
              

City, University of London Institutional Repository

Citation: Ong, C.F. (1992). Computer-aided design of tension structures. (Unpublished 

Doctoral thesis, City University London) 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/7994/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


COMPUTER-AIDED DESIGN OF TENSION STRUCTURES 

Submitted by Chee Fatt Ong 

for the degree of Ph. D. 

at the Department of Civil Engineering, 

City University, London. 

September, 1992. 

020252523 



Contents 
Page 

Acknowledgements (v) 

Abstract NO 

PART I 

1. General introduction to tension structures 
1.1 Introduction 1 
1.2 Structural performance as a function of form 5 

1.2.1 Behaviour under load 5 
1.2.2 Dynamic behaviour 6 

1.3 An overview of Parts I, II and III of this thesis 7 
1.3.1 Part I 7 
1.3.2 Part II 7 
1.3.3 Part III 8 

2. Review of numerical solution methods 
2.1 Introduction 10 
2.2 Element stiffness relations 11 
2.3 Iterative solution methods 16 

2.3.1 Newton-Raphson method 16 
2.3.2 Modified Newton-Raphson method 17 
2.3.3 Secant stiffness method 19 

2.4 Incremental solution methods 20 
2.5 Explicit analyses 23 

2.5.1 Minimisation methods 23 
2.5.1.1 Gradient vector 25 
2.5.1.2 Method of Steepest Descent 28 
2.5.1.3 Conjugate Gradient method 29 
2.5.1.4 Scaling and transformation of energy surface 29 

2.5.2 Relaxation methods 33 

3. Dynamic relaxation analysis of tension structures 
3.1 Introduction 38 
3.2 Physical basis 38 
3.3 Method formulation 39 

3.3.1 Basic equations 39 
3.3.2 Numerical stability 41 
3.3.3 Viscous damping constant 46 
3.3.4 Kinetic damping 47 
3.3.5 Natural stiffness relations 50 

3.4 Conclusions 58 

4. Compression and bending elements incorporated into the DR scheme 
4.1 Introduction 59 

-1- 



Page 

4.2 Moment-curvature relations 60 
4.3 Non-linear effects 67 
4.4 Boundary conditions 71 
4.5 Implementation into the dynamic relaxation analysis 71 
4.6 Other considerations 73 
4.7 Numerical results and comparisons 75 
4.8 Conclusions 80 

PART II 

S. Definition of surface shapes and their differential geometry 
5.1 Introduction 82 
5.2 Base vectors on a surface 84 
5.3 The metric tensor and the first fundamental form 86 
5.4 Associated tensors 88 
5.5 The coefficients of the second fundamental form 88 
5.6 Principal curvatures, Gaussian curvature and mean curvature 89 
5.7 Spherical image 90 
5.8 Faceted surface 92 
5.9 The Gauss equations and the Christoffel symbols 93 
5.10 The Gauss' theorem and the Codazzi equations 93 
5.11 Fundamental theorem of surface theory 95 
5.12 Comments on the Gaussian curvature 95 
5.13 Geodesic coordinates 96 
5.14 How does Gaussian curvature distort the fabric? 99 
5.15 Membrane equilibrium equations 101 
5.16 Form-finding and cutting patterns determination 104 
5.17 Conclusions 106 

6. Numerical form-finding and fabrication patterning 
6.1 Introduction 108 
6.2 Review of solution methods available for the form-finding 109 

6.2.1 Non-linear displacement analysis 109 
6.2.2 Siev-Eidelman method 109 
6.2.3 Force density method 111 
6.2.4 Least squares method 112 

6.2.4.1 Overdetermined least squares solution method 114 
6.2.4.2 Underdetermined least squares solution method 115 

6.2.5 Optimisation method 116 
6.2.6 Iterative smoothing method 117 
6.2.7 Combined approach 118 

6.3 Form-finding by the dynamic relaxation method 118 
6.3.1 Cable nets 119 

6.3.1.1 Geodesic nets 119 
6.3.1.2 Uniform mesh nets 122 
6.3.1.3 Principal curvature nets 122 
6.3.1.4 Momentless compression boundaries 123 

-11- 



Page 

6.3.2 Membrane structures 123 
6.3.3 Air-supported structures 127 

6.4 Fabrication patterning 129 
6.5 Behaviour under load 130 
6.6 Conclusions 131 

7. Interactive design of tension structures 
7.1 Introduction 133 
7.2 Underlying philosophy 134 
7.3 The design process 138 
7.4 Project manager 139 
7.5 File manager 139 
7.6 Graphic display 140 
7.7 Node control 143 
7.8 Topology 145 
7.9 Mesh generation 153 
7.10 Element generation 155 
7.11 Fixity 157 
7.12 Elastic properties 159 
7.13 Stress/force and elastic controls 161 

7.13.1 Membrane elements 161 
7.13.2 Line elements 163 

7.14 Boundary control 165 
7.15 Analysis 167 
7.16 Loading definition 170 
7.17 Patterning 173 
7.18 Cloth width adjustments 179 
7.19 Structures visualisation 186 
7.20 Further visualisation options 193 
7.21 Beam elements 202 
7.22 Fabrication geometry 210 
7.23 Post-processing 213 
7.24 Listing 215 
7.25 Conclusions 216 

PART III 

8. Loadings: static and dynamic 
8.1 Introduction 219 
8.2 Design loads 219 

8.2.1 Snow loads 221 
8.2.2 Wind loads 222 

8.2.2.1 Gust spectrum 222 
8.2.2.2 Quasi-static wind loads 224 
8.2.2.3 Fluctuating wind loads 228 

8.3 Conclusions 229 

-iii- 



Page 

9. `, Dynamic responses of tension structures- 
9.1 Intröductibi ^- 
9.2 A brief review of available solution schemes 

9.2.1 The mode superposition method 
9.2.2 The direct step-by-step time integration methods 

9.3 Dynamic analysis by an explicit numerical scheme 
9.4 Visco-elastic material behaviour 
9.5 Incremental procedure to account for on/off buckling 
9.6 Pneumatic stiffness and damping 
9.7 Added mass effects 
9.8 Basic assumptions 
9.9 Potential flow theory 
9.10 Solution of the Laplace equation 
9.11 Kinetic energy considerations 
9.12 A diaphragm embedded in an infinite rigid plane 
9.13 A shallow pneumatic dome 
9.14 A generalised discrete source method 
9.15 Comparison of ¶P' coefficients calculated numerically 

and analytically 
9.16 The shallow pneumatic dome and its imaginary mirror image 
9.17 Explicit dynamic analysis with added mass calculations 
9.18 Numerical examples and discussions 

9.18.1 Static load analysis 
9.18.1.1 Centrally applied load 
9.18.1.2 Asymmetrically applied load 

9.18.2 Dynamic analysis 
9.18.2.1 Centrally unloaded dome 
9.18.2.2 Asymmetrically unloaded dome 

9.19 The dynamic response in the presence of wind 
9.20 Summary and conclusions 

10. Summary, conclusions and recommendations 
10.1 Summary and conclusions 
10.2 Recommendations 

References 

231 
234 
235 
235 
237 
238 
241 
245 
246 
248 
250 
253 
261 
262 
266 
269 

276 
281 
283 
286 
289 
289 
290 
293 
297 
311 
315 
319 

324 
330 

332 

-iv- 



Acknowledgements 

I would like to thank the many people who have helped and advised during 
my research and preparation of this thesis. 

I am particularly grateful to Dr. Michael Barnes for his guidance and 
supervision throughout my studies and research at City University especially 
his 'lessons' on many occasions on how simple and practical engineering 
solutions can be found. 

I would like to express my appreciation to Dr. David Wakefield in his role as 
the industrial supervisor during the (1988-1990) period of the Teaching 
Company Scheme between City University and Buro Happold, for his support 
and successful management of the scheme. 

I am very grateful to Dr. Chris Williams of the School of Architecture and 
Building Engineering, University of Bath for his patience and advice on 
chapters 5 and 9 of this thesis. In addition, my thanks to the Computer Unit of 
the University of Bath for use of their computer facilities. 

I must thank Hilda Iu for all her invaluable help throughout the duration of 
my research at City University especially in the preparation of the figures 
included in this thesis. 

Further thanks are due to Buro Happold, and in particular Colin, Angus, 
Paul, Richard and Grant for their assistance and use of their facilities in the 
preparation of this thesis. 

-V- 



Abstract 

This thesis consists of three parts. Part I (chapters 1-4) gives a review and 
description of the basis for the numerical modelling of tension structures. 
The discussion in Part I leads to the conclusion of a need for an interactive 
design procedure for tension structures which is the subject under 
consideration in Part II (chapters 5-7). In the design of tension structures, an 
area which requires special attention is the dynamic response often initiated 
by the action of a natural wind. In Part III (chapters 8 and 9), this area is 
examined in detail and a strategy is proposed to give an improved modelling 
of dynamic response. The numerical procedure developed is assessed by 
comparison with previously reported test results for a pneumatic dome. 

Chapter 1 gives a general introduction to tension structures, and their main 
characteristics and behaviour are briefly described. From both the structural 
and architectural points of view, tension structures (classified as either 
prestressed cable nets or doubly curved membranes) do offer a number of 
benefits which arise from their characteristics and behaviour. The different 
types of cable nets which can be contructed are outlined, and various possible 
types of membrane structures and membrane materials which can be used are 
described. In addition, the form-finding and load analysis stages in the design 
process of tension structures are briefly discussed. An overview of Parts I, II 
and III of this thesis is also included. 

As a result of the flexible nature of a tension structure, large deformations 
often occur under loads acting normal to the surface. In addition, the coated 
woven fabrics exhibit material non-linearities, ie. the material properties vary 
under loads. In other words, a full non-linear structural analysis accounting 
for both material and geometric non-linearities is required in order to give a 
realistic modelling of the behaviour of a tension structure. Chapter 2 reviews 
numerical methods which have been widely reported for dealing with non- 
linear structural analysis. From the review, it will be noted that the dynamic 
relaxation (DR) method is well suited to solving the highly non-linear 
problems which occur particularly in the case of tension structures. 

The dynamic relaxation method with a finite element idealisation of the 
structure is chosen as the solution scheme for all the analysis work in this 
thesis, and a detailed description of the method is given in chapter 3. Features 
of the method which are particularly useful for the design of tension 
structures are: 

(a) the effective decoupling of the equations of compatibility and 
equilibrium which allows complex material properties modelling and 
the use of slip cables, etc., and 

(b) the use of a 'kinetic' damping procedure which permits gross changes 
in support geometries to be made during interactive form-finding 
without the possibility of numerical instability. 
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Although the main surface spanning elements may be purely tensile, many 
tension structures will employ compression and bending elements for their 
support. For example, as a means of providing support to a large span tension 
structure, a compression boundary is considered to be an efficient alternative 
to tension anchorages. In a sense, a compression boundary is complimentary 
to the tension elements in the structure as these elements also act as supports 
to the compression boundary. This gives the advantage of a compression 
boundary comprising of slender sections. The compression boundary is 
modelled as a series of beam elements. The moment-curvature equations of a 
beam element expressed in the form of natural stiffness relations, are 
developed in chapter 4. In addition, the non-linearities, both geometric and 
material, and boundary conditions which can be dealt with by the beam 
elements are considered. An outline is given of the implementation of the 
beam elements using the dynamic relaxation method. Included in chapter 4 
are also the results to test problems which have been set up in order to 
validate the underlying theory and implementation of the beam elements. 

As tension structures often exhibit complex surface curvatures, a study of 
surfaces, their properties and behaviour is appropriate, and useful in the 
understanding of concepts applied in the design process. This study is the 
subject of chapter 5 which focusses on the relevant topics of differential 
geometry. A few useful ideas from differential geometry form the basis of 
certain procedures implemented into the form-finding and patterning stages 
being considered in chapter 6. The derivation of the equilibrium equations for 
a surface when acted on by applied loads is also given in chapter 5. 

The discussion in chapter 6 is about the stages of form-finding and static load 
analysis in the design process. A review of the available solution methods for 
the form-finding problem are given in this chapter. In these methods, the 
solution can be for either the unknown geometry or unknown stresses, or 
both. The adopted approach in this thesis is to solve for the unknown 
equilibrium geometry given the stress distributions, and initial and boundary 
conditions. The controls which can be used during form-finding to achieve 
the desired geometries of cable nets and membrane structures are discussed. 
The equilibrium geometry derived from the form-finding stage has to be 
subsequently evaluated for its performance under loads at the load analysis 
stage. After an equilibrium geometry which behaves satisfactorily under loads 
has been achieved, the corresponding cutting patterns are developed in the 
case of membrane structures. 

Recent advances in interactive computer graphics technology have made it 
possible to develop a fully interactive CAD system for tension structures. The 
development of such a CAD system is the subject of discussion in chapter 7. 
The CAD system integrates together the form-finding, load analysis and 
fabrication patterning stages, resulting in a continuous design process. It 
demonstrates how the various concepts discussed in Part I of this thesis fit 
together within an interactive environment implemented with an effective 
and functional user interface. It is illustrated in chapter 7 how such a user 
interface has been achieved. The CAD system fully exploits the capabilities 
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offered by the available computer hardware such that the computations 
involved during analysis of the structure, in generation of surface shaded 
graphic images and so on, can be executed at very high speeds. As a result, the 
CAD system can respond quickly to the user and is thus consistent with the 
interactive nature of the design process. The discussion in chapter 7 also 
provides an insight into the various procedures involved throughout the 
design process. The CAD system has produced a number of benefits of which 
the main one is the saving in design time which has been achieved. As the 
CAD system is highly user friendly, only a short learning period is required, 
thus enabling it to be used more widely among designers. The CAD system 
also serves as a useful tool for the communication of ideas between the 
engineer and the architect. In the design of a tension structure unlike that of a 
conventional building, there is often close cooperation between the engineer 
and the architect right from the early stages of conceptual development. 

In chapter 8, the possible loads which may act on a tension structure during 
its service life are considered. These loads are applied to the structure at the 
load analysis stage in the design process. In most cases, the design loads are 
those due to snow and wind. An accurate assessment of the loads is essential 
in order to achieve a structurally sound and economic design. In addition, it 
should be possible to represent the loads in a form which can be easily applied 
in the structural analysis. The considerations which are involved in the 
assessments of the snow and wind loads are outlined. 

The dynamic responses of tension structures which result from the action of a 
natural wind or initiated by other means is considered in chapter 9. A tension 
structure when set into motion causes additional mass, stiffness and damping 
terms to be generated. A brief review of the available solution schemes for the 
dynamic analysis of structures in general is outlined. These solution schemes 
include the mode superposition method and the direct step-by-step time 
integration methods. In this chapter, the explicit central difference time 
integration method is the adopted solution scheme for the dynamic analysis 
of tension structures. The creep effects which arise from the visco-elasticity 
present in most membrane materials are also considered. A strategy based on 
the Voigt-Kelvin model is used to calculate for the accumulated creep strains. 
An outline is given of an incremental procedure to allow for the on/off 
element buckling which occurs during dynamic analysis. The internal air 
stiffening effect due to changes in internal volume and pressure of an air- 
supported structure as it deforms during dynamic analysis,, sralso considered. 

When a membrane undergoes vibrations, the surrounding air attached to the 
membrane is mobilised into motion as well. This in turn gives rise to the 
added mass effects. It is the main aim in chapter 9 to develop a means of 
modelling the added mass effects and for this purpose, an approach based on 
the potential flow theory has been formulated. The basic assumptions and 
concepts of the potential flow theory which are relevant to the approach are 
outlined. In the approach, it is required to solve the Laplace equation and the 
solution can be in terms of either a distribution of sources or doublets over 
the membrane. In this case, a distribution of sources are used to calculate the 
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kinetic energy of the surrounding air when set into motion. An indication of 
the added mass effects is given by the ratio of the kinetic energy of the 
surrounding air to the kinetic energy of the vibrating membrane. The 
mechanics which are involved in the determination of this ratio known as 
the added mass coefficient, are outlined. The proposed approach is applied to 
investigate the dynamic response of an air-supported dome and some 
encouraging results are obtained. 

A summary of the work discussed in previous chapters is given in chapter 10 
which also includes the main conclusions of this thesis. The discussions in 
previous chapters suggest that there are various areas in which further 
research work can be pursued and these areas are outlined in chapter 10. 
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Part I 

Chapter 1 

General introduction to tension structures 

1.1 Introduction 

There are many examples of tension structures both in nature, such as soap 
films and spider webs, as well as man-made structures. The traditional 
examples of tension structures were the tents used by nomads and armies, 
and the large tents used for circuses and exhibitions. These tents were 
designed by craftsmen rather than architects. In addition, natural materials 
were used in their construction and generally, only single curvatures or none 
at all was present. One of the earliest modern tension structures to be 
constructed on a grand scale is the saddle shaped roof for the Raleigh Arena! 
in North Carolina in 1952 designed by Mathew Norwicki with Fred Severud. 
This monument was a tremendous source of inspiration to many architects 
and in particular, two who had developed the basic principles behind the 
Raleigh Arena roof to produce unique and even more striking large span 
spaces, ie. Saarinen's Yale ice hockey rink in 1956 and Kenzo Tange's two 
Tokyo Olympic stadia in 1961. Since those early days, many. advances have 
been made in the design of tension structures in terms of analysis methods, 
materials and construction techniques. . 

Frei Otto has been principally responsible for the full development of the 
architectural possibilities of tension structures. The Raleigh Arena had also 
greatly inspired Frei Otto into exploring the idea of surface stressed structures 
as a means of providing cover. From the mid-1950s, he made exhaustive 
studies of small scale models using nets, cables, soap bubbles and elastic 
membranes simply to realise the huge possiblities of shapes which could be 
generated. As a result, Frei Otto had acquired an understanding of the 
behaviour of tension structures which was far ahead of the engineer's ability 
to provide suitable design solutions for turning his small models into large 
scale reality. His earliest projects consisted mainly of relatively small scale 
tents and it was not until the mid-1960s that the spans rose above 40m. 
Among the impressive list of well known tension structures in which Frei 
Otto was involved are the German Federal Pavilion for Expo 68 in Montreal 
and the Munich Olympic Stadium. 

A tension structure offers a number of attractive features. It can be classified 
as soft architecture as opposed to the hard architecture of conventional 
reinforced concrete and steel buildings. There is clearly a growing awareness 
among architects of the large vocabulary of surface forms which can be 
achieved with tension structures. They appeal to many architects as a means 
of expressing their innovations to cover or use open spaces to great effect or 
possibly to-provide contrast with surrounding conventional 'hard' buildings. 
The inherent beauty of the free-form curved surfaces exhibited by tension 
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structures -combined with their lightness of feel, and the quality*of space and 
light obtainable underneath are factors which make them attractive options. 

A tension structure as the name suggests, derives its load carrying capacity 
mainly from the constituent tension elements and a key element is its surface 
curvature. A flat piece of membrane has to deform and provide a component 
of the tension in the membrane to resist any applied loads. An element in 
tension is the most efficient structural element since the full section can be 
stressed to the design strength. There is no need to design the section for 
flexure or buckling. Another characteristic of tension structures is their light 
weight, in general due to their thin or small. sections. As a result, possible 
savings can be gained in terms of the structure itself and supporting 
components which transmit loads from the structure to the ground. In 
addition, tension structures can offer economic cover over areas with very 
large, clear spans. As there are many elements of a tension structure which 
are prefabricated components, the erection time and thus, on-site 
construction costs can be reduced. Being light and flexible, a tension structure 
can also more readily adapt to extreme conditions such as earthquakes. 

In general, tension structures are technically difficult to design and offer 
challenges to the architects, engineers and other specialists involved. The 
complex behaviour of tension structures is beyond the grasp of most 
architects except perhaps the most technically equipped. Consequently, this 
calls for far greater influence of the structural engineer in the design than is 
the case for conventional buildings. The engineer becomes involved right 
from the early stages of conceptual development alongside the architect. 

The modern day tension structure can be properly engineered to exploit 
advances in materials and analysis methods. These structures differ from 
traditional tents in the following aspects [1291 : 

- they are much more durable, 
- they are often very large, 
- they cannot be designed purely from practical experience, 
- they use higher strength materials, 
- they should be wrinkle free, 

- they should not flap about, 
- they are expected not to fail. 

There are two broad categories of tension structures, namely cable nets, and 
membrane or fabric-structures. Cable nets are often used to provide cover 
over large spans, supporting a variety of materials as cladding; these materials 
may include concrete, timber, coated fabrics and glass. There are various types 
of cable nets which can be constructed, ie. uniform mesh, geodesic and 
principal curvature nets. A uniform mesh cable net typically has a 0.5m 
spacing so that it is safe to work on. The best known uniform mesh cable net 
is the roof over the stands of the Munich Olympic Stadium. A uniform mesh 
cable net is prejointed at the slack state so that the internode spacing is 
constant except for those adjacent to boundaries or internal supports. A 
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geodesic net is also known as a minimal net in which the cables over the net 
surface each takes a path of minimum length, with constant tension 
throughout its length. The intersections between cables over the surface are 
jointed only after pretensioning. A principal curvature net is one in which 
the cables follow lines of principal curvature over the surface. This results in 
quadrilateral meshs which are plane and suitable for glazing (provided 
sufficient shearing flexibility is allowed at the junction of panels). 

For membrane structures, the woven fabric material used consists of two sets 
of crossing yarns with one set in the warp direction and the other set in the 
fill direction of the fabric material. A flexible coating (such as PVC) is then 
applied which provides some shearing stiffness and weather protection to 
both the structural fabric and the building interior. The prestresses are applied 
in the warp and fill directions of the fabric material. This is to avoid large and 
unpredictable strains in the bias direction of the fabric material. There are 
various forms of membrane structures which can be constructed. Within a 
defined boundary, a membrane structure prescribed with a uniform prestress 
(ie. equal warp and fill prestresses) gives rise to a minimal surface an example 
of which is the soap film. A minimal surface has the least possible surface 
area and the minimum strain energy. It is possible to modify the surface by 
changing the ratio of prestresses in the warp and fill directions until the 
desired form is obtained. The form of a membrane structure is also strongly 
influenced by the types of supports and boundaries used in the structure, 
which may be beams, walls, arches, or boundary and/or ridge cables. As can be 
easily demonstrated with a soap film, a membrane cannot be supported by a 
point. At a mast point in general, there. will be two ridge cables, sometimes 
three or four, which transfer the stresses in the membrane to the mast. For a 
conical membrane structure, there are often a large number of radial cables 
coming together at the mast. An example of a membrane structure in which 
ring supports are used is the series of 40m x 40m tent covers over the Hajj 
Pilgrim's terminal at Jeddah in Saudi Arabia. A compression ring beam can 
also be used to provide support as in the case of the Raleigh Arena and the 
Calgary Olympic Stadium. A further form of membrane structure is the air- 
supported or pneumatic structure in which the membrane is prestressed by 
an internal pressure so that the tensile prestress is sufficiently high not to be 
reduced to zero by external loads. A fan is needed to maintain the internal 
pressure, which can be raised in limited periods, and access has to be through 
some form of air lock to prevent loss of internal pressure. The internal 
pressure does not have to be large as the membrane is lightweight. Air- 
supported structures provide a very economic structural type of enclosure of 
large spans for instance, to provide a roof over a stadium in the case of the 
Silverdome Stadium at Pontiac, USA. 

There is a range of industrial fabrics which can be used for the membrane 
material. The commonly used coated fabrics are PVC-coated polyester, teflon- 
coated glass fibre and silicone-coated glass fibre. The PVC is a versatile coating 
which can be applied to all base cloths. Although the polyester base cloth has 
strength, it degrades with time through reactions mainly to ultra-violet light 
and rainwater. This degradation hardens the coating and makes it brittle. In a 
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well-stressed tension structure, the fabric does not flex much and this is not a 
problem. Unfortunately, the appearance suffers with discoloration and dirt 
retention, and this usually determines the end point of the fabric. The PVC- 
coated polyester fabric has a useful life of about 10-15 years after which it 
needs to be replaced. 

Teflon-coated-glass-fibre- was developed about -20 years ago to overcome the 
disadvantages of the PVC-coated polyester. It is translucent and, while 
initially buffcoloured, it soon bleaches white and is self cleansed by the action 
of rain and wind. It can also be stressed up to a high degree and is inherently 
fire resistant. Neither the glass base cloth nor the teflon coating degrade in 

sunlight. However, the strength of this material is reduced by damage from 

creasing during fabrication and installation, and by the consequent possibility 
of ingress of water into the fibres (wicking). Consequently, the fabric needs to 
be patterned, fabricated and installed with great care bearing in mind the 
difficulties in handling and folding the fabric. Silicone coating also offers 
excellent durability and is more flexible, and so does not suffer from 
mechanical damage due to handling/folding. The silicone-coated glass fibre is 
however seamed by gluing, which requires the skills of a specialist fabricator. 
Moreover, the seams can tend to degrade with time. For this reason, the most 
frequently used material for permanent structures (typically with a 30-year 
life) is teflon-coated glass fibre. Both the teflon-coated and silicone-coated 
glass fibres result in a cost per square metre of finished fabric equal to about 
three times that of the PVC-coated polyester. As a result, owners usually 
prefer to use the PVC-coated polyester fabric and replace it every ten years or 
so. 

From a purely structural viewpoint of fabric, in addition to fire resistance, 
robustness against abrasion and tearing, dimensional stability and resistance 
to ageing with time, biaxial stress-strain characteristics become very 
significant in the accurate patterning of engineered forms. As well as 
construction stretch which is different in the warp and fill directions, fabric 
suffers from crimp interchange and in the case of polyester fabrics, creep. 
Construction stretch and creep are allowed for in the patterning of the fabric 
by compensating the patterns so that they stretch out to their correct size 
under prestress. Under typical levels of prestress (for example, uniform 
values in warp and fill of 2 kN/m for PVC-coated polyester or 5 kN/m for 
teflon-coated glass fibre), the 'stretch' in the fill direction may be 4% and in 
the warp direction perhaps -1%. This is because the fill yarns straighten out 
and the crimp in the weave goes into the warp. This effect is called 'crimp 
interchange' and accounts for much of the extension of glass fibre fabrics 
where the fibres themselves are fairly stiff. 

For either a cable net or a membrane structure of woven fabric construction, 
there are two sets of cables or yarns which ideally would follow the lines of 
principal curvature so that they have opposing curvature. For a woven fabric, 
this may conflict with the need for simplicity and economy in the cutting and 
jointing pattern. The most practical alternative, which does not entail 
distortion of the weave, is to base fabric cutting patterns on geodesic lines 
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over the surface. The surface is prestressed in order to ensure structural 
stability and to provide adequate stiffness against deflection. When acted on 
by applied loads, the resulting stresses in the surface are given by the 
prestresses combined with the stresses due to elastic deformations. 

1.2 Structural performance as a function of form 

The form of a cable net or membrane structure cannot be chosen arbitrarily. 
Due to the lack of flexural stiffness, the surface shape and the internal stresses 
must interact to satisfy equilibrium at all times. The form of the structure has 
to meet this requirement and such a form is developed at the form-finding 
stage in the design process. A detailed account of the form-finding stage is 
given in chapter 6. During form-finding, a prestressed equilibrium form is. 
developed which satisfies the design requirements from both the structural 
and architectural points of view. 

1.2.1 Behaviour under load 

The form of the structure derived from form-finding needs to be evaluated in 
terms of its performance when subject to possible loads which may act upon it 
during its useful life. These loads may be the structure self-weight, wind, 
snow and so on. The accurate definition of the wind and snow loads is of 
great importance. However, these are notoriously hard to predict when each 
structure can have a highly individual and complex shape. The wind load 
often constitutes the most significant loading for the design in which uplift 
generally dominates. The downward loads are taken by the sagging set of 
tendons and the upward loads by the hogging tendons (the tendons here refer 
to either cables in the case of cable nets or yarns in the woven fabric material 
for membrane structures). The tension along any particular tendon remains 
sensibly constant so local high pressures are taken by the surface deflecting. 
This means that a stressed surface is a load averaging system; the maximum 
tension in a particular sagging tendon is caused by the maximum average 
downward pressure in the area of the tendon. 

As a result of the flexible nature of tension structures, large deformations 
often occur under loads acting normal to the surface. In some cases, the loads 
themselves will be deformation dependent. Within the limits tolerated by the 
chosen cladding system, large deformations are acceptable provided they are 
not accompanied by severe local changes in shape or excessive in-plane shear 
distortions. The ponding problem may arise as result of large deformations in 

6L 
the absence of proper drainage away from tjdeflected pocket. If this 
happens, additional rain or melt water will run into the pocket which will 
become larger and larger until the fabric tears or the supporting structure 
collapses. By ensuring that there are no flat horizontal areas over the surface, 
the pönding problem may be avoided. For canopy structures which are used 
primarily in the summer, it is sensible to install drainage grommets in areas 
where ponding can occur. Furthermore, the resulting stresses from the load 
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analysis should be checked, and the form of the structure may in turn need to 
be revised in order to reduce or eliminate the inadequacies of its performance 
under loads. It may be required to increase the prestress levels in order to 
limit the deflections. On the other hand, a change of curvature which means 
a change in prestress ratios, may be the preferred solution. 

1.2.2 Dynamic behaviour 

Generally, the lightweight and flexibility of tension structures makes them 
susceptible to dynamic loading due to wind. Tension structures have natural 
frequencies of vibration which could interact with the wind to produce fairly 
large oscillations. In practice, these wind induced oscillations are made 
structurally acceptable by the very high material damping and adequate 
prestressing. For large structures, the dynamic behaviour may be studied by 
aeroelastic model testing in a boundary layer wind tunnel in which the 

rt turbulent boundary layer is suitably modelled. A detailed discussion of the 
dynamic response of tension structures, is given later in chapter 9. 

Wind tunnel tests are carried out in order to determine the pressure 
coefficients, examine the frequencies of vortex shedding from bluff edges and 
detect possible aeroelastic instabilities. In the case of Munich Olympic 
Stadium for example, following wind tunnel testing, the edge rim was shaped 
to avoid dynamic excitation of the structure by buffeting vortices [10]. The 
wind pressure coefficients, and in the case of an air-supported structure, the 
internal volume and pressure will change significantly with deformations. 
The variations of internal pressure give rise to an air stiffening effect. 
Consequently, the fundamental modes and frequencies of an air-supported 
structure may differ radically from those predicted by theory which does not 
account for the variations in internal pressure. 

A tension structure when set into vibrations can also give rise to secondary 
interactions between the structure and the surrounding or enclosed air which 
increases the virtual mass of the surface structure due to added/attached air 
mass effect. The wind/structure interaction may also lead to additional 
aerodynamic forces. These additional forces may produce further structural 
deformations which then lead to further aerodynamic forces. This interaction 
may tend to become smaller until a condition of stable equilibrium is reached 
or conversely may lead to instability. Such responses constitute an aeroelastic 
behaviour. As a result, the dynamic analysis of tension structures is a 
complex aeroelastic problem. At present, the practical solution to this 
complex problem is the wind tunnel testing of an aeroelastic model of the 
actual structure. In chapter 9, an attempt has been made to devise a numerical 
approach for predicting the dynamic response of tension structures. This 
approach is still under development and further work is needed in order to 
eventually achieve a realistic alternative to the wind tunnel testing. 
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For the (current) routine design of most tension structures however, it is 
usual to employ equivalent quasi-static wind loading for the analysis of the 
structure. 

1.3 An overview of Parts I. 11 and III of this thesis 

1.3.1 Part 

Physical modelling used to be the primary means of designing tension 
structures. For cable nets, simple physical models can be constructed from 

wire meshes and small cable clamps, and such models have been used by Frei 
Otto to design the German Federal Pavilion for Expo 68 in Montreal. The 
physical models of membrane structures can be made from soap-films and 
stretch fabric of one form or another such as lycra. Although physical models 
are useful for the qualitative study of form, concept and visual assessment, it 
is difficult to extract quantitative design data such as forces, stresses and 
component geometries from the physical models due to their fragile nature 
and the problems associated with taking accurate measurements on them. 

The numerical modelling methods were developed to overcome the 
difficulties associated with physical modelling. Part I of this thesis gives a 
review of these numerical methods which can be classified into iterative 
methods, incremental methods, minimisation methods and relaxation 
methods. It will be shown that the dynamic relaxation (DR) method (ie. an 
explicit relaxation method which involves central difference integration) has 
a few advantages that make it well suited for dealing with tension structures. 
Consequently, the dynamic relaxation method is the chosen numerical 
modelling method in this thesis. 

1.3.2Patr1_1 

The adopted approach for form-finding using the dynamic relaxation method 
differs radically from the usual methods of structural design and analysis. In 
conventional structures, the engineer will propose a trial form of the 
structure and then analyse it for various loading conditions to determine the 
resulting stresses. This procedure when applied to tension structures which 
typically have complex, doubly curved surfaces is faced with the difficulty of 
having to describe such surfaces before the loads can be applied. In general, 
mathematical representations do not exist for arbitrary surface geometries. In 
the adopted approach, this process is reversed, ie. stresses (or prestresses) are 
specified a priori and the resulting form is then determined. This offers an 
efficient and effective means of achieving the form which meets the 
architectural and structural requirements. A trial and error procedure will 
consequently be required in the solution for the desired form. This in turn 
leads to the need for interactive computer-aided design (CAD) of tension 
structures. The same numerical model is also used for the load analysis and 
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for establishing the cutting patterns and cable lengths. In other words, the 
whole design is made into a continuous process. 

In Part II of this thesis, the development of a fully interactive CAD system for 
tension structures is discussed in detail. This development was carried out 
over the 2-year_perio4J1288-1990), when I was on a Teaching Company 
Scheme (TCS) set up between Buro Ha old and City University. This CAD 
system is now in operation for actual project work at the Lightweight 
Structures Division of Buro Happold. The CAD system has been developed to 
fully exploit the capabilities offered by the computer hardware which in this 
case is a Hewlett-Packard HP9000/350 workstation, such that the 
computations involved during the analysis of the structure, in the generation 
of surface shaded graphic images and so on, can be executed at very high 
speeds. The CAD system can therefore respond quickly to the user.. The 
various stages such as form-finding, load analysis and patterning involved in 
the design process have been-integrated together into the CAD system. The 
need for such an interactive CAD system is justified from the number of 
benefits it has brought to the design process as outlined in chapter 7. The 
success of tie CAD system depends to a large extent on the implementation of 
an effective human user interface. In the discussion given in Part II of this 
thesis, it will be clearly illustrated how such a user interface has been 
achieved. The discussion will also provide an insight into the various 
procedures which are involved throughout the design process. 

1.3.3 Part III 

It has already been mentioned earlier that the dynamic response of tension 
structures is a complex aeroelastic problem due to the presence of 
aerodynamic effects. There is no available solution method for the dynamic 
analysis of a tension structure which takes all the aerodynamic effects into 
account. This problem can only be approximately solved at present by 
aeroelastic model testing in a boundary layer wind tunnel. An aeroelastic 
model has scaled mass, stiffness and damping_values which reflect the 
corresponding properties of the real structure. The deflections and strains of 
the aeroelastic model are measured directly during the wind tunnel testing. 
According to Williams [136,1371, even the most rudimentary aeroelastic 
model testis more accurate and should be used rather than a sophisticated 
rigid m_oest followed by non-linear dynamic analysis. This is because the 
results from the wind tunnel testing of a rigid model will be unrealistic as the 
rigid model is unable to account for the aerodynamic effects and aeroelastic 
phenomena such as divergence and flutter. However, aeroelastic model 
construction may be difficult and the whole procedure of aeroelastic model 
testing in a boundary layer wind tunnel can be very costly and justifiable 
perhaps only in the design of a very large structure. 

Consequently, there is a need to develop a numerical approach which can at 
least conservatively predict the dynamic response of tension structures. This 
will give the advantage of much economy in terms of the design costs and 
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time. In addition, such an approach may be more readily applicable in the 
routine design of most tension structures. The numerical approach should be 

sufficiently general, accurate and reliable for it to be considered as a suitable 
alternative to the wind tunnel testing of an aeroelastic model. The emphasis 
in Part III of this thesis is on the effort to develop such a numerical approach. 
Under investigation in this case is the dynamic response of an air-supported 
dome. An approach based on the potential flow theory has been proposed to 
account for the aerodynamic effect due to the 'attached' air mass mobilised by 
the vibrating membrane of the dome. Although further work is needed in 

order to account for the aerodynamic damping and air momentum effects, at 
least an effort has been made to improve the modelling of dynamic response 
of tension structures. 
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Chapter 2 

Review of numerical solution methods 

2.1 Introduction 

As mentioned in chapter 1, there -is a need to use numerical modelling 
methods in the design of tension structures due to the inadequacies of 
physical modelling. This chapter presents a review of the numerical solution 
methods which are available. 

It was also pointed out in chapter 1 that due to the flexible nature of tension 
structures, large deformations often occur under loads acting normal to the 
surface. In some cases, the loads themselves will be deformation dependent. 
In addition, the materials from which tension structures are constructed such 
as the coated woven fabrics, exhibit non-linear material behaviour, ie. the " 
material properties vary under loads. In order to give a realistic modelling of 
the behaviour of tension structures, the solution method should take into 
account the above mentioned geometric and material non-linearities. 

Indeed, analytic solutions are available only for tension structures of simple 
and regular configurations such as soap film bubbles, spherical, cylindrical 
and hyperbolic paraboloid shells. Leonard [91] had developed a perturbation 
method for predicting the behaviour of air-supported "shell"of revolution 
during the inflation phase. It involves superposing an infinite set of 
asymptotically converging linear solutions to approximate the non-linear 
equation for the inflated shell. However, limitations arise when irregular 
shapes, and peculiar boundary and loading conditions are encountered. As a 
result, the analytic approach is not sufficiently general for wide practical 
applications. 

The analytic solutions treat the tension structure as a whole continuum. In 
the numerical approach however, the tension structure is discretised into 
finite elements and analysed as a discrete system. There has been much 
research into discrete methods of analysis. In general, the discrete methods 
can be classified into the following categories, ie. 

- iterative methods, C MA-ra. ' x) 
- incremental methods, 
- minimisation methods, j ývEcroý, ) 
- relaxation methods. ) 

Both the iterative and incremental methods are implicit schemes as they 
require setting up the overall or tangent stiffness matrix of the structure. On 

X 

the other hand, the minimisation and relaxation methods are explicit 
schemes because the current displacements are updated from the previous 
displacement vector without the need for an overall stiffness matrix. Hence, 
the computer memory requirements are much less than for implicit schemes. 
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All these methods can cope with geometric non-linearities in tension 
structures provided all elements remain in tension and the applied loads are 
not functions of deformations. In methods which use matrix formulations, 
the occurrences of singular stiffness matrices have to be avoided. It may be 
necessary to impose controls in order to limit the deflections at any iterative 
or increment step as excessive deflections can lead to divergence of solution. 
In the presence of material non-linearities, on/off non-linearities such as 
element slackening or applied loads which are functions of deformations, a 
path dependent solution becomes inevitable and thus, requires the use of an 
incremental method, or a combination of incremental and iterative, 
minimisation or relaxation methods. 

Before proceeding to review the above mentioned numerical methods, the 
element stiffness relations of the link or cable element will be briefly 
discussed. The intention is to examine the tangent stiffness in the case of large 
displacements, and emphasise the difference between the small strain and 
large strain formulations. The principle applies similarly to the membrane 
and beam elements. 

2.2 Element stiffness relations 

In figure 2.1 is a two-dimensional system with a single cable element with 
elastic modulus E and cross-sectional area A. 

ºX2 +A62 

P2 +P2 

Figure 2.1 
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In the initial state, P2 is the force which produces a tension T in the element 
of length L. Resolving in the x2-direction, 

ex2 
TL= P2 (2.2.1) 

where AX2 = x2i- x2j, and x2i and x2j are respectively the x2 coordinates of 
nodes i and j. 

Under an additional force P2, 

(ex2 + e&2) 
(T+AT) 

L+e= A2 + P2 (2.2.2) 

in which i 52 = 82i - 52j, and Sei and &2j are respectively the x2 displacements of 

nodes i and j, e refers to the element extension and AT the increase in 
tension. 

Furthermore, 

2 
L2 =I , 

(OXp2, 
j=1 

2 
(L + e)2 = E(AXj + O8p2, 

j=1 

i 
L2 + 2Le + e2 = I(OXj2 + 20XjOSj + A5ý2). (2.2.3) 

j=1 

By neglecting second order terms, equation (2.2.3) reduces to 

2 
2Le = E2AX-A& 

j=1 

2 AX- 
e=ýLOSý (2.2.4) 

l 

EA 2 AX 
and AT =L 

LOST. (2.2.5) 
j=1 
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In addition, 
L Xi L1 Si 

AXj + LSl L AX- As. 
++ L+e-e-CL L)(1 L)-1 

1+L 

AX; As. s 
= (: L 

! 
--l L')[l -L+ (L)2 - ... 

] 

OXi AXi 
e 

ASi 

L-L (L) +L (2.2.6) 

Using equations (2.2.1) and (2.2.6), equation (2.2.2) becomes on expansion 
(ignoring second order terms) 

AXOS2 AX2 
e AT L--: -- + T[-C- -L (L)ý = P2, 

and using equations (2.2.4) and (2.2.5), equation (2.2.7) then becomes 

EA ixt 2 ex. T AX2 2 AX. 
i L) 

L 
j) + L[OS2 -LL 0ý)) = P2. 

j=1 j=1 

P2 =C 
LA)eL 2( 

L 
: ASi + 

eL ZOS2) 
+L OS2 -L 

2(L 
A81 + 

(2.2.7) 

eX2 

nsL 2)] 

EA 0X1 LX2 EA iX2 AX2 T AX1 AX 
= L{L)(L)A31+ L(L)(L)OS2-L(L)(LýASI+ 

T OX AX 

L 
:, fl - (L2)(L2)]AS2. (2.2.8) 

The stiffness components in equation (2.2.8) form a row in the element 
stiffness matrix. Resolving in the x1-direction, the remaining components 
can similarly be derived. The element stiffness relations in matrix form are 
written as follows- 

(P) = [K](&) = (EKe] + [Kg]){OS) (2.2.9) 

in which (P) =l, (A51 
2P 
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_EA 
12 Im 

[Ký L ml m2 
is the elastic stiffness, 

[Kgl = 
2: [(1_12) -im is the geometric stiffness, L -ml (1-M2)] 

AX, 
with 1= L= cosine of angle between the element and the xi-axis, 

AX2 
and m=L= cosine of angle between the element and the x2-axis. 

(2.2.10) 

The elastic stiffness relates to deformations of the element while the 
geometric stiffness is associated with changes in geometry of the element with 
element taken as a rigid body. 

Alternatively, if in equation (2.2.2), e is taken to be negligible (ie. assuming 
'small strain' stiffness relations), then 

i X2+e ex2 e 

L+e L+L' 

AX2 A S2 
(22.11) (T + AT) (L + L) = P20 + P2, 

and ignoring the second order terms in equation (2.2.11), 

L X2 AS2 
P2=AT L+ TL . (2.2.12) 

Substituting equation (2.2.5) into equation (2.2.11), 

0X2 EA 2 *A T 
P2 =L L7,8j) + LASZ 

j=1 

= 
EL (1 rn081 + m2AS2) + LA&2. (2.2.13) 

Obviously, in large displacement analysis where element strains become 
significantly large, it is more appropriate to use equation (2.2.8) instead of 
equation (2.2.13). 

The equivalent element stiffness relations in three-dimension can similarly 
beset up. In the general case of k link elements joining at node a, and from 

equation (2.2.8), the equilibrium equation for node a in the x; -direction (i = 
1,2,3) is then given by 
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EAAX. 3 'AX-- T AXi 3 OX" 
k ([ 

LL Z(OST)] + L{OSi -L E(L 0&)]} = Pi. (2.2.14) 

-1 

Equation (2.2.14) can be written for all nodes in the entire structure in the 
following matrix form, ie. 

[K0] [iS) = (P) (2.2.15) 

where [Ko] is the overall stiffness matrix, and the T, EXi and L terms in [K01 

refer to the prestress state. On the other hand, when considering the 
incremental loading, 

[KT][A8) = (AP) (2.2.16) 

in which [KT] is the tangent stiffness matrix, and the T, AXi and L terms in 
[KTI refer to the previous displaced state. 

As for the element in figure 2.1 defined by nodes i and j, the three- 
dimensional element stiffness relations in matrix form within a global xl-, 
x2- and x3-axis system are given by 

(P} _ [Kl (S} _ (EKE] + [xc})(b} 

P1t 
P21 

in which {P}c 
P3I 
Plj 
P2j 
P 

ýt 
Ia2i 

ýi 

(2.2.17) 

12 Im In ke -ke EA 
the elastic stiffness [KE] _ -k k where [ke] =L mI m2 mit , ee 

nj nm n2 

(1 -12) -Im -In 
the geometric stiffness [Ks] = kg kg where [kg] =L -MI (1- m2) -mn 

gg 
-nl -nm 0- n2) 

(2.2.1 8) 

with 1, m as defined before and n= 
AX3 

L= cosine of angle between the element 
and the x3-axis. 
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Siev [122] first derived the equilibrium equations in equation (2.2.14) with 
element stiffnesses as given by equation (2.2.18). 

In the case of large displacement analysis with 'small strains' assumption, the 
above stiffness relations apply except that [kg] is now given by 

T 100 
[k ]_-010, (2.2.19) 

gL 001 

This approach has been used by Turner, et. al. [130] to solve problems which 
involve truss and triangular plane stress elements. 

With the above brief discussion establishing the element stiffness relations, 
the various available iterative solution methods are next outlined. 

2.3 Iterative solution methods 

The 3 iterative solution methods which will be discussed here include the 
Newton-Raphson, modified Newton-Raphson and secant stiffness methods. 

2.3.1 Newton-Raphson method 

The Newton-Raphson method is most widely used for solving problems with 
geometric non-linearities because it provides a stable solution process. This 
method has been applied to form-finding and static analysis of tension 
structures by Argyris [3], Baron [21], Haug [67,68], Knudson [83], Poskitt [116] 
and Siev [122]. 

The basic mechanics of this method can be summarised as follows- 

(1) Apply full load and solve [K0]{S} = (P) for the displacements (6). 

(2) The out-of-balance or residual forces are then given by (at a particular 
node in direction i) 

Ri = Ti P- Z((T + AT) 
(ex; +es; ) 

L+e} kk 
(2.3.1) 

where PTj is the total applied load. 

(3) With the displacements and tensions known from step (1), the tangent 
stiffness relations are reset to form [KT]. 

(4) Apply out-of-balance or residual nodal forces (as a load increment or 
decrement) and determine deflection increments {E8} from 
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[KT]{AS} = {R}. 

and {S} _ {S} + {OS}. 

(2.3.2) 

(2.3.3) 

(5) Return to step (2) and iterate through steps (2) -), (4) until convergence is 
reached (ie. when the residual forces become very low). 

The Newton-Raphson method as applied to a single degree of freedom 
system having a 'stiffening' behaviour is illustrated in figure 2.2 while the 
case of 'softening' behaviour is shown in figure 2.3. 

P 

P° 

P 

P° 

aa 
Figure 2.2 (Stiffening) Figure 2.3 (Softening) 

A system with 'stiffening' behaviour is most representative of tension 
structures. In situations where the diagonal stiffness terms are close to zero, 
the deflection increments have to be scaled down to restrict them within 
upper limits [67]. In addition, the Newton-Raphson method has a 
disadvantage that [KT] needs to be reset and solved at each iteration step. 
During the solution process for the displacements, it is preferable to use 
Gaussian elimination for solving the simultaneous sets of equations. 

2.3.2 Modified Newton-Raphson method 

As the name suggests, this method is basically similar to the Newton- 
Raphson method mentioned above except that now [I(] is used throughout 
the solution process (or reset only at infrequent intervals). As a result, there 
are fewer computations when compared to the standard Newton-Raphson 
method. In fact, the modified Newton-Raphson method is suitable only for 
problems where non-linearities are not too extreme. Consequently, this 
method is not ideal for dealing with tension structures. In addition, 
convergence is less rapid than for the Newton-Raphson method. The method 
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as used in the case of stiffening and softening systems are shown in figures 2.4 
and 2.5 respectively. 

P 

P° 

P 

P° 

a6 
Figure 2.4 (Stiffening) Figure 2.5 (Softening) 

In this method, the intial stiffness matrix isOnverted and then)held constant 
throughout. A variation is to reset the stiffness matrix at infrequent intervals 
having a fixed number of iterations within each interval. Besides this 
modification, the method is similar to the standard Newton-Raphson 
method, ie. as in section 2.3.1, follow steps (1), (2), (4) and (5), skip step (3) or 
execute it only at infrequent intervals. 

(8) = [Ko]-1(P) = (R) = (A8} = [Ko]-1(R). (2.3.4) 

Figure 2.5 shows that a geometrically softening system always produces. a 
converged solution. For a stiffening system which is highly non-linear, an 
initial out-of-balance force which is too large may lead to divergence of the 
solution process as shown in figure 2.6. In the case of tension structures, 
typical working loads may already be too large and result in divergence. A 
possible cure is to use a fictitious stiffness matrix [Ko'] in which the stiffness 
terms are artificially increased. Mollman and Mortensen [98] have applied 
this strategy which they called 'simplified Newton-Raphson' to the solution 
of prestressed networks as shown in figure 2.6. The modified Newton- 
Raphson method in total displacement form is illustrated in figure 2.7 in 

which Ri stands for the absolute value of the residual force at the ith 
iteration. 

Furthermore, it is realised that the residuals in successive iterations oscillate 
about the converged position. Hence, a possible improvement is to adopt 

{S}q+1 = [Ko}-1{P + 
Rq +2R9-1} (2.3.5) 
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at iteration q as proposed by Krishna [88] and can lead to much increase in the 
convergence rate. 

P 

P° 
a 

Figure 2.6 

2.3.3 Secant stiffness method 

P 

P° 

P 
P-R2 

P-R3 
P-R1 

P° 

Fi ug re 2.7 

6 
Figure 2.8 

a 

The secant stiffness method is demonstrated in figure 2.8 and uses the 
relation 

[KS]9{$}q+l = {p} (2.3.6) 

in which the secant stiffness matrix [KS]q = [K1] + [K 1]q with [K1] being a linear 

matrix and [Knl]q a non-linear function of displacements. Hence, the [Knl]q is 
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reset during each iteration while [K11 remains constant. The iterative 
procedure is applied in the total displacement form. 

This method has been used to investigate cable and truss structures by Baron 
and Venkatesan [21]. The secant stiffness method has the advantage of being 
able to cope with element slackening. In situations with a few members going 
slack, it is useful to have a combination of the secant and modified Newton- 
Raphson methods. 

In general, all matrix iterative methods may be written in the form of a 
recurrence equation as follows- 

{8}q+l . {S}q + ([K]q)-1 (R)l 

in which if 

(a) [K]q = [KT]q gives the Newton-Raphson method, 

(b) [K]q = [Ko] gives the modified Newton-Raphson method, 

(c) [K]q = [KS]q gives the secant stiffness method. 

2.4 Incremental solution methods 

(2.3.7) 

For structures having both material and geometric non-linearities, a path 
dependent solution is expected as [KT] becomes a function of current geometry 
and possibly current stress levels as well. The path dependent solutions are 
also required when dealing with on/off non-linearities such as element 
slackening, and when applied loads are functions of displacements. In solving 
path-dependent problems, the true solution path is only obtained by applying 
the full load in sufficiently small increments which is the basis of the 
incremental method, ie. 

[KT](AS) = (AP). (2.4.1) 

The structure is assumed to behave linearly within each load increment. In 
other words, the method is equivalent to solving a succession of linear 
problems with the tangent stiffness reset at each load increment. 

The incremental methods can be grouped under two categories as follows- 

(1) Purely incremental solution in which the equilibrium state is not fully 
achieved and the solution itself tends to deviate away from the true load- 
deflection behaviour. 
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(2) Incremental solution with correction steps to ensure full equilibrium is 
achieved within each load increment and as such, known as 'self- 
correcting' methods. 

P 

Figure 2.9 

equilibrium path 

emental solution 

6 

An example which comes under category (1) is the Euler method which in 
fact is the simplest form of incremental solution [78]. This method is based on 
the Euler forward difference approximation and thus, equation (2.4.1) is set up 
at the start of each load increment. Although the Euler method is popular in 
use, it tends to deviate rapidly from the true solution path. Improved results, 
at the expense of additional computation, are possible by taking [KTI not at the 
beginning but near the mid-point of each load increment, corresponding to a 
second order Runge-Kutta procedure [62]. Another obvious possibility is to 
apply large load increments over linear regions but smaller increments with 
increasing non-linearity as proposed by Bergan and Soriede [26]. 

The tendency of methods from category (1) to deviate from the true solution 
path is eliminated in methods from category (2) by using self-correcting 
procedures. The simplest self-correcting method is to apply the current 
residual forces to the next load increment. This is equivalent to one cycle of 
the Newton-Raphson iteration followed by a simple Euler increment using 
the same [KT] as for the iteration. With more iterations within each load 
increment, a closer approximation to the true equilibrium path is obtained. 
When iterating within each load step, [KT] may either be reset at each 
iteration or remains constant throughout. The former corresponds to the 
Newton-Raphson method while the later is the modified Newton-Raphson 
method. 

As a summary, the four possible solution methods are as follows- (see figure 
2.10) 

(1) incremental solution, 
(2) incremental solution with correction for residual forces from 

previous load step, 
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(3) Newton-Raphson iteration, 
(4) modified Newton-Raphson iteration. 

1,2 Apply new load 

I Increment ¬tP1. 

1.2 

Form Tangent Stiffness I3 
Matrix [KT] 

. II --" 

1.2.3 

II Reduce equations : 
[KT]jA6j=j1 P+RI 

. 

1.2.3 

Solve Equations. 
Update total deflections :4 

161=161+IMI. 
Update total stresses. 

2.3.4 

2 Calculate out-of-balance 
forces ¬RL. 

Figure 2.10 

For the incremental solution in (2), either (3) or (4) may be applied to the 
iterations within each load increment until equilibrium is achieved. The 
choice of solution method relies mainly upon the type and level of non- 
linearity in each problem. In the presence of extreme geometric and material 
non-linearities, a combination of (2), (3) and (4) may be needed. If only 
material non-linearities are present, method (2) alone may suffice. Further 
factors to be considered are the loading level and stress-strain history. For 
instance, as load increments are applied up to the point of linear behaviour, 
an iterative solution is suitable and for the non-linear region beyond, an 
incremental solution is appropriate. 
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As mentioned earlier, the convergence of incremental methods can be 
increased by taking [KT] at the mid-point of the load increment instead of at 
the beginning. This may be implemented by extrapolating previously known 
deflections or using an averaged tangent stiffness. 

Greenberg [62] investigating the inelastic behaviour of cable structures up to 
failure, adopted a scheme of averaging the main diagonal stiffness terms Ka 
to correct the deflections at each cycle. The process in use is outlined as 
follows- 

(1) Form [KT] based on current conditions and store the Kii terms. 
(2) Apply load increments DP and solve for linearised deflections and 

tensions. 
(3) Update the modulus of elasticity for individual members according to 

their stresses from (2). 
(4) Form K;; ' coefficients based on new geometry and elastic moduli. 

ii (5) Revise deflections: 8; = 
Kjj' + Kii 

x& 
(6) Determine residual forces based on revised geometry and return to (1). 
(7) Iterate from (1) -' (6) until residuals fall within acceptable limits. 
(8) Proceed to next load increment if all element strains are less than the 

ultimate strain permitted for the material and return to (1). 
(9) Repeat (1) -+ (8) until ultimate load is reached. 

In step (3), a continuous exponential function is assumed to model the stress- 
strain behaviour of steel cables over the inelastic region. 

2.5 Explicit analyses 

As opposed to implicit methods, an explicit solution scheme does not 
involve forming the overall or, tangent stiffness matrix. The generally known 
explicit methods can be grouped into two categories, ie. the minimisation 
methods and the relaxation methods. 

2.5.1 Minimisation methods 

The physical basis of minimisation methods is to establish the equilibrium 
state by minimising the total potential energy function W with respect to all 
the possible displacements {8} in which 

W=u+v (2.5.1) 

where U is the strain or potential energy due to internal forces and V the 

potential energy (ie. given by (8)T. (P)) due to applied forces (P) assumed 
independent of displacements (8). 
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The direct minimisation techniques such as the random search or Monte- 
Carlo. method make use of the objective function W only in the solution 
process. These methods do not require explicit evaluation of any partial 
derivatives of W. Mallett, et. al. [94,95] have applied direct minimisation to 

solving non-linear structural problems with varying success. Many of the 
direct search methods lack convergence proofs and result in premature 
convergence. However in structural problems, the preferred methods are 
generally the gradient methods of minimisation which have in their 
solutions in addition to the objective function W itself, values of partial 
derivatives of W with respect to independent variables as well as information 
from previous iterations. 

Basically, minimisation methods use the idea that in moving from point xi a 

distance of di along the direction O1 such that 

xi+1 = xi + di0j, (2.5.2) 

results in the value of function F at the new point xi+1 being smaller, ie. 

F(xi+1) < F(xi). (2.5.3) 

Given a function F(x) in a system with n degrees of freedom, for which all the 

first partial derivatives 
äX 

(i = 1,..., n) exist at all points, a necessary condition 

for a minimum to exist is given by 

DF DF aF - _... _ =0. (2.5.4) 
axl = äx2 axi 

The objective function W may be taken as an energy surface in n- 
dimensional space. Provided the energy surface is convex and the initial state 
lies on the surface, a solution may be found by searching along a descent 
direction in n-dimensional space until the minimum in that particular 
direction is located. The search continues along a different descent direction 
and the process repeated until the global minimum of W is achieved. The 
displacement vector (6) is updated iteratively using the general relation, ie. 

{8}q+l (S)q + S9(V)9 (2.5.5) 

at iteration q in which (V) is the gradient vector (ie. vector of descent 
directions) and Sq is a scalar steplength representing an incremental distance 
in the descent/search direction. An essential feature of all gradient 
minimisation methods is the linear search in the descent direction to find the 

optimum steplength to descent in that direction. Normalisation of {V) is not 

necessary, as it merely has the effect of scaling the steplength Sq. As the 
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analysis procedure is explicit, no stiffness matrix operations are needed and 
thus, has the advantage of much reduced memory requirements in the 
computer. 

The descent direction vector {V} can be found by various first or second order 
gradient methods in which the minimum along a particular direction is 
determined at each stage of iteration by expressing W as a polynomial in S 
and then, finding the S which minimises the polynomial. The first order 
methods have principally been developed and applied by Buchholdt [Refs. 
29 -ý 391 to the analysis of a wide range of cable network problems. The second 
order gradient methods use the second derivatives of W and the one most 
often used is the Newton-Raphson method (an implicit technique). This has 
been used as such with a steplength control by Buchholdt [35]. The second 
partial derivatives of W with respect to (S, ) leadSto stiffness matrix 
relationships. 

Furthermore, it has been shown that the energy surface of a cable network is 
convex if 41 members of the network remain in tension [311. This is not, 
however a necessary condition and it is possible for some members to go slack 
temporarily while moving along the descent direction. During the form- 
finding process, convergence difficulties may perhaps be experienced as a 
result. 

2.5.1.1 Gradient vector 

The total potential energy of a structural idealisation with K elements can be 
written as 

K 
W= ZUk - {p }T{8} 

k=1 
(2.5.6) 

in which Uk is the strain energy of element k and {8) the true displacement 

vector. 

The exact expression for the gradient vector 
{3} 

was derived by Buchholdt 

[31]. A detailed discussion can also be found i"n [133]. The derivative of the 
total potential energy function W with respect to a displacement & at any 

node a in direction i represents the out-of-balance forces in that direction, ie. 
(the proof can be found in [31], [1151 and [133]) 

8i 
aw (Axi+AS1) 
aSl 

k{(T+OT)' 
L+e 

}k PTi (2.5.7) 
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in which the summation applies to all links k joining node a to adjacent 
nodes b, and 

AXIk = Xia - Xib 
, 

ASik =8 1a - Sib. (2.5.8) 

The vector of out-of-balance forces '(g) in the global coordinate system has the 
direction of greatest increase of the total potential energy for the displacement 

vector (8) and 

{g} _ -{R} (2.5.9) 

where (R) is the vector of current out-of-balance forces acting on nodes within 
the structure. 

The strain energy in any element k, Uk may be expressed as 

Uk = 
JTk 

dek = 
J(T0 

+ 
LAe)k dek = Tjek + 

2Lkek2. (2.5.10) 

If the element strain ek corresponds to the displacement state {S'} at any point 
along the current descent direction, then 

{6} = {a} + S(V) (2.5.11) 

and for element k with end nodes i and j, 

3 
(L + e)k2 =y [(Xmj + 16 + SVmj) - (Xrni +S h-d + SVmi)12 

m=1 

3 
_ Y(OXm + OSm + SiVm)2 

m=1 

= [[, &X) + (AS) + S(AV)]T[(AX )+ {es] + S(AV)] 

in which AXm = Xmj - X.., '8m = 8mj - 8mi, AVm = Vmj -V mi, 
Xn,;, XI,., j = initial coordinates of nodes i and j respectively. 

(2.5.12) 

On expanding equation (2.5.12) and neglecting ek 2 (ie. assume ek « Lkek), 

k 
(es l+ 

((Ax)T(AV }+ (Av)T(es ))s e=L 1-i((ex)T(A5) +2 - 

(ev )T{ev ))S2i 
i 

-1L(a1 + a2S + a3. (2.5.13) S2) 
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By substituting equation (2.5.13) into equation (2.5.10) for the element strain 
energy, Buchholdt [31] produced a polynomial of fourth order in steplength S 
for the total potential W as follows- 

W= C1S4 + C2S3 + C3S2 + C4S4 + C5. (2.5.14) 

Furthermore, the total potential energy at iteration (q + 1) is then given by 

K 
yVq+l = Ljk - (p)T($)q+1 

k=1 

K 
buk _ {p}T{S}q - S{p}T{V}q 

k=1 

K 

_ Y, (7 ek + ZLkek2) - {P}T{S}q - S(p)T(V)q. (2.5.15) 
k=1 

By subsituting equation (2.5.13) into equation (2.5.15) and comparing the 

coefficients of S, S2, S3, etc. with equation (2.5.14), 

EAa32 EAa2a3 
cl Y2L3 C2- E 

L3 , 

70 
c3 = F, [ a3 + 

-a22 
+ 2ala3)], 

70 
C4 = F, [ a2 + 

E ä1a2] 
- (P)T{V}, 

TO 
a1 + c5 = Yi 

EA 2 
2L 3 12] - {P}T{$} 

where the summation is for each element within the structure. 

For a minimum value of the total potential in equation (2.5.14), 

aw 
as = 4c1S3 + 3c2S2 + 2c3S + c4 =0 

(2.5.16) 

(2.5.17) 

and solve the resulting cubic equation either analytically or iteratively using 
Newton's approximation for the smallest positive root which gives Sq. 

The displacement vector is then updated, ie. 

{s}q+l = {8}q + sq(v)q. (2.5.18) 
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The minimisation 'process is repeated until the out-of-balance forces (or 
gradient vector) are negligible and the equilibrium state attained. 

2.5.1.2 Method of Steepest Descent 

The steepest descent method is the simplest first gradient method. According 
to this method [321, 

{v}. -{g}={R}. 
(2.5.19) 

Thus, (8)9+1 = ($}q + Sq{R}q. (2.5.20) 

Each descent direction is pursued until W is minimised locally and the 

method follows a zig-zag descent path towards convergence as shown in 

% figure 2.11. 

/ 

6 

Figure 2.11 Figure 112 

The steepest descent method has several disadvantages which make it 
impractical for many problems. The zig-zag path of the steepest descent 
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method results in very slow convergence. A possible improvement is to use a 
relaxed steplength, ie. 

{$}9+1 {$}q + ; LSq{R}q (2.5.21) 

with a relaxation factor 0<A<1. It is not possible to make an analytical 
prediction of the optimum value of A, to use. However, for a small cable 
network analysis, with (0.05 <, X < 0.95) the number of iterations to 
convergence are reduced to between 5% and 25% of those needed using the 
full steplength [133]. 

2.5.1.3 Conjugate Gradient method 

The most effective first order gradient technique is based on conjugate 
gradients as developed by Hestenes and Stiefel [73] for solving sets of linear 
equations. A pair of conjugate vectors have the following property, ie. 

(V)1T[K](V)j =0 (for i #j), (2.5.22) 

and Fletcher and Reeves [56] have shown that, for constant [K], 

IIRq+112 
in which IIRq 112 = {R}T(R). (2.5.23) 

IIRq 112 

and the recurrence relation for the descent direction of the conjugate gradient 
method is given by 

(V)q+l = (R)q+l + ß1(V)4, (2.5.24) 

Conjugate descent directions have been set without direct reference to the 
system matrix [K]. For a linear problem with n degrees of freedom, exact 
convergence is obtained within n iterations [56]. However, for non-linear 
problems when [K] does not remain constant, convergence may take longer as 
the descent directions are now only approximately conjugate. 

The first descent vector (or first few) is taken in the direction of steepest 
descent. Subsequently, the previous descent vector is given a weighting ß'1 in 
determining the current vector. Graphically, for a structure with two degrees 

of freedom Sl and S2, the conjugate gradient technique is illustrated in figure 

2.12 [38). 

2.5.1.4 Scaling and transformation of energy surface 

The convergence rate of the conjugate gradient method depends on the 
condition number of the associated stiffness matrix, defined as the ratio of the 
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highest to lowest eigenvalues of the matrix. In the case of a two degree of 
freedom system, these eigenvalues are inversely proportional to the squares 
of the lengths of the axes forming the elliptic contours of the total potential 
energy surface. When the condition number is large, the potential ellipses are 
long and narrow implying slow convergence. As the condition number 
approaches unity, the total potential contours change towards a circular 
profile and the convergence rate increases [381. The condition number is a 
measure of the ill-conditioning of the system of equations. 

In order to improve the convergence of the conjugate gradient method, the 
contour lines can be transformed to result in the potential ellipses changing 
towards a circular profile. This is achieved by replacing the actual 
displacement vector (8) with a scaled vector (u) such that 

(8) = [H](u) (2.5.25) 

where [H] is a diagonal scaling matrix. 

The total potential energy written in matrix notation is as follows- 

W= i(5)T[KT](5) 
- [P]T(S]. (2.5.26) 

Substituting equation (2.5.25) into equation (2.5.26), 

[M(U) - [p]T[n](u) W= 2(u)TIH1T[K 
]T 

2{u}T[KT ](u) - [P]T[H]{u} (2.5.27) 

in which [KT'l = [H]T[KT] [H] 

The scaled gradient vector is then given by 

rawl 
5u= [Hl 

aS 
(2.5.28) 

and the scaled descent direction {V') is incremented as follows- 

1+1 
{vo}q+1 = -a +ß (V )q (2.5.29) 

(similar as for conjugate gradient technique with no scaling). 
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The optimal steplength S along the descent direction towards a minimum 

potential value (ie. 
as 

= 0) is then solved for. 

{u)q+l = {u)q + sQ{v, }q. (25.30) 

Subsequently, the scaled displacement vector [u) is updated as given by 
equation (2.5.30). The above process is re-iterated until the scaled residual 

forces 
fa w=0 

and the actual displacements are then given by (5) = Mu). 

Furthermore, Wakefield [133] extended Buchholdt's gradient minimisation 
method in order to account for arbitrary element strains. Buchholdt made an 

assumption of small strains (ie. ek « Lkek) in deriving the fourth order 
polynomial in S given by equation (2.5.14). For compatibility reasor4, the same 
approximation should apply in the definition of the gradient vector. 
Otherwise, `unsatisfactorily high residual forces may result at convergence or 
even complete divergence may occur. The work by Wakefield [133] on the 
exact gradient minimisation for arbitrary cable strains based upon the scaled 
conjugate gradient approach is briefly outlined as follows- 

(XS) = (X°) + (u'} + S(V') (2.5.31) 

in which (Xs} are the nodal coordinates at a point along the current scaled 
descent direction and (X°) are the initial coordinates. As mentioned earlier, 
the idea is to find the smallest positive value of S which minimises the total 
potential energy of the structure. 

In addition, for an element k, 

eks = ek + ek' 

in which ek = Lý - Lk, 

(2.5.32) 

Lk = current length at point (X° + u'), 
Lk = initial length, 

ek = element extension due to displacement along the current 
descent direction, 

eks = current total element extension. 

With A denoting the difference between values at end nodes i and j of 
element k, 

i, k2 - {OXk + Auk }T{zXk + Auk'}, 
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(Lk + ek )2 = (OXk + Auk + SOV')T(AXk + Auk' + SiV'}1 

2I*ek' + ek' 2= 2S{eV'}T{eXk + euk }+ s2{ev'}T{eV'}. (2.5.33) 

Assuming ((ek )2 « Lkek') leads to 

e= 
S(ev, }T{eXk + Auk'} +z ek C{AV, 

}T{ev, } 
I lc 

= a2'S + a3'S2. 

eks = al' + a2'S + a3'S2 where al' = ek. (2.5.34) 

The trick here is that unlike Buchholdt's method, the approximation of 
neglecting (ek )2 does not affect the final solution as (eks -4 ek) when (ek' -> 0) 

at the convergence stage. 

Subsequently, by substituting equation (2.5.34) into equation (2.5.10), the 
element strain energy is now given as follows- 

Uk = 7', (al' + a2'S + a3'S2) + 
ZLk 

al' + a2'S + a3'S2)2. (2.5.35) 

Furthermore, by substituting equation (2.5.35) into equation (2.5.6), the total 
potential energy of the system as a fourth order polynomial in S is again 
derived, ie. 

W= cl'S4 + C2 S3 + C3, S2 + 04154 + C5, (2.5.36) 

in which cl' = ya(a3')2, C2'_ y-a2a2 a3', c3' = Eßa3' + a((a2')2 + 2al'a3')), 

c41 = E(ßa2' + a2a1'a2') - {P}T {V '}, c5' = E(ßal' + a(al')2) - {P}T {u'}, 

(2.5.37) 

EA ' (EA +) 

where a= 2Lk = 2Lk ,ß=T and the summation is for all elements in 

the structure. 

In the limit, when true equilibrium is obtained, no approximations have 
been made in calculating either the gradient vector or the polynomial 
coefficients. This formulation now accounts for arbitrary element strains. It 
has been successively applied in the solution of cable network problems [133]. 
In situations where significant strains may develop, the above scheme is the 
suitable choice for the solution. 
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If the scaling matrix [H] is such that [KT'1 is symmetric with all the diagonal 
elements approximately unity and off diagonal terms dose to zero, then [KT 'I 

will yield almost equal eigenvalues implying a condition number close to 
unity. However, this is not possible in practice. A diagonal matrix [H] such 
that 

h11 
_1 kii (2.5.38) 

results in [KT ] having a leading diagonal of unity and improved convergence 
is achieved as the off-diagonal terms tend towards zero. The choice of a 
diagonal scaling matrix means least additional computer storage and is 
compatible with the explicit nature of the scheme. The individual scaling 
terms can be set on an element by element basis without having to form the 
overall stiffness matrix. A much increased convergence rate has been 
demonstrated by Buchholdt [38] when applying the scaled conjugate gradient 
method to cable networks and proved by far more efficient than the Newton- 
Raphson method, method of relaxed steepest descent and conjugate gradient 
method without scaling. 

2.5.2 Relaxation methods 

According to Varga [132], there are three basic explicit iterative methods, ie. 
the Point-Jacobi, Gauss-Seidel and Successive Over-Relaxation methods. All 
these methods can be applied as direct iterative solutions of fully or partly 
uncoupled equations and thus, suitable for solving non-linear problems. 

The objective is to solve equations in the following form, ie. 

[KT][ä) = (P) (2.5.39) 

where [KT] is the overall or tangent stiffness matrix and may be written as 

[KT]=[L+D+L I] (2.5.40) 

in which [D] is the main diagonal of [KT], and [L] and [U] are respectively the 
remaining lower and upper triangular portions of [KTI. Multiplying equation 
(2.5.39) by [D]'1 leads to 

[D]"1[KT]{3} = [D]'1(P), 

[KT '1(81 = (P') where [KT 'l = ([L'] + [I] + [U']). (2.5.41) 

Therefore, 

{S}q+l . {P') - ([i'} + [u']){s)q, 
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{S}q+l - {S}q = {P'} - [KT, ][8)q. (2.5.42) 

A general form of the basic iterative method can be written as follows- 

(S}9+1 - {s}q = [H]((P') - [KT ](S}9) (2.5.43) 

and if [H] = [I], the resulting method is the Point-Jacobi method, 
if [H] = ([I] + [L])-1, the resulting method is the Gauss-Seidel method, 
if [H] = w([1] + w[L])-1, the resulting method is the Successive Over- 
Relaxation method where co is a relaxation parameter. 

