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ABSTRACT 

The objective of this thesis is to add evidence from the transition equity markets of Central 
Europe to the econometric modelling of financial time series by addressing the issues of 
volatility, predictability and international asset pricing in these markets. 

In Chapter Two we start from an overview of the transition stock markets by presenting 
their historical background, basic regulations, statistics, and stock market indices. 

Chapter Three focuses on the modelling of univariate and multivariate volatility in transition 
equity markets. Our sample has all the previously documented characteristics of the 
unconditional distribution of stock returns normally used to justify the use of the GARCH 
class of the models of conditional volatility. Strong GARCH effects are apparent in all series 
examined. The estimates of asymmetric models of conditional volatility show rather weak 
evidence of asymmetries in the markets. The results of the multivariate specifications of 
volatility have implication for understanding the pattern of information flow between the 
markets. The constant correlation specification indicates significant conditional correlation 
between three pairs of countries: Hungary and Poland, Hungary and Czech Republic, and 
Poland and Czech Republic. The BEKK model of multivariate volatility shows evidence of 
return volatility spillovers from Hungary to Poland, but no volatility spillover effects are 
found in the opposite direction. 

Chapter Four examines the linear and nonlinear predictability of transition equity returns with 
simple technical trading rules. The application of the moving average trading rules to the 
data reveals that technical analysis helps to predict stock price changes. Firstly buy signals 
consistently generate higher returns than sell signals; secondly the returns following buy 
signals are less volatile than returns following sell signals. The application of the bootstrap 
methodology to check whether three popular null models of stock returns with linear 
conditional mean specification replicate the trading rule profits indicates that returns obtained 
from trading rules signals are not likely to be generated by these models. Comparison of the 
out-of-sample forecast performance of linear and nonlinear (feedforward networks) 
conditional mean estimators with past trading signals in the conditional mean equation 
indicates substantial forecast improvements of the feedforward network regression. 

Chapter Five addresses the issue of integration of the transition equity markets into the 
global capital market by testing pricing restrictions of the international CAPM simultaneously 
for four national equity markets: two developed markets (U.S. and Germany) and two new 
transition markets (Hungary and Poland). Methodologically, we extend the BEKK 
multivariate GARCH specification to accommodate GARCH-M effects, and propose an 
alternative specification of the conditional CAPM, which allows return volatility 
transmissions between the markets in the system. The results reveal that the world price of 
covariance risk is positive and equal across the markets. This is consistent with the 
international CAPM and supports the hypothesis of integration of the transition markets into 
the global market. However, our further results indicate individual significance of the 
Hungarian idiosyncratic risk, pointing to some level of segmentation of the Hungarian 
market. Moreover, the introduction of world-wide information variables into the system 
reveals that some variation in the excess national returns is still predictable after accounting 
for the measure of market-wide risk. 
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CHAPTER 1 

INTRODUCTION 

1.1 Objectives and Structure of the Thesis 

Financial econometrics has developed a range of models to account for empirical regularities in 

financial data. Most contributions to this literature deal with mature, large and liquid markets. 

However, the financial markets in the transition economies of Central and Eastern Europe have 

been studied only by a small number of authors. 1 The objective of the thesis is to add evidence 

from the transition equity markets of Central Europe to the econometric modelling of financial 

time series. 

The analysis focuses on four markets of Central Europe: Hungary, Poland, Czech Republic and 

Slovakia. These countries were chosen because of the advancement of their capital markets due to 

a greater political stability and a rapid economic growth compared to other transition markets in 

the region. Chapter 2 of the thesis gives an overview of the transition equity markets by presenting 

their historical background, basic regulations and statistics, as well as stock market indices. 

1 Chobanov et a1. (1996) estimate the distribution of the Bulgarian lev / US$ rate. Emerson et a1. (1996) propose the 
state space model to study the evolving market efficiency for Bulgarian bank stocks. Erb, Harvey and Viskanta 
(1996) analyse returns and volatility for 135 markets, including Albania, Bulgaria, Czech Republic, Hungary. 
Poland and Russia. Meszaros (1996) studies the EMH on the Bratislava Stock Exchange. Zalewska-Mitura and Hall 
(1999) consider whether the Hungarian stock market becomes more weak-form efficient over time. Wajerowska 
(1999) examines validity of the optimal portfolio allocation model with price constraints on the example of the 
Warsaw Stock Exchange. Linne (1999) uses a Kalman filter approach to consider the integration of the Central and 
East European equity markets into the international capital markets. Charemza and Syczewska (1999) apply the 
Dickey-Fuller and KPSS tests to the East European time series. 
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The rest of the thesis is divided into three major parts, examining issues of volatility, predictability, 

and integration of the transition markets of the Central Europe into the international capital 

markets. 2 

Chapter 3 focuses on modelling of volatility of the transition equity markets. Although economists 

have long been interested in the analysis of behaviour under uncertainty, it was not until the 

beginning of the 1980s that econometricians have begun developing an analytical framework to 

deal with uncertainty. A central feature of this framework is the modelling of second and, possibly, 

higher moments as well. One of the prominent tools used to model the second moments is due to 

Engle (1982). Engle (1982) suggested that these unobservable second moments could be modelled 

by specifying a functional form for the conditional variance and modelling the first and second 

moments jointly, giving what is called in the literature the Autoregressive Conditional 

Heteroscedastic (ARCH) model. The linear ARCH model was later generalised by Bollerslev 

(1986), and called Generalised ARCH (GARCH). The ARCH models were first formal 

specifications that seemed to capture the stylised facts characterising financial data. Within the last 

two decades the GARCH literature has grown in spectacular fashion. The aim of this chapter is to 

add evidence from the transition equity markets of Central Europe to the univariate and 

multivariate GARCH modelling of conditional volatility offinancial time series. 

We start from examination of the statistical properties of the sample from transition markets, 

which reveals that it has all of the previously documented characteristics of the unconditional 

distribution of stock returns that are used to justify the GARCH specification of the time-varying 

volatility. In the univariate section of our empirical analysis we estimate and contrast several 

symmetric and asymmetric GARCH models of conditional volatility. The alternative asymmetric 

models allow examination of the different types of asymmetry in the impact of news on volatility of 

~ The estimation of all models employed in tIlis thesis is carried out using RATS (Regression Analysis of Time 
Series) econometrics software. 
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the transition equity markets. In the multivariate section we consider the interdependence between 

conditional second moments of the return series, which helps understanding the pattern of 

information flow between the markets. We employ two alternative multivariate GARCH 

specifications of conditional volatility, which allow analysis of the conditional correlation and 

volatility spillover effects between the markets in the system. 

Chapter 4 addresses the issue of return predictability in the transition markets by employing 

technical trading strategies for buying and selling in the market. Technical analysis is considered by 

many to be the original form of investment analysis. Over the years, investors and technical 

analysts have devised hundreds of technical market indicators in an effort to forecast the trend of 

the security market. Technical traders base their analysis on the premise that the patterns in stock 

prices are assumed to recur in the future, and thus, these patterns can be used for predictive 

purposes. Historically, technical analysis has never enjoyed the same degree of acceptance by the 

academic finance community that, for example, fundamental analysis has received. However, the 

recent studies on technical trading strategies3 signal a growing interest in technical analysis among 

financial academics. 

The chapter is divided in three major parts. In the first part, the application of the technical trading 

rules to the data from four transition equity markets reveals that technical analysis helps to predict 

stock price changes. In the second part, we employ the bootstrap methodology to check whether 

popular null models of stock returns are able to replicate trading rule profits obtained in the first 

part of the chapter. And finally, in the third part we compare the out-of-sample forecast 

performance of linear and nonlinear (feedforward networks) conditional mean estimators of stock 

returns with past trading signals in the mean equation. 

3 See e.g. Blume, Easley and O'Hara (1994), Brock, Lakonishok and LeBaron (1992), Brown and Jennings (1989), 
LeBaron (1996), Neftci (1991), Pau (1991), Taylor and Allen (1992), and Treynor and Ferguson (1985) 
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Chapter 5 uses models of international asset pricing to consider the issue of integration of the 

transition equity markets of Central Europe into the international capitarmarkets. The question of 

why different countries' market indices command different expected returns lies at the foundation 

of international finance. In studying assets of one particular country, we would say that differing 

expected returns are due to differing risk exposures of these assets. In international markets, the 

answer is more difficult. Aside from the obvious complications arising from country-specific 

exchange rates, the risk is hard to quantify if a country is not fully integrated into the world capital 

markets. Markets are fully integrated if assets with the same risk have identical expected returns 

irrespective of the market. Risk refers to exposure to some common world factor. If a market is 

segmented from the rest of the world, its covariance with a common world factor may have little 

or no ability to explain its expected return. 

The Capital Asset Pricing Model (CAPM), developed by Sharpe (1964), Lintner (1965), Mossin 

(1966), and Black (1972), was the first equilibrium asset pricing model, and it remains one of the 

foundations of financial economics. In our analysis we test an international version of the CAPM 

(ICAP~I), which implies that if international markets are fully integrated, the world market risk is 

the only relevant pricing factor4
, and the price of this risk should be positive and equal across all 

markets. Methodologically our model extends the multivariate GARCH specification of Engle and 

Kroner (1995) ("BEKK") to accommodate GARCH-M effects, and allows volatility spillovers 

between the markets in the system. 

To test the performance of the benchmark ICAPM we compare it to two alternative specifications. 

The first alternative allows for some level of market segmentation by introducing country-specific 

risk and a constant term (to reflect other forms of segmentation) into the model. The second 

4 Our approach assumes that investors do not cover their exposure to exchange rate risk or, equivalently, that the 
price of exchange risk is equal to zero. 
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alternative tests the hypothesis that some of the variation In the excess returns can still be 

explained by a number of information variables, even after accounting for the world market risk. 

All the models we specify are first estimated with the additional assumption that the price of risk is 

constant. Then this assumption is relaxed, and the measure of market risk is allowed to vary 

through time. 

Finally, chapter 6 concludes the thesis by summarising the main results and identifying interesting 

issues for future econometric research. 
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CHAPTER 2 

OVERVIEW OF THE TRANSITION MARKETS OF 

CENTRAL EUROPE 

2.1 Introduction 

At the end of the 1980s the post-communist countries of Central and Eastern Europe (CEE) 

started to transform their economies from centrally planned to free market systems. The stock 

markets of these countries are still very young and small compared to the advanced markets in 

industrial countries. The nine largest stock markets in CEE (Croatia, Czech Republic, Estonia, 

Hungary, Latvia, Poland, Slovakia, Slovenia and Russia), although having grown rapidly in recent 

years, had only a combined market capitalisation at the end of 1998 of some USD 70 bn. This was 

about 10 per cent of the capitalisation of the Frankfurt Stock Exchange. 

In our study we focus on a sample of Central European stock markets, namely the Czech, 

Hungarian, Polish, and Slovak markets. Although, they share the common goal, a well-functioning 

free market economy, the paths chosen to obtain this differ from country to country. Different 

approaches have been necessary due to discrepancies in the infrastructure, different levels of 

economic development, and different historical and cultural traditions. For instance, privatisation, 

along with the creation of a capital market, was achieved through a mass (the Czech Republic) or 

gradual (Hungary, Poland) share distribution schemes. The choice of privatisation methods 

significantly determined the way in which financial structures were created. In the Czech Republic, 
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where the transfer of ownership from the state to private citizens was accomplished mainly 

through voucher privatisation, shares of 1500 enterprises were offered in one public offering, with 

only minimum disclosure requirements and market regulations. The government's main 

contribution to the development of the capital market's infrastructure was to create a system 

where ownership of shares was recorded in a central, computerised share registry. The government 

has adopted a hands-off approach to regulation and has allowed the various markets and 

exchanges to compete with each other. Furthermore, the government has only ensured that prices 

of the large trades made outside the organised exchanges been publicly disclosed. In contrast, in 

Hungary and Poland the creation of a capital market and privatisation were introduced as an 

integrated process. Offering shares of medium and large-sized companies to the public through the 

stock market was the main method of privatisation. Regulation of public offering and trading on 

the secondary market closely imitated western standards. Transparency and prudent behaviour 

were the primary objectives in designing the privatisation programme and the secondary trading 

market. 

The rest of this chapter presents a short historical background, basic regulations and statistics of 

the Central European stock markets. 
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2.2. The Hungarian stock market 

2.2.1. Historical background of the Budapest Stock Exchange 

Established under a decree by Emperor Franz Joseph I in the city of Pest in 1864, the Budapest 

Commodity and Stock Exchange began its really spectacular course of development after the 

political compromise of 1867. With the turn of the century approaching, Hungary took an active 

role in European economy, and the quotes of the Budapest Exchange were regularly published in 

Vienna, Frankfurt, London and Paris. The great economic crisis of the early 1930s also hit 

Hungary, and the Exchange was closed from summer 1931 to fall 1932. The BSE stopped 

operating in 1948. 

Hungary was the first country of the post-Soviet block to start to reform its financial system. In 

1986 a two-tier banking system was introduced, with the domestic commercial banking operations 

of the National Bank of Hungary and State Development Bank taken over by three new 

commercial banks.5 These banks inherited the loans and deposits of their predecessors. The 

Foreign Trade Bank was also allowed to provide commercial banking services. In 1988-89, banks 

were granted additional rights to provide foreign exchange related services to their clients. With 

the creation of the two-tier banking system, the National Bank of Hungary gradually shifted from 

direct credit ceiling to the use of indirect monetary instruments. The next step was establishment of 

the law on commercial banks, which was adopted in January 1992, imposing the Basle-defined 

standard for capital adequacy on Hungarian banks. Simultaneously with changes in organisation of 

the financial structures the Budapest Stock Exchange re-opened its gates on June 21, 1990, with 

share trading for eight maj or companies. 

5 The commercial banks were still owned by the state and state enterprises. 
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The Exchange has come a long way in the 9 years since then only to develop into an internationally 

recognised market with advanced regulatory and technical background, and to operate as a major 

factor in the Hungarian economy and the focal point of the country's capital market. The decision 

made by the London Stock Exchange, to enter the BSE on its list of approved exchanges as the 

first such institution from Central and Eastern Europe, was regarded as a significant achievement.6 

2.2.2. Trading on the BSE 

The Budapest Stock Exchange is organised on the Anglo-Saxon model, hence all transactions are 

to be implemented on the Floor of the Stock Exchange during the opening hours by brokers 

authorised by the Members of the Stock Exchange. During the trading session the brokers may 

make bids and offers orally or in writing and may respond to the bids and offers of other brokers in 

accordance with the provision of the Rules of the BSE. If no trade is carried out for a given 

security on a given day, then the price of the last trade of the security is regarded as the closing 

price, which means that the closing price of non-traded asset remains unchanged as long as non-

traded period lasts. 

As mechanisms to stabilise the movement of prices, breaks ( or suspensions) of trading were 

introduced. A break means a suspension of trading in a given share, and therefore no bids or offers 

can be made for it. The temporary suspension of the sale and purchase of a given security can be 

ordered by a Speaker if the change in the price of the of shares admitted to the Stock Exchange is 

greater than +/-10%, but less than +/-20%, compared with the opening price. The trading break 

may last 5 minutes. If the change in price compared with opening price is bigger than +/-20%, the 

break may last 5-10 minutes. Another suspension, ordered by the Chief Executive of the 

6 For the summary of market statistics of the Budapest Stock Exchange over the period 1990-1998 see Appendix 
2.2, Table 2.5 at the end of tllis chapter. 
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Exchange, can stop trading in a certain type of security or all the securities on the Exchange, if the 

CEO deems that continued trading would endanger the well-being of investors or the operation of 

the Stock Exchange. This kind of suspension may last one day. The Stock Exchange Board or the 

Supervision Board may suspend trading in certain types of securities or in trading overall on the 

Stock Exchange, if the general financial, economic or political situation does not provide for the 

organised and transparent trading on the Stock Exchange. This kind of suspension should not 

exceed ten days. If the need for suspension exceeds this period, it has to be approved by the 

Ministry of Finance. 

In the spring of 1997 the Annual General Meeting (AGM) of the BSE developed a new model for 

its operation. The major elements of the new model are the establishment of market segments for 

different instruments (sections), changes in composition of the exchange members entitled to trade 

on the stock exchange, as well as changes in the voting rights of participants in the general meeting 

and in the structure of the fees. 

The AGM of the BSE set up three sections with the following product lines effective from 1 June 

1997: 

COIporate securities - shares, company bonds, mutual fund notes, compensation coupons and non­

standardised options; 

Government securities - government bonds, treasury bills; 

Derivative section - standardised futures, and from autumn 1998, standardised options. 
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The new act has significantly changed the principle of regulation by opening certain markets of the 

stock exchange to market participants, primarily banks, which were kept at the arm's length since 

the foundation of the BSE in 1990. Until 1997, only stockbrokers operating in a company form 

(limited liability or share company) were allowed to be members of the B SE and, consequently, 

traders. The new act has opened up markets on government securities and derivative products for 

credit institutions. Moreover, private individuals can make transactions personally (on their 

account) in the derivative market. 

The new act also changed voting rights granting members from 1 to 10 votes depending on their 

turnover per section. This means that each member may have from 1 to 30 votes (three sections in 

total) at the calendar year preceding the convocation of the general meeting. 

The new regulation created two main types of fees in the stock exchange: entry (stock 

exchange/section) fees and turnover fees. The turnover fees, to be paid by both buyers and sellers, 

are different in the various sections but identical within one section. 

Public offers of securities within Hungary may be made following a prospectus approved by the 

Hungarian Banking and Capital Market Supervision (HBCMS). There are two listing categories on 

the BSE, 'listed A' and 'listed B'. The principal requirements for a full listing on the BSE are: 
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Listed A category Listed B category 

Only full share series can be listed Only full share series can be listed 
Share series to be listed minimum Share series to be listed minimum 
HUF 5 billion market value HUF 100 million market value 
Public ownership proportion*: either Public ownership proportion: either 
minimum 25 per cent and HUF 2 billion minimum 10 per cent and HUF 50 million 
market value or minimum HUF 5 billion market value or minimum HUF 200 million 
market value market value or minimum 100 shareholders 
Minimum 1 000 owners Minimum 36 owners 
3 com~leted and audited fmancial years 1 completed and audited fmancial year 
Series can only consist of registered shares Series can consist of registered or bearer 

shares 
* PublIc ownershIp proportIOn: the portIOn of the share series whose owners have 
less than a five per cent stake. 

Once listed, a company must conform to certain continuous disclosure requirements. 

2.2.3. The Budapest Stock Index (BUX)7 

The Budapest Stock Index (BUX) replaced the unofficial Budapest Stock Exchange Index, which 

was used during the initial phases of economic transition. Currently, the BUX contains 20 stocks. 

To qualify for the index, a stock has to comply with three out of five requirements, including a 

certain minimum face value of a stock, a defined minimum price, a minimum number of 

transactions, and a cumulated minimum turnover of 100/0 of the registered capital during the six 

months preceding the revision of the index. 

If more than 25 stocks meet at least three out of these five requirements at the time of the semi-

annual updating of the index sample (on March 31 and September 30), the index stocks are 

selected according to their so-called global rank, which is derived from a weighted average across 

the five criteria. 

The Figure 2.1 below presents historical development of the Hungarian BUX index in 1992 -

1998. The Hungarian market boomed in 1996 and 1997, experiencing some of the fastest rates of 

7 For the composition of the index see Appendix 2.1, Table 2.1 and Figure 2.5 at the end of the chapter. 
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growth among emerging markets. In April 1998 the index reached an all time high of9,016.31 , up 

12.7 % from the year-end 1997. However, the BUX fell to 7,049.35 in the week after the Fidesz 

election victory. Instability in the emerging markets further pushed down the index to a low of 

4,891.65 in early September. Foreigner investors account for the bulk of trading in the stock 

market (more than 500/0, compared e.g. with 300/0 in Warsaw), which accounted for the greater 

volatility in the market in the wake of the Russian devaluation and default of August 1998. 

Foreigners may have sought to compensate for Russian losses by taking advantage of the liquidity 

of the Hungarian market. 

Figure 2.1 

Hungarian B U X 
10000 

8000 +----------------------------------------*~~_w~--

6000 +-----------------------------------~~~_+----~ 

4000 ~---------------------------------~~----------~~ 

13 

I 

<D 
O'l , 
::J 

""') 

I 

r--.. 
O'l , 
c 
ro 

""') 

I 

r--.. 
O'l , 
::J 

""') 

I 

co 
O'l , 
c 
ro 

""') 



2.3. The Polish Stock Market 

2.3.1. Historical Background of the Warsaw Stock Exchange (WSE) 

The first stock exchange in Warsaw was opened on May 12, 1817. Trading sessions were held 

between 12.00 and 13.00. In the nineteenth century mostly bonds and other debt instruments were 

traded on the Warsaw bourse. Trading in equities developed in the first half of twentieth century. 

Before the W orId War II seven stock exchanges operated in Poland. Warsaw accounted for more 

than 900/0 of the total trading. In 1938 there were 130 securities traded on the Warsaw Exchange: 

municipal, corporate and government bonds as well as shares. Due to the change of political and 

economic systems, capital markets could not be re-created after the W orId War II was over. 

In 1989, along with political changes, the new non-communist government began creating a capital 

markets structure. The new legal framework, the Act on Public Trading in Securities and Trust 

Funds, was adopted in March 1991, and the Warsaw Stock Exchange was established by the State 

Treasury in April 1991. At the same time, the Polish Securities Commission was created. 

Poland, like Hungary has chosen to undergo a gradual privatisation process, and in October 1990 

the new post-communist government passed the first laws allowing the privatisation of the state­

owned firms. Among 8,500 companies, reported to belong to the state, five firms (Exbud, Krosllo, 

Prochnik, Slaska Fabryka Kabli and Tonsil) were privati sed. They were also the first five 

companies listed at the first trading session of the Warsaw Stock Exchange. The new listings on 

the WSE have been the combination of initial public offerings by post -1989 private companies and 

privatisation floatations, first by the state property fund and more recently by the 15 mass-
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privatisation National Investment Funds (NIFs). The NIFs' own shares began to trade on the WSE 

during 1997. Bank shares have been particularly popular with WSE investors. 8 

2.3.2. Trading on the Warsaw Stock Exchange 

The Warsaw Stock Exchange is a 'Lyon type' capital market, which can be described as 'order-

driven', centralised and paperless. This system is based on the establishment of a single price for 

each stock by comparing buy and sell orders submitted to the Stock exchange by the brokerage 

houses before session. This method of fixing the price is similar to the French 'par easier' or 

German 'Einheitkurs' quotation system. In July 1996, the trading system started to be reformed in 

order to allow trades to be executed by continuous trading and block trading systems, in addition 

to the established single-price auction system. 

A. Single price-auction 

The main feature of the single-price auction is that a single price per security emerges at each 

session as a result of the orders submitted. Transaction can be concluded even for one individual 

security. In their orders, clients of brokerage houses define the quantity and the price of securities. 

In his order investor can indicate the price limit or "at the market". The validity of an order can not 

exceed the end of the next month. The price on the equities market can only be higher (upper 

limitation) or lower (lower limitation) from the previous session's price by a maximum of 10%. 

Bonds maximum price change is 5 percentage points. Price for shares, subscription rights, 

allotment certificates and NIF certificates is given in Polish zlotys. For bonds, price is given in 

8 For the summaI)' of market statistics of the Warsaw Stock Exchange over the period 1991-1998 see Appendix 2.2. 
Table 2.6 at the end of this chapter. 
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percentage of the nominal value. The settlement price for bonds is calculated by adding accrued 

interest to the market price. 

During trading seSSIons, a key role is played by brokerage houses operating on the WSE as 

specialists. The issuer of the security with the consent of the Management Board nominates the 

specialist. The main role of the specialist, represented on the trading floor by specialist brokers, is 

to establish the session's price. After the opening of the trading session, the specialist broker 

receives a list of orders participating in the price setting process qualified for the session, verifies 

them and determines the price for a given security. In determining the session's price, the specialist 

is obliged to follow the rules listed below in the given order of importance: 

- maximise turnover of that security; 

- reach the smallest possible difference between demand and supply; 

- minimise the difference in price between that of the current session and the previous one. 

After the specialist has established the price all transactions in a given security are executed at that 

price. If it is possible that all market orders are executed at a given price, then this price is called 

an equilibrium price, and the market on which this price is established is called a balanced market. 

If the price, which maximises turnover and minimises the difference between demand and supply, 

exceeds the lower or upper price limit (previous trading session's price +/- 100/0), it cannot be 

accepted by the exchange. In this case, the specialist establishes the session's price at the lowest or 

highest acceptable level. The price established in such a way is not the equilibrium price, and the 

market is called unbalanced. 
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In the case of an unbalanced market, the specialist is obliged to determine the degree of market 

imbalance between supply and demand at the given price. If the imbalance ratio of demand to 

supply (or supply to demand) is greater than 5: 1, the imbalance is too high for transactions to be 

concluded. In the case of a predomination of buy orders, a non-transactional price is published on 

the stock exchange quotation list followed by the symbol ok. In the case of a predomination of sell 

orders, the price is followed by the symbol os. 

The specialist can intervene to reduce the market imbalance. This means that during the session, 

after the price has been established, the specialist broker may buy or sell securities from his own 

inventory. 

B. Continllous Trading SystemThe system of continuous quotations used by the WSE was 

developed in 1992 and initially was used for Treasury bonds. On July 8, 1996 the Warsaw Stock 

Exchange introduced to continuous trading first five shares of listed companies selected by a ballot 

from among companies with highest liquidity. On August 12, 1996 National Investment Funds 

certificates and on July 1, 1997 shares of fifteen National Investment Funds started to be traded in 

continuous trading. In 1998 futures on WIG20 share index (January 16), warrants (March 9) and 

futures on USD exchange rate (September 25) were introduced to continuous trading. Unlike in 

the single price auction system, where a single share or certificate can be traded, in the continuous 

trading the transaction units consist of round lots. The size of a round lot is determined 

individually for each security. 

The continuous trading session starts at 1.00 p.m. Before the session, between 8 a.m. and 1.00 

p.m., the Exchange accepts only limit orders. Orders may carry an indication of time validity, 
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although much shorter than in the single-price auction, since it cannot exceed the end of the week 

following the one in which the order was placed. At 

1.00 p.m., the Exchange stops accepting orders until the opening price has been announced, or 

continuous trading has commenced. The opening price is determined based on the orders placed 

between 8 a.m. and 1.00 p.m., as well as orders which have not been executed during previous 

sessions and the validity of which had not expired. The mechanism for setting the opening price is 

the same as for single-price auction. 

The opening price cannot be higher or lower from the reference price by more than 3 percentage 

points for bonds and 5% for shares and NIF certificates. The reference price is the price from the 

previous session's single-price auction, and if a security is not traded in the single-price auction, it 

is the price of last transaction from the previous continuous trading session. If the opening price 

cannot be established at 

1.00 p.m., the trading session is commenced and the first transaction's price becomes the opening 

price. The session lasts until 4.00 p. m. The session of continuous trading starts with identifying the 

best bid and ask. The first criterion of selecting orders to be executed is the price limit, and with 

orders with the same price limit, the time of their placement. Market orders can be accepted only 

when limit order on the opposite side of the market is waiting in the system. 

c. Block Trades 

Large blocks of securities can be traded off-session as so-called block trades. Such a transaction 

takes place, when Exchange member presents to the Exchange buy and sell orders for the same 

number of securities at the same price. The value of securities in order to be accepted as a block 

trade must be at least equal to 300 000 PLN or at least 1% of securities introduced to trading on 
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the exchange. For securities, which are admitted to trading but have not yet been introduced to 

trading, the block must be at least 50/0 of the number of securities admitted. 

The price of securities in block trade may differ from the last session's price by no more than 15%, 

when the number of securities in the block is less than 5% of securities admitted to trading. When 

the block is larger than that, the price may differ from the last session's price by no more than 30%. 

The Exchange charges smaller fee for the block trades, than for transactions concluded for the 

same security during the session. 

2.3.3. The Warsaw Stock Exchange Indices9 

The Warsaw Stock Exchange Index WIG was the first index to be introduced after the reopening 

of the Warsaw Stock Exchange. It is calculated as a total return index for the main market once 

per trading day after each session. The weight of an individual stock according to its market 

capitalisation is limited to 10% of the index sample. Furthermore, a single sector may not account 

for more than 30% of the index. The index is regularly revised every three months, mainly to 

account for the introduction of new stocks. 

In addition to the WIG, the Warsaw Stock Exchange also publishes an index for the parallel 

market (WIRR) and the Warsaw Stock Exchange Price Index (WIG20). The WIG20 measures the 

aggregate price change of twenty domestic stocks positioned best according to the number of 

ranking points obtained. The formula for determining the number of index points draws upon both 

the turnover and market capitalisation during the month preceding the quarterly revision of the 

index sample in a proportion of 60: 40. In addition, to qualify as a new stock in the index sample, a 

9 For the composition of the WIG 20 see Appendix 2.1, Table 2.2 and Figure 2.6 at the end of the chapter. 
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stock must have ranged among the twenty leaders in at least two of the last three months in terms 

of turnover. 

In order to avoid a dominating influence of the largest and most actively traded companies on the 

index, the maximum number of ranking points attainable equals 150 times the number of ranking 

points obtained for a stock with average turnover and market capitalisation. Based on this 

modified record of ranking points, the number of shares admitted to enter the index portfolio is 

determined, thereby assigning a specific weight to each index stock. 

The Figure 2.2 below presents historical development of the Polish WIG 20 index in 1992 - 1998. 

Similarly to Hungarian market, the Polish stock market had seen significant increase in the index 

value in 1996 and 1997. However, it was hit by instability in emerging markets in summer-autumn 

1998. 

Figure 2.2 
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2.4. The Czech Stock Market 

2.4.1. Historical Background of the Prague Stock Exchange 

While the Prague Stock Exchange has a very short contemporary history, it has a rich tradition 

extending back for over a century. On March 23, 1871, an Exchange for securities and 

commodities trading opened its doors in Prague for the first time. It was, however, closed during 

World War I, and its operation recommenced on February 3, 1919. In the period between the two 

world wars, the Prague exchange recorded a great boom and rivalled virtually any other market on 

the continent. Its growth was interrupted by the onset of World War II, following which the 

exchange was closed and, during the communist era, constitutionally eliminated. It took over a 

half-century for the tradition of securities trading to resume in the Czech Republic. 

In May 1991 the Preparatory Committee for the Establishment of a Stock Exchange was created. 

A new company was established by eight banks and, on August 24, 1992, this was transformed 

into an association and subsequently converted into a trading company pursuant to the newly 

established Stock Exchange Act. The Prague Stock Exchange, with 17 founding members, was 

incorporated as a joint stock company on November 24, 1992, upon its entry into the Trade 

Register. The first trading session was held on its floor on April 6, 1993. 

The stock exchange's renewal is related to the voucher privatisation, which denationalised 

extensive assets. The two-stage voucher privatisation took place in the period 1992-1995. First, in 

1993 almost 1,000 issues, and subsequently, in 1995, more than 700 were registered at the stock 

exchange. Marker capitalisation amounted to CZK500 billion in 1996. 

It soon became apparent after registration the voucher privatisation's new titles that not all issues 

were sufficiently attractive. Gradually, the stock exchange split them into three markets, depending 

21 



on the degree of their liquidity and the companies' market capitalisation. In 1997 1,3 0 1 non-liquid 

share issues were excluded from the Exchange's Free market. 10 

2.4.2. Trading on the Prague Stock Exchange 

Since September 1, 1995, the Prague Stock Exchange (PSE) has provided trading in three 

markets: Main, Secondary and Free markets. The Main and Secondary markets have emerged 

from the original Listed market, and the Free market comprises the former Unlisted market. The 

whole process of the market segmentation was primarily motivated by the Exchange'S efforts to 

clearly profile two basic groups of securities. 

The prestigious markets - Main and Secondary - trade in top-quality securities. They have to 

provide regularly financial information and report corporate actions, which may have an impact on 

the official price of the security. 

The conditions for admission of securities issued by joint stock companies (Jses), investments 

funds and unit trusts to the Main market or Secondary market are presented below. 

10 For the summary of market statistics ofthe Prague Stock Exchange over the period 1993-1998 see Appendix 2.2. 
Table 2.7 at the end of the chapter. 
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A. Main market 
Conditions JSCs excluding funds Investment funds and unit 

trust funds 
Registered capital amount(for according to the minimum CZK 500 million 

unit trusts - value of Conunercial Code 
issued units) 

Value of the part of issue that minimum CZK 200 million 
-

was issued throughpublic offer 
Percentage share of the part of -
issue that was issued through minimum 20 % 
public offer of the total value 

of the issue 
Duration of the business minimum 2 years minimum 2 years 

activities 
For shares and lUlits each issue has to be liquid enough; the liquidity criteria are set by the 
Exchange Listing Committee, and its decision is published well before their effectiveness. For 
the year 1998 the average daily trade value must be higher than CZK 1 million. 

B S . econ d k ary mar et 
Conditions JSCs excluding funds Investment funds and unit 

trust funds 

Registered capital amount(for according to the 
.. 

mUllmum 
lUlit tmsts - value of issued Commercial Code CZK 250 million 

units) 
Value of the part of issue that minimum CZK 100 million -

was issued througl~ublic offer 
Percentage share of the part of 
issue that was issued through minimum 15 % -

public offer of the total value 
of the issue 

Duration of the minimum 2 years minimum 2 years 

businessactivities 

The basic types of trades carried out on the PSE are: 

* Trading at fixed price (fixing)* Continual trading at fixed price (supplementary orders) 

* Continual trading at variable price (KOBOS) 

* Trading under the Trades in Shares and Bonds Supporting System (SP AD) 

* Purchase and sale of units of open unit trust funds 

Trading at fixed price (fixing) is based on the processing of buying and selling orders accumulated 

to a single moment of time. Once the orders have been processed price for each issue is set in such 
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a way, as to enable the achievement of the maximum possible trade volume of securities. The 

newly set price may only vary from preceding price by the allowable spread, which has been set at 

5%. 

The purpose of the continual trading at .fixed price is offsetting the excess occurred under 

continual trading at fixed price by inputting supplementary orders in the trading system. Only 

orders with limit price equal to the set auction price may be input. 

Under continual trading at variable price, or so called KOBOS, trades are concluded on the basis 

of a continual inputting of buying and selling orders for securities. Depending on the immediate bid 

and offer, the price of securities is set continually, while the official price is always equal to the 

price of the last concluded trade. Principle of price and, subsequently, of time priority applies to 

order matching. Under KOBOS trading, it is possible to input orders that are valid for a period 

longer than one exchange day. 

System Supporting the Market for Shares and Bonds (SP AD) is a trading segment based on 

exploitation of function performed by market makers maintaining continual quotation of bid and 

ask price for selected issues. Trading under SP AD is divided into two parts: open phase, the phase 

with obligatory quotation of prices by appointed market makers, and closed phase, the phase 

without obligatory quotation of prices by appointed market makers. 

2.4.3. The Prague Stock Exchange Index (PX 50)11 

The PX-50 is the leading representative ofa family of indexes (so far 21 indices) introduced by the 

Prague Stock Exchange. 12 It consists of 50 issues, which are selected according to market 

11 For the composition of the index see Appendix 2.1, Table 2.3 and Figure 2.7 at the end of the chapter. 
12 Other 21 indices introduced by the Prague Stock Exchange include PX-Glob (encompasses alllisted stocks and 
investment fund shares that have been traded at least once), PXL (was introduced to document the performance of 
stocks which are traded in the official market segment without being included in the PX-50, but was abolished in 
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capitalisation, liquidity and branch classification. In detail, the following rules for updating the PX-

50 index base apply: 

* Definition of the index sample 

- Market capitalisation (issue ranging among the 100 largest issues according 
to the fourth trading day preceding the index revision) 

- Trading volume (issue ranging among the 80 most actively traded issues 
during the preceding quarter) 

- Sectoral balance (individual issues are selected starting from those with the 
highest market capitalisation under the condition that the sectoral composition 
of the index sample reflects the sectoral balance of total market capitalisation) 

* Criteria for non-admission 

- Stocks of bankrupt companies 

- Stocks of companies in which trading has been suspended for a long time 

- Stocks of investment funds 

* Semi-annual revision of the index 

The Figure 2.3 below presents historical development of the Czech PX 50 index in 1994 - 1998. 

The volatility of the Czech stock market in the second half of 1998 was not as high as in many 

other emerging markets. 

September 1997, when issues with low liquidity were excluded from the Free market), and a set of 19 sectoral 

indexes. 
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The Bratislava Stock Exchange (BSSE) is the principal organiser of spot markets in Slovakia. It 

was founded in 1991 , one year after the beginning of the transformation of the country's economic 

system. The most important point in the history of BSSE came in April 1993, when the two-year 

preparatory stage was accomplished, during which the basic rules were drawn up governing the 

activities of the Stock Exchange. Commercial activity of the Exchange commenced on 6 April 

1993 . On that day members of the BSSE executed the first trades with listed bonds. The turning 

point was launching the book-entered (dematerialised) share trading. The shares were products of 

the first wave of voucher privatisation. The first such deals were made by the members on 1 June 

1993 . Trading takes place via an electronic stock exchange trading system, without the traditional 

intermediary function of traders or specialists, by means of on-line communication between the 

Stock Exchange and the members. In July 1997 trading of foreign securities was launched on the 
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BSSE. The same year a new structure ofBSSE markets was introduced. Trading in securities was 

divided into three main markets. 13 

2.5.2. Trading on the Bratislava Stock Exchange 

The Stock Exchange orgamses trading on the following three markets: Market for Listed 

Securities, Market for Registered Securities, Free Market for Securities. The table below 

summarises basic criteria ( minimum values) for listing on the Market for Listed Securities. 

Amount of registered capital Sk 500 million 
Market capitalisation of the issue Sk 100 million 
Market capitalisation of the part of issue that Sk 100 million 
is publicly held 
Duration of issuer's business activities 3 years 
Number of completed years for which 
information is provided in prospectus 3 years 

In case an issue does not meet the basic criteria for listing, but the issuer is interested in trading his 

securities on the BSSE, he can register his issue on the Market for Registered Securities. All 

publicly tradable securities issued in accordance with valid legislation are admitted to the Free 

Market for Securities on the basis of an issuer's request. 

Issuers whose securities are listed or registered on the BSSE are obliged to continuously inform 

the Stock Exchange about all important facts that could influence trading of their respective issues. 

Issuers of listed securities are obliged to submit their performance results to the Stock Exchange 

quarterly. Issuers of registered securities are obliged to do so semi-annually. The Stock Exchange 

13 For the summary of market statistics ofthe Bratislava Stock Exchange over the period 1993-1998 see Appendix 
2.2. Table 2.8 at the end of the chapter. 
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provides these results for publication to domestic periodicals, as well as to information agencies 

operating on a worldwide basis in the shortest possible term. 

