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Abstract  

This paper reports longitudinal clinical, neurocognitive and neuroradiological findings in an 

adolescent patient with non-progressive motor and cognitive disturbances consistent with a 

diagnosis of developmental coordination disorder (DCD). In addition to prototypical DCD, 

development of mastication was severely impaired while no evidence of swallowing apraxia, 

dysphagia, sensorimotor disturbances, abnormal tone or impaired general cognition were 

found. He suffered from bronchopulmonary dysplasia and was ventilated as newborn for 1.5 

months. At the age of three months a ventriculoperitoneal shunt was surgically installed 

because of obstructive hydrocephalus secondary to perinatal intraventricular bleeding. At the 

age of five, the patient’s attempts to masticate were characterized by rough, effortful and 

laborious biting movements confined to the vertical plane. Solid food particles had a tendency 

to get struck in his mouth and there was constant spillage. As a substitute for mastication, he 

moved the unground food with his fingers in a lateral direction to the mandibular and 

maxillary vestibule to externally manipulate and squeeze the food between cheek and teeth 

with the palm of his hand. Once the food was sufficiently soft, the bolus was correctly 

transported by the tongue in posterior direction and normal deglutition took place. Repeat 

MRI during follow-up disclosed mild structural abnormalities as the sequellae of the perinatal 

intraventricular bleeding but this could not explain impaired mastication behaviour. 

Quantified Tc-99m-ECD SPECT, however, revealed decreased perfusion in the left cerebellar 

hemisphere, as well as in both inferior lateral frontal regions, both motor cortices and the right 

anterior and lateral temporal areas. Anatomoclinical findings in this patient with DCD not 

only indicate that the functional integrity of the cerebello-cerebral network is crucially 

important in the planning and execution of skilled actions, but also seem to show for the first 

time that mastication deficits may be of true apraxic origin. As a result it is hypothesized that 

“mastication dyspraxia” may have to be considered as a distinct nosological entity within the 

group of the developmental dyspraxias following a disruption of the cerebello-cerebral 

network involved in planned actions. 
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Introduction 

Mastication is a skilled motor activity which consists of the complex interaction of orofacial 

rhythmic processes requiring fine motor coordination of the teeth, temporomandibular joints, 

the lips, tongue, cheeks and facial muscles. It can be regarded as a stage which prepares the 

food for swallowing [1] by crushing it, grinding it and mixing it with saliva. The masticatory 

sequence is the whole set of movements extending from ingestion to swallowing. Lund (1991) 

[2] makes a distinction between three types of cycles: preparatory cycles (type I), reduction 

cycles (type II) and preswallowing cycles (type III). The preparatory series is aimed at 

moving food to the posterior teeth for breakdown by the reduction cycles, while the 

preswallowing cycles further reduce the food into smaller particles. The preparatory cylces 

are shortest in duration while the reduction and preswallowing cycles have an intermediate 

and long duration respectively. 

 Typical masticatory movements are described as having a ‘tear-drop shape’ [3], i.e. the 

beginning of the opening phase is characterized by a slight displacement of the jaw towards 

the chewing side, while the opposite lateral displacement is observed during the closing 

phase. This yields a slight rotatory movement. The most lateral point of the chewing cycle is 

situated halfway through the closing phase. In a vertical plane, the reduction and 

preswallowing cycles are characterized by a progressively diminishing vertical amplitude of 

the movements as the size of the food particles becomes smaller. The basic pattern of 

mastication is generated by pattern generating neurons in the brain stem, while sensory 

feedback from various intraoral, joint and muscle receptors interact with the central control 

system to adapt the programme to the characteristics of the food [1].  

 Mastication has to be learnt and it only occurs after tooth eruption. Although patterns of 

mastication movement may vary considerably between individuals, chewing becomes well 

co-ordinated around the age of 4-5. Gum-chewing PET [4] and fMRI [5] experiments in 

healthy subjects have confirmed significant activations in the oral region of the primary 

sensorimotor cortex, but have also revealed the involvement of the supplementary motor area, 

insula, thalamus, and cerebellum. These regions are believed to receive sensory information 

from the lips, tongue, oral mucosa, gingivae, teeth, mandible, and temporo-mandibular joint 

and to control the lingual and facial muscles during mastication (Figure 1). 
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Figure 1: The direct connections of the mastication network are compiled in the corticobulbar 
tract (grey arrows) responsible for the voluntary movements. The corticobulbar tract rises 
from the primary somatomotor area (MS I) and the primary and secondary somatosensory 
area (SM I and SM II). These fibres continue to the medulla oblongata. On different levels 
they send off branches to the basal ganglia, reticular formation and cerebellum. These fibres 
are part of the multisynaptic extrapyramidal system, responsible for automatic movements 
(red arrows). The corticobulbar tract is involved in refined movements, including those of the 
oral system. The cerebellum also plays an important role in the motor control, planning and 
coordination of the masticatory movements. 
 