Equation (2.5.43) may be further expressed in the following form 

()q+1 = [HJ({P'} + ý{I] -{ ]ýKTI){8}q, 

(S}q+l = [H]{p') + [M]{S)q (2.5.44) 

with matrix [M] being the characteristic matrix of the iterative method. 

In the Point-Jacobi method, the first step is to assume the unknown vector 
(8) equal to the diagonal of [KT'l, ie. [I]. A new estimate of (8) is then calculated 
from the recurrence equation, ie. 

{$}q+l = [1J(p') + ([n - [l][KT]){$)q 

= (p) + ([I] - [KT ])[3)q. (2.5.45) 

In the Gauss-Seidel method, the components of {S}9+1 which have been 
computed are substituted back into the recurrence equation to obtain the 
remaining components. The recurrence equation is expressed as follows, ie. 

(8)q+l '_ ([1] + [Ll)'1(P'} + ([il - ([ýl + [L])'1[KT]){SYI. (2.5.46) 

Furthermore, a relaxation or accelerating parameter o can be applied to either 
the simultaneous (Point-Jacobi) or successive (Gauss-Seidel) relaxation 
methods. In the case of the Point-Jacobi scheme, it follows that 

(S}q+l - (S}q = co({P'} - [KT ](S}9). (25.47) 

The accelerated form of the Gauss-Seidel scheme leads to the Successive 
Over-Relaxation method, ie. 

{S}q+l - {S}q = co([I] + w[L])'1({p'} - [KT1{8}9). (2.5.48) 
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With 1< co < 2, this method produces the highest convergence rate compared 
with the Point Jacobi and Gauss-Seidel methods [10]. All the above iterative 
methods are explicit schemes, ie. each degree of freedom is solved in the 
uncoupled form. Alternatively, solution in a partly uncoupled form with 
main diagonal submatrix operations node by node is also possible as 
illustrated in the case of the Point-Jacobi method here. 

At node i (with n degrees of freedom), the relaxation equation is 

{si)q+l = {Pi) + ([I] " [K -]c)(ö)q (2.5.49) 

in which (ö) =n displacement components at node i, 
(Pi') =n applied load components at node i, 
[KTj']c = (n x n) tangent stiffness submatrix based on the current 

geometry at iteration q. 

Therefore, the relaxation process is simultaneous at node i. In the fully 
uncoupled form, the relaxation equation may be expressed as follows, ie. 

l}4 (2.5.50) {Si}q+l = {Pi }+ ([I] " ýKdi }c)(3 

in which [Kd; 'lc is a diagonal matrix of the current direct tangent stiffness 
components. However, this approach may result in convergence difficulties. 

In the case of the Gauss-Seidel or SOR scheme, there is a need to perform 
matrix inversion at each node and iteration for the partly uncoupled 
implementation. It is possible that the matrix may become singular at some 
stage of this process. There is no need for matrix inversion in the fully 
uncoupled form of the solution scheme. On the other hand, in a fully 
uncoupled solution, the occurrence of situations such as cable slackening or 
co-planar elements may result in zero diagonal Kdi' terms leading to infinite 
deflection increments. Hence, conditional deflection controls are needed. 

The above relaxation methods have not been widely applied to the analysis of 
tension structures [101. In contrast, the more recently developed method 
known as dynamic relaxation (DR) has been applied successfully to the form- 
finding and static analysis of many built tension structures [4,5,8,10,21,115, 
1331. Dynamic relaxation is an uncoupled simultaneous iterative procedure 
which has the following recurrence relationship, ie. 

{$}9+1 {$}4 + a({, 6}9+1 - (S)q) + y(R)9 (2.5.51) 

where the factors a and y are chosen to optimise the convergence. The 
method is much suited to handle highly non-linear problems such as on/off 
non-linearities as any temporary loss of element stiffness does not lead to 
infinite deflection increments. Dynamic relaxation was first proposed by Day 
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[53] to solve problems involving a portal frame, a skew plate and a thick steel 
cylinder under internal pressure loading.. 

With {E} being a vector of errors between the current and true deflections, and 

{E}q+i = ;. {E)9, (2.5.52) 

the parameter A therefore measures the change in magnitude of errors 
between successive iterations and used as an indication of convergence rates 
of DR compared with the basic iterative methods as follows- 

Simultaneous Methods Successive Methods 

Point-Jacobi Gauss-Seidel 

v 
p+1 

(p+l 

Dynamic Relaxation Successive Over-Relaxation 

P ý+ 1 

Figure 2.13 

in which p=ä= condition number, of the stiffness matrix, and a and b are 

respectively the numerical values of the smallest and largest eigenvalues of 
the stiffness matrix of the structure being considered. 

The above comparison is due to Lynch [93] and valid only for linear structures 
with tri-diagonal stiffness matrices. The table shows that SOR is twice as fast 
as dynamic relaxation and that the same relationship exists between Gauss- 
Seidel and Point-Jacobi methods. 

Finally, any of the above iterative methods may be stated in the form of a 
minimisation problem as discussed earlier, ie. 

{S}q+l . {8}q + sq{v}q. (2.5.5) 

Dynamic relaxation is shown to be a dynamic implementation of a first order 
gradient method in [133]. 

From the above discussion, it can be seen that the explicit schemes are in 
general well suited for solving non-linear problems. When a load increment 
is applied, an explicit scheme usually needs no more effort for a non-linear 
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problem than for a linear one, - whereas an implicit scheme often requires 
several iterations with each iteration being a complete solution to an 
equivalent linear problem. 

In the comparative study of all the methods mentioned above applied to 
tension structures, the conclusion is that the dynamic relaxation method is 
the most efficient explicit scheme and compared in efficiency with the 
implicit Newton-Raphson method [1151. Furthermore, the dynamic 
relaxation method has a few advantages which make it highly suited to be 
applied to the form-finding and load analysis of tension structures. The main 
advantages are summarised below. 

Firstly, the equilibrium and compatibility conditions are uncoupled within 
. the dynamic relaxation method. As a result, complex stress-strain relations 
. such as stress as a polynomial function of strain, can be readily implemented. 
In addition, the on/off buckling of elements which can often occur during the 
analysis of a tension structure, can be handled without difficulty. The stiffness 
relations can also be considered at the element level without the need for an 
overall stiffness matrix of the structure. 

Secondly, the kinetic damping procedure instead of viscous damping when 
introduced into the dynamic relaxation method, ensures stability in the event 
of high residuals which may arise suddenly during radical adjustments to the 
numerical model at the form-finding stage. In the case of local adjustments, 
the disturbances are rapidly dissipated without propagation through the 
entire model. 

A full acount of the above features of the dynamic relaxation method is given 
in chapter 3. 
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Chapter 3 

Dynamic relaxation Analysis of tension structures 

3.1 Introduction 

From the review of numerical methods in chapter 2, it is noted that the 
dynamic relaxation (DR) method which is an explicit numerical scheme, has 
a few advantages which make it well suited to deal with the highly non- 
linear analysis of tension structures, and is therefore the chosen solution 
scheme for all the analysis work in this thesis. 

The dynamic relaxation method as the name itself suggests, is applicable 
strictly to situations where the analysis is for the static equilibrium state of a 
structure. However, the explicit numerical scheme which forms the basis of 
the dynamic relaxation method, can also be applied to the dynamic analysis of 
tension structures which will be considered in chapter 9. In this chapter, the 
dynamic relaxation method as applied to the form-finding and static load 
analysis of tension structures is considered, and an outline is given of the 
basic mechanics of the method, and the controls needed to make it into an 
automated and efficient procedure. 

3.2 Physical basis 

a 

static 
equilibrium 

time 

Figure 3.1 

The physical basis of the dynamic relaxation method is that a structure in its 
initial state is allowed to vibrate and under imposed high fictitious damping, 
the structure will eventually reach a static equilibrium state which then gives 
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the required solution (see figure 3.1). During the solution process, the 
vibrations of the structure are traced in small time steps, and artificial 
controls such as fictitious masses and fictitious elastic properties can be used 
to improve the convergence rate of the solution process. Instead of using 
viscous damping, a kinetic damping procedure which will be described in 
further detail later on, can also be used to control the solution process. 

3.3 Method formulation 

The dynamic relaxation method can be implemented in two possible ways, ie. 

one based on finite differences and the other based on finite elements. The 
finite difference approach involves the setting up of a two-way finite 
difference grid over the structure concerned and then solving the 
corresponding simultaneous sets of equations; hence, enormous 
computational effort is required especially when a fine grid is used. In the 
analysis of structures which are discretised into finite elements, it is more 
appropriate to use the dynamic relaxation method implemented on the basis 

of finite elements instead of finite differences, and such an approach is 
adopted in this thesis. As will be described later, this approach can be 
developed into an efficient solution procedure for dealing with tension 
structures. 

3.3.1 Basic equations 

In the dynamic relaxation method, the governing equation is the Newton's 
second law of motion, ie. 

Force = Mass x Acceleration, (3.3.1) 

and for the motion in the x-direction at node i, equation (3.3.1) can in turn be 

written as 

Pxi - Kxisxi - Cx'xi = Mxiki (3.3.2) 

in which Pxj = externally applied loads at node i in direction x, 
KXi = stiffness term at node i in direction x, 
CXi = viscous damping constant at node i, 
MX; = mass at node i, and 

sxi, s j, 
4i 

= total displacement, velocity and acceleration 
respectively of node i in direction x. 

The term (Pxi - Kxisxi) gives the residual force Rxi at node i in the x-direction. 
The element masses in the structural idealisation are assumed to be lumped 

at the nodes. The relation given in equation (3.3.2) applies equally for the 
motions in the y- and z-directions. 
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Equation (3.3.2) can then be written for any time t as follows- 

Rxit = Mxicit + Cx'vxit (3.3.3) 

in which' VXIt = SXit, ie. the velocity of node i in direction x at time t, and 

l ,t=4. t, ie. the acceleration of node i in direction x at time t. 

Expressing equation (3.3.3) in the central finite difference form for a small 
time step At gives 

t_ 
Mxi 

t+it/2 t-et/2 
Cxi 

t+Ot/2 t-Ot/2 Rxi-At (Vx i Vx i )+ 
2 (Ux i+ Vx iw 

(3.3.4) 

As given in equation (3.3.4), the residual forces are calculated at successive 
time intervals 0, At, 2At, ..., t- At, t, t+ At, ... etc., and the nodal velocities are 
determined for the mid-points of these time intervals. 

Equation (3.3.4) can then be rearranged to give a recurrence equation for the 
nodal velocity at time (t + it/2) as follows- 

V, t+et/2 
= V, t-et/2(Mxi/Et-Cxi/2 +R t( 1" 

xt xi Mxi/At + Cxi/2 xi Mxi/St + Cxi/2 

(3.3.5) 

The damping factor Cxi may be more conveniently defined as Cxi = 
M, i(C/fit). In addition, the damping per unit mass (C/Ot) may be assumed as 
constant throughout the structure. 

Equation (3.3.5) then becomes 

Vxit+et/2 _A Vxit-et/2 + BxiRxit (3.3.6) 

where A=1- 
c/2 

1+ c/2)' ie. a constant for the structure, and 
At 1 Bx' _ Mxi(1 + c/2)' ie. a constant for node i in direction x. (3.3.7) 

The total x-deflection of node i at time (t + At) is then given by 

grit+et = grit + &tV, t+At/2 (3.3.8) 
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The velocities and deflections in the y- and z-directions can be similarly 
calculated. The current displaced geometry of the whole structure at time 
(t + At) can then be obtained. Subsequently, the current nodal residuals R, ut+et 
can be determined as follows- 

RXit+et _ Pxi + s(X) T t+et 
Lmm 

m 
(3.3.9) 

in which the summation is for all members m (links or sides of membrane 
elements) meeting at node i, (eX/L)m is the current direction cosine between 
member m and the x-axis, and Tm is the current tension in member in. The 
iteration then returns to equation (3.3.6) for the next time step. The process 
continues until the analysis converges to within a specified criterion given by 
the maximum allowable current residuals in the structure. 

At the start of the analysis (ie. time t= 0), it is assumed that VXIt-ý = 0, thus 

-VX, -At/2 = VX; 1 t/2 (3.3.10) 

and using this relation in equation (3.3.6) leads to 

Vxiet/2 = (1B+ 
Ä) Rxit-o (3.3.11) 

For a structure initially in equilibrium, then RXit-O = ß'X1, ie. the applied nodal 
loads. 

It can be seen that the equilibrium condition in equation (3.3.9) is separated 
from the compatibility condition in equation (3.3.8) which is characteristic of 
an explicit vector scheme such as the dynamic relaxation method. These two 
conditions will be consistent with each other to give a unique solution at the 
point of convergence. 

3.3.2 Numerical stability 

As the dynamic relaxation method is an explicit scheme, it is only 
conditionally stable, ie. the use of a time step At which exceeds a critical value 
will lead to numerical instability. According to Barnes [10], the true critical 
time interval lies within the following bounds, ie. 

2Mi 4i 

Si 5 Ltcrit 5 Si (3.3.12) 

in which Si is the direct stiffness of node i relative to all adjacent nodes. 
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Another expression for the critical time interval was derived from the direct 
comparison of the dynamic relaxation method with the Frankel's method by 
Cassell and Hobbs [43], and is given as follows- 

2 
4Mi 

ýt (a + b) (3.3.13) 

where a and b are respectively the smallest and largest eigenvalues of the 
stiffness matrix associated with the structure being considered, and from the 

Gershgörin's bound theorem 

n 
IbI <_bg=maxi Els; jl (3.3.14) 

in which S; j are the elements of the stiffness matrix, and the maximum value 

of the sum for each row i is taken. As is often the case that (a « b) and hence, 

Ia+bI< bg which in turn leads to 

4M" 
Ate S1 (3.3.15) 

9 

T3 mt 

ý1 m=2 

Figure 3.2 

v 

During form-finding, gross changes in geometry may occur and members 
joining a particular node could become aligned in a single direction. In such a 
case, the greatest possible stiffness is given by 

Simax m 
EA T I Lo + Lc-Im (3.3.1 6) 

summed over all members m meeting at node i (see figure 3.2), ahd (EA/Lo) is 
the axial elastic stiffness and (T/Ldis the geometric stiffness of the member. 
This value of Simax should be used when setting the tinge step At to be used 
for the analysis. 
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For a uniform mesh net, the Simax comprises mainly of the component 
(EA/Lo) and with little contribution from (T/Lc). The term (T/Lc) is relevant in 
some form-finding situations such as 

. 
that of geodesic nets where the EA 

values may be set to zero. The current link lengths Lc may also change 
significantly during the analysis. Typically, the crossing links may bunch 
together resulting in some link lengths being much shorter than the values 
used in the calculation of Simax" Hence, the geometric stiffness term in 

equation (3.3.16) has to be factored accordingly. For the form-finding of 
triangular membrane elements with specified stresses, a similar factor has to 
be applied to the geometric stiffness terms to allow for both reduction in 
element sizes and changes of aspect ratios. 

As the eventual solution of a dynamic relaxation analysis is given by the 
static equilibrium state, the nodal masses used in the analysis do not change 
the final solution but only influence the solution path to convergence; this 
suggests the possibility of using fictitious nodal masses as a means of 
improving the convergence rate. 

Fictitious masses were first used in dynamic relaxation by Otter, Cassell and 
Hobbs [1131. For non-linear problems, Cassell and Hobbs [43] updated the 

fictitious masses at discrete intervals during the analysis. The Gershgörin 
bounds were used for calculating these masses, and separation of the linear 
and non-linear components means that only the latter needs to be updated. 
Frieze, Hobbs and Dowling [59], and Turvey [131] used fictitious masses in 
their large deflection analysis of plates. In addition, Frieze [58] found that 
fictitious masses based on elastic rigidities alone lead to convergence although 
plastic behaviour was present in his dynamic relaxation analysis of elasto- 
plastic buckling of thin walled rectangular sections. In these investigations, 
the additional computational effort involved in the updating of non-linear 
fictitious mass components may more than offset the benefit of increased 
convergence rate. 

By using fictitious masses, the time step required for a stable solution can be 
optimised in order to produce an increased convergence rate, and the 
following equation [10] 

et2 
M1= 2 si (3.3.17) 

is used for this purpose. Using equation (3.3.17), the nodal mass at node i 

which ensures numerical stability for a chosen time interval At, can be 
calculated. In addition, it is most desirable if the fictitious nodal masses can be 
adjusted to achieve the situation of approximately equal stiffness/mass ratios 
(and thus, the critical time intervals) at all nodes of the structure. As a result 
of the gross geometry changes which may occur during form-finding, the 
nodal mass in each of the three coordinate axes directions may be set using 
the greatest possible stiffness at any node as follows- 
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et2 
Mxi = Myi = MZi =2 Simax* (3.3.18) 

It may be convenient to choose the time interval At =1 and then use equation 
(3.3.18) to calculate for the corresponding fictitious nodal masses. However, as 
mentioned earlier, a factor has to be applied to the geometric stiffness term of 
SimaX and experience is needed to decide on the appropriate factor to use. The 

value of this factor can be wide ranging and may require regular adjustments 
during analysis to maintain the optimum convergence rate. On some 
occasions, trial and error may be required to establish such a factor. 

Alternatively, the required set of fictitious mass components at any node i can 
be calculated as follows [17,133]- 

[M; ] = 
&2 [T; ]T[Sll[Til 

2: 2ý51ý. 
(3.3.19) 

in which [Mil is a (3 x 3) block mass matrix, [Si] is a diagonal matrix of 
principal direct stiffness components, and [Ti] is a transformation matrix 
relating the principal stiffness directions of node i to the global coordinate 
system for the structure. Hence, this is equivalent to having diagonal mass 
matrices in the local coordinate system of node i (coincident with the 
principal stiffness directions) which results in an optimum time interval for 
the solution process. However, although the number of time steps to 
convergence are minimised, the additional computation involved favour the 
use of a diagonal-mass matrix factored appropriately to account for the 
coupling effects. 

Subsequently, the lumped (diagonal) nodal masses of node i may be 
calculated as follows- 

{Miß} °22 {SO (3.3.20) 

where the equivalent direct stiffness components (Si') are derived from [S; ]*, 

and a possible scheme of finding (Si') is given by 

Si '= aSji (3.3.21) 

in which Sij is the diagonal term of [Si]* for the jth degree of freedom at the 

node. If the nodal principal stiffnesses coincide with the global coordinate 
system, setting (a=1) will suffice to produce a stable solution. However, this 
is not commonly the case and a value of (a> 1) is required in order to avoid 
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the onset of numerical instability. Using (a = 2) in the dynamic relaxation 
analysis of a wide range of pin and rigid jointed structures (both planar and 
spatial), satisfactory results have been obtained by Wakefield [133]. On the 
other hand, if the principal direct stiffness directions are close to the global 
coordinate system as in a shallow network, the estimated mass components 
will then be over conservative. 

An alternative suggestion for calculating Sj' is given by 

n 
Sý = aEISjkI 

k=1 
(3.3.22) 

where n is the number of degrees of freedom and Sjk are the terms in row j of 
[5; l*" 

Furthermore, a minimum value may be set for the coefficients of {Si } as 
follows- , 

Sj' ý ßSimax' (3.3.23) 

where Simax' is the maximum coefficient in [Si'). The case of (0.05 <ß<0.1) 
has been used successfully in the dynamic relaxation analysis of both pin and 
rigid jointed structures by Wakefield [133]. In form-finding where gross 
deformations may occur, it may be necessary to use a higher value of ß such 
as 1.0. 

The three methods of control for fictitious nodal masses outlined above can 
be summarised as follows- 

(1) diagonal mass matrices with coefficients based on leading diagonal direct 
stiffness terms (equation (3.3.21)), 

(2) diagonal mass matrices with coefficients based on row sums of the direct 
stiffness matrix (equation. (3.3.22)), 

(3) square mass matrices (equation (3.3.19)). 

Wakefield [1331 applied the above methods of control to a pretensioned 
network with rigid boundaries and compared their efficiencies in terms of 
number of iterations and solution times to convergence. The square mass 
matrices in (3) above have been shown to often lead to the case of least 
number of iterations and solution times to convergence, and that the scheme 
in (1) is the least efficient. However, more storage requirements are 
demanded by the square mass matrices. Subsequently, it is suggested that the 
diagonal mass matrix with row sums of stiffness terms in (2) is the preferred 
choice for general applications. For the example considered, this scheme often 
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takes only slightly longer solution times than the case of square mass 
matrices, and keeps the computer program simple and reduces storage 
requirements. This scheme is also readily implemented as an automatic 
control of the fictitious nodal masses. By choosing the appropriate a and ,6 
parameters at the start of the analysis and it is usual to use values which are 
within the following ranges, ie. (1.0 < a< 2.0) and (0.05 <ß<1.0), a stable 
solution will be attained in most cases. Hence, this scheme is adopted for the 
task of calculating the fictitious nodal masses in all subsequent analysis. 

A brief mention here about the dynamic behaviour of a low rise air- 
supported dome. Of primary interest may be the displacements normal to the 
membrane surface but the critical time interval for numerical stability is 
governed by the higher in-plane membrane stiffness. With a square mass 
matrix, it is allowable at the level of local coordinates to impose high 
fictitious principal mass components for the in-plane motions and use the 
actual mass values for the out-of-plane motions. Within the local coordinate 
system, the in- and out-of-plane motions are decoupled and this idea leads to 
an optimur, time step for the out-of-plane motions having real mass values 
meanwhile ensuring that the in-plane motions are numerically stable. 
Consequently, in this case, the principal stiffnesses and their corresponding 
coordinate transformations have to be worked out in order to set up the 
square mass matrices with the correct scaling of the principal mass values in 
the global coordinate system. 

For nodes with six degrees of freedom (ie. three translations and three 
rotations), the square mass matrices remain (3x3) as the numerical stabilities 
of the translational and rotational vibrations are decoupled. 

3.3.3 Viscous damping constant 

The true structural damping should be used when modelling the dynamic 
behaviour. The low level of damping in a bare network will have little effect 
on the resulting maximum dynamic stresses and frequency response. On the 
other hand, the corresponding influence of the high level of damping in a 
clad network will be much more significant. 

For static solutions, a high fictitious damping is imposed to achieve the final 
steady equilibrium state. If critical damping is used, then monotonic 
convergence will be ensured. However, a slightly sub-critical damping 
produces more rapid convergence and bounds to the true equilibrium state 
are obtained as well. From a trial analysis (ie. undamped or lightly damped), 
the fundamental frequency f of the structure can be found from the 
deflection-time trace. Alternatively, the frequency can be determined from a 
trace of total kinetic energy given by an undamped trial analysis. The kinetic 
energy varies at twice the fundamental frequency and such an approach also 
gives a clearer indication of the fundamental frequency. An estimate of the 
critical damping constant is then given by 
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ccr; t = 4nfet. 

In some instances however, the critical viscous damping factor may be 
difficult to estimate [115]. 

3.3.4 Kinetic damping 
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Figure 3.3 

(3.3.24) 

It is possible to use dynamic relaxation with zero viscous damping and the 
concept of kinetic damping introduced in its place instead. As a result, there is 
no need for a prior determination of the damping constant. The underlying 
basis of kinetic damping is that as an oscillating body passes through its static 
equilibrium state, its total kinetic energy reaches a local maximum. Barnes, et. 
al. [9] found that the scheme of dynamic relaxation with kinetic damping is 
generally stable and rapidly convergent when dealing with large local 
disturbances. Under this scheme, the total kinetic energy is traced during the 
undamped motion of the structure. Upon the detection of a local energy peak, 
all current nodal velocities are set to zero. The process is then restarted from 
the current geometry and continued through further (generally decreasing) 
peaks until the energy of all modes of vibration has been dissipated and the 
structure attains its static equilibrium. A kinetic energy trace typical of that 
produced in most cases is given above in figure 3.3 and often representative 
of the form-finding of a cable net or prestressed membrane structure with 
inaccurate initial geometry. The initial energy peaks (A) are a result of the 
high frequency modes caused by large residual forces in boundary or point 
support regions. The energy peaks which follow (ie. B) relate to the overall 
structural form and lowest frequency modes. As the converged solution is 
within reach, the low energy peaks (C) occur rapidly as a result of slight in- 
plane motions. This scheme allows form or shape adjustments which may be 
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local changes to boundary geometry, surface topology, cable tensions or 
specified stresses in membrane elements, without the propagation of these 
disturbances to those regions further away. The out-of-balance forces due to 
the form adjustments are rapidly equilibriated locally. 

From equation (3.3.7), and with C,, i = 0, 

A=1 and Bxi= et 

xi 

and equation (3.3.6) then becomes 

[V]t+et/2 = {V}t-nt/2 + at CMr'JR it (3.3.25) 

written in vector form for the entire structure. Subsequently, 

KEt+et/2 = 
2((V)t+et/2)T[M][V)t+nt/2 (3.3.26) 

where KE denotes the current total kinetic energy of the structure and the 
updated coordinates at time (t + At/2) are given by 

{S}t+et = {5)t + At{V)t+et/2. (3.3.27) 

The condition (KEt+et/2 < KEt-et/2) signals the presence of a local energy peak. 
The velocities must then be set to zero and the coordinates adjusted from 
{S)t+et to {S)t* where t* is the time at which the true peak occurs. The 

coordinates {SJt* can be found by fitting a quadratic polynomial through the 
current (C) and two previous kinetic energy values (A and B) as shown in 
figure 3.4 which in turn leads to 

At At(E E- 
D) = Atq (3.3.28) 

where E= (C - B) and D= (B - A). From figure 3.4, the conditions (B >A) and 
(C < B) mean that the local peak occurs within the time interval (t --'t-At). 

From equation (3.3.28), the values of q which correspond to specific cases are 
as given below 

(B=C) = q=0, 
(A=C) = q=2, 
(o=B) = q=1. (3.3.29) 
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As the coordinates have been updated using average velocities (at mid-points 

of time intervals), they should be reset according to the same scheme. The 

velocities {V)t+ot/2 apply over the time interval (t. - t+At) while the velocities 

(V)t-ot/2 apply over the time interval (t-At -+ t). Thus, 

(3)t" = (5)t+et - &t(V)t+At/2 - &t*(V)t-et/2 (3.3.30) 

From equations (3.3.25), (3.3.28) and (3.3.30), 

(S)t' = (S)t+et - At(1 + q)(V)t+et/2 + Ati(MI''t{R. (t. (3.3.31) 

As a simplication, if the energy peak is assumed to occur at time (t-it/2), then 

q=2 in equation (3.3.31). 

The process is restarted with the velocities at the mid-point of the first time 

step given by 

(V)At/2 = At LMj-' f R1t'o (3.3.32) 

Subsequently, the velocities are updated according to equation (3.3.25) in 

order to search for the next energy peak. The whole process continues until 

the analysis converges to within a specified tolerance. 

-49- 



Hence, the kinetic damping procedure together with automatic control of 
nodal mass components, ensures numerical stability in the event of suddenly 
imposed high residuals which occur frequently during form adjustments. 

3.3.5 Natural stiffness relations 

As indicated earlier on, the nodal residual forces are calculated at every 
iteration step of the dynamic relaxation method. Consequently, an efficient 
procedure for calculating the nodal residual forces will greatly enhance the 
computational speed of the solution process. In these calculations, it is 
desirable to use the least amount of matrix operations and for the sizes of any 
matrices involved to be as small as possible. In addition, matrix inversions 
are to be avoided as singularities may arise under certain circumstances. 
These features can be found in a procedure which uses natural stiffness 
relations. 

In the solutions of non-linear transient problems, a scheme based on natural 
stiffness relations has been used for the efficient derivation of nodal residual 
forces by Belytschko, et. al. [241. A local element or coordinate system is set up 
with one node of the element as the origin and the axes directions are then 
defined by another node. The local coordinates are thus free to translate and 
rotate with the element as the structure deforms. 

The natural stiffness approach uses the basic displacements or strain 
measures which are the smallest number of geometric parameters necessary 
to completely describe the deformed/strained state of the element not due to 
any rigid body motion [99). The element natural stiffness relates the basic 
displacements to the corresponding set of basic or natural member forces. 

In the case of a cable/strut element, the basic displacement is the axial 
extension of the element. Argyris [2] first suggested a natural stiffness matrix 
for the constant strain triangular membrane element relating the tensions to 
extensions along the three sides of the element as shown in figure 3.5. A 
dynamic relaxation scheme which uses such a natural stiffness matrix has 
been applied to the form-finding and static analysis of prestressed membrane 
structures by Barnes [13,15,16,17,18]. This approach leads to the most 
efficient calculation of nodal residual forces and minimum computer storage 
requirements for most elements. More importantly, it simplifies the use of 
on/off or other non-linear stress-strain relations. Basically, the process 
involves a few simple steps outlined as follows- 

(1) set up the coordinate transformation matrix, 
(2) compute basic displacements from the global nodal coordinates, 
(3) compute natural forces from the basic displacements using either linear or 

non-linear natural stiffness relations, 
(4) natural forces transformed to global coordinate system and added to nodal 

residual forces. 
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For the cable element m, the natural stiffness relation at time (t+At) is' given 
by 

T t+et =T S+ (E=) 5AL t+et 
mm Lo mm (3.3.33) 

in which Tn, s and (A are respectively the initial specified tension and axial 
0 

elastic stiffness of the cable element, and tLmt+et is the extension of cable 

element (from the initial state) at time (t+At). The value of Tmt+et found is 
then substituted into equation (3.3.9) to obtain the nodal residual forces. Both 

the terms Tm6 and (LA )m are available controls for making shape adjustments 
0 

during form-finding. Furthermore, element buckling (ie. the cable has 

become slack) is modelled by simply setting zero values to both Tm5 and 

ES (Lo 
m 

Y 

Z 

Figure 3.5 

X 

For the constant strain triangular membrane element as shown in figure 3.5, 
the natural stiffness relation is given by 

(T) = (T)s + [K][e} 

in which [K] is the (3 x 3) element natural stiffness matrix, 

(3.3.34) 
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T' 

(T} =f T2 
T3 

rTlsl 
{7'}s =f T2s 

, 
T3s 

el 
(ei = e2 

L e3 
(3.3.35) 

and Ti, Tls, ei are respectively the current tension, initial specified tension 
and extension from the initial state along side i of the element for i =1,2,3. 

Consider the transformation of element strains from the directions of the 
local element x- and y-axes as shown in figure 3.5 to along each side of the 
element. The strains are assumed constant along each side and hence, 
throughout the element. Applying the law of strain transformations, the 
strain along side 1 is then given by 

1= ecos281 + eysin291 + yxycosOlsin0l (3.3.36) 

where c, c, and y. y are the element constant strains, and 01 is the inclination 
of side 1 to the local x-axis (measured anti-clockwise from x-axis to side 1). 
The strains along sides 2 and 3 of the element can be similarly determined. In 
matrix form, the strains along each side of the element is then given by 

(E) = [Al (exy), (3.3.37) 

or in expanded form 

E1 1'1 b1 cl ex 

£2 =f a2 62 C2 eY (3.3.38) 
LC3 La3 b3 c3 YX Y 

in which ai = cos29i, bi = sin20j and c; = cosOisin6; for i=1,2,3, and 

e1 ei /Il 

c2 = e2/12 " (3.3.39) 
e3 23 / 13 

in which e; and Ii are respectively the extension and initial length of side i. 

Thus, (CXy) = [A]'1 {e} = (GIN (3.3.40) 

(b2c3-b3c2)/11 (b3c1-bic3)/12 (blc2-b2c1)/13 

in which (G]_ 1 (a3c2"a2c3)/11 (a1c3"a3c1)/12 (a2c1"a1c2)/13 (3.3.41) IA ý 
(a2b3-a3b2)/ll (a3b1-alb3)/12 (alb2-a2b1)/13 

and IA + is the determinant of [A]. 

-52- 



Furthermore, the element stresses are related to the strains in the following 
manner 

foxy} = [D]teQ. (3.3.42) 

or in expanded form 

ýx d11 d12 0 '6x 
47y = d21 d22 0 6y (3.3.43) 
Zxy. 00 d33 Yxy. 

where d11, d12, d21 and d33 are the material orthotropic elastic constants 
which constitute the elasticity matrix [D] corresponding to the local element 
x- and y-axes. 

For an isotropic material, 

E d11 d22 
(1 v2)' 

d12 d21 
(1vV2)' 

d33 - 2(1E V) 
(3.3.44) 

in which v is the Poisson's ratio and E is the Young's modulus of the 
membrane material. 

On the other hand, for a linear elastic material which is anisotropic in an 
orthogonal sense, the stress-strain relationship is given by 

ax ITY 
c= 1; -vyEY. (3.3.45) 

5x 
ýy = -vxEx + Ey (3.3.46) 

where E,,, EY are respectively the moduli of elasticity in the x- and y- 
directions, and vt, v}, are respectively the Poisson's ratios in the x- and y- 
directions. 

Multiplying equation (3.3.45) by vx and adding the resulting equation to 
equation (3.3.46) gives 

Q 
vxc +=E (1 - vxvy) . (3.3.47) 

Y 

Ex E 
Hence, Qx = (1 - vxvy) 

(ex + vvee) , 6Y = (1 - vxvy) 
(vxex + EY) Q. (3.3.48) 

-53- 



Subsequently, the [D] matrix for an orthotropic material is given by 

r EX/(1- vvvy) vyEX/(1- vxvy) 0 

[D] =I vvEy/(1- v vy) Ey/(1- vvvv) 0 (3.3.49) 
00 d33 

where d33 is the shear rigidity which is normally less than 1/15 of the rigidity 
in tension. 

By the Maxwell's reciprocal theorem, the moduli of elasticity and Poisson's 
ratios are interrelated as follows- 

vX ý 
EX - Ey (3.3.50) 

Substituting equation (3.3.40) into equation (3.3.42) leads to 

(c7) _ [D][G]{e)" (3.3.51) 

The element stiffness relations are then given by 

{F"} _ [[GIT[DI{GlV]{e} 

= [K] (e) (3.3.52) 

where (F) = element side forces, 
(e) = element side extensions, 
[K] = (3 x 3) element stiffness matrix, 

and V= volume of element given by (A x t) with A and t being the element 
surface area and thickness respectively. 

For form-finding in which the prescribed membrane stresses are held 

constant at (als, the element side tensions {F} can then be calculated as 
follows- 

{F} = V[G]T{O}S. (3.353) 

The shear modulus of the coated fabric material is generally very low (ie. d33 

0) which means that the resulting shear stresses will be negligible (ie. ry 
0) and can thus be ignored in most cases. In addition, the local element x- and 
y-axes can be set coincident with the material principal directions, ie. the 
warp and fill directions respectively, and with side 1 of the element taken to 
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1 

2 

Figure 3.6 

\ 
3 

be along the warp direction, ie. 01 =0 as shown in figure 3.6. As a result, the 
tension in any side i can be written in the following much simplified form 
[17,18] 

ayl. 
Ti - 2tanai 

except for side 1 if (o * ay), then 

cryll A T1 =2 ana +1 (a,, - ay). 
11 

1 

2 

11 

Figure 3.7 

(3.3.54) 

(3.3.55) 

Y 

3x 
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If the shear stresses are to be taken into account, then their contributions to 
the side tensions are given as follows [201 

(122-132) r,, y(b-a) Tl = 211 =21 

. 2' T3 = 
13 

(3.3.56) 

in which the a, b, 11,12 and 13 terms are as defined in figure 3.7. 

In equations (3.3.54) and (3.3.55), the membrane stresses are forces per unit 
width and for simple orthotropic stress-strain relations, are given by 

ax = QXS + d11Ex + d12Ey. 

Qy = QyS + d12c + d22e 

where a), o, are the current principal stresses, 

; S, Qys are the initial prestresses, and 
d11, d22, d12 are the material orthotropic elastic constants. 

In addition, the shear stress Ty is given by 

z. Y = d33yx,. 

(3.3.57) 

(3.3.58) 

The element strains in equation (3.3.57) can in turn be calculated in the 
following manner 

11 Alls 
Fý=Is-1, e =Asll -1 (3.3.59) 

where AS and 115 are respectively the element area and length of side 1 
(parallel to x-axis) in the initial or prestressed state, and A and 11 are the 
corresponding values in the current state. 

Furthermore, the shear strain yty can in turn be found as shown in figure 3.8, 
ie. 

a= l3cosa2, 

S=a-(las)h, 
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yXy = tan71(h) Ah (3.3.60) 

in which again the above terms are for the current state except for those with 
the superscript 's' which are values in the initial or prestressed state. 

a 
1 

Y 

2 

a b 

i- i- 

Figure 3.8 

3' -x 

As a useful feature of the dynamic relaxation method, the strain components 
in equations (3.3.59) and (3.3.60) are updated independently of the stresses in 
equations (3.3.57) and (3.3.58) instead of being coupled as in matrix methods. 
This enables the modelling of more complex stress-strain relations such as 
stresses as polynomial functions of strains, slip cables and on/off non- 
linearities, and also simplifies the inclusion of physical controls in the form- 
finding and static analysis stages. With the buckling of the membrane 
elements considered only in the principal weave (x- and/or y-) directions, the 
buckling of the real membrane will be closely approximated bearing in mind 
the generally very low shear stiffness of the fabric material. It is also noted 
that geometric non-linearity is automatically accounted for with the element 
strains in equations (3.3.59) and (3.3.60) calculated from the current updated 
geometry of the structure. 
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3.4 Conclusions 

In this chapter, the basic mechanics of the dynamic relaxation method are 
outlined in relation to its application to the form-finding and static analysis of 
tension structures in which the solution is for the static equilibrium state of 
the structure concerned. The method has a dear underlying physical basis. 
With an image of the structure in its current geometry displayed on the 
computer screen and the image updated at regular intervals during the 
analysis, any signs of physical instabilities in the structure can be easily 
detected and often their causes are easily identifiable as well. The method is 
also relatively simple in terms of its underlying theory and implementation 
into a computer program. 

As the dynamic relaxation method is basically an explicit numerical scheme, 
it is only numerically stable on condition that a time step less than a critical 
value is used. By using fictitious nodal masses, the time step required for a 
stable solution can be optimised in order to produce an increased convergence 
rate. A strategy which gives an automated control of the fictitious nodal 
masses is adopted. In this strategy, a diagonal matrix of fictitious masses is 
used at each node and this matrix is factored appropriately to account for the 
coupling effects between the various degrees of freedom at each node. As an 
alternative to viscous damping, the kinetic damping procedure is used to 
control the solution path to convergence, and this procedure is effective in 
dealing with high residuals which can often arise suddenly during radical 
changes to the numerical model. Furthermore, the natural stiffness relations 
are used in the calculations for the natural forces from the corresponding 
basic displacements. The natural forces are then transformed to the global 
coordinate system and added to the nodal residual forces. This proves an 
efficient means of deriving the nodal residual forces and hence, greatly 
enhances the computational speed of the overall solution process. In the 
method, geometric non-linearity is automatically accounted for. Another 
useful feature of the method is the effective decoupling of the equations of 
compatibility and equilibrium which allows the modelling of complex 
material properties, slip cables and on/off non-linearities, and simplifies the 
inclusion of physical controls in the form-finding and static analysis stages. 
Finally, the reasons for choosing the dynamic relaxation method as the 
preferred solution scheme are therefore clear from the above discussion. 
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Chapter 4 

Compression and bending elements incorporated into the DR scheme 

4.1 Introduction 

The idea of a structure comprising of tension elements being stabilised by a 
compression boundary becomes obvious in a simple example such as the 
bicycle wheel. In this case, the bicycle spokes all in tension are bound by the 
rim which is in compression. On a much larger scale, compression ring 
beams have been used as boundary supports for tension structures such as the 
Raleigh Arena and the Calgary Olympic Stadium. It is an excellent alternative 
to provide compression boundaries as opposed to the more obvious choice of 
tension anchorages as support means for large span tension structures. The 
tension elements in such structures act as elastic supports for the compression 
boundaries and thus, slender sections can be used in these boundaries. 

From both'the studies by Mollmann [99] and Samuelli Ferretti, et. al. [120], it is 
concluded that when the flexibility of the compression boundary of a tension 
structure is ignored, then large enough errors are introduced into the analysis 
of the structure to invalidate the results produced. This is particularly so if the 
stiffness of the boundary is relatively low compared with that of the tension 
structure it supports. By modelling the compression boundary using 
compression (or strut) and/or bending (or beam) elements, the flexibility and 
thus, finite deformations of the boundary can be properly accounted for. This 
in turn will enable a realistic modelling of the interaction between the 
boundary and the tension structure. The compression elements are used in 
situations where compressive forces are to be resisted in the absence of any 
bending moment. On the other hand, where bending moments are to be 
resisted, the beam elements should be used, and compressive forces can also 
be taken as axial loads in the elements. 

The case of prestressed cable structures with compression boundary supports 
has been studied by Mollmann [99] using a finite element displacement 
analysis based on the Newton-Raphson method, by Buchholdt, Das and Al- 
Hilli [38] using the conjugate gradient method, and by Wakefield [133] using 
the dynamic relaxation method. In the study by Wakefield [133], it is shown 
that the dynamic relaxation method can cope with the beam elements with 
equal ease and efficiency as for the tension elements, and is also more 
efficient than the scaled conjugate gradient method. An extension of the 
approach used by Wakefield [133] is discussed in this chapter. It is convenient 
to adopt this approach for modelling the beam elements as the dynamic 

relaxation method is the chosen solution scheme in this thesis. 

A detailed description of the dynamic relaxation method as applied to the 
tension elements has already been given in chapter 3, and the method can be 
applied equally to the compression elements with the consideration of 
allowing compressive forces in these elements; bearing in mind that the 
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tension elements will buckle under compression. Although only minor 
adjustments will be needed, more consideration is -required when applying 
the dynamic relaxation method to the beam elements. Hence, the discussion 
in this chapter will be mainly concerned with the implementation of the 
beam elements using the dynamic relaxation method. 

4.2 Moment-curvature relations 

The compression boundary can be modelled as a series of initially straight 
beam elements. As shown in figure 4.1, each beam element in space has six 
basic displacements with corresponding natural forces. The basic 
displacements and natural forces are defined relative to a local axes system in 
which the x-axis is along the direction from node i to node j of the element, 
and the corresponding y- and z-axes. set up to give a right-handed coordinate 
system. The y- and z-axes are chosen to coincide with the principal axes for 
the element cross-section. 

The six basic displacements indicated in figure 4.1(a) are as follows- 

e: the axial displacement along the x-axis, 
0xß : the torsional displacement along the x-axis, 
Oyj : the rotational displacement about the y-axis at node i, 
9yß : the rotational displacement about the y-axis at node j, 
62i : the rotational displacement about the z- axis at node i, 
9zj : the rotational displacement about the z-axis at node j. 

The corresponding natural forces of the element as shown in figure 4.1(b) are 
given by 

1mxt 
{m1) = myi , mzi 

iM4 
{mj} mYl , m4 

.j 
are the moments at node i about the local x-, y- in which mX1, my1 and m,, 

and z-axes respectively with similar moments at node j, and 

Pxi 
{p; } = Pyi 

Pzi 

P 
(p') = Pyi . Pzj 

in which {pi} = -{pj}, and p.,,, pyi and pzi are the forces at node i in the 
directions of the local x-, y- and z-axes respectively with similar forces at node 
1. 

The above basic displacements and natural forces are related to their 
corresponding values in the global axes system by a transformation matrix. 
The current position and orientation of the beam element can be established 
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from the current global node coordinates {X'}. However, the rotational 
displacements are derived relative to an initial state defined at the start of the 
analysis. 

The basic displacements are related to the natural forces of the beam element 
by the following equations 

m yi 42 eyi {my. } 
=L L2 4]t°J' (4.2.1) 

ý 

ý ziý 
=EL22] 

j0Zifl 
(4.2.2) 

Zj 
LJ1ý' 

mxi = -mxj .=- 
L19xý;, 

(4.2.3) 

EA 
Pxi = -Pxj -- Lo e (4.2.4) 

(mzi + mzj) 

pri - -Pyj -L (4.2.5) 

(my, + myi) 
PZi = 'Pzj _'L (4.2.6) 

L= Lo + e, (4.2.7) 

in which E, G, A, L and L. denote the Young's modulus, shear modulus, 
cross-sectional area, current length and slack or initial length respectively, 
and Iy and IZ are the principal second moments of area about the local y- and 
z-axes respectively, and I is the polar second moment of area. The moments 
about the local x-axis are torsional moments, and the moments about the 
local y- and z-axes are bending moments. The forces in the direction of the 
local x-axis are axial thrusts, and the forces in the directions of the local y- and 
z-axes are shear forces. 

The current position of the beam element in space is given by the current 
node coordinates at the two ends of the element. However, the exact 
orientation of the principal cross-section is only known with the definition of 
an additional variable, ie. the P. angle as shown in figure 4.2. A plane which 
contains the local x-axis (ie. the axis along the direction from node i to node j 
of the beam element) and the global z-axis such as the i, j, k plane in figure 
4.2, can be formed. In the case of a beam element which lies parallel to the 
global z-axis, the plane containing the local x-axis and the global y-axis can be 
taken instead. The P. angle is defined as the angle between the i, j, k plane and 
the local z-axis of the beam element. 
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Furthermore, it is assumed that there is a linear variation of torsional 
displacements along the local x-axis. The current orientation angle ß is then 
given by the sum of the specified ßo angle and the average of the torsional 
displacements at nodes i and j of the element, ie. 

(O + o, ßo+ z (4.2.8) 

in which 6j = [l m n]{9; }, and {9; } are the global nodal rotational 
displacements, and 1, m and n are the direction cosines of the current local x- 
axis. With the ß angle known, the local right-handed axes of the beam 
element can then be uniquely defined, and the transformation matrix [T] 
between the local and global axes can in turn be found. Subsequently, 

{X) = [M]{x} (4.2.9) 

in which {X} and (X') are the local and global node coordinates respectively, 
and 

11 ml nl 

17 1= 112 m2 n2 
13 m3 113 

(4.2.1 0) 
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with ll, mi and nj being the direction cosines between the local x-axis and the 
global x-, y- and z-axes respectively, and so on. On the other hand, 

{X) = [TJT(X) " (4.2.11) 

In addition, the transformation matrix [T] is used to relate the local 
translational displacements to their global equivalents as shown below 

1Au uj - ui X 

ev =4 vj - vi = [T`] yji - yöji 
, (4.2.12) 

ew wj - wi zji - Zoji 

in which ui, vi and wi are the translational displacements at node i in the 
directions of the current local x-, y- and z-axis respectively with similar 
displacements at node j, and 

x! i - x'-- = (x! - xi) - (xoj - xý; ) = (xj - xxj) - (xi - xý1), (4.2.13) 

with xýi and xi being the initial and current global x coordinates of node i and 

so on. The initial global coordinates correspond to the position of the beam 

element when first defined and thus, these coordinates have to be stored for 
subsequent use in equation (4.2.12). 

In order to account for the rigid body motions of the beam element when 
determining the rotational displacements from the global nodal rotations, 
two sway angles, ie. Oyji and OZji have to be calculated for bending about the 
local y- and z-axes respectively. In figure 4.3, the local xo-, yo- and z. - axes 
define the beam element in its initial state with end nodes at is and jo whereas 
the local x-, y- and z-axes define the element in its current state with end 
nodes at i and j. The beam element undergoes local translational 
displacements of Du, Av and Aw in going from its initial to its current state. 
Let va be the vector along the local xo-axis (ie. from node io to node j) of the 
beam element, v,, be the vector along the local x-axis (ie. from node i to node 
J) of the element, and vy be the unit vector in the direction of the local y-axis 
of the element. Due to the Ev (= vv - v) displacement in the local x-y plane, 
and 

Vb = Va + Ov vy, (4.2.14) 

and the Aw (= wj - wi) displacement in the local x-z plane, it follows that 

vb. vc 
4J1 = cos-' VC (4.2.15) 
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in which (vb. vC) denotes the dot product of vectors Vb and v, I Vb I denotes the 

magnitude of vector Vb and so on. The sway angle rYji 
(for bending about the 

local y-axis) has a negative sense for the case of (Ow > 0) as shown in figure 
4.3. The calculation of the sway angle 0 does not involve the Au (= uj- ui) 
displacement along the x-axis of the element. 

Wi 

IL 

Figure 4.3 

For the calculation of the sway angle 0Zji, consider figure 4.4 in which the 

same notation as described above for figure 4.3 is used and with vZ being the 
unit vector in the direction of the local z-axis of the beam element. Due to the 

pw (= wj - wi) displacement in the local x-z plane, and 

Vb = Va + Awvz, (4.2.16) 

and the Av (= vv - vi) displacement in the local x-y plane, it follows that 

ab. Vc 
ozji = COS-1 IV, I IvcI (4.2.17) 

For the case of (Ov < 0) as shown in figure 4.4, the sway angle 0. (for bending 

about the local z-axis) has a negative sense. 
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Fi urn e 4.4 

Subsequently, the components of global nodal rotations in the local axes 
system of the element in its current state can be found as follows- 

(eli = 

xi 
11 m1n1 xi 

®yi = 
112 

m2 n2 ©yi 
. (4.2.18) 

ezi 
[13 

3 n3 ©zi 

in which (eil and {4'}i are the rotations at node i in the local and global 

senses respectively, and the same applies at node j; ©xi, ©yi and ®Zi are the 
rotations at node i about the local x-, y- and z-axis respectively, and so on. 

The local rotational displacements of the element are in turn given by the 
following equations 
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9xji = ex) - ®Xl, 

eyi = c9yi - oyji, eyj = ©yj - oyji, 

9Zi = ®Zi - oZj1,0z = ®Zj - ozji. (4.2.19) 

The current length L can be calculated from the current global coordinates of 
nodes i and j of the element, and the axial displacement e can then be 
obtained from equation (4.2.7). With the basic displacements determined, the 
natural stiffness relations given in equations (4.2.1) to (4.2.6) can in turn be 
used to solve for the natural forces acting on the element. A transformation 
process can subsequently be applied to the natural forces to give their 
components in the global axes system, ie. 

{p1! i }= [71T{pi} (4.2.20) 

in which (mi) and (mi) are the global and local moments respectively at node 
i, and {pi} and (pi) are the global and local direct forces (ie. axial and shear 
forces) respectively at node i. These global moments and direct forces can then 
be substracted from their corresponding residual force vectors at node i, and 
the contributions of global forces from all elements connected to node i have 
to be taken into account. The same steps also apply at node j of the beam 
element concerned. 

4.3 Non-Linear effects 

The beam elements are developed to cope with a number of non-linear 
effects. Firstly, the non-linear effect due to the influence of axial force on the 
linear moment-curvature relations given in equations (4.2.1) and (4.2.2) can 
be accounted for by using the s and c stability functions in the following 

manner, ie. 

Jmyi 
_s 

sc 0yi 
m"-L LSC s, e. Yl Yl 

(4.3.1) 

and similarly for bending about the z-axis. The stability functions can be 
expressed in the form of a power series as derived by Livesley, et. al. [921 and 
are given by the following equations 

s= 302 + 01, (4.3.2) 

sc = 302 - 01, (4.3.3) 

and with p =P/PE, ie. the ratio of current to Euler compressive forces, 

-67- 



(64 - 60p + 5p2) n-7anpn 
4ý = (16 - p)(4 - p) - El 

23n 1 (4.3.4) 

= 
7Z2P 

0'2 - (4 
12(1- 1)' 

(4.3.5) 

and al = 1.57973627, a2 = 0.15858587, 
a3 = 0.02748899, a4 = 0.00547540, 

a5 = 0.00115281, a6 = 0.00024908, 
a7 = 0.00005452. (4.3.6) 

The above expressions apply equally to bending about the local y- or z-axis, 
and can cope with either tensile or compressive axial forces by simply using, 
the correct sign in each case. In addition, the case of zero axial force poses no 
problem. Alternative expressions have been derived for the stability 
functions in which the presence of either tensile or compressive axial forces 
are dealt with in separate equations as given in [45], which become 
indeterminate for zero axial force. 

v 

gei x 

lc 

Figure 4.5 

The non-linear effect of element bowing on the axial displacement has been 
considered by both Saafan [119] and Wakefield [133]. This effect is modelled by 
using correction factors, and their derivation given below is taken from the 
account by Wakefield [133]. For a beam element in space, bending and thus, 
bowing can occur in both the local x-z and x-y planes. First, consider the 
bowing effect in the x-y plane as shown in figure 4.5. The axial displacement 
of the beam element can be expressed in the following form 

LL=e+AB (4.3.7) 
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in which e is due to the axial elastic deformation, and from equation (4.2.4), e 

= "_EAeI and is is given by the difference between the arc length L. and the 

chord length L. Subsequently, 

LC 

AB =f (ds - dx), (4.3.8) 

0 

in which ds = dx2 + dy2 and thus, 

LC 

DB= i+()2) d-ith. (4.3.9) 

0\ 

Applying binomial expansion to equation (4.3.9) and neglecting the fourth 
and higher order terms, gives 

LC 

2 
AB =fl 2 

(dx)dx. 

0l 

(4.3.10) 

On solving equation (4.3.10), the following results are obtained as given in 
[119], ie. 

'äB = Lc[bl(O 1+ ozj)2 + b2(OZ1 - oo. )2], 

in which bl = 
s(1 + c)(sc - 2) 

bc 2- 8(1 + c) 
(4.3.11) 

8n It 

In order to account for the bowing effects in both the local x-z and x-y planes, 
the ds term in equation (4.3.8) is now replaced by ds = 

. dx2 + dy2 + dz2 and 
in turn leads to 

LC 

AB =1+ 
ýd 

12 + 
(ß)) 

-1 ax 

0J 

(4.3.12) 
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LC 

" 
2[(dx)2 

+()] dx. (4.3.13) 

0 

Consequently, the bowing effects in each of the local x-z and x-y planes can be 
found separately and then their results summed to give the OB term in 

equation (4.3.7). 

Total load fl- 

j 

iml 

ý 
La 

Figure 4.6 

A further consideration is the influence of axial force on the fixed-end 
moments due to the distributed loading on the element. In the case of a 
uniformly distributed load as shown in figure 4.6, the fixed-end moment mi 
is given by 

L2 
mi = r12 (4.3.14) 

in which r= 
P2(1 

- pcotp) (4.3.15) 

as given in [45]. However, in the case of zero axial force when r should be 1, 
equation (4.3.15) becomes indeterminate. Hence, it is better to use an 
expression for r which assumes the following form [133] 

6 
r= s(1 + c) 

(4.3.16) 

where the case of zero axial force causes no problem. In addition, equation 
(4.3.16) can be shown to be equivalent to equation (4.3.15). 

In the dynamic relaxation analysis which uses the kinetic damping procedure, 
it is convenient to update the non-linear effects of the stability functions, 
element bowing and influence of axial force on the fixed-end moments, and 
also reset the beam element stiffnesses when an energy peak is detected. 
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4.4 Boundary conditions 

In order for the analysis to produce any meaningful result, the appropriate 
boundary conditions have to be prescribed. These boundary conditions can be 
assigned through restraints on any of the three rotational and three 
translational degrees of freedom at each node connected to a beam element. 
For instance, the fixed-ended or encastre boundary condition at a node is 
prescribed by ensuring that there are no rotational and translational 
displacements at that node. 

Consider the case where a few beam elements are connected to a common 
node i. It may be required to impose a pin-ended or zero moment condition 
to node i of a beam element with nodes i of the other beam elements still 
moment resisting. This situation can be modelled by prescribing an end 
release to node i of the beam element where the pin-ended condition is 
imposed. An end release can be prescribed to impose a pin-ended condition., 
for bending about any of the local x-, y- and z-axes. 

Subsequently, the natural stiffness relations for a beam element can be 
written as follows- 

fmyi 
- 

('b ä]eye 

yý L eyi 
(4.4.1) 

in which myj and myj are the moments about the local y-axis at nodes i and j 

of the element respectively, O and 8yß are the corresponding rotational 
displacements, and a and b are the corresponding stiffness terms. Using 
equation (4.4.1), it can be shown that 

with an end release at node i, then mY; =0=0. = -ä 0- and 

with an end release at node j, then mA =00= -ä 0 
Yi* 

The above procedure applies similarly for bending about the local z- axis. 
Hence, an end release is modelled by simple adjustment of the appropriate 
rotational displacement. 

4.5 Implementation into the dynamic relaxation anale 

Within the dynamic relaxation scheme, the beam elements are handled in a 
similar manner as the tension elements discussed in chapter 3. Only a few 
modifications pertaining to the beam elements need to be considered. 

The rotational degrees of freedom are treated as decoupled from as well as in 
a similar manner as the translational degrees of freedom. As a result, two 
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(3 x 3) mass matrices are set up foreach node connected to a beam element, ie. 
a (3 x 3) mass matrix each for the rotations and translations. It has been shown 
by Wakefield [133] that numerically stable solutions can be achieved in this 
way. This approach leads to a more efficient solution in terms of 
computational effort compared with forming a (6 x 6) mass matrix to account 
for the three rotations and three translations at each node connected to a 
beam element. The -mass matrices are derived from the principal nodal 
stiffnesses of the beam element (see equation (3.3.19) of chapter 3). For each 
beam element, the principal nodal stiffnesses for the translational and 
rotational degrees of freedom are given by 

ST] =0 12EIZ/L3 0 

[EA/L 00 

00 12EIy/L3 

[SRI =00 
4E ö/L 0 

4E1/L 
(4.5.1) 

[GIlL 00 

Z 

respectively. In the dynamic relaxation scheme, the mass matrices are 
considered relative to the global axes system. However, the principal nodal 
stiffness directions (coincident with the local axes of the element) are 
generally different from those of the global axes. Hence, transformations have 
to be applied to the principal nodal stiffnesses in equation (4.5.1) to obtain 
their components in the global axes system (see equation (3.3.19)), ie. 

[ST]' = [nT[ST][171 

[$R]t = [TT]T[SR][71 (4.5.2) 

in which [STI' and [SR]' are the respective transformed square (3 x 3) matrices of 
the principal nodal stiffnesses. These square stiffness matrices are then used 
in the assessment of the nodal masses which will ensure numerical stability 
in the dynamic relaxation analysis. Subsequently, the row sums of these 
transformed matrices are taken as contributions to the corresponding 
components of nodal masses for nodes i and j of the beam element. The basis 
of such a step has already been discussed in section (3.3.2) of chapter 3. 
Furthermore, various factors are applied to the nodal masses in order to 
account for possible deviations in the stiffnesses calculated from equations 
(4.5.1) and (4.5.2) as the analysis proceeds. The stiffnesses which may arise 
from geometric deformations of the beam elements (ie. geometric stiffnesses) 
and thus, their contributions to the nodal masses are insignificant in most 
cases. Consequently, it is adequate to assess the nodal masses for beam 
elements on the basis of their elastic stiffnesses alone. 
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4.6 Other considerations 

It is also useful for the beam elements to be implemented with facilities 
related to plane of symmetry and model reflection: In the case where 
symmetry is'present in the structure, a plane of symmetry may be defined so 
that only part of the structure is used in the form-finding as well as analysis 
under a symmetric loading. However, the full structure may be required in 
the analysis under an asymmetric loading. The form of the part structure 
which is stored in the database after the form-finding, can then be reflected 
about the plane of symmetry to produce the full structure. Hence, there is no 
need to use the full structure in the form-finding and all load analyses. 

For a node which lies in a plane of symmetry, the coordinates and rotations at 
this node are constrained to remain in the plane. The nodal residual vector 
for the translational degrees of freedom is also constrained to lie within the 
plane of symmetry. On the other hand, the nodal residual vector for the 
rotational degrees of freedom is required to remain normal to the plane. 

PI 
Re 

Figure 4.7 

A plane of reflection can be defined in the structure as shown in figure 4.7. By 
reflecting the structure about this plane, additional elements can be generated 
as a result. Figure 4.7 illustrates the transformations which apply to the 
rotations at any node i lying in the plane on reflection about the plane. The'*' 
superscript indicates a nodal rotation after reflection about the plane while a 
rotation before reflection has no superscript. In figure 4.7, a local x-, y- and z- 
axes system is set up such that the x-axis is normal to the reflection plane 
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while the y- and z-axes lie within the plane. At any node i, the rotation about 
the local x-axis should remain the same. before and after reflections about the 
plane (ie. 8, d = 6Xi*). On the other hand, the rotations about the local y-axis 
before and after reflections should be symmetrical about the plane (ie. 9y, 
9yi*) . Similarly, the rotations about the local z-axis before and after reflections 
should be equal but in opposite senses (ie. 92 8Zi"y . The above 
transformations on the rotations at node i on passing through the reflection 
plane can be summarised as follows 

exi exi 

oyi oyi 

L eoi -Ozi 
Next, consider any node j in space, and 

(ej} = [TI { ei}' (4.6.2) 

in which {9j}' are the rotations at node j in the global axes system, (9)} are the 

components of the rotations in the local axes system of the reflection plane, 
and [T] is the transformation matrix between the global and local axes 
systems. It follows from equation (4.6.1) that 

11 00 
(ej) *. 0 -1 0 {g. } 

00 -1 
(4.6.3) 

in which {9j}' are the resulting rotations on passing (9J) through the reflection 

plane. The (0j)* rotations are then transformed back to their components in 
the global axes system, ie. 

(9j}R = [71T(6j)* (4.6.4) 

in which (0j )R are the global rotations at node j after reflection about the 

plane. Hence, from equations (4.6.2), (4.6.3) and (4.6.4), 

()R = [TR1{o. i} (4.6.5) 

11 00 
in which [TRI = [TJ 0 -1 0 [TI " (4.6.6) 

00-1 

Equation (4.6.5) is used to transform the rotations at node j when reflected 
about a plane. This seems an efficient and elegant way of accomplishing such 
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a task. The remaining nodal- rotations in the structure can similarly be 
operated on using equation (4.6.5). 

Additional node coordinates and beam elements are also generated on 
reflection about the plane, and the mechanics involved are quite 
straightforward. 

4.7 Numerical results and comparisons 

The beam elements formulated as described in this chapter, have been 
incorporated into a module as part of an interactive computer-aided design 
system for tension structures which will be discussed in chapter 7. A 
validation exercise was carried out to ensure that the module did not produce 
unexpected results. Furthermore, the user interface was checked for its 
effectiveness and that it was performing as desired. For the above purposes, ,, the module was applied to the solution of two test problems and the results 
obtained are compared with published solutions. 

Firstly, the module was used to analyse the semi-circular arch problem shown 
in figure 4.8. The result of load (w) versus vertical displacement of node 11 
given by the module is compared in figure 4.9 with that obtained by 
Wakefield [1331, and the two sets of results agree closely. 

In addition, the module was used to analyse the highly non-linear problem of 
an inclined portal framework subjected to asymmetric loading shown in 
figure 4.10. The results of load (w) versus translational x-, y- and z- 
displacements of node 12 given by the module are compared in figure 4.11 
with those obtained by Wakefield [1331, and there is good agreement between 
the two sets of results. 

Furthermore, the user interface developed for the module is highly 
interactive and versatile, and seems to behave as expected. 
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EA = 3.0 x 107, GJ = 0.0, 
Ely, = EIZ" = 2.5 x 106. 

Figure 4.8 
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NODE COORDINATES: 
NODE x' z' 

1 0.0 207.85 0.0 
2 180.0 103.92 0.0 
3 180.0 -103.92 0.0 
4 0.0 -207.85 0.0 
5 -180.0 -103.92 0.0 
6 -180.0 103.92 0.0 
7 0.0 138.56 240.0 
8 120.0 69.28 240.0 
9 120.0 -69.28 240.0 

10 0.0 -138.56 240.0 
11 -120.0 -69.28 240.0 
12 -120.0 69.28 240.0 
13 0.0 0.0 300.0 

EA(x108) G](x 108) EI . (x 108) EIZ'(x 108) 
COLUMNS 
BEAMS 

10.6 
5.1 

1.6 
0.4 

321.5 
68.2 

103.5 
22.5 

Z. 

1Z 
LOAD FACTORS: 
NODE P. P P. Pz" 

11 w 0.0 -1000w 
12 w 0.0 -1000w 
13 0.0 0.0 -low 

5, 

Figure 4.10 
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4.8 Conclusions 

In this chapter, the implementation of the beam elements using the dynamic 
relaxation scheme is discussed. These elements, can be used to model the 
compression boundaries of tension structures. A compression boundary can 
prove to be an efficient alternative to tension anchorages as a means of 
providing support to a large span tension structure. By using beam elements, 
the flexibility of the compression boundary and thus, the interaction between 
the boundary and the tension structure can be properly accounted for. 

The moment-curvature relations of the beam element are derived on the 
basis of the natural stiffness relations. Hence, a local axes system is set up for 
each element which in turn requires first defining the orientation of the 
principal cross-section of the element by means of the ßo angle. The 
transformation matrix between the local and global axes system can 
subsequently be_ found. This transformation matrix is used to relate the local 
displacements and forces to their global components. In calculating the 
rotational Eiisplacements about the local y- and z-axes, the corresponding 
sway angles have to be taken into account. The position of the beam element 
when first defined is required when determining the two sway angles. The 
beam elements are developed to cope with a few non-linear effects. The s and 
c stability functions are used to account for the non-linear effect due to the 
influence of axial force on the moment-curvature relations. The non-linear 
effects caused by element bowing in the local x-z and x-y planes, and the 
influence of axial force on the fixed-end moments due to a uniformly 
distributed load acting on the element, are also accounted for. As the kinetic 
damping procedure is used in the dynamic relaxation scheme, these non- 
linear effects are conveniently updated when an energy peak is detected. The 
element stiffnesses and node coordinates are also reset at this point to be 
consistent with the current geometry. Hence, any geometric non-linearity is 
automatically taken into account. The boundary conditions can be assigned 
through restraints on any or combination of the three rotations and three 
translations at each node connected to a beam element. An end release can 
also be prescribed to impose a pin-ended condition for bending any of the 
local axes, and which will require simple adjustment of the appropriate 
rotational displacement. The mass matrices are derived from the principal 
nodal stiffnesses of the beam element. For each node of the element, a (3 x 3) 
mass matrix is set up for the rotational degrees of freedom separately from the 
(3x3) mass matrix for the translational degrees of freedom. This is because the 
rotational degrees of freedom are treated as decoupled from as well as in a 
similar manner as the translational degrees of freedom in the dynamic 
relaxation scheme. The beam elements are also implemented with useful 
facilities related to plane of symmetry and model reflection, and an efficient 
means of reflecting nodal rotations about a plane is developed. Only minor 
modifications to the dynamic relaxation scheme developed in chapter 3 are 
required in order to accomodate the beam elements, and the resulting scheme 
provides an efficient means for dealing with tension structures which are 
bounded by compression boundary supports. The beam elements formulated 
as described in this chapter, have been incorporated into a module as part of 

-80- 



an interactive computer-aided design system for tension structures which 
will be discussed in chapter 7. This module was used to solve two test 
problems and the results obtained agree closely with the published solutions. 
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Part II. 

Chapter 5 

Definition of surface shapes and their differential geometry 

5.1 Introduction 

A tension structure can assume many different forms a majority of which 
will exhibit a doubly curved surface. For instance, consider the doubly curved 
surface of a sphere where any point on the surface has two principal normal 
curvatures, ie. the maximum and minimum normal curvatures at that point. 
A description of the principal normal curvatures for a general surface is given 
in the discussion on differential geometry which follows. It will be shown 
that the product of the two principal normal curvatures at any point on a 
surface give the Gaussian curvature at the point. In addition, the principal 
radius of curvature = 1/(principal curvature). 

i\ \ 

/ 
I, V 

Figure 5.1 Figure 5.2 

A surface with the centres of principal curvatures on the same side of the 
surface is known as a synclastic surface as shown in figure 5.1. In other words, 
a synclastic surface has a positive Gaussian curvature. On the other hand, an 
anticlastic surface is one in which the centres of principal curvature are on 
opposite sides of the surface as shown in figure 5.2. An antidastic surface has 
therefore a negative Gaussian curvature. For a singly curved surface such as 
that of a cylinder, the Gaussian curvature is zero as although there is a 
principal curvature in the circumferential direction, the curvature along the 
axis is zero. Hence, the Gaussian curvature is a useful means of defining a 
surface shape, and is discussed in further detail later on together with other 
interesting geometric relationships for a surface in general. This will provide 
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an insight into the characteristics of the complex surface curvatures often 
found in a tension structure. 

In the design of a tension structure, the task is to achieve a surface geometry 
which has been defined by say the architect to satisfy certain requirements 
such as function, aesthetic, space and clearance. In many cases, it is not 
feasible to simply propose a surface geometry for a tension structure and be 
sure that the proposed geometry can actually be built. It needs to be 
established if the proposed geometry can achieve equilibrium and thus, 
physically attainable. This is essentially the role of the form-finding stage. 

In general, a tension structure is flexible both in the plane of the surface and 
in bending. Hence, the surface changes shape with relatively little change in 
membrane stresses when subjected to applied loads. This change'in shape 
contributes to an increase in stiffness of the surface known as the initial or 
geometric stiffness. Most high strength materials are relatively stiff. The 
required in-plane flexibility is achieved by using two sets of crossing cables in 
a cable net or two sets of crossing yarns (the warp and fill yarns) in a woven 
coated fabric. The in-plain strains can then occur by relative rotation of the 
two sets of cables or yarns. It will be shown later that the crossing cables or 
yarns undergo relative rotation in order to achieve the Gaussian curvature of 
the surface. In a coated fabric, the amount of relative rotation of the yarns is 
more limited and therefore the fabric panels are usually shaped before being 
sewn, welded or glued together to form the surface. 

A tension structure if properly designed should have a surface which will 
always remain in tension. Due to the high in-plane stiffness but almost 
negligible flexural stiffness present, a tension structure can only resist tensile 
membrane stresses. The tensile prestress is chosen to give sufficient stifffness 
under low loads and avoid loss of tension under most working conditions. It 
is often acceptable to have localised loss of tension in one direction under 
extreme conditions leading to wrinkling of the surface without damaging it. 
The stresses in a surface increase directly with the radius of curvature of the 
surface. Hence, flat areas in a surface should be avoided in a well designed 
tension structure. With a lower prestress, the lower will be the membrane 
stresses, foundation loads and so on, and therefore the cost. 

The surface geometry is related to the membrane stresses in the surface by the 
equilibrium considerations. The derivations of the membrane equilibrium 
equations for a surface subjected to applied loads are outlined later in this 
chapter. The unknowns in the solution of the equilibrium equations can 
either be the stresses or geometry of the surface. At the form-finding stage, the 
surface is generally pretensioned with a stress distribution. Due to the 
generally lightweight nature of a tension structure, it is often convenient to 
ignore the self-weight of the structure. During form-finding, no design loads 
such as the wind and snow loads are applied to the structure. These loads are 
considered only in the load analysis stage which follows after the form- 
finding. For an air-supported structure however, the inflation pressure has to 
be considered during the form-finding. There are several solution methods 
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which can be used for the form-finding and a review of these methods is 

given in chapter 6. In these methods, the solution can be for either the surface 
geometry, stress distribution or both. The adopted approach in this thesis for 
the form-finding of a membrane structure is to solve for the surface geometry 
given a prescribed stress distribution and boundary conditions. The tensile 
prestresses are applied in the warp and fill directions of a fabric panel. This is 
to avoid large and unpredictable strains in the bias direction of the fabric 

panel. In addition, the condition of seam lines of fabric panels following 

geodesic paths over the surface is imposed during the form-finding. This has 

the advantage of producing cutting patterns which minimise the wastage of 
the fabric roll from which they will be fabricated. The proof of this will be 

given later in this chapter. 

The subject of differential geometry is the study of space curves and surfaces, 
and a good understanding of the various ideas mentioned above requires 
some knowledge of differential geometry. A discussion of the relevant topics 

of differential geometry will be given in this chapter. From the discussion, it 

will become clear how differential geometry provides the basis for certain 
procedures which are applied in the form-finding and fabrication patterning 
stages which will be discussed in chapter 6. 

The theory of differential geometry has been well established with most of the 
contributions being made during the last two centuries. The French 
mathematician, Monge (1746-1818) and the German mathematician, Gauss 
(1777-1855) can be considered the founders of differential geometry of curves 
and surfaces. In 1828, Gauss [601 wrote a classic paper on this subject which 
discussed many of the ideas which will be considered in the following 

sections. The application of differential geometry to the field of tension 
structures is largely credited to much work by Williams [134,135,138,139,140] 

of the University of Bath. 

It is customary to use tensors in the discussion of differential geometry and 
the tensor notation used here is based upon that as described in Green and 
Zerna [61]. 

5.2 Base vectors on a surface 

Firstly, a convention is adopted for notations used in the discussion to follow. 
Unless otherwise stated, Latin indices stand for the numbers 1,2,3 and Greek 
indices indicate the numbers 1,2 only. If an index is repeated twice, terms 
with the indices are summed over the range of the index. This summation 
convention applies unless stated otherwise. In addition, letters in bold 
represent vectors. 

