a2 United States Patent

Popov et al.

US008793216B2

US 8,793,216 B2
Jul. 29, 2014

(10) Patent No.:
(45) Date of Patent:

(54) DATABASE REPLICATION

(75) Inventors: Peter Popov, London (GB); Vladimir
Stankovic, London (GB)

(73) Assignee: The city University, London (GB)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 13/391,662

(22) PCTFiled: Aug. 13,2010

(86) PCT No.:

§371 (D),
(2), (4) Date:

PCT/GB2010/051347

Feb. 22, 2012

(87) PCT Pub. No.: W02011/023979
PCT Pub. Date: Mar. 3,2011

(65) Prior Publication Data
US 2012/0150802 A1 Jun. 14, 2012
(30) Foreign Application Priority Data
Aug. 25,2009 (GB) ccoevieinccneee 0914815.6
(51) Imt.ClL
GO6F 17/30 (2006.01)
GO6F 11/16 (2006.01)
GO6F 11/14 (2006.01)
(52) US.CL
CPC ... GOG6F 11/1612 (2013.01); GO6F 11/1487
(2013.01)
USPC ittt 707/635
(58) Field of Classification Search
CPC ..ot GO6F 11/1612; GOGF 11/1487
USPC ittt 707/635

See application file for complete search history.

(56) References Cited

FOREIGN PATENT DOCUMENTS

EP 1349085 A2 10/2003
OTHER PUBLICATIONS

Vladimir Stankovic, Performance Implications of Using Diverse
Redundancy for Database Replication, Feb. 2008, Centre for Soft-
ware Reliability, City University, 169 pages.*

International Search Report dated Feb. 22, 2011.

(Continued)

Primary Examiner — Apu Mofiz
Assistant Examiner — Dara J Glasser
(74) Attorney, Agent, or Firm — Thomas|Horstemeyer, LLP

(57) ABSTRACT

A fault-tolerant node for synchronous heterogeneous data-
base replication and a method for performing a synchronous
heterogenous database replication at such a node are pro-
vided. A processor executes a computer program to generate
a series of database transactions to be carried out at the fault-
tolerant node. The fault-tolerant node comprises at least two
relational database management systems, each of which are
different relational database management system products,
each implementing snapshot isolation between concurrent
transactions. Each system comprises a database and a data-
base management component. For each database transaction,
operation instructions are provided concurrently to each of
the systems to carry out operations on their respective data-
bases and to provide respective responses. The responses
generated by the systems either comprise an operation result
or an exception. Only one of the systems is configured with a
NOWAIT exception function enabled, which returns an
exception when it is detected that two or more concurrent
transactions are attempting to modify the same data item. The
other systems are configured with the NOWAIT exception
function disabled. The fault-tolerant node detects that two or
more concurrent transactions are attempting to modify the
same data item, and ensures that all systems apply the same
order of modification of the data item by the concurrent
transactions.

20 Claims, 15 Drawing Sheets

5453 T TN
o sl N) st § g 4
TN w
¥ “<components “ecormponants.
AUBs pSTan, Iplem ATz RISyt = subsystem, Implemen:eHonSysbemsS 5!
3 S
g
5741 SN] 51l
—— - 522
" I~ 52
. 152},
S g

0. cencing s recetving messass which are
dedverad to o particpants i a ot order.

US 8,793,216 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Elinkety, et al., “Database Replication Using Generalized Snapshot
Isolation,” Reliable Distributed Systems, 2005, SRDS 2005, 24th
IEEE Symposium on Orlando, FL, Oct. 26-28, 2005, pp. 73-84.

“Oracle Real Application Clusters, Key Features and Benefits”,
Oracle Data Sheet, 2010.

Vladimir Stankovic, “Performance Implications of Using Diverse
Redundancy for Database Replication”, Centre for Software Reli-
ability, City University, Feb. 2008.

* cited by examiner

U.S. Patent Jul. 29, 2014 Sheet 1 of 15 US 8,793,216 B2

C
M @\read(x) x=1o/?x/=9 X=9
! 7 7
) v
R N read(x) 3 ’,’ JPtad
X \\L/ l-‘“:—\\ —‘—__,—'f’—‘.':‘
e read(x) Fmmmmm T SO
{99 ¢ \ i
R, —%—
P _.-::”" \\‘ d() _—"‘ : 3b ;
read(x) F---" \
t 2b} S
RZ ------------
{ 3a
Figure 1
Ts1
|
S
! A
s N

Te 21 - L L
' op’'y op*'x op’',

off1 offx 0p% of1 0P off,

Figure 2

U.S. Patent Jul. 29, 2014 Sheet 2 of 15 US 8,793,216 B2

w(X) \ /" w(x) \

M
\ gzﬁ
617 W(X) 33b
i -
w(x)-i w(x)
S1 \
Sz w(x) 1| w(x)
Tw(;;'i;arallel
7 Time
Tw(x)SequentiaI
Figure 3
BT, w(y) r(x) r(z)
w(y) r(x) r(z)
81, T, ‘
W(y r(x) r(z)
82, T, -
AT (MAX TF, T, T5) -
—
ATiSequential Time

Figure 4

U.S. Patent

54— _ 53~

Jul. 29, 2014

Sheet 3 of 15

US 8,793,216 B2

W5 APL

51}

<«components g] «componanks bl a
Application SW 1 «subsystam, desipnSubsy stams =
FT node
2 ~ <“components ,:,2' «component»
4subsystem, implementationSystems E lesubsystem, implementationsystems £ 51
\\ Mddeworo = gy RDBMS | 4
IR '
= DivRep prok
/K ™~

— Client SQL

+“component®
Application SW n

-

]