The trading of securities on the BSSE runs daily by means of the ElektronickJ Burzov)r Operaeny 

System - EBOS (Electronic Stock Exchange Trading System). The system is based on the active 

entering of offers to buy and sell into a computer by members of the Exchange. Orders can be 

entered on the Stock Exchange floor or at any other location that has an on-line interconnection 

between the member's workstation and the BSSE's trading system. Using this system, members can 

execute anonymous transactions, direct transactions and repo transactions. In addition, they can 

declare and carty out the purchase of all shares of an issuer, the so-called "takeover bid". 

Anonvmous transaction An anonymous transaction on the EBOS is executed between an order to 

buy and an order to sell. In anonymous transaction, the member who is buying does not know the 

member who is selling and vice versa. Members can execute anonymous transactions in one of the 

three sub-systems of the EBOS: 

1. Auction Trading (trading at one price) - under this method of trading Stock Exchange members 

deliver to the Stock Exchange orders to buy and orders to sell securities (stored in order files) via 

modem or on diskette. One single realisation price, at which all transactions are then executed, is 

calculated on the basis of an algorithm for every issue of securities that has been a subject of at 

least one offer. The calculated algorithm ensures a maximum amount of traded securities and a 

minimum leftover, that is the difference between the total purchase and sale. 

2. Continuous Trading - under this method of trading Stock Exchange members place orders to 

buy and orders to sell securities through terminals. Received orders are processed according to the 

following rules: 
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- priority is given to the order with the best price; 

- in case of orders with equal prices, priority is given to the order placed earliest. 

When the price of the best order to buy is equal to or higher than the price of the best order to sell, 

the computer automatically concludes the transaction by matching these orders. The price of 

securities in one issue can vary in the course of continuous trading. 

3. Block Trading - under this method of trading orders to buy and orders to sell securities are not 

automatically matched by the computer. Members submit orders to buy and sell - non-address 

orders - through terminals. These are sorted in the system according to price, volume of order, and 

the time when the order was made. Members can respond to the most advantageous non-address 

order by making an address order, which will conclude the transaction. The price of securities in 

one issue can vary in the course of block trading. 

Direct Transactions 

A direct transaction is concluded between the buying and selling members when both parties know 

each other. One party reports the transaction by entering it into the EBOS. The transaction can be 

concluded after confirmation by the counter-party. 

Repo Transactions 

Conclusion of repo transactions is similar to the procedure of reporting direct transactions. Each 

repo transaction consists of a transfer and a re-transfer of securities, by which (the re-transfer) the 

securities of the same type and number are transferred to the account of the original owner. The 

fe-transfer is also called the closing of repo transaction. In case there are obstacles to the closing 

of a repo transaction, the participating parties may agree on a change of closing date of the repo 

transaction or termination of the repo transaction which they report to the BSSE. 
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Takeover Bid 

According to the Securities Act, a legal or a physical entity is allowed to acquire more than 30% of 

publicly tradable shares of one issuer only through an offer to purchase all publicly tradable shares 

of that issuer, that is a takeover bid. After the takeover bid has been published, its time of validity 

(30 - 60 days), price, and minimum required amount of securities is set up in the EBOS. The 

takeover bid is successful only if the bid's underwriter has purchased a minimum required amount 

of securities through anonymous or direct transactions in the course of the bid's validity. 

2.5.3. The Bratislava Stock Exchange Index (SAX)14 

The BSSE's official share index is the Slovensky AkcioY}' Index - SAX (Slovak Share Index). The 

SAX is a capital-weighted index, and reflects an overall change of assets connected with an 

investment in shares that are included in the index. This means that, besides fluctuations of prices, 

the index also includes dividend payments and revenues connected with changes of share capital 

amount (that is, the difference between current market price and the issue price of new shares). 

The initial value of the SAX index - 100 points - refers to September 14, 1993. The index reflects 

development only on the BSSE, and has been based to date on the average daily prices stated in 

the price lists. A calculation based on closing prices will be applied in the future, although only an 

increased liquidity of the market will allow this step. 

The SAX index formula is flexible and allows for the participation of various companies in the 

index, as well as changes in the number of companies, proportional to changes in their tradability 

or in the case of a new company entering the capital market. In the case of a change in the index's 

structure, the correction factors are set in such a way that the index with the new structure 

14 For the composition of the index see Appendix 2.1, Table 2.4 and Figure 2.8 at the end of the chapter. 
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continuously follows the development of the index with the previous structure. At present, the 

SAX index includes 16 most liquid Slovak joint-stock companies. 

The Figure 4 below presents historical development of the Slovak SAX index in 1994-1998. 

Similar to other transition markets of the region, 1996 and partially 1997 were successful for the 

Slovak stock market. However, once again, it was hit by the emerging markets crisis in summer-

autumn 1998. 

Figure 2.4 
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APPENDIX 2.1 

Composition of the Stock Exchange Indices (December 1998) 

Table 2.1 Composition of the BUX 

Stocl< Weight(%) Stock Weight 
(%) 

BorsodChem 4.31 NjlBI 1.41 

Danubius 2.82 OTP 15.53 

Egis 5.64 Pannonplast 2.24 

POTEX 0.86 Pick, Szeged 2.57 

G raboplast 2.85 Primagb 1.07 

Human Rt. 0.65 Raba 3.24 

Inter-Europa, Bank 0.46 Ricbter 14.93 

MATAV 15.44 Skala-Coop "T" O . 5~ 

Mezogep Rt. 2.45 TVK 6.33 

MOL 14.69 Zalal<e.'amia 1.99 

Figure 2.5 Sectoral Structure of the BUX 

40% 

35% ~~--------------------------------------, 

30% 

25% 

20% 

15% 

32 



Table 2.2 Composition of the WIG 20 

Stock Weight Stock Weight 
(%) (%) 

ELEKTRlM 1l.7 OKOCIM 3.4 

HANDLOWY 1l.4 STALEXPORT 3.1 

KGHM 9.9 ZYWIEC 3.1 

BSK 8.1 CELULOZA 2.9 

BPH 7.0 OPTIMUS 2.8 

BRE 6.5 DEBICA 2.7 

WBK 5.3 POLIFARB-CW. 2.7 

BUDIMEX 4.5 AGROS 2.6 

UNIVERSAL 4. 5 STOMIL 2.4 

MOSTOSTAL-EXP. 3.5 GORAZDZE 1.9 

Figure 2.6 Sectoral Structure of WGI 20 
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Table 2.3 Composition of the PX-50 

Stock Weight Stock Weight 
(%) (%) 

SPTTELECOM 40,86 NovAHU 0,62 

E. RADIOKOMUNIK 12.77 SKODAPLZEO 0,56 

EEZ 10,19 SEMOR. 0,49 
PLYNARENSKA 

IPB 4,07 INTERCONTINENT 0,46 
AL 

KOMERENI BANKA 2.79 IPSPRAHA 0,36 

UNIPETROL 2,61 KERAMlKA HOB 0,35 

EESKA 2.46 BVVBRNO 0,34 
SPOOITELNA 
SEVEROE. DOL Y 2,12 PIVOV.RADEGAST 0,34 

VERTEX 1,3 ViTKOVICE 0,32 

PRASKA TEPLAREN. 1,26 MOSTECKA 0,29 
UH.SPOL. 

ELEKTRA.RNY 1.23 METROSTAV 0,27 
OPATOV. 
JIHOMOR. 1.18 PRASKE 0,25 
ENERGET. PIVOVARY 
VYCHE. 1,04 DEZA 0,25 
ENERGETlKA 
PVT 1,01 CHLUMEAN.KER.Z 0,2 

Av. 
SEMOR. 1 SETUZA 0,17 
ENERGETlKA 
SEVEROE. 0,97 SS 0,16 
ENERGET. 
JIHOMOR. 0,93 PLZEOSKY 0,16 
PLYNAREN. PRAZDROJ 
EESKA POJISOVNA 0,87 BIOCEL PASKOV 0,16 

, 
SOKOLOVSKA 0,82 SKLARNY 0,15 
UHELNA KAVALIER 
zApE. ENERGETlKA 0,8 ALIACHEM 0,13 

MORSLEZS. TEPLAR 0,68 PRVNI 0,12 
NY SEVzAp. TEPL. 
PRASKA 0,68 iAs 0,1 
ENERGETlKA 
STOEDOE. 0,66 ZPSZLIN 0,07 
ENERGET. 
JIHOE. 0,63 EESKA 0,07 
ENERGETIKA ZBROJOVKA 
IVNOSTENSKA 0,63 VODNi STAVBY 0,05 

BANKA PRAHA 
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Figure 2.7 Sectorla Structure of PX 50 
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Table 2.4 Composition of the SAX 

Stod: Weight Stock Weight 
(%) (%) 

BIOTlKA 0.45% SLOVAKOFARMA 2l.92% 

DOPRASTAV 3.01% SLOVENSKA 3.57% 
POISOVOA 

DROTOVOA 0.48% SLOVNAFT 33 .40% 

FIGARO l.56% VAHOSTAV 0.62% 

NAFTA 5.10% VSZ 15.05% 

PLASTOKA 0.75% VUB 7.65% 

POVASKE 2.00% ZAVODYSNP 2.83% 
STROJAME 
SES TLMAEE 0.69% ZELEZIARNE 0.91% 

PPDBREZOVA 
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Figure 2.8 Sectoral Structure of SAX 
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APPENDIX 2.2 

Summary of Market Statistics of the Transition Stock Exchanges 

Table 2.5 Hungarian market statistics (1990-1998) 

1990 1991 1992 1993 1994 1995 1996 1997 1998 
Number of the BSE 42 48 48 47 51 56 57 63 
Members 
Number of sec-ties 6 22 40 62 120 166 167 149 144 
Admitted to the BSE 

of which: 
Equities 6 20 23 28 40 42 45 49 55 
Government bonds - 1 4 16 25 34 36 28 30 
cOr:RQrate bonds - 1 1 1 3 3 2 7 8 
T-bills - - 10 10 31 50 50 44 42 
Investment funds - - 1 6 20 36 33 20 8 
Compensation notes - - 1 1 1 1 1 1 1 
Securities admitted to 99,3 440...1- 2261,5 4387.3 7736,0 8731,4 12 008,7 12 123,3 14023,2 
the BSE at nom. ,-alue 
(US$mln) 

of which: 
Equities 99,3 240,7 343,0 380,3 720,9 1 517,7 1 873,6 1 956,9 24435 
Government bonds - 198,4 952,7 2353,5 3 380,6 2999,6 4035,7 4439,8 6 166,1 
Corporate bonds - 1,3 1,2 3,0 14,5 11,3 7,7 181,7 236,7 

T-bills - - 706,2 763,7 2318,2 2964,8 4912,4 4725,7 4490,0 
Investment funds - - 20,2 89,4 215,0 308,0 264,4 132,8 38,2 

Compensation notes - - 238,2 797,4 1086,8 930,0 914,9 686,5 648,6 

Equities cap-n of BSE 20,40 22,32 36,06 61,29 
in % ofGDP 53,71 

Capitalization on the 266,9 708,8 2404,4 4538,3 7984,6 8757,0 15658,7 25 136,3 
BSE (US$mln) 25 395,7 

of which: 
Equities 266,9 505,2 562,1 811,3 1 639,7 2350,2 5582,9 15028,8 14021,46 

Cash turnover on 131,5 426,3 2017,5 1 961,3 2021,8 7501,8 36040,1 64234,5 

market val. (US$mln) 96,8 
of which: 

Equities 96,8 131,1 76,1 198,4 530,0 696,9 3212,6 15369,4 32208,34 

Government bonds - 0,4 156,5 797,3 500,1 616,2 2738,9 10 483,3 22 159,21 

corporate bonds - 0,0 0,0 0,0 1,1 0,4 3,7 209,3 166,25 

T-bills - - 190,6 923,5 753,8 647,7 1 351,3 9725,1 9614,50 

Investment funds - - 0,4 1,1 2,4 27,4 58,2 12,4 7,73 

Compensation notes - - 2,7 97,2 173,9 33,2 137,1 240,6 87,12 

Number of tran-os 4255 13 676 8145 21185 70744 71240 170956 504879 1026646 

Average daily number 24 54 32 84 281 286 689 2044 4140 

of tranS-11S 

Source: Budapest Stock Exchange 
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Table 2.6 Polish market statistics (1991-1998) 

1991 1992 1993 1994 1995 1996 1997 1998 
SHARES 
Sin~Ic-Pricc Action 
Number of listed companies 9 16 21 36 53 66 96 117 
Capitalisation (PLN mIn) 161 351 5803 7149 10902 23036 38107 68082 
Average PIE ratio 4.1 3,4 13,3 16,4 7,8 12,3 14,9 12.6 
Dividend yield (%) 0,0 5,5 0,-1. 0,4 2,3 1,2 1.5 0,9 
Number oftrans-ns per sess-n 877 1 233 9832 24594 7164 8074 9891 9766 
Total turnover (PLN mIn) 30 230 7750 22640 12 200 25611 36038 39 170 
Continuous Trading 

Number of transactions - - - - - 31 460 1578 

Total turnover (PLN min) - - - - - 251 3338 8487 

Block Trades 

Number of transactions - - - - 63 143 426 1058 

Total turnover (PLN min) - - 3 - 395 1575 4332 7925 

BONDS 
Sin2le-Pricc Action 
Number of listed bond issues 3 8 12 13 14 15 16 

Interest paid per one three- - - 40,17 34,76 29,67 25,18 22,65 23,65 

year bond (PLN) 
Total turnover (PLN min) - 7,1 115,-1. 322,6 ·H9,3 1898,23 2781,57 3752.68 

Number of trans-ns per sess-n - 48 69 112 136 1038 1225 591 

Continuous tradin~ 
Number of transactions - 67 447 491 1 115 1917 1 961 2540 

Total turnover (PLN min) - 14,3 185,2 1826,1 3734,6 4007,36 2871,25 1196,61 

Block Trades 
Number of transactions - - - - 660 480 422 327 

Total turnover (PLN mIn) - - 256,4 1151,3 15121,7 10313,5 7835,3 3631,77 

Source: JYarsaw Stock Exchange 
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Table 2.7 Czech market statistics (1993-1998) 

1993 1994 1995 1996 1997 1998 

Number of members 62 71 101 106 88 66 

Number of issues 982 1,055 1,764 1.750 ·H2 402 

Total of w'hich: 971 1,028 1,716 1,670 320 304 
stocks + units 
Total of which: bonds 11 27 48 80 92 98 
Total trade value 9.0 62.0 195.4 393.2 679.5 860.2 
(CZK bIn) 
Average daily trade 0.385 0.835 1.579 2.718 3.427 
value (CZK bIn) 0.220 
Market cap.: 353.1 478.6 539.3 495.7 416.2 
stocks + units -
(CZK bIn) 
~arketcap.: bonds - 50.0 87.8 136.9 174.0 198.1 
(CZK bIn) 
Number of 41 161 234 249 250 251 
Trading sessions 

Source: Prague Stock Exchange 

Table 2.8 Slovak market statistics (1993-1998) 

1993 1994 1995 1996 1997 1998 

Stock Exchange 
Floor 
Volume (Sk min) 37.883 829.443 470.799 15,824.168 5,922.935 22,613.220 
Number of securities 36,603 604,513 839,307 12,810,809 5,709,482 4,828,064 
(in units) 
Number of 1.361 11,187 10,182 33,857 14,985 4,344 
Transactions 
Direct Trades 
Volume (Sk mIn) 128.437 5,454.056 39,597.936 98,292.194 158,140.924 276,467.690 
Number of securities 79,260 7,987,351 44319,363 118,424,574 134,510,913 79,779,326 
(in units) 
Number of 21 1,780 18,573 147,053 142,812 55,526 
Transactions 
Total 
Volume (Sk min) 166320 6,283.500 40,068.735 114,116.363 164,063. 859 299,080.910 
Nmnber of securities 115863 8591864 45 158670 131235383 140220395 84607390 
(in units) 
Number of 1382 12967 28755 180910 157797 59870 
Transactions 

Source: Bratislava Stock Exchange 
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CHAPTER 3 

VOLATILITY IN THE TRANSITION MARKETS OF 

CENTRAL EUROPE15 

3.1. Introduction 

Until some twenty years ago, the focus of statistical analysis of time senes centred on the 

conditional first moment. While it has been recognised for quite some time that the uncertainty of 

speculative prices, as measured by variances and covariances, is changing through time, it was not 

until the beginning of the 1980s that applied researchers started to explicitly model time variation in 

second and higher moments. Researchers used only informal procedures to take account for 

changing variances and covariances. 16 A breakthrough occurred when, in line with Box-Jenkins type 

models for conditional first moments, Engle (1982) put forward the Autoregressive Conditional 

Heteroskedastic (ARCH) class of models for conditional variances, which proved to be extremely 

useful for analysing economic time series. Since then an extensive literature has been developed for 

modelling higher order conditional moments. The ARCH model has applications to numerous and 

15 The version of this chapter is forthcoming in Applied Financial Economics. 
16 For example, Mandelbrot (l963a) used recursive estimates of the variance over time and Klien (1977) took five 
period-moving variance estimates about a 10-period moving-sample mean. 
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diverse areas. 17 

As emphasised by Pagan (1996) and Bollerslev et al. (1994), many financial time series have a 

number of characteristics in common. First, asset prices are generally nonstationary and often have a 

unit root, whereas returns are normally stationary. Second, return series usually show little 

autocorrelation, while serial independence between the squared values of the series is often rejected 

pointing towards the existence of nonlinear relationships between the subsequent observations. 

Volatility of the returns appears to be clustered. Returns go through periods of high and low 

variance. These facts point towards time-varying conditional variances. Third, beginning with the 

seminal works of Mandelbrot (1963a) and Fama (1965), evidence indicates that the empirical 

distribution of return series differs significantly from sampling independent observations from an 

identical Gaussian distribution. The series are characterised by leptokurtosis, which could be related 

to the time-variation in the conditional variance. Fourth, some series exhibit asymmetric behaviour 

in the conditional variance, related by a number of authors to leverage effects. Finally, empirical 

evidence indicates that volatilities of different securities have common persistent components, 

pointing towards the linkages between markets. 

The ARCH models were first formal specifications that seemed to capture the stylised facts 

characterising financial series. 18 Most contributions to the ARCH literature deal with mature, large 

17 For example, it has been used in asset pricing to test the CAPM and APT~ to develop volatility tests for market 
efficiency and to estimate the time-varying systematic risk in the context of the market model. It has been used to 
measure the teon structure of interest rates; to develop optimal dynamic hedging strategies; to examine how 
information flows across countries, markets and assets; to price options and to model risk premia. In 
macroeconomics, it has been successfully used to construct debt portfolios of developing countries, to measure 
inflationary uncertainty, to examine the relationship between the exchange rate uncertainty and trade, to study the 
effects of central bank interventions, and to characterise the relationship between the macroeconomy and the stock 
market. 
18 The history of ARCH is quite a short one but its roots go far in the past - possibly as far as Bachelier (1900), who 
was the first to conduct a rigorous study of the behaviour of speculative prices. There was then a period of long 
silence. Mandelbrot (1963a, b; 1967) revived interest in the time series properties of asset prices with his theory that 
'random variables with an infinite population variance are indispensable for a workable description of price changes' 
(cf 1963b, p. 421). He was first to obsenTe the 'stylised facts' characterising many economic and financial variables, 
such as unconditional distributions have thick tails, variances change over time, and large (small) changes tend to be 
followed by large (small) changes of either sign. 
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and liquid markets. The motivation for this chapter is to add evidence from the transition equity 

markets of Central Europe to the econometric modelling of univariate and multivariate volatility of 

financial time series. This will be accomplished by testing a range of models, which has proven to be 

able to account for empirical regularities characterising financial series, using the data from four 

transition equity markets. 

3.2. ARCH Models of Conditional Volatility: A Review 

The ARCH type models will be employed in different contexts for the parameterisation of the 

second conditional moments of the considered time series in this, as well next two chapters of our 

work. Therefore, the aim of this section is to provide a review of the ARCH models of volatility, 

which covers different aspects of the modelling of conditional second moments considered 

throughout the thesis. 

Part 3.2.1 of this section provides the basic parameterisation of the ARCH type models. Part 3.2.2 

presents unconditional moments of the ARCH process. After building the theoretical framework of 

the basic ARCH models, the emphasis of the part 3.2.3 are on more flexible ARCH specifications. 

The frequent inability of the conditionally normal ARCH models to pass the simple diagnostic tests 

has lead to the use of the conditional distributions more general than the normal distribution. These 

issues are discussed in part 3.2.4. In part 3.2.5 we present several multivariate specifications of the 

ARCH process, while part 3.2.6 covers the issues of estimation of the discussed models. Finally, 

Appendix 3.2 at the end of the chapter provides the models of the conditional volatility alternative 

to the ARCH specification. 
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3.2.1 The Definition of the ARCH Process 

An ARCH model can be formulated for the original series or for an error term. In most financial 

applications, the error &t of a regression or time series model is conditionally heteroskedastic. In 

our work the ARCH process will be defined in terms of the distribution of the errors of a dynamic 

linear regression model. The dependent variable Y t is assumed to be generated by 

Yt=X~;+&t' t=I, ... ,T, (3.1) 

where x
t 

is a k x 1 vector of predetermined variables, which may include lagged values of the 

dependent variable, and ; is k x 1 vector of regression parameters. The ARCH model characterises 

the distribution of the stochastic error &t conditional on the realised values of the set of variables 

\{It_l = {}'t-pX
t
- 1 'Y t

-2 ,xt _ 2 ···} . The Engle's (1982) original ARCH model of order q can be written 

as 

(3.2) 

where 

(3.3) 

with a
o 

> 0 and a
i 

;;::: 0, i = 1, ... , q, to ensure that the conditional variance is positive. 

The particularity of the model (3.2) and (3.3) is not simply that conditional variance ht is a function 

particular functional form that is specified. Episodes of volatility are generally characterised as the 

clustering of large shocks to the dependent variable. The conditional variance function (3.3) is 
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formulated to mimic this phenomenon. In the ARCH regression model, the variance of the current 

error, &" conditional on the realised values of the lagged errors Et - i , i = 1, ... , q is an increasing 

function of the magnitude of the lagged errors, irrespective of their signs. As a result, the larger 

errors of either sign tend to be fonowed by a large error of either sign. Similarly, small errors of 

either sign tend to be followed by a small error of either sign. The order of the lag q determines the 

length of time for which a shock persists in conditioning the variance of subsequent errors. 19 

The generating equation for an ARCH process is 

(3.4) 

where '7t- N(O,I) and h
t 

is given by (3.3). Since ht is a function of the elements of \}It_P and is 

therefore fixed when conditioning on \}It_P it is clear that Et as given in (3.4) will be conditionally 

process specified by (3.4) is identical to the ARCH process (3.2). The generating equation (3.4) 

reveals that ARCH rescales an underlying Gaussian innovation process 17t by multiplying it by 

conditional standard deviation, which is the function of the information set \}It-I' 

Engle (1982, 1983) in the first empirical applications of ARCH to the relationship between the level 

and volatility of inflation found that a large lag q was required in the conditional variance function 

(3.3). To reduce the computational burden, Engle parameterised the conditional variance as 

q 

ht = a o + aIL Wj&;_j , 
(3.5) 

i=1 

19 A linear function of lagged squared errors, of course, is not the only conditional variance function that will produce 
clustering of large and small deviations. Any monotonically increasing function of the absolute values of the lagged 
errors wi111ead to such clustering. However, since variance is the expected squared deviation, a linear combination of 
the squared errors is a natural measure of the recent trend in variance to translate to the current conditional variance 

hI' 
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where the weights 

(q+ l)-i 
Wi = 1 (3.6) 

2 q(l+q) 

q 

decline linearly and are constructed so that L Wi = 1. With this parameterisation, a large lag can be 
i=l 

specified and yet only two parameters are required to be estimated in the conditional variance 

function. However, the important thing to note is that this formulation does put undue restrictions 

on the dynamics of the ARCH process. 

Bollerslev (1986) and Taylor (1986) independently proposed a generalisation of the ARCH (q) 

model that allows for both parsimonious parameterisation and flexible lag structure by introducing 

autoregressive term into the conditional variance equation. Bollerslev (1986) termed the new model 

generalised ARCH (GARCH). According to GARCH the conditional variance is specified as: 

(3.7) 

Sufficient, but not necessary conditions for the nonnegativity of ht are 

a o > 0, ai;::::O fori= 1, ... , q, and A;::::O fori= 1, ... , p. (3.8) 

To demonstrate the motivation of the GARCH process we express (3.7) as 

where a(B) = aIB+. .. +aqBq and PCB) = PIB+. .. +PpBP are polynomials in the backshift operator 

B. In the case where the roots of 1-P(Z) lie outside the unit circle, the GARCH (p,q) model can 

be written as an ARCH ( 00 ) model 
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(3.9) 

where 1-~(1) and S, IS the coefficient of Bi in the expansIOn of 1 ~~~) . Hence 

expression (3.9) reveals that a GARCH (p,q) process is an infinite order ARCH process with a 

rational lag structure imposed on the coefficients. As a result, GARCH parsimoniously represents a 

high order ARCH process.
20 

In applied work, it has been frequently demonstrated that the GARCH 

(1,1) process is able to represent the majority of financial time series. A data set that requires a 

model of order greater than G ARCH (1,2) or GARCH (2,1) is very rare. 

3.2.2 Unconditional moments of ARCH process 

The derivation of the unconditional moments of the ARCH process is possible through the use of 

the law C?f iterated expectationi1
, which relates unconditional and conditional moments of the 

series. Since the ARCH model is specified in terms of its conditional moments, it provides a method 

for deriving unconditional moments. 

Consider the unconditional mean of a GARCH (p,q) error Gt with conditional vanance (3.7). 

Applying the law of iterated expectations, E(Gt ) = E[E(G( I \{It-I)]' However, because the GARCH 

:0 Nelson and Cao (1992) demonstrated that weaker sufficient conditions that those in (3.8) above can be found to 
ensure that the conditional variance of a GARCH (p,q) process is strictly positive. They pointed out that from the 

inverted representation of ht in (3.9): a; > 0 and ~ ~ 0, i = 1, ... ,00 are sufficient to ensure that the conditional 

variance is strictly positive. In terms of original parameters of the GARCH model, Nelson and Cao showed that 
restrictions above do 110t require all the inequalities in (3.8) to hold. For example in a GARCH (1,2) process, 

a o > 0, a
l 
20, 13120 and Ptal + a 2 20 are sufficient to guarantee that ht > O. Therefore, a 2 may be 

negative. They presented general results for GARCH (1, q) and GARCH (2, q), but suggest that derivation for 
GARCH processes with p 2 3 is difficult. 

:1 For definition of the law of iterated expectations, see e.g. Appendix B.1O in "Econometric Theory" by Davidson 

(2000). 
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model specifies that E(&t I \}It-l) = 0 for all realisations of \}IH' it follows that E(&() = o. As a 

result, the GARCH process has mean zero. 

To evaluate the unconditional variance of the GARCH process for simplicity let us consider 

GARCH ( 1,1) process. On the basis of the law of the iterated expectations we get: 

(3.10) 

which is a linear difference equation for the sequence of variances. Assuming the process began 

infinitely far in the past with a finite initial variance, the sequence of variances converges to the 

constant 

(3.11 ) 

if at + f3t < 1. For the general GARCH (p,q) process, Bollerslev (1986) gave the necessary and 

sufficient condition for the existence of the variance: 

q p 

a(1) + P(1) = ~ai + ~Pi < 1 (3.12) 
i=l i=l 

When this condition is satisfied, the variance is: 

(3.13) 

Although the variance of &t conditional on \}It-l changes with the elements of the information set, 

unconditionally the ARCH process is homoskedastic. 

The nature of the unconditional density of an ARCH process can be analysed by the higher order 

moments. Due to the fact that &t is conditionally normal, for all odd integers m: E(&t
m I \}It-!) = o. 
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The skewness coefficient is immediately seen to be zero. Since &t is continuous, this implies that the 

unconditional distribution is symmetric. 

A general expression for the fourth moment of GARCH (p,q) process is not available, but Engle 

(1982) gave it for ARCH (1) process, and Bollerslev (1986) generalised it for the GARCH (1,1) 

case. According to Engle's result for ARCH (1) 

(3.14) 

and the kurtosis 

(3.15) 

exists if 3al
2 < 1 . 

The kurtosis of a GARCH (1,1) process 

(3.16) 

o Of ~ 2 2 f3 f3? eXIsts 1 -,al + a 1 I + 1- < 1 . 

Both (3.15) and (3.16) are clearly greater than 3, the kurtosis coefficient of the normal distribution. 

Therefore, the ARCH process has tails heavier than the normal distribution. Because of this 

leptokurtic unconditional distribution, ARCH models are particularly suited for financial series, 

which often exhibit such behaviour. 

Although no known closed form for the conditional density function of an ARCH process exists, 

Nelson (1990b) demonstrated that, under suitable conditions, GARCH( 1,1) process approaches a 

continuous time process whose stationary unconditional distribution is a Student's t. This result 

indicates why heavy-tailed distributions are so prevalent with high frequency financial data. 
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Another important characteristic of the model is that the parameterisation of the ARCH process 

does not a priori impose the existence of the unconditional moments. Very early in the history of 

financial econometrics Mandelbrot (1963a) raised the point that asset returns had second 

unconditional moments that may not exist. The fact that the ARCH model admits an infinite 

variance is desirable because such behaviour may be a characteristic of the data-generating process 

that should be reflected in the estimated model. 

Above we considered the univariate distributions of a single St. The moments of the joint 

distribution of the Sf also reveal important properties of the ARCH process. The autocovariances 

of the GARCH (p,q) process are 

E(StSt_k) = E[E(StSt_k 1 \}It-I)] 

= E[St_kE(St 1 \}It-!)] 

=0 (3.17) 

Since the GARCH process is serially uncorrelated with constant mean zero, the process is weakly 

stationary if the variance exists, i.e. if (3.12) holds. A property of GARCH process, first 

demonstrated by Nelson (1 990a ) for GARCH (1,1), is that it may be strongly stationary without 

being weakly stationary. That the GARCH process may be strongly stationary without being weakly 

stationary stems from the fact that weak stationarity requires mean, variance and auto covariance be 

finite and time invariant. Strong stationarity requires that the distribution function of any set of St is 

invariant under time translations. Finite moments are not required for strong stationarity. The results 

of Nelson (1990a) show that the unconditional variance may be infinite and yet the GARCH process 

may still be strongly stationary. 
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3.2.3 Extensions of the basic ARCH models 

A RCH-M 

In the ARCH in the mean, or ARCH-M model, introduced by Engle, Lilien and Robbins (1987), the 

conditional mean is an explicit function of the conditional variance of the process. Many theories in 

finance involve an explicit tradeoff between the risk and expected return. The ARCH-M model is 

ideally suited to handling such questions in the time-series context where the conditional variance 

may be time-varying. In the regression set-up an ARCH-M model is specified as 

(3.18) 

where &t I \f'H ~ N(O,ht ), and hi is determined by an ARCH or GARCH process. To examine the 

properties of the ARCH-M model, we consider a simple version of 

(3.18): 

(3.19) 

Then, we can write 

Yt = 8ao + 8al&~_1 + &t . (3.20) 

From this expression, and using E(&t~l) = ao /1- a 1 (unconditional variance of ARCH process), it 

follows that 

E (y t ) = 8a 0 / 1 - aI' 
(3.21) 

which can be viewed as the unconditional expected return for holding risky asset. 

Also, using result for E(&:) in (3.14) 
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(3.22) 

In the absence of a risk premium Var(Yt) = a o . Therefore, the first component of Var(y) IS 
I-a t 

1 

due to the presence of a risk premium, which makes Yt more dispersed. 

Finally, the ARCH-M effect makes Yt serially correlated (see Hong (1991»: 

k = 2,3, .... (3.23) 

Bollerslev (1988) obtained similar results for GARCH process. 

Models with nonlinear conditional variance 

In the original ARCH model Engle (1982) assumed that the conditional variance function was linear 

in the squared errors and that the conditional distribution was normal. He acknowledged, however, 

that linearity and conditional normality assumptions might not be appropriate in particular 

applications. In this section we survey alternative nonlinear formulations of the conditional variance, 

and, in the section 3.2.4 we look at the alternative specifications of the conditional distribution, 

which have proven useful in applied research. 

One of the problems encountered with the linear ARCH model was that the estimated coefficients 

a
i 

were sometimes found to be negative. Geweke (1986) and Milhoj (1987a) suggested the log 

ARCH model. 

(3.24) 
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Taking the exponential of both sides of (3.24), hI = e{') is strictly positive, and therefore, no 

inequality restrictions are required for the a i s to ensure that the conditional variance is strictly 

positive. 

To determine whether the linear model (3.3) or the logarithmic model (3.24) provided a better fit 

for actual data, Higgins and Bera (1992) proposed a non-linear ARCH (NARC H) model, which still 

requires non-negativity restrictions, but includes linear ARCH as a special case and log ARCH as a 

limiting case. Their specification of the conditional variance is: 

h - [do ( 2 )8 do ( 2 )8 do ( 2 )8 ]1/ 8 
t - 'f/o 0' + 'f/l &1-1 + ... + 'f/q &t-q , (3.25) 

q 

where 0'2 > 0, ¢i 2:: 0, (j > ° and the ¢i s are such that L ¢ i = 1. The motivation of the NARCH 
i=:O 

model can be seen by rearranging (3.25) to give: 

hiS 1 2 8 ( 2 )8 (&2 )8 - 1 
(- _ do (0' ) - 1 do &(-1 - 1 do t-q 

-(5- - 'f/ 0 (5 + 'f/ 1 (5 + .. '+'f/ q --(5--' (3.26) 

from which it is evident that the NARCH model is a Box-Cox power transformation22 of both sides 

of the linear ARCH model. It is apparent that when (5 = 1, (3.26) is equivalent to the linear ARCH 

model, and as (5 ~ 0, (3.26) approaches the log ARCH model (3.24). Higgins and Bera (1992) 

estimated (3.25) with weekly exchange rates and found that (5 was typically significantly less than 1 

and much closer to zero, indicating that the data favoured the logarithmic rather than the linear 

ARCH model. Extensions of the above functional forms to the GARCH model are straightforward. 

2:! Box and Cox (1964) suggested the following transformation 

{

X: -1 x(} -1 
y. - ()7;.0 'h Y. -1 X 'f()-O' lim ~Inx when ()~o t - () , ................... \, ere t - n t 1 - ,smce () . 

In X t () = ° 
It should be noted that this transfonnation is only defined for all values of () if X t > ° (see SchliUgen and 

Streitberg (1994». 
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The limitation of the models described above is that the conditional vanance function h
t 

is 

symmetric in the lagged ct s. Many financial series however are strongly asymmetric. Negative 

equity returns are followed by larger increases in volatility than equally large positive returns. Black 

(1976) interpreted this phenomenon as the leverage effect, according to which since a lower stock 

price reduces the value of equity to corporate debt, a sharp decline in stock prices increases 

corporate leverage and could thus increase the risk of holding stocks. Based on the leverage effects 

noted in Black (1976), Christi (1982) and French, Schwert, and Stambaugh (1987), Nelson (I 991) 

proposed the exponential GARCH (EGARCH) model, which allows for asymmetry. To avoid non-

negativity restrictions on parameters of the model, Nelson maintained the logarithmic specification 

(3.24) and proposed 

(3.27) 

where 

(3.28) 

The conditional variance in (3.27) and (3.28), is known as exponential GARCH (EGARCH). The 

properties of EGARCH model are determined by construction of the function g(-) in (3.28). The 

function g(-) is piecewise linear in llt (llt = ct / Jh:). It contains two parameters that determine 

what can be termed the 'size impact' and the 'sign impact' of news on volatility. If r > 0, the model 

implies that a deviation of Illt I from its expected value causes the conditional variance to be larger 

than otherwise, producing the size impact of news on volatility (an effect similar to the idea behind 

the GARCH specification). The parameter () allows the asymmetric impact of news on volatility. If 

B = 0 then a positive surprise, llt > 0, has the same effect on volatility as a negative surprise, 
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1]t < 0, of the same magnitude. If -y < () < 0, a positive surprise increases volatility less than a 

negative surprise. If () < -y < 0, a positive surprise actually reduces volatility while a negative 

surprise increases volatility. A number of researchers have found evidence of asymmetry in stock 

price behaviour - negative surprises seem to increase volatility more than positive surprises.23 

Nelson (1991) fitted the EGARCH model to the excess daily return on the CRSP value-weighted 

stock-market index. The estimate of () was -0.118 with a standard error of 0.008, confirming a 

highly significant negative correlation between the excess return and subsequent volatility. 

Building on the success of the EGARCH model to represent asymmetric responses m the 

conditional variance to positive and negative errors, a series of papers have proposed other ARCH 

models, which allow a very general shape in the conditional variance function. Although these 

models are parametric, and estimated by maximum likelihood, they are non-parametric in spirit 

because the shape of the conditional variance function is largely determined by the data themselves. 

Zakoian (1990) suggested a conditional standard deviation of the form 

(3.29) 

where St+ = max{&pO} and &t- = min{&f'O}. The parameters are constrained by ao > 0, at 2:: 0 

and a
i
- 2:: 0 for i = 1, ... ,q to ensure that the conditional standard deviation is positive. Zakoian 

referred to this formulation as a threshold ARCH (T ARCH) model because the coefficient of &t-i 

changes when St-i crosses the threshold of zero. When &f-i > 0, the conditional standard deviation 

is linear in st-i with slope a
i
+, and when &t-i < 0, the conditional standard deviation is linear in &t-l 

with slope a;. This allows for asymmetry in the conditional variance in the fashion of EGARCH. 

~3 See, for example Pagan and Schwert (1990), Engle and Ng (1993), and the studies cited in Bollerslev, Chou. and 

Kroner (1992). 
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Glosten, larannathan and Runkle (1993) independently suggested a similar formulation, which 

allowed for asymmetric effects by including an indicative dummy taking the value of 1 if &t-I < 0 

and zero otherwise. This model will be presented more in detail later on in our work (see section 

3.3.2). 

Gouroeroux and Monfort (1992) proposed that a step function over the support of the conditioning 

error vector f t-1 = (&t-l, ... '&t-q)' could approximate a highly non-linear conditional variance 

function. Letting A1 , ••• ,Am be partition of the support of &p Gourieroux and Monfort considered a 

conditional variance of the form 

m q 

ht =ao + LLaij1Ai (&t-j), 
i=1 j=1 

(3.30) 

where 1~ (&t) is the indicator function of the set A, which takes the value 1 when &t E A and zero 

otherwise. The authors describe (3.30) as a qualitative TARCH (QTARCH) model because the 

conditional variance is determined by the region in R q in which ft-l lies, rather than by the 

continuous values of the elements of f t - l . 