The position vector of a point in space is given by 

R=r+ 93 a3 (5.2.1) 
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where r= r(01,02) 

= x1(61, &)11 + x2(61,02)12 + x3(01, &)13 

= xklk (5.2.2) 

in which xk are cartesian coordinates and ik are unit vectors in the directions 

of the cartesian axes system. 

URF4CE 

X3 

Figure 5.3 

Lines 01 = constant and 02 = constant are coordinate curves on the surface. As 

such, (01,02) forms a system of curvilinear coordinates on the surface. 

Any point on the surface is located by r(01,02). Subsequently, two sets of base 

vectors can be defined at the point r(01,02), ie. the covariant base vectors ak 
and contravariant base vectors sk. The covariant base vectors ak are defined as 
follows 
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ar 
. sa=aO=rICE (5.2.3) 

At r(91,02), a, and e2 are tangential to the coordinate curves 01 = constant and 
02 = constant respectively, thus lying in the local plane of the surface. 
Generally, a1 and 02 are not unit vectors. Furthermore, 03 is a unit vector 
normal to this plane and given by 

al x 82 
03 al x 02 1 (5.2.4) 

The covariant base vectors ek and contravariant base vectors ok are related as 
follows 

ea. eß = Sß =0 (a*/3) 

=1 (a=p, ß not summed) (5.2.5) 

in which Sß are the Kronecker deltas and a3 = 03- 

Hence, al and e2 lie in the same local plane as the covariant base vectors. In 

addition, al and a2 are perpendicular to 82 and el respectively. 

5.3 The metric tensor and the first fundamental form 

The components of a tensor sometimes have superscripts and sometimes 
subscripts but the total number of indices is equal to the order of the tensor. A 
scalar is a zeroth order tensor and a vector is a first order tensor. Examples of 
second order tensors are the stress and strain tensors. 

On the surface, it is possible to define a set of second order metric tensors aaß 
(ie. with two indices) as follows 

a,,, ß = ea. eß (5.3.1) 

and they are symmetric, ie. 

aaß = aß"'" (5.3.2) 

Similarly, the contravariant equivalents are given by 

aaß = aßa = cl., O. (5.3.3) 
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It can also be shown that 

as = aßaßa = acoaß (5.3.4) 

as = aaßeß. (5.3.5) 

As shown in figure 5.3, let the vector ABC (ie. the line element of the surface) 
be dr, ie. 

dr = s1d01 + e2d92 = aadOa 

and the length of dr is given by ds as follows 

ds =I dr I= dr. dr, 

ds2=dr. dr 

= aad6a. aßd 6ß 

= aaßdOad6ß 

in which dOcx and dOP are contravariant surface tensors of order one. 

(5.3.6) 

(5.3.7) 

(5.3.8) 

Equation (5.3.8) expresses the first fundamental form of the surface which is 
concerned with lengths on the surface. 

The following relationship holds between aß' and aXa, ie. 

aßýaýa-sä-0 (a#ý 

=1 (a=ß, ß not summed) (5.3.9) 

in which 85 are the Kronecker deltas for the surface. 

Using the above relation, it can be shown that 

all _a22 a12_a21 
ai2 

a22 = 
all 

a, a 
(5.3.10) 

where a= aap = alla22 - (a12)2. In addition, Ja dO1dO2 defines the area of 
surface element ABCD in figure 5.3. 
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5.4 Associated tensors 

The indices of tensors of any order can be lowered or raised by applying 
certain rules. The tensor is multiplied by aaß or aaß and then'summation 
over the repeated indices. For instance, 

Aaß = Agaµa. 

A` = Aµaauß 

Aaß = Aaaµ = Aä aßµ, 

A«ß = Aµßµ = Aµßaclµ. (5.4.1) 

The dot indicates the order of the indices. If Aaß is symmetric, ie. Aaß = AßcL, 
then % 

AaCc *ß= Aßa = Aß, (5.4.2) 

and the dot being unnecessary. The above rules can be applied to tensors of 
any order. Tensors obtained in this fashion are termed associated tensors. 

Similarly, the surface tensors of order two, ie. baß and baß satisfy the above 

rules. Thus, bap and VIP are associated surface tensors and they are symmetric 
as well. 

5.5 The coefficients of the second fundamental forum 

As shown in figure 5.3, due to the small displacement dr on the surface, the 
unit normal will change by d83. The component of da3 in the direction of dr 
gives the normal curvature in the direction of dr. The component of d83 
perpendicular to dr gives the twist of the surface in the direction of dr. Also, 
da3 lies in the tangent plane of the surface and is given by 

de3 = a3, adOa. (5.5.1) 

The second fundamental form of the surface is given by the scalar product 

dr. da3 = aad011. da3 = ca. do3d6°l 

= -baßdOadOß (5.5.2) 
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where bap = bßa =- aa. sß, ß =- aß. a3, a = na ß. o3 = aß, a. e3 (as ea. e3 = 0). (5.5.3) 

Subsequently, the normal curvature in the direction of dr is given by 

_2nd 
fundamental form 

kn _ 1St fundamental form 

dr. de3 

dr. dr (5.5.4) 

Thus, the normal curvature is only dependent on the direction of dr, ie. on 
the ratio d02/d91. 

5.6 Principal- curvatures, Gaussian curvature and mean curvature 

At each point on the surface, there are two values of d 02 /d 01 which 
correspond to the maximum and minimum normal curvatures. This 
condition arises when d83 is parallel to dr, ie. there is no twist of the surface 
in the direction of dr; 

da3 + kdr = 0, 

= (-baßea + keß)d613 = 0. (5.6.1) 

Scalar multiplying by aµ and for non-trivial solution, ie. d9ß # 0, the 
determinant 

-ß + k8ß = 0. (5.6.2) 1i 

Solving gives 

(b1 +b2)tNTA 
k=2 (5.6.3) 

where A= bib, - 2bib2 + b2b2 + 4b2b1. 

The two values of k correspond to the minimum and maximum values of 
normal curvature, ie. the two principal normal curvatures at a point on the 
surface. On substitution into equation (5.6.1), each k results in a ratio of 
d02/d01 which defines a principal direction on the surface. The resulting two 
principal directions are orthogonal to each other. If the two values of k are 
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the same at a. point, then all directions at that point are principal directions. 
Lines on the surface which follow the principal directions are called lines of 
curvature. Furthermore, the product of the two principal normal curvatures 
give the Gaussian curvature K at the point, ie. 

K= k(1)k(2) 

I2121aßß ac 
= b1b2 - b2b1 = Z(bcc - babß) 

_ 
b11b22 - (b12)2 

a11a22 - (a12)2 
(5.6.4) 

Also, 1 
(2) = k(2) (5.6.5) R(1) = k(1)ß R1 

where R(1X, R(2) are the principal radii of curvatures. 

In addition, H= 
k(l) + k(2) 

2 

1 
bl 

2 
b2 a ba 

+ = 2 2 2 

a11b22 - 2a12b12 + a22b11 

2(a11b22 - 012)z) (5.6.6) 

in which H, the mean curvature is the mean of the two principal curvatures. 
A surface with H=0 is known as a minimal surface. The surfaces of a sphere 
and a cylinder are examples of surfaces with constant mean curvature. 

5.7 Spherical image (see figure 5.4) 

By applying the rule of parallel normals, points on a general surface can be 
mapped to points on a sphere of unit radius. The corresponding points on the 
sphere form the spherical image. A curve on a surface and its spherical image 
both have the same normal for all points along the curve. As such, all points 
on a planar surface map to a spherical image of a single point. 

-90- 



... ....... 
...... .............. 

.......... 

(a) 

(c) 

(b) 

(d) 

Figure 5.4 
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Using the idea of spherical image, Gauss derived the following formula for 
the Gaussian curvature, ie. 

area of spherical image 
Gaussian curvature = area of region of surface' 

As mentioned earlier, an elemental area of the general surface is given by dA 

= (alia22 - (a12)2)1/2d81d92. For the corresponding area of the spherical image, 
substitute aaß with 
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a3, aa3, ß = aµ"bµabnR = aµlbabß 

in the expression for dA. This leads to equation (5.7.1). 

5.8 Faceted surface (see figure 5.5) 

Figure 5.5 

(5.7.2) 

area =9 

In a numerical solution, the surface will be represented by planar triangular 
elements. In other words, all over the surface are planar faces or facets joined 
together at nodes/vertices. Subsequently, an expression for Gaussian 
curvature relevant to this faceted surface representation is useful. It can then 
be shown that the area of spherical image is equal to the solid angle of 
embrace which in turn equals the angular defect at the vertex. The angular 
defect at a vertex is taken as (2n - sum of interior angles of faces meeting at the 
vertex). Hence, 

angular defect at a vertex Gaussian curvature = area associated with the vertex 

in which the area associated with the vertex =3 (sum of areas of triangles 
meeting at the vertex). As a result, it can be seen that the effects of surface 
curvature and thus, Gaussian curvature are concentrated at nodes on the 
surface. 
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5.9 The Gauss equations and the Christoffel symbols 

The Gauss equations are given by 

8a, ß2--l aeµ+baße3 

where rap are called the Christoffel symbols of the second kind. 

(5.9.1) 

Also, Iäß = a" 
(5.9.2) 

In general, the Christoffel symbols are not components of a tensor. They do 

not follow the transformation rule for tensors under a change of surface 

coordinates. Scalar multiplying equation (5.9.1) by al leads to 

1aß = all. eaß 

= aµll eµ" saß 

= aL Faßµ (5.9.3) 

where I'aßµ are the Christoffel symbols of the first kind and 

1 
r4ßµ = aµ. aß, ß =2 ýauß'a + 4µa, ß - 4aß, µ) " 

(5.9.4) 

5.10 The Gauss' Theorem and the Codazzi equations 

The coefficients of the first and second fundamental forms, ie. aaß and bxp 

respectively are required to satisfy further equations. These equations are the 
Gauss-Codazzi equations. 

Using the Gauss equations (equation (5.9.1)), it can be shown that 

b11b22 -012)2 
K= 

a11a22 - (a12)2 

1 
[x12,12 - Z(a11122 + a22111) -111T2aAP + 112T2akp] 

[aila22-«12, ] 
(5.10.1) 
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It is noted from equations (5.9.3) and (5.9.4) that Iaß can be expressed in terms 

of the metric tensor and its derivatives only. Therefore, equation (5.10.1) 
proves that the Gaussian curvature can be expressed in terms of* the metric 
tensor and its derivatives only. Equation (5.10.1) represents the Gauss' 
theorem (or Gauss' theroma egregium) which shows that the Gaussian 
curvature of a surface is a bending invariant. Note that there is also a 
completely separate Gauss' integral theorem. If a surface is bent but not 
stretched, shrunk or torn, the Gaussian curvature at each point on the surface 
is unchanged. This bending leaves the distance between. two points on the 
surface, measured along a curve on the surface, unchanged and the angle 
between two tangent directions at a point remains constant. Deformation of 
this kind is termed inextensional deformation. In the case of a finite element 
surface representation, inextensional deformation implies no change in the 
side lengths and thus, internal angles of the triangular elements. Generally, 
for a complete simply-connected surface, an inextensional bending 
deformation cannot take place without cutting out a portion 'of the surface. 

In the Gauss equations (equation (5.9.1)), with ß=1 and differentiating with 
respect to 02 should be equivalent to setting ß=2 and differentiating with 
respect to 01. This is due to the order of partial differentiation being 
immaterial. Scalar multiplying by 83 then leads to the following equations 

ra"lbX2 + bal, 2 = 
f2bý1 

+ ba2,1, (5.10.2) 

bal, 2 -b ,l= Iýýbý, l - 11b, 2. (5.10.3) 

For a=1, b112 - b1211 = 
d2b11 

+ 112b21 - 
d1b12 

- 111b22. (5.10.4) 

For a=2, b212 - b2211 =` 22b11 + 122b21 - 21b12 - 21b22. (5.10.5) 

Letting 02 - v, 01 - u, b11 - e, b12 =- b21 - f' b22 ° $" 

equation (5.10.4) becomes 

ae a 
av au = el12 +f (112 -T 1) - gT1, (5.10.6) 

and equation (5.10.5) becomes 

ä 
-ä =eI22+ f(Iý22 -I12)-8112). (5.10.7) 
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Equations (5.10.4) and (5.10.5) are the two Codazzi equations. Using the 
notation of covariant differentiation as in [61], the. Codazzi equations can also 
be written as 

baµIß = bß, ß -f bßµ - 
egbar. (5.10.8) 

From equation (5.10.8), it can be seen that covariant derivatives are tensors. 
Also, the covariant derivative of the metric tensor is zero. In equation (5.10.8), 

with u =1 and ß=2, it can be shown that 

bal (2 = b0' 1 (5.10.9) 

is equivalent to equation (5.10.2).. Equations (5.10.2) or (5.10.9) (for a= 1 and 
a=2) are the two Codazzi equations. 

5.11 Fundamental theorem of surface theory 

According to the fundamental theorem of surface theory, if aaß and bap satisfy 
the Gauss-Codazzi equations (Gauss theorem and two Codazzi equations) 
while [(ai1a22 - (a12)2) $ 0], then a surface with its first and second 
fundamental forms given by aaßdO d@ß and -baßdO adcß respectively is 
uniquely determined. The Gauss-Codazzi equations are effectively 
compatibility equations which ensure that the surface 'fits together'. This 
surface is uniquely determined except for its overall position and orientation 
in space. In other words, when the position and orientation of al and a2 at a 
point on the surface are known, the remainder of the surface can then be 
determined or grown away from that point. 

In a numerical solution using the dynamic relaxation method, compatibility 
conditions are automatically satisfied since the Cartesian coordinates of each 
node are updated until they conform to the surface geometry of an 
equilibrium form. 

5.12 Comments on the Gaussian curvature 

The concept of Gaussian curvature as applied to thin shell structures in 
general of which tension structures are a sub-class is briefly discussed here. A 
thin shell structure resists applied loads by a combination of 'bending' and 
'membrane' actions. On the other hand, tension structures achieve their 
load-carrying capacity through 'membrane' action alone. Calladine [41] has 
done much work into the behaviour of thin shell structures. He considers a 
thin shell conceptually as consisting of two distinct but coincident stretching 
and bending surfaces. Under loads, bending effects take place in the bending 
surface while in-plane actions take place in the stretching surface. For 
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compatibility reason, the two surfaces have to deform equally. This criterion 
is satisfied if the Gaussian curvature at corresponding points on the two 
surfaces is the same whether initially or in the deformed state. Consequently, 
the change in Gaussian curvature of the stretching surface is due to in-plane 
deformation as indicated in equation (5.7.1). For the bending surface, the 
change in Gaussian curvature is caused by bending which in turn modify the 
principal curvatures in equation (5.6.4). This compability condition completes 
the set of governing equations to solve the problem. It can be seen that the 
Gaussian curvature can be based upon a two-dimensional view of in-plane 
deformation in the stretching surface as well as a three-dimensional view of 
flexure in the bending surface. 

5.13 Geodesic coordinates 

In many instances, due to high Gaussian curvature of the surface, it is 
required to shape the fabric panels in order to account for the surface 
curvature. Also, it is obviously desirable for each fabric panel to make 
optimum use of the fabric roll. This is achieved by aligning centre lines of the 
fabric panels and hence, the seam lines to follow geodesic paths over the 
surface. 

Geodesics (9 1=constant) 

Equal -ý' 
lengths 

Figure 5.6 

A geodesic is a curve on the surface, of zero geodesic curvature (ie. the 
curvature when looking at the curve along a normal to the surface). There 
exists a geodesic in every direction through every point on a surface and that 
a geodesic is uniquely defined by a starting point and a starting direction. If 
the lines 01 = constant are the geodesics, a set of lines 02 = constant can be 
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drawn orthogonal to each geodesic to form a 01,02 coordinate system on the 

surface as shown in figure 5.6. For fabric panels which are not too wide, a 
coordinate system can be set up such that the warp and fill directions of each 
panel follow the paths of geodesics and their orthogonal trajectories 

respectively over the surface. The seam lines arranged to coincide with the 

warp directions become geodesics on the surface. In the prestress state, the 

principal tensile stresses are applied in the warp and fill directions of the 

panels. In this way, large and unpredictable deformations in the bias direction 

of the fabric panel can be avoided. In other words, the condition of applied 

principal tensile stresses following the sense of the geodesic coordinate system 
is imposed on the form-finding process. This requirement is not necessary but 

does offer a convenient and flexible approach of producing different surface 
forms the choice of which can be enormous. Furthermore, many tension 

structures have been successfully designed and built in this way. Obviously, 

other approaches can be used in achieving a desired surface geometry and this 
is an area where further thoughts or investigations can be pursued. , 

It follows that for zero geodesic curvature, 

1 
82,2. e1 = x1212 2a2211 = 0. (5.13.1) 

As a12 =0 and taking the lines 01 = constant as geodesics, then 

a22, l = 0. 

Hence, a22 is a function of 02 only and can always be chosen as a constant, say 
1. 

With a12 ° 0, a22 = 1, Iaß = a-n. aa, ß, 

the Gauss theorem (equation (5.10.1)) becomes 

1 
[a12,12-2(a11122+a22111) -1illp22a + 12igXp] 

K= [a11a22 - (a12)21 

1 a11,22 a11,2 2 
-+ all 4 all 

-_1 

a2 a11 
(5.13.2) 

ll, l a922 
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As shown in figure 5.7, with the seam lines aligned along geodesics on the 

surface, w taken as the distance between two adjacent geodesics (ie. = a11) 

and s the distance along the geodesics, and for a reasonably narrow panel, 
equation (5.13.2) then becomes 

K1d2w 
wdS2' 

If) 

1 d2w 
w ds2 

31 

Figure 5.7 

(5.1 3.3) 

Equation (5.13.3) shows the relationship between the width of a fabric panel 
and the Gaussian curvature at a point on the surface. If K>0 (ie. a synclastic 
surface), the fabric panel will be on 'convex' both sides and if K<0 (ie. an 
antidastic surface), then both sides will be 'concave'. For K=0 (ie. a singly 
curved surface such as that of a cylinder), the sides can be straight or parallel 
and the surface is developable. A developable surface can be unfolded onto a 
plane wihout affecting its Gaussian curvature. 
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Figure 5.8 

5.14 How does Gaussian curvature distort the fabricZ 

In order to take up the Gaussian curvature of the surface, the fabric panels 
have to distort in their own plane as well as undergo bending. The fact that 
the fabric panels have been shaped before being sewn or welded together 
reduce but do not eliminate the distortions that will take place. In a finite 
element discretisation, planar triangular elements are used to approximate 
the surface. Each fabric panel is made of a sequence of triangular elements. 
Consequently, the actual surface curvature over the interior of a planar 
triangular element itself is not accounted for. Due to their flexibility, the fabric 
panels can then distort to give a smooth curvature over the surface. This in- 
plane flexibility is achieved by having two sets of crossing cables in a cable net 
or crossing warp and fill yarns in a woven fabric. It will be shown that a fabric 
panel will distort by angle change between the warp and fill yarns. This 
relationship between the distortion of a fabric panel and the Gaussian 
curvature is examined in the following discussion. 

Assume a constant mesh coordinate system as shown in figure 5.9 with the 
warp and fill yarns in the 01 and 02 directions respectively. It is taken that all 
= a22 = 1, and therefore 

a12 = al. a2 

= Io1IIo2Ioosa 
= cos a. (5.14.1) 
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31 

lengths 

Fi urn e 5.9 

From the Gauss equations (equation (5.9.1)), 

a12a1271 

-1 1- (a12)21 

d2=i2=o, 

a122 
22 1 _(a 12 )2 

a12,12(1 - (a12)2) + al2al2"lai2,2 

It follows that the Gauss' theorem (equation (5.10.1)) then becomes 

K= 

_ 
41211 

11 1- (a12) 2 

a12a1212 
122 

1- (a12)2* 

[1 _ (a12)2]2 

_1 
a2a 

sinaa61a@2 

(5.14.2) 

(5.1 4.3) 

Hence, relative rotation of the warp and fill yarns has to take place in order to 
satisfy the Gaussian curvature and contribute to most of the distortion of the 
fabric panels. In addition, the condition of (all = a22) corresponds to an equal 

mesh cable net if the elastic extensions of the cables are neglected. 
Consequently, an equal mesh net with two sets of orthogonal wires when flat, 

undergoes a continuous change in angle between the wires in the 01 and 02 
directions as given in equation (5.14.3) during erection to achieve the 
Gaussian curvature of the surface. 
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5.15 Membrane equilibrium equations 

Figure 5.10 

First of all, for an imaginary cut in the surface as shown in figure 5.10, du 
denotes a vector in the local plane of the surface perpendicular to the cut. The 
magnitude of du gives the length of the cut. Due to the membrane stresses in 
the surface, at the cut is a force d fin the local plane of the surface. The 
bending stiffness is assumed to be zero and as such, there are no shear forces 
perpendicular to the surface. From figure 5.10, 

du = dvaaa = dvaea, (5.15.1) 

df = dfaea = dfaaa 

= naßdvaaß (5.15.2) 

where naß (a second order tensor) are the membrane stress resultants. 

The vector along AB in figure 5.10 is akd&^' and thus, 

dvasa = Eaß ead Bß (5.15.3) 

in which the e tensors for the surface, Eaß and cß are given by 

E12 =_ l = .;; 612 =-621 = 
1ýý- 

yu 

-11 =622= E11= 622. = 0. (5.15.4) 
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Consider an element of surface ABCD in equilibrium under the action of 
forces as shown in figure 5.11. The force across BC is given by n1ßaß4adO2 and 
the force across DC is given by n2ßap4a dOl. In general, naß are not equal to the 
forces per unit width in the membrane since a11, a12 and q-a are not generally 
equal to 1. 

D(e2,02+d02) 

Figure 5.11 

In addition, 

pkak = P18, + p202 + F' 03 

c(e' +ae' 
, 
e2 +d02 ) 

n12a2V dO2 

n"a, vdO2 

(5.15.5) 

is the external load including self-weight, any inflation pressure or inertia 
effects applied to the membrane per unit area. The load applied to ABCD is 
then given by 

pkeký 
ä d61d62 

as the area of ABCD is JdO1dO2. 

(5.15.6) 

By taking moments about the normal to the surface, it can be shown that naß 
is symmetric, ie. 

naß = nßa. 

The net force crossing BC and AD is 

(5.15.7) 

-102- 

02 n22 11 _fd@' 



ail 
[nlßeß-ýa dO21dOl (5.15.8) 

and that across CD and AB is 

_ [n2ßeßTadOl]d02. (5.15.9) 

By adding all the forces acting on the element, the following relationship is 

obtained, ie. 

as - 
jnaßsßT] + pkekT = 0. (5.15.10) 

Using the Gauss equations (equation (5.9.1)), equation (5.15.10) can then be 

written as 

naäeß + nclßraßeý + naßb«ß83 + 2nctßeß 
a+ 

Pkok = 0. 

(5.15.11) 

These equations are similar to those in [611 except that in [61], the notation of 
the covariant derivative is used. 

Consider the special case of a geodesic coordinate system with 

a12 = 0, a22 = 1, a= a11a22 - (a12)2 = all, 

and the principal stresses (warp and fill) in the membrane to be in the 
directions of the coordinate axes (ie. n12 = 0). The membrane is subjected to 
inflation pressure p and no other loads are applied. 

By scalar multiplying the equilibrium equation (ie. equation (5.15.11)) by al, 
a2 and a3, the following equations are obtained, ie. 

. ei (nilall), 1 = 0, (5.15.12) 

. 02 (22) 
,2- niiaii( aii), 2 = 0, (5.15.13) 

. 03 = niib11 + n22b22 +p=0. (5.15.14) 

With equations (5.15.12) and (5.15.13) expressed in terms of the principal 
membrane stresses in the fabric given by 
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(T(1) - n11a11, °6(2) = n22a22 - n22. (5.15.15) 

and then on integrating gives 

aQll)d01 
= Q(1) = f(02), (5.15.16) jae 

and 
a[a(2) a11] 

d02 = 
Jf(O2)'1)dO2, 

ae2 a0202 

1 
Q(2) = f(ý) -1 all 

dý) 
d92 + 

F(ä) 
(5.15.17) 

all 11 

Thus, the state of stress in the membrane is defined by the two functions of 
integration, f(82) and F(01) which in turn determine the surface of the 

structure. By setting f(92) =constant and F(01) = 0, uniform surface tension 

such as in a soap film will result. With f(&) =constant and F(01) * 0, the state 
of stress is that of a soap film with a set of tensioned threads which will 
automatically form geodesics on the surface. 

The equilibrium equations of the surface subjected to applied loads (ie. 
equations (5.15.12), (5.15.13) and (5.15.14)) relate the stresses in the surface to 
its geometry, and the unknowns in these equations can either be the stresses 
or geometry of the surface. One approach is to determine the stresses given 
the geometry, applied loads such as internal pressure for air-supported 
structures and boundary conditions. This approach may be relevant in a 
situation such as where the solution is for the equilibrium geometry of a 
principal curvature net. However, the numerical approach is often to define 
the applied stresses and boundary conditions, and calculate the resulting 
geometry of the surface. 

5.16 Form-finding and cutting patterns determination 

Form-finding is the derivation of a surface geometry which satisfies the 
prescribed initial and boundary conditions. At this stage, no loads are applied 
except for internal pressure in the case of air-supported structures and may be 
self-weight. Obviously, a form requirement for tension structures is that all 
principal stresses in the surface should be tensile. A numerical procedure for 
the simultaneous form-finding and production of cutting patterns can be 
conveniently set up [134,135,138]. First, a finite element mesh is generated 
over the surface. The initial coordinates of the nodes are immaterial and 
hence, it is usual to start with a flat mesh. The ends of geodesics or seam lines 
are defined. A stress distribution based upon choice of the functions F(01) and 
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f(02) is applied. This leads to principal stresses in the warp and fill directions 
of fabric yarns which coincide with a geodesic coordinate system. For air- 
supported structures, the inflation pressure is also specified. A numerical 
method such as dynamic relaxation can then be used in the solution which 
needs to satisfy two criteria, ie. 

(1) the seam lines follow geodesic paths, 

(2) at each node, equilibrium in the direction normal to the surface. 

41 +2P +43 =44 +45 +46 

Geodesics 

Figure 5.12 

As shown above, the in-plane equilibrium of the surface is automatically 
satisfied by using a stress distribution dependent on the functions, F(01) and 
f(02). In addition, it is desirable for nodes to be evenly spaced along each 
geodesic to prevent them bunching together. Subsequently, geodesic paths 
over the surface can be achieved in two ways, ie. 

(1) imposing the geometric condition of (angle 1+ angle 2+ angle 3) = (angle 
4+ angle 5+ angle 6) at each node along a seam line as shown in figure 
5.12. This implies a straight line in the plane of the surface at the common 
node which is a valid defintion of a geodesic. Also, the distances between 
nodes along the seam line are set to be equal. 

(2) specifying a constant tension value all along the seam line. A constant 
tension string will automatically find a shortest path between its starting 
node and last node, over the surface and thus, define a geodesic. At each 
node along the seam line, the component of tension normal to the surface 
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is ignored. In this way, the specified tension makes no contribution to 
equilibrium in the direction normal to the surface. Consequently, the 
above mentioned two criteria are thereby satisfied. As a variation, the 
condition of constant tension coefficient may be imposed. A tension 
coefficient is the ratio of the constant tension to the length between two 
adjacent nodes along the seam line. A constant tension coefficient leads to 
evenly spaced nodes along the seam line. 

In the dynamic relaxation analysis, iterations which involve moving nodes 
to satisfy the above criteria are carried out. Once an equilibrated form which 
fulfills the criteria is reached, it is a simple operation of taking each panel 
bound by geodesics and flattening out the folds between adjacent members in 
the sequence of triangular elements within the panel, to produce the cutting 
pattern. Furthermore, the maximum allowable width for each cutting pattern 
is limited by the width of the fabric roll. The control over the maximum 
width for each cutting pattern is achieved through shuffling the ends of 
geodesics during the form-finding. 

In general, 'iterations within the form-finding process converge fairly quickly 
except for large numerical models. Peculiar boundary conditions may also 
prolong the form-finding. The production of cutting patterns is a quick and 
direct geometric exercise. However, analysis under applied loads usually takes 
much longer as both the stresses and geometry of the surface are being solved 
for at the same time. 

The numerical implementation of simultaneous form-finding and 
determination of cutting patterns on the basis of the dynamic relaxation 
solution scheme will be discussed in further detail in chapter 6, and its 
incorporation into an interactive computer-aided design system for 
membrane structures will be considered in chapter 7. 

5.17 Conclusions 

A proper understanding of form-finding and fabrication of cutting patterns 
requires some knowledge of differential geometry. This becomes more 
apparent when the mechanics of form-finding and patterning are discussed in 
further detail in chapter 6. The various ideas discussed in this chapter such as 
the Gaussian curvature, geodesics and so on, provide a valuable basis for 
understanding the geometry and behaviour of surfaces in general. On a 
broader basis, a knowledge of or familiarity with tensors is also useful for the 
future research of many classic literatures such as reference [61] where the 
tensor notation is commonly used. 

It is shown that by imposing the condition of seam lines following geodesic 
paths over the surface during the form-finding of a membrane structure, 
fabric panels which optimise the width use of a fabric roll will be achieved. In 
addition, the warp and fill yarns in a fabric panel will undergo distortions by 
continuously changing the angle between them in order to achieve the 
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Gaussian curvature of the surface. The derivation of the equilibrium 
equations of the surface subjected to applied loads, is also given. These 

equations express the relationships between the stresses in the surface and its 

geometry. 
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Chapter 6 

Numerical form-finding and fabrication patterning 

6.1 Introduction 

The distinct stages in the design process of tension structures include the 
form-finding, load analysis (and fabrication patterning for fabric/membrane 
structures) and detailed design. During the form-finding, the objective is to 
derive a suitable form, ie. a surface geometry in equilibrium with the 
corresponding stress distribution in the surface. In the load analysis stage, the 
form will then be analysed for the possible loads which may act upon it 
during its useful life. If the load analysis gives satisfactory results, this will be 
followed by the fabrication patterning stage for membrane structures. In this 
stage, the corresponding cutting patterns are developed so that the fabric can 
be tailored to give the required geometry when prestressed. The final stage is 
the detailed design of the supporting steelwork, connections and so on. 

As mentioned in chapter 5, in the solution of the membrane equilibrium 
equations during the form-finding, the unknowns can either be the 
membrane stresses or geometry of the surface. Hence, this gives rise to two 
basic approaches which can be used for the form-finding, ie. in one approach, 
the solution is for the stresses in the surface given the surface geometry and 
boundary conditions while in the other approach, the solution is for the 
surface geometry given the stresses in the surface and boundary conditions. A 
number of solution methods for the problem of form-finding have been 
reported and a review of these methods is given below. In general, these 
methods fall into either one of two approaches. There are also methods in 
which the equilibrium equations are solved for the unknown geometry and 
unknown stresses in the surface. In these methods, the solution of the 
equilibrium equations can be carried out using a scheme such as the implicit 
Newton-Raphson method or the explicit dynamic relaxation method. A 
highly flexible and efficient numerical procedure for the form-finding of 
tension structures will be described later in this chapter. This procedure 
involves the use of the dynamic relaxation method to solve for the unknown 
equilibrium geometry given the stress distributions and boundary conditions. 
The controls which can be used during form-finding to achieve the desired 
geometries of cable nets and membrane structures will be discussed. Further 
detail on the fabrication patterning and load analysis stages in the design 
process, will also be given. 

In some literature [69], form-finding is also known as 'shape-finding'. 
However, the problem is only one of shape-finding in cases where the 
solution is for an equilibrium geometry given the stress distribution in the 
surface. Another name which has been used for the form-finding problem is 
the term 'initial equilibrium problem' suggested by Haber [631. 
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6.2 Review of solution methods available for the form-finding 

6.2.1 Non-linear displacement analysis 

Argyris, Angelopoulos and Bichat [3], and Haug and Powell [69] have 
considered the form-finding of cable nets by means of non-linear 
displacement analysis. Haug and Powell [69] have also extended the analysis 
to include membrane structures. The analysis uses the following basic 
equation, ie. 

([K1] + [Kg])[S) = (R) (6.2.1) 

in which [K1] and [Kg] are respectively the linear and geometric stiffness 

matrices, (S) is the vector of nodal displacements relative to the current state, 
(R} is the vector of nodal residual forces. 

The non-Iiriear behaviour of these structures require the use of Newton- 
Raphson iterations in the analysis. Fictitious values can be used for the 
material elastic properties. With a zero elastic modulus, the influence of the 
[K1] term in equation (6.2.1) becomes nil. The element stiffness then comes 
entirely from the [Kg] term. This allows stress values to be prescribed in each 
element and starting from an arbitrary-trial shape, the analysis can then 
proceed to find the final surface shape. On the other hand, large elastic 
moduli can be used to control dimensional changes in the elements of the 
structure such as to keep accurate wire mesh spacing in a cable net for 
construction purposes. However, the resulting stresses may be very large and 
become impractical. Hence, a compromise may be needed between the control 
of element stresses and dimensions by adjusting the values of elastic moduli 
in equation (6.2.1). In this approach, the solution is for either the unknown 
surface shape or unknown internal stresses or both. 

6.2.2 Siev-Eidelman method 

This method suggested by Siev and Eidelman [123] is rather restrictive in 
terms of the structures to which it can be applied. It can only cope with cable 
nets in which the horizontal equilibrium is already satisfied and only the 
vertical equilibrium is to be solved for. Hence, each cable in the net has to lie 
in a single vertical plane, ie. assumes a straight line in plan projection. 

Each cable consists of a series of linear elements. A constant horizontal 
component of the axial force in each cable is imposed to satisfy the horizontal 
equilibrium requirement. Hence, at an interior node of the net, a cable 
element can only contribute to the residual force acting in the vertical 
direction. Horizontal equilibrium along the boundary of the structure 'is 
imposed by having fixed support conditions or a funicular plan form for the 
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boundary geometry. In addition, only applied loads if any in the vertical ' 
direction are permitted. 

The process begins with the cable net being defined by a straight line plan grid.. 
Each cable is then given a horizontal force component and the vertical 
coordinates of the support points specified. Subsequently, the vertical loads 

are applied to the nodes and the solution is then to solve for the vertical 
coordinates of each interior node which lead to vertical equilibrium. 

---------z1 

V 

ýi 
F 

d 

r -1 
Figure 6.1 

-, zi 

Consider a typical cable element with end nodes i and j as shown in figure 6.1. 
The axial, horizontal and vertical forces in the element are denoted by T, H 
and V respectively. The vertical applied load at node i is F. The element has a 
length 1 with the horizontal component of I being d. Thus, 

(z"-z; ) 
V=H Id (6.2.2) 

in which zi and zj are the z coordinates of nodes i and j respectively. For 
vertical equilibrium at node i, 

F+k [d (z j-z; )]k =0 (6.2.3) 

summed over all elements k meeting at node i. All of the variables in 
equation (6.2.3) are known except for the z coordinates. Similarly, the vertical 
equilibrium at all remaining unsupported nodes is considered and all these 
equations assembled into a matrix form followed by the solution for the z 
coordinates. The complete geometry of the structure is then defined with 

-110- 



these z coordinates determined. Subsequently, *the length of each cable 
element is calculated and in turn, the element axial force found directly as 
follows 

Tk = (Hd )klk. (6.2.4) 

In this method, it is somewhat difficult to control both the cable forces and 
surface shape. With a constant horizontal force for each cable, there is 

undesirable variation in the axial cable force if the slope of the cable varies 
significantly. As only straight line cable grids are allowed, the possible forms 

of the cable net become limited. In addition, the method cannot be applied 
directly to membrane structures. 

6.2.3 Force density method 

Schek [121] proposed the force density method which improves on a few 
aspects of the Siev-Eidelman method. No restrictions are imposed on the 
interior geometry of the cable net and free edge condtions are allowed. The 

applied loads on the structure may take any form. The method solves for the 
surface shape and internal stress distribution which result in equilibrium. 

From figure 6.1, 

V=T 
(z) zd- 

(6.2.5) 

and the vertical equilibrium at node i is then given by 

F+ IT (zj - z; ) )k =0 (6.2.6) 
k 

summed over all elements k meeting at node i. The term (T/1) is known as 
the force density of the cable element. Similar equations can be written for 
equilibrium in the x- and y-directions in terms of force densities and the 
corresponding node coordinates. These equations can in turn be written in 
matrix form as follows 

[D](x) = (F} (6.2.7) 

in which [D] is a matrix of element force densities, (x) is a vector of unknown 
x, y and z node coordinates and {F) is a vector of nodal loads in the x-, y- and 
z-directions. Equation (6.2.7) is considered at all unsupported nodes, and with 
the applied loads and force densities for individual elements specified, the 
unknown node coordinates can then be solved for. Subsequently, the length 

of each cable element is calculated and the axial force in turn determined 
from the prescribed force density, ie. 
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T 
Tk (6.2.8) 

In this method, the solution is for the surface shape and internal stress 
distribution. The initial choice of force densities offers little clue as to the 
surface shape and stress pattern which will eventually result. It is often that 
highly irregular geometries with undesirable stress distribution are obtained. 
Various schemes which constrain the solution to achieve equal element 
lengths or uniform stresses have been suggested by Schek [121]. In addition, 
the method cannot be applied directly to membrane structures. 

An extension of the force density method is the assumed geometric stiffness 
method proposed by Haber [631 and applicable to structures other than cable 
nets. The basic equation in this approach by Haber [63] is 

[Kg]{x} = {F} (6.2.9) 

in which [Kg] is the updated Lagrangian geometric stiffness matrix, (x) is the 
% 

vector of node coordinates and (F) is the vector of nodal loads. Unlike the 
standard stiffness relations, equation (6.2.9) is solved for the equilibrium node 
coordinates instead of the node displacements. In the case of a cable element, 
the geometric stiffness matrix is simply the element force density. Equation 
(6.2.9) is non-linear since (Kg] is a function of the unknown coordinates. 

In this approach, the geometric stiffness matrix for each element is prescribed 
and the node coordinates are then solved for directly. With the node 
coodinates determined, the equilibrium stresses are then found using the 
geometric stiffness matrix assumed. The process is iterated until the final 
equilibrium shape is obtained. The solution is for the surface shape and 
internal stress distribution. The terms of [Kg] may lack design significance and 
either the surface shape or stress distribution is difficult to predict from the 
values of these terms. In addition, the form of [K9] may be very complex for 
higher order elements. 

6.2.4 Least-squares method 

The method solves for the stress distribution in equilibrium with a prescribed 
surface shape subjected to any applied loads. The method as applied to a cable 
net was proposed by Knudson and Scordelis [84], and Ohyama and Kawabata 
[1091. A few limitations of the Siev-Eidelman method such as straight line 
plan cable grids, constant horizontal force components and purely vertical 
loading, are present in the least squares method by Knudson and Scordelis 
[84], and Ohyama and Kawabata [109]. Hence, the least squares method here 
considers equilibrium in the vertical direction only. In this case, the solution 
is for the horizontal cable force components which will lead to vertical 
equilibrium. Equation (6.2.3) gives the vertical equilibrium at a node but now 
with all the variables known except for the horizontal force components. 
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Rearranging equation (6.2.3) and with equations for the entire structure then 
assembled into matrix form leads to 

[C] {H} = (F} (6-2-10) 

in which [C] is a (m x n) matrix assembled from the terms ((zj - zi)/d) of the 
cable elements, (H) is a vector of n unknown horizontal force components, 
(F} is a vector of m vertical nodal loads, and m and n being the number of 
unsupported nodes and cables respectively in the net. With m generally 
larger than n, equation (6.2.10) becomes overdetermined and thus, no exact 
solutions can be found in most cases. This leads to the search for an 
approximate solution. Equation (6.2.10) can be rewritten as 

[C]{H} - (F) = {r} (6.2.1 1) 

in which [r) is a vector of out-of-balance vertical nodal forces. The desired 
solution is to minimise the sum of squares of the out-of-balance forces with 
respect to changes in the horizontal force components, ie. 

({r)T (r)) 
=0 (6.2.12) 

a{H) 

which in turn simplifies to 

[C]T[C] (H) = [C]T(F). (6.2.13) 

Equation (6.2.13) is solved directly for the horizontal force components. The 
axial force in each cable element can then found from equation (6.2.4). 

The solution obtained is only an approximate one to the vertical equilibrium 
problem. In order to achieve equilibrium exactly, additional calculations are 
needed. A non-linear displacement analysis is used by Knudson and Scordelis 
[84] to make the final adjustment to the surface shape and stress distribution 
to reach equilibrium. 

Haber [631 extended the basic least squares approach to the equilibrium of a 
general finite element model in terms of a set of unknown generalised stress 
components. The global equilibrium of a structure is written as follows 

[F} [A]{'c} = (6.2.14) 

in which [A] is a (r x s) matrix with r being the number of equilibrium 
equations and s the total number of stress components, (z) is a vector of s 
generalised stress components and (F) is a vector of r nodal loads. The terms 
in {z) need not have units of stress and may be the horizontal force 
components, element force densities or axial cable forces. The corresponding 
terms in [A] have to be adjusted for compatibility with the terms used in M. 
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It is possible to prescribe some of the generalised stress terms or to establish 
constraint relations between them. This can be done by partitioning the p 
independent generalised stresses {z; } from the q constrained terms Ur. ), ie. 

{Zl} 

.. _ (F) (6.2.15) [[A1] : [AJ} 
1 

(Ircil 

in which [Ai] is an (r x p) matrix and [Ac] is an (r x q) matrix. The kth 

contrained stress term zck may be given by 

P 
Zck=Bk+Y-hkjzij (6.2.16) 

l 

in which gk is a constant value and hkj are linear combination terms for the 

independent stresses zj. If all the terms hkj are zero, then zck is given in terms 

of gk only. The q constraint equations in matrix form then becomes 

{z, } = {g} + [H]fill (6.2.17) 

in which fg) is a vector of q constant terms and [H] is a (q x p) matrix of linear 

combination terms. Substituting equation (6.2.17) into equation (6.2.15) leads 
to 

[A](Z; } _ {F} (6.2.18) 

in which [A] is an (r x p) matrix. If (r> p), then the equations are 
overdetermined and in general, no exact solution exists. If (r<p), the system 
is underdetermined and no unique solution can be found. 

6.2.4.1 Qverdetermined least squares solution method 

An approximate solution for the generalised stresses is sought and equation 
(6.2.18) can then be written as 

[A]{Z, } _ {F} {r} (6.2.19) 

in which {r} is the vector of residual forces. The least squares technique is 

applied to minimise the sum of squares of the residuals with respect to (r1) 

and leads to 
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[A]T[A](z; } = [Ä]T(F) (6.2.20) 

which can then be solved directly for the independent generalised stresses. 
Subsequently, the constrained generalised stresses may be computed from 
equation (6.217). 

6.2.4.2 underdetermined least squares solution method 

This method is appropriate if the number of unknown independent 
generalised stresses exceed the number of equilibrium equations as is often 
the case with membrane structures in which there are more stress 
components than in cable nets. In an underdetermined system, there are 
infinite exact equilibrium solutions for the generalised stresses and the 
problem then becomes one of finding the optimum solution. 

A set of independent generalised stresses {Z*} are defined for the structure. In 
general, as these stresses will not satisfy the equilibrium equations, the actual 
independent stresses {zi) can be written as the sum of { r*} and a set of stress 
deviations tid}, ie. 

{zi} _ {z*} + {rd}. (6.2.21) 

Substituting equation (6.2.21) into equation (6.2.18) leads to 

[Ä]{Zd} = (F) - [A](z*) = (F*) (6.2.22) 

in which the solution is for the unknown stress deviations. It is desired to 
obtain the set of stress deviations which have the smallest Euclidean norm. 
The process of minimising the Euclidean norm will result in a set of actual 
equilibrium stresses {il} closest possible to (r*). 

A Lagrange multiplier method is used by Haber [631 as the solution scheme 
with a functional M defined as follows 

M= {zd}T[Zdl - 2(, t)T([A]{Zd} - {F*}) (6.2.23) 

in which {A, } is a vector of Lagrange multipliers. The optimum solution is 
achieved by minimising M with respect to the two sets of independent 
variables (rd} and {A, }, thus 

6M({2, }) _ [AJ{zd} - (F*) = 0, (6.2.24) 

SM({Zd}) = 2(zd) - 2{Ä}T(} = 0. (6.2.25) 
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From equation (6.2.25), 

{zd} (6.2.26) 

and substituting equation (6.2.26) into equation (6.2.22) leads to 

[Ä][A]T{; L} = (Fý}. (6.2.27) 

Equation (6.2.27) is solved for the unknown terms in (A) and the stress 
deviations (rd) then found from equation (6.2.26). The final stresses {z; ) can in 

turn be determined from equation (6.2.21). 

In this method, the equilibrium condition is satisfied exactly as given in 
equation (6.2.24). A reasonable stress pattern often results due to the imposed 
condition of least deviations from a specified stress distribution. ' 

In the abode extended overdetermined and underdetermined least squares 
approaches by Haber [63], no restrictions are placed on the structural 
geometries, element types or forms of stress distribution which can be 
handled. Furthermore, Haber [63] had proposed stress averaging schemes as 
means of smoothing out areas of highly uneven stress distribution. A smooth 
stress distribution is sought to replace the original uneven stress distribution, 
which will result in more or less the same nodal force resultants. Isolated 
areas of compression may also be eliminated in the process which comprises 
of two steps. The first step involves averaging stresses at each node on the 
basis of stresses in elements connected to the node. Subsequently, the new 
element stresses are given by the average nodal stresses for each element. An 
iterative cycle may be required to reach a progressively smooth stress 
distribution. An alternative scheme for achieving a smooth stress 
distribution may be to adopt a finite element formulation with the element 
stresses based on interpolation of nodal stresses. The nodal stresses would 
then become the unknown generalised stresses in equation (6.2.14). 

6.2.5 Optimisation method 

Nakanishi and Namita [1021 had proposed this method for use in cable nets. 
In this case, the solution is for the surface shape and stress distribution. An 
ideal shape and stress distribution are specified and an optimisation exercise 
is carried out to best meet these specified criteria. There are four conditions 
imposed on the optimum solution. The first two conditions require 
equilibrium be achieved exactly and that all elements will be in tension. The 
equilibrium condition is satisfied by solving equation (6.2.6) and with positive 
element force densities, the elements will remain in tension. The force 
density in equation (6.2.6) may be prescribed. The remaining two conditions 
are only satisfied approximately. The first of these concerns the surface 
geometry and involves solving for a set of node coordinates which are closest 
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possible to a set. of specified node coordinates (z*). The difference between the 
actual and the specified coordinates indicates how optimum the solution is. 
Hence, from equation (6.2.7) 

(p} = [D]-1(F) - (x*) (6.2.28) 

in which [P) is the vector of coordinate differences in terms of force densities. 

The final condition is to achieve a set of force densities {T/l} which are closest 
possible to a set of specified force densities {(T/l)*}. Hence, 

- 
{T*} 

(6.2.29) {Q} _ 
11 

in which (Q} is the vector of differences between the actual and the specified 
force densities, indicates the margin to the optimum solution. 

The optimisation exercise is performed on the objective function I defined as 
follows 

I= II[W1](P)112 + II[W2](Q)112 (6.2.30) 

in which (W11 and [W21 are diagonal matrices of weighting values. The 

relative magnitudes of the terms in [ W1] and [ W2] indicate if the solution 
will better meet the imposed shape or force conditions. The only unknown 
terms in the function J are the force densities. Consequently, the optimisation 
exercise becomes the minimisation of I with respect to the unknown force 
densities subject to the tension requirement. This task can be executed by 
means of non-linear programming methods. 

In this method, the solution is for the surface shape and internal stress 
distribution. There is the benefit of apportioning weighting values to 
compromise between the conflicting requirements of shape and stress 
distribution. In most cases, the control of one factor has to be relaxed in order 
to have satisfactory control of another factor. At present, the method has yet 
to be applied to membrane structures. 

6.2.6 Iterative smoothing method 

In this method proposed by Haber [631, the stresses are specified directly and 
the equilibrium shape is then solved for. A set of iterative equations are 
formulated from the global form of equation (6.2.10). Each unknown node 
coordinate may be given as a weighted average of the forces acting on the 
node and the coordinates of the adjacent nodes, ie. 
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n 
Vi - Y, (K9)ljxj) 

Xi = (K 
g)11 

i) for (j (6.2.31) 

in which n is the number of node coordinates. Initially, a trial shape is 
specified with the stress distribution also defined. The geometric stiffness 
matrix is set up based on current geometry, and equation (6.2.18) then applied 
to obtain values for the unknown coordinates as an approximate solution. 
The process is iterated until convergence to an equilibrium shape. As the 
iterative coordinate averaging is equivalent to a surface smoothing exercise, 
this method is termed 'iterative smoothing'. The solution is for the surface 
shape and can deal with any finite element types. 

6.2.7 Combined approach 

The various solution methods outlined above may be combined together into 
a more flexible design module. A solution method may produce approximate 
results which are then input into another method to improve on the 
solution. For instance, the shape adjustment of the iterative smoothing 
method may be combined with the stress adjustment of a least squares 
approach. A mathematically defined surface shape may be improved by a few 

shape adjustment iterations. This updated shape is then used in a least 

squares method to give an appropriate stress distribution for the shape. If 
required, these stresses may be passed through a smoothing process. The 
updated stresses can further be used as input for more shape adjustment 
iterations. This process is repeated until an acceptable solution for the surface 
shape and stress distribution are obtained. As a final correction step, the non- 
linear displacement analysis may be applied. 

6.3 Form-finding by the dynamic relaxation method 

In this thesis, the adopted approach for the form-finding is to solve the 
equilibrium equations for the unknown surface geometry given the stress 
distributions and boundary conditions. The solution itself of the equilibrium 
equations is carried out using the dynamic relaxation method implemented 
with the kinetic damping procedure. This approach differs radically from the 
usual methods of structural design and analysis. In conventional structures, 
the engineer will propose a trial form of the structure and then analyse it for 
various loading conditions to determine the resulting stresses. This 
procedure when applied to tension structures which typically have complex, 
doubly curved surfaces is faced with the difficulty of having to describe such 
surfaces before the loads can be applied. In general, mathematical 
representations do not exist for arbitrary surface geometries. In the adopted 
approach, this process is reversed, ie. stresses (or prestresses) are specified a 
priori and the resulting form is then determined. This offers an efficient and 
effective means of achieving the form which meets the architectural and 
structural requirements. A trial and error procedure will consequently be 
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required in the solution for the desired form. This in turn leads to the need 
for interactive computer-aided design (CAD) of tension structures which will 
be discussed in detail in chapter 7. The same numerical model is also used for 
the load analysis and for establishing the cutting patterns and cable lengths. In 
other words, the-whole design becomes one continuous process. 

The form-finding process will begin with an arbitrary trial form and various 
controls can then be used to adjust the form until the desired solution is 
achieved. These form-finding controls which apply to cable nets and 
membrane structures including air-supported structures, will be described 
below. In the solution for the equilibrium geometry during the form-finding, 
pure statics alone is considered without the need to involve the kinematic 
relationships. Hence, the actual material constitutive properties are not 
required and fictitious values can be used instead in the form-finding. 

By using the kinetic damping procedure, radical adjustments can be made to 
the numerical model during form-finding without the- possibility of 
numerical instability. This procedure allows local adjustments to be made 
without the propagation of these disturbances to those regions further away. 
The out-of-balance forces which arise from the form adjustments are rapidly 
equilibriated locally. 

6.3.1 Cable nets 

In the numerical model, a cable net is idealised into link or cable elements. 
The form-finding controls for the cable net include the tension/force and 
elastic controls which are applied to the cable elements. Under force control, 
the elastic stiffness of the cable element is set to zero and a tension value 
prescribed to 'the element, and the prescribed tension will be adjusted during 
the form-finding. Under the elastic control, an elastic property and a slack 
length are prescribed to the cable element, and the prescribed elastic property 
and/or slack length will be adjusted during the form-finding. In this case, the 
tension in the element is derived from the elastic extension of the element 
from its prescribed slack length. These controls as applied to different kinds of 
cable nets are outlined below. 

6.3.1.1 Geodesic nets 

Geodesic nets are also known as minimal nets in which the cables over the 
net surface each takes a path of shortest distance and thus, has minimum 
length. The tension in each of these cables is constant throughout its length. 
Consequently, the form-finding control is to set the tensions in all link 
elements constituting each surface cable to a prescribed value at all stages. The 
elastic stiffnesses of the surface cables are also set to zero. In other words, the 
surface cables can slide freely over each other without loss of contact or 
friction at the nodes. The intersections between the surface cables may be 
jointed only after pretensioning. For each edge cable if present, tension can 
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Figure 6.4(a 

Figure 6.4(b) 
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only be assigned to one link element with the remaining link elements in the 
cable being elastically controlled. The form-finding can begin with a highly 
inaccurate initial geometry as shown in figures 6.2(a) and 6.2(b), and still 
results in rapid convergence towards the equilibrium geometry of the 
geodesic net as shown in figures 6.3(a) and 6.3(b). It is noted that the spacing 
between the surface cables becomes closer towards the central regions of the 
geodesic net. 

6.3.1.2 Uniform mesh nets 

Uniform or equal mesh nets have a typical regular spacing of 0.5m so that 
after erection, workmen can walk on them to fix cladding or so on without 
too much danger of falling through. The best known uniform mesh net is the 
roof over the stands of the Munich Olympic Stadium. A number of controls 
can be used for the form-finding of a uniform mesh net. Changes can be made 
to the boundary or internal support geometry. At the slack state, the uniform 
mesh is prejointed so that the internode spacing is constant except for those 
adjacent toboundaries or internal supports. Realistic values are used for the 
link stiffnesses in order that changes in internode spacing will be small when 
the net is stressed up. Links adjacent to boundaries or internal supports may 
be controlled either by specifying constant tensions in these links or by using 
low elastic stiffnesses and adjusting their specified slack lengths to achieve the 
desired geometry. It is often required to use a combination of both controls. 

With the initial geometry of a uniform mesh net as shown in figures 6.2(a) 
and 6.2(b), and using the above mentioned form-finding controls, the 
equilibrium geometry of the net as shown by the dashed lines in figures 6.3(a) 
and 6.3(b), is obtained. 

Barnes [I7] proposed a strategy of laying a two-way grid over the surface of a 
uniform mesh net which facilitates the data organisation whereby nodes may 
have to be added or removed during the form-finding. Nodes are identified 
by two numbers which are values of traverse lines forming the grid and there 
are arrays for the intercepts of boundaries with the traverse lines. 

An approach of using differential geometry to describe the geometries of 
uniform mesh nets, has been investigated by Williams [138]. However, the 
assumptions made to simplify the problem limit the applicability of the 
approach to situations such as for preliminary studies. In addition, the 
uniform mesh nets which can be dealt with using this approach are only 
those in shapes like the sphere, hyperbolic paraboloid and right helicoid. 

6.3.1.3 Principal curvature nets 

According to Williams [138], nets in which the cables follow directions of 
principal curvature on the surface will spread out in a radial fashion from a 
mast support. A principal curvature net has the benefit of the quadrilaterals 
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which formed on its surface being flat simplifying the design of the cladding. 
The cable tension and spacing increase further away from the mast. 

It is not possible to use the dynamic relaxation method for the form-finding 
of principal curvature nets. This is because there exists no relationship 
between cable lengths and tensions which will lead automatically to a 
principal curvature net. Williams [138) has applied differential geometry to 
produce forms of principal curvature nets and also constant tension 
coefficient nets. 

6.3.1.4 Momentless compression boundaries 

In the form finding of a cable net which is supported by a compression 
boundary or arch, the beam elements as described in chapter 4 can be used to 
model the compression boundary. In the case of a momentless compression 
boundary however, the use of the beam elements may not be necessary. An 
alternative means of dealing with such a case is described below. 

For the cable net shown in figures 6.2(a) and 6.2(b), if the force in the edge 
cable links is specified as a constant compression, the structure must always 
become unstable irrespective of starting geometry [101. This instability can be 
avoided by reversing all surface cable force components in the calculations of 
residual forces at the nodes lying along the edge cables which in turn are 
treated as forming a tension boundary. 

With the initial geometry as shown in figures 6.2(a) and 6.2(b), Barnes (10] has 
used the above scheme to obtain the resulting geometry as shown in figures 
6.4(a) and 6.4(b) for a surface to edge force ratio of -1: 6. The force in both end 
links of each boundary was held constant to ensure symmetry with the links 
(j -+ m) being elastically controlled. If the surface system had been entirely 
geodesic, the structure would have become unstable. However, with elastic 
stiffnesses assigned to the surface links (a--> h) and constant tensions in the 
remaining surface links, a stable system can be achieved. Hence, the surface is 
part geodesic and part elastically controlled. For the same surface: edge force 
ratio, the geometry can be adjusted by altering the elastic stiffnesses of the 
links (j-+ m) and (a-ah). 

6.3.2 Membrane structures 

The surface of a membrane structure consists of a series of fabric panels which 
are sewn or welded together along the common seams between panels. The 
concept of the geodesic coordinates has already been considered in section 
(5.13) of chapter 5. The warp and fill directions (which are the material 
principal directions) of each fabric panel are aligned to follow the paths of 
geodesics and their orthogonal trajectories respectively over the surface. The 
seam lines defined to coincide with the warp directions will in turn become V 

GI A 
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geodesics on the surface. This has the advantage of producing fabric panels 
which will optimise the use of the fabric roll (see figure 5.8). 

In the numerical model, each fabric panel is defined by a sequence of 
triangular membrane elements. As mentioned in section (3.3.5) of chapter 3, 
the local x- and y-axes of each element are set to be coincident with the warp 
and fill directions respectively, and with side 1 of the element aligned along 
the warp direction. In the form-finding, all the membrane elements are 
under stress control, ie. the elastic stiffness of each element is set to zero, and 
tensile stress values are assigned to the element in both the warp and fill 
directions. This is to prevent large strains taking place in the bias direction of 
the fabric panel. Consequently, the condition of applied tensile stresses 
coincident with the geodesic coordinate system is imposed on the form- 
finding process. This requirement is not necessary but does offer a convenient 
and flexible means of achieving different surface forms. 

In the modelling of minimal surfaces such as a soap film, a uniform stress 
distribution is specified, ie. the warp stress aX and fill stress ßy are set equal 

(a. = o, ) throughout. A minimal surface has zero mean curvature. For a non- 

uniform stress distribution, the condition of (c.: A oy) applies instead. From 

physical intuition, if more curvature is desired in a certain direction over an 
area of the surface, the option may be to relax the stress distribution along that 
direction. Hence, the control of stress distribution offers a means of form 

adjustments which lead; to direct results from the point of view of physical 
reasoning. By varying the ratio of stresses in the warp and fill directions, the 

surface geometry is adjusted until the desired result is obtained. In the case of 
air-supported structures, the inflation pressure has to be specified as well. 

The above approach leads to a numerical procedure for the simultaneous 
form-finding and production of cutting patterns proposed by Williams [138] 

which has been briefly outlined in section (5.16) of chapter 5. Within this 

procedure, there are two criteria which have to be satisfied simultaneously, ie. 

(1) the seam lines follow geodesic paths, 
(2) at each node, equilibrium in the direction normal to the surface. 

The in-plane equilibrium of the surface is satisfied automatically by using a 
stress distribution which fulfills certain conditions as outlined in section 
(5.15). The overall surface form is then governed by the criterion in (2). 
Subsequently, the criterion in (1) is achieved by geometric adjustments of 
nodes in the plane of the surface to meet the condition as given in figure 5.12. 
Alternatively, Haug [71] has suggested a scheme of superimposing a minimal 
cable net of uniform tension prestress cables over the membrane surface. 
These cables and thus, the nodes along them will approach geodesic paths 
over the surface. The tensions in these cables have to very small so as not to 
influence the overall surface form. In the case of minimal surfaces with 
uniform stresses throughout, the minimal cable net leads to no dominating 
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influence of geodesic patterning in the warp direction. The same situation 
arises if the fabric stress is higher in the fill than in the warp direction. 

Another means of satisfying the criterion in (1) is a modified form of the idea 

suggested above by Haug [71]. This is to use 'fictitious' slip strings with high 
tensions compared with the membrane stress resultants as proposed by 
Barnes [16]. The. tensions are constant along these strings and each string will 
therefore automatically find a shortest path between its starting node and last 

node, over the surface to define a geodesic. The slip strings are aligned along 
the warp direction of the fabric, and to account for non-uniform stress 
conditions along side 1 of each triangular membrane element. At each node 
along a slip string, the component of tension normal to the surface is ignored. 
In this way, the specified tension in the string makes no contribution to 
equilibrium in the direction normal to the surface. In addition, the string 
tension should not contribute to the residual forces at end nodes of the string 
which lie on ridge or boundary cables. This results in the geometries of the 
ridge or boundary cables being controlled only by the membrane stresses and 
the cable own elastic properties. In other words, these slip or geodesic strings 
fulfill boththe criteria in (1) and (2). 

A tension coefficient is the ratio of the tension to the length between two 
adjacent nodes along the string. As a variation, the condition of constant 
tension coefficient may be imposed in order to achieve evenly spaced nodes 
along the string and offers a useful option in situations where nodes tend to 
bunch together. 

The following steps have been proposed by Barnes [17] as the means of 
imposing the conditions mentioned above on the slip or geodesic strings 
within the form-finding scheme: 

(1) Begin residual (k)) calculations with all geodesic strings before any other 
element type. 

(2) Calculate the average value of surface normal vectors of adjacent 
triangular membrane elements meeting at a node and Williams [142] 
suggested applying a weighting to each normal vector which is inversely 
proportional to the element area (see figure 6.5). This average value is 
then taken as the surface normal vector at the common node and the unit 
value of this vector, {vin} found. 

(3) The components of the nodal residual forces normal to the surface, Rn are 

then given by R� _{ }T{R}. 

(4) For each geodesic node, subtract normal component from the global 

residuals, ie. (R) = (R) - Rn{vn). 

(5) Set nodal residuals along all ridge and boundary cables to zero. 
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(6) Proceed to residual summation for other element types. 

Figure 6.5 

The surface form is also a function of the spatial geometries of the ridge and 
boundary cables used in the membrane structure. Each of these cables is 
idealised as a series of link or cable elements in the numerical model. The 
force and elastic controls as used in the cable nets described earlier can equally 
be applied to the cable elements being considered here. Only one of the 
constituent elements in a ridge or boundary cable can be given force control 
with the remaining elements in the cable being elastically controlled. During 
the form-finding, the force along the cable will be maintained at more or less 
the value of the specified tension in the force controlled element. The cable 
geometry is governed by the equilibrium between the membrane stress 
resultants and the tension along the cable. A simple relationship can be used 
to approximate the required tension in the cable, T given the information of 
desired radius of curvature for the cable, R and the membrane stress 
resultants acting along the cable, a (ie. T=Rx a). Hence, a higher cable tension 
results in the cable having less curvature for the same membrane stress 
resultants and vice versa. The force control is useful for gross adjustments of 
the cable geometry towards the desired form. 

Under elastic control, the tension along a ridge or boundary cable is derived 
from the elastic extension of the cable from its initial slack length. Each of the 
constituent elements in the cable is prescribed with an elastic property and a 
slack length, and these elastic property and slack length can be adjusted 
during the form-finding. The curvature of the cable can thus be controlled 
through these adjustments. For instance, more cable curvature is achieved by 
using a reduced elastic stiffness in the cable and vice versa. At times, it is 
required to use a very high element stiffness in order to achieve a stressed 
length which is as close as desired to a target length. When the stiffness of 
such an element is much higher than the other stiffnesses in the model, then 
the increased nodal masses necessary to ensure the numerical stability of the 
solution for a given time interval will reduce the fundamental frequency of 
the overall structure and thus, also the rate of convergence of the analysis 
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[133]. For instance, this problem may arise in the case of a cable girder with 
short and rigid struts during form-finding to a target element stressed length. 
A force transfer procedure for handling stiff elements has been proposed by 
Barnes [10], but it requires the use of over-critical viscous damping to ensure 
convergence. An alternative suggested by Wakefield [133] involves updating 
the slack length of a cable element at intervals using a relationship between 
the element current and required stressed length. In this way, an elastic 
stiffness may be chosen which is close to that of adjacent elements and thus, 
results in an improved convergence rate. 

In the presence of compression (as indicated by a stressed length which is less 
than the slack length), the cable element will buckle and the force in the 
element in turn set to zero. As mentioned in earlier chapters, the dynamic 
relaxation analysis can cope with on/off element buckling without any 
difficulty. In situations where compressive forces are to be resisted such as at 
the mast support, then strut elements will be used. A strut element is similar 
to a cable element in all respect except that it can take a compressive force. Iii 
cases where bending forces are present, then the beam elements as already 
considered, -in chapter 4 have to be used. 

Another case to consider is the use of the slip cable to model a frictionless 
cable such as one which slides freely in a fabric sleeve. This is achieved by 
ensuring that the tension is more or less constant along the slip cable. In the 
numerical model, the slip cable is idealised as a series of cable elements. 
Under elastic control, an elastic stiffness and a slack length are assigned to the 
slip cable. The current length is calculated by adding up the individual 
current lengths of all the constituent elements. From the difference between 
the current and slack lengths of the slip cable and using the given elastic 
property, a tension value can be calculated. This tension is then assigned to 
each of the constituent elements and will thus be constant along the slip 
cable. Under force control, a tension value for the slip cable is specified, and 
the force in an element around mid-point of the slip cable will then be set to 
this specified tension with the elastic stiffness of the element also set to zero. 
The remaining elements in the slip cable are elastically controlled given the 
elastic stiffness and with their individual slack slengths calculated from 
current coordinates. The forces in all constituent cable elements will then 
remain approximately at the value of the specified tension for the slip cable. 
An area where the slip cable may be applicable is in the form-finding of 
conical membrane structures. 

6.3.3 Air-supported structures 

In 1918, F. W. Lanchester, the British car pioneer patented the design of a tent 
supported by air. Since then, a number of large scale air-supported stadium 
roofs have been built mostly in the USA. Apart from the additional factor of 
inflation pressure, the above discussion on membrane structures applies 
equally to air-supported structures. The equilibrium equations of a surface 
subjected to inflation pressure have been derived in section (5.15) of chapter 5. 
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The form-finding process involves defining the applied stresses, the inflation 
pressure and boundary conditions, and then finding the surface geometry 
which satisfies the equilibrium equations. 

X 

Figure 6.6 

3 

Within the dynamic relaxation scheme, the inflation pressure is applied in 
terms of the equivalent normal nodal forces proportional to the current areas 
of membrane elements as their shapes vary during the analysis. This is 
implemented in a simple manner as developed by Barnes [101. The resolved 
components of the normal nodal forces can be found in terms of element side 
vectors without the element areas being calculated explicitly. For a right- 
handed global coordinate system and with element nodes numbered in an 
anti-clockwise sense, the out-of-plane normal vector vn is given by 

vn = V21 0 V31 

in which the 0 term stands for a cross product operation, and v21 and v31 are 
the element side vectors as shown in figure 6.6. This follows that if p is the 
inflation pressure, the resolved force components at each node are then given 
by 

FX 

ýZ 
=6 vn = 

y21z31 y31z21 

6 
X31221 x21231 

x21y31 - x31y21 

(6.3.2) 

in which F., Fy and F. are nodal forces in the global coordinate system, and x21 
x2 - x, and so on, with x2 and xl being the x coordinates of the first and 
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second nodes respectively in the sequence of- node numbering for the element 
considered. 

6.4 imbrication patterning 

The Gaussian curvature of the surface of a membrane structure is often 
sufficiently large to require the fabric panels to be shaped before being sewn or 
welded together. Hence, the patterning stage in the design process of 
membrane structures. Once a suitable form has been found, the cutting 
patterns can then be developed. It is a direct geometric exercise of taking each 
fabric panel and flattening out the folds between adjacent members in the 
sequence of triangular elements within the panel. These cutting patterns will 
be marked and then cut off from fabric rolls on the shopfloor. As mentioned 
earlier, the use of geodesic patterning has the advantage of producing cutting 
patterns which will optimise the use of the fabric roll (see figure 5.8). 
Furthermore, the physical width of the fabric roll will impose a limit on the 
maximum width which is allowed for each cutting pattern. Hence, it is 
required to adjust the cutting patterns until their widths are all within the 
allowable limit. This can be easily done by moving the ends of the geodesics 
along the boundary automatically during form-finding [138]. In addition, it 
may be necessary in some cases to reduce the width of a cutting pattern by 
splitting it into two smaller ones. A fully interactive module for the width 
adjustments of cutting patterns has been developed and will be outlined in 
detail in chapter 7. 

The cutting patterns are fabricated in the stress free state. Hence, in order to 
derive the 'shrunk' geometries of the cutting patterns corresponding to such 
a state, it is required to apply stretch compensation factors to the cutting 
patterns developed from the numerical model in the prestress state. These 
stretch compensation factors are determined from tests carried out on the 
fabric material. In some areas of the actual structure, it may be difficult to 
prestress the fabric to the desired levels at the erection stage. Consequently, 
decompensation factors need to be applied accordingly to portions of the 
cutting patterns corresponding to these areas. 

The patterning procedure accounts for the surface curvature of the model but 
cannot eliminate the stresses induced as a result of deformations necessary to 
flatten out the fabric panel. Hence, when the cutting patterns are sewn or 
welded together and then stressed up to the prestress levels established from 
the form-finding, the induced stresses mentioned earlier need to be applied in 
reverse to produce the true stress state in the doubly curved erected patterns. 
In addition, due to the resistance of the fabric panel to being curved, the 
surface geometry after erection differs slightly from that obtained during 
form-finding. However, these deviations in form and stresses from the form- 
finding values are believed on average to be minimal and thus, discounted. 

In sharply curved regions of the surface, it may be sensible to model a fabric 
panel by two component or coupled half panels. Hence, the element 
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idealisation of the fabric panel is doubled and a more refined representation 
of surface curvature across the panel width is achieved as a result. In addition, 
the profiles at the two ends of the panel are better approximated. At the 
patterning stage, the two half panels are unfolded, the stretch compensation 
and/or decompensation factors applied, and their cutting patterns then 
sheared horizontally across to a straight common seam line between them. 
Subsequently, these two cutting patterns can be combined together into a 
single piece for fabrication purposes. The distortion involved in the process 
can be accomodated due to the in-plane flexibility of the fabric material. On 
the other hand, in regions of the surface with low curvature, the same process 
can be applied to produce 'double-width' panels which will make fabrication 

simpler. A fully interactive module for the above strategy of handling the 
fabric panels has been developed and will be outlined in chapter 7. 

6.5 Behaviour under load 

The surface geometry established in the form-finding stage has to be analysed 
for possible loads which may act upon it during its useful life. For this 
purpose, the stress and force controlled elements employed during form- 
finding have to be replaced by elastic elements with realistic stiffness values. 
In the case of membrane elements, the elastic stiffness used should 
correspond to the appropriate biaxial stress/strain properties for the fabric 
material. During the load analysis, the prestresses from the form-finding are 
added to the stresses derived from elastic deformations under loads to give 
the final stresses. 

The design loading may come from the structure self-weight, wind, snow and 
so on. Due to its lightweight nature, the self-weight of the membrane is often 
neglected. However, the weights of cables and fittings may have to be 
considered. The wind loads often constitute the most significant loading for 
the design. In general, they are applied as surface pressures modified by local 
coefficients for different areas over the surface. The case of wind uplift is often 
the dominant one. The wind pressure coefficients may be obtained from wind 
tunnel tests. However, the validity of wind tunnel testing for the flexible 
tension structures is questionable. The proper instrumentation of such tests 
seems difficult because any device attached to the model being tested alters its 
characteristics considerably. The snow loads are dependent on the amount 
and nature of snow accumulation over the surface. The snow loads tend to 
slide down steep slopes and remain on the flatter ones. Furthermore, it is 
undesirable to have concentrated point loads on the surface. The subject of 
design loadings for tension structures will be considered in further detail in 
chapter 8. 

After the load analysis, the performance of the structure is evaluated. The 
resulting deflections or stresses may be over excessive. In addition, potential 
ponding areas may be identified. The slackening of membrane and cable 
elements is also possible. Subsequently, it may be required to return to the 
form-finding stage to improve the form in order to reduce or eliminate the 
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inadequacies of the structural performance under loads. The prestress levels 
may have to be increased to limit the deflections. On the other hand, a change 
of curvature which means a change in prestress ratios, may be the preferred 
solution. It may be acceptable for small areas of the surface to go temporarily 
slack under full loading. The condition of no slackened -elements at all may be 
uneconomic. As a result, a criterion of a maximum surface area that is 
allowed to go slack may be adopted.. The problem of ponding can be solved by 
avoiding flat horizontal areas. With these adjustments made, the modified 
form will then be analysed again. When satisfactory results are achieved, the 
forces from the load analysis are used in the structural design of components 
such as the mast supports, cables, membrane plates, boundary cable clamps 
and so on. In addition, the fabric with sufficient breaking strength is chosen. 
In areas where ponding is possible, suitable drainage may be installed. 