2

\(‘,§ Jesubsystem, implemerttationSystems & §
RDEMS 2

SQLAPIZ

«compenent>

u

e N

e

\522
, 52

-52),

b
./ «componants =] +components =] \(‘
Diasgnostic moduls Multicast Protocol
/- WS APL2
5-7h A I The Middleware nodes ‘depend on each
55& a\ 4\ I_ mowmeey______|other by taking part in a multicast protocol,
| _t — —— —— i.e. sending and recelving messgaes which are
| dellvered to all participants in a totla order,
|
1
F v
5-‘ J ezomponents \\‘ 5 é a
tsl.bsystem,implamettationSyﬂ:em»%
SD 5-5 ;8 _ﬁ Middleware

Figure 5

sd EstablishConnection]

a:Clienk SQL APT
r‘ #gﬁnamh&xmmga !
i

! 2t Cnmaﬂ(Datahagfglnegu
2. 1: Construct]

~|

lg: Dﬁsnmie:h(cumxﬂnnx):ﬁnnhm—l—
|
3. 1: Disconnect()Bqglesh

"’°°"“°""°"[e\/7z

d: TraManager

73
S

3.1,1.1: Destruct)

3‘74
e:RepManager! &

1

f:RepManager2

75
S

3,1.1.2; Destruct()

Figure 7

US 8,793,216 B2

9 ainbi4

Sheet 4 of 15

Jul. 29, 2014

U.S. Patent

SRR (DU USSP P+
JAG0ER MBS JUaWa)e) s ine a4+
LRI MOF

L TOT JULDT+

veaoog: ulagt:

LPSO0F PO
LEROI I IPULO -

T Id¥ Ths- 9.
Ee=k =N E=EE

M

N 5

paseyuoda I35+
PRagsad+
39N35U00+

£y
e f

Jabeur{ie) ngjasoubeig+

[1]uea|ng:paypoosH
[1]ueajong: paseyuondanx s+

Taabeuepyday- ©

Idyberg+ &
¢RAIRJEY

U0 J0gy+
UEa|00g: W0+
uea|o0g:ufag+

sog{Bungs uaagecinoEIed oM+
eay: (BULS JuRweIRIc Lo eEdoPRE Y+

LBaB0g!192UL0SIT+

JabsurseseqeieIaauo -

[1]buns:2seqeyed-

uorIaUus)- mmJ

A7
smhmu:a.\mmxﬁm.urﬁsﬁﬂm_ﬁtéap UE| 000 osU0dsarpRy+ N ot S
IRSPEB Y BLING LRIl IDER N pasieyuondanxgEs+ Juesjoogia S24PRY w_mum_o._u,houmwm_._. FEE
URS|D0g PANISHRRY+
P00 G+ PnaER0+ R
P ROOZ YT+ PnAsLe+ [1]uesioog:pesyst+
LSOOG B [1luezoogipagaducdsty | [T]Euis: uondana+
. e BT &
UEROOF JISUOITT+ [1]ue=j0g: pagImonsi4- 1 R [Thebzurezist
LEHOOL IS+ [1]uesjoog:pasieyuodaixas+ JUIUDeIS- Ty
= ! asuodsay- I8
~ w0 g
zaabeuepday- ¥
Z 1dv 10s- & 1
=l S EERNEY 4 UEaj00g: jXaU0TUES D+
E - S LEa|00g: prauoeea s+
. 2 UEajo0g: JUWC YR A+
PrIEE-
JELCE RTINS b — — p UBBj00g: SIUAUEIRIEIeE D+ JANASUDT+ piodayeIeqg-
e inc R R = JUEHA0T: MOqy+
fr=ton P B P W UEEoogUDaga+ —
URE00g | USRI aA DS Y+ OES[00g: oo+ P
Z Id¥ SM- ﬂm z PULIS TG U0 R 2009 UM PP+ e uaog U e sasuodsayaediuas+ _ﬁ_‘m
T FESERIN IR LS TS) USISIEYE PREHPPY -+ 171 esundsey:{Buing 155 ‘Buls 2d4 1 dojuamageisppy-+
I
il
[14=Baur:dAyduzs+ [1]4=baqurigruomoesuel+ [THmersauyL+
1 Idy 5m- &= [1habayur:azis- [1]=boqup:ozs+
e : [1]#ebequr uonesadoiuauns+) XWN =S AP
- w Bbeugp el - O
% AYNASINAaH- § ;

35 JUPBIE]S IDOD
LR LORIBULOT NIV
4abaur i asEqedRg)2aUI0 D+

IdV 0% JuanD- ¢
E=nl-F0a TN e

BpO0 14

IE)SASONELoNRUB WAL WalsAsqnss

2JUauoduose

b9

o
o
b i}

M 92
A

U.S. Patent Jul. 29, 2014 Sheet 5 of 15 US 8,793,216 B2

4
bt
i
3
4
pxY)
4
oy
g

P / 7
¢ e Ve e
b:Connection &» i d:TraManager {‘ e:RepManager 6_"‘5 F:RepManager?
&
é: Readg#;ate&-nent Stingi()

1.1 Regc{ggggiingﬂa_&ﬁment String)() ReadSet Asynchronous operations: the
reSpOnSes Can arrive in any
order.

1 AddStatement{s; ving, SQL String){opType=read)iResponsg - ¥
-
-~ /

1.1 1.1: AddReadStatement{SGL String)(;
—

- &§7a

The fastest
response

is returned to
Connection

tementExecution 2

it
-
- f%a

_.__<_._._._._.{

2. Write(sl t?ment String)(}

riteOpey ation| St

went Skring)():Responss

3.1 AddStatement{oET-‘Ee ﬁtring, SGL String){opType=write): Respoense {‘
%y
/

3. 1.1 AddwriteQperation(SQL Shingl()

