

evolution is a "catastrophic event" and there is a break of the continuity of species. The 

mathematics to be used in this study, or catastrophe theory and dynamical systems 
theory in specific, will be able to reflect the abrupt change during evolution. 
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2.5.2. Systems evolution 

In early days, cybernetics, or systems science in general, was mainly concerned 
with the static functional analysis of systems which pen-nits understanding of self- 
stablizing mechanism underlying various systems, and exploring the relation between 

systems' structure and function. Due to the development of sciences resulting from 

continuing scientific explorations, it has now reached the stage of understanding the 
forces, forms, and main stages and phases of universal evolution. The philosophic 
climate is also created for the study of systems evolution. Even within the domain of 
systems science, evolutionary thinldng has emerged at all epistemological levels. 

Systems science consists of systems philosophy, systems theory, systems 
methodology and techniques and systems practices (see figure 2.1.1). Development at 
all four levels have contributed to the formation of a new evolutionary paradigm. 

At the philosophical level, a system evolving as a whole was already noticed by 

some philosophers at late last century or early this century, like Spencer, Bergson, 
Smuts [Spencer 1971; Bergson 1911; Smuts 1926]. In the 20th century, physicist 
Schrodinger argued, in his small book "What is life", that biological systems can 
evolve to higher ordered state because they are open to their environment [Schrodinger, 
1944]. The pioneers of this century's systems movement like, Bertalanffy stood firmly 

on the ground that entropy can decrease in open systems. Latter thinkers like Prigogine 

et. al have contributed further to the evolutionary thinking of open systems [Jantsch, 
1980; Prigogine et. al, 1984]. 

At the theoretical level, concepts, principles, and models of evolutionary 
systems can be found in various systems theories, especially in later contributions to 
the study of self-organization, or, "becoming" phenomena in the universe, i. e., the 
Theory of Dissipative Structures, Synergetics, Hypercycles, Autopoiesis, Cellular 
Automata, and Artificial Life et. al [Wolfram, 1984; Langton, 1986; 1989]. They have 

provided us with some conceptual frameworks and concrete plans for the study of 
systems evolution. 

At the methodology level, methods, strategies, approaches, and tools are 
available for the study of the forces, forms, and stages of evolutionary processes in the 
universe. It needs to be stressed about the role that the techniques provided by 

mathematical dynamical systems theory (DST) can play in the effort to understand the 

mechanism of systems evolution. This is one of the main concerns of this research and 
it will be discussed later on. Other techniques include Cellular Automata and the general 
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research under the title "Artificial Life" which tries to study the evolutionary behaviour 

of simple systems governed by some deterministic rules. It is argued that computer 
simulations of those discrete dynamical systems will help to reveal the evolutionary 
myth of systems in general. 

At the practical level, great attempts have been made in various field to study 
various evolutionary processes, like in biological systems, ecological systems, socio- 
economical systems and human societies [Allen, 1986,1989a, 1989b; Schneider, 1988 

et. al]. The evolutionary behaviour of various systems including neural networks will 
be discussed. This is regarded as the first step for us to understand the evolving 
universe at different spatial-temporal scales by using the new evolutionary paradigm 
that has emerged over the last 10 years. 

The time has arrived to establish a new chapter in systems science, the chapter 
of systems evolution, by working at all levels, from philosophical level down to 
practical level. This marks the shift of paradigm from self-stabili sing systems to 
evolving systems. The study of systems' nonlinear dynamics by modem DST is of 
special importance for this effect because it provides us with robust concepts and solid 
methods for some of the evolutionary processes as well as a dialectic attitude and a 
complementary strategy. 

Viewing evolution as a special form of time discourse of open systems where 
the qualitative change of spatial-temporal behaviour can be observed, it can be defined 

that: systems evolution is a process during which either a new system emerge by 

association of formerly unconnected elements (subsystems). or a system changes its 

structure qualitatively to maintain as an organized whole, it happens in a changing 
environment. 

Several remarks should be made about this definition. It is apparent that this 
two parts definition reflects two different types of evolution. The first one is about the 
coming into existence of a system at a new level: unconnected elements are organized to 
form an emergent at a new spatial-time level. It is demonstrated by examples in physical 
systems, chemical systems, like Benard cells, chemical waves etc. This kind of 
evolution is usually called "order out of chaos" or "order out of disorder". This kind of 
evolution can be defined as systems genesis. Systems genesis happens across levels in 

the elementary particles -atoms -molecules -biological molecules -cells -organs - 
organisms- species - groups -society -supernations hierarchy. 

The second part of the definition refers to a intra-level evolution: a system 
evolves in a changing environment simply to stay as an organized whole. No additional 
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parts are added to the system and what has changed is only the system's structure and 
organization. 

The whole process of systems evolution includes both systems genesis and 
intra-level evolution, and only through this process, various fon-ns of systems have 

appeared and evolved in this planet. However, evolution of biological systems, or 
living systems in general (like what is defined by Miller in [Miller, 1978]), has its own 
unique characteristics: reproduction through inheritance [Yates, 1988]. Evolution 
happens for species, not for individual systems. Two levels of discussion are involved: 

random small variations happen at the genotype level and natural selection works at the 
phenotype level. Favourable traits are inherited through reproduction and the evolution 
of biological species, or living systems in general, is hence an accumulating process 
[Dawkins, 1986]. The general discussion about systems evolution may still be 

applicable in studying biological evolution, but it is not sufficient. Like the application 
of systems theory in analysing any specific systems, the unique characteristics, which 
are usually thinghood related, must be considered. It is not the aim of this study to 

provide a formula which can be used to solve all problems related to systems evolution 
by direct applying it, and there may never be such a formula. What that is intended to 

achieve in this study is that, through careful examination of some related models, 
methods, and examples, certain general principles, mechanisms, ideas, and models 
may be discovered or established to shine light on problems related to systems 
evolution, say, conditions, patterns, processes, and trends. The goals to be achieved 
include a general conceptual framework and a formal model about systems evolution. 
The aspect of structural change during the process of evolution is of particular interest 

to us and it will be tackled by using dynamical systems theory. 
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Chapter 3 Self-Organization: 
way that systems evolve 

3.1 General principles of self-organizing systems 

the 

Long before the rising of a general discussion of "systems evolution", the 

concept of "self-organization" or "self-organizing systems" had received great attention 
during the early sixties. A series of conferences devoted to "self-organizing systems" 

and the proceedings published later recorded, as it is generally agreed, the main 
development and achievement of those discussions in early days [Yovits et. al (eds), 

1960; von Foerster et al. (eds), 1962], although it has been argued that the study can 

stem back to as early as 40's [Dalenoort, 1989]. The study of self-organizing systems 

or self- organization went silent for a while and has been rekindled almost two decades 

later by the study of the spontaneous emergence of coherent spatial-temp oral structure 
in non-equilibrium thermodynamics and other fields. 

Despite its importance and usefulness, the concept of "self-organization" or 
"self-organizing systems" is difficult to define precisely. It depends upon where you 
draw the boundary and how you conceive the system and its environment. As a matter 
of fact, von Foerster has even argued in a well-known paper, i. e. "On self-organizing 
system and their environments", that there are no such things as "self-organizing 

systems" if you draw the boundary just to encompass the kernel of the system and 
consider the system as closed or isolated. It has been realized that there von Foerster 

over emphasised the "self" in "self-organizing". Self-organizing systems do exit only if 

we take an open systems point of view, as von Foerster himself admitted, in a 
conditionally stated sentence: 

"... I propose to continue the use of the term 'self-organizing 
system', while being aware of the fact that this term become 
meaningless, unless the system is in close contact with an 
environment, which posses available energy and order, and with 
which our system is in a state ofpeipetual interaction, such that it 
somehow manages to 'live' on the expenses of this environment. " 
[von Foerster, 1960, pp6l 

This open systems point of view is now regarded as the starting point for any 
discussion of self-organization and systems evolution and it has been generally 
accepted that any open systems which have "rich" interactions with the environment 
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can exhibit self-organizing behaviour, provided certain other conditions, such as 
nonequilibrium, nonlinearity, microscopic fluctuations etc. are met. Bearing in mind 
that the concept of "open system" has been used in von Bertalanffy's writing in 40's 
[von Bertalanffy, 1968], it seems strange that the term of "open system" was not used 
explicitly in those days even in the discussing of self-organizing systems (for example, 
in von Forester's writing). 

It is usually conceived vaguely that the process of "self-organization" or a "self- 

organizing system" refers either to the spontaneous appearance of order or organization 
where there was previous none (order out of chaos, as often said) or the automatic 
replacement of an organization at a lower ordered state by one at a higher ordered state 
(order out of order). The characteristics of this process is that it goes "by itself" in the 
sense that there is no recognizable external "agents" responsible for deliberately 
designing the emerging structure or organization. According to this definition, a self- 
organizing system is in contrast with systems like a machine, a modern commercial 
firm etc. which, are designed purposefully by human beings, the outside designers, to 

serve certain goals. To decide whether there is a process of self-organization occurring 
in an open system, there are two criteria which depend on whether a structural or a 
functional description in discussion is adopted. For a structural description, the process 
of "self-organization" can be detected by the appearance of some structural regularities, 
like the emergence of hexagonal cells in Benard experiment. For a functional 
description, it can be assessed by examining some aspect of the performance of the 

system, like the successful adaptation to the changing environment by a biological 

system. Be it structural or functional, it is natural to describe the process of self- 
organization as a process in which, in the terms of thermodynamics, an open system's 
entropy decreases, because concepts like entropy, negentropy, order and "disorder" 

etc. are connected with each other. 

As we mentioned above, self-organization can only occur in open systems. 
Suppose that there is an open system Os with E as its environment. The system is open 
to its environment and there is constant change of matter/energy/information between 

the system and its environment, as illustrated in figure 3.1.1. 

From the thermodynamics point of view, the state of the system can be 

characterised by its entropy level S and the direction of change of the system is 

specified by the sign of its entropy change rate ZIA The entropy change dS consists 
two parts, one is dSi which comes from the irreversible process occurring within the 

system and the other one, dSe from the interaction between the system and its 

environment. Usually, we can denote this as: 

dS = dSi + dSe (3.1.1) 
43 



As generally accepted, self-organization happens when dS <0. According to 
thermodynamics, dSi >0 always holds when the system is not at its then-nodynan-de 

equilibrium. Tberefore the condition for self-organization becomes: 

dSe <- dSj < 0, IdSe J> IdSi I (3.1.2) 

That means that when the rate of neg-entropy contribution from the environment 
exceeds the rate of internal entropy production, the system self-organizes itself. 

This criterion for the detection of self-organization has also served as the 

starting point for discussions of systems evolution. A similar discussion based on the 
term of "order" rather than "disorder" can be found depending on various forms of the 
term "order" defined. Among them von Foerster's concept of order is well known. 

Based on Shannon definition of "redundancy", von Foerster defines the 

measure of order of an system as: 

R=1- H/Hm (3.1.3) 

where H is the entropy level of the system at the state considered, HII, the possible 

maximum entropy. According to this definition, when the system is at an absolute 
ordered state, its measure of disorder i. e., entropy H=O, that implies R=I. When the 
system is at an absolute disordered state, H=Hjjj , therefore R=0. This is consistent 

with our intuition about the proper measure of order of a system. For discussions of 
self-organization, it would be useful to know what this formula can tell. 
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dR =- (Hm dH -H dHm) / (HM)2 

It is easy to show that: 
(i) when Hm = constant., dR >0 if and only if dH <0 
(ii) when H =constant, dR >0 if and only if dHm >0 
(iii) when H, Hm # constant, dR >0 if and only if H dHm - Hm dH >0 

These results can be regarded as the general criteria for the process of self- 
organization. Apparently, result (i) agrees with the above discussion and our intuition 

about order and disorder. The other results are not so obvious [von Foerster, 1960]. 

This discussion is based on terms of thermodynamics, it can serve as a very 
good explanation about the process of self- organ i zation. Because it is highly 

controversial to extend the concept of entropy beyond the domain of thermodynamics, 

none of these various forms of definitions of "order" and "disorder" has been widely 
accepted and similar discussion can only serve as a suggestive explanation. For a 
detailed discussion about self-organization, or systems evolution in general, based on 
concepts of thermodynamics, Weber et. al give a very good review and some renewed 
arguments [Weber, et. al. 1988]. 

In early days, self-organizing systems were usually related to natural systems 
like biological systems, learning behaviour of neural networks etc. which are 
essentially different from those man-made systems like machines. When Ashby talked 
about self-organizing systems, he was mainly concerned with those complex systems 
which seek equilibrium state by itself, like a country's economy goes back to normal 
state (equilibrium state) from a war. He argued that when a system goes to one of the 

equilibria, it is moving from a large number of possible states to a smaller fraction, or 
in other words, the system is changing from a more probable state to a less probable 
one [Ashby, 1962]. In that case entropy of the system decreases and order increases. 
Going to an equilibrium state is a kind of self-organization in Ashby's term that the 

system goes from a "bad" organization to a "better" one without the purposeful design 

of some outside factors. This kind of self- organization is sometimes described as the 
"goal seeking" behaviour of systems. The prototype of this kind of self-organizing 
systems is the growth of crystals and the stabilization of national economy. However, 

what is of particular interest to us is a special kind of self-organizing systems which 
either develop its own organization from none, or move from a lower ordered state to a 
higher ordered one and all these happen spontaneously. The state of the system before 

and after this change is qualitatively different and there is a discontinuity in the system's 
behaviour over the period of time during the process of self- organization. Although 
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there is not a single external factor which can be identified as responsible for this 

process, it happens only when there is close interactions between the system and its 

environment. The system self-organizes itself by absorbing the neg-entropy from its 

environment in the sense that it dissipates matter/energy/information from its 

environment. This kind of self-organization is defined as "dissipative self- 
organization". Examples range froth physical systems, such as the often quoted Benard 
Hydrodynamics experiment [Swenson, 1989a, b], through chemical systems like the 
Belousov-Zhabotinsky (BZ) chemical wave [Haken, 1983a, 1983b, Skinner et al, 
1989,1991] , to biological systems like the hypercycles [Eigen et. al, 1979]. 
Compared with the "goal- seeking" type of self- organization as mentioned above, the 

process of dissipative self- organization is more complex. These systems can exhibit 
certain novelties and creativities in the sense that the emergent macrostates have new 
irreversible behavioural. / dynamical regimes at new spatial-temporal scales which are 
inaccessible to and unobserved in separate components. This process increases the 
degree of complexity in open systems and therefore, in most cases, the notion of 
"dissipative self-organization" is used as a synonym of systems evolution. Dissipative 

self-organization, or self-organization in short, is the actual process taking place during 

systems evolution. 

There are different schools of thought about self-organization which set to 
develop the general principles for the understanding of the spontaneous emergence of 
dynamical structure at a new spatial-temp oral level and to lie the foundations for a 
general argument of "becoming", i. e. systems evolution, observed at all scales in the 

universe. The following sections will review cfitically some of the most important 

schools and attention is brought especially to the mathematical treatments which are 
believed to be able to be unified by the mathematical dynamical system theory. One 
important field not discussed here is self- organization observed in neural systems 
which will be discussed latter as an original examples of the application of the new 
evolutionary paradigm. 

3.2 Order out of Chaos: self-organization in non-equilibrium systems 

Theory of dissipative structures was originated by Ilya Prigogine and his 

colleagues in Brussels. Primarily in studying the non-equilibrium thermodynamics, it 
has been discovered that order can emerge in open systems in a far-from-equilibrium. 

state through the exchange of matter/energy finfon-nation with its environment. This has 
been extended and developed to provide a foundation for the description and analysis of 
the spontaneous transfon-nation of systems from an incoherent state to a coherent state 
and their further evolution. It has been regarded as the most important school of 
thought of self-organization. Its impact has gone far beyond the study of non- 
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equilibrium systems on the science community: its philosophic implications has 

promoted the new thinking about a science of "becoming" in contrast to the science of 
"being". [Prigogine, 1980; Prigogine et. al, 1984]. 

The conceptual framework of the theory of dissipative structure is built on 
notions such as open system, non-equilibrium, fluctuations, nonlinearity, chance and 
necessity etc. The main conclusion is that "Nonequilibrium is the source of order" and 
that "order comes through fluctuations". A brief summary of these ideas can be given 
as following. 

Openness The open systems point of view has been explicitly stated and 
stressed in the theory of dissipative structures. As discussed above, for a systems open 
to its environment, its overall entropy level is decided by both the inner entropy 
production arising from the internal frictions of the system and the net entropy input 
decided by the matter/energy/entropy influx from the environment. When the neg- 
entropy influx surpasses certain critical point where the internal entropy production is 

more than compensated, the state of the system may undergo a radical change of its 

state and new order may come into existence. This has been stressed in the theory of 
dissipative structures and adapted as the starting for the study of self-organization and 
systems evolution. 

Far-from-equilibriurn In the theory of dissipative structures, three different 

types of thermodynamic state of systems must be distinguished, i. e. equilibrium, linear 

non-equilibrium (near equilibrium) and nonlinear non-equilibrium (far-from- 

equilibrium). When the system is at its then-nodynamic equilibrium, it has reached its 

maximum disorder in the general sense and its entropy production diS vanishes. At 

such a state there is not functional structure existing, no direction of time, no "free 

energy" and the system is in a homogeneous state (or there is no system at all! ). The 

entropy level is characterised by: 
diS =deS =0 (3.2.1) 

The total entropy = maximum 
This is the ultimate state of any closed systems including our universe, as stated 

in the second law of thermodynarnics. 

When the system is in the region of a linear equilibrium --- that is, in the range 
of validity of Onsager' "reciprocity relation" [Nicolis et. al, 1977] ---, it evolves 
toward a stationary state and that state is necessarily a non-equilibrium state at which 
dissipation of energy still exists. It has been proved that this process is governed by the 

principle of "minimum entropy production" and this non-equilibrium state is 

characterised by a minimum entropy production P= diS = constant >0 which is 

compatible with the constraints imposed upon the system by its environment [Prigogine 
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et. al, 1984]. For at the thermodynamic equilibrium P= djS = 0, the state restricted 
by 

P= diS = constant >0 (3.2.2) 

is hence called a "close-to-equilibrium" state or near-equilibrium state. 

There is nothing special at the close-to-equilibrium state which is maintained as 
a dynamical equilibrium, i. e. the inner entropy production is just compensated by the 

negative entropy imported from its environment and all quantities that describe the state 
of a system, 

_Iike 
temperature, concentrations, and spati al-temp oral structure, become 

time-independent. This system is in a stable state and its behaviour is predictable in the 

sense that it will move to the final state determined by the imposed boundary 

conditions. 

Phenomena like the above mentioned Benard convection experiment, BZ 

reaction etc. are quite different and these systems can exhibit some novel behaviour 

such as the emergence of new spatial-temp oral structure when the environment 
changes. Such new structures can always be identified in these processes of change 
and the negative entropy flux to the system from the environment is no longer a linear 
function of the forces imposed on the system. In this case, the system is within its 

nonlinear non-equilibrium region or at a far-from-equilibrium state. Nonlinear 

thermodynamics studies systems at their far-from-equilibrium. state and sets out to 

analyse the process of self-organization through which novel structure and behaviour 

can be observed which is totally different from what has been understood about close- 
to-equilibrium systems. "Nonequilibrium is the source of order", as Prigogine has 

claimed, and this has opened a whole new world where the increasing complexity of 
this universe is no longer so mysterious once we start to look at systems from this 

nonlinear nonequilibrium point of view. [Prigogine et. al, 1984, pp2871. 

The principle of minimum entropy production is regarded to govern the 
behaviour of systems in a close-to-equilibrium state, it no longer holds for far-from- 

equilibrium systems. A system at a far-from-equilibrium state does not tend to 

equilibrium as it does in the close-to-quilibrium situation. On the contrary, it produces 
entropy at its maximum rate through the irreversible process occurring within the 

system and, with the negentropy influx from its environment, tries to stay in a far- 
from-equilibrium state. That is: 

dP/dt A ---- > Pmax (3.2.3) 

This has been defined as the "principle of maximum entropy production" by 
Swenson and it has been successfully argued that it is this very "principle of maximum 
entropy production" that governs the behaviour of nonlinear nonequilibrium, systems 
and gives rise to new dynamical spatial-temporal structure in those systems. That is to 
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say that the principle of maximum entropy production is the universal physical law 

underlying all the self-organization processes [Swenson, 1989a, 1989b]. 

Fluctuations Openness and far-from-eqilibrium are the necessary conditions 
for a system to be able to evolve from lower ordered state to higher ordered state, but 

they are not sufficient. Among the7 others, one of the most important factors which is 

emphasized in the theýry of dissipative structure is that the system must possess 
sufficient fluctuations at the microscopic level. 

Any system is composed of many interconnected components. The behaviour 

of the system depends on the interactions of its components, i. e. it depends on how 

those components are organized rather than what the behaviour of every individual 

component. For a system at a* stable state, its structure and behaviour can be described 

at the macroscopic level and the movement of the composing components can be 

neglected. However, at the microscopic level, those components, or subsystems, are in 

constant motion and constant change. These movements and changes are restricted by 

the global behaviour of the system through those inter-connections between 

components. The components or subsystems are also subjected to their own laws at the 
microscopic level which are different from the laws the system as a whole should 
watch. Microscopic fluctuations never stop and they constantly test the stability of the 
system as an organized whole. Usually they are absorbed or damped by the system 
when the system is macroscopically stable. For a nonlinear, nonequilibrium, and open 
system, these fluctuations can, coupled with perturbations from the environment, be 

amplified to destroy the stability of the system and this will usually give rise to new 
state to the system. This is called "order through fluctuations" in the theory of 
dissipative structures and it can be illustrated as: 

structure . 10 , 
function 

fluctuations 

These microscopic fluctuations provide a system with different potential choices 
for its future state. Depending on which fluctuation is amplified, the system moves to 

one of the various potential states blueprinted by or prescribed by the various 
fluctuations. Physically, fluctuations can be thermal movement of molecules, 
biologically the gene drifts, socially the free will and new ideas of individuals. Each of 
these fluctuations correspond a potential macroscopic state of the system when it is 

amplified. 
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NonlinearilY Essentially, a system capable of self-organizing must have 

many interconnected components. The complex interdependence is manifested as 
multiple feedback and feedforward loops. They reflect the nonlinearity of a system's 
inner dynamics. Only in a nonlinear system as such, a small change arising from 
internal fluctuations can be amplified through the nonlinear mechanism at a critical point 
to give birth of a new state to the system . From the mathematical point of view, the 
behaviour of a linear dynamical system is trivial: its behaviour is decided by some 
simple invariant sets like node, centre, source etc. For nonlinear dynan-dcal systems, 
there is a totally different picture: a two dimensional dynamical system can rest on a 
periodic state and a three dimensional system may even stay at a chaotic state. Only 

nonlin ear systems can have rich bifurcation behaviours and this makes it possible for 

new spatial-temporal structure emerge from microscopic fluctuations. This is also 
stressed in the theory of dissipative structures [ Nicolis et. al, 1977]. 

Necessity and chance When the stability of the system is destroyed at a 
critical point by the amplification of one of those restless fluctuations, the system 
undergoes a radical change of its structure and behaviour and this very point is called a 
"critical point" or "bifurcation poine'. As argued by Prigogine, the microscopic 
fluctuations introduce the randomness and hence introduce the "arrow of time". 

"Only when a system behaviour in a sufficiently random way 
nzay the difference between past andfimire, and therefore 
irreversibility, enter into its description" [Prigogine et. al, 1984, 
p 16]. 

Because the system faces different choices initiated by different fluctuations at 
the bifurcation point, the emergence of new structure is decided not by laws which the 
system followed previously but rather by some random factors. 

At the bifurcation point, the law of large numbers breaks down and the process 
is dominated by random factors introduced by the microscopic fluctuations [Nicolis 

et. al, 1977; Prigogine et. al, 1984]. The system has many possible directions of 
evolution to follow. Which one the system will finally choose is unpredictable. The. 
decision made at this critical point is hence called an "event". After this event, the 

system enters into a new ordered state and re-assumes its macroscopic stability. The 
impact of microscopic fluctuations no longer changes the system's macroscopic 
behaviour until next critical point is achieved. Under the constraints of its environment, 
the system is stable and its new state is maintained by the constant exchange of 
matter/energy/ information with the outside world. The macroscopic behaviour of the 
system follows some laws at the new stage. The microscopic fluctuations have never 
ceased and always exist to test the system's stability within new macroscopic 
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constraints. When the next critical point is reached, these fluctuations will compete to 
each other again so that one of them can be chosen, once more, by some random 
factors or the "mysterious unknown force", to be amplified to dominate the system's 
behaviour and gives rise to a new order state. 

Therefore "chance" and "necessity" both are essential in the description of the 
process of self-organization of nonlinear non-equilibrium. This can be illustrated by the 
following bifurcation diagram (figure 3.2.1). 

L 
erned IStabIe stage: gov 

by. deterministic laws 

Z 
0 
0 

Event: emergence 
loss of structural stability 
decided by random factors 

Arrow of time 
Figure 3.2.1 Chance and necessity: history versus events 

The evolution of a far-from-equilibrium system is full of events recorded by 

critical points. Between any two events the system follows certain deterministic laws 

which decide the systems' behaviour at the macroscopic level and affect die fluctuations 

at the microscopic level. During the periods between two events, systems are stable and 
their macroscopic behaviour can be described and predicted, but, as Prigogine said, 

4cive can never determine when the next bifurcation will 
arise"[Prigogine and Stenger, 1984, xxvi]. 

3.3 Hypercycle: emergence of dynamical functional structure in 
biologicaI systems 

Although Charles Darwin's "The Origin of Species" was published more than 

one hundred years ago, we still have not had a complete picture about exactly where 

and how life has come into existence on this planet in the first place. The progress in 

science and technology over the past century has provided us many assumptions, 
theories, evidences about possible ways in which the biological world began. The Big 
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Bang hypothesis sets out to explain the origin of the universe which hosts the solar 

system and our planet [Hawking, 1988]. Stanley Miller's electrical charge experiment 
provides evidences that the biological systems might have been fon-ned in the early 
times of the primordial earth through some elementary physical and chen-dcal reactions 

under certain special conditions like sustained higher temperature, higher pressure and 

electric sparks etc. [Miller et. al, 19-74]. Various theories about the appearance of pre- 
biologic molecules have also been proposed and investigated recently [Horgan, 1991]. 

To study how the biological species evolve from those basic biological molecules, 
Eigen and Schuster have postulated that there may have been a number of big biological 

molecules supporting each other by functional interactions and hence had formed some 

auto-catalytic cycles called "hypercycle" [Eigen et. al, 1979; Eigen et al, 1980]. The 

theory of hypercycle tends to explain the process of natural selection and mechanism of 

self- organization in pre-biotic systems at the macroscopic pre-biotic molecules level. 

For it stresses the complex feedback mechanism, i. e. the auto-catalytic and cross- 

catalytic cycles -- the manifestation of necessary nonfinearity during self-organization -- 
it has contributed to the understanding of the general principles and mechanism 

underlying the process of self- organization in all open systems. The rigourous 
mathematical treatment in the theory of hypercycle provides a useful guide-line for 

dealing with self- organization in biological systems and this can be restated latter by 

using the language of dynamical systems theory. 

Catalytic reaction is very fundamental in chemical reactions, especially in 

organic reactions [Nicolis et. al, 1977; Eigen et. al, 1979; Fanner et. al, 1986]. As it has 
been known to us for a long time, different enzymes serve as very important catalysts 
in various basic chemical reactions in living cells of biological systems. The catalytic 
process can be viewed as a cyclic process of the catalyst through which the catalyst 
forms different intennediates with the reactants and finally gives the product and the 

catalyst comes back to its original state and remains individually unchanged. This can 
be illustrated as follows (figure 3.3.1): 

Z,,, 
A,, 

ý ES--ý EP 

Catalyst EBSp 

E D- C 

Figure 3.3.1 The catalytic process 
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If the catalyst itself is also both the reactant and the product, like in the 
foHowing reacdon: 

I 

x>I (3.3.1) 
it is called, following Eigen and Schuster, an autocatalytic cycle [Eigen et. al, 1979]. It 
is believed that the self-replication of double-stranded DNA is an autocatalyfic process. 
If there is a reaction cycle in which, at least one, but possibly all of the intermediate 

products are catalysts, it is called a catalytic cycle which represents a higher level of 
organization in the hierarchy of catalytic scheme. 

"A catalytic hypercycle is a system which connects autocatalytic 
or self-replicative imits through a cyclic link-age" [Eigen and 
Schuster, 1979]. 

The hierarchy of cyclic reaction network is illustrated in the figure 3.3.1. 
Eigen and Schuster have argued that hypercycle is the unique reaction cycle found in 
the selection and evolution of RNA and DNA molecules [Eigen et. a], 1979, Eigen et. 
al, 1980]. 

The main assumption in the theory of hypercycle is that self-replicative 
macromolecules, like RNA and DNA, in a suitable environment can exhibit a behaviour 

w hich can be represented by the concept of quasi-species. "A Quasi-species is defined 

as a given distribution of inacromolecular species with closely interrelated sequences, 
dominated by one or several (degenerate) master copies" [Eigen et. al 1979, Eigen et. 
al, 1980]. These quasi-species are capable of self-reproduction withe the help of some 
information carriers which are believed to be RNA molecules. 

It is also supposed that 

"... systems of mattei*, in order to be eligible for selective self- 
organization, have to inheritphysicalproperties which allowfol- 
metabolism, i. e. the turnover of energy rich reactants to energy- 
deficient pi-oducts, andjoi- (noisy') self-repi-oduction. These 
prerequisites are indispensable. Under suitable external 
conditions, they also prove to be sufficientfor selection and 
evolutive behaviow" [Eigen and Schuster, 1979]. 

What is Hypercycle? It is 

"the analogue of Darivinian systems at the next higher level of 
organization" 

53 



It has been argued that natural selection and evolution, which are the 
consequences of self-reproduction, operate in the case of molecules as they do in the 

case of cells or species. 

Equipped with these notions and the mathematical techniques of fixed point 
analysis, Eigen and Schuster set out to analyse the selection and evolution of quasi- 
species formed by macromolecules. 

ro- Ei 

E2 
En 

E3 

E 

Autocatalyst 
Self-replicative unit which is capable of 
self-replication, also defined as quasi-species 

© 
Catalytic Hypercycle 

Several quasi-sPecies fonning a cross- 
catalytic cycle is temfined as a hypercycle 

Figure 3.3.2 The hierarchy of hypercycles 

The simplest system, according to the above mentioned necessary prerequisites, 
can be described by a system of differential equations of the following form: 

dX/dt = (A -A -4» (X) (3.3.1) 

where X` (XI ) X29 .... 1 Xn ) is the vector of population variables; A reflects 
the positive contribution (amplification) to X, A the negative one (decomposition), 

while (D refers to the out flux of X from the system. A quantity called the intrinsic 

selective value is defined as the result of the metabolism and the decomposition of the 

molecular species, i. e. W=A-A. 
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The equation is essentially nonlinear (with W, A, A in respect to X) and 

mathematical techniques employed here are from dynamical systems theory (fixed 

points analysis in particular), although not explicitly stated. It has been proved that only 
hypercycle organizations can fulfil the requirements for a selection of the best 
functionally linked assemble and its evolutive optimization, i. e. the information stored 
in each single replicative unit or reproductive cycle must be maintained and these must 
establish a cooperation which includes all functionally integrated species [Eigen and 
Schuster, 1979, Eigen et. al, 1980, Schuster, 1989]. Realistic hypercycle has been 

analysed in studying the origin of the genetic code and the translation machinery. 

The formation of hypercycles is claimed to be the general principle governing 
natural self-organization at the pre-biotic level. It stresses the complex feedback 

mechanism in biological systems and this also implies that the non-equilibrium open 
system capable of self-organization must be essentially involving nonlinear interactions 
between its components. The nonlinearity is represented by some catalytic networks 
manifested in the form of nonlinear feedback loops. This is the necessary condition for 

self-organization in all systems and it has also been stressed, although maybe in 
different ways, in some other schools of thought about self- organization like the theory 

of dissipative structures and synergetics. The following theory, i. e. theory of 
autopoiesis is also devoted primarily to the study of self- organization in biological 

systems but can be extended to contribute to systems evolution in some important 

aspects. 

3.4 Autopoiesis: self-reproduction and biological organization 

Another term relevant to self-organization phenomena often encountered in the 
systems literature is "autopoiesis". It stems from "auto" (which means "self') and 
"poiesis" (which means "production") and literally means "self-production". Although 

coined originally by H. Maturana, F. Varela, and R Uribe to explain the particular 

characteristics of living systems, it has been extended, sometimes in a rather naive 

manner, to molecules, organism, nervous systems language, communication, social 
behaviour and human societies [Varela et. al 1974; Zeleny, 1980; Mingers, 1989]. 

More accurately, it is employed as a useful metaphor to describe a wide range of 

systems which can exhibit such autonomous behaviour like self-production and self- 

organizing. For the theory of autopoiesis aims originally to emphasize the. defining 

phenomenological aspect of living systems, i. e. self- (re)production, rather than to look 

for general principles underlying the process of self- organization found in various 

systems, it seems that it can not serve as a general theory about self-organizing 
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systems, or evolving systems. However, it still contributes much to the discussion of 
self-organization in the sense that it provides some useful metaphors as well as some 
heuristic ideas. The model of autopoietic systems is essentially mechanical and it 

resembles, to some extent, to the model of cellular automata which we will explain later 
in this chapter. 

For the discussion of autopoiesis, the distinction between organization and 
structure of systems needs to be particularly emphasised. A system, or using the 

original terminology in autopoiesis, a unity, is a whole distinguished from the 
background (environment) by the observer. The organization of the system is the 

relation between its components and the necessary properties of the components which 

characterize the system and define and maintain it as a unity distinguished from its 

environment. Structure, on the other hand, is the actual temporal and spatial relations 
between components. It is also regarded that the organization defines a system in 

general as belonging to a particular type of class while structure describes the actual 

components and the actual relation of a particular real example of any such systems 
[Varela, 1986; Mingers, 1989]. Generally, structure and organization are 
interchangeable in most current systems literature especially when only mechanical 

systems are concerned where both of them refer to the actual relations between 

components of a system. It is right in most cases when physical systems are analysed 
in that way, but it is necessary to distinguish structure and organization when we are 
dealing with biological systems. For example, the organization of a cell is maintained 
invariant while its structure may be changed during the life time of that cell, e. g. the 

concentration of chemicals in cytoplasms may increase or decrease, the shape of the cell 

wall may change etc.. However, when the structure of a system is changed 

qualitatively, its organization will change and the identity of the system is no longer 

invariant. In later discussion, the concept of "structural stability" will be used to 
describe the situation when the system's organization is maintained while its structure is 

changed. 

Given the clear difference between structure and organization of a system, it 

shall be noticed that one defining characteristics of biological systems is that during the 

process of autopoiesis, the organization of components and the component-producing 
process is maintained invariant through the interactions of components and the influx of 
matter/energy/ information from the environment. It is also demonstrated that life is a 
kind of emergent unity which can arise from the interactions of some biological blocks. 

As self-production is viewed as the defining and unique properties of biological 

systems, autopoiesis is coined for this special characteristics of biological systems in 

the first place. A system having an autopoicsis feature is called an "autopoietic system". 
An explicit definition of an autopoietic system is as following: 
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"An autopoietic system is: 
A uizity realized through a closed orgattizatioii of productioll 
process such that (a) the sat? ie orgaiiizatimi of process is 
getierated through the ititeractimis of their owii products 
(coinpoiiews) wid (b) a topological boutidwy emerges as a 
results of the same colislitutive process [Zeleny, 1980]. 

In this definition, the first part specifies the process of self-production while the 
second part stresses that the process is realized in a unity which produces its own 
boundary. It characterizes living systems, especially biological systems as contrast to 

nonliving systems. One striking result of the theory of autopoietic systems is that'. 'all 

living (biological) systems are autopoiefic (self- (re)production)" [Maturana and Varela, 

19871. 

The typical and best known autopoietic system is the biological cell. It is 

actually the prototype of autopoietic system which inspired Maturana et. al in the first 

place [ Varela. eLal, 1974; Zeleny, 1980]. 