Engle and Ng (1993) provided a summary of asymmetric ARCH models and introduced several 

new models of their own. They concentrated on the GARCH (1,1) process and the functional 

relationship ht = h(&t-l)' which they term 'news impact curve,.24 Three new asymmetric models they 

proposed are 

(3.31) 

2-1 The differences between news impact curves of several asymmetric GARCH models of conditional yolatility_ 
employed for empirical analysis of the data from transition markets, will be analysed in the section 3.3.2 of this 

chapter. 
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(3.32) 

(3.33) 

Engle and N g (1993) also proposed a very flexible functional form, which is similar to QT ARCH 

model but is piecewise linear over the support &t-l rather a step function as in (3.30). They 

characterised this model as 'partially non-parametric' (PNP). They partitioned the support of &t-I 

into intervals, where the boundaries of the intervals are {r
m
-, ... , '_1,0, 'I' ... ' 'm+ }, and m- is the 

number of intervals below zero and m+ is the number of intervals above zero. Engle and Ng then 

specified 

m+ m 

ht = a + ~ (}j~t (&t-I - rJ + ~ 8j N it (&t-l - r j ) + j3ht_1 (3.34) 
j=O i=O 

where the variables ~t and Nit are defined as 

1 if &t-l > 'j 
~t = ° othenvise 

and 

1 if &t-l < r_ i 
Nit = 

° othen",'ise 

From (3.34), ht will be linear with a different slope over each interval. For example, if &t-l IS 

positive and lies in the interval (ri' r i+1), then the slope coefficient is (}1 + ... + (}j. Engle and Ng 

chose the rj s to be multiplies of the unconditional standard deviation of the series. 

Engle and Ng (1993) also conducted an experiment to compare the ability of asymmetric ARCH 

models to represent the conditional variance of stock returns. Using daily observations on the 

Japanese Topix stock index from January 1980 to September 1987 Engle and Ng fitted the 
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asymmetric GARCH models discussed above. Although based on only one data set, the authors' 

results indicated that a parsimonious and highly parametric EGARCH could represent the volatility 

of stock returns remarkably well. Whether any inadequacies in the EGARCH functional form for 

representing the volatility of stock returns justifies a more flexible model like T ARCH~ QT ARCH or 

PNP models~ may largely depend on the peculiarities of the individual data set and the ultimate 

purpose of the empirical analysis. 

In the context of estimating risk premia, Pagan and Hong (1991) suggested that no parametric 

functional form is sufficiently general to represent the diverse types of data that display conditional 

heteroskedasticity. Pagan and Hong used a non-parametric kernel estimator of the conditional 

variance and demonstrated that the non-parametric estimators give different conclusions about the 

effect of the risk premium on asset returns than do the standard parametric ARCH models. We will 

briefly discuss the non-parametric approach suggested by Pagan and Hong (1991) in section 3.2.6 

on the estimation of the ARCH type models. 

Integrated CAReR 

q p 

Engle and Bollerslev (1986) were the first to consider GARCH process (3.7) with L ai + L ~ = 1 
i=l i=1 

as a distinct class of models, which they term integrated GARCH (IGARCH). They pointed out the 

similarity between IGARCH processes and the processes that are integrated in the mean. For a 

process that is integrated in mean (one that must be differenced to induce stationarity) a shock in 

the current period affects level of the series in the indefinite future. In an IGARCH process, a 

current shock persists indefinitely in conditioning the future variances. The IGARCH model is 

important because a remarkable empirical regularity, repeatedly observed in the applied work, is 

that the estimated coefficients of a GARCH conditional variance sum close to 1. 
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The consistent finding of very large persistence in variance in financial time series is puzzling 

because currently no theory predicts that this should be the case. Lamoureux and Lastrapes (1990b) 

argued that large persistence may actually represent misspecification of the variance and result from 

the structural change in the unconditional variance of the process (as represented by changes in a o 

in (3.7)). A discrete change in the unconditional variance of the process produces clustering of large 

and small deviations, which may show up as persistence in a fitted ARCH model. To illustrate this 

possibility, Lamoureux and Lastrapes used 17 years of daily returns on the stocks of 30 randomly 

selected companies and estimated GARCH (1,1) models holding ao constant, and allowing ao to 

change discretely over sub-periods of the sample. For the restricted model, in which ao is constant, 

the average estimate of a1 + /31 for the 30 companies is 0.978, while for the unrestricted model, in 

which a o is allowed to change, the average estimate fell to 0.817. Lamoureux and Lastrapes also 

present Monte Carlo evidence that demonstrated that the MLE of at + /31 has a large positive bias 

when changes in the unconditional variance are ignored. 

3.2.4 Non-normal conditional distribution 

As described above an attractive feature of the ARCH process is that, even though the conditional 

distribution of the error is normal, the unconditional distribution is non-normal with tails thicker 

than the normal distribution. 

In spite of this property, empirical work with ARCH models indicated that the implied 

unconditional distributions of estimated ARCH models were not sufficiently leptokurtic to represent 

the distribution of returns. In the linear regression model with conditionally normal ARCH errors, 

suppose that St and ht are estimates of the error and conditional variance. Then the standardised 
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°d I "/ "112 reSl ua s &t ht should be approximately N(O,l). However, many studies demonstrated that the 

sample kurtosis coefficient of the standardised residuals often exceeded 3. The frequent inability of 

the conditionally normal ARCH model to pass this simple diagnostic test has lead to the use of 

conditional distributions more general than the normal distribution. 

Let 1]t = it / i(2 be the standardised error, and the conditional distribution of 1], be specified as 

(3.35) 

where () is a low dimension parameter vector whose value determines the shape of the conditional 

distribution of 1](. In the conditionally normal ARCH model, () is absent and J(1]) is simply N(O,I) 

density. Bollerslev (1987) specified J(1], ()) as a conditional t distribution, where () is the degrees 

of freedom of the distribution. The conditional t distribution allows for heavier tails than the normal 

distribution and, as the degrees of freedom go to infinity, includes the normal distribution as a 

limiting case. Using the daily rate of return in the spot market for the Deutschmark and the British 

pound from March 1980 to January 1985, Bollerslev estimated GARCH (1,1) models with 

conditional t distributions and rejected the hypothesis of conditional normality. The sample kurtosis 

coefficients of the standardised residuals were very close to the kurtosis coefficients of the t 

distribution evaluated at the estimated parameters. Engle and Bollerslev (1986), Baillie and 

Bollerslev (1989) and Hsieh (1989) also found that employing a conditional t distribution helped 

account for excess kurtosis in daily exchange rates. 

Nelson (1991) employed a generalised error distribution (GED) with the EGARCH model. The 

GED encompasses distributions with tails both thicker and thinner than the normal, and includes the 

normal as a special case. For a stock price, Nelson found evidence of non-normality in the 

conditional distribution, but concluded that tails of the estimated GED were not sufficiently thick to 

account for a large number of outliers in the data. Lee and Tse (1991) suggested that the 
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conditional distribution must be not only leptokurtic but also asymmetric. They argued that for the 

rates of return that cannot be negative, such as nominal interest rates, the conditional distribution 

should be skewed to the right. Using interest rates from the Singapore Asian dollar market, Lee and 

Tse estimated their model but failed to find any evidence of skewness. 

Unfortunately, no single parametric specification of the conditional density (3.35), with parametric 

specification of the conditional variance function, appears to be suitable for all conditionally 

heteroskedastic data. Applications in which none of the above conditional distributions appear to be 

appropriate are often encountered. Hansen (1992) suggested an approach to allow more flexibility 

in the conditional distribution within a parametric framework. While conventional ARCH models 

anow the mean and variance to be time-varying, Hansen argues that skewness and kurtosis should 

also be time-varying, as well as be a function of the information set. Hansen proposed an 

autoregressive conditional density model CARCD), which generalises (3.35) to 

(3.36) 

where the parameter 0t, which determines the shape of the conditional density, is itself a function of 

the elements of the information set 'Pt_1 • To illustrate the use of an ARCD model, Hansen estimated 

a GARCH model with a conditional t distribution and time-varying degrees of freedom for the 

monthly excess holding yield on short-term US Treasury securities. To allow tail thickness of the 

conditional distribution to be determined by the information set, the degrees of freedom were 

parameterised as logistic transformation of a quadratic function of the lagged error and the 

difference between the one-month yield and the instantaneous yield. A likelihood ratio test rejected 

a conditional t distribution with constant degrees of freedom in favour of ARCD model. 
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3.2.5 Multivariate ARCH 

As economic variables are interrelated, generalisation of univariate models to the multivariate and 

simultaneous set-up is quite natural. Apart from possible gains in efficiency in parameter estimation, 

estimation of a number of financial "coefficients" such as the systematic risk (beta coefficient) and 

the hedge ratio requires sample values of covariance between relevant variables. The motivation for 

multivariate ARCH also stems from the fact that many economic variables react to the same 

information and hence have non-zero covariances conditional on information set. 

Let 5/ be the N x I vector stochastic process of innovations to the return vector time senes 

Yt = (J\" .. ·'YSt Y, which we write as 

(3.37) 

with lit being N x 1 i.i.d. vector with E(1I t ) = 0 and var(ut ) = IN' and H t being N x N covariance 

matrix given information available at t -1, where N is the number of the assets in the system. 

In somewhat general form of the multivariate linear GARCH (p,q) model, Bollerslev, Engle and 

Wooldridge (1988) assume that H
t 

is given by a linear function of the lagged cross squared errors 

and lagged values of H t : 

q P 

vech(Ht ) =Ao + L Aivech(5t-i5~_i)+ LBivech(Ht-i) 
1=1 i=1 (3.38) 

where vech (. ) denotes the operator that stacks the lower portion of matrix into a vector with 

N (N + 1) / 2 elements. This is a direct generalisation of our earlier univarite GARCH (p,q) model in 

(3.7). Representation (3.38) is called the "vech representation" of the multivariate GARCH (p,q) 

model. For N = 2 and p = q = 1, (3.38) takes the form 
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hlt ,( 0"11 [all a\3] 
2 

[bll b12 b\3] hll ,t-t 
a l2 GU-l 

vech(H(} = h l2 ,t 
-

0"12 + a 21 an a Z3 G 1,t-l G 2,(-1 + b21 b22 b23 h I2 ,t-l (3.39) -

h 22 .( 0"12 a 31 a 32 a 33 
2 b31 b32 b33 hn,t-l G 2,t-l 

The two main problems concerning the specification of H t are that it should be positive definite for 

all realisations and some exclusion restrictions should be imposed so that number of parameters to 

be estimated is not very large. The total number of the parameters in (3.38) with p = q = 1 is 

N
2
(N +1)2 /2+N(N +1)/2, which grows with the fourth power of N. For the special bivariate 

case (3.39) the number of the parameters amounts to 21. 

Engle, Granger and Kraft (1984) published the first paper on multivariate ARCH models. They 

considered a bivariate ARCH model, which was (3.39) without the lagged ht components. For that 

model, they showed necessary conditions for H f to be positive definite 

(3.40) 

Note that in (3.38) and (3.39), each hU,t depends on lagged squared residuals and past variances of 

all variables in the system. One simple assumption that could be made to reduce the number of 

parameters is to specify that a conditional variance depends only on its own lagged squared 

residuals and lagged values. The assumption amounts to take Ai and Bi to be diagonal matrices. In 

that case, conditions in (3.40) (the case without the lagged ht components) reduce to 
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(3.41) 

For N = 2 and p = q = 1 the "diagonal representation" can be expressed as 

o o 1 &~t-l 
o &1,t-~&2,t-1 

a 22 & 2,t-1 

0 

b~J 
h11,t-1 

b12 h12 ,t-1 

0 h22,t-l 
o 

For the general case with unrestricted Nand p = q = 1 the "diagonal representation" looks as 

follows: 

i,j = 1,2, ... ,N (3.42) 

This form was used by Bollerslev, Engle and Wooldridge (1988) for their analysis of returns on 

bills, bonds, stocks, and by Baillie and Myers (1991) and Bera, Garcia and Roh (1991) for the 

hedge ratio estimation in commodity markets. 25 

Bollerslev (1988b) suggested a constant correlation specification of multivariate volatility according 

to which each of the conditional variances follows a univariate GARCH process and the covariance 

between any two series is given by a constant correlation coefficient, PU' multiplying the conditional 

standard deviations of returns. 

(3.43) 

(3.44) 

:5 Note that under diagonal representation the positive definiteness of the resulting H t is still not easy to check and 

also difficult to impose at the estimation stage. 
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This model has N (N + 5) / 2 parameters. The necessary and sufficient conditions for the model to 

be well defined and H t to be positive definite is that each of the conditional variances is positive and 

that constant matrix of conditional correlations is positive definite. Many of the recent applications 

of multivariate GARCH model use this representation. However, it is quite obvious that constant 

correlation is a strong assumption. Bera et al. (1991) suggested a test for the constant correlation 

hypothesis and found that the null hypothesis of constant correlation is rejected for many financial 

data series. 26 

Baba, Engle, Kraft and Kroner (1990) suggested a parameterisation, known as "BEKK", which was 

modified by Engle and Kroner (1995). The specification is as follows. 

K K 

Ht = A~Ao + L A~k8t_18~_lAIk + LB~kHt_lEIk' (3.45) 
k=l k=l 

where Ao, Alk ,Elk are N x N parameter matrices with Ao being restricted to be upper triangular. 

Summation limit K determines the generality of the process. The BEKK guarantees positive 

definiteness of the covariance matrix H t by working with quadratic forms. The H t is a linear 

function of its own lagged value, as well as lagged value of the squared unpredictable returns, both 

of which allow for own-market and cross-market influences in the conditional variances. This 

specification is relatively flexible, and is also parsimonious in terms of the number of the parameters 

to be estimated. The total number of the parameters in this system is (5 N 2 + N) /2. For N = 2 and 

K = 1, (3.45) will have only 11 parameters compared to 21 parameters of the vech representation 

in (3.39). 

:6 See also Bera and Higgins (1998). 
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3.2.6 Estimation of the ARCH type models 

GARCH models are usually estimated by the method of maximum likelihood (11L) or quasl­

maximum likelihood (QML). In some applications, the generalised method of moments (GMM) has 

been used?7 

The log likelihood function for the standard ARCH regression model 

is given by 

I I 
1 1)_1 

= - n2Jr--Inh (0) --&-(O)h (0) 
t 2 t 2' t , 

and 

(3.46) 

where e = (~. ,r ')', with ~. and r being conditional mean and conditional variance parameters 

. I 28 respectIve y. 

Given the initial values for the parameter vector 0 and the conditional variance29
, the log-likelihood 

function can be evaluated by computing ht, t = 1, 2, ... T recursively and substituting the values in 

(3.46). The first order condition from maximisation of the log-likelihood for the tth observation 

:, See e.g. Glosten et al. (1993). 
:8 In multh'ariate setting the conditional log likelihood for each time period looks as follows: 

Lt(e) = -ln2Jr- ~ InlHtl- ~ &~(e)lnHt-I(e)&t(e). 
and 

T 

L(e) = L Lt(e), 
t=I 

where e is the vector of all parameters in the system. 
29 In most of the cases the initial value of the conditional variance is taken to be the unconditional value of the 

. 2 elo 
Process. For example, III case ofthe GARCH (1,1) process, hI = () = fl . 

1- ell - M 
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with respect to the conditional mean parameters ; is: 

(3.47) 

U· aht ~ • 
smg c; = -2 f::: aiCt-ixt_i for ARCH (q) (3.47) is equivalent to: 

(3.48) 

u· cht _ ~ • ~ aht_ f . . 
smg c; - -2f;:aiCt-iXt-i + 1:tfJf 0; for GARCH (p,q) (3.47) IS eqUlvalent to: 

:l/ . 1 (2 J (q p a'l~ J C t CtXt Ct . 1'1(_ f 
-=--+- --1 -2 ac x + --at: h 2h h L i t-i t-i LfJf oj: 

S t t ( 1=1 ;=1 '=' 
(3.49) 

The first order condition with respect to the conditional variance parameters r is: 

alt = _1_ O:t (c; -lJ, 
or 2ht or ht 

(3.50) 

where for the ARCH (q), and with 

Most of the applied work on ARCH models uses the Berndt, Hall, Hall and Hausman (1974) 

algorithm (BHHH) to maximise (3.46). In the iterative procedure, the parameters of the (i + lyh 

iteration of the BHHH algorithm are obtained by: 
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e(i+1) = e(il + (± alt alt J-1 ± alt 
t=1 ae off t=1 ae ' (3.51) 

where the derivatives are evaluated at e(i). Under regularity conditions gIVen for example in 

Crowder (1976), the value of e which maximises I, Bj\fL' is consistent, asymptotically nonnally 

distributed and efficient 

(3.52) 

The asymptotic covariance matrix of BAfL can be consistently estimated by the inverse of the 

information matrix, i.e. the negative expectation of the Hessian: 

[ 

T ) ]-1 
Var(B ) = - T-1 

"'. E a-It 
AIL ~ riLl:le' 

1=1 CULl 
(3.53) 

A proof of the consistency and asymptotic normality of the 11L-estimator in GARCH (1,1) and 

IGARCH (1,l) models is given by Lumsdaine (1992) under condition that Elln(a1b'? + P1)J<O. 

The existence of finite fourth moments of Gt is not required. 

For most applications it is very difficult to justify the conditional nonnality assumption in (3.46). 

Therefore, the log likelihood function may be misspecified. As shown by Weiss (1986) for time 

series models with ARCH errors, and by Bollerslev and Wooldridge (1992) and Gourieroux (1992) 

for GARCH process, under a correct specification of the first and the second moment consistent 

estimates of the parameters of the model can be obtained by maximising a likelihood function 

constructed under the assumption of conditional nonnality, even though the true density could be 

some other. Such estimators are called the quasi-maximum likelihood estimators (Q11LE). Under 
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regularity conditions the QML-estimator has the following asymptotic distribution: 

(3.54) 

h A E [
aIr alt ]. h . . 

were = 0 ae ae' IS t e covanance matnx of the score vector of I and 

where Eo denotes the expectation conditional on the true probability density function for the data. 

Of course, if the latter is the normal distribution, the asymptotic distributions in (3.52) and (3.54) 

will be identical. Lee and Hansen (1994) prove consistency and asymptotic normality of the QML 

estimator of the Gaussian GARCH (1,1) mode1. The standardised residuals (the disturbances scaled 

by their conditional standard deviations) need neither be normally distributed not independent over 

time. The GARCH process may be integrated a1 + /31 = 1 and even explosive a1 + /31 > 1 provided 

the conditional fourth moment of the scaled disturbances is bounded.30 In finite samples, for 

symmetric departures from conditional normality, the QML has been found close to the exact ML-

estimator in a simulation study by Bollerslev and Wooldridge (1992). For non-symmetric 

conditional true distributions, both in small and large samples the loss of efficiency of QML 

compared to exact ML can be substantia1. 31 

Another attractive way to estimate ARCH models without assuming normality is to apply the 

generalised method of moments (GMM) approach as advocated by Rich, Raymond and Butler 

(1991).32 For simplicity consider an ARCH (1) model and define the following two errors 

30 For a different set of assumptions for the consistency and asymptotic normality of the GARCH models see 
Bollerslev and Wooldridge (1992) and Lumsdaine (1992). 
31 Semi-parametric density estimation as proposed by Engle and Gonzaalez-Rivera (1991) using a linear spline with 
smoothness priors could then be an attractive alternative to QML. 
32 See also Sabau (1987), (1988). 
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(3.55) 

Then the GMM estimator is obtained from the following two moment conditions 

(3.56) 

where Zt is a set of predetermined variables. The asymptotic distribution of the GMM estimator 

follows directly from the general formula in Hansen (1982).33 

All the forms of the conditional variance, ht, we discussed above are fully parametric. Pagan and 

Hong (1991) argued that the existing parametric forms are not very convincing due to the lack of 

optimising theory in their formulation. They suggested non-parametric estimation of both the 

conditional mean, mt , and the conditional variance, ht, since misspecification in the conditional 

mean might exaggerate the variation in ht . Pagan and Hong (1991) used the kernel method and 

Fourier series approximation of Gallant (1982). These procedures estimate the first two conditional 

moments by relating them to the past values of Yt . 

(3.57) 

and 

i*t (3.58) 

where OJ. are kernel weights. For the Gaussian kernel 
It 

i*f (3.59) 

33 Additionally, for the Bayesian approach to estimation of the ARCH models see Geweke (l988a,b. 1989). 
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r 

where Kit = exp{-!iL:hs-
2
(Yi_s -Ys_t)2}, where r is the number of lags of Y chosen and h is the 

s=1 t , s 

bandwidth.
34 

The empirical applications of Pagan and Hong (1991) showed the advantages of the 

non-parametric approach. The disadvantage is that results from non-parametric analysis are not as 

easily interpretable in terms of response coefficients as those obtained from a parametric method. 

However, non-parametric methods can point out deficiencies in the existing parametric models and 

offer some guidance for modification. 35 

3.3 Empirical Analysis: Analysis of Univariate and Multivariate Volatility in 

the Transition Equity Markets 

3.3.1 Data and Descriptive Statistics 

The data used in this chapter are daily stock market index levels from four transition markets 

described in Chapter 2 of the thesis: Hungarian BUX, Polish WIG20, Czech PX50 and Slovak 

SAX. These indexes are all value-weighted, and reflect a substantial percentage of total market 

capitalisation of the considered markets, which could thus minimise the problem of autocorrelation 

in returns due to non-synchronous trading. While the series from Hungary and Poland start in June 

1992, and constitute a total of 1512 observations, Czech and Slovak samples are shorter: they start 

in April 1994 and constitute 1036 observations. For all markets the sample period ends in March 

1998. All data comes from Datastream. 

We start by testing the hypothesis that logarithm of each stock market index contains a single unit 

root. To test this we perform an Augmented Dickey Fuller (ADF) test36
. The ADF test (with 

34 For details see Pagan and Hong (1991), p. 60. 
" 

35 For example, when Pagan and Hong plotted the non-parametric ht against Yt they found a high degree of non-

linearity, which would be difficult to capture by simple parametric models. 
36 The test was first introduced by Dickey and Fuller (1979). 

70 



constant and time trend) entails estimating the following regression equation below: 

k 

~ln(pt) = a + filn(pt-l) + ct + L8i~ln(pt_J + e p 
i=l 

et ~ NID(0,u 2
) (3.60) 

where Pr is the relevant stock price index, ~ is the first-difference operator and t is a linear time 

trend. In our analysis, the ADF test will be performed with and without time trend (by deleting the 

ct term in (3.60)). 

The distribution theory supporting the ADF tests assumes that the errors e
t 

are statistically 

independent. Therefore, we determine the order of augmentation (i.e. the number of lagged 

differences k) in (3.60) by adding lagged differences of the series until the residuals of the regression 

are serially independent. 37 

Results given in tables 3. 1. A, 3.1.B and 3.1.C show the t-statistics of the ADF test and the 

MacKinnon critical values for the rejection of a unit root for the whole sample, and for two 

subsamples of our dataset. Each of the tables presents estimates first for the logarithmic levels of 

the series and then for their first differences. At 10 % critical value a unit root is found in all series 

and all subperiods examined, with exception of the Czech series in subperiod II in case of the ADF 

test with constant and no trend (although the test does not reject a unit root at 5% statistical level). 

Our results indicate that first-differencing of the series removes the non-stationary components in all 

cases (for all series and all subperiods). Therefore, we conclude that all four series included in our 

dataset are characterised by a single unit root. 

37 In our analysis the appropriate number of lagged differences is selected by adding lags until the Ljung-Box test of 

order 12 fails to reject no serial correlation at 10 per cent level ( X;2 = 18.55). 
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Table 3.l.A. Tests for a unit root (the whole sample) 

ADFstat. (In(pt)) ADFstat. (~In(pt)) 
constant k* constant + k constant k constant + k 

trend trend 
HUN 0.4944 10 -l.8043 10 -10.1250 9 -10.2057 9 
(Obs.: 1-1512) 

POL -2.2672 2 -1.4408 2 -22.2214 1 -22.3056 1 
(Obs.: 1-1512) 
CZECH -2.3942 8 -2.2431 8 -1l.3730 7 -1l.4323 7 
(Obs.: 1-1036) 
SLOV -0.6085 3 -0.5163 3 -38.8581 1 -38.9171 1 
(Obs.: 1-1036) 

1 % Crit.Vai. -3.43 -3.96 -3.43 -3.96 
5% Crit.Val. -2.86 -3.41 -2.86 -3.41 
10%Crit.Vai. -2.57 -3.12 -2.57 -3.12 

* k is the chosen lag length. 

Table 3.l.B. Tests for a unit root (subperiod I) 

ADFstat. (In(pt» ADFstat. (~In(pt» 

constant k* constant + k constant k constant + k 

trend trend 

HUN -0.9272 2 -0.9816 2 -15.4073 1 -15.4029 1 
(Obs.: 1-756) 
POL -1.5261 1 0.2245 1 -22.3976 0 -22.5217 0 
(Obs.: 1-756) 
CZECH -1.5135 4 0.0077 4 -10.5206 3 -10.8381 3 
(Obs.: 1-518) 
SLOV -0.9197 1 -0.6122 1 -28.2471 0 -28.2795 0 
(Obs.: 1-518) 

1 % Crit.Vai. -3.43 -3.96 -3.43 -3.96 

5% Crit.Vai. -2.86 -3.41 -2.86 -3.41 

10%Crit.Vai. -2.57 -3.12 -2.57 -3.12 

* k is the chosen lag length. 

Table 3.l.C. Tests for a unit root (subperiod II) 

ADFstat. (In(pt)) AD F stat. (~ln(pt» 

constant k constant + k constant k constant + k 

trend trend 

HUN -0.8007 7 -1.7376 7 -10.5736 6 -10.5797 6 

(Obs.: 757-1512) 
POL -2.3593 1 -2.5485 1 -22.9535 0 -23.0051 0 

(Obs.: 757-1512) 
CZECH -2.6044 1 -2.4431 2 -16.3314 0 -16.3486 0 

(Obs.: 519-1036) 

SLOV -l.2688 1 -1.0094 1 -25.5729 0 -25.7164 0 

(Obs.: 519-1036) 

1 % Crit.Val. -3.43 -3.96 -3.43 -3.96 

5% Crit.Vai. -2.86 -3.41 -2.86 -3.41 

10% Crit.Vai. -2.57 -3.12 -2.57 -3.12 

* k is the chosen lag length. 
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Daily returns on national equity indexes are computed as logarithmic price relatives: 

"-it = In( ~t / ~t-l)' j = 1,2,3,4. (3.61) 

Assuming that investors know the past information set containing the realised values of all relevant 

variables up to time t - 1, when making their investment decision at time t - 1, we consider the 

conditional expected return of rt and the conditional variance of rt to be the relevant expected 

return and volatility to the investors. Since our focus is on the conditional variance rather than the , 

conditional mean, we concentrate on the unpredictable part of stock returns, as obtained through 

autoregressive regression which removes the predictable part of return series. The daily return r
t 

is 

regressed on a constant and the first p lags of rt to obtain the residual B t, which is our 

unpredictable stock return data. 38 

p 

r t = r 0 + L r irt-i + & t 
1=1 

(3.62) 

The necessary amount of lags required for the non-autocorrelated residual series B t equals 10 for 

the Hungarian and Slovak series, and 6 for the Polish and Czech series. In the case of the Hungarian 

market, before the autocorrelation adjustment procedure in (3.62) we eliminate outliers present in 

the last 100 observations of the series. 39 

Table 3.2 reports summary statistics for the unpredictable stock returns. The evidence for all four 

series indicates significantly fatter tails than does the stationary normal distribution. The excess 

kurtosis statistic ranges in value from 3.4965 for the Hungarian to 9.7249 for the Slovak returns. 

The estimates of the coefficients of skewness reveal that the Czech return data has asymmetric 

distributions skewed to the left. For the rest of the series the skewness coefficients are insignificant. 

The examination of the autocorrelation structure for the levels does not indicate any significant 

38 In the rest of the text series &t will be referred to as unpredictable returns. 

39 For the graphs of the nominal and unpredictable return series see Figures 3.1-3"+ at the end of this chapter. 
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serial correlation left in the series after autocorrelation adjustment procedure in (3.62). However, 

the application of the Ljung-Box statistic in Table 3.2 to each series of squared residuals strongly 

suggests the presence of time-varying volatility. This is the so-called stylised fact of volatility 

clustering in return series. Its consequence is leptokurtosis, which we have found above. 40 

Table 3.2 Statistical properties of unpredictable return series 

HUN POL CZECH SLOV 
Numb. of observ. 1512 1512 1036 1036 
Skewness -0.02621 -0.0270 -0.5920 -0.03958 
Excess Kurtosis 3.49652 4.0545 5.3798 9.72490 
Ljung-Box( 12) 3.6778 6.4327 11.3422 9.3826 
for the levels 
p(l) -0.00147 0.00024 -0.01204 -0.00373 
p(2) -0.00200 0.00103 0.01447 0.00037 
p(3) -0.00563 0.00028 -0.00172 -0.00018 
p(4) -0.00775 -0.00039 -0.04775 -0.00657 

p(5) -0.00134 -0.00327 0.04911 0.01179 

p(6) -0.00417 -0.01233 0.00275 0.00404 

p(7) -0.00055 0.02664 -0.01635 0.01248 

p(8) 0.00274 0.04066 0.00385 0.03998 

p(9) -0.00470 0.02175 -0.00622 -0.02181 

p(lO) -0.01663 0.02663 0.01229 0.02749 

p(ll) 0.04467 -0.02351 -0.02346 0.04779 

p(l2) 0.00304 0.00151 -0.01090 -0.05967 

Bartlett st. error 0.02572 0.02572 0.03107 0.03107 

Ljung-Box(12) 226.0949 746.7081 219.0603 75.7675 

for the squares .. 
Note: The upper and lower I percentile points in the distribution of the ske",ness statIstIcs are .058 and -.058, 
respectively. The upper and lower 1 percentile points in the distribution of the excess kurtosis are .13 and -.11, 

respectively. The Bartlett standard error for the autocorrelation equals 1 / .IN. The upper 1 and 5 percentile points 

in the r distribution for the Ljung-Box(12) statistic are 26.22 and 2l.03, respectively. 

4(1 Bollerslev et a1. (1994) show that a series where the variance is not constant but time dependent generates 

leptokurtosis. 
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3.3.2 Univariate analysis: model specifications 

In the previous section we have established the existence of significant variations from normality 

and volatility clustering in our data series. We need specifications general enough to capture these 

characteristics. As it was shown in section 3.2 the Autoregressive Conditional Heteroskedastic 

(ARCH) class of models has proven to be particularly suited for modelling the behaviour of 

financial time series. These models are capable of capturing the most common empirical 

observations in daily return data, such as leptokurtosis and volatility clustering. 

We proceed with presenting the family of univariate ARCH models, which will be employed for 

modelling the volatility in the transition stock markets. The detailed description of most of the 

models employed here is given in sections 3.2.1 and 3.2.3 of this chapter. 

The specification of conditional variance in a GARCH (p,q) model is given in (3.63) below: 

Modell: 

p q 

ht = ao + 'Lai&~-i + 'LfJiht-l 

i=1 i=1 (3.63) 

p q 

with lit being iid with E(ut ) = ° and var(ut ) = 1, ao > O,ai ~ O,fJi ~ 0, and 'Lai + 'LfJi < 1. In 
i=1 i=1 

practice, numerous studies have demonstrated that GARCH (1,1) specification (which will be 

employed in our analysis) is most appropriate. The coefficients of the model are easily interpreted, 

with the estimate of a
1 

showing the impact of current news on the conditional variance process and 

the estimate of fJl the persistence of volatility to a shock or, alternatively, the impact of 'old' news 

on volatility. 

An alternative specification in (3.64), proposed by Engle and Bollerslev (1986) is the Nonlinear 

GARCH (NGARCH) model, which implies a reduced response to extreme news if a2 < 2. Model I 
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is nested in Model 2 for a
2 

= 2. 

Model 2: 
(3.64) 

In the models above positive and negative past values have a symmetric effect on the conditional 

variance. As it was mentioned in section 3.2.3, many financial series are asymmetric, with negative 

equity returns being followed by larger increases in volatility than equally large positive returns. 

Nelson (1991) proposed the exponential GARCH (EGARCH) model41, which allows for 

asymmetry. 

Model 3: (3.65) 

This specification lifts the nonnegativity constraint on the parameters of the model by using logs. 

The parameter a2 can generate the leverage effect, as, in contrast to the simple GARCH, the sign of 

yesterday'S shock enters the model. 

A frequently used alternative specification for the conditional volatility process is the model 

proposed by Glosten, Jarannathan and Runkle (1993) (GJR) , which extends the simple GARCH 

model to allow for asymmetric effects by including an indicative dummy as shown in (3.66): 

Model-l: (3.66) 

The indicative dummy St--t takes the value of 1 if the value of the &t-1 < 0 and 0 otherwise. Note, 

that while the impact of a piece of positive news is estimated by at alone, the impact of negative 

news is given by the sum of a1 and a2 . 

Other specifications of GARCH type models, which capture the asymmetric response of volatility to 

-11 For a detailed description of EGARCH model see section 3.2.3. Here we use slightly different notation from the 
one presented in 3.2.3 in order to make the parameters of this model easily comparable to the parameters of other 
ARCH models employed for empirical analysis of the data from transition markets. 
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news, are presented below: 

The Asymmetric GARCH model (AGARCH): 

Model 5: (3.67) 

The Nonlinear Asymmetric GARCH (NAGARCH): 

Model 6: ht = ao + /31ht-l + a1 (6't-l +a2 ~ ht- 1 )2 (3.68) 

The VGARCH specification: 

Model 7: (3.69) 

Engle and Ng (1993) suggest an interesting metric by which to analyse the effect of the news on 

conditional volatility. Holding constant the information dated t-2 and earlier, one can examine the 

implied relation between 6't-l and ht . Engle and Ng call the curve which characterises this relation, 

with all lagged conditional variances evaluated at the level of the unconditional variance of the stock 

return, the news impact curve. 

The qualitative differences between the models presented above can be compared by contrasting 

their news impact curves. The standard GARCH model has a news impact curve which is symmetric 

and centred at 6'1-1 = o. This implies that positive and negative return shocks of the same magnitude 

produce the same amount of volatility. Therefore, if a negative return shock causes more volatility 

than a positive return shock, the GARCH model underpredicts the amount of volatility following 

the bad news and overpredicts the amount of volatility following good news. The standard GARCH 

implies that larger return shocks forecast more volatility at a rate proportional to the square of the 

size of the return shock. Therefore, if large return shocks cause more volatility than a quadratic 

function allows, then the standard GARCH model underpredicts volatility after a large return shock 

and overpredicts volatility after a small return shock. The Nonlinear GARCH (NGARCH) model in 
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(3.64) is more flexible than the standard GARCH, because the parabola representing the news 

impact curve of this model is not restricted to be quadratic. 

The models 3.65 - 3.69 above add more flexibility to the standard GARCH specification by 

allowing several types of asymmetry in the impact of news on volatility. The news impact curve of 

EGARCH and GJR models has a minimum at &t-l =0, but has asymmetric positive and negative 

sides. In the conditional variance function AGARCH model, the introduction of the parameter a 1 

shifts the parabola horizontally so that the minimum occurs at &t-l = -a
2 

. This produces asymmetry 

because if, for example, a 2 < 0, then ht = h( -&t-I) exceeds ht = h(&t_l) for &1-1 > 0. The shape of 

the news impact curves of NAGARCH and VGARCH models is symmetric and has a minimum at 

&t-l = ( -a2 )fiC:. The difference between them is that the two sides of the VGARCH curve are 

steeper than that of the NAGARCH. In sum, the news impact curves of the asymmetric models 

defined above capture the leverage effect by allowing either the slope of the two sides of the curve 

to differ or the center of the curve to locate at the point where &t-l is positive. 

As it was discussed in the theoretical part 3.2 of this chapter, the GARCH models imply that the 

conditional distribution of returns is normal, i. e. standardised residuals of these models should be 

normal. Unfortunately, in practice there is often excess kurtosis in the standardised residuals of 

GARCH models. To handle this problem, Bollerslev and Wooldridge (1992) studied quasi­

maximum likelihood estimation of GARCH models. They showed that under a correct specification 

of the first and the second moments consistent estimates of the parameters of the model can be 

obtained by maximising a likelihood function constructed under the assumption of conditional 

normality, even though the true density could be some other. Consistent standard errors for 

parameter estimates can then be obtained using a robust covariance matrix estimator. All inferences 

in the following sections of this chapter will be based on robust standard errors from quasi-
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maximum likelihood estimation procedure, described in the part 3.2.6 of the thesis. 

After estimation of the models presented above we perform a range of diagnostic tests to establish 

goodness of fit of the employed specifications. We examine whether the standardised residuals of 

the estimated models display excess skewness and kurtosis. Properly specified GARCH models 

should be able to significantly reduce the excess skewness and kurtosis present in nominal returns. 

Second, we examine whether the squared standardised residuals of the models are independent and 

identically distributed. We also report the Schwartz Information Criterion (SIC) for each 

specification used, which allows a degrees of freedom free comparison of the models performance. 

SIC = /- 0.5 * p* In(1), 

where / is the estimated log-likelihood, p is the number of estimated parameters, and T is the 

number of observations. However, the question of nestedness of the estimated models makes their 

comparison using SIC criterion difficult. 

In a similar vein, given that the parameterisation of the estimated models differs so much, we 

compare the amount of persistence in the variance predicted by each of these models by regressing 

h
t 

on a constant and h
t
-

1
, and report slope coefficients of the regressions.'Q 

3.3.3. Empirical results 

Table 3.3 reports parameter estimates of the alternative volatility models defined in the previous 

section. The coefficient of lagged conditional variance, /31' is significantly positive and less than one 

for all markets and all models estimated. The magnitude of the coefficient is high in all the cases, 

indicating a long memory (smoothing) in the variance. The coefficient of the lagged squared returns, 

a is positive for all stocks and statistically significant for almost all countries and specifications, 
l' 

-1: Another important diagnostic test for GARCH models is out-of-sample forecasting perfomlance ofyolatility. 
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with exception of NGARCH for Hungary and Slovakia, and GARCH, NGARCH and GRJ for 

Czech Republic. Therefore, we conclude that strong GARCH effects are apparent for all four 

markets examined, probably with exception of Czech Republic where the coefficient of the lagged 

squared returns is not significant in three out of seven specifications of conditional volatility. 

The results of the estimation of the Nonlinear ARCH (NGARCH) model, which implies a reduced 

response of volatility to extreme news if a1 < 2 as compared to simple GARCH specification, show 

that the parameter a1 is close to 2 for all four series. To check whether the simple GARCH 

specification is nested within the Nonlinear ARCH specification, we perform t-test with null 

hypothesis a1 = 2 for each market examined. Table 3.3 reports the results of the tests. The null 

hypothesis is never rejected. We conclude that simple GARCH is preferred to Nonlinear ARCH as 

it is a more parsimonious specification, which leads to better determined parameters of the model. 