 

Apraxia, a term originally proposed by Steinthal in 1881, is nowadays broadly defined as a 

disorder of skilled motor actions not caused by motor weakness, akinesia, deafferentiation, 

abnormal tone or posture, movement disorders (e.g. tremor, ataxia, chorea, ballismus, 

myoclonus), sensory-perceptual deficits, language comprehension deficits, general cognitive 

impairment or uncooperativeness [6,7]. Many distinct forms of apraxia have been identified 

that involve various parts of the human body. There has been a long tradition in 

neuropsychological research which has investigated different forms of apraxia at the interface 

between cognitive processing and motor action: eyelid apraxia, oro-facial apraxia, apraxia of 
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speech, swallowing apraxia, forelimb apraxia (limb-kinetic apraxia, ideomotor apraxia, 

ideational apraxia, dissociation apraxia, conceptual apraxia, callosal apraxia, diagnostic 

apraxia, pure agraphia, visuo-constructive apraxia, drawing apraxia, dressing apraxia) and gait 

apraxia. To the best of our knowledge there are no studies in which apraxic disruption of the 

mastication process has been documented. This paper, however, describes the longitudinal 

clinical, neurocognitive and (functional) neuroimaging findings in a 19-year-old right-handed 

patient who presented with severely disrupted mastication behaviour following extended 

periods of tube feeding during the first years of his life. 

 

Case Report 
Propositus was born prematurely by Caesarian section after 29 weeks of gestation due to 

pregnancy toxicosis. The newborn suffered from bronchopulmonary dysplasia and was 

ventilated for 1.5 months. At the age of three months a ventriculoperitoneal shunt was 

installed because of obstructive hydrocephalus secondary to perinatal intraventricular 

bleeding. Until the age of six months the boy was tube fed. Because attempts to start bottle-

feeding were unsuccessful (absence of the suck reflex) syringe feeding was started.  At the 

age of 21 months the patient was re-admitted because of progressive weight loss (-1.1 kg) 

(body weight = 8.5 kg; < percentile 3). He refused food that required chewing and vomited 

after the intake of non-liquid or soft food substances. The swallowing of liquids and pudding 

was normal as confirmed by videofluoroscopy. Mild oesophagitis and gastro-oesophageal 

reflux were found. Nocturnal nasogastric tube feeding was started and continued until the age 

of 30 months. An oral feeding training programme was concomitantly started but the patient 

remained unable to chew solid substances. At the age of 36 months he was diagnosed with 

gastric volvulus which was treated surgically. His eating habits did not change after the 

operation and he remained unable to chew. 

 Acquisition of motor milestones as well as onset of speech production (around age 2.5 

years) was delayed. At the age of 4.5 years, deviant development of articulated speech was 

formally diagnosed as developmental apraxia of speech (DAS). Speech therapy was started to 

complement feeding and oral-motor therapy. A Wechsler Preschool and Primary Scale of 

Intelligence performed at this age showed a normal verbal IQ level of 88. A developmental 

non-verbal delay of approximately 1.5 years was objectified by means of the ‘Snijders-Oomen 

Non-verbale Intelligetietest’ (SON-R) [8]. The kintergarten reported behavioural and affective 
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problems. These included the avoidance of social contacts and difficulties in establishing and 

maintaining relationships with peers. Family history was negative for developmental disorders 

and learning disabilities. 

 At the age of 5.5 years the boy was referred to the neurological department of ZNA 

Middelheim General Hospital because little progress had been made in acquiring a mature 

mastication pattern, even after several months of intensive oral-motor and feeding therapy. 

Instead of coordinated chewing movements, mastication behaviour consisted of rough, 

effortful and laborious biting movements. Chewing was restricted to vertical movements of 

the jaw without any noticeable lateral or rotatory motion. Bigger food particles had a tendency 

to get stuck in his mouth and there was constant spillage. The patient moved the unground 

food particles with his fingers in a lateral direction to the mandibular and maxillary vestibule; 

the bolus was then externally manipulated and squeezed between his teeth and cheek with the 

palm of his hand. Once the bolus was sufficiently soft, normal deglutition took place 

immediately. Neurological examination revealed severe developmental delay (> 2.5 years) of 

gross and fine motor functions, dysdiadochokinesia and marked clumsiness but no motor or 

sensory abnormalities were found to explain abnormal mastication. However, various 

dyspraxic deficits across different modalities were observed. In addition to DAS, the patient 

presented with severe bucco-labio-lingual, constructional and drawing apraxia. In-depth 

stomatological and maxillo-facial examinations did not reveal any motor or sensory 

abnormalities. A repeat videofluoroscopy study was normal. CT and MRI of the brain as well 

as EEG recordings did not reveal any abnormalities.  