For a better understanding of what an autoPoictic system is, we should look at 
the six criteria of autopoiesis outlined in the first published article on autopoiesis, i. e. 
"Autopoiesis: the organization of living systems, its characterization and as a model". 
The criteria read as: 

(1) Determine, through interactionst if the unity has an 
identifiable boundwy. If can be, go to step (2); 
(2) Determine if there are constitutive elements of the unity that 
are components of the unity. If these components call be 
described, go to (3); 
(3) Determine if the unity is mechanistic system, that is, the 
componen t properties are capable of satisfying certain relations 
that determine in the unity the interactions and transformations of 
these components. If this is the case, go to (4); 
(4) Determine if the components that constitute the boundaries of 
the unity constitute these boundaries through preferential 
neighbourhood relations and interactions between themselves, as 
determined by their properties in the space of their interactions. 
If this holds, proceed to (5); 
(5) Determine if the components of the boundaries of the unity 
are produced by the interactions of the components of the unity , 
either by transformation of previous produced elements, or by 
transformation andlor coupling of non-components that enter the 
unity through its boundaiies. Ifyes, go to (6); 
(6) If all the other components of the unity are also produced by 
the interactions of its components as in (5), and if those which 
are not produced by the interactions of other components 
participate as necessaq permanent constitutive components in 
the production of other components, you have an autopoietic 
unity (system) in the space in which its components exist. If this 
is not the case and there are components of the unity which do 
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not participate it' the production of other components, you do 
not have an autopoielic unity. [Verela, et. al 1974). 

As can be seen from these six criteria, the concept of autopoiesis or autopoietic 
system has a very strict meaning as it is deliberately defined for biological systems in 

particular. The centre of it is self- (re)production. Systems which produce something 
other than themselves are called allopoictic, and systems designed by human with a 
purpose are named heteropoietic. In this way systems are classified into these three 
different groups. 

By looking at these criteria defining an autopoietic system and bearing in mind 
the bold statement "all biological systems are autopoietic systems", it is not difficult to 
notice that the following properties are implied in the theory of autopoietic systems. 

First of all, living systems are autonomous. The autonomy is maintained by the 
process of autopoiesis. There is interaction between the autopoietic system and its 

environment, but the organization of the systems is not decided by the environment but 
by its intemal dynan-ýics. 

Secondly, the organization and behaviour of living systems are decided by the 
relations of components and the interactions of neighbour elements. Thus living 

systems are essentially mechanistic rather than teleological. In next section in this 
chapter, models of cellular automata will be discussed where the structure and 
behaviour of cellular automata are also decided by deterministic local rules which 
restrict the state of a site at certain step by referring to states of its immediate 

neighbours. The computer simulations of autopoietic systems artificial lives are based 

on the cellular automata model and this provide us considerable courage that we might 
be able to study the properties of living systems by guided computer simulations. 

Thirdly, an autopoietic system arises spontaneously from the interactions of 
interdependent elements which are connected to each other to form a network of 
production. The properties of an autopoietic system is independent of the properties of 
individual elements, like production and reproduction, therefore autopoiesis is an 
emergent property and an autopoietic system is an emergent whole. 

Fourthly, living systems are environment independent in the sense that the 
organization of an autopoietic system is decided by the inner dynamics of the system, 
Le the interactions between the constitutive components rather than the environment or 
other external designers. Certainly the environment is the source of material and 
energy, but it has little to do with how the process of autopoiesis should go on and 
what kind of organization the unity should possess. The process of autopoiesis goes by 
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itself and in this sense this process is viewed as a self- organization process and the 

autopoietic system a self-organizing system. 

An autopoietic systems is regarded to be organizational closed because the 
product of the organization is the organization itself. The self-production process 
depends only on the interactions"of the immediate neighbourhood involved and it 

produces, through its own metabolism, the very components, network interactions and 
boundary which realizes it as an autonomous system. It is the internal dynamics of the 
autopoietic unity rather than the environment that decides the self-productionprocess 
hence the organization of the system. The environment, apart from providing the 
necessary material source and energy for the autopoiesis, also provide some noises and 
perturbations to the autopoietic system, but in most cases the system can maintain its 

autonomy and remain to be an autopoietic unity. However, when the noises and 
perturbations are amplified and coupled with the system's inner instability to shake the 
structural stability , Le the organization of the unity, the system will undergo radical 
change and the identity of the autopoietic unity will be destroyed. Environment can 
"trigger" mutations within the system, but it can not decide the change of the system. 
That is to say that the new state of the system is decided by the system's inner 
dynamics rather than designed by the environment and the change of environment can 
only help activate the intrinsic mechanism. This is how Maturana and Varela view the 
relation between the system and its environment and the way of "natural selection" 
[Maturana and Varela, 1987, pp 101- 117]. This view of change is consistent with our 
view on self-organization and systems evolution observed in a wide range of systems. 

It is argued by some people that systems like linguistics, human societies and 
organizations also exhibit the same characteristics as those of autopoietic systems, 
namely, the autonomy, the persistence and maintenance of identity despite the change 
of structure and components, some even suggested that those human organizations like 

a commercial firm and various social institutions are autopoietic systems [Zeleny, 1980; 
Ulrich et. al, 1984; Geyer et. al, 1986]. It is arguable because these systems might not 
meet the six criteria of autopoiesis which are claimed to be the necessary and sufficient 
universal definition for life or "living systems", but it seems that there is no harm to use 
the concept of "autopoietic system" as a useful metaphor in discussion about those 
human institutions. It has also been shown that not only biological C'organic" ) systems 
are autopoietic, but also many other non-organic systems, like physical- chemical 
patterns, inorganic precipitation in osmotic growth, can exhibit the process of 
autopoiesis [Zeleny, 1980,1989; Klir et. al, 1988]. As mentioned before, the 
conclusion is that all biological (living) systems are autopoictic (self-producing) but not 
all autopoietic systems are necessarily living in the sense of traditional organic biology. 
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3.5 Synergetics: cooperative behaviour in self-organizing systems 

The spontaneous formation of spatial-temporal structures out of less structured 

or even non-structured states have been observed in such diverse systems like physical 

systems, chemical systems, biological systems and even human society. The most well 
known example in physics is the behaviour of laser system. Energy is pumped in a 
system consisting of active materials and mirrors. At the low level energy input, atoms 

emit light in an uncorrelated fashion, like the domestic light. When the energy input 

reaches certain threshold, the essentially random radiation of atoms is replaced 

suddenly by a completely coherent radiation and the amazingly coherent laser beam can 
be observed. At that threshold, the system undergoes a radical change and organizes 
itself by ordering and arranging atoms to behave in a cooperative way. In trying to 

understand the mechanism underlying this self-organization process, and by consulting 
to problems in other fields like hydrodynamics, chemistry, biology and ecology, the 
German physicist Herman Haken has established a new theory called "synergetics" 

[Haken, 1983a, 1983b]. 

The aim of synergetics is to deal with systems which are composed of many 
subsystems (or components) and open to their environment. It tries to establish some 

general principles according to which systems acquire macroscopically ordered 
dynamical behaviour through the process of self-organization and these principles 

should be universal in the sense that they hold all the time irrespective of the nature of 
the systems. It has been argued that the aim of sYnergetics has been fulfilled by the 
discovery that the spontaneous occurrence of order is the result of competition and 

cooperation between subsystems and this process is governed by the "slaving 

principle" which says that certain "order parameters" decide the- systems' behaviour at 
the critical point where the stability of the system is lost. 

. 

For an open system, its structure and behaviour is essentially decided by the 
interactions between subsystems. The external perturbations, through the exchange of 
matter/energy/information, will not affect the system's behaviour significantly when the 

system is within a stable region. At some critical points, the external conditions, 
coupled with the internal fluctuations, can amplify the small changes occurring within 
the system and cause the system to lose its stability. Qualitative change in the system's 
structure occurs and this gives rise to the system certain new spatial-temporal structure. 
The appearance of the new ordered state is not merely the result of environment 
"selection", it is the joint product of the environmental perturbations and the system's 
inner dynamics. Within the system, there are large amounts of different fluctuations 

caused by the movement of subsystems at the microscopic level. These fluctuations, 
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potentially, decide the system's behaviour at the macroscopic level when amplified. 
What kind of new structure the system will possess depends on which of those 

microscopic fluctuations is chosen finally to be amplified. The different potential states 
represented by different microscopic fluctuations are called different "modes" of the 
system. Haken proposes that such different kind of modes compete with each other 
during self-organization of the system. Eventually, one or a few of modes win over and 
this decides the system's new structure at the macroscopic level. The appearance of 
such collective modes defines the order and structure of the overall system at the 
macroscopic level. The quantities describing these collective modes are called "order 

parameters" and they are usually the unstable modes at a critical point. The order 
parameters can be physical variables, like the amplitude of waves, or abstract variables 
like radical ideas in a system consisting a group of human beings [Haken, 1983a]. 

Once the order parameters have been established, they prescribe the action of 
the other subsystems, or using the terminology used in Haken's synergetics, order 
parameters slave other subsystems at the microscopic level. The slaving principle states 
that "long-living systems slave short-living systems" [Haken, 1983a, 1983b]. 

The notion of order parameters and slaving principle can be expressed 
mathematically by using the language of dynamical systems theory. 

Generally, the behaviour of a non-equilibrium open system can be described by 

a dynamical equation reflecting the system's inner dynamics, the parameter reflecting 
the impact of environment and a term describing the systems internal fluctuations. 

a 
jt-x((F, t) fI X(cF, t), A, tI+ 5[ X((F, t), tl 3.5.1 

where 
x(t): the state variables (vector) of the system; 
(Y: the parameter vector reflecting the impact of environment; 
A: the spatial gradient imposed on the system; 
f. a nonlinear function (vector) describing the inner dynamics of the system; 
5(x((: F, t), t): the stochastic force representing the internal fluctuations. 

In the analysis based on dynamical systems theory, we usually neglect the 

stochastic term in equation 3.5.1 and this Will not affect the result of the analysis 
significantly. 

As argued in chapter 2, a system that can be observed as a system is usually at 
its stable state, or periodic state or an aperiodic state (chaotic state), that is to say it is 

61 



attracted to a stable attractor. Its state can be specified by a structural stable solution of 
equation 3.5.1, xo((T, t). When the environment changes, the system usually remains 

close to it and the state of the system can be denoted as: 

X(a, 0= xo((F, 0+ W((T, 0 

At the critical point, the behaviour of the system needs detailed analysis and the 

equation can be changed to: 

jt w((F, t) L a, t) w(cy, t)+ N[ x(cy, t), A, cy, t] 3.5.2 

Operator L and N represent the linear and nonlinear parts of the dynamics respectively. 

When the parameter reaches a certain critical point (Y,,, the stable state xo((Fc, t) 
becomes unstable. The analysis of the onset of instability is performed by applying the 

well-established linear analysis techniques. 

) O= 1,2, n) the eigenvalues of the linear operator L and (Dj Denote Xj((Y, 

the eigenvector respecting to Xj 

Xj (a) (Dj =L (Dj 3.5.3 

and at the critical point one or more engenvalues fulfil the relation 

Re kj(cYc) = 

In the neighbourhood of the critical point, it is possible to divide the normal mode into 

two parts according to their different linear relaxation times: 

Stable Modes Xs(a, ): Reks(u) << 0 
Rek((Y, 0 Unstable Modes X. ((Yr 

At the critical point, the nonlinear character of the system plays a decisive role in 

describing the system's unstable behaviour and the state vector is hence expressed as 
the combination of those linear eigenvectors: 

x(t) = xo(t) + 3.5.4 
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According to equation 3.5.1 (without the stochastic term), one obtains a set of 
differential equations for the amplitudes ýj(t) 

dtý,, (t) = Xuýjt) + Pu&(t), ý, (t), GI 
d, 4, (t) = X, 4, (t) + P, [4,, (t), 4, (t), (Y] 

3.5.5 
3.5.6 

Since the amplitude of the stable mode has small relaxation time compared with 
the time scale of the variation of the amplitude of the unstable modes, they are able to 
follow immediately the slow motion of the amplitudes ýjt). This leads to the existence 
of an invariant manifold defined by: 

Ut) = UUO) 3.5.7 

It has been proved that, through some iteration procedure and the elimination of 
the amplitudes of the stable modes, the generalized Ginzburg-Landau equation can be 

obtained: 

dtýjt) = X. (a)ýJ0 + Pu[4u(t), 4, (4u(t)), (71 3.5.8 

The state vector is obtained from equation 3.5.4 and 3.5.7 as: 

X(t) = xo(t) + Y,, ýJt)(D,, + Y-, ý, (ýJt)(D, 3.5.9 

The whole process through which we obtain the state vector is called the 
"adiabatic elimination" and it states mathematically the slaving principle. We see that the 

temporal behaviour of the system close to the unstable point is entirely determined by 

the dynamics of the amplitudes of the unstable modes. The amplitudes ýjt) are 

therefore defined as order parameters. 

The mathematical treatment is based obviously on the dynamical systems 

theory, it can be found out later on that there is a general treatment in dynamical 

systems theory of the unstable behaviour of a system at the critical point and the "centre 

manifold theory" is the generalization of this adiabatic elimination process. More 
bifurcation patterns can be found for the complex temporal behaviour of dynamical 

systems. 

As in the theory of dissipative structures, synergetics also stresses the 
importance of the internal fluctuations in the self- organization process of systems. 
Another point emphasised in synergetics is that there is generally an identifiable 
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symmetry- breaking process in this process and only through which new spatial- 
temporal structure can come into existence [Haken, 1983a, 1983b; Jantsch, 1980) 

Applications of Synergetics are various. It has been successfully applied in the 

study of self-organization process. in laser, hydrodynamics, chemical waves and also 
in pattern organization etc. [Haken, 1983a; 1988]. In the study of systems evolution, 
synergetics provides some important notions such as order parameters and useful 
techniques. 

3.6 Cellular Automata: prototype of discrete dynamical systems 

Opposite to the study of self- organization phenomena based on continuous 
differential equations as discussed in the "theory of dissipative structures", 
"synergetics" and "hypercycle", cellular automata serve as another class of 

mathematical models for evolving systems which involve discrete coordinates and 
variables as well as discrete time steps. Essentially, cellular automata consist of a huge 

number of components which are locally connected to each other through relatively 
simple deterministic rules. Recent study of cellular automata based on extensive 
computer simulation has revealed that cellular automata can exhibit very complicated 
spatial and temporal behaviour analogous to those found with continuous dynamical 

systems like cyclic and chaotic behaviour. The other advantage in studying cellular 

automata is that its behaviour can be analysed by using modem computing techniques: 

extensive computer simulations. As a matter of fact, the study of cellular automata at 

present time mainly depends on the technology of computer simulation. 

The simplest cellular automata to bear in mind is a line of sites with each site 
haying either value 1 or 0 with initial values assigned to each site, renew them in 

discrete step and the new value of each site is decided by values of its nearest 

neighbours on previous step. This is a typical 1-dimensional cellular automata. When 

such operations are carried on, each site has a sequence of values. Such a system of a 
line of sites, with each site having assigned values at different time step according to a 
determinist rule, is a discrete dynamical system. By arranging the line according to the 
time sequence, we get something like the phase configurations for the continuous 
dynamical systems and it is called the configuration of that cellular automata. The 

configuration of a cellular automata reveals its time evolution behaviour. It has been 
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proved that even such a simple cellular automata can exhibit rich evolutionary 
behaviour: organized spatial pattern can emerge spontaneously in some cellular 
automata starting from random initial states and following a simple deterniinistic rule. 
Therefore, cellular automata is regarded as a potentially useful model for the study of 
the evolutionary behaviour of systems composed of large number of components and 
governed by detern-linistic rules. 

Generally, cellular automata can be 1-dimensional (sites arranged on a line). 2- 
dimensional (sites arranged on a surface as two dimensional lattice) or three 
dimensional (for high dimensional cellular automata, it is difficult to visualize its spatial 
pattern). The site may take any finite set of possible values and the renewing rules 
depend not only on the values of a site's neighbours at the previous time step, but also 
from other preceding steps. All such cellular automata must have five fundamental 
defining characteristics: 

(1) They consist of a discrete lattice of sites; 
(2) They evolve in discrete time steps; 
(3) Each site takes on a finite set of possible values; 
(4) The value of each site evolves according to the same. deterministic rules; 
(5) The rules for the evolution of a site depend only on a local neighbourhood of sites 

around it. [Wolfram 1984]. 

With these characteristics, it has been argued that cellular automata provide 
rather general models for homogeneous systems with local interactions to evolve over 
discrete time steps. It has been illustrated that even in one dimensional cellular 
automata, they can exhibit complex behaviour, Le, the system can evolve to 
homogeneous state, or heterogeneous state like steady state, cyclic state, even chaotic 
state [Wolfram, 1984]. 

Cellular automata can be formally defined and analysed. However, the analysis 
of the spatial and temporal behaviour of cellular automata is mainly based on computer 
simulations. 

Suppose there is an 1-dimensional cellular automaton consisting of N sites and 
each site can take one of the k different states. Denote ai (t) the value of the site i at time 

step t and it is decided by the values of its 2r+1 nearest neighbourhood at time step t-1. 
Therefore this cellular automaton have totally k-N different states. The deterministic rule 
which governs the time evolution of this cellular automaton F can be described as 
follows (equation 3.6.1): 
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(t-1) (t- I) (t- I) ai(t) -=F[aý-r , ..., ai , ..., a i+, ], 

(3.6.1) 

or: 
j=r 

ai(t) a i= 1, N (3.6.2) ya"j 
i+j 

ý=-r 

11 

where ai O= -r, ..., r) are integer constants representing weights through which values 

of a, +j O= -r, ..., r) at time step t-I affect ai's value at time step t. 

If (xj =1 for all j U= -r, ..., r) and the "null" condition 

F[O, 0, ..., 0] =0 or f(O) =0 (3.6.3) 

and the symmetrical condition 
F[ af.. t),, 

..., a(t), ..., a(t) ]= F[ af+t)v ..., 
P), 

..., 
P) 1 (3.6.4) 

I i+r I i-r 
hold for all i, these rules are called "legal" rules. Among the e(2r+) possible cellular 

k(k+l) 
_1 automata rules of the above form (i. e., satisfying (3.6.3) and (3.6.4)), k2 are 

legal rules. 
Functions in (3.6.2) can be specified by a numerical "code": 

(2r+l)(k-1) 

Cf= 
In 

., 
k f[n] 

n=O 

which can be used to indicate a deterministic rule. 

For the convience in study, especially in computer simulation, usually only those 

so called "totalistic rules" are considered. A totalistic rule depends only on the sum of 

the input values in the followinf fon-n: 
j=r 

ai(t) = 
ýjaýýj 

j=-r 
(3.6.5) 

As an example, let k=2 and r=2, then there are 32 totalistic legal rules of the 

one dimensional cellular automaton. The numerical codes for these 32 rules is 0,2,4, 

6,..., 60,62. They are specified like this: 

Rule 5 4 3 2 1 0 

24 0 1 1 0 0 0 

56 1 1 0 1 1 0 

wliere(111110)-ý5, (ill 10), (11101), (11011), (10111), (01111) -> 4 etc. 
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Starting from a disordered (random) initial condition, spatial patterns of these 

cellular automata appear to fall into five qualitative classes: 

(1) homogeneous state, like state specified by codes 16,60 
(2) simple stable or periodic state, like codes 24,56 
(3) chaotic state, like codes 18,46 ; 
(4) state with some organized complexity like code 20,52. 

(for graphic representations of the trajectories of these automata, see Wolfram 1984 
[Wolfram, 1984]. 

They can be defined as different "attractors" towards which cellular automata 
will finally evolve irreversibly. The emergence of these organized patterns in cellular 
automata is the same kind of self-organization phenomena found in many other 
different systems and it characterises the general behaviour of cellular automata no 
matter what their dimensions and rules are. It is apparently similar to the taxonomy of 
attractors found in continuous dynamical systems of which detailed analysis will be 

given in the following chapters, and for this very reason, cellular automata can be 

regarded as a very useful tool for the discussion of systems evolution 

Recent study has revealed that what is more interesting and more important is 

the transient behaviour of cellular automata during the evolution process. Before 

entering into these organized patterns, cellular usually go through a transient period and 
the transient behaviour could be very complex. It has also been discovered that the 

space of the rules of cellular automata can be divided into different regions that each of 
which represents qualitatively different patterns, i. e. attractors, to which cellular 
automata will ultimately set on. 

In a paper by Langton [Langton, 19891, each rule of a class of cellular 
automata, which is specified by k and r, can be assigned a measurement (usually a 
number) and hence the rule space of cellular automata can be parameterized by this 

measurement. It has been discovered that corresponding to different values of the 

parameter, cellular automata possess different attractors. 'Me rule space is partitioned 
into different regions of attractors and the transformation from one region to another is 

a structural change which can be called "bifurcation" by using the terminology of 
dynamical systems theory. A parameterized rule space is illustrated in the following 

picture figure 3.6.5. 
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Figure 3.6.1 The picture of the rule space of cellular automata 

A diagram of bifurcation on the phase space is found to resemble the fold 

catastrophe in continuous dynarnical systems. 

Figure 3.6.2 The picture of The 2D phase-diagram for cellular automata. 

The application of cellular automata can be found in various fields. The 

simultaneous renewal of all its values of a large number of cells makes it potentially 
useful for parallel computing [Wolfram, 1984; Langton, 1989]. For the behaviour of 
cellular automata is specified by local rules where the state of a cell is affected by some 
immediate neighbours discretely, it is regarded as a good model for biological systems 
which are believed to grow according locally decided rules [Kauffman, 1984,1989]. 
This reminds us immediately the theory of autopoietie systems which is believed to be 

essential for the study of living systems. Actually, one early model of autopoietic 
system built by Zeleny in 1977 is a cellular automata model [Zeleny, 19771. Most 

recently, there emerges a new research field called "Artificial Life" which tends to study 
the properties of living systems by resorting to some artificially designed systems 

which are "alive" like osmotic system and some living creatures created on computers 
[Klir, et. al 1989; Langton, 1989,1992]. In the study of artificial life, cellular automata 

plays the central role because most computer simulations of artificial creatures are 
created by cellular autornata. 
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Apart from these applications, cellular automata has also been employed to 

study the phenomena of "self- organized criticality" which was initiated by P Bak and 
his collaborators. The notion of self-organized criticality says that in nature, many 
systems usually composed of a huge number of components and submitted to some 
external excitation, naturally evolve into a steady state which is critical in the sense that 
it displays spatial and temporal lang rang correlations like fractals [Bak et. al, 1988, 
1991]. The example that one can visualize is a sandpile that can evolve, as the new sand 
is constantly dropped on it, towards a critical slope on which avalanches of all sizes can 
be produced by a single excitation. Threshold cellular automata has been proposed to 
model this situation [Bak et. al, 1988; Herrnann, 1989]. 

The study of artificial life and self-organized criticality are of great importance 
for the study of systems evolution. In both cases, cellular automata serves as a very 
important tool. 

3.7 Connectionist Models about complex systems 

To some extent, the hypercycle model and the cellular automata model belong to 
the same type of model of systems: the number of components is usually large (it is 

larger in Cellular Automata), the components are locally connected to each other in the 

explicit form of networks, the system emerged is an organized whole which is resulted 
from the connections of components. This type of model systems is usually called 
"connectionist model" [Forrest, 1990]. One special type of connectionist models has 
become very popular fairly recently and that is what usually called the "(artificial) neural 
network". Due to the emergent computational power of neural networks, it has been 

widely used in various fields as information-proces sing systems. Neural network as an 
adapting and evolving system will be discussed in chapter 6. 

For our study of systems evolution, it can be shown that the connectionist 
model can help us understand how a system emerges from the connected components 
and how it can evolve in a changing environment. Kauffman has studied another type 

of connectionist model called "Random Boolean Network" [Kauffman, 1989] and 
showed that it has some interesting properties which, to us, can be applied for the 
discussion of systems evolution. 

An autonomous (N, K) random boolean network is comprised of N elements 
which can be described as binary variables (i. e., the value of each variable can only be 
0 (off) or 1 (on) ). Each element is randomly connected with / or affected by K out of 
N elements through a boolean function. Each element updates its state at the same. 
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moments and the change of state is regulated by boolean functions assigned by the 
randomly connected elements. Kauffman has shown that 

(1) The network will ultimately settle to some stable states called "attractors", be 
they steady or cyclic. These attractors describe the network as an organized whole that 
can be recognized as a system. 

(2) The number of state cycle attractors is far smaller than the number of total 

elements. For example a (N, K=2) network can only have 4N attractors. 

The results have shown that things tend to organize themselves to form stable 
and structured wholes on conditions that there are rich interactions among them. Result 

(2) above demonstrates that the forming of organized entity is not governed by the 

probablistic law which may make this an "improbable event". It supports the idea that 
life on this planet may have come from inanimate materials by defying the attack which 

says that according probablistic analysis the emergence of life forms is an event with a 
infinitely small probability [Kauffman, 1989]. 

3.8 Systems Evolution: a general property of systems 

3.8.1 Towards organized whole: self-organization 

The study of Random Boolean Networks has shown that a group of elements, 
if interacting to each other, tend to get organized by themselves. The organized whole is 

represented by only a few possible "attractors" prescribed by interactions between 

elements. The spontaneous formation of an organized whole by associating of a group 
of formerly unstructured components is what we have discussed in this chapter: self- 
organization. Through self-organization, new entities cam emerge as organized wholes 
of parts. Systems are generated from without. It has been argued by some 
philosophers, especially someone like Spencer and Smuts that things do tend to 
become organized into a new whole (system) [Spencer, 1971; Smuts, 19261. When a 
new kind of whole emerges for the first time, its parts are regarded as the sole source of 
its nature, structure and stability. The. maintaining of the emerged new whole. depends 

on the parts and their cooperations. When the environment in which the whole is 

situated changes, the interactions between parts may change so that the whole is 

maintained as an organized entity. The system may evolve and its organization changes 
qualitatively. All these changes are just for the sole purpose that systems remain as 
systems. Smuts has called this tendency of systems to become self-organized the 
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"holism" and argued that systems and evolution are closely connected to each other 
[Smuts, 1926]. 

The idea that systems may tend to self-organize themselves and order can 
spontaneously emerge is not exclusively expressed in modern systems thinking. 
Ancient oriental philosophers achieved the same result intuitively and expressed it 

thousands of years ago. Capra has once compared the basic ideas of oriental 

philosophies (sometimes referred as Eastern mysticism) , such as Taoism, Hinduism, 

and Zen, with the underlying concepts of modem physics and argued that there are 
fascinating parallels between them [Capra, 1975]. We can find the same parallels 
between the ideas of self-organization in modem systems research and in die view of a 

unitary universe in oriental philosophies, especially the view of spontaneous orders 

emphasized by the ancient Chinese philosophies. Chinese ancient philosophies, 

especially the most influential Taoist philosophy, stressed this unified view towards 
human and nature and surprisingly we can find the idea of self-organization expressed 
in an apparently similar way in the classics of Taoist philosophy Tao Te Ching [Yu, 

19901. 

Taoism has been one of the most important strands of philosophical thought in 
Chinese culture and its influence is even further reaching than that of Confucianism 
[Fung, 1958; Yu, 1990]. Taoists view the world as a whole spontaneously created by 

the movement of Tao (the way, the order), an all embracing first principle and an 
expression of the intrinsic nature of everything. Tao manifests itself as Ying and Yang 

and through their interactions the universe has come into being. All systems in the 

universe, by using the terminology of modem systems science, owe their existence to 
the attributes of Tao. What Tao accomplishes was not done purposefully, but is simple 
spontaneously so. The Taoists' view stressed "non-action" of the humans and 
proposed to let the intrinsic nature of everything, e. g. Tao, to do its work. In Politics, it 
has advocated that through non-action, everything can be done. In both the nature and 
society, it believes in the spontaneous orders arising through the movement of Tao. 
Everything has its own nature and that nature is Tao. Lao Tzu. said: 

Matt follows the laws of the earth; Earth follows the laws of 
heaven; Heavenfollows the laws of Tao; Tao follows the laws 
of its intrinsic nature (the spontaneous). [Tao Te Ching, Chapter 
25, Yu, 19901. 

Any hannony or order in society could only be the result of the movement of 
Tao. It is not difficult to discover that the idea of spontaneity perceived by Taoist 

philosophers is similar to, but not the same as, the idea of self-organization in modern 

systems science and we may point that the Taoism had over stressed the "self" a little. 

The Tao, the intrinsic nature of the world, can be expressed, partially, by the inner 
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dynamics of the system (this inner dynamics is expressed in Taoism as the dialectic 

relations of Ying and Yang. ) . 

In short, in the ancient Chinese world view, largely influenced by the Taoism 
dialectics, there was a harmonious cooperation between all beings and this kind of 
cooperation arose, not from the oraers of a superior authority external to themselves, 
but from the fact that they were all parts in a hierarchy of wholes forming a cosmic 
pattern, and what they obeyed were the internal dictates of their own natures- that 

nature is Tao [Fung, 19581. 

If the eastern wisdom is not so scientific in describing the spontaneity of the 

emergence of order, modem science and philosophy, at least systems science, support 
and agree with this view. Makridakis proposes a "second law of systems" which says 
that, systems tend to increase in their internal order in contrast to the second law of 
thermodynamics which says that order tends to generally decrease in the universe 
[Makridakis, 19771. Systems may and tend to evolve, within suitable environment. 

3.8.2 Systems evolution 

It has been shown that things tend to get self-organized and systems may 
evolve. How this will happen? The conditions, and some laws and principles can be 

established as follows. 

In general, an open system can be regarded as a stable attracting centre 
(attractor) within a field of constantly changing matter flow, energy flow, and 
infon-nation flow [Swenson, 1989a]. It continuously attracts matter, energy, and 
information to form and then sustain a dynamically functional whole in a state far away 
from thermodynamic equilibrium. The microscopic fluctuations within the system and 
the perturbations from the environment are also constantly testing the stability of the 

system. Under certain conditions, the system maintains its stability (structural stability) 
by staying at a dynamically equilibrium state through its multiple feedback and 
feedforward loops as analysed in previous paradigm. When the following conditions 
are fulfilled the system may move to another new ordered state with properties which 
are irreducible to its previous state, and the whole as a new attractor is qualitatively 
different from the old one: 

(1) it is open to its environment 
(2) it is far from then-nodynarnics equilibrium 
(3) it is governed by nonlinear dynamics 

(4) there are microscopic fluctuations 
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(5) the environment is changing 

ENVIRONNýENT 
co-evolving with khe system 

SYSTEM (ATTRACTOR) 

open 
non-equilibrium 
iluctuating 
nonlinear 

)i rwvv 

Figure 3.8.1 Open system within a changing environment 

It needs to be emphasised that a dialectic attitude must be adopted in any 
discussions on systems evolution. On the one hand, the effect of the environment, i. e., 
"natural selection" emphasised by Darwin's evolutionary theory, can trigger the 
fluctuation-amplifying process in an open system; on the other hand, the system must 
possess complex inner dynamics and has various microscopic fluctuations. Both 

aspects, inner and outer, play important roles in the system's evolution and they jointly 
decide the process and stage of evolution. 

As to the laws that govem the evolutionary process, Swenson has established, 
deductively from the second law of then-nodynan-dcs, a law called "the law of maximum 

entropy". It says that a system which fulfils the above conditions will spontaneously 

evolve to a new state so that the rate of entropy production is at the maximum possible 

value. [Swenson, 1989a]. 

It should be noticed that this thermodynamics law of systems evolution only 
shows explanatorily to which way a system will evolve (to maximize its entropy 
production rate), it does not tell us at which state the system will be (because entropy is 

a global variable). The actual process and result of evolution can only become known 

through analysing the interrelations of the parts, i. e., studying the internal dynamics. 
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Through the kinetic description, i. e. dynamical equations, together with the overall 
constraints imposed by the environment, we can understand the possible patterns of 
systems evolution. The next chapter is devoted to this problem by building a formal 

model. 
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Chapter 4A formal model for 
evolving systems 

4.1 Systems Science and Formal Systems Theory 

4.1.1 Systems, models, Formal Systems Theory and General Systems Study 

It is accepted in this study that a system is a model of an object [Ashby, 1956; 
Klir, 1972]. Clieckland goes further to stress the subjectiveness in perceiving and 
describing systems, especially for systems where human factors are involved. He 

argues that the system recognized by an observer is decided by his/her 
Weltanschauung, i. e., the point of view of the world [Checkland, 1981]. Here a 
system is regarded as a model of an object which chooses to describe some of the many 
properties of the object. The object is described by a group of variables at a certain 
space-time resolution level. A system corresponds to an object and the properties of the 

system, or the model, can always be regarded as the properties of the the object under 
consideration and hence the system (model) and the modelled object are the same. 

Among all the contributions to the development of systems science, general 
systems theory is one of the most important theoretical traits. In its early stage, general 
systems theory was regarded as a collection of concepts, ideas, and models about 
systems. It has been considered as a formal theory, a methodology, a way of thinking, 
a methodology by different people [Klir, 1972]. Despite the variety of views on general 
systems theory, there is a common philosophical foundation on which the general 
systems theory stands and that is "isomorphism". It has long been the belief among 
those general systems thinkers that through an isomorphic process, knowledge of one 
specific system can be applied in the analysis of other systems with different physical 
forms and these knowledge are regarded as the properties of all systems of certain class 
(certain type of systems in general). These systems properties, like equifinality, 
wholeness, stability, adaptivity et. al., are transferable in such disparate systems as 
physical systems, biological systems, ecological systems and human systems etc.. In 

some other place, isomorphism, or the isomorphic relation is manifested as "metaphor" 

or "systems analogy" [Flood et. al, 1990]. 
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There have been various expressions of general systems and among them are 
fon-nal systems theories. According to their forms and logic-mathematical foundations, 

these various formal theories of general systems can be classified as "axiomatic 

systems theory and "dynamical system theory". 

4.1.2 Axiomatic Systems Theory 

In the category of axiomatic theory there are those theories where the rigourous 
definitions of systems and the derivation of its implication are based finnly on modem 
mathematics and modem logic. The definition of systems starts as a formal logic or 
mathematical expression, with no specific properties assigned to it and is virtually 
applicable for any systems. Over the past 30 years, three major formal systems theory 
have been developed, namely: Mesarovic and Takahara's general system [Mesarovic et. 

al, 1972,1988], Wymore's wattled system theory [Wymore, 1971], and Klir's 

systems theory [Klir, 1969; 1985a]. 

A) Mesarovic's General Systems Theory 

Mesarovic and his co-workers have been studying the formal theory of general 

systems since 60's by using the language of set theory, and latter, the category theory. 
The definition of a system is an axiomatic statement which is formulated in the most 

general terms. Additional axioms are then added to formalize pragmatically significant 

special classes of systems. The study started by giving the definition of system as this: 

Definition 4.1.1 A general system S is a relation on non-empty sets: 
S C_rI(vj: iEI) 

where 11 denotes the Cartesian product of the sets Vi , which are called the set of 

element and I is an index set. 

Vi can be the set of elements of any systems and the relations among these 

elements can be of any forms. This definition is regarded as being applicable to any 

systems. Based on this definition, a framework of general systems has been 

constructed. Mesarovic etc. have set out to study the properties of general systems like 

the input-output relation, the hierarchical structure, optimization strategy and decision 

making etc. [Mesarovic et. al, 1975,1988]. 

Recently, other fon-nal theory developed upon Mesarovic etc. 's original idea 

have been put forward. Among them is Lin and Ma's general systems theory which 

see ms to many people isjust the general logic deductions [Lin et. al, 1991]. 
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B) Klir's systems theory and Reconstruction Analysis 

Klir's work on general systems theory started in late 60's and his formal theory 
is based on the general circuit systqms theory [Klir, 1969,1972,1985a]. Over the past 
20 years, he has developed a complete framework of general systems theory and 
general systems methodology. Compared with other theories of general systems which 
are usually of a deductive nature, Klir's approach is essentially a inductive one. Rather 

than defining the concept of a system axiomatically, Klir starts by defining system 
traits. These traits are simplified which are independent of a specific nature of variables 
involved. Upon those traits, a sequences of systems like structural system, generative 
system, meta system, and meta-meta-systern can be defined. A specific analysis 
techniques called reconstructability analysis has been developed which is unique for 

this theory but has some significant implications in systems philosophy as well as in 

systems methodology. Compared with Mesarovic's general systems theory, Klir's 

theory is also the most well known one in the systems community [Klir, 1985a]. 

4.1.3 Dynamical models of general systems 

An alternative to the axiomatic theory of general systems is the dynamical 

models of systems, as put forward in the first time by L. von Bertalanffy [von 
Bertalanffy, 1968; Klir, 1972]. The focus of such dynamical models is the dynamical 

relation among the components of the system considered. Essentially, there are two 
kinds of dynamical models of general systems, according to the way they describe the 
dynamical process of the system. One of them is to use the internal variables of the 

system to express explicitly the dynamical relations of the system's components. The 

other is to treat the system as a black box and the dynamical structure of the system is 

reflected in the relationships between the input and output of the system. 

The first method assumes that the inner dynamics of a system is known to us, 

although it is not always the case, and we can understand the dynamical behaviour of 
the system by studying the equations describing the dynamics. Two types of equations 
are employed: differential equations and discrete automata. 

L. von Bertalanffy first used ordinary differential equations to describe the 
dynamical behaviour of general systems. It has been claimed that such a dynamical 

model is very useful for the studying of some properties of general systems, like the 

equifinality, equilibrium, stability etc.. Actually, the applicability of the same type of 
dynamical model in various distinct systems, like the physical, chemical, biological and 
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even socio-econornic or some others, is part of the claims that a general systems theory 
is possible and which can describe the properties of general systems [von Bertalanffy, 
19681. 