Moving to examination of asymmetric impact of shocks on volatility, we find rather weak evidence 

of asymmetries in the markets. The so-called leverage effects are captured by EGARCH for the 

Czech and AGARCH for the Slovak returns. In the case of the Czech series the last specification 

has the highest log-likelihood and Schwartz criterion (SIC) among alternative models as well. 

Although the SICs for the standard GARCH specification in Table 3.3 are the highest for the 

Hungarian, Polish and Slovak markets among the all estimated models, and the SIC for the 

EGARCH model is just slightly higher in the case of the Czech market, it is not obvious that 

GARCH specification is the best model chosen on the basis of the SIC criterion. As it was 

mentioned in the previous section of the chapter, the problem of nonnestedness of the specified 

models makes their comparison using SIC difficult. 43 

To compare the amount of persistence in variance from one period to the next predicted by 

43 The attempt to set up the estimated volatility models so that they are nested could be an interesting task for further 

research. 
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alternative volatility models, the estimates of the parameters for each specification in Table 3.3 are 

followed by first-order autoregressive coefficient for conditional variance, ht . To summarise the 

results, for the Hungarian, Czech and Slovak markets the GARCH (1,1) specification shows the 

highest persistence in variance. In the case of the Polish series the autoregressive coefficient for 

conditional variance of the GJR specification is slightly higher than the one for the GARCH model. 

The persistence in the variance does not follow common trend for the remaining models, and varies 

from market to markeCl
-1-

The diagnostics in Table 3.4. indicate that though the estimated models reduce coefficients of 

excess kurtosis present in nominal return series, we still reveal significant nonnormality in the 

distribution of standardised residuals of the considered specifications for all the series examined.45 

This suggests that, although the GARCH parameterisations we employed can accommodate some 

of the kurtosis in the data, the use of a fat-tailed conditional distribution might be more 

• 46 appropnate. 

The Ljung-Box test statistics and the corresponding autocorrelation coefficients in Tables 3.4.1 and 

3.4.2 respectively reveal that all the specifications of conditional volatility used in our study reduce 

the intertemporal dependence in the squared standardised residuals for the Hungarian, Czech and 

Slovak series to insignificance at the 5 % level, with exception of the NGARCH for the Hungarian 

series, where we find a significant p(l) coefficient (see Table 3.4.A.2). Diagnostics for the Polish 

series in Table 3.4.B.2 indicate that volatility clustering present in the returns, while being reduced 

considerably (see Table 3.2 for comparison), is not removed completely by any of the alternative 

specifications discussed here. 

-l-1 The question why the simplest model, GARCH (1,1), produces the highest persistence in conditional yolatility 
compared to other more elaborate models used in our analysis is another interesting issue to explore further. 
45 Such evidence against normality warrants the use of QML testing procedures. 
46 See section 3.2.4 for a discussion on this topic. 
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Table 3.3 Results of the estimation of univariate models of volatility 

A. Hungary 

ao a l /31 a2 AR(1) on 
Conditional 

variance 
GARCH 6.11e-05 0.1292 0.8286 0.9285 -

(2.7020) (3.6971) 09.0786) (58.9964) 
NGARCH -1.1·k-0-t. 0.0011 0.8065 l.6604* 0.6646 

( -0.0590) (0.7161) (15.0542) (2.0045) (28.1145) 
EGARCH -0.6041 0.2725 0.9314 -0.02170 0.9035 

(-2.0822) (3.2870) (28.5008) (-0.2261) (55.8547) 
GJR 6.0ge-06 0.1396 0.8345 -0.0370 0.4419 

(2.4974) (4.2903) (17.6583) ( -1.1600) (15.9336) 
AGARCH 5.94e-06 0.1315 0.8283 -4. 12e-04 0.3288 

(2.4123) (3.7595) (20.1463) (-0.3350) (10.6678) 
NAGARCH 6. 16e-05 0.1274 0.8293 0'(B03 0.1534 

(2.4673) (3.5523) (18.2188) (0.1645) (3.8699) 

VGARCH -3. 17e-07 1.44e-05 0.8870 0.0153 0.8871 
(-0.2296) (5.1193) (43.2559) (0.1272) (59.4915) 

Note: Bollerslev and WooldrIdge (1992) quasl-maxnllum hkelihood t-values In brackets. 

*Ho: 0,=2 t-test=0.4141 

B. Poland 

ao al /31 a2 AR(1) on 
Conditional 

variance 

GARCH 4. lle-05 0.2046 0.7837 0.9320 
-

(2.6294) (4.9215) (19.0745) (50.5357) 

NGARCH 4.34e-05 0.1768 0.7852 l.9548* 0.7369 
(3.0364) (l.9804) (22.6771) 0l.7166) (2l.2596) 

EGARCH -0.3706 0.9490 0.3761 0.0048 0.1312 
(-3.3981) (5.6832) (64.8704) (0.0690) (3.8141) 

GJR 8.75e-06 0.2067 0.7837 -0.0000 0.9463 

(2.6793) (5.7058) (20.5781) (-0.0901) (55.2629) 

AGARCH 4.88e-06 0.2050 0.7833 5.63e-05 0.5134 

(2.6693) (4.5787) (18.1093) (-0.1721) (10.1784) 

NAGARCH 5.32e-05 0.2065 0.7817 -0.0399 0.8141 

(2.3108) (4.3250) (16.7114) ( -0.3410) (2l.7034) 

VGARCH -.. k97e-07 3. 18e-05 0.9104 0.0000 0.0599 

(-5.5061) (5.8945) (65.0870) (0.1090) (3.4056) 
Note: Bollerslev and Wooldridge (1992) quasl-maxillmm hkehhood t-values In brackets. 

* Ho: 0, = 2 t - test = 0.2710 
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L SIC 

602l.9209 5963.351 

6014.0001 595l.770 

6017.2387 5955.008 

6014.3586 5952.128 

6014.0011 595l.77l 

6014.4402 5952.210 

6016.2312 5954.001 

L SIC 

5119.1533 5082.571 

5119.2028 5078.946 

511l.7340 507l.493 

5119.1638 5078.923 

5119.1845 5078.943 

5119.2892 5079.048 

5096.7606 5056.521 



C. Czech Republic 

ao a l /31 a1 AR(1) on L SIC 
Conditional 

variance 
GARCH 7.9ge-07 0.1459 0.7884 0.9320 4476.1276 4441.446 -

(0.8233) (l.2370) (4.2309) (50.5357) 
NGARCH 4.93e-07 0.0964 0.7890 l.8986* 0.5656 4476.2865 4438.137 

(0.5651) (0.8198) (2.9118) (7.8230) (1l.3045) 
EGARCH -0.1125 0.1472 0.9642 0.2566 0.2452 4479.9891 444l.849 

(-1.4115) (3.8155) (57.7268) (2.0949) (5.6562) 
GJR 8.86c-05 0.1014 0.8150 0.0479 0.3040 4476.8928 4438.743 

0.1870) (1.3957) (7.7236) (1.1670) (7.1942) 
AGARCH 4.81e-05 0.1193 0.8227 -0.0000 0.2388 4477.9993 4439.849 

(1.2229) (2.1665) (9.5543) (-1.3473) (4.6545) 
NAGARCH 5.76e-06 0.1074 0.8322 -0.3072 0.8154 4478.5453 4440.395 

(1.4263) (2.1994) (12.1952) (-IAI42) (18.0413) 
VGARCH 3.5ge-07 4.33e-05 0.9179 -0.2400 0.0971 4459.9619 4421.812 

(0.5580) (3.1163) (30.4962) (-1.2005) (3.3304) 
Note: Bollerslev and Wooldndge (1992) quaSI-maxImum lIkelIhood t-values ill brackets. 

* Ho: G, = 2 t - test = 0.4225 

D. Slovakia 

ao a1 /31 a2 
AR(1) on L SIC 

Conditional 
variance 

GARCH 8.57c-06 0.1655 0.7014 0.8270 4018.5251 3967.277 
-

(1.98936) (2.6036) (3.7997) (47.2620) 

NGARCH 8.75e-05 0.0336 0.6592 1.5891* 0.4129 4020.0268 3965.118 

(1.9666) (0.7025) (4.1283) (4.1202) (14.8306) 

EGARCH -l.9140 0.2882 0.8020 -0.0117 0.1623 4015.9584 3961.050 

( -0.9517) (1.86024) (3.8776) (-0.0516) (2.1830) 

GJR 9. 16e-06 0.1892 0.6838 -0.0286 0.4378 4018.6775 3963.769 

0.0923) (2.10522) (3.2392) (-0.1732) (21.6537) 

AGARCH 4.08e-06 0.1968 0.8306 -0.2418 0.4058 4019.5263 3964.617 

(1.0449) (2.3547) (10.5317) ( -2.0205) (8.4653) 

NAGARCH 4.20e-06 0.0860 0.7271 -0.2356 0.3922 4019.2122 3964.303 

(0.6125) (2.4162) (9.2253) (-1.4985) (8.4326) 

VGARCH 7.71e-06 9. 18e-06 0.7202 0.0817 0.1430 4012.0474 3957.139 

(1.3441) (1.61762) (4.6322) (0.3225) (3.6199) 

Note: Bollerslev and Wooldridge (1992) quasi-maximum likelihood t-values 111 brackets. 

* Ho: G
2 

= 2 t - test = 1.0653 
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Table 3.4 Properties of standardised residuals of the univariate models of volatility 

A. Hungary 

A.I Skewness and excess kurtosis 

GARCH NGARCH EGARCH GJR AGARCH NAGARCH 

Skewness 0.0568 0.0483 0.0580 0.0319 0.0701 0.0491 

Excess 2.8935 2.1002 2.6381 2.9519 2.8733 2.9437 
Kurtosis 

VGARCH 

0.0345 

2.6317 

~ .. Note. lhe upper and lower 1 percentlle pomts m the dlstnbutlOn of the skewness statistics are .058 and -.058, respectlvely. TIle 
upper and lower 1 percentile points in the distribution of the excess k.llrtosis are .13 and -.11, respectively. 

A.2 Autocorrelation in the squared standardised residuals 

GARCH NGARCH EGARCH GJR AGARCH NAGARCH VGARCH 

p(l) 0.0399 0.0569* 0.0502 0.0431 0.0363 0.0378 0.0247 
p(2) -0.0238 -0.0115 -0.0222 -0.0227 -0.0240 -0.0238 -0.0245 

p(3) 0.0104 0.0234 0.0133 0.0138 0.0083 0.0104 0.0118 

p(4) -0.0244 -0.0190 -0.0237 -0.0224 -0.0269 -0.0255 -0.0245 

peS) -0.0369 -0.0413 -0.0436 -0.0380 -0.0366 -0.0370 -0.0312 

p(6) -0.0074 0.0001 -0.0061 -0.0132 -0.0058 -0.0080 0.0032 

p(7) -0.0043 0.0012 -0.0007 -0.0051 -0.0042 -0.0038 0.0003 

p(8) 0.0036 0.0128 0.0050 -0.0002 0.0050 0.0031 0.0092 

p(9) -0.0062 0.0086 -0.0039 -0.0094 -0.0048 -0.0069 0.0138 

p(lO) 0.02276 0.0362 0.0240 0.0215 0.0236 0.0224 0.0342 

p(ll) -0.0210 -0.0321 -0.0265 -0.0230 -0.0201 -0.0212 -0.0146 

p(l2) -0.0038 0.0066 -0.0025 -0.0048 -0.0031 -0.0038 0.0073 

Ljung- 8.0252 12.9736 10.5745 8.7610 7.6847 7.8686 7.0064 
Box(l2) 

Note: The Bartlett standard error for the autocorrelation equals 1/ ..fN = 0.0257. The upper 1 and 5 percentile points in 

the X2 distribution for the Ljung-Box(l2) statistic are 26.22 and 21.03, respectively. 

* denotes statistical significance at the 5 % levels. 
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B. Poland 

B.I Skewness and excess kurtosis 

GARCH NGARCH EGARCH GJR AGARCH NAGARCH VGARCH 

Skewness 0.0064 0.0113 0.0693 0.0025 0.0134 0.0178 0.0093 

Excess 2.3697 2.3596 2.4381 2.3780 2.3499 2.3351 1.7954 
Kurtosis 

, .. 
Note: 1 he upper and lower 1 percenttle pomts 111 the dlstnbutlOn of the skewness statlstlcs are .058 and -.058, respectively. The 
upper and lower 1 percentile points in the distribution of the excess kurtosis are .13 and -.11, respectively. 

B.2 Autocorrelation in the squared standardised residuals 

GARCH NGARCH EGARCH GJR AGARCH NAGARCH VGARCH 

p(l) -0.0223 -0.0256 -0.0272 -0.0264 -0.0232 -0.0243 0.0164 

p(2) 0.1018** 0.1044** 0.1159** 0.1010** 0.1022** 0.1019** 0.1369** 

p(3) 0.0477 0.0496 0.0437 0.0476 0.0398 0.0378 0.0953** 

p(4) -0.0525* -0.0532* -0.0593* -0.0524* -0.0528* -0.0531 * -0.0396 

p(5) 0.0489 0.0458 0.0431 0.0442 0.0463 0.0496 0.1171 

p(6) -0.0350 -0.0355 -0.0369 -0.0398 -0.0456 -0.0383 -0.0325 

p(7) -0.0031 -0.0043 -0.0040 -0.0034 -0.0023 -0.0067 0.0320 

p(8) -0.0081 -0.0070 -0.0042 -0.0078 -0.0097 -0.0085 0.0546* 

p(9) -0.0266 -0.0298 -0.0521 -0.0302 -0.0391 -0.0374 -0.0151 

p(10) 0.0128 0.0178 0.0300 0.0155 0.0141 0.0162 0.0664** 

p(ll) -0.0494 -0.0483 -0.0493 -0.0492 -0.0458 -0.0506* -0.0329 

p(12) 0.0308 0.0321 0.0337 0.0315 0.0322 0.0368 0.0641 ** 

LjW1g- 36.9106 37.7278 45.6000 36.5360 37.2889 37.7151 89.0350 

Box(l2) 

Note: The Bartlett standard error for the autocorrelation equals 1/ .Jli = 0.0257. The upper 1 and 5 percentile points in 

the r distribution for the Ljung-Box(12) statistic are 26.22 and 21.03, respectively. 

* and ** denote statistical significance at the 5 % and I % levels, respectively. 
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C. Czech Republic 

C.I Skewness and excess kurtosis 

GARCH NGARCH EGARCH GJR AGARCH NAGARCH VGARCH 

Skewness -0.4816 -0.4654 -0.3452 -0.4926 -0.4990 -0.4930 -0.5185 

Excess 5.5811 5.6249 5.4807 5.6723 5.7403 5.7098 5.1585 
Kurtosis 

.. 
Note. The upper and lower 1 percentIle pomts m the dlstnbutlOl1 of the skewness statlsttcs are .058 and -.058, respectlvely. The 
upper and lower 1 percentile points in the distribution of the excess kurtosis are .13 and -.11, respectively. 

C.2 Autocorrelation in the squared standardised residuals 

GARCH NGARCH EGARCH GJR AGARCH NAGARCH VGARCH 

p(l) 0.0059 0.0096 0.0589 0.0171 0.0141 0.0195 -0.0185 

p(2) -0.0190 -0.0165 0.0193 -0.0072 -0.0086 -0.0056 -0.0344 

p(3) -0.0124 -0.0112 -0.0197 -0.0164 -0.0164 -0.0161 -0.0275 

p(4) 0.0031 -0.0011 0.0055 -0.0014 -0.0011 -0.0005 -0.0100 

p(5) 0.0058 0.0055 -0.0085 -0.0023 0.0012 -0.0044 -0.0002 

p(6) -0.0227 -0.0175 -0.0291 -0.0205 -0.0211 -0.0233 -0.0254 

p(7) -0.0228 -0.0211 -0.0268 -0.0257 -0.0249 -0.0263 -0.0291 

p(8) 0.0052 0.0164 0.0299 -0.0046 -0.0037 -0.0047 0.0014 

p(9) -0.0073 -0.0026 -0.0169 -0.0136 -0.0136 -0.0134 -0.0197 

p(lO) 0.0195 0.0224 0.0161 0.0040 0.0072 0.0014 0.0126 

p(ll) -0.0094 -0.0110 -0.0169 -0.0161 -0.0156 -0.0158 -0.0172 

p(l2) -0.0257 -0.0247 -0.0350 -0.0296 -0.0295 -0.0291 -0.0226 

Ljung- 2.9630 2.9018 9.2347 3.2071 3.1181 3.3715 5.4755 

Box(l2) 

Note: The Bartlett standard error for the autocorrelation equals l/..fii = 0.0257. The upper 1 and 5 percentile points in 

the .t distribution for the Ljung-Box( 12) statistic are 26.22 and 21.03, respectively. 
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D. Slovakia 

D.I Skewness and excess kurtosis 

GARCH NGARCH EGARCH GJR AGARCH NAGARCH VGARCH 

Skewness -0.0771 -0.0745 -0.0549 -0.0691 -0.0750 -0.0661 -0.0643 

Excess 6.1860 6.4105 6.3424 6.3205 6.3120 6.4775 6.1486 
Kurtosis 

, .. 
Note. TIle upper and lower 1 percentIle pomts m the dlstnbutlOn of the skewness statlstlcs are .058 and -.058, respectively. The 
upper and lower 1 percentile points in the distribution of the excess kurtosis are .13 and -.11, respectively. 

D.2 Autocorrelation in the squared standardised residuals 

GARCH NGARCH EGARCH GJR AGARCH NAGARCH VGARCH 
p(1) 0.0297 0.0367 0.0410 0.0327 0.0451 0.0480 0.0365 
p(2) 0.0428 0.0528 0.0491 0.0526 0.0534 0.0599 0.0587 
p(3) -0.0150 -0.0137 -0.0107 -0.0134 -0.0117 -0.0 III -0.0082 

p(4) -0.0044 -0.0037 0.0008 -0.0046 -0.0025 -0.0031 0.0044 

p(5) 0.0121 0.0151 0.0172 0.0158 0.0052 0.0049 0.0270 

p(6) -0.0173 -0.0153 -0.0143 -0.0150 -0.0234 -0.0235 -0.0074 

p(7) 0.0215 0.0301 0.0232 0.0304 0.0189 0.0236 0.0352 

p(8) 0.0227 0.0316 0.0297 0.0272 0.0130 0.0143 0.0312 

p(9) 0.0041 0.0086 0.0072 0.0071 -0.0004 0.0007 0.0138 

p(lO) 0.0286 0.0318 0.0339 0.0306 0.0148 0.0136 0.0405 

p(ll) -0.0151 -0.0142 -0.0144 -0.0146 -0.0172 -0.0173 -0.0129 

p(l2) -0.0253 -0.0233 -0.0242 -0.0241 -0.0270 -0.0265 -0.0217 

Ljung- 6.2782 8.8059 8.3827 8.2157 7.6066 8.8141 10.6651 
Box(l2) 

Note: The Bartlett standard error for the autocorrelation equals 1/ IN = 0.0257. The upper 1 and 5 percentile points in 

the r distribution for the Ljung-Box(12) statistic are 26.22 and 21.03, respectively. 
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3.3.4 Multivariate Analysis: Model Specifications 

In the previous sections we concentrated on the properties of univariate data and statistical models 

that were useful descriptions of such data. However, financial analysis is also largely concerned with 

the examination of the multivariate characteristics of data. It is likely that the conditional variance of 

the return on an asset is related not only to the past history of its own return but also to those on 

other assets. In an international context, the conditional variance of the return on the national index 

would be related to the returns on other national indexes. As it was discussed in section 3.2.5 of this 

chapter a number of authors have proposed using multivariate GARCH models to represent a set of 

time series whose variances and covariances change over time. 

The purpose of this section is to consider the interdependence between conditional second moments 

of four return series from the transition markets of Central Europe. The returns will be modelled 

using two alternative specifications of the multivariate GARCH type framework, described in detail 

in section 3.2.5 of this chapter. Note that in multivariate setting all four series considered in our 

study start in April 1994 and end in March 1998, constituting a total of 1036 daily observations. 

The first multivariate model we employ in this section is the constant correlation specification of 

volatility suggested in Bollerslev (1988). In this model each of our four unpredictable return series 

follows a univariate GARCH (1,1) process and the covariance between any two series is given by a 

constant correlation coefficient, Pi.f' multiplying the conditional standard deviations of returns. 

h.·t = a·o + a·J&~t J + R·Jh.·t J 11 I I I - f-'l 11 - , 

(3.70) 
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Next, to relax the strong constant correlation assumption, as well as to allow for cross effects in the 

variance equations, we estimate the BEKK multivariate GARCH specification by Engle and Kroner 

(1995). As discussed in the section 3.2.5, this model provides cross effects in the variance equations 

parsimoniously, and also guarantees positive semi-definiteness by working with quadratic forms. 

K K 

HI = A~Ao + L A~kCt_lC~_lA1k + L B;kH/-lBlk' (3.71 ) 
k=l k=l 

All inferences in the following section, presenting empirical results from estimation of the 

multivariate volatility models, are based on robust standard errors from quasi-maximum likelihood 

estimation procedure described in section 3.2.6 of this chapter. 

3.3.5 Empirical Results 

Constant correlation specification 

Table 3.5 reports the Ljung-Box test statistics for twelfth-order serial correlation in the squared 

unpredictable return series and their cross-products, Citcjt . We detect significant serial correlation in 

all the elements of the table. 

Table 3.5 Autocorrelation in the cross-products of unpredictable returns47 

HUN POL CZECH SLOV 
HUN 126.2686 
POL 47.8289 437.2205 

CZECH 32.5557 72.1148 219.0603 
SLOV 28.7669 81.4461 58.6678 75.7675 

.. 
Note: The values in the table are the LJllllg-Box(l2) statIstIcs for the autocorrelatIon ill the cross-products of the 

unpredictable return series. The upper I and 5 percentile points in the .t distribution for the Ljoog-Box(l2) statistic are 

26.22 and 21.03, respectively. 

47 As indicated above. in the multivariate setting all four return series constitute 1036 observations. As a result. the 
Hungarian and Polish series used in this section are shorter than those employed in the univariate section. 
Consequently, the Ljung-Box statistics for these series vary from those reported in Table 3.2. 

89 



The quasi maximum likelihood estimates of the model in (3.70) are given in Table 3.6. All the 

parameters in the time-varying conditional variances are individually significant at the usual 5 per 

cent level, with the exception of an insignificant coefficient of the lagged squared return for the 

Czech data. The estimates for conditional correlations Pi} in Table 3.6 are significant between three 

pairs of countries: Hungary and Poland (0.1805), Hungary and Czech Republic (0.1798), and 

Poland and Czech Republic (0.1273). 

Table 3.6 Results of the estimation of the constant correlation specification of multivariate 
volatility 

HUN POL CZECH SLOV 
aiO 1 .2940e-005 2.8950e-005 3.7658e-005 9.7844e-005 

(3.90486) (1.9978) (1.21783) (2.34095) 
ail 0.1839 0.2049 0.0993 0.1414 

(5.30351) (18.59089) (1.39356) (4.47081) 

PH 0.7606 0.7200 0.7659 0.6856 
(19.86889) (32.48762) (5.34677) (5.17786) 

PJllIni 1.0000 - - -
( - ) 

Ppoli 0.1805 1.0000 - -
(9.03695) ( - ) 

Pc:;echi 0.1798 0.1273 1.0000 -
(7.30943) (2.49677) ( - ) 

Pslovi 
0.0311 0.0887 0.0568 1.0000 

(0.95129) (1.02263) (1.00170) (-) 
Note: Bollerslev and Wooldridge (1992) quasi-maximum likelihood t values in brackets. 

The diagnostic statistics in Table 3.7 indicate that although the estimated model reduces coefficients 

of excess kurtosis compared to corresponding statistics for the unpredictable returns in Table 3.2, 

we still reveal significant nonnormality in the distribution of the standardised residuals of our series. 

The Ljung-Box test for twelfth-order serial correlation applied to cross products of the standardised 

residuals, (8il / ~hiil )(8jl / ~hjjt), fails to detect any serious misspecification of the ARCH 

components of the model, as both the diagonal (i = j) and off diagonal (i"* j) elements of the 

table are considerably smaller than the corresponding statistics for the unpredictable return series in 
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Table 3.5. However, as it is the case with the univariate GARCH specifications in the section 3.3.3, 

we still reveal significant autocorrelation in the squares of the Polish standardised residuals. At 10% 

significance level we find significant correlation in the cross product of the Polish and Slovak 

standardised residuals as well. 

Table 3.7 Properties of the standardised residuals of the constant correlation specification of 
multivariate volatility 

A. Skewness and excess kurtosis 

HUN POL CZECH SLOV 
Skewness -0.05482 -0.03267 -0.70082 -0.07681 

Excess Kurtosis 3.16585 1.30712 4.95449 4.54218 
Note: TIle upper and lower 1 percentlle P0111tS 111 the dlstnbution of the skewness statistics are .058 and -.058, respectively. The 
upper and lower 1 percentile points in the distribution of the excess kl.lrtosis are .13 and -.11, respectively. 

B. Autocorrelation in the cross-products of the standardised residuals 

HUN POL CZECH SLOV 
HUN 12.7203 - - -
POL 14.7812 31.5630 - -

CZECH 8.9541 10.0894 3.4358 -
SLOV 12.9996 20.5206 8.7811 11.8659 

Note: TIle values in the table are the LJung-Box( 12) statistics for the autocorrelation in the cross products of the 

standardised residuals. The upper 1 and 5 percentile points in the r distribution for the Ljung-Box(12) statistic 

are 26.22 and 21.03, respectively. 

BEKK specification 

We started from the estimation of the multivariate BEKK specification defined in (3.71) for the 

series from four transition markets first setting K = 3 (the most general case), and then K = 1 (the 

more restricted specification). In both cases the full multivariate model failed to converge in 

estimation. Therefore, we decided to restrict estimation to the bivariate BEKK specification for the 

Hungarian and Polish return series. The choice of these two markets was justified by the highest 

coefficient of the conditional correlation reported above. 

We estimated the bivariate BEKK, first setting K = 3. Then we moved to the more parsimonious 

specification setting K = 1. To check whether K = 1 sets undesirable restrictions on the general 
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process, we performed a Likelihood Ratio test, which showed no evidence against the null 

hypothesis of the restricted model. Interpretation of the parameters from the general BEKK model 

is not obvious, so (given the restriction is accepted) we restrict attention to the parsimonious 

parametrisation. 

The specification of the bivariate BEKK is as follows: 

(3.72) 

The off-diagonal parameters in matrix B, given by /312 and /321' measure the dependence of the 

conditional return volatility in the Hungarian market on that of the Polish market, and the 

dependence of the conditional return volatility in the Polish market on that of the Hungarian market 

in the last period. The absolute size of return shocks originating in one market in previous period, 

measured by squared value of lagged unpredictable returns, also transmits to the current period's 

conditional volatility in the other market by means of the off-diagonal elements of matrix A, given 

by parameters an and azl . 

Equations (3.73), (3.74) and (3.75) below solve for the cross effects in the variance equations 

implied by the BEKK specification. 

(3.73) 

(3.74) 

(3.75) 
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Table 3.8 shows the results of fitting the BEKK model to the Hungarian (&] ) and Polish (&? ) 
t _t 

unpredictable return series. Estimates of the model indicate that volatility in each of the markets is 

affected by events in its own market. However, while volatility in the Polish stock market is affected 

by return volatility and return shocks originating in the Hungarian market, volatility and shocks 

originating in the Polish market do not affect volatility in the Hungarian market. The covariance 

between two return series is significantly affected by the lagged cross products of the return shocks, 

the lagged covarince term, as well as the return shocks, originating in the Hungarian market. The 

shocks and volatility from the Polish market do not have any significant impact on the covariance 

between the series. 

Table 3.8 Results of the estimation of the BEKK specification of the conditional volatility for 
the Hungarian and Polish series 

hIlt == 1.57e-05+0.1756£~t_1 +0.0151£11_1£21_1 +8.96e-04£;t_l +0.7528hllt _1 +0.0161h12I_1 +8.5ge-05h221_
1 

(2.6298) (3.7362) (0.2278) (0.0815) (10.9930) (0.2350) (0.4087) 

h1: 1 == 1.80e - 05 + 0.0308£~I_l + 0.1574£11_1 £ 21-1 + O.Ol11£~I_l + 0.0 110h11I _1 + 0.7768h I21_ 1 + 0.0083h:21_1 

(0.6207) (1.919403) (2.5901) (0.8831) (1.3235) (3.0601) (0.2748) 

h::1 == 2.06e - 05 + 0.0540£~1_1 + 0.0264£11_1£ 2/-1 + 0.1372£;/_1 + 0.0005hll1_1 + 0.0227hI21_1 + 0.80 14h221_1 

(0.9640) (2.4909) (1.6194) (5.4880) (2.0146) (0.6219) (22.2240) 

Note: Bollers1ev and Wooldridge (1992) quasi-maximum likelihood t-values in brackets. 

Table 3.9 presents diagnostic statistics for the standardised residuals of the BEKK specification of 

conditional volatility. Though the estimated model reduces the coefficients of excess kurtosis 

present in the unpredictable Hungarian and Polish return series (see Table 3.2 for comparison), we 

still reveal significant nonnormality in the distribution of standardised residuals. This evidence 

against normality warrants the use of quasi maximum likelihood inferential procedures in our 

analysis. 

The Ljung-Box test statistics in the Table 3.9.B indicate that although the BEKK specification is 

able to capture volatility clustering present in the Hungarian returns and the cross product of the 
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Hungarian and Polish senes, the intertemporal dependence in the squares of the Polish returns, 

while being reduced considerably, is not removed completely (see Table 3.5 for comparison). 

Table 3.9 Properties of the standardised residuals of the BEKK specification of multivariate 
volatility 

A. Skewness and excess kurtosis 

HUN POL 
Skewness -0.09727 -0.07687 

Excess kurtosis 2.95643 1.57439 
-Note: TIle upper and lower 1 percenhle P0111tS 111 the dIstnbutlOn of the skewness statIstics are .058 and -.058, 

respectively. The upper and lower 1 percentile points in the distribution o[ the excess kurtosis are .13 and -.11, 
respecti ve1y. 

B. Autocorrelation in the cross-products of the standardised residuals 

HUN POL 
HUN 11.6052 
POL 9.9339 36.5184 

Note: The values in the table are the LjlUlg-Box(l2) statistics [or the autocorrelation in the cross products o[the 

standardised residuals. The upper 1 and 5 percentile points in the r distribution [or the Ljung-Box(l2) statistic 

are 26.22 and 21.03, respectively. 

3.4 Summary 

The class of Generalised Autoregressive Conditional Heteroskedastic (GARCH) models has proven 

to be particularly suited for modelling the behaviour of financial time series. They are capable of 

capturing the most common empirical observations in daily return data, such as leptokurtosis and 

volatility clustering. We employ both univariate and multivariate GARCH models of volatility. 

In the univariate part of the chapter we specify and contrast several models of time-varying 

volatility. Five out of the seven estimated models allow different types of asymmetry in the impact 

of news on volatility. The models are fitted to daily stock returns from four emerging markets of 

Central Europe. The quasi-maximum estimates indicate that strong GARCH effects are apparent in 
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almost all markets. The examination of asymmetric impact of news on volatility shows rather weak 

evidence of asymmetries in the markets. The so-called leverage effects, which indicate that negative 

shocks introduce more volatility than positive shocks, are captured by EGARCH for the Czech and 

AGARCH for the Slovak returns. 

The multivariate part employs two alternative specifications of the parameterisation of the 

conditional covariance matrix of the series. The results from the constant correlation model indicate 

significant conditional correlations between three pairs of countries: Hungary and Poland, Hungary 

and Czech Republic, and Poland and Czech Republic. The estimation of the bivariate BEKK model 

of multivariate volatility for the Hungarian and Polish returns reveals that while the volatility in the 

Polish stock market is affected by return volatility and return shocks originating in the Hungarian 

market, volatility and shocks originating in Polish market do not affect volatility in the Hungarian 

market. 

Examination of the distributional properties of the standardised residuals of the model specifications 

used in this chapter reveals that, although there is a substantial reduction in the excess kurtosis 

observed in the return series, nonnormality remains. The direction of subsequent future research 

includes alternative explanations of the conditional nonnormality. The use of a fat-tailed conditional 

distribution might be more appropriate. Another possibility is the stochastic volatility specification, 

which has recently become popular.48 

Diagnostics for the Polish series indicate that volatility clustering present in the returns, while being 

reduced considerably, is not removed completely by any of the alternative ARCH specifications 

employed in this chapter. Our further research will include the search for the alternative 

specifications of the conditional volatility providing better fit to the series from the Polish stock 

48 See Apendix 3.1 for the description of the stochastic volatility model as an alternative to the GARCH specification 
of time-yarying volatility. For the survey of stochastic volatility models see Ghysels et a1. (1996). 
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market. 49 

The ARCH models of time-varying volatility could also be embedded into the tests of explicit 

financial models. 50 

49 The results of the diagnostic tests presented in this chapter, indicating that the employed specifications do not 
provide a perfect fit to our return data, should be taken into account in the nex1 chapter of this thesis, which employs 
some of the univariate GARCH specifications used here for simulation and forecasting purposes. 
50 See Chapter 5 for precisely such a test of the international CAPM, with the conditional covariance matrix of the 
assets in the system parameterised as BEKK multivariate GARCH specification. 
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Figure 3.1.A The Hungarian return series 
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Figure 3.1.B The unpredictable Hungarian return series 
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Figure 3.2.A The Polish return series 
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Figure 3.2.B The unpredictable Polish return series 
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Figure 3.3.A The Czech return series 
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Figure 3.3.B The unpredictable Czech return series 
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Figure 3.4.A The Slovak return series 
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Figure 3.4.B The unpredictable Slovak return series 

0.120 -,---------------------------, 

100 



APPENDIX 3.1 

Alternative models of conditional volatility 

In this section we consider some of the measures of volatility used in the literature, which are not 

based on ARCH type specifications. 

When deciding on the form of the specification for the conditional variance one has to define the 

conditioning set of information and to select a functional form for the mapping between the 

conditioning set and conditional variance. Usually, the conditioning set is restricted to include past 

values of the series itself. A simple two step estimator of the conditional residual variance can be 

obtained from a regression of the square residuals against their own lagged values (see Davidian and 

Carol (1987)). Pagan and Schwert (1990) show that the OLS estimator is consistent although not 

efficient. This two-step estimator's role is that of a benchmark which can be computed in a 

straightforward way. 

Jump or mixture models possibly combined with a GARCH specification for the conditional 

variance have been used to describe time-variation in volatility measures, fat-tails and skewness of 

financial series. In the Poisson jump model it is assumed that upon arrival of abnormal information a 

jump occurs in the returns. The number of jumps occurring at time t, llt , is generated by a Poisson 

distribution. Conditionally on the number of jumps nt, returns are normally distributed with mean 

11/) and variance (Y; = (Y~ + nt(Y~. The parameter B denotes the expected jump size. The 

conditional mean and variance of returns depend on the number of jumps at period t. Time 

dependency could be introduced by assuming that (Y~ follows a GARCH-type process. 51 

51 For the examples of the modelling of stochastic jumps by means of a Poisson process see e.g. Ball and Torous 
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The alternative way to introduce time dependence is to assume that the probabilities of being in 

state 1 during period 1 differ, depending on whether the economy was in state 1 or state 2 in period 

1-1. This model was first introduced by Hamilton (1989) and applied to exchange rates by Engle and 

Hamilton (1990), interest rates by Hamilton (1988) and stock returns by Pagan and Schwert (1990). 

According to the model an unobserved state variable cr can take the values 0 and 1. The transition 

probabilities from state j in period t-1 to state i in period t, ~j' are constant and given by the first-

order Markov process: 

~1 = prob[=t = 11 =t-1 = 1] = p 

~o =prob[=t =01=t-1 =1]=I-p 

Poo = prob[zt = 0 I =t-1 = 0] = q 

p = IJrob['" = 1 I z = 0] = 1 - q 01 ""t (-1 
(3.76) 

In Pagan (1996), the state variable, Zp evolves as an AR (1) process. Returns, Yn are assumed to 

be generated by 

(3.77) 

where &t - NID(O, (52) . From (3.77) the expected values of Yt in states 1 and 2 are /30 and 

flo + /31 respectively. The variances are (52 and (52 + ¢. As a result the model generates states with 

high and low volatility. The variance of returns conditional on state in the period 1-1 is: 

(3.78) 

Hamilton and Susmel (1994) generalise the Markov regime switching model by allowing it to be 

ARCH. Their model is called switching regime ARCH model (SW ARCH). As in Hamilton's basic 

(1985). Hsien (1989), Nieuwland et a1. (1991) and Ball and Roma (1993). 

102 



model above, Yt depends linearly on the state variable Zt. The disturbance term of Yt follows an 

autoregressive process of order p with an error 11 t = ~ g st U t, where lit follows an ARCH (q) 

process with leverage effects and g st is constant factor which differs across regimes. The 

innovation II, is assumed to have a conditional student (-distribution with mean zero. Transitions 

between regime are governed by an unobserved Markov chain. Using weekly returns data on the 

value-weighted portfolio of stocks traded on the New York Stock Exchange from 1962 to 1987, 

the authors compare various ARCH models to SW ARCH models allowing for up to four regimes. 

The SW ARCH specification is found to perform best. 

Next we consider non-parametric methods for modelling the conditional variance, i.e. methods 

which do not depend on specific assumptions about the functional form. Pagan and Schwert (1990) 

and Pagan and Hong (1991) use a non-parametric kernel estimator and non-parametric flexible 

Fourier form estimator. The kernel estimator of Yt, g(Yt), with a finite number of conditioning 

variables x, looks as follows: 

T T 

E[g(Yt) I Xt] = Lg(yJK(xt - xs)ILK(xt - xs), (3.79) 
s=l s=l 

where K is a kernel function which smoothes the data. One of the popular kernels used in the 

literature is the normal kernel employed by Pagan and Schwert (1990): 

(3.80) 

th • "r- I1(4+q ) . 
where H is a diagonal matrix with k diagonal element set equal to the bandwIdth (J' k , With 

Uk being the standard deviation of xJ.;t, k = 1, ... q, and q being the dimension of the conditioning 
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set. 

Next non-parametric estimator, the Flexible Fourier Form (FFF) first proposed by Gallant (1981), 

involves a global approximation of the conditional variance using series expansion. The specification 

) 

of the conditional variance, O"t-, is given by 

L 2 

0",2 = 0"2 + L {aje t_ j + Pitl + L [¢jk cos(ket_) + 8Jk sin(ket_)]} . 

j=1 k=1 
(3.81 ) 

0"2 
As a result, , is represented as the sum of low-order polynomial and trigonometric terms 

~ 

constructed from past et s, which are the residuals from a regression for Yt. The disadvantage of the 

2 

specification in (3.81) is the possibility that the estimates of 0", can be negative. This specification 

for L= 1 has been applied to stock returns by Pagan and Schwert (1990). They found that the 

) 

estimates of 0",- are similar for the kernel, GARCH (1,2) and FFF specification across most of the 

~ ~ 

range of et - 1 . Only for large positive and negative values of et-l the estimators exhibit a different 

~ 

behaviour. In FFF case for large negative values of et - 1 , the volatility estimates increase 

dramatically. 