 After one year the patient had learned some gross chewing movements but mastication 

of hard substances was still impossible. He could not move his tongue or jaw in a lateral 

direction on command, he could not lick his lips or protrude his tongue towards the tip of his 

nose. Rapid and smooth alteration between different articulatory positions /p–t–k/, was not 

possible. He was not able to blow up his cheeks and hold for at least 3 seconds. Furthermore, 

he was unable to whistle or blow out a candle. Results of the neurological examination 

remained unremarkable. Food aversion was suspected but a psychiatric assessment disclosed 

no evidence of a psychogenic disorder. Since there were reports of problems at school, 

cognitive investigations were repeated. A screening of general cognition by means of the 

Wechsler Intelligence Scale for Children-R [9] disclosed a significant discrepancy of 20 IQ-

points between a low average verbal IQ (80) and a profoundly depressed non-verbal level 
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(performance IQ = 60) (Table 1). Scaled scores ≤-2 standard deviations (SD) were obtained 

for all but one of the performance subtests (picture arrangement). At the verbal level, the 

subtests ‘digit repetition’, ‘arithmetics’ and ‘similarities’ scored ≤-2 SD. Distorted visual-

motor integration skills (scaled score 69), and borderline visual-motor coordination (scaled 

score 74) were reflected by the results on the Beery Developmental Test of Visual-Motor 

Integration [10]. A low score (pct. <10) was found on copying of the Rey-Osterrieth figure 

[11]. As demonstrated by the Differentieller Leistungstest [12] (< pct 5) and the Bourdon-Vos 

Test [13] (< pct 5) borderline results were obtained for sustained visuo-motor attention. In 

addition to DAS, formal investigation of linguistic functions by means of the Taaltest voor 

Kinderen [14] showed a borderline score at the level of receptive vocabulary (word 

comprehension = pct. 4).  Verbal memory was normal (pct. 69) as measured by the 15 words 

test of the PINOK [15]. Physical therapy was started to complement oral-motor and feeding 

therapy and the boy was referred to special needs education. 

 As shown in table 1 the neurocognitive profile did not substantially change. A 

consistent discrepancy between superior verbal and inferior non-verbal cognitive skills was 

found again one year later and attentional deficits and executive dysfunctions persisted as 

well. During follow-up an improvement of bucco-labio-lingual praxis and mastication skills 

was reported. At the age of 19 years he was able to perform lateral as well as rotatory chewing 

movements but the process was executed in a markedly slow, gross and laborious way. Oral 

searching behaviour to position and transport the bolus (groping) with effortful lingual 

movements was regularly observed when the patient put food in his mouth. Notwithstanding 

the long duration of the chewing process, the patient swallowed relatively big food particles 

with considerable difficulty. A lack of control over the mastication process was observed and 

as soon as he was distracted from the mastication act, he stopped chewing. The Nordic 

Orofacial Test-Screening (NOT-S) [16] was administered to investigate orofacial function and 

ad hoc normative data for this test were collected in an age and education-matched control 

group of 40 subjects (19-year-old pupils trained at the same level of special education). The 

NOT-S assesses 12 domains of orofacial function, six by means of a structured interview and 

six by clinical evaluation of the participant performing various tasks using a manual 

consisting of 13 pictures. A positive or defective response results in one point with a 

maximum total score on the test of 12 points. The domains evaluated in the NOT-S interview 

are: (I) sensory function, (II) breathing, (III) habits, (IV) chewing and swallowing, (V) 
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drooling, and (VI) dryness of the mouth. The patient obtained a total score in the NOT-S 

interview of 4/6 with failures situated in the following fields: (I) sensory function (1 positive 

response on 2 questions), (II) breathing (2 positive responses on 2 questions), (III) habits (2 

positive responses on 2 questions), and (IV) chewing and swallowing (2 postive responses on 

5 questions). No evidence for (V) drooling (1 question) and (VI) dryness of the mouth (2 

questions) was found. The clinical part of the in the NOT-S examination consists of: (1) the 

face at rest (4 evaluation criteria), and a variety of tasks evaluating (2) nose breathing (1 task), 