StatementExecution 1

5.1.2; MddwiiteOperatign{SQL Stira)()

CompareResponses

Figure 8

U.S. Patent Jul. 29, 2014 Sheet 6 of 15 US 8,793,216 B2

~ 91

sd StaterentExecution] AN [

93

I4

—
B
o

\ " A
)))
aRepManagerl o/ 3L APT L ,r“j’ SWSAPTL L ./ | 4 lonp through the quee of
o = | operations of RepManager 1
urikl all operations in the
queue are processed.
e
a‘fl
loop CurrentOperation < size | -

alt if isRead)

T Read(Ztatement ain ﬂ():ReadSet

tey |

21 "WriteStakemnent itrin;j{):lnteger

31 Fetchi):wrikeSet

41 satExceptionRaised() Exception Raised by RDEMS 1,
The operation alse sets bo value
of the attribute "sxception” (see
class diagram} of the respective
object Response,

Figure 9

US 8,793,216 B2

Sheet 7 of 15

Jul. 29, 2014

U.S. Patent

L

o

0} 2anBi4

(=T

SH SRR I

'pASRE|3 5l Xajnw
SUY 24030 JUUIGD 35T SR Y30g
*SSATY U0 ASNOUDIIUASE

“(xaqnu

£ sB payUauRdur) uopesado
(oD siaque sieueppl] syl
'sUORIR00 JO 59n2Nb 2AfpDadsa)
Jiay passancid aaey sisbeuelday
309 14N s3em ebeusieal

1
H H
H

JEE|00)

m"Cmu_._mEm.u_MumLﬂm_u HBTTT

pagnoazs ese sushesado Douwesy b e — e e — —

—]
lialal=H x| el Bl O A B

L

—_—]
oo gm0 T T T

—{(Tosje j==pajaidnss) [a25]

uawsyR)s b || 2sipj==p3:

}..._-«._.

[EL=ETialal= T

il yEa 11T

}.-..._

e e TS R

s

zizbeuepday:B 1iabeuRpdaya %Mw Z 1dw 105 % 1 Idy TH52 xw.w isbeuepel [P W =10 N i Hal \ﬁ 1de 10 uaDie
F 7
« k §
«3 \: M / Y Ax LIQIESURL U PS
/ / M &
\\m 7 / e F o o b
J—"" 9p[\v 501 - Joling gol- (ol 10}

U.S. Patent Jul. 29, 2014 Sheet 8 of 15 US 8,793,216 B2

i {1 big
LR [IFA e L5 G ,»»”-*54
e .,, i
e 7 /s
sd CompareResponses /}' 7
a:Trabanager c:RepManager2 & d:DiagaPL ZJ
Wit unkil both response received
anid then campare them, A
-
el ’
opt if b.5tatement(il.isCompleted & c, Statement[i].isCompleted |
21 CompareResponbes(Statement)():Boolkzan
opk if
2.1: Diagnose(Buffer){:Integer -
R
Figure 11
P9 22 o X <
P [R ;f 3&‘.2 P ,:E.:}‘ ﬁ,f«’/}w 5{.%‘ {,ﬁf f&.»g
sd ExceptionHandler] g j‘ I g
4 %
H \i"" ff f/ Ve
a:TraManager || 7 d: 500 APT L fi50L APT 2 B4 b:RepManager] B2 | cRepManager? N
” - ‘

apt ?f b.isExceptionRaised || ¢ isExceptionR sised

H
i
i
i
H
H

1 Abort{}:Boolean
\M_‘——h—»_

; 23 Abort(yBoolzan :|
SN il

3 C\eal‘Statements():BooT[]

4: Clearstatements():Bodean

Figure 12

U.S. Patent Jul. 29, 2014 Sheet 9 of 15 US 8,793,216 B2

I) Upon SQL operation OP
1T) switch(OP)
A) case: QP is a begin
1) reset transaction abort /* set transaction abort to false */
2) obtain the mutex /* among TraManagers */
3) send begin to all RDBMSs /¥ create snapshots on the RDBMSs */
4) wait for all RDBMSs to acknowledge the operation
5) release the mutex
6) return control to the client
On exception /* while the begin is executing */
set transaction abort
notify the client of the exception

B) case: OP is read or write operation
1) put OP into the queues of RepManagers /* each RDBMS is served by a RepManager */
2) receive the fastest response for the OP
3) ifthe fastest responsc is not an exception
a) return the response to the client
4) else
a) set transaction abort
b) notify the client of the exception
5) wait for all responses to be received
a) ifexception raised && transaction not set to abort
i) set transaction abort
ii) notify the client of the exception
b) else
i} do compare responses

C) case; OP is an abort
1) settransaction abort

D) case: OP is a commit
1) if transaction not set to abort
a) wait until all available replicas have voted and the comparator has voted
i) obtain the mutex
11) commit transaction on all RDBMSs /* directly access their SQL API */
1) wait until all replicas have responded
1v) release mutex
v) clear RepManagers queues
vi) return to client /* return control to client */

Abort Function /* executed by a TraManager*/

I) iftransaction set to abort
A) abort transaction on all RDBMSs /* directly access their SQL API */
B) wait until all RDBMSs have aborted the transaction

Comparator Function /¥ executed by a TraManager*/
I) compare the responses from all RDBMSs
A) if a mismatch found
1) set transaction abort
2) notify the client of an exception (“data inconsistency occurred™)