In general, tension structures have natural frequencies of vibration which 
could interact with the wind to produce fairly large oscillations. In practice, a 
properly tensioned structure can reduce the wind induced oscillations and is 
structurally acceptable in many cases. For large scale structures, the dynamic 
behaviour i'nay be studied by aeroelastic model testing in a boundary-layer 
wind tunnel with modelling of the turbulent boundary layer. A detailed 
discussion of the dynamic behaviour of tension structures will be given later 
in chapter 9. 

During the load analysis, the presence of localised areas of membrane 
buckling may prevent full convergence from being achieved. This is due to 
the absence of gradual stress variation from element to element as a result of 
using constant strain membrane elements. A local rearrangement of the 
membrane elements may eliminate the problem. Barnes [10] suggested an 
alternative of a viscous damping approach with the mass components (and 
hence damping) automatically increased at nodes belonging to buckled 
elements. 

6.6 Conclusions 

In general, a number of solution methods which have been reported for the 
form-finding problem fall into either one of two basic approaches, ie. (1) 
given the surface geometry and boundary conditions, and the equilibrium 
equations are then solved for the unknown stresses in the surface, and (2) 
given the stresses in the surface and boundary conditions, and the 
equilibrium equations are then solved for the unknown surface geometry. 
There are also methods in which the equilibrium equations are solved for 
both the unknown stresses in the surface and the unknown surface geometry. 

In this thesis, the adopted approach is to use the dynamic relaxation method 
in solving the equilibrium equations for the unknown surface geometry 
given the stress distributions and boundary conditions. This approach is 
highly versatile and applicable in general to most kinds of tension structures. 
In the form-finding, various controls can be used to adjust the form until the 
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desired solution is achieved. These form-finding controls as applied to cable 
nets and prestressed membrane and air-supported structures, are discussed in 
this chapter. The fabrication patterning and load analysis stages in the design 
process are also outlined. 

From the discussion in this chapter, it is noted that some useful ideas applied 
in the form-finding process come from areas of differential geometry which 
have been outlined in detail in chapter S. The adopted approach for the form- 
finding involves a trial and error procedure in the solution for the desired 
form. Hence, it is appropriate to implement this approach with the controls as 
described in this chapter into an interactive computer-aided design system for 
tension structures which will be discussed in chapter 7. 
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Chapter 7 

Interactive design of tension structures 

7.1 Introduction 

Until about 1969, tension structures were designed mainly on the basis of 
physical modelling. Much work in this area has been carried out by Frei Otto 
at the Institute of Lightweight Structures in Stuttgart. As already discussed in 
Part I of this thesis, although physical models are useful in the qualitative 
study ofform, concept and visual assessment, quantitative design data is not 
easily available from them. As a result, there is a need to develop numerical 
modelling techniques. In addition, it has been shown that the dynamic 
relaxation method has a few features which are particularly useful for the 
design of tension structures and is thus the adopted numerical solution 
method in this thesis. Since the same numerical model is used in the form- 
finding, load analysis and patterning stages, it is advantageous to integrate all 
these stages together into one smooth and continuous design process. As 
mentioned in chapter 6, the adopted approach for the form-finding uses a 
trial and error procedure in the solution for the desired form. In addition, the 
form-finding controls used involves form adjustments which will lead to . direct effects in a physical sense on the model. Hence, it is easy and useful to 
assess the impact of previous adjustments which in turn will indicate what 
further adjustments are required. This suggests the need to implement an 
interactive strategy for the adopted approach. 

From the above considerations, it seems sensible to incorporate the various 
ideas discussed in earlier chapters into an interactive computer-aided design 
(CAD) system for tension structures. The development of such a CAD system 
is the subject of discussion in this chapter, and has been made possible by the 
availability of powerful hardware with sophisticated graphics capability. The 
computer software for the CAD system is called 'Tensyl' and was intially 
developed by Dr. David Wakefield at Buro Happold. Subsequently, as a plan 
for continued development of the software, a Teaching Company Scheme 
(TCS) was set up between Buro Happold and City University. A large part of 
the material in this chapter was produced during the 2-year period (1988-1990) 
when I was on the TCS. Dr. David Wakefield has also contributed to much 
development of the software especially at the early stages. 

In the CAD system are individual modules for the tasks of form-finding, load 
analysis and patterning, which are integrated together with a common 
database. It will be shown later how the CAD system has brought a number of 
benefits to the design process. 
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7.2 Underlying philosophy 

The theory behind the various basic modules of the CAD system has already 
been outlined in earlier chapters. These modules will be discussed in this 

chapter with an emphasis on the human user interface aspects. The success of 
the CAD system depends to a large extent on the implementation of an 
effective user interface. 

The software is written in 'C' programming language and runs within the 
Unix operating system. The hardware in use is a Hewlett-Packard HP9000/350 

workstation with SRX graphics coprocessors and a 19" colour monitor having 

a 1280 x 1024 pixel resolution capable of displaying over 16 million colours 
simultaneously. The 'C' programming language has a few features which 
make it attractive to be used in the development of a sophisticated CAD 

system. These features include the data structures, pointers (which are. 
addresses of locations within the memory space) and dynamic memory 
allocation. The data structures provide a neat way of grouping together 
information which describes a classification or type. For instance, a data 

structure may be defined to hold all the variables related to the elastic 
properties of the membrane elements. With pointers, the data structures and 
variables stored at various locations within the memory space can be linked 

together into chains or linked lists. Furthermore, with dynamic memory 
allocation, the software can allocate and free memory locations depending on 
the current needs. The Unix operating system also offers some benefits in 
developing the CAD system. The window and multi-tasking capabilities 
make it possible to execute a task in a window simultaneously as various 
tasks in other windows or in the background. In addition, the computational 
speed of the vast amounts of number crunching involved is increased quite 
significantly as a result of the floating point accelerator installed into the 
workstation. The SRX graphics coprocessors implement into hardware the 
library of graphics routines provided by the Starbase graphics library. These 
routines are used in the software to generate the graphical images which are 
displayed on the computer screen. Hence, the generation of these images can 
be achieved at high speed. This results in a machine which can produce 
highly realistic graphical images rapidly. In the development of the CAD 
system, the above mentioned capabilities offered by the hardware are fully 
exploited. 

There are a few principal objectives which form the underlying basis for the 
development of the CAD system. The software is intended for use within a 
design office environment. Consequently, it is important that the engineers 
find the software easy to use, ie. the software should be as user-friendly as is 

possible. In addition, it is desirable for the software to have a short learning 

period. Furthermore, it is obviously profitable to reduce the design time as 
much as possible. In order to fulfill these aims, an effective and functional 

user interface to the software is essential. A primary factor which contributes 
towards such an interface is the presence of clarity and consistency 
throughout. 
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The user interface has been designed to be fully interactive and based on the. 
concept of the Graphical User Interface (GUI), ie. as much use as possible of 
graphical images on the screen to inform and guide the user. This involves 

setting up the CAD system to work within the Window Icon Mouse Pointer 
(WIMP) environment. The execution and interaction with the CAD system is 

structured to make use of the accessories such as the windows, icons, mouse 
and pointers where appropriate. After logging into the workstation, the user 
can use the Unix operating system to create a number of windows and icons 

on the screen. An icon is a small picture which represents a closed window. 
The user can execute an activity or run an application in each window. The 

operation of the CAD system is initiated by issuing the appropriate command 
within a window and the user will then enter into the 'master' menu page 
shown in figure 7.1. Throughout the execution of the CAD system, the screen 
is divided into areas for the graphics window, menu options and editbox as 
shown in figure 7.1. 

PROJECT M RNRGER 
FILE MRNRGER 

GRRPHIC DISPLAY 
NODE CONTROL 
TOPOLOGY 
FIHITY 
LINE ELEMENT PROPs 
MEMBRRNE PROPERTIES 
LINK CONTROL 
MEMBRRNE CONTROL 

BOUNDARY CONTROL 
BERM ELEMENTS 
LORDING DEFINITION 

RNRLYSIS 

ELEMENT POST_P 
LISTING 
CUTTING PRTTERNS 
FRBRICRTION GEOM'Y 

EHITTENSYL H 

Figure 7.1 

A graphical image of the model in its current state is always on display in the 
graphics window area of the screen. This is because a graphical image is an 
effective and efficient means of communicating information to the user. It is 
much easier and thus takes much less time for the user to grasp information 
which is represented in the form of graphical images rather than texts and 
numbers. In this respect, there is also much use of colours in the image 
display to assist the user. Consequently, the user can quickly make an 
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assessment and respond accordingly to the CAD system. As far as possible, the 
information of relevance to the current menu page or operation is depicted in 

the image display. Furthermore, the user can interrogate and interact directly 

with the graphical image on display in the graphics window. The orientation 
. and angle of view of the model represented by the graphical image is under 
the direct control of the user. If desired, any part of the graphical image can 
also be windowed in for a closer inspection. 

The CAD system consists of a series of menu pages with each menu page 
designated for tasks specific to the various stages of the design process. In each 

menu page, a list of menu options are displayed on the right hand side of the 

graphics window as shown in figure 7.1. The CAD system is driven by means 

of interaction with the menu options using a two button mouse with each 
button assigned to perform specific actions as will be described shortly. A 

mouse click refers to the press and release of a mouse button. In order to 

activate a menu option, the user positions the on-screen arrow pointer over 
the option and then clicks the left mouse button. 

A menu option filled in with the red colour indicates that the option is in the 
active state. A menu option in the non-active (ie. normal) state is indicated by 

a white option label in a black background. A few menu options are by default 
in the active state and remain so until they are switched into the non-active 
state. By activating a menu option in the non-active state, the option is then 
switched into the active state. In some cases, at the completion of the task 
associated with a menu option when activated, the option returns to the non- 
active state. In other cases, by activating a menu option in the non-active 
state, the option after going into the active state is then switched into another 
state. In this state, the option label is given a specific colour accordingly, and 
the option is still in operation and taken to be in the 'on' state. For such a 
case, the option may indicate that the specific attribute associated with it is 

switched on, ie. becomes active. This attribute may then be used in 
conjunction with the operation of another menu option. 

By activating the appropriate menu option in the current menu page, the 
user either initiates the operation associated with the menu option, enters 
into another menu page or simply as required for the operation which 
follows. In each of the menu options is an option label. The adopted 
convention is such that a menu option with a label in upper case can be 
activated by the user such as to perform a direct operation. The option label 
itself gives a clue as to the operation associated with the menu option. On the 
other hand, the user cannot activate a menu option with a lower case label, ie. 
the option does not have an active state. A lower case label serves to provide 
for the group of menu options associated with it, an idea about the overall 
nature of the operations which can be executed using these menu options. 

Besides being used to activate a menu option, the left mouse button allows 
the user to pick the various elements on display in the graphics window. For 
this purpose, the user may need to enter into the on-screen interaction mode 
by clicking the right mouse button when appropriate. In this mode, the user 
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can position the on-screen pointer over any part of an element and the 
element is then picked by clicking the left mouse button. It is usual for a 
'picked' element to be highlighted in red. The user can subsequently exit from 
the on-screen interaction mode by clicking the right mouse button when 
appropriate. In addition, the right mouse button can be used to reverse a 
chain of on-screen actions for instance, to unpick the previous 'picked' 

elements. 

Furthermore, a helpful feature is the varying labels and symbols used for the 
on-screen pointer to guide the user to the subsequent course of action. Figure 
7.2 gives a list of the various forms of the pointer and their associated 
purposes. 

Pointer Purpose 

activate menu option 

dx accept/abort pointer 

node pick 

membrane pick 

link pick 

strut pick 

boundary pick 

field pick 

geodesic string pick 

cloth pick 

Figure 7.2 

In most cases, the operation of the CAD system will involve using the arrow 
pointer to activate a menu option and the arrow pointer will in turn change 
into the appropriate pointer as given in figure 7.2 for the subsequent actions. 
For instance, the 'node pick' pointer will suggest to the user that the software 
awaits the picking of a node on display in the graphics window.. For the 
accept/abort pointer, the user is prompted to confirm a previous action. The 
user will then respond by either clicking the left mouse button to accept the 
previous action or clicking the right mouse button to abort the action. 
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There should be minimum keyboard entries of data and commands with 
most interaction with the CAD system being executed using the mouse. 
However, if required, the user will be prompted to enter the data into an 
editbox displayed beneath the graphics window. In addition, the editbox is 
used to display supplementary information relevant to the user's current 
task. On some occasions, the execution of specific operations is controlled 
from within the editbox. These operations may involve the use of command 
buttons which are incorporated into the editbox. A command button is 
activated by placing the arrow pointer over the button followed by a dick of 
the left mouse button. 

Finally, if changes whether topological or otherwise have been made to the 
current model, the database will be automatically updated as the user exits 
from the current menu page. 

7.3 The design process 

In general, the design process of a tension structure can be divided into the 
stages of form-finding, load analysis and patterning. The individual modules 
for these separate operations are integrated together into the CAD system to 

make the design process into a smooth and continuous one. A common 
database is maintained throughout the CAD system so that the user can move 
conveniently from one stage to another. At the form-finding stage, the aim is 
to establish an initial equilibrium shape which satisfies the aesthetic and 
functional requirements of the structure. There is close co-operation between 
the engineer and the architect at this stage. After achieving the required 
shape, the model is analysed for the possible loads which may act upon the 
structure over the period of its design life. If the applied loads cause areas of 
excessive stresses, wrinkling or structural instability in the model, then it may 
be necessary to return to the form-finding stage and revise the shape in order 
to alleviate the problem. When a model which behaves satisfactorily under 
applied loads is achieved, the data for the production of cutting patterns and 
fabrication details are processed. The facilities for executing the operations 
involved in the above mentioned stages of the design process are 
implemented in the menu options contained within the various menu pages 
which will be discussed later. In the discussion, the main emphasis will be on 
the user interface aspects involved in the operations of the menu options. It 
will show how an effective and functional user interface is implemented into 
the CAD system. 

In the 'master' menu page shown in figure 7.1, the user will exit altogether 
from the CAD system if the SHIT TENSVL. H option is activated, but when any one 
of the remaining menu options is activated, the user will then enter into a 
separate menu page to perform specific tasks. 
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7.4 Project manager 

Activate Project: The PROJECT MRNRGER menu page shown in figure 7.3, 

CURRENT PROJECT accessible from the 'master' menu page, is used to 
NEW PROJECT manage the various projects previously set up using 

the software. When a new model is to be set up, the 
Edit: user has to first use-the NEW PROJECT option to create a 
RCTIUE PROJ DETRILS 

new project title. By activating this option, an editbox 

List: as shown below 

CURRENT PROJECTS 
Enter REFERENCE NAME of New Project tobe Defined 

ACTIVE PROJECT LOG ??? 

RETURN 
will then appear beneath the graphics window. The 

Figure re 7.3 user can enter into the editbox the project title for a 
new model. The software will then set up a new 

project directory within the memory of the computer. The future data files for 
the project will be placed under this directory. At any time, the user can 
return to this menu page in order to switch from the current project to 
another. The user can also by activating the RETURN option move back into the 
'master' menu page. The menu options in figure 7.3 besides those described 

above are not functional at present. 

7.5 File manager 

ACTIVE DATA -> FILE , The FILE MANAGER menu page shown in figure 7.4 is 

where the menu options for the file handling are 
Access: 

ýEI located. This menu page is accessible from the 
TA FILE -), ACTIVE DA 'master' menu page. At the various'stages of the 

CLEAR ACTIVE DATA software execution, the user can access the FILE MANAGER 

menu page and by activating the ACTIVE DATA -> FILE 

option, the complete set of data for the current state of 
Utilities: the model as stored in the database will then be 
LIST 

PRINT T ANALYSIS TRACE written into a file created automatically by the 
COPY FILE software. The current data set in the database is 
PURGE FILE referred to as the active data. A specific number will 

be assigned to name the file and this file name will be 
RETURN displayed in the editbox beneath the graphics window. 

The user is required to make a note of this file name. 
Figure 7.4 The software will place the file with this name under 

the project directory for the current model. 

Subsequently, if the user needs to return to a previous state of the model, the 
FILE -> ACTIUE DATR option is available for this purpose. When this option is 
activated, the user will be prompted to enter a file name into the editbox as 
shown below, ie. 

Enter No of File to be Activated 
??? 
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which appears beneath the graphics window. The software will open the 
named file and read into memory the data set stored in the file. This data set 
in turn becomes the active data of the model. The user will then have as the 
current state of the model that which is stored in the named file. 

The user can continue to work on the model after having the current state of 
the model written into a file. Furthermore, the user can without worrying 
make further changes to the model knowing that the model can be returned 
to its previous state if these changes lead to any undesirable results. 

The user can also by activating the RETURN option move back into the 'master' 
menu page. The menu options in figure 7.4 besides those described above are 
not functional at present. 

7.6 Graphic display 

elastic box 

I 
Scale 1: 79.445 PAPER SIZE A4 

NODE MBRRNE 

LINK 6_STRG 
STRUT BOUNDRRY 
BERM FIELD 

LCRBLE 

LRBEL SHRINK 
RDJ-NODES SMOOTH 
GHOST 

JMRRKER 

SHOW 
HY. JLRN 
HLELEU YZELEU 

ISOMETRIC ROTRTE 
NJIIEW SURFRCE-H 

WINDOW SHOWDILL 
SCALE IL_SECTN 

UNITS NQ-MENU 
DUMP PLOTTER 

CLERK RETURN 

Phi_H 45.00 
Phi V -24.47 Units metres 
Scale 1: 70.82 

Figure 7.5 

The GRAPHIC DISPLAY menu page shown in figure 7.5 provides the menu options 
which are used to set both the graphics view attributes and element display 
attributes for the image currently as shown in the graphics window. This 
menu page is accessible from the 'master' menu page as well as from within 
most of the other menu pages available in the software. On display in the 
graphics window area of the screen will be a graphical image of the model in 
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its current state. The graphical image will always be considered with reference 
to a right-handed Cartesian coordinate- system. The r-uuEw and No_MENU options 
are not yet functional at the moment. 

With an active KY-PLAN option, the image shown in the graphics window will 
correspond to a plan view (ie. the view from above the global x-y plane) of 
the model. If instead the sz_ELEU, VZ_ELEU or ISOMETRIC option is active, then the 
corresponding global x-z elevation, y-z elevation or isometric view of the 
model will be shown. Furthermore, by activating the ROUTE option, an editbox 
as shown below 

Enter Rotations ... Pht_H Pht_V 
90.00 -90.00 

will then appear beneath the graphics window. The user can directly edit the 
values of the horizontal and vertical angles currently shown in the editbox. 
The horizontal angle is an angle in the x-y plane and is positive when 
measured in an anti-clockwise sense from the global x-axis. The vertical angle 
lies in a plane normal to the x-y plane and is positive when measured 
upward from the x-y plane. These two angles determine the precise angle of 
view of the model which will be represented in the image shown in the 
graphics window. As an example, a plan view of the model is equivalent to 
the case of a horizontal angle of 90.0 degrees and a vertical angle of -90.0 
degrees. Hence, using the above options, the user has the means to achieve 
the desired angle of view of the model. 

By activating the CLEAR option, the graphics window area of the screen will 
then be cleared of any graphical image. Subsequently, the user can select the 
elements to be displayed by activating the appropriate menu options. For 
instance, with an active NODE option and by activating the seow option, all the 
nodes in the model will then be displayed in the graphics window. In a 
similar way, other elements such as the membrane elements and so on, can 
be selected to be displayed in the graphics window. The elements will be 
shown in the same colour as that given to the option label for the 
corresponding menu option when in the 'on' state. For instance, all the 
nodes will be shown in yellow which is also the colour of the option label for 
the 'on' NODE option. Hence, it is easy to identify from their different colours 
the various elements currently on display in the graphics window. 

Furthermore, the user can also select the attributes which will be used in the 
graphic display of the different elements in the model. With an active LROEL 
option, the reference numbers of the elements such as the node numbers, the 
membrane element numbers and so on, will then be shown to label the 
elements in the graphic display. With an active SHRINK option, the membrane 
elements will be shown in the 'shrunk' mode, ie. slightly apart from each 
other. Similarly, other elements such as the link elements and so on, can also 
be shown in the 'shrunk' mode. Furthermore, with an active Mf RKER -option, a 
boundary will be shown with all the nodes lying along the boundary marked 
with specific symbols. The ends of the boundary will be recognised from their 
markers which are unlike those given to the remaining nodes along the 
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along the boundary. The above will similarly apply to the display of a'geodesic 
seam line or slip cable element when the MARKER option is active. In addition, 
an active GHOST option means that the elements themselves will not be shown 
and this option is therefore seldom used. When the eDJ_NODES option is active, 
the elements will then be shown with their nodes labelled with the node' 
numbers. 

By default, a boundary will be displayed as a series of lines between the nodes 
which lie along the boundary. With an active SMOOTH option however, a 
boundary will in turn be displayed as a smooth curve. In this case, a curve 
will be fitted through the nodes which lie along the boundary. The user can 
choose if a cubic spline or circular arc will be used for the curve fitting by 
means of the relevant menu options within the 13OUNDRRY CONTROL menu page 
which will be described later. In most cases, the cubic spline will be used to 
derive the smooth curve for the boundary. Similarly, a geodesic seam line or 
slip cable element will be displayed as a smooth curve when the SMOOTH option 
is active. 

By activating the SCfLE option, an editbox as shown below, ie. 

Enter Scale 1: xxxx (metres) 
26.28 

will then appear beneath the graphics window. The current scale of the image 
shown in the graphics window will be displayed in the editbox. Subsequently, 
the user can directly edit the current scale shown and the image will then be 
shrunk or enlarged accordingly. 

The user can also decide on the units in use for the image shown in the 
graphics window. This requires the use of the UNITS option. The horizontal 
and vertical angles of view, units and scale which currently apply are 
displayed within a boxed area on the screen as shown in figure 7.5. By default, 
the software uses the metres units. When the UNITS option is activated, the 
metres units will be switched to the feet units. By activating the UNITS option 
again, the feet units will then be switched back to the metres units. 

Furthermore, the WINDOW option provides the user with a facility to window in 
on a specific area of the image shown in the graphics window. When this 
option is activated, the user will be prompted to first pick a point within the 
graphics window area. After picking a point, an elastic box will then be drawn 
with one corner at the first 'picked' point and the diagonally opposite corner 
at the current position of the arrow pointer. As the user moves the pointer 
about to define a window, the elastic box will in turn, shrink or stretch 
accordingly. By clicking the left mouse button, the current position of the 
pointer and the first 'picked' point will then define a window over an area of 
the image shown in the graphics window. The part of the image which fall 
within the defined window will then be redrawn enlarged to occupy as much 
as possible of the graphics window area. In this way, the user can window in 
on any part of the image in order to have a closer and thus, enlarged view of 
the image. In fact, the user can continue to window in on an image derived 
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from a previous windowing exercise. On the other hand, by activating the 
SHOW-ALL option, the image of the entire model will in -turn be displayed in the 
graphics window. 

Then, by activating the DUMP option, the image as shown in the graphics 
window will be sent to the laser printer. If instead the PLOTTER option is 

activated, an editbox will then appear beneath the graphics window. On 
display in the editbox as shown in figure 7.5 will be the parameters such as the 

plot scale and paper size (ie. A3/A4). The user can directly edit the parameters 
shown and by activating the [PLOT] button in the editbox, the image in the 

graphics window will then be sent to the plotter. The image will be plotted 
according to the parameters set in the editbox. 

In addition, there is also the SURFecE_M option which provides the facility to 

show a surface shaded image on the screen (ie. solid modelling). By activating 
this option, the user will then enter into the SURFRCE_M menu page which will 
be fully described later in section 7.19. 

If the RETURN option is activated, the user will exit from the GRAPHIC DISPLAY menu 
page and return to the previous menu page. 

With the menu options as described above, the user has complete control 
over the image shown in the graphics window. In addition, the user interface 
in use offers an easy, highly flexible and effective means of achieving the 
desired image. In fact, the user can enter into the GRAPHIC DISPLAY menu page 
from within most of the other menu pages available in the software. Hence, 

while working within a separate menu page, the user can access the GRAPHc 
DISPLAY menu page and use the menu options described above to obtain the 
desired image on the screen before returning to the current menu page. For 
instance, the user may need to window in on a specific area of the image or 
change the angle of view while working in say, the rix LTV menu page which 
will be described later. 

7.7 Node control 

In the process of setting up a new model, it is customary to first work out the 
node coordinates of a few system points with reference to a chosen right- 
handed cartesian coordinate system. The NODE CONTROL menu page shown in 
figure 7.6 provides the means for the user to input these node coordinates 
into the database of the software. This menu page is accessible from the 
'master' menu page. On display in the graphics window of the screen will be a 
graphical image of the model in its current state. The REPRINT option serves to 
refresh the current image display in the graphics window. The ED IT_U IEW 
option enables the user to access the GRAPHIC OISPLRV menu page in order to 
achieve the desired image display in the graphics window. 
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REPAINT EDITJIIEW Next, the NODE option allows the user to define a new 
BRCK_UP RESTORE node by specifying the global coordinates of the node. 

By activating the ADD option when both the NODE and 
NODE BOUNDARY KEYBOARD options are in the active state, the user will 
20NE then be prompted to enter into the editbox as shown 

below, ie. 
RYJLANE 2N-LINE 
3N-PLANE 2N-PLANE Enter Ards of New Node... XYZ 
KEYBOARD ;?? 

RDD DELETE the global x, y and z coordinates for each of the 
MOUE CHECK 

system points. With each set of global x, y and z 

RLL-NODES SELECT-I coordinates input through the editbox, the software 
will automatically create a new node with the 

CLERR_RLL PICK_rLD 
TE specified coordinates. The new node will also be 

MOUE DUPLICA 

NODE-ONLY ELEM_ALSO assigned with a node number. Hence, a new node 
TRANSLATE ROTATE with the specified coordinates will be created at each 

of the system points. If the right mouse button is 
LISTING RETURN clicked instead of entering a set of coordinates into 

the editbox, the user will then exit from the editbox 
Fi, ure7.6 control. Alternatively, the user can also exit from the 

editbox control by pressing the 'ESC' button on the 
keyboard. 

By activating the CHECK option, the user will be prompted to pick a node and 
the 'picked' node will be highlighted in red. The current coordinates of the 

node will also appear in the editbox beneath the graphics window. The user 
can therefore easily find out the current coordinates of any node in the 
model. This is necessary since the current node position is always that of the 
deformed structure under defined prestress or load. If desired, the user can 
also directly edit the node coordinates shown in the editbox. 

Furthermore, the DELETE option allows the user to pick and remove a node 
from the model. The MOVE option is used to move a 'picked' node to a new 
location. 

There are also options which operate on a collection of nodes at the same 
time. These nodes can be picked using the SELECT -N option. If the nodes lying 
within a field are to be selected, the PICK-FIELD option can be used instead. The 
RLL_NODES option enables the user to select all the nodes in the model. On the 
other hand, all the nodes which have been selected previously can also be 
deselected using the CLERR_RLL option. Subsequently, the TRRNSLRTE and ROTRTE 
options can either apply to the selected nodes themselves if the MouE option is 
active or to a set of additional nodes which are a duplicate of the selected 
nodes if the DUPLICATE option is active. In addition, with an active NODE_ONLY 
option, the TRANSLATE and ROTATE options will then only operate on the 
corresponding nodes. However, if the ELEM_ALSO option is active instead, the 
TRANSLATE and ROTATE options will then apply to the corresponding nodes as well 
as the elements which are connected to these nodes. When the TRANSLATE 
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option is activated, the user will be prompted to enter into the editbox as 
shown below, ie. 

Enter Structure Translations DX DY DZ 

??? 

the appropriate displacements to be applied to the corresponding nodes 
and/or elements accordingly. These displacements refer to translations in the 
global x-, y- and z-axes directions. When the ROTfTE option is activated, the 
user will be prompted to enter into the editbox as shown below, ie. 

TILT_AXIS X Y Z ANGLE (deg) [ROTATE] 
Pt Ti 0.000000 0.000000 0.000000 0.000 

72 1.000000 0.000000 0.000000 [RETURN] 

an angle of rotation and the definition of an axis about which the rotation 
will take place. 

The LISTING option is used to output to the laser printer the coordinates of all 
the nodes in the model. By activating the RETURN option, the user will then go 
back to the 'master' menu page. The remaining options in the NODE CONTROL 
menu page not mentioned above are not functional at present. 

7.8 Topology 

The TOPOLOGY menu page shown in figure 7.7(a) provides the menu options 
which enable the user to make topological adjustments to the model. The 
user will enter into this menu page from the 'master' menu page. On display 
in the graphics window area of the screen will be a graphical image of the 
model in its current state. The HE-PRINT option serves to refresh the current 
image display in the graphics window. The user can access the GRAPHIC DISPLAY 
menu page via the ED IT_U I Ew option in order to achieve the desired image 
display in the graphics window. 

For a newly created model, a few system points may have just been defined 

within the NODE CONTROL menu page described above in section 7.7. The user can 
in turn define a series of boundaries between the system points. In addition, a 
temporary node may be defined about half-way between two system points. In 
this way, the initial curvature of the boundary between the two system points 
can be approximated. A boundary may be used to represent an edge scallop 
cable or a ridge cable which separates two fields. 

With an active ADO option and by activating the BOUNDARY option, the user can 
then proceed to define a new boundary. The user can subsequently enter into 
the on-screen interaction mode by clicking the right mouse button. This is 
followed by a switch of the on-screen arrow pointer into the 'node pick' 
pointer. The user can in turn use the 'node pick' pointer to pick a node and 
the first 'picked' node will be highlighted in red. An elastic line in yellow will 
always be drawn from the previous 'picked' node to the current location of 
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Figure 7.7(a) 

the pointer while in the process of picking the next node. In this case, as the 
user moves the pointer about to pick the second node, the elastic line will 
shrink or stretch in order to join the current location of the pointer to the first 
'picked' node. When the second node is picked, it will similarly be 
highlighted in red. A line highlighted in red will be drawn from the first to 
the second 'picked' node. In this way, the user can proceed to pick the 
remaining nodes which will lie along the boundary currently being defined. 
The user can also step backward and unpick the nodes which have been 
picked so far to lie along the boundary currently being defined. For instance, 
when prompted to pick the fourth node, the user can click the right mouse 
button instead of picking the fourth node. Subsequently, the highlighted line 
previously drawn from the second to the third 'picked' node will disappear. 
The third 'picked' node will be unpicked and the red highlight previously 
given to the node will be replaced by the normal colour, ie. yellow. If the right 
mouse button is clicked again, the user will then unpick the second 'picked' 
node. In this way, the user can step backward along the boundary definition. 
On the other hand, the user can continue with the node picking until the last 
node has been picked. Finally, the boundary definition will be completed by 
picking the last node a second time. The accept/abort pointer will then 
appear. If the line highlighted in red joining all the 'picked' nodes is accepted, 
a new boundary will be defined and the definition data of the new boundary 
automatically set up in the database. The new boundary will be redrawn in its 

-146- 



normal colour, ie. yellow. By repeating the above operations, further new 
boundaries can be defined in the model. 

With an active DELETE option and by activating the BOUNORRY option, the user can 
then proceed to delete an existing boundary. The user has to first enter into 
the on-screen interaction mode by clicking the right mouse button. This is 
followed by a switch of the on-screen arrow pointer into the 'boundary pick' 
pointer. The user can in turn use the 'boundary pick' pointer to pick an 
existing boundary and the 'picked' boundary will be highlighted in red. The 

accept/abort pointer will then appear. If the 'picked' boundary is accepted, the 
boundary will then be deleted from the model. By repeating the above 
operations, further existing boundaries can be removed from the model. 

With both the ADD and G_STRG options in the active state, the user can perform 
the task of defining a new geodesic string or seam line. Conversely, when 
both the DELETE and c_sTRG options are active, the user can initiate the deletion 
of an existing geodesic seam line. In both cases, the user interface and the 
operations involved will be similar to those in the case of the boundary 
described above. A new geodesic seam line will be shown in the yellow 
colour. 

Furthermore, when both the Ann and s_CABLE options are active, the user is 
ready to define a new slip cable element. Conversely, with both the DELETE and 
LCRBLE options in the active state, the user can proceed with the deletion of an 
existing slip cable element. In both cases, the user interface and the operations 
involved will be similar to those in the case of the boundary described above. 
It is noted that a new slip cable element will given a default set of elastic 
properties. In addition, the element will be shown in the magenta colour. 

When a new link element is to be defined, then both the eon and LINK options 
have to be in the active state. The user can then enter into the on-screen 
interaction mode by clicking the right mouse button. This is followed by a 
switch of the on-screen arrow pointer into the 'node pick' pointer. The user 
can in turn use the 'node pick' pointer to pick a node and the first 'picked' 
node will be highlighted in red, and the user will then be prompted to pick 
the second node. At this stage, if the right mouse button is clicked, the first 
'picked' node will then be unpicked and the red highlight previously given to 
the node will be replaced by the normal colour, ie. yellow. On the other hand, 
when the second node is picked, it will be highlighted in red, and a line 
highlighted in red will be drawn between the two 'picked' nodes. The 
accept/abort pointer will then appear. If the highlighted line is accepted, a 
new link element will then be defined between the two 'picked' nodes and 
the definition data of the new link element automatically set up in the 
database. A default set of elastic properties will be assigned to the new link 
element shown in the green colour. By repeating the above operations, 
further new link elements can be defined in the model. 

When both the DELETE and LINK options are active, the user is ready to delete an 
existing link element. The user can then enter into the on-screen interaction 
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mode by clicking the right mouse button. This is followed by a switch of the 
on-screen arrow pointer into the 'link pick' pointer. The user can in turn use 
the 'link pick' pointer to pick a link element and the 'picked' link element 
will be highlighted in red. The accept/abort pointer will then appear. If the 
'picked' link element is accepted, the link element will then be deleted from 
the model. By repeating the above operations, further link elements can be 
removed from the model. 

With both the eoo and STRUT options in the active state, the user can perform 
the task of defining a new strut element. On the other hand, when both the 
DELETE and STRUT options are active, the user can initiate the deletion of an 

existing strut element. In both cases, the user interface and the operations 
involved will be similar to those in the case of the link element described 
above. A new strut element will be shown in the magenta colour. 

Subsequently, the user can proceed to define a new membrane element when 
both the ADD and MDRRNE options are active. The user has to first enter into the 
on-screen interaction mode by clicking the right mouse button. This is 
followed by a switch of the on-screen arrow pointer into the 'node pick' 
pointer. The user can in turn use the 'node pick' pointer to pick a node and 
the first 'picked' node will be highlighted in red, and the user will then be 
prompted to pick the second node. In this way, the second and the third nodes 
can be picked, and these two 'picked' nodes will similarly be highlighted in 
red. If required, the user can also step backward and unpick the nodes which 
have been picked so far. For instance, when prompted to pick the third node, 
the user can click the right mouse button instead of picking the third node. 
The second 'picked' node will then be unpicked and the red highlight 
previously given to the node will be replaced by the normal yellow colour. If 
the right mouse button is clicked again, the user will then unpick the first 
'picked' node. On the other hand, after picking the third node, it will be 
highlighted in red, and a triangle highlighted in red will then be drawn 
between the three 'picked' nodes. The accept/abort pointer will then appear. If 
the highlighted triangle is accepted, a new triangular membrane element will 
then be defined between the three 'picked' nodes and the definition data of 
the new membrane element automatically set up in the database. A default 
set of elastic properties will be assigned to the new membrane element shown 
in the cyan colour. It is noted that the three nodes of the new membrane 
element should have been picked in an anti-clockwise sense when looking 
from above the model. This is required so that the membrane 'top' surface is 
consistent with the load directions. In addition, the first and the second 
'picked' nodes (ie. which define the first side of the new membrane element) 
should lie along a geodesic seam line or at least be in a direction as close as 
possible to that of an adjacent geodesic seam line. By repeating the above 
operations, further new membrane elements can be defined in the model. 

When the user decides to delete an existing membrane element, then both 
the 0E[ETE and MURfNE options have to be in the active state. The user has to first 
enter into the on-screen interaction mode by clicking the right mouse button. 
This is followed by a switch of the on-screen arrow pointer into the 
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'membrane pick' pointer. The user can in turn use the 'membrane pick' 
pointer to pick a membrane element and the 'picked' membrane element 
will be highlighted in red. The accept/abort pointer will then appear. If the 
'picked' membrane element is accepted, the membrane element will then be 
deleted from the model. By repeating the above operations, further 
membrane elements can be removed from the model. 

Furthermore, the user can also proceed to define a new node when both the 
ADD and NODE options are in the active state. The user has to first enter into the 
on-screen interaction mode by clicking the right mouse button. This is 
followed by a switch of the on-screen arrow pointer into the 'node pick' 
pointer. In this case, the user has to pick the three nodes which will define the 
plane in which the new node will lie. By performing the similar operations as 
in the case when defining a new membrane element described above, the 
three nodes will be picked and highlighted in red. These nodes can be any 
three individual nodes in the model and can also be picked in whatever sense 
or order. The pointer will then switch into a small cross symbol. When the 
cross symbol is at the location where the new node will be defined, the user 
can click the left mouse button. Subsequently, this location will be indicated 
by a small cross marker coloured in red. The accept/abort pointer will then 
appear. If the highlighted marker is accepted, a new node will then be defined 
at the location of the marker. This new node will also lie within the plane 
defined by the three 'picked' nodes. The definition data of the new node will 
automatically be set up in the database. By repeating the above operations, 
further new nodes can be defined in the model. 

When both the DELETE and NODE options are active, the user can initiate the 
deletion of an existing node. The user has to first enter into the on-screen 
interaction mode by clicking the right mouse button. This is followed by a 
switch of the on-screen arrow pointer into the 'node pick' pointer. The user 
can in turn use the 'node pick' pointer to pick a node, and the 'picked' node 
and all elements connected to it will be highlighted in red. The accept/abort 
pointer will then appear. If the 'picked' node is accepted, the node and all the 
elements connected to it will then be deleted from the model. By repeating 
the above operations, further nodes can be removed from the model. 

After defining the relevant boundaries, the user can proceed to define a new 
field. For this purpose, both the Aou and FIELD options have to be in the active 
state. The user has to first enter into the on-screen interaction mode by 
clicking the right mouse button. This is followed by a switch of the on-screen 
arrow pointer into the 'boundary pick' pointer. The user can in turn use the 
'boundary pick' pointer to pick a boundary and the 'picked' boundary will be 
highlighted in red. The user will then be prompted to pick the next boundary. 
In this way, the user can proceed to pick the remaining boundaries which will 
define the new field. The user can also step backward and unpick the 
boundaries which have been picked so far. For instance, when prompted to 
pick the fourth boundary, the user can click the right mouse button instead of 
picking the fourth boundary. The third 'picked' boundary will then be 
unpicked and the red highlight previously given to the boundary will be 
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replaced by the normal yellow colour. If the right mouse button is clicked 
again, the user will then unpick the second 'picked' boundary. If necessary, 
the user can step backward through all the previous 'picked' boundaries. On 
the other hand, the user can continue with the boundary picking until finally 
the last boundary is picked to complete the definition of the new field. The 
last 'picked' boundary should join up with the first 'picked' boundary so that 
all the 'picked' boundaries will form a closed loop enclosing the field being 
defined. The definition data of the new field will automatically be set up in 
the database. Subsequently, all the boundaries enclosing the new field will be 
redrawn in the green colour. By repeating the above operations, further new 
fields can be defined in the model. 

When both the DELETE and FIELD options are active, the user can proceed to 
delete an existing field. The user has to first enter into the on-screen 
interaction mode by clicking the right mouse button. This is followed by a 
switch of the on-screen arrow pointer into the 'field pick' pointer. The user 
can in turn use the 'field pick' pointer to pick a field and all the boundaries 
enclosing the 'picked' field will be highlighted in red. The accept/abort 
pointer will then appear. If the 'picked' field is accepted, the field will then be 
deleted from the model. By repeating the above operations, further existing 
fields can be removed from the model. 

Figure 7.7(b) 

Furthermore, the menu options grouped under the cloth Dein: label allow the 
user to perform operations which are specific to cloths. The new membrane 
elements derived from the mesh generation described later in section 7.9, will 
be assigned as belonging to the various cloths in the field. By activating the 
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DISPLAY option, all'the membrane elements which belong to a cloth will be 
drawn filled in with the colour designated to the cloth as shown below in 
figure 7.7(b). 

The user can therefore easily check the cloth definitions and decide if any 
adjustments need to be made. The EHTENI_C option is used to redefine or extend 
a cloth definition in order to include further membrane elements. When this 
option is activated, the user will be prompted to pick a cloth. After picking a 
cloth, the user will be prompted to pick the membrane elements to be 
included into the definition of the 'picked' cloth. The 'picked' membrane 
elements will then be drawn filled in with the colour designated to the 
'picked' cloth. Furthermore, the NEW_CLOTH option when activated, will enable 
the user to establish a new definition for a cloth. The user will be prompted to 
pick all the membrane elements which will constitute a new cloth definition. 
When a membrane element is picked, it will be drawn filled in with the 
white colour. After picking the appropriate membrane elements, the user can 
click the right mouse button and the 'picked' elements will then be redrawn 
filled in with the colour designated to the cloth. By activating the CLEAR option, 
all the membrane elements in the model will then be redrawn without being 
filled in and this action is necessary before any one of the other menu options 
can be used. 

If necessary, the CLOTH-), 2 option allows the user to split a cloth into two 
narrower ones. This option has also been implemented within the IDJUST 
menu page. A full outline of this option will be given when the MUST menu 
page is described later in section 7.18. 

On the other hand, the c_MEncE option is used to achieve the reverse, ie. 
merging two cloths into one. When this option is activated, the user will be 
prompted to pick the first cloth and all the sides of the first 'picked' cloth will 
be highlighted in red. The accept/abort pointer will then appear. If the first 
'picked' cloth is accepted, the user will then be prompted to pick the second 
cloth and all the sides of the second 'picked' cloth will similarly be 
highlighted in red. It is noted that the second 'picked' cloth should have a 
side which is shared by the first 'picked' cloth. If the second 'picked' cloth is 
accepted, the two 'picked' cloths will then be merged together to produce a 
single cloth. The software will automatically delete the appropriate nodes and 
elements within the two 'picked' cloths, and generate the new elements for 
the 'merged' cloth. 

Under the Refine: label are a group of menu options which are used to refine 
the topologies of boundaries, geodesic seam lines and cloths. When the 
DDY_e«s option is activated, the user will be prompted to pick a boundary. 
The 'picked' boundary will be highlighted in red and the accept/abort pointer 
will then appear. If the 'picked' boundary is accepted, the number of segments 
in the 'picked' boundary will then be doubled. Each successive pair of nodes 
along a boundary will define a segment. With a doubling of the number of 
segments, new nodes will be generated along the 'picked' boundary. As a 
result, the appropriate existing elements will be deleted and replaced with 
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new ones generated to be consistent with the more refined definition of the 
'picked' boundary. These various topological adjustments will be carried out 
automatically within the software. For the GST e«s option, the above actions 
apply similarly except that this option is used instead to obtain a more refined 
definition of a geodesic seam line. 

On the other hand, the BDY_SEG option is used to produce a local refinement of 
a segment of a boundary. When this option is activated, the user will be 

prompted to pick a point somewhere along a segment of a boundary. The 
'picked' point will be indicated by a small cross symbol highlighted in white. 
A new node will be generated at the point. The new node will in turn divide 
the segment into two new and smaller segments. In addition, the appropriate 
existing elements will be deleted and replaced with new ones generated to be 

consistent with the two new segments. For the GST_S G option, the above 
actions apply similarly except that this option is used instead to achieve a 
local refinement of a segment of a geodesic seam line. 

Furthermore, the LINK-)S_c option provides the user with a means of 
converting a series of link elements into a slip cable element while the s_c- 
)-LINK option serves the reverse function, ie. is used to switch a slip cable 
element into a series of link elements. When the LiN K-) s_c option is activated, 
the user will be prompted to pick a series of link elements. The 'picked' series 
of link elements will be highlighted in red and the accept/abort pointer will 
then appear. If the user accepts, the 'picked' series of link elements will then 
be converted into a slip cable element. When'the s_c-'LINK option is activated, 
the user will be prompted to pick a slip cable element. The 'picked' slip cable 
element will be highlighted in red and the accept/abort pointer will then 
appear. If the user accepts, the 'picked' slip cable element will then be 
switched into a series of link elements. 

The REFLECT option allows the user to reflect the entire model about a specified 
vertical plane. When this option is activated, the user will be prompted to 
pick two nodes and the two 'picked' nodes will be highlighted in red. A line 
highlighted in red will also be drawn between the two 'picked' nodes and the 
accept/abort pointer will then appear. The highlighted line will represent a 
vertical plane of reflection. If the highlighted line is accepted, the entire 
model will then be reflected about the specified vertical plane of reflection. 

Under the Model Dein: label are a group of menu options which can be used to 
delete specfic items from the model. By activating the FREE_NODE option, all the 
free nodes (ie. nodes not connected to any elements) will be deleted from the 
model. When the FIELD option is activated, the user will be prompted to pick a 
field, and all the nodes and elements within the 'picked' field will be 
highlighted in red. The accept/abort pointer will then appear. By clicking the 
left mouse button, all the nodes and elements within the 'picked' field will 
then be deleted from the model. 

Furthermore, the BNODE_DEL option provides a means to perform the intelligent 
deletion of a node lying along a boundary. When this option is activated, the 
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user will be prompted to pick a node which lies along a-boundary. The 
'picked' node will be highlighted in red and the accept/abort pointer will then 
appear. If the 'picked' node is accepted, the node will be removed from the 
boundary and the definition data of the boundary will then be revised 
accordingly. In addition, the elements connected to the 'removed' node will 
be deleted with the adjacent elements reshuffled accordingly to be consistent 
with the revised definition of the boundary. In the case of the GNOOE_DEL option, 
the above actions apply similarly except that this option is used instead for the 
intelligent deletion of a node lying along a geodesic seam line. 

The user can also by activating the RETURN option move back into the 'master' 
menu page. The operations of the MESH_GEN option will be discussed below in 
section 7.9. The options in the TOPOLOGY menu page besides those described 
above are not functional. at present. 

As the topological adjustments described above are made to the model, the 
graphical image display will be updated appropriately to illustrate the effects 
of these adjustments. Furthermore, these topological adjustments will disturb 
the equilibrium of the model and this means that the model has to be 
reanalysed in order to establish its new equilibrium. 

7.9 Mesh generation 

The MESH-GEN option in the TOPOLOGY menu page shown in figure 7.7(a) provides 

a mesh generation facility which greatly facilitates the task of generating new 
elements. This facility allows many new elements to be created all at once 
instead of having to define each of the new elements individually. Hence, the 
effort and time needed to set up the entire model will be much reduced. The 
mesh generation is to be carried out on a field-by-field basis. When the 
MESH-GEN option is activated, the user will be prompted to pick a field. After 
picking a field, the user will then automatically enter into the MESH-GEN menu 
page shown below in figure 7.8. 

Under the M_Line: label are the noo and the DELETE options. By default, the Roo 
option is active, and the user is ready to sketch a series of mesh lines each of 
which will begin at one boundary and end at another boundary in order to lay 
a rough grid over the field which has been picked earlier. There is no 
restriction on the sense and order of defining the mesh lines. First, the user 
has to enter into the on-screen interaction mode by clicking the right mouse 
button. Then, the user will be prompted to pick a point somewhere along one 
of the boundaries of the field. The first 'picked' point will mark the beginning 
of a mesh line. The user can continue to pick further points which will define 
the path of the mesh line across the field. A white line will be drawn to join 
up all the previous 'picked' points. In addition, an elastic line in white will 
always be drawn from the most recent 'picked' point to the current location of 
the pointer while in the process of picking the next point. In this case, as the 
user positions the pointer to pick the second point, the elastic line will shrink 
or stretch in order to join the current location of the pointer to the first 
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Figure 7.8 

'picked' point on a boundary. The user can also step backward and unpick the 
points which have been picked so far. By clicking the right mouse button, the 
most recent 'picked' point will then be unpicked and the graphic display of 
the 'picked' points adjusted accordingly. In this way, further 'picked' points 
can similarly be unpicked if required. On the other hand, the definition of 
the mesh line will be completed by picking the last point which should be 

somewhere along a boundary. The new mesh line will then be shown in the 
yellow colour. There are a few conditions which may affect the position of the 
'picked' point along a boundary where the mesh line will begin or end. If the 
'picked' point is very close to the node at either end of the boundary, the 
point will then snap onto the node. In addition, if the 'picked' point is very 
close to a node along the boundary which is shared with another field, the 
point will snap onto the node. Furthermore, if the 'picked' point is very close 
to the position along the boundary where the beginning or end of another 
mesh line is, the point will snap onto that position. Hence, if any of the above 
conditions apply, the position of the first or last 'picked' point will then be 
determined accordingly. By repeating the above operations, further mesh 
lines can be defined within the field. 

If desired, any of the mesh lines which have been defined can also be 

removed. This is achieved with an active DELETE option. The user has to first 

enter into the on-screen interaction mode by clicking the right mouse button. 
This is followed by a switch of the on-screen arrow pointer into the 'mesh 
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line pick' pointer. The- user can in turn use the 'mesh line pick' pointer to 
pick a mesh line and the 'picked' mesh line will be highlighted in red. The 
accept/abort pointer will then appear. If the 'picked' mesh line is accepted, the 
mesh line will then be deleted from the field. By repeating the above 
operations, further mesh lines can be removed from the field. 

After defining a rough grid of mesh lines over the field, the user can activate 
the SOLUE option. The grid will then be 'solved' in order to calculate the initial 
coordinates of node points at mesh line cross-overs by the weighted 
interpolation of the end coordinates of these lines. The 'solved' grid of mesh 
lines will be redrawn in the white colour. The node coordinates calculated 
will be needed in the generation of new elements which follows. After being 
solved, the grid of mesh lines can also be 'unsolved' and this is achieved by 
activating the UNSOLUE option. The 'unsolved' grid of mesh lines will be 
redrawn in the yellow colour. 

7.10 Element generation 

Under the Elements: label in the MESH-GEN menu page shown in figure 7.8 is the 
EUEM_GEN option which when activated brings the user into the ELEM_GEN menu 
page shown in figure 7.9. The menu options available within this menu page 
allow the user to decide on the new elements which will be generated from 
the 'solved' grid of mesh lines established previously within the MESH-GEN 
menu page. The default case is for the noo option to be in the active state. 

MESFL_GEN Under the Element: label are a group of menu options 
of which the G_STRG option is active by default. 

M_Line: Subsequently, the user has to enter into the on- 
FULL PART screen interaction mode by clicking the right mouse 
Element: 

button. The user will then be prompted to pick a 
mesh line from which a new geodesic seam line will LINK S_E be generated. The 'picked' mesh line will be given a MBRRNE 

CLOTH 
G_STRGTRG 

CLOTH yellow colour. After picking the further mesh lines 
which will define the new geodesic seam lines, the 

ADD DELETE user can exit from the on-screen interaction mode by 
clicking the right mouse button. With the non option 

L_Prop: ý still active, the user can choose to activate the LINK 
LRSTJROP NEW-PROP option and then reenter into the on-screen 
NEHT_PROP interaction mode. In this case, the user will pick the 

mesh lines from which new link elements will be 
Figure 7.9 generated, and the 'picked' mesh lines will be 

shown in green. Furthermore, with both the eoo and 
MBRRNE options in the active state, the new membrane elements will be 
generated from the 'solved' grid of mesh lines when the right mouse button 
is clicked. The new membrane elements will be shown in the cyan colour. 

If required, the user can also undo the actions taken when the eon option is 

active as described above, by using the DELETE option. In the case when both the 
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DELETE and s_SInG options are active, the user can enter into the onscreen 

interaction mode and pick the mesh lines which are shown in yellow. As 
described above, a yellow mesh line indicates that the mesh line will be used 
to generate a new geodesic seam line. In this case, a 'picked' yellow mesh line 
will be redrawn in white and will in turn play no part in generating a new 
geodesic seam line. When both the DELETE and LINK options are active, the user 
can enter into the on-screen interaction mode and pick the mesh lines which 
are shown in green. As mentioned above, a green mesh line indicates that the 
mesh line will be used to generate a series of new link elements. In this case, a 
'picked' green mesh line will be redrawn in white and no new link elements 
will be generated from it. Furthermore, with both the DELETE and MBRRNE 
options in the active state, the new membrane elements previously generated 
will be deleted from the field when the right mouse button is licked. This is 
followed by an updating of the screen display accordingly. 

In the above, when either the LINK or MBRANE option is active, an editbox will 
appear beneath the graphics window. On display in the editbox will be the 
elastic properties which apply either to the link or membrane elements 
accordingly. With an active LINK option, the elastic properties shown in the 
editbox will consist of the EA (ie. modulus of elasticity x cross-sectional area) 
and self-weight values. With an active MBRRNE option however, the elastic 
properties shown in the editbox will consist of the moduli of elasticity and 
Poisson's ratios for the warp and fill directions, shear modulus and self- 
weight values. By activating the NEW_PROP option, a new set of elastic properties 
will be created and added to the list of elastic property sets already established 
in the database. The new set assigned with some default values will be shown 
in the editbox. If desired, the user can directly edit the values shown in the 
editbox. When the LAST_PROP option is activated, the previous set in the list of 
elastic property sets will then be shown in the editbox. By activating the 
NEHT_PROP option, the next set in the list of elastic property sets will then be 
shown in the editbox. The set of elastic properties currently shown in the 
editbox will be taken as the active elastic property set. When the new link or 
membrane elements are generated as described above, these elements will be 
given the active elastic property set. 

By activating the MESH_GEN option, the user will exit from the ELEM_GEN menu 
page and return to the MESH-GEN menu page shown in figure 7.8. Subsequently, 
the user can return to the TOPOLOGY menu page shown in figure 7.7(a), and the 
new link elements and geodesic seam lines will be generated from the 
'solved' grid -of mesh lines as the user leaves the MESH_GEN menu page. The 
element generation will affect the definitions of the boundaries which 
enclose the field. Hence, the definition data of these boundaries will also be 
adjusted accordingly. Using the various menu options in the TOPOLOGY menu 
page described earlier in section 7.8, the user can if required make further 
topological adjustments to the new elements derived from the mesh 
generation. 
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7.11 Fixity 

The proper restraints should be prescribed to the model in order to give a 
realistic representation of the boundary conditions. The software provides the 
FIHITY menu page shown in figure 7.10 for this purpose. This menu page is 
accessed from the 'master' menu page. Again, the emphasis is on making the 

menu and on-screen interactions highly interactive. In the graphics window 
is a graphical image of the model in its current state. The REPRINT Option 

serves to refresh the current image display on the screen. If required, the user 
can access the GRRPHIC oisPtRY menu page via the EDIT VIEW option in order to 

make adjustments to the current view setting for the on-screen image. When 
a desired view of the image has been obtained or at any time, the user can 
return to the FiinTV menu page. The DUMP option is used to send a graphic 
dump of the on-screen image to the laser printer. 

RE? HINT EDILUIEW 
BACKUP RESTORE 

DUMP 

FIXITY FIH_H 
FIH_Y 
FALZ 

RHSYM LRST 
NEXT 
NEW_RHSYM 
DELETE 

NODE_SNAP 

Node: CHECK 
RTTACH 
RELEASE 

RETURN 

Nodes Coords PI 9-5 1. 
No Attached P2 9S 13.0 10.0 
AXSYM 

1 16 P3 9S 0.0 0.0 

Figure 7.10 

There are two means of prescribing the nodal restraints, ie. by using either (i) 
translational fixities in the global x-, y- and z-directions or (ii) planes of 
symmetry. In this case, the global x-direction is taken as the direction of the 
global x-axis in the model and so on. By activating the FIXITY menu option, the 
user enters into the mode for option M. Conversely, the mode for option (ii) 

corresponds to an active RHsvM menu option. In conjunction with these two 
modes, three further options are available to the user, ie. the CHECK, RTTRcH and 
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RELERSE options all of which are grouped under the Node: label. By using the 
CHECK option, the user can inspect the current restraint at a node. The UTACH 
option is used to prescribe a restraint to a node. The RELERSE option is used to 
delete the current restraint at a node. 

The CHECK, RUACH and RELERSE options all operate through on-screen interaction. 
The user initiates this interaction by clicking the right mouse button. This is 
followed by a switch of the on-screen pointer into the 'node pick' pointer. The 

user can in turn use the 'node pick' pointer to pick a node and the 'picked' 

node will be highlighted in red. The accept/abort pointer will then appear. To 

abort the 'picked' node, the user clicks the right mouse button and will then 
be prompted on the screen for another node pick. By clicking the left mouse 
button, the user accepts the'picked' node and the appropriate action for that 

node will then be executed depending on which is the active option. For 
instance, in the case of an active RELEASE option, the action taken will be the 
deletion of the current restraint at the 'picked' node. At the completion of the 

appropriate action, the 'node- pick' pointer will reappear on the screen. The 

user can then repeat the above steps for further actions or exit from the on- 
screen interaction by clicking the right mouse button. 

In the FUHHTY mode, the active translational fixity condition is indicated by the 
current states of the Fi s_H, Fi K_v and Fi s_z menu options. An active Fi s_s option 
represents a translational fixity in the global x-direction and so on. If any 
node in the model has a translational fixity condition, the symbol of a small 
square enclosing a cross will be assigned to the node. In fact, the FUHHTV mode is 
the default mode when the user enters into this menu page. In this mode, the 
square symbols associated with all the nodes having the active translational 
fixity condition are highlighted in red. For a node with a currently non-active 
translational fixity condition however, the square symbol attached to it is 
shown in white. It is therefore easy for the user to find out the fixity 
conditions which exist within the entire model. With an active CHECK option, 
the user can pick a node and the Fi x_s, F1 x_v and Fi H_z menu options will then 
switch to the appropriate states to reflect the current translational fixity 
condition at the node. With an active R1TACH option, the user can pick a node 
and the active translational fixity condition will then be assigned to the node. 
With an active RELIRSE option, the user can pick a node and the current 
translational fixity condition at the node will then be removed. 

In the RHSVM mode, there are various options which are available to the user. 
By activating the NEW_RHSYM option, the user will initiate the task to define a 
new plane of symmetry. For this purpose, the coordinates of three points in 

space which will define the orientation of the symmetry plane, have to be 

specified into the editbox beneath the graphics window as shown in figure 
7.10. In fact, if the above task is executed several times, the result will be a list 

of symmetry planes. When a new symmetry plane is defined, it is added to 

the end of the list. The active symmetry plane will be highlighted in red on 
the screen and on display in the editbox as shown in figure 7.10 will be 

information about the item in the list for this plane. This informationwill 
include the reference number of the item and the corresponding definition 
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data for the active symmetry plane. Any editing of this information can be 
done directly by the user within the editbox. The user can also inspect the list 
by using two further options. When the NEHT option is activated, the list is 
scrolled forwards to the next item and the information on display in the 
editbox will then switch to that corresponding to this next item. Similarly, by 
activating the LRST option, the list is scrolled backwards to the previous item. 
The user can also delete an existing symmetry plane by scrolling the list until 
the item corresponding to this plane appears in the editbox and then activates 
the DELETE option. If a node lies in a symmetry plane, the symbol of a small 
triangle will be assigned to the node. In the case of the active symmetry plane, 
the triangle symbols of the nodes lying in this plane will be highlighted in 
red. By activating the NOOLSNBP function, the user will map all the nodes given 
the restraint of the active symmetry plane, onto the plane itself. With an 
active CHECK option, the user can pick a node and the information 
corresponding to the current symmetry plane restraint at the node will then 
appear in the editbox. With an active errece option, the user can pick a node 
and the active symmetry plane restraint will then be assigned to the node. 
With an active RELERSE option, the user can pick a node and the current 
symmetry plane restraint at the node will then be removed. 

If the RETURN option is activated, the user will then move back into the 'master' 
menu page. The enc _ur and RESTORE options in figure 7.10 are not functional at 
present. 

As mentioned above, a node can be restrained by either giving it a fixity 
condition or attaching it to a plane of symmetry. However, in the case of a 
node given the restraints of both fixity and symmetry plane, the active 
restraint at the node is taken as that imposed most recently by the user. In the 
case of beam elements, in addition to translational fixities, there is the option 
of imposing rotational fixities from within the BEAM ELEMENTS menu page 
described later in section 7.21. 

7.12 Elastic properties 

All elements are given their default elastic properties when they are first 
generated either individually or within the mesh generator. The elastic 
properties are effective in resisting loads only when the elements are under 
elastic control. At the form-finding stage, fictitious elastic properties may be 
used to optimise the calculations as the critical time interval for the DR 
scheme is a function of the mass/stiffness ratio at each node in the model. In 
the case of line elements, fictitious elastic properties can also be used as a 
control for form adjustments. However, for load as well as dynamic analysis, 
the real elastic properties have to be used. The link, strut and slip cable 
elements have line element elastic properties which consist of their EA (ie. 

modulus of elasticity x cross-sectional area) values and self-weights. The 
elastic properties of membrane elements are made up of their moduli of 
elasticity and Poisson's ratios in the warp and fill directions, shear moduli 
and self-weights. The line and membrane element properties are dealt with 
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REPRINT EDIT_UIEW respectively in the LINE ELEMENT PROPs and the MEMBRANE 
BRCK_UP RESTORE PROPERTIES menu pages both of which are accessed 

' from the 'master' menu page. Figure 7.11 shows the 
LINK STRUT LINE ELEMENT PROPs menu page and figure 7.12 shows 
S_CABLE the MEMBRANE PROPERTIES menu page. Both these menu 
ELEMENT ZONE pages share the same menu and on-screen 

interaction styles. In the graphics window is a BOUNDARY FIELD 
graphical image of the model in its current state. The ALL 
REPAINT option serves to refresh the current image 

L_SSack: display on the screen. If needed, the user can access 
RESET NO_RESET the GRAPHIC DISPLAY menu page via the EDIT_UIEW option 

in order to make adjustments to the current view 
Props: setting for the on-screen image. The DUMP option is 
ATTACH CHECK used to send a graphic dump of the on-screen image 

to the laser printer. 
DELETE 

The NEW-PROP option allows the user to define a new 
LRST NEW-PROP 

elastic property set and some default values will be 
NEST EDIT-PROP 

assigned to this set. The repeated use of this option 

RETURN will result in a list of elastic property sets. When a 
new set is defined, it will be added to the end of the 

Figure 7.11 list. On display in the editbox will be information 
from the active property set in the list. This 
information will include the reference number of 

the set and the associated elastic properties. The editbox in the LINE ELEMENT PROPS 

menu page is as given below 

No EA Swt/L 
I 1310E+06 0.000E+00 

While that in the MEMBRANE PROPERTIES menu page is as follows 

No Ew Nw Ef Nf Gwf Swt/A 
1 6.700E+04 0.00 4.000E+04 0.00 1.000E+03 0.000E+00 

and all the elements with the active property set (ie. the elastic properties as 
shown in the editbox) will be highlighted in red on the screen. If the default 
elastic properties are not appropriate, the user can activate the Eoir_PSOP option 
and then directly edit the information given in the editbox. By activating the 
NEST option, the list will be scrolled forward to the next set and the 
information in this set will then be shown in the editbox. Similarly, when the 
LAST option is activated, the list will be scrolled backward to the previous set. 
The user can also delete an existing elastic property set by scrolling the list 
until this set appears in the editbox and then activates the DELETE option. 

The user can perform further operations using the CHECK and HTrecH options. 
These two options operate via the on-screen interaction mode. With either 
an active CHECK or RTTACH option, the user can subsequently enter into the on- 
screen interaction mode by clicking the right mouse button. In the LINE ELEMENT 
PROP: menu page, the user will then be prompted on the screen by either the 
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Figure 7.12 

'link pick', 'strut pick' or 'slip cable pick' pointer 
depending on which one of the corresponding LINK, 
STRUT or S_CRBLE option is currently active. In the 
MEMBRRNE PROPERTIES menu page, the user will be 

prompted on the screen by the 'membrane- pick' 
pointer. The user can in turn use the corresponding 
pointer to pick an appropriate element and the 
'picked' element will be highlighted in red. The 
subsequent operations will then depend on the 
current states of the CHECK and RrrRCH options as 
described below. 

For an active CHECK option, the current elastic 
property set of the 'picked' element will then appear 
in the editbox. For an active ATTACH option however, 
the accept/abort pointer will in turn appear. If the 
'picked' element is accepted, the active elastic 
property set will then be assigned to the element. 

Finally, when the user is ready to move back into the 
'master' menu page, the RETURN option is activated. As 

before, the menu options in figures 7.11 and 7.12 
besides those described above are not yet functional 
at the moment. 

7.13 Stress/force and elastic controls 

7.13.1 Membrane elements 

For the form-finding purpose, tensile prestresses are assigned to the 
membrane elements in the model. By adjusting these prestresses, the user 
employs stress control to achieve the desired geometry of the model. In the 
fabric, the prestressing ensures that slack or wrinkling areas do not occur and 
preloads the fabric against the possible external loads. If the correct levels of 
prestress are used, the fabric will not become slack and flap about in a wind. 
For the membrane elements, the prestresses are prescribed in the warp and 
fill directions, ie. the two principal weave directions in the fabric material. 
The specified warp and fill stresses will govern the surface curvatures of the 
model as already discussed in chapter 6. For instance, if more curvature is 
desired in the warp or fill direction, the stress level in that direction should 
then be lowered. For the load analysis however, the membrane elements 
should be under the elastic control (ie. their elastic properties become active) 
so that their stiffnesses are effective in providing resistance to the applied 
loads. 

The options for dealing with the stress and the elastic controls of the 
membrane elements are within the MEMBRnNE CONTROL menu page shown in 
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figure 7.13. This menu page is accessible from the 'master' menu page. In the 
graphics window is a graphical image of the model in its current state. The 
RE_PfINT option is used to refresh the current image display on the screen. The 
EDIT_UIEW option allows the user to manipulate the view of the image shown 
on the screen. The functions for the BACK-UP and RESTORE menu options have yet 
to be implemented. 

Figure 7.13 

With an active WARP option, the user is then able to perform specific 
operations which concern the membrane stresses in the warp direction. On 
the other hand, an active FILL option indicates that the membrane stresses in 
the fill direction are under consideration instead. The membrane elements 
on the screen are shown filled in with colours which correspond to the 
element stresses. A colour chart displayed on the right hand side of the 
graphics window as shown in figure 7.13 gives the user an idea of the stress 
levels associated with the colours of the membrane elements. 

There are two further options, ie. the CHECK and RTTHCH options which operate 
in the on-screen interaction mode. The user will enter into this mode by 
clicking the right mouse button. This is followed by a switch of the on-screen 
arrow pointer into the 'membrane pick' pointer. The user can in turn use the 
'membrane pick' pointer to pick a membrane element and the 'picked' 
membrane element will be highlighted in red. 

With an active CHECK option, the warp and fill stresses in the 'picked' 
membrane element will then appear in the editbox. If the WARP option is 
active, the warp stress shown in the editbox will be taken as the active stress. 
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For an active FILL option, the active stress will instead be the fill stress shown 
in the editbox. The user can also directly edit the value of the active stress. 
The RTTRCH option can only be used for membrane elements which are 
currently under stress control. For an active RTTRcH option, the user will be 
prompted by the accept/abort pointer after picking a membrane element. If 
the user accepts the 'picked' membrane element, the active stress will be 
assigned to the membrane element. If the active stress is a warp stress, the 
membrane warp stress will be set equal to this stress. On the other hand, if the 
active stress is a fill stress, the membrane fill stress instead will be set equal to 
this stress. For an active ELEMENT option, it is only the 'picked' membrane 
element which will be attached with the active stress. In the case of an active 
CLOTH option however, all the membrane elements within the same cloth 
panel as the 'picked' membrane element will be assigned the active stress. 
Similarly, for an active FIELD option, all the membrane elements within the 
same field as the 'picked' membrane element will be assigned the active 
stress. With an active A« option, all the membrane elements in the model 
will be set to the active stress. The colours of the membrane elements will be 
updated accordingly to account for the active stress attached to the elements. 

By activating the ILRSTIC_c option, the stress control of each membrane 
element in the model will be switched to the elastic control. Conversely, a 
switch from the elastic to the stress control of each membrane element in the 
model is initiated by activating the STRESS_c option. 

If the RETURN option is activated, the user will then move back into the 'master' 
menu page. 

7.13.2 Line elements 

Further form-finding controls are given by the force and the elastic controls of 
the line elements. The force control of a cable involves the specification of a 
tensile force to one of the link elements which constitute the cable. The 
remaining link elements in the cable are then controlled by adjusting their 
slack lengths. An increase in the specified tensile force will lead to a lower 
curvature of the cable. For a cable under elastic control however, all the link 
elements in the cable are controlled by specifying the slack length of each 
element. The force and elastic controls can also be applied to the case of a slip 
cable. For a slip cable under force control, a tensile force is given to all the 
elements in the slip cable. On the other hand, the elastic control of a slip cable 
involves the adjustment of the slack length of the entire slip cable. The force 
and elastic controls mentioned above are further tools available to the user 
for achieving the desired geometry of the model. 

The options for dealing with the force and elastic controls of the line 
elements are within the LINK CONTROL menu page shown in figure 7.14. This 
menu page is accessible from the 'master' menu page. In the graphics window 
is a graphical image of the model in its current state. The REPRINT option is 
used to refresh the current image display on the screen. The EDIT-UI(W option 
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allows the user to manipulate the view of the image shown on the screen. 
The functions for the BACKUP and RESTORE menu options have yet to be 

implemented. 

RE-PRINT EDIT-VIEW In this menu page, the line elements under 
BACKUP RESTORE consideration are the link, strut and slip cable 

elements. There are specific operations which apply 
LINK STRUT only to either the link, strut or slip cable elements at 
S_CRBLE BOUNDRRV any one time. The choice of which line elements are 

ELRSTIC_c fORCE_C 
to be operated on is decided by activating the LINK, 
STRUT or 5_CABL option accordingly. The chosen line 

LAST elements will be given a specific colour on the 
NEHT EDIT screen. For instance, if the link elements are chosen, 

they will be shown in green while the remaining 
RETURN elements will be coloured in white. On the other 

hand, the chosen strut or slip cable elements will be 
Figure 7.14 shown in the magenta colour. Furthermore, the 

label in the menu option corresponding to the 
activated option will be given the same colour as that for the chosen line 
elements on the screen. At the same time, the menu option labels for the 
other two line element options will be shown in white. Hence, it becomes 
obvious to the user which line elements are currently being operated on. 

The user can subsequently enter into the on-screen interaction mode by 
clicking the right mouse button and the arrow pointer will in turn switch 
into either the 'link pick', 'strut pick' or 'slip cable pick' pointer depending on 
which one of the corresponding LINK, STRUT or S_CABLE option is currently active. 

The user can then use the corresponding pointer to pick an appropriate line 
element. The 'picked' line element will be highlighted in red and taken as the 
active element. In addition, information about the active element will appear 
in the editbox located beneath the graphics window. If the active element is 
under the force control, the information shown will include the current 
tension and stressed length of the element. If desired, the user can directly 
edit the value of the tension shown by activating the EDIT option. 
Furthermore, an element which is under force control can be recognised by 
the yellow colour given to it. For an active element which is under elastic 
control however, the editbox information will include the current slack 
length, stressed length and tension of the element as shown below. 

ELASTIC Tension 5.9030E+02 
CONTROL L 

-current 
0.836194 

L_SLACK . 0.835817 

If desired, the user can in this case directly edit the value of the slack length 
shown by activating the EDIT option. If the slack length value is edited, the 
tension of the element shown will automatically be updated accordingly. The 
link and slip cable elements can be given either force or elastic control. On the 
other hand, the strut elements can only have elastic control. As for the 
membrane elements, all the line elements will be given elastic control during 
the load analysis of the model. 

-164- 



Furthermore, the force control of the active element can be switched to elastic 
control by activating the ELRSTIC_c option. Conversely, by activating the FoRcF-c 
option, a switch from elastic to force control of the active element will take 
place. In both cases, the information in the editbox will be updated 
accordingly to account for the control change of the active element. 

Lastly, by activating the RETURN option, the user will exit from this menu page 
and move back into the 'master' menu page. 

7.14 Boundary control 

SHOW_FLD EDIT_UIEW The menu options available within the BOUNORRY 

CONTROL menu page shown in figure 7.15 are used to 
Bdy Pairs: perform specific operations which concern the 
COUPLE UNCOUPLE boundaries in the model. This menu page is 
RCT<)PRSS VERIFY 

accessible from the 'master' menu page. On display 

Node Posn: 
in the graphics window area of the screen is a 
graphical image of the model in its current state. The 

SCREEN LISTING 
EDIT_VIEW option allows the user to manipulate the 

EQ_SPRCE KEYB_RBS 
view of the image shown in the graphics window. KEYB_PROP 

KEYB_INC The SHOW_FLD option is used to check the field 
definitions within the model. 