(3) facial expression (3 tasks), (4) masticatory muscle and jaw function (2 tasks), (5) oral 

motor function (4 tasks), and (6) speech (2 tasks). The patient obtained a score of 4/6 on this 

subpart with positive scores situated in the following domains: 1) the face at rest which was 

marked by a slight asymmetry (4) abnormal masticatory muscle and jaw function 

characterized by asymmetrical activity, (5) deviant oral motor function characterized by the 

inability to reach outside of the Vermillion border of the lips with the tip of the tongue, to 

reach the corners of the mouth and to blow up the cheeks and hold for at least 3 seconds, and 

(6) unclear speech with some indistinct sounds. The patient obtained a NOT-S total score of 8 

points which is statistically significantly different (One sample Wilcoxon Signed Rank Test, p 

<0.001) from the mean of 3.3 points (SD = 1.4) in the control population. In addition, the 

patient and the controls were examined by means of the Test for Assessing Nonverbal Oral 

Movement Control and Sequencing [17]. This test consists of 10 oral-motor tasks each of 

which is scored on a 1 to 4 point scale (higher points indicate normality. The following tasks 

have to be performed: 1) coughing, 2) clicking the tongue, 3) blowing, 4) biting the lower lip, 

5) puffing out the cheeks, 6) smacking the lips, 7) sticking out the tongue, 8) licking the lips, 

9) biting the lower lip and then clicking the tongue, and 10) smacking the lips and then 

coughing. The mean score in the control population was 39/40 (SD = 1.5). The patient 

obtained a significantly lower total score of 27/40 (One sample Wilcoxon Signed Rank Test, p 

<0.001). He was not able to puff out his cheeks (score 1) and displayed trial and error 

searching movements when he had to smack his lips (score 2), to stick out his tongue (score 

2), to lick his lips (score 2), and to smack his lips and then cough (score 2). Coughing (task 1) 

and biting of the lower lip and then clicking the tongue (task 9) were accurate but awkwardly 

and slowly produced (score 3). Tasks 2, 3, and 4 required no effort and were immediately and 

accurately performed. Detailed clinical neurological examination in which cerebellar 

functionality was studied with the Brief Ataxia Rating Scale (BARS) revealed very mild 
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ataxia, reflected by a total score of 4/30 (normality is indicated by lower points) [18]. 

Lowering of the heel was performed in a continuous axis but the movement was decomposed 

in several phases (BARS score = 1). In the finger-to-nose test, oscillating movements of the 

arm and hand without decomposition of the movement were observed (BARS score = 1). 

Motor speech was mildly disrupted by a few articulation errors, a laboured articulatory setting 

and oral diadochokinesis (BARS score = 1) which are consistent with sequelae of DAS. There 

were mild oculomotor abnormalities consisting of slightly slowed pursuit (BARS score = 1). 

Repeat EEG was normal. Repeat MRI of the brain (Fig. 1A-F) showed slight atrophy of the 

corpus callosum (Fig 1A), irregular but normal-sized ventricles and the linear trajectory of 

intraventricular drain insertion (1C-F) when the patient was 3 months old (Fig 1C-D). In 

addition, slightly abnormal aspect of the white matter suggests discrete hypomyelination as 

the possible sequellae of the perinatal intraventricular bleeding (Fig 1C-E). A gliotic reaction 

surrounding a periventricular white matter lesion is demonstrated on Fig 1E. No infra- or 

supratentorial abnormalities were found in the primary sensorimotor cortices, the 

supplementary motor area, insula, thalamus, brainstem or the cerebellum that could relate to 

the pattern of neurobehavioural deficits.  
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Figure 2 (A-H): Mid-saggital T1-weighted Brain MRI slice (1A) at the age of 19-years 
showing an irregular and slightly atrophic callosal body. Axial FSE T2-weighted Brain MRI 
slice (1B) shows normal cerebellar structures. Axial FLAIR images (1C-F) disclose irregular 
lateral ventricular volumes, a linear trajectory of the intraventricular drain installation when 
the patient was 3 months old and slightly abnormal white matter indicating discrete 
hypomyelination as the possible sequelae of the perinatal intraventricular bleeding. A gliotic 
reaction surrounding a periventricular white matter lesion is demonstrated as well (1E).  
 