An alternative to using the ARCH framework is to assume the changing variance to follow some 

latent process. This leads to a stochastic volatility (SV) model. 52 A simple SV model for returns Yt 

has been proposed by Taylor (1986): 

Yt = &t exp(at /2) &t ~ NID(O,I) , , (3.82) 

(3.83) 

where the random variables &t and 17t are independent. 

5~ See e.g. Ghysels et a1. (1996). 
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This model has been used by Hull and White (1987), for instance, in pricing foreign currency 

options. Its time series properties are discussed by Taylor (1986, 1994). Taylor (1994) denotes the 

SV models as autoregressive variance (AR V) models. A major difficulty arises with the estimation 

of SV models which are nonlinear and not conditionally Gaussian. Many estimation methods such 

as the generalised method of moments (GMM) or quasi-maximum likelihood method (QML) are 

inefficient. But methods relying on simulation-based techniques make it possible to perform 

Bayesian estimation or classical likelihood analysis. 53 Currently, only few studies compare the 

performance of the GARCH and SV approaches to modelling volatility. Ruiz (1993) compares the 

GARCH(l,l), EGARCH(1,O) and ARV(1) models when applied to daily exchange rates from 1981 

to 1985 for the Pound sterling, Deutsche mark, Yen and Swiss franc vis-a.-vis the U.S. dollar. 

Within sample performance of the three models is very similar. When the models are used to 

forecast out-of-sample volatility, the ARCH models exhibit severe biases which do not occur for the 

SV volatilities. For the daily and weekly returns on the S&P500 index over the period from 1962 to 

1987 and 1962 to 1992 respectively, Kim and Shephard (1994) conclude that a simple first order 

SV model fits the data as well as the popular ARCH models. For daily data on the S&P500 index 

for the years 1980 to 1987, Dannielson (1994) finds that the EGARCH(2, 1) model performs better 

than ARCH(5), GARCH(1,2), IGARCH(l,l,O) models. It also outperforms a simple SV model 

estimated by simulated maximum likelihood. 

53 See e.g. Kim and Shephard (1994). 

105 



CHAPTER 4 

PREDICTABILITY IN THE TRANSITION MARKETS OF 

CENTRAL EUROPE 

4.1 Introduction 

One of the earliest and most enduring questions of financial econometrics is whether financial 

assets are forecastable. Perhaps because of the obvious analogy between financial investments and 

games of chance, mathematical models of asset prices have an unusually rich history that predates 

virtually every other aspect of economic analysis. Predictability of stock returns has always 

fascinated practitioners and academics. 

Until the early seventies, the assumption of a risk-neutral world (the world is populated by risk 

neutral agents, all of whom have common and constant time preferences and common beliefs about 

future states of nature), prevailing in the literature, had very strong implication for financial 

economics: any predictability in stock returns would necessarily imply that the stock market is 

informationally inefficient. By the late seventies, the work of LeRoy (1973) and Lucas (1978) had 

demonstrated the critical role played by risk preferences in the martingale behaviour of stock prices 

in efficient market. 54 And today most academics realise that predictability is not immediately 

54 See also Hirshleifer (1975). 
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synonymous with market inefficiencies, because in a risk-averse world rational time-varying risk 

premia could lead to return-predictability. Nevertheless, one cannot a priori rule out the possibility 

that predictability arises due to irrational mispricing of the securities by agents. There is no 

evidence so far that unambiguously distinguishes these two competing hypotheses. 

Although there is considerable disagreement over the source of predictability, most members of the 

finance profession seem convinced that predictability of returns documented in the empirical 

literature is real. Evidence of predictability of stock market returns led researchers to investigate 

the sources of this predictability. 

The literature on financial forecasting documented evidence on the predictability of current returns 

from past returns. There is also evidence for systematic patterns in stock returns related to various 

calendar periods such as the weekend effect, the turn-of-the-month effect, the holiday effect, the 

January effect and predictability originating from bid-ask bounces. The literature also documented 

significant relationship between expected returns and fundamental variables, such as dividend 

yields, price-earnings ratios, term structure variables, macroeconomic fundamentals, etc. 

Lo and MacKinlay (1988) find that weekly returns on the portfolios of NYSE stocks grouped 

according to the size show positive autocorrelation. Conrad and Kaul (1988) examine the 

autocorrelation of Wednesday to Wednesday returns (to mitigate the nonsynchronous trading 

problemss) for size-grouped portfolios of stocks that trade on both Wednesdays. Similarly to the 

findings of Lo and MacKinlay (1988), they find that weekly returns are positively autocorrelated. 

Cutler et al. (1991) present results from many different asset markets generally supporting the 

55 The l1onsynchronous trading or nontrading effect arises when time series are taken to be recorded at time intervals 
of one length, when in fact they are recorded at time intervals of other, possibly irregular, lengths. This can create a 
false impression of predictability in price changes and returns even if true price changes or returns are statistically 
independent. Perhaps the first to recognise the importance of nonsynchronous prices was Fisher (1966). For a good 
discussion on this topic, see e.g. Chapter 3 in Campbell, Lo and MacKinlay (1997). 
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hypothesis that returns are positively correlated at the horizon of several months and negatively 

correlated at the 3-5 year horizon. Lo and MacKinlay (1990) report positive serial correlation in 

weekly returns for indices and portfolios and negative serial correlation for individual stocks. 

Chopra et al. (1992), DeBondt and Thaler (1985), Fama and French (1988) and Poterba and 

Summers (1988) find negative serial correlation in returns of individual stocks and various 

portfolios over three to ten year intervals. 56 Jegadeesh (1990) finds negative serial correlation for 

lags up to two months and positive correlation for longer lags. Lehmann (1990) and French and 

Roll (1986) report negative serial correlation at the level of individual securities for weekly and 

daily returns. 

In a seminal contribution to the predictability literature, F ama and Schwert (1977) use Treasury bill 

rates to predict stock and bond returns. Over the last two decades several new fundamental 

variables have been used to predict stock returns. For example, Campbell and Shiller (1988), 

Cutler, Poterba , and Summers (1991), and Fama and French (1988, 1989), Flood, Hodrick, and 

Kaplan (1987), and Keirn and Stambaugh (1986), among others, use financial variables such as 

dividend yield, price-earnings ratios, term structure variables, etc., to predict future stock returns. 

In a similar vein, Balvers, Cosimano, and McDonald (1990), Chen (1991), Fama (1990), and 

Schwert (1990) have used macroeconomic fundamentals, such as output and inflation, to predict 

stock returns. Some recent papers by Ferson and Harvey (1991), Evans (1994), and Ferson and 

Korajczyk (1995) focus on the relation between predictability based on lagged variables and 

economic 'factors' similar to those identified by Chen, Roll, and Ross (1986). Ferson and Schadt 

56 One interpretation of negative correlation in longer horizons is that there can be substantial mean-reversion in 
stock market prices at longer horizons. On the other hand, the obvious concern is that inferences based on long 
horizon returns are based on extremely small sample size, which makes the mean-reversion hypothesis fragile. 
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(1995) show that conditioning on predetermined public information removes biases in commonly 

used unconditional measures of the performance of the mutual fund managers. 57 

In this chapter we address the issues of predictability in the transition markets of Central Europe by 

employing technical analysis for deciding when to buy and sell in the market. Technical analysis is 

considered by many to be the original form of investment analysis. 58 Over the years, investors and 

the technical analysts have devised hundreds of technical market indicators in an effort to forecast 

the trend of the security market. Technical analysis came into widespread use before the period of 

extensive and fully disclosed financial information, which in tum enabled the practice of 

fundamental analysis to develop. Technical traders base their analysis on the premise that the 

patterns in stock prices are assumed to recur in the future, and thus, these patterns can be used for 

predictive purposes. The motivation behind the technical analysis is to be able to identify changes in 

trends at an early stage and to maintain an investment strategy until the weight of the evidence 

indicates that the trend has reversed. 

Historically, technical analysis has never enjoyed the same degree of acceptance by the academic 

finance community that, for example, fundamental analysis has received. Although some earlier 

5- Standard measures of the performance of managed portfolios, designed to detect security selection or market 
timing ability, are known to suffer from a number of biases. Traditional measures use unconditional expected returns 
as the baseline. For example, the "Jensen's alpha", measuring the average performance of a fund, may be calculated 
as the average return of a fund in excess of a risk-free rate minus a fixed beta times the average excess return of a 
benchmark portfolio. However, if expected returns and risks vary over time, such an unconditional approach is likely 
to be unreliable. Common time variation in risks and returns will be confused with average performance. Traditional 
measures of average performance are negative more often than positive, which has been interpreted as inferior 
perfomlance. Ferson and Schadt show that conditioning on public information shifts the distribution of alphas to the 
right and is centered near zero. Traditional measures of market timing suggest that the typical mutual fund takes 
more market exposure when stock returns are low. This has been interpreted as perverse market timing ability. 
Ferson and Schadt find that unconditional versions of the Treynor and Mazuy (1966) and Merton and Henriksson 
(1981) market timing models are misspecified when applied to naive strategies, and that conditional versions of 
these models are an improvement. Using the conditional market timing models for U.S. equity funds, the evidence of 
perverse market tinting for the typical fund is removed. 
58 The oldest moving average techniques are attributed to Charles Dow and are traced to the late 1800s. 
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studies argued that technical analysis is useless59
, the recent literature provides evidence that 

technical trading rules devised by investors and technical analysts may provide positive profits after 

accounting for transaction costS.60 Recent studies by Blume, Easley and 0 'Hara (1994), Brock, 

Lakonishok and LeBaron (1992), Brown and Jennings (1989), LeBaron (1996), Neftci (1991), Pau 

(1991), Taylor and Allen (1992), and Treynor and Ferguson (1985) signal a growing interest in 

technical analysis among financial academics. 

This chapter has three main objectives. First, we assess the ability of the technical trading rules, 

applied to the data from the four transition markets of Central Europe to predict stock price 

changes. Next, we employ the bootstrap methodology to check whether patterns uncovered by 

technical rules are consistent with popular null models of stock returns. And finally, we examine 

the linear and nonlinear predictability of stock market returns with buy and sell signals generated 

from technical trading rules. 

4.2. Data and Descriptive Statistics 

The data used in this chapter is identical to the data we have employed in the previous chapter of 

the thesis. It includes daily stock price indexes from four transition stock markets: Hungarian BUX, 

Polish WIG20, Czech PX50 and Slovak SAX. The only difference is that in this chapter for all 

markets the sample period ends in July 1998, and, therefore, compared to the previous chapter 

59 The earlier work on the technical analysis includes papers by Alexander (1964), Fama and Blume (1966), Levy 
(1967a. 1967b), Jensen (1967), and Jensen and Bennington (1970). 
60 See e.g. LeBaron (1991). He tests the "economic significance" of the trading rule profits in the foreign exchange 
market. by accounting for transaction costs and interest rates. 
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covers a slightly longer period of time. The sample constitutes a total of 1631 observations for the 

Hungarian and Polish, and 1155 observations for the Czech and Slovak series.61 

Since the focus of the previous chapter was on conditional volatility, rather than conditional mean, 

we have presented descriptive statistics of the unpredictable return series. In table 4.1 below we 

report distributional characteristics of the nominal returns data. 

The evidence for all return series indicates significantly fatter tails than does the stationary normal 

distribution. The excess kurtosis statistic ranges in value from 4.59 for the Polish to 20.39 for the 

Hungarian returns. The coefficients of skewness, with exception of the Polish returns, indicate that 

series typically have asymmetric distributions skewed to the left. The autocorrelations coefficients, 

pen), reported together with the Bartlett standard errors, as well as Ljung-Box test statistic for 

twelfth-order serial correlation, indicate evidence of significant serial correlation in our sample. 

61 For the graphs of the historical development of the index levels and the corresponding index return series oyer the 
sample period employed here, see Figures 4.2.1 and -1-.2.2 at the end of the chapter. 
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Table 4.1 Summary statistics of the returns on four national indexes 

Hungary Poland Czech Rep. Slovakia 
Number of observ. 1631 1631 1155 1155 
Mean 0.00132 0.00188 -0.00058 -0.00069 
Variance 0.00025 0.00064 0.00009 0.00025 
Skewness -1.28739 -0.05119 -0.40777 -0.83615 
Excess kurtosis 20.38698 4.58512 4.98394 12.21029 

p(l) 0.15144 0.19694 0.33953 -0.16404 
p(2) 0.06062 0.12631 0.20848 -0.05474 

p(3) -0.00501 0.04154 0.09507 0.12986 

p(4) -0.02299 0.03688 -0.01129 -0.00319 

p(5) -0.01253 -0.01483 -0.01357 0.03402 

p(6) -0.03897 -0.00680 -0.07704 -0.02515 

p(7) 0.04363 0.02800 -0.05570 0.00847 

p(8) 0.03098 0.04932 0.01443 0.01812 

p(9) 0.05425 0.03826 0.06694 0.03224 

p(lO) 0.10135 0.03749 0.08701 0.00775 

p(ll) 0.06809 -0.00432 0.09538 0.01172 

p(l2) 0.11207 0.01182 0.01193 0.01430 

Bartlett st. error 0.02477 0.02477 0.02988 0.02988 
Ljung-Box(l2) 101.8537 105.1288 215.4553 49.6788 
for the levels 
Note: The upper and lower I percentile points in the distribution of the skewness statistics are .058 and -.058, 
respecth-ely. The upper and lower I percentile points in the distribution of the excess kurtosis are .13 and -.11, 

respectively. The Bartlett standard error for the autocorrelation equals 1 / .fii. The upper I and 5 percentile points 

in the .i distribution for the Ljung-Box(12) statistic are 26.22 and 21.03, respectively. 

4.3 Empirical Analysis: Technical Analysis in the Transition Equity Markets 

(the moving average strategy) 

Technical traders test historical data to establish specific rules for buying and selling securities in 

the market. In this chapter we explore one of the most popular technical rule when to buy and sell 

in the market: the moving average rule.62 Buy and sell signals are generated by two moving 

62 Our selection of trading strategies is influenced by previous work in tIns area, wltich has a very long ltistory. The 
use of moving averages was discussed by Gartley (1930). The examples of early use of moving average techniques 
have been collected in Coslow et a1. (1966). 
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averages, a long period and a short period. Buy signal is generated when the short moving average 

rises above the long moving average and the sell signal is generated otherwise. The underlying 

notion behind this rule is that it provides a means of determining the general direction or trend of 

the market by examining the recent history. 

An II-period moving average (mt ) is computed by adding the 11 most recent periods of data, then 

dividing by 11. 

n-l 
m; = (1/11) LPt-i (4.1) 

i=O 

This average is recalculated each period by dropping the oldest data and adding the most recent, so 

the average moves with its data but does not fluctuate as much. The larger the 11, the smoother is 

the moving average rule, and it measures a longer-term trend. 

In our analysis we will use four popular moving average rules: 1-150, 1-200, 5-150, 2_20063
, with a 

band between the short and the long averages equal 0.01, which reduces the number of buy/sell 

signals by eliminating whiplash signals when the short and the long moving averages are close. As a 

result, the trading rules classify each day in our sample as either buy, sell, or neutral. 

If we denote the short moving average 11S, and the long one nl, then, taking into account a band of 

0.01 mentioned above, an investor gets a buy signal: 

Sb;ns,nl = In(n1 ns) -In(nlnl) 
, t t t' if In(m;S) -In(m;l) > 0.01 (4.2) 

and a sell signal: 

(4.3) 

63 For the examples of application ofthese rules to financial data see e.g. LeBaron (1991), Brock et al. (1992), Kim 
(199-1-), Karolyi andKho (1994). 
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Otherwise the trading day is classified as neutral and s;;ns,nl = 0 . 

This rule is designed to replicate returns from trading rule where the trader buys when the short 

moving average penetrates the long from below and stays in the market until the short moving 

average penetrates the long moving average from above. In the last case the trader moves out of 

the market or sells short.64 

4.3.1 Empirical results 

Tables 4.2 A, B, C and D present results from trading strategies based on four moving average 

rules for the four markets examined. The table reports number of buy and sell signals generated; 

mean returns during buy and sell periods and corresponding variances of buy and sell returns; the 

fraction of buy and sell returns greater than zero. The last column lists the differences between the 

mean daily buy and sell returns. Numbers in parentheses are t-statistics testing the difference of the 

mean buy and sell returns from the unconditional mean, and the mean buys and sells difference 

from zero. The last rows in the tables report averages over all four rules. 

Table 4.2.A reports results for the Hungarian market. For all trading rules the number of buy 

signals generated is considerably higher than the number of sell signals, which is consistent with 

upward-trending market (see Figure 4.2.1 at the end of this chapter). All buy returns are positive 

with an average daily return of 0.28 per cent, compared with the unconditional mean of 0.13 per 

cent (see Table 4.1). The t-statistics testing the difference of the mean buy returns from the 

64 Tlus rule assumes that the market is donunated by positive feedback traders, who buy 'high' and sell 'low'. 
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unconditional mean reject the null of their equality at the 5 per cent level for the first two trading 

rules, with the I-statistics for the third and fourth rule being marginally significant as well. In 

contrast to buys all sell returns are negative, with I-statistics for the difference from unconditional 

mean being significant in three out of four cases. The last column of the table shows the spreads 

between the mean buy and sell returns. All of them are positive with highly significant I-statistics, 

rejecting the null of equality with zero. 

Table 4.2.A indicates that not only do the buy signals select periods with higher conditional means, 

they also pick periods with lower volatilities, which is in contrast to sell periods where while the 

conditional return is lower, the volatility is higher. Our results are not in accord with the existing 

equilibrium models. The columns seven and eight of the table present the fraction of the buy and 

sell returns which are positive. In the case where trading rules do not produce useful signals the 

fraction of positive buys and positive sells should be the same. However, it is clear from the table 

that the fraction of positive buys is always higher, constituting on average 56.5 per cent as 

compared to 45.2 per cent for sells. 

Moving to the next three tables presenting results from application of technical trading rules to 

Polish, Czech and Slovak returns, we discover patterns similar to Hungarian series. For all series 

buy returns are always positive, with averages over four rules ranging from 0.08 per cent in Czech 

Republic to 0.37 per cent in Poland. In contrast sell returns are always negative: -0.16, -0.08 and -

O. 11 per cent in Poland, Czech Republic and Slovakia respectively. And again in all three countries 

the volatility of buy returns, which have higher conditional means, is lower compared to the 

volatility of sells, having lower (and always negative) mean returns. The spreads between mean buy 
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and sell returns are positive for all three countries. And finally, as we have found in the case of 

Hungarian returns, the fraction of buys greater than zero is always higher than the fraction of 

positive sells for all rules for all markets. 

The only difference in the results for four markets we can report from the tables is the relative 

number of buy and sell signals. While Hungarian and Polish series produce considerably higher 

number of buy signals, the quantity of buy and sell signals generated for Czech series is almost the 

same, while Slovakian returns produce more sells than buys. The different trends in the markets are 

the most obvious explanation to the observed differences. We can see from Figure 4.2.1 at the end 

of this chapter that while over considered sample period the Hungarian and Polish markets are 

clearly upward trending, it is difficult to identify some clear trend in the Czech index, with Slovak 

series being dominated by downward sloping pattern. 
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Table 4.2 Results from trading rule strategies 

A.H 
Rule Number of Number Mean buy Variance Mean sell Variance Fraction of Fraction of Mean buy 

(n1,n2) buy of sell returns of buys returns of sells positive positive and sell 
Band=O.01 signals signals buys sells difference 

(1,50) 941 642 0.00365 0.000207 -0.00212 0.000320 60% 40% 0.00577 
(3.59935) (-4.66923) (7.12898) 

(1,200) 1062 371 0.00268 0.000240 -0.00134 0.000267 55% 46% 0.00402 
, 

(2.18116) (-2.92462) (4.21582) I 

(5,150) 1032 444 0.00215 0.000225 0.00017 0.000280 55% 48% 0.00198 
0.31959) ( 1.35140) (2.20640) I 

(2,200) 1062 370 0.00228 0.000232 -0.00020 0.000272 56% 47% 0.00248 I 

0.53964) (-l.81465) (2.59820) 
Average 1024 456 0.00281 0.000226 -0.00087 0.000284 56.5% 45,2% 0.00368 

B. Poland 
Rule (n1,n2) Number Number Mean buy Variance Mean sell Variance Fraction of Fraction of Mean buy 
Band=O.01 of buy of sell returns of buys returns of sells positive positive and sell 

Signals s~gnals buys sells difference 
( 1,50) 984 598 0.00515 0.000592 -0.00358 0.000678 46% 37% 0.00873 

(3.20219) (-4.51466) (6.65532) 
(1,200) 1015 417 0.00369 0.000619 -0.00240 0.000854 47% 39% 0.00609 

0.78959) (-3.08307) (4.13863) 
(5,150) 1015 467 0.00283 0.000610 -0.00001 0.000813 47% 38% 0.00284 

(0.93929) (-1.42349) (2.00769) 
(2,200) 1015 417 0.00299 0.000638 -0.00070 0.000823 48% 39% 0.00369 

(1.09748) (-1.85849) (2.50764) 

Average 1007 474 0.00367 0.000615 -0.00167 0.000792 47% 38% 0.00534 

, 
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C. Czech Reoubr 
- . 

Rule (n1,n2) Number of Number Mean Variance Mean Variance Fraction of Fraction of Mean buy 
Band=O.01 buy of sell buy of buys sell returns Of sells positive positive and sell 

si~nals si~nals returns buys sells difference 
(1,50) 471 558 0.00158 0.000050 -0.00205 0.000088 58% 33% 0.00363 

(4.12334) (-2.97213) (5.91110) 
(1,200) 405 476 0.00094 0.000052 -0.00054 0.000080 51% 45% 0.00148 

(2.74978) (0.07664) (2.30772) I 

(5,150) 443 488 0.00013 0.000054 -0.00043 0.000092 52% 47% 0.00056 
(1.32648) (0.28988) (0.89951) I 

(2,200) 406 475 0.00061 0.000053 -0.00025 0.000080 51% 46% 0.00086 I 

(2.15472) (0.63181) (1.34122) 
Average 431 499 0.00082 0.000052 -0.00082 0.000085 53% 42% 0.00163 

'------- ------ ---- ----_ .. _- - - ---- --- ~ -- -- L- ___ 

D. Slovakia 
Rule (n1,n2) Number of Number Mean buy Variance Mean Variance Fraction of Fraction of Mean buy 
Band=O.Ol buy of sell returns of buys sell returns of sells positive positive and sell 

signals signals buys sells difference 
0,50) 414 615 0.00248 0.000135 -0.00211 0.000127 57% 38% 0.00459 

(3.46837) (-1.77780) (4.56639) 
(1,200) 252 629 0.00125 0.000102 -0.00087 0.000107 55% 41% 0.00212 

(l.75385) (-0.22697) (1. 79847) 
(5,150) 291 639 0.00074 0.000093 -0.00070 0.000111 56% 41% 0.00144 

0.36932) (-0.01267) (1.28780) 
(2,200) 251 630 0.00104 0.000103 -0.00078 0.000107 56% 43% 0.00182 

0.56148) (-0.11354) (1.54213) 

Average 302 628 0.00138 0.000108 -0.00111 0.000113 56% 40% 0.00249 I 
I 

- -
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Note: The t-statistics arc in parenthesis. The t-statistics for the mean buy and sell returns equal Ph I ~ P " . where /-Ib / •. and Nil!. . ("lIN IN )1,'_ .,., () + () hi.1 

, arc the mean return and number of signals for the buys and sells. The t-statistics for the mean buy and sell returns difference equal 
'\ JI" - /-l, N N 

) -2 . 1') • where "" and /-l . are mean buy and sell returns, and I and . arc number of buy and sell signals respectivelv. (crINb+ U INJ'- r.\. l.\· • 

j 

119 



4.4 Bootstrap Methodology 

The key idea behind the bootstrap procedure, initiated by Efron (1979), is to resample from the 

original data - either directly or via a fitted model - to create replicate datasets. One of the 

advantages of the bootstrap is that, in contrast to Monte Carlo simulations, it allows deviations 

from the Gaussian distribution in the original data series. Bootstrap methods have been widely used 

in the financial literature during the last decade for a variety of purposes.65 Empirical analysis in 

section 4.5 combines the bootstrap methodology with technical analysis for checking the 

specification of several commonly used models of stock returns, applied to the data from transition 

equity markets. In this section we review some of the alternative bootstrap methods existing in the 

literature, and provide a short summary of previous empirical studies using bootstrap and technical 

trading rules for checking the specification of popular stock price models. 

4.4.1 Review of the alternative bootstrap methods 

Let (y1' ... ,Y n) be a random sample from distribution F, and T(yl' ... ' Y n; F) be a random variable 

of interest which may depend directly upon F. Also let Fn be the empirical distribution function 

that puts mass 1/ n on Y i' i = 1,2, ... , n. The bootstrap can be defined as a method that 

65 Some of the purposes of the use of bootstrap methods in financial literature are: (i) to obtain small sample 
standard errors (e.g. Akgiray and Booth (1988) and Badrinath and Chatterjee (1991))~ (ii) to get significance levels 
for tests (e.g. Hsieh and Miller (1990) and Shea (1989a,b))~ (iii) to get significance levels for trading rules profits 
(e.g. Levich and Thomas (1993) and LeBaron (1994))~ (iv) to develop empirical approximations to population 
distributions (e.g. Bookstaber and McDonald (1987))~ (v) to use trading rules on bootstrapped data as a test for 
model specification (e.g. Brock et al. (1992), LeBaron (1992), Kim (1994) and Karolyi and Kho (1994)~ (vi) to 
check the validity of long-horizon predictability (e.g. Nelson and Kim (1993) and Chen (1995)~ (vii) impulse 
response analysis in nonlinear models (e.g. Tauchen, Zhang and Liu (1994)). 
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approximates the distribution of T(yl' ... 'Y n; F) under F by the distribution of T(Yl'···'Y n; Fn) 

under Fn· Bootstrapping is done by taking B bootstrap samples, Zb = T(YI b'···'Y n b)' , , 

b = 1,2, ... ,B , each of which consists of 11 random draws from Fn. This procedure is the standard 

bootstrap method, which has been extended to classical regression by Freedman (1981 a, b). In the 

case of the classical regression models, it is the residuals that are resampled. When the errors are 

not lID, one needs to modify this procedure. 

To deal with serially correlated errors with a well specified structure (e.g. stationary ARMA (p,q) 

models with known p and q), one can use the recursive bootstrap method, first introduced by 

Freedman and Peters (1984).66 According to this method one estimates the model by some 

consistent method, obtains the residuals and resamples them. With the resampled residuals, one 

next generates the bootstrap samples recursively. For example in the case of regression model with 

say AR (1) errors, 1f t : 

(4.4) 

(4.5) 

where e( ~ IID(O,u 2
), one estimates (4.4) by OLS (or some other method), then using the 

estimated residuals if" one estimates p (using e.g. the Cochrane-Orcutt or Prais-Winsen 

procedures) and obtains e
t

. Then one resamples et and using a recursive procedure generates iip 

and the bootstrap sample on Y t . 

To deal with general dependent time series data, other approaches, which do not require fitting the 

data into a parametric form have been developed. Carlstein (1986) first discussed the idea of 

bootstrapping non-overlapping blocks of observations rather than individual observations. Later, 

66 This method has also been used by Efron and Tibshirani (1986) for bootstrapping the AR( 1) and AR (2) models. 
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Kunsch (1989) and Liu and Singh (1992) independently introduced a more general bootstrap 

procedure, the moving block bootstrap, which is applicable to stationary time series data. In this 

method the blocks of observations are overlapping. 

Both methods of Carlstein and Kunsch divide the data of 11 observations of length / and select b of 

these blocks by resampling with replacement all the possible blocks. For simplicity assume n = bl. 

In the Carlstein procedure there are just b blocks. In the Kunsch procedure there are 11 - / + 1 

blocks. The blocks are Lk = {Xk,Xk+I"",Xk+l_l} fork= 1,2, ... , (11-/+1). For example with 11 = 

6 and I = 3 suppose the data are: x t = {7 ,2,3, 6, 1,5}. The blocks according to Carlstein are 

{(7,2,3),(6,1,5)}. The blocks according to Kunsch are {(7,2,3 ),(2,3,6),(3,6,1 ),(6,1,5)}. Now draw 

a sample of two blocks with replacement in each case. Suppose the first draw gave (7,2,3). The 

probability of missing the block (6,1,5) is V2 in Carlstein's scheme and 114 in the moving block 

scheme. As a result, there is a higher probability of missing entire blocks in the Carlsatein scheme. 

For this reason, it is not often used. 

The literature on blocking methods is mostly on the estimation of the sample mean and variance, 

although Liu and Singh (1992) consider the applicability of the results to more general statistics, 

and Kunsch (1989, p.1235) discusses the AR(l) and MA(l) models. 

However note that, even if the original series {x t} is stationary, the pseudo times series generated 

by moving block method is not stationary. For this reason, Politis and Romano (1994) suggest the 

stationary bootstrap method. It is very similar to the moving block bootstrap method. However, 

there is one major difference between the sampling schemes of these two methods. The stationary 

bootstrap resamples the data blocks of random length, where the length of each block has a 
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geometrical distribution with parameter p, while the moving block bootstrap resamples blocks of 

data of the same length. 

There are, as yet, no applications in the financial literature using the blocking methods. 

4.4.2 Bootstrap for model selection using technical trading rules. 

Bootstrap methods and trading rules have been used for checking the specification of several 

commonly used models like the random walk, GARCH processes and the Markov switching 

regression in application to the data from mature stock markets by LeBaron (1991), Brock et 

al.(1992), Kim (1994) and Karolyi and Kho (1994). The basic idea is to compare the time series 

properties of the generated data from the given model with those of the actual data. Trading rule 

profits are one convenient measure for this purpose. R2 and other goodness of fit measures do not 

capture the time series structure of the data. The procedure involves the following steps: 

• First get a measure of the profits generated by a trading rule, using the actual data; 

• Next estimate the postulated models and bootstrap the residuals and the estimated parameters 

to generate bootstrap samples; 

• Next compute the trading rule profits for each of the bootstrap samples and compare this 

bootstrap distribution with trading rule profits derived from the actual data. 

Brock et al. (1992) tried this procedure with random walk, AR(l), GARCH-M, and EGARCH 

models on 90 years of daily data on the Dow Jones Industrial average. They found that none of 

these models replicate the moving average trading rules profits from the actual data. LeBaron 

(1991) considers random walk, GARCH, regime shifting and interest rate adjusted models and 
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finds that none of them replicates the trading rule profits from the actual data, although GARCH 

does better than the other models. Besides using trading rule profits as a model specification test, 

LeBaron also tests the "economic significance" of trading rule profits in the foreign exchange 

market, by accounting for transaction costs and interest rates and attempting to measure the 

riskiness of trading strategies in the foreign exchange market relative to the strategies in the other 

markets. We do not present LeBaron's results in detail but broadly speaking, his conclusion is that 

the use of technical trading rules in the foreign exchange market generate returns similar to those 

from a domestic stock portfolio but further tests are necessary to completely answer the question 

of the "economic significance" of trading rules in the foreign exchange market. 

Kim (1994) also uses trading rule profits as a tool for model specification tests. The moving 

average trading rules are applied to actual and generated data from random walk, GARCH-M, 

Hamilton's Markov switching model, the SW ARCH (ARCH with Markov switching), and the 

CAPM models. He finds that the random walk, GARCH-M and Hamilton's Markov switching 

model cannot capture the moving average trading rule profits generated by the actual data. 

However, the SW ARCH performs better than the three other models considered. 

Karolyi and Kho (1994) use bootstrap methods in conjunction with trading rules to reexamine the 

profitability of positive feedback investment strategies, which buy stocks that have performed well 

in the past and sell stocks that have performed poorly in the past. 67 Karolyi and Kho conclude that 

their overall findings for NYSE and AMEX stocks from 1965-1989 indicate that the profitability of 

the relative strategies may simply represent fair compensation for the risks assumed by these 

strategies. As found by others for moving average trading rules, Karolyi and Kho find that the 

random walk model cannot explain the significant returns of the positive investment strategy, even 

6i The significant returns to such a strategy were confirmed by Jegadeesh and Titman (1993). 
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within size- and beta-based subgroups of stocks with similar risk exposures. They, therefore, try to 

see whether the profitability of the relative strength trading rules is significant after adjusting for 

time-varying risk. They find that the trading rule profits are consistent with those simulated using a 

simple conditional CAPM equilibrium model of time-varying expected returns. 

4.5 Empirical Analysis: Checking the Validity of the Null Models of Stock 

Returns 

The results in section 4.3 of this chapter are consistent with technical trading rules having 

predictive power. The purpose of this section is to check whether various null models, addressing 

the stylised facts normally characterising stock return series, in particular, autocorrelation, 

leptokurtosis, changing conditional means and variances, are able to account for the predictability 

in nominal stock price series associated with technical trading rule profits. 

Computer simulations of the time series designed to capture the properties of the various null 

models (in particular, the distribution of the conditional moments under different specifications), 

will be performed using the estimation-based bootstrap procedure initiated by Freedman (1981a,b). 

In this procedure each model is fit to the original series to obtain estimated parameters and 

residuals. The estimated residuals are then redrawn with replacement to form a 'scrambled' residual 

series, which is then used with the estimated parameters to form a new representative series for a 

given null model. Next step is to compare the time series properties of the generated data from the 

given model with those of the actual data. To perform this, we compute trading rule profits for 

each of the generated bootstrap samples, and compare this bootstrap distribution with trading rule 

profits derived from the actual data. As described in section 4.4.2 above, the similar procedure was 
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employed for model specification tests by several authors, including LeBaron (1991), Brock et al. 

(1992), Kim (1994), and Karolyi and Kho (1994). 

In our study the price series will be simulated from the three widely used null models for stock 

prices: AR(P), GARCH-M and EGARCH models. Each of the simulations will be based on 2000 

replications of the null model. 

In AR(P) model returns follow: 

p 

rt = r 0 + L r i rt - i + 8 t , 
i=l 

(4.6) 

where 8 t is iid. 68 The simulation experiment with AR(P) process will show whether results from 

the trading rules could be caused by autocorrelation in the series. 

The next two null specifications employed for the simulation of our price series belong to the 

family of GARCH models. These models allow volatility of returns to change over time. They 

imply positive serial correlation in the conditional second moments of the return process: periods of 

high (low) volatility are likely to be followed by the periods of high (low) volatility. The 

specifications we employ here are GARCH-M and EGARCH models.69 

Under GARCH-M specification both conditional means and variances are allowed to change over 

time. According to this model higher returns are expected when conditional volatility is high, which 

is consistent with efficient market hypothesis. 

68 The number of lags, p, in AR model for each of the four markets is choosen to be the same as in the 
autocorrelation adjustment procedure in the section 3.3.1 of the previous chapter of the thesis. Although the length 
of the sample in this chapter is slightly longer (about 100 observations more), the number of lags required for iid 
errors is the same as in the previous chapter for all four series. 
69 See section 3.2 for a review of GARCH models, and, in particular, 3.2.3 for a detailed description of the 
GARCH-M and EGARCH models. 
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p 

rt = r ° + L r irt-i + a lht + 8 t 
i=l 

and lit ~ NID(O,I). 

(4.7) 

Changing conditional mean and variance could potentially explain results from the trading rules. 

Many financial series are asymmetric in the sense that negative equity returns are followed by larger 

increases in volatility than equally large positive returns. The exponential GARCH (EGARCH) 

model by Nelson (1991) allows for this asymmetry. According to EGARCH specification employed 

in our analysis, returns, r" follow the process as in (4.6), and the conditional variance is specified 

as follows: 

(4.8) 

This specification lifts the nonnegativity constraint on the parameters of the model by using logs. 

The parameter /33 can generate the leverage effect as the sign of yesterday's shock enters the 

model. 

4.5.1 Empirical results 

Tables 4.3, 4.4, 4.5 below present means and variances of buy and sell returns
70

, as well as 

difference of buy and sell returns generated by 2000 simulations for three models and four markets 

-0 These are retums associated with buy and sell signals from the market described in the section 4.-1- of this chapter. 
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used in our study. To conserve space we present only the average simulated results over the four 

technical trading rules. 

Table 4.1 in the section 4.2 of this chapter indicates presence of significant autocorrelation in our 

sample. This fact could potentially cause the technical strategies producing abnormal returns. The 

purpose of the AR simulations in Table 4.3 is to detect whether the results from trading rules could 

be caused by daily autocorrelation in the series. The simulation estimates indicate that the AR 

processes do generate a positive buy-sell spread between buys and sells for all four countries. This 

spread is relatively large in the case of the Hungarian and Slovak series. However, even for these 

two markets the magnitude of the spread is small when compared with the original series (see rows 

'Average' in Table 4.2 for comparison). 

Tables 4.2 indicates that for all actual return series considered, the market is less volatile during 

buy periods relative to sell periods. The averaged variances over four moving average rules of buys 

and sells for Hungary are 0.0226 and 0.0284, for Poland 0.0615 and 0.0792, for Czech Republic 

0.0052 and 0.0085, and for Slovakia 0.0108 and 0.0113 per cent respectively. However, Table 4.3 

reveals that for the simulated series variances of buys and sells basically do not differ, being even 

marginally larger for buy periods. 

Table 4.4 displays the results of the simulation of GARCH-M model. Potentially, a changing 

conditional mean could explain some of the differences between buy and sell returns. We see that 

compared to AR specifications GARCH-M does slightly increase the spread for all four countries. 

The most significant spread between buys and sells is generated for the Slovak returns (0.00111 

compared with 0.00249 for the original series). Moving to the analysis of volatility estimates we 

find that for the Hungarian and Polish series this specification does not move us any closer to the 
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results for the original returns in Table 4.2. The simulation results indicate that in the case of the 

Slovak market the variance of sells exceeds the variance of buys. However, the values of the 

variances obtained from GARCH-M simulation of the Slovak series are still much closer to the 

variance of the unconditional returns than those in Table 4.2. 

We conclude, that the autoregressive and GARCH-M specifications are not very successful in 

explaining the moving average rules profits generated by the actual data, and account only for a 

fraction of the differences between actual buy and sell returns. 