Bdy Prof: 
SCREEN KEYB_D1P In the model, a field is defined by its enclosing 

KEYB_ROD boundaries. If more than one field are defined, then 
KEVB_S/D one field may have a boundary which coincides with 
KEVB_Tou that of the adjacent field. For the two coinciding 

boundaries, it is allowable for the nodes which lie 
Curve_ftt: along one boundary to be different from those along 
C_SPLINE CIRCLE the other boundary. In addition, each of the two 

boundaries may consist of a series of link elements. 
LRST RBORT The two coinciding boundaries share a common KENT RCCEPT 

path over the surface of the model. It may be desired 
RETURN for the overall profile of the common path to be 

controlled predominantly by one of the two 
Figure 7.15 boundaries, ie. the active boundary. The user can 

decide which one of the two boundaries is to be 
taken as the active boundary and the other boundary 

will then become the passive boundary. This can be done using the menu 
options grouped under the Bdy Pairs: label, ie. the COUPLE, UNCOUPLE, RCTO>PASS and 

UERIFY options. 

During the analysis, the nodes along a passive boundary except the node at 
either end of the boundary will be treated as fully restrained. The residual 
forces at these nodes will be redistributed accordingly to the appropriate nodes 
which belong to the active boundary. On the other hand, the nodes along the 
active boundary will be allowed to move to their equilibrium positions. The 

nodes along the passive boundary will be reset to appropriate locations along 
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the path of the active boundary. Hence, the two boundaries will follow a 
common path which is determined predominantly by the nodes along the 
active boundary. 

The COUPLE option is used to couple together two coincident boundaries. When 
this option is activated, the user will automatically enter into the on-screen 
interaction mode and be prompted to pick the first boundary. The first 
'picked' boundary will be highlighted in red and the accept/abort pointer will 
then appear. If the first 'picked' boundary is accepted, the user will then be 
prompted to pick the second boundary. The second 'picked' boundary which 
has to coincide with the first 'picked' boundary, will also be highlighted in 
red. The accept/abort pointer will then appear. If the second 'picked' 
boundary is accepted, then the first and second 'picked' boundaries will be 
coupled together. The first 'picked' boundary will be taken as the active 
boundary while the second 'picked' boundary will become the passive 
boundary. The two 'picked' boundaries will then be redrawn in their normal 
colour, ie. the yellow colour. It is noted that when picking the first boundary, 
the software only allows the user to pick a boundary which has not been 
coupled to another boundary. By repeating the above steps, further pairs of 
coincident boundaries can be coupled together using the COUPLE option. 

Furthermore, the UNCOUPLE option allows the user to uncouple (ie. undo the 
coupling) the pairs of coincident boundaries which have been previously 
coupled together using the COUPLE option described above. When this option is 
activated, the user will automatically enter into the on-screen interaction 
mode and be prompted to pick a boundary. In fact, the software only permits 
the user to pick a boundary which has previously been coupled to another 
boundary. The 'picked' boundary will be highlighted in red and the 
accept/ abort pointer will then appear. If the 'picked' boundary is accepted, the 
coupling of this boundary to its coincident boundary will then be removed. 
These two coincident boundaries will both in turn be taken as active 
boundaries. The 'picked' boundary will then be redrawn in its normal colour, 
ie. the yellow colour. Further coupled pairs of coincident boundaries can 
similarly be uncoupled from each other using the UNCOUPLE option. 

For a coupled pair of coincident boundaries, the RCTOPRSS option enables the 
user to switch the active boundary into the passive one and vice-versa. When 
this option is activated, the user will automatically enter into the on-screen 
interaction mode and be prompted to pick a boundary. The software will only 
permit the user to pick a boundary which has previously been coupled to 
another boundary. If the 'picked' boundary is the active boundary, this 
boundary will then be switched to become the passive boundary while the 
passive boundary coupled to the 'picked' boundary will in turn become the 
active boundary. 

Under the Node Posn: label is the SCREEN option which allows the user to move a 
node along a boundary interactively on the screen. When this option is 
activated, the user will automatically enter into the on-screen interaction 
mode and be prompted to pick a boundary. In this case, the software allows 
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the user to pick any boundary in the model. The 'picked' boundary will be 
highlighted in red. If there is coupling between the 'picked' boundary and a 
second boundary, the accept/abort pointer will appear. If the 'picked' 
boundary is aborted, the second boundary will be taken as being accepted 
instead and highlighted in red. The 'picked' boundary will then be redrawn 
in its normal colour, ie. yellow. The following operations will apply to the 
'picked' boundary. The user will be prompted to pick a node lying along the 
'picked' boundary. The 'picked' node will be highlighted in the cyan colour. 
The pointer will then switch into a small cross symbol. The user will position 
the cross symbol at the new location along the boundary for the 'picked' node. 
This location will be indicated by a small cross marker coloured in cyan when 
the left mouse button is clicked. The software restricts this location to be 
somewhere along the boundary between the node before and the one after the 
'picked' node. The accept/abort pointer . will then appear. If the new location 
is accepted, the 'picked' node will then be moved to this location. 
Subsequently, the definition data of the boundary and the link elements 
along the boundary will be adjusted accordingly. If a link element connected 
to the 'picked' node is under the elastic control, the element slack length will 
reset with the element tension remaining the same. Hence, the SCREEN option 
provides an easy means of shuffling a node along a boundary to the desired 
location. 

Under the curue_fit: label are two further options, ie. the c_sPuuNE and CIRCLE 
options. By default, a boundary is displayed on the screen as a series of lines 
joining up the nodes which lie along the boundary. On the other hand, the 
user can enter into the GRAPHIC DISPLAY menu page and activates the option to 
display a boundary as a smooth curve. For such a case, a curve will be fitted 
through the nodes lying along the boundary. By default, the c_sPUUNE option is 
active and indicates that a cubic spline will be used for the curve fitting. With 
an active CIRCLE option however, a circle instead will be fitted through the 
nodes along the boundary. 

When the user is ready to exit from this menu page and move back into the 
'master' menu page, the RETURN option is activated. The menu options in 

figure 7.15 besides those described above are not functional at present. 

7.15 Analysis 

When the model is ready to be analysed, the user can then enter into the 
ANRLYSIS menu page which is accessible from the 'master' menu page. The 
ANALYSIS menu page shown in figure 7.16 is used for analysing the model 
during both the form-finding and load analysis stages. In the graphics 
window are displayed a plan and two elevations of the model in its current 
state. This display is updated at regular intervals during the analysis of the 
model. In addition, the node with the current maximum residual (out-of- 
balance) force is identified by an on-screen marker. In this way, the user can 
monitor if the analysis is going as expected and any sign of possible physical 
instability is easily detected. 
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Figure 7.16 

By activating the PAeAM option, an editbox as shown below will appear beneath 
the graphics window. In the editbox will be displayed specific information 
about the various parameters which are used to control the analysis. The 
software gives a set of default values to these parameters. If the default values 
are inappropriate, the user can edit them directly in the editbox. 

1 16 2.78E-06 1.95E-02 4.25E-01 257 
Analysis Converged 

Analysis Parameters 

Mass Alpha 1.00 
Mass Beta 0.50 
Residual Max : 0.50 
Max No Peaks 100 
Max No Steps . 5000 
Max KE Diff : 1.00E-08 
Load Case No : 0 

The alpha and beta parameters are involved in the calculations of the nodal 
masses for the model. The dynamic relaxation method already outlined in 
the earlier chapters, is used for the analysis of the model. This method is a 
conditionally stable numerical scheme. In this method, the nodal masses are 
determined from the principal direct stiffnesses of the nodes. In the software, 
the nodal masses are calculated on the basis of the stiffnesses of the nodes at 
the start of the analysis. These nodal masses are then used throughout the 
analysis. By not having the nodal mass calculations at each time step, the 
computational effort involved and thus, the solution time of the analysis, 
will be reduced. During the form-finding of the model in its initial state, gross 
deformations may take place. This will result in large changes in the 
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geometric stiffnesses of the nodes. It is neccessary to account for these possible 
deviations from the stiffnesses of the nodes at the start of the analysis. This is 

achieved by means of the alpha and beta parameters which are applied at the 

start of the analysis to increase the stiffnesses of the nodes sufficiently. If the 

appropriate values are given to the alpha and beta parameters, the resulting 
nodal masses will ensure that the analysis remains numerically stable 
throughout. At the start of the form-finding, it is normal to set larger values 
such as 2.00 and 1.00 for the alpha and beta parameters respectively. However, 

as the model approaches its equilibrium state, smaller values (and thus, larger 

time steps) can be used instead to speed up the analysis. 

There are also parameters in the editbox which give the various criteria by 

which the analysis will be terminated. In the DR method, the model 
undergoes vibrations until it converges to an equilibrium state. The 
convergence criterion is given by the maximum limit on the residual forces 
in the model. This limit is a parameter which can be set by the user in the 
editbox. The model is taken to have reached convergence when all the 
residual forces have fallen below this maximum limit and the analysis will be 
terminated. In addition, the user can set the value of the parameter for the 
maximum number of kinetic energy peaks. When the total number of kinetic 

energy peaks during the analysis exceeds this value, the analysis will also be 
terminated. Hence, during the analysis, whenever either of the two criteria 
set by the above parameters is satisfied, the analysis will be terminated. In the 
editbox, a parameter is also used to set the maximum number of time steps 
between kinetic energy peaks during the analysis. This implies that if the 
current total of time steps until the next kinetic energy peak exceeds this 
maximum, it is taken that a peak has occurred and the analysis continues 
further to find the next peak. Another parameter is used to set a limit on the 
difference in kinetic energy levels between successive time steps during the 
analysis. If the current difference becomes less than the specified limit, it is 
assumed that a kinetic energy peak has occurred and the analysis continues 
further to find the next peak. 

Furthermore, in the editbox is a parameter for the load case which will be 

applied to the model during the analysis. The default value of zero for the 

parameter indicates that no loads will be applied. In other words, there is no 
need for the user to edit this default value at the form-finding stage. For the 
load analysis however, it is presumed that a list of load cases have already 
been defined within another menu page which will be described later. Each of 
the load cases in this list will have a reference number. Hence, the 
corresponding parameter in the editbox will be given the appropriate load 

case number from the list if a load analysis is to be carried out. 

With all the parameters in the editbox having the appropriate values, the 
analysis can then proceed by activating the RNRLVSE option. Subsequently, on 
display in the editbox as shown above will be a trace of the kinetic energy 
peaks, mean and maximum residual forces during the analysis. If beam 

elements are present in the model, the trace will also include the mean and 
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maximum residual moments during the analysis. A trace of diminishing 
kinetic energy peaks indicate convergence of the analysis. 

If the user decides to terminate the analysis at any time, the INTERRUPT option 
can be activated. When the analysis terminates, a summary of information 
about the analysis can be output to the laser printer. The summary will 
include a trace of the kinetic energy peaks, mean and maximum residual 
forces during the analysis. The residual forces at the nodal restraints will also 
be included in the output. If beam elements are present in the model, the 
residual moments at the nodal restraints will be output as well. From the 
results of the analysis, the model may be found to behave unsatisfactorily 
such as the presence of excessive stresses or wrinkling areas. Further 
adjustments to the model may be required to eliminate the deficiencies 
indicated by the analysis. This will then be followed by reanalysis of the 
model. When the results from the load analysis are acceptable, the resulting 
residual forces and moments will be used in the design of support structures 
and foundations. 

The DESCRIP and LC_DEFN options in this menu page are not functional at 
present. When the user is ready to exit from this menu page and move back 
into the 'master' menu page, the RETURN option is activated. 

7.16 Loading definition 

Figure 7.17 
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From the 'master' menu page, the user can enter into the LORDING DEFINITION 

menu page shown -in figure 7.17 in which the applied loads on the model will 
be defined. In the graphics window is a graphical image of the model in its 
current state. The BE_PRINr option serves to refresh the current image display 
on the screen. The EDIT UiLW option allows the user to manipulate the view of 
the image shown on the screen. 

By activating the COEFF sEr option, the user can then proceed to define the 
loading coefficients. An editbox as shown below will appear beneath the 
graphics window. 

Coeff Set 1 
Description 
ACTIVE COEFF 1.00 

On display in the editbox will be the reference number for the current set of 
coefficients and a loading coefficient value which is taken as the active 
coefficient. The user can directly edit the value of the active coefficient. 

The CHECK and R1TRCH options both operate in the on-screen interaction mode. 
With an active CHECK or enact option, the user can then initiate this mode by 
clicking the right mouse button. The on-screen arrow pointer will in turn 
switch into the 'node pick' pointer prompting the user to pick a node on 
display in the graphics window. 

With the COEFF SET and RTrecH options both active, and when in the on-screen 
interaction mode, the user can subsequently use the 'node pick' pointer to 
pick a node. The active coefficient will be assigned to the 'picked' node. By 
continuing in a similar manner, the user can assign a loading coefficient to 
each of the nodes in the model. A positive loading coefficient assigned to a 
node will be shown on the screen as a diamond shaped symbol while a zero 
or negative loading coefficient will be represented by a rectangular symbol. 
Each symbol will also be filled in with a colour in accordance with a colour 
chart shown on the right hand side of the graphics window (see figure 7.17). 
The colour chart gives a band of colours which correspond to the entire 
magnitude range of the loading coefficients currently present in the model. 
This makes it easy to work out the distribution of the loading coefficients in 
the model. For an active ELEMENT option, it is only the 'picked' node which will 
be attached with the active coefficient. With an active nu option however, all 
the nodes in the model will be attached with the active coefficient. In the case 
of an active ZONE option, the user can define a zone on the screen so that all 
the nodes which fall within this zone will be attached with the active 
coefficient. The symbols and their colours will also change accordingly to 
account for the new loading coefficients which have been attached to the 
nodes. The FIELD option is yet to be operational. 

With both the coEFF SET and CHECK options active, and when in the on-screen 
interaction mode, the user can subsequently use the 'node pick' pointer to 
pick a node. The current loading coefficient at the 'picked' node will appear in 
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the editbox as shown above. The user can therefore in this way easily find out 
the loading coefficients which have been assigned throughout the model. 

By activating the NEST option when the CO(FF SET option is still active, the user 

can then continue as described above to define another set of loading 

coefficients which can similarly be assigned to the entire model. A list of up to 
five sets of coefficients can be defined by the user. Conversely, by activating 
the LAST option, the user can scroll the list backwards to the previous set of 
loading coefficients. If desired, the user can scroll the list to the appropriate set 
and then edit the loading coefficients in that set. The EDIT Des option is yet to be 

operational. 

The loading coefficients have to be multiplied by the corresponding loading 
intensities in order to set up a load case. The loading intensities in terms of 
the surface normal pressure, plan density and internal pressure can be 

applied. By activating the CRSE OEFN option, the user can then proceed to. set up 
the load cases. An editbox as shown below will appear beneath the graphics 
window. 

Load Normal: PRESSURE 0.00 Plan: DENSITY 60.00 Internal: PRESSURE 0.00 
Case COEFF SET 0 COEFF SET 1 

2 

On display in the editbox will be the reference number for the current load 
case, the normal pressure and its associated set of loading coefficients, the 
plan density and its associated set of loading coefficients and the internal 

pressure. A normal pressure is taken as a loading per unit area acting in a 
direction normal to the surface, an example of which is the wind pressure. A 

plan density is taken as a loading per unit plan area of the surface, an example 
of which is the snow loading. The sign convention for the loading intensities 

should be consistent with that for the associated sets of loading coefficients. 
The user can subsequently specify in the editbox as shown above the 
appropriate values for the loading intensities and the reference numbers of 
the corresponding sets of loading coefficients. For an air-supported structure, 
it is necessary to consider the load case of a uniform inflation pressure. For 
this load case, an appropriate value will be given to the internal pressure 
while the remaining loading intensities will be set to zero. 

By activating the NEHT option when the CRSE OEFN option is still active, the user 
can then continue as described above to define another load case. A list of up 
to five load cases can be defined. Conversely, by activating the LRsr option, the 
user can scroll the list backwards to the previous load case. If desired, the user 
can scroll the list to the appropriate load case and then edit the relevant 
information within that load case. 

For the load analysis, the reference number of the appropriate load case will 
be specified accordingly by the user within the ANRLVSE menu page described 
earlier. 

-172- 



By activating the RETURN option, the user will exit from this menu page and 
move back into the 'master' menu page. Besides those described above, the 
options which are not yet functional at the moment include the BRCK_uP, 
RESTORE, SUB-RRNGE, SHOW UAL and MBRRNE UP Options. 

7.17 Patterning 

When the results from the load analysis are acceptable, the user can proceed 
to the patterning stage in the design process of membrane structures. The 

CUTTING PATTERNS menu page shown in figure 7.18(a) is available to the user for 

precisely this task. The user can access this menu page from the 'master' 
menu page. 

In the CUTTING PRnERNS menu page, the user will execute operations to develop 
the cutting patterns of the model. In this case, under consideration is the 
model derived from the form-finding stage, ie. in which the membrane 
elements are under stress control. A cutting pattern is the shape taken up by 
the triangular membrane elements in a cloth panel when unfolded onto a flat 
plane. This shape will be traced and cut out from a fabric roll on the 
shopfloor. It is obviously desirable to produce a cutting pattern of minimum 
width which will optimise the use of the fabric. 

In the model, the individual cloth panels within a field are bound by a 
combination of ridge and boundary cables, and geodesic seams as shown in 
figure 7.18(a). The nodes lying along a seam line are constrained to follow a 
geodesic path over the surface during the form-finding. There are benefits in 
having geodesic seam lines in the model. Firstly, the common geodesic seam 
between two cloth panels has the advantage of being shear free. Secondly, a 
cloth panel with geodesic seams produces a cutting pattern which will 
optimise the use of the fabric material as shown in figure 5.8 (included in 

chapter 5). 

On entry into the CUTTING PATTERNS menu page, a graphical image of the model in 
its current state will be shown in the graphics window. The RE_PRINT option 
serves to refresh the current image display on the screen. If required, the user 
can also access the GRAPHIC DISPLAY menu page via the EDIT_UlEW option in order 

to manipulate the view of the image shown in the graphics window. The 
BRCK_UP and RESTORE options are not yet functional at the moment. 

Under the Unfold: label is the NEw_rlEao option. By activating this option, the 

user will then be prompted on the screen by the 'field pick' pointer. The user 
can subsequently use the 'field pick' pointer to pick a field and the boundaries 

of the 'picked' field will be highlighted in red. The accept/abort pointer will 
then appear. If the user accepts the 'picked' field, the cloth panels in the field 

will then undergo the unfolding process. The 'picked' field will be taken as 
the active field. A zoom-in view of the active field will be displayed on the 
screen. All the unfolded cloths in the active field will be shown labelled with 
their cloth numbers. The top end of each of these unfolded cloths will also be 
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indicated by the 'TOP' label as shown in figure 7.18(a). These unfolded cloths 
will be arranged so that the cloth top ends are orientated in a manner which 
is consistent with an ascending order of the cloth numbers (see figure 7.18(a)). 
An editbox as shown below will also appear beneath the graphics window. 

There is much information on display in the editbox which includes the 
values (maximum, mean and minimum) of the warp and fill stresses in the 
active field, and the stretch compensation factors for the warp and fill 
directions of the fabric material. In the editbox is also information which will 
indicate if there is any cloth in the active field that cannot be unfolded. For 
such a cloth, the problem may be due to the incorrect way in which the 
membrane elements are sequenced within the cloth. 

Under the DispI g: label are the CLOTH, RLLCLOTH and FIELD options. By activating 
the CLOTH option, the user will then be prompted on the screen by the 'cloth 
pick' pointer. The user can subsequently use the 'cloth pick' pointer to pick 
one of the unfolded cloths in the active field. The 'picked' cloth will be taken 
as the active cloth. The cutting pattern of the active cloth will in turn be 
displayed on the screen as shown below in figure 7.18(c). 

MINITEC Ltd BED Mancen FIDil 2 CLOTH i 

LLFT SIDE Y (1S7) U104T SIDC 

W GTH CFrSET NOTE LENGTH OFFSET No[E 
(Y) (X) (Y) (X) 

3.788 1.675 137 a 3.788 1.676 157   
3.186 1.164 77 77 2.030 1.666 133 
2.616 0.433 33 r 1511 

2.272 1.656 160 
2.331 0.808 223 * 1.513 1.952 164 
1.377 8.372 l83   9.737 1.643 163 
1.296 8.793 187 9.000 1.646 158 " 
0.496 1.837 188 p3 0.803 1.076 3 at 
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Figure 7.18(c) 

The cutting pattern will be presented in an orientation which gives the 
minimum width. The node positions on the cutting pattern are marked and 
labelled with their node numbers. The discontinuities in the cloth are 
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annotated by the node numbers in brackets. The coordinates of the nodes 
along the left and right sides of the -cloth are listed. These coordinates are 
relative to an origin of a local x- and y-axes system for the cloth as defined in 
figure 7.18(c). 

If the cloth has an axis of symmetry, the corresponding cutting pattern will be 
orientated as shown in figure 7.18(c). The end of the cloth which lies along 
the axis of symmetry will be positioned along the local x-axis. On the 
shopfloor, by reflecting about the axis of symmetry, the cutting pattern for the 
whole cloth will in turn be obtained. 

When the DUMP option is activated, the cutting pattern displayed on the screen 
as shown in figure 7.18(c) will be output to the laser printer. On the other 
hand, an activated PLOT option will send the cutting pattern to the plotter 
instead. The output from the laser printer or plotter can then be used on the 
shopfloor for marking out the cutting pattern on the fabric material. By 
activating the nuMP_FLO option, the cutting, pattern in the format as shown in 
figure 7.18(c) for each of the unfolded cloths in the active field will be output 
to the laser printer. When the PLOT_FLO option is activated, the cutting patterns 
for all the unfolded cloths in the active field will be sent to the plotter instead. 

Before the cutting pattern is finally ready for output to either the laser printer 
or plotter, the appropriate stretch compensation and decompensation factors 
are specified in the editbox as shown in figure 7.18(b). All these factors have 
the default value of zero which corresponds to the case of no compensation 
and decompensation of the cutting patterns. On the shopfloor, the cutting 
patterns are fabricated from the fabric roll in their stress free states. When 
these cutting patterns are assembled and then stretched out on site to achieve 
the desired surface geometry, the membrane stresses prescribed during the 
form-finding will in turn be induced into the fabric of the structure. The 
values of the stretch compensation and decompensation factors will be 
obtained from the laboratory tests on the fabric material. The stretch 
compensation factors are applied within the software to shrink the cutting 
patterns to their stress free states. In some situations such as in corner areas, it 
may be difficult to stretch the fabric fully to achieve the desired membrane 
stresses during the construction on site. In order to account for such 
situations, the decompensation factor will be applied to the appropriate 
cutting patterns. The decompensation factor is applied over a specified length 
at the top and/or bottom ends of a cloth. The compensated cutting patterns 
output from either the laser printer or plotter will be sent for fabrication on 
the shopfloor. 

Under the units: label are the DECIMAL and rriNS: 16 options. With an active 
DECIMAL option, the cutting pattern information will be given in the metric 
units which are taken as the default units. If the user requires the cutting 
pattern information to be given in the imperial units, then the rriNS: 16 option 
is activated. 
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By activating the *eu_CLOTH option, all the unfolded cloths in the active field 

will be displayed side by side on the screen as shown in figure 7.18(d). The 
discontinuities in each cloth are annotated with the offset widths. In addition, 
given at the top and bottom of each cloth are the cloth number and length of 
the cloth respectively. 
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Figure 7.18(d) 

The riEao option when activated will result in the display of the active field on 
the screen as shown in figure 7.18(a). All the unfolded cloths in the active 
field are labelled with their cloth numbers. The top end of each of the 
unfolded cloths is also indicated by the 'TOP' label. The user can subsequently 
use the CLOTH option to display on the screen the cutting pattern of one of the 
unfolded cloths in the active field. 

Both the INUERT and BE-ORDER options are grouped under the cloths: label. By 
activating the iNUERT option, the user will then be prompted on the screen by 
the 'loth pick' pointer. The user can subsequently use the 'cloth pick', pointer 
to pick one of the unfolded cloths in the active field. The 'picked' cloth will be 
highlighted in red. Further cloths can be picked until the user decides to exit 
from the on-screen interaction mode by clicking the right mouse button. This 

will then be followed by the inversion of all the 'picked' cloths such that their 
bottom ends now become the top ends and vice-versa. These new top ends 
will be marked with the 'TOP' labels. 

The BE_ORDER option when activated allows the user to change the order of the 

unfolded cloths in the active field. The user will be prompted on the screen by 
the 'cloth pick' pointer. The user can subsequently use the 'cloth pick' pointer 
to pick one of the unfolded cloths in the active field. The sequence in which 
the user picks the cloths will decide how the unfolded cloths are to be 

reordered. The cloth which is picked first will have its cloth number reset to 
1, the second 'picked' cloth will be given the cloth number 2 and so on. The 
'picked' cloths will all be highlighted in red. The cloth numbers (and thus, 
order) of the remaining cloths in the active field will be readjusted 
accordingly. When the desired order of the cloths has been achieved, the user 
can then exit from the on-screen interaction mode by clicking the right mouse 
button. 
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Under the Output: label are the P_OFFSETS and P_sut, nnv options. When the 
P_OFFSETS option is activated, a listing of the node numbers and local 

coordinates of the discontinuity nodes for all the unfolded cloths in the active 
field will be output to the laser printer. The P_suMMRRV option is not funtional 

at the moment. 

It is also noted that the options grouped under the offsets: label, ie. the NODE, 
oiscoir and REGULBR options are not functional at present. 
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Figure 7.18(e) 

When the user is ready to exit from this menu page and move back into the 
'master' menu page, the RETURN option is activated. 
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7.18 Cloth width adjustments 

Displog: 
HLL SUBSET 

RdJust: 
NODE SEAM 
SNRP_OFF SNRP_ON 

SCREEN KEY60 

ClothPoir. 
COUPLE DECOUPLE 

SHERR_OFF SHERR_ON 

Topology: 
CLOTS-)2 

DUMP 

RETURN 

Figure 7.19(a) 

Furthermore, a cloth has an allowable width which 
is limited by the physical width of the fabric roll. 
Consequently, a problem arises if a loth becomes 
too wide. The MUST option under the c_width: label in 
the CUTTING PR1TERNS menu page shown in figure 7.18(a) 
is available to the user for solving this problem 
which involves width adjustments of cloths in the 
active field. By activating the MUST option, the user 
will then enter into the ADJUST menu page for cloth 
width adjustments shown in figure 7.19(a). 
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Figure 7.19(b) 

In this menu page, all the unfolded cloths in the active field are displayed side 
by side on the screen as shown in figure 7.19(b). Each cloth is also framed by a 
box having a width that may be set equal to the physical width of the fabric 
roll. The discontinuities in each cloth are annotated with the offset widths. In 
addition, given at the top and bottom of each cloth are the cloth number and 
length of the cloth respectively. On display in the editbox located beneath the 
graphics window will be information which includes the cloth nominal 
width, and the stretch compensation and decompensation factors for the 
fabric material as shown below, ie. 

Field Cloth Nos CLOTH Compensation Stress Max Mean Min 
No Total 14 NOMINAL Warp 

-% 
0.00 Warp 719 191 0 

2 Unfolded 14 WIDTH 2.000 Fill 
_% 

0.00 Fill 485 195 54 
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The cloth nominal width sets the width of the box which frames each of the 
cloths displayed on the screen. The user can directly edit the value of the loth 
nominal width and therefore controls the width of the framing box. It is 

usual that the cloth nominal width is set equal to the physical width of the 
fabric roll with due allowance of the fabric material for the cloth seams. 
Hence, the user can find out directly from the screen display if there is any 
cloth width which exceeds the box width and therefore the width of the fabric 
roll. 

At any stage, the DUMP option can be activated to output the current display on 
the screen directly to the laser printer. 

Under the Dispiog: label are the eu and SUBSET options. When the SUBSET option is 
activated, the user will then be prompted on the screen by the 'cloth pick' 
pointer. The user can subsequently use the 'cloth pick' pointer to pick any two 
of the cloths displayed on the screen. The subset of cloths which are between 
and including the two 'picked' cloths will be highlighted in red. The 
accept/abort pointer will then appear. If the user accepts this subset of cloths, 
the screen display will then be updated to show only the cloths which belong 
to the subset as shown below in figure 7.19(c). 

I 

f. OI 4.137 4. U4 

Figure 7.19(c) 

With fewer cloths in the subset, these cloths will be shown enlarged on the 
screen which in turn is helpful when performing specific operations. By 
activating the e« option, all the cloths in the active field will again be 
displayed on the screen as shown in figure 7.19(b). 

The cloth widths should be adjusted so that they all fall eventually within 
their framing boxes. This can effectively be done by moving the nodes which 
are located at the ends of geodesic seams. These nodes are moved along the 
ridge or boundary cable in which they lie. In addition, along the cable are link 
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elements which are connected to these nodes. As a result of the node 
movements, the lengths of these link elements will change and have to be 
recalculated within the software. 

The options grouped under the rniju: t: label include the NODE, SEAM, SNAP_OFF, 
SNAP_ON, SCREEN and KEYED options. With an active NODE option, the user can then 
proceed to adjust the cloth widths. Subsequently, by activating the SCREEN 
option, the user will be then prompted on the screen by the 'node pick' 
pointer. The user can then use the 'node pick' pointer to pick one of the cloth 
nodes on the screen. The user can only pick a node which is at the end of a 
geodesic seam of a cloth. This node should also lie along a ridge or boundary 
cable but not at the end of the cable. A cloth node located at the end of a cable 
will be marked by a symbol in the form of a small square enclosing a cross. If a 
valid node is picked, the 'picked' node will be marked by a cross symbol 
highlighted in red. This is followed by moving the 'picked' node to a new 
position on the screen. The user will in turn be prompted by a pointer in the 
form of a cross symbol to mark this new position on the screen. This pointer 
will be moved to the appropriate position and by clicking the left mouse 
button, this position will then be marked by a cross symbol in the cyan colour. 
As shown below in figure 7.19(d), the accept/abort pointer will then appear. 

Figure 7.19(d) 

If the user accepts the marked position, the 'picked' node will then be moved 
to this position on the screen and new spatial coordinates given to the node. 
This will in turn affect the link elements which are connected to the 'picked' 
node. The lengths of these link elements will be recalculated so that the 
current element tensions are maintained. Clearly, the adjoining cloth in the 
active field which shares the node that has just been moved will be adjusted 
accordingly as well. The seam which is common to the two cloths affected by 
the node movement is no longer geodesic and will be displayed as a straight 
line on the screen. In this way, the user can easily identify the cloths whose 
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nodes have been moved. The user can continue to make width adjustments 
to the different cloths in the active field. To exit from the SCREEN option, the 
user will click the right mouse button when prompted to pick the next node. 

An active sNnP_orr option applies in the case of the on-screen node movement 
described above. With an active sNRP_ON option however, there are additional 
conditions which apply to the on-screen node movement. If the marked 
position to which the 'picked' node will be moved is very close to either the 
left or right side of the box which frames the cloth concerned, the marked 
position will then snap onto the corresponding side of the box. The SNAP_ON 
option is therefore useful when the user intends to move a 'picked' node up 
to exactly the left or right side of the framing box. In this way, a cloth width 
which makes full use of the fabric roll may be achieved. 

Furthermore, the KEY BD option is also available to the user for making cloth 
width adjustments. If the precise movement of a cloth node is desired, this 
option is used instead of the SCREEN option. When the KEYRD option is activated, 
the user will then be prompted on the screen by the 'node pick' pointer. The 
user can subsequently use the 'node pick' pointer to pick one of the loth 
nodes on the screen. As in the case of the SCREEN option, the user can only pick 
a node which is located at the end of a geodesic seam of a cloth. This node 
should also lie along a ridge or boundary cable but not at the end of the cable. 
If a valid node is picked, the 'picked' node will be marked by a cross symbol 
highlighted in red. This is followed by moving the 'picked' node to a new 
position on the screen. In this case unlike the SCREEN option, the node 
movement is operated through the editbox as shown below located beneath 
the graphics window. 

Cloth Node OFFSET INCREMENT (MOVE) (DEFAULT] (RETURN] 
9 13 0.917 0.100 

The information shown in the editbox includes the cloth number, node 
number, offset value and increment value. In the editbox are also the [MOVE], 
[DEFAULT] and [RETURN] command buttons. The number of the cloth which is 

shown connected to the 'picked' node on the screen will be the cloth number 
in the editbox. The absolute offset value refers to the local x coordinate of the 
'picked' node. The increment value refers to a distance in the local x-axis 
direction (ie. horizontal distance) relative to the current offset of the 'picked' 
node. A positive increment value is a distance further to the right while a 
negative value indicates a distance further to the left of the current offset of 
the 'picked' node. In other words, the increment value can be considered as a 
relative offset value. The node number in the editbox will be that of the 
'picked' node. The user can directly edit the offset and increment values 
currently shown in the editbox. If a new offset value is specified, a marker in 
the form of a cross symbol in the cyan colour will appear on the screen. This 

marker will be placed at the position which corresponds to the total offset 
value given by combining the new offset and current increment values. This 
marked position will be derived from an interpolation which involves the 
total offset value. If the marked position is to be shifted further to the left or 
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right, an appropriate increment value can be specified in the editbox. The 
marker will then be placed at the position indicated by the total offset value 
obtained from combining the new increment and current offset values. 
Hence, the user can continue to adjust the absolute and/or relative offset 
values until the marker is placed at the desired position on the screen. By 
activating the [MOVE] command button, the 'picked' node will then be moved 
to the current marked position. As a result of the node movement, specific 
related information will in turn be processed as in the case of the SCREEN 
option. The offset value in the editbox will be updated accordingly to that for 
the new position of the 'picked' node and the increment value will be reset to 
zero. On the other hand, when the [DEFAULT] command button is activated, 
there is no movement of the 'picked' node but instead default values are 
assigned to the offset and increment values in the editbox. The default 
increment value is zero while the default offset value is that for the current 
position of the 'picked' node. After moving the 'picked' node to the desired 

position, the user is then ready to operate on the next cloth node. By 
activating the [RETURN] command button, the user will exit from the editbox 
control and return to the menu control. Subsequently, the 'node pick' pointer 
will appear to prompt the user to pick the next cloth node on the screen. The 
user can then repeat the sequence of operations as described above. 
Alternatively, the user can exit altogether from the KEVUD option by clicking 
the right mouse button. 

By using the SCREEN and/or KEYBO options, the user has a highly interactive and 
convenient means of performing the task of cloth width adjustments. There 
is also continuity between this task and the other operations involved at the 
patterning stage. This task has therefore been much simplified for the user 
and results in reduced cutting pattern production time. 

In some cases however, a cloth cannot be trimmed to the required width 
purely through node adjustments. For such a cloth, the CLOTH->2 option under 
the Topology: label will be used to split the cloth into two smaller ones. It may 
be desirable when performing this exercise, to have a subset of the cloths 
concerned displayed on the screen as shown in figure 7.19(c) using the SUBSET 
option. When the CLOTH->i option is activated, the user will then be prompted 
on the screen by the 'cloth pick' pointer. The user can then use the 'cloth 

pick' pointer to pick the cloth which is to be split. The 'picked' cloth will be 
highlighted in red. The user will then be prompted to pick a point along one 
end of the 'picked' cloth. This cloth end should be one which is part of a ridge 
or boundary cable. The 'picked' point will be marked by a small cross symbol 
in the cyan colour. This point may be at the location of an existing node. On 
the other hand, if this point falls between two nodes, a new node will be 

created. The accept/abort pointer will then appear. After accepting the first 
'picked' point, the user will be prompted to pick another point along the 
opposite end of the 'picked' cloth. The second 'picked' point will similarly be 
highlighted. The two 'picked' points define the position of the new seam line 

which will divide the 'picked' cloth into two smaller ones. The accept/abort 
pointer will then appear. If the user accepts the two 'picked' points, the 
'picked' cloth will then be split. The new nodes, elements and geodesic seam 
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for the two new cloths will automatically be generated within the software. 
The 'picked' cloth together with its membrane elements will also be deleted 
automatically from the model. The user can continue to pick and split 
another cloth which is displayed on the screen. On the other hand, the user 
may decide to exit from the CLOTH-32 option by clicking the right mouse button. 

All the cloth width adjustments mentioned above will disturb the 
equilibrium of the model achieved from the previous form-finding. In order 
to reequilibriate the model, further form-finding is therefore necessary. After 
making all the necessary cloth width adjustments, the user can exit from the 
current menu page and return back to the CUTTING PRTTERNS menu page. The user 
can in turn proceed to the RNRLYSE menu page in order to perform an analysis 
of the model. During the analysis, the seam lines will take up new geodesic 
paths over the surface of the model. After the analysis, the user can return to 
the CUTTING PATTERNS menu page and then into the ADJUST menu page. If the 
unfolded cloths are still unacceptable, the whole process of cloth width 
adjustments followed by form-finding will be repeated until satisfactory 
results are achieved. 

Furthermore, the ADJUST menu page provides another useful tool of allowing 
one actual cloth panel to be modelled as two cloths in the numerical model. 
Each cloth comprises of a sequence of triangular membrane elements along 
the length of the cloth. In addition, the length of each cloth is orientated in 
the warp direction of the fabric material. In areas of high surface curvature, it 
may not be possible to accurately represent the local curvature in the fill 
direction with just an element across the width of a cloth. For such a 
situation, using two cloths instead of one will obviously give a better 
modelling of the local fill curvature. This results from the fact that the local 
surface geometry will be represented by an increased number of node 
coordinates. On the shopfloor however, these two cloths can be combined 
together to produce a single panel to be fabricated from the fabric roll. In this 
way, economic use of the fabric roll can be achieved. For the above purpose, 
options have been implemented into this menu page in order to provide a 
fully interactive means of doing the job. 

Under the cIothPetr. label is a group of options which include the COUPLE, 
DECOUPLE, SHERR_OFF and SHERR_ON options. Firstly, the COUPLE option is used to select 
any two adjoining cloths to be coupled together. When this option is 
activated, the user will then be prompted on the screen by the 'cloth pick' 
pointer. The user can subsequently use the 'cloth pick' pointer to pick a cloth 
and the 'picked' cloth will be highlighted in red. The user will then be 
prompted to pick a second cloth which has to be adjacent (ie. either to the left 
or right) to the first 'picked' cloth. The second 'picked' cloth will again be 
highlighted in red. The accept/abort pointer will then appear. If the user 
accepts the pair of 'picked' cloths, these two cloths will then be grouped as a 
coupled pair within the software. A line will be drawn linking the cloth 
numbers displayed above the two coupled cloths as shown in figure 7.19(c) to 
denote the coupling between the two cloths. A cloth pair number will also be 
assigned to the coupled pair of cloths. The user can subsequently proceed to 
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pick and couple together another pair of adjoining cloths. In fact, the software 
will not allow the user to pick a cloth which is already part of a coupled cloth 
pair. On the other hand, the user may decide to exit from the on-screen 
interaction mode and therefore operation of the COUPLE option by clicking the 
right mouse button. 

If a cloth in a coupled pair is split into two smaller ones using the CLOTH-)2 
option described above, the cloth coupling information will be adjusted 
accordingly within the software, ie. one of the two split cloths will remain 
coupled to the other cloth of the coupled pair. 

Later, if desired, any pair of adjoining cloths which have been coupled 
together using the COUPLE option can also be decoupled through the DECOUPLE 
option. A cloth which is not coupled to any other cloth is taken as an 
individual cloth. When the DECOUPLE option is activated, the user will then be 
prompted on the screen by the 'cloth pick' pointer. The software will only 
allow the user to pick a cloth which has been coupled to another cloth. The 
user can subsequently use the 'cloth pick' pointer to pick a cloth. The 
accept/abort pointer will appear when a valid cloth is picked. If the user 
accepts the pair of coupled cloths, this pair of cloths will then be decoupled 
from each other within the software. The line linking the cloth numbers 
displayed above the pair of cloths will also be removed to denote the loss of 
coupling between the two cloths. The user can proceed to pick and decouple 
another pair of coupled cloths. On the other hand, the user may decide to exit 
from the on-screen interaction mode and therefore operation of the DECOUPLE 
option by clicking the right mouse button. 

Furthermore, the coupled cloth pairs which have been defined in the active 
field as described above can also be operated on by the SHERR_AN and SHERR_OFF 
options. When the SHERR_oN option is activated, the two adjoining cloths in 
each coupled cloth pair will then be combined or sheared together to produce 
a single loth panel. During the shearing process, each of the two adjoining 
cloths will be sheared across the cloth width to a common straight line, ie. the 
line which joins the nodes at the two ends of the geodesic seam common to 
the two coupled cloths. This line will be aligned along the local y-axis 
direction through rotations of the two cloths before they are being sheared 
together. It is assumed that the flexibility of the fabric material can 
accomodate the in-plane shear distortions caused by shearing two cloths 
together. Each sheared cloth will again be shown in an orientation which 
gives the minimum width. Furthermore, the SHERR_ON option has no effect on 
the decoupled cloths in the active field. On the other hand, by activating the 
SHERR_OFF option, each sheared cloth will then be converted back into the two 
component cloths which are coupled to each other. All these component and 
individual cloths in the active field will be displayed on the screen as shown 
in figure 7.19(b) which represents the case of an active SHERR_oFF option. Figure 
7.19(e) shows the case when the sHERR_OFF option is active. 
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Figure 7.19(e) 

By activating the RETURN option, the user will then move back into the cullING 
PRTrERNS menu page shown in figure 7.18(a). The SHERR_ON and SHERR_OFF Options 

are also available under the uothPaIr. label in the curnNG PATTERNS menu page. 
These two options determine how the cloths will be displayed on the screen. 
With an active SHERR_ON option, each pair of coupled cloths will be shown on 
the screen as a single cloth panel (which is derived from shearing together the 
two coupled cloths). On the other hand, the two adjoining cloths in each 
coupled cloth pair will be shown on the screen as separated from each other 
when the SHERR_OFF option is active. The non-coupled cloths will always be 
displayed as separate cloths regardless of whether the SHEAR-ON or SHERR-OFIF 

option is currently active. Figure 7.18(a) shows the cloths in the active field 
when the sHERR_OFF option is active while figure 7.18(e) shows the case for an 
active SHERR_ON option in which the sheared cloths are each marked by a 
dashed line dividing the cloth. In this way, it becomes immediately obvious 
to the user which are the sheared cloths in the active field. 

7.19 Structure visualisation 

Tension structures often present complex surface curvatures which are 
difficult to comprehend without the help of a physical model. An excellent 
alternative is provided in the software by the use of high resolution computer 
graphics. An advanced structure visualisation module has been set up within 
the suRFecLM menu page shown in figure 7.20(a). This menu page is accessible 
from the GRRPeic UISPLHY menu page already described earlier. The user can 
enter into the CRRPHIC oisPinV menu page from the 'master' menu page as well 
as a number of other menu pages. The visualisation module fully exploits the 
SRX graphics coprocessors which have been incorporated into the 
workstation. These coprocessors provide the hardware implementation of 
hidden surface removal, smooth surface shading, multiple lighting sources, 
full surface texture and specular reflection modelling. The surface shading 
based upon the Gouraud shading model is used, and this gives smooth 
shading when illuminated by a lighting source. The description of complex 
surfaces is aided with the support of non-uniform rational spline surfaces. As 
a result, the surface shaded computer images can be generated at high speed, 
and therefore enabling the module to be highly responsive to the user. The 
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module provides an effective and fully interactive interface for the user to 
exploit the power offered by the hardware. 

Figure 7.20(a) 

In this menu page, the generation of images on display in the graphics 
window is based on the idea of a view as seen through a camera and thus, 
assumes an observer pointing the camera at an object. The active camera 
point refers to the current position of the camera (ie. observer) while the 
active sight point is the current position of a point on the object. A line can be 
drawn from the active camera point to the active sight point and this line is 
the sight line of the observer. Consequently, the observed view represented in 
the image display can be controlled by manipulating the active camera and 
sight points as will be described below. 

An active COLOUR option is the default setting in the SURFACE_M menu page. This 
implies the display of images in colour on the screen. In the graphics 
coprocessors are 32 planes of memory allocated for the colour display, 24 of 
which are available for pixel colour definition. Within the software, this 
memory space is divided into a double buffer zone with 12 planes of memory 
in each buffer. While one buffer is being used for the current image display 
on the screen, the following image will be generated in the second buffer. 
When the image generation in the second buffer is complete, there will be a 
buffer switching to display the image on the screen. The first buffer will in 
turn be used to generate the following image. In this way, successive screen 
redraws will be continuous and flicker free as a result of using double 
buffering. In addition, a single buffer of 12 planes of memory enables over 16 
million colours to be achieved simultaneously on a 1280 x 1024 pixel 
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resolution screen. In other words, highly realistic computer images can be 

produced. Furthermore, colour computer images in even more enhanced 
definition will be generated when the ENHRNCED option is active as well. In this 

case, all the 24 memory planes will be used to generate the image and the 

graphic processing speed will therefore be slowed down. It is customary to use 
this option only when the user is ready to photograph the current view of the 
screen image. On the other hand, an active MCHROME option is used to switch 
off the colours, and the computer images will then be displayed in black and 
white as well as the very fine shades of grey in between. 

When the SP IN option is activated, the screen image will show the model 
going through a spinning motion. The user has to wait for the completion of 
the spinning motion before any other menu option can be used. 

Under the lens: label are the somm DFLT, ZOOM OUT and zoom IN options which allow 
the user to select a view as seen through a camera with varying lens sizes 
such as 28mm, 35mm, 50mm and so on. A list of these lens sizes are made 
available within the software. In this way, the degree of prespective in the 
image shown on the screen can be adjusted accordingly. The zoom our option 
when activated will change the current lens size to the next larger size in the 
list, and an image smaller than before will then be produced. On the other 
hand, by activating the zoom IN option, the lens size will be changed to the next 
smaller size in the list, and an image larger than before will in turn be 
achieved. If the somm ORT option is activated, the current lens size will be reset 
to the 50mm value and the corresponding image will then be shown on the 
screen. 

Under the motion: label are the FINE, MEDIUM, COARSE and EDIT options. These 

options are used to define the size of the incremental step when moving 
either the camera or sight point. An active FINE option indicates that default 

values for the fine incremental steps will be used. There are separate values 
for the translational and rotational motions. The motion of either the camera 
or sight point will then be incremented in steps of the corresponding value. 
On the other hand, an active MEDIUM or COARSE option will in turn mean that 
default values for the medium or coarse incremental steps of the 
translational and rotational motions will be used. In addition, if the default 

values are inappropriate, these values can be changed by using the EDIT option. 
When this option is activated, an editbox as shown below will then appear 
beneath the graphics window. 

FINE MEDIUM COARSE 

motion TRANSLATION 0.5 1S 3.5 [DEFAULT) 

increments ROTATION 0.5 2.0 5.0 

Now, the values for the fine, medium and coarse incremental steps shown in 
the editbox can be edited directly. The new values will in turn be used for the 
subsequent motions of either the camera or sight point. 

Under the camera: label are a group of options which include the FULL UIEW, IN, 
OUT, ROT "UE, ROT -UE, ORBIT "UE and ORBIT -UE options. These camera options allow 
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the user to manipulate the view of the screen image through positional 
adjustments of the camera point. 

By activating the FULL uiEw option, the camera point will be positioned such 
that a full view of the entire image is displayed on the screen. This position 
will be computed within the module using certain default parameters. 

When the IN option is activated, the camera point will be moved towards the 
sight point in incremental distances with each click of the left mouse button, 

and results in an increasing larger view of the image. In addition, if the 
button remains held down, the camera point will be moved continuously 
towards the sight point. Conversely, an activated OUT option results in the 
translational motion of the camera point in incremental distances further 
away from the sight point. 

By activating the ROT +uE option, the camera point will be rotated by 
incremental angles about the active sight point. This rotational motion will 
be in a horizontal sense (ie. in the global x-y plane) and the clockwise 
direction. Conversely, the nor -uE option is activated to produce the rotational 
motion in the anti-clockwise direction. 

The ORBIT +VE option when activated will result in the rotational motion of the 
camera point by incremental angles about the active sight point in a vertical 
sense (ie. in a plane normal to the global x-y plane) and the clockwise 
direction. Conversely, the ORBIT -VE option is activated to produce the 
rotational motion in the anti-clockwise direction. 

The options grouped under the sight pt: label allow the user to move the sight 
point instead of the camera point. Subsequently, the image corresponding to 
the view for the new position of the sight point will be displayed on the 
screen. By activating the CENTRE option, the sight point will be positioned at the 
centre of the entire model. When the NEAR option is activated, the sight point 
will be moved in incremental distances closer to the camera point. The 

reverse is true for an activated FAA option, ie. the sight point will instead be 

moved further away from the camera point. 

Furthermore, if a view given by placing the camera and sight points at specific 
positions is desired, the user can specify directly in the editbox as shown in 
figure 7.20(a) the global coordinates for these two positions. The software 
adopts a right-handed cartesian coordinate system. The user can also edit the 

value of the distance from the camera point to the sight point. In addition, a 
view can also be selected by specifying the values of the horizontal and 
vertical angles in the editbox. The horizontal angle is an angle in the global 
x-y plane and is positive when measured in the anti-clockwise sense. The 

vertical angle is an angle in a plane normal to the x-y plane and is positive 
for an upward inclination. These angles will define the direction of the sight 
line from the camera point to the sight point. In the editbox is also a value for 

the lens size currently in use. 
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Under the walk: label are a group of options which allow a perceived view of 
the model on the basis of an oberver walking about within the model. This 

view will be depicted in the image shown on the screen. The z coordinate of 
the camera point can be set to about the height of the observer. By activating 
the FORWARD option, the camera point will be moved in incremental distances 
towards the sight point. The z coordinate of the camera point will however be 
kept constant in order to simulate the situation of the observer walking 
forward. Conversely, the case of the observer walking backward is achieved by 

activating the BACKWARD option. 

The TURN_LT option when activated corresponds to the situation of an observer 
turning his/her head to the left. In this case, the camera point will. be rotated 
by incremental angles about the current position of the sight point. This 
rotational motion will be in a horizontal sense and in the anti-clockwise 
direction. For the case of an observer turning his/her head to the right, the 
TURN_RT option is activated instead. 

By activating the STEP_UP option, the z coordinate of the camera point is 
incremented in positive steps as in the case of an observer moving up a 
vertical height. On the other hand, the case of an observer descending a 
vertical height is simulated by activating the STEP-DOWN option. 

By activating the STEP_IT option, the camera point will be moved in 
incremental distances to the left of and perpendicular to the sight line from 
the camera point to the sight point. The z coordinate of the camera point will 
be kept constant during the motion. Conversely, an activated STEP_fT option 
will produce a motion of the camera point to the right instead. 

The LOOKUP option when activated corresponds to the situation of an observer 
looking up. In this case, the camera point will be rotated by incremental 

angles about the current position of the sight point. This rotational motion 
will be in a vertical sense and in the clockwise direction. On the other hand, 
for the case of an observer looking down, the LOOK_DOWN option is activated 
instead. 

Consequently, these options offer an economic, convenient and effective 
means of obtaining a general impression of how the structure will look when 
actually built. This may be considered as a form of the so-called 'virtual 
reality'. By using these options, it is possible to simulate the situation of an 
observer walking through the model and a view inside the model can thus be 

perceived. With a physical model however, it may be difficult or often 
impossible to obtain an internal viewing of the model. In other words, the 
user can explore both the inside and outside of the entire model allowing for 

all the possible views of an observer. Hence, an overall assessment of the 
model will therefore be made much easier. If the model has any 
unsatisfactory features, they can be quickly identified and the appropriate 
actions taken. 
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By activating the H_SECTION option, a section will be made across the centre of 
the model. This sectional view can provide useful hints about the curvature 
variations over the surface and perhaps the height clearances at various 
locations of the model. In addition, the FORWARD and BACKWRRD options will in 
turn allow the user to shift this sectional plane in incremental distances in 
the forward and backward directions respectively. When no longer required, 
the sectional view can be switched off by activating the oFr option. 

Under the image: label are a group of options which provide the user with a 
few controls for the image of the analysis model. By activating one of these 
options, the corresponding editbox will appear beneath the graphics window, 
and the operational control will pass from the menu to the editbox. 
Subsequently, the 'return' button in the editbox when activated will allow the 
operational control to be passed from the editbox back to the menu. 

The sEfM option is used for controlling the seam line display on the screen 
and the editbox which applies in the case of an activated SEIM option is given 
in figure 7.20(b). By default, the seam lines over the surface of the analysis 
model will be shown as solid black lines. The seam line display for the top 
and underside of the membrane are controlled separately. If the arrow pointer 
is positioned over the 'ON' label for the top side seam line display followed by 
a click of the left mouse button, the label will then switch to 'OFF'. The seam 
lines for the top side of the membrane will then not be shown. The display 
switch can be toggled between the 'ON' and 'OFF' states, and the seam line 
display will in turn be switched on and off accordingly. In addition, the 'LINE' 
label can be switched to 'STRIP' and the seam lines will then be displayed as 
strips over the surface. The default value for the strip width can be changed if 
desired. In this case, the colour for the seam strip display will be specified in 
terms of an intensity proportion of the membrane colour. The above controls 
provide a versatile means of adjusting the seam line display to achieve the 
desired effect. 

The LINK option is used to manipulate the on-screen display of the link 
elements in the analysis model and the editbox which applies in the case of 
an activated LINK option is given in figure 7.20(b). By default, the link elements 
in the model will be shown as solid black lines. If desired, the default colour 
of the link elements can be changed by specifying the appropriate hue, 
saturation and luminosity values in the editbox. The 'ALL' label which is the 
default indicates that all the link elements are displayed on the screen. The 
'ALL' label can be switched to 'FREE' in which case only those link elements 
not lying within the membrane are displayed. 

The STRUT option operates in a similar manner to the LINK option but is used for 
the display of strut elements in the model which will be shown as solid black 
lines by default. The editbox which applies in the case of an activated STRUT 
option is given in figure 7.20(b). The 'LINE' label can be switched to 'TUBE' and 
the strut elements will then be displayed as surface shaded tubes with pointed 
ends. Each tube will be given a diameter which is decided within the software. 
The strut display can be toggled between the 'LINE' and 'TUBE' states. The 
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default colour for the line or tube display of strut elements can be changed if 
desired, ie. by specifying the appropriate hue, saturation and luminosity 

values. A further control is the material modelling in the tube display of strut 
elements. The software allows a list of materials such as aluminium, steel, 
plastic and rubber to be modelled. This list can be scrolled until the 

appropriate material label appears in the editbox. The scrolling is initiated by 

activating the material label. For each material is an associated surface texture 

which is modelled in the software on the basis of the specular reflection of 
light. For instance, a smooth surface texture is associated with the plastic 
material. The smooth surface texture is modelled by a specular reflection 
coefficient which will result in much light being reflected from the surface 
and therefore producing a shiny appearance. On the other hand, the rubber 
material has a dull appearance due to the reduced amount of light being 

reflected. 

The MBRRNE option provides the user with the controls for the on-screen 
display of the membrane elements in the model and the editbox which 
applies in the case of an activated MRRfNE option is given in figure 7.20(b). The 
default colour of the membrane elements will be described by the hue, 
saturation and luminosity values in the editbox, and these values can be 

changed if desired. The colours given to the top and bottom sides of the 
membrane are defined separately. In addition, values can be specified for the 
surface texture and transparency of the membrane. Hence, a fabric material 
such as a translucent foil can be simulated by precribing an appropriate 
transparency level. 

The BRCKGD option is used to control the background colour of the graphics 
window and the editbox which applies in the case of an activated encco 
option is given in figure 7.20(b). The default background colour of the 

graphics window will be described by the hue, saturation and luminosity 

values in the editbox, and these values can be changed if desired. 

The TEXT option provides the means to add annotation texts to the screen 
display and the editbox which applies in the case of an activated TENT option is 

given in figure 7.20(b). The user is allowed to specify up to three lines of 
annotation texts into the editbox. The size, orientation, colour and position of 
each line of text can also be specified. 

When the user is ready to exit from this menu page and move back into the 
cRnPeuc DISPLAY menu page shown in figure 7.5, the RETURN option is activated. 

7.20 Further visualisation options 

Furthermore, in the suRFecLM menu page shown in figure 7.20(a) is the 
uis_MOOEL option whose purpose is to implement further modelling 
primitives. This option when activated brings the user into the uIS_MODEL 
menu page shown in figure 7.21(a). A comprehensive library of modelling 
primitives are available to the user. These primitives include the general 
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HIDE-MENU brick elements, ground planes, walls, floors, straight 
or curved circular tubes, straight or curved 

lighting: DEFAULT 
RMBIENT MODELLING 
DIRECTION POSITION 

rectangular sections, I-beams of varying cross- 
sections and perforated sheets. These primitives 
provide the user with the building blocks from 
which objects of most shapes and sizes can be 

READýILE 
constructed. In fact, even objects of rather complex 

SOLID WIREFRAME geometries can be built using these primitives as 
shown in figures 7.21(b), 7.21(c) and 7.21(d). It is also 

surfaces: possible to model an object down to a high degree of 
CORRSE FINE detail. In this way, the existing and/or proposed 

features which surround the analysis model can be 
display: simulated in the computer graphics. This is of 
STRUCTURE UIS-MODEL particular significance to an architect in order to 

BOTH make a reasonable assessment of how successful the 
analysis model will integrate with the surrounding 

limits: features. Although a physical model can also be used STRUCTURE UISýIODEL to represent the analysis model as well as the 
ALL surrounding features, there are a few benefits in 

RETURN using the structure visualisation module and hence, 
making it the preferred choice. Firstly, it is easy to 

Figure 7.21(a) add and delete the modelling primitives, and to 
study the effects of colours, surface textures and 
lighting conditions. In addition, the 'walk through' 

facility mentioned above is useful for modelling for instance, the situation of 
a shopper walking about in a shopping complex. 

In this case, the user interface is based upon the setting up of a datafile. The 
software has been structured to accept a list of commands which will be 
entered into a datafile. Figure 7.21(e) shows an example of such a datafile. 
These commands serve to instruct the software on what input data to expect, 
and the actions to take and/or transformations to apply to the input data. The 
commands are simply code words, and a manual has been prepared which 
lists the available commands, their associated functions, the required input 
data and the format in which they should be specified. The user can refer to 
this manual for the details about the list of available commands. In the 
datafile should be a list of nodal data, ie. the node number and global 
coordinates for each node in the list. The modelling primitives will then be 
defined in terms of these node numbers. For instance, a general brick element 
is defined by giving the node numbers at each of the 8 vertices of the element. 
In addition, the required data for a curved tube include the node numbers of 
the three nodes which will define the plane of the tube in space and the tube 
diameter. Of the three required node numbers, two node numbers are those 
at the two ends of the tube. In fact, the three nodes will lie along the centre 
line of the tube. 

The general brick elements can degenerate by node coalescing to some useful 
shapes such as the triangular blocks used to simulate pitched roofs. The brick 
elements can otherwise easily model buildings of various shapes and sizes, 
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Figures 7.21(b) 

Figures 7.21(c) 
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Figures 7.21(d) 

and even blocks with distorted surfaces. The ground plane can be used to 
represent various ground surfaces such as a field, road surface, water surface 
and so on. The perforated sheet is useful for modelling a wall with window 
openings. A wide range of primitives are available, and this adds flexibility 
and power to the structure visualisation module. These modelling primitives 
have been used to produce highly realistic and sophisticated images shown in 
figures 7.21(b), 7.21(c) and 7.21(d). 

When the appropriate colour and surface texture are given to a modelling 
primitive, greater realism will be added to the image. Another useful 
description is the transprency level in varying degrees (from completely 
opaque to completely transparent) which can be assigned to the membrane 
elements and planar sheets in order to simulate fabrics such as translucent 
foils and glass windows respectively. Consequently, it is possible to study the 
impact of daylight penetrating into the structure through these materials. The 
transparency parameter will also be handy in modelling items such as water. 

Besides having to enter the data directly into the datafile, the software also 
provides a data generation facility. This is achieved through the use of 
additional commands which will involve the simple combinations of 
translations, rotations about any-node and reflections of modelling primitives 
about a defined plane as shown in figure 7.21(e). In many instances, a simple 
basic primitive will be set up and then by applying repeat transformation 
commands, reasonably complex shapes can be built up. The elements in the 
analysis model can similarly be duplicated for visualisation purposes without 
requiring extra information from the analysis section. The data generation 
facility can help to reduce considerably the amount of data which has to be 
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DATUM 1.00 42 0.0 2.0 3.0 
WIRE_COLOUR 1.0 1.0 1.0 BRICK 3 
COLOUR 6 123300001132 12 
1 6.000. 000'. 70 567800001 142 12 
2 0.50 1. 00 1.00 9 10 11 12 13 14 15 16 1 12212 
3 0.83 1. 0,0 1.00 FLOOR 1 
4 0.17 1. 00 1.00 17 18 19 20 0.30 5121 2 
5 0.50 0. 00 0.20 WALL 1 
6 0.00 0. 00 0.90 21 00 22 0.50 6112 
TEXTURE 2 SHEET 1 
1 15 0.50 0.50 1.00 0 23 24 25 26 321212 
2 25 0.50 0.50 1.00' 0 0.50 0.50 1.50 1.50 51 
NO DE-42 LINE I 
1 0.0 0.0 5.0 1 40 33123 
2" 4.5 0.0 5.0 ROUND TUBE 2 
3 5.5 5.0 6.0 _ 17 21-0.5 0.5.3 2221 
4 0.0 4.5 5.0 2 17 0.5 0.5 3212 
5 4.5 0.0 3.5 RECT TUBE 3 
6 7.0 0.0 3.5 _ 3 16-0.3 0.3 20.0 321 2 
7 7.0 5.0 3.5 35 36 0.5 0.5 0.0 321 2 
8 4.5 5.0 3.5 38 39 0.5 0.5 0.0 321 2 
9 9.0 9.0 4.0 GROUND PLANE 1 
10 9.0 7.5 4.0 324 23 24 25 26 5 27 28 29 30 31 12 11 11.0 7.5 4.0 ROUND ARCH 2 
12 11.0 9.0 4.0 32 33-34 1.0 1113 
13 9.0 9.0 2.0 36 37 38 0.5 32223 
14 9.0 7.5 2.0 RECT ARCH 1 
15 11.0 7.5 2.0 _ 36 37 38 0.50 0.50 321 1 
16 11.0 9.0 2.0 ? NODE BEAM 1 
17 -2.0 12.0 0.0 _ 135.0 0.6 0.8 4121 2 
18 -2.0 -2.0 0.0 4 NODE BEAM 1 
19 12.0 -2.0 0.0 _ _ 56780.50 32223 
20 12.0 12.0 0.0 STRUCTURE 224 
21 -3.0 11.0 10.0 REPEAT 1 
22 12.0 12.0 9.0 TRANS 0.50 0.75 -1.20 23 -1.0 11.0 1.0 ROT 40 -5.0 5.0 20.0 
24 -1.0 -4.0 1.0 REFL 41 42 0.0 
25 10.0 -4.0 1.0 END REPEAT 
26 10.0 11.0 1.0 _ REPEAT 2 
27 0.0 5.0 0.5 TRANS 0.0 0.0 0.5 
28 -0.5 3.0 1.0 ROT 1 10.0 0.0 0.0 
29 6.0 1.0 0.5 TRANS 0.0 0.0 0.5 
30 8.0 3.0 1.0 ROT 1 5.0 0.0 0.0 
31 7.0 4.0 1.0 TRANS 0.0 0.0 0.5 
32 2.0 6.0 5.0 ROT 1 0.0 0.0 5.0 
33 4.0 6.0 15.0 REFL 41 42 0.0 
34 10.0 6.0 5.0 END REPEAT 
35 0.0 5.0 1.0 _ REPEAT 3 
36 0.0 5.0 5.0 ROT 1 30.0 0.0 0.0 
37 5.0 5.0 10.0 END REPEAT 
38 10.0 5.0 5.0 _ REPEAT 4 
39 10.0 5.0 1.0 ROT 41 30.0 0.0 0.0 
40 5.0 5.0 5.0 - END_REPEAT 
41 0.0 0.0 0.0 END 

Figure 7.21(e) 
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entered into the datafile. This is useful especially in the -case of a datafile for 
highly complex images as shown in figures 7.21(b), 7.21(c) and 7.21(d). 

The datafile of commands and input data will be created using the text editor 
of the Unix operating system. In addition, the datafile must be placed in the 
relevant project directory within the operating system. 

The REAO_FILE option when activated will cause an editbox as shown below to 
appear beneath the graphics window. 

input data file ? 
??? 

The user will be prompted to enter the name of a datafile in the editbox. The 
software will know to go to the relevant directory, and open and read the 
datafile with the name specified by the user in the editbox. The commands 
and data in the datafile will subsequently be used to set up the modelling 
primitives. A certain amount of computational effort will be required to 
generate the information needed to produce the image shown on the screen. 

If desired, the modelling primitives can also be shown in a wire-frame 
outline by activating the WIRE_FRRME option. The colour for the wire-frame 
outline will be specified in the datafile shown in figure 7.21(e). 

Under the lighting: label are a group of options which provide the user with a 
few controls for the lighting conditions in the screen display. These options 
enable the modelling of different types of lighting conditions such as the 
ambient, parallel and point lighting. By activating one of these options, the 
corresponding editbox will appear beneath the graphics window, and the 
operational control will pass from the menu to the editbox. Subsequently, the 
'return' button in the editbox when activated will allow the operational 
control to be passed from the editbox back to the menu. 

The ambient lighting corresponds to the case of light shining onto an object 
from all directions. Hence, the ambient lighting will be the same at any 
location in the model. The AMBIENT option provides the user with the means of 
controlling the ambient lighting and the editbox which applies in the case of 
an activated AMBIENT option is given in figure 7.21(f). 

By toggling the lighting switch label between the 'ON' and 'OFF' states, the 
ambient lighting will accordingly be switched on and off. For the default case, 
the ambient lighting will be switched on with a default value given to the 
light intensity. This default value can be changed to that which will give the 
ambient lighting as desired. 

Parallel lighting corresponds to the case of light in parallel rays being emitted 
from a source. A far away light source such as the sun produces parallel 
lighting. Both the MODELLING and DIRECTION options are meant for the task of 
controlling parallel lighting. The editbox which applies in the case of either 
an activated MODELLING or DIRECTION option is given in figure 7.21(f). 
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For either option, the-lighting switch label can be toggled between the 'ON' 
and 'OFF' states with the parallel lighting in turn being switched on and off 
accordingly-with a default value given to the light intensity. The direction of 
the light rays is determined by the two angles in degrees which are specified 
in the editbox, and this direction is from the source outwards. This direction 
is taken as the light direction. These two angles consist of a horizontal angle 
in the x-y plane and a vertical angle in a plane normal to the x-y plane. A 
positive vertical angle measures an upward inclination from the x-y plane 
while a negative value indicates a downward direction from the x-y plane. 

The sight line from the camera point to the sight point has a component in 
the x-y plane. Let this component of the sight line be represented by the 
vector a. For the MODELLING option, the horizontal angle is measured relative to 
this vector a. A positive horizontal angle denotes a light direction orientated 
to the right of the vector a while a negative value indicates a light direction 
orientated to the left. Hence, the case of a miner's lamp (ie. lamp fixed above a 
miner's head) can be simulated by setting a zero value for the horizontal 
angle in the editbox. On the other hand, for the IHRECTION option, the 
horizontal angle is measured relative to the global x-axis. A positive 
horizontal angle is measured in the anti-clockwise sense while a negative 
value denotes an angle in the clockwise sense. 

The DIRECTION option allows the setting up of two light sources of parallel 
lighting. By activating the 'next' button in the editbox as shown above, the list 

will be scrolled forward to the next light source. The information related to 
this light source will then be shown in the editbox. This light source can in 
turn be switched on or off. Conversely, the 'last' button when activated will 
scroll the list backward to the previous light source. 

Next, the POSITION option deals with the point lighting condition which 
requires the use of point light sources, and these sources can be positioned 
anywhere in the model. The editbox which applies in the case of an activated 
POSITION option is given in figure 7.21(f). 

A list of up to five point sources can be set up. The 'next' and 'last' buttons 

are used to scroll the list forward and backward until the information related 
to the appropriate point light source appears in the editbox. Subsequently, by 
toggling the switch label between the 'ON' and 'OFF' states, the light source 
will be switched on and off accordingly. The position of the light source has to 
be specified by giving its global coordinates in the editbox. The direction of the 
light will be determined by two specified angles in degrees, ie. the horizontal 

and vertical angles as for the DIRECTION option. This direction will be taken as 
from the source outwards. The colour of the light will be described by the hue, 
saturation and luminosity values. The intensity value of the light has to be 

specified as well. 

A cone can also be defined around a point light source. The cone effect will be 

switched on and off accordingly by toggling the cone label between the 'ON' 

and 'OFF' states. If the cone label is in the 'ON' state, the included angle of the 
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cone has to be specified in the editbox. This angle will be centred on* the 
direction of the light defined above. The light from the source will be cut off 
from the areas which fall outside the cone. 

Furthermore, the point light source also permits the inclusion of the spot and 
attenuated lighting effects into the cone of light defined above. By toggling the 
spot label between the 'ON' and 'OFF' states, the spot lighting effect will be 
switched on and off accordingly. If the spot label is in the 'ON' state, a value 
for the degree or level of spot lighting has to be specified in the editbox. In the 
case of a higher value, the spot light will concentrate over a smaller area with 
an increased level of intensity. For a lower value however, the spot light will 
shine over a larger area with a reduced intensity level. For an area where the 
spot light is focussed on, the light intensity will decrease from the centre of 
the area outwards. 

The attenuated lighting effect will be switched on and off accordingly by 
toggling the attenuated label between the 'ON' and 'OFF' states. The 
attenuation of light refers to the fall in the light intensity as the light travels 
further away from the source. If the attenuated label is in the 'ON' state, an 
attenuation parameter has to be specified in the editbox. This parameter gives 
the value of a distance from the light source. If an area is nearer to the light 
source than the attenuation parameter, the light intensity over this area will 
not be attenuated. On the other hand, the light intensity at a point will 
decrease as the point is further away beyond the attenuation parameter from 
the light source. 

The user can set the various switches and parameter values described above 
for each of the five point sources in order to achieve the final point lighting 
conditions. 

By activating the DEFRULT option, the ambient, parallel and point lighting 

conditions in the model will all be reset, ie. all the switches and parameter 
values for the different lighting options will be given their default states and 
values preset in the software. 

The available lighting options enable the user to set up and control the 
lighting conditions until the desired effect is produced in the screen display. 
In addition, experiments can be carried out to study the impact of different 
lighting conditions on the display. 

By activating the RETURN option, the user will then move back into the 
sunrecE_M menu page shown in figure 7.20(a). As indicated above, the uis_MODEL 
menu page provides an effective, flexible and powerful tool for setting up the 
modelling primitives, and has proven its value in many projects. However, 
future work can be carried out to provide a more interactive user interface for 

setting up the modelling primitives. This interface will be such that the 
commands and data are input directly via the menu options, screen and/or 
editboxes as is the case for other parts of the software instead of through a 
datafile. The reason for the datafile approach was that a functional module 
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was needed as soon as possible for use in project work, and it would take a 
shorter time to develop the datafile approach. than the more interactive 
interface used elsewhere in the software. 

Furthermore, the SRUE_JNFO option in the suRFRCE_M menu page when activated 
will cause the current information such as parameter values, switch states 
and so on, pertaining to the various options in both the uis_MOOEL and 
SURFRCE_M menu pages to be written to the database. Hence, these information 
will not be lost when the user exits from the suRFRCE_M menu page and then 
from the software altogether. When the user returns to the SURFRCE_M menu 
page at a later stage, the pertinent information stored in the database will then 
be used to produce the image shown on the screen. 

7.21 Beam elements 

On occassions, it may be neccessary to introduce beam elements into the 
analysis model. The use of the beam elements to represent compression 
boundaries' in the model has already been discussed in chapter 4. If the strut 
elements are used instead of the beam elements, structural mechanisms may 
occur during the analysis. The beam elements can also account for the 
bending deformations of the boundaries. The tensile membrane stresses by 
providing support to these boundaries means that slender compression 
members can be used. This makes it attractive to use compression boundaries 
rather than tension anchorages for providing supports to tension structures 
with very large spans. It has also been shown by Mollman [99], and Samuelli 
and Zingali [120] that erroneous results are produced if bending deformations 
of the supporting boundary (ring beam or arch) are not taken into account 
during the analysis of a tension structure. 