The use of such continuous models to describe the dynamical behaviour of 
various models has been shared by many other people like, Rapoport [Rapoport, 
1984], Thom [Thom, 1974], Abraham [Abraham, 1988], Prigogine [Nicolis et. al, 
1977, Prigogine, 1980], Haken [Haken, 1983a, 1983b] and many others. The state 
space description method developed in control systems theory can be viewed as the 
further development of these dynamical models in a particular domain of systems 
[Zadeh, 1962] . By adding to the model some concrete contents, they can be applied in 

various engineering systems, as well as some other systems like economic systems. 

Another kind of dynamical model is the discrete automata which were put 
forward to study the Turing machine [von Neumann, 19661 as well as biological 

systems [Kauffman, 1989]. The most recent development of such method is the model 
of cellular automata [Wolfram, 1984]. As showed in 2.6 last chapter, models of cellular 
automata method assume that the system to be modelled is composed of a large number 
of simple components, each component is connected to its nearing neighbours and the 
state of each component is renewed discretely according to some simple local rules. It is 
believed that such model is extremely useful in the studying of a wide range of systems 
and it can also be employed as a general model for analysing the complex dynamical 
behaviour of general systems. 

The black box model was once one of the most important models in early 
systems movement, although not necessarily directly related to the general systems 
theory. It was first put forward by Wiener in 40's and later generalized as a model for 

a wide range of systems by Ashby [Wiener, 1948; Ashby, 1956]. By this model, the 
system is a black box and to us the inter structure of the system, namely how the 
components of the system are connected to each other, is unknown. Given an input to 
the system, certain output can be obtained. Only through the analysis of the input- 

output relation can we "guess" the internal relations. The black box model has also been 

used as an important metaphor in systems science to refer to those systems whose 
internal structures are difficult or even impossible to know, like the human brain. 

This model is still one of the most important models in control systems theory. 
The essential step in using this model is to find out the input o utput relation through the 

standard techniques called "identification". Various application of this model can be 

easily found in engineering systems, physiological systems and other systems [ D'Azzo 

et. al, 1987; Finkelstein et. al, 1985 ]. 
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With the recent development in mathematical dynan-dcal systems theory, we can 
rethink about these dynamical models by considering its applications in the analysis of 
the complex dynamical behaviour of open systems, although we should not go so far 

as to claim that this is the sign of the revitalising of GST. 

The above mentioned fon-nal theories of general systems, together with their 
recent development, have been pursuing the goal set by early systems thinkers, namely 
to study general properties and laws of systems, to form principles applicable to all 
types of systems. Some may argue that a theory which tends to include everything is 

virtually about nothing. From this point of view, a general systems theory of such 
purpose is impossible. However, those various efforts devoted to the development of 
general systems have not been a total failure. They have been successful at least to the 
extent that they provide some common tern-ýinologies for the discussion of various 
systems, characterise some properties of general systems, although they have not, and 
probably never will, found a universal formula or theory for every system. 

Holding the view point that the various theories of systems are only different 

models which each reflects some of the many aspects of reality and they are not 
exclusive and can be integrated in their applications, we should be able to argue more 
objectively that such theory of general systems still needs to have a place in modem 
systems research. This relates closely to perspectivism which becomes the 
philosophical tendency of the systems science. To keep the claim as modest as 
possible, it would be justifiable to say that the following sections are devoted to the 
outlining of a formal model of a special type of systems, Le dynamical systems, and 
through which the evolutionary behaviour of these systems can be explored. The 
following two chapters will provide us with some applications to demonstrate the 
applicability of this formal model. 

4.2 A Formal Model Based On Mathematical Dynamical Systems Theory 
(DST) 

4.2.1 A Dynamical System Model 

This study is about the complex dynamical behaviour of systems in general. 
The ontological statement can be appropriately expressed by quoting the ancient Greek 

philosopher Herarclitus' famous saying: "Everything flows and Nothing Stays". It has 

already been argued that a system capable of evolution must be open to its environment, 
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at a non-equilibrium state, governed by nonlinear inner dynamics, possessing sufficient 
microscopic fluctuations and subjected to a changing environment. In this chapter, a 
fon-nal model to describe such kind of systems and their dynamical behaviour is to be 

constructed. 

In the most general sense, a system is situated in a larger environment. The 

discourse is always over the axis of time. Thus a system is always in certain space- 
time domain. Denote B as the the background of a system in focus (we do not specify 

what is the particular content of this set), T the time axis, T= It: -oo <t< +oo) (or T 

can be R+ =( 0 :! ý t< +oo 1, or Z=1..., -2, -1,0,1,2 .... 
); or Z+= [0,1,2 .... I ). 

Let E be the set of the elements (variables) related to a perceived object, E c: B, 
R be the set of some relations on E, 

00 
RcUEn 

n=1 (4.2.1) 

and hence the system can be defined as S= (E, R). Q=B-E is called the 

envirownent of system S. 

if 
C= {f. fCExQ 

i. e., there are couplings between E and Q we call the system is an open system and 
S= (E, R, Q. 

If the system changes over time T, i. e. the system's elements and the relations 
among them change when time goes, this can be defined as 

RCIfIf: ExT --> E) (4.2.2) 

Such a system is called a (generalized) dynamical system. The system is hence 
described as: 

S= (E, R, T) (4.2.3) 
When the system is both dynamical and open, it can be represented as 

S= (E, R, C, T) (4.2.4) 

Explanatory definitions are given to both a system and a dynamical system. The 
lack of any concrete contents in the definition makes it only a heuristic tool for 

understanding the concepts of systems, environment etc, but it can be applied in 

various situations. 

To make these definitions more precise by using rigourous mathematical 
terminologies, meanings of these sets should be restricted as well as the range of 

systems to be defined. 
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Usually the system is described by a group of variables, represented by a vector 
X which takes its value in a set M which is defined as a manifold which is usually a 
smooth metric space like Rn. The relation R is specified as a function F, 

F: Mx T-4M (4.2.5) 
The system is hence represented as' 

S= (X, F). 

From the strict mathematical sense, only when the following conditions are 
satisfied can we call the system Sa dynamical system (as can be seen in the appendix 
1): 

F: MxT -> M is a continuous map (Cr map), if F satisfies: 
(1) F (x, 0) = x, for any xeM; 
(2) F(x, s+t )= F( F(x, t), s), for any s, t Ei T, xEM 

then F is called a CO flow (Cr flow) or a CO dynamical system ( Cr dynamical system). 

This is a rather restrictive condition. An equivalent definition can be made by using 
the terms of differential equations and that makes the definition less formidable because 

many systems encountered in various fields are usually described by differential equations 
(see appendix 1). 

Again, by taking into account the relation between the system and its environment, 
we can define a system open if there are coupling relations between them, i. e., the system 
is affected by and also affecting its environment. Usually, the dynamical behaviour of the 
environment is not so obvious as those of the system in focus, or in other words, the 
environment changes very slowly compared with the system in discussion. In this case, the 
impact of the environment appears no more than a parameter in the equation describing the 
behaviour of the system. 

A frequently encountered situation is that the dynamical behaviour of an open 
system can be described by the inner dynamics of the system, i. e. the dynamical relations 
between the systems components. It is written in the form of differential equations, either 
partial or ordinary. For a physical system, the dynamical process often unfolds in both 

space and time. Therefore, the spatial distribution as well as the unfolding along the time 
axis of the system must be considered. As it has been already known from the previous 
chapters that there are microscopic fluctuations of composing components within the 
system at the microscopic level. These fluctuations be denoted by a function 5. However, 

any description of the behaviour of a system as a whole is at the macroscopic level and in 

this description, fluctuations at the microscopic have been averaged out. Macroscopic 
description of a system does not include microscopic fluctuations. 
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More generally, the spati al-temp oral behaviour of a dynamical system can be - 
described as: 

ax 

at =f (X, 0, V, cr, t) 

where: 
f describes the system's inner dynamics; 

X the state variabe; 
(a, b, c) the spatial coordinates; 

d, d, d )the 
spatial gradient; 11ý 

a the influence from environment. 

(4.2.6) 

In principle, this complex form of dynamical equations can be simplified to a 
simpler one: partial differential equation can be reduced to some ordinary differential 

equations so that the whole body of knowledge of mathematical dynamical systems 
theory can be employed to analyse the complex behaviour of the system. In the 
following section, some important terms like attractor, structural stability and 
bifurcation etc. will be defined and all definitions are based on the standard autonomous 
equation which describes a differentiable dynamical system: 

dX 
=f (X) dt (4.2.7) 

where f is a vector field on manifold M which defines the inner dynamics of the 
system, and X is the state variable and XE M. 

In analysing systems evolution, the impact of environment to a system must be. 

taken into account and hence parameters must appear in the dynamical equation 
explicitly. The discussion will be centred around the complex behaviour of the system 
caused by the change of environment, namely by varying the parameters. That makes 
the mathematical analysis extremely difficult if several parameters must be considered 
simultaneously. 

4.2.3 DST: The unified language for evolving systems 

In Chapter 3, several important schools of thought about systems evolution, 
like the theory of dissipative structure, hypercycle, synergetics etc. are mentioned. A 

brief revisit to these theories will reveal that they not only share some ten-ninologies in 

the study of the conditions, stages, processes, and general principles underlying 

various evolving systems, they also use the same mathematical tools to reach their goals 
[see also, Gao et. al, 1991b]. 
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A) The Theory of Dissipative Structures 
The Brussells school's work on dissipative structures is still one of the most 

influential in the study of systems evolution, not to say it is the most well known one. 
In analysing the evolutionary process of various systems, special dynamical equations, 
such as partial differential equations of the reaction-diffusion type, master equation, are 
employed to model the evolving systems, and many results and techniques of 
dynamical systems theory have been used [Nicolis et. al, 1977, Prigogine, 1980]. 

B) Synergetics 
In Synergetics, an open system is away from thermal equilibrium and is 

composed of many different competing and cooperating subsystems. It can undergo 
self-organization (evolution) in the sense that new ordered state at macroscopic level 

can emerge spontaneously. To understand the specific process of evolution of a 
particular system, the key step, according to synergetics, is to detect the order 
parameters at the critical point. Given dynamical equations describing the system, the 

mathematical techniques employed to find the order parameters is the "adiabatic 

approximation". The use of DST in synergetics is plentiful (even more so than in 
dissipative structure theory). It is even stated that the slaving principle contains some 
deep theorems of DST as its special cases, such as the centre manifold theorem, the 

slow manifold theorem, and adiabatic elimination procedure [Haken 1983b, pp316]. 

Hypercycle 
The theory of hypercycle studies the self-organization process through which 

some primitive biological systems can emerge from some special organic molecules. 
This investigation is based on impressive mathematical treatment. The simplest system 
capable of selective self-organization can be defined by a dynamical system in such a 
general form: 

dX/dt = (A -A -(D ) (X) (4.2.8) 

where X 7- (xj , X2 ,- Xn ) is the vector of population variables; A reflects the 

positive contribution (amplification) to X, A the negative one (decomposition), while (D 

refers to the out flux of X from the system. The mathematics techniques employed 
there belong to dynarfkal systems theory (fixed points analysis in particular), although 

not explicitly stated. 

D) Cellular Automata 
Cellular automata is a kind of discrete dynamical system, it is capable of 

studying the emergence of organized structure from dis-organized structure, the 
defining characteristic of systems evolution. Although it depends heavily on computer 

simulations, its behaviour can also be described by using discrete dynamical systems 
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equations. Therefore, it would be possible to use the techniques developed in 
dynamical systems theory to study cellular automata. 

E) Connecdonist models 
Connectionist models, like Random Boolean Network, Neural networks, 

explicitly address the problem of how a group of elements are connected to form an 
organized whole and how the global behaviour of a system emerges from the local 
behaviour of elements. The dynamical behaviour of a system composed many elements 
connected as such is modelled by a group of differential equations. All the techniques 
developed in mathematical systems theory are employed in understanding the adapting 
and evolving behaviour of these systems. 

In all those above mentioned schools of thought, considerable weight has been 
put into the analysis of the system's nonlinear dynamics in the complete discussion of 
the evolutionary behaviour of various system. The study of dynamical systems theory 

consists of the study of structural stability, bifurcation and global behaviour of flows 

and that is why the modem mathematical dynamical systems theory has been employed. 
The recent development in mathematical dynan-dcal systems theory has greatly enriched 

our understanding of the complex behaviours of systems governed by nonlinear 
dynamics. In principle, any systems evolving over time can be modelled by such 
dynamical equations. The long run behaviour of the system is prescribed by various 
attractors which the dynamical equations possess. With an extended introduction to 
dynamical systems theory (DST) given in Appendix 1, it can be argued that the 
following features make DST a suitable means for us to study systems evolution. 

1. It provides the notion of "attractor" which can be used to describe the state of 
any systems qualitatively. As it will be demonstrated in the following section, any 
dynamical system, which is recognized as a system, can be described by an attractor 
which can be defined either verbally or formally. Attractors describe the rough patterns 
of systems. We can also use the notion of attractor or emergent attractor to describe 

and explain the striking property of systems: that "a system is more the sum of its 

parts" is due to the existing of an emergent attractor that gives the system its identity as 
an organized whole. 

2. DST provides a concise and delicate geometrical model for the analysis of the 

complex dynamical behaviour of systems. The history to use dynamical model in 

explaining the behaviour of various systems has been very long, but only recent 
development in DST (both analytical and computational) enable its use more practical 
and accessible. Although data can be fed in to get some quantitative results, the method 
of DST is essentially qualitative rather than quantitative. This makes it more suitable, 
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compared with other mathematical techniques, for the study of systems evolution 
because evolution is also a qualitative property of systems. 

3. DST provides a complete taxonomy for emergent attractors: there are four 
fundamental types of emergent attractors, i. e. point attractor, periodic attractor, 
quasiperiodic attractor and chaotic attractor, that can describe the state of any system at 
any stage. 

4. DST provides a classification of bifurcation patterns that can help us to 

explain the evolution route of systems. As argued in chapter 2, systems evolution 
include systems genesis and intra-level evolution. Intra-level evolution means that the 

number of the components of a system is unchanged, but the structure of the system 
has changed qualitatively so that it can maintain its integrity in a new environment as an 
new whole. Those bifurcation patterns studied by DST can be used to describe 

adequately this intra-level evolution behaviour. 

5. DST provides not only a mathematical rationales for us to understand 
evolution process of systems, but also a way to understand the behaviour of systems in 

general. Klir once attributed the emergence of systems science to three factors: a) the 
development of systems ideas in various discipline; b) the development of mathematical 
theory and techniques; c) the invention and development in computation technology. 
When talking about the use of mathematics, he mainly emphasised die development of 
OR techniques for early systems practice in systems analysis and systems engineering 
[Klir et. al, 1989]. He has also pointed that recent development in DST is very 
important for the emerging "self-organization paradignf'. 

This chapter will define and explain the concept of attractors of systems and set 
to analyse how it can be used to describe the spatial-temp oral evolution of dissipative 

systems. As mentioned in previous sections, DST also brings with the solid 
mathematical techniques for the study of evolutionary process of particular systems 
and formal model to be fully developed will be employed to study some particular 
evolving systems in the following chapters. 

4.3 Attractors and the State of Dynamical Systems 

4.3.1 The concept of attractors: a historical account 

Any system that can be regarded a system is at stable states in a certain sense, 
otherwise we will be unable to observe it or to describe it. Here stable state means that 
the system has certain structure which makes it possible for our observers to view the 
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system as an organized whole. Thom has proposed to call such a stable state an 
attractor: 

"Evvy object, or physical form, can be represented as an 
attractor C of a dynamical system on a space M of internal 
variables". [Thom, 1975, pp3201 

Thom considers that any natural process can be described as a dynamical 

system (M, X) which is defined by a vector field X on the manifold. An attractor F of 
the system is a closed invariant set under X. He gives the definition of an attractor as 
such an invariant set satisfying the following conditions: 

1. There exists an open neighbourhood U of F, called the basin of 
the attractor F, such that evety trajectog startingfi-oin a point of U 
has F as its co-litnit set. 
2. Evejy trajectmy whose a-lindt set contains a point of F is 
contained in F. 
3. F is indecomposable, that is, alinost evvy trajecto)y of X in F 
is dense in F. [Thom, 1975, pp391 

According to this definition, an attractor is an attracting set to which every 
"near-by" trajectories are attracted to. For an observer, an attractor corresponds to a 
state of the system to which the system will ultimately settle down to even it is 

perturbed by some noise and driven to the near-by area. A system is always facing 
both the internal noise as well the external perturbations, therefore we have the concept 
of a structurally stable attractor. 

" an attractor F of afield X is called structurally stable, iffor evvy 
field XI sufficiently close (in the C1 -topology) to X, there are an 
attractor F, and a hoineoinoiphisin h of a neighbourhood ofF onto 
a neighbourhood of F1, throwing trajectories of X onto trajectories 
XI. [Thom, 1975, pp39] 

Although it has not been proved that any given field X on M has attractors, still 
less structurally stable attractors, many dynamical equations encountered, which 
describe some real-world systems on a Rn space, have attractors of various types. 

Thom considers only one type of attractors, i. e. point attractor, in his 
discussion of catastrophe theory. We will find out latter that there are several other 
types of attractors which represents different states of complex dynamical systems. 

An attractor, as a time-independent state of systems, can also be described by 
less rigourous mathematical terms as which found in Swenson [Swenson, 1989a, b]: 
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" The lime-independent (Iiine-asymptotic) states, or limit sets, 
that attract initial conditionsfroin region around them, 'basins of 
attraction', during a time dependent processes (evolutionary 
behaviour) as t ---> -. All real world macroscopic change is 
irreversible and hence governed by attractors, viz., the instability 
of entropy-producing processes. In particular, the second law of 
thermodynamics specifies a maximum entropy attractor, Smax, 
the macrostate with 'the maximum number of accessible 
inicrostates, for all macroscopic changes as t --> C'-. In this sense, 
all macroscopic change is (i) progressive (goes irreversibly 
towards an attractor), and (ii) goal-driven (the attractor is the 
goal). The attractor drives the evolutionaly behaviour by virtue of 
the instability of all states within the basin of attraction but off the 
attractor. " [Swenson, 1989a]. 

The time-dependent behaviour of a dynamical system, or a dynamical process, 
is prescribed by time-independent attractors. The dynamical system discussed might be 

a closed system whose dynamical behaviour is governed by the second law of 
thermodynamics. When the system is an open system, and driven far away from its 

thermodynamic equilibrium through the strong interaction between the system and its 

environment, its dynamical behaviour tends to become very complicated. However, the 
long term behaviour of both open systems and closed systems can be described by the 

concept of attractor. As stressed by Swenson, it is very important to bear in mind that 
there are two types of fundamentally different attractors in the real world physical 
systems. One is the maximum entropy attractor which is the ultimate attractor to which 
the whole universe is heading to according to the second law of thermodynamics. Such 

maximum attractor is what is usually called the "thermodynamical equilibrium' 'where 

the system is at its maximum entropy state and all functional structure of the system has 

vanished (and there is no system at all). Another type of attractors are called "emergent 

attractors" which represent the emergent behaviour of systems. That means that 

strikingly new and innovative structures emerge from the system's old structure, 
through some self-organization process, and such structure is represented by some sort 
of emergent attractors. Because systems in thermodynamical equilibrium are rare to 

observe in real world, all systems we can recognize as systems are non-equilibrium 
systems and hence are only described by emergent attractors. For that reason, the 

concept of an attractor is usually used to mean an emergent attractor. We can also define 

a system as an emergent attractor which represents an entity recognized as an organized 
whole. The adequacy to use attractors to describe the states and behaviours of general 
dynarrdcal systems can be justified by the following properties of attractors. 

1) Attractors describe the "asymptotic" or long-term recurrent behaviour of a 
dynamical system after transients reflecting initial conditions have died away. They are 
most of what a system does when observed over a long time. 

2) Attractors represent the integrated behaviour of a dynamical system to focus 

upon and describe the global state of a system through the local connections of 
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variables. This can be demonstrated by looking into the definition given by Thom or to 
be given in 4.3.2. Where, the locality of the connections has been passed to the 
globality of the state of a system as a whole through the passage of time, exactly as the 
passing from the locality of the differential equations to the globality of its solution as 
argued by Zeeman [Zeeman, 1986]: Therefore, attractors describe systems as emergent 
wholes and hence can be employed to define systems. 

3) Attractors describe a progressive process: systems move irreversibly towards 
attractors in the long run. 

4) Attractors describe the goal-driven behaviour of dynamical systems and 
attractors are the goals. No matter where a system starts from, or where it is perturbed 
to off the attractor, the system will ultimately settle down to an attractor. 

5) Attractors exhibit the spontaneous order of dynamical systems and imply a 
self-organization process. Through the interactions of components, a dynamical system 
will go to one attractor by itself without requiring any outside work. This self- 
organization process gives the system some degree of order which is an inherent 

property of that system. 

4.3.2 Definition of Attractors 

As seen from the above section, a dynamical system can be modelled by a 
differential equation as: 

dX 
=f (X) dt (4.3.1) 

where f is a vector field on manifold M which defines the inner dynamics of the 
system, and X is the state variable and XEi M. The concept of attractor can be defined 
in more rigourous mathematical terms. An attractor A is a subset on the manifold M 
(generally, M is the state space of a system). 

Definition 4.3.1 ( Attractor). Let A be a subset of manifold M, U is a 

neighbourhood of A, Ac Uc M. Suppose that nL>OeU = A, then U is contracted 

by f. If A satisfies the following conditions, A is called an attractor of the system S and 
U is a foundamental set of A: 

(1) Attracting: for every open set VDA, eU cV for all sufficiently large t. 
(2) Invariant: eA. =A for all tc- R. 

(3) Indecomposibe: if there is another such A' satisfying (1) and (2), A'=A. 

Where the condition (1) can also be expressed in another way: 
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(1)' For every V, UDVDA, any trajectory starting from a point in V, its (o-limit set 
is included in A. 

In this definition, U is called a fundamental set of attractor A [Ruelle, 1989]. 
The basin of attraction of an attractdr A is defined as a set : 

B =I xI xr= M, x is attracted to A, i. e., A contains the co-limit set of trajectory fl(x) 

There are many other definitions for attractor. In almost all definitions, it 

requires that an attractor must have: 

if ... a fimdamental set 6f neighbourhoods, each of which is 
fbiward invariant under theflow generated by (the vectorfield) 
X" [Guckenheimer, 1976] 

In a paper by Milnor [Milnor, 1985], a number of such definitions have been 

reviewed and compared. For reasons of mathematical elegance, he proposed an 
alternative definition which is based on asymptotic behaviour of the system for almost 
every choice of initial point. For our discussion of evolving systems, under the notions 
and concepts introduced so far, the above definition is sufficient for us to carry on the 

argument. Its meaning can be comprehended by referring to Swenson's explanatory 
definition quoted above. 

According to the structure of A, there are the following four different types of 
attractors. 

Definition 4.3.2 (1) (Point attractor) A is an attractor of a dynamical 

system S. If there is only one point in A, i. e., A= Jx0j, then A is called a point attractor. 
A point attractor has the following properties: 

(i) All its (Lyapunov) characteristic components have negative sign. 

(ii) Its fractal dimension is 0. 

Definition 4.3.2 (2) (Periodic attractor) A is an attractor of a dynarr&al 

system S. If A is a closed orbit, Le, there exists T>O, such 

for every x(=- A =: > x(t+T) cA for all t. 

then A is called a periodic attractor with period T. 

A periodic attractor has the foHowing properties: 
(i) All its (Lyapunov) characteristic components have non-positive sign, i. e., 

either 0, or a negative real number. 
(ii) Its dimension is a positive integer (dimA: 5 dimM). 
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Definition 4.3.2 (3) (Quasiperiodic attractor) A is an attractor of a 
dynamical system S. If A is composed of several periodic orbits at different directions, 

i. e., A= (A,, A2Y 11, An) 

where Ai (i=l, .., n) are periodic orbits with period Tj (i=l, .., n) satisfying: 

n 
(i) dim A= Y- dim A 

i=l 

(ii) There is at least one irrational ratio 
T-I 

(i, j =1, .., n, i: t-j) Tj 

then A is caffed a quasiperiodic attractor. 

A quasiperiodic attractor has the foHowing properties: 

(i) All its (Lyapunov) characteristic components have non-positive sign, i. e., 

either 0, or a negative real number. 
(ii) Its dimension is a positive integer (dimA:! g dimM). 

A Quasi-periodic attractor is sometimes called a toroidal attractor, or a pseudo-periodic 
attractor. 

Definition 4.3.2 (4) (Chaotic attractor) A is an attractor of a dynamical 

system S. If and only if it has the following properties: 
(i) At least one of its (Lyapunov) characteristic exponent has a positive sign. 
(ii) The system is sensitive to the initial conditions in the neighbourhood of 

this attractor. 

then A is called a chaotic attractor. 
Its dimention is a positive non-integer real numbe, i. e. it is a fractal. 

or 
Definition 4.3.2. (4) (Chaotic attractor) A is an attractor of system S. If it 

is neither a point attractor, nor a periodic attractor, nor a quasi-periodic attractor, it is 

caUed a chaotic attractor 

In some literatures, there are only three distinct attractors: point attractor, 
periodic attractor, and aperiodic attractor. The aperiodic attractor is the name for both 

quasiperiodic attractor and chaotic attractor because both of them describe the irregular, 

non-periodic motion of dynamical systems [Ruelle, 1989; Swenson, 1989b]. Here we 
take the two as different because they are essentially different in the following aspects: 

(1) A quasiperiodic attractor describes the quasiperiodic behaviour of a system 
which is characterised. by several periodic motion at different direction with several 
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fundamental frequencies (TilTj is irrational for some (i, J)). A quasiperiodic attractor is 

a k-dimensional torus with k the number of fundamental frequencies. However, a 

chaotic attractor does not have any of such periodic motion in any directions and it 

describes the near random behaviour of a deterministic system. 
(2) The dimension of a quasiperiodic attractor is a positive integer (the 

dimension of a torus on which this quasiperiodic attractor is found) while the 
dimension of a chaotic attractor is a positive non-integer real number, i. e., the chaotic 
attractor has a fractal. dimension. 

(3) When a system rests at a chaotic attractor, it usually exhibits some sensitive 
dependence on the initial condition while for a quasiperiodic attractor, the system is 

resistant to the small purterbation at the initial condition. 

Fundamentally, a chaotic attractor is totally different from a quasiperiodic 
attractor and the other two types of attractors. This point can be justified by discussing 

the peculiar properties of chaotic attractors in the following section. 

4.3.3 State of dynarrdcal systems 

The various types of attractors describe the various asymptotic state of a 
system. In the phase space, they are invariant sets that attract trajectories starting from 

the nearing region around them. For a system whose state and behaviour can be 

observed, they represent different types of state that prescribe the long run behaviour of 
the system. 

A) Point attractor and stable state 
It is quite familiar for us that a point attractor represents the asymptotic stable 

state of dynamical systems. It can be the steady state of a perturbed pendulum in the 

air: without sustained driving force, the resistance of the air will drive it to that steady 
state finally, no matter how big the amplitude was when first perturbed. It might be the 

certain height of a water tank with the same amount of water flowing in and flowing 

out. It can be the concentrations of several chemical reactants in a container where the 

reaction is maintained with the new reactants added in and the products moved out in a 
constant speed. It may well be the glucose level in the blood of a normal human body. 
It can also be the temperature of a room regulated by air conditioning. In some 
mechanical or physical systems, it is the dynamical equilibrium state to which the 

system will move to even if it is slightly perturbed. In biological systems it is the well 
known "Homeostasis" to which the self-regulating mechanism, feedback mechanism 
in general, will drive the system toward. 
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Take the often referred Benard hydrodynamic system as an example [see 

example in chapter 3 and references [Haken, 1983a; Swenson, 1989a], the point 
attractor represents the stable state of the system when the temperature is not very high. 
The system can be observed as in a steady state and the heat is conducted by the liquid 

molecules from the heated bottom to the top. 

In the chemical system of the Brusselator [Nicolis et. al, 1977; 1989], the 

chemical system is at a equilibrium when chemical reactants are pumped in the 

container at certain speed: this is another example of point attractor which we will go 
into details in the following chapter. 

B) Periodic attractor and oscillating behaviour 
Oscillating behaviour has been found in many systems, ranging from electric 

circuits, chemical waves, biological rhythms, ecological systems and economic long 

waves etc. In the phase space of such dynamical systems, this kind of oscillating 
behaviour is represented as a closed orbit, which is usually called a limit cycle. 
Periodic attractors are employed to represent such stable oscillating behaviour: all near- 
by trajectories are attracted to such a limit cycle. 

First of all, it should be made very clear that not all closed stable orbits are 
periodic attractors. For there are essentially two different types of dynamical systems: 
conservative systems and dissipative systems, and the concept of attractors are 
especially designed for dissipative systems. The former are called Hamiltonian systems 
and their behaviour on the phase space is described to obey the Liouville theorem: the 

volume of the trajectories is constant [Prigogine, 19801. There is no contracting 
behaviour in conservative systems on the phase space. Closed orbits can be found in 

Hamiltonian systems but they are not periodic attractors because they are not attracting 
any trajectories anyway. 

In dissipative systems, energy is dissipated constantly. Through the interaction 

between the system and its environment, manifested as the exchange of energy/matter/ 
infon-nation, the system will settle down to a state at which the dissipation of energy by 

the system is counter-balanced and maintained by such exchange. Apart from the state 
mentioned above, the dynamical equilibrium state characterised by a point attractor, the 

system might be in a stable oscillating state: when the system perturbed, slightly, Le not 
exceeding the basin of attraction, the system will go back to that oscillating state. 

In electric circuits, the oscillating behaviour is very common, but the first well 
study system was due to Van der Pol through the well known Van der Pol equation: 
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d2x2 dx 2 

dý 
+a (x 1) Tt +coox A sin(cot) 

(4.3.2) 

which describes the self-excited relaxation oscillations for (x>>O and A=O. 

For various (x, coo, A and co, the system will settle down to a stable oscillating 

state with various periods and amplitudes [Hirsch et. al, 1974, Thompson et. al, 19861. 

In non-equilibrium thermodynamics, the Brusselator is known to have such a 
periodic attractor [Nicolis et. al, 1977; Tomita, 19861. With A, B as initial reactants, 
and D, E as final products, whose concentrations are imagined to be imposed as 
constants throughout by appropriate adding reactants and removing products, the 
hypothetical reaction is as follows: 

A-X 
B+X -> Y+D 

2X +Y ---) 3X 
X-E 

The dynamical model for this chen-tical reaction can be written by the following 

coupled nonlinear rate equation (with the same letters representing the concentrations of 
those chernicals): 

dX 2 
jt = A- (B+1)X +XY 

dY 
=BX-X 

2y 
dt (4.3.3) 

It has been proved, mathematically and experimentally, that stable periodic 
oscillation exists in this chen-dcal system for certain values of B, i. e., the concentrations 
of the intermediates X and Y change periodically. 11is state is represented as a periodic 
attractor, according to our conceptual framework. The Brusselator is an example in later 
discussion about bifurcation and the onset of chaos. 

Periodic attractors can also be employed to characterise die states of many other 
systems, like predator-prey-food chain in ecological system [Toro et. al. ; 1988); neural 

oscillation [Wilson et. al, 1972 etc]; economic long wave [Stermann, 1988,19891, the 

cyclic behaviour of international trade system (Zhang, 1989]. 

Q Quasiperiodic attractor and toroidal motion 
Quasiperiodic motion is a kind of oscillation found in many nonlinear 

dynamical systems. It is irregular, compared with periodic oscillation and, hence is 
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sometimes called as an "aperiodic oscillation". Such an oscillation can be described as 
this: it is composed of several periodic oscillations along several different directions 

and their periods are called the fundamental frequencies. Some of the ratio of the 
fundamental frequencies are irrational numbers. The projections of the orbit along those 
directions to certain hyperplanes are closed orbits, but the overall motion is not strictly 
periodic: the trajectory will never pass the same point twice although it can come very 
near to that point, as near as you like. The trajectory covers the whole surface of a 
torus. For these reasons, such a motion is called a quasiperiodic oscillation, or a 
toroidal oscillation. The concept of quasiperiodic attractor characterises the 
quasiperiodic oscillation, one of the observed complex behaviour of nonlinear 
dissipative systems. 

Quasiperiodic attractors have been found in electric circuits [Parker et. al, 1989; 
Haken, 1983b]; chen-dcal systems [Tomita, 1986] and many other systems. We will 
see later that quasiperiodic attractors are also playing an important part in the discussion 

of the onset of chaos: a periodic attractor can bifurcate to a quasiperiodic attractor and 
further to a chaotic attractor. 

D) chaodc attractor and chaos 
Chaos has been a popular word since early 80's and even more so in recent 

years after the publication of a book called "Chaos" by Gleick in 1987 [Gleick, 1987]. 
It refers to the complicated dynamical behaviour of nonlinear systems: although the 

system is deterministic and often very simple, like the logistic map, it exhibits a highly 
irregular behaviour, just like a random motion. The-random-like behaviour, called 
"deterministic chaos", found in simple deterministic systems has excited not only 
mathematicians, physicists, and applied dynamicists, but also biologists, economists, 
sociologists and many others, and some scientists go further to argue that there is a 
entirely new branch of science emerging based on the discovery of chaos (of course, 
this has caused controversies, hot debates can be found, say, in The Mathematical 
Intelligencers, 1989, Vol, 11, No. 3 among some leading mathematicians, and 
Behaviour and Brain science, 1987 No. 10, between behavioural scientists). In this 

research, we will adopt a modest claim and a cautious attitude towards the use of the 
concept of chaos and chaotic attractor: it is used no more than a concept to describe a 
nonlinear dynamical system whose behaviour is very complicated (for the discover of 
chaos, there is a lot of review articles to be referred to, say Ott etc. [Ott, 198 1; Eckmann 

et. al, 1985; Gleick, 1987]). 

Chaotic attractors describe the state of a system at which its behaviour is 

random look-like. It is also called a strange attractor, for it reveals the randomness of a 
essentially simple deterministic process. Chaotic attractor, or chaos in a dynamical 
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system, has the following properties which make it essentially different from other 
attractors; (see also [Ruelle, 1989; Gleick, 1986; Stewart, 19891). 

1) randomness. 
Although the system is deterministic, the time behaviour is so irregular 
that it resemble the random motion rather than a deten-ninistic process. 

2) sensitive dependence on the initial condition 
Two trajectories starting very close will eventually diverge and the minor 
difference in the initial conditions will be amplified to a significant scale. 

3) fractal dimension 
The trajectory in the phase space will cover densely a region. The 
dimension of such region has a fractal dimension, i. e., a positive, non- 
integer number. 

4) structural stability 
All chaotic attractors, at least all the known chaotic attractors, are 
structurally stable, despite is irregularity and the sensitive dependence of 
each individual trajectory on the initial conditions. (Zeeman conjectures 
that there might be some chaotic repellors, see [Zeeman 1988a] ). 

5) Order within chaos 
Although the behaviour of the dynan-dCal system at a chaotic attractor is so 
irregular, but the chaotic attractor itself has some intricate structure, like 
the Cantor-like set and Smale's horseshoe structure found in some chaotic 
attractors. Chaos has imbeded structures and chaotic attractors are 
structually stable. 

Chaotic attractor has been found in various systems. In principle, any nonlinear 
dissipative dynamical system with dimension no less than 3 can exhibit chaos. It must 
be stressed that the concept of "chaos" in our discussion is quite different from what it 

means in the title of a famous book "Order out of Chaos" [Prigogine, et. al, 1984]. In that 
book, chaos means the homogeneous, structureless, or simply disordered state of a 
system, but chaos or chaotic attractor in mathematics and in our discussion is employed 
to describe a structurally stable state of systems which implies some fine mathematical 
structures such as Cantor set. It is very misleading to take these two concepts as the 
same (largely due to the popularity of these two books, i. e. "Oi-dei- out of Chaos" and 
"Chaos"). 
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4.3.4 problems about attractors 

Four distinct attractors have been defined and found in nonlinear dissipative 

systems which describe four distinct types of asymptotic stable state. Any dynamical 

system, no matter where it starts hT the phase space, will move and settle down to one 
of these attractors. It is usually supposed that the transient time that a system takes to 

change from one steady state to another is very short compared to the time scale of the 
history of the system. It is apparent that this mathematical classification of attractors 
satisfies the following criteria and the Concept of attractors can be used to study the 

evolutionary behaviour of dissipative dynamical systems. 
1) Experimentally identifiable, in spite of the error in observation. 
2) Well-founded for the discussion of evolutionary process described by 
differential equations. 
3) Tractable in computer simulation. 
[Abraham, 1988] 

Mathematically, it is not always possible to define and detect all the attractors 
analytically from differential equations, ordinary or partial. In most cases when dealing 

with a system in a chaotic state, it has to rely on computer simulations and numerical 
analysis, like the construction of phase portraits, the calculation of Lyapunov 

exponents, fractal dimensions, and spectrum analysis. It is hoped that further progress 
in mathematical dynamical systems theory and computer simulation techniques will help 

us to identify attractors more easily. 