      Since T2- and FLAIR sequences did not show focal white matter lesions and to limit 

exposure time in the scanner single voxel MRI spectroscopy instead of volumetric spectroscopy 

was conducted to exclude metabolic disease, which may be expected to involve the whole white 

matter. Single voxel MRI spectroscopy was acquired on a 3T MRI (Siemens) in the deep white 

matter of the left cerebral hemisphere. To this end, 128 averages were obtained within a single 

but representative voxel of 2x2x2 cm3, which was the maximum volume of white matter to 

include without including grey matter with a TE of 135 ms and a TR of 2000 ms. As shown in 

Figure 3, normal N-acetyl aspartate (NAA), creatine (Cr), and choline (Cho) peaks were found. 

The ratio Cho/Cr (=0.84) is low but within normal limits (0.8-1.4). 

 

 



 

 12 

 

Figure 3: Spectrum of a single voxel in the deep white matter of the left hemisphere, showing 
normal N-acetyl aspartate (NAA), creatine (Cr), and choline (Cho) peaks. The ratio Cho/CR 
(=0,84) is low but within normal limits (0.8-1.4). 
 

 Repeat neuropsychological investigations confirmed prior findings, i.e. a consistent 

discrepancy between the verbal IQ (VIQ=79) and the nonverbal IQ (PIQ=64). The Wisconsin 

Card Sorting Test (WCST) [19] revealed an impaired ability to form abstract concepts, to shift 

and maintain goal-oriented cognitive strategies in response to changing environmental 

contingencies. The patient did not manage to complete any category within 128 trials (< pct 

1). Visual search and sequencing (Trail Making Test) [20] were below normal levels and a 

subclinical score on the Stroop Colour-Word test (percentile 12) [21] provided evidence of a 

depressed ability to inhibit a competing and more automatic response set.  Apart from these 

disrupted visuo-spatial cognition, attentional deficits and executive dysfunctions, no other 

cognitive defects were found. Results on the Wechsler Memory Scale-Revised (WMS-R) [22] 

showed that verbal learning (index = 87), nonverbal learning (index = 93) and recent memory 

(index =93) were well within the normal range. Formal language testing by means of the BNT 

(visual confrontation naming) [23], a verbal fluency task (one minute oral production of 

words belonging to a specific semantic or phonological category) as well as repetition, word 

reading and writing to dictation [24]  yielded normal results. Persisting affective and social 

difficulties were recorded. In addition to difficulties in establishing and maintaining social 

contacts with peers the patient had developed strong feelings of worthlessness and emotional 

instability. 	  

 

[INSERT TABLE 1 NEAR HERE] 

 
Functional neuroimaging with SPECT and MRI 

A quantified Tc-99m-ECD SPECT study was carried out. Using a previously fixed butterfly 

needle 740 MBq (20 mCi) Tc-99m-ECD was administered to the patient sitting in a quiet and 

dimmed room, eyes open and ears unplugged. Acquisition was started 40 min after injection 

using a three-headed rotating gamma camera system (Triad 88; Trionix Research Laboratory, 

Twinsburg, Ohio, USA) equipped with lead super-fine fanbeam collimators with a system 

resolution of 7.3 mm FWHM (rotating radius 13 cm). Projection data were accumulated in a 



 

 13 

128 x 64 matrix, pixel size 3.56 mm, 15 seconds per angle, 120 angles for each detector (3° 

steps, 360° rotation). Projection images were rebinned to parallel data, smoothed and 

reconstructed in a 64 x 64 matrix, using a Butterworth filter with a high cut frequency of 0.7 

cycles/cm and a roll-off of 5. No attenuation or scatter correction was performed. Trans-axial 

images with a pixel size of 3.56 mm were anatomically standardized using SPM and 

compared to a standard normal and SD image obtained from ECD perfusion studies in a group 

of 15 normally educated healthy adults consisting of 8 men and 7 women with an age ranging 

from 45 to 70 years. Using a 31 ROI template, Z-scores (SD) were calculated for each region. 

A regional Z-score of >2.0 was considered significant. In comparison to normal database 

findings the quantified Tc-99m-ECD SPECT study showed a significant decrease of perfusion 

in the anterior and medial part of the left cerebellar hemisphere (-2.22 SD) including the 

dentate nucleus and middle cerebellar peduncle as well as a hypoperfusion in the right 

temporal region (-2.76 SD), the right motor cortex (-2.15 SD) and the right inferior frontal 

region (Figure 4).  Decreased perfusion in the right anterior temporal (-1.76 SD), the right 

cerebellar hemisphere (-1.32), the left inferior frontal (-1.77 SD) and left motor cortex (-1.92 

SD) nearly reached significance. 