As shown in figure 4.1, a local x-, y- and z-axes system can be defined for each 
of the beam elements. At each end node of a beam element are six degrees of 
freedoms, ie. the translations in the local x-, y- and z-axes directions and the 
rotations about the local x-, y- and z-axes. The three nodal translations apply 
to all the nodes in the model, but for a node connected to a beam element, the 
additional three nodal rotations are introduced. The nodal translations are 
measured from the current geometry of the beam element. On the other 
hand, the nodal rotations are displacements from a zero reference state (ie. 
the initially straight beam element) when the beam element is first defined. 

The beam elements are analysed using the dynamic relaxation scheme 
applied to the analysis of all the other element types in the model. In this 

way, the same analysis section of the software can be used to deal with all the 
different elements in the model. This can only simplify the task of 
implementing the beam elements into the software. The dynamic relaxation 
analysis of the beam elements is an efficient means of dealing with the 

compression and bending elements in the model as already described in 

chapter 4. The underlying theory and advantages of the dynamic relaxation 
scheme have also been outlined in chapter 3. 
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For realistic modelling, the beam elements should be able to. cope with 
various non-linear effects. In the dynamic relaxation scheme, the equilibrium 
and compatibility equations are considered for the current deformed state of 
the model. Consequently, any geometric non-linearity in the analysis will be 
automatically accounted for. The scheme has also been set up to deal with the 
following non-linearities, ie. 

- the influence of the axial forces on the moment-curvature relations (this is 
taken into account by modifying the 's' and 'c' stability functions 
accordingly using the Livesley's power series method), 

- the effects of bowing on the axial displacements (these are taken into 
account by applying correction factors), 

. 

- the fixed-end moments due to distributed loadings as a function of the 
axial forces. 

A detailed account of the above non-linear effects has been given in chapter 4. 

Furthermore, a future possibility is the inclusion of the ability to account for 
the on/off non-linearity which results from the formation of a plastic hinge. 
This will involve the introduction of a plastic hinge at a node where the 
plastic moment is exceeded during the analysis. The moment at the node will 
be reset to the plastic moment. The hinge rotation will then be given by the 
equilibrium equations for the resulting beam with one or two pin ends. 

Within the dynamic relaxation solution scheme, the above non-linear effects 
are updated when a kinetic energy peak is reached, and the node coordinates 
are reset as well. 

A few numerical examples have also been considered in chapter 4 as a 
confirmation the beam elements are behaving as expected and that reliable 
results are obtained. 

The BERM ELEMENTS menu page shown in figure 7.22(a) has been set up to 

implement the options for dealing with the beam elements in the model. The 
user can access this menu page from the 'master' menu page. On display in 
the graphics window will be a graphical image of the model in its current 
state. The REPRINT option serves to refresh the current image display on the 
screen. The ED IT -U i Ew option allows the user to manipulate the view of the 
image shown on the screen. The BRCK_uP and RESTORE options are not yet 

functional at the moment. 

The eEeris option when activated allows the user to either add a new or delete 
an existing beam element interactively on the screen. With the non option 
active as well, the user can then enter into the on-screen interaction mode by 
clicking the right mouse button. The user needs to identify the two nodes 
which will define a new beam element. The user will be prompted on the 
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screen by the 'node pick' pointer. Subsequently, the user can use the 'node 

pick' pointer-to pick a node and the 'picked' node will be highlighted in red. 
This will be followed by the picking of a second node and the second 'picked' 
node will also be highlighted in red. A line highlighted in red will be drawn 
between the two 'picked' nodes. The accept/abort pointer will then appear. If 
the new beam element defined by the two 'picked' nodes is accepted, the 

corresponding additional data will then be created in the database. For 
instance, the two 'picked' nodes will be flagged as being connected to a beam 

element and these nodes will be introduced with the additional rotational 
degrees of freedom. On the other hand, with the BERMS and DELETE options both 

active, the user can then proceed to delete an existing beam element. The user 
will first enter into the on-screen interaction mode by clicking the right 
mouse button. The user will then be prompted on the screen by the 'beam 

pick' pointer. Subsequently, the user can use the 'beam pick' pointer to pick a 
beam element and the 'picked' element will be highlighted in red. The 

accept/abort pointer will then appear. If the 'picked' element is accepted, the, 
data corresponding to this element will then be deleted from the database. 

REPAINT EDIT_UIEW An activated FIHROT option allows the user to check, 
BACKUP RESTORE attach or release rotational fixities from the nodes in 

the model using the CHECK, ATTACH or RELEASE option 
BEAMS ADD accordingly. The rotational fixities are relevant only 

DELETE to nodes which have rotational degrees of freedom, 

RH FIHROT FIH 
ie. nodes which are connected to beam elements. 

- The software ensures that only nodes with FIILRY 
rotational degrees of freedom can be acted on by 

FIH_RZ 
operations related to the rotational fixities. The 

BM_REL LOCAl_H active rotational fixity condition will be indicated by 
LOCAL _Y 

the current states of the FIH_RH, FIH_RY and FIH_RZ menu 

LOCALZ options. An active FIS-RH option represents a fixity 
condition for rotation about the global x-axis and so 

BETA_ANG on for the active FIH_RY and FIH_Rz options. If any 

node in the model has a rotational fixity condition, 
BM-PROPS NEW-PROP the symbol of a small square enclosing a cross will be 

EDIT_PROP assigned to the node. Also, the square symbols 
DEL-PROP associated with all the nodes having the active 

rotational fixity condition will be highlighted in red. 
LOADS NLORD For nodes with the non-active rotational fixity 

u°L conditions however, the square symbols attached to 
Mode: them will be shown in yellow. This makes it easy for 

CHECK ATTACH the user to find out the existing rotational fixity 
RELEASE conditions throughout the entire model. 

RETURN With either an active CHECK, ATTACH or RELEASE option, 

the user can subsequently enter into the on-screen 
Figure 7.22(a) interaction mode by clicking the right mouse button. 

The user will then be prompted on the screen by the 
'node pick' pointer. The user can in turn use the 

'node pick' pointer to p ick a node and the 'picked' node will be highlighted in 
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red. The subsequent operations will then differ slightly depending on which 
is the currently active option as described below. 

For an active CHECK option, the Fil_RH, Fi8_RY and FIH_RZ menu options will in 
turn switch to the appropriate states to reflect the current rotational fixity 
condition at the 'picked' node. The screen display will also be updated 
accordingly. 

For an active nunc" option, the accept/abort pointer will in turn appear. If the 
'picked' node is accepted, the active rotational fixity condition will then be 
assigned to the node. 

For an active RELEASE option, the accept/abort pointer will in turn appear. If the 
'picked' node is accepted, the current rotational fixity condition at the node 
will be removed and the node will then be free of any rotational restraints. 

The above functions of the CHECK, RTrecH and RELEASE options apply only in the 
case when the FIHROT option is active. The translational fixities are dealt with 
in a separate menu page, ie. the FIIUTY menu page already outlined earlier. 

The BM_PRDPS option when activated allows the user to perform operations 
related to the elastic properties of the beam elements in the model using the 
NEW_PROP, EDIT_PROP and DEL_PROP options. The user interface implemented in 
these options are similar to that used in the LINE ELEMENT PROPS and MEMBRRNE 

PROPERTIES menu pages already described previously. A default set of beam 
properties will automatically be assigned to a newly defined beam element. 

Using the NEW_PROP option, the user can create a new elastic property set and 
default values will be prescribed to this set. The repeated use of this option 
will produce a list of elastic property sets. When a new set is created, it will 
automatically be added to the end of the list. On display in the editbox as 
shown below will be information which include the reference number of the 
set and the associated elastic properties such as the EA (ie. modulus of 
elasticity x cross-sectional area), G) (ie. shear modulus of elasticity x torsional 
constant), Ely' (ie. modulus of elasticity x moment of inertia about the local 

y-axis), EIz' (ie. modulus of elasticity x moment of inertia about the local z- 
axis) and self-weight values. 

No EA q Ely' Elz' Swt/L last 
1 2.783E+08 5.382E+07 7.064E+07 7.064E+07 0.000E+00 next 

The property set whose values are currently shown-in the editbox will be 
taken as the active property set. The beam elements prescribed with the active 
property set will be highlighted in red. If the default elastic properties are not 
appropriate, the user can activate the EOIT_PROP option and then directly edit 
the information given in the editbox. By activating the 'next' button in the 
editbox, the list will be-scrolled forward to the next set and the information in 
this set will then be shown in the editbox. Conversely, when the 'last' button 
is activated, the list will be scrolled backward to the previous set. The user can 
also delete an existing elastic property set by scrolling the list until this set 
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appears in the editbox and then activates the DEL-PROP option. The beam 
elements having the property set which has just been deleted will then be 
given the first property set in the list. The software does not allow the user to 
delete a property set if it is the only one in the list and hence, ensures that the 
case of beam elements having no elastic properties will never occur. The 
above functions of the NEW_PROP, EDIT_PROP and DEL_PROP options apply only in 

the case when the OM_PRoPS option is active. 

There are further facilities available to the user through the CHECK and nuACH 
options. With either an active CHECK or nTracN option, the user can subsequently 
enter into the on-screen interaction mode by clicking the right mouse button. 
The user will then be prompted on the screen by the 'beam pick' pointer. 
Using the 'beam pick' pointer, the user can pick a beam element and the 
'picked' beam element will be highlighted in red. The subsequent operations 
will then differ slightly depending on which is the currently active option as 
described below. 

For an active CHECK option, the current elastic property set assigned to the 
'picked' beam element will then appear in the editbox. 

For an active Auecn option, the accept/abort pointer will in turn appear. If the 
'picked' beam element is accepted, the active elastic property set will then be 
assigned to the element. 

The above functions of the CHECK and RUACH options apply only in the case 
when the BM_PROPS option is active. 

Figure 7.22(b) 

Furthermore, the UM_REL option allows the user to introduce member releases 
about the element local x-, y- and z-axes to nodes which are connected to the 
beam elements. The member releases are used in the modelling of pin-ended 
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conditions, ie. where the bending moments are zero. The current setting of 
member releases about the element local x-, y- or z-axis or combination of 
these will be indicated by the current states of the LOCRL_H, LOCRL_Y and LOCRL_Z 
menu options. This setting of member releases will be taken as the active 
member release setting. An active LUCAL_H option represents a member release 
about the element local x-axis and so on for the active LOcfL_Y and LOCRL_Z 
options. A small circle marker drawn dose to the node of a beam element 
will indicate that member releases have been assigned to the node as shown 
in figure 7.22(b). The circle markers associated with nodes having the active 
release setting will be highlighted in red while for nodes with member 
releases not represented by the active release setting, their associated circle 
markers will be shown in yellow. In this way, the user can easily establish the 
member releases which currently exist throughout the model. 

The CHECK, ATTACH and RELEASE options are also available to the user to perform 

further opearations related to the member releases. With either an active 
CHECK, ATTACH or RELEASE option, the user can subsequently enter into the on- 
screen interaction mode by clicking the right mouse button. The user will 
then be prompted on the screen by the 'beam pick' pointer. Using the 'beam 
pick' pointer, the user can pick a beam element and the 'picked' beam 
element will be highlighted in red. The 'node pick' pointer will then appear 
on the screen. The user can in turn use the 'node pick' pointer to pick either 
one of the two end nodes of the 'picked' beam element. The circle marker 
associated with the 'picked' node will be highlighted in red. The subsequent 
operations will then differ slightly depending on which is the currently active 
option as described below. 

For an active CHECK option, the LOCAL_H, LocaL_Y and LOCRL_Z menu options will 

switch to the appropriate states to reflect the current release setting at the 
'picked' node which will in turn be taken as the active member release 
setting. The screen display will also be updated accordingly. 

For an active Arracu option, the accept/abort pointer will in turn appear. If the 
'picked' node is accepted, the active release setting will then be assigned to the 
node. 

For an active IE. ERS option, the accept/abort pointer will in turn appear. If the 
'picked' node is accepted, the current release setting at the node will be 
removed and the node will then be free of any member releases. 

The above functions of the CHECK, errecH and RELEASE options apply only in the 
case when the UM_REL option is active. 

The two end nodes of a beam element determine the position in space of the 
element but the unique definition of the element spatial orientation requires 
an additional parameter to be known. In this case, this parameter is taken to 
be the beta angle. For a beam element lying not parallel to the global z-axis, 
the beta angle is taken as the angle which the plane defined by the. element 
local x- and z-axes makes with the global z-axis (see figure 4.2). On the other 
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hand, if the beam element lies parallel to the global z-axis, the'beta angle is 
then the angle which the plane defined by the element local x- and y-axes 
makes with the global y-axis. The sign convention for the beta angle is such 
that the angle is positive if it is measured from the global z- or y-axis in a 
clockwise sense when looking in the direction of the element local'x-axis. 
With the beta angle known, 'the spatial orientation and hence, the positions 
of the minor and major axes of the beam element can then be uniquely 
defined. The minor and major axes of the beam element are taken to be in the 
directions of the element local z- and y-axis respectively. The software 
assumes a default beta angle of zero degrees. An activated BETR-ANC option 
provides the user with the means to check or attach the beta angle to the 
beam elements in the model using the CHECK or RTTACH option accordingly. In 
the editbox as shown below located beneath the graphics window will be the 
value of a beta angle. 

BETA ANGLE 
0.000 

This value will be taken as the active beta angle. If desired, the user can 
directly edit the active beta angle shown in the editbox. The beam elements in 
the model with the active beta angle will be highlighted in red. 

With either an active CHECK or ATTACH option, the user can subsequently enter 
into the on-screen interaction mode by clicking the right mouse button. The 
user will then be prompted on the screen by the 'beam pick' pointer. Using 
the 'beam pick' pointer, the user can pick a beam element and the 'picked' 
beam element will be highlighted in red. The subsequent operations will then 
differ slightly depending on which is the currently active option as described 
below. 

For an active CHECK option, the current beta angle of the 'picked' beam element 
will be shown in the editbox. This beta angle will in turn be taken as the 

active beta angle. The screen display will also be updated accordingly. 

For an active ATTACH option, the accept/abort pointer will in turn appear. If the 
'picked' beam element is accepted, the active beta angle will then be assigned 
to the element. 

The above functions of the CHECK and ATTACH options apply only in the case 
when the BETA_ANG option is active. 

Furthermore, there is the LOADS option which when activated allows the user 
to check or attach applied loads to the beam elements in the model using the 
CHECK or ATTACH option accordingly. At the moment, the available load types 
which can be applied include point loads and uniformly distributed loads 
(udl). 

An active UOL option indicates that the applied loads under consideration are 
the udl. An editbox as shown below will appear beneath the graphics window. 
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uT Wx Wy Wz 
0.000E+00 0.0002+00 -1.000E+00 

On display in the editbox will be the three component values of a udl, ie. the 
components in the directions of the global x-, y- and z-axes. These 
component values will form the active udl. If desired, the user can directly 
edit the active udl shown in the editbox. The beam elements in the model 
assigned with the active udl will be highlighted in red. 
With either an active CHECK or RUflCH option, the user can subsequently enter 
into the on-screen interaction mode by clicking the right mouse button. The 
user will then be prompted on the screen by the 'beam pick' pointer. Using 
the 'beam pick' pointer, the user can pick a beam element and the 'picked' 
beam element will be highlighted in red. The subsequent operations will then 
differ slightly depending. on which is the currently active option as described 
below. 

For an active CHECK option, the current udl of the 'picked' beam element will 
be shown in the editbox. This udl will in turn be taken as the active udl. The 
screen display will also be updated accordingly. 

For an active ATTACH option, the accept/abort pointer will in turn appear. If the 
'picked' beam element is accepted, the active udl will then be assigned to the 
element. 

The above functions of the CHECK and AnecH options apply only in the case 
when both the torsos and UDI. options are active. 

On the other hand, point loads will be considered when the NLORO option is 
active. The three component values of a point load, ie. the components in the 
directions of the global x-, y- and z-axes will be displayed in the editbox as 
shown below. 

point load Wx Wy Wz 
0.000E+00 0.000E+00 -1.000E+00 

These component values will form the active point load. If desired, the user 
can directly edit the active point load shown in the editbox. The nodes in the 
model assigned with the active point load will be highlighted in red. 

With either an active CHECK or RTTACH option, the user can subsequently enter 
into the on-screen interaction mode by clicking the right mouse button. The 
user will then be prompted on the screen by the 'node pick' pointer. Using 
the pointer, the user can pick a node and the 'picked' node will be highlighted 
in red. The subsequent operations will then differ slightly depending on 
which is the active option as -described 

below. 

For an active CHECK option, the current point load assigned to the 'picked' node 
will be shown in the editbox. This point load will in turn be taken as the 
active point load. The screen display will also be updated accordingly. 
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For an active errecH option, the accept/abort pointer will in turn appear. If the 
'picked' node is accepted, the active point load will then be assigned to the 
node. 

The above functions of the CHECK and BUACH options apply only in the case 
when both the toeos and NLORD options are active. 

When the user is ready to exit from this menu page and move back into the 
'master' menu page, the RETURN option is activated. 

With the above relevant information set, the user can proceed to the RNRLYS[ 
menu page shown in figure 7.16 and runs an analysis of the beam elements. 
In this case, the analysis trace will display the additional data of mean and 
current maximum residual (ie. out-of-balance) moments in the model. at each 
kinetic energy peak. At the end of the analysis, the user can proceed to the 
LISTING menu page and lists out to the laser printer the beam geometry data, 
bending moments and shear forces which are required for the subsequent 
design process. 

7.22 Fabrication geometry- 

At the post-processing stage, of interest to the user will be the geometric data 
needed for designing the membrane and folded plate connections, and the 
relevant geometric data is obtainable from within the FABRICATION GEOM'Y menu 
page shown in figure 7.23. The user can access this menu page from the 
'master' menu page. On display in the graphics window will be a graphical 
image of the model in its current state. The RE_PniNT option serves to refresh 
the current image display on the screen. The EDIT_UIEW option allows the user 
to manipulate the view of the image shown on the screen. The sACK_UP and 
RESTORE options are not yet functional at the moment. 

REPAINT EDIT_UIEW Under the Boundary: label is the ARC_LEN option which is 
BACK-UP RESTORE used to obtain the global coordinates of a specified 

point lying along a boundary. When this option is 
Bdy Coord: ARGEN activated, an editbox as shown below will then 

Membrane CLEARANCE appear beneath the graphics window. 
AREA Bdy NI N2 L_Arc P_ARC Xp Yp Zp 

19 31 3.121 0.250 2.511 0522 0.103 
Pinte: PLANE_ iNG 

FOLD_ANG On display in the editbox will be the relevant 

RETURN 
boundary information. The user can enter into the 
on-screen interaction mode by clicking the right 

Figure 7.23 mouse button. This will be followed by a switch of 
-ý- the on-screen arrow pointer into the 'boundary pick' 

pointer. The user can in turn use the 'boundary pick' pointer to pick a 
boundary and the 'picked' boundary will be highlighted in red. In addition, 
the information such as the reference number, the first and last nodes, and 
the total smooth arc length of the 'picked' boundary will be shown in the 
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editbox. The user can also specify an offset value in the editbox and this offset 
value will represent a distance along the 'picked' boundary measured from 
the start (ie. first node) of the boundary. The point along the 'picked' 
boundary corresponding to the specified offset value will be marked by a 
small cross symbol coloured in cyan. The global coordinates of the marked 
point will also be given in the editbox. In this way, the user can easily find out 
the global coordinates of any point along the 'picked' boundary by specifying 
the corresponding offset value in the editbox. 

There are two options available under the Membrane: label, ie. the CLERReNCE and 
FIRER options which are used respectively to obtain the surface clearance, and 
the surface and plan area information. 

By activating the ctEnRANCE option, an editbox as shown below will then appear 
beneath the graphics window. 

POINT S: ??? [SOLVE POINT] [RETURN) 
Clearance <> Area_Ratio <> 
Points in Print File <> [PRINT POINTS] 

The user can specify in the editbox the global coordinates of an arbitrary point 
in space. When the [SOLVE POINT] button in the editbox is activated, the 
surface clearance information for the specified point will be generated and 
then displayed in the editbox. This information will include the values of the 
'Clearance' and 'Area_Ratio' parameters. The surface clearance information is 
derived by considering the projection of the specified point onto the plane of 
each membrane element in the model. The projected point forms a triangle 
with each of the three sides of a membrane element and three triangles can 
thus be formed. The ratio of the total area of these three triangles to the area 
of the membrane element itself can be found. There is such a ratio for each of 
the membrane elements in the model. The minimum of all these ratios is 
taken to be the value of the 'Area_Ratio' parameter. If this value is 1.0, the 
specified point has a projection which falls within the plane of a membrane 
element. On the other hand, if the 'Area Ratio' parameter has a value greater 
than 1.0, there is no projection of the specified point which falls within the 

plane of a membrane element. The 'Clearance' parameter is taken to be the 
shortest distance from the plane of a particular membrane element to the 

specified point. This particular membrane element is that upon which the 
value of the 'Area Ratiö parameter is also based. Then, by activating the 
[PRINT POINTS] button in the editbox, the surface clearance information of the 

specified point will be sent to the laser printer. 

When the nnEn option is activated, an editbox as shown below will then 
appear beneath the graphics window. 

Surface Area Plan Area [PRINT] [RETURNI 

<><> 

On display in the editbox will be values of the total surface and plan areas of 
all the membrane elements in the model. In this case, the plan area refers to 
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the projection of the surface area onto the global x-y plane. By activating the 
[PRINT) button in the editbox, the surface and plan areas information of the 
membrane elements will then be sent to the laser printer. 

Under the Pfote: label are the PLRNLRNG and FOLD-ANC options which allow the 
user to obtain the geometric data needed for designing the membrane and 
folded plate connections. 

By activating the PLRNE_RNG option, the editbox as shown below will then 
appear beneath the graphics window. 

ni n2 L , _Arc 
P_ARC (SOLVE] angle(deg) [PRINT] (RETURN] 

bdy 42 186 223 3.648 0.250 0.000 
bdy 43 223 5 2.668 0.250 

The user will enter into the on-screen interaction mode by clicking the right 
mouse button. The 'boundary pick' pointer will then appear on the screen. 
Using the 'boundary pick' pointer, the user can then pick the first boundary 
and the 'picked' boundary will be highlighted in red. The user can continue 
to use the 'boundary pick' pointer to pick the second boundary and the 
'picked' boundary will again be highlighted in red. There should be a 
common node where both the first and second 'picked' boundaries will meet. 
The information such as the reference number, first and last nodes, and total 
smooth arc length for each of the two 'picked' boundaries will be shown in 
the editbox. In addition, for each of the two 'picked' boundaries, the user can 
specify an offset value in the editbox and this offset value will represent a 
distance along the boundary measured from the common node. The point 
along the boundary corresponding to the specified offset value will be marked 
by a small cross symbol coloured in white. These two marked points and the 
common node may be taken to represent a triangular membrane plate. 
Hence, from the common node to each of the two marked points, a vector can 
be defined. When the [SOLVE] button in the editbox is activated, the included 
angle (ie. the membrane plate angle) between these two vectors will be 
calculated and then displayed in the editbox. By repeating the above 
operations, a list of membrane plate angles can be calculated. The [PRINT] 
button when activated will then send to the laser printer information related 
to the list of membrane plate angles which have been calculated. 

Similarly, when the FOLD_ANC option is activated, an editbox as shown below 
will then appear beneath the graphics window. 

ni n2 L_Arc P_ARC [SOLVE) angle(deg) [PRINT) (RETURN) 
bdy 42 186 223 3.648 0.250 0.000 
bdy 43 223 5 2.668 0.250 
bdy 44 75 223 3.120 0.250 

The user will enter into the on-screen interaction mode by clicking the right 
mouse button. In this case of deriving the fold angle between two adjoining 
membrane plates, the three boundaries which define the two planes of the 
membrane plates have to be identified. The 'boundary pick' pointer will then 

-212- 



appear on the screen. Using the 'boundary pick' pointer, the user can in turn 
pick the first boundary and the 'picked' boundary will be highlighted in red. 
The user can continue to use the 'boundary pick' pointer to pick the second 
and third boundaries, and these two 'picked' boundaries will again be 
highlighted in red. There should be a common node where these three 
'picked' boundaries will meet. The second 'picked' boundary should lie along 
the fold line, le. the line of intersection between the two planes of the 
membrane plates. The three boundaries should also be picked in an anti- 
clockwise sense looking from above the fold line. The information such as 
the reference number, first and last nodes, and total smooth arc length for 
each of the three 'picked' boundaries will be shown in the editbox. In 
addition, for each of the three 'picked' boundaries, the user can specify an 
offset value in the editbox and this offset value will represent a distance along 
the boundary measured from the common node. The point along the 
boundary corresponding to the specified offset value will be marked by a 
small cross symbol coloured in white. The marked points along the first and 
second 'picked' boundaries, and the common node may be taken to represent 
the first triangular membrane plate. Thus, the marked points along the 
second and third 'picked' boundaries, and the common node may be taken to 
represent the second triangular membrane plate. When the [SOLVE] button in 
the editbox is activated, the fold angle between the two membrane plates will 
be calculated and then displayed in the editbox. The adopted sign convention 
is such that a positive fold angle refers to the angle above the fold line while a 
negative angle is taken to be the angle below the fold line. By repeating the 
above operations, a list of fold angles can be calculated. The [PRINT] button 
when activated will then send to the laser printer information related to the 
list of fold angles which have been calculated. 

When the user is ready to exit from this menu page and move back into the 
'master' menu page, the RETURN option is activated. 

7.23 Post-processing 

When an analysis has terminated, the user can return back to the 'master' 
menu page from the RNRLY$E menu page. The ELEMENT POST_P menu page is 

available to the user to post-process the results from the analysis. The user 
can enter into this menu page shown in figure 7.24 from the 'master' menu 
page. On display in the graphics window will be a graphical image of the 
model in its current state. The EDIT_VIEW option allows the user to manipulate 
the view of the image shown on the screen. The PLOT option is not yet 
functional at the moment. 

In this menu page, the user can easily find out the forces in the line elements 
and the stresses in the membrane elements which result from the analysis. 
These forces and stresses will be displayed in colours which correspond to a 
colour chart located on the right hand side of the graphics window as shown 
in figure 7.24. The colour chart gives a band of colours which represent a 
specified magnitude range of the element forces or stresses in the model. In 
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Figure 7.24 

this way, the user will be able to make a quick assessment of the results 
presented visually on the screen. The line elements consists of the link, strut 
and slip cable elements. There are specific operations which apply to either 
the link, strut, slip cable or membrane elements at any one time. The choice 
of which line elements will be operated on is decided by activating the LINK, 
STRUT or s_CRBLE option accordingly. 

By activating either the M_WARP or M_FI« option, the membrane elements will 
then be chosen as the active elements. With an active M_wARP option, all the 
membrane elements in the model will be shown filled in with colours which 
represent the warp stress levels in the elements. The band of colours in the 
colour chart will correspond to the entire magnitude range of all the warp 
stesses in the model. On the other hand, by activating the M_FI« option, the 
colour display for the fill stresses in the membrane elements will then be 
given on the screen as shown in figure 7.24. In this way, the user can easily 
find out the membrane stress distributions in the model, and identify the 
areas of excessive stresses and/or zero stresses (which indicate membrane 
slackening). 

With an active LINK option, the link elements will then be chosen as the active 
elements. All the link elements in the model will in turn be shown in 
colours which indicate the force levels in the elements. The band of colours 
in the colour chart will correspond to the entire magnitude range of the link 
forces in the model. If information such as the exact force level in a particular 
link element is required, the user can obtain this through on-screen 
interrogation. This involves the user entering into the on-screen interaction 
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mode by clicking the right mouse button. The 'link pick' pointer will then 
appear on the screen.. Using the 'link pick' pointer, the user can pick a link 
element and the 'picked' element will then be given a red marker at the mid- 
point of the element. An editbox as shown below will also appear beneath the 
colour chart located on the right hand side of the graphics window. 

TENSION 5.903E+02 
L 

-CURRENT 
0.8362 

L_SLAQC 0.8358 
NP 1 EA 1310E+06 

On display in the editbox will be the tension value, stressed length, slack 
length, material property set number and EA (ie. modulus of elasticity x cross- 
sectional area) value of the 'picked' element. The above operations for the 
link elements will similarly apply to either the strut elements when the STRUT 
option is activated or the slip cable elements when the s_CfDLE option is 
activated. As the link and slip cable elements cannot resist compression, these 
elements are given zero force levels when they become slack. 

Furthermore, the OEFRULT and SUB_aaNGE options apply only to the link and slip 
cable elements. By activating the SUBRANGE option while the LINK option is still 
active, the user will then be prompted on the screen by the 'link pick' pointer. 
The user can then use the 'link pick' pointer to pick two separate link 
elements. This will be followed by the resetting of the colour chart such that 
the band of colours correspond to a magnitude range given by the difference 
between the force levels in the two 'picked' elements. On the other hand, the 
DEFAULT option is used to reset the colour chart such that the band of colours 
correspond to the entire magnitude range of all the link forces in the model. 
For the above options, when the colour chart is reset, the colour display of the 
link elements on the screen will also be updated accordingly. With an active 
s_CABLE option, the above operations of the DEFAULT and SUBRANGE options will in 
turn apply to the slip cable elements instead. 

Lastly, the LISTING option allows the user to access the LISTING menu page which 

will be described in the following section. 

By activating the RETURN option, the user will exit from this menu page and 
move back into the 'master' menu page. 

7.24 Listing 

At various stages during the design process, the user may need to extract 
certain information from the model. If desired, a listing of the required 
information can be obtained using the menu options available within the 
LISTING menu page shown in figure 7.25. This menu page is accessible from the 
'master' menu page. Using the options within this menu page, the user can 
select the relevant information needed for design considerations, and then 
output them to the laser printer. This information may include a list of the 
node coordinates, nodal restraints, elastic properties, element forces and 

-215- 



REPRINT EDIT_UIEW 

BHCK_UP RESTORE 

NODE FIIIITY 
RHSYM 

LINK STRUT 

S_CRBLE CPROP 

MBRANE MPROP 

BOUNORRY G-STRG 
BERM 

Loads: L_CRSE 
L_COEFF 

ELEMENT ZONE 

FIELD RLL 

Precision: NORMAL 
FULL 

Scope: RLL 
STRESS 
MODEL 

PRINTER SCREEN 

LI ST D RTR 

RETURN 

Figure 7.25 

7.25 Conclusions 

stresses, and graphic dumps of screen images. In 
addition, for design considerations, the user may 
require a listing of the element forces and stresses for 
different load cases. A listing of the applied load 
intensities and their corresponding load coefficients 
for each node can also be obtained if required. The 
user will select the relevant information by 
switching the corresponding menu options to the 
active state. For instance, if a listing of the node 
coordinates is required, then the NODE option will be 
switched to the active state. Subsequently, by 
activating the LIST OATR option, a listing of the selected 
information will be output to the laser printer. 
When the user is ready to exit from this menu page 
and move back into the previous menu page, the 
RETURN option is activated. 

Furthermore, at the end of each analysis run within 
the ANALYSE menu page, a listing of the analysis run 
trace can be output to the laser printer. Included in 
the trace will be information such as the residual 
forces, and the magnitude and sense of the 
corresponding resultant force at each restrained node 
(whether partially or fully fixed, or in a plane of 
symmetry). Later, this information can be fed into 
the analysis and design of structural components for 
a tension structure. 

In this chapter, a detailed outline is given of the fully interactive graphical 
CAD system which has been developed for the design of membrane 
structures. It illustrates how the power and capabilities of the computer 
hardware have been fully exploited to benefit the user. The CAD system has 
proven to be a more effective, flexible and economic alternative to physical 
modelling which used to be the primary means of investigating the 
membrane structures until a few years ago. 

Much effort and time have been expended to ensure that an effective and 
functional user interface to the CAD system is implemented. The user 
interface is based on the concept of the Graphical User Interface (GUI), ie. as 
much use as possible of graphical images on the screen to inform and guide 
the user. With such a user interface, the CAD system has been made fully 
interactive. A series of menu pages is available to implement the menu 
options designated for the operations involved at the various stages in the 
design of membrane structures. The menu options are driven into action by 
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means of a two button mouse. By using graphical images to represent the 
relevant information on the screen, the user can quickly grasp the 
information and respond to the CAD system accordingly. The user can enter 
Into the on-screen interaction mode in order to interact'directly with the 
graphical image for instance, the on-screen interrogation for specific 
information. An objective of the user interface is to take as much direct data 
handling as possible away from the user. The user interface used in the 
operations associated with the various menu options is clearly illustrated in 
the detailed discussion of the available menu pages given in this chapter. The 
discussion provides an insight into the procedures which are involved 
throughout the design process. 

The complex behaviour of tension structures is often not within the grasp of 
most architects. As a result, unlike. conventional buildings, it is customary for 
the engineer to become involved at the early stages of conceptual 
development with the architect. The SURFACE_M menu page shown in figure 
7.20(a) provides the facility to generate highly realistic surface shaded 
graphical images. It is possible to set up a graphical image of the membrane 
structure complete with the surrounding features such as existing buildings, 
trees, roads and so on. In the menu page are menu options which allow the 
visual impressions from walking about in the model to be depicted in the 
graphical images. In the close co-operation between the architect and the 
engineer, these images serve as an effective means in the communication of 
ideas. In addition, the computer hardware is equipped to execute the 
computations involved in the analysis and graphic processing at high speed. 
Consequently, the CAD system allows the architect and engineer to 
investigate the effects on the model of various ideas and these effects will be 
quickly known. At the form-finding stage, it is possible for the architect and 
engineer to come together and use the CAD system interactively to explore 
the huge possibilities of surface shapes for the model. 

The fully interactive graphical CAD system described in this chapter fulfills 
the principal objectives which have been laid down as the guidelines for the 
development of the system. Firstly, as it is intended for use in a design office 
environment, the user interface implemented ensures that the CAD system is 
highly user friendly. A new user to the CAD system will only require a short 
learning time. Indeed, the most significant benefit of the CAD system is the 
great reduction of the design time. 

There are further enhancements which can be made to the CAD system and 
these will include 

(1) linking up the CAD system with a commercial draughting package such as 
'Auto-Cad'; in this way, information from the CAD system can be used 
directly by 'Auto-Cad' to produce drawings of steelwork connections and 
other structural details; 

(2) integration of the CAD system into the cutting pattern production stage; 
in this way, a direct data transfer from the CAD system cart be channelled 
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directly to fabricate the cutting patterns on the shopfloor; this reduces any 
errors which may be introduced in the process of sending the cutting 
pattern information output from the laser printer or plotter to the 
shopfloor; 

(3) the capability to analyse and design cable net structures; a large number of 
the facilities in the CAD system are equally applicable to cable net 
structures; consequently, this enhancement can be incorporated into the 
CAD system with minimal effort; 

(4) the capability to simulate the complex dynamic behaviour of membrane 
structures; at the moment, the theoretical basis for this enhancement is 
still under development as will be outlined in chapter 9; it is often 
necessary to investigate the wind induced dynamic effects on membrane 
structures; the present solution is to perform either a simple wind tunnel 
test followed by a quasi-static analysis or a full aeroelastic model test in a 
wind tunnel; 

(5) continued evolution of the CAD system; indeed, the practical approach is 
to use the CAD system for working on projects; the feedback from the user 
provides the key to the further refinements of the CAD system in order to 
keep up with the practical demands of the design process. 

Finally, it must be said that the design process is not merely a matter of using 
the CAD system. The designer should have a thorough understanding of the 
structural behaviour and be aware of the limits of the computer modelling. 
The CAD system serves only as a useful tool to produce an efficient and 
practical design which meets the architectural, structural and other criteria 
which have been laid down. 
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Part III 

Chapter 8 

Loadings: static and dynamic 

8.1 Introduction 

As mentioned in earlier chapters, the form of a tension structure established 
from a form-finding process should be evaluated for its behaviour under 
possible loads in the load analysis stage. Obviously, if these loads have not 
been assessed on a realistic basis, the results from the subsequent load analysis 
however sophisticated would be misleading. Consequently, an accurate 
estimation of the applied loads is critical for a structurally sound and 
economic design of the structure. It is also essential that the loads are defined 
in a form which can be easily applied in the structural analysis. The applied 
loads can range from a simple static load having a known magnitude and 
location to one of a dynamic nature which is a function of both space and 
time, and are notoriously difficult to predict in many instances. The 
discussion in this chapter will be concerned with the assessment of these 
loads. 

8.2 pe ig loads 

For the load analysis, the self-weight of the cables, their clamps and fittings in 
cable nets may have to be considered while the self-weight of the lightweight 

membrane materials in membrane structures can be ignored. If access is 
provided for maintenance work to the structure, then some allowance has to 
be made for the possible imposed loads which may arise. 

The critical loads for the design of tension structures are often those which 
arise from extreme weather conditions such as snowfall and storm winds. 
The codes of practice often contain information about the intensities of these 
loads and the risk levels associated with these intensities. For snow loads, the 
intensity is derived from the design ground snow accumulation. For wind 
loads, the intensity is a function of the design wind speed. The risk is 
measured in terms of the annual probability of exceedence or the return 
period. In addition, the coefficients which indicate how the snow or wind 
loads are distributed over the surface are determined from the codes of 
practice or other means. The load value applicable over an area is then given 
by the product of the load intensity and distribution coefficient for that area. 
As far as the determination of applied loads is concerned, the problem with 
tension structures is the highly individual and complex shapes present in 
many cases. Consequently, the appropriate load distribution coefficients may 
not be easily obtainable from the codes of practice which gives values more 
suitable for the simpler shapes of conventional structures. The flexible nature 
of tension structures also means that large deformations will take place in 
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order to develop the forces for resisting the applied loads. As a result, the 
distribution coefficients may need updating during the analysis in order to be 
consistent with the current deformed geometry, ie. a case of non-linear load 

structure interaction. For a small scale tension structure however, a 
judgement may be required to simplify and make the derivation of the 
distribution coefficients more economic. It may be possible to guess the worst 
situation and then the corresponding set of distribution coefficients derived 
for use in the subsequent load analysis. 

Before determining the applied loads, it is appropriate to decide on the nature 
of the load analysis. For instance, a static analysis alone may suffice in the 
preliminary study or routine design of a small scale structure. Consequently, 
the simple equivalent static loads are derived for the load analysis although 
the external loads may be of a dynamic nature. These static loads may be 
determined as outlined above from the load intensities and distribution 

coefficients given in the codes of practice. However, for large scale structures 
such as an air-supported stadium roof, a rigorous description of the external' 
loads is necessary. The dynamic components if present in the external loads 
need to be considered and thus, a complete dynamic analysis of the structure 
is required. 

8.2.1 Snow loads 

The tendency of snow loads to slide down steep slopes and remain on the 
flatter slopes will result in high local patch loadings over the horizontal areas. 
For the large air-supported membrane roofs, a snow melt system may be in 

place to maintain an internal temperature level sufficient to avoid significant 
snow accumulation. Alternatively, allowance may be made for the snow to be 
removed mechanically. As a result, a reduced snow loading is to be designed 
for. The snow load is applied as a static load. The rate of snow accumulation 
hardly causes any vibrations in the tension structure. From the statistical 
assessment of snowfall records using extreme value theory, values of design 

snowfall intensities are established. The applied snow load is determined 

from a chosen design snowfall intensity and a distribution coefficient A. 
There are disagreements over how the distribution coefficient it should be 
determined (76]. This is illustrated by a simple example shown in figure 8.1 
(taken from (76]), ie. a roof of circular cross-section with different assumptions 
for the snow distributions. Figure 8.1(a) shows the possible snow 
accumulation away from the apex. Figure 8.1(b) takes into account the 
possibility of snow sliding off the roof at some angle. Figure 8.1(c) gives the 
possible case of low inflation pressure or a flat profile which may result in a 

snow filled dimple at the apex. The coefficient y also considers the effects of 
the surrounding topography. In the case of a structure in an exposed area with 

no shielding, a reduction in the value of u is allowed. In addition, the snow 
load cases to be considered should include the symmetric and asymmetric 
loading conditions. The critical forces in different parts of the structure may 
result from either the symmetric or asymmetric load case. For an air- 
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supported structure, a possible strategy is the increase of inflation pressure to 
balance the snow load. This will result in reduced internal forces for the 
subsequent design. It is also possible for the snow to build up as the structure 
deforms. 

8.2.2 Wind loads 

As evident from one's experience of conditions on a windy day and 
examination of wind records from meteorological stations, a natural wind 
consists of components which vary instantaneously, and in a highly complex 
and irregular manner. In other words, the natural wind has a turbulent 
nature. This suggests that it is only possible to specify in terms of probability 
that a particular wind speed will occur within a certain period of time. At 
present, it is not possible to derive a complete description of the wind at any 
instant. By means of a statistical approach however, an indication of the 
turbulence in the wind can be obtained as will be described shortly. 

8.2.2.1 Gust spectrum 

At any instant, the wind velocity at a point can be taken to consist of a hourly 
mean velocity component plus random fluctuating components. For 
instance, the velocity in the x-direction is given by 

u(t) =ü+ u'(t) (8.2.1) 

where ii is the hourly mean value of the velocity and u' is the instantaneous 
value of the velocity fluctuation about the mean value. In this case, the x- 
direction is taken to be in a horizontal sense (ie. parallel to the ground). In 
addition, zi and w' are the velocity fluctuations about the mean value in the 
y- and z-directions respectively. 

Subsequently, the total pressure at any point (x, y, z) on the structure is given 
by 

p(t) = 2PCp(x, y, z)Iü(x, y, z) + u'(x, y, z)l2 (8.2.2) 

in which p is the density of air and Cp is the normal wind pressure coefficient. 
The mean pressure component is then given by 

p=2pCPÜ2 (8.2.3) 

which may form a quasi-static load vector, and the fluctuating pressure 
component is given by 
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p'(t) = 
2pCp(2üu' 

+ u'2). (8.2.4) 

On average, the fluctuations on either side of the mean velocity component 
will cancel out so that 

ü"= 0. (8.2.5) 

The fluctuating velocity component u' gives rise to the gustiness in the wind 
and is therefore termed as the gust velocity. The intensity, of turbulence due 
to the gustiness is defined as follows 

I= (u')2 . (8.2.6) 

At a point, the wind velocity u at any time can be resolved into a number of 
sinusoidal fluctuations of different frequencies and amplitudes about the 

mean velocity ü. The cumulative value of the composite fluctuations can be 
resolved into components according to their frequencies. The 'strength' of a 
contributory fluctuation can be given by the sum of squares of the velocity. It 
is necessary to square the velocities since a summation of velocities alone 
with time for a sinusoidal fluctuation gives a zero value over a whole period. 

It follows that the variance of the wind velocity u is given by 

cc 

62(u) = ü2 - uz = 
5S(f) 

df [= (u')2] 

0 

(8.2.7) 

where S(J) is a function of frequency known as the spectrum or power spectral 
density which indicates the change of variance of the fluctuations in the wind 
with respect to the frequency f of the contributory fluctuation. A plot of S(f) 
against frequency will give some indication of the relative size of each of the 
contributions. In addition, 

co Co 

JS(f)df 
=ff S(t) d(lnf ). 

00 

(8.2.8) 

Subsequently, a plot of the product of S(f) and f (which has the same 
dimensions as the variance, ie. (m/s)2) against the logarithm of the frequency 
gives the horizontal or longitudinal gust spectrum of the wind velocity u. 
The advantage of such a plot is that the area under the curve between any two 
frequencies will give a true measure of the energy in that frequency range. 
Hence, the longitudinal gust spectrum can give a measure of the turbulence 
in the wind in terms of the energy content of the fluctuating components as a 
function of the frequencies of these components. The gust spectra for the v' 
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and at components can be derived in a similar manner. However, it has been 
observed from experimental data that the variance associated with u' in the 

direction of the mean velocity ü is much greater than those associated with 
v' and at [40]. Consequently, it is adequate to use the longiudinal gust 
spectrum in most practical wind-loading problems. Another important 
consideration in the modelling of a turbulent wind is the need to account for 
the spatial correlation of the fluctuating velocity components in the wind. 

Davenport [501 has developed a mathematical expression which fits the 
longitudinal gust spectrum for strong winds and established a procedure of 
using the spectrum for design purposes. This entails the derivation of an 
empirical and linear relationship between the gust spectrum and the response 
of the structure, and such a relationship is the basis of a means of assessing 
the wind loading on a structure (ie. quasi-static assessment in the frequency 
domain) as will be described later. 

8.2.2.2 Quasi-static wind loads 

Cook [48] suggested that there are three fundamental aspects to consider when 
deriving the wind loading for a structure in general, ie. 

(1) the wind climate which consists of the weather conditions leading to 
strong winds, 

(2) the atmospheric boundary layer which consists of the lower layer of the 
atmosphere in which the wind is modified by the rough surface terrain, 

(3) the structure which is immersed in the boundary layer and is itself a part 
of the terrain. 

The interaction between the three aspects can be assessed in terms of either 
the physical scale or frequency range which corresponds to each aspect. The 

results from consideration in either way lead to similar conclusions which 
are as follows 

(1) the interaction between the wind climate and the boundary layer is 
negligible, and 

(2) there exists interaction between the boundary layer and the structure 
although insignificant in most cases. 

Consequently, the effects of the wind climate and the boundary layer can be 
considered independently. The characteristics of the atmospheric boundary 
layer over different types of terrain can be assessed without reference to any 
particular structure. Subsequently, the wind loads which act on the structure 
should reflect the fluctuations in the wind flow caused by the turbulence in 
the boundary layer and those generated by the wake behind the structure. 
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Based upon the above mentioned three aspects, Cook [48] suggested six ways 
of arriving at the wind loads for a structure as given in figure 8.2. The three 
aspects are depicted as individual ellipses. The possible interaction between 

the boundary layer and the structure is indicated by the overlap of the ellipses 
which correspond to the boundary layer and the structure. The manner in 

which the aspects are grouped as indicated by the boxes shown in figure 8.2 

gives the various ways of assessing the wind loading on a structure as follows 

(a) Static assessment 

Under this approach, the design wind speed is decided and used in 

conjunction with the design static loading coefficient to give the full design 
load. The wind tunnel test of the structure to obtain the loading coefficient is 
based on a smooth uniform air flow. This is generally no longer used. 
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(b) Quasi-static assessment (Time domain) 
(Current code of practice for wind loadings on structures in the UK (ie. 
Q'3: 1972), France and Australia) 

Under this approach, the wind turbulence generated by the structure is 
suppressed. All the fluctuations in the wind loading are taken to be caused by 
the gusts in the boundary layer. The structure is assumed to respond in 
exactly the same manner to gusts as it does to the mean flow and the 
maximum incident gust imposes the maximum load on the structure. This 
design approach is termed the equivalent static gust method. The accuracy of 
this approach is quite good in terms of the overall forces and movement of 
the structure where ignoring the wind turbulence generated by the structure 
causes only little discrepancy. However, for local forces on cladding, 
particularly in regions of separated flow near the periphery of a roof, the. 
accuracy of this approach is poor. Under this approach, the design wind speed 
is assessed as the maximum gust speed likely to occur during the lifetime of 
the structure. The gust duration is usually taken as one second. The design 
gust wind speed is combined with a design mean loading coefficient (given in 
CP 3: 1972 only for very simple shapes of buildings) to produce a design load. 

(c) Quasi-static assessment (Frequency domain) 
(Current code of practice for wind loadings on structures in Canada, 
Australia and USA) 

The previous approach is adequate in the case of a stiff structure in which its 
response follows the quasi-static loading. On the other hand, if the structure is 
flexible such that its response assumes a dynamic nature, the previous 
approach should be modified. Under this modified approach, the action of the 
turbulence in producing loads on the structure is quantified in terms of an 
admittance function, and the response of the structure to the loads is 
quantified by a frequency response function. The design method using this 
approach is the admittance method which operates entirely in the frequency 
domain in the following manner. A design mean wind speed determines the 
turbulence spectrum over any given terrain; the admittance function 
corresponding to the aerodynamic shape of the structure acts on this 
turbulence spectrum to produce a quasi-static load spectrum; and the 
frequency response function of the structure operates on the quasi-static load 
spectrum to produce the dynamic response spectrum. 

The accuracy of this approach is reasonable, and can be used for the design of 
structures with linear dynamic characteristics. 

(d) Individual assessment 
(Calculations of local pressures in the current code of practice in the UK, 
Australia, Canada and USA) 

Under this approach, the fluctuations in the wind loading due to the 
turbulence generated by the structure are taken into account unlike in the 
previous approaches. The turbulence generated by the structure is considered 
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together with those from the boundary layer as considering them separately ". 
would cause difficulties. This approach largely empirical, is used as a 
correction to an otherwise quasi-static method. 

(e) Overall assessment 

This approach is based on measuring the performance of a structure exposed 
to the wind conditions which prevail at a particular site over a long period of 
time. The problem is not considered in terms of its individual aspects. 

This approach was used by BRE (British Research Establishment) to perform a 
damage survey of the entire range of building types in the UK over 20 years, 
from 1962 to 1982 and the details of which are outlined in [48]. The survey was 
conducted in terms of how the buildings perfomed when exposed to strong 
winds. The actual damage sustained by the buildings was assessed without the 
use of any instrumentation. The results obtained are thus only qualitative. 

(f) Ideal assessment 

This form of assessment ideally reflects the observed behaviour of the three 
fundamental aspects of the problem. Only the design methods for stiff 
structures which respond statically to the fluctuations of load, have been 
developed from this form of assessment (ie. the approach given in (2)). No 
suitable design methods have yet been developed for dynamic structures to 
replace the quasi-static admittance approach other than wind tunnel testing. 

However, it is noted that the admittance approach (which operates in the 
frequency domain) is suitable only to be used for structures with linear 
dynamic characteristics. Consequently, it is not appropriate to apply this 
approach to tension structures in which the load structure interaction is 
generally non-linear. 

In deriving the wind loads, a judgement is required on their forms suitable 
for use in the load analysis. In general, a full dynamic analysis is too costly for 
the routine design of a small scale structure. In such a case, the wind loading 
may be treated as an equivalent static force system using the approach of 
quasi-static assessment (time domain) described in (2) above. This is the 
common practice for dealing with most small scale tension structures. It is 
required that the structure has a high level of damping which ensures that 
only limited dynamic response may occur. In addition, the natural frequency 
of the structure should be much higher than the frequencies of the 
fluctuating components in the wind flow. This avoids the possible occurrence 
of the resonance situation. The design gust wind speed can be obtained from 
the relevant codes of practice in which the basic hourly mean wind speeds 
have been derived from statistical analysis of wind records using extreme 
value theory. In deciding the design gust wind speed, the level of risk 
appropriate for the design life of the structure and the consequences of 
collapse should be considered. 
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The distribution of the wind pressure over the surface is given in terms of the 
Cp coefficients. Until quite recently, the values of'Cp are obtained from wind 
tunnel tests of rigid models in smooth flow or in turbulent shear flow [76]. 
According to Howell [76], these values so obtained are commonly assumed to 
be generally conservative. This may be the case if the deformations of the 
structure do not significantly affect the flow pattern or there is no interaction 
between the structure and the fluctuating wind load which leads to dynamic 
magnification of the wind pressures. The results from wind tunnel tests in 
smooth flow could not always be relied upon to predict the form of the 
instability in the natural wind or the wind speed at which it might occur. The 
Cp values should be determined from wind tunnel tests in which the 
turbulent boundary layer is suitably modelled. This often implies the use of 
so-called boundary layer wind tunnels. 

At the moment, the idea of setting up a sufficiently large database of reference 
data from wind tunnel tests on tension structures of various kinds has been, 
suggested by Dr. Michael Barnes ad David Sykes of City University, London i 
and Buro Happold. This database rain turn be used to predict the C, Ga 
coefficients for any new surface. 

The maximum snow load is unlikely to occur at the same time as the 
maximum wind load. It is reasonable to expect a strong wind to remove the 
snow which has accumulated and deposit it in the leeward areas. Hence, the 
case of maximum snow load or maximum wind load can often be taken as 
acting individually. 

8.2.2.3 Fluctuating wind loads 

For a major tension structure in which any structural failure will result in 
disastrous consequences, it is inadequate to use the equivalent quasi-static 
wind loads. In the design of such a structure, it is important to investigate the 
dynamic response of the structure caused by the action of the fluctuating 
components in the wind. In other words, there is a need to perform a full 
dynamic analysis of the structure. This in turn gives rise to two difficult 
problems which are outlined below. 

Firstly, there is a need to devise a simple means of modelling a turbulent 
wind which can be easily applied in the dynamic analysis. A suggestion by 
Barnes [20] is as follows, ie. an analysis is first carried out to obtain the static 
equilibrium geometry and membrane stresses on the basis of the hourly 
mean velocity and Cp distributions (ie. for the quasi-static load vector given in 
equation (8.2.3)), and then to traverse across the structure at the mean velocity 
a plane wave (of length equal to the turbulence length) a gust wind band of 
locally higher speed. This is based on the Taylor's hypothesis that the velocity 
fluctuations recorded at a point travel unchanged in the direction of the 
mean wind at mean velocity [821. An improved representation of the wind, 
with more random correlation, might be obtained by dividing the structure 
into several strips parallel to the mean wind direction, with each strip having 
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its own wind record assumed to obey the Taylor's hypothesis [85]. A further 
suggestion for the turbulent wind modelling is given in [401 which involves 
the generation of correlated wind histories for different points on the 
structure based upon power or autopower spectra of the wind at the 
appropriate levels above the ground. 

The second problem is concerned with the complex nature of the dynamic 
response of a tension structure. The wind flow over the surface of the 
structure will alter the natural frequencies of the structure. In addition, the 
relationship between the fluctuating components in the wind and the 
deformations of the structure is grossly non-linear. Due to the dynamic 
response itself, additional aerodynamic effects will also be produced. Further 
detail on these effects will be given in chapter 9. Hence, it is a difficult task to 
analyse for the dynamic response of the structure. For the dynamic analysis, 
there is no available solution method which can account for all the 
aerodynamic effects arising from the dynamic response. The wind tunnel 
testing of an aeroelastic model with mass, damping and stiffness which have 
been properly scaled to simulate the real structure is the current procedure 
used to study the dynamic responses of tension structures. Dimensional 
analysis is used to establish the correct modelling parameters. Deflections and 
strains can be measured directly on the model without the need for structural 
analysis. In the wind tunnel, there should also be appropriate modelling of 
the turbulence in the wind. Examples of large scale tension structures for 
which such wind tunnel tests have been conducted include the Hajj terminal 
at Jeddah, the Riyadh Stadium, the Calgary Olympic Stadium and the 
Montreal Olympic Stadium. A detailed discussion on the complex task of 
analysing for the dynamic responses of tension structures will be given in 
chapter 9. 

8.3 Conclusions 

In this chapter, the possible loads which tension structures have to be 
designed for are discussed. In most cases, the design loads are those due to 
snow and wind. An accurate assessment of these loads is essential in order to 
achieve a structurally sound and economic design. It should also be possible 
for the loads to be represented in a form which can be easily applied in the 
structural analysis. However, there are a few characteristics of a tension 
structure in general which make the prediction of the applied loads difficult. 
Firstly, the load distribution coefficients which are appropriate for the highly 
individual and complex shapes often found in tension structures, may not be 
easily obtainable from the codes of practice. In addition, tension structures are 
likely to undergo gross deformations under applied loads as a result of their 
flexible nature, which in turn means that the possible non-linear load 
structure interaction has to be considered. Consequently, the load distribution 
coefficients may need to be updated during the load analysis. 

For the preliminary study or routine design of a small scale structure, it may 
suffice to consider static load analysis alone. In this case, an equivalent quasi- 
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static form of the wind load (ie. that due to the design gust wind speed) can be 
applied in the analysis-This approach is adopted in the curent code of practice 
for wind loadings on structures in the UK (ie. CP3: 1972). For a large scale 
structure however, it is -necessary to design for the possible dynamic response 
which is caused by the fluctuating components (ie. turbulence) in the wind. 
As outlined in this chapter, a full dynamic analysis of the structure in such a 
case will involve two basic problems, ie. (i) the need to find a simple means of 
modelling a turbulent wind which can be easily applied in the dynamic 

analysis and (ii) the complex nature of the dynamic response. A few 

approaches of dealing with the problem in (i) have been suggested, but a great 
deal more work is required to verify these approaches in terms of accuracy, 
computational effort and general use in practice, and also to find other 
possible approaches. This problem is designated as an area for future research 
and will not be considered further in this thesis. The problem in (ii) will 
however be discussed in detail in chapter 9 and in which an outline will be 

given of a numerical approach developed to solve such a problem. 
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Chapter 9 

Dynamic responses of tension structures 

9.1 Introduction 

In chapter 8, it was pointed out that the action of a natural wind can result in 
the dynamic responses of tension structures. This is due to the fluctuating 

components in the wind flow. In the design of tension structures such as an 
air-supported stadium roof in which a structural failure can lead to disastrous 

consequences, the dynamic response of the structure should be properly 
understood and accounted for. It is essential to identify the situations during 
the dynamic response in which the serviceability or more seriously the 
stability of the structure may be adversely affected. The appropriate measures 
should then be taken to avoid such possible situations. In this case, the 
approach of using an equivalent quasi-static wind load and treating the 
structure statically may be inadequate. 

Ma 

...................... Ca 

MSA 

Ks. Ka 

M0-C0 1 

Figgre 9.1 Sources of mass, stiffness and damping 

A tension structure is in general both lightweight and flexible in nature. This 
gives rise to a few difficulties in the solution for its dynamic response. First of 
all, the structure will deform in a highly non-linear manner in relation to the 
fluctuating wind forces. Secondly, the gross structural deformations caused by 
the wind load may induce additional aerodynamic forces into the dynamic 
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response of the structure. These additional forces may produce further 
deformations which will in turn lead to further aerodynamic forces. The 
causes of these aerodynamic forces are the aerodynamic mass, stiffness and 
damping terms which arise from the movement of the structure as shown in 
figure 9.1 (taken from [51]). 

The aerodynamic mass refers to the air mass, Ma which is accelerated by the 
motion of the roof as well as the air mass, Mo which is accelerated through 
openings by the bellows action of the roof. The aerodynamic stiffness, Ka is 
due to the pressurisation of the internal air which results from the volume 
changes. The aerodynamic damping is contributed by the movement against 
external pressures, C. as well as the resistance through openings, Co. The 
presence of these aerodynamic effects have made the dynamic analysis of a 
tension structure into a highly complex problem. There is no available 
solution method which can model all these aerodynamic effects during the 
dynamic analysis. This problem is solved at the moment by the aeroelastic 
model testing in a boundary layer wind tunnel. An aeroelastic model has 
scaled mass, stiffness and damping values which reflect the corresponding 
properties of the real structure. The deflections and strains of the aeroelastic 
model are measured directly during the wind tunnel testing. According to 
Williams [136,1371, even the most rudimentary aeroelastic model test is more 
accurate and should be used rather than a sophisticated rigid model test 
followed by non-linear dynamic analysis. This is because the results from the 
wind tunnel testing of a rigid model will be unrealistic as the rigid model is 
unable to account for the aerodynamic effects and aeroelastic instabilities. 
However, the aeroelastic model construction may be difficult and the whole 
procedure of aeroelastic model testing in a boundary layer wind tunnel can be 
costly justifiable perhaps only in the design of very large structures. 

Consequently, there is a need to develop a numerical approach which can 
realistically predict the dynamic responses of tension structures. This will 
give the advantages of much economy in terms of the design costs and time. 
In addition, such an approach may be more readily applicable in the routine 
design of most tension structures. The numerical approach should be 
sufficiently general, accurate and reliable for it to be considered as a suitable 
alternative to the wind tunnel testing of an aeroelastic model. There has been 
some work done to achieve such a numerical approach by Krakowska [86] and 
Williams [136]. 

For an air-supported structure, there are three main types of dynamic 
responses which may occur, ie. the responses due to buffeting, vortex 
shedding and aeroelastic instability [76,137]. In addition, the response due to 
aeroelastic instability may take one of the following forms: 

(i) Flutter: This arises as a result of the aerodynamic damping becoming 
effectively negative. 

(ii) Divergence: This is the loss of static stability of the structure as a result of 
the wind inducing a condition of negative stiffness in the structure. 
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One of the main tasks during the dynamic analysis of a structure is to 
determine the natural frequencies of the structure. If the frequencies of the 
wind forces acting on the structure are known, it is therefore possible to 
establish if there is a danger of resonance taking place, ie. if any of the 
frequencies of the wind forces is close to a natural frequency of the structure. 
A classic failure which has been caused by resonance is the Tacoma Narrows 
bridge disaster. The resonance problem may be solved in the design by 

providing adequate levels of damping and/or modifying the natural 
frequencies of the structure which in the case of an air-supported structure is 

most simply achieved by changing the inflation pressure. The maximum 
deflections and stresses in the structure during the dynamic analysis will also 
be required for design considerations. It may also be possible to find out from 
the dynamic analysis if there is any likelihood of aeroelastic instabilities such 
as flutter and divergence. 

In this chapter, an attempt has been made to gain a better understanding of 
the dynamic responses of tension structures. The primary objective is to 
establish the theoretical basis for the development of a practical numerical 
approach which can realistically predict such responses. The work in this 
chapter is mainly concerned with the case of an air-supported structure of 
membrane construction. The use of internal air pressure to support all or part 
of a structure can be economically attractive. In particular, this concept is 

attractive for supporting roofs over a large column free area and several large 
sports stadia constructed in recent years have utilised air-supported roofs. 
However, many of the underlying principles discussed in the following 

sections in the context of an air-supported structure, are equally applicable to a 
tension structure in general. 

The dynamic response of a structure can be described by the following 
fundamental equation 

m3! + cz + kx =f (z, z, x, t) (9.1.1) 

in which m, c and k are the mass, damping and stiffness terms respectively, 

and ff i, x, x, t) is the external loading which may be a function of z, x and x (ie. 

the acceleration, velocity and displacement terms respectively), and also time 
t. 

Unlike conventional structures, the solution of equation (9.1.1) for tension 

structures is complicated by the need to model the aerodynamic effects 
mentioned above. There are many available solution schemes for solving 
equation (9.1.1) with no provision for the aerodynamic effects. There are 
specific dynamic problems for which these solution schemes may be most 
suited. In many cases, the presence of both geometric and material non- 
linearities will not give rise to any problem. A brief review of these schemes 
is given in the next section. Subsequently, the adopted strategy is to choose 
one of the available solution schemes and then modify the scheme 
accordingly to model the aerodynamic effects. The chosen solution scheme 

-233- 



should be efficient in dealing with tension structures. The scheme should 
also be able to easily accomodate the necessary modifications for taking the 
aerodynamic effects into account. It is desired to produce a reasonably simple 
means of modelling the aerodynamic effects and that the resulting solution 
scheme will be relatively easy to apply. 

The modelling of the aerodynamic effects requires some knowledge of fluid 
mechanics. As a preliminary exercise, it is necessary to establish the basic 
principles within the vast body of well established work on fluid mechanics 
which are relevant to the problem under consideration here. 

The lightweight construction of a tension structure in general implies that 
the structural mass has no significant influence on the dynamic response. As 
a result, a more dominant role is played by the added mass of the 
surrounding air when set into motion by the vibrations of the structure. The 
total effective mass multiplied by the acceleration term then gives the inertia 
force in equation (9.1.1). In general, the aerodynamic damping also exerts a 
strong influence on the response due to the often small values of the 
structural damping. The values of the aerodynamic damping terms are likely 
to be close to or above the critical damping level, particularly for very light 
fabric roofs [511. The resonant effects are thus minimal. However, if the 
aerodynamic damping terms are negative, then aeroelastic instability such as 
flutter (or flapping) can arise. The total effective damping multiplied by the 
velocity term constitutes the damping force in equation (9.1.1). Due to its 
flexible nature, the structure will probably undergo large defomations during 
the dynamic analysis. The membrane material itself may also experience non- 
linear behaviour such as on/off buckling and creep deformations. The total 
effective stiffness consists of the non-linear geometric and elastic stiffnesses as 
well as the aerodynamic stiffness. A negative contribution may come from 
the aerodynamic stiffness and lead in turn to the membrane losing static 
stability (ie. divergence). The total stiffness multiplied by the displacement 
term gives the elastic force in equation (9.1.1). 

9.2 A brief review of available solution schemes 

Equation (9.1.1) is basically a set of second order ordinary differential 
equations, and many analytical and numerical methods exist for solving the 
equation in different ways. In general, these methods can be divided into two 
basic classes, ie. the mode superposition method and the direct step-by-step 
time integration methods. The direct integration methods can be further sub- 
divided into the explicit and implicit schemes. Each class of solution method 
is best suited for solving specific problems dependent on the degree of non- 
linearity in each problem. The mode superposition method is often applied to 
situations in which only slight non-linearities are observed. In addition, the 
method requires that there are no large fluctuations in the wind pressures 
acting on the structure. Conversely, the explicit direct integration methods 
may be more appropriate in dealing with highly non-linear problems such as 
which involve on/off non-linearities caused by cable or membrane buckling. 
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They are also efficient in cases where the high frequency responses are of 
much interest. 

9.2.1 The mode superposition method 

The mode superposition method is an analytical solution procedure and 
provides an insight into the overall dynamic behaviour of a structure which 
may not be clearly understood when strictly numerical schemes are applied. 
This method is well suited to solve problems in which only the first few 
modes of vibration are sufficient to give a good approximation to the true 
dynamic response. However, in order to use this method, it has to be 
assumed that the oscillations due to buffeting wind loads are linear about the 
quasi-static equilibrium configuration defined by the mean component of 
wind loading [79,821. 

The basis of this method is that the displacement vector S(t) may be expressed 
as a linear combination of vibration mode shapes, ie. 

N 
8(t) =Z (pnxn 

n=1 
(9.2.1) 

in which N is the number of modes to be considered, cps, is the nth mode 
shape vector and x� is the nth modal response. The idea is to transform the 
element nodal degrees of freedom to the generalised degrees of freedom of 
the vibration mode shapes. As a preliminary step in this method, the free 
vibration frequencies and corresponding mode shapes of the structure have 
to be determined, for instance by the subspace iteration method. 

As mentioned earlier, the mode superposition method is inefficient and 
often unable to cope with the highly non-linear dynamic responses of tension 
structures. As such a problem has no true vibration modes, it is therefore 
more appropriate to use the direct integration methods. 

9.2.2 The direct step-by-step time integration methods 

The direct time integration methods are essentially numerical solution 
schemes. In these methods, equation (9.1.1) is integrated directly by a 
numerical step-by-step procedure in which the time history is divided into a 
series of finite time intervals. The response at the end of any time interval is 
evaluated in terms of the initial conditions and the loading during the 
interval. In general, the direct integration methods can be divided into the 
following two classes [22] 

(i) the implicit scheme in which the equilibrium conditions at time ti+l are 
used to solve for the response at time tl+l, 
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(ii) the explicit scheme in which the response at time ti+l is computed based 
on the equilibrium conditions at time t1. 

The implicit schemes which are widely used include the Houbolt, Wilson-9 
and Newmark methods. These methods differ in terms of the finite 
difference expressions used to derive the acceleration, velocity and 
displacement terms in equation (9.1.1). The implicit schemes are 
unconditionally stable for linear problems. The full stiffness matrix has to be 
assembled and a set of simultaneous equations solved at each time step. 
Furthermore, for non-linear solutions, iterations may be neccesary at each 
time step or several time steps with an updated stiffness matrix. The Newton- 
Raphson or modified Newton-Raphson method may be used for these 
iterations. As the implicit schemes are inherently more stable, comparatively 
large time steps can be used in tracing the dynamic response. 

Although numerical instability may not arise when larger time steps are used 
in the implicit schemes, the high frequency responses tend to be filtered out. 
The reason for this filtering-out effect is the presence of artificial damping 
which leads to amplitude decay and period elongation [22,23]. This occurs for 

example in the Houbolt and Wilson-8 methods. In the Newmark method, 
period elongation is present but not amplitude decay [106]. In other words, the 
high frequency responses are in general not accurately determined in the 
implicit methods. 

The explicit schemes are conditionally stable whether the solution is linear or 
non-linear, ie. the time step used should be less than a critical value to avoid 
numerical instability. The critical time step is governed by the mass and 
stiffness at each node of the element idealisation of the structure. If a diagonal 
mass matrix is used, the equilibrium and compatibility equations can be 
satisfied at the element level. The assembly of the full stiffness matrix and the 
solution of simultaneous equations can therefore be avoided. This makes the 
explicit schemes computationally more efficient than the implicit schemes. 
Both geometric and material non-linearities can also be easily taken into 

account within the explicit schemes. The central difference method is the 
most widely used explicit scheme. In terms of accuracy and complexity, this 
method lies between the simple Euler method and the higher order or 
predictor-corrector methods. The central difference method has no artificial 
damping which can suppress the mode responses. 

The mode frequencies are often overestimated when consistent mass 
matrices are used whereas lumped masses underestimate the mode 
frequencies. The explicit central difference method tends to overestimate the 
mode frequencies. Hence, lumped masses (ie. a diagonal mass matrix) are 
used in the explicit central difference method so that both accuracy as well as 
computational efficiency can be achieved. 

The highest frequency of the dynamic response determines the maximum 
time step allowed in the conditionally stable methods. On the other hand, the 
overall dynamic response may be governed largely by the lower dominant 
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modes in the response. This leads to the idea of having fictitious masses in, 
the directions of the highest frequency and true masses for, the more flexible 
degrees of freedom in the structural idealisation [12,141. As a result, larger 
time steps can be used in the explicit central difference scheme. 

For the analysis of flexible membrane structures, Oden, Key and Fost [1081 
suggested that the advantage of unconditional stability in some implicit 
methods is outweighed by the need to solve a complete set of simultaneous 
equations at each time step, and that the time step required for accurate 
modelling is usually as small as that required for numerical stability of 
explicit schemes. 

There are also investigations into the possible use of mixed time integration 
schemes such as mixed explicit-implicit schemes [221. 

9.3 Dynamic analysis by an explicit numerical scheme 

The explicit central difference scheme is the basis of the dynamic relaxation 
(ie. DR) method applied in earlier chapters to the static analysis of tension 
structures. The same explicit numerical scheme can be used to investigate the 
dynamic responses of tension structures as well. Such an explicit numerical 
scheme has been applied to the dynamic analysis of an impulsively loaded 
pneumatic dome [11]. 

For the dynamic relaxation method as outlined earlier in chapter 3, the 
damping constant is set to zero and the kinetic damping procedure 
implemented to control the solution process until it converges to an 
equilibrium static state. In addition, there are artificial controls such as 
fictitious masses and fictitious elastic properties which can be used to 
improve the convergence of the solution. Only few changes to the explicit 
numerical scheme are necessary when used for the purpose of dynamic 
analysis. The kinetic damping procedure being an efficient numerical tool for 
achieving static solutions, is not appropriate for the dynamic analysis. The 
viscous damping procedure should be adopted instead with a suitable value 
chosen for the damping constant. It is usual that light structural damping is 
used. The explicit numerical scheme traces the damped dynamic response of 
the structure. The actual values have to be assigned to the nodal masses and 
the elastic properties. However, as mentioned above, fictitious nodal masses 
may be used in directions where they do not significantly influence the 
overall dynamic response and yet allow the use of larger time steps. With 
these considerations in mind, the basic mechanics of the explicit numerical 
scheme outlined in chapter 3 are applied here to study the dynamic response 
of a pneumatic dome. During the dynamic analysis, the actual trace of the 
structural vibrations is followed from which the vibration characteristics such 
as the natural frequencies can be determined. Of interest are also the 
structural displacements at each time step and in order to obtain the high 
frequency responses, small time steps are required. 
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On the basis of the explicit numerical scheme described above, further 

considerations are needed to account for the creep effects, on/off buckling and 
aerodynamic effects, and are discussed in the sections which follow. A few 

modifications or extensions will be added to the basic scheme to incorporate 
these considerations. 

9.4 Visco elastic material behaviour 

A visco-elastic material exhibits the combined characteristics of a viscous 
liquid and an elastic solid. Visco-elastic properties are present in most 
membrane materials. The essential difference between a visco-elastic material 
and a purely elastic one is the introduction of time dependence. A visco- 
elastic material experiences creep, ie. deformation which occurs with time at 
constant stress. In general, a flexible membrane structure has very little 
damping capacity by itself. Vibrations are dissipated mainly through the creep 
effects in the membrane material. Consequently, it is important to include the 
modelling of visco-elastic material behaviour into the dynamic analysis of 
membrane structures. 

c 

Figure-9.2 

The visco-elasticity effect is characterised by the fact that the rate at which 
creep strains develop depends not only on the current state of stresses and 
strains, but in general, on the full history of their development as well. The 

visco-elastic materials show a clear dependence on the rate of loading; the 

strain being larger if the stress has grown more slowly to its final value. 
Several models are available to describe the visco-elasticity effects in 

materials. Basically, they are derived from the Kelvin solid and Maxwell fluid 
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combined together either in series or in parallel. For the purpose of tracing 
the dynamic response over a short period, it may suffice to use a single 
Kelvin model. Essentially, this simple model may be idealised by a dashpot 
(which models a viscous liquid) connected in parallel with a spring (which 
models an elastic solid) as shown in figure 9.2. 