It has not been proved that every mathematical dynamical system has attractors, 
but for dynamical systems arising from practical problems, there are always attractors 
which correspond to the observed state of the systems. For many such systems there is 

usually more than one type of attractor co-existing and they correspond to different type 

of the potential state of the system in focus. 

4.4 Structural stability and bifurcation 

4.4.1 Multiple Attractors 

Attractors prescribe and describe the long run behaviour of dissipative systems. 
In lower dimensional systems (dimension:! ý 3), these attractors can be illustrated on the 

phase space which can show clearly the relations between the variables, i. e., how one 
variable changes in accordance with others. Such graph is known in dynamical 

systems theory as phase portrait which consists limit sets (attractors, repellors, 
separatrices), basin of attraction and some typical trajectories. 
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In contrast to the concept of attractors, there are other limit sets for the 
dynamical systems: repellors and saddle-like limit sets which separate the basins of 
various attractors. By changing the direction of time in definition 4.3.1, i. e., replacing t 
-> +- by t -> --, the limit set we get is called a repellor. A repellor repels the 
trajectories starring from any points from its neighbourhood. 

For repellors represent the unstable state of dynamical systems, they are the un- 
observable states of real-world systems. For example, there is a dynamical system 
which can be described by a potential function V possessing two local minima and one 
maximum point (see the following illustration figure 4.4.1). 

Figure 4.4.1 Attractors and repellors 

Points a and c are two local minima and they represent the possible state the 
system can settle down to: they are two attractors. Point b is a local maximum point 
representing a state with a high potential. A system can not be observed at state b: the 
microscopic fluctuations constantly drive the system away from state b and once the 
system is driven away from b, it will fall along the slope to one of the nearing potential 
valley, Le to a or c. By using our terminology here, b is a repellor and it repels the 
system from its neighbourhood around b to certain attractors, a or c. According to 
Maxwell convention, the system is always driven to a lower potential state. 

It has been proved that there exist point repellors and periodic repellors, 
quasiperiodic repellors, but no chaotic repellors has been reported existing so far. 

Zeeman has conjectured that there might exist some chaotic repellors and he has even 

suggested that the two mathematically proved chaotic attractors, Le, Smale's horseshoe 

and the solenoid, can be embedded as chaotic repellors [Zeeman, 1988a]. Because 
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repellors, 
' 
can not be observed, any discussion of repellors must be based on the 

theoretical analysis of the dynamical equations describing the system. 

The point repellor is usually called an unstable fixed point, or a "source". A 

periodic repellor is an unstable periodic orbit, or an unstable limit cycle. They can be 
illustrated as the following (figure 4.4.2,4.4.3). 

/\ 
Figure 4.4.2 Point repeHor 

ý-ýt; es 

Figure 4.4.3 Periodic repellor 

Saddle-like limit sets lie in between attractors and repellors: they are attracting 
nearby trajectories along certain directions and repelling some others. This can be 

typically illustrated by the saddle point and a saddle-like limit cycle (figure 4.4.4, 
4.4.5). 

-90 00- 
7ý 5--- 

Figure 4.4.4 Saddle point Figure 4.4.5 Saddle-like limit cycle 

As we have already known that the basin of attraction of an attractor is the set of 
all those points such that any trajectories starting from them are attracted by the 

attractor. If there are more than one attractor existing, each attractor has its own basin of 
attraction and lying between are sets called separatrices. 
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The separatrices are the boundaries of basins of attraction but they do not 
belong to any basins. By nature, they can never be observed for they are not stable 
[Abraham, 1988]. They are usually the saddle-like limit sets but they are restricted to 
some forms: in one-dimensional phase space, the separatrices are saddle-points; in two- 
dimensional Phase space, they are some sorts of closed curves which might be 

composed of saddle points or saddle-like closed orbits; in three dimensional space, they 
are some saddle-like closed surfaces. The attractors, separatrices and repellors, together 
with basins of attraction form the phase portrait. The phase portrait of a two- 
dimensional system can be illustrated by the following figure (4.4.6) (only point 
attractors are presented and the separatrices are saddle-like limit cycles). 

repellor Q saddle like point attractor 
direction of trajectories seperatrices 

Figure 4.4.6 Phase Portrait with multiple attractors and repellors 

Because the separatrices are some sets with (Lebesgue) measure zero in certain 
measure space (usually the measure space has the same dimension as that of the phase 
space), they can not be observed (A set with the measure zero is composed of those 
points representing some events that are "almost impossible"). "Almost7' all the initial 

points of trajectories are situated in certain basins of attraction and hence attracted to 
certain attractors. The observed state of a dynamical system, that makes it to be 

recognized as a system, depends on which basin of attractor the system was initially 
in. For a system with more than one attractor, it can be observed at different state 
corresponding to different attractors. The attractors are decided by the nonlinear 
dynamics, the initial condition has nothing to do with how the components of the 
system is connected to each other dynamically but depends on some "historical 

reasons" or some random events. Initial conditions and the system's nonlinear inner 
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dynamics together decide the state of the system as observed. If the system starts from 
different initial points in different basin in the phase space, it may settle down to 
different attractors ultimately. Therefore we can observe the system at different state or 
we can even perceive different systems (described by the same dynamical equations)! 
The change of initial conditions may cause the system to change from one state to 

another while the phase portrait of the system at that stage is unchanged. However, 

this is different from the situation when the change of the system's state is caused by 

the permanent, irreversible change of the environment. In this occasion, the system is 
driven from one attractor to another because the whole phase space is changed! This is 

what will be discussed in the following section. 

4.4.2 Structural stability, organization and entity of systems 

Recall the concept of structural stability given in section 4.3.1. It is about the 
preservation of trajectories of a dynamical system in the presence of certain "small" 

perturbations: if its trajectories are kept topologically invariant after being perturbed, the 

system is called "structurally stable". 

In our discussion, a dynamical system is open, nonlinear and at a non- 
equilibrium state. It is supposed that the system can be described by an autonomous 
equation with a parameter vector, as in the form given in section 4.3, and here 

environmental impact is represented in a special fonn as the change of the parameter. 
The dynamical behaviour of a system is decid ed by the complex interrelations between 

the components, Le the complex nonlinear inner dynamics of the system. As having 
been demonstrated, the long run behaviour of such a dynamical system is decided and 
described by attractors, repellors, and separatrices. To specify the system's state, we 
need also to specify the system's initial state. 

An open system is affected by its environment. Systems evolve only to survive 
in a changing environment . Therefore, the state of an open dynamical system is no 
longer independent of the parameter g. Hence we can have the following notions and 
definitions. 

Denote 
Nl': the number of the attractors corresponding to the parameter [1; 
TA: a set describing the type of these attractors, Le, point attractor, periodic 

attractor, quasiperiodic attractor, and chaotic attractor, like PI = (point attractor, 

periodic attractor). 
P9: the set of the separatrices describing the relative position of these attractors. 
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The relative position of the attractors describes how these attractors are 
distributed in the phase space. Between basins of any two attractors lies separatrices. 
The actual position of each individual attractor is not of crucial importance. 

A triplet fI9 =( NII ýV . 
Pl' ) is obtained and will be used to describe the 

qualitative properties of the system, like structural stability, bifurcation and evolution. 

The long term behaviour of a dynamical system is completely decided by its 

limit sets, and among them, attractors and separatrices alone prescribe the state of the 

system. The triplet Q9 includes all the attractors, and implicitly specifies the positions 

of separatrices and hence provides us with all the information about the possible states 

of the system which can be realized once the initial conditions are specified. The set of 

repellors has the Lebesgue measurement 0, and hence is negligible in considering the 

state of the system. 

The seParatrices cannot be ignored in specifying and describing the system's 
behaviour. As having been argued before, the state of a system is described by the 

attractor it settles down to. If a system has more than one attractor, the system can be 

observed in any of them. To specify which state the system will be at, we need to know 

not only the different choices of attractors, but also the initial conditions where the 

system has started. If the system starts from points in different basins of attraction, it 

will move to different attractors and hence can be observed at different macroscopic 
states. The separatrices separate different basins of attraction and hence play an 
important role in deciding the system's state. 

The dynamics decides the set of attractors, that is to say it decides all possible 
states potentially possessed by a system. The initial conditions, i. e., where the system 
starts, help the system to realize one of these possibilities. For any system, it can only 
be observed at one stable state at one time (for the transient is very short compared with 
the life time of the system, we do not take into account the transient state of a system), 
this actualization makes the system to make a choice among its various potential states. 

Here, the history and chance are intertwined. When the environment is 

relatively stable, the system must be at an attractor. Like in the phase portrait, moving 
along the trajectory by reversing the time, theoratically, the history of the system will 
become known to us: the system must have started from certain initial point in an 
attracting basin and was then attracted to the attractor in that basin through a dynarnical 

process. When the environment changes, possible states of tile system might change 
accordingly, and therefore attractors, as well as the basins of attraction, might be 

changed (as will be discussed soon). The state, i. e., the attractor, before this change, 
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becomes the starting point in the new phase portrait which is partitioned to different 

basins of attraction by the new separatrices. For the upcoming bifurcation event, the 

system happens to be at a certain position at certain time because it was at that point as a 

result of previous history. From that point, the system will move to a state described by 

a new attractor, which may be at a different position in the previous phase portrait that 

now has been changed. When the system's microstate at the critical point is analysed, it 

will show that chance has entered the course through the microscopic fluctuations: the 

microscopic fluctuations have been existing all the time persistently testing the stability 

of the system. Only at the critical point, the system undergoes a radical change in its 

dynamics, specified by the change of the parameter, some random factors come to play 

a crucial role. This will be discussed in the following sections. 

4.4.3 Structural stability and bifurcation 

Definition 4.4.1 (structural stability) For a system S, its possible state is 
decided by f1g. In a changing environment, if 929 is kept unchanged for all the g in the 

neighbourhood of go, the system is called structurally stable at [to, otherwise the 

system loses its structural stability at that point. 

It is apparent from the definition that a system is structurally stable means that 

all the types, numbers and relative position of the attractors potentially possessed by the 

system have not been changed. 

Definition 4.4.2 (bifurcation) For a system S, if its structural stability is 
lost at the point go, it is called that a bifurcation occurs at that point. 

Definition 4.4.3 (evolution) For a system S, if it loses its structural 
stability in a changing environment, this process of change is calIed the evolution of the 

system. That is to say, during the evolution of system S, a bifurcation must have 
happened at certain critical point po 

DefMition 4.4.4. (increase of intra-level complexity) For the various 

attractors, a partial order < is defined as 

point attractor < periodic attractor < quasiperiodic attractor < chaotic attractor. 

This partial order defines a direction for the increase of the intra-level complexity of 
evolving systems. 
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Evolutionary events only happen when the system loses its structural stability, 
Le only when the bifurcation occurs. This is caused by the change of the environment. 
Systems evolution is defined in this way so that it can be distinguished from the 

process when the system changes its state from an attractor to another by changing its 
initial state from one basin of attra6tion to another. The change of initial condition can 
only happen when there is an outside designer deliberately doing that. We will 
concentrate on the process during which a system evolves under the influence of the 

change of environment. There is not any explicitly identifiable outside "organizers" 

responsible for this evolutionary change: systems evolution is essentially a self- 
organization process. 

The essence of systems evolution is the qualitative change of systems structure, 
i. e., the loss of structural stability. When a system is structurally stable, the 

organization of the system, which is the necessary relations defining the system as an 

organized whole as such, is unchanged. Organization reflects the qualitative aspects of 

a system's structure while the structure of a system is the actual relations between 

components: structure is the "snap shot" of a system's organization at certain time. The 

definition of structure and organization is very important in dealing with living systems, 
like autopoietic systems [Varela, 1986]. 

It can be seen from these definitions that evolution does not necessarily mean 
the increase of complexity, even intra-level complexity. The sole motivation, if there 

ever is, of systems evolution, is for systems to survive as systems, as having been 

mentioned repeatedly. Systems may evolve w ithin certain levels in the direction along 

which the intra-level complexity increases, but it is equally true that it may evolve to 
decrease the intra-level complexity, say from a quasiperiodic attractor to a periodic 

attractor. This agrees with Darwin's opinion that biological evolution often produced 
"degeneration" in design -- anaton-iical simplification in parasites, for example [Gould, 

1975]. The following section mentions several routes through which systems may 

evolve, but systems evolution may equally happen in the opposite direction. 

4.4.4 Bifurcation patterns and the route of becoming 

The process of systems evolution may be manifested in different forms for 
different systems, but there are some patterns underlying those various systems which 

are content-free. Be it a physical system, or a biological system or a neural system, the 

self-organizing behaviour can be described by several prototypes which are 
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independent of the specific material characteristics of those systems. In our model, this 
is termed and described as various bifurcation patterns to be specified below. 

As stressed before, the standard dynamical equation for the evolving systems in 
discussion is an autonomous equation with parameter: 

dx 
T- = f(x, g) t (4.4.1) 

(In practice, the original equation is usually more complicated than this. However, it 

can be deduced, in principle, to this form either by mathematical manipulation or 
simplification, or by both. Any further development of mathematical techniques will 
certainly improve our ability to deal with these problems of manipulation and 
simplification). 

Based on this model, the following bifurcation patterns can be identified which 
are believed to describe the evolutionary processes in various systems, no matter what 
they are and at which spatial-temporal scale these processes are observed. 

a) a point attractor to point attractors 

If a system is at a steady state, i. e. at a dynamical equilibrium state, its 
behaviour is described by a point attractor, or we can simply say that the system is at an 

point attractor. This point attractor might be one of several attractors possessed by the 

system at that stage. When the environment changes, i. e., the parameter in the 
dynamical model changes, the system can be driven to another attractor. The old 

attractor which the system was previously at might split to two attractors and one of 
them will attract the system to settle down to. This process is called a bifurcation from 

one point attractor to two point attractors. 

In the phase portrait, this process can be illustrated as follows (Figure 4.4.7): 
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Figure 4.4.7 Bifurcation pattern: from a point attractor to point attractors 

As discussed in Appendix 1, this kind of bifurcation is all what the elementary 
catastrophe theory is about [Thom, 1974; Zeeman, 1982]. The well known example is 

a gradient dynamical system described by the potential equation: 
V(X) = X4+ aX2 + bx (4.4.2) 

When A= 8a3+ 27 b2 > 0, the system has only one point attractor; 
When A= 8a3+ 27 b2 < 0, the system has two point attractors representing 

two states with different potential levels. 
When A changes from positive to negative, a bifurcation occurs through which 

one point attractor splits to two. This elementary catastrophe model can be applied to 
the analysis of the evolutionary behaviour of a wide range of systems. In a recent 
paper, Zeeman has applied it to investigate the dynamics of biological evolution 
[Zeeman, 1986]. 

Another form of the dynamical equation which is more general than the 

potential fonn, is: 
dx 
Tt 

= X3 -[tX (4.4.3) 

When the parameter [t changes from negative to positive, a similar bifurcation can be 

observed and it is called a pitchfork bifurcation. 
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cl) periodic attractor to periodic attractors 

Like the bifurcation pattern of a point attractor to point attractors, a periodic 
attractor can bifurcate to two periodic attractors when a single real eigenvalue of the 
Jacobian matrix changes from 0 to positive [Guckenheimer et. al, 1983, Haken 1983b]. 
This is illustrated as (figure 4.4.9): 
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Figure 4.4.9 Bifurcation pattern: from a periodic attractor to periodic attractors 

The new periodic attractors describe a new level of state which is different from 

the previous one: either it is at a new energy level, or at a level of different entropy or in 

other word at a new level of order. The system, again, has to choose between the two 

newly emerged periodic attractors and this could be decided by the combination of 
history, i. e., its previous position in the phase portrait, and chance, represented by the 

microscopic fluctuations within the system. 

c2) a lower dimensional periodic attractor to a higher dimensional 

attractor 

This happens when one or more variables change from constant to time varying 
as the parameter changes. An old periodic attractor with lower dimension hence gives 
birth to a periodic attractor with higher dimension. In this case the system is at a state 
more complicated than the previous one (figure 4.4.10). 
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Figure 4.4.10 Bifurcation pattern: from a lower dimensional periodic 
attractor to a higher dimensional periodic attractor 

c3) a periodic attractor to a periodic attractor with doubled period 

A periodic attractor with period T can change to a new periodic attractor with 

period 2T: the system will take as long as twice the time to return to the same state. 
This is what we call a period doubling bifurcation (figure 4.4.11). 
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Figure 4.4.11 Bifurcation pattern: period-doubling 

The eigenvalues analysis cannot tell us much about this periodic doubling 
bifurcation. Although it is a much talked topic in nonlinear dynamics, little is yet known 

to us from rigourous mathematical analysis. Periodic doubling bifurcation was first 
brought to our attention through the study of one dimensional iteration map, which can 
generate a two dimensional flow through suspension, and it is closely connected to the 

emergence of chaotic attractor [ Feigenbaum, 1983; Eckmann, 1981]. In later 
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discussion about other bifurcations we shall discuss this very important process 
through which the chaotic attractor can arise. 

d) a periodic attractor to a quasiperiodic attractor; 

When several of the total variables oscillate along one direction with certain 
period, others may change periodically along other directions. These oscillations are 

called the subharmonic oscillations. A periodic attractor can be a combination of 
different subharmonic oscillation on condition that all ratios of these different oscillation 

are rational numbers. When the parameter changes, some of these rational ratios may 
change to a irrational number and the dynamical behaviour of the system hence may 
change dramatically: a period attractor is replaced by a quasiperiodic attractor. This is 

another bifurcation pattern often encountered in electronic circuits and other fields 
(figure 4.4.12). 

gi P. - go op- P2 

Figure 4.4.12 Bifurcation pattern: from a periodic attractor to a quasi- 
pedodic attractor 

e) a periodic attractor to a chaotic attractor; 

Compared with the above mentioned bifurcation patterns, the bifurcation 

resulting in the emergence of a chaotic attractor is a complex process rather than a 
single step event. It is usually composed of consecutive bifurcation events and this 
leads to a chaotic attractor. One of these complex ponsecutive bifurcations is the 

periodic-doubling process through which a periodic attractor will give birth to a chaotic 
attractor (figure 4.4.13). 
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Figure 4.4.13 Bifurcation pattern: period-doubling leading to a chaotic attractor 

The study of period-doubling processes is responsible for kindling the early 
research for the universality in studying chaos. The pioneering work in this field is 
Feigenbaum's discovery of a universal constant associated with the onset of chaos 
through periodic doubling in one dimensional iteration map, or one dimensional 
discrete dynamical system, and this constant is known as the Feigenbaum constant. It is 
defined as: 

5=lim 8n= Jim 
lln+l-lln 

- 4.6692016 
n--)- n-4- gn+2-gn 

where gn is the critical value of the parameter at which the period of a system's periodic 
attractor is doubled the nth time [Feigenbaum, 1983]. This constant 8 describes how 
fast the bifurcation happens. The accumulating point " is the critical point at which a 

periodic attractor appears. It is a universal constant and it is independent of the 
particulars of any dynamical systems: no matter what the system is, if it has the 
qualitative properties that enables it to undergo the process of period-doubling, the 
quantitative properties of this bifurcation process is determined, by this constant. 

It is believed that this is a universal constant governing any bifurcation process 
leading to chaos. Experimental studies have supported this result and some theoretical 

work has also been done to prove that claim [Lanford, 1982). As the study of chaotic 
attractors still lacks general laws and rigourous theoretical results, this constant, 

although first imported from experimental study, is one of a few known properties 
about chaos. 

f) a quasiperiodic attractor to a chaotic attractor; 

Period doubling bifurcation is one of the often encountered and well known 
bifurcation patterns which leads to chaos. Chaos can also come into existence through 

another bifurcation event, Le bifurcation from a quasiperiodic attractor to a chaotic 

attractor (figure 4.4.14). 
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Figure 4.4.14 Bifurcation pattern: from a quasi-periodic attractor to a 
chaofic attractor 

A quasiperiodic attractor is characterised by periods of subharmonic oscillations 
known as the fundamental frequencies. When the parameter changes, the number of 
fundamental frequencies increase and the dynamical behaviour of the system becomes 

more and more complicated. In the Phase space, a toroidal orbit on a torus surface with 
lower dimension is replaced by a surface with higher dimension and this process 
continues as the parameter changes and ultimately leads to a chaotic attractor. This 
bifurcation is similar to but different from the period doubling bifurcation, and it is an 
alternative way that chaotic attractor can emerge (Eckmann et. al, 1985]. 

In fluid dynamics, these two bifurcation patterns, i. e., period-doubling and 
quasiperiodic bifurcation leading to chaotic attractor, represent two different routes 
through which the turbulence can appear. The route of period doubling leading to chaos 
was proposed by Ruelle and Taken as contrast to the route of increasing the number of 
fundamental frequencies in quasiperiodic attractor to create turbulence known as Hopf- 
Landau route [Eckmann, 198 11. 

According to our formal model, the state of a dynamical system can be 

represented by various attractors and its complex forms of behaviour are characterised 
by these complex attractors. When the environment changes, the change of state and 
behaviour of the system can be described as a process that one type of attractor is 

changed to another. This process is termed as systems evolution. The definition is 

consistent with our understanding that a system evolves to maintain itself as a system in 

a changing environment. Evolution does not always mean the increase of complexity. 
The evolution routes showed are more appropriate to describe the intra-level evolution 
than inter-level evolution, the later is often related to systems genesis. However, these 

patterns can also be employed to describe the possible evolution routes in tile inter-level 

case but those attractors are found at different levels of description. 
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4.5 Emergent attractors and evolving behaviour 

4.5.1 Emergent attractors, meta-attractors and hierarchical structure 

Systems evolution always happens at certain a space-time level and the change 
is about the state of the system at the macroscopic level. It has been widely accepted 
and, hence taken for granted, that any system is composed of some interacting 

subsystems at a lower level of spatial-temp oral scale, and at the same time the system 
itself is a composing element, or a subsystem of a "supersystem" at a higher level of 
scale. The state of the system is the result of the interactions between its subsystems, 
and at the same time it is constrained by the larger system to which it is only a 
component. Bearing in mind this point, any discussions about systems evolution must 
be at certain sp atial-temp oral scale: we talk about a system as an identifiable organized 
whole which is the element of "selection" in further evolution of a larger system. 

Viewing that a system is composed of interacting subsystems at microscopic 
level, an attractor is the global result of local interactions between subsystems. The 

properties of the attractor are not the simple summation of the properties of its 

subsystems, instead they are the characteristics of the interrelations of those 
subsystems. This explains why "the whole is more than just the sum of its parts". The 

properties of a attractor at a macroscopic level is usually known as the emergent 
property of systems. The attractor which is employed to describe the state of the system 
is hence called an "emergent attractor". 

Compared with the state of its subsystems, emergent attractors explain why a 
system has some novel, global, dynamical space-time behaviour which is inaccessible 

to, not locatable in, and not reducible to the individual or summative behaviour of the 
separate subsystems. These four different emergent attractors, i. e., point attractor, 
periodic attractor, quasiperiodic attractor and chaotic attractor, are employed to describe 

the emergent behaviour of the systems compared with its subsystems: each of them 
characterise how a group of subsystems forms an organized whole to be observed at a 
macroscopic level to interact with the environment through the matter /energy/ 
information exchange and how the organized whole subsumes the state and behaviour 

of the individual subsystems. Emergent attractors best serve to describe the duality of 
parts and whole. 

According to the supersystem -system -subsystem hierarchy, the emergent 
attractor at certain level is the result of several interacting attractors at a lower level 
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which describe the emergent behaviour of those subsystems which in turn are 
composed of sub-components at a further lower level. At the mean time, the attractor, 
representing the system as an organized whole, is interacting with some other attractors 
at the same level and this will leads to an emergent attractor which describes a 
supersystern as an organized entity at a higher level. This is a no-ending process along 
either directions (some others will argue that for the physical systems, the upper limit is 
the biggest attractor, the universe, and the lower limit is the attractor representing the 
elementary particles at the most elementary level! ). 

It is obvious that the hierarchy of systems can be described by the hierarchy of 
attractors. Each attractor at certain level describes the emergent properties of a system 
which is composed of several subattractors in a lower level. This attractor is an 
composing element for attractors at a higher level in the hierarchy. The best example of 
this hierarchical structure is the biological world which consists of physical particles, 
chemical molecules, biological molecules, biological cells, tissues, organs, biological 

entities (animals, plants), biological niches, ecological systems etc. At each level, the 
state of a system can be represented by any of the four distinct attractors. This can be 
illustrated as (figure 4.5.1): 
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T 
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sub-sub-attractor 

Figure 4.5.1 The hierarchical structure of emergent attractors 

4.5.2 Determinism and chance and the varieties of systems 

It is assumed that each complex system, along with the observed state which is 
its actual existence at certain moment and in a given environment, also has its potential 
states that determine what the given system might have become under all different 

possible conditions and what it can never become at all. All these possible states, actual 
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or potential, are specified by the attractors the system may possess. One can only 
observe an actualised materialization of the system, an actualized attractor; its other 
attractors can only be described by theory, and they can be judged only subject to its 

possible actualization or its influence on the actualized attractor. Generally, this is 

referred as the multiple-stable state$ of systems. These possible multiple-states may not 
be realized by one system through systems evolution, but other similar systems with 
similar inner dynamics at slightly different conditions may have reached other potential 
states. This explains why some systems have a particular relations with others and why 
this world is essentially pluralistic. A man-made mechanical system may have multiple- 
stable states, where "multiple-stable state" has special technical meanings: it can reach 
all of them through human manipulation, but not by self- organization. 

This dual reality of complex system is a consequence of its nonlinear inner 
dynamics. It is only nonlinear systems that can have a certain set of attractors and 
repellors. Only one such attractor at any moment of time is actually realized, the rest of 
them that are alternatives with respect to the fon-ner state and they exist only potentially. 

Following our previous discussion about the change of a system's state, i. e., 
the jump from one attractor to another, caused by the change of initial condition and by 

the change of environment, we can explain what actually happens in the process of 
systems evolution and how determinism and chance come to jointly determine the actual 
state of a system at certain moment. 

For a certain environment, the observed state of a system, which is open, 
nonlinear, non-equilibrium and with persisting microscopic fluctuations, is described 
by one of several potentially possible attractors which are described by Q11 and the 

phase portrait. When the environment changes, the system is affected and its state 

might be changed quantitatively, i. e. the actual position of the attractor in the space 

might be shifted sightly but the phase portrait remains unchanged. In this case, the 

system has not lost its structural stability and is structurally stable. It may also be 

changeed qualitatively: the change of environment causes the change of the phase 
portrait so that the system has lost its structural stability and has had to jump from the 

old attractor to a new attractor. Again, this new attractor is one of the several potential 

attractors possessed by the system under the constraint of the new environment. 
Deterministic factors, like the system's inner dynamics which reflects the interactions of 
the system's components, and the coupling between the system and its environment, 
decide the emergence of all possible attractors and their distributions. At the critical 

point when the system loses its structural stability, microscopic fluctuations of the 

systems components become so strong, due to the nonlinearity manifested as positive 
feedback, that they lead to the, destruction of the old attractor and hence the 
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organization of the system. Those potentially possible attractors represent all the 

possible new states which might be reached by the system and they correspond to all 
the possible results when those microscopic fluctuations are amplified to dominate the 

system's behaviour. For a system at a stable state, all these fluctuations are constrained 
by the system's organization as-a whole and the macroscopic state reflects the 

compromise of the interactions between the system's components. In a stable state, the 
impact of these microscopic fluctuations has been averaged out. At this critical point, 
the average description is no longer valid and the fluctuations are amplified to dominate 

the system's behaviour. Allen has argued that the biological evolution is not an 

optimization process, but a process of "learning through ignorance" by which the 
fluctuations are subject to the selection of the environment which will decide, together 

the system's inner dynamics, which microscopic fluctuation wiU be chosen to prescribe 
the emerging new attractor [Allen, 1989]. 

At the critical point, minor influences on the system are sufficient to initiate a 
leap from an initial attractor to a new attractor which is one of those possible attractors 
decided by the inner dynamics, microscopic fluctuations, and environment impact as 

we have argued before. The new attractor represents a more differentiated order and 

organization on the occasions when the system evolves to survive in a more 

complicated environment. In this circumstances, it is absolutely impossible to predict at 
the bifurcation point to which attractor the system will settle down and in which 
direction the system's development will continue. In this situation, the complex 
behaviour of the system that functions under the conditions of time irreversibility, 

become non-predeterminitive -- there are not much rules to make it possible to 
determine precisely or with some degree of probability the system's next state by its 

inner state and the numerous external influences. 

In our model, all possible attractors and their distributions are predictable, but 

they are deprived of some of the details about the system's actual behaviour: attractors 
describe the rough patterns of the system. As for example, in the Benard Cell 

experiment, we can predict from die dynamical model that the system will change from 

a point attractor to an periodic attractor when the parameter changes to certain critical 
point. That implies that the system will change from a homogeneous state, at which the 
heat is transferred from the. heated bottom to the cooled top through conduction, to the 
highly organized patterns, the hexagonal patterns, at which the heat being transferred 
by convection. However we can never specify in which direction the liquid will be 

rolling: towards inside or outside. 

To understand the details of the evolutionary process, one needs to gather as 
much information about the particulars of that system as possible, but the above 
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outlined qualitative model can always help us to know how the system will possibly 
change when the environment changes. 

In the following bifurcation diagram (figure 4.5.2), the system is governed by 
deterministic laws between two bifurcation points. At the bifurcation points, the event 
is decided by pure chance, although we may have known all the possible states. 

eý 7olutionary stage 
Stable stage: govemed 
by detenninisti, 

%. 0. ". 000 

Event: emergence 
loss of structural stability 
decided by random factors 

Parameter axis 
Figure 4.5.2 Big Picture of bifurcation cascade 

For a particular system, its observed state is only the actualization of one of 
many potential attractors the system possesses at that stage. Due to the irreversibility of 
time, it has not got the chance to revisit all those possible attractors. However, there 

might be many other systems which have similar structures and organizations and were 
previously at similar environment when the environment started to change. Because the 
unpredictable, and uncontrolable factor of chances have played crucial roles in the 
evolution of these systems, some of them have to settle down to one of the attractors, 
some others to another. That makes that similar systems evolve to different systems 
after the bifurcation. For any particular system, its all possible new states 
arepredetennined, but for all those systems in the similar situation, it looks as though 
"God does play dices". Various systems bifurcate at the same point to different 

attractors and they will move along different bifurcation branches and arrive at different 
bifurcation points the next time. Those systems at different branches in the. bifurcation 
have different potential attractors at different bifurcation points, but for systems which 
move along the same bifurcation branch, they face the same possibilities for their future 

state at the same time: again they will bifurcate at that point under the influences of 
chances: God is playing dice, again! 

The above discussion of systems evolution, especially that about conditions, 
processes, the relation between chance and necessity etc., is suitable for any evolving 
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systems at any evolution stage. However, the routes of evolution, defined in parallel 
with the bifurcation patterns found in DST, are more appropriate for describing the 
intra-level evolution than inter-level evolution. During intra-level evolution, the number 
of components of the system is the same and the inner dynamics of the system can be 
described by the same family of 

' 
dynamical equations. Systems evolution can be 

adequately described by the bifurcation analysis as described in DST. In the situation of 
inter-level evolution, new components are added to or taken from the system. The 
dynamical equations which described the previous behaviour of that system no longer 
hold and new equations must be found. This inter-level evolution is characterised by 

systems genesis, the genesis of system at a new space-time level. Therefore, the 

evolution continuum of systems can be illustrated by the following diagram (Figure 
4.5.3). 
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Figure 4.5.3 The global picture of systems evolution 
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Everyth ing Flows and Nothing Stays. Herarclitus 
------------------------------------------------------------- 

Chapter 5 Evolving Systems 1: 
Old Examples Revisited 

5.1 Introduction 

The universe, as we see it, is organized in a hierarchical way, or to be more 
accurate, it can be perceived as being organized in a hierarchical way. At the 
fundamental level, there are various "fundamental" particles like protons, neutrons, 

electrons etc.. (there are still arguments about whether they are the most fundamental 

ones or they are formed by some even smaller particles). From these particles, atoms 

are formed. Atoms are the basic units which are kept invariant during chemical 

reactions. Molecules are composed of atoms, either in the form of chemical compounds 
(different types of atoms held together by chemical forces) or formed by the same type 

of atoms, like oxygen molecules (02). The aggregation of some molecules, called 

organic molecules, mainly composed of C, N, H and 0, can form a special type of 

molecules called organic molecules. Biological macromolecules are formed by organic 

molecules and they can be further "assembled" to form further complicated biological 

entities which are usually expressed the forrn of life. These biological entities, or we 

can call them biological systems, range from the relatively simple forms, like amoebae 

and some other forms of bacterium, to the most complicated forms like our human 

beings. A group of many biological systems, like animals, together with the 

environment can form a larger system: a biological niche composed of some animals, 

plants, and geographic territories; a sociological community consisting a group of 

people, social-political structure, and man-made products like houses, power stations. 
Such a system in a very large scale are called either a ecological systern, or a 

sociological systems. The planet earth we are residing on is such a big ecological 

system, a "global village". Look beyond our earth, we can distinguish the solar system 

composed of nine big planets and among them earth is one with moderate size. Further 

to that, we have identified the galaxy, super-galaxy, and finally, the universe as a grand 

whole: it is composed of every physical entities which we, human beings, think or feel 

that they are existing as objective entities. 

We are living in such a hierarchically organized world and to understand it, of 

which we are only a small but an important part, is one of our dreams. The ancient 
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eastern mysticism regarded the universe as a dynamic whole: there is no past and 
future, no human and non-human, no material and spirit and there is only the eternal 
dynamic unit. This eternal whole is called Tao by Taoism, or similar names in Zen and 
Buddhism. The ancient Greeks shared the same attitude towards the universe. There is 

a famous saying by Herarclitus, an ancient Greek contemporary of Lao Tzu in China, 

that says "Everything flows and nothing stays". It implies that, for a long time, we 
human beings have realized that we are living in a world that everything changes with 
the passage of time. To view how the world changes differs for different people at 
different times. Typically, the ancient eastern mystic thought that the world was 
changing in a cyclic fashion: the same event always comes back over and over again 
while the eternal whole is maintained. Modern science, originated in the West only 
three centuries ago, can help us to look at this problem from a "scientific" point of 
view. Two voices echo two radically different view deduced. from this scientific 
rationale. Biologists, especially evolutionary biologists, have showed how the 
biological species have changed from some primitive forms to the present complex 
ones. There is a progressive point of view implied in that theory. On the other hand, 

thermodynamics has claimed that the universe is moving to its doomed destiny: thermal 
death with the entropy at its maximum. Both claims, the progressive changes and the 
thermodynamics' pessimistic point of view, have been supported by solid empirical 
evidences and scientific logics and it seems that both of them are right in general. How 

can these two theories be conciliated, which are obviously contradicting to each other, 
to explain the realities that we as human beings can feel and face everyday? 

In the first three chapters, a brief introduction has been given to current 
scientific research devoted to the explaining of the changing world. It has been argued 
throughout that the study of systems evolution can helps us to pursue this goal. A 

recognized entity is described as a system and its behaviour can be analysed by looking 
into how its components are held together through interactions among them to form a 
whole. A conceptual framework has been outlined to describe the conditions and the 

general course of such evolution process. Chapter 4 has put forward a formal model of 
evolving systems based on mathernatical dynamical systems theory. The basic ideas is 

that an open, nonlinear, non-equilibrium system with microscopic fluctuations can 
change its structure and behaviour when its environment changes. The state of a 
dynamical system can be described by one of the four types of fundamental attractors 
and the change of a system is hence described by the process that the system jumps 

abruptly from one attractor to another triggered by the environmental change. Such 

evolution processes happen at all levels in the hierarchical structure of the universe. An 

attractor at certain level is an emergent attractor in the sense that it is the result of the 
interactions between sub-attractors at one level below in this hierarchy. It has been 

mentioned in previous chapters that evolutionary processes, in terms of systems 
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evolution, have been identified in various systems at different levels, ranging from 

physical systems like a hydrodynamic systems, through biological systems, like a 
Hypercycle, to the socio-economic systems. In this chapter these systems will be 

analysed according to the conceptual framework and the formal model so far 

developed. 