 

 
 
Figure 4: Quantified Tc-99m-ECD SPECT study shows a significant decrease of perfusion in 
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the right temporal region, the right motor cortex and the right inferior frontal region (upper 
row) associated with a hypoperfusion in the anterior and medial part of the left cerebellar 
hemisphere including the dentate nucleus and middle cerebellar peduncle (lower row). 
Decreased perfusion in right anterior temporal (-1.76 SD), the right cerebellar hemisphere (-
1.32), the left inferior frontal (-1.77 SD) and left motor cortex (-1.92 SD) is not indicated as it 
did not reach a significance level of >-2 SD. 
 

 Diffusion tensor imaging (DTI) and functional MRI (fMRI) data sets were acquired 

on a 3T MRI (Siemens) to study the cortico-spinal tracts, masticatory related motor 

activation of the jaw and cerebral language dominance. A DTI acquisition with 64 non-

colinear directions of gradient was used, with a TE of 88 ms and a TR of 7700 ms. Two 

block design fMRI data sets were acquired, both with an acquisition time of 4 minutes, a TR 

of 3000 ms and a TE of 50 ms. These 4 minutes were subdivided in alternating blocks of 30 

seconds in which the patient was asked to rest and to perform the task. All tasks and 

instructions were visually presented to the patient. Since the patient was not able to chew 

gum an alternative task was performed to study the neural correlates of mastication 

consisting of moving the jaw in a way masticatory movements are executed. In a language 

activation task, a standard verbal semantic association task was completed, in which the 

patient had to think of a semantically related verb in response to a visually presented noun 

shown on the screen. fMRI data sets were analyzed on a separate workstation using SPM8 

software. Motion correction was performed, functional data were coregistered to the 

anatomical image, and the anatomical image was subsequently normalized to MNI space 

using a non-affine transformation. This transformation was then applied to all registered 

functional images. After smoothing the functional images with a FWHM of 8 mm, contrasts 

were calculated. Results were corrected, with a false discovery rate (FDR) threshold of 0.05. 

 Figure 5 shows the cortico-spinal tracts in the left (green) and right (red) hemisphere. 

No abnormalities were observed in these tracts which had an average fractional anisotropy 

value of 0.54. In addition, tractography was performed using regions of interest (ROI) in the 

dentate nuclei and the anterior part of the motor lobe. On the colour-encoded axial FA slice 

(Figure 6) the regions of interest used to reconstruct the tracts from the dentate nucleus are 

shown in white. Tractography results are visualized in Figure 7. The FA and MD in the 

dentate nuclei tracts was 0.43 and 0.00086 mm2/s, respectively. The FA and MD of the motor 

anterior lobe tracts was 0.39 and 0.00080 mm2/s, respectively. Interestingly, tracts were found 

from the dentate nucleus towards the thalamus, but not to the motor cortex. As demonstrated 
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in Figure 8, the left and right primary motor cortex, left supplementary motor area (SMA) 

were activated during the mastication movement of the jaw. No brain activation was found in 

the cerebellum at the FDR (0.05) level. However, this pattern of activation should be 

interpreted with caution, as the patient performed additional head movements during this task, 

due to the inability to properly execute masticatory movements. The fMRI results of the jaw 

movement task are summarized in table 2. Figure 8 shows activation of the prefrontal left 

hemisphere language areas during the verbal association task. In table 3, the MNI coordinates 

of the significant regions are listed. The superior longitudinal fasciculus, connecting the 

anterior (Broca's area)  and posterior (Wenicke’s area) language areas, is displayed in yellow 

colour in Figure 9. 

 

 
 
Figure 5: DTI tractography result of the cortico-spinal tracts in the left (green) and right (red) 
hemisphere. 
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Figure 6: Colour-encoded axial FA slice depicting in white colour the regions of interest used 
to reconstruct the tracts from the dentate nucleus.  
 
 

 
 
Figure 7 
DTI tractography results with ROIs in the dentate nuclei (left plane) and the left (middle 

plane) and right (right plane) anterior part of the motor tracts. 
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Figure 8: fMRI results: 1) of the jaw movement task showing bilateral motor cortex 
activations (left plane) and 2) of a noun-verb semantic association task showing prefrontal left 
hemisphere activity (right plane). 
 