Figure 13

U.S. Patent Jul. 29, 2014 Sheet 10 of 15 US 8,793,216 B2

I) while (non-empty queue && transaction not set to abort)
A) fetch an operation (OP) from the RepManager queue
B) switch(OP)
1) case: OP is a read operation
a) send OP to the own RDBMS
b) wait [or a response /* either fetched data or an exception */
¢) return response to TraManager
2) case: OP is a write operation
a) send OP to the own RDBMS
b) wait for the response /* data or an exception */
c) if'no exception raised
i) obtain the write set /*this operation may result in an exception, which would be stored in
the writeset itself*/
i) return the write set to TraManager
d) else
i) return exception to TraManager
e) default: /* incorrect operation */

Figure 14
op,,..-0p, :{" Rk
M e
\‘ op,,...0p,
S1,T,
A
s op;,...0p,
S2, T, ; /
5t e

AT Parallel
i

Time

Figure 15

U.S. Patent Jul. 29, 2014 Sheet 11 of 15 US 8,793,216 B2

162
i opy,..opn | 6l {x EWS multicast | i§ 2%
b N/ Ve ?
M ‘T | LY L —
7~ Twc(WS
Local OP1:---OPn :
Op1,...OPny e C
] 1
remote, |
OpP+1,...0Pn I C Tws C
remote, ~— (I T Y S R N
Parallel Parallel “' v Paraliel
T(0P1)+~<+T(0Pn) TWS validation TWS application
y)
h .
N — / t Time
\T(tranS)Global ,
~,
T(trans)_oca .
—
T(ES)% |
T(trans), New client connection
. Y
Figure 16 7

164

U.S. Patent Jul. 29, 2014 Sheet 12 of 15 US 8,793,216 B2

OPi 1 OP;«

Figure 17

U.S. Patent

Jul. 29, 2014

Sheet 13 of 15

Abort T;
(first-updater-wins rule)

E\jl‘él

\g‘ 193

Casea
1% Abort T;
(first-committer-
b, Mz) wly) atemptci—= i
Vv
b, r(x) w(y) ¢
T,
:l‘ime
77T biooked T Abort T,
Caseb 1because T, has th lock 9—2 _y: (first-updater-wins rule) Abort T,
DTN (first-committer-
b, r(z) ~*wy) / attempt CiA wins rule)
T b, r(x) wy) Ce 186
| \
jl {35
« . -
134 Figure 18 Time
Ti
A
T 1914
C, G 'Wl(Y)' ri(x)é b, j
d d : Centralised DB
T E.I,wgiisgnngkjﬁacqu;@zm@ (T waits on z w
j - \\. : s
p A N \\ \ . /:'//,/
C c W(z)i r (Z) b » W;(y) rk(x) WJ(Z) FJ(Z) Wk(Z) r,(x) bJ bk b|
2 i [\t i
iV |] lj —
1916 jC/
192
e A commit T, abort T, commit T,
Cyl-| o iwd2) rx) iw(z) b, IL/ 193

Figure 19

US 8,793,216 B2

U.S. Patent Jul. 29, 2014 Sheet 14 of 15 US 8,793,216 B2
T, 201 203
—~ 2023
/- J\ \ 20‘3
P R, &
Cy| ¢ iwy) (%)} by ,
et Gl oiwyyine iw) i@ w@in) | b i b b
102 '
T a
A
/ T
C2 c wj(z)g n(z): b
202, ~/ Re
Tk 20 5
P AL < WYIWVR0 i w(2) h2)E w@in) § B bl by
\
l///
C3 . G i Wi(Y} r(x) i wi(2) by 202, - 2073},
abort T; abortT, commitT,

Figure 20

o

Loglcal

o T

DB

Network

I

ﬁ

N -

2~ f

Al

Figure 21

=
N~ 2

U.S. Patent Jul. 29, 2014 Sheet 15 of 15 US 8,793,216 B2

222
e _—
Y

Ry
T

¥ L o> y
(\ R
22‘1 \J L/ 22} Time
Figure 22
WS, | - 232k 23)i [\2}33\
Rx’ Tk 7 x y — r2 Z
O i F F]
Ry T BN
T A
. 3 Ay i ,
232) f‘\\,\// Aﬂ/\
WS, | Ws; | WS,
GCS

13| \J : Time’

Figure 23

US 8,793,216 B2

1
DATABASE REPLICATION

CROSS-REFERENCE TO RELATED
APPLICATION

This application is the 35 U.S.C. §371 national stage of
PCT application entitled “Improvements Relating to Data-
base Replication,” PCT/GB2010/051347, filed Aug. 13,
2010. This application also claims priority to, and the benefit
of, Great Britain Application no. 0914815.6, filed Aug. 25,
2009 herein incorporated by reference in its entirety.

FIELD OF INVENTION

The present invention concerns improvements relating to
database replication. More specifically, aspects of the present
invention relate to a fault-tolerant node and a method for
avoiding non-deterministic behaviour in the management of
synchronous database systems.

DISCUSSION OF PRIOR ART

Current database replication solutions, in both academia
and industry, are primarily based on the crash failure assump-
tion, whereby it is assumed that the underlying building
blocks, i.e. Relational Database Management Systems
(RDBMSs), fail in a detectable way, leaving a copy of a
correct database state for use in recovery. The conventional
approach in database systems is to use a plurality of non-
diverse replicas—RDBMSs from the same vendor—for
mainly availability and scalability improvement. This is
regarded as a suitable approach to addressing failure under
the crash failure assumption, as use of a sufficient number of
replicas tolerates crash failures and manages increased load
from client applications for improved performance. The
validity of this assumption has, however, been refuted in the
recent work by Gashi et al. [Gashi, Popov et al. 2007] and
subsequently in [Vandiver 2008]. Many of the software faults
examined in these two studies caused systematic, non-crash
failures, a category ignored by most standard implementa-
tions of fault-tolerant database replication solutions. The non-
crash failures of RDBMS products are likely to be causing
some of the following anomalies: returning incorrect results
to the client application, incorrectly modifying data items in
the database, arbitrarily halting a transaction or failing to
execute an operation and raise an exception. These failure
modes are typically associated with synchronous systems,
that is, systems which either deliver a result in a predefined
amount of time or are considered to have failed (timeout
occurs).