The ability of the EGARCH specification to capture the asymmetric effects of the positive and 

negative shocks on volatility could to some extent explain the spread between variances of the buy 

and sell returns generated by application of technical trading rules to our dataset. Results in Table 

4.5 reveal that, in spite of the fact that EGARCH specification does not add much to the 

explanation of the difference between buy and sell returns, it does create some difference between 

variances of buys and sells for three out of four markets, with the variances of sells higher than the 

variances of buys. As a result, the EGARCH model fails to match conditional means in the data. 

However, it performs better than the AR and GARCH-M models in predicting volatility. 

In sum, our findings show that stock return-generating process is probably more complex than 

suggested by various linear conditional mean models of past returns. 
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T bl 43 S· ltd a e · Imu a e I t AR averages over our ru es or model 
Uncon. Uncon. Mean Variance Mean Variance Mean 
returns var-ce buy of buys sell of sells buy and sell 

returns returns difference 
Hungary 0.00132 0.00025 0.00175 0.00019 0.00071 0.00017 0.00104 

Poland 0.00188 0.00064 0.00242 0.00064 0.00155 0.00064 0.00087 

Czech R. -0.00058 0.00009 3.42e-05 0.00009 -0.00025 0.00008 0.00025 

Slovakia -0.00069 0.00025 0.00038 0.00025 -0.00060 0.00023 0.00098 

T bl 44 S· ltd a e · Imu a e I t GARCH M d I averages over our ru es or - mo e 
Uncon. Uncon. Mean Variance Mean Variance Mean 
returns Var-ce buy of buys sell of sells buy and sell 

returns returns difference 
Hungary 0.00132 0.00025 0.00196 0.00021 0.00081 0.00018 0.00115 

Poland 0.00188 0.00064 0.00198 0.00063 0.00155 0.00064 0.00090 

Czech R. -0.00058 0.00009 0.00006 0.00007 -0.00031 0.00008 0.00037 

Slovakia -0.00069 0.00025 0.00043 0.00020 -0.00068 0.00022 0.00111 

T bl 45 S· I d a e · Imu ate I t EGARCH d I averages over our ru es or mo e 
Uncon. Uncon. Mean Variance Mean Variance Mean 
returns Var-ce buy of buys sell of sells buy and sell 

returns returns difference 

Hungary 0.00132 0.00025 0.00172 0.00022 0.00064 0.00020 0.00108 

Poland 0.00188 0.00064 0.00235 0.00064 0.00168 0.00070 0.00067 

Czech R. -0.00058 0.00009 2.lle-05 0.00004 -0.00023 0.00007 0.00023 

Slovakia -0.00069 0.00025 0.00039 0.00011 -0.00062 0.00014 0.00101 
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4.6 Nonlinear Predictability: the Artificial Neural Networks (ANNs) 

The asymmetric behaviour of returns and volatility over the buy and sell periods, as well as the 

failure of linear conditional mean estimators to characterise the temporal dynamics of stock returns 

in the previous sections of this chapter, suggest the existence of possible non-linearities. Gencay 

(1998) indicates that the linear conditional mean specifications with past buy-sell signals as 

predictors of current returns provide forecast improvements over linear models of past returns. 

Based on this results, in this section we examine linear and nonlinear predictability of stock returns 

from four transition markets with buy and sell signals generated from the moving average rules. We 

use the AR and EGARCH models with past buy and sell signals in the conditional mean 

specification as linear mean estimators, and the single-layer feedforward networks as non-linear. 

Broadly speaking Artificial Neural Networks (ANNs) are nonlinear nonparametric models. ANNs 

are data-driven modelling approach, which allows the data determine the structure and parameters 

of a model without any restrictive parametric modelling assumptions. As shown in Hornik et al. 

(1989) and Cybenko (1989), neural networks are more parsimonious models than linear subspace 

methods such as polynomial, spline, and trigonometric series expansions in approximating 

unknown functions. Thus, if the behaviour of economic variables exhibits nonlinearity, a suitably 

constructed neural network can serve as a useful tool to capture such regularity. ANNs are 

appealing in financial area because of the abundance of high quality financial data and the 

insufficient amount of testable financial models. As the speed of computers increases and the cost 

of computing declines exponentially, this computer intensive method becomes attractive. The past 

decade has seen an explosive growth in studies of neural networks, which has been brought about 
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largely by realisation that ANN s have powerful pattern recognition properties that may outperform 

other existing modelling techniques in many applications. Many different networks, such as single­

and multilayer feedforwrd networks, recurrent and statistical networks, associate memory networks 

and self-organisation networks, etc., have been developed for different purposes. Wide-ranging 

introductions to neural networks theory can be found in Hecht-Nielsen (1990), Hertz, Krogh and 

Palmer (1991), Wasswerman (1993) and Bose and Liang (1996). White, Gallant, Hornik, 

Stinchcombe and Wooldridge (1992) present a collection of papers that carry out mathematical 

analysis of the approximation and learning abilities of ANN s. Gately (1996) provides a very non­

technical approach to neural network for beginners. 

In the next section we give a brief review of the issues on the structure, estimation and financial 

applications of the Artificial Neural Networks (ANN). 

4.6.1 ANN structure 

The feedforward backpropagation networks are the most popular ones in financial applications, and 

will be used in the empirical part of this chapter. Therefore, we focus on the structure of the 

feedforward network. Individual units of the network are organised in layers: the input, hidden and 

output layers. F eedforward networks map inputs into outputs with signals flowing in one direction 

only, from the input layer to the hidden layer and then the output layer. Each unit in the hidden and 

output layers has a transfer function, which transfers the signal it receives. The input layer units do 

not have a transfer function, but they are used to distribute input signals to the network. Each 

connection has a numerical weight, which modifies the signals that pass through it. 
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Let us consider an example of a feedfo rward network with a single output unit, a single hidden 

layer with k hidden units, and 11 input units . 

Figure 4.1 Feedforward neural network 

Olltput layer: y 

weight vector: a = (ao , a 1 , . . . , a k )' 

f3 

inpZltlayer: X =(XO,x1 , ... , xn )' 

Any hidden layer unit receives the weighted sum of all inputs and a bias term, x 0' and produces an 

output signal 

j = 1,2, ... ,k , i = 0,1,2, ... , 11 (4 .9) 

where F is the transfer function, X i is the i rh input signal, and fJij is the weight of the connection 

from the i Ih input unit to the j'h hidden layer unit. In the same way, the output unit receives the 

weighted sum of the output signals of the hidden layer units, and produces a signal 

j = 0,1,2, ... , k , 

(4 .10) 

where G is the transfer function, a j is the weight of the connection from the j'h hidden layer unit 

to the output unit, and j = 0 indexes a bias unit n7o' Combining (4.9) and (4.10) we get 

k 

Y = G(ao + L a jF(LfJij xJ) = f(X,B), ( 4.11) 
j= 1 

13 3 
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where X is the vector of inputs, and 

network weights. 71 

A major advantage of ANNs is their ability to provide a flexible mapping between inputs and 

outputs. Based on a series of studies by Kolmogorov (1957), Sprecher (1965), Lorentz (1976), and 

Hecht-Nielsen (1987, 1990), any continuous function can be computed using linear summations 

and a single properly chosen nonlinear function. Therefore, the arrangement of the simple units into 

multilayer framework as displayed, for example, in Figure 4.1 produces a mapping between inputs 

and outputs that is consistent with any underlying functional relationship regardless of its "true" 

functional form. Having a general mapping between the input and output vectors eliminates the 

need for unjustified a priori restrictions which are needed in common statistical and econometric 

modelling. 

To implement a perfectly general mapping between inputs and outputs, correct transfer functions 

are needed. Studies by Cybenko (1989), Funahashi (1989), Hecht-Nielson (1990), Hornik et al. 

(1989) have shown that sigmoid transfer functions could serve this purpose. Stinchcombe and 

White (1989) show that some non-sigmoid functions can also be used. F and Gin (4.11) could be, 

for example, the sigmoid (or logistic) functions which produces output between 0 and 1: 

F(a)= G(a) = 1/(1+ exp(-a)) , or F(a)=a and G(a)=l/(l+exp(-a)); or the threshold 

functions, which produce binary (+1) or (0/1) output. 

i1 The basic ANN structure represented by (4.11) can be generalised in many different ways. For example, Poli and 
Jones (1994) introduce a feedforward network ANN with observation noise and random connection between units. 
Based on some distributional assumptions of the noise and randomness of the connections, such an ANN can be 
estimated by a Kalman filtering procedure. 
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As a result, an ANN can be viewed as a "universal approximator", i.e. a flexible functional form 

that can approximate an arbitrary function arbitrary well, given sufficiently many hidden layer units 

and properly adjusted weights. 

4.6.2 ANN estimation 

A good discussion of various estimation methods of the ANN is given in Kuan and White (1994). 

The most widely used estimation method (or so-called learning rule) is error backpropagation.72 

_ Backpropagation is a recursive gradient descent method that minimises the sum of the squared 

errors of the system by moving down the gradient of the error curve. More specifically, network 

weight vector B is chosen to minimise the loss function 

(4.12) 

where N is a sample size, Y t is desired (or actual) output value and Y t is the calculated output 

value, 

k 

Yt =f(XpB)=G(ao + La j F(Lf3i;xU ))' (4.13) 
j=l 

Then the iterative step of the gradient algorithm takes B to B + L1 B , and 

(4.14) 

where 7J > 0 is the step size, or learning rate, and V f (XI' B) is the gradient of f (XI' B) with 

respect to B (a column vector). 

72 For detailed presentation see Rwnelhart, Hilton and Williams (l986a, b). 
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The error surface of ANN is multidimensional and may contain many local minima. Therefore, 

training the network often requires experimentation with different starting weights, adjusting the 

learning rate, or adding a momentum term to avoid getting stuck in local optima or slow 

convergence. For the studies that aim to compare the ANN with some alternative models, as long 

as the ANN performs slightly better than its counterpart, it is not necessary to search for global 

minima. For studies that try to search for global minima, a grid search method is often used. 73 

White, Gallant, Hornik, Stinchcombe and Wooldridge (1992) have a good discussion about 

different methods of the global optimisation. 

4.6.3 Model selection 

Though ANN s can be universal approximators, the, optimal network structure is not determined 

automatically. Failures in applications are sometimes due to a suboptimal ANN structure. To 

develop the optimal network in any financial application, one needs to: 

1) identify the relevant inputs and outputs; 

2) choose the appropriate network structure including the necessary number of hidden layers and 

hidden layer units; 

3) use proper model evaluation criteria. 

J) ANN inputs and outputs 

It is a common practice to use independent variables as network inputs and use dependent variables 

as network outputs in a model. In order to minimise the effect of magnitude among the inputs and 

73 See. for example Gorr, Nagin and Szczypula (1994). 
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outputs and increase the effectiveness of the learning algorithm, the data set is often normalised (or 

scaled) to be within a specific range depending on the transfer function. For example, if ANN has 

sigmoid transfer function in the output unit, the output needs to be scaled to fall on the range of [0, 

1]. Otherwise, a target output which falls outside that range will constantly create large 

backpropagation errors, and the network will be unable to learn the input-output relationship that is 

implied by the particular training pattern. 

2) ANN architecture 

The next step, after specifYing the network input and output layers, is to determine the necessary 

number of hidden layers and hidden layer units. Cybenko (1988) proves that ANN with at most 

two hidden layers can approximate a particular set of functions with arbitrary accuracy given 

enough units per layer. It has also been proved that only one hidden layer is enough to approximate 

any continuous function (see Cybenko (1989), Hornik, Stinchcombe and White (1989».74 

The choice of the number of hidden units represents a compromise. If the number of units is too 

small, an ANN may not approximate at the desired accuracy. However, if the number of units is 

too large, an ANN may overfit and can not forecast out of sample. A useful method is cross-

validation, by which the number of hidden layer units is selected to optimise the out-of-sample 

performance (see White ( 1990». Another related model selection criterion, the predictive 

stochastic complexity (PSC) can also be used (see (4.24) below).75 

"74 Many empirical studies, such as Collins, Ghosh and Scofield (1988), Dutta and Shekhar (1988), Salchenberger, 
Cinar and Lash (1992), to name few, have confirmed this. 
~5 Other common methods for optimal network design have been reviewed by Refenes (1995b). These methods fall 
into three groups. The first is analytic techniques in which algebraic or statistical analysis is used to determine a 
priori hidden unit size. The main problem with these techniques is that they perform static analysis and can only 
provide a very rough estimate for hidden unit size. The second type is constructive techniques, such as cascade 
correlation (Fahlman and Lebiere (1990», tiling algorithm (Mezard and Nadal (1989)), neural decision tree (Gallant 
(1986») and upstart algorithm (Frean (1989». These methods construct hidden units inlayers one by one as they are 
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3) ANN evaluation criteria 

Let (Y 1 ,j) 2 , ... ,j) N) denote the predicted values and (y 1 ,Y 2 , ... ,Y N) be the actual values, where N 

is the sample size. Some of the commonly used criteria to compare the performance of alternative 

models are listed below. 76 

(1) Mean square error (MSE) (sometimes called mean square prediction error (MSPE» and root 

mean square error (RMSE): 

(4.15) 

RMSE = .J MSPE . (4.16) 

(2) Mean absolute error (MAE) and mean absolute percentage error (MAPE)77: 

(4.17) 

(4.18) 

(3) Coefficient of determination (R 2), which measures the proportion of the total variation in y that 

is accounted for by variation in the regressors: 

needed. Though these techniques guarantee the network convergence, generalisation (or forecasting) and stability 
are not guaranteed. The last type, network pruning, operates in the opposite direction by pruning the network and 
removing "redundant" or least sensitive connections (see Sietsma and Dow (1991) and Hergert, Fi11l1off and 
Zimmermann (1992)). However, optimal pruning is not always possible. 
76 For a discussion on criteria for forecast evaluation see e.g. Chapter 3 in Clements and Hendry (1998). 
7- MAPE is not available for samples, in which Y j has zero actual values. 
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Rl = 1 _ L (Yi - yz}2 
I(Yi - y)2 ' 

(4.19) 

(4) Pearson correlation (p), which measures the linear correlation between predicted values and 

actual values: 

p = L(Yi - Y)(Yi - Y) 78 

~L(yi - y)2 ~L(Yi _ y)2 
(4.20) 

(5) Theil's coefficient of inequality (U), which gives prediction performance relative to the random 

walk prediction, 

u= RMSE 

~ N ~ 1 L (y; - YH )' 

(4.21) 

(6) Akaike information criterion (AlC): AlC adjusts MSE to account for the model complexity, 

(N+kJ Ale = MSE N _ k ' (4.22) 

where k is the number of free parameters in the model, or the number of free weights in an ANN. 

(7) Schwarz information criterion (SIC), or Bayesian information criterion (BIC), is another way of 

adjusting MSE to account for model complexity, 

~8 Note that R2 can actually be expressed as the square of Pearson's p (see Greene (1993), p.192). 

139 



SIC = Ble = In(MSE) + In<;) k. (4.23) 

(8) Predictive stochastic complexity (PSC) due to Rissanen (I986a,b) 79 is a criterion to regularise 

network complexity computed as the average of squared, 'honest' prediction errors: 

1 N 
PSC = L (Yi - Yii)2 , 

N -k i=k+J 
(4.24) 

where Yii is the predicted value based on parameters obtained from the data up to the i-I 

observation. The prediction error (Yi - Yii) is 'honest' in the sense that no information at time t or 

beyond is used to calculate Yii .80 

(9) Direction accuracy (DA) and confusion rate (CR): 

1 
DA =-" a N~ Z' 

{
I if 

where ai = 0 othenvise 

CR= 1- DA. 

(4.25) 

(4.26) 

It is worth noting that the in-sample performance of any properly designed and well trained ANNs, 

evaluated by the above measures, is usually much better than from their traditional statistical 

counterparts. This is not surprising given the universal approximation properties of ANNs. To 

~9 See also Rissanen (1987). 
80 A model is selected if it has the smallest PSC within a class of models. Clearly, the PSC criterion is based on 
forward validation, which is important in forecasting. For a thorough discussion of the notion of stochastic 
complexity we refer to Rissanen (1989). 
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avoid spurious fit or overfit, it is important to test the trained ANN using hold-out sample, i.e. to 

evaluate the trained ANN using data not been used in training the ANN. Whether the selected 

ANN model is useful or not depends primarily on the out-oj-sample perJormance (see Swanson 

and White (1995a, b)). 

4.6.4 Financial applications of ANNs 

ANNs have been successfully applied in several financial areas, such as option pricing, bancruptcy 

prediction, exchange rate and stock market forecasting. We review some of the empirical studies in 

this area. 

There are only a few published studies regarding neural networks and option pricing. The first 

well-known experiment of option pricing using neural networks is by Hutchinson, Lo and Poggio 

( 1994). The potential value of neural network pricing formula has been shown by the fact that 

neural networks can discover the Black-Scholes formula from a two-year training set of simulated 

daily option prices. 81 The resulting network formula has been shown successful in pricing and 

delta-hedging options out-of-sample. When the network is applied to the pricing and delta-hedging 

of S&P 500 futures options from 1987 to 1991, the results show that neural networks outpetform 

the Black-Scholes formula. 

However, Hutchinson et al. (1994) assume constant risk-free interest rate and constant volatility of 

the underlying asset. They also assume that the return of the underlying asset is independent of the 

level of the stock price, so that the option pricing formula is homogeneous of degree one in both S, 

81 The option prices are simulated based on all the Black-Scholes assumptions, such as geometric Brownian motion 
with constant mean and volatility, constant interest rates, etc. 
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the asset price, and X, the exercise price. Thus their network has only two inputs, S/X and T (time 

to maturity), with the output, C/X, the ratio of the call price to the exercise price. It is reasonable to 

doubt whether such a network can capture all the option price variations. 

Qi and Maddala (1995a), unlike Hutchinson et aL (1994), use variables that are believed to be 

important in determining option prices as network inputs, and use option prices as network output. 

The input variables are the underlying asset price (S), exercise price (X), risk-free rate ( r), time-to­

maturity (1), and open interest (V). Such a network provides superior performance to the Black­

Scholes formula both in and out of sample for S&P 500 index call options, and the results are 

better than those reported by Hutchinson et al. (1994). 

In contrast to option pricing, a lot of studies have been done in bankruptcy prediction. The 

standard tools are discriminant analysis and the logit model. 

Tam and Kiang (1992) compare the neural network approach with linear discriminant analysis, the 

logit model and other approaches in predicting the failure of Texas banks from 1985 to 1987 using 

19 financial ratios. The empirical results show that neural networks offer better predictive accuracy 

than the alternative approaches. Salchenberger, Cinar and Lash (1992) present a neural network 

developed to predict the probability of failure for savings and loan associations, using financial 

variables that signal an institution's deteriorating financial condition. Unlike Tam and Kiang (1992) 

who use 19 financial ratios as network inputs, Salchenberger et al. (1992) reduce the data 

dimensions from 29 to 5 by stepwise regression, and use these five variables as network inputs. 
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Nevertheless, the results are similar: the ANN has performed as well as or better than the best logit 

model with their data. 82 

Exchange rates are well known for their unpredictability. Most of the unpredictable conclusions 

are drawn from linear time series techniques, thus the linear unpredictability of exchange rates may 

be due to limitations of linear models. As a class of flexible functional form nonlinear models , 

ANNs may provide improvements in forecasting accuracy. 

Kuan and Liu (1995) investigate the out-of-sample forecasting ability of neural networks on five 

exchange rates against the US dollar, including the British pound, the Canadian dollar, the 

Deutsche mark, the Japanese yen and the Swiss franc. For the Japanese yen and British pound, 

ANNs are found to have significant market timing ability and significantly lower out-of-sample 

MSE relative to the random walk model in different testing periods; for the Canadian dollar and 

Deutsche mark, however, the selected networks do not perform as good. The results show that 

nonlinearity in exchange rates may be exploited to improve both point and sign forecasts. These 

results are different from those in Tsibouris (1993), in which ANN is found to be useful III 

forecasting the direction of the exchange rate change, but not the magnitude. 

Other applications of ANN to exchange rates, which show a statistically significant improvement in 

performance of the models using ANNs are those by Abu-Mostafa (1995) and Hsu, Hsu and 

Tenorio (1995). 

8~ Other studies of bankruptcy prediction using ANNs are Altman, Marco and Varetto (1994), Tam and Kiang 
(1990). Odom and Sharda (1990), Coats and Fant (1992), Huang (1993) andPoddig (1995). 
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Traditional models, such as the CAPM and APT, have been very useful in expanding the 

understanding of stock price behaviour. However, their practical use is often limited given their 

limit success in forecasting stock returns. Because of the inductive, adaptive, and robust nature of 

ANN s, a great deal of effort has been devoted to developing ANN s for predicting stock returns. 

White (1988) investigates the forecastability of IBM daily stock returns using historical data. 

Though the surprisingly good fit (R 2 = 0.1 75) has been found in-sample, the out-of-sample 

correlation between actual and forecasted returns is -0.0699 (the in-sample correlation is 0.0751). 

Such results do not provide evidence for the forecastability of ANN. However, the question of 

forecastability remains open because of the simple network used in White's study. 

Chuah (1993) uses ANN to forecast stock index returns ofNYSE using data from January 1963 to 

December 1988, and compares the predictability and profitability of the network forecasts with 

those from a benchmark linear model using the same data. The predictability tests show that the 

forecast errors of the network are not significantly different from those of the benchmark linear 

model. The profitability test examines profits generated from a trading simulation over a five year 

forecast period, in comparison with a benchmark buy-and-hold strategy. The nonlinear network 

generated a total return of 116% versus 94% from the buy-and-hold strategy, while the linear 

network (with linear transfer function) generated only a 38% total return. Similar results have been 

obtained by Qi and Maddala (1995b) on S&P 500 index returns using data from January 1959 to 

June 1995. 

Gencay (1996 and 1998) uses the daily Dow Jones Industrial Index Average to examine the linear 

and nonlinear predictability of stock market returns with simple technical trading rules. Using buy 

and sell signals from moving average trading rules as inputs to the network, and index returns as 
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the output, the results show significant improvement in forecast performance of the feedforward 

network over autoregressive and EGARCH specifications with past buy and sell signals in linear 

mean equation. 

Refenes, Zapranis and Fransis (1995) show that neural networks are superior substitute for linear 

regression in a dynamic multi-factor model of stock returns, a dynamic version of APT. 83 

4.7 Empirical Analysis: Comparison of the 
Performance of Linear and Nonlinear (ANN) 
Trading Signals in the Transition Equity Markets 

Out-of-Sample Forecast 
Estimators with Technical 

In this section we present linear and nonlinear mean estimators with past buy and sell signals from 

the market, which will be employed for examination of predictability in the transition stock markets 

of Central Europe. The evidence of predictability should result from a careful analysis of out-of-

sample forecasts. In our study the 20-day out-of-sample mean square prediction error is used as a 

measure of the performance of our linear and nonlinear estimators. 

The first conditional mean specifications we employ is the autoregressive (AR) model84
: 

(4.27) 

83 Other studies in tIllS area are Kantijo and Tanigawa (1990), Refenes, Zapranis and Francis (1994), Haefke and 
Helmenstein (1995). 
84 The model is linear in parameters with the pre-deternllned variable s. S itself is a nonlinear function of the 
moving averages; tItis is spelt out in equations (4.2) and (4.3). Note, that throughout this chapter under linear mean 
specification we understand mean specification linear in parameters. 
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where s:~~~'111 are the lagged trading rules signals defined in (4.2) and (4.3), and i = 1, 2, 3, 4 

corresponds to four trading rules 1-150, 1-200, 5-150, 2-200 respectively. 

The next linear conditional mean specification belongs to the family of GARCH models, which 

allow volatility of returns to change over time. The model we employ here is EGARCH, which, on 

the basis of results from bootstrapping, appears to be the most successful among other considered 

models in replicating trading rules volatility. The EGARCH specification of conditional volatility 

with past trading signals in mean equation is specified as follows: 

-I-

rt = ao + L ais;-:t·nl + St 

i=l 

L2 where 5 t = ht lit and lit ~ NID(O, 1). 

(4.28) 

The nonlinear specification of the conditional mean we employ here is the feedforward regression 

model: 

d 4 

r
t 
= ao + L 17

j
F(aj + LfJijs:~s,n/) + St (4.29) 

j=l i=l 

where S ~ ID(O cr) d is the number of hidden units or nodes in the network, F(.) is nonlinear 
t ' t , 

transfer (or activation) function, {a
j

} and {fly} are the vectors of network weights, and i = 1, 2, 

3, 4 corresponds to four moving average rules. The network architecture we employ here is a 

single layer feedforward network. The activation function F is chosen to be the following sigmoidal 

function: 
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F(u) = tanh(u / 2) 

where 1I is a linear function of the input values and the network weights. This filter scales the 

outputs of the network between -1 and 1. 

4.7.1 Empirical Results 

In this section we examine the out-of-sample predictive performance of models defined in (4.27) -

(4.29) for each of the four transition stock markets. The forecast horizon is chosen to be 20 days. 

The out -of-sample prediction is done by excluding the last 20 observations from in-sample 

estimation. The out-of-sample forecasts with the buy and sell signals as the conditioning set are 

computed recursively by estimating E(r, Is;~7·nl), then E(rt+1Is;,ns,nl), etc., until the sample is 

exhausted. This will result in the sequence of 20 ex ante one-step-ahead forecasts. As a measure of 

the forecast performance we use the out-of-sample mean square prediction error (MSPE), defined 

in (4.15) of section 4.5.3. 

The mean square prediction errors of the autoregressive (AR), the EGARCH, and the feedforward 

network (NN) models with past buy and sell signals in conditional mean equations are presented in 

table 4.7. The AR specification is used as a benchmark model. Columns 4 and 6 of the table show 

the ratio of the MSPEs of the EGARCH and NN models to the MSPE of the AR specification 

respectively. 
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Starting from companson of our results for linear specifications of the conditional mean, we 

document that out-of-sample forecast performance of the EGARCH model does outperform the 

benchmark AR specification in three out of the four markets examined. EGARCH provides about 

19.4%, 15.4% and 17.3% improvement over the AR model for Hungarian, Polish and Czech 

markets respectively. In case of Slovakia the ratio of the MSPEs of EGARCH and AR 

specifications is close to the unitary value, which indicates the lack of improvement in forecast 

performance. On average across four markets, the MSPE of the EGARCH model is 11.7% smaller 

than the MSPE of the benchmark AR model. 

The results from the feedforward network regression85 with past buy-sell signals indicate significant 

improvement in forecast performance over the benchmark AR model. The difference between the 

MSPEs ofNN and AR specifications varies from 11.5% for Slovak to 41.6% for Hungarian data. 

On average, the improvement in the MSPE of the feedforward network model is about 28.4%. 

The forecast improvements of the feedforward network regression are substantial and dominate the 

results from EGARCH linear conditional mean specification. This evidence is confirmed by the 

Figures 4.3 - 4.6 at the end of this chapter. 86 

85 The optimal number of hidden layer units for each of the series is selected by method of cross-validation, which 
optimises the out-of-sample performance of the network. The chosen number of hidden units varies from 5 to 8 
across the markets. 
86 The out-of-sample forecasting period considered in this chapter covers 20 days only, and is too short to draw 
robust conclusions about forecasting performance of the models employed in our analysis. However, we would like to 
point to the fact that the problem with convergence of the neural network we faced at the beginning of the work on 
this chapter induced us to undertake the out -of sample forecasting experiments for several subsamples of our dataset. 
This at the same time enabled us to compare the performance of the models employed in our analysis under different 
market conditions. In most of the cases the results confirmed the substantial forecast improvements of the 
feedforward network regression over the models with the linear conditional mean specification. This fact supports 
robustness of the results presented in Table 4.7. 
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Table 4.6 Comparison of the MSPEs of linear and nonlinear models of conditional mean 

MSPE of MSPE of MSPE of 
AR EGARCH FNN 

in levels 
(xlO--4) 

in levels 

(xlO--4) as a ratio to in levels As a ratio to 
MSPEofAR (xlO-4) MSPEofAR 

Hungary 0.5432173 0.437841 0.806014 0.317121 0.583783 

(19.40/0 ~ ) (41.60/0 ~ ) 
Po/and 1.3898767 l.175244 0.845574 0.994630 0.715625 

(15.4% ~ ) (28.4% ~) 
Czech Rep. 0.6306617 0.52l301 0.826594 0.428318 0.679157 

(17.30/0 ~ ) (32.1 % ~ ) 
Slovakia 1.691337 l.782788 1.054018 1.495385 0.884843 

(5.4% t) (11.5% ~ ) 

A verage forecast 
improvement over AR 11.70/0 t 28.4% t 

4.8 Summary 

Recent research provides evidence that technical trading rules devised by investors and technical 

analysts may provide positive profits. Most contributions to this literature deal with mature 

markets. In this chapter we work with the data from four new stock markets of Central Europe. 

Our results provide strong support for the technical strategies applied to our dataset. They are 

consistent with technical rules having predictive power. 
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The results from the application of the moving average rules to our senes document several 

important stylised facts. Firstly, buy signals consistently generate higher returns than sell signals. In 

addition we find that returns associated with sell signals are negative. 87 This fact cannot be 

explained by various seasonalities since it is based on a large fraction of trading days. Many 

previous studies found as we did that returns are predictable. This predictability can reflect either 

changes in expected returns that result from an equilibrium model, or market inefficiency. Although 

rational changes in expected returns are possible, it is hard to imagine an equilibrium model that 

predicts negative returns over such a large fraction of trading days. Our further results reveal that 

the differences between buy and sell returns are not easily explained by changing risk levels. We 

document that the returns associated with buy signals are less volatile than returns associated with 

sell signals, which is inconsistent with existing models of changing risk. And finally, the last stylised 

fact we obtain from the application of technical strategies to our data is that for all four markets the 

fraction of positive returns associated with buy periods is at about 10 per cent or more larger than 

the fraction of positive returns generated from sell signals. 

In the second part of the chapter we use the bootstrap methodology to compare the returns 

conditional on trading rules signals from the actual series to the returns from the simulated series 

generated from three popular models for stock prices. These null models are the AR, the GARCH-

M of Engle, Lilien and Robins (1987), and the EGARCH by Nelson (1991). We find that the 

employed models are not very successful in explaining the moving average rules profits generated 

by the actual data, and account only for a fraction of the differences between actual buy and sell 

returns. Our findings are quite in accord with the results of previous research, which uses bootstrap 

87 We want to emphasise that our analysis focuses on the simpliest trading rules. The subsequent future research 
could involve the investigation of more elaborate technical strategies, which could potentially increase the 
magnitude of our results. 
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methods and trading rules for the purpose of checking the adequacy of different commonly used 

models of stock prices in application to more mature markets. 

Our conclusion about the asymmetric nature of returns and volatility over the periods of buy and 

sell signals, as well as the fact that linear conditional mean estimators with past returns fail to 

characterise the temporal dynamics of security returns, suggest the existence of possible non­

linearities. Previous studies indicate that the linear conditional mean specifications with past buy­

sell signals as predictors of current returns provide forecast improvements over linear models of 

past returns. We therefore use the AR and EGARCH models with past buy and sell signals in the 

conditional mean specification as linear mean estimators, and single-layer feedforward networks as 

nonlinear estimators. The 20 day out-of-sample mean square prediction error is used as a measure 

of the performance of the two approaches. The results indicate strong evidence of nonlinear 

predictability in the stock market returns by using the past buy and sell signals of the moving 

average rules. The improvement in forecast performance of the feedforward network model over 

the AR specification with past buy-sell signals varies from 11.50/0 for the Slovak to 41.6% for the 

Hungarian data. As a result, one of the main findings of our analysis indicates that nonlinearities in 

the stock return series play an important role in modelling the conditional mean of the security 

returns. 
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Figure 4.2.1 
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Figure 4.2.2 
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'igurc 4.3 Linear vs Nonlinear Predictability of Hungarian Returns 
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Figure 4.4 Linear vs Nonlinear Predictability of Polish Returns 
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Figure 4.5 Linear vs Nonlinear Predictability of Czech Returns 
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Figure 4.6 Linear vs Nonlinear Predictability of Slovak Returns 
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CHAPTER 5 

INTERNATIONAL CAPITAL ASSET PRICING MODEL 

AND THE INTEGRATION OF THE TRANSITION MARKETS OF 

CENTRAL EUROPE INTO INTERNATIONAL CAPITAL MARKETS 

5.1 Introduction 

A major part of the research effort in finance is directed towards understanding why we observe a 

variety of financial assets with different expected rates of return. To appreciate the magnitude of 

this difference, note that in 1926 a nice dinner for two in New York would have cost about $10. If 

the same $10 had been invested in Treasury bills, by the end of 1991 it would have grown to $110, 

still enough for a nice dinner for two. Yet $10 invested in stocks would have grown to $6,756. 

The point is that the average return differentials among financial assets are both substantial and 

economically important. 

A variety of asset pricing models have been proposed to explain this phenomenon. Differences 

among these models arise from differences in their assumptions that restrict investors' preferences, 

endowments, production and information sets; the stochastic process governing the arrival of news 

in the financial markets; and the type of frictions allowed in the markets for real and financial 

assets. 

While there are differences among asset pricing models, there are also important commonalties. All 

asset pricing models are based on one or more of three central concepts. The first is the law of one 

price, according to which the prices of any two claims, which promise the same payoff must be the 

same. The law of one price arises as an implication of the second concept, the no-arbitrage 

158 



principle. Arbitrage opportunities tend to be eliminated by trading in financial markets, because 

prices adjust as investors attempt to exploit them. The law of one price follows from the no-

arbitrage principle, when it is possible to buy or sell two claims to the same future payoff. If the 

two claims do not have the same price, and if transaction costs are smaller than the difference 

between their prices, then an arbitrage opportunity is created. The third central concept behind 

asset pricing models is financial market equilibrium. Investor's desired holdings of financial assets 

are derived from an optimisation problem. A necessary condition for financial market equilibrium 

in a market with no frictions is that the first -order conditions of the investor's optimisation 

problem are satisfied. This requires that investors be indifferent at the margin to small changes in 

their asset holdings. Equilibrium asset pricing models follow from the first-order conditions for the 

investor's portfolio choice problem and from a market-clearing condition. The market clearing 

condition states that the aggregate of the investor's desired asset holdings must equal the 

aggregate "market portfolio" of securities in supply. 

The earliest of the equilibrium asset pricing models is the capital asset pricing model (CAPM) 

developed in the early 1960s. The credit for the development of the CAPM is assigned to a number 

of individuals, including Sharpe, Lintner, Treynor, Mossin, Fama, and Black, with essential 

groundwork laid by Markowitz and Tobin. In his seminal research Markovitz (1959) considered 

the investor's portfolio selection problem in terms of expected return and variance of return. He 

argued that investors would optimally hold a mean-variance efficient portfolio, that is, a portfolio 

with the highest expected return for a given level ofvariance.87 Sharpe (1964) and Lintner (1965) 

8- If the risk-ayerse agent is presented with a portfolio 'A' (of 11 securities) and portfolio 'B' (of a different set of 11 

securities), then according to mean variance criterion (MVC) , portfolio A is preferred to portfolio B if (i) 
EA (R) 2: EB(R) and (ii) varA (R) ~ varB (R). Portfolios that satisfy the MVC are known as the set of efficient 

portfolios. 
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built on Markowitz's work to develop economy-wide implications. Their model, called the Capital 

Asset Pricing Model, is based on some simplifYing assumptions: 

I. Agents can borrow and lend as much as they like at the risk free rate. 

2. All individuals have homogeneous expectations about expected returns and the variances and 

covariances between the various returns, and optimally hold mean-variance efficient portfolios. 

3. Capital markets are perfectly competitive and frictionless (i.e. no taxes, transaction costs or 

restrictions on short sales, and an assets are perfectly divisible and marketable). 

According to Sharpe and Lintner, given the assumptions above, the portfolio of all invested 

wealth, or the market portfolio, will be a mean-variance efficient portfolio. The Capital Asset 

Pricing l\fodel is a direct implication of the mean-variance efficiency of the market portfolio. In its 

simplest form the CAPM predicts that the expected return on an asset above the risk-free rate is 

proportional to the nondiversifiable risk, measured by the asset's beta, which is the covariance of 

the asset return with the market portfolio. 88 Merton (1973) extended the CAPM, which is a single 

period model, to an economic environment where investors make consumption, savings, and 

investment decisions repetitively over time. 

In our analysis we test an international version of the CAPM (ICAPM). In the international CAPM 

investors are presumed to hold a diversified portfolio of equities from all national markets, that is, 

a world market portfolio. The ICAPM implies that if the particular market is the part of a global 

market (or integrated in the global market) then this market's expected return in excess of the safe 

rate should be proportional to the expected excess return on a world market portfolio. 

88 The CAPM is a single-beta model, where the expected return on an asset is a linear function of its market beta. 
The well-known alternative to the CAPM is multi-beta model by Ross (1976), the arbitrage pricing theory (APT), 
based on no-arbitrage principle discussed above. For a brief review of this alternative asset pricing model see 
Appendix 5.1 at the end of this chapter. 
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In this chapter the ICAPM is applied to a dataset including daily stock price data from both 

developed (U.S. and Germany) and relatively new transition equity markets (Hungary and Poland). 

This will allow us to address the issue of integration of the transition markets of Central Europe 

into the global capital market. The dynamics of the conditional covariance matrix of the assets in 

our system will be parameterized using multivariate GARCH specification, which allows volatility 

spillover effects between the markets. Methodologically our specification extends the multivariate 

GARCH model of Engle and Kroner (1995) ("BEKK") to accommodate GARCH-M effects. We 

compare the performance of the standard ICAPM (the benchmark model) to two alternative 

specifications (the partial segmentation and partial integration models) which can provide useful 

insights, in case the standard model is misspecified. 

5.2 The Capital Asset Pricing Model: A Review 

The aim of this section is to provide a review of the Capital Asset Pricing Model, including its 

derivatiol\ extensions, tests and empirical applications. 