Some well known examples in hydrodynamic systems, chemical systems, 
biological systems, ecological systems, sociological systems and cellular automata will 
be used to show that the dynamical behaviour of these systems can be described in a 
unified form and analysed by using the fon-nal model based on dynamical systems 
theory. Some results are quoted directly from those particular fields and are just re- 
interprated here by using the terminologies, conceptual framework and formal model 
developed in this study. In the next chapter about neural networks, a neural network, 
natural or artificial, is treated as an adaptive and evolving system. Some novel results in 

studying a simple cellular neural network (CNN) and the coupled Wilson-Cowan nets 
are reported and implications for the study of neural networks in general are explored. 
Further studies are suggested. 

The following sections will be arranged in this way: at first, a brief description 
is given to the system in focus as it is usually described, the characteristics of the 

system and its environment will be analysed: openness, non-equilibrium state, 

nonlinear relations between systems' components, microscopic fluctuations within the 

system, the interaction between systems and their environment and the possible 
changes of the environment. Followed by such descriptions, the dynamical behaviour 

of systems are described by the formal model developed in chapter 4. Such formal 

descriptions will be specified according to the particular inner dynamics of particular 
systems. Based on the detailed descriptions of systems' inner dynamics, results in 

those particular fields are quoted and theorems and techniques in nonlinear dynamics 

analysis are employed to describe the state of the systems at different evolving stages. 
The big picture of the evolving cascade of the systems will be drawn, if appreciate, to 

show the global behaviour of systems under different conditions. 

5.2 Evolving Physical systems 

Discoveries that many very simple physical systems can exhibit amazingly 

complex spatial and/or temporal behaviour have been the driving force and the focus of 

attentions of the currently blooming study of the science of complexity [Stein, 1989; 

1991; Jen, 1990]. These systems are usually open, nonlinear, non-equilibrium and 
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situated in a changing environment and their dynamical behaviour can be discussed 

within the framework of systems evolution. Some systems, like a laser system and 
some other electronic devices, are set up purposefully by human beings, but our 
interest here is not the devices themselves, but the behaviour of the systems. For such 
man-made systems, mainly mechanical or electric/ electronic devices, the evolution of 
temporal behaviour is of interest to us. For other physical systems, like Benard 
hydrodynamic system, the evolving behaviour involves both spatial and temporal 

aspects. Mathematical dynamical systems theory (DST) based on flows and ordinary 
differential equations (ODE) is more appreciate in analysing the temporal behaviour, but 

the spatio-temporal behaviour together can still be discussed within the scheme of 
systems evolution. 

Among various evolving physical systems, two examples are chosen for 

analysis from the systems evolution point view. One is the often-quoted, much studied 
but still not yet fully understood Rayleigh-Benard hydrodynamic system [Haken, 

1983a]. The other is a laser system. 

5.2.1 Benard Cells 

The set-up of Rayleigh-Benard convection experiment is very simple: a thin 
(several millimetre thick) layer of viscous liquid is placed in a flatted pan ( more than 
10 centimetres wide) and the upper side and lower side are contacted with cooler and 
hotter source respectively. When the system is heated from blow while the above is 

kept exploded to cooler source, the dynamical behaviour of the system will change as 
the temperature varies and a variety of spatio-temporal behaviour can be observed 
[Haken 1983a; Berge et. al, 1984]. The system can be illustrated as follows (figure 
5.2.1): 

output 

coolting homogeneously 

heating homogeneously 

input 

Figure 5.2.1 Benard cells experiment 

Openness: Energy is imported and exported thiough heating and cooling; 
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Non-equilibrium: The system is apparently far from thermodynamic equilibrium 
due to the temperature gradient within the system and energy exchange caused by the 
gradient; 

Nonlinearity: The interaction between the liquid molecules is governed by 

complex hydrodynamic rules and this has not been fully revealed. 
Fluctuations: Liquid molecules oscillate all the time and there are also 

environmental noise like the inhomogeneous heating, the inhomogeneity of the liquid 

and the oscillation of the experimental devices. 
Environment: Although everything, except the layer of liquid itself, can be 

counted as the environment of the system, the direct affect of the environment comes 
from the heating and cooling source. The change of environment is represented as the 
change of the temperature gradient imposed on the system. 

According to the very complex mechanism in fluid dynamics, the inner 
dynamics of this system can be described as: 

aui aui 
= 

jLP 
+ I)V2Ui Tt + ujý7xj gcAT5t3 -P axi 

DT aT 
ICV2 T Ft + ujý7xj = 

aui 

axi 

Where: 

xi: ith spatial coordinate; uj: ith velocity field component; g: gravitational constant; 

F-: coefficient of thermal expansion; AT/H: imposed temperature gradient; p: fluid density; 

T: fluid temperature field; P: fluid pressure field; v: viscosity; 

K: coefficient of thermal conduction; t: time. 

The dynamical behaviour of the system is classified as follows: 

(5.2.1) 

(1) At low temperature level, heat is transported by conduction. 
Macroscopically the system is in an homogeneous state; 

(2) When the temperature gradient exceeds certain critical point, orderly 
roll patterns appear (the well known Rayleigh-Benard cells) and heat 
is transported by convection; 
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(3) Further increasing the temperature gradient, the fluid motion becomes 

chaotic [Gilmore, 1981; Haken 1983a, Berge et. al, 1984]. 

The transformation from (1) to (2) is a genesis phenomenon: heterogeneous 

structure emerge by association of formerly unconnected molecules, or order out of 
chaos, as successfully argued by Swenson [Swenson, 1989a]. The appearance of the 
chaotic motion pattern from ordered cells is also a emergence (order out of order). 
Despite the physical laws underlying this process, we can look into the structural 
aspects by using the programme outlined above. According to this perspective, the 

evolving behaviour of this system can be described as intra-level evolution: the number 
of components is unchanged (nothing added and nothing subtracted). The system 
merely change its organization, i. e., how molecules are connected, to meet the 

constraints imposed by the changing environment. 

The dynamical equation derived directly from fluid dynamics is a group of 
partial differential equations. It is more complex than the typical systems studied in 
dynamical systems theory (usually about ordinary differential equations). However, 

under suitable physical assumptions and approximations (which include scaling, the 
introduction of dimensionless variables, imposing boundary conditions) and further 

mathematical process of algebraic manipulations and truncations, the equations are 
simplified to the well known Lorenz equation with XI, X29 X3 representing some 
collective variables and a, r, b parameters reflecting the condition of the experiment: 

d 
jt'Xl a (XI - X2) 

d 
jt-X2 Xl ( X3 -r) - X2 

d 
jt'X3 XI X2- bX3 

(5.2.2) 

(It is undoubtedly an over simplified version. However, it is a version that can possibly 
be handled by DST. For detailed discussion of the process of simplification, see 
[Gilmore, 198 1, pp562-565; Berge et. al, 1984, Appendix D]. It has been proved that 
this simplified model can not faithfully describe all the dynamical behaviour of the 
hydrodynamic system, but it can serve to describe the essentially qualitative behaviour 

of the system and, most importantly, it is analytically as well as numerically easy to 
handle. The reason we still use this simplified model here is that we are more interested 
in the qualitative than the quantitative behaviour and the Lorenz model can reflect these 
qualitative changes of the system's structure and behaviour. ). 
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Using the proposed study scheme, the characteristics of the system are defined 
by the attractors of the system. The system possesses point attractors, periodic 
attractors and a chaotic attractor at different values of parameters. This reflects the 
different dynamical behaviour exhibited by the system at different experimental 
conditions, viz., steady state at low temperature gradient, honeycombs at moderate 
temperature gradient, and chaotic motion at high temperature gradient. Point attractor, 

periodic attractor, and chaotic attractor are the rough patterns which correspond to the 

qualitatively different behaviour in categorise (1), (2), (3) respectively. Emergence is 

observed when the system loses its structural stability and bifurcation occurs (figure 
5.2.2). 

periodic attractor 
One Point attractor 

2 point attractors 
with long period 

+1 chaotic attractor 

strange attractor 

strange attractor 
or 1 periodic attractor 

2 Point attractors periodic attractor 

C1 C2 Ca Cb CP Cq Cy 
OV 

parameter r 

homogeneous turbulence 
state 

convection rolls 
and ordered cells 

*: The map between different attractors and different state of (lie systent is not acurate when only 
one papanietcr is discussed (for both the variables and parameters are collective variables in the 
simplified model. ) 

Figure 5.2.2 The bifurcation diagram for Benard. hydrodynamic system 
(After Berge et. al, 1984). 
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5.2.2 Laser systems 

Laser systems have long been used as prototypes of self-organizing systems in 
Synergetics by Haken [ Haken, 1983a, 1983b]. 'Me coherent emission is actually the 
result of the cooperative effects of a huge amount of laser active atoms and it is an 
emergent behaviour at the macroscopic level. 

The ordinary set-up of a laser system consists of a set of atoms embedded in a 

solid state matrix with mirrors at the two ends. Energy can be pumped into the system 
and atoms are animated to emit light like a ordinary lamp. When the energy input 

exceeds a certain threshold, coherent laser can be observed as the output of the system: 
the laser system is in a new, highly ordered state oat the macroscopic level. According 

to our terminology, the state of the system is hence characterised by an emergent 
attractor. The coherent emission can be stable, periodic, or even chaotic under different 

environments. The system is at non-equilibrium state: atoms are excited to stay in a 
state at which they emit light. That means the system is at a energy level higher than the 
thermal equilibrium state at which the Boltzmann distribution function applies. 

The system is open because energy is pumped in and light is en-dtted. 
The system is nonlinear because the emission of light is governed by some 

nonlinear law (Maxwell equations) and there is feedback light and energy from the 
mhTors. 

Fluctuations stem from both the free oscillations of the field in the cavity and die 
6scillation of the reflecting mirrors. 

To understand the behaviour of the laser system, we have to find its inner 
dynamics, i. e., how the system's components interact to each other. This dynamics has 
been revealed by the Maxwell equations and Schrodinger equations [Haken 1983a]. In 

the simplest case, when Maxwell equations and Schrodinger equations are coupled and 
only the first mode which goes unstable is preserved, we have the following fonn: 
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dE 
= -kE +gP dt 

dP 
= -, yLP + gE A (5.2.3) 

dt 
dA 

=- y// (A - AO) - 4gPE- 
dt 

where 
E: the mode amplitude; 

P: a collective variable describing the aton-dc polarization; 
A: a collective variable describing the population inversion; 
k, yy 

. L, // : the loss rates for field, polarization and population respectively; 
g: a coupling constant; 
Ao : population inversion according pump mechanism. 

Such a laser system can exhibit different dynamical behaviour under different 

experiment conditions, i. e. in different environment. Roughly, the following 

classification can be obtained [see Arecchi et. al , 1982,1987; Arecchi, 1988] 

(1) y-L =k >>yll 
There is only one type of attractors, i. e. point attractors, can be identified in this 

equations and that corresponds to the coherence emission in the laser system. The 
techniques employed is the adiabatic elimination procedure and this method has been 

also stressed in synergetics by Haken who has extended this idea to the general 
44slaving principle" [Haken, 1983a, b]. 

(2) y_L >> k= yll 
There are two types of attractors, i. e. point attractors and periodic attractors, can 

be identified in this equations and they correspond to the coherence emission and 
periodic emission in the laser system respectively. 

(3) yL =k=, yll 
The dynamical behaviour of this system is described by a full 3-dimensional 

equations and all sorts of attractors are feasible. Actually, it has been proved, 
experimentally, that at least three type of attractors, i. e. point attractor, periodic 
attractor and chaotic attractor, have been identified [Arecchi et. al, 1982]. The 

appearance of chaotic attractors is known in laser physics as "coherence collapse" and 
the intrinsic chaos, due to the nonlinearity of the system, is blamed for these "bad" 
behaviour of laser systems [Dente et. al, 1988]. 
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Arechhi has reported the experimental confirmation for the evolution of laser 

systems [Arecchi et. al, 1982; Arecchi, 1988]. In some cases, the environment is 

changing periodically and that leads to the complex behaviour of the system: the system 
may evolve to chaotic attractors. In the analysis, this kind of stimulus is represented by 
a periodic input (the parameter is a function of time). 

For a specific laser system, the values of coefficients and the range of the values 
of parameters can be specified so that the "big picture" of bifurcations can therefore be 

constructed. Like in the previous example and the one to be discused in the following 

section, the evolutionary behaviour of the system is made very clear: the bifurcation 
diagram will be able to indicate explicitly how the system will evolve from one state to 
another when parameters change from region to another. 

5.3 Evolving Chemical systems: Brusselator and Oregonator 

The decisive breakthrough in the study of self-organizing systems occurred in 
later 60's and early 70's in non-equilibrium thermodynamics with the theory and 
empirical confirmation of the so-called dissipative structure in chemical reaction 
systems that has revitalised the discussion of self- organization and initiated the study of 
systems evolution in general. It has brought with it a general conceptual framework and 
new ordering principles underlying these processes (see chapter 3 for detailed 
discussions). The theoretical studies include the entropical analysis of thermodynamic 
processes in near and far from equilibrium systems: in a near equilibrium system, the 
evolution of a system is governed by the minimum entropy production principle while 
the maximum entropy production principle applies to systems at a far from equilibrium 
state [Prigogine etc, 1972; Swenson, 1989a]. Empirical evidences that order can 
effierge spontaneously in far-from-equilibrium systems came from the elaborated 
chemical reaction system, the Brusselator, named after the inventors' institution. Later 

on, a similar chemical system was discovered and named in the same way as the 
Oregonator. 

Detailed report about the experimental set-up of these two chemical systems can 
be consulted with relevant references [Nicolis et. al, 1977; 1989]. The analysis of the 
evolving behaviour, spatial-temporal rather than functional, can be conducted as 
follows according to the programme outlined above (chapter 4). 

The Brusselator is a chemical system composed of reactants A and B, and 
products D and E. The reactants are constantly added in and products removed out from 
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this system and in that case the system is an open system. There are intermediate 

products, X and Y, and the whole process of the chemical reaction is auto-catalytic and 
cross-catalytic. The nonlinear interaction of these elements can be schematically 
illustrated as follows (figure 5.3.1): 

Y 

it 

(D 4j4 
outputs inputs x 

A (D 

Figure 5.3.1 The schematic illustration of the Brusselator 

The Brusselator fulfils the conditions for evolving systems: 
It is open with input A, B and output D and E, and it also changes energy with 

the environment. It is apparently at a far-from-equilibrium state with the molecular 
oscillations as microscopic fluctuations. The inner dynamics is nonlinear and it 
is manifested as the auto-catalytic and cross-catalytic loops during the reaction process. 
The nonlinear relations between different elements of the system is clearly indicated in 
the above diagram. 

As we have stated in Chapter 4, the reaction is illustrated as follows: 

A-X 
B+X Y+D 
2X +Y 3X 

X-E 

The dynamical model for this chemical reaction can be described by the 
following coupled nonlinear rate equation (with the same letters representing the 
concentrations of those chemicals): 

dX 
= A- (B+I)X + X2y dt 

dY 
=BX-X 

2y 
dt (5.3.1) 
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This is the standard fon-n for dynamical systems. 'Me mathematical analysis for 
this equation is relatively easy because of the simplicity of this equation. It is not 
difficult to find that the system possesses a point attractor within the region [A, B: 
A>O, b>O, B<I+A2). When the enyironment changes, the system can evolve to a new 
ordered structure. It has been proved that with A as a constant, when B<1+A2, the 
system will enter a state of regular oscillation through a Hopf bifurcation process 
[Hassard et. al, 1980]. It is to say that a periodic attractor may emerge when the 
sYstern passes certain critical point [Prigogine, 1980]. 

Brusselator provides an example for the emergence of ordered state in an open 
non-equilibrium system. This can be theoretically proved and experimentally 
confirmed. Further work has been done to extend this example to a non-autonomous 
cases. Tomita has studied the dynamical behaviour of the Brusselator with the 
appearance of external stimulus [Tomita, 1986]. When the system is driven by 

periodical external forces, the system can exist even more complicated dynamical 
behaviour, such as the chaos. 

It is assumed that the input reactant A is changing periodically. In the case of a 
sine function, the concentration of A is changed to A+a Shimt. Then the dynamical 

equation is: 

dX 
= X2y j- (A+asin(cot))-(B+1)X+ 

t 
dY 

= BX-X 2y 
Tt (5.3.2) 

where A and B are remained as constant and a and co are adjustable parameters. 
Numerical analysis about this equation has revealed that there exist various attractors 
for different choices of parameters: point attractors, periodic attractors, quasi-periodic 
attractors and chaotic attractors. When the environment changes, i. e., when the system 
is moving from one region to another in the a-co parameter space, the system can evolve 
from one ordered state to another. The Bifurcation diagram is illustrated as follows 
(5.3.2) [Tomita, 1986]. 
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(0 

Figure 5.3.2 Parameter Space for periodically-Driven Brusselator 

P: periodic attractors (with different periods); 

Pn: periodic attractors with periodic 21. 

Q: quasi-periodic attractors; 

C: chaotic attractors 

The different regions in the parameter space represent different environment 
conditions under which the system has different states. When the environment changes, 
i. e., when the parameters change from one region to the other the system will evolve 
from one state to the other at which its structure is compatible with the constraints 
imposed by the new environment. It is apparent that the description is purely structural 
rather than functional although we could argue that the structure changes in such a way 
that the system with the new structure is functioning more efficiently in the new 
environment. 

Similar to the Brusselator, there is another example in nonequilibrium 
thermodynamics which has been employed to demonstrate that order can spontaneously 

emerge in a nonlinear open system under suitable conditions and this chemical system 
is usually called Oregonator. In this chemical system, the reaction mechanism can be 

illustrated as similar to the Brusselator [Nicolis et. al, 1977]. 
k, 

A+Y -4 X 
k2 

X+Y 
--> 

p 

k34 

B+ X --> 2X+Z 
k. 5 

2X Q 
k6 

Z-4 fy 
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There, A and B are reactants and P and Q reactants. The rate equations which 
describe the reaction mechanism can be written as:. 

dX 
= kjAY -k2XY +k34BX -2k5X 

2 
Ti 

dY 
= -kjAY -k2XY + fk6Z 

Tt 
dZ 
T=k34BX -k6Z t (5.3.3) 

This is also of the standard form for describing a dynamical system. 
Mathematical analysis about this equations, by the aggregation of the parameters, have 

revealed that point attractors and periodic attractors exist for appreciate parameters. 
These attractors have been proved to represent the actual state of this chemical systems 
by empirical confirmations [Nicolis et. al, 1977]. Certainly, we can re-interprete these 

results by using the formal model of this study, just as we have done for the 
Brusselator. Further studies can also be carried out by introducing time-varying inputs, 

like the periodic input of one of the reactants for example. It is highly possible that we 

may discover more complicated dynamical behaviour of this chemical system, at least 

theoretically if not empirically. 

In die literatures about the study of self- organization, another important example 
of self-organizing chemical system is the Belousov-Zhabotinsky (BZ) reaction [Nicolis 

et. al, 1977; Haken, 1983a, Jantsch 1980 et. al]. Like the Brusselator and the 
Oregonator, it is a chemical systems exhibiting complex spatio-temporal patterns under 
different environment constraints, it evolves over time. If it is said that the Brusselator 
is more a theoretical elaboration of self-organizing system, and the Oregonator a 
deliberately designed experimental system, then the Belousov-Zhabotinsky reaction is 

regarded as a real discovery by chemists which has urged the scientist to seek a proper 

explanations [Coveney et. al, 1991]. The BZ reaction and many variants have been 

used as novel examples to show that ordered spatio-temproal patterns can 

spontaneously come into existence in chemical systems. Many different ways of 

explanation have been offered for these reactions. Many theoretical analysis and 

experiments have been proposed. Recent development can be find in various sources 
[Special Issue of Physica D, 1991; Skinner et. al, 1991]. We can certainly use BZ 

reaction as a genuine example for the evolving systems found in nature. The general 

conceptual framework and the formal model can be employed to describe and study the 

evolving behaviour of this system. 

Another equally important example for self-organization phenomena in chemical 
systems is the morpliogenesis process in biological systems [Turing, 1952]. Turing has 

tried to use die well-known physical laws to explain how nature has created patterns by 
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itself alone. In doing this, Turing has suggested that the morphogenic processes may be 

understood by describing the biological cells in terrns of their chemical concentrations 
which are coupled to each other through a diffusing process through the cellular 
membranes and he showed that chemicals can vary their concentrations to form spatial 
patterns if several substances with different diffusion rates react with each other. He 

modelled the simplified diffusion-reaction process with some simple dynamical 

equations and proved that there exists point attractors and periodic attractors in the 
equations and they explain the different dynamical behaviour of the system and the 
appearing of different forms [Turing, 1952]. Further mathematical analys is about 
Turing model has been offered by Smale in 1974 [Smale, 1974]. In this case, our 
formal model for evolving systems can be applied directly to describe the evolving 
process of this process although more detailed mathematical analysis about the more 
complicated model needs to be carried out before we can strive to find the full 

explanation of the morphogenic processes. It is worth pointing out that another line of 
research has also been advocated by other people like Thom whose study scheme is 

also based on mathematical dynamical systems theory. Actually, the development of the 

elementary catastrophe theory was intended for the study of biological morphogenesis 
and further development have also been reported [Thom, 1975,1986]. 

5.4 Biological systems: hypercycle and quasi-species 

The evolution of biological systems is far more complex than the evolution of 
physical systems. Compared with the relatively primitive, physically constrained 
behaviour of some systems like the Benard hydrodynamic systems, biological systems 
are especially remarkable for their capacity of self-repairing and self-maintaining to 

restore local stability, and above all, the capacity of reproduction. Some people objects 
to use of the term "self-organization" to describe biological evolution [Landauer, in 
Yates, 1988] while some like Kauffman holds a strong view to support the adequacy of 
the use of self- organization in biological systems evolution. He argues that there is a 
missed order mechanism underlying evolution and the missing element is spontaneous 
self-organization. He said that "Darwin did not know self-organization" and evolution 
is a combination of natural selection and self- organization, interacting in ways that are 
both profound and not well understood [Kauffman, 19891. Examples, although not 
based on empirical data or laboratory experiments, but mainly on mathematics and 
computers, are plenty to support this view point. Among them is the origin of life itself 

which have happened as simple molecules organizing themselves to forrn a kind of 
prin-ýtive metabolism. 

133 



One of this model of origin of life is the elementary hypercycle model proposed 
by Eigen and Schuster [Eigen et. al, 1979]. We have had a brief introduction about 
hypercycles in chapter 3 and mentioned that it is important not only for the study of the 

origin of life, --- because it has suggested how the elementary metabolism which is 

essential for life has come into existence through some basic chemical reac tions by 

using some macromolecules provided by the primordial earth, but also because that the 
theory of hypercycles has put forward some important concepts and ideas for the study 
of systems evolution in general. The mathematical treatment is very impressive for 

mathematical dynamical systems theory has been used successfully to demonstrate how 

those subsystems have to cooperate to form an organized whole --- a hypercycle --- so 
that they all can survive to serve as components within the emerged new entity. The 
formation and evolution process of these hypercycles, or autocatalytic reaction 
networks in brief, can be re-formulated and reinterpreted by the evolution paradigm as 
mentioned above. 

The following reactor for evolution experiment illustrates the conditions for the 

emergence of hypercycle networks (figure 5.4.1) [Schuster et. al, 198 8]. 
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Figure 5.4.1 The dialysis reactor for evolution experiments [fonowing 
Schuster and Sigmund, 1988]. 

The dilution flux ý is introduced in order to maintain that the sum of the 

concentrations is constant and it can be controlled by ý. 
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A simple catalysed replication and mutation network consists typically (1) some 
macroscopic molecules called templates, denoted as Ij, which are to be replicated, (2) 

catalyst denoted Ii which are templates as well; (3) substrates, materials needed for 

replication, denoted as (S) and it is assumed that their concentration do not change 
during the course of replication; (4) the product of the reactions are different species of 
autocatalytic reaction networks, denoted as Ik. 
ne, basic reaction can be illustrated as: 

QkjAji 

(A) + Ii + Ij -4 
Ik + Ii + Ij; i, j, k = 1,2, .. n 

where Qkj and Aji are called mutation rate matrix and replication rate matrix 
respectively [Eigen et. al, 1979; Boerlijst et al., 1991, Schnabl et al., 1991]. 

The reaction system satisfies the following conditions: 
Open and nonequilibrium: The reaction system is supplied with necessary 

materials: it is guarantied that the concentrations of substrates is kept constant 
throughout the reaction. Accordingly, the system is maintained at a far from equilibrium 
state through these matter/energy/information influx and reactions happening within the 
system. 

Fluctuations: The molecules are in constant motions through the oscillations 
at a more fundamental levels. Particular units within the macroscopic molecules are also 

oscillating around their averaged positions and this is the essential factor for the 

appearances of errors during the replications. By using the biological ten-ns, we can call 
this the genetic drifts. 

Nonlinearity: The reaction is autocatalytic, and cross-catalytic and hence the 

nonlinearity is manifested as these complex feedback and feedforward loops. It 

becomes more obvious when we start to look at the dynamical equations which 
describe the reaction process. 

With xi, i=l, 2, .., n representing the concentrations of Ii, the dynamics of this 

reaction can be described as: 

dxi 
= rix, + klxl-xl-l - ýxj dt 

n 
Yxi 

=C 
i=l 

ri= bi - di (4.4.1) 

where bi, di representing the constant in the self-replication process 
bi 

li -> 21i 

and decay process 
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d1 
I-4 

respectively. 

Analysis about the dynamical equations has showed that with N: ý 4, there are 
only point attractors representing t1fe steady stable state of the replication system. When 
N ý: 5, there may exist periodic attractors: the system is evolving to a regular oscillation 
state. In both the stable steady state and oscillating state, the constituents show 
cooperative behaviour because their concentrations are controlled by the dynamics of 
the system as a whole where no population variable vanish. In this way, through the 
competition and cooperations between different units, new entity manifesting as 
networks of these interacting units emerge as attractors at a higher level. These 

attractors characterise the emergence of the elementary hypercycles in the processes of 
self-reproduction in pre-biotic systems. The existence of these emergent attractors has 

provided clear evidences for the necessity of hypercycle coupling between those 
reacting units. Based on this analysis, Eigen and Schuster argued that only the catalytic 
hypercycles can fulfil the following conditions for the integration of informations that 
makes the evolution to biological systems from the pre-biotic systems possible: 

1) Selection stability of each component due to the favourable 

competition Nvith error copies; 
2) Cooperative behaviour of the components to integrate into the new 

functional unit 
3) Favourable competition of the functional units3 with other less 

efficient systems. [Eigen et. al, 19791. 

Although the evolving behaviour of the pre-biotic system can be described and 
analysed from the structural point of view, the discussion of its implication in the real 
biological terms is inevitably interpreted in the functional terms. While leaving the 
further functional discussions to biologists or biochemists, we can still continue our 

argument about the emergence of new orders through the self-organization process in 

pre-biotic systems in terms of structural analysis. 

The hypercycle model was originally proposed to demonstrate that the 
Darwinian evolution scheme (mutation + selection ---> evolution) applies even to the 

molecules level in the prebiotic and early biological evolutions. This model has been 

generalized to a model called "replicator system" which is included in a even more 

general model called "reaction-mutation system" [Schuster et. al, 1983; 1988; Schuster, 

1989]. The scheme uses the dynamical systems theory to reveal the complex dynamical 

behaviour of the systems in discussion and our formal model and conceptual 
framework can be applied adequately in the discussion. According to Schuster and 
Sigmund, the general reaction-mutation mechanism can be described as: 
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0) 
i 

A+ li + Ij -ý 
Ik + li + Ij; i, j=l, 2, .. N 

where Ik is an error copy of li under the catalysis of Ij. 
The general kinetic equation is: 

dxk 
N 

k) 
Xj Xk 

2: 

1 
ekj 

dt 
j=l CO 

NN 
k) 

Xj 
ly Ij 

xi ; k= 1,2, ..., N I 

j=l iA 

N 
jXk 

fk 

IC (5.4.2) 

with the system in a similar condition as considered in the elementary hypercycle 

model. A special case of this replication and mutation system is the replicator system 
with the meaning of "replicator system" given by Schuster etc. The complex relation 
between the constituents of such a system is described as: 

dXk 
= Xk(fk(X1, --9 XN) k=l, 2, ..., N dt CO 

= Xk k 

(5.4.3) 

where c. > 0, fk representing the interactions term for unit Ik and the ten-n f-,: IXkfk 

ensures that the set of state variables (X1, 
---, XN) with Xk >0 and xj + ... + Xk Cc, 

is invariant. 

The analysis of the dynamical behaviour of the general replication-mutation 

systems is exceedingly complex for even moderate number N (say N=20). However, 

analytic as well as numerical analysis have shown that in some relatively simple cases 
like N:! ý 10 and fk being some simple functions (constant, linear, or nonlinear with 
quadric forms etc. ), different types of attractors can be identified in the replicator 
system model. 'flie case of elemental hypercycle has been analysed by Eigen etc as we 
have mentioned above. Some analysis, mainly numerical analysis, has demonstrated 

that in the general cases, all the four types of elementary attractors can be found to exist 
in the replication-mutation systems and some recent results are particularly about the 
identification of chaotic attractors in the system [Schnable et. al, 1991]. The results 
have been surnmarised by Schuster [Schuster et. al, 1988]: 

1) For hypercycle equation, fkj= fk 8j, k-I , there is only point attractor 

for n :54, stable quasi-species can be formed. For n ý! 5, the intra- 
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level evolution is manifested as the change from point attractors to 

periodic attractors. 

2) For general equations as above, there are point attractors, periodic 
attractors, and also chaotic attractors. The routes of intra-level 

evolution of this system could be any of those studied in chapter 4, 

except those related to quasi-periodic attractors. 

However, these cases are not exclusive, further work need to be carried out so 
that a complete evolution diagram based on the partition of parameter space can be 
found. No doubt that further study to unfold the rich dynamical behaviour of the 
system will help us to understand the evolution process in pre-biotic and early 
biological systems. 

5.5 Ecological systems 

Like neural network model, ecological systems is also believed to provide an 
appropriate platform for systems thinking and systems theory [Schneider, 1988]. In 

nature, biological species interact with each other through complex energy-consumption 
chains to form a whole called biosphere on the earth. Ecology studies the relations 
between plants versus nature (absorption of sunlight, intake of water etc. ), plants 
versus plants, animal versus plants and, animal versus animals. The behaviour of an 
ecological system is decided by these interactions among the various biological species. 
The study of ecological systems by using systems ideas, methodologies and techniques 
becomes more and more important since for such a complex system, with very large 

spatial scale and time scale, we have to adopt a global thinking and to consider the 

complex relations between different parts. The idea to consider ecological systems as 
evolving systems is implied in the study of population dynamics, the co-evolution of 
different species and the evolution of ecosystems as a whole [May, 1980; Jantsch, 
1980; Stenseth, 1986]. 

The study of ecological systems has also enriched our understanding of the 
behaviour of systems in general. In the study of systems evolution, substantial 

contributions have been made by systems ecologists like Howard T Odurn and James J. 

Kay [Odum, 1989; Kay, 1989]. Odurn has studied the relation between energy 

transformation and the hierarchical structure of biological systems. Kay has proposed 

that ecosystems will organize themselves to maximize the degradation of the available 

work in incoming energy and that ecosystem will evolve and adapt to maximize the 
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potential for the ecosystem and its component systems to survive. Nature evolves 
because it abliors a (energy) gradient [Schneider, 1988; Schneider et. al, 1989]. All 

these statements or claims are consistent with our discussion about systems evolution 
and agree with the Law of Maximum entropy production [Swenson, 1989a]. 

The study of the population dynamics of an ecological system consisting of 
different species has, in recently years, employed mathematical DST to demonstrate that 
different state of the ecosystem can arise as a result of the complex ways the species 
interact with each other in a changing environment [May, 1980]. To show that our 
study scheme can be applied in the study of ecological systems, we use the example of 
a system of predator-prey and changing resources and a system with three species 
fom-ling a predator-prey-food chain. It can be shown that such a system can evolve to 
different ordered structures under different conditions. 

The relationship of predator and prey can be illustrated as following by using 
the influence diagram. of systems dynamics (figure 5.5.1): 

PD-D- 

predator (PD) 

PD-B-R 

(ý7 
Figure 5.5.1 interactions between predator and prey 

PD-D-R: death rate of predator; PY-D-R: death rate of prey; 

PD-b-R: birth rate of predator; PD-D-R: birth rate of prey; 

K-R: the kill rate of predator; 

The interaction between predator and prey can be described by the general 
Lotka-Voterra. equations with limited natural resources N (with x, y the number of 
predator and prey respectively): 
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dx 
-j = x( af(y)-RPD) t t 
Ly 

= y(N-g(x) -Dpy) dt (5.5.1) 

This system has been studied with different choice of functionsf and g (linear, 

polynomial with different orders et. al). A lot of work has been done to analyse the 

evolutionary behaviour of ecosystems described by this equations with carious special 
forms of f and g [Gardini, 1989; Hofbauer, 1981]. It has been shown that, under 
different conditions, there exist point attractors and periodic attractors in this system. 
The change from point a point attractor can be analysed by using Hopf bifurcation 

theory. If the resource is not constant but changes with time, it can be proved that, at 
least theoretically, apart from point and periodic attractors, chaotic attractors can also 
be identified. [Toro and Aracil, 1988]. 

With the case of three species forming a predator-prey-food chain, the 
interactions between the different species can be shown as: 

dx 
Tt = x(apD f(y) -DPD) 
dy 
T= y(apyg(z) -b f(y) -DpD) t 
dz 
T= z(N-aF ... d h(y) -DFood) t (5.5.2) 

The analysis of the model can be found in [Freedman and Waltman, 1985; 

Toro and Aracil, 1988]. 

To construct the bifurcation diagram reflecting the evolution of ecological 

systems, Toro and Aracil have studied two examples in detail [Toro and Aracil, 19881. 
These results can certainly be re-interpreted by using the general frarnework of systems 

evolution, as having been done in previous examples. However, these analysis is more 

meaningful for theoretical deduction and /or in numerical simulation than for 

understanding real ecological systems. To observe the evolution of such an ecological 

system is not as easy as to observe the evolution of a chemical system like the BZ 

reaction. It usually involves a time period up to many years and the data available is 

also very very scarce. Till now, the detection of chaotic attractors in ecological system 
is mainly a theoretical work to study dynamical models. However, we can still consider 
a ecological system composed of several interacting species as an open system. The 

structural change of the system can be described within the conceptual framework 

proposed. 
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5.6 Socio-economic systems: some speculations 

The idea to view social systems as evolving systems is not new and it can be 
traced back to the early debate about social Darwinism [Pines, 1987; Anderson et. al, 
1988]. Although social Darwinism has been rejected for social and moral implications, 
it is still debatable how the social systems evolve. However, to consider the social 
system as a self-organizing system was not only touched by the eastern philosophies 
thousands of years ago, as mentioned in chapter 3, it has also been discussed recently 
from the systems point of view [Jantsch, 1980,1981; Laszlo, 1989,1991]. According 
to the conceptual framework developed in this research, we can have the following 

analysis or speculations about social systems. 

Consider any group of people, say a nation, as a social system, then it is 

situated in such an environment which is the planet earth with all the creatures on it. 
The component in such a system is each individual and the relations between them 
include political, economic, social, and cultural. To consider the social behaviour and 
economic behaviour of such a system, it is open in the sense that it changes matter 
/energy / information through its social, political and economic relations with other 
nations or countries. The microscopic fluctuations are manifested as the free will, 
creativity, and socio-economic efforts of individuals. The inner dynamics is described 

as die various complex relations between individuals or groups of individuals in the the 
various aspects of economic, social, political and cultural domains ( sociologists, 
economists, and philosophers many have different views about the driving forces of the 
change of society). For the world as a total is changing, any nation as a social system is 

affected by such a changing environment. 

The state of a social system can be roughly described as attractors because the 
transient time when a nation is in a process of social transformation is short compared 
with its history. It is very difficult to specify what kind of state is respecting to what 
kind of attractor, but we can loosely differentiate various qualitatively different states. 
To say that a social system is in a stable state, or is described as an attractor, it means 
that the social, economic and political organization are stable and there is no radical 
change of the social and economic structure, although there might be economic growth, 
government change et. al. It is also assumed that the time when a nation is in war, 
either with other nations or in civil war, is short. During war time, the social order and 
economic structure are destroyed, but we tend not to define it as an "chaotic attractor" 
rather regard it as a short transient. The tendency in social systems is that the integrity 

of a society is to be maintained, not destroyed. 
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About the emergence of social order, ancient Chinese philosophers had 

perceived that it can only appear spontaneously [Fung, 1958; Yu, 1990; see also 
chapter 3]. The doctrine of Taoists' philosophy "Through non-action, everything can 
be done" can be explained as that if we let the system to change according to its own 
inner dynamics, ordered structure. can emerge automatically Unfortunately, the old 
sages in ancient China saw only a socially and economically closed system maintained 
at a lower ordered state with low economic efficiency and simple social interactions. To 

maintain a society in such a low ordered "point attractor" was the ultimate goals for 

early rulers. 