The work of Gashi et al [Gashi, Popov et al. 2007] was
based on two studies of samples of bug reports for four
popular off-the-shelf SQL RDBMS products: Oracle,
Microsoft SQL, PostgreSQL and Interbase; plus later
releases of two of them: PostgreSQL and Firebird (an open
source descendant of the InterBase database server). Each
bug report contains a description of the bug and a bug script
for reproducing the failure (the erroneous behaviour that the
reporter of the bug observed). The results of the studies indi-
cate that the bugs causing failures in more than two diverse
RDBMSs are rare—only a few bugs affected two RDBMSs
and none affected more than two. Thus, a very high detection
rate (ranging from 94% to 100%) is achievable when using
just a simple configuration with two diverse servers. Another
very important finding was that crash failure assumption is
unjustified. The authors showed that the majority of the col-
lected bugs belonged to the incorrect results category, causing

10

15

20

25

30

35

40

45

50

55

60

65

2

incorrect outputs without crashing the RDBMS products (ap-
proximately 66% of the bugs caused incorrect results failures,
while roughly just 18% caused crash failures).

Similarly to the work by Gashi et al., the work in [Vandiver
2008] experimented with the faults reported for three well-
known RDBMSs: DB2, Oracle and MySQL. The results
show that for all three products over 50% of the bugs cause
non-crash failures; resulting, for example, in incorrect results
returned to a client or incorrectly modified database items.

The unfounded assumption that only crash-failures are
observed in RDBMSs has lead to development of a multitude
of solutions which are based on asymmetric processing of
database transactions (see Appendix A). Inherent to asym-
metric processing is the inability to cope with non-crash
failures; e.g. if a replica is faulty, the client connected to this
replica can obtain a wrong result or incorrect values could be
propagated into the state of the correct replicas (see FIG. 1).

FIG. 1illustrates the impossibility of incorrect result detec-
tion by a middleware-based database replication protocol
using asymmetric transaction execution (the steps shown
with dashed lines are not part of the protocol). The figure
shows the execution of a read operation (read(x)) in a repli-
cated database system consisting of three replicas R, R and
R.. The execution steps are as follows: the client sends 1 the
read operation to the middleware, M; the middleware for-
wards 2 the request to only one replica, R,; R executes the
request and sends 3 the result to the middleware and middle-
ware notifies 4 the client of the result. If R is faulty, an
incorrect response will be forwarded to the client with no
possibility for detection, since the execution of the read
operation is executed on only one replica. On contrary, if all
replicas were sent 2, 2a, 2b the read request it would be
possible for middleware to adjudicate the responses sent 3,
3a, 3b by all replicas and detect the incorrect R, response.

The family of multicast replication protocols is generally
used for implementing asymmetric transaction processing.
These protocols use a GCS (Group Communications Sys-
tem), which makes it possible for any replica to send a mes-
sage to all other replicas (including itself) with the guarantee
that the message will be delivered if no failures occur. Fur-
thermore, GCS is capable of guaranteeing totally ordered
messages: if two replicas receive messages m and m', they
both receive the messages in the same order. In fact, a GCS
may offer a range of different guarantees and total ordering is
one of the more expensive options. The known DB replication
solutions rely on GCS being configured to offer total order-
ing. The principal steps behind a multicast replication proto-
col are as follows: a transaction T, is submitted to one, local
replica (all other replicas are called remote for T,); the local
replica executes completely the transaction and extracts the
results of all the modifying operations in a writeset; in the end
of transaction T,’s writeset is sent to all remote replicas in
total order using the underlying GCS; upon receiving the T,’s
writeset every replica installs the writeset in the same total
order imposed by the GCS. The installation of the writesets in
the same total order is necessary to avoid data inconsistencies
due to non-determinism on the replicas. Otherwise, if the total
order was not respected it would be possible for two replicas
to install overlapping writesets in a different order, which
would result in an inconsistent state of the replicated system.
Some examples of multicast-based replication protocols used
with RDBMSs providing snapshot isolation (see Appendix
A) are described in [Lin, Kemme et al. 2005] and [Kemme
and Wu 2005].

Two recent database replication protocols are built on a
more general failure model than crash failures: HRDB (Het-
erogeneous Replicated DataBase) [Vandiver 2008] and Byz-

US 8,793,216 B2

3

antium [Preguica, Rodrigues et al. 2008] approaches.
HRDB’s SES (Snapshot Epoch Scheduling) protocol and
Byzantium are of particular interest because they assume, that
the underlying replicas guarantee snapshot isolation. Both
HRDB and Byzantium assume that an arbitrary failure can
occur, i.e. a Byzantine failure model (described for the first
time in [Lamport, Shostak et al. 1982]) is assumed. This
failure model is the most general one, where beside crash
failures, for example, incorrect results of read and write
operations are also allowed; even malicious behaviour by the
replicas such as sending conflicting messages to the other
replicas are allowed by the Byzantine failure model.

Both HRDB and Byzantium are primary/secondary,
middleware-based replication protocols, which tolerate non-
crash failures by voting on the results coming from different
replicas. FIG. 1 illustrates the generic primary/secondary
database replication approach. The Client (C) first sends 21
the operations {op;, . .., 0Py, - - ., Op,,} of the transaction T,
to the Primary replica (P) for execution, and only once the
Primary executes the operations it forwards 22a, 225 them to
the Secondaries {S,, . .., S,,}. Therefore, in both protocols,
write operations are firstly executed on one (primary) replica
and only then sent to the secondary replicas in order to guar-
antee replica consistency—in this way the conflicting opera-
tions are executed in the same order (the one imposed by the
primary) on all replicas and thus non-determinism between
conflicting modifying transactions are avoided. However, in
this way no parallelism in the execution of the same write
operations between the primary on the one hand and second-
ary replicas on the other hand is allowed; as a result the total
duration of a transaction may be significantly prolonged (as
shown in FIG. 3) even in the arguably more common case
when no write-write conflicts (see appendix A) occur
between the concurrently executing transactions.