5.2.1 Derivation of the CAPM 

The expected return, ERp, and standard deviation, () p' for any portfolio 'p' consisting of n risky 

asset and a risk free asset are: 

n n 

ERp = LXjERj +[1- Lxj]r 

a = p 

1 1 

n 2 2 n n 
"'x.a. +2'" Ix.x a.· £...1 I £....IJU 
i=l l=lJ=l 

(5.1) 

(5.2) 
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where Xi is proportion of wealth held in asset i, i =1, 2, ... n, ERi is the expected return on asset i, 

and r is a risk free rate. The CAPM is the solution to the problem of minimising (J' p subject to a 

given level of expected return E.""Rp . The Lagrangian is: 

(5.3) 

Choosing Xi to minimise L gives a set of first-order conditions of the form: 

j~n 

(5.4) 

Differentiation with respect to F gives: 

n n 

aLI aF = ERp - LXiE~ - (1- LxJr = 0 (5.5) 
i=l i=l 

Multiplying the first equation in (5.4) by Xl' the second by X 2 ' etc., summing over all equations 

and using (5.2) gives: 

(5.6) 

From (5.6) we get 

n n n n 

(5 p = F[LXiE~ - LX/A] =F[LXiE~ + (1-Lxi)r - r] 
i=l i=l i=l i=l 

(5.7) 

n 

At the point where LXi = 1 (5.7) gives: 
i=l 
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(5.8) 

1/ F = (ERm - r) / (J m (5.9) 

where ERm = (2: xiERj) and m denotes the market portfolio. From (5.9) we see that the term lIF 

is the slope of the capital market line. It measures the price of a unit risk, which is the same for all 

investors. Define the price of market risk, A, as follows: 

(5.10) 

Since the first order conditions in (5.4) hold for all investors independent of the "tastes" we can 

use this to derive the CAPM expression for equilibrium returns on each individual asset in the 

portfolio. 

n 

The ith equation in (5.4) at the point LXi = 1 is: 
i=1 

1 ) n 
ER = r + --[x(J-:- + "" X .(J .. ] 

1 F 11 L.,;Jlj 
(Jm ;=1 

(5.11) 

Substitute from (5.10) into (5.11) 

(5.12) 

Note that: 

n 

(Jim = cov(~,Rm) = COV[~,(xIR1 +x2R2 + ... +xnRn )] = Xi (Ji
2 + LXj(Jij i"* j 

j=1 

(5.13) 

and substituting (5.13) in (5.12) we obtain the CAPM expression for the equilibrium expected 

return on asset i: 
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(5.14) 

where 

(5.15) 

The one-period CAPM in (5. 14) predicts that in equilibrium all investors will hold the market 

portfolio (i.e. all risky assets will be held in the same proportions in each individual's portfolio). 

Merton (1973) developed this idea in an intertemporal framework, when agents face investment 

decisions at discrete time steps t, t = 1, 2,... ,and showed that the expected return on the market 

portfolio in excess of risk free rate is proportional to the expected variance of returns on the 

market portfolio 

(5.16) 

The Merton's intertemporal CAPM implies that to be willingly held as part of a diversified 

portfolio the expected return on asset (or portfolio of assets which is a subset of the market 

portfolio) i is given by: 

(5.17) 

where 

(5.18) 

As a result, according to the CAPM, the market only rewards investors for nondiversifiable 

systematic risk. The required rate of return to willingly hold an individual stock as part of a wider 

portfolio is equal to the risk-free rate plus a reward for risk or risk premium. 

164 



5.2.2 Critique of the Tests of the CAPM. 

One of the most controversial papers written on the CAPM is that by Roll (1977). A full 

presentation of Roll's argument need not be given here, but his major points are discussed. 

Following Roll's argument, the CAPM is a general equilibrium model based on the existence of the 

portfolio that is defined as the value weighted portfolio of all investment assets. Furthermore, the 

market portfolio is defined as ex ante mean-variance efficient. Roll shows that the only true test of 

the CAPM is whether the market portfolio is in fact ex ante mean-variance efficient. However, the 

true market portfolio has not yet been observed, since it includes all investment assets (e.g., stocks, 

bonds, real estate, art objects, and human capital). 

The main points of the argument are summarised below: 

1. Tests of the CAPM are extremely sensitive to which market proxy is used, even though returns 

on most market proxies (e.g., the S&P 500 and the NYSE index) are highly correlated. 

2. A researcher cannot unambiguously discern whether the CAPM failed the test because the true 

market portfolio was ex ante mean-variance inefficient or because the market proxy was 

inefficient. The researcher also cannot unambiguously discern whether the test supported the 

CAPM because the true market portfolio was ex ante mean-variance efficient or because the 

market proxy was efficient. 

3. The effectiveness of variables such as dividend yield in explaining risk-adjusted asset returns is 

evidence that the market proxies used to test the CAPM are not ex ante mean-variance efficient. 

Hence, Roll submits that the CAPM is not testable until the exact composition of the true market 

portfolio is known, and the only valid test of the CAPM is to observe whether the ex ante true 
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market portfolio is mean-variance efficient. As a result of his findings, Roll does not believe that 

there ever will be an unambiguous way to test the CAPM owing to the nonobservability of the true 

market portfolio and its characteristics. 

Despite this critique researchers have continued to explore the empirical validity of the CAPM 

even though their proxy of the market portfolio could be incorrect. This is because it is still of 

interest to see how far a particular empirical model, even an imperfect one, can explain equilibrium 

returns. 

5.2.3 Direct tests of the CAPM 

Direct tests of the CAPM use a two-pass regression technique. Assuming that fli is constant over 

time, in the first-pass time-series regression (Rit - rt ) is regressed on (Rt m - rt ) and a constant 

term: 

(5.19) 

On the basis of the finance theory underlying the CAPM we expect the estimates of the constant 

term a. to be close to zero for each security or for a portfolio of securities (i = 1, 2, ... k). In the 
, 1 , 

second-pass cross-section regression the sample mean returns R j are regressed on the estimates of 

" betas, fl s, for each security from the first-pass regression: 

" 
Rj = If/ 0 + If/lflj + Vj 

(5.20) 

Given the CAPM relation we expect: 
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An even stronger test of the CAPM in the second-pass regression is to note that if there is an 

unbiased estimate of Pi' then only Pi should influence Ri . Then the second-pass can be based on 

the following cross-section regression: 

(5.21) 

where () Ei 2 is an unbiased estimate of the variance of security i from the first-pass regression. The 

null hypothesis is: 

Ho = 'I' 2 = '1'3 = 0 

1. '1'1 * 0 would indicate the presence of non-linearities in the security market line. 

2. '1'3 * 0 would mean that the diversifiable risk affects the expected return on a security. 

Both 1. and 2. above are violations of the CAPM. 

There are a number of econometric problems with the use of the two step approach. 

1. The CAPM does not rule out the possibility that the variances of the error terms are not 

constant (i.e. the error terms may be heteroskedastic). In this case the OLS standard errors are 

incorrect and other estimation techniques need to be used. 

2. The CAPM does not rule out the error terms being serially correlated over time. In this case one 

could use, for instance, the GMM estimator. 

3. The estimate Pi from the first-pass regression may be unbiased, but measured with error. This 

would mean that in the second-pass regression one would face so-called 'error in variables' 

problem, which would mean that the OLS coefficient of '1'1 is downward biased and 'I' 0 is 

upward biased. Besides if the true Pi is positively correlated with the variance of the error () Ei 
2 

, 

then the latter serves as a proxy for the true Pi and as a result, if Pi is measured with error, then 

() Ii 
1 may be significant in the second-pass regression. 
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4. In case the distribution of the error term & it is non-normal then estimation technique based on 

normality will produce biased estimates. For example, positive skewness in the residuals of the 

cross-section regressions will show up as an association between residual risk and return even 

though in the true model there is no association. 

As an illustration of the early studies addressing the problems listed above can be considered that 

of Black et al. (1972) using monthly rates of return in the first-pass time series regressions. They 

have minimized the heteroskedasticity problem and the error in estimating the betas by grouping all 

stocks into a set of ten portfolios based on the size of the betas for individual securities. In the 

first-pass time series regression the return Rif for each of the ten portfolios is regressed on R,m. 

The results of the second pass regression (the R2 of the regression is 0.98), in general support the 

CAPM. 

Fama and MacBeth (1974) using the same approach of grouping all stocks into a set of 20 

portfolios based on the size of the betas for individual securities extended the second-pass cross-

section regression used in Black et al (1972) by including f3~ and a~ from the first-pass 

regression to get (5.21) above. 89 The second-pass regression is repeated for each month over 

1935-1968 to see how the IfI s vary over time. They find that the average of the 1f12 and 1f13 

estimates are not significantly different from zero and hence support the standard CAPM. They 

also find that 1Ji is not serially correlated, which is again in support of the CAPM. 

89 More recent empirical studies incorporate the other cross-sectional variables such as the relative size of firnls, 
measured bv the market value of their equity, the ratio of book-to-market-equity, and related variables. Fama and 
French (l9~)2) is a prominent recent example of tillS approach. Berk (1995) provides a justification for using 
relative market value and book-to-price ratios as measures of expected returns. 
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5.2.4 Consumption CAPM 

An alternative view on the determination of the equilibrium returns in a well-diversified portfolio is 

provided by the intertemporal consumption CAPM (C-CAPM). This view was developed by Lucas 

in the paper' Asset Prices in an Exchange Economy' in 1978 and Mankiw and Shapiro in the paper 

'Risk and Return: Consumption Beta Versus Market Beta' in 1986. If in the standard one-period 

CAPM the individual investor's objective function is assumed to be fully determined by the 

standard deviation and return on the portfolio, then in the case of the C-CAPM the investor 

maximises expected utility which depends only on current and future consumption. 

Following Mankiw and Shapiro (1986), suppose that the individual investor maximises: 

Et[:t (PU(Ct+j)] ' 
]=0 

(5.22) 

where U(C) is the utility function and 0 = (1 + tpfl where t p is the individual's subjective rate of 

time preference for the consumption today versus consumption tomorrow assumed to be constant. 

The first order condition for maximising utility has the agent equating the utility loss from the 

reduction in current consumption, with additional gain in consumption next period. A $1 reduction 

in consumption today reduces utility by U' (Ct ) but results in an expected payout of $( 1 + Et Rit+l ) 

next period. When spent on the next period's consumption, the extra utility per $ next period 

discounted at the rate Ot is OtU' (Ct+l ) . As a result in equilibrium we have: 

(5.23) 

Suppose we define S as the marginal rate of substitution of current for future consumption: , t+l 

(5.24) 

and use the specific form of the utility function: 
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U(C ) = Ct
l

-

a 

t 1 ' -a (5.25) 

where a is a constant Arrow-Pratt measure of relative risk aversion. Then one can derive the 

expression for the C-CAPM in the form similar to the standard CAPM90 : 

(5.26) 

where 

c Ct+l ( h h' . gt+l = -- t e growt In consumptIOn) 
Ct 

(5.27) 

rOt = 1- ESt / ESt (5.28) 

r 1t = aB / ESt (5.29) 

As a result, the interpretation of the C-CAPM is as follows. If the return on the asset i has a low 

covariance with consumption growth then it will be willingly held, even, if its expected return is 

relatively low. This is because the asset on average has a high return when consumption is low and 

hence can be sold to finance current consumption, which has high marginal utility. 

The C-CAPM model presented above can be tested either using cross-section or time series data. 

Cross-section test is based on the following rearrangement of (5.26), which represents security 

market line for this model. 

ERi = a o + a/lei (5.30) 

where a 0 = (1- ES) / ES (5.31) 

(5.32) 

90 See Mankiw and Shapiro (1986) for a detailed derivation. 
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(5.33) 

The expected value of the marginal rate of substitution ES and cov( R m
, gC) are assumed to be 

constant over time. Note that a l is the same for all stocks, as it depends only on market return 

Rm and consumption growth gO'. Sample mean value Rj can be used as a proxy for ER
j

• 

Mankiw and Shapiro (1986) test the basic CAPM and the C-CAPM using cross section data on 

464 companies listed on the NYSE. They find that the basic CAPM clearly outperforms the C-

CAPM, since when the mean value Rj is regressed on both f3 mi (from the basic CAPM) and f3 ci 

(from C-CAPM), f3 mi is statistically significant while the latter is not. 

Equation (5.24) suggests a way in which we can perform time-series test of the 

C-CAPM. As it shown in Scott (1991), if we assume a constant relative risk aversion utility 

function (like e.g. in (5.25) above), and rational expectations (Rit+l = ERit+l + &it+l)' then (5.24) for 

two assets i and j becomes: 

[(1 + 1\f+1 )B(gt+l r a 
- 1] = &/t+l 

[(1 + Rjt+1 )B(gt+1 ) -a - 1] = & Jf+l (5.34) 

Equations in (5.34) imply a set of cross-section restrictions, since the parameters (B, a ) appear in 

equation for any asset or portfolio i. The restrictions suggest that expected returns on all assets are 

proportional. If we estimate these equations jointly using time-series data, these cross-section 

restrictions provide a strong test of the C-CAPM. However, the studies of Hod rick (1987), Cumby 

(1990) and Smith (1993) show that this model does not appear to perform well for a wide range of 

alternative assets included in the portfolio by the authors. The Smith's studies show that the 

considered parameters (B, a) are not constant over time. Hence the model or some of its 

assumptions appear to be invalid. 
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Flood et al. (1987) apply (5.34) to the aggregate stock market return, and, noting that (5.34) 

applies to any return horizon t + j , have for j = 1,2, ... : 

(5.35) 

Equation (5.35) can be estimated on time series data and because it holds for horizons j = 1,2, ... , 

we again have a system of equations with common parameters (B, a ). Flood et al find that the C­

CAPM represented by (5.35) performs worse, in statistical terms, as the time horizon is extended. 

In general, the C-CAPM does not appear to perform well in empirical tests. 

5.2.5 Changing Perception of Risk: CAPM with Time-Varying Risk Premia 

The evidence suggests that equilibrium returns on an aggregate stock market index are influenced 

by agents' changing perception of risk. Hence the CAPM with time varying risk-premia would 

appear to be an improvement on the assumptions of the standard CAPM. Modelling of time­

varying risk-premia has been one of the recent growth areas in empirical research on asset prices. 

It may seem strange that financial economists have only recently focused on most obvious attribute 

of holding assets, namely that they are risky and that perceived riskiness is likely to vary 

substantially over different historical periods. In this section we present a number of alternative 

models~ which examine the validity of the CAPM under the assumption that equilibrium returns on 

assets depend on time-varying risk premium determined by conditional variances and covariances. 

Poterba and Summers (1988) investigate whether changes in investor's perception of risk are large 

enough to account for the very sharp movements in stock prices that are actually observed. 

According to the rational valuation formula (R VF) for stock prices: 
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and 

J 

r Hj = 1/ n (l + rt+i + rpt+i) 
i=l 

(5.36) 

(5.37) 

where r t is discount rate, Dt are dividends paid, rt is risk-free rate and rpt is risk premium. As a 

result, the stock prices may vary if forecasts of expected dividends are revised or if the discount 

factor changes: Poterba and Summers concentrate on the behaviour of the latter. They argue that 

growth in future dividends is fairly predictable and concentrate instead on volatility and persistence 

of the risk premium rpt. 

The authors of the article treat all variables in the R VF in real terms and consider ~ as the real 

stock price of the market portfolio.91 The assumptions of the model are: 

1. Dividends, D t , grow at a constant rate g, such that E[ (Dt+ j ) = (1 + g)i D t . 

2. The risk-free rate is constant, r[ = r . 

The CAPM suggests that the risk premium on the market portfolio IS proportional to the 

conditional variance of forecast errors 

(5.38) 

where lE 0-
2 = rp is the risk premium In Merton's intertemporal CAPM the market price of t 1+1 t . 

risk, 1, depends on different consumers' relative risk aversion parameters which are assumed to 

be constant. Poterba and Summers assume and later verify empirically that volatility can be 

represented by ARMA models and consider an AR(I) process: 

with 0> a > 1 
I 

(5.39) 

91 As the approximation of the market portfolio index they use S&P index over the period 1928-1984. 
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where vr+l is a white noise error. If at is small, the degree of persistence in volatility is small and 

vice versa. From (5.38) if u/ follows an AR(l) process then so will rp
t

: 

lp = Aa +Aa lp rOt (-1 (5.40) 

Poterba and Summers linearise (5.36) around the mean value of the risk premium lp and calculate 

percentage response of ~ to the percentage change in u t 2 
: 

o{ln~] _ -rp 

qln(u/)] - [1+r+rp-a 1(1+g)] 
(5.41) 

As a result, we see that the response of P, to a change in volatility u t 
2 increases with the degree 

of persistence a l' Poterba and Summers compute an unconditional volatility measure for the 

variance of monthly stock returns based on average daily change in the S&P composite index over 

a particular month. For the month t : 

(5.42) 

where Sri is the daily change in the stock index in month t and m is the number of trading days in 

the month. Then they investigate the persistence in U t 2 using the number of alternative ARMA 

models. For example, for AR(l) model they obtain a value of at in the range 0.6 - 0.7. 

-
Substituting the values of the average return on Treasury bills (r = 0.4 percent per annum = 0.035 

percent per month), average growth rate of real dividends (g= 0.01 percent per annum = 0.00087 

percent per month), mean risk premium: average value of the excess return on the market portfolio 

(ERrIl - r) (rp = 0.006 per month), they find that a 50 percent increase in volatility (u t 
2

) 

depresses the share prices by only 0.7 percent. As a result, according to Poterba and Summers the 

measured persistence in volatility is too low to explain the observed sharp movements in stock 

pnces. 
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Chou (1988) argues that the Poterba-Summers estimation of the time varying variance (J/ is not a 

correct measure of conditional variance, as it remains constant within a given horizon (i.e. a 

month) and is then assumed to vary over a longer horizons. Besides Pagan and Ullah (1988) show 

that the Poterba-Summers two step estimation technique yields inconsistent estimates for 

parameters. Chou repeats Poterba-Summers analysis using GARCH(1,I) model for conditional 

variance. Chou, as in Poterba and Summers, assumes expected returns on the market portfolio are 

given by the CAPM (plus RE): 

(S.43) 

Taking expectations it is easy to see that the best forecast of the excess return depends on the best 

forecast of the conditional variance: 

(S.44) 

Therefore, the conditional forecast error is: 

(S.4S) 

where we assume &t+l is N(O,(J~+I) 

The conditional variance of the forecast error: 

(S.46) 

According to the CAPM the expected excess return varies directly with the time varying variance 

of the forecast errors: more risk requires compensation in the form of higher expected returns. To 

describe the time-path of the conditional variance Chou assumes a GARCH(I,I) model, where the 

conditional variance is the weighted average of last periods conditional variance (J; and the 

squared forecast error &~: 

(S.47) 
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Chou estimates (5.43) and (5.47) simultaneously (GARCH-M model) usmg the maXImum 

likelihood method. He uses the data for weekly returns on the NYSE index over the period 1962-

1985. Chou finds that the estimate of the market price of risk A over various periods is not well 

determined statistically, however it has plausible point estimates in the range 3 - 6.92 The value of 

(a1 +az) is very stable over subperiods and is around 0.98. This fact indicates substantial 

persistence in the conditional variance. Chou, which uses Poterba-Summers framework, shows 

that when ~ +az = 1 (which he founds to be largely acceptable on statistical grounds), then stock 

prices move tremendously and the elasticity c(ln P') / c(ln (}t
2

) can be as high as -60. 

When Chou estimates his GARCH(1, 1) model using returns over N = 5, 20, 50 and 250 trading 

days, he finds that estimates of a 1 +az are very stable at around 0.95 in all cases. For the sake of 

comparison he calculates the Poterba-Summers measure of variance (5.42) using different values 

of N. He then estimates (}~'t+l = a o + al(}~t + Vt+l for these various values of N. He finds that the 

degree of persistence, a I , varies a lot for different N ranging from near zero to 0.9. This suggests 

that Poterba-Summers method may not have correctly captured the true degree of persistence. 

Attanasio and Wadhwani (1990) start with the empirical observation that, from previous empirical 

work, it is known that the expected return on the aggregate stock market index (the proxy of the 

market portfolio) is often significantly related on the previous period's dividend price ratio. This 

fact violates the EMH under constant expected excess returns. The literature in this area often 

assumed a constant risk premium but then sometimes interpreted the presence of the dividend yield 

as indicative of a time-varying risk premium. Attanasio and Wadhwani suggest that if we explicitly 

model the time-varying risk premium then we may find that the dividend yield (Zt) does not 

influence expected returns. This would support the CAPM version of the EMH. The authors 

9~ Poterba and Summers obtain the value of 3.5. 
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assume that the time-varying conditional vanance of the market return is gIven by the 

GARCH(I,2) model with the added dividend yield. They use monthly data on an aggregate US 

stock price series over period 1953-1988, and get the following results: 

[R t: 1 - rt ] = -0.035 + 0.55Zt - 4.051'( + 22.3u:+1 

(0.025) (0.39) (1.05) (11.3) 

u:+ 1 = a 0 + 0.87 u~ + 1.5(1 0-2 )8~ + 2.2(10-2 )8:_1 + 5.3(10-2 )Zt 

(0.06) (2.9.10-2
) (4.0.10-2

) (2.4.10-2
) 

where figures in parentheses are standard errors. 

(5.48) 

(5.49) 

As we see in the CAPM relationship (5.48) the conditional variance is found to be significant and 

the dividend yield is not, thus supporting the CAPM. However, the results in (5.48) are reported 

when the authors also include the short rate, which is statistically significant. The latter rejects the 

CAPM model of equilibrium returns. In the GARCH equation (5.49), the dividend yield has a 

statistically significant effect on the conditional variance, and this would explain why previous 

studies, which assumed a constant risk premium, found dividend yield significant in the CAPM 

equation. 

Sentana and Wadhwani (1992) introduce noise traders into the market, who do not base their asset 

decisions on the fundamental value. Positive feedback traders buy after a price rise and sell after a 

price fall. This causes positive serial correlation in returns, since price rises are followed by an 

increase in demand and further price rises next period. Negative feedback traders pursue the 

opposite strategy, they buy 'low' and sell 'high'. Hence, if market is dominated by the negative 

feedback traders, then a price fall would be followed by the price rise. The demand for stocks by 

noise traders, Nt, as a proportion of the total market value of stocks, may be presented 
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Nt = rRt-l , (S.SO) 

where r > 0 in case of positive feedback traders and r < 0 in case of negative feedback traders, 

and Rr- 1 is the holding period return in the previous period. Sentana and Wadhwani assume that 

the demand for shares by the smart money is given by a simple mean-variance model 

(S.Sl) 

where S, = proportion of stock value held by smart money, a = expected rate of return for which 

demand by the smart money is zero, J.l t = measure of perceived riskiness of shares, which is a 

positive function of the conditional variance of stock returns (J.l = f1( a 2 ) ). If the smart money 

holds all the stocks, then St = 1 and rearranging (S. Sl) we get the CAPM for the market portfolio: 

the excess return on the portfolio, (ErRr - a), depends on the risk premium, which is proportional 

to the conditional variance of stock prices (f1 t = ca~ ). In equilibrium: 

(S.S2) 

Now if we substitute (S.SO) and (S.Sl) into (S.S2) and use rational expectations we get: 

(S.53) 

Thus in a market with smart money and noise traders the serial correlation in Rt will depend on 

the type of noise traders. Somewhat paradoxically a positive feedback trader (r > 0) results in 

negative serial correlation in R
t

, while negative (r < 0) in positive serial correlation in R t · A 

linear form for f1a~ in equation (S.S3) gives: 

(5.54) 

The direct impact of the feedback traders is given by the sign of r o· Now suppose r 0 is positive 

(i.e. positive serial correlation in R
t

) but r 1 is negative. In this case, as risk a~ increases the 

coefficient on R could change sign and the serial correlation in stock returns would move from 
t-l 
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positive to negative. This suggests that as volatility increases the market becomes more dominated 

by positive feedback traders, who interact in the market with the smart money, resulting in overall 

negative serial correlation in returns. According to the model in (5.54) the switch point for the 

change from positive correlation in returns to negative serial correlation is 0"(2 > (-r 0 / r 1 ) . 

The model in (5.54) is estimated together with a complex GARCH model, which allows the 

number of non-trading days to influence the conditional variance. Using US daily stock market 

data, Sentana and Wandhwani find r 0 = 0.09, rl = -0.01 and the switch point is 0"(2 > 5.8. Hence 

when volatility is low stock returns exhibit positive serial correlation, but when volatility is high 

returns exhibit negative autocorrelation. This model therefore provides some statistical support for 

the view that the relative influence of positive and negative feedback traders may vary with the 

degree of risk but it doesn't explain why this might happen. 

The authors find that () in (5.54) is not statistically different from zero, so that the influence of 

volatility on the mean return on stocks only works through non-linear interaction variable 

r 10"~ ~-l' Thus the empirical results are not in complete conformity with the theoretical CAPM 

model. 

5.3 International Asset Pricing and CAPM 

Asset pricing studies can be classified in three broad categories: segmented markets, integrated 

markets, and partially segmented markets. An example of a~ asset pricing study that assumes 

markets are segmented is one that 'tests' a model like the CAPM of Sharpe (1964), Lintner (1965) 

and Black (1972), using one country's data (see examples in sections 5.2.3 - 5.2.5 of this chapter). 

Many of the seminal U.S. asset pricing studies assume that the United States is a completely 

segmented market - or that the market proxy represents a broader world market return. While this 
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might have been a reasonable working assumption through the 1970s, in the 1980s the U. S. equity 

capitalisation dropped below 50 percent of the world market capitalisation. Japan's market 

capitalisation exceeded the United States (albeit briefly) in 1989. 

The second class of asset pricing studies assumes that world capital markets are perfectly 

integrated. These include studies of a world CAPM (see e.g. Buckberg (1995), De Santis and 

Gerard (1997), Harvey (1991) and references therein), a world CAPM with exchange risk (see e.g. 

Dumas and Solnik (1995), Dumas (1994), and De Santis and Gerard (1998)), a world 

consumption-based CAPM (see e.g. Wheatley (1988)), world arbitrage pricing theory (see e.g. 

Solnik (1983) and Cho, Eun, and Senbet (1986)), world multibeta models (see e.g. Ferson and 

Harvey (1993, 1994)) and world latent factor models (see e.g. Campbell and Hamao (1992), 

Bekaert and Hodrick (1992), and Harvey, Solnik, and Zhou (1994)). Rejection of these models 

can be viewed as a rejection of the fundamental asset pricing model, inefficiency in the market, or 

rejection of market integration. 

Yet another strand of the literature falls in between segmentation and integration - the so-called 

mild segmentation models (see Errunza, Losq, and Padmanabhan (1992) and references therein). 

The advantage of these models is that the polar segmented/integrated cases are not assumed. The 

disadvantage of these models is that in most of these studies the degree of market segmentation is 

fixed through time. This does not allow for possibility that some markets have become more 

integrated/segmented through time. 

The international CAPM (or world CAPM) belongs to the class of asset pricing models, which 

assume that international capital markets are fully integrated. In the international CAPM (ICAPM) 

investors are presumed to hold a diversified portfolio of equities from all national markets, that is, 

a world market portfolio. In the presence of exact purchasing power parity (PPP), the classic 
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CAPM would hold internationally, i.e. the risk of the individual market would be measured by its 

contribution to (or covariance with) the world market portfolio. 

There are many possible sources of statistical rejection of the CAPM, and the ICAPM, in 

particular. Among these, we may single out four. First, the fundamental assumptions that provide 

the building blocks for this model, such as utility specification, information environment, or 

distributional assumptions, could be violated. Second, the benchmark portfolio that is used to 

measure risk could be improperly specified. Third, there could be problems with the returns data 

caused by infrequent trading of the component stocks. Fourth, capital markets may not be 

integrated. 

In analysis involving relatively new transition equity markets this last factor may be crucial. The 

notion that risk can be defined as the sensitivity to the changes in world market returns is 

contingent on the assumption of complete market integration. As the amount of segmentation 

increases, risk takes on a new definition as a security's sensitivity to local-market factors. In 

integrated world capital markets the sensitivity to many local events can be hedged by a diversified 

portfolio. That is, a negative event in one country may be offset by positive news in another 

country. However, if capital markets are segmented, the sensitivity to local events can have 

significant effects on the required returns for the securities that trade in the local markets. 

An example of application of the ICAPM to the emerging equity markets is that by Buckberg 

(1995). The author uses the so-called 'conditional' or 'expectational' asset pricing. 'Conditional' 

refers to the use of conditioning information - some information set Zt-1 - to calculate expected 

moments and to test the ICAPM as a relation between expected returns and ex ante risk. The 

conditional formulation restricts the conditionally expected return on an asset (based on Zt-1) to 

be proportional to the asset's covariance with the market portfolio, yet allows expected returns to 
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vary over time. Following notation in Buckberg (1995), define the excess returns in the market of 

the country j: rlt = ER.,"t - r, and the excess return on the world portfolio: r ER" Th WI = t - r. en 

according to the conditional ICAPM: 

(5.55) 

where 

f3 " = cov(r}l' rwt / Z[_l) 

) var(rw1 / Zt-1) 

Buckberg uses the set of instrumental variables, which are supposed to replicate the information 

the investors use to predict the prices. For each period, actual rates of return set during the 

previous period serve as conditioning information. In addition to this, the common-instrument set, 

containing information about developed markets only, includes a constant, the lagged return on the 

world index less the return on a thirty-day Treasury bill, a dummy for the month of January, the 

lagged differential between the return to holding a ninety-day Treasury bill for a month and the 

return on a Treasury bill thirty days to maturity, the lagged differential between the yield on a 

Moody's Baa bond and the yield on a Moody's Aaa bond, and the lagged dividend yield on the 

world portfolio less the return on a thirty-day Treasury bill. 

Buckberg tests the model for two time periods, 1977-1984 and 1985-1991, using single market 

and multimarket tests93 (with and without imposing the cross-section restrictions, respectively). 

Both tests reveal that many emerging markets were integrated into the global market during 1985-

1991, but that many of the same markets reject the model when data for 1977-1884 is used. This 

fact suggests that rising capital inflows from developed economies served as the means of 

integration. 

93The model is estimated by Hansen's (1982) generalised method of moments (GMM). For details of GMM 
estimation see technical appendix in Buckberg (1995). 
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In Harvey (1991) the specification of the conditional ICAPM, very similar to one in Buckberg 

(1995), successfully explains both time-series variation and cross-sectional differences in OECD 

market returns. Harvey (1991) finds returns consistent with the ICAPM in fourteen of seventeen 

mature equity markets - an 82 percent success rate - during 1970-1989; only Austria, Denmark, 

and Japan reject the model. Moreover, the betas he obtains for each market correspond in ranking 

to the ranking of mean returns across these markets, with the exception of underestimating the 

Japanese return. The fact that the model fails for Austria and Denmark, the two smallest OECD 

markets, suggests that illiquidity or other small market effects may impede the ICAPM 

relationship. Harvey also runs a multimarket test over all Group of Seven nations and is unable to 

reject the model. 

As we have noted above, in the presence of exact purchasing power parity (PPP), the classic 

CAPM would hold internationally. However, if purchasing power parity is violated, investing in 

foreign markets entails exposure to exchange rate risk. 94 Any investment in a foreign asset is a 

combination of an investment in the performance of the foreign asset and an investment in the 

performance of the domestic currency relative to the foreign currency. The presence of this 

additional source of risk raises two related issues. The first one is whether currency risk is a priced 

factor in international financial markets. Second, if currency risk is priced, it becomes important to 

measure the compensation that investors can expect from bearing such risk. 

So far the empirical studies on international portfolio diversification have paid relatively little 

attention to the role of foreign exchange risk. Most existing tests of the ICAPM incorporating this 

94 The idea that national investors are identified by deviations from PPP was originally proposed by Solnik (l97ota). 
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additional source of risk are limited to the unconditional verSIon of the model95 and deliver 

inconclusive results, as they fail to account for the new information that periodically becomes 

available to investors, who then use it to adjust their investment strategies. 

De Santis and Gerard (1998) analyse the conditional version of an international asset pricing model 

that incorporates currency risk as well as market risk. 96 The model is derived under the assumption 

that PPP is violated and, therefore, investors from different countries have a different appreciation 

for the real returns from any given asset. Following De Santis and Gerard, deviations from PPP 

have two important implications for portfolio choice and asset pricing in equilibrium. First, optimal 

portfolios differ across countries. Second, the expected return on any asset in addition to a market 

premium must include a currency premium as well. In this sense, if the tests reveal that the 

premium for currency risk is statistically and economically significant, one can infer that 

international asset prices are consistent with PPP violations. 

De Santis and Gerard consider a world economy with L+ 1 countries and a set of M securities. 

Formally, the pricing restrictions on asset i imposed by their model are97 

L 

E t - 1 (1ft) = 5 m,t-l COY t-l (1ft' rmt ) + E15 c,t-l COY t-l (rit' Jr ct) , i = 1, ... ,M 

(5.56) 

where rit denotes the excess returns on asset i; rmt denotes the excess return on the world 

portfolio of all traded stocks; and Jr ct indicates the inflation of country c. All returns in (5.56) are 

measured in the reference currency and in excess of the risk-free rate. 

95 See, for example, Solnik (1974b, c), Stehle (1977), Stulz (1981), Adler and Dumas (1983), Anderson and 
Danthine (1983), Korajczyk and Viallet (1989). For a survey see Stulz (1995). 
96 The model by De Santis and Gerard is a modification of the model originally proposed by Adler and Dumas 

(1983). 
97 For the restrictions imposed on the parameters of the model see De Santis and Gerard (1998), p. 378. 
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The covariance between return i and the return on the worldwide portfolio represents the market 

risk component which appears in the standard CAPM of Sharpe (1964) and Lintner (1965). The 

covariances between the return on asset i and the rate of inflation of each of the countries in the 

model represent the additional sources of risk induced by PPP deviations. Specifically, the term 

cov t-l (~t,;r ct) measures the exposure of asset i to both the inflation risk and the currency risk 

associated with country c. De Santis and Gerard simplify the model by assuming that domestic 

inflation is nonstochastic. In this case, the only random component in ;ret is the relative change in 

the exchange rate between the reference currency and the currency of country c. Therefore, J
c

.
t
-

l 

can be interpreted as the price of risk of currency c. To complete the parameterisation of the 

model, De Santis and Gerard assume that the conditional second moments follow a diagonal 

GARCH process. 98 Empirical evidence presented by the authors using data from Germany, Japan, 

the United Kingdom, and the United States during the period 1973-1994 supports the specification 

of the CAPM that includes both market risk and foreign exchange risk. 

Another test of the conditional version of the international capital asset pricing model is contained 

in Dumas and Solnik (1995). Similar to De Santis and Gerard (1998) they find that the price of 

currency risk is significantly different from zero. Their test uses the generalised method of 

moments (GMl\1) of Hansen (1982) and is derived as a variation of the methodology originally 

proposed by Harvey (1991). One of the appealing features of their test is that it can be computed 

without pre-specifying the dynamics of the conditional moments. Although very general, their 

approach has several limitations. First, because they do not specify the dynamics of the conditional 

second moments, they cannot evaluate the economic magnitude of the exchange risk premiums 

relative to the market premium. Second, without second moments, several quantities of interest to 

98 For description of the diagonal GARCH see section 3.2.5. in Chapter 3. 
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the investor, such as correlations, betas, and hedge ratios, cannot be measured. Lastly, their test 

should be interpreted as a test of some of the unconditional implications of the conditional model 

rather than as a direct test of the conditional model. 

5.4 Empirical Analysis: ICAPM with Time-Varying Conditional Covariance 

Matrix, Testing for Integration and Segmentation in the Transition Markets of 

Central Europe 

In this section we present the theoretical framework for testing the multi-market ICAPM for the 

dataset which along with equity portfolios from mature markets includes data from transition 

markets of Central Europe. We focus on two new markets of Central Europe: Hungary and 

Poland, as well as two mature markets: U.S. and Germany. All returns are measured in the 

reference currency, the U.S. dollar. Our approach assumes that investors do not cover their 

exposure to exchange rate risk. To present justification for ignoring exchange rate premia in our 

application of the ICAPM, we point to the fact that during the period covered by our data (1994-

1998) the value of the Hungarian and Polish currencies were determined within the official 

currency baskets. 99 The Hungarian forint was defined in terms of a two-currencies basket (USD 

30% , DEM 70% ), while the Polish zloty in terms of a five-currencies basket (USD 45%, DEM 

35%, GBP 10%, FRF 5%, CHF 5%). Since the exchange rates of these currencies were allowed to 

move within a rather narrow fluctuation band, the importance of modelling exchange rate premia 

in our application of the ICAPM diminishes. 

99 Both countries followed the so-called crawling-peg regimes. 
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For simplicity of notation assume that Yit denotes the excess return on the national stock index of 

country i, and Y mt denotes the excess return on the worldwide portfolio. In completely integrated 

world and in the absence of exchange risk, a conditional international CAPM imposes a restriction: 

Vi (5.57) 

where At - 1 can be interpreted as the price of world market risk. The model requires this equation 

to hold for every asset, including the world market portfolio. 

Now consider the world economy with (N - 1) risky national equity portfolios plus the world 

market portfolio. Let Yt = Cr't""'YN-l"Ymt} denote the (N x 1) vector of the returns on the 

national and world-wide portfolios, H t denote the (N x N) conditional covariance matrix of the 

returns on the portfolios, and hNt the Nth column of Ht , which contains the covariance of the 

return on each national index (or portfolio) with the world market portfolio. Then the following 

system must hold: 

based on a system of pricing restrictions: 

YN-lt = At - 1 COV(YN-lt'Ymt I'i't-l)+ 8 N - 1t 

Y mt = At-1 var(y mt I 'Pt-1 ) + 8 mt 
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We also specify the dynamics of the conditional covariance matrix of the assets in the system. H
t 

follows the BEKK multivariate GARCH specification 100, which allows return volatility spillover 

effects between the markets in the system. 

(5.59) 

The system (5.58) and (5.59) will be referred to as a benchmark model. According to international 

CAPM, if international markets are fully integrated, the price of the covariance risk At - l in (5.58) 

should be positive and equal across all markets. To test pricing restrictions of the benchmark 

model, we define two alternative specifications, which could provide useful insights into pricing of 

the assets in the considered markets. The first alternative is the partial segmentation model, which 

allows for some level of market segmentation: 

(5.60) 

In addition to world-wide risk, it adds to the standard ICAPM: 

- the local conditional variance to measure country-specific risk 

- a constant to accommodate other forms of segmentation 

Under hypothesis of full market integration both coefficients at and rt in (5.60) must equal to 

zero for all markets. 

The second alternative is the partial integration model: 

Vi (5.61) 

100 See section 3.2.5 for details. In our analysis summation limit K is set to 1. 
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This model introduces a (k x 1) vector of market-wide information variables, Zt-l' included in 

\{Jt-l' This specification gives us an opportunity to check whether the variation in conditional 

expected returns is fully explained by world market risk. In case this is not true, some of the 

variables in Z 1-1 could have statistical power in explaining the behaviour of the expected return 

senes. 

The dynamics of the conditional second moments of both equation (5.60) and (5.61) is restricted 

to the multivariate GARCH specification in (5.59). 

The parameters of the models defined above will be estimated using quasi-maximum likelihood 

(QML) estimation procedure by Bollerslev and Wooldridge (1992) described in section 3.2.6 of 

Chapter 3. 

5.4.1 Data and Descriptive Statistics 

Our sample of national stock markets includes daily data from both developed and relatively new 

developing equity markets. We focus on two new markets of Central Europe: Hungary and 

Poland, as well as two mature markets: U.S. and GermanylOl. The indices used in our analysis are 

American Dow Jones, German DAX, Hungarian BUX and Polish WIG 20. The Morgan Stanley 

Capital International (MSCI) World Index will approximate the world market portfolio. The return 

on the US 3-month Treasury bill is used as a measure of the risk-free rate. All the data is measured 

in a common currency, the US dollar. 