F. von Hayek has also praised the spontaneously generated social orders 
[Zeleny, 19851. He argues that social orders, like laws and social conventions, are 
neither invented by any person nor imposed by any political organization, they have 

appeared spontaneously through the passage of time. This is the explicit expression of 
the idea of self- organization in the contest of social systems. 

Current situations in many countries are examples of the evolution of open 
systems: societies evolve to new order state through the economic, political, social and 
cultural contact with outside world and the driving force is to maintain the societies as 
organized integrities in the competitive and cooperative environment. However, the 

new ordered state of any society can not be designed according to some model 
countries, but only be the result of the complex interplays between the economic 
factors, political structures, social conventions, cultural histories of nations and external 
influences. The emerging social orders are transcendental to any individuals or groups 
of individuals, but the efforts of every individual are not doomed to be neglected. We 
have witnessed the impacts of individuals in many situations of social evolution over 
the past few years. Those are examples of how positive attitude of each individual 

towards social evolution can influence the change of societal systems and the analysis 
of these examples can be supported by the analysis of systems evolution [Laszlo, 1987, 
19911.. 
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Chapter 6 Evolving systems 11: 
Neural Networks 

6.1 Introduction 

Neural networks model has been used as a model to study the function of 
human brain for a long time [See the review by Anderson, 1988,1990]. The past ten 
years has witnessed the blooming of the study of neural networks and artificial neural 
networks mainly for two purposes: as a model to understand how the human brain 

works, and as a computational system for information processing. For us here, the 
neural networks model can serve as a prototype for the discussion of evolving systems 
and our main concern is about the complex dynamical behaviour of neural networks 
rather than their capacity for information processing. 

The reason to chose neural networks as a field to apply the developed 

conceptual framework and formal model is very obvious: 

Firstly, the neural networks model implies the so-called connectionist 
philosophy as discussed in chapter 3: the behaviour of the system results from the 
connections of its components and it is emergent. What decides the emergent behaviour 
is not the properties of individual components, but how they are connected together. 
This makes it very ideal for the discussion of properties of systems in general: in 

systems science, the main concern is about emergent behaviour, interaction between 

subsystems, and the relations between properties of the system as a whole and 
properties of its components. The strength of neural networks lies on the emergent 
property of the whole -- emergent computation power in particular -- which is not 
reducible to each individual neuron [Forrest, 1990]. 

Secondly, the dynamical behaviour of a neural network, natural or artificial, can 
be described by dynamical equations. No matter whether it concerns only about the 
activation dynamics, or the weight dynamics or the mixture of both, mathematical DST 

can always be employed explicitly and state of a neural network can be analysed by 

using techniques provided by DST. 

Thirdly, neural networks are able to self-organize themselves to some stable 
states by adjusting the connections between neurons [Kolionen, 1989]. The framework 
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developed in this study about systems evolution can be employed to study the 
behaviour of neural networks. The general framework and formal model also suggest 
that neural networks can be treated as open, nonlinear systems with a parameter vector 
representing the change of environment; therefore neural networks are capable of 
evolution and they are also, in prinqiple, capable of evolving to more complicated states 
like specified by periodic attractors and chaotic attractors. 

Finally, the results of theoretical analysis can be tested against the empirical 
analysis or experimental study but here experiments are carried out on computers. 
Numerical simulations have extended some work about the neural networks, like the 

simulation of Hodgkin-Huxely model [Degn et. al, 1987]. Other results, like the 

existences of periodic attractors and chaotic attractors in neural networks, have been 

confmned by using electronic circuits [Kepler et. al, 1990]. 

It is not unnatural to regard neural networks as open and nonlinear systems 
capable of adaptation and evolution as discussed above. The dynamics of a neural 
network can be classified into four different types: 

(1) the activation dynamics: the state of the neurons can be- described by 

state variables while weights and inputs are regarded as parameters; 
(2) weight dynamics: the strength of connection changes while the 

topology of the network remains the same; 
(3) the mix dynamics of both (1) and (2): the weights are adapted while 

running the activation dynan-dcs; 
(4) the dynarnics of the network topology: the way which neurons are 

connected is changing over time. 

All the four cases deal with the intra-level evolution of neural networks because 

the number of elements is not changed, and the dynamical behaviour of the system can 
be described by the same family of dynamical equations (probably except case 4). The 

routes of evolution may be similar to those mentioned and discussed in chapter 4. 

Although DST will not be able to handle all those cases, the conceptual 
framework and formal model developed in this study are applicable for analysing neural 

networks as evolving systems: the long terrn behaviour of a neural network is described 

by various attractors and the network adapts to and evolves to a new state when there 

are some changes in either the input to neurons or the connection strengths. The 

emergent computational property of most of the neural networks in discussion 

nowadays is characterised only by one type of attractor: point attractors (symmetric 

connection ----- > point attractors only). However, it has long been realized that other 
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more complex attractors exit: periodic attractors and chaotic attractors have been 
discovered when the activation dynamics is considered [Clark, 1989; Kepler etc, 1990; 
Wang, 1991]. Chaotic attractor has also been identified when the weight dynamics is 
discussed [van der Mass et. al, 19901. 

From this point of view, any neural networks violating the symmetrical 
connection condition is potentially able to exhibit very complex dynamical behaviour no 
matter how simple its architecture is. It has already been known that chaotic attractors 
can be identified in neural networks with a number of neurons as small as 2 and as 
large as around 30 [Clark, 1989 ]. 'Me following section will report two simple neural 
nets which display various attractors at different stages, and it is proposed that further 

work can be carried out to analyse the full bifurcation behaviour corresponding to the 
change of parameters in a wide range. 

6.2 A 3-neuron cellular network 

Cellular Neural Network (CNN) is a class of artificial neural networks (ANN) 

proposed by Chua and Yang in 1988 [Chua and Yang, 1988]. It is made of a massive 
aggregate of simple and regularly spaced circuits, called cells, just like the cellular 
automata. It is a neural network because it is made of, like any other artificial neural 
networks, a large-scale nonlinear analog circuit which processes signals in real time. 
CNN, with certain constraints in structure, like other ANN, such as symmetry, has 
been used as a class of information-processing systems (pattern recognition, image 

processing, voice analysis etc. ). Here it has been used to demonstrate that even in a 
very simple CNN, four distinct types of attractors can be identified. According to the 
general framework of systems evolution , cellular neural networks, or neural networks 
in general (physiological or artificial), can be viewed as evolving systems which exhibit 
adaptive, evolutionary behaviour in a changing environment. 

Architecture and dynamics of CNN 

In practice, the cells in a CNN are those common electronic linear/ nonlinear 
circuit elements, like capacitors, resistors, linear/ nonlinear controlled sources and 
independent sources. Like cellular automata, each cell is connected only to its 

neighbours. A two dimensional CNN with 5x5 cells can be illustrated as follows 

(figure 6.2.1). 

( Theoretically, a CNN can have may dimensions, but usually only 2 or 3 dimensions 

are considered). 
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Figure 6.2.1 Architecture of Cellular Neural Networks 

For a CNN is composed of electronic circuits, the dynamics of the CNN can be 
described by laws of physics, namely Kirchhoff s Laws (KCL, KVL). According to 
these laws, an mxn CNN, the dynamics of each cell (ij) can be described as: 

CýXij 1 dt = -Kxij(t) + 

where 

I 
a(ij; k, l) yki(t) + Ya b(ij; k, l) uk, + uij 

C(ij)EN(i, j) C(ij)r= N(ij) 

1:! ýL5m, 1:! ýj: 5n; (6.2.1) 

N(i, j) is the set of all the neighbouring cells connected with C(ij); 

output equation: yij = f(xij) can be any sigmoind functions; 

uij is the input for cell C(ij), I :! ý i :! ý m, I :! ý j :! ý n; they can be either constants or 

time varing functions; 

Constraint conditions must be satisfied: 

xij(O) 1,1 i !ým, I :ýj:! g n; 

uij 1,1 i :5m, 1 :5j:! ý n; 

Parameter assumptions: 

a(ij; k, l) = a(k, l; ij) I :! g i, k :! ý m, 1 :5j, l :! g n; 

C>0, R>0. 

These equations can be non-nalized as: 
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dxc 
+ xc(t) = acdYd + bcdUd + ic 

dt (6.2.2) 

where the first term in the right hand of this equation is the surnmative of the effect 

of the neighbouring cells (or neurons) after synapsis, the second part is the surnmative 

of the effect of the neighbouring cells through their inputs, the third the input to'cell c. 
Output function: 

yr = f(xc ( =a sigmoid function); 

Constraint conditions: 

I :! ý 1,1 uI<1. 

Some properties, like the dynamic range and stability, have been discussed in 

the original paper by Chua and Yang, and what is most useful in information 

processing is a special class of CNN which has symmetrical connections. However, 

what is of interest to us here is another class of CNNs which are simple ( with only few 

neurons), asymmetrical, but exhibit very complicated dynamical behaviour. 

A simple CNN exhibiting complex dynamical behaviour 

Consider a very simple case: there are three neurons connected in a simple way: 
the inhibitory effect from neuron i to j is as strong as the excitatory effect from neuron 
to L Each cell has an input. 

This CNN can be illustrated as: 

S 

S 

Figure 6.2.2 The architecture of a 3-neuron cellular network 

S 

147 

gl(t) g2(t) g3(t) 



The activation dynamics of this network can be described as: 

dxl 
-j- + x, =s f(xl) -b *2) + gl(t) t 
dX2 

+ X2 =b f(xl) +S f(X2) 
-b f(X3) + 92(t) dt 

dX3 
b f(X2) +S *3) + 93(t) Ti + X3 

(6.2.3) 

The dynamics of this system has both the output feedback and input control 
mechanism. The output feedback loops depend on the interactive parameters, b. The 
feedback loops and the firing functionf, a sigmoid type function, reflect the intrinsic 

nonlinearity of the system. The control mechanism relies on the input signals which 
might be constant as well as time varying. We tend to regard that these inputs are signs 
of the strong interaction between the system and its environment. 

To analyse the dynamical behaviour, there are numerous choices: 

a) The choice of the output function: 
The output function can take various forms as long as it is a sigmoid type 

function. Typical choices include: 
1 

f(x) =ý(I x+1 X-1 

x -x 
f(x) = tanh(x) =e -e 

e'+e-' 
And the first type is chosen in this study. 

b) The choice of input functions: 
There are even more choices of the input functions, but they can be usually 

taken as constants or some bounded periodic functions like Sin(x) or Cos(X) or the 

combined forms. With constant inputs, the system is autonomous and DST can be 

applied directly. However, it is very common to introduce periodic stimulus, so that 

more complicated attractors such as chaotic attractors can be identified. This can be 
found in the forced Brusselator model (chapter 4.3), forced nonlinear oscillators in 

electric circuits, if the constant inputs do not lead to expected complicated behaviours 
[Ton-dta, 1986; Thompson et. al, 1986]. However, even these time-varying inputs may 
seem very artificial, the existence of various attractors reflects the inherent complexity 
and order of the system in focus. The system changes its organization in response to 
the change of environment. Periodic inputs are considered in this study to trigger many 
complex evolutionary behaviour of the system. 
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c) The choice of weights s, b. 
The coefficients s and b represent the strength of intra- and inter- neuron 

connections. They are the main concern in current study of artificial neural networks as 
information processing systems, because the change of the weights between neurons 
may allow a network to classify the input infon-nation accordingly. Different connection 
strength may give rise to the network as a whole different emergent behaviour: this is 

what exactly this study is meant to deal with. 

For the dynamical equations are very much like what have been studied in many 
other fields: the forced pendulums, the periodically driven van de Pol equation, or 
forced Duffing equation. It is expected to find various attractors for various choices of 
output functions, or input signals, or structural parameters. Rich bifurcation diagrams 

can be, obtained if attractors can be. detected respecting to all choices of parameters. 

As a matter of fact, four distinct attractors, namely, point attractor, periodic 
attractor, quasiperiodic attractor, and chaotic attractor, have been identified in this 

simple case: 

Case 1 Point attracto 
Compared with attractors like periodic attractors and chaotic attractors, point 

attractors are trivial cases: the system is in a stable state. For neural networks, it means 
that the system will rest at that point attractor no matter where it starts. For that reason, 
the system has some sort of memories about the structure at the attractor and it is this 

capability of memorizing that makes neural networks extremely appropriate for the task 

of information processing [Hopfield, 1982; 1984]. 

In this 3-neuron cellular network, many simulations have revealed that without 
any input signals, there exist a point attractor for choices of s=b. Zou and Nossek have 

proved that in the general cases, when there is no input signals and b< (s-1)12, there is 

at least one point attractor [Zou and Nossek, 1991 a]. 

Case 2, periodic attracto[ 
The implication of neural networks at periodic attractors for information 

processing has not been made very clear, but many of such networks in oscillating state 
have been identified [Wilson et. al, 1972]. In our study, periodic attractors have been 
identified. Figure 6.2.3 is the phase portrait of a periodic attractor identified for this 3- 

neuron network, with 
gi(t) = 0, i=1,2,3, b>s-1 

(with different coefficients b, s, the amplitude of the cycle is different). 
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Case 3, lieriod-3 attractor 
A period-3 attractor has been identified in this model by introducing a periodic 

signal. Figure 6.2.4 shows the phase portrait of a periodic attractor identified for this 3- 

neuron network, with 
gl(t)=sin(2nt), 92(t)=93(t)=O; 

s=3.5, b=2.7 

Case 4, guasi-Deriodic attractor 
By introducing two periodic signals with different frequencies, a quasi-periodic 

attractor has been identified. Figure 6.2.5 shows the phase portrait of a periodic 

attractor identified for this 3-neuron network, with 
gl(t) =O, 92(t)=sin(2nt), 93(t)=cos(ý2nt ) 

s=3.5, b=2.7 

Case 5. chaotic attractor 
Through further "manipulation" with the input signals and parameters, a chaotic 

attractor is found for this system (however, the influence from neuron X3 to X2 is Cut)- 
The choice of parameter is 

s=2, b=1.5 
input signals 

gl(t) =4. lsin(4ict), 92(t)=93(t) =0 

The phase-portrait of this chaotic attractor is iRustrated in figure 6.2.6. 
(see also [Zou and Nossek, 1991b]. 

What is missing in our study about chaotic attractor includes the calculation of 
Lyapunov components and fractal dimension, the construction of Poincare section and 
spectrum analysis. These means, including the construction of phase portrait and the 

sensitivity analysis, are all important for the identification of chaos, as argued in the 

extended appendix 1. However, we suppose it is not necessary to do all these test to 
justify that one attractor is actually a chaotic attractor, although it is surely very useful. 
What has been done here about the chaotic attractor of the 3-neuron cellular neural 

network is not more than what were done for the discovering of Lorenz attractor by 
Lorenz in 1963 : phase portrait and sensitivity analysis [Lorenz, 1963]. Of course, the 

other tests can be carried to reveal various other aspect of this chaotic attractor: what is 

its fractal dimension, what does the Poincare section look like, what is the biggest 

Lyapunov exponents etc.. 
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Figure 6.2.3 A Periodic attractor of the 3-neuron CNN 
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Figure 6.2.4 A Periodic-3 attractor of the 3-neuron CNN 
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Figure 6.2.6 A chaotic attractor of the 3-neuron CNN 
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The same kind methods are employed in the following section to study the 

complex behaviour of a coupled Wilson-Cowan Nets. 

6.3 Coupled Wilson-Cowan Nets 

The Wilson-Cowan model, proposed in 1972, concerns a pair of neurons 
among them one is excitatory and one is inhibitory [Wilson et. al 1972). The 
connection of them can be illustrated in Fig 6.3.1. 

-C4 

C3 

cl 

-C2 

Figure 6.3.1 A Wilson-Cowan Net 

The excitatory neuron, represented by E, and inhibitory neuron, represented by 1, are 
connected in such a way that the inhibitory neuron always inhibit the neural activities: 
not only itself, but other neurons connected with it. The excitatory neuron excite all 
neurons connected with it, as well as itself. It is believed that all nervous process of any 
complexity are dependent upon the interaction of excitatory and inhibitory cells [Wilson 

and Cowan, 1972]. 

The activation dynamics of this network can be described as 

dE 
T, T -E + (k -r E)S, 

tcc 
(c, E-C2'+P) t 

dl 
I+ (ki-riI) Si(C3E-C4'+Q) 

where 

(6.3.1) 
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E: the firing activity of the excitatory neuron at time t; 
I: the firing activity of the inhibitory neuron at time t; 
C11 C21 C31 C4 : connection strengths, all are positive constants in this model; 
Si, Se: sigmoid-shaped firing functions; 

P, Q: input to the excitatoryand inhibitory neuron respectively, in this s tudy, 
they are constants, not time varying; 

, rig k, ki, r, ri : constants. 

With S(x) = 1/(I+ exp(-a(x-0)) - 1/(a+exp(aO)), with a and 0 depending on 

whether it is an excitatory or an inhibitory neuron. It has been proved, through phase 
plane analysis and numerical analysis rather than finding analytical solution, that point 

attractors and periodic attractors exist corresponding to different constant stimuli 
[Wilson and Cowan, 1972]. With two pairs of such neurons being connected as in 
figure 6.3.2, 

1 
CP21 C1 

Ei 1( E2 

CP21 -%%% 
P2 

C3 -C2 C3 -C2 

Ql Qi 

Figure 6.3.2 Coupled Wilson-Cowan Nets 

more interesting behaviour is expected to be observed. The dynamical equation is 

written as: 
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dEj 
ýe dt = -E, + (k, -rEI)S, (cl[EI+CP2, E2]-C211+pl) 

dIj 
-11 + (ki-rill) Si(C3E, 

dt -C411+Ql) 

dE2 
-E2 + (k. -rE -C2,2+P2) dt 2)Se(ClIE2+CP12 Ell 

d12 
-12 + (k 

dt i-ri12) Si(C3E2-C412+Q2) 
(6.3.2) 

where CP12, CP21 , are coupling strengths between two excitatory neurons (when 
CP21 = Cp, 2v it is a symmetrically coupled). 

Our study has shown that two types of complicated attractors can be found in 

this system, i. e., periodic and quasi-periodic attractors. (The choices of some 
parameters follow Wilson-Cowan paper as: cl= 16, C2=12, C3=15, C4=3, a. =1.3, 
ai=2; 0, = 4, Oj= 3.7, re= ri =1; some other parameters may be chosen in the further 

studies) 

Case 1: mint attractor 
Again, point attractors are trivial cases in this model. (say, with coupling 

Cpl2=CP21= 0.05, and c= 13, c --4, c =20, c4=2, a, =1.2, ai=5; 0, = 2.7, Oj= 3.7, 123 
r, = ri =1). 

Case 2: periodic attracto 
When inputs are chosen as Pi=1.3, P2=0.5, QI=Q2=0; coupling strength 

CP12=Cp2l= 0.05, a periodic attractor can be identified as shown in figure 6.3.3; 

Case 3: Uuasi-12eriodic attracto 
When input to E2 has been changed to P2=1.5 while others remain the same as 

in case 2, a quasi-periodic attractor has been identified, as the phase portrait showing in 
figure 6.3.4. 

Further discussion about the complex behaviour of this model can be carried by paying 
attention to chaotic attractors. Periodic input can also be considered. 
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6.4 Neural networks as adapting and evolving systems 

As having been demonstrated, neural networks, if not symmetrically connected, 
may possess different types of attractors. The dynamical behaviour of neural networks 
can be analyzed by adapting the conceptual framework and formal model developed in 

this study: as open, nonlinear, non-equilibrium systems, neural networks can evolve 
from one state to another, with the change of influences from environment. The focus 
is about the nonlinear dynamics of those systems: it reflects the inherent complexity and 

order of evolving neural systems. Most current study about neural networks are centred 

around the emergent computation power of symmetrically connected systems. The 
discovery of complicated dynamical behaviour of neural networks demands serious 

attention [Skarda and Freeman, 1987] 

Large-scale neural networks can be constructed by connecting many blocks of 
small networks of which each is characterised by one of those complex emergent 
attractors. In the general case, DST is useful but may not be enough for analysing the 
behaviour of neural networks with a large number of neurons. 

In this study about evolution of neural networks, the conceptual framework and 
fon-nal model developed so far have been applied. The detection of the state of a neural 
network at a certain time relies on the computer simulation, i. e., finding out attractors 
by comparative numerical simulations. In principle, all the techniques and skills in 

studying dynamical systems as mentioned in appendix 1, such as the Hopf bifurcation 

analysis, Lyapunov exponents, Poincare section etc., can be employed in the analysis, 
especially in detecting chaotic attractors. However, the construction of phase portrait 
by comparative numerical simulation is also a reliable means. In this study, 
computations were tried in both PCs and Sun work stations. To construct the phase 
portraits of the systems, the 4th order Runge-Kutta algorithm has been employed. In 
both the CNN and Wilson-Cowan models, to obtain a phase portrait about the system 
starting from a particular point usually takes around 20 minutes on PCs (386) with 30 
000 iterations. It only takes about 10-20 seconds on a Sun Sparc-2 station. To obtain a 
complete"big picture of the bifurcation cascade") needs thousands times of such 
simulations. To get some analytic solutions certainly helps to reveal the evolutionary 
behaviour of a system over a wide range of parameters, but it is not always possible to 
have analytic solutions. To assist numerical simulations, intuitive knowledge about 
possible bifurcation patterns is of great help. 
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To calculate Lyapounov components or to construct the Poincare may require 
even bigger memories and faster speed (as mentioned in many references about those 
examples cited in chapter 5). To carry out intensive computation, the efficiency of 
algorithms should also be considered. 
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Chapter 7 Conclusions and Further 
Studies 

7.1 Conclusions 

To summarise, the following results have been achived in this study; 

1. A conceptual framework for systems evolution 
Among many other systems concepts, the concepts of emergence and emergent 

properties have been stressed and they are regarded as the most fundamental concepts 
in systems science [Checkland, 1981; 1989]. It is argued that the defining 

characteristics of a system comes from its emergent properties -- it is the emergent 
properties that give the identity of wholeness to a system. It is the emphasis on the 
wholeness that makes systems science different from classical sciences. 

The entity of an organized whole is described by an attractor. Attractors and 
emergent attractors have been defined verbally and formally. By employing the concept 
of emergent attractors, the complex dynamical behaviour of nonlinear dynamical 

systems can be explained 

The ideas of self-organization and. evolution of open systems have been 

synthesized and developed to the idea of systems evolution. It is accepted that systems 
evolution is defined as the process by which a system changes its structure qualitatively 
to maintain as organized entity in a changing environment. A structural description of 
the systems behaviour has been adopted: the evolution is described as spatial and 
temporal change of the system's structure. On reviewing all the important schools of 
thought of self- organ izatio n and self-organizing systems, general conditions for 

systems evolution to occur are proposed. This general conceptual framework is firmly 
based on the idea of open systems. 

2A formal model for evolving systems based on mathematical dynamical 
systems theoKy 

The argument about systems evolution is based on the structural description of 
systems. Hence the mathematical dynamical systems theory has been employed to 
advance our discussion. Recent development in mathematical DST has provided us 
with convenient and powerful tools for describing the dynamical behaviour of open 
systems. 
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In this study, a formal model has been outlined to describe the behaviour of 
dynamical systems. The concept of attractor has been formally defined and it is argued 
that there are four types of fundamental attractors, i. e., point attractor, periodic 
attractor, quasi-periodic attractor and chaotic attractor, that can describe the state of any 
dynamical systems at any level. Another key concept, i. e., structural stability, is also 
defined based on the concept of attractors. Evolution is therefore defined when an open 
system loses its structural stability. The process of evolution is described in a similar 
way as a bifurcation in dynamical systems theory. By using the results of mathematical 
DST, several possible evolution patterns are proposed which depend on how the 
system losses its structural stability. 

3. The application of the conceptual framework and the fonnal model to the 
description of the evolution process of various systems. 

This is one important part of this study, although not the main part. Examples 
from various disciplines have been used to demonstrate the applicability of the 

conceptual framework and the formal model. Among them are Benard hydrodynamics 

experiment and laser systems in physical systems, Brusselator and Oregonator in 

chemical systems, elemental hypercycles in biological systems, predator-prey-food 
chain in ecological systems, cellular neural networks in artificial neural networks, and 
some speculations about social economic systems. In most cases, we take the 

advantages of using the reported results in those different areas and only re-interpreted 
them by using the conceptual framework and the formal model. In the study of artificial 
neural networks, we have constructed a novel example based on the concept of cellular 
network and applied our framework in studying the evolution process of the elaborated 
system. Another novel example is the coupled Wilson-Cowan nets. Only the activation 
dynamics of a 3-neuron cellular network and Wilson-Cowan nets have been studied 
although other examples are mentioned and commented upon. Various attractors have 
been identified under different conditions and the evolution process of the system in 
focus has been discussed. Results of numerical analysis are given. In detecting chaotic 
attractors in the proposed example, it has mainly relied on numerical simulations and 
this reflects the constraints of the mathematical techniques available to us. Further 

studies along this line of research are suggested. 

The whole study scheme stresses the implication of the dynamical systems 
theory in the study of the dynamical behaviour of open systems. In many cases, the 

effort to understand the evolution behaviour of a system is severely restricted by the 

means of mathematical techniques available to us at this stage. Fortunately, modem 
computation technology has provided us a useful alternative for analysing the 

qualitative behaviour of the system. It is worth mentioning that in tile case of a chaotic 
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attractor being detected, the credibility of numerical analysis is not always recognised 
and accepted. 

The construction of a general conceptual framework for systems evolution 
based on the idea of attractors aims to provide a way of understanding the dynamical 

universe. The concept of attractor is believed to be very useful for the discussion of 
systems ideas and hence can help us to resolve the confusions so often encountered 

when expressing systems ideas. 

The formal model is not claimed to be universally applicable. However, it is 

very useful when we are dealing with natural systems where the dynamics of the 

system is well unders tood. As a matter of fact, the current study of the so called "the 

science of complexity" relies heavily on the mathematical DST and from that point of 

view, the formal model, which itself is based on the mathematical DST, is applicable in 

most of these cases [for references about the study of the science of complexity, see 
Stein 1989, Jen 1991, etc. ]. There are reasons, through those examples in chapter 5 

and 6, to believe that the conceptual framework and formal model developed in this 

study can be employed in many cases to analyse the complex dynamical behaviour of 

many open systems. It is admitted that in most cases, at least in our study so far, the 

strength of this study schemes lies in its descriptive power rather than its predictive 

power. It can only show which direction systems evolution will follow along, but not 

the exact state that a system will evolve to. It is not a genuine surprise because 

evolution is, essentially, unpredictable. 

'fliere is another limit for this formal model: it can, at best, only be employed to 
study the evolution behaviour of the system for a period of time where the dynamics of 
the system can be expressed by the dynamical equations. In this study, this evolution 

process is defined as "intra-level evolution". 

When the system arrives at another evolution state, the dynamics governing the 
behaviour of the system changes and the dynamical equation which describes the 
dynamics is no longer held. Events break laws suitable for the system at a particular 
stage. Whenever there is a evolutionary event, the old laws are violated and new laws 

must be found that can adequately describe the behaviour of the system at the next stage 
of evolution. This involves systems genesis, and the law that directs systems genesis is 

called "flic law of maximum entropy production". 

A global picture of the evolution process can not be obtained by only looking 

the evolution at one level which is governed by a particular law. The "big picture" of 
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the evolutionary cascade in chapter 4 is patched by looking the laws at different stages 
of the evolution continuum. 

7.2 Further Studies 

7.2.1 Systems Science: a new domain of research 

The laws of physics are believed to be the most fundamental laws that govern 
the universe. It has been proved that there are only four types of fundamental forces, 
i. e., gravitational forces, electromagnetic force, nuclear strong force and nuclear weak 
force, existing in the universe. The materials that make up the universe are also limited 
in types, with not more that 120 different atoms. How could these four fundamental 
forces, acting on such a limited set of materials governed by some limited number of 
physical laws, give rise to such a huge amount of forms and organizations in this 

universe? Can physics tell us everything about this process? 

Physics, both the Newtonian classic physics and relativistic physics, is based 

on the reductionist philosophy. In searching for the laws of the nature, things are 
broken into pieces and properties of a system are reduced to its elements. Reductionism 

stresses the entity rather than relation, state rather than process, and universality rather 
than variety. [Toffler, 1984 (in Prigogine et. al, 1984]. This reductionists' point of view 
had been already facing serious challenges when it came to address the phenomena of 
life long time ago [Jantsch on the historical account of Vitalism and the holistic 

thinking, 19801. It has long been realized, or disputed, that life can not be explained by 

the laws of physics alone. The study of biology can not be reduced to the study of 
physics. At most, the laws governing the biological system are compatible with laws of 
physics [Yates, 1988]. 

In the long journey struggling to find a proper theory for biological systems, 
vitalism was proposed: biological systems are teleological [reviewed by Bertalanffy, 
1968]. Holism was outlined: life is holistic and it is incomprehensible by looking at 
those parts that fon-n a biological system [Smuts, 1926]. Then came the open systems 
point of view of Bertalanffy and Schrodinger: for the former, biological systems are 
regarded as open systems which are purposeful. The goal-seeking behaviour of these 

systems can be explained by a general term which is applied to any open systems, i. e., 
the term of equifinality [Bertalanffy, 1968]. For the later, the phenomena of life can be 

explained as entropic processes of open systems: the growth and development process 
of biological systems can be described as a general process of which a systein changes 
to a higher ordered state when the negentropy from the environment exceeds certain 
critical point. The process of life is characterised by both "order out of disorder" and 
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"order out of order" [Schrodinger, 1944]. Through the study of self-organization, the 
effort to search for the laws that can explain the myth of life continues. Parallel to the 
striving for the understanding of biological systems, efforts have also been devoted to 
the discovering of fundamental laws and principles that can bridge the gap between the 
laws of physics and the laws for the life science. It has been widely regarded that the 
contribution from the study of dissipative structure is a significant step towards that 
goal. Among others, include also the syntheses of thermodynamics and Darwinism 
[Weber, 1988, Wicken, 1987], the thought implied in the Random Boolean networks 
of Kauffman [Kauffman, "Darwin did not know self- organization"]. However, we are 
still not able to say how far we have to go before we can achieve a better understanding 
of biological systems based on the basic laws of physics. 

The striving towards a better understanding of biological systems has 

contributed a lot in a unique way to the development of a new way of thinking: the 
emerging of systems thinking and systems science in the twenty century [Smuts, 1926; 
Bertalanffy, 19681. The uniqueness of this contribution has come from the unique 
characteristics of the phenomenon of life. To understand that, an open systems point 
view must be adopted. It is not surprising that, as generally agreed, one of the most 
prominent funding father of systems theory or systems science in general, Ludvig von 
Bertalanffy, came as a biologist. Among many contributions concerning the basic 

concepts, principles, and mechanisms discovered or perceived by him about systems in 

general, the open systems point of view is certainly an important one [ Bertalanffy, 
19681. 

In accordance with the systems ideas developed in biology, systems ideas have 
been developed independently, or coordinately, in many fields, such as economics, 
mathematics [Rappport, 1984; Wiener, 1948], psychology [Miller, 19781, 

neurophysiology [Ashby, 1952], and some other field like systems engineering, 
systems analysis , operational research [Churchman 1979, Ackoff, 1973], philosophy 
etc. [Buckley, 1968]. 

Although numerous papers and books have been published in the field of 
systems science, a lot of research and teaching institutions have been established for the 
study of systems science, a handful of academic societies have been formed for 

systems. science, national or international conferences, annually, bi-anually or 
trianuanlly, were held under the titles concerning systems and systems science, a 
question as simple as "what is a system" or "what is systems science" is still a difficult 

one for any systems experts to answer. It is not surprising that many scientists, 
especially those working in the traditional research fields like mathernatics, physics and 
chemistry et. al, are still very sceptical about systems and systems science. 
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As Checkland pointed out recently, systems science is still in a primitive stage, 
even more primitive than it ought be [Checkland, 19911. To some extent, it is more 
adequate to say that there is a field or research called systems research rather than a 
science called systems science because, as a science, systems science is still lack of the 
fundamental concepts, laws, principles etc that can clearly define the domain, method 
and progresses in this field. Although the word "system" is more popular than any 
other words nowadays, it has been argued that this has actually destroyed the rich 
meaning of this concept [Checkland, 1991]. Some other people like Klir has argued 
that systems science is a new dimension of science which differs from the classic 
sciences in the way that it concerns the relations of the components of an entity which is 

perceived as an organized whole [Klir, 1985b]. 

As shown in the previous chapters, it has been advocated to use ideas of 
emergence and emergent attractors to explain that a system is an organized whole which 
is composed of some interconnected components and the wholeness is the result of 
those components. A system is one that is recognized as a system and it is 

characterised by some emergent properties. It is argued that any systems which can be 

recognized as a system may be described and characterised by an attractor. Emergent 

attractors are actually used to describe the state of any systems except a system at its 

thermodynamic equilibrium. By using the term of emergent attractor, the property of 
emergence has been stressed. 

Someone may say that there is no such a science called systems science, but 

only many research fields related to the study of the organized entities as a result of 
relations between many parts. It is right to some extent. However, if we regard the 
study of various systems related problems from a system's point of view as an 
emerging scientific research field and admit that it is still to be yet maturated, we can 
rightly call this new domain, at least loosely, systems science. The corm-flon ground for 

those studies can be adequately summarised and titled as "systems thinking" which 
mainly concerns the properties of systems. Systems thinking is in contrast to the 
mechanistic thinking implied in those classic science represented by physics: it is 

essentially holistic. Therefore, it is also argued that the emergence of systems science 
represents the emergence of a paradigm: systems thinking is in contrast to the 
reductionists' mechanistic thinking. Systems thinking and mechanistic thinking is 

complementary to each other and they are both very important for the full understanding 
of the universe. 

167 



The need for systems thinking came not only from the need for a better 

explanation of biological systems as mentioned above, but also from the need to deal 

with complexity facing our human beings: large-scale engineering project, integrated 
development of economy and society, complex environment problems involved 

ecological systems as well as human society etc. Systems science is a science for 
dealing with the complexity [Flood et. al, 1988]. 

Systems science is yet to be well established. For the further development of 
systems science, work that needs to be done includes not only the fundamental studies 
about the basic concepts, general theories, universal laws, and underlying principles, 
but good practice in applying these ideas to tackle complexity facing us in die real world 
[Checkland, 1991; Flood, 1990]. The current study scheme suggested in this research 
is an attempt to understand the evolution process of open dynamical systems by looking 

at the structural aspects of various systems. Systems evolution is a general property of 
open systems 

7.2.2 Systems Evolution: a property of systems 

Open systems are usually situated in environments which are themselves 

changing. Due to the structural coupling between a system and its environment, the 

change of environment may trigger the change of the system so that the system can still 
be maintained as an organized whole. Phenomenologically, it seems that the change of 
the system is caused by the environment or started from outside. As a matter of fact, 

there is always microscopic fluctuations within the system which are constantly trying 
to break the system's stability. The environment can only serve to amplify the internal 

noise so that, through the complex interconnections of the system's components, the 

microscopic fluctuations are strong enough to break the system's stability and give rise 
to the system a new structure. This new structure must be compatible with the structural 
constraint from the environment due to the coupling relations between them. From this 

point of view, it is fair to say that environment acts as the selection force for the change 
of the system. This process is what we call systems evolution in this research. 

The dialectic relations between the impact of the environment and a system's 
inner dynamics must be stressed. Although systems evolution is essentially internally 
driven, as says by "order through fluctuation", not externally imposed, the importance 

of the "triggering" of the evolution by the change of the environment should not be 

neglected. This can be better explained by the formal model proposed in our study. 
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Systems evolution happens at every level within the hierarchical structure of the 
universe, but the biological evolution is essentially not equivalent to the concept of 
systems evolution in the general sense. Biological evolution is different from the 

evolution of other natural systems, like the formation of chemical waves, in a radical 
way: the evolution of biological systems is based on self-reproduction. The evolution is 

characterised by one unique property of biological systems: "good" traits are 
inheritable. In the terms of systems evolution, biological evolution include "order out of 
order". 

However, the study of self- organization and systems evolution for general 
systems has revealed that the force of self- organization is still working in biological 

evolution. Kauffman has once commented about the current study of biological 

evolution by saying the Darwin did not know self-organization. He argues that "self- 

organization" is the missing order principle in explaining biological evolution and to 

reveal this is the contribution from the study of systems evolution. 

From a general systems point of view, every open system, under suitable 
conditions as mentioned in chapter 3,4, can evolve to a new ordered state so that it can 
still be maintained as a system in a changing environment. The entity of any system is 
described as an attractor. Through the notion of emergent attractors, it can be explained 
why systems science is different from classic science by resorting to the emergent 
properties of the system. Also through the notion of emergent attractor, it can be 

established that systems evolution is the general property of open systems. It is 
believed that the study of systems evolution helps to understand systems and other 
systems ideas at a fundamental level. 