Although both HRDB and Byzantium use a primary/sec-
ondary approach, there is a difference between the two as to
when the primary forwards the (write) operations for execu-
tion to the secondaries. In HRDB every write operation is sent
to the secondaries as soon as it is completed on the primary
(possibly after its concurrency control mechanism resolves
the conflicts between concurrent write operations), see FIG.
3. The read operations in HRDB, on the other hand, are
executed in parallel on primary and secondary replicas.

More specifically, FIG. 3 shows a timing diagram of the
execution of a write operation in HRDB scheme consisting of
the primary (P) and two secondary replicas (S1 and S2). The
meaning of the callouts is as follows: the middleware (M)
sends 31 the write operation, w(X), to the primary replica for
execution; once the primary has executed the write, it notifies
32 the middleware by sending it the result of w(x); middle-
ware forwards 33a, 335 the write operation to the secondary
replicas for execution. Performance overhead ensues because
the write operation is not executed in parallel between the
primary and the secondary replicas. As a result, the operation
duration as perceived by the middleware is prolonged
(TW(X)Seq“e"ﬁ“Z), as opposed to it being shorter due to parallel
execution on all replicas (TW(X)P arallely The execution order in
the primary/secondary scheme causes transactions to retain
the write locks for longer and this leads to an increased
likelihood of a write-write conflict with the other concurrent
transactions. Even though HRDB (as well as Byzantium) uses
database systems which offer snapshot isolation, the low level
implementation of the concurrency control mechanisms in
these database systems still relies on the use of locking
mechanisms on shared resources by multiple concurrent
users.

10

15

20

25

30

35

40

45

50

55

60

65

4

The situation with Byzantium is different in a number of
respects. First, all operations, both reads and writes, of a
transaction are executed on the primary replica (the work in
[Preguica, N., R. Rodrigues, et al. 2008] uses the term “coor-
dinator replica” for the primary) and the respective responses
collected for future use. Also, different from HRDB, Byzan-
tium assumes that different transactions are assigned to dif-
ferent coordinator replicas. Subsequently, the commit phase
is initiated and only then all operations and the respective
results are forwarded by the primary to the secondaries for
validation: the secondaries then execute all operations and
compare them with the responses of the primary. In this way
no parallelism between the operations’ execution on the pri-
mary and the secondaries exist, which makes this scheme
inferior in terms of response time in comparison with HRDB.

More specifically, FIG. 4 shows the timing diagram of
executing transaction T,, consisting of three operations: w(y),
r(x) and r(z), on three Byzantium replicas (P, S1 and S2). The
transaction duration is prolonged because all the operations
are first executed on the primary replica and only then for-
warded to the secondaries. Hence, instead of the transaction
execution being parallelised on all replicas and its duration
dictated by the slowest one (A T, MAX (T/, T, T,°%)), in
this case secondary replica S2 is the slowest), the duration is
the sum of'the primary’s and the slower secondary processing
(ATiSequenr[aZ) .

The HRDB approach does not compare the responses from
the read operations; albeit this possibility is discussed in
[Vandiver 2008]. The Byzantium protocol, on the other hand,
includes the validation of the results coming from all types of
operations.

Compared to conventional database replication
approaches, the HRDB and Byzantium approaches are com-
plex and slow. It is, thus, desirable to develop an approach for
processing of database transactions which is not limited to the
crash failure assumption but which allows more economical
and efficient operation than the HRDB and Byzantium
approaches.

SUMMARY OF THE INVENTION

Accordingly, the invention provides a fault-tolerant node
for synchronous heterogenous database replication whereby
the fault-tolerant node is adapted to carry out a series of
database transactions generated by a processor executing a
computer program at the fault-tolerant node, wherein the
fault-tolerant node comprises at least two relational database
management systems, the systems being instances of differ-
ent relational database management system products which
provide snapshot isolation between concurrent transactions
and each system comprising a database and a database man-
agement component, wherein for each database transaction,
operation instructions are provided concurrently to each of
the systems to carry out operations on their respective data-
bases and to provide respective responses; wherein the
responses generated by the systems either comprise an opera-
tion result or an exception, and where only one of the systems
is configured with a NOWAIT exception function enabled
which returns an exception when it is detected that two or
more concurrent transactions are attempting to modify the
same data item and the other systems are configured with the
NOWAIT exception function disabled, whereby the fault-
tolerant node is adapted to detect that two or more concurrent
transactions are attempting to modify the same data item and
to block one or more of the transactions to ensure that all
systems apply the same order of modification of the data item
by the concurrent transactions.

US 8,793,216 B2

5

With such an approach, the consequences of non-determin-
istic behaviour of the systems are avoided. Such a node is
capable of tolerating crash failures and incorrect results by the
replicas. This also allows for a solution which is faster than
prior art protocols such as HRDB and Byzantium.