 

 
 

Figure 9: DTI tractography of the fasciculus arcuatus (yellow), connecting the anterior 
(Broca) and posterior (Wernicke) language areas in the left hemisphere. 
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 [INSERT TABLES 2 & 3 NEAR HERE] 

 
 

Discussion 
This 19-year-old right-handed patient presented with a non-progressive neurodevelopmental 

disorder characterized by a clearly impaired and delayed acquisition of motor skills, 

sensorimotor coordination disturbances, impaired non-verbal cognitive skills, attention 

deficits and executive dysfunction associated with affective and social problems. The clinical 

set of developmental disturbances affecting the motor, cognitive and affective level suggests a 

diagnosis of Developmental Coordination Disorder (DSM-IV), which closely relates to the 

Cerebellar Cognitive Affective Syndrome [25,26].  In addition to the prototypical DCD 

symptoms this patient also presented with a history of significant developmental mastication 

impairment.  

A number of descriptive studies indicate that a mature pattern of mastication is 

characterized by the emergence of a highly coordinated rotary motion of the jaw which is 

readily established during the first 24-30 months of life [27,28]. In this patient, however, jaw 

motions for chewing at the age of 5.5 years only consisted of roughly cyclic vertical 

mandibular elevations and depressions, constrained to the inferior-superior dimension of the 

maxillary-occlusional plane. This primitive chewing pattern is typically found in children of 

about six months of age in the course of normal mastication development [28]. Despite 

intensive oral-motor and feeding therapy the next stage in the sequence of early chewing 

development, i.e. the acquisition of a combination of alternating vertical and lateral jaw 

movements, had not been achieved when the patient was re-examined at the age of 6.5 and 7.5 

years. At the age of 19 he performed rotary motions of the jaw during chewing but no 

refinement had been achieved in the general coordinative organization of mature masticatory 

control.  

Aside from a general developmental delay of gross and fine motor functions, repeat 

stomatological, maxillo-facial and neurological investigations during longitudinal follow-up 

did not reveal any anatomical or physiological restrictions which could explain the markedly 
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impaired development of mastication. In the absence of any muscular weakness, sensorimotor 

impairments, abnormal tone, comprehension deficits or general cognitive disability it is 

hypothesized that this disrupted mastication behaviour may represent a genuine dyspraxic 

disturbance. Repeat investigations consistently disclosed pathological involvement of multiple 

components of the praxis system. Constructional dyspraxia, drawing dyspraxia and distorted 

visual-motor integration skills were objectified during follow-up while DAS and bucco-labio-

lingual dyspraxia significantly affected speech and voluntary orofacial-motor functioning. At 

the age of 6.5 and 7.5 years the patient still completely failed to produce oral postures or 

imitations of them on command which contrasted with the ability to flawlessly realize 

involuntary productions (such as spontaneously giving a kiss to his mother) in real contextual 

environments. DAS and bucco-labio-lingual dyspraxia clearly improved during follow-up but 

depressed scores on the NOT-S [16] and the Test for Assessing Nonverbal Oral Movement 

Control and Sequencing [17] at the age of 19 years confirmed persistent sequelae of immature 

and disrupted oral-verbal volitional control.  

 Long-lasting and recurrent tube feeding -which prevented progressive and systematic 

introduction of new and solid food consistencies during the crucial stages of early chewing 

development might be considered to have caused substantial deprivation of essential oral-

motor stimulation indispensible to acquire the necessary skills that subserve the normal 

development of mastication. The combination of a lack of early stimulation associated with a 

general deficiency to learn skilled movements might have induced a condition of disrupted 

mastication consistent with a diagnosis of ‘developmental mastication dyspraxia’. A deviant 

coordination of labial, lingual and mandibular movements has to the best of our knowledge 

only been documented before in the context of swallowing apraxia in patients with acquired 

neurological damage [29,30]. Some of the early cases with postmortem confirmed lesions to 

the left lower portions of the pre- and postcentral gyri also presented with concomitant bucco-

labio-lingual apraxia and apraxia of speech [29] but an inherent association between these 

related forms of apraxia has not been consistently found in later studies [31,32].  

 To the best of our knowledge, this patient is the first in whom apraxic disruption of the 

mastication process is documented in a developmental context. Although repeat MRI at the 

age of 19 showed mild structural abnormalities (irregular but normal-sized ventricles, slightly 

abnormal aspect of the white matter) as the sequelae of the perinatal intraventricular bleeding 

and surgical insertion of the intraventricular drain (linear trajectory of intraventricular drain 
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insertion), the brain areas crucially implicated in the mastication process (oral region of the 

primary sensorimotor cortex, supplementary motor area, insula, thalamus, brain stem and 

cerebellum) were  structurally intact.  