Systems evolution is more a general view towards the understanding the 
dynamical behaviour of open systems in general than a concrete theory to study any 
particular systems. To analyse the complex behaviour of any system relies essentially 
on the understanding of the dynamics of that particular system in a particular 
environment while the study scheme in our research can only provide a general 
guideline to how to look at the problem from a structural point of view. It also relies 
heavily on the mathematical and computational means available to fully reveal the 

complex behaviour of nonlinear systems by detecting various attractors at various 
situations. 

7.2.3 New Hope From Dynarydcal Systems Theory 

It has been admitted that the whole research programme about systems 

evolution is based on mathematical dynamical systems theory which is very useful for 

169 



studying structure and structural change. The strength of mathematical DST, especially 
with its recent development in nonlinear dynamics analysis, for the study of systems 
evolution seems to lie on the following facts: 

The bifurcation process, tbrough which one type of attractor is replaced by 

another, can serve as a prototype of emergent phenomena found in any evolutionary 
process. As argued in this study, for understanding self-organizing systems, or 
evolving systems in general, Dynamical Systems Theory (DST) seems to provide 
with: 

1) the notion of "attractor" which can be used to describe the state of any 
systems qualitatively 

2) simple geometric models for systems'complex behaviour; 
3) a complete taxonomy of attractors possessed by dynamical systems; 
4). DST provides a classification of bifurcation patterns that can help us 

to explain the evolution route of systems. 
5) a mathematical rationale for the complex systems to evolve along a 

particular evolutionary path among different choices ( see also 
Abraham, 1988). 

The hope aroused by the development of DST is not just about those as 
mentioned above, it also provides us insights, techniques to analyse the complex 
behaviour of various systems, natural and artificial, and help us to understand the 
complexity implied in this universe. The later is emphasised in current trend of the 

science of complexity which has been rigourously advocated by some scientists and 
research institutions [see reference about Santa Fe Institute study of science of 
complexity 1989-1992, but there the main concern is about the complex behaviour of 
natural or man made physical systems which can be dealt with by using DST and the 
focus is about the discovery of chaotic attractors ]. Systems evolution is one of the 

complex behaviour exhibited by many open systems. Systems science is also a science 
of complexity, but it is not limited in the complexity of physical systems, but 

encompasses a broad spectrum of systems including human activities [Flood et. al, 
1989; Klir, 19911. To develop a well-e stabli shed systems science will help us 
understand the complex world, both the nature and our human beings. 

7.2.4 Connectionist model and Neural Networks. 

In chapter 6, it has been demonstrated that neural networks can be treated as 
adapting and evolving systems, and the study scheme established in this study can be 

applied to analyse their complex behaviour. There are many problems which need to be 
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considered in future studies, both in systems evolution and in understanding neural 
networks. 

The first is more technical. In chapter 6, various types of attractors have been 
identified in both the CNN model and the Wilson-Cowan nets, but the complete 
bifurcation diagrams have yet to be constructed. This requires intensive numerical 
simulations which are both time consuming and resource consuming (high speed 
computers and large storage capacity are essential). However, this work is worth 
doing. The constructions of the complete "evolution cascade" will enrich our 
understanding not just those two networks, but other networks in general as well. 

The second is more philosophical. The myth of the computation power of 
neural networks lies in that it is the emergent behaviour of th& networks: it is formed by 

connecting many neurons together, but the global behaviour of the network as a whole 
is irreducible to its components. How did it happen? Although the "emergent property" 
is the right word, but it can not tell much about how actually emergent properties 
emerge. Can we find a way to connect components, not necessarily neurons, to give a 
system the desirable "emergent properties"? Will the connectionist model help to find 

more efficient way of "systems design", so that some machines as well as human 

organizations with good "emergence" can be obtained? It is hoped that systems science 
and classical sciences together can provide the right answer. 
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Appendix 1. Dynamics: the geometry of behaviour' 

AM Dynamical systems and. flow on manifold 

Al. 1.1 Flows on manifold 

In chapter 3, a critical review is given to various schools of thought of self- 
organ ization and it is noticed that except similarities between their conceptual foundations, 

they also use the same mathematical tools in analysis, Le, mathematical dynamical systems 
theory. It is no longer a coincidence if having borne in mind that those theories about self- 
organization are dealing with the dynamical spatial-temp oral behaviour of open systems 
and, dynamical systems theory, in its early or modem forms, has been served as the 

mathematics of time in sciences ever since Newton. Hirsh, in a paper in 1984, gives an 
excellent review about systems, dynamics, origin of science and the use of dynamical 

systems theory (or dynamical reasoning) as the mathematics of time in sciences [Hirsch, 
1984]. He argues that to determine the dynamics for various systems, which are the rules 
for determining the states of systems which correspond at a given future time to a given 
present state, is a central problem of science, and "once the dynamic is given, it is the task 

of mathematical dynamical systems theoiy to investigate the patterns of how states change 
in the long run". The development in dynamical systems theory over the past twenty years 
makes it possible for us to understand the complex long run behaviour of those systems of 
which their dynamics are known to us while the finding of the dynamics remains the main 
problem in sciences. 

A dynamical system is one that its state changes in time, and a mathematical dynamical 

system consists of die space of states of the system together with a rule called "dynamics" 

which determines how the state changes in time. Primarily, there are two different types of 
dynamical systems in mathematics according the time steps involved. If the time changes 
continuously, these systems are called "continuous dynamical systems". When the time 
takes discrete time step, they are "discrete dynamical systems". Discrete dynamical 

systems are not merely systems obtained by discreterizing the "continuous dynamical 

systems" and they have particular properties in their own and must be studied separately 
in some cases. Definitions of both continuous and discrete dynamical systems will be given 
in this section. 

For the discussion of continuous dynamical systems, the state space is usually a 

generalized Euclidean space with certain structure, Le a differential manifold, and the 
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dynamical system is defined as a flow on such a manifold. The definition of a C' 
dynamical system can be given as the following: 

Definition A1.1.1 (Continuous dynamical systems) Let X be a topological 

space (Cr differential manifold), RxX --> X is a continuous map (Cr map). If T 

satisfies: 
(1) 9 (0, x) = x, for any xeX; 
(2) (p (s+t, x) =y (s, (p (t, x)), for any s, t c: R, x c= X 

then (p is called a CO flow (Cr flow) or a CO dynamical system ( Cr dynamical system). 

It haý been proved that any Cr vector field on a compact Cr differential manifold 
can generate a Cr flow [Guckenheimer et. al, 1983]. 

A discrete dynamical system consists a sequence of homeomorphism or 
diffeornorphism and it can be defined as: 

Definition A1.1.2 (Discrete dynamical systems) Let X be a topological space 
(CI differential manifold) and Z the set of integers ý: ZxX -> X is a 
homeomorphism (Cr diffeomorphisi-n), if ý satisfies: 

(1) ýo (x) = id(x), for any xeX; 
(2) ý k+l( x) =ýk. ý 1( x), for any k, I c- Z, x (=- X, 

then ý is called a discrete dynamical system (a C' discrete dynamical system) which 
consists of the sequence of homeomorphism or diffeomorphism. 

The relationship between the flow (continuous dynamical system) and discrete 
dynamical system can be described as following: 

For any continuous dynamical system T, a discrete dynamical system ý can be 

generated by discrete sampling for a period of c: 

0-2=(ý-2, c, 00=id, ol=T", 02=T2T, 

On the other hand, for a given discrete dynamical system, it may not be necessarily 
embeded into a continuous dynamical system [Smale, 1967]. This demonstrates that 
discrete dynamical system contains some properties which can not be studied by 

continuous dynamical systems [Aulin, 1987]. However, it has been proved that any 
discrete dynamical systems generated by a sequence of diffeomorphism. can be connected 
with a flow through appropriate "suspension" [Smale, 1967; Cuckenheimer et. al, 1983]. 

173 



A1.1.2 Differential equations and dynamical systems 

In practice, a dynamical system is usually closely connected with a differential 

equation. One reason for that is that mathematical dynamical systems theory was originally 

a branch of ordinary differential equations --- it is widely accepted that it was sterned from 

Poincare's qualitative study of dýfferential equations. What is more important is that 
differential equations have long served as a means to study the dynamical process of natural 

systems, the trajectories of the movement of plants in astronomy, for example. The 

importance of differential equations in the history of science has been echoed by many 

people and among them, Lie said: 

"Amonth all mathematical disciplines the themy of diffel-ential equations is 

the most imponant... It fin-nishes the explanation of all those elemental 
manifestation of natin-e which involves time. " [Sophus Lie as quoted by 
Hirsh [1984] 

As it can be seen in following sections, mathematical dynamical systems theory, 

growing up from the study of differential equations, and latter with the influence of 
differential topology, study mainly the qualitative behaviour of dynamical systems while 
differential equations concerns more about quantitative aspects dynamical systems. It is not 
only an important and active field of study itself, it is also a very important means for 

studying differential equations. As far as the study of the qualitative properties of a 
dynamical system is concerned, autonomous differential equation and mathematical 
dynamical systems theory are about the same thing. Formally, or mathematically, a 
dynamical system (flow) on a Cr differential manifold corresponds to a differential 

equation (vector field) on the manifold and the other way around. This can be easily shown 
as follows. 

Suppose (p,: X -ý X is a Cr dynamical system on X, and x c- X. Define 

x(t) = (pt(x) = (P (t, x) 
and a vector field f: X -> X as : 

f(x) =ý (pt(x) I, =. dt 
then we have the following differential equation: 

dx/dt = f(x) 

with x(t) = (p, (x) being its solutions curve which satisfies the initial condition 
t=O -> X(O) = (P(O, X) = X0 

On the other hand, given an autonomous differential equation 
dx/dt = f(x) 
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on a manifold X and suppose that the conditions for solutions' existence, uniqueness, and 
continuity are met. Denote x(t) the solution of the equation with the initial condition: 

t=O --> X(O) = Xo EE X. 

For any teR, xeX, define T, (x) =T (t, x) =x(t) =x then it is easy to prove. that: 
(1) (pt(x) = (p (t, x) is continuous and differentiable on X, and 
(2) Tt(x) satisfies 

(a) (po(x) =x 
(b) T', t(x) = (P, ( (PL(X) (P, O(pt(x) 

then we have y being a CO flow (Cr flow) or a CO dynamical system ( Crdynamical 

system) on X. 

In the case of nonautonomous differential equations, they can always be 

transformed into autonomous equations with an additional dimension and hence its 

solution can generate a flow on a manifold. For partial differential equations, there is not a 
general procedure and universal method to yield a dynamical system (in the mathematical 
sense). However, some types of partial differential equations as often encountered in 

studying natural systems, like "reaction-diffusion" equations, their solutions satisfy 
sufficiently strong theorems of existence, uniqueness and continuity and hence can generate 
a dynamical system. 

In all the following discussions, autonomous differential equations and flows on a 
manifold are regarded as the same thing. They are all models about the same dynamical 

process in focus. Qualitative properties of those dynamical systems can be studied by 

adapting either the point of view of differential equation or flow on manifold. Usually, limit 
sets, Poincare section etc. are defined in terms of a flow (pt on a manifold and the structural 
stability, bifurcation etc. of a vector field f= d/dt (y) ( which defines a differential 

equation) on the same manifold. 

A1.2 Problems about dynamical systems: stability and structural stability 

A1.2.1 Invariant sets 

A dynamical system in the real world can, in principle, be modelled by either a flow 

on a suitable manifold (state space) or described by a group of differential equations. The 
dynarrdcal behaviour of the flow, long run behaviour of individual orbit, its stability etc. 
can be represented by some special sets of points in the state space. This leads to concepts 
like invariant sets, stability, structural stability etc. studied by dynamical systems theory . 
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For a flow yt: X -ý X, t c= R, the map I(x): X --> X, t -> x(t) is the 

trajectory of x r= X. Its image is called the orbit: 
O(x) =( x(t) It c- RI 

DefMition A1.2.1 (Invariant set: ) A set A E- X is said to be invariant under 
the flow T if T, (x) c= A for each xe A and all t E=- R, i. e. T, (A) 9 A. 

Clearly, the orbit O(x) of any point x is an example of an invariant set. 

Definition A1.2.2 (Wandering set and non-wandering set) 
(a) Wandering set Y((P): 

Y(y) =fx 
13 W 

-4 x, V tGR => (p, (W) r) W=01 

(b) Non-wandering set n((p): 

n«P) =1x1VW3X, 31t1> to >o =* (Pt(W) n W:; e: 0} 

Both wandering set Y(y) and non-wandering set fl((p) are invariant sets, but Y((P) is an 
open subset of X while 92(y) is closed. Any point in Y(q) or Q(T) is called wandering 
point or non-wandering point respectively. 

Wandering set and non-wandering set characterise the global structure of the flow 

on manifold, Le they figure out those special points on manifold which either be. carried 
away or stay where they are along the flow. We are also interested in the direction of 
movement of individual orbit, Le the long run behaviour of the trajectory of x, hence we 
define the limit set of the orbit of x. 

Definition A1.2.3 (Limit sets) 

(a) a-lin-dt set L,, (x): 

L(jx)=f ylyc=X, 3fti}-i-, cR, jimtj=-0o=>. Umyt. (x)=y 
i-)- I-)- II 

(b) (a-lin-tit set Lc, (x): 

y1 yEE X, 3 Iti 1 j-, c R, Um ti = oo => lim (p, L .. (x) =f i= 
1-)ý i--)- i (x) =yý 

It is easy to see that both u. - and co- limit sets are invariant under flow T, and they 
belong to the non-wandering set: 

La(x) C- Q(T), L, (x) C- Q((p) for any x c= X. 

These limit sets are very important in the study of the qualitative behaviour of 
dynamical systems and we go further to describe some of their subsets which are often 
encountered in the study of vector fields or differential equations. 
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Definition A1.2.4 (Stationary point or equilibrium If there is a point 
xO c: X which satisfies: 

(pt(xo) = xo for all t E=- R. 

then xO is called a stationary point or equilibrium of the flow. 

In the case of a stationary point, xO = L,, (xo )= Lw(xO). Denote all E the set of all the 

equilibria of the flow and the E is a closed subset of X. 

Definition A1.2.5 (Periodic point and periodic orbit) If there is a 
point xO c- X and there exists a T>O such 

that (pt., 
-T(xO) = xO for all t r= R 

then xo is called a periodic point for and the minimum of T is called the period of xO. In 

this case, 0( xO ) is called a periodic orbit (or cycle) when it is not a stationary point. 

Obviously, we can see that 0( x0 )= La(xo )= L(, (xo). Both the set of equilibria 

and the periodic orbit are limit sets and what is more interesting is the way they are 
approached by the trajectories of those points which is in the neighbourhood of them. 

Definition A1.2.6 (Stability of equilibria) Denote xO cz X is an 
equilibrium of flow (p, then 

(a) xO is stable if for every neighbourhood V of xo in X, Le, xO (-= V (-= X, 

there is a neighbourhood V1 V such that for every x r= V, , (pt (x) V for all t C= R. 
(b) xO is asymptotically stable if xO is stable and V, can be chosen so that for 

every xe VI, (p, (x) --> xo. as t-)oo. 

When an equilibrium is asymptotically stable, we call it a fixed point or a point 
attractor. It attracts some neighbour of itself. Generally, an attractor needs not to be a point, 
it can be a cycle or even a torus on a surface. Attractor of a dynamical system can be 
defined in the general terms. 

Definition A1.2.7 (Attractor) Let A be a sub-set of X, UDA is a 

neighbourhood of A with A ;? nLo yt (U). A is called an attractor of the system S, if and 

only if it satisfies the following properties: 
(1) Attractivity: for every V with V z)A, we have VD (pt (U) for all sufficiently 

large t; 
(2) Invariance: T, (A) = A, for all t; 
(3) Indecomposibility: if there exist another such set A' satisfying (1) and (2) and 

A:: )A', then A'=A. 
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These attractors are subsets of the limit sets of a flow and they represent some 
important types of invariant sets. The attractivity implies that they are some local centres on 
the manifold and to which the trajectories of some neighbourhood points are approaching. 
They are locally stable and are actually corresponding to the state of a real dynamical 

systems which are the only meaningful and observable ones in real world. We can 
differentiate different attractors which represent different state of dynamical systems, Le 

point attractor representing stable equilibrium, periodic attractor representing periodic 
oscillations and chaotic attractor representing chaotic behaviour. They can be 

mathematically defined and described. Much efforts have been devoted to the finding of the 
set of non-wandering points, among them, attractors are more interesting than others. 

Example 
Denote (p = eAt is a flow on X=R2, and it defines a vector field F=A and hence 

generates a differential equation 
d/dt (X) =AX 

where A=( (a, C)T, (b, d)'I) 

The non-wandering points of the flow, which change when a, b, c, d change, can 
be characterised as the following (figure A1.21): 

Det 

Sinks (attractors) 
Tr<O, Det >0 

Nodes 
A>O, Tr<O 

Scources (repellors) 
Tr>O, Det >O 

Spiral Sinks Spiral Scoures 
A<O, Det >0 

I 
A<O, Tr >0 

C- 
') 0 

Saddl6s 
Det<O 

Nodes 
A>O, Tr>O 

Figure A1.2.1 The taxonomy of limit sets of the 2-dimensional linear 
dynamical system (Tr = Tr A= a+d; Det = Det A= ad-bc; A= (Tr)2 4 Det) 
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There is no other limit set like periodic orbit or aperiodic orbit in linear dynamical 

systems, but even though, when the dimensions of the dynamical systems become higher, 

the taxonomy of the non-wandering points is more difficult. This is nothing comparing 
with the difficult in finding the limit sets for nonlinear dynamical systems and many work 
remains to be done. 

A famous global theorem concerning the existence of a period orbit of dynamical 

systems on a 2-dimensional manifold and the taxonomy of non-wandering points of a 2- 
dimensional nonlinear flow. 

Theorem (Poincare-Bendixson Theorem [Hirsh and Smale, 1974]) 
A non-empty, compact limit set of a flow on the plane, which contains no fixed 

point, is a closed orbit. 

There is no general results concerning the location of periodic orbit in higher 
dimensional systems. 

A1.2.2 stability and structural stability 

Those invariant sets, especially attractors, are important for understanding the long 

run behaviour of a flow on manifold. There is another concept which is in the centre of the 

study of dynamical systems, Le, the structural stability of a flow or vector field. For 
convenience, we use vector F=d/dt ((pt) rather than flow yt in our discussion about the 

structural stability. 

Definition A1.2.7 Equivalent and topologically equivalent: Two Cr vector fields, 
F, 0 are said to be Ck equivalent (r ýýk) if there exists a Ck diffeornorphism h which takes 

orbits O(F) of F to orbits O(G) of G. That is to say, for any x and tj, there is a t2 such that 
: h(Ft, (x)) = Gt2(h(x)). When k=O, we say that F and G are topologically equivalence, 

Definition A1.2.8 Structural stability: A Cr vector field F on a manifold X is 

= Ck (X)), F and structural stable if for any sufficient small Ck perturbations G=F+8 (5e 
G are topologically equivalent. 
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( or, there exists a neighbourhood N of F in Ck (X), N r= Ck (X), such that for 

every G E=- N, F and G are topologically equivalent. ) 

Structural stability is a much talked topic and is still one of the most important 

problem in mathematical dynamical systems theory. The discussion centres on the criteria 
for deciding whether a flow, or a vector, is structurally stable and whether structurally 
stable systems are dense in the space of dynamical systems. It has been proved that the set 
structurally stable systems on 2-dimensional compact manifold is open and dense [Peixoto, 
1962]. It is not true for dynamical systems on manifold with dimension *2! 3. [Smale, 
1967]. For 2-dimensional dynamical system, a general result has been proved by Peixoto. 

Theorem [Pexoto, 1962]. 
Let (p is the flow on 2-dimensional manifold X, T (or its vector field F) is structural 

stable if and only if it satisfies that: 
(i) all equilibrium are hyperbolic; 
(ii) all closed orbit are hyperbolic; 
(iii) there are no orbits connecting saddle points. 

(where a limit set is hyperbolic means that the eigenvalues of the vector field at that point 
(set) is not equal to 0). 

Although the concept of structural stability is one of the key concept in our formal 

model of evolving systems, mathematically, it is not perfect for discussion of the stability 
of dynamical system: structurally stable systems are not dense for all finite dimensional 

compact manifold. One can trace back to the definition of equivalence relation on which the 
concept of structural stability is based. New definitions of equivalence relation lead to new 
types of of stable dynamical systems or stable vector fields. The ultimate goal is to have the 
definition restrictive enough to permit classification of the stable ones, but, at the same, to 
have the stable vector fields genetic, that is, the intersection of a countable sequence of 
open dense sets. Much of the research in finite dimensional abstract dynamical systems in 

the last twenty years has been devoted to this general problems [Smale, 1967; Peixoto, 
1973]. One of the advances made recently is by Zeeman which defines an e-equivalence 
hence e-stability as an alternative to structural stability. It is argued that the the new 
definition has a number of advantages over structural stability, one of them is that (F--)stable 

systems are dense for on any finite dimensional compact manifold. For the definition of 6- 

equivalence is based on the Fokker-Plank equation, it is particularly aimed at dissipative 

nonlinear systems, including those with chaotic attractors [Zeeman, 1988b]. 
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A1.2.3 Vector fields with parameters 

The property of structural stability is the characteristics of individual dynamical 

system and it reflects how robust the system is under the external perturbations. It is of 
vital importance especially when we use a vector field on a manifold to describe a 
dynamical process. If the vector field is structurally stable, then the model can faithfully, to 
certain extent, describe the behaviour of the modelled system, or otherwise, it may be 
totally wrong to use it as a model. The importance of the structural stability of the 
dynamical model, or a vector field, which is employed to model a dynamical system, is 

emphasized by Arcil [Arcil, 1986]. 

From the practical point of view, a dynamical system is usually exposed to a 
changing environment (as as discussed in chapter 2 and 3). In the model, the impact of the 

environment to the behaviour of the system is usually represented by a parameter or a 
parameter vector ýt. As these parameters are varied, changes may occur in the qualitative 
structure of the system for certain parameter values. This change is called a bifurcation and 
it is closely related with the loss of the structural stability of the system. 

With the appearance of a parameter vector, the dynamical system takes form like: 

d/dt (x) = F� (x) , (x, t) r= XxR, g r= V (V is a subset of Rn' ) 

and the flow is then represented as 

(pl, (x, t) = ýpýt, t (x) 
When there is a parameter vector appearing in the vector field, a family of vector 

fields or flows are obtained. Invariant sets, like equilibria, periodic orbit etc. can be 
defined, but it has to take into account parameter X and those invariant sets might not be. the 
same for all g E: V. This leads to the concept of bifurcation. 

Definition A1.2.8 (Bifurcation) F,, is a family of vector fields on a 

n-dimensional manifold X, and ýt (=- V (V is a subset of R ni) is a parameter vector. When 

the field is not structurally stable at certain Xo (-= V, we say that the vector fields (or 

dynamical system) bifurcate at X0 and X0 is called a bifurcation point. 

The definition of bifurcation is based on the concept of "structural stability", 
structurally stability of a dynamical system is usually analysed by detecting bifurcation 

points. Various methods are proposed to find the bifurcation point of vector fields and it is 
known that there more numeric methods then analytical methods in bifurcation analysis. 
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As an example, considering dynamical systems described by the following one- 
parameter families of vector fields on X=V=R. 

(a) F�( x)= g- X2 
(b) Fg( x)= gX - X2 
(e) F 1l( X) =- (l+ g) X2 

The set of equilibrium can beeasily obtained analytically by setting Fjj( x) = 0. The 

phase portrait of these systems and their bifurcation diagram can be illustrated as the 
following (figure A1.2.2): 
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(a) 

Y 

(b) 

V 

(c) 

-40- direcflon of the vector fields 

stable equilibra (attractors) 

unstable equilibra (repellors) 

semi-stable equilibra (saddles) 

Figure A1.2.2 Bifurcation diagram for vector fields (a), (b), (c). 

This is the simplest case about the local bifurcation of dynamical systems. When the 

system has a higher dimension, the bifurcation diagram can be very complicated. Apart 
from some special case, there is no analytic solutions for a general bifurcation problem, 
especially when there are complex attractors (repellors) appearing through bifurcation, like 
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bifurcation to periodic attractors and chaotic attractors. In that case, it has to largely depend 

on the numerical techniques to find out bifurcation points and new attractors. This 

numerical method is even more than "convenient" and "important" when there is a 
bifurcation to a chaotic attractor. It is the an important method that can helps to identify the 

appearance of a chaotic attractor, because there is no analytical representation of a chaotic 
attractor. Various local bifurcation patterns will be discussed in section A 1.4 

A1.3 Invariant Manifold 

A1.3.1 Invariant manifold 

For the equilibrium is the only limit point of a linear dynamical system, the global 
behaviour of such a linear system depends on the properties of its equilibrium which in turn 
are decided by the matrix describing this system, like the example of a linear flow on the 
plain [see the above section ]. In a high dimensional system, to decide the stability of the 
equilibrium becomes more difficult, but, in principle, it can be done analytically. 'Mere is a 
whole body of knowledge about linear systems which provides numerical as well as 
analytical techniques for the stability analysis of the system's equilibrium [D'Azzo et. al, 
1987]. It is the foundation of linear control system analysis and design and it relies on 
matrix analysis. 

A nonlinear dynamical system can exhibit more complex behaviour than a linear one 
can do. It usually has a very complicated non-wandering set which, especially with its 

subset called "attractors", prescribes the long ran behaviour. The phase space, or the state 
manifold, is divided into different regions, which we call the basins of attraction, and in 

each region the system is attracted to an attractor. Depending on where the system starts, 
the system's long run behaviour is determined by the type of attractor in that basin. On the 
boundary of a basin, which is called a "separatrix" and is usually a saddle-like limit point 
(sets), the behaviour of the system is decided not by a attractor, but rather than by whether 
it is on the stable manifold or the unstable manifold ( see the following definition). 

Therefore, if we want to give a global picture of the behaviour of a system on the whole 
state manifold, we must look into different local attractors in different attracting basins 

separated by some usually complicated separatrices. This is a sharp contrast with the a 
linear dynamical system where its behaviour is decided globally by its equilibrium point. 
When there are external parameters, the behaviour of a nonlinear system becomes even 

more difficult because the change of parameter can lead to bifurcations. It is known from 

the above section that bifurcation means the loss of structural stability and the behaviour of 
the system can change qualitatively. 
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In dynamical systems theory, geometrical methods are employed which discuss the 
global structure of systems [Palis and Melo, 1982]. However, there are few global results 
in dynamical system theory which can be applied in the study of nonlinear dynamical 

systems arising in practical fields of research .A more practical method, which has been 

adopted by almost all the applied niathematicians in application, is based on a procedure of 
linearization. It is employed to study the local property of a system by linearizing a 
dynamical system in the neighbourhood of a limit point, or a limit set (in most cases, it is a 
fixed point) and then use the result of linear systems analysis. The following theorems 

guarantee that the procedure of linearization is valid in studying the local property of the 
system. 

For a non-linear flow (pt on X, there is a corresponding vector field f which gives the 

usual differential equation x= f(x), xc= X. An equilibrium (or fixed point) x of the flow 

is given by f(x*) = 0. Then the linearization of X= f(x) at x* is a linear dynamical system: 

y= Df(x*) y 

where 

DF(x*) 
af, I 

x-, * is the Jacobian at the fixed point a xj 
I 
ij--l 

and y= (yj, ..., Yn) T are local coordinates at x* on X. 

Definition A1.3.1 (Hyperbolic point) 
An equilibrium x* of a flow (p, (fieldf ) is said to be hyperbolic if no eigenvalues of 

Df (x*) has zero part. 
With a hyperbolic equilibrium x*, the nonlinear dynamical system can be simplified 

at that point locally to a linear flow. 

Theorem (Hartinan- Grobinan (Guckenheirner et. al, 1983]) 
Let x* be a hyperbolic fixed point of x'= f(x) with flow T, on X. Then there is a 

neighbourhood N of xI on which (p is equilvalent to the linear flow exp(Df(x*)t)x. 

With this theorem the local behaviour of a nonlinear dynamical system can be 

studied by looking into an equivalent linear flow whose behaviour is quite well known 

[Hirsch and Smale, 1974]. The following theorem says more about the system's local 

behaviour. 
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Theorem (Invariantnianifold) 
Let Tt be a flow on X with a hyperbolic fixed point x Then on a sufficiently 

small nerghbourhood N of xxENc:: X, there exist local stable and unstable manifolds: 
V, 

0c 
(x )=I xE X (p, (x)'--> x* as x --- )+001 

loc(X 
)=f XEE X1 (pt(X) x as x--ý -ool 

of the same dimension of Es and Eu for the linear vector fleid DF(x*) and tangent to them at 

x 

These theorems enable us to study the behaviour of nonlinear dynamical systems 
locally by resorting to its local equivalence of linear flows which is relatively easy to 
handle (there are well established techniques for linear flows and the whole body of 
knowledge depends heavily on the matrix analysis). By patching together all those pictures 
about the system's local behaviour, the global behaviour is clear. 

A1.3.2 Centre manifold theorem 

In the hyperbolic case, the local behaviour of a nonlinear dynamical system can be 

studied by a linear one, as we discussed above. In the non hyperbolic case, the problem is 

getting harder. By extending the idea of invariant manifold theorem to the local behaviour at 
non-hyperbolic fixed points of nonlinear flows, a centre manifold theorem is obtained. 
Without loss of generality, assume that the fixed point being dealt with is at the origin. 

Theorem (CentreManifoldtheorein) 
The origin is the fixed point of aU flow on X and f is the corresponding 

cy. with: vector field. Let A= Df(O) and divide the spectrum of A into three parts, (y, 

cis =1X1 ReX < 0} 

ci, X1 ReX = 01 

au={X lReX>OI 

Let the generalized eigenspaces of (7,, cy, and (7,, be Es, Ec, and Eu respectively. Then 

there exist Cr stable and unstable local manifolds Wlsc and Wu tangent to Es and Eu at 10C 
0 and a Cr"' centre (local) manifold W'I, tangent to Ec at 0. The manifolds Wls(,,, Wc, 

and Wul. c are all invariant for the flow (pt. The stable and undtable local manifolds are 

unique, but WOjOc need not be. 
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In general, the centre manifold theorem isolates the complicated asymptotic 
behaviour by locating an invariant manifold, centre manifold, tangent to the subspace 
spanned by the generalized eigen space of eigenvalues on the imaginary axis. It is very 
important and useful in situations where bifurcation occurs. Actually, the centre manifold 
provides a means for systematically reducing the dimension of the state spaces which need 
to be considered when analysing bifurcations of a given type. It underlies the well 
developed bifurcation theory, Le, Hopf bifurcation theory. [Marsden and McCracken, 
1976] and Carr [ Carr, 1981]. 

Apart form its technical usefulness, it is also implied that the behaviour of a 
dynamical system can only rely on a few factors at a critical point. This has been used as a 

rigourous support for Haken's "slaving principle" in synergetics [ Haken, 1983a; 1983b]. 

The invariant manifold theorem, especially the centre manifold theorem provides us 
with an important tool tool for studying the complex behaviour of nonlinear dynamical 

systems, particularly in the appearance of parameters. The analytical as well as numerical 
analysis of a nonlinear dynamical system through linearization procedure is rested on a 
solid mathematical theory. Although there are many cases that can not be tackled by this 

method, for example, in the case of chaotic behaviour, it at least enables us to solve part of 
the big problem. 

AIA Limit sets: definitions and descriptions 

A1.4.1 description and classification of limit sets 

A. equilibrium or fixed point 
As stated in Hartman-Grobman theorem, the local behaviour of a nonlinear 

dynamical system at a hyperbolic point can be studied by its linear equivalence. In the case 
of 2-dimensional dynamical systems, typically systems on the plain R2, the global 
behaviour of a linear dynamical systems is very clear and so is the local behaviour of any 

plain dynamical systems at a fixed point. Referring to the 2-dimensional linear dynamical 

system discussed in section A 1.2, the behaviour of the system is decided by the property of 
its fixed points. When the fixed point is hyperbolic, it belongs to one of the three distinct 

types: point attractor (asymptotic stable), point repellor (unstable), saddle point ( attracting- 
while-repelling) depending on the signs of the eigenvalue of the system given by the matrix 
A. In the degenerate case, it is a centre. They can be illustrated in the following figure. 

187 



In higher dimensional manifold, it is difficult to visualize these three different kinds 

of hyperbolic fixed point, but an attractor can be connected with the attracting behaviour of, 
that fixed point, a repellor with the repelling behaviour, and the saddle with the attracting- 
and-repelling behaviour of the system. For any nonlinear dynamical systems on a manifold 
with any dimensions, they exhibit the same attracting, or repelling, or attracting-and- 
repelling local behaviour in the neighbour of equilibria depending on whether the fixed 

points are attractors, or repellors or saddle points. To decide the type of a fixed point, what 
needs to be done is to find the signs of the eigenvalues of its Jacobian at that equilibrium 
point. This is described in the following theorem. 

Theorem [Hirsch, 1984] Let xO eX be an fixed poilit of a vectorfieldf on X, 
a) C the spectrum of the linear operator Df (xo) on the tangent space Xxo, then 

(a) IfReX<0forall Aea, thenxoisapointattractor; 
(b) IfRe; L>Ofoi-all ; Le(Ytizeiixoisapoititattiactoi,; 
(c) IfRe2, <Ofoi-soiiielecyaitdRe2, <Ofoi-othei-s, tlieitxoisa saddlepoint.. 

It is obvious from Hartman-Grobman theorem and the classification of fixed point of 
discussed in figure A1.4.1. 
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Figure A1.4.1 Hyperbolic and degenerate points 

B Limit cycles 
For a nonlinear dynamical system on a manifold M with dimension21, the above 

equilibria do not exclusively describe its local behaviour. It is often encountered that the 

system may have a complex nonwandering set which consists a periodic orbit or even a 

chaotic orbit. They represent the complex asymptotic behaviour in a sufficient small 

neighbourhood of those limit sets. In practice, the cyclic movement, or oscillation of a 

system is observed. In dynamical systems theory, such kind of oscillation behaviour is 

defined as a periodic orbit, we have already given the definition in mathematical terms in 

section A1.2. Similar to the classification of fixed points, we have three distinct periodic 

orbits, i. e., periodic attractor, periodic repellor, and saddle-like periodic orbit (in manifold 

with dimension ý! 3). They can be illustrated as: 
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periodic attractor periodic repellor 

Figure A 1.4.2 Periodic orbits 

saddle-like periodic orbit 

When it is a straightforward procedure to find a fixed point and to decide its type 
(subject to the difficult of solving algebra equations either analytically or numerically), it is 

a difficult task to find the periodic orbit. It is by equally difficult to find out whether a 
known periodic orbit is attracting, repelling, attracting-while-repelling. As a matter of fact, 

a great deal of efforts has been devoted to the analysis of the existence, stability, and type 
of periodic orbit of a dynamical system. The most successful case is when the dynamical 

system is described by a vector field which is a polynomial of the state variables. For plain 
dynamical systems (systems on R2), some special techniques have been developed to detect 
the periodic orbits [Guckenheimer et. al, 1983]. 

There is also an elegant theorem concerning the existence of a periodic orbit in 
dynan-dcal system on any manifold and it is called Poincare-Bendixson theorem [see section 
A1.3]. Theoretically, it can be used in any situation. However, there is no similar theorem 
for dynamical systems with dimensions higher than 3. There is a delicate method for 
finding a periodic orbit and it is based on concepts like "Poincare Section" and first return 
map and we will discuss it in the following section. 

Hopf bifurcation theory has also been widely used in locating periodic orbits. It 

provides analytical method for finding the periodic orbit as well as a index for its stability 
and it can be applied in a wide range of systems as long as there is a Hopf bifurcation. 
[Marsden et. al, 1976]. 

C quasi-periodic orbits 

A typical quasi-periodic orbit is one on the torus surface T2. It is the combination 
(Cartesion product) of two periodic orbits with different periods and the ratio of these two 
periods is an irrational number. The behaviour of such a quasiperiodic orbit is a bit more 
peculiar than a periodic attractor: it moves on a surface of a torus and it never re-passes 
what it has passed. It is wandering on the surface and it covers every point of that surface. 
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A quasi-periodic orbit exhibits some regularities because its behaviour can be decomposed 
to two periodic behaviour. It also exhibit some singularities because it is not exactly 
periodic: although it may come very close to its previous trajectory it never passes exactly a 
point it passed before. For these reasons it is called a quasi-periodic orbit. 

A quasi-periodic orbit, especially the one on T2 which is usually called "a torus", is 

a favourite for mathematicians working on abstract dynamical systems theory where it is 

easy to construct and its properties are very interesting [Smale, 1967]. When a dynamical 

system is represented as a diffeomorphism, a torus is an elegant example for demonstrating 

generic properties like structural stability, transversality etc.. Haken has reported that such 
quasi-periodic orbits do exist in practical systems (see, [Haken, 1983b], et. al. ). 