A set of operation instructions may include a begin instruc-
tion, a commit instruction and an abort instruction for control
of'execution of a transaction. Advantageously, only one trans-
action can execute a begin instruction or a commit instruction
ata time for all the systems. When an exception is received as
an operation result from one of the systems, the fault-tolerant
node provides an abort instruction for that transaction for all
the systems. In one preferred arrangement, execution of a
begin operation for a transaction comprises setting a variable
indicating that the transaction is not, or no longer, aborted,
and by acquiring control of commit and begin operations so
that no other begin or commit operation can take place until
the begin operation is completed. In one arrangement, execu-
tion of a commit operation for a transaction comprises con-
firming that the transaction has not been marked to be
aborted, determining that the operation results from the sys-
tems allow a transaction results to be provided, determining
that the operation results are consistent, and by acquiring
control of commit and begin operations so that no other begin
or commit operation can take place until the commit opera-
tion is completed.

The set of operations comprises a read operation and a
write operation, and in executing a write operation the node
extracts a write set on which operations are performed before
the transaction is committed. When all systems have failed to
provide a result to a read operation or a write operation within
apredetermined time, fault-tolerant node raises an exception.

In one preferred arrangement, the fault-tolerant node com-
prises a transaction manager to control the execution of the
operations for one transaction in each of the systems and a
replica manager for each of the systems used to execute a
transaction to provide operations to its associated system,
wherein for each transaction, the transaction manager pro-
vides operations required for execution of the transaction into
a queue for each system managed by the replica manager for
that system, wherein the operations are provided to each
system from the queue by the replica manager for that system.

Preferably, the fault-tolerant node comprises a comparator
function to compare operation results received from the sys-
tems to enable the fault-tolerant node to determine whether
the transaction has completed successfully. The fault-tolerant
node may then abort the transaction if the comparator func-
tion indicates a mismatch between operation results received
from different systems. This arrangement contributes to the
achieved dependability of the node, as it enables the recog-
nition of many cases of a failure.

In one preferred arrangement (an optimistic regime of
operation), the fault-tolerant node returns the first operation
result received from any of the systems to the computer pro-
gram, and provides a further message to the computer pro-
gram if the transaction aborts or if the operation results
received from all the systems are not consistent (e.g. typically
identical, or considered to be identical when the internal
representation of data in the different systems introduces
small differences even for the same data). Alternatively, in a
pessimistic regime of operation, the fault-tolerant node
returns an operation result to the computer program only
when the operation results from all the systems have been
received and evaluated by the fault-tolerant node.

In the fault-tolerant node described above, the different
relational database management system products may com-
prise two or more systems that implement snapshot isolation

10

15

20

25

30

35

40

45

50

55

60

65

6
between concurrent transactions, such as Oracle, Microsoft
SQL 2005 or later, PostgreSQL, Interbase and Firebird.

In a further aspect, the invention provides a database server
comprising a fault-tolerant node as set out above. Such a
database server can be provided as part of any computational
system in which it is necessary or desirable for one or more
databases to achieve the performance resulting from use of
embodiments of the invention.

In a further aspect, the invention provides a method for
performing a synchronous heterogenous database replica-
tion, for a series of database transactions provided by a pro-
cessor executing a computer program, at a fault-tolerant node
comprising at least two relational database management sys-
tems, the systems being instances of different relational data-
base management system products which provide snapshot
isolation with each system comprising a database and a data-
base management component, the method comprising:
receiving a database transaction at the fault-tolerant node;
providing operation instructions for the database transaction
concurrently to each of the systems to carry out operations on
their respective databases and to provide respective
responses; the systems each generating a response to an
operation instruction which comprises an operation result or
an exception, wherein only one of the systems is configured
with a NOWAIT exception function enabled such that that
system returns an exception when it is detected that two or
more concurrent transactions are attempting to modify the
same data item and the other systems are configured with the
NOWAIT exception function disabled; whereby the fault-
tolerant node detects that two or more concurrent transactions
are attempting to modify the same data item and ensures that
all systems apply the same order of modification of the data
item by the concurrent transactions.

In a yet further aspect, the invention provides a fault-toler-
ant node for avoiding non-deterministic behaviour in data
management whereby a processor executes a computer pro-
gram to generate a series of database transactions to be carried
out at the fault-tolerant node, the fault-tolerant node compris-
ing at least two relational database management systems, the
systems being instances of different relational database man-
agement system products and each comprising a database and
a database management component, wherein for each data-
base transaction, operation instructions are provided concur-
rently to each of the systems to carry out operations on their
respective databases and to provide operation results;
wherein the fault-tolerant node compares operation results
generated by the systems to validate the result of the database
transaction.

BRIEF DESCRIPTION OF THE FIGURES

Embodiments of the invention are described below, by way
of example, with reference to the accompanying Figures, of
which:

FIG. 1 illustrates a generic middleware-based database
replication protocol using asymmetric transaction execution
and demonstrates the impossibility of incorrect result detec-
tion in such systems;

FIG. 2 illustrates a generic primary/secondary approach to
database replication;

FIG. 3 shows a timing diagram of the execution of a write
operation in the prior art HRDB scheme;

FIG. 4 shows a timing diagram of executing a transaction
with one write and two read operations on three replicas in a
prior art Byzantium scheme;

FIG. 5 shows an embodiment of a fault-tolerant node (FT-
node) as a UML Component diagram;

US 8,793,216 B2

7

FIG. 6 illustrates a transaction context for the FT-node of
FIG. 5 as a UML Class diagram;

FIG. 7 illustrates the establishment and destruction of a
connection associated with a transaction in the FT-node of
FIG. 5;

FIG. 8 illustrates the interaction related to the processing of
an operation by the FT-node of FIG. 5;

FIG. 9 shows the interaction between a RepManager object
and respective RDBMSs in the FT-node of FIG. 5;

FIG. 10 shows a UML sequence diagram of committing a
transaction in the FT-node of FIG. 5;

FIG. 11 shows interaction related to the comparison of
responses received from RDBMSs in the FT-node of FIG. 5;