 Given normal T2- and FLAIR sequences of the white matter, single voxel MRI 

spectroscopy in the deep white matter of the left cerebral hemisphere, which confirmed the 

neurobiochemical integrity of the white matter, was considered representative for the whole 

white matter volume to exclude metabolic disease [33]. Although the metabolite ratio Cho/Cr 

in our patient was rather low, but still within normal limits, no additional indications for a rare 

metabolic disorder were found in the other spectra or on T2- and FLAIR sequences. In 

addition, following a critical review of the literature no indications were found to causally 

relate the observed structural anomalies to the developmental neurobehavioural deficits 

However, as demonstrated in Figure 7, DTI-based tractography to study the cerebello-

thalamo-cortical and cortico-ponto-cerebellar tracts disclosed an absence of tracts seeded 

from the dentate nucleus to the motor cortex via the thalamus. As amply documented in 

animal and human studies the functional integrity of the dentato-thalamo-cortical pathways is 

of pivotal importance to the neural system subserving voluntary, skilled motricity. It might be 

hypothesized that this absence of tracts reflects underdevelopmental of the neuroanatomical 

circuitry subserving skilled motor action, including mastication.  However, the quality of the 

DTI data set and the inherent limitations of DTI tractography in crossing fibre voxels might 

be an alternative explanation for the absence of tracts seeding from the dentate nucleus to the 

motor cortex. Motor fMRI to determine motor activation patterns of the jaw during 

mastication disclosed activation of the left primary motor cortex, the left SMA and the right 

cerebellum. However, this lateralized pattern of mastication-induced brain neuronal activity 

which contrast with the findings of a prior fMRI study showing a bilateral increase in the 

BOLD signals in the sensorimotor cortex, cerebellum, thalamus, supplementary motor area, 

and insula during chewing [5] should be interpreted with much caution as the patient 

performed a lot of additional head movements during this task following immature 

coordination and execution of masticatory movements. The verbal association task resulted in 

a lateralized increase of the BOLD signal in the left prefrontal regions indicating left  

hemisphere language dominance.  

Functional neuroimaging with SPECT revealed significant perfusion deficits in the 

anatomoclinically suspected supratentorial regions that subserve mastication (bilateral 
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primary motor cortex) and the execution of skilled motor actions (prefrontal lobe) and 

impaired visuo-spatial cognition (right temporal region). In addition, significantly decreased 

perfusion was found in the in the anterior and medial part of the left cerebellar hemisphere 

including the dentate nucleus and middle cerebellar peduncle. Decreased perfusion in the right 

cerebellar hemisphere did not reach significance. These findings not only confirm that the 

cerebellum is crucially implicated in the pathophysiology of DCD [26]  but also in the 

distributed neural network subserving the development of planning and organization of skilled 

movements such as mastication and speech production at the oral-motor level. Indeed, crucial 

involvement of the cerebellum in the modulation of higher cognitive and affective processes 

is subserved by the cerebello-cerebral network, consisting of close neuroanatomical 

connections between the cerebellum and the cortical association areas. In patients with 

cerebellar lesions, disruption of this network is reflected by (crossed) cerebello-cerebral 

diaschisis, showing the functional impact of cerebellar damage on a distant, anatomically and 

functionally connected supratentorial area. Cerebellar malfunctioning due to congenital, 

developmental or acquired disorders may disrupt or reduce the parallel transfer of excitatory 

impulses from the deep cerebellar nuclei through dentatothalamic connections to the cortical 

areas that subserve a variety of cognitive and affective processes, among which the planning 

of skilled motor actions. Data in support of this view are derived from several studies in a 

variety of etiologically different patient groups with cerebellar lesions, demonstrating a close 

and significant association between the neurobehavioural repercussions of the cerebellar 

lesion and the pattern of perfusional deficits at both the cerebellar and structurally intact 

supratentorial level [e.g. 26,34,35].  
 Insufficient maturation or functional underdevelopment of the distributed cerebro-

cerebellar network that subserves coordinated motor skills, spatial cognition, executive 

functions and affect might account for the constellation of symptoms characterizing DCD as a 

possible developmental variant of the Cerebellar Cognitive and Affective Syndrome [25].  

 

Conclusion 

Anatomoclinical findings in this patient with DCD not only indicate that the functional 

integrity of the cerebello-cerebral network is crucially important in the planning and 

execution of skilled actions, but also seem to show for the first time that mastication deficits 

may be of true apraxic origin. As a result it is hypothesized that “mastication dyspraxia” may 
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have to be considered to represent a distinct nosological entity within the group of the 

developmental dyspraxias following a disruption of the cerebello-cerebral network involved 

in planned actions [26,36]. 
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