For some people, quasi-periodic orbits are grouped together with chaotic orbits as 
"aperiodic orbits" (or "aperiodic attractors"). It is, however, in this study that quasiperiodic 
attractors and chaotic attractors are treated as two different types of attractors. 

torus attractor 
(asymptotic stable torus) 

I 

Figure A 1.4.3 Quasi-periodic orbits 

torus repellor 
(unstable torus) 

Poincare section is one kind of the techniques which can be used to identify quasi- 
periodic attractors. Another one is the Lyapunov spectrum which we will introduce in the 
following section. 

D chaos and chaotic attractors 
Chaos, or chaotic attractor, is a very popular topic nowadays. It refers to the 

phenomena that dynamical behaviour of a detenninistic system is in any practical sense 
unpredictable and its quantitative behaviour has an extreme sensitivity to initial conditions. 
There is a very good introductory book on chaos by Gleick, although it is not so 
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mathematical [Gleick, 1987]. Another interesting introductory paper is by Shaw [Shaw, 
1981]. For a more mathematical discussion about chaos, see Guckenheimer and Holmes 

[Guckenheimer et. al, 1983]. 

The best way to get a feeling about what a chaotic attractor looks like is still to look 

at examples. There are several "classical" examples of chaotic attractors, i. e. Lorenz 

attractor, Rossler attractor, in flows and Smale's Horseshoe, Henon attractor for 
diffeomorphism [Shaw, 1981; Cvitanovic, 1989; Holden, 1986]. In a less restrict 
mathematical form, a chaotic attractor A can be defined as following: 

Definition Al. 4.1 (chaotic attractor) 
A is an attractor of a dynamical system, we call Aa chaotic attractor if and only if 

the asymptotic behaviour of the system in the neighbourhood of A depends sensitively on 
the initial conditions. 

figure A1.4.4 A chaotic attractor 

To find out that whether an attractor is chaotic or not, there is almost non rigourous 
analytical techniques except in a very special case where a Smale Horseshoe can be found 
[Zeeman, 1988a]. In most cases, we have to rely on numerical analysis which can provide 
us some infon-nation about the attractor. These numerical-analysis-dependent methods 
include construction of Poincare section, calculation of Lyapunov exponent, and 
calculation of fractal dimension and power spectra (Fourier spectrum) [Berge et. al, 1984; 
Eckmann and Ruelle, 1985]. They will be discussed in the following section. 

A1.4.2 Description of limit sets 

To detect and describe the limit set of a nonlinear dynamical system becomes very 
difficult when the limit set consists some cornplicated orbits like periodic orbit or chaotic 
orbit. When Many methods stressing numerical analysis, like using Lyapunov exponent, 

192 



calculating fractal dimension (for chaotic orbit), have received attention over the past ten 

years. Here we give a brief introduction of four of the most used methods finding and 
describing periodic, quasi-periodic, and chaotic orbit. 

A. Poincare section 
The principle underlying this method is fairly simple: to construct a diffeomorphism 

from a flow and analyse the behaviour of this diffeomorphism. This can be defined in 

rigourous terms. 

Definition A1.4.2 ( Cross section 
Let (p be a flow on M with vector field F and suppose that I is a submanifold with 

dim = dim M -1 satisfying: 
(1) every orbit of T meets Y, for arbitrarily large t>O and t<O; 
(2) if xEY, then F(x) is not tangent to 1. 

then I is said to be a cross section of the flow y. 
Let y (=- I and there are many t>O and t<O satisfying (pt(y) Ez- 1. Denote c(y) be 

the least positive time for which (pt(y)(y) e 1, then we can define a Poincare map as 

follows. 

Definition A1.4.3 (first return map) 
The first return map, or Poincare Map, P: is defined to be: 

P(Y) = (pt(y)(y) , yc= I 

By construction P is a diffeornorphism and it can be used to study the properties of 
flows in a manifold one higher dimension. As a matter of fact, an point attractor of P in Y, 

corresponds to a periodic attractor in the phase portrait of T on M. When the Poincare 

section has a complex structure, the underlying dynamical system has a more complicated 
behaviour [Berge et. al, 1984]. Actually, this method is also used for finding out other 
complex limit set of dynamical systems. This can be illustrated as follows (figure 1.4.5): 
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PI 
0 

Poincare section for a periodic orbit: 
a point 6) 

Poincare section for a quasi-periodic orbit: 
a closed curve 

Poincare section for a periodic orbit 
an irregular shape with many accumulating points 

Figure A1.4.5 Poincare map 

This method is also elegant in theory, but there are difficulties in practice. One of 
the difficulties is that not every flow has a cross section hence this Poincare section method 
is not always valid [Guckenheimer et. al, 1983]. Another problem is that since the 
definition of the Poincare map relies on the knowledge of the flow, Poincare map can not 
de computed unless general solutions of the corresponding differential equations have been 

obtained. It is a severe restriction for using this method. However, there are other 
techniques developed to extend this method by marring it with other methods. They 
include: 

(1) the use of perturbation and averaging methods to approximate the 
Poincare map [Guckenheirner et. al, 1983] 

(2) numerical analysis [Eckmann and Ruelle, 1985]. 

While the first one relies on mathematically proved perturbation techniques, the 

second one is based on not-so-rigorous numerical method which generating Poincare 

section through data processing. Both of them have been used in nonlinear dynamics 

analysis of complex physical and engineering systems [Thompson and Stewart, 1986; et. 
al]. 

B: power spectra (Fourier spectrum) 
In abstract dynamical systems theory, the Poincare section method enjoys the 

beauty of theoretical elegance when it is employed to deal with lower-dimensional systems, 
but it is not convenient to use in situations where the explicit solution of a differential 
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equation is not known. It is even worse when only a time series is given. Fortunately, 

there are some methods developed to cope with these problems and one of them is the 
study of Fourier spectrum or "power spectra". 

Fourier spectrum method has long been used to extract useful information from a 
experimentally provided time series of dynamical systems in various fields and it is very 
successful in some cases where regular (periodic) oscillation and irregular (aperiodic) 

oscillation must be differentiated [Berge, 1984]. When the oscillation is a superposition of 
oscillations which differ in amplitude, period, ratio of harmonics etc., Fourier spectrum can 
provide the necessary information to describe the oscillation. Here in our discussion, this 
method is employed to analyse the dynamical behaviour of a system from its time series 
often generated experimentally. 

The Fourier transform in continuous and discrete form are quite familiar to us [See 

any text book]. Through these transform, a time series can be transformed into another one 
called "Fourier spectrum" which is believed to convey information for the detection of the 

system's behaviour. 

It has been proved that different kinds of Fourier spectra correspond to different 

oscillation behaviour of a dynamical system corresponding to a time series studied [Berge 

et. al, 1984; Eckmann & Ruelle, 1985]. The results can be summarised. as: 

(1) If there is only one fundamental frequency and a few harmonics in the 
Fourier spectrum, the oscillation is periodic and hence the system has a 

periodic orbit there (if the orbit is an attractor as well, the system has a 

periodic attractor). 
(2) If the spectrum has several peaks representing different fundamental 

frequencies, the oscillation is quasiperiodic and hence the system has a 

quasi-periodic periodic. 
(3) If the spectrum is continuous, it indicts that the osciflation is chaotic and 

hence the system posses a chaotic orbit. 

These can be illustrated in figure A 1.4.6. 
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Fourier spectrum for periodic orbit: 
one peak (or several peaks with 

t 
one foundemental frequences) 

Fourier spectrum for quasi periodic orbit: 
several peaks 

representing fundemental frequences 
No 

t 

Fourier spectrum for chaotic orbit: 
continuous spectrum 

t 

figure A1.4.6 Fourier spectrum for different oscillating orbits. 

While Fourier spectrum method is powerful in detecting complex limit sets like 

periodic and chaotic orbit, it can not be used to detect fixed points (although it is relatively 
easy to find fixed points). Many work has been done in Fourier spectrum analysis and 
many numerical algorithms have been developed to implement it in computers. In general, 
it is very good for detecting oscillating orbits and it is one of the often used method to find 

out a chaotic orbit. However, it provides no information about how such orbits look like on 
phase plain which are very important in studying a chaotic orbit. 

C Lyapunov Exponent 

Another well developed and often used method for determining the limit sets of a 
dynamical system is Lyapunov exponent method. It is based on the so called "ergodic 

theory" of dynamical systems . The basic idea is that there is a topologically invariant 

quantity called Lyapunov exponent (or characteristic exponent) which reflects the 

expanding or contracting property of a trajectory on phase plane [Eckmann and Ruelle, 
1985]. 

The Lyapunov exponent, or a Lyapunov number is the average exponential rate of 
divergence or convergence of near by orbits in phase [Shaw, 1981]. It is usually employed 
to characterize the divergence of trajectories on an attractor of a dynamical system. When 

the exponent is negative, the trajectory is contracting hence the associated limit set is 

attracting. Any system contains at least one positive Lyapunov exponent is defined to be 
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chaotic and the magnitude of the exponent reflects the time scale on which the dynamical 
behaviour of a system becomes unpredictable. 

For a dynamical system on manifold X described as: 
F(x) 

we are concerned here the expanding and contracting property of a trajectory starting from 

the initial condition x. 

Denote 

ait Fit 
and T,, 

(ax 
ox 

and it has been proved that the following limits exist: 

t*t1 lim«T, 
.)T,, 

) it' A� 
t--)- 

liinllnllTtull=X('), ifuEEEx()\ iti) 
t--)- tx 

X(1)> X(2)> 
... > X(n) are the logarithms of the eigenvalues of A, E(i) is the subspace of where x 

Rn corresponding to the eigenvalues: 5 e of A., and is the norm (not necessarily Euclidean 

These X() are called the Lyapunov exponent of the dynamical system. 

These Lyapunov exponents are related to the expanding or contracting nature of 
different directions in phase space. When the exponent is negative, the trajectory is 

contracting along that direction. When it is positive, it is expanding. A attractor is a limit set 
to which any trajectory around it is contracting in all directions. In such a way, the various 
type of limit sets of a dynamical system is connected to Lyapunov exponents. In three 
dynamical systems, this relation can be illustrated as figure A1.4.7 
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point attractor 

(0 �0' -) 

toroidal attractor 

(0 � -' -) 

periodic attractor 

(+, 0, -) 
chaotic attractor 

Figure A1.4.7 The Lyapunov exponents and various attractors. 

Compared with the spectrum method, Lyapunov exponent method provides the 
information of a trajectory in the phase space. Again, we need intensive computation to find 

out the exponents in the case when the time series of a dynamical system is presented. To 
determine the Lyapunov exponent from a time series known experimentally is one of the 
active research fields related to nonlinear dynamics [Wolf et. al, 1985]. For the means to 
detect and describe chaotic attractor is so scarce, to calculate the Lyapunov exponent is the 
most used method. With the appearance of a positive exponent, we know for sure that the 
system is in a chaotic state and a chaotic attractor is hence found. 

D Fractal Dimension 
The study of chaos is connected with a new field of research called "Fractal 

Geometry" although the latter is in a wider sense regarded as a new geometry for complex 
forms or dynamics. The concept of fractal dimension and "fractal geometry" were 
introduced by a French mathematician Mandelbrot for die study of complex form originally 
found in complex iteration maps like the Julia map [Mandelbrot, 1983]. It is based on the 

concept of "Hausdoff dimension" and has then been generalized to measure various 
complex forms, notably forrns with the property of self-similarity. 

The fractal dimension of a set in a metric space. is related to the concept of "capacity 
dimension" and "Hausdoff dimension". They can be defined as follows. 
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Let A be a subset in a compact Banach space X and the natural metric to use is the. 

one defined by the norm. Suppose A can be covered by the minimum number of N(r, A) of 
open baHs of radius r. Then we define: 

diMK(A) = lim sup 
InN(r, A) 

r--)O ln(l/r) 

as the capacity of A. It is also called the capacity dimension of A. 

If we denote by (Y a covering of A by a family of sets (YK widi diameter 

dK = diamdk: 5 r A, we write 

Cc n-ý (A) = inf 
cc 

I 

We call Mc(A) = lim mo'(A) the Hausdoff measure of A in dimension a, and 
r-40 r 

dimH A= supla: MÜ'(A) Al 

is defined the Hausdoff dimension of A. 

It is easy to see that for every compact set A, the following inequality holds: 

dimH A: Eý d'MK A 

When dirnH A= diMK A, we call it afractal dimension of set A, i. e. 

dimF A= dimH A= diMK A 

In general, the fractal dimension of a set is in agreement with the usually Euclidean 

dimension, Le, a straight line has dimension 1, the plain has dimension 2. However, they 

are not always the same and the fractal dimension of a set is not necessarily an integer (this 
is why it is called "fractal dimension"). For a set with complex structure, like the Cantor 

set, the fractal dimension is ln2/ln3 [Farmer et. al 1983] while the Euclidean dimension is 

0. Actually, the full strength of the fractal geometry lies in the fact that the property of 
being non-integer makes it in a particular position for describing of chaotic attractor of 

nonlinear dynamical systems [Eckmann &Ruelle, 1985; Stein, 1989]. 

Fractal dimension is topologically invariant. It is used as a quantity for the description 

of the limit set of a dynamical system. It has been proved that qualitatively different limit 

sets have different fractal. dimensions and the they can be illustrated in table A 1.4.1 
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TableAl. 4.1 Fractal dimensions for different limit sets of 3-dimensional systems 

limit set 
fractal dimension 

fixed point 0 

periodic orbit I 

quasiperiodic orbit 2 

chaotic orbit 
(Lorenz attractor) 2<d<3 (2.07) 

To calculate the fractal dimension of a limit set is the way to detect the type of that 
limit set and it is of vital importance for the detection and description of chaotic attractor. 
Apart from fractal dimension, there are many other dimensions defined for the description 

of chaotic attractor, like the information dimension, Lyapunov dimension at. al.. A great 
deal of effort has been devoted to this subject and the calculation of fractal dimension form 

part of the core of nonlinear dynamics [Mandelbrot, 1983; Eckmann et. al, 19851. 

So far in this section, we have given the definitions and descriptions of different 
limit sets possibly possessed by nonlinear dynamical systems. They describe the 
asymptotic properties of the trajectories of a system and prescribe the system's long run 
behaviour independent of the initial conditions. 

A1.5 Local bifurcation 

A1.5.1 Local bifurcation 

The complex behaviour of a dynamical system is locally decided by its limit sets, in 

particular by four distinct attractors: point attractor, periodic attractors, quasiperiodic 
attractors and chaotic attractors. However, many systems with practical interests are 
affected by some external parameters. When these parameters change, the limýit set or 
attractors will change and hence the long run behaviour of the system. It is known from 

section A 1.3 that this is called a bifurcation. 
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Those limit sets are defined locally, so are various bifurcations. To discuss the 
various local bifurcation patterns often encountered in the study of nonlinear dynamics, 

assume the the dynamical system is specified by a field vector f on manifold X and 
described as: 

dx/dt =f (x, g) (ý, 9) C= XxC, 
X is a n-dimensional. manifold and g is a parameter vector on a r-dimensional manifold C. 

When the parameter vector g is in a space with dimension ': a 2, it is usually very 
difficult to analyse the bifurcation except in a very special case which will be discussed in 

the following section. In our discussion here, assume that C =R, i. e., there is only one 
parameter. 

Further suppose that discussion is restricted to to fixed point bifurcation, Le the 
bifurcation happens on the set of fixed points: 

L=I (xo, go) :f (xo, go) = 0) 

It is already known that a fixed point bifurcation happens at (xo, go) when the 
Jacobian of f, Jxf (xo, go) at that point has zero or pure imaginary eigenvalues. When 

there is a simple zero eigenvalues, the bifurcation is called a elementary bifurcation. When 

there is a pair of pure imaginary eigenvalues, it is called a Hopf bifurcation. 

A1.5.2 Elementary Bifurcations 

Let us first consider the case of a simple zero eigenvalue with corresponding right 
eigenvector (p and left eigenvector Nf, we assume that 

f (XO' VO) = 0, Jxf (xO' MY = 0' 11(p 11 = 1. 
there are following local bifurcation patterns at the bifurcation point (xO, VO). [Langford, 

1981; 19831. 

A Saddle-node bifurcation 
Assume that in addition to the condition (--), we have: 

a =- VJIf (xo, go) #0, b-= VJ,,, f (xo, go) (p(p : PL-0 
Then in the neighbourhood of (xo, go) there exists a unique branch of solutions of the 

equation for the dynamical system discussed. The solution is of the form ( x(r), p(r)) for 

small r in R, given by: 

x(r) = xo + r(p + 0(r2) 
, ýt(r) = po + r2(-b/(2a)) + 0(r3) 

This is called a saddle-node bifurcation and the bifurcation diagram is showed in Figure 
A 1.5.1 (a). 
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B Transcritical bifurcation 
Suppose that the system has a trivial solution (x(g), g) for all ge R. Without loss 

of generality, we denote x= xo Q. Assume that in addition to the condition (-ý), we have: 

c =- NfJ., jjf (xo, go)T: P60, ba VJ,, f (xo, go) (pT #0 
Then in the neighbourhood. of (xo, go) there exists a unique smooth branch of nontrivial 
solutions ( x(r), g(r)) of the form: 

x(r) = qo + 0(r2) 
, ýt(r) = po + r2(-b/(2c)) + O(r2) 

This is called a transcritical bifurcation and the bifurcation diagram is showed in Figure 
A 1.5.1 (b). 

C Pitchfork Bifurcation 
If the vector field f satisfies die symmetry condition: 
Sf (X, g) =f (SX, R) and SýL =-g 

where S is the linear operator on X (the frequently encountered case is that f is an odd 
function. ). Together with the condition (*), we assume that: 

c -= VJ,,,, f (xo, go)(p ;, 60, d =- VJxxxf (xo, go) (p(p(p ;, -0 
Then in the neighbourhood of (xo, go) there exists a unique smooth branch of nontrivial 

solutions ( x(r), [I(r)) of the form : 
x(r) = r(p + 0(r2) , P(r) = po + r2(-d/(6c)) + O(r4) 

This is called a transcritical bifurcation and the bifurcation diagram is showed in Figure 
A 1.5.1 (c). 
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-7 ---11- 0#0 

saddle-node bifurcation 

transcritical bifurcation 

(c) pitchfork bifurcation 

unstable stable 

Figure A1.5.1 three elementary bifurcation patterns 

The stability of the new branch of solutions after these different kinds of elementary 
bifurcation can be decided by some standard techniques of eigenvalues analysis of matrix, 
like the Lyapunov-Schemit method [Langford, 1983]. These bifurcation patterns can be 
described in the following normal forms: 

saddle-node g± X2 =0 

transcritical gX ± X2=0 

pitchfork ýIX ± X3 =0 

A1.5.3 Hopf bifurcation 

When there is a pair of pure imaginary eigenvalues, a qualitatively different 
bifurcation pattern can be observed which is called Hopf bifurcation. It is about the 
bifurcation through which a fixed point gives birth to a periodic orbit [Marden and 
McCracken, 1976; Hassard et. al, 1981]. 

00 
r, 
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Hopf bifurcation is the most studied and most well known local bifurcation. It 
happens in a dynan-dcal system with one parameter when a pair of imaginary eigenvalues 
goes across the imaginary axis. This bifurcation is believed to be responsible for the 

appearance of oscillation behaviour in a wide range systems, like in a chemical system 
(Brusselator), mechanical system, hydrodynamics, biological system , ecological system 
economic system [Hassard et. al, 1981; Zhang, 1989; Guckenheimer et. al, 1983]. 

There different vision about the Hopf-bifurcation theorem and here we give theorem 
in a recipe-like fon-n [Hassard et al, 1981]: 

Theorem: HopfBifurcation (A Recipe-Sunimmy [Hassard et. al, 1981]) 

Suppose a differential equation described by a vectol-fi-eldf with a single paralneterv: 
dx 
Tt =f(x, 11) 

thefollowing oiteria can be used tofind a Hopf bifurcation anfind out the stability, period of the 1 
1. Find the equilibriun (or eqldlibria) x* (y) of the vectorfield by setting: f(x,, /. I) = 0, and th( 

the eigenvalues of the Jacobian inatrix: 

e 1. 
. cj( Ay) Y) (ij = I, 

and order them according to ReX, :ý ReA, 2 2ý ... 2ý ReAv. 

2. Find the critical value p. such that Re; Ll ( yz ) =O. If 

(a) A, and. X2are a congugatepair (, 11(y) =A2(p))fory in an open intervalilicludin, 

(b) Re. Vj (g,, ) ý-- 0, 

(c) Inz X, (/Ix) 0 0, and 

(b) Re),, p(ll. ) <0U =3, ..., 71), 

then there is a periodic orbit appearing in the neighbourhood of px. and we say that there 

hopf bifurcation. 

3 There are tivo different kind of bifurcations: 

(a) ifx. (px) is an attractor, then, there is a pedodic attractorfor pe (11. x, ll)for sonm 

this is called a supercritical hopf bifurcation. 

(b) if ifx* (px) is a centre with maginal stability, then, there is a periodic repellorfor 

pe (y", yx)foi- some y" < lix and this is called asuboitical hopf bifurcation. 
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(There are formulas for the periodic orbit and the period and index for the stability of , 
the periodic orbit, see [Hassard et. al, 19811) 

The supercritical and subcritical Hopf bifurcation can be illustrated in figure A1.5.2 

ý,,! (0) 
;, ýý 

-(a- 
9< Ite R P-C 

9> 9C 

supercritical Hopf Bifurcation 

9< PC It = P-C 9> 11C 

suberitical Hopf Bifurcation 

Figure A1.5.2 Hopf Bifurcation 

The Hopf bifurcation is called a subtle bifurcation because the amplitude of the periodic 
orbit is a continuous function of the parameter. There are other bifurcation patterns where 
the amplitude of the appearing periodic orbits not continuous over the parameter and it is 

called an catastrophic bifurcation [Abraham, 1985; Thompson & Stewart, 1986]. Such 

catastrophic bifurcations, like "explosive" bifurcation [Zeeman, 1982] and "dangerous" 
bifurcation [Abraham, 1985] have been observed in a wide range systems, especially in 

engineering systems [Stewart et. al, 1986]. 

A1.5.4 Other bifurcation patterns 

The above mentioned bifurcation patterns, include the Hopf bifurcation are the 
fundamental local bifurcation patterns in nonlinear dynamical systems. For a moderate 
nonlinear system with one or two parameters, there are many other bifurcations which are 
more complicated [Langford, 1983; Hak-en, 1983b; Abraham, 1985; Stewart et. al, 1986] . 
Except in some very special case, there is usually no analytical solutions for these 

205 



bifurcations. Especially when there is the appearance or disappearance of a complex 
attractor, like a quasiperiodic attractor or a chaotic attractor, it is usually not possible to 

resort to analytical techniques for the bifurcation analysis, not mention the analytical forms 

of the new branch of solutions. 

One well-known path of bifurcation leading to the appearance of a chaotic attractor 
is through "periodic doubling cascade" [Feigenbaum, 1983; Thompson and Stewart, 
1986]. During this process, a periodic attractor with period 1 bifurcates so that to give birth 

to a periodic attractor with period 2. The new periodic attractor undergoes a further 
bifurcation, when the. parameter changes further, to a periodic attractor with period 4. The 

process goes on and on, and usually a periodic attractor with a period 2n bifurcates to a 
periodic attractor with a period 2111 . When die system reaches a accumulating point, there 

appears a chaotic attractor. This "period-doubling" process has been observed in various 
situation, and in the case of a map, it has been proved that there is a universal constant, 
called Feigenbaum constant, governing this process [Feigenbaum, 1983]. 

Al. 6 Catastrophe Theory 

A1.6.1 dynamical systems xvith a potential function 

As mentioned in the above section, except in some special cases like Hopf 

bifurcation, there is no universally applicable analytical solutions to the bifurcation 

problems. Bifurcation analysis becomes more difficult in the following case: 
(1) In a system with dimension; -:! 3, there might be many different attractors and 

hence there are many possibilities that the bifurcation can occur. When a bifurcation 
leading to the appearance of periodic attractors or chaotic attractor occurs, it is usually 
impossible to have an analytical solution. 

2) When there is more than one parameter in the system, bifurcation becomes even 
more difficult and we have to take account of the change of all of the parameters of which 
the change of each of them can lead to complex bifurcation patterns. 

Of course, when the dimension of a systern is high and also the parameter vector is 

multiple dimensional, things almost become unmanageable. In that case, we have to mostly 
depend on numerical simulation [ Thompson and Stewart, 1986]. Every system has to be 

treated individually and the bifurcation analysis usually means tentative computer 
simulations on large and fast computers. 
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In a very special case when the dynamical system is a gradient one, there is a well 
developed theory to analyse the bifurcation from point a attractor to point attractors when 
several parameters change simultaneously. This is called the elementary catastrophe theory, 

or catastrophe theory in general. 

Catastrophe theory was originally introduced in early 70's as "a new mathematical 
tnethodfoi- describing the evolution offorins in nature" [Zeeman, 1977], and Thom goes 
further to claim that it "... has to be considered as a theory of general nwiphology" (Thom, 
1975]. From the dynamical systems theory point of view, catastrophe theory studies the 
qualitative behaviour of dynamical systems with several external parameters but where only 
point attractors are considered. For elementary catastrophe theory, it deals with a special 
kind of dynamical systems, i. e. gradient systems which can be described by a "potential 
function" V of state x and parameter g, Le, V(x, ýt). Here the states x lie in some 
Euclidean space and g as a variable in a lower dimensional Euclidean space (dimension : Eý. 
4). The qualitative behaviour of such a dynamical system is described by its equilibria set 
and it changes when the parameter vector changes. Elementary catastrophe theory has 
classified that when dimension of g :! ý 4 those f have seven local canonical forms which 
describe the qualitative change of the system depending on the change of those parameters 
[Thom, 1975; Zeeman, 1977]. 

In Thom's seminar book, catastrophe theory is based on the idea of dynamical 

systems theory and the theoretical analysis is centered about structural stability, generic 
property, transversality etc. while elementary catastrophe theory is treated by others from 

the point of view of singularity theory [Poston et. al, 1978; Smale, 1978]. In Thom's 
book, catastrophe theory ...... is not a nzathentatical thewy, but a whole body of ideas" and 
its philosophical and methodological implications go far beyond a new mathematical tool 
[Thom, 1975; Zeeman, 1977]. However, here we discuss catastrophe theory, to be 

accurate, elementary catastrophe theory, within the framework of dynamical systems theory 

and it serves as a body of mathematical knowledge which deals with the bifurcation 
behaviour of a special kind of dynamical systems concerning only their equilibria, or fixed 

points. 

Denote a dynamical system by a vector field f and it is described by: 

dx/dt =f (x, g) (X, g) GXxC, 

X is a n-dimensional manifold and g is a parameter vector on a r-dimensional manifold C. 
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It is gradient if and only if there is a function V: XxC -> R such that 
f(x, g) =- gi-ad V(x, g) . 

(p is regarded as constant) 
where grad V(x, [t) is the gradient of V(x, g), called the potential function, which is 
defined as: 

aa 
grad V(x, ýt) ý-V(x, ý-V(X, X, X- In 

This is possible only a very strict condition is met, Le.: 

axj axi, 

where fk is the k th element of f. This is a severe limit to the application of elementary 
catastrophe theory in bifurcation analysis of dynamical systems. 

Apart from the elementary catastrophe theory which deals with the bifurcation of 
equilibria of a gradient system, Smale has proved a theorem concerned about the structural 
stability of gradient systems. 

Theorem [Smale, 1961 (see Smale, 1967)] 
Gradient systems for which all fixed points are hyperbolic and all intersections of 

stable and unstable manifold transversal, are structurally stable. 

This is one of few theorems about structural stability of dynamical systems with 
any dimensions. 

A1.6.2 Elementary catastrophe 

Under this circumstance, the behaviour of a gradient dynamical system can be 

analysed by looking a family of functions: 
V: XxC-ýR 

where: X is the state space, dim X=n; 
C is the parameter space, or control space, dim C=r and it is called die codinzension 
of V. In elementary catastrophe theory, r<4. 

The catastrophe manifold M is a subset of XxC defmed by: 
M=f (x, g) I DV(x, [t)=O I 

The cawstrophe inap X is the restriction to M of the natural projection 
7c: xxc->C 

for which: 7c(x, p)=g 
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The singularity set S is the set of singular points in M of X, at which, X is 

singular, Le: 
I(x, g) 1 (x, g) c= M, rank(DX) <r1 

The bifurcation set B is the image X(S) in C: 
B=IgIg E=- X(S) CI 

The bifurcation set B is the set on which the number and nature of the equilibria of 
the system change. It lies in the parameter space, Le control space C and when the 

parameter changes so that it crosses the boundary of the bifurcation set, the system loses its 

structural stability. The state or behaviour of the system changes qualitatively, hence a 
bifurcation occurs. The usually case is that the system jumps from one state to a 
qualitatively different one and a bifurcation from one point attractor to two point attractors 
(plus an unstable equilibrium) can be observed. This can be illustrated by the following 
fold catasn-ophe and cusp catastrophe: 

(1) Fold catastrophe 
The potential function of a gradient dynamical system can be reduced to the 

canonical form as: 
13 

Va=V(x, a)=ýx +ax, xe R, aeR 

The catastroPhe manifold: 
M=f (x, a) Id Va(X) =01 TX 

=I (x, a) I X2 +a=Ol 

The bifurcation set in the control space is: 

(x, a) E=- M and 
d 

Va(X) = 
dx 2 

=f 01 

It is easy to show that when the parameter a changes from positive to negative, the 

system will change from a state with no minimum potential to a state of minimum potential, 
Le a point attractor. The bifurcation diagram can be illustrated as follows: 
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Figure A1.6.1 Elustration of fold catastrophe 

This can be compared with the fold bifurcation discussed in section A 1.3. It a quite 
trivial case in elementary catastrophe theory. Others are more complicated. 

(2) Cusp catastrophe 
The potential function is a fourth order polynomial of state variable x with two 

control parameters (a, b). It can be written in the canonical form, through the standard 
procedure called "universal unfolding", as follows: 

Vab = V(x, a, b) =1x 
4+ 

aX2 + bx, x(=- R, (a, b) eR2 4 

We say that function V has corank 1 and codimension 2. According the 

outlined procedure, we can detect the catastrophe manifold M, bifurcation set B 

etc as follows. 

Catastrophe manifold: 
M=1 (x, a, b) 1 

-ý- V�b(X) =01 dx 

=( (x, a, b) 1 
X3 + ax +b = 01 

The singular set of M is: 

d2 s=1 (x, a, b) 1 (x, a, b) c: M and ýx2 Vab(X) ý-- ()l 

={ (x, a, b) 1 
X3 + ax +b=0 and 3X2 +a=OI 

The bifurcation set is: 
B=X(S)=icjm(S)=J(a, b) I(x, a, b)ESI 

=f (a, b) I 4a 3+ 27b 2=0} 
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Comparing with the fold catastrophe, the cusp catastrophe exhibits many original 
properties which lies the full strength and originality of elementary catastrophe theory. This 

is made more clear by looking at the catastrophe surface. 

1) Modality and inaccessibility 
Look at the catastrophe manifold (or catastrophe surface) which represents the 

equilibrium of th system. There is a folding part corresponding certain values of parameters 
a and b. There the potential function has more than one local minimum point which means 
that the physical system has many possible distinct states. Some of them, like those points 
in the middle surface of the folding region, are inaccessible by the system (which are 
corresponding to maximum potential points). 

(2) Catastrophe: sudden jump 
When the parameters change across the boundary of the bifurcation set in the 

control space, the system can change abruptly from one equilibrium state to another: either 
jumps from a point in the lower space to one in the upper space or vice versa. It can be 

observed in physical systems, like the Zeeman catastrophe machine, or social systems, like 
the outbreak- of war, that tiny change in the forces or motivations lead to abrupt change in 
behaviour [Zeeman, 1977]. This is where the name "catastrophe theory" comes from. 

(3) Divergence 
It is easy to see that starting from two near points near the origin the system can 

move towards different part of the catastrophe surface which implies that the system stay 
in two distinct states because of the small difference in the initial condition. It can explain 
that why a small, negligible factor can lead to a totally different state even the environment 
is almost the same (that means the parameter changes the same way). However, divergence 
here is different from the effect of random factors we are going to discuses latter. 

(4) Hysteresis 
The behaviour of the system becomes very interesting when the parameters change 

to cross the bifurcation set. We can see from figure A1.4.2 the following phenomena: 
when parameter a increases to cross B, the system moves in the lower surface and jumps 

suddenly to the upper surface at a bifurcation point, but the system will not jump from the 
upper surface to the lower one at the same point. The whole process is not strictly 
reversible. 
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Figure A1.6.2 Mustration of the cusp catastrophe 

Those are the properties of gradient dynamical systems revealed by the elementary 
catastrophe theory. In those more complicated elementary catastrophes, like swallowtail, 
butterfly et. al, these phenomena can also be observed and described. 

It has been proved in elementary catastrophe theory that there are only seven 
canonical catastrophes for all those gradient dynamical systems with not more than Al 

parameters and these forms can be summarized as: 
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Table A1.6.1 Seven Elementary Catastrophes 

Catastrophe number of 
_ 

number of Universal Unfolding 

parameters state variables 

fold 1 1 
13 
ýx -ajx 

cusp 2 1 42 
x aIx - a2x 

swallowtail 3 1 532 
3x aIx -ja2x -a3x 

butterfly 4 1 6432 
ýx -ýajx -ýa2X -2a3X -a4X 

hyperbolic 3 2 33 xl+xi+alxlx2+a2X, +a3X2 

3222 
ellipic 3 xl-xlxi+al (xl+x2)+a2x I+a3x2 

2422 
parabolic 42 XIX2+X2+alxl+a2X2+a3X, +a4X2 

Among all the seven elementary catastrophes, cusp catastrophe is the most studied, 
well understood, and most important one. It has a solid physical system as its prototype, 
e. g the Zeeman catastrophe machine [Poston and Stewart, 19781. It exhibits all those 
characteristics of a gradient dynamical system that a catastrophe model can reveal. This 

cusp catastrophe model has been used in a wide range of systems including behaviour 

systems, social systems [Zeeman, 1977; Poston and Stewart, 1978]. There has been many 
controversies about the applicability of catastrophe theory in behaviour and social sciences 
and further doubts have been aroused about the originality of catastrophe theory in general 
[Smale, 1978]. However, the application of catastrophe theory in the physical systems, 
engineering systems in particular, is well justified [Poston and Stewart, 1978; Gilmore, 
1981]. Here in our discussion of dynamical systems, we use it as a body of mathematical 
knowledge which can be used to analyse the bifurcation of gradient systems their behaviour 

are affected by more than one parameter. The idea of catastrophe theory as it is presented in 
Thom's original book "Structin-al stability and Motphogenesis" goes beyond that: it 

provides a general framework for studying any dynamical process by using dynamical 

systems theory. This reflects, latter on, in Abraham's "morphodynamics" and the whole 
vision of modem mathematical dynamical systems. This is the philosophical, theoretical 

and methodological foundation of this study. The concepts of "structural stability", 
"attractor" is generalized to described the state and the dynamical process of systerns. 
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A1.7 Global bifurcation 

For nonlinear dynamics with external parameters, there are various forms of local 

bifurcation patterns, as can be seen from the above sections. The global behaviour of such 
a system depends not only on where the system starts (the initial conditions ), but also 
which region the parameter is in. When the parameter changes over a wide range of 
values, it is possible that various local bifurcations can be observed. To paste all these local 
bifurcation diagrams together, we can have a picture of the global bifurcation patterns over 
the whole range of the parameter [Abraham &Shaw, 1985; 1988]. 

With such a global bifurcation picture, the time evolution of the structure of the 

system becomes clear and it is known that what the state of the system might be depends 

on value of the parameters in the parameter space. To get such a global bifurcation picture, 
it needs to work out all the local bifurcation patterns and it is by no means a easy job. As 

mentioned above, there are still many work to be done before all the local bifurcation 

patterns are known to us. Among all these problems, bifurcations leading to quasiperiodic 
attractors and chaotic attractors need more attention. For the lack of analytical tech-niques in 

those situations, we have largely rely on the intensive and tentative computer simulations. 
Various numerical methods and many new algorithms have been developed to detect the 
limit sets. The above mentioned methods, i. e., Poincare section, Fourier spectra, 
Lyapunov exponent and fractal dimension have been used widely in achieving this goal. 
The power of these methods have been demonstrated by some researchers, like Thompson 

and Stewart who use computational techniques as a main means for the study of nonlinear 
dynamics [Thompson et. al, 1986; Thompson, 1989; Thompson et al, 1990]. 
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