The spring represents a Hookean solid with an elastic modulus E and in 
which the stress varies linearly with the strain. For the dashpot however, the 
stress is proportional to the strain rate and the constant of proportionality is 

77, ie. the coefficient of viscocity of the liquid resisting the piston as it moves 
in the dashpot. This model is known as a Voigt-Kelvin model with a stress- 
strain-time relationship which will be described shortly. 

From figure 9.2, for the same e in both the spring and dashpot, the total stress 
in the model is given by the sum of the contributions, d and d' as follows 

d=E ec, d' = Oc, 

Q=d+d'=EEC+i7ýc, 

11 
cc = 6-ýEEc=a6-be 77 

in which a is the current stress level, -c is the total accumulated creep strain, 

Ec is the creep strain rate, and a and b are the visco-elastic constants for the 

material. 

For a more accurate modelling of the visco-elastic material behaviour, n 
Kelvin elements connected in series may be used and thus, 

nnn 
Ec= y 

, 
Ecr=(Y, ur)Q-Y, hrEcr 

r=1 r=1 r=1 

in which the first summation leads to a constant, and the second gives the 
sum of accumulated creep strains due to the individual Kelvin elements. 

(9.4.1) 

(9.4.2) 

Assuming that cc varies linearly during the time intervals (t -n &t/2) --' 
(t +n Et/2), equation (9.4.2) can be rewritten in the case of a single Kelvin 
element as follows 

(rc t+nOt/2 
_ Cc t-net/2) 

act _b 

(cc t+nit/2 + ect-nAt/2) 
2 (9.4.3) nAt 
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in which n At is the number of time steps between updating of the creep strain 
cc and on rearranging, 

(ect+nit/2 + ect-nAt/2) (CCt+net/2 - £c t-net/2) =a nLt at .-b ntt 2 

(1 + 
bnet) 

e t+nAt/2 
= an tat + (1 - 

bnAt 
I£ 

t-nAt/2 
2c2C 

bnAt 

t+net/2 _a 
nAtat 

(1- 2) t-nAt/2 CC 
(1 + 

bnAt + 
(1 

bnAt £c 
+ 2) 2 

= a'at + b' Eßt-net/2 (9.4.4) 

bnAt 
(1- ) 

in which a' =a 
bnet b' = bntt " (9.4.5) 

(1+ -22) (1+ -22) 

The creep strain eet+net/2 obtained from equation (9.4.4) is assumed constant 
throughout the interval nLt. 

From equation (9.4.4), the vector of creep strains which corresponds to a 
membrane element used in modelling the material can be written as follows 

t+net/2 
£yc = [a'][`pl (Q)t + [b'] (Ec}t-net/2 (9.4.6) 
rxyc 

in which [IF] is a function of the Poisson's ratio only. In equation (9.4.6), it is 
assumed that the material is isotropic and the creep is therefore associated 
only with the deviatoric stress components [143]. Furthermore, the Poisson's 
ratio for creep in an isotropic material can be taken as 0.5 and that the matrix 
[TJ can in turn be written as follows [143], ie. 

1 -0.5 0 

-0.5 10 
003 

(9.4.7) 

For a membrane element with a two-dimensional state of stress, equation 
(9.4.6) then becomes 
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-'xc 
t+Mt/2 lax' 001 bx 

tyc =0 ay' 0 [`P](Q}t +0 

IL Yxyc 00 axy' 0 

in which 
= 

nit 
ax* ay = axy' =a 

(1 +b2t 

b nett (1- 2) 
b'=bb 

+ 
Xy xy (i 

b net 
2 

00 
bo 

b0 
{E ) t-nAt/2 

xy 
c 

(9.4.8) 

(9.4.9) 

and the values of a and b are determined from material tests. In the case of an 
isotropic material, the [ P] matrix is given by equation (9.4.7). 

The choice of which Kelvin model to adopt is dependent on the type of 
loading. For short term dynamic loading, a single element model may suffice 
particularly if of interest is a qualitative study of the damping effect of the 
visco-elastic membrane material. A more complex model may be necessary 
for long term quasi-static creep investigations of a membrane under prestress. 

In this chapter, the creep effects in the membrane material will be considered 
on the basis of a single Kelvin model. Besides simplifying the calculations for 
the creep effects, the use of a single Kelvin model will also enable the 
membrane dynamic properties to be assessed with relative ease. In his 
analysis of a pneumatic dome subjected to suddenly applied dynamic loading, 
Barnes [11] used a single Kelvin model to obtain numerical results of dynamic 
response which agree closely with the experimental values. 

9.5 Incremental procedure to account for on/off buckling 

A membrane material has strength only by being in tension. Under 
compression, it buckles and loses its load carrying capacity. During the 
dynamic analysis, the stresses in the membrane can go from the tensile into 
the compressive state or vice versa. This means that the membrane will 
undergo on/off buckling. A procedure of modelling the on/off buckling has 
to be implemented into the explicit dynamic analysis. At the moment, a 
general formula which describes the stress-strain relation during on/off 
buckling is still unknown and further research is required to derive such a 
formula. However, a practical solution can be found in the procedure which 
will be outlined shortly. The procedure is based on an elastic stress-strain 
relationship. It will involve checking for the presence of negative or 
compressive stresses during the dynamic analysis and resetting any 
compressive stresses to zero. The checks for the presence of compressive 
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stresses, ie. buckling checks need not be carried out at each time interval, but 
can be coupled with the creep strain calculations. 

The incremental procedure to allow for on/off buckling consists of the 
following three stages [11], ie. 

Std 

At the start of the dynamic analysis, the initial stress level (a)' for each 
element is established. The material elastic and visco-elastic properties 
corresponding to this stress level are obtained. The initial force vector 
(T)' and natural stiffness matrix [K] for each element are also set up as 
follows 

{T}' = [G]T(Q)i, (K] = [G]T[D][G] (9.5.1) 

in which [G] and [D] are the strain and elasticity matrices respectively. 
The vector of creep strains, [Ec) for each element are measured relative 
to the geometry of the structure at this stage. 

Stage II 

The dynamic analysis is iterated through n time intervals At with the 
current force vector {T} for each element updated in the following 
manner 

IT) = {T)' + [K] {De} (9.5.2) 

in which {De} is the vector of element side extensions relative to the 

geometry of the structure at the start of each period of nat. 

Stye III 

For each element: 

(1) determine stresses relative to chosen local x- and y-axes, ie. 

(v)t = (Q)' + [D][GJ(e}t - [DI(EC)t-net/? (9,5.3) 
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in which (e)t is the vector of total side extensions relative to the 
geometry of the structure at stage I; 

(2) determine principal stress vector (Qp) and their inclinations to the 
local x- and y-axes; 

(3) if any of the principal stresses is negative (ie. compressive), set to 
zero and modify principal stress vector to give {a 

(4) the elasticity matrix relative to the principal axes, ie. [Dr] is 
modified with the elastic constants reset to account for buckling, to 
give [Dr'] which in turn is transformed as follows 

[D'] _ [C]T[Dp; ][C] (9.5.4) 

in which [C] is the transformation matrix between the local and the 
principal axes, and [D'] is the modified elasticity matrix relative to 
the local axes; 

(5) determine modified stresses: 

fall = [CJT{Qý, '}, {OQ'}t =1 a'}t - {O'}1; (9.5.5) 

(6) determine new creep strains: 

{cC}t+nAt/2 = [a'][`M[Acr'}t + [b']{£c}t-nLt/2; (9.5.6) 
C) 
týG 

(7) determine new initial force vector: 
0 

(T)' = [G]T{Q')t - [G]T[D']({Felt+not/2 _ {£c}t-not/2); (9.5.7) E 

(8) form new [G] matrix and new natural stiffness matrix: I W. 

[K] = [G]T[D'][G]. 

Figure 9.3 

(9.5.8) 

If a principal stress is found to be zero or negative in step (3) above, the 
material becomes highly anisotropic in behaviour. In the direction of 
compression, the. elastic stiffness becomes effectively negligible and can be 
assumed to be zero. As a result, the [Dr] matrix has to be modified accordingly 
in step (4) above in the following manner 

[ad = [Dp]{ý, ), 
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1Qx -dl l dig 0 Fx 

a= d21 d22 0 EY 
000 d33 0 

in which if 

(i) QX S0 d11 = d12 = d21 = d33 =0 and d22 = Ey, 

(ii) ay 50= d12 = d21 = d22 = d33 =0 and d11 = EX, 

(9.5.9) 

(iii) QX <_ 0 and ay 50= d11 = d12 = d21 = d22 = d33 = 0, (9.5.10) 

where EX and Ey are the moduli of elasticity in the local x- and y-directions 
respectively. The [D'] matrix derived from the modified matrix [Dr'] will in 
turn be used in all subsequent computations until it is reset when the analysis 
next returns to stage III. However, the [D] matrix should always be used in 
step (1) above as it will not be sensible to assume an element has already 
buckled before a buckling check. 

The [C] matrix mentioned above can be defined as follows 

r cos29 sin28 cosüsin9 
[C] = sin28 cos20 -cosOsin9 (9.5.11) 

L 
-2cosOsin9 2cosOsinO cos29-sin29 

in which 0 is the angle between the local x-axis and the direction of 
maximum principal stress. 

The incremental procedure outlined above will be simplified when the local 
axes of each element are aligned to coincide with the warp and fill directions 
of the membrane material which are also the directions of the principal 
membrane stresses. By doing so, any transformation between the local axes 
and the principal stress directions can therefore be avoided. In such a case, the 
[C] matrix is effectively an identity matrix. The incremental procedure with 
the above simplification is implemented into the explicit dynamic analysis 
considered in this chapter. 

In the above incremental procedure, the creep and buckling effects are both 

considered in stage III after each period of nEt in stage II. In this way, the 
explicit dynamic analysis will be made more efficient. A larger value of n may 
be allowed if a very small time interval At is used. In some cases however, it 
may be required to perform the buckling checks at a frequency different from 
that at which the creep effects are considered. 
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9.6 Pneumatic stiffness and damping 

Under investigation in this chapter is a pneumatic dome pressurised by air on 
the inside. The internal (ie. inflation) pressure is maintained at an operating 
level by means of mechanical fans. At the start of the dynamic analysis, the 
dome will be caused to undergo vibrations. As the dome vibrates, the internal 
(or enclosed) volume of the dome will increase or decrease accordingly, ie. 
volume-displacing modes of motion. These volume changes gives rise to the 
pneumatic stiffness and damping in the dome. The pneumatic stiffness is due 
to the increase in internal pressure as the internal volume decreases. On the 
other hand, the pneumatic damping is due to the increase in internal 
pressure in direct proportion to the rate of volume decrease. As the dome 
under consideration here is essentially sealed with negligible air leakage, the 
pneumatic stiffness will be significant and thus, has to be taken into account 
within the dynamic analysis. The pneumatic damping however is important 
only if there is quite high air leakage from the dome which is not the case 
here. Consequently, the pneumatic damping can be ignored in the dynamic 
analysis of the dome. 

Furthermore, the internal pressure can be assumed to be uniform throughout 
the *dome at any instant because the time taken for an acoustic wave to 
propagate across the dome is typically several times less than the period of 
major membrane vibrations [811. The air in the dome is also assumed to 
behave isentropically as would be the case in a dynamic situation. The 
pneumatic stiffness of the dome is considered using the following 
relationship between pressure P and volume V assuming isentropic ideal gas 
behaviour, ie. 

PVa = constant (9.6.1) 

in which a is a coefficient which can be taken as 1.4 for air. In the explicit 
dynamic analysis, equation (9.6.1) is expressed in the following form 

Pint = (Pint-At + Pex) (V 
t-D tyta- 

Pex (9.6.2) 

in which V t-et and Vt are the internal volumes at times, (t - At) and t 
respectively, Pint-et and Pint are the internal pressures at times, (t - At) and t 
respectively, and Pex is the external (ie. atmospheric) pressure. 

Subsequently, for each membrane element, the internal pressure at time t 
gives rise to the following forces 

Px It 
Py .6x Pint x {un}t (9.6.3) 

z 
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in which (un) t is an outward normal vector of' the element, and P., P3, and PZ 
are the forces in the global x-, y--and z-directions respectively at each node of 
the element. 

9.7 Added mass effects 

A membrane encounters more resistance when oscillating in air than in a 
vacuum. The resistance comes from having to mobilise the surrounding air 
attached to the membrane into motion as well. The mass of air which is set 
into motion can be termed as the added mass. It has been found from 
experiments and theoretical work that for a sphere, the added mass is 
approximately equal to one half of the mass of fluid displaced by the sphere. 
As would be expected, the shape and stiffness of the body, the nature of its 
motion, and the density of the fluid are all factors which will have an 
influence on the. added mass. 

For an air-supported structure, the added mass of the surrounding air will 
have an effect on how the membrane will behave and therefore deserves 
much attention particularly so considering the lightweight nature of the 
membrane. The membrane motion induces pressure perturbations in the 
surrounding air. These pressure changes are proportional to the normal 
accelerations of the membrane. If the pattern of these changes is in phase with 
the membrane motion, no energy is added to or lost from the membrane. 
However, if they either lead or lag behind the membrane motion, then the air 
acts as an exciter which may lead to instability, or as a damper respectively. 

Jensen [791 conducted a series of tests on suspended cable structures with and 
without membrane cladding, and concluded that the added mass effects are 
significant for the membrane-clad nets. He concluded that the added mass m" 
could be approximated by the following formula, ie. 

mll _ cmPaa3 9.7.1) 

in which cm (= 2.7---> 7.5) is a coefficient dependent on the shape and vibration 
mode of the structure, pa is the density of air, and a is a typical dimension of 
the structure such as the radius for a dome. 

For the membrane dome with a radius of 2.37m considered here, equation 
(9.7.1) gives an added mass which ranges from 44.1kg to 122.4kg, ie. 44 to 122 
times the membrane mass which is about 1.0kg. In addition, Irwin, et. al. [77] 
using an almost flat two-dimensional membrane to study the roof of the 
Montreal Olympic Stadium (with a 180m x 120m elliptical membrane roof) 
found that the added mass due to the attached air was about 37 times the 
membrane mass. Clearly, the added mass has a much more significant 
inflence on the dynamic response of the dome than the membrane mass. As a 
result, the exclusion of the added mass effects from the explicit dynamic 
analysis will only lead to unrealistic prediction of the dynamic response. 
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Krakowska [86] suggested that there are three different approaches of handling 
the problem of modelling the effects of the surrounding air within the 
dynamic analysis: 

(1) the behaviour of surrounding air can be modelled numerically using 
equations from fluid mechanics, and coupled with the structural dynamic 
analysis; 

(2) the influence of surrounding air on the structural response is accounted 
for by means of additional terms in the mass, damping and external force 
matrices of the equations of motion; this may be derived from theoretical 
models and/or simple relations from fluid mechanics; 

(3) an approach similar to (2), but with the additional terms obtained from 
simple theories combined with experimental coefficients. 

In general, the least amount of computations will be involved if the approach 
in (3) is adopted, but at the same time, a large number of experiments also 
need to be carried out; experiments are required for the different types and 
shapes of membrane structures. For instance, Jensen [79] derived equation 
(9.7.1) from the results obtained through a series of experiments. 

The approach in (1) in theory, has the potential of giving the most accurate 
solution. However, this approach probably requires an enormous amount of 
computations to solve the time dependent equations from fluid mechanics. 
This approach has been used by Krakowska [86] in the form of a coupled fluid- 
structure numerical scheme to investigate the dynamic response of a 
suddenly unloaded air-supported dome. A formulation of the Lagrangian 
type was used for the fluid, ie. the motion of every particle of the fluid is 
traced historically [90]. The independent variables are the initial position 
vectors of the fluid particles and time. The internal air was divided into 
triangular elements for a two-dimensional case, and into tetrahedral 
elements for a three-dimensional case. Each air element was assumed to have 
a constant mass, and to undergo translations and distortions due to 
compressibility. The influence of the external air was not considered. The 
behaviour of the internal air was described by equations from fluid 
mechanics. The motions of the air elements were coupled with the dynamic 
response of the membrane. However, a very fine mesh and thus, a very small 
time step was required for the explicit dynamic analysis. The enormous 
amount of computing time needed to achieve converged solutions means 
that this method is currently impractical. A similar method has been used by 
Barnes [19] to analyse the dynamic response of a cylindrical membrane 
structure subjected to a suddenly applied patch loading. Both the internal and 
external air were discretised into finite air elements. Again, extremely slow 
convergence was observed even though the problem considered was only a 
simple two-dimensional one. Until much more powerful computers become 
available in future, the approach in (1) is at present not a practical solution. 
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On the other-hand, the approach in (2) seems a practical one, ie. it involves 
finding an acceptable solution which demands much less computational 
effort than the approach in (1). Consequently, this approach is adopted for 
implementation into the explicit dynamic analysis being considered here. 

Furthermore, for the approach in (2), the modelling of the influence of 
surrounding air on the dynamic response will require the application of a few 
concepts from the field of fluid mechanics. There has been much theoretical 
work done in this vast field, and the classic text by Lamb [90] is the primary 
source for the basic concepts of fluid mechanics outlined in the discussion 

which follows. These concepts are those relevant for modelling the added 
mass effects under investigation here. 

9.8 Basic assumptions 

As mentioned earlier, the solution for the dynamic response of a tension 
structure is a complex aeroelastic problem. Subsequently, a few assumptions 
have to be made in order to simplify the problem and make it solvable with 
the available means. The basic assumption is that the air flow is irrotational, 
ie. it has zero vorticity. The definition of vorticity can be illustrated using 
figure 9.4 in which u and v are the fluid velocities in the x- and y-directions 
respectively. 

y v+ ay 

c u+- ay 

ay 
V 

v+-ax 

Au 

B u+-otj ax ax- 
1 6x 

X 

Figure 9.4 

In general, u and v will be functions of x and y, and also time, if the flow is 
unsteady. A, B and C are three fluid 'particles' moving with the fluid. Figure 
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9.4 shows an instant in which the line AB is horizontal and the line AC is 
vertical. The anti-clockwise angular velocity of the line AB is given by 

vertical velocity of B- vertical velocity of A (v + SO -v 
distance AB = Sx 

Sv av 
Sx - ax (as Sx-ý 0). 

Similarly, the clockwise angular velocity of the line AC is äy. The vorticity or 
mean angular velocity about a line parallel to the z-axis is given by 

z1 Lax ayj (9.8.1) 

The minus sign occurs because 
äx 

is anti-clockwise and 
äy 

is clockwise. In 

addition, the rate of shear strain is defined by 

'I' v au 
az+ýy. (9.8.2) 

A perfect fluid is a fluid (liquid or gas) with no viscosity (ie. inviscid), and if 
the vorticity of the flow of a perfect fluid is initially zero, it will always 
remain so. Therefore, viscosity is necessary to generate vorticity and since the 
viscosity of air is very low, it seems reasonable to assume that the flow of air 
is irrotational (ie. has zero vorticity). However, the intense rates of shear 
strain which occur when a fluid flows past a solid surface means that vorticity 
is generated in the boundary layer and if the flow separates from the surface, 
the vorticity is shed into the main flow to form a turbulent wake. 

From the studies by Hess and Smith [72], the neglect of viscosity is justified 
except at points in or very near regions of catastrophic separation, for 
example, wakes. Local regions of separation and reattachment do not 
normally invalidate the calculations. Even when catastrophic separation is 
present, the calculations are valid a moderate distance forward of the 
separation point. 

It is virtually impossible to proceed ahead with the theory without the 
assumption of irrotational flow, even with the most powerful computers. 
Hence, the theory will only produce results which correspond to the 
assumption made, and according to Williams [136,137,141), aeroelastic wind 
tunnel tests should still be used for accurate quantitative predictions. 

Furthermore, the air is assumed to be incompressible. This assumption is 
reasonable since pressures associated with the wind are of the order of 
magnitude of 1 kNm72 whereas the atmospheric pressure is approximately 100 
kNm'2 so that the volumetric strains will be of the order of 1% as given by 
equation (9.6.1). 

+ 
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The assumption of incompressibility of air can also be viewed in terms of the 
sound waves, ie. is justified if the wavelength. of sound is much larger than 
the wavelengths of movements in the membrane as is usually the case for an 
air-supported structure. 

9.9 Potential flow theory 

In the following discussion, the symbolic vector operator 

V=iax+jay+kaz (9.9.1) 

is used, in which i, j and k are unit vectors in the global x-, y- and z-directions 
respectively. If 

9= f(x, y, z) 

is a differentiable scalar function, then Vq is the gradient of q, ie. 

gradq=0q=iä + jy+kä. (9.9.2) 

In addition, for a vector field such as 

lp(x, y, z) =i lpx (x, y, z) +j lpy (x, y, z) +k( (x, y, z), (9.9.3) 

the divergence is then defined as follows 

aýcx ý ascZ divrp = 0"ßp = ax + ay + aZ " (9.9.4) 

For the case of zero viscosity and constant density, the general Navier-Stokes 
equations reduce to the well known Eulerian equation of motion, ie. 

ät + (V. V)V =-P vp (9.9.5) 

in which V is the fluid velocity at any point and time t, p is the fluid pressure, 
and p is the fluid density which is constant, and the equation of continuity 
becomes 

i 

V-V=0 (9.9.6) 

or, in Cartesian notation 

avX IVY avz 
ax + ay + aZ 0 (9.9.7) 
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in which Vx, Vy and VZ are the component velocities in the global x-, y- and 
z-directions respectively. The equation of motion (equation (9.9.5)) accounts 
for the system of forces acting in the fluid, and the equation of continuity 
(equation (9.9.6)) ensures that there is conservation of mass throughout the 
fluid. 

P(Y_�_. Yl 

Figure 9.5 

It is assumed that the locations of all boundary surfaces are known, possibly as 
functions of time, and the normal component of fluid velocity is prescribed 
on these boundaries. Let r- denotes the boundary of 92 which is the region of 
flow as shown in figure 9.5 and the boundary condition is given by 

V'nlr =F (9.9.8) 

in which n is the unit outward normal vector at a point on r, and F is a 
known function of position on r and possibly also a known function of time. 

The velocity field V can be expressed as the sum of two velocities, ie. 

V= U+v. (9.9.9) 

The vector U is the velocity of the onset flow, which is defined as the velocity 
field that would exist in the fluid in the absence of all boundaries. The vector 
v is the disturbance velocity field which exists as a result of the boundaries. 
The velocity v is assumed to be irrotational and may thus be written as 
follows 
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-k2l (9.9.10) -0oi-lay az ax 

in which 0= O(x, y, z) is a scalar function which in this case is the velocity 
potential. The existence of a velocity potential depends on the condition of 
irrotationality assumed for the velocity v. By using equation (9.9.10), the 
number of dependent variables in the problem considered here is reduced by 
two. However, it is not necessary to apply the assumption of irrotationality to 
the velocity U. Since U is the velocity of an incompressible flow, it satisfies 
equation (9.9.6), and thus, so does v, ie. 

0"v=0. (9.9.11) 

Using v from equation (9.9.10) in equation (9.9.11) leads to the following 

V20 =0 (9.9.12) 

in which V2 = V. V is the Laplacian operator. Equation (9.9.12) is the Laplace 

equation for the -region 0 shown in figure 9.5, and expresses the continuity 
condition for an incompressible potential flow. From equations (9.9.8), (9.9.9) 

and (9.9.10), the boundary condition on 0 is then given by 

Oo"nlr=ä Ir=U"19Ir-F. (9.9.13) 

The essential simplicity of potential flow is that the velocity field is 
determined by the equation of continuity (equation (9.9.11)) and the condition 
of irrotationality (equation (9.9.10)). Thus, the equation of motion (equation 
(9.9.5)) is not used, and the velocity may be determined independently of the 
pressure. Once the velocity field is known, the pressure is calculated from 
equation (9.9.5). 'The problem is essentially reduced to the solution of 
equation (9.9.12) subject to the boundary condition given by equation (9.9.13). 

For a steady potential flow (ie. both U and v assumed to be steady and 
irrotational), equation (9.9.5) then reduces to 

(V. V)V = -pVp (9.9.14) 

which can then be integrated to give one of the forms of the Bernoulli 
equation, ie. 

p=G-2IV12 (9.9.15) 

in which G is a constant from the integration. In most cases, the onset flow is 
a uniform stream, ie. U is a constant vector. Under these conditions, equation 
(9.9.15) can be used in an expression for the pressure coefficient Cp given as 
follows 
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cp_ýPPoo=1-Iv12 
2PIU12 

1 Ui2 
(9-9-16) 

in which p� is the pressure at infinity. The assumption of steady flow implies 
that conditions of instability such as flutter cannot be modelled directly. 

The boundary condition given by equation (9.9.8) may be prescribed in 
different forms. For a fluid mass which is unbounded, the boundary 
conditions at infinity and on the surface of a body submerged in the fluid are 
considered. It is often that the fluid is taken to be at rest at infinity. On the 
surface of a submerged body, the boundary condition may be such that in a 
direction normal to the surface, both the fluid and the surface have the same 
velocities. On the surface of a solid body, the fluid velocity normal to the 
surface is taken to be zero, ie. the function F in equation (9.9.8) is equal to 
zero. 

9.10 golution of the Laplace equation 

As shown above, the main concern in the potential flow problem comes 
down to solving the Laplace equation, ie. equation (9.9.12). Despite the fact 
that the Laplace equation is one of the simplest and best known of all partial 
differential equations, there are only a few useful exact analytic solutions. 
This is because equation (9.9.12) can be solved analytically only for an 
extremely limited class of boundary surfaces r. It is therefore likely that the 
exact solution of the potential flow problem for arbitrary boundaries has to be 
found in a numerical approach. Furthermore, it is efficient in the numerical 
approach to reduce the problem to an integral equation over the boundary 
surface. For the adopted approach in this chapter, it will involve sources and 
doublets distributed over the boundary surface. 

A source is a point from which fluid is imagined to flow out uniformly in all 
directions. If the total flux outwards across a small closed surface surrounding 
the point is co, then Co is called the strength of the source. A negative source is 
called a sink. 

A combination of two equal and opposite sources ±w, at a distance Ss apart, 
where, in the limit, Ss is taken to be infinitely small, and co infinitely large, 
but so that the product cobs is finite and equal to µ (say), is called a doublet of 
strength µ, and the line Ss, considered as drawn in the direction from -tee to 
+ co, is called its axis. 

Although the sources and doublets defined above are purely abstract 
conceptions which do not occur in nature, they are nevertheless useful, as 
will be shown, for describing the motion of a fluid. 
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Figure 9.6 

According to Lamb [90], any continuous acyclic irrotational motion of a fluid 
mass may be regarded as associated with a distribution of sources and doublets 
over the boundary surface. This can be proved using the divergence theorem 
(Gauss's theorem) which states that the volume integral of the divergence of 
a vector field (p taken over any volume l is equal to the surface integral of tp 
taken over the closed surface surrounding the volume SZ (see figure 9.6), ie. 

JV. 
tpdn = 

5nsq, dr 
nr 

or, in Cartesian notation 

j(Xax 
+ ay + ýzZ) dxdydz _ (lcpx+mcpy+ncpz)di' 

(9.10.1) 

(9.10.2) 

in which the volume S2 refers to a region in space occupied by the flow field, r 
is the surface which bounds fl, n is a unit vector (with direction cosines given 
by 1, m and n) normal to I' and directed into S2, and qp is a continuous function 
of position inside 92. The minus sign in equation (9.10.1) is due to the fact that 
n is directed into Q. 

The vector qp in equation (9.10.1) can be defined as follows 

(P = ovos - osvo (9.10.3) 

in which 0 is the velocity potential of the flow in S2, so that 
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O -VO (9.10.4) 

is the fluid velocity in K2. On the other hand, 0s is the potential of a source of 

unit strength at some arbitrary point P(x y, z) in S2, and 

OS =- 
Iln(r) in two dimensions, 

1 
-11r in three dimensions. (9.10.5) 

in which r is the distance from P to the point at which (p is to be evaluated, as 
shown in figure 9.6. For a continuous function (p in fl, the terms q, VO, 0s and 
VO should be continuous as well. However, Os and its derivatives are 

singular when 4p is evaluated at P (ie. r= 0). Hence, before integrating over SZ, 
a small circle (in two dimensions) or sphere (in three dimensions) with 
radius e and centred at P is defined, as shown in figure 9.7. Let S be the part 
of S2 outside that excluded region, and re be the surface of the circle or sphere. 
For the same reason, such entities as the vortex sheet should be excluded 
from S2 since the velocity v is discontinuous across such a sheet. 

r. 

Figure 9.7 

Gerterally, the surface I' has the following three components [1001, ie. 

(i) rB, the surface of the body immersed in the flow, 
(ii) r, a surface far from I'B, 
(iii) rc, a two-sided surface that runs between r and F,,, and which 

sandwiches discontinuities in 0 and/or VO. 
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The terms Os and 0 satisfy the Laplace equation everywhere in Str. Hence, 

from equation (9.10.3), 

V"(p = VO-Vos + ov"vos - 
vos"vo 

- osv"vo 

= Ov20S - Osv20 

=0 in K2,. (9.10.6) 

Applying equation (9.10.1) to the region S2£ then gives 

5V. 
qdQ =0= -fit -(ows-ovo) dr. (9.10.7) 

De r+rr 

Equation (9.10.7) can in turn be written as 

fn. 
(OVos - ¢Vo)dr =f n"(OVOS - OOO)dI'. (9.10.8) 

rr r 

If (e-ý 0), then 0 and VO approach their values at P, ie. O and -vp respectively, 

and thus, the left hand side of equation (9.10.8) becomes 

fn 
- (0 V Os - os00)di' tt 4f n"VOsdI' + vp. 

f 
nOsdr. (9.10.9) 

r. rE r. 

The first integral on the right hand side of equation (9.10.9) is just the volume 

rate of flow through 1'E, which equals the strength of the source inside, 

namely, unity and thus, 

Jn. 
v5dr =opf 

20-5 
dI'=o, (-1)=-o,. (9.10.10) 

rE rE 

As for the second integral on the right hand side of equation (9.10.9), r is 

constant (ie. e) on r and so is 0s from equation (9.10.5). Taking Os outside the 
integral leaves 

Jndr 

r. 
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which in turn vanishes by symmetry, and thus, in the. limit, equation (9.10.8) 
reduces to 

4 =-f(n"0o)os- t(n"VoS)dr (9.10.11) 

which is known as the Green's third identity. Equation (9.10.11) gives the 

value of 0 at any point P in 92, a region in which 0 is a continuous solution of 

the Laplace equation, in terms of the values of 0 and (-n "V 0) on the boundary 

of Q. 

Although the derivation of equation (9.10.11) is rather mathematical, there is 

a physical interpretation to the result. The term Os in the first right integral, ie. 

-f (n. vc)»sdr 
r 

(9.10.12) 

depends only on the distance r between P and the dl' whose contribution to 
the integral is under consideration. Therefore, although in equation (9.10.5), 

Os is the potential of a source of unit strength at point P, evaluated at a point 

on IF a distance r away, it could also be taken as the potential of a source of 

unit strength at dl', evaluated at P. As such, the term in equation (9.10.12) can 
be interpreted as the potential of a source distribution on r whose strength 

per unit area is (-n -V 0), ie. the component normal to r- of the local fluid 

velocity. 

For the second right integral in equation (9.10.11), ie. 

Jý(n. V5) dr (9.10.13) 

in which the term (n "V OS) is the rate of change of Os in the direction of n at 
the element dl'. This can be interpreted as follows. 

As shown in figure 9.8, let gl and g2 be two points S apart, on either side of 
dr, and arranged so that the vector from g2 to gi is given by 3n. Let 01 and 02 
be the values of potential at g, and g2 respectively due to a source of unit 
strength at P, and thus, 
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P 

Figure 9.8 

lim 01 02 

n. v 
s =S_, o S (9.10.14) 

As demonstrated above, 01 and 02 can also be taken as the potentials at P due 

to unit-strength sources at gl and g2 respectively. Consequently, the term 

(01/5 - 0,15) refers to the difference in potentials at P due to two sources of 

strength 1 /5 with one at gl and another at g2. As (S-' 0), the two sources 

coalesce into a doublet of strength given by the product of the source strength 
and the distance between the sources, which in this case equals to unity. 
Hence, equation (9.10.13) can be viewed as the potential at P due to a doublet 

distribution over the surface I'. The axes of the doublets are normal to I', and 
the strength per unit area of the distribution is given by 0, ie. the local 

velocity potential. 

It has been shown that the velocity potential of any irrotational flow can be 

given by a distribution of sources and doublets over its bounding surfaces. 
The strength of the source and doublet distributions per unit area are in turn 

given by the boundary values of PO/an) and 0 respectively. 

Subsequently, equation (9.10.11) can be rewritten as follows 

= -4n r an dl' + 4n 0 Ja()dr. (9.10.15) 

rr 

According to Lamb [90], equation (9.10.15) is only one out of an infinite 

number of surface distributions which will give the same value of 0 

throughout the region Q. It is shown below that the distribution in equation 
(9.10.15) can further be replaced by one of sources only, or of doublets only, 
over the boundary. 
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Figure 9.9 

Let 0* be the potential in the region 0ß that is inside the body surface rB, as 

shown in figure 9.9. The term Os is still the potential of a point source outside 
the body surface, and from equation (9.10.3), 

(p* = o*vos - o50o*, (9.10.16) 

and from equation (9.10.6), 

Dý tp* =0 in Sta. (9.10.17) 

Hence, from equations (9.10.1) and (9.10.16), 

0=f n*"(O*VcS - 0S0O*)dI' (9.10.18) 
rB 

in which the unit normal n* is directed into 0ß and so is equal and opposite to 
the n 'in equation (9.10.11) at the same point on r,,, ie. n* = -n. By addition of 
equations (9.10.11) and (9.10.18), and assuming no contributions from the 
surfaces r., and T c, 

=f (ßOs -µn. V) dr (9.10.19) 
rß 
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in which 
0=n "V (O - M. 

and u= 0-0*. (9.10.20) 

Firstly, consider the case of 0= 0* at the surface. The tangential velocities on 
the two sides of the boundary are then continuous, but the normal velocities 
are discontinuous. This may be illustrated by considering a fluid which fills 
infinite space, and to be divided into two portions by an infinitely thin 
vacuous sheet within which an impulsive pressure pc is applied, so as to 
generate the given motion from rest [90]. The last integral in equation 
(9.10.19) vanishes, so that 

OP - 4n r Vn 3n)ß' 

rB 

(9.10.21) 

and the motion (on either side) is the result of a surface distribution of 
sources, of density 

lan 
T 

n*)* 

Secondly, consider the case of n"V0=n"V 0* over the boundary. This gives 
continuous normal velocity, but discontinuous tangential velocity over the 
boundary. This motion may be imagined to be generated by giving the 
prescribed normal velocity (-Dolan) to every point of an infinitely thin 
membrane coincident in position with the boundary [90]. In this case, the first 
integral in equation (9.10.19) vanishes, so that 

OP = 4n an(r)dry 
rB 

(9.10.22) 

and the motion (on either side) is due to a surface distribution of doublets, of 
density 

(0-0*). 

According to Lamb [90], the above results for 0 in terms of sources alone, or of 
doublets alone, are unique; whereas the representation in equation (9.10.11) is 
indeterminate. 

In equation (9.10.19), the assumption of no contribution from the surface I, 0 is 
justified if the fluid is at rest at infinity. In addition, the surface I'C can be 
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excluded if there are no discontinuities in 0 and/or VO within the region a 
considered. However, if the stated conditions are present, then the effects of 
the surfaces I'., and I'c have to be taken into account. 

9.11 Kinetic energy considerations 

An estimation of the added mass of the surrounding air when set into 
motion can be obtained by considering the kinetic energy of the moving air. 
For a potential flow, the total kinetic energy Tf of the fluid (in this case, 
moving air) is given by [90] 

Tf = -21 
30 

p Oan dr 

r 

(9.11.1) 

in which the integral is taken over the bounding surface r of the fluid. This 

result has a simple physical interpretation. The term (-aO/an) is the normal 

velocity of the fluid inwards, and po is the impulsive pressure necessary to 
generate the motion. In addition, the work done by an impulse is equal to the 
product of the impulse into half the sum of the initial and final velocities, 
resolved in the direction of the impulse at the point to which it is applied. 
Hence, the surface integral gives the work done by the impulsive pressures 
which, applied to the surface I', would generate the actual motion [90]. 

In the case of fluid extending to infinity and is at rest there, and is limited 
internally by one or more closed surfaces T, equation (9.11.1) holds only if the 
total flux across the internal boundary is zero, ie. 

fdr=o 

r 
(9.1 1.2) 

with the integration extending over the whole boundary. This may be 
regarded as a generalised form of the equation of continuity (ie. equation 
(9.9.12)). Equation (9.11.2) simply implies that the source or doublet 
distribution does not contribute to the flux. This is certainly a physical 
requirement for flow of an incompressible fluid. It is important to bear in 
mind the condition given in equation (9.11.2) when considering cases in 
which one or more closed surfaces are present, as otherwise the resulting 
kinetic energy becomes infinite [90]. 

A simple relationship between the kinetic energy of the fluid and the added 
mass is given by 

Tf = 2xmax(wm)2 (9.11.3) 
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in which m, is the added mass and wm is a typical or representative velocity of 
the membrane. Furthermore, if the kinetic energy of the membrane is T., 
then the following ratio of the kinetic energies, ie. 

Tf 
- Am 

TM (9.11.4) 

gives a measure of the added mass of the surrounding fluid relative to the 

membrane total mass, and Aam is termed the added mass coefficient. 

The kinetic energy considerations discussed above give rise to a relatively 
simple procedure of estimating the added mass of the surrounding air as will 
be shown. This procedure can also be incorporated into the explicit dynamic 
analysis with relative ease. 

9.12 A diaphragm embedded in an infinite rigid plane 

The concepts discussed above have been applied to the case of a diaphragm 

embedded in an infinite rigid plane by Campbell [42], and a brief account of 
his work is given below. 

The diaphragm is sealed into a rectangular opening (a xb in plan) in an 
infinite rigid plane, completely separating the semi-infinite body of fluid on 
one side of the diaphragm from that on the other side (see figure 9.10). This 
corresponds to the 'closed edge' case in which there is no mixing of fluid 
between the two sides of the diaphragm. The 'open edge' case corresponds to 
a diaphragm oscillating on its own and isolated in an unlimited mass of fluid, 
and in which there is mixing of fluid between the two sides of the diaphragm. 
The normal displacement out of plane of the diaphragm is assumed to be 
small and that the normal velocity distribution is known. The choice of using 
either a distribution of sources or doublets is governed by the boundary 

conditions on and off the body. Using a surface distribution of doublets gives 
continuous normal velocity but discontinuous tangential velocity over the 
diaphragm. On the other hand, a surface distribution of sources implies the 
tangential velocities on the two sides of the diaphragm are continuous, but 
the normal velocities are discontinuous. For the 'closed edge' case, the 
requirement of no mixing of fluid between the two sides of the diaphragm 
favour the use of sources. Furthermore, the sign of the normal velocity does 
not affect the value of the kinetic energy which depends on the square of the 
velocity. Hence, a distribution of sources is used over the diaphragm which is 
lying in the z=0 plane as shown in figure 9.10. On the other hand, a 
distribution of doublets is used for the 'open edge' case. However, only the 
'closed edge' case will be discussed further in this section. 

The diaphragm can be imagined to consist of two sides; the upper side 
represents the top surface of the membrane with the attached air moving in 
the same direction as the membrane; and the lower side models the under 
surface of the membrane. As a result of using a source distribution, the 
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internal and external air move in opposite directions normal to the 
diaphragm. As indicated above, this is acceptable as far as kinetic energy 
considerations are concerned. There are various ways in which to distribute 
the sources. In this case, the diaphragm is divided into rectangular patches 
with a discrete source placed at the centre of each patch. 

From equation (9.10.5), the potential 0 at any point P with coordinates (x, y, z) 
due to a source of strength co placed at the origin is given by 

4nr (9.12.1) 

in which r is the distance of P from the source and thus, r= x2 + y2 + z2. As 
mentioned earlier, the strength of the source can be taken as the total flux 
outwards across a small closed surface surrounding the source. 

The velocity w in the z-direction is then given by 

w= _0 
wz 

az - 41c (x2+y2+z2)3/2" (9.12.2) 

Hence, for a source in the z=0 plane, the flow out of this plane vanishes 
everywhere except at the location of the source. Considering a small circle of 
radius e centred at the source, the average upward velocity way, can be written 
as follows 

C 

1 cv ]im = 2ne a0 Wa v= ne2 4n z-+0+ (92 + 22)3/2 
0 

1w lim -z 
= nt2 2 z-+0+ (02 + z2)1/2 

(C 

0 

1w 
nc22 (9.12.3) 

For (z -ý 0-), equation (9.12.3) gives the average downward velocity as expected 
from the fact that half of the flux from the source flows downward. 

Similarly, for a source of strength co, placed at the centre of a rectangular patch 
i (s x h, see figure 9.10) of area A; in the z=0 plane, 

1 wi 
Wavi = Ai 2" (9.12.4) 

Subsequently, consider the potential in patch i which is contributed by the 
sources at the centres of all other patches. The average potential over the area 
of patch i due to a source at point (xj, yj, 0), ie. the centre of patch j, can be 
obtained as follows 
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XF yF 

Oavi' 
1 J-A '4 J( 

dx 

00x +y 

xF 

1 ln(YF+ 
x2+YF2)dx 

Ai4xj x 
0 

Äi 
wjC; j (9.12.5) 

in which the terms x, y, xF and YF are as defined in figure 9.10, and Cij is a 
coefficient which can be found numerically such as by the trapezoidal rule. 
Considering the distribution of sources over the entire diaphragm, the total 
average potential of patch i is then given by 

Oavi = Äi coj Cij (9.12.6) 
1l 

where n is the total number of patches, and from equation (9.12.4), 

0) i=2x wavj x AI. (9.12.7) 

In order to determine the added mass coefficient A, m (given in equation 
(9.11.4)), it is required to find the kinetic energy of air on both sides of the 
diaphragm. Subsequently, equation (9.11.1) which gives the kinetic energy of 
the fluid, can in this case be written as follows 

Tf = paff o. wu dx dy 
rz 

(9.12.8) 

in which pa is the density of air, Ou and wu are respectively the potential and 

normal velocity over the top surface of the diaphragm, and the z+ term 
indicates that the integration is for the case of (z -+ 0+) over the diaphragm. As 
both 0 and (-aO/an) are symmetrical about the z=0 plane for a source 
distribution, equation (9.12.8) gives the total kinetic energy of air on both sides 
of the diaphragm. 

For a sufficiently large number of patches, the integration can be 
approximated by a summation as follows 

n 
(9.12.9) Tf = Pa E (0avi) (wavi) (A j). 

i=1 

The kinetic energy of the diaphragm in turn can be expressed as 
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n 
Tm -2 Pm (wavi)2 (Ai) (th) 

i=1 

(9.12.10) 

in which pm and th are the density and thickness of the diaphragm material 
respectively. The ratio of (Tf/Tm) then gives an indication of the added mass 
effects of the diaphragm (see equation (9.11.4)). 

Using the above equations, Campbell [42] calculated the added mass effects of 
the diaphragm for various normal velocity distributions prescribed over the 
diaphragm. In each case, convergence was achieved as the number of patches 
were increased. The results obtained includes the case of an aspect ratio (ie. 
length to width of diaphragm) equal to 100. These results were then 
extrapolated to the limit of (n -4oo), and when compared with the two- 
dimensional theoretical results, there was close agreement. 

9.13 A shallow pneumatic dome 

In the previous section, an account is given of an approach (termed here as 
the discrete source method) applied by Campbell [42] to calculate for the added 
mass effects of a 'closed edge' diaphragm. This approach has been further 
applied to assess the added mass effects of a shallow pneumatic dome by 
Krakowska [86], and an account of her work is given in this section. 

The dome is constructed from a light membrane material. In addition, the 
dome has a ratio of maximum dynamic height to span of less than 1: 20 and 
hence, can be taken as a shallow structure. Furthermore, the normal 
displacements (ie. in the z-direction) both observed during experiment and 
determined from theory, are small when compared with the dome diameter. 
The average potentials are calculated for a mesh of triangular and trapezoidal 
patches which lie in the z=0 (or x-y) plane as shown in figure 9.11, with a 
discrete source placed at the centre of each patch. On the other hand, the 
structural analysis is based on the idealisation of the dome into a mesh of 
constant strain triangular elements which lie over the membrane. In the plan 
view of the dome, the node positions of the patches coincide with those of the 
elements. 

As a result of the uniform division of the dome into patches and elements, 
certain variables which are functions of the radius need only be determined 
for the patches and elements in a single slice of the dome. In this case, the 
chosen slice is that represented by the region AOB of the dome as shown in 
figure 9.11(a). Using the normal nodal velocities of the elements obtained 
from the explicit dynamic analysis and assuming a linear variation, the 

velocities Wavi at the centres of the corresponding patches can be found. With 

all the patches lying in the z=0 plane, the r term in equation (9.12.1) can be 

taken as xz + yz. 
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Using equation (9.12.7), the strength of a source at the centre of patch j can be 
obtained as follows 

(D = 2xwavJxAJ. (9.13.1) 

As in equation (9.12.5), the average potential over the area of patch i due to a 
source at the centre of patch j is given by 

xFi xtana 

J- 
f dy 

Oavij = 4rrAixsi-xtana (x-xj)2 + (y-yj)2 

xFi 

in 
Ixtana-yj + (x-xß)2 + (xtana-yß)21 

4nAi J 
_xtana- "+ x-xj)2 + xtana+ 2 

xsi 
1yj (( yj) 

W 
=A Cij. (9.13.2) 

For a patch j within the AOB region in figure 9.11(a), equation (9.13.2) 
simplifies to 

xFi 

- -1- lnIxtana+ 
(x-xß)2+(xtana)2ý 

CIX Oavij - 21rAi 
, 

sl 

Ix- xI xsi l 

W 

=ÄC; ý . (9.13.3) 

The coordinates (xYyI ) at the centre of a patch which is outside the AOB 

region can be found from the coordinates (xi', 0) of the corresponding patch 
within the region in the following manner 

xý = x) 'x cos(ka), yj = xj' x sin(ka) 

in which the (ka) term is as defined in figure 9.11(a). 

Subsequently, the total average potential in patch i is obtained by summing 
the contributions from all patches, ie. 

1n 
Oavi = Ai F- OiCij 

j=1 
(9.13.4) 

in which n is the number of discrete sources distributed over the z=0 plane. 
As the problem has axisymmetry, the average potentials are calculated for 
patches within the AOB region only (see figure 9.11(a)). The potential 
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coefficients Cif due to patches within the COB region of the dome are 
approximately the same as those from the DOA region. Hence, only one set of 
coefficients are determined and then multiplied by two to account for both 
the regions mentioned. Using equations (9.12.7), (9.12.9) and (9.13.4), the 
kinetic energy of the surrounding air is then given by 

ns n 
Tf = 2paZ(YWavjAjCij)wavi 

i=1 j=1 
(9.13.5) 

in which ns is the number of patches in the AOB region (see figure 9.11(a)), 
and from equation (9.12.10), the kinetic energy of the dome is determined as 
follows 

ns 
(wavi'2Ai (9.13.6) Tm pmy 

i=1 

in which pm is the membrane mass per unit area. 

9.14 A generalised discrete source method 

In the work by Krakowska [86] considered above, based on the assumption of a 
shallow pneumatic dome, a' distribution of sources is prescribed over the z=0 
plane. As a result, the mathematics involved are much simplified with the 
z-dimension omitted from various equations. The above assumption 
however, also limits the applicability of the discrete source method to only 
pneumatic domes of low rise-to-span ratios. 

In addition, equations (9.13.2) and (9.13.3) have been derived for the 
arrangement of patches shown in figure 9.11(a). In other words, the use of 
these equations will require the patches to be arranged in such a manner, and 
a restriction will thus be imposed on the idealisation of the dome to give a 
suitable element layout such that the nodes of the elements and patches 
coincide in the x-y plane. As a result, there may be a limitation on the shape 
of the structure which can be considered. It is also inconvenient to use a mesh 
of patches for the average potential calculations which is separate from the 
element idealisation adopted for the structural analysis. 

Furthermore, the use of the trapezoidal rule (or other method) to solve the 
integrals in equations (9.13.2) and (9.13.3) numerically means that there is a 
need to decide on a suitable division of the integral range which will give a 
reasonably accurate result, and a few trials may be required in order to 
establish such a level of division. 

A further consideration is the calculation of the average potential over the 
area of a patch due to a source at the centre of the same patch (ie. for the case 
of (i=j) in equation (9.13.3)). For such a case, there will be rapid variations of 
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the integrand value in equation (9.13.3) as the position of the source is 
approached (ie. as r -+ 0). Consequently, very close intervals are required in the 
vicinity of the source in order to trace these rapid variations as will be shown 
later. 

In this section, it is intended to generalise the discrete source method so that 
the limitations and difficulties mentioned above will be removed. By doing 
so, much more enhancement and power will be added to the method as a 
result. The generalised discrete source method will not be restricted in its 

application to a shallow pneumatic dome, but can in fact be applied to a closed 
membrane structure of any shape. 

(xjyj zj) 

Figure 9.12 

In the generalised method, the sources are placed at the centroids of the 
triangular elements which constitute the structural idealisation of the dome; 
the sources are therefore distributed over the dome instead of the z=0 plane 
as in the case of Krakowska [86]. The centroid of a triangular element is 

calculated using the strategy given in figure 9.12. Although the source 
distribution itself has no bearing on how the dome is to be idealised into the 
triangular elements, the approximation of using discrete sources means that 
sufficiently small element sizes should be used. Furthermore, there is no 
need to use a separate mesh of patches to represent the dome for the average 
potential calculations. This is because the average potentials are calculated for 
the element idealisation of the dome. 

It follows from equation (9.13.2) that 

1 dA 
¢avij - Ti 4n r 

Ai 
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Ill 

-4Aýýi (9.14.1) 

in which r is the distance from any point P(xj, yj, zj) to a point within element i 

as shown in figure 9.13. A discrete source of strength cv, is placed at point 
P(xx, yy zj), and this position of the source is referred to as the control point. On 

comparing equations (9.13.2) and (9.14.1), it can be seen that the Wig coefficient 
is related to the potential coefficient C; i in the following manner 

Cif 
4rt 

a7 

Z 

(al+1) Centroid x3 

__ a y3 

Figure 9.13 

(9.14.2) 

X (oCýý') 

The integral in equation (9.14.1) is carried out over the area A; of triangular 
element i shown in figure 9.13, and the strategy here is to find an analytic 
solution for this integral. 

A local cylindrical coordinate system is introduced with the axis parallel to 
the z-axis and origin at the point (xi, yj, 0) as shown in figure 9.14. For each 
element, such a coordinate system is used with the element lying in a local 
x-y plane, ie. the normal to the element is in the direction of the local z-axis. 
The polar angle 0 is measured clockwise from any convenient reference 
direction, in this case the negative x-axis. From equation (9.14.1), 
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Figure 9.14 

(9.14.3) 

Subsequently, with r=R -+z 2 and dA = RdRdO (see figure 9.14), equation 
(9.14.3) can in turn be written as follows 

R 

RdRdO 
4R2 -+z2 

0 

r 

=ffdrdO 
IzI 

=f rd9 - IzIi O (9.1 4.4) 
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in which the R integration is taken from R=0 to a point on the perimeter of 
element i, and the 0 integration is taken in the clockwise sense around the 
perimeter of the element. 

5%% V. ) 

812 
d, 1 Cý 

2.11i 

s, zýý) 
«ý'ýý 

R 
i12 

y., 

X. f 

(x1 
'Yj . 0) 

Figure 9.15 

For the first term in equation (9.14.4), there is a contribution from each of the 
three sides of triangular element i. For instance, consider side 1 between the 
points (ý1, r/1,0) and (ý2,172,0) as shown in figure 9.15, and its contribution 'p12 
can in turn be calculated using the following formulas. From equation 
(9.14.4), 

2 

V12 = 
Ir 

d0 
1 

= R12Q12 + Iz1112 (9.14.5) 
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in which Q12 = in 
r1 + r2 + d12 

ri +ri-d iz 

R121 zI (ris12(2) 
_ r2s12(1)) 

J12 = tan-' 
rrR2+ z2s (2)s (1) ' 
l2 12 12 12 

rl = (x-4,1)2+(y-1]1)2+z2, 

r2 = (x-X2)2+(y-r72)2+z2. 

d12 = 
ý(ý2 

1 )z + (772 - 77 1 )2, 

RI2 = (x-41)S12 - (y-i1)C12, 

72 - 71 _2 - dal 
S12 

d12 '. 
Cl2 = d12 

S12(1) = (ý1 - X) C12 + (1%1 - y) S12, 
f 

S12(2) _ 2_X)C12 + (712_1�)S12, (9.14.6) 

The terms used above in equations (9.14.5) and (9.14.6) are as shown in figure 
9.15. The above equations are expressed in a compact form which may seem a 
bit complicated, but they are easy to use in practice. In addition, the above 
equations have been derived to apply in a general situation which is 
obviously desirable. 

Similarly, the contributions from the remaining two sides of element i are 
evaluated. The geometric terms corresponding to the side under 
consideration are substituted into equations (9.14.5) and (9.14.6). From 

equations (9.14.4), (9.14.5) and (9.14.6), the WJ term in equation (9.14.1) can 
then be given by 

ii =(P12+923+c31- 1 zI09 (9.14.7) 

in which 4 12, ßp23and ßp31 are the contributions from sides 1,2 and 3 
respectively of element i, and 

AO =0 if the control point lies outside element i, and 

A0= tic if the control point lies within element i. (9.14.8) 

Using equation (9.14.7), the total potential in element i contributed by each of 
the discrete sources distributed over the membrane of the dome and its 
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imaginary mirror image, can be calculated. It is also noted that the singularity 
situation of the source placed at element i own control point does not cause 
any difficulty. Using equation (9.14.8), this situation is dealt with by simply 
assigning a value of 2n to the d0 term in equation (9.14.7). In equation (9.14.6), 
the Q terms in are singular only on the sides of the element, and for z 
(local) = 0, all the I terms vanish. The above equations provide an analytic 
solution for the integrations involved in the average potential calculations. 

The analytic solution derived above requires fewer computations than the 
numerical integrations considered previously. Consequently, the savings in 
computation time can be quite significant especially for a fine element 
idealisation of the membrane. By using the analytic solution, there is also no 
need to perform trials as required in the numerical integrations in order to 
establish the appropriate intervals to use. The analytic solution is also exact 
while the results given by numerical integrations are only approximate. 

By differentiating the V'ij term with respect to the local z coordinate, the result 
is 

VZ = -17i, = sgn(z) [AO - J12 - J23 - J311 (9.14.9) 

as can be gathered from equations (9.14.5) and (9.14.7), and sgn(z) refers to the 
sign of the z coordinate of the control point. For the case of z (local) = 0, 

Vz = sgn(z)0O. 

From equation (9.14.8), it follows that 

VZ = sgn(z) 2n 

and V2=0 

for a control point on the element, 

for a control point outside. 

(9.14.10) 

(9.14.11) 

Subsequently, the average normal velocity over element i, ie. wavi due to the 
distribution of discrete sources over the membrane, can be found. This refers 
to the velocity in the direction of the local z-axis of the element, ie. normal to 
the plane of the element. From the potential flow theory, and equations 
(9.14.1), (9.14.9) and (9.14.11), 

, 
Wavi = 

aäZ 
=4 Ai xCa)= 4nA gn(z)2n = sgn(z)ýi 21 

(9.14.12) 

For a control point defined to have z= 0+, the following relationship can be 
obtained from equation (9.14.12), ie. 
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G i= sgn(z) (2 x wavi xA i) (9.14.13) 

as was derived before in an alternative manner (see equation (9.12.7)). This 

simple but useful relationship enables coi, the strength of the source placed at 
the centroid of element i to be determined from the wavi and Ai terms once 
they are known. The use of the 'sgn(z)' term in equation (9.14.13) ensures that 
the strength coi is always positive. 

The above equations automatically account for the effects of all the details of 
the shape of the triangular element. In other words, these equations can be 
applied in general to any triangular element and thus, impose no constraint 
on how the membrane is to be idealised into the triangular elements. In fact, 
these equations apply equally to an element of any polygonal shape. It is just a 
matter of taking the integration in equation (9.14.5) along each side of the 
element, and the equations adjusted to allow for the contribution from each 
side. For a control point which is far from the element i, the details of the 
shape of the element are not significant. In such an instance, an 
approximation may be allowed based upon the use of a multi-pole expansion. 
This may lead to some savings in computation time. However, it is not the 
intention here to explore this possibility any further. It is an area for some 
future work. 

With the attractive features described above, the generalised method 
developed has widened the'scope of application of the discrete source method 
used by Krakowska [86]. It offers a practical solution to use for the added mass 
calculations within the explicit dynamic analysis. 

9.15 Comparison of 'Pu coefficients calculated numerically and d analytically 

As an effort to clarify a few ideas discussed in the previous section, these ideas 
are applied to the two simple cases shown in figures 9.16 and 9.18. From 

equation (9.14.3), 

dA (9.15.1) 
Al 

and the task here is to calculate the 'P values for these two cases. 

First of all, consider the case of a single triangular element shown in figure 
9.16 with the element lying in the z=0 plane. A discrete source is placed at the 
point P(25.0,0.0,0.0) (ie. point P is the control point). The Wil values are 
calculated in three separate ways and compared in figure 9.17. From equations 
(9.13.2) and (9.14.2), 
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Figure 9.16 

The area integral in equation (9.14.3) has now been simplified to the form 
given in equation (9.15.2), ie. an integral along the x-axis. The integral in 
equation (9.15.2) can in turn be solved numerically using the simple 
trapezoidal rule. This strategy is used in schemes (a) and (b) which will be 
described shortly, to obtain the IFjj values tabulated in figure 9.17. 

For the triangular element in figure 9.16, 

xI=25.0, yj = 0.0, zj=0.0, 

and under consideration is the integral over the area of the element in which 
the source is placed (ie. (i =j) in equation (9.15.1)). Consequently, the 
singularity problem of (r-a 0) (as the source is approached) will arise. In 
scheme (a), this singularity problem is solved by dividing the element into a 
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number of areas as shown in figure 9.16. A rectangular zone of (2x1 x 2h) is 
defined with its centre at the location of the discrete source, ie. P(25.0,0.0,0.0). 
The integral in equation (9.15.2) can be evaluated over this rectangular zone 
in the following manner 

xl h 

4.0 x 
ff 

' ýx-2 -+ -2ý dy 

1h 
+ y2 

n 
xi+ tdyl. (I'h +2h ink(1+ 

) 
k+ 

f 
I 

1+ 1-k2 h+ h2+ y2 
1ýý 

(9.15.3) 

The first and second integrals in equation (9.15.3) correspond to the areas A2 
and A3 of the element in figure 9.16. By having an analytic solution for a 
small circular region enclosing the discrete source, no singularity problem 
will then arise for the integral over the remainder area of the element. The 
integrals in equation (9.15.3) can in turn be solved numerically using the 
trapezoidal rule. The same applies to the integral in equation (9.15.2) for the 
areas A1, A4 and A. of the element in figure 9.16. The total contributions from 
the areas A1, A4 and A5 are then multiplied by two to account for the similar 
areas in the other half of the element. For each of the numerical integrations 
in scheme (a), the integral range is divided into 12 equal intervals (ie. n= 12 
as indicated in figure 9.17). The main purpose of setting up scheme (a) is to 
highlight the difficulty of using scheme (b) to calculate the Wii value in the 
case of the element shown in figure 9.16. 

For scheme (b) however, the integral in equation (9.15.2) is solved 
numerically using the trapezoidal rule over the entire area of the element in 
figure 9.16. The Vij values obtained from various divisions of the integral 
range, ie. n= 12,100,1000 and 5000 are tabulated in figure 9.17. In addition, 
scheme (b) is used for the average potential calculations in the work by 
Krakowska [86]. 

For scheme (c), the Vfij value is obtained by solving equation (9.15.1) 
analytically using the corresponding equations given in section 9.14. In 
scheme (c), there is no need for any special consideration to cope with the 
singularity problem which is dealt with automatically without any difficulty. 
In addition, scheme (c) is used for the average potential calculations in the 
generalised method. 

From the results in figure 9.17, it can be seen that scheme (a) gives a Y'ij value 
close to that given by scheme (c), using a much smaller number of intervals 
compared with scheme (b). This is because a large number of intervals is 
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needed in scheme (b) in order to account for the rapid variations in the 
integral values corresponding to the intervals close to and around point P. 
The use of an analytic solution in scheme (a) for a small circular region 
around point P avoids the need to use a large number of intervals. This also 
means that scheme (b) involves much more computational effort than 
scheme (a). Apart from requiring the least computational effort, the Wij value 
given by scheme (c) is exact while those values given by schemes (a) and (b) 
are only approximate. 

It is noted that schemes (a) and (b) are applicable only to two-dimensional 

situations in which all the quantities involved in the calculations for the Wig 
values, are in the same plane such as the z=0 plane for the cases shown in 
figures 9.16 and 9.18, and the shallow dome considered earlier. On the other 
hand, scheme (c) imposes no such constraint and can therefore be applied to 
three-dimensional situations; by using scheme (c) in the generalised source 
method, the sources are allowed to be distributed over the membrane instead 
of the z=0 plane. 

(a) (b) (c) 

n= 12 n= 12 n= 100 n= 1000 n= 5000 

, Fij 102.6978 802.0112 184.4845 110.6271 104.2334 102.6761 

Figure 9.17 

With the discrete source placed at the point P(50.0/3,0.0,0.0) (ie. centroid of 
the triangular element shown in figure 9.16), scheme (c) gives a! j value of 
89.5619. 

Subsequently, schemes (b) and (c) are used to obtain the 'I'ii values (tabulated 
in figure 9.19) for the quadrilateral element shown in figure 9.18. In this case, 
the discrete source is placed at the point P(25.0,0.0,0.0) which is outside the 
element (ie. the case of (i #j) in equation (9.15.1)) and thus, scheme (a) is not 
applicable here. This is because no singularity problem will be encountered in 
integrating numerically over the area of the quadrilateral element. For 
scheme (b), only the case of the quadrilateral element is considered. For 
scheme (c) however, two cases (ie. (i) and (ii)) are considered; case (i) is based 
on the quadrilateral element and case (ii) is based on the two triangular 
elements into which the quadrilateral element can be divided as shown in 
figure 9.18. For case (ii), the Y'ij value tabulated in figure 9.19 is given by the 
sum of the contributions from the areas Al and A2 shown in figure 9.18. From 
the results in figure 9.19, it can be seen that scheme (b) requires a much 
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4 (100.0. -40.0,0.0) 

Figure 9.18 

smaller number of intervals compared with the previous case shown in 
figure 9.16, in order to obtain a YFij value sufficiently close to that given by 
scheme (c). This is as expected because the numerical integrations involved in 
this case do not have to cope with any singularity problem. In the calculations 
for the Wij values, fewer computations are involved in scheme (c) than in 
scheme (b). 

(b) (c) 

n= 12 n= 100 n= 1000 (i) (ii) 

'Fii 58.50148 58.47040 58.46999 58.46997 58.46999 

Figure 9.19 

The use of scheme (c) to calculate the Tij values for cases (i) and (ii) gives an 
indication of the general nature of the scheme in terms of its ability to be 
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applied easily to both triangular and quadrilateral elements. In fact, scheme (c) 
can be easily applied to an element of any polygonal shape. 

It is clear from the above discussion that scheme (c) has a few advantages 
which make it well suited for the task of calculating the y coefficients, and 
this scheme is therefore chosen to be implemented into the generalised 
source method. 

9.16 The shallow pneumatic dome and its imaginary mirror image 

The shallow pneumatic dome shown in figure 9.11 has a boundary condition 
of zero normal velocity of the air across the rigid base (in the z=0 plane) of 
the dome. This boundary condition is satisfied by reflecting the dome about 
the base to give an imaginary mirror image. A source distribution similar to 
that over the dome is prescribed over the surface of the imaginary mirror 
image as shown in figure 9.20. This is achieved by first calculating the control 
points for the source distribution over the dome. By taking these control 
points with the z coordinates given their negative values, the control points 
for the source distribution over the imaginary image will then be obtained. 
The air velocities normal to the z=0 plane due to the source distribution over 
the dome will be equal and opposite to those air velocities due to the source 
distribution over the imaginary image. As a result, the effect of zero normal 
velocity of the air across the rigid base of the dome will be achieved. 

The source distributions over the dome and its imaginary image are then 
used to calculate for the total kinetic energy of the air on both sides of the 
dome which is given by equation (9.11.1). For ease of reference, equation 
(9.11.1) is written here again 

1 
Tf = -2p Oan dI' 

r 
(9.16.1) 

Using equation (9.12.9), equation (9.16.1) can then be approximated as follows 

1 ns 
Tf = 2Pa F, (oavi)(wavi)(Ai)" 

i=1 
(9.16.2) 

in which ns is the number of elements in the structural idealisation of the 
dome. 

Using equations (9.13.4) and (9.14.13), equation (9.16.2) can in turn be written 
as follows 

ns n 
Tf = Pa {E {E (sgn(z)wavj) (Aj) (Cij) } (wavi)) (9.16.3) 

i=1 j=1 
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in which n is the number of discrete sources distributed over the dome and 
its imaginary image. From equation (9.13.6), the kinetic energy of the dome is 
then determined as follows 

ns 
(wavi)2(Ai)}" Tm = Pmiy 

i=1 
(9-16.4) 

Using equation (9.11.4), the added mass coefficient Aam can subsequently be 
established. 

As discussed in section 9.13, a distribution of sources is used over the z=0 
plane in the work by Krakowska [861 (see figure 9.11). As such a source 
distribution gives rise to air velocities normal to the z=0 plane (and with no 
corresponding equal and opposite air velocities), the boundary condition of 
zero normal velocity of the air across the rigid base of the dome will be not 
satisfied. 

9.17 Explicit dynamic analysis with added mass calculations 

A procedure of incorporating the added mass calculations into the explicit 
numerical scheme for the dynamic analysis, is described below. It is intended 
to achieve this with the least and yet simple changes to the scheme bearing in 
mind to preserve the existing advantages of the scheme. 

The basic strategy is to introduce an additional step of calculating the added 
mass coefficient Aam (see equation (9.11.4)) at each time step. Assuming that 
the added mass effects are uniform over the membrane of the dome, the 
added mass of the attached air is then distributed to each node in the 
following manner 

mt = mn(1 + Aam) (9.1 7.1) 

in which Mn and mt are the nodal mass due to the membrane and the total 
nodal mass respectively. 

if there are no added mass calculations in the dynamic analysis, the nodal 
masses due to the membrane are computed based on the starting geometry, 
and these values are then used throughout the analysis. With the added mass 
taken into account however, the nodal masses have to be calculated at each 
time step including the added mass of the attached air by means of the Aas, 
coefficient. 

Subsequently, the nodal velocities in the explicit numerical scheme are 
updated according to the following recurrence equation (see equation (3.3.6) 
given in chapter 3) 
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Vixt+Ot/2 = 
t-, ät/2 +t RIxt" vix (9.1 7.2) 

For the added mass calculations At each time step, a further consideration as 
described below is needed. This involves expressing the Newton's second law 
in a vector form relating the impulse due to the internal and external forces, 
R to the resulting change of linear momentum (ie. mass mx velocity V) of 
the system as follows 

Rdt = d(mV). (9.17.3) 

Equation (9.17.3) can in turn be expressed in the central finite difference form, 
and for any node i in direction x at time t, the result is as follows 

AtRixt = mi. t+et/2v 
ix vi x_ mi t-et/2V, 

x 
t-et/2 (9.17.4) 

On rearranging equation (9.17.4), the following recurrence equation for the 
nodal velocities is obtained, ie. 

At Rix it+m, t-et/2vix t-et/2 
V t+et/2 

- ix m, t+et/2 (9.17.5) 

In the explicit numerical scheme, the nodal velocities are calculated at the 
middle of each time step, and the coordinates and forces at the end/start of 
time steps. After calculating the nodal velocity V; Xt-°t/2 at time (t-At), the 

added mass coefficient A. m and hence, the nodal mass mjt-ot/2 (taken to be 
the same in the x-, y- and z-directions) can then be determined. In order to 
find the nodal velocity at the next time step, Vjxt+et/2 using equation (9.17.2), 

an initial approximation of mit+et/2 = mit-M/2 is made. With the velocity 
VIXt+et/2 known, the mass mit+et/2 can in turn be determined. Subsequently, 
the above steps can be repeated to produce further velocities and masses. 
However, this procedure leads to a change in mass from Mit-At/2 to mit+nt/2 
at time (t+At/2). Hence, this suggests a jump in the value of the linear 

momentum at time (t +At /2), ie. 

m it-of/2V. Xt+et/2 mtt+At/2Vixt+At/2 

As a result, errors will begin to accumulate. A strategy is thus needed to avoid 
the problem of discontinuity in linear momentum. 

A procedure of dealing with the above problem is outlined as follows 

, 
(1) At the end of the time step t--ýt+At, the forces Rjxt, masses Mit-At/2 
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velocities V. t+nt/2 and coordinates xit+et are determined. 

(2) With the above information, the masses mit+et/2 can then be found. 

(3) This is followed by the resetting of the coordinates xit (see equation (3.3.8) 

given in chapter 3) and velocities V; Xt+et/2 
(see equation (9.17.2)) as 

follows 

xit = xit+et - et Vlxt+At/2, 

t-nt/2 t+et/2 
_ 

At t vix - Vix 
mi t-At/2Rix 

(4) The velocities Vixt+et/2 are then calculated using equation (9.17.5), and 

the coordinates xit+et and forces Rj t+et in turn obtained. 

(5) Assuming that mit+3At/2 = mit+At/2, the velocities V xt+3ot/2 can 

subsequently be found and the whole cycle repeated. 

A small discrepancy in the above strategy arises from the fact that the masses 
mit+ot/2 are calculated from the velocities VjXt+et/2 found in step (1). 
However, the actual velocities in the subsequent analysis are determined 
from step (4). Hence, the procedure, where necessary, may be further 

improved by iterating the above steps until the values of mit+et/2 between 

successive iterations differ to within a specified tolerance. 

The added mass calculations based on the considerations discussed above, 
will only require a relatively small amount of computations and solution 
time. As a result, this offers a practical means of modelling the added mass 
effects in the dynamic response unlike the approach proposed by Barnes [19] 
which involves the discretisation of the surrounding air into elements. The 
added mass calculations can be implemented with relative ease involving 
only few and simple changes to the basic numerical scheme. The is also the 
case when incorporating the procedures to account for the creep effects and 
on/off buckling, into the explicit dynamic analysis. In this way, the essential 
simplicity and efficiency of the basic numerical scheme are retained. 

In summary, the added mass calculations are incorporated into the dynamic 
analysis by the inclusion of the following additional steps: 

(1) determine the control points and potential coefficients Cif (these values 
are then taken to apply throughout the dynamic analysis); 
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(2) in the main loop: 

(a) calculate the fluid and membrane kinetic energies, and then the added 
mass coefficients, and finally the total nodal masses; 

(b) implement the procedure outlined above for dealing with the problem 
of discontinuity in linear momentum. 

The explicit numerical scheme implemented with the various procedures to 
account for the creep effects, on/off buckling, added mass effects and so on, is 
applied to the dynamic analysis of a pneumatic dome and the results from the 
analysis are discussed in the following section. 

9.18 Numerical examples and discussions 

The shallow pneumatic dome already mentioned above and used by 
Krakowska [86] in her investigations, is chosen as the test problem to be 
solved by the explicit numerical scheme developed in this chapter for the 
dynamic analysis. The results obtained from both experiments and dynamic 

analysis by Krakowska [86] are compared with those given by the dynamic 

analysis carried out here. This dome as shown in figure 9.20 has a diameter of 
4.74 m at its base and is constructed from a light, isotropic polythene material 
of 0.06 mm thick. 