FIG. 12 shows a procedure of exception handling by
middleware in the FT-node of FIG. 5;

FIG. 13 shows pseudo code illustrating the execution of the
DivRep protocol on a TraManager as used in the FT-node of
FIG. 5;

FIG. 14 shows pseudo code illustrating the execution of the
DivRep protocol on a RepManager as used in the FT-node of
FIG. 5;

FIG. 15 shows a timing diagram of the execution of a
transaction using the DivRep protocol as shown in FIG. 13;

FIG. 16 shows a timing diagram of a conventional ROWAA
scheme for snapshot isolation replication based on reliable
multicast;

FIG. 17 illustrates generally distributed transactions which
comprise execution of one or more operations that, individu-
ally or as a group, update and/or read data on two or more
distinct nodes of a replicated database;

FIG. 18 shows a timing diagram showing generally the use
of Strict 2-Phase Locking concurrency control and first-up-
dater-wins and first-committer-wins rules for enforcing
Snapshot Isolation;

FIG. 19 shows generally an example of a concurrency
control mechanism, based on Strict 2-Phase Locking, enforc-
ing Snapshot Isolation on a centralised, non-replicated data-
base;

FIG. 20 shows generally an example of different transac-
tion serialisation decisions made by the concurrency control
mechanisms, based on Strict 2-Phase Locking, of two
RDBMS:s in a replicated database;

FIG. 21 is a schematic block diagram which shows gener-
ally the interaction between clients and replicated DBs;

FIG. 22 shows generally the competition between two
concurrent transactions competing for a data item while
executing in a replicated database system with two replicas;
and

FIG. 23 shows a high-level schematic representation of a
Group Communication Scheme (GCS) used for consistent
database replication in a general replication scheme with
multiple replicas.

DETAILED DESCRIPTION OF EMBODIMENTS

Anembodiment of an approach to database replication will
now be described, for which diverse (i.e. different by design,
developed by different software vendors) relational database
management systems (RDBMSs) are used which offer snap-
shot isolation between concurrent transactions. This is a
departure from the prior art, where non-diverse databases
have always been considered to be adequate for database
replication, in order to cope with the software failures and
guarantee consistency of the data on all replicas. Database
replication assumed in the present embodiment is of “share
nothing” type, where each RDBMS interacts with its own,
full copy of the database. This is in contrast to some wide-

15

30

40

45

55

8

spread commercial solutions such as Real Application Clus-
ter (RAC) from Oracle which uses “share all” approach,
where one copy of the database is shared by a cluster of
RDBMSs. In this embodiment database transactions are
directed to a specially constructed node (hereafter called an
FT-node) which is tolerant of certain database faults. Such an
FT-node is schematically represented in FIG. 5.

FIG. 5 is a UML (Unified Modelling LLanguage) Compo-
nent diagram of an FT-node 50. An FT-node is an instantiation
of'a database server which embodies aspects of the invention.
Referring to FIG. 5, it can be seen that the FT-node (FT stands
for fault-tolerant) consists of three software components:
RDBMS1 51, RDBMS2 52 and Middleware 53. The compo-
nents RDBMS1 51 and RDBMS2 52 consist of the software
responsible for data management (SQL engines) and the data
itself (in the form of tables, views, stored procedures, triggers,
etc. stored in one or multiple computer files) as required by
the respective SQL server engine. The component Middle-
ware 53 consists of three components: a DivRep protocol
module 54, a Diagnostic module 55 and a Multicast protocol
module 56. The DivRep protocol 54 module utilises a DivRep
protocol which is a replication protocol, that works with the
diverse (heterogeneous) databases, RDBMS1 and RDBMS2,
via the interfaces each of them provides (SQL API 1, WS API
1 (shown by reference numbers 51a and 515 provided by
RDBMSI, and SQL API 2, WS API 2 (shown by reference
numbers 52a and 52b) provided by RDBMS 2).

In the arrangement shown in FIG. 5, there are two
RDBMSs present. For many practical purposes, effective
embodiments will be provided using two RDBMSs, each ofa
different type (for example, one Oracle and one Microsoft
SQL 2005). In some cases, it may be desirable to use a further
RDBMS—this may, for example, improve further the pros-
pect of detecting simultaneous and identical failures of more
than one RDBMS.

The interaction between the components of the FT-node 50
consists of the Middleware 53 sending operations to the
RDBMSs 51, 52, and the RDBMSs 51, 52 responding to these
by either confirming that the operation has been completed
successfully or instead reporting an abnormal completion of
the operation. The operations offered by the SQL API allow
for managing data objects in databases (the so called Data
Definition Language (DDL) operations, such as creating/de-
leting/modifying tables, views, etc.) and also for data (con-
tent) management (i.e. selecting data from and inserting/
deleting/moditfying data in the existing objects, referred to as
Data Manipulation Language (DML) operations). Another
set of operations is typically offered by off-the-shelf
RDBMSs to control the privileges of different users to
manipulate the data objects (such as GRANT and REVOKE,
frequently referred to as Data Control Language opera-
tions)—while these may be used in embodiments of the
invention, they are not of significance to the FT-node func-
tionality described here and will not be described further
below.

SQL API (as represented by 57x, 51a and 52qa) offer also a
set of operations for connecting external agents 57, 57» (e.g.
application software) to RDBMSs 51, 52 (establishing con-
nections), managing transactions (i.e. a set of operations
treated by the engine as an atomic whole as defined in Appen-
dix A) such as begin, commit or abort a transaction. A set of
operations in the SQL API allow for setting the isolation level
between the transactions. In the particular case, it is assumed
that the RDBMSs offer support for snapshot isolation
between the transactions (see Appendix A).

When an operation is completed successfully, the
RDBMSs 51, 52 will return, via the SQL API, either the