The test problem includes various stages which can be briefly described as 
follows. First, an initially flat and uniformly prestressed dome is being 
inflated to a desired shape. This is the form-finding stage of the analysis. It is 
important to achieve an inflated dome which is as close as possible to the 
form produced by Krakowska [86]. Subsequently, the inflated dome is loaded 
in two ways, ie. centrally and asymmetrically. In the experiment, the loading 
was carried out by placing the applied load on a circular platen of 0.58 m 
diameter which was then lowered onto the inflated dome. Under the applied 
loads, the dome undergoes deformations until it reaches a stable and static 
state. The deformed geometry and resulting membrane stresses of the dome 
from the load analysis provide the initial conditions for the dynamic analysis 
to follow. In this case, under investigation is the dynamic response of the 
dome initiated by the sudden removal of the applied loads. This situation 
may be taken as one of no or zero wind since it is desirable to keep the 
problem as simple as possible. In a real situation however, a likely cause of 
the dynamic response of the pneumatic dome comes from the action of a 
fluctuating wind. As mentioned previously, a complete description of a 
fluctuating wind load can be highly complex or may even be impossible. The 
main objective here is to find a practical numerical approach which can give a 
reasonable prediction of the dynamic response of the dome accounting purely 
for the effects of creep, on/off buckling, internal air stiffening and added mass. 
After having achieved this, the problem of dynamic response induced by a 
fluctuating wind load can in turn be investigated. During the form-finding 
and static loaded state, the internal pressures of the dome are assumed to be 
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maintained at values obtained from the experiments conducted by 
Krakowska [86]. 

The membrane of the dome is discretised into a mesh of constant strain 
triangular elements as shown in figure 9.21. There is no division of the 
surrounding air into elements. It is convenient to use the same triangular 
elements for both the structural modelling and added mass calculations. This 
helps to simplify the organisation of the computer program. Subsequently, a 
sensible strategy is to place a discrete source at the centroid of each triangular 
element on the membrane (see figure 9.20(a)). An alternative strategy may be 
to have a discrete source assigned to the centroid of each trapezoidal panel 
derived from combining two triangular elements together (see figure 9.11(a)). 
But although this may lead to fewer computations, the resulting solution will 
be less accurate due to the fewer number of discrete sources distributed over 
the membrane. An additional effort would also be required within the 
computer program to deal with information related to the trapezoidal 
elements. Consequently, the source distribution adopted above, ie. with a 
discrete source at the centroid of each triangular element is a better choice. In 
addition, the discrete sources are distributed over the membrane and its 
image (see figure 9.20(b)) instead of the z=0 plane as in the numerical analysis 
by Krakowska [861. 

In the case of the centrally loaded dome, ie. load applied to the crown of the 
dome, it is noted that there is axisymmetry in terms of both geometry and 
loading. Consequently, the problem size can be reduced by considering only a 
slice of the dome with the appropriate boundary conditions prescribed along 
the two axes of symmetries. A slice with a 100 included angle (ie. region AOB 
in figure 9.20(a)) is the choice for the subsequent analysis. This slice is 
discretised into a mesh of elements. A sufficently fine mesh is used in order 
that a reasonably accurate modelling will be achieved. However, this in turn 
means that a small time step has to be used in the explicit dynamic analysis as 
required when the element size is small. The 10° slice is divided uniformly in 
the radial direction into 15 triangular elements as shown in figure 9.21(a). For 
estimation of the added mass effects, the influence of each of the discrete 

sources distributed over the entire membrane and its image on the average 
potential within the 10° slice is calculated. However, the calculation of the 
kinetic energy ratio (ie. Aam) is required for this slice only. On the other hand, 
for the asymmetrically loaded dome, half of the dome has to be considered 
instead as shown in figure 9.21(b), ie. having only one axis of symmetry in 
this case. 

For the form-finding stage, a uniform prestress of 37 Nm'1 is assigned to the 
initially flat membrane and then an inflation pressure of 15.4 Nm-2 is applied 
to raise the dome to the desired shape. During the form-finding, the 

membrane elements undergo gross changes in geometries from their initial 
flat states. It is therefore necessary to reset the element stiffness matrices. at 
frequent intervals during the form-finding. At the same time, there is a need 
to update the normal pressure vectors to account for the current geometry of 
the dome. 
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After the dome has achieved an equilibrium shape during the form=finding, a 
comparison is made with the inflated dome geometries obtained by 
Krakowska [861 from experiment and numerical analysis. This is based on the 
values of the z coordinate at a few selected nodes on the inflated dome as. 
tabulated in figure 9.23. In this case, the z coordinate at a node indicates the 
vertical height of the node above the base plane of the dome. As given in 
figure 9.23, the values obtained here agree very closely with those determined 
by Krakowska [86]. Hence, this inflated dome can then be used for the 
subsequent static load analysis. 

9.18.1 Static load analysis 

The following stage is the analysis of the inflated dome for a static load case. 
The elastic properties of the membrane material used in the static load 

analysis are as follows 

E= 5260 Nm-1, v=0.52 

in which E and v are the elastic modulus and Poisson's ratio respectively. 
These values are taken from the tests carried out on the membrane material 
by Krakowska [861. The membrane material is isotropic, ie. has the same 
elastic properties in both the warp and fill directions. 

9.18.1.1 Centrally 
-applied 

load 

In the experiment by Krakowska [86], the load was applied by means of a 
platten to the crown of the inflated dome. Hence, for the numerical load 
analysis, all the nodes at the crown of the dome should show the same 
vertical deflection. In order to achieve this, the idealisation of the dome for 
this load case as shown in figure 9.21(a) is such that the platten load Pa of 80 N 
is represented in the analysis by the following equivalent vertical loads 
applied at nodes 1,2 and 10 [861: 

PI = 0.00084 x Pa, 

P2 = 0.0136 x Pa, 

Plo = 0.0133 x Pa. 

During the load analysis, the internal pressure of the dome is kept at 28 Nm'2. 
In the experiment, this internal pressure was maintained in the dome by 
means of a high pressure air pump. 

Under the above applied nodal loads and internal pressure, the inflated dome 
derived earlier deforms to a new equilibrium geometry (see figure 9.22(a)). 
The results at nodes 3,5 and 6 of the dome (see figure 9.21(a)) in the 
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prestressed and static loaded states are obtained for comparison with those 
determined by Krakowska [86] in figure 9.23(a). Under comparison are the 
values of the z coordinate and vertical deflection from the initial inflated 
state of the dome. 

9.18.1.2 Asymmetrically applied load 

For the asymmetrically loaded dome, half of the dome as shown in figure 
9.21(b) has to be considered. In this case, the idealisation of the dome is such 
that the platten load P. of 80 N is represented in the analysis by the following 

vertical loads applied at nodes 6,7 and 15 in figure 9.21(b): 

P6 = 0.0633 x Pa, 

p7 = 0.1984 x Pa, 

P15 = 0.2383 x Pa. 

The internal pressure of the dome during the load analysis is kept at 26 Nm-2. 

The deformed geometry of the asymmetrically loaded dome is shown in 
figure 9.22(b). In this case, the results at nodes 20,21 and 29 of the dome (see 
figure 9.21(b)) in the prestressed and static loaded states are obtained for 
comparison with those determined by Krakowska [86] in figure 9.23(b). 

In both cases of the centrally and asymmetrically applied loads, there is good 
agreement between the values obtained here and those determined by 
Krakowska [86]. The resulting membrane stress states from the load analysis 
here are also compared in figure 9.24 with the corresponding values obtained 
by Krakowska [86] and there are again very close agreements between the 
results. The current geometry and corresponding stress state of the loaded 
dome are then taken as the starting basis for the explicit dynamic analysis 
which follows. 
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Node 
Number 

Inflated Dome Loaded Dome Deflection 

(i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii) 

3 0.217 0.214 0.214 0.172 0.172 0.177 -0.045 -0.042 -0.037 

5 0.173 0.173 0.173 0.183 0.185 0.187 0.010 0.012 0.014 

6 0.140 0.142 0.142 0.159 0.162 0.163 0.019 0.020 0.021 

(a) Centrally applied load 

Node 
Number 

Inflated Dome Loaded Dome Deflection 

(i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii) 

20 0.163 0.163 0.160 0.198 0.197 0.196 0.035 0.034 0.036 

21 0.203 0.203 0.201 0.226 0.227 0.234 0.023 0.024 0.033 

29 0.169 0.168 0.165 0.202 0.198 0.198 0.033 0.030 0.033 

(b) Asymmetrically applied load 

In the above, 
column (i) contains the experimental results obtained by Krakowska [86], 
column (ii) contains the numerical results obtained by Krakowska [86], 
column (iii) contains the numerical results obtained from present work. 

Figure 9.23 
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Figure 9.24 Comparison of membrane stress states 

9.18.2 Dynamic analysis 

At the end of the above static load analysis, the membrane is set into motion 
by suddenly removing the applied load. By doing so, the vibrations of the 
membrane will cause movement in the surrounding air. In the absence of 
any significant mass acting on the lightweight membrane, the moving air 
will then greatly influence the dynamic response of the dome. The resulting 
dynamic response of the dome will be analysed using the explicit numerical 
scheme implemented with the various procedures outlined earlier. Of 
particular significance is the inclusion of the added mass calculations into the 
dynamic analysis (in addition to the modelling of the visco-elastic membrane 
material properties, on/off buckling and internal air stiffening due to overall 
volume changes). The vibrations of the membrane will eventually be 
damped out by the structural and aerodynamic damping until the dome 
reaches static equilibrium again. 
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The dynamic response of the dome is traced over a short period only from the 
instant the applied load is removed. As a result, it-may suffice to use a single 
Kelvin model to account for the visco-elasticity in the membrane material. 
For this purpose, the values of the visco-elastic constants for the membrane 
material have to be determined from the material tests by Krakowska [86]. 
The following values are found for the dynamic properties of the membrane 
material: 

immediate elastic modulus E= 36500 Nm-1, 

Poisson's ratio v=0.52, 

Kelvin model constants: a=0.00024 m (N sec)'1, b= 10.5 sec-1. 

The mass per unit area of the membrane material is equal to 0.057 kgm-2. 
Subsequently, for each triangular element, the membrane mass can be found 
and distributed equally as a lumped mass to each node of the element. The 
critical time step for the explicit dynamic analysis is dependent on the mass to 
stiffness ratio at each node. Hence, from the highest mass to stiffness ratio 
estimated at the start of the dynamic analysis, the critical time step can be 
determined. However, a value smaller than this critical time step is used as 
the actual time step in the dynamic analysis in order to account for the 
possible variations in stiffnesses at the nodes during the analysis. 

Within the explicit numerical scheme is an incremental procedure to allow 
for the on/off buckling which may occur in each element during the dynamic 
analysis. In the case of the impulsively unloaded dome being considered here, 
the dynamic analysis is sensitive to the frequency of buckling checks within 
the scheme. The reason is that element buckling occurs at almost all stages of 
the dynamic analysis. The incremental procedure for on/off buckling 
described earlier in section 9.5 can be taken as a 'force' scheme (see figure 9.3) 
in which the calculations involve the setting up of element force vectors, 
with the check for on/off buckling being carried out at intervals of n time 
steps (ie. nit). For some problems, it may be acceptable to have buckling 
checks at infrequent intervals with a fairly large value assigned to n. For the 
dome under consideration here however, it is necessary to have a buckling 
check at every time step, ie. n=1. For such a case, the use of a 'stress' scheme 
instead of the 'force' scheme will lead to a more efficient solution in terms of 
computation time. An outline of this 'stress' scheme is given below in figure 
9.25 (refer to the 'force' scheme described in section 9.5 for the definitions of 
terms used here). 

Stage I 

At the start of the dynamic analysis: 

(1) establish [D], [W], [a'J and [b']; 
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(2) establish (ß}', [G] and [G]T for each element; 

(3) set {Q*) = Ia)' for each element. 

Stag II 

The explicit dynamic analysis is iterated through n time steps of At. 

Within each time step: 

(1) update the current stress vector (o) for each element as follows 

(a)t = {a*} + [D][G){e*1 (9.18.1) 

in which {e*) is the vector of element side extensions relative to the 

geometry of the structure at the start of each period of nat; 

(2) check for on/off buckling; if any components of {Q}t is negative (ie. 
compressive), it is reset to zero and modify the stress vector, ie. 
{6)t {alt. 

Stage III 

For each element: 

(1) calculate the stress vector as follows 

(6)t = (Q)' + [D] [G] (e)t - [D] {£c)t-not/2 (9.18.2) 

in which (e)t-is-the vector of total side extensions relative to the 
geometry of the structure at stage I; 

(2) check for on/off buckling; if any components of {ß}t is negative (ie. 

compressive), it is reset to zero and modify the stress vector, ie. 

{Q}t {6'}t; 

(3) calculate {OQ)t = {6'}t - (Q)'; 

(4) calculate new creep strains: 
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{£c}t+net/2 = [a, ][ ? ]{oQ}t + [bh] {£c}t-net/2; (9.18.3) 0-4 

(5) reset [c. *) as follows ö 

*T t_ T t+nOt/2 t'nAt/2 {ß }= [Gl {Q } [Gl [Dl ({ýý} {ýý} ): (9.18.4) 

(6) reset [G] and [GIT. 

Figure 9.25 

In the 'stress' scheme, the idea is to base all calculations on the element 
stresses except when equilibriating forces at the nodes. Hence, from figure 
9.25, instead of the initial force vectors and stiffness matrices in the 'force' 

scheme, the (a*), [G] and [G]T terms are updated, and passed from stage III to 
stage II. It is noted that the side extensions {e*) at step (1) in stage II is relative 
to the element geometry when returning from stage III to stage II. On the 
other hand, at step (1) in stage III, the side extensions {e) are relative to the 
initial element geometry at the start of the dynamic analysis. 

In the 'force' scheme, a buckling check is implemented into the same 
secondary loop as calculations for the current element stiffness matrices, creep 
strains, initial force vectors and unit pressure vectors. All these operations 
within the secondary loop are executed at intervals of n time steps and in this 
case, a value of n=1 is required for a stable dynamic analysis. In the 'stress' 
scheme however, there is a check for on/off buckling at each time step in the 
main and secondary loops. As a result, it is permissible to increase the value 
of n up to 30. The result is a reduction in computation time due to fewer 

resets of the [G] and [G]T matrices, creep strains and unit pressure vectors in 
the secondary loop. For the 'stress' scheme, the value of n is decided by the 
possible changes in geometry and stress levels, but not directly influenced by 
the on/off buckling checks within the scheme. 

In summary, the 'force' and 'stress' schemes differ mainly in the following 
aspects: 

(i) The 'stress' scheme implements buckling checks within each cycle of the 
main and secondary loops, ie. at each time step. As a result, there is no 
need to modify the [D] matrix during the analysis. 

(ii) The calculations in the 'stress' scheme are based on the element stress 
vectors instead of the force vectors. This means that there is no need to set 
up the element stiffness matrices. In stage III, the [G] and [G]T matrices are 
reset, and new initial stress vectors [a*) and unit pressure vectors are 
calculated. These quantities are then passed to stage II. 
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The dome under investigation here is a shallow one; the low rise of the 
dome means that the membrane is close to the base plane, ie. the x-y plane. 
The mass to stiffness ratio at each node is largest for displacements in the 
plane of the membrane as a result of the in-plane membrane stiffness being 
much higher than the out-of-plane membrane stiffness. Consequently, it is a 
good approximation to take the critical time step for the explicit dynamic 
analysis as decided by the mass to stiffness ratios in the x- and y-directions of 
the dome. However, the dominant dynamic responses of the unloaded dome 
are the displacements normal to the membrane, ie. can approximately be 
taken as those in the z-direction of the dome. It has been suggested by 
Krakowska [861 that the masses in the x- and y-directions, ie. mx and my 
respectively can be artificially increased up to a certain limit with only 
minimal effect on the z-displacements. In this way, the mass to stiffness 
ratios in the x- and y-directions are magnified and thus, allowing a larger 
time step to be used in the explicit dynamic analysis. It has been shown by 
Krakowska [86] in a numerical analysis that with the masses mx and my 
increased by a factor of two, no significant change (from the case in which the 
masses are not factored) is observed in the response produced. At the same 
time, a time step larger by a factor of 1.4 can be used which in turn leads to a 
reduction in computation time. However, in the dynamic analysis carried out 
here, no magnification factor has been applied to the nodal masses of the 
membrane and the case of mx = my = mZ is assumed in the analysis. These 
nodal masses refer only to the lumped masses derived from the mass density 
of the membrane material and do not include the added mass of the 
surrounding air. 

9.18.2.1 Centrally unloaded dome 

A time step At = 0.00005 sec is used in the explicit dynamic analysis. This time 
step is less than half the calculated value of the critical time step based on 
conditions at the start of dynamic analysis. 

It is useful to assess the significance of including the added mass calculations 
into the explicit dynamic analysis. In order to do this (for comparative 
purposes), it is required to consider the dynamic response of the unloaded 
dome with no account of the added mass effects. A dynamic analysis for such 
a case is carried out. Of interest is the dynamic response of node 3 (ie. a point 
at a horizontal distance of 0.584 m from the centre of the dome - see figure 
9.21(a)). An indication of this dynamic response is given by a trace of the 
vertical deflection at node 3 as a function of time, ie. &z3(t) calculated as 
follows 

Az3(t) = Z3if) - Z3(to) 

in which z3(t) and z3(ta) are the z coordinates of node 3 at times t and to 
respectively. The time t refers to the current time and time to is the instant 

when the applied load is suddenly removed. The result of Az3(t) obtained 
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here for the period (t =0 --> 3 secs) is compared in figure 9.26 with that 
determined from the dynamic analysis of the same case by Krakowskä [86],. 
and the results agree closely. In these results, there is modelling for the effects 
of internal air stiffening, creep strains and on/off buckling, but- the added 
mass calculations are*excluded. The result of Oz3(t) determined from 

experiment is also given in figure 9.26. It can be seen that the experimental 
result differs significantly in terms of frequencies and maximum deflections 
from both sets of numerical results. 

When additionally accounting for the added air mass effects, the stability of 
the solution process is influenced by the way in which the added mass 
calculations are implemented into the explicit dynamic analysis. 
Furthermore, in order to study parameters related to the added mass 

calculations, the results of Ez3(t) are obtained from a series of explicit dynamic 

analyses carried out for the various schemes ((a) to (f)) outlined below. 

Scheme (a) is set up to be similar to the 'two-dimensional' source scheme 
used in the dynamic analysis by Krakowska [86] to account for the added mass 
effects, and is based on equations given in section 9.13. The average potentials 
are calculated for a mesh of triangular and trapezoidal patches which is in the 
z=0 plane as shown in figure 9.11(a). A source is placed at the centre of each 
patch. With the source distribution in the same plane as the mesh of patches, 
the z-dimension is eliminated and thus, simplifying the calculations to those 
corresponding to a two-dimensional case. For the structural analysis, the 
dome is idealised into a mesh of constant strain triangular elements which lie 
over the membrane. 

The difference between schemes (a) and (b) is in the calculation of the kinetic 
energy of the fluid, Tf using equation (9.13.5). In scheme (a), the average 

velocity terms in equation (9.13.5) are used without taking their absolute 
values while in scheme (b), the absolute values of these terms are used. In 
schemes (c) to (f), the kinetic energy of the fluid is also calculated by taking the 
absolute values of the average velocity terms which seems clearly 
appropriate. Firstly, the wavj term in equation (9.13.5) is related to the 

corresponding source strength by equation (9.13.1). As a source strength is 
always positive, the absolute value of the wavj term should be used. Secondly, 

as can be deduced from equation (9.12.9), the kinetic energy of the fluid is not 
dependent on the sign of the wavi term in equation (9.13.5) and thus, the 

absolute value of this term should be used. Consequently, the use of scheme 
(a) will lead to an underestimation of the kinetic energy of the fluid. It is also 
likely that Krakowska [86] used equation (9.13.5) to calculate the kinetic energy 
of the fluid without taking the absolute values of the average velocity terms 
as will be evident from the results in figure 9.27 discussed later. 

In scheme (c), the same distribution of sources as used in scheme (b), ie. as 
shown in figure 9.11, is used. In this case however, the potential coefficients 
C; j are calculated using the equations given in section 9.14, and this applies to 
schemes (d) to (f) as well. 
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In scheme (d), the average potentials are calculated for a mesh of triangular 
patches which is in the z=0 plane. These patches are given simply by the 
projection of the element idealisation of the dome onto the z=0 plane. A 

source is placed at the centroid of each patch. The structural analysis is still 
based on the triangular elements. 

In scheme (e), the sources are distributed in a -similar manner to that used in 
scheme (d). In this case however, the average potentials are calculated for the 
triangular elements instead of the triangular patches. 

In scheme (f), the sources are distributed over the dome, ie. with a source 
placed at the centroid of each triangular element as shown in figure 9.20(a). A 
distribution of sources similar to that over the dome is prescribed over an 
imaginary image which is the mirror reflection of the dome about the base. 
By doing so, the boundary condition of zero normal velocity of the air across 
the base is satisfied as discussed in section 9.16. In this scheme, the average 
potentials are calculated for the triangular elements and there is no use of a 
separate mesh of patches. Hence, scheme (f) corresponds to the generalised 
source method. 
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The result of Etz3(t) obtained from dynamic analysis based on scheme (a) is 
given in figure 9.27. The results obtained from experiment and dynamic 
analysis by Krakowska [86] are also given in figure 9.27. As scheme (a) is 
similar to the scheme used in the dynamic analysis by Krakowska [86] to 
account for the added mass effects, there should be close agreement between 
the two sets of numerical results as illustrated in figure 9.27. It can be seen 
that the numerical results in figure 9.27 are much closer to the experimental 
result than those given in figure 9.26. This improvement comes from 
inclusion of the added mass calculations into the dynamic analysis. 

The effect of the difference between schemes (a) and (b) on the result of Ez3(t) 
is shown in figure 9.28. The underestimation of the kinetic energy of fluid 
and thus, the attached added air mass results in the higher frequency of the 
dynamic response given by scheme (a). 

In figure 9.29, the results of iz3(t) obtained from dynamic analyses based on 
schemes (b) and (c) are compared. In both schemes, the same distribution of 
sources as shown in figure 9.11 is used. The difference between the schemes is 
that in scheme (b), the added mass calculations are based on equations given 
in section 9.13 while in scheme (c), they are carried out using the generalised 
source method described in section 9.14. A dynamic response of higher 
frequency is given by scheme (c). 

It is noted that scheme (b) involves numerical integrations which in this case 
are evaluated using the trapezoidal rule. This requires the divisions of 
elements into sufficiently fine intervals in order to ensure that reasonably 
accurate integrations are achieved. The generalised source method used in 
schemes (c) to (f) involves exact analytic integrations instead. Hence, this 
avoids the errors which arise from using numerical integrations in scheme 
(b). The evaluation of the analytic integrations also requires much less 
computational effort than in the case with the numerical integrations. Hence, 
scheme (c) requires a shorter solution time than scheme (b). In fact, the 
implementation of scheme (c) into the basic explicit numerical scheme for the 
dynamic analysis leads to only a small increase in computational effort (about 
20%) compared with when there is no account whatever of the added mass 
effects. 

In figure 9.30, the results of Oz3(t) obtained from dynamic analyses based on 
schemes (c) and (d) are compared. In both schemes, the sources are distributed 
over the z=0 plane. However, while the sources in scheme (c) are placed at 
the centroids of triangular and trapezoidal elements as shown in figure 
9.11(a), the sources in scheme (d) are placed at the centroids of triangular 
elements as shown in figure 9.20(a). In both schemes, the average potentials 
are calculated with the elements taken to lie in the z=0 plane. The effect on 
the result of Ez3(t) of the difference between the source distributions in 
schemes (c) and (d) is illustrated in figure 9.30. It is more convenient and 
general to adopt the strategy of placing sources at the centroids of triangular 
elements as implemented in scheme (d). It is also reasonable to suggest that 
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Parameters Krakowska(86] Present Work 

air density unavailable 1.2256 kgr 

atmospheric pressure unavailable 100500 Nm'' 

mass density 0.057 kgms 0.057 kgm 
of membrane material 

immediate elastic 36500 Nm` 36500 Nm" 
modulus E 

Poisson's ratio 0.52 0.52 

Kelvin model a=0.00024 m(Nsec)"' a 0.00024 m(Nsec)' 
constants: b= 10.5 sec" b 10.5 sec'' 

n 20 30 

At 0.00007 sec 0.00005 sec 

Figure 9.34(a) Parameters used in the dynamic analyses of the centrally 
unloaded dome. 
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the higher density of sources used in scheme (d) should give a more accurate 
result. 

In figure 9.31, the results. given by schemes (d) and (e) are compared. The 
sources in both schemes are distributed over the z=O plane. For the average 
potential calculations, the relatively little effect of taking the triangular 
elements to be on the membrane in scheme (e) instead of in the z=0 plane in 
scheme (d) is indicated by the results shown in figure 9.31. 

In figure 9.32, the results given by schemes (e) and (f) are compared. The aim 
is to investigate the effect of distributing the sources over the membrane and 
its mirror image in scheme (f) instead of the z=0 plane in scheme W. This 
results in the dynamic response given by scheme (0 having an increased 
attached added air mass and thus, a lower frequency, and also a lower long 
term (or average) deflection. 

The results obtained by Krakowska [86] from experiment and' dynamic 
analysis (given earlier in figure 9.27) are compared in figure 9.33 with the 
result given by scheme (f). The basic differences in added mass calculations 
between the dynamic analysis by Krakowska [86] and that based on scheme (f) 
are summarised below in figure 9.34. 

Dynamic analysis by Krakowska [86] 
( Ce: ScRFM$ Ca)] 

Dynamic analysis based on schemes 
Cb)-. C. f) 

Kinetic energy of fluid calculated Kinetic energy of fluid calculated 
without taking absolute values of the using absolute values of the average 
average velocity terms. velocity terms. 

Based on equations given in section Based on equations given in section 
9.13, and involves numerical 9.14, and involves exact analytic 
integrations. integrations. 

Sources are placed at the centres of Sources are placed at the centroids of 
triangular and trapezoidal patches as triangular elements as shown in 
shown in figure 9.11(a). figure 9.20(a). 

Average potentials are calculated for Average potentials are calculated for 
these triangular and trapezoidal these triangular elements which 
patches which lie in the z=0 plane. constitute the structural idealisation 

of the dome. 

Distribution of sources is over the Distribution of sources is over the 
z=0 plane as shown in figure 9.11(c). membrane and its imaginary mirror 

image as shown in figure 9.20(b). 

Figure 9.34 

b) 

Cl) 

Cd) 

Ce) 

, f) 
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In the right hand column of figure 9.34 are the five main differences listed in 
the order in which each of them is investigated separately in schemes (b), (c), 
(d), (e) and (f) respectively. The results in figures 9.28 to 9.32 illustrate the 
varying degrees of effect which these differences have on the dynamic 
response of the centrally unloaded dome. The one'with the least significant 
effect is that related to the average potential calculations. 

As shown in figure 9.33, when compared with the numerical result obtained 
by Krakowska [86], the dynamic analysis based on scheme (f) gives a dynamic 
response of lower frequency and with longer term average deflections closer 
to that of the experimental result. 

(i) (ii) (iii) (iv) 

No. of cycle Frequency Frequency Frequency Frequency 
Added, 
mass 

coefficient 

1 2.5 3.5 16.4 1.7 64.3 

2 2.5 3.5 16.1 1.7 61.3 

3 2.5 3.4 15.6 1.8 48.0 

4 2.5 3.4 15.9 1.4 60.0 

Figure 9.35 

Under comparison in figure 9.35 are the following results for the first few 

cycles of the dynamic response Az3(t): 

(i) frequencies obtained from experiment by Krakowska [86], 

(ii) frequencies obtained from dynamic analysis by Krakowska [86], 

(iii) frequencies obtained from dynamic analysis which excluded the added 
mass calculations (the result of dz3(t) for this case is given in figure 9.26), 

(iv) frequencies and added mass coefficients A, m (calculated as average values) 
obtained from. dynamic analysis based on scheme (f). 

By averaging the results in figure 9.35 over the first four cycles of the dynamic 
response, the added mass coefficient is 58.4, and (iv) gives a frequency value 
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of 1.65 which is much closer to the- experimental value of 2.5 than the value 
of 16.0 given by (iii). By accounting for the added mass effects within the 
dynamic analysis, the prediction of frequency is vastly improved with the 
discrepancies being reduced from 540% to 34%. Hence, a very significant factor 
for a realistic modelling of dynamic response of the dome is to account for the 
added mass effects within the analysis. The average frequency of 3.45 given by 
(ii) is 38% higher than the experimental value. Hence, the explicit dynamic 
analysis based on scheme (f) gives an average frequency which is marginally 
closer to the experimental value. As shown in figure 9.33, the result given by 
scheme (f) still differs noticeably from the experimental result in terms of the 
rate of decay. 

As mentioned earlier, the added mass of the attached air can also be 
approximated using equation (9.7.1) derived by Jensen [79]. Equation (9.7.1) 
gives an added mass which ranges from 44 to 122 times the membrane mass. 
However, equation (9.7.1) is given in terms of a3 with 'a' being a typical 
dimension of the structure. For some complex airhouses, it may be difficult to 
decide upon which structural dimension to use for the variable 'a'. The 
explicit dynamic analysis based on scheme (f) outlined above offers more 
flexibility; it has been developed to eliminate a few of the limitations of the 
'two-dimensional' source scheme used in the dynamic analysis by Krakowska 
[86] so that it is applicable more generally to a pneumatic dome of any shape. 
It is also fair to consider the dynamic response determined from the explicit 
dynamic analysis based on scheme (f) as reasonable bearing in mind the 
underlying assumptions of the potential flow theory and added mass 
calculations which have been discussed in this chapter. 

9.18.2.2 Asymmetrically unloaded dome 

In the case of the asymmetric load suddenly lifted off the dome, a time step At 
= 0.0002 sec is used in the dynamic analysis. This time step is approximately 
55% of the value of critical time step calculated on the basis of conditions at 
the start of dynamic analysis. In addition, this time step is larger than that 
used in the case of the centrally unloaded dome. This is due to the use of 
larger elements and that the maximum deflections are smaller in the case of 
the asymmetrically unloaded dome. Although a rather coarse mesh of 
elements as shown in figure 9.21(b) is used in the analysis, the improvement 
in prediction of the dynamic response especially in terms of frequency which 
can be gained by using a finer mesh of elements will be much less significant 
compared with that which can result from inclusion of the added mass 
calculations into the analysis. 

As for the centrally unloaded dome, the dynamic analysis is based on the 
'stress' scheme already described earlier. Of interest is the z-deflection trace of 
node 4 versus time, ie. Oz4(t) which is given by the following 

iZ4(t) = Z4(t0) - Z4(t). 
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As shown in figure 9.21(b), node 4 lies on the axis of symmetry but on the 
opposite side of the dome to the point where the load is released. The results 
of dz4(t) obtained from schemes (a) and (b) for the period (t =0 -b 3 secs) are 
compared in figure 9.36 with the experimental result determined by 
Krakowska [86] (no numerical results were available). In scheme (a), the 
added mass effects are excluded from the dynamic analysis while in scheme 
(b), the added mass effects are accounted for in a similar manner as in scheme 
(f) used for the dynamic analysis of the centrally unloaded dome discussed 
earlier. For the asymmetrically unloaded dome however, half of the dome 
has to be considered in the explicit dynamic analysis. 

(i) (ii) (iii) 

No. of cycle Frequency Frequency Frequency Added mass 
coefficient 

1 5.0 11.1 2.1 29.0 

2 3.3 16.4 2.5 30.6 

3 3.3 14.9 2.5 30.8 

4 2.2 14.1 2.0 31.5 

Figure 9.37 

Under comparison in figure 9.37 are the following results for the first few 

cycles of the dynamic response dz4(t): 

(i) frequencies obtained from experiment by Krakowska [86], 

(ii) frequencies obtained from dynamic analysis which excluded the added 
mass calculations (ie. scheme (a)), 

(iii) frequencies and added mass coefficients A. (calculated as average values) 
obtained from dynamic analysis based on scheme M. 

In figure 9.37, the results of (ii) and (iii) are those for the first four cycles 
which are easily identifiable from the deflection traces given in figure 9.36; for 
(i) however, the first four cycles are not so clearly defined. For (i), the 
frequencies in figure 9.37 for the first two cycles are those over the period 
(t =0 -' 0.6 sec) and for the next two cycles are those over the period 
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(t =1.1-4 1.9 secs) (see figure 9.36). By averaging the results in figure 9.37 over 
four cycles of the dynamic response, the added mass coefficient is 30.5, and 
(iii) gives a frequency value of 2.3 which is much closer to the experimental 
value of 3.45 than the value of 14.1 given by (ii). The discrepancies in the 
prediction of frequency is reduced from 309% to 33% by including the added 
mass calculations into the dynamic analysis. However, this improvement has 
to be viewed in relation to the fact of not considering the experimental result 
over the period (t - 0.6 -4 1.1 secs) in calculating the average frequency. As 
shown in figure 9.36, the result given by scheme (b) still differs quite 
noticeably from the experimental result in terms of the overall shape of the 
deflection trace, long term deflection and rate of decay. 

In the experiment by Krakowska [861, it was observed that the membrane in 
the area of the asymmetric load moved upwards to balance a new pattern of 
loading, creating a local area of low pressure underneath when the load was 
suddenly raised. The air in a different part of the pneumatic dome, having 
higher pressure, then surged towards this lower pressure region. This 
movement can be associated with the first peak of the experimental results in 
figure 9.35. Subsequently, the air rebounced and returned to the previous 
position, thus creating again lower pressure in the local area under the 
membrane, where the platten rested. The air mass continued to 'slosh' about 
caused more by impinging on the membrane and rebounding than by 
differences in pressure. The peaks in the experimental results became 
successively lower as the air momentum decreased. 

The 'sloshing' (or momentum) effect described above may be a significant 
factor in terms of influence on the dynamic response of the asymmetrically 
unloaded dome. There is no account of this momentum effect (as distinct 
from the 'attached' added air mass effects) in the explicit dynamic analysis 
considered so far. This may be the reason for the differences in the overall 
shape of the deflection trace, and to a lesser extent, the frequency between the 
experimental result and that given by scheme (b). Further research is required 
to find a simple and practical means which can model the 'sloshing' (or 
momentum) effect due to a moving mass of air. 

In the comparison between the experimental and numerical results 
considered above, a point worth noting is that which concerns the dynamic 
properties assumed for the membrane material in the explicit dynamic 
analysis. In the experiment by Krakowska [861, the applied load remained on 
the dome for a short period of time. However, this may already give sufficient 
time for viscous strains to accumulate in the membrane until the applied 
load is suddenly removed from the dome. On the other hand, the membrane 
dynamic properties were established from material tests in which viscous 
strains have not been allowed to accumulate in the membrane. A further 
consideration may be the limitation of the single Kelvin model used in the 
explicit dynamic analysis to give a precise modelling of the visco-elasticity in 
the membrane material. 
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Bearing in mind the limitations of the potential flow theory and the factors 
discussed above, the comparison of the experimental and theoretical results 
seems reasonable; particularly at the later stages of the dynamic trace. In the 
earlier stages; some transient dynamic responses are likely to have been 
caused in the experimental results by the manner and time duration of the 
sudden removal of the platten load. 

9.19 The dynamic response in the presence of wind 

In the above discussions, the main emphasis has been on the consideration of 
the added mass effects. For the dome considered, the dynamic response is 
initiated by the sudden removal of the applied load. In this case, due to the 
lightweight of the membrane material, the significance of the added mass of 
the surrounding air set into motion by the vibrations of the dome can be 
clearly illustrated. In addition, the condition of zero or no wind simplifies the 
problem to a certain extent. When the applied load is suddenly lifted off the 
dome, the resulting out-of-balance forces in the membrane then cause the 
dome to vibrate in order to reestablish its equilibrium. The surrounding air 
adjacent to the membrane is set into motion with the same velocity as that of 
the vibrating membrane in the direction normal to the membrane. The work 
carried out above, however, can also provide a good basis for considering the 
situation when there is a wind flow over the dome, ie. when the dynamic 
response is initiated by the action of wind, which will normally be the case in 
practice. It is necessary to make simplifying assumptions of potential flow for 
the fluctuating components of wind speed over the surface of the membrane. 

As given in equation (9.9.9), the velocity field V of a wind flow over a 
structure can be expressed as the sum of two velocities, ie. 

V=U+v (9.1 9.1) 

in which U is the velocity of the onset flow and v is the disturbance velocity 
due to the presence of the structure. (For the dome considered above under 
the no wind condition, the velocity U is null). 

The irrotationality condition is applied to the velocity v but not necessarily to 
the velocity U. Subsequently, from equation (9.9.13), 

a 0O"nlr = 
Ir 

= U"nIr - F. (9.19.2) 

By solving the Laplace equation (ie. equation (9.9.12)), the velocity potential 
is then determined. As outlined above, a solution for 0 can be given by a 
distribution of simple sources over the real membrane and its imaginary 
image of the dome. The membrane is discretised into triangular elements for 
the purpose of structural analysis. A convenient strategy is to take the 
centroids of the triangular elements as the control points and place the 
discrete sources at these control points. Subsequently, with N control points 
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in the dome considered earlier, the following relation for element i can be 
derived from equation (9.9.13), ie. 

1N 
2 wi +EB,, wj = -n i- ilj + F1. 

j=11#i 
(9.19.3) 

in which 
2wi is the outward velocity normal to element i due to the discrete 

source of strength w; at the control point of element i. The term Bijwf is the 
outward velocity normal to element i due to the discrete source of strength 
wj at the control point of element j and Bjj is the corresponding influence 
coefficient, ie. gives the normal velocity at the control point of element i due 
to a source of unit density at the control point of element j. The contributions 
of B; jtvj from the N control points (except for that at element 1), have to be 
summed. The velocity Ui is the velocity of the wind flow at the control point 
of'element i in the absence of the dome and ni is the unit outward normal 
vector of element i. It is noted that the values of U, and Fi may vary over the 
body surface. Furthermore, the condition of no flow normal to the surface has 
to be satisfied at each control point, ie. F=0 in equation (9.19.3). Hence, 

N 2w; 
+ EBjjcvj +ni"Ui=0. 

J=v; *t 
(9.19.4) 

The equation (9.19.4) can be set up for each of the control points in the 
problem to form a set of linear algebraic equations. In the case of the dome, 
the problem size can be reduced by making use of axisymmetry of the dome 
and the symmetry across the rigid base. Hence, from equation (9.19.4), 

[Bl{co) = (U) (9.19.5) 

in which [B] is the matrix of influence coefficients, (co) is the vector of 
unknown source densities and {U) is the vector of velocities of the onset 
flow. The equation (9.19.5) can in turn be readily solved for the source 
densities using both direct and iterative methods. The set of N linear algebraic 
equations given in equation (9.19.5) is the desired approximation of equation 
(9.19.2). 

For the impulsively unloaded dome considered previously, the source 
densities cod can be found directly from the average normal velocities of the 
elements as given in equation (9.14.13), ie. 

Wi = sgn(z) (2 x wavt xA j) (9.19.6) 

in which wa�i and Aj are respectively the average normal velocity and area of 
element i with the local z-axis normal to the plane of the element. The 
velocity wa�j is in the direction of the local z-axis. For a control point at z= 0+ 
(ie. outward), then 
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wavi = 
Ä, 2wi (9.19.7) 

and this relationship has been used in equation (9.19.4). 

After the source densities toi have been found by solving equation (9.19.5), the 
other flow quantities of interest can be determined by rapid direct calculation. 
Of interest is the flow over the membrane of the dome. The flow quantities 
on the membrane are computed only at the control points of the element. 
The potential and velocity at a control point on the membrane are obtained as 
follows 

N 

O; = EDijcvj, (9.19.8) 
j=l 

N 

Vi =E vii Co; + Ul (9.19.9) 
j=l 

in which Zj and v; j are respectively the potential and velocity that are induced 
at the control point of element i by a discrete source of unit density at the 

control point of element j. The values of 01 and Vi for (i =1,2,..., N) can 
therefore be determined. It is noted that 0, is the perturbation potential due to 
the body surface and U is the total velocity which includes the effects of the 
onset flow. The magnitude of the velocity V can be found and then used to 
compute the local pressure coefficient Cpi using equation (9.9.16), ie. 

ßv112 
Cp; =1- IU12. (9.19.10) 

Subsequently, the local force which arises from the local pressure can be 
determined as follows 

Ri=fp; ds; =gfCpidsf (9.19.11) 

in which Ri and pi are respectively the force and pressure over the area sj of 

element i, and q is the dynamic pressure (=1 2P 
Iü 12). With the C1, taken to 

apply over the element i, then 

Rj = ZpI U 12 X Cpl X Si (9.19.12) 

and the force Rj acts normally to element i, and is assumed to be distributed 
equally to the nodes of the element. These resulting nodal forces are then 
applied to the next time step (or group of time steps) in the explicit dynamic 
analysis of the dome. 
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A description is given above of a relatively simple scheme which has been 
proposed to deal with the case when there is a wind flow over the dome. The 
scheme attempts to model how the presence of the dome has disturbed the 
wind flow. It is anticipated that the scheme can be incorporated without 
much difficulty into the explicit dynamic analysis considered earlier. 

In the above, for the simple case of a uniform and steady wind flow, the 
velocity U is simply a constant vector. For the non-uniform and steady onset 
flows, the values of the velocity U are specified at the control points of the 
elements. In the case of a steady wind flow, the structure will deform 
changing the pressure distribution until an equilibrium state is reached. A 
steady wind flow is flow in which the velocity depends only on position and 
not on time, and may correspond to the wind with a hourly mean speed 
relevant to the site of the structure. The natural atmospheric boundary layer 
may be simulated by using a wind flow having a mean speed which increases 
with height according to a power law. 

During the dynamic analysis, the information of interest will be the resulting 
maximum deflections and stresses in the membrane. 

In the design of an air-supported structure, the necessary pressure differential 
across the membrane has to be provided and maintained. The inflation 
pressure (together with the average suction loading on the membrane due to 
the mean wind flow) must ensure that the structure does not become 
unstable in a wind. Williams [141] has applied the classical theory of 
travelling and standing waves to study the stability of fabric structures in a 
wind. The discussion is limited to a two-dimensional situation or model. In 
addition, it is assumed that the fabric structures have low profiles (ie. low 
rise-to-span ratios). A few useful results for the design of fabric structures 
have been obtained. For instance, the critical wind velocity, VV at which a one- 
way spanning low profile air-supported roof loses static stability (ie. 
divergence) is given by 

Vc = 
4µpP i (9.19.13) 

in which pi is the sum of the inflation pressure and mean suction acting on 
the surface, p is the density of air and p is the rise-to-span ratio. This result 
gives an idea of the inflation pressure which is required in order to avoid 
divergence for the design wind velocity. Furthermore, the natural frequency 
fo under zero wind is given by 

nYt to -8 upS2 
(9.19.14) 

in which S is the span of the air-supported structure. The wind tunnel testing 
of an aeroelastic model of an air-supported structure has been carried out by 
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Davies [52] to verify the above formulas. The results obtained agree 
reasonably well with those values calculated using the above formulas. 

An extension of the above work by Williams [141] to a three-dimensional 
situation has been carried out by Barnes [20]. The case of a rectangular 
membrane or region of a membrane isconsidered. The following results are 
obtained: 

VXc = 
12n Tx TvRx 

_ 
2n Tx L 

P ýxx + ßy2 
). Vyc 'P1 Axt + iy) (9.19.15) 

in which V, « is the critical wind velocity for a wind blowing in the x-direction 
while Vyc is the corresponding value if the wind is blowing in the y-direction. 
The terms T. and Ty are the membrane tensions per unit width in the x- and 
y-directions respectively, and ) and Ay are the wavelengths of the mode 
shapes in the x- and y-directions respectively of the membrane. In addition, 
for a travelling wave in the x-direction of the membrane under zero wind, 

fo - 
mýX2 

+ 
m, ýy2 

fTx T 
(9.19.16) 

in which m' = (m +AP is the effective mass per unit area. The term m refers 
ýx 

to the mass per unit area of the membrane, and nP is the added mass per unit 
area of the air affected by the mode shapes in the membrane. A similar 
natural frequency can be found for the travelling wave in the y-direction of 
the membrane under zero wind. From the critical wind velocities given by 
equation (9.19.15), the required inflation pressures can then be worked out. 

The above results derived by Williams [141] and Barnes [20] are based on the 
potential flow theory. These results apply only to the case of a steady wind 
flow over the surface of an air-supported structure of simple shape. As 
further work, a dynamic analysis based on the discrete source method 
discussed earlier can be carried out to produce results for comparison with 
those given by the equations (9.19.13), (9.19.14), (9.19.15) and (9.19.16). 

9.20 Summary and conclusions 

In this chapter, the problem of analysing the dynamic responses of tension 
structures is examined. The most common cause of the dynamic response is 
the natural wind. The lightweight and flexible nature of a tension structure 
makes it highly susceptible to wind loading and it is therefore important for 
the design process to include a reliable assessment of the dynamic response 
which may occur. A tension structure has the tendency to interact strongly 
with the wind which then causes additional aerodynamic mass, damping and 
stiffness terms to be introduced into the dynamic analysis. The additional 
forces arising from these aerodynamic terms have to be considered and the 
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dynamic analysis therefore becomes a complex aeroelastic problem. The creep 
effects of the membrane material and on/off element buckling which may 
occur during the dynamic analysis, also have to be taken into account. 

For this complex problem, the adopted approach is to first decide on an 
efficient solution scheme for the basic dynamic analysis and then implement 
into the scheme, procedures which account for the creep effects, on/off 
buckling and aerodynamic effects. The various available solution schemes for 
the dynamic analysis of structures in general include the mode superposition 
method and direct step-by-step time integration methods (which can be 
classified as either implicit or explicit schemes). In this chapter, the chosen 
solution scheme is an explicit scheme based on the central difference 
approximation of Newton's second law of motion. This scheme when 
applied in earlier chapters to the static analysis of tension structures is known 
as the dynamic relaxation method; the basic mechanics and advantages of this 
method have already been outlined in chapter 3. 

The chosen explicit scheme is applied to investigate the dynamic response of 
a pneumatic dome. The membrane of the dome is constructed from a light, 
isotropic polythene material which exhibits visco-elastic behaviour. A single 
Kelvin model is used in the dynamic analysis to calculate for the accumulated 
creep strains arising from the visco-elasticity in the membrane material. In 
addtion, the membrane material cannot sustain any compression and thus, 
undergoes buckling when subject to compressive forces. An incremental 
procedure is implemented in order to allow for this on/off buckling. For the 
pneumatic dome being considered here, on/off buckling occurs at almost all 
stages of the dynamic analysis. In such a case, it is more efficient in terms of 
computation time to implement an incremental procedure based on the 
'stress' scheme given-in figure 9.25 instead of that based on the 'force' scheme 
given in figure 9.3. The pneumatic stiffness (or internal air stiffening) of the 
dome is modelled using the pressure-volume relationship given in equation 
(9.6.1). 

A procedure is developed to model the aerodynamic mass, ie. the added mass 
of surrounding air attached to the membrane of the dome. This procedure is 
based on the potential flow theory and involves the solution of the Laplace 
equation, ie. equation (9.9.12). For the dome in question here, Laplace 
equation is solved by prescribing a distribution of sources over the 
membrane. The ratio of the kinetic energy of the surrounding air when set 
into motion to that of the vibrating membrane is determined. This ratio 
known as the added mass coefficient gives a measure of the added mass of the 
attached air relative to the membrane mass. Proceeding in this way, Campbell 
[42] calculated the added mass effects of a diaphragm embedded in an infinite 
rigid z=0 plane for various normal velocity distributions prescibed over the 
diaphragm. The diaphragm is divided into rectangular patches with a discrete 
source placed at the centre of each patch. The above scheme used by Campbell 
[42] known as the discrete source method, is further applied by Krakowska [86) 
to assess the added mass effects of a shallow pneumatic dome in which a 
distribution of sources over the z=0 plane as shown in figure 9.11(c) is used. 
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For the average potential calculations, the membrane is represented by a 
mesh of triangular and trapezoidal patches lying in the z=0 plane, ie. in the 
same plane as the source distribution. The sources are placed at the centres of 
the triangular and trapezoidal patches. The problem is simplified with the z- 
dimension omitted from the various equations concerned. This 'two- 
dimensional' approach has been derived on the assumption of a shallow 
dome. The need to use a mesh of triangular and trapezoidal patches as shown 
in figure 9.11(a) also imposes a constraint on the element idealisation of the 
dome. In addition, this approach involves numerical integrations which 
require sufficiently fine divisions of the patches for reasonably accurate 
integrations to be achieved, and special attention is needed to deal with the 
integrations used in calculating the average potential over the area of a patch 
due to a source at the centre of the same patch. 

In this chapter, a generalised source method has been developed to eliminate 
the above mentioned limitations and difficulties of the 'two-dimensional' 
approach. In the generalised method, there is no restriction of having to 
assume a shallow dome. The sources are placed at the centroids of triangular 
elements which constitute the structural idealisation of the dome and there is 
no use of a separate mesh of patches for-the purpose of calculating the average 
potentials. The generalised method can deal with triangular elements of any 
shapes and thus, imposes no constraint on the element idealisation of the 
dome. In this method, exact analytic integrations are used and this leads to 
the advantages illustrated by the simple numerical examples considered in 
section 9.15. As a result of these features, the generalised method is 
sufficiently flexible and powerful to be applied generally in the dynamic 
analysis of a closed membrane structure of any shape. 

The boundary condition of zero normal velocity of the air across the rigid 
base of the dome has to be satisfied. In the generalised method, this boundary 
condition is satisfied by reflecting the dome about the base to give an 
imaginary mirror image, and prescribing over this image a distribution of 
sources similar to that over the dome. In the case of the 'two-dimensional' 
approach, this boundary condition is not satisfied with the sources distributed 
over the z=0 plane. 

In using the generalised source method to account for the added mass effects, 
a further consideration is the need to avoid the problem of discontinuity in 
linear momentum within the dynamic analysis. This is achieved by 
incorporating a strategy which involves the Newton's second law expressed 
in a vector form. 

The explicit numerical scheme implemented with the various procedures to 
model the visco-elastic material behaviour, on/off buckling, internal air 
stiffening and added mass effects, has been applied to investigate the dynamic 
response of a pneumatic dome for which experimental results [86] were 
available for comparison. These experiments were carried out for the cases of 
both centrally (symmetric) and asymmetric initial loadings applied to the 
dome in its initial state; the dynamic response of the dome being initiated by 
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the sudden removal of these initial applied loadings. Due to the absence of 
any significant mass acting on the lightweight membrane, the dynamic 
response of the dome is greatly influenced by the added mass of the attached 
air as is evident from the following results obtained from the dynamic 
analyses: 

(i) For the centrally unloaded dome, the added mass coefficient (averaged 
over the first four cycles of the dynamic response) is 58.4, and that for the 
asymmetrically unloaded dome is 30.5. 

(ii) For the centrally unloaded dome, the dynamic analysis in which the 
added mass effects are taken into account gives a frequency (averaged over 
the first four cycles of the dynamic response) much closer to the 
experimental value than that given by the dynamic. analysis in which the 
added mass calculations are excluded. By accounting for the added mass 
effects within the dynamic analysis, the discrepancies in the prediction of 
the experimental frequency is reduced from 540% to 34%. For the 
asymmetrically unloaded dome, the discrepancies in the prediction of the 
experimental frequency is reduced from 309% (with no account of the 
added mass effects within the dynamic analysis) to 33% (with the added 
mass calculations included). 

In the experiment, it was observed that the air mass in the dome was caused 
to 'slosh' about when the asymmetrically applied load was suddenly lifted off 
the dome. There is no account of this 'sloshing' (or momentum) effect as 
distinct from the added mass effects of the attached air, in the dynamic 
analysis considered so far. Further research is required in order to find a 
simple and practical means of modelling this momentum effect. 

In view of the difficulties in obtaining accurate transient dynamic 
experimental results, and the limitations in the theory for the dynamic 
analysis, the numerical results for both the centrally and asymmetrically 
unloaded dome seem quite reasonable and encouraging. 

The cases of both the centrally and asymmetrically unloaded dome 
correspond to a situation where there is no wind flow over the dome. In 
section 9.19, the case when there is a wind flow over the dome is considered 
and a proposed procedure for dealing with such a case is outlined; this 
procedure is yet to be implemented into the explicit numerical scheme. It is 
also noted that there is a critical wind speed at which the dome will lose static 
stability (ie. divergence). Williams [141] derived a formula for calculating such 
a critical wind speed for the case of a low profile air-supported structure, and 
Barnes [20] derived a corresponding formula which applies to a shallow, 
rectangular membrane structure. 

In this chapter, an explicit numerical scheme is developed for the dynamic 
analysis of a closed membrane structure of any shape. This scheme is efficient 
in terms of computational effort and solution time, and also relatively simple 
to use. There are however' a few important points about this scheme which 
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should be noted. Firstly, the use of the potential flow theory means that the 
scheme may not be appropriate in situations where the assumptions in the 
theory lead to gross misrepresentations such as in a situation where there is 
catastrophic flow separation. For the cases of both the centrally and 
asymmetrically unloaded dome, flow separation may not occur until after the 
first few cycles of the dynamic response. In addition, the scheme has no 
procedure to account for the aerodynamic damping and hence, cannot predict 
the instability condition of flutter which arises if the aerodynamic damping 
becomes effectively negative. Further research is required in order to derive a 
simple means of modelling the aerodynamic damping. A further 
approximation is that the added mass effects of the attached air are assumed 
to be uniform over the membrane of the dome. There is also no modelling of 
the possible air momentum effect within the scheme. 
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1ý1 
Chapter 10 

Summary, conclusions and recommendations 

10.1 Summary and conclusions 

In this chapter, a summary is given of the work which has been covered in 
this thesis. The main conclusions are discussed and some possible areas of 
further research are also outlined. 

The work in this thesis has been mainly concerned with the development of 
a CAD system for tension structures in general and a detailed discussion of 
the difficult task of analysing their highly complex dynamic behaviour. Much 
of the software development work for the CAD system which forms part of 
this thesis, has been carried out under the Teaching Company Scheme (1988- 
1990) set up between Buro Happold, Bath and City University, London. This 
CAD system is now in operation for project work at the Lightweight 
Structures Division of Buro Happold. 

For tension structures, it is essential to apply numerical modelling at both 
form-finding (architectural design) and engineering analysis stages. A review 
of appropriate numerical schemes which are available can be found in 
chapter 2. In general, these numerical schemes come under the following 
groups: (a) iterative methods, (b) incremental methods, (c) minimisation 
methods and (d) relaxation methods. Both the iterative and incremental 
methods are implicit schemes as they involve setting up the overall or 
tangent stiffness matrix of the structure in their solutions. Examples of the 
implicit iterative methods are the Newton-Raphson, modified Newton- 
Raphson and secant stiffness methods. The incremental methods are used in 
the solution of path dependent problems, in which the applied loads are 
increased in small increments. On the other hand, both the minimisation 
and relaxation methods are explicit schemes as no formation of the overall or 
tangent stiffness matrix is required in their solutions. In the minimisation 
methods, the idea is to reach an equilibrium solution by minimising the total 
potential energy function of the structure. This involves the searching along 
a descent direction until the local minimum in that particular direction is 
found. The search then continues along a different descent direction and the 
process is repeated until the global minimum is reached. The minimisation 
methods have mainly been applied to solve cable net problems. The various 
ways of finding the minimum of the total potential energy function result in 
the different minimisation schemes which are available. The direct 
minimisation methods include the random search and the Monte-Carlo 
methods, and in these methods, there is no need for the explicit evaluation of 
any partial derivatives of the total potential energy function. The gradient 
minimisation methods include the method of steepest descent and the 
conjugate gradient method, and in these methods, the partial derivatives of 
the total potential energy function are required. The convergence rate of the 
conjugate gradient method can be improved by the scaling of certain terms 
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which results in the scaled 'conjugate gradient method. Examples of explicit 
relaxation methods are the Point-Jacobi, Gauss-Seidel, Successive Over- 
Relaxation (SOR) and Dynamic Relaxation (DR) methods. These relaxation 
methods except for the dynamic relaxation method, may encounter 
difficulties when dealing with situations such as on/off element buckling 
which can often occur during the analysis of a tension structure. However, 
the dynamic relaxation method can easily cope with on/off buckling and in 
general, is much better suited to solve highly non-linear problems involving 
both geometric and material non-linearities. 

In chapter 3, the dynamic relaxation method is described in further detail. The 
underlying principle of the method is the time-step integration of Newton's 
second law of motion for a structure with high damping imposed to obtain 
convergence to a static solution. The dynamic relaxation method is only 
conditionally stable, ie. if a time step which exceeds a critical value is used, 
then numerical instability will result. This stability criterion is satisfied 
through a strategy of using fictitious nodal masses which also leads to an 
increased convergence rate. There are various means of establishing the 
appropriate fictitious nodal masses. In this case, it is convenient to have for 
each node, a diagonal matrix of fictitious masses. At the start of the analysis, 
certain parameters can be easily chosen which are factors to be applied to the 
diagonal mass matrix in order to compensate for the coupling effects between 
the various degrees of freedom at each node. This gives the advantage of an 
automatic control of the fictitious nodal masses. For the form-finding and 
static analysis of tension structures, the kinetic damping procedure is effective 
in dealing with suddenly imposed high residuals which can often arise 
during form adjustments. For modelling the dynamic behaviour, the true 
structural damping has to be used instead. Furthermore, within the dynamic 
relaxation method, the natural stiffness relations are used in the calculations 
for the natural forces from the corresponding basic displacements. The 
natural forces are then transformed to the global coordinate system and added 
to the nodal residual forces. This proves an efficient means of deriving the 
nodal residual forces and therefore produces much saving in computation 
time. A further advantage of the dynamic relaxation method is the 
uncoupling of the equations of equilibrium and continuity/compatibility. 
This allows the strain components to be updated independently of stresses. 
Hence, complex stress/strain relations can be readily implemented and on/off 
buckling easily dealt with. In addition, geometric non-linearity is 
automatically taken into account within the method. During the analysis, any 
signs of physical instabilities which may be present in the structure are easily 
detected and hints often given about their causes. This is particularly 
advantageous at the form-design stage of tension structures. 

Chapter 4 gives an account of the case in which a tension structure is bounded 
by compression boundaries. Instead of tension anchorages, a compression 
boundary can prove to be an efficient alternative means of providing support 
to a large span structure. It is often adequate to use slender sections in the 
compression boundary as a result of the stability support contributed by the 
tension elements in the structure. Instead of being taken as a fixed support, 
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the compression boundary has flexibility and can undergo finite 
deformations, and is properly modelled using beam elements. The beam 
elements are easily implemented into the dynamic relaxation scheme used 
for. all the analysis work in this thesis. The. natural stiffness relations are used 
in deriving the moment-curvature relations of the beam element. Hence, a 
local axes system is defined for each element. In the dynamic relaxation 
analysis which uses kinetic damping, the stiffnesses and non-linear effects of 
the beam element are updated when an energy peak is detected. These non- 
linearities include the influences which the axial force have on the moment- 
curvature relations and fixed-end moments, and the element bowing effects. 
In addition, any geometric non-linearity is automatically taken into account. 
The sway angles are determined in order to account for the rigid body 
motions in the calculations for the beam displacements. An end release can 
be prescribed to impose a pin-ended condition for bending about any of the 
local axes. All the above features have been implemented to enable a realistic 
modelling of the interaction between the tension structure and the 
compression boundaries. Within the dynamic relaxation scheme, the 
rotational degrees of freedom are treated as decoupled from the translational 
degrees of freedom. Hence, for each node of a beam element, a (3 x 3) mass 
matrix is set up for the rotational degrees of freedom separately from the 
(3x3) mass matrix for the translational degrees of freedom. The beam 
elements as formulated above provide an efficient means of dealing with 
compression boundaries in a tension structure. 

A discussion is given in chapter 5 concerning the topics of differential 
geometry which are applicable to the various procedures involved in the 
design of tension structures. It is common to find complex surface curvatures 
in a tension structure; even for one of relatively simple shape. This makes it 
relevant to have a useful knowledge of differential geometry which is the 
study of -space curves and surfaces. In fact, differential geometry provides the 
basis for some of the fundamental concepts which have been applied to the 
form-finding and patterning procedures. For instance, the condition of a seam 
line following a geodesic path over the surface is often imposed during the 
form-finding of a membrane structure. This has the advantage of producing 
fabric panels which optimise the width use of a fabric roll. In addition, it has 
been shown how the warp and weft yarns in a fabric panel will undergo 
distortions by continuously changing the angle between them in order to 
achieve the desired Gaussian curvature of the surface. Furthermore, the 
equilibrium equations of the surface acted on by applied loads are derived 
which give the relationships between the stresses in the surface and its 
geometry. The unknowns in the solution of the equilibrium equations can 
either be the stresses or geometry of the surface. In the discussion, the 
treatment of the various topics of differential geometry is rather 
mathematical, and the use of tensor notation has been convenient. 

In chapter 6, the form-finding and static analysis of tension stuctures are 
discussed. During the form-finding, an equilibrium geometry and the 
corresponding stress state in the structure are determined. As mentioned 
earlier, the unknowns in the problem can theoretically either be the geometry 
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or the stresses (provided that any stress states are allowed). In this thesis, the 
adopted approach is to find the unknown equilibrium geometry given the 
stress distributions; the initial and boundary conditions. Hence, for a 
membrane structure, the form-finding controls are derived from the 
adjustments of the prescribed uniform or anisotropic membrane stresses, or 
initial and/or boundary conditions, or any combination of the former 
controls. During the form-finding, the seam-lines between fabric panels are 

X 

constrained to follow geodesic paths over the surface to yieId appropriate 
geometry for subsequent fabrication patterning. The form-finding is followed 
by load analysis in which the possible loads are applied to the form which has 
been achieved. If the load analysis results in unsatisfactory behaviour (for 
instance, the fabric becomes overstressed or wrinkled or inverts under wind 
load) or the model becomes structurally unstable, then the geometry derived 
from the form-finding may have to be revised in order to alleviate the 
problem. Hence, there is an iterative process between the form-finding and 
load analysis. When a satisfactory form has been found, the corresponding 
cutting patterns are developed. This is then followed by the detailed design of 
the supporting steelwork, connections and so on. 

A fully interactive graphical CAD system for tension structures is the subject 
developed in chapter 7. Within the software for the CAD system are 
implemented the theoretical concepts which have been described in the 
previous chapters. The system fully exploits the capabilities which can be 
offered by the computer hardware and is far more effective than physical 
modelling in many aspects such as form-finding, load analysis and 
patterning. In the design office, the CAD system has already produced much 
saving in design time. The system has also been a useful tool for the 
communication of ideas between the engineer and the architect since it is an 
excellent means for exploring the huge possibilities of shapes at the form- 
finding stage. Much thought has gone into achieving an effective and 
functional human user interface for the CAD system. The user interface has 
been designed to be fully interactive and based on the concept of the Graphical 
User Interface (GUI), ie. as much use as possible of graphical images on the 
screen to inform and guide the user. The command line interface (CLI) style is 
avoided if possible. In fact, the user is not required to learn any command 
entry through the keyboard as far as the software execution is concerned. In 
addition, the graphical images, symbols and labels which are always displayed 
on the screen during the software execution, serve as useful guides to the 
possible actions which the user can take. In consequence, a new user of the 
CAD system should only need a short learning time. It is effective to present 
information in the form of graphicaLimages rather than numbers on the 
computer screen. The user interacts with the software mainly by means of the 
on-screen menus which are activated using a mouse, and can interrogate and 
interact directly with the image on the screen. The CAD system comprises of 
individual modules designated for the tasks of form-finding, load analysis 
and patterning. These modules are integrated together to make the design 
process into a*smooth and continual one. A common database is maintained 
throughout the software and is updated regularly to reflect the current state of 
the numerical model. An outline is given in chapter 7 of the menu options 
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for the numerous functions which are available to the user during the 
execution of the software. These functions begin with the setting up of the 
model together with assignment of all the necessary prerequisites, followed by 
the analysis and then post-processing of the results. The beam elements have 
been implemented into an individual module within the CAD system, and 
the same style of interaction as the rest of the software is imposed on the 
module. In addition, an advanced structure visualisation module has been 
set up to provide a solid modelling capability. This enables a good 
appreciation of the compex surface geometry commonly found in a tension 
structure. 

In chapter 8, consideration is given to the possible loads which a tension 
structure may have to resist during its service life. The primary design loads 
are often the snow and wind loads. The lightweight and flexibility of a 
tension structure make it highly susceptible to wind, and an accurate 
assessment of these loads is essential to enable a structurally sound and 
economic design of the structure. It is also sensible that the loads can be 
expressed in a form easily applicable within the structural analysis. As a result 
of its flexible nature, a tension structure is likely to undergo gross 
deformations during load analysis. This may in turn lead to the problem of 
non-linear load structure interaction. The complex surface shapes often 
found in a tension structure implies that the appropriate load distribution 
coefficients may not be easily obtainable from the codes of practice which 
contain values applicable more to the simpler shapes of conventional 
structures. Although the natural wind consists of fluctuating components, a 
quasi-static form of the wind load is often used for preliminary studies or 
routine designs of small scale structures. According to (CP3: 1972), this quasi- 
static wind load is taken as that due to the maximum gust which will act on 
the structure. The wind load distribution coefficients given in the codes of 
practice are obtained from wind tunnel tests of rigid models. This approach 
can provide some design information such as maximum deflections and 
stresses. However, no account is taken of the oscillatory nature of the 
structural response due to the action of the wind. On the other hand, the 
above quasi-static approach can be modified to include the possible loading 
caused by the turbulence in the wind. This modified approach leads to the 
admittance design method which produces a dynamic response spectrum 
from a quasi-static load assessment. This method can be applied to the design 
of structures with linear dynamic characteristics. However, for a large tension 
structure such as an air-supported stadium roof, a detailed description of the 
wind load taking into account the randomly varying components and the 
spatial correlation of wind gusts, is required. A possible approach is to use 
statistical analysis. The dynamic response of the structure itself produces 
additional mass, damping and stiffness terms which in turn give rise to 
aerodynamic forces on the structure. Hence, the dynamic analysis of the 
structure is a complex aeroelastic problem. In the above approaches which use 
the quasi-static form of the wind load, there is no account of these 
aerodynamic forces. In addition, vortex shedding may occur along the free 
edges of the structure which in turn gives rise to additional dynamic forces. 
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The problem under examination in chapter 9 is the dynamic analysis of 
tension structures. In most instances, the dynamic response of a tension 
structure is initiated by the action of the natural wind. A reliable assessment 
of this dynamic response is necessary so that the structure can be designed to 
avoid any possible resonance situation. As mentioned earlier, the dynamic 
analysis of a tension structure is much complicated by the presence of 
aerodynamic mass, stiffness and damping terms. At present, this problem is 
solved by an aeroelastic model test in a boundary layer wind tunnel. In this 
chapter, the objective is to derive a numerical approach, even though an 
elementary one at this stage, for the dynamic analysis of the structure. It is 
hoped that eventually with further research, a numerical approach is found 
which is sufficiently general, accurate and reliable to be considered an 
attractive alternative to aeroelastic wind tunnel testing. A brief review is 
given of the solution schemes which are available for the dynamic analysis of 
structures in general. The explicit numerical scheme (based on central 
difference approximation of Newton's second law of motion) previously used 
for the form-finding and static load analysis, is conveniently applied to the 
dynamic analysis as well. A few points to note when using the explicit 
numerical scheme for dynamic analysis are the use of viscous structural 
damping instead of kinetic damping, and real nodal masses instead of 
fictitious values. In addition, the creep effects of the visco-elastic membrane 
material are taken into account by means of a single Kelvin element model. 
An incremental procedure based upon a 'stress' scheme is employed to allow 
for the on/off element buckling. Implemented into the explicit numerical 
scheme is a proposed strategy to include the aerodynamic mass (ie. added 
mass) of the surrounding air into the dynamic analysis. A simple means is 
also suggested to model the aerodynamic stiffness (ie. pneumatic stiffness). 
However, there is no account of the aerodynamic damping and possible 
momentum effect in the dynamic analysis. For the investigation in this 
chapter, the case of the dynamic analysis as applied to an air-supported dome 
is considered. 

A generalised source method is developed for the task of calculating the 
added mass effects. This method is an enhancement of the scheme proposed 
by Krakowska [861 such that it can be applied to any closed membrane 
structure of arbitrary shape. The underlying basis of the generalised method is 
the potential flow theory and hence, primarily involves the solution of the 
Laplace equation. This solution can be obtained in terms of either a 
distribution of sources or doublets over the structure. For the dome under 
consideration, a distribution of sources is prescribed over the membrane. For 
the structural modelling, the membrane of the dome is discretised into 
constant strain triangular elements. In the generalised method, a discrete 
source is placed at the centroid of each triangular element. The boundary 
condition of zero normal velocity across the rigid base of the dome is satisfied 
by having a distribution of sources over the surface of an imaginary mirror 
image of the dome. This image is the reflection of the dome across the base 
and the source distribution for the image should be similar to that for the 
dome. The added mass calculations are based on kinetic energy considerations 
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involving the use of the source distributions in finding the kinetic energy 
due to the motion of surrounding air. 

The experimental test cases used for comparison with the developed theory 
are based on the traces of unloading deformations of a very light pneumatic 
dome. These experiments were previously carried out by Krakowska [86] for 
the cases of both initially applied central (symmetric) loading and asymmetric 
loading; the dynamic responses being initiated by the sudden removal of 
these initial loadings. In consequence, the contained air mass is quite high in 
comparison with the membrane mass yet the dynamic deformations of the 
dome are large. The theoretical results were found to be in reasonable 
agreement with the corresponding results determined from experiment by 
Krakowska [86]. As confirmed from the theoretical results in each case in 
terms of the average added mass coefficient and the significant improvement 
in the prediction of the experimental frequency compared with when there is 
no account of the added mass effects, the added mass of the attached air has a 
dominant influence on the dynamic response of the dome. 

The explicit numerical scheme developed for the dynamic analysis of the 
impulsively unloaded dome is still under development. More research is 
needed in a few areas as will be outlined in the following section, in order to 
further improve the scheme so that it can eventually be applied in practice to 
provide relevant design information concerning the dynamic responses of 
tension structures and until then, the practical solution at present is to 
perform wind tunnel testing of an aeroelastic model of the structure. 

10.2 Recommendations 

From the work which has been considered in this thesis, particular areas can 
be identified where there is scope for further research work. 

For the beam elements considered in chapter 4, a possible area of future work 
is the inclusion of the ability to allow for the plastic hinge formation during 
the analysis of the structure. This will enable the modelling of the elastic- 
plastic behaviour which may be expected under certain circumstances (ie. 
ultimate load capacity checks). 

The discussion in chapter 5 has shown that the ideas from differential 
geometry do contribute to the development of the numerical schemes applied 
to the form-finding and patterning procedures. The condition of prescribed 
principal tensile stresses following the sense of a geodesic coordinate system 
on the surface is imposed on the form-finding process of a membrane 
structure. This requirement is not necessary but does offer a convenient 
means of producing different surface forms, the choice of which can be 
enormous. Further investigations can be carried out to find alternative 
approaches, using ideas from differential geometry, to the form-finding in 
particular of cable nets such as principal curvature and constant tension 
coefficient nets. 
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For the CAD system described in chapter 7, there are areas where further 
developments can be made to enhance the capability of the system. These 
include the following: 

(1) additional module for the analysis and design of cable net structures; 

(2) direct linking of the system to the cutting pattern production stage on the 
shopfloor (ie. linking of the engineering design output with CNC systems 
for laser cutting of the fabric patterns); 

(3) linking of the system to a commercial draughting package such as 'Auto- 
Cad' and to alternative architectural visualisation packages; 

(4) additional module for the dynamic analysis of tension structures. 

As discussed in chapter 8, further research is needed to obtain a more accurate 
description of the loading due to a turbulent wind. This description should 
give an indication of the random fluctuating components in the wind rather 
than a quasi-static assessment as is the common practice at present. It is only 
practical that this loading can be expressed in a form which is easily applied in 
the dynamic analysis. 

For the dynamic analysis of tension structures, further improvement can be 
made to the generalised source method in order to model the distribution of 
the added mass effects over the structure. The assumption that these effects 
are uniform over the structure introduces an error of yet undetermined 
magnitude. Furthermore, more work can be carried out to devise a practical 
means of modelling the aerodynamic damping within the dynamic analysis. 
An empirical formula for the aerodynamic damping has been suggested by 
Davenport [511 which requires the determination of an aerodynamic 
coefficient for the structure under consideration. In addition, a means has to 
be found of modelling the momentum effect of a body of air when set into 
motion. This will require a formulation which takes into account how the 
motion of the membrane (ie. boundary) is translated into the momentum of 
the surrounding air. Obviously, the behaviour of the external air will differ 
from that of the air enclosed within the dome. A suggestion is to discretise 
the surrounding air into finite elements and formulate a finite element 
scheme to model the momentum effect. In a sense, this may involve the 
coupling of the boundary solution determined from the potential flow theory 
with the finite element field for the surrounding air. A scheme which follows 
this line of thought has been proposed by Barnes [19] which has yet to be 
verified numerically. Hence, further investigation can be carried out in order 
to determine if this scheme can suitably be used within the above numerical 
approach for the dynamic analysis. Another area of further work is the 
implementation and verification of the proposed procedure outlined in 
scetion 9.19 of chapter 9 for dealing with the case of dynamic response in the 
presence of wind. 
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