101 Our original idea was to estimate the system including return series from all four transition markets considered 
in the previous chapters of this thesis. However, the seven-dimensional system (i.e. system including return series 
from four transition markets, U.S., Germany, as well as the world market) failed to converge in estimation. To keep 
original combination of the developed and transition markets in the system, we decided to restrict our attention to 
two transition markets only. Our choice of the Hungarian and Polish markets is explained by the advancement of 
their stock markets and a higher market capitalisation compared to the Czech and Slovak markets. 
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'he set of the conditioning information variables used in this article includes the change in the US 

erm premium (YB), measured by the yield on the 10-year US Treasury note in excess of the risk-

fee rate; the change in the US interest rates (INTR), measured as the change in 3-month US 

['reasury bill; and the US default premium (BAA-AAA), measured by the yield difference between 

~oody's Baa and Aaa rated bonds. All the data comes from Datastream and covers the period 

Tom April 1994 to December 1998. 

fable 5.1 presents summary statistics on the US dollar returns on the four national indices and 

Norld market index in excess of the risk free rate. The evidence for all return series indicates 

;ignificantly fatter tails than does the stationary normal distribution. The excess kurtosis statistic 

-anges in value from 5.39 for Polish to 17.63 for world excess returns. The coefficients of 

;kewness indicate that the series have asymmetric distribution skewed to the right in case of the 

world, US and German excess returns, and skewed to the left in case of Hungarian and Polish 

;eries. The Ljung-Box test statistic for twelfth-order serial correlation in levels reveals the lack of 

statistically significantly autocorrelations in the excess return series.102 However, we detect 

autocorrelations in the squared returns, which suggests that a GARCH specification of the second 

moments might be appropriate. 

Table 5.2 displays cross-correlations of the excess return series. And finally, Table 5.3 contains 

cross-correlations of the conditioning variables specified above. The low correlations of 

information variables imply that they carry nonredundant information. 

IO~ The results in the previous chapter (see section 4.2) have shown that nominal Hungarian and Polish returns in 
local currency tenus are autocorrelated. 
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rable 5.1 Summary statistics of the excess returns 

Poland Hungary Germany US World 

~ean 0.000117 0.000172 0.000532 0.000586 0.000269 

Variance 0.000697 0.000500 0.000232 0.000172 0.000140 

~kewness -0.15152 -1.11529 0.23492 0.59338 1.16346 

Excess kurtosis 5.39398 17.03238 9.41929 10.57795 17.63387 

Ljung-Box (12) 25.1305 21.9645 16.3703 18.5148 22.1850 
for the leyels 
Ljung-Box (12) 264.4949 242.9491 69.4253. 56.1101 51.3930 
for the squares 

Note: TIle upper and lower I percentile points in the distribution of the skevvness statistics are .058 and -.058, respectively. The 
upper and lower I percentile points in the distribution of the excess kurtosis are .13 and -.11, respectively. TIle upper land 5 

) 

percentile points in the X- distribution for the Ljung-Box(l2) statistic are 26.22 and 21.03, respectively 

Table 5.2 Unconditional correlation of the excess returns 

Poland HungaQ' Germany US 

Hungary 0.44 

Germany 0.36 0.53 

USA 0.43 0.39 0.77 

World 0.45 0.55 0.59 0.90 

Table 5.3 Correlation of conditioning variables 

INTR BAA-AAA 

YB 0.28 -0.36 

INTR -0.11 
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;.4.2 Empirical results103 

The results of this chapter are divided into two parts. First, we introduce the additional assumption 

that the price of market risk, ..1(_1' is constant, i.e. the slope of the capital market line is fixed. 104 

However, if excess returns are considerably more variable than their conditional variance with the 

market, a specification with a constant price of risk may not have enough power to fully explain 

the dynamics of the risk premia. Therefore, in the second part, we allow for time variation in the 

price of risk by parameterising the dynamics of ..1(_1. 

5A.2.A. Constant price of market risk 

Tables 5.4 and 5.5 present results of the estimation of the benchmark model in (5.58) and (5.59). 

The estimate of the constant price of market risk equals 2.59 and is highly significant. The xi 

Likelihood Ratio test statistic to check the hypothesis that price of risk is equal across the markets 

equals 3.79, which implies that the null of common price cannot be rejected at any statistically 

reasonable level. This is an important result, as it indicates that the assets in the transition markets 

command the same level of return for a given level of risk as the assets in the developed countries. 

It is consistent with ICAPM, and points to integration of the Hungarian and Polish markets into 

the global capital market. 

103 The data employed in our analysis covers a period of only about three and a half years, some three years after 
Hungarian and Polish markets begun operating. It is, therefore, reasonable to assume that results of this chapter are 
robust over sub-periods of the available dataset. 
104 For the examples of the estimation of the conditional CAPM with this restriction see, e.g., Giovannini and 
Jorion (1989) and Chan, Karolyi and Stulz (1992). 
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fable 5.4 Constant price of market risk: the benchmark model 

Price of market risk ( )c ) 2.593340 

(0.720759) 

3.792596 

Note: Bollerslev and Wooldridge (1992) quasi-maximum likelihood standard errors in brackets. 

* X 2 is the Likelihood Ratio statistic to test the hypothesis that price of risk is equal across markets. The upper 1 

and 5 percentile points in the X2 distribution for three degrees of freedom are 1l.34 and 7.81 respectively. 

The BEKK multivariate GARCH specification of the conditional covariance matrix in (5.59) 

employed in our analysis allows return volatility spillover effects between the markets in the 

system. To conserve space in Table 5.5 we present estimates of the diagonal elements of the 

covariance matrix only: the conditional variances of the considered markets. 

Table 5.5 Volatility spillovers across the markets 

A. Polish volatility 

(0.0004) (4. 1ge-07) (8.43e-07) (2.23e-06) (4.57e-07) (4.2ge-07) 

+ 1(}'..x?-():t.~_1 +o.OOI&it_l b3t-1 -6.31e-0562t_1 &41-1 +o.OO35c.u_1 &5t-l + 

(8.91e-08) (2.03e-06) (1. 15e-07) (4.98e-05) 

+ o.0029&~t_1 + 0.0003&3t_1 &4t-1 + 0.0 184&3t-1 &5t-1 + 9.67 e - 06&;t-1 - 0.00 11&4t_1 &5t-1 + 0.0297 &5~-1 + 

(1.71e-06) (1.86e-06) (5.72e-05) (2.42e-08) (4.9ge-05) (4.87e-05) 

+ 6.06e - 08h
llt

_
1 

+ 9.17 e - 04h12t-1 + 14ge - 05h13t_1 - 2.52e - 05hl4t_1 - o.OOO5~St_l + 

(5.93e-012) (l.76e-08) (4.90e-07) (1.lle-05) (0.0007) 

+ 3.47e-():t.hw_l +o.OOllhz,t_l +o.OOI9~4t_l +o.035&lZzst_l + 9.2Oe - 04~3t-1 + 0.003 ~4t-l + 0.0582~5t_l + 

(1.58e-07) (8.37e-07) (1.33e-05) (0.0007) (4.8ge-07) (0.0015) (0.0007) 

+Q~-1 +o.W84htSt-l +Q91gJl;5t_l 

(0.0005) (0.0009) (0.0007) 
(5.62) 
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B. Hungarian volatility 

h.ut = -OJIDI +o.<XXJ2q;_l +o.ax»qt_l ~t-l +o.cxmqt_1 ~t-l +o.OI36qt_l &41-1 +o.0024qt_1 &5t-l + 

(0.0012) (1.72e-07) (1.20e-06) (3.92e-07) (O.OOlS) (2.28e-OS) 

+o.oo:r~_1 +o.~t-l ~t-l +o.OI7~_1 &41-1 +o.~_1 &51-1 + 

(5.08e-07) (7.34e-07) (O.OOlS) (2.32e-OS) 

+ 5.72e - 05&~t_l + 0.0079&3t_l &4t-l + 0.00 14&3t_l &5t-l + 0.30 18&;t_l + 0.0943&4t_l &5t-l + 0.0082&5~_1 + 

(8.00e-08) (O.OOlS) (0.0001) (O.OOlS) (0.0015) (2.0ge-OS) 

+ o.0095hllt_1 + 0.0586h12t_1 - 0.0283h13t_1 - 0.0850h14t_1 - 0.1 083h15t_1 + 

(0.000l) (0.0014) (O.OOOS) (0.00S6) (0.0043) 

+OffJJ7hv.t_l -OJJi.fJ~t_l -02629~4t_l -o.035~t_l + o.0212~3t_l + O.l270~4t_l + 0.0620~5t_l + 

(0.0009) (0.0017) (0.0088) (0.0067) (0.0002) (0.00S9) (0.0049) 

+o.2W1.ut-l +o.OOS9h451_1 +OJ1})8/~51_1 

(0.0047) (0.0012) (0.0035) 

(S.63) 

c. German volatility 

~3t = -O.cO)1 +0.0 170ci~_1 +o.0393tit_l C2t-l +o.07i9tit_l &:3t-1 -0.003 !tit-l &4t-l +o.CXX>!tit-l &51-1 + 

(0.0001) (4.31e-05) (0.0003) (0.0006) (5.05e-05) (0.0001) 

+Q0227c;_1 +o.oog)~t-l~t-l -Qcxr~t-I&4t-l +o.0234~_I&51_1 + 

(0.0001) (0.0006) (0.0001) (0.0002) 

+0.0892&~_1 - 0.0072&3t_l&4t_l + 0.0463&3t_l&5t_l + O.OOOI&;t_l - 0.00 19&4t-l &5t-l + 0.0060&5~_1 + 

(0.0004) (0.0005) (0.0007) (4.41e-06) (0.0001) (7.02e-OS) 

+0.0135hllt_1 
-0.0204~2t_l +0.1450h13t_1 -0.0582~4t_l +0.0147~5t_l + 

(7. 18e-05) (0.0002) (0.0096) (0.0014) (0.0002) 

+OJJJ77hv.r_l +0.1~_1 +0.~_1 +QOll~t_l + 0.3904~3t_l + 0.3132~4t_l - 0.0794~5t_l + 

(4.96e-OS) (0.0083) (0.0014) (0.0002) (0.0083) (0.0098) (0.0084) 

+Q(XQ8h44t-l +0.031&11451_1 +0.~5t-l 

(0.0011) (0.0014) (7.50e-OS) 

(5.64) 
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D. US volatility 

11n1 = 0.000 1 + 0.00 11&1~_1 + o.0057l1t_l &2t-l + 0.0093&1/_1 &3t-l - 0.0715l1t_l &41-1 - 0.0325&1/_1 &51-1 + 

(0.0003) (1.1 Ie-05) (0.0001) (0.0003) (0.0642) (0.0060) 

+0.(1)74~t_l +0.02414~_1 t;t-l -0.18519~_1 &4t-l -o.08423b2t_l GSt-l + 

(0.0005) (0.0004) (0.0644) (0.0059) 

o.0198&it_l - 0.3038&3t_l&41_1 - 0.1282&3t_l&5t_1 + Uff>lcZ_l + 100J7C4t-1c;t-l +024~_1 + 

(0.0002) (0.0675) (0.0072) (0.8640) (0.5967) (0.2276) 

+Q0567~lt_l +0.0'770112t_1 +Q8197~3t-l +Q407~4t_l +Q254~5t-l + 

(0.0011) (0.0030) (0.0665) (0.0414) (0.0192) 

+0516~_1 +055~t_l +0.277~4t_l +O.1~t_l + 

(0.0700) (0.0609) (0.0391) (0.0178) 

+ 0.4248h33t_1 + 0.9488~4t_l + 0.0382~5t_l + 0.2132h44t_1 + 0.0157 h4St-1 + 0.0053hSSt_1 + 

(0.0563) (0.1258) (0.0766) (0.0384) (0.0821) (0.0160) 

(5.65) 

E. World volatility 

(0.0006) (0.3404) (0.0050) (0.2844) (0.1005) 

(0.0022) (0.0060) (0.2984) (0.1119) 

(0.0030) (0.3111) (0.1069) (1.2861) (0.5699) (0.8077) 

+Q942~lt_l + 193%I2t_l +6.743~'t_l + 1076~4t_l +o.Ol11J;St_l + 

(0.0244) (0.0635) (0.7824) (0.1230) (0.0246) 

+0.3(J72~_1 + 3.84~_1 + 11050~t_l +QOO53~t_l + 

(0.0178) (0.6169) (0.1045) (0.0179) 

+0.6023~3t_l + 19247h:,4t_l +0.0396h:,St_l + 0.2338h44t_1 +0.0114h45t_1 + 3.0 Ie -05h5St-1 

(0.0828) (0.7512) (0.0833) (0.0720) (0.0624) (3.20e-06) 

(5.66) 

Note: Bollerslev and Wooldridge (1992) quasi-maximum likelihood standard errors in brackets. 
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The results of fitting the multivariate GARCH model to our international dataset show that most 

of the volatility and return shock spillover effects are highly significant. Starting from the analysis 

of the results for the conditional volatility in the Polish market in this multivariate setting, we note 

that while most of the estimated coefficients are significant, the magnitude of the parameters 

reflecting cross-market transmissions of lagged shocks and volatility is very small. Considering the 

effects of the local GARCH terms we see that lagged conditional variance, h
55t

-1' has a 

considerably stronger impact on the current Polish return volatility compared to the lagged local 

absolute shock term, 8 5
2
t-} (compare 0.9199 to 0.0297). Moving to the Hungarian conditional 

variance we note that the size of many of the estimated parameters is larger than in the case of the 

Polish volatility. The strongest significant effects on the Hungarian volatility are those from the 

local lagged volatility and return shock terms, as well as from the lagged conditional covariance of 

the Hungarian returns with the US and German returns. 

The significant lagged GARCH terms of a relatively large magnitude affecting the German 

conditional volatility, are the local lagged volatility, as well as the lagged covariances of the 

German returns with the returns on the world wide portfolio, the US returns and the Hungarian 

returns. Looking at the results for the US and world market we find that the local GARCH effects 

are stronger on the world portfolio volatility compared to the US one. Most of the international 

volatility and shock terms are significantly priced in these two markets, with exception of some of 

the terms related to the Polish lagged conditional variance and return shocks, as well as the 

Hungarian lagged absolute shocks. 

Table 5.6 includes diagnostic statistics to evaluate the considered model specification. Though the 

estimated model reduces coefficients of skewness and excess kurtosis present in the excess return 
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series (see Table 5.1 for comparison), we still reveal significant nonnormality in the distribution of 

standardised residuals. This evidence against normality warrants the use of quasi maximum 

likelihood inferential procedures in our analysis. The Ljung-Box test statistics in the Table 5.6 

indicates that the employed specification reduces the intertemporal dependence in squares of the 

standardised residuals, &i~ / hit' to insignificance at the 5% level for all return series, though not for 

Polish excess returns, where volatility clustering, while being reduced considerably, is not removed 

completely. 

Table 5.6 Diagnostics for the standardised residuals of the benchmark model with constant 

price of market risk 

World US Germany Hungary Poland 

Excess kurtosis 2.96384 2.70202 2.51901 6.62064 3.52420 

Skewness 0.10087 0.01563 -0.11054 -0.55842 -0.15413 

Ljung-Box (12) 7.3588 7.5167 12.1816 18.6917 35.0598 

for the sq. stand. 

residuals 

Note: The upper and lower I percentile p0111tS 111 the dlstnbutIon of the skewness statIstIcs are .058 and -.058, respectively. The 
upper and lower 1 percentile points in the distribution of the excess kurtosis are .13 and -.11, respectively. The upper 1 and 5 

percentile points in the ,t distribution for the Ljung-Box(12) statistic are 26.22 and 21.03, respectively 

To compare the benchmark ICAPM to the alternative models specified in (5.60) and (5.61) we 

conduct some diagnostic tests. The results of these tests are presented in Tables 5.7 and 5.8 below. 

In the partial segmentation model in (5.60), the excess return for each market depends not only on 

the covariance with the world portfolio, but also on the local conditional variance to measure 

country-specific risk, and a constant to account for other forms of segmentation. The Likelihood 

Ratio statistic to test whether the country-specific intercepts are jointly equal to zero supports the 
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conditional ICAPM. However, the statistic to test the null that the prices of country-specific risk 

are jointly equal to zero is significant at 5 percent level only (but not at 1 per cent level). To show 

that this result is influenced by the individual significance of the Hungarian conditional variance, 

. d' h k ft . c: 105 pnce In t e mar et a er accountmg lor world-market risk ,we test the hypothesis that the 

prices of country-specific risks excluding the Hungarian risk are jointly equal to zero. The resulting 

test statistic confirms that the general estimate is influenced by the significance of the Hungarian 

variance, and points to the possibility of some degree of segmentation of the Hungarian market. 

Table 5.7 Constant price of market risk: the partial segmentation model 

? 
(Ho: ai = 0 Vi) * 7.059864 X; 

, 
(H . Y = 0 Vi) ** 11.32698 X; o· I 

X;(Ho:Yi=O Vi*- Hungary) *** 7.188425 

* X 2 is the Likelihood Ratio statistic to test the hypothesis that country-speci1ic intercepts are jointly equal to zero. ** X 2 is 

the Likelihood Ratio statistic to test the hypothesis that the prices of country-specific risk are jointly equal to zero. The upper 1 

and 5 percentile points in the ,i distribution for four degrees of freedom are 13.28 and 9.49 respectively. *** X 2 is the 

Likelihood Ratio statistic to test the hypotl1esis that the prices of country-specific risk excluding the Hungarian risk are jointly 
? 

equal to zero. The upper 1 and 5 percentile points in the r distribution for three degrees of freedom are 11.34 and 7.81 

respectively. 

In the partial integration model in (5.61) we test the hypothesis that the variation in conditional 

expected returns is fully explained by world market risk by introducing a set of conditioning world 

information variables described in section 5.4.1. The Likelihood Ratio statistic in Table 5.8 shows , 

that this hypothesis is strongly rejected by the data. 

105 The parameters of the estimated models are not reported here, however are available on request. 
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Table 5.8 Constant price of market risk: the partial integration model 

[ xi (Ho Ok = 0 'dk) * 139.2441 

* X 1 is the Likelihood Ratio statistic to test the hypothesis that the infomlation variables in Z (-1 are orthogonal 

to the risk-adjusted excess returns. The upper 1 and 5 percentile points in the r distribution for three degrees 

of freedom are 11.34 and 7.81 respectively. 

Summarising results for the specifications with constant price of risk, we find that a number of 

diagnostic tests support the pricing restrictions of the CAPM. The estimates reveal a statistically 

significant positive relation between excess returns and covariance risk. The price of covariance 

risk is equal across the markets. However, while country-specific constant factors add no 

explanatory power to the model, the Hungarian idiosyncratic risk is individually significant. The 

results of the partial integration model show that the variation in the excess returns is still 

predictable after accounting for market-wide risk. To check whether this result is in part due to the 

auxiliary assumption about constancy of the price of risk, in the next section of the chapter we 

allow)~ to vary through time. 

5.4.2.B Time-varying Price of Market Risk 

F erson (1989) and F erson, Foerster and Keirn (1993) parameterise the dynamics of the price of 

risk by using linearity assumption to test latent variable models. In the absence of additional 

restrictions, the disadvantage of this approach is that a linear price of market risk can become 

negative, which is inconsistent with the theory. In our analysis we approximate the price of market 

risk by an exponential function of the instruments. 106 

(5.67) 

106 De Santi and Gerard (1997) and Bekaert and Harvey (1995) use a similar parametrization. 
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where the instruments in z (-1 are information variables described in section 5.4. 1. As a result our 

benchmark model wi11look as follows: 

(5.68) 

with the dynamics of the conditional covanance matrix specified by the BEKK multivariate 

GARCH specification in (5.59). 

Table 5.9 presents estimates of the parameters of the model in (5.68). The results show that the 

dynamics of time varying price of market risk is driven by the change in the US term premium 

( k 2)' as well as the US default premium (k 3)' To compare the estimate of the time-varying price 

of market risk with the corresponding estimate of the constant price of risk in Table 5.4, we 

evaluate the average value and the standard error of the time-varying price of risk, 

AH = exp(K' Zt-1)' conditional on the sample means of the instruments in ZH' The value of the 

average time-varying risk, reported in the 5th column of Table 5.9 is close to the constant price of 

world covariance risk, although both the magnitude and significance of the time-varying coefficient 

exceed the corresponding estimates for the model with constant risk. In spite of this fact, Table 

5.10 indicates that there is no significant improvement in the standardised residuals of the time­

varying risk specification over the model with constant price of risk (see Table 5.6 for 

comparison). As before, though the coefficients of the skewness and excess kurtosis are reduced 

compared to the corresponding statistics for the nominal excess returns, there is still evidence of 

significant nonnormality in the distribution of the standardised residuals of the model. And again, 

as is the case with the model with constant price of risk, the Ljung-Box statistics indicate that the 

time-varying risk specification does capture volatility clustering in all series with exception of the 

Polish excess returns (although again reduces it considerably). Thus, the diagnostic tests do expose 

some limitations of the estimated models. 
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Table 5.9 Time-varying price of market risk: the benchmark model 

ko k1 k2 k~ At - 1 = exp(K' =t-1) X3
2 

.) 

(constant) (interest (term (default (Ho: k i =0 
rate) premium) premium) average risk 

Vi ~ 1) * 

1.3560 -1.4784 -9.0186 -14.8448 3.9185 32.4535 
(0.6855) (5.0085) (2.3086) (3.1948) (0.9553) 

Note. Bollerslev and WooldrIdge (1992) quasl-maXlillWll hkehhood standard errors In brackets. 
) 

* X - is the Likelihood Ratio statistic to test the hypothesis that the price of market risk is constant. The upper 1 and 5 

percentile points in the r distribution for three degrees of freedom are 1l.34 and 7.81 respectively. 

Table 5.10 Diagnostics for the standardised residuals of the benchmark model with time­

varying price of market risk 

World US Germany Hungary Poland 

Excess Imrtosis 3.4572 2.7121 2.01437 5.2352 3.6477 

Skewness 0.0901 0.01666 -0.09891 -0.5599 -0.1255 

Ljung-Box (12) 6.2256 5.9834 14.5455 17.9189 32.8111 

for the sq. stand. 

residmds 

Note: The upper and lower 1 percentile points in the distribution of the skevvness statistics are .058 and -.058, respectively. The 
upper and lower I percentile points in the distribution of the excess kurtosis are .13 and -.11, respectively. The upper 1 and 5 

percentile points in the r distribution for the Ljung-Box( 12) statistic are 26.22 and 21.03, respectively 

Consistent with the evidence presented in Harvey (1991) and Bekaert and Harvey (1995), the 

Likelihood Ratio statistic in the last column of Table 5.9 for the hypothesis that the world price of 

risk is constant is strongly rejected at any conventional level. This fact is also confirmed in Figure 

5.1, which plots the fitted time-varying price of the covariance risk, as well as the average risk (the 

white line). 
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Figure 5.1 Time-varying price of world covariance risk 
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The estimates of the elements of the conditional covariance matrix are essentially not significantly 

affected when the price of market risk is allowed to vary. Therefore, to conserve space, we do not 

present the stnlcture of the conditional second moments here, and refer the reader to the 

corresponding estimates for the specification with the constant price of market risk (see (5 .62) -

(5 .66) above). 

Next we evaluate the two alternative specifications of the conditional CAPM in (5 .60) and (5 .61) 

allowing the price of market risk to vary through time. The results for the partial segmentation 

model in Table 5.11 indicate that the relaxation of the constancy condition does not have any 

significant effect on the results from the previous testing for the specification with the constant 

price of risk (see Table 5.7 for comparison). 
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Table 5.11 Time-varying price of market risk: the partial segmentation model 

x; (Ho: a i = 0 Vi) * 7.4699 

) 

(Ho: Yi =0 Vi) ** 10.9881 X; 
) 

* X - is the Likelihood Ratio statistic to test the hypothesis that country-specitic intercepts are jointly equal to zero. * * X 2 is 

the Likelihood Ratio statistic to test the hypothesis that the prices of country-specific risk are jointly equal to zero. The upper 1 

and 5 percentile points in the X2 distribution for four degrees offreedom are 13.28 and 9.49 respectively. 

The results for the partial integration model with time-varying price of market risk in Table 5.12 

show that the null hypothesis that the information variables Zt-l are orthogonal to the excess 

returns is strongly rejected as in the case of the model with the constant price of risk. 

Table 5.12 Time-varying price of market risk: the partial integration model 

135.2188 

* X 1 is the Likelihood Ratio statistic to test the hypothesis that the information variables in Z (-1 are orthogonal to the risk­

adjusted excess retUTIls. The upper 1 and 5 percentile points in the r distribution for three degrees of freedom are 11.34 and 

7.81 respectively. 

Therefore, the expected excess returns remain predictable after accounting for world market risk. 

One possible reason for that is the inability of our specification of the ICAPM to accommodate 

negative risk premia (see (5.68)). De Santi and Gerard (1997), who apply ICAPM to data from 

OECD countries, show that predictability disappears when they relax the nonnegativity restriction 

and consider linear parameterisations of the time-varying price of the covariance risk. 107 Another 

reason for the predictability after accounting for market risk could be the fact that the conditioning 

information variables we have considered for parameterisation of the time-varying risk (see section 

5.4.1) are not sufficient to explain the variation in the price of the covariance risk. And finally, it is 

possible and, perhaps, highly probable that the national stock indices considered contain 

107 Richardson and Smith (1993) find that for the U.S. market negative risk premia are associated with periods of 

high expected inflation and downward sloping tenll structures. 

203 



characteristics which are not accounted by the world market risk, and a model with multiple 

sources of risk could perform better than a single factor model. 

5.5 Summary 

In this chapter we test pricing restrictions of the international CAPM simultaneously for four 

national equity markets: two developed markets (U.S. and Germany) and two new transition 

markets (Hungary and Poland). Methodologically we extend the multivariate GARCH 

specification of Engle and Kroner (1995) ("BEKK") to accommodate GARCH-M effects, and 

propose an alternative specification of the conditional CAPM, which allows return volatility 

transmissions between the markets in the system. 

Using two alternative specifications of the conditional ICAPM (the partial segmentation and partial 

integration models) we carry out some diagnostic tests of the benchmark ICAPM, and at the same 

time consider the issues of integration of the markets in our system into world capital markets. 

The specified models are first estimated with the additional assumption that the price of the market 

risk is constant. The evidence supports some of the pricing restrictions of the ICAPM and rejects 

the others. Market risk, measured by the conditional covariance between the return on each 

national index and a world-wide index, is positive and equally priced across the countries. This is 

consistent with ICAPM and supports the hypothesis of international market integration. However, 

while country-specific intercepts add no explanatory power to the model, the Hungarian 

idiosyncratic risk is individually significant. This fact is against the hypothesis of the full market 

integration of all countries in our system, and points to the possibility of some degree of 

segmentation of the Hungarian market. The results of the partial integration model, which 

introduces a vector of world-wide information variables in the return equations, shows that the 

variation in the excess returns is still predictable after accounting for market-wide risk. 
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To check whether our results are due to the auxiliary assumption on the constancy of the price of 

risk, we allow the price of market risk to vary through time. We find that although the 

specification with time-varying price of risk explains a larger fraction of the variation in excess 

national returns compared to the model with constant risk, excess returns are still predictable after 

accounting for the market-wide risk. This fact could have different possible explanations. One 

possible reason is our parameterisation of time-varying risk, which in accord with the theory 

imposes nonnegativity restriction on the risk premia. Another reason is the possibility of the fact 

that the conditioning information variables we have considered for parameterisation of the time­

varying risk are not sufficient to explain the variation in the price of the covariance risk. It is also 

possible that the considered national stock indices contain characteristics, which are not accounted 

by the world market risk. 

Our general conclusion is that even though the conditional version of the traditional ICAPM 

applied to the dataset including new markets of Central Europe provides useful information on the 

dynamics of market premia, a more adequate model of international asset pricing should probably 

include additional factors. 
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Appendix 5.1 

An Alternative to the CAPM: the Arbitrage Pricing Theory 

The alternative to the CAPM in determining the expected rate of return on individual stocks and 

on portfolio of stocks is the arbitrage pricing theory (APT). The theory is called an arbitrage 

theory because Ross (1976) was able to show that if, in equilibrium, expected asset returns were 

not a linear function of the k factors, an investor could construct a portfolio using short-selling that 

requires zero net investment and has a greater-than-zero expected return. This result would violate 

the 'no free lunch' law of the financial theory. 

Broadly speaking, the APT implies that the return on the asset can be broken down into an 

expected return, Ri~' and an unexpected or surprise component, lfit · 

(5.69) 

For any individual asset this surprise (or news) component itself can be broken down into 'general 

news' that affect all assets (systematic or market risk), mt , and 'specific news' which affects only 

this particular assets (idi05yncratic or 5pecific risk), Cit· 

(5.70) 

As in the case of the CAPM, the systematic risk cannot be diversified away because this element of 

news affects all assets, however, unsystematic or specific risk may be diversified away. 

The market risk at time t can be presented in the form: 

mt = 'Lbij (Fj - EFj)t 
j 

(5.71) 

where market-wide factors F s may have different effects on different securities, reflected in the 
, J' 

different values for the coefficients b .. s for each individual security i. 
l) 
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The APT does not require any assumptions about utility function or that the mean and variance of 

a portfolio are the only two elements in the investor's objective function. The model is a 

mechanism that allows one to derive an expression for the expected return on a security (or a 

portfolio of securities) based on the idea that riskless arbitrage opportunities will be 

instantaneously eliminated. 

Assuming that agents have homogeneous expectations, and based on several orthogonality 

conditions, the APT can be summed up in two equations108
: 

k 

Rit = a j + LbUFjt + Bit 
j=1 

k 

ERi = Ao + L Ajbu 
)=1 

(5.72) 

(5.73) 

which implies that return on any security is linearly related to a set of k factors Fjt, and the 

expected return on any security i may be written as a linear combination of the factor weightings 

bu. As it was noted above that bu s are specific to security i. The expected return on security i 

weights these security-specific betas by a weight Ai' which is the same for all securities. A) can 

be interpreted as the extra expected return required because of securities sensitivity to the jth 

factor. 

Testing the APT 

One of the procedures of the estimation of the APT is known as factor analySis. A subset of all 

factors F is chosen so that the covariance between each expected return equation's residuals is 
.I 

zero (E (B i B j ) = 0, \j i =t: j , i. e. the unsystematic risk is uncorrelated across securities), which is 

consistent with theoretical assumption that the portfolio is fully diversified. We stop adding factors 

108 See Ross (1976). 

207 



Fj when the next factor adds little additional explanation. Thus the appropriate number of F- s 
J 

and their corresponding bijs are estimated simultaneously. The A j s are then estimated from the 

cross-section regression (5.73).109 

Roll and Ross (1980) applied factor analysis to 42 groups of stocks using daily data between 1962 

and 1972. The results of the first pass regression show that for most groups of the stocks around 

five factors provide a sufficiently good statistical explanation of returns. In the second pass 

regression they find that three factors are sufficient. Dhrymes et al (1984) show that one of the 

problems of the interpreting the results from factor analysis is that as more securities are included 

in the analysis the number of significant factors appears to increase. 

Sharpe(1982), Chen (1983), Roll and Ross (1984), and Chen et al (1986) specify a wide variety of 

factors that might influence expected returns in the first-pass time series regression. Among these 

factors are dividend yield, a long-short yield spread on government bonds and changes in industrial 

production. The bijs estimated from the first pass regression are then used as cross-section 

variables in the second pass regression. The authors find that that several A j are statistically 

significant thus supporting the multifactor APT. In Sharpe's results the securities' CAPM beta was 

significant whereas in Chen et al the CAPM beta when added to the factors already included in the 

APT contributed no additional explanatory power to the second pass regression. However, in all 

the studies mentioned above the second pass regressions have a maximum R2 of 0.1, which 

indicates the presence of a great deal of noise in asset returns. 

109 There are, however, problems in interpreting the results from factor analysis. First, the signs on the bij and A j 

are arbitrary and could be reversed (e.g. a positive bij and negative A j is statistically indistinguishable from a 

negative bij and positive A j ). Second, there is a scaling problem in that the results still hold if the bi) are doubled 

and the A j halved. Finally, if the regressions are repeated on different samples of data there is no guarantee that 

the same factors will appear in the same order of importance. 
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Clare and Thomas (1994), usmg the APT, present empirical evidence of the pncmg of the 

macroeconomic factors in the UK stockmarket between 1983 and 1990 grouping stocks into 

portfolios (both to eliminate diversifiable risk and to reduce the so-called error-in-variables 

problem.) before estimation. For the US data similar analysis has been formalised by Chan, Chen 

and Hsieh (CCH) (1985) and Chen, Roll and Ross (CRR) (1986), who find that a number of 

economic factors are significantly priced in the stockmarket: the changing state of the economy, 

inflation, yield curve shifts, and a measure of the market risk premium. Clare and Thomas attach 

particular importance to extending the range of economic variables beyond those considered by 

CCH and CRR to reflect the 'small, open economy' nature of the UK, such as exchange rate and 

the current account balance. The conclusions of the authors are as follows: over the period 1983-

1990, using CAPM beta-sorted portfolios and time-varying risk premia associated with 

macroeconomic variables, they find that a number of factors have been priced in the UK 

stockmarkets; these are oil prices, two measures of corporate default or 'market risk', the retail 

price index, UK private sector bank lending, the current account balance and the redemption yield 

on an index of UK corporate debentures and loans. Further, the return on the market has no 

additional role to play once these macroeconomic factors are included. 

The alternative approach to testing the APT, applied in the literature and, m particular, by 

McElroy et al (1985) on US portfolios, uses two basic equations: 

to get: 

k 

Rit = E(Rit) + L bijFij + Bij 

j=1 

k 

E(~t)=Ao + IbijA j 
j=1 
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(5.75) 



k k 

Rit = ,..1,0 + L bU,..1,} + L buFu + &u (5.76) 
}=l j=l 

Ifwe set ,..1,0 = r , the risk-free rate, and compare (5.76) with regressions with unrestricted constant 

term a i' then: 

k 

(1\( - r t ) = a. + " b .. F. + & 
1 £"'1]1] 1] (5.77) 

}=l 

k 

And the comparison of (5.76) and (5.77) gives a j = L bU,..1,} : the restrictions that should hold if 
j=l 

the APT is the correct model. The restrictions can be tested by applying non-linear least squares. 

The ;~j sand bi; s are jointly estimated in (5.76). The results of McElroy et al suggest that the 

restrictions do not hold. 

The CAPM and the APT 

The standard CAPM may be shown to be a special case of the APT, namely a single-factor version 

of the APT, where the single factor is the expected return on the market portfolio. If the return 

generating equation for security i is hypothesised to depend on only one factor and this factor is 

taken to be the return on the market portfolio, then the APT gives: 

(5.78) 

This single index APT equation can be shown to imply that the expected return is given by: 

ER. = r + b (ER - r) 1 1 TIl , 
(5.79) 

which conforms with the equilibrium return equation for the CAPM. 

The standard CAPM may also be shown to be consistent with a multi-index APT. Consider, for 

example, the two-factor APT: 

(5.80) 
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and 

(5.81) 

As it was mentioned above, the A j can be interpreted as the extra expected return required 

because of a securities sensitivity to the jth factor. Since A j is an excess return, then if the CAPM 

is true: 

where the A are the CAPM betas. 110 Substituting for A j from (5.82) and (5.83) in (5.81) and 

rearranging we get: 

(5.84) 

where If = bzJ3t + bZ2 f32 · Thus, the two-factor APT model with the A j determined by the betas 

of the CAPM yields an equation for the expected return on asset i, which is of the form given by 

the standard CAPM itself. Hence, in testing the APT, if one finds that more than one factor A j is 

significant in (5.81), then this mayor may not reject the CAPM. If the estimate of A j is such that 

this just equals /3y. (ERm - r), where /3y is the CAPM beta, then the APT is consistent with the 

CAPM. If the latter restriction on A j does not hold, then APT and CAPM are not consistent with 

each other. 111 

The CAPM is more restrictive than the APT, but it has a more immediate intuitive appeal. The 

APT contains arbitrary elements when its empirical implementation is considered (for example, 

what are the appropriate factors 0 ?) and may be difficult to interpret (see footnote 109). 

110 Note that the A is not the same as the bij . 

111 The argument is easily generalised to the k factor case. 
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CHAPTER 6 

CONCLUSION 

6.1 Concluding remarks 

The last few decades have seen an extraordinary growth in the use of quantitative methods in 

financial markets. A range of models was developed to account for empirical regularities in 

financial data. The present work adds evidence from the transition equity markets of Central 

Europe to the body of work on the econometric modelling of financial time series by addressing 

the issues of volatility, predictability and international asset pricing in these markets. We focus on a 

sample of four Central European stock markets, including Hungarian, Polish, Czech and Slovak 

markets. 

Volatility is a key variable which permeates most financial instruments and plays a central role in 

many areas of finance. For example, volatility is crucially important in asset pricing models and 

dynamic hedging strategies, as well as in determination of option prices. From an empirical 

standpoint, it is therefore of utmost importance to model carefully any temporal variation in the 

volatility process. Chapter 3 of the thesis focuses on modelling of univariate and multivariate 

volatility of the transition equity markets of Central Europe. We start from examination of the 

statistical properties of our dataset. The results reveal that it has previously documented 

characteristics of the unconditional distribution of financial time series, which are used to justify 

the GARCH specification of the time-varying volatility. The estimation of univariate GARCH 

specifications indicates that GARCH effects are apparent in all four series examined. Five out of 
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the seven estimated univariate GARCH models allow different types of asymmetry in the impact of 

news on volatility of the transition markets. The results reveal rather weak evidence of 

asymmetries in the markets. The so-called leverage effects, which indicate that negative shocks 

introduce more volatility than positive shocks, are captured by EGARCH for the Czech and 

AGARCH for the Slovak returns. 

The growing intemationalisation of financial markets has prompted several recent empirical studies 

to examine the mechanism through which stock market movements are transmitted around the 

world. In this chapter our analysis focuses on the dynamic relationship between stock return 

volatility of four transition markets of Central Europe. Two multivariate GARCH models of time­

varying volatility employed in our study allow us to examine the conditional correlation and the 

pattern of volatility spillover effects between the markets in the system. The constant correlation 

specification indicates significant conditional correlation between three pairs of countries: Hungary 

and Poland, Hungary and Czech Republic, and Poland and Czech Republic. The BEKK model of 

multivariate volatility fitted to the Hungarian and Polish series shows evidence of return volatility 

spillovers from the Hungarian to Polish market, but no volatility spillover effects are found in the 

opposite direction. 

The predictability of financial asset prices is one of the earliest and most enduring problems of 

financial econometrics. Chapter 4 addresses the issue of return predictability in the transition 

markets of Central Europe by employing technical trading rules for buying and selling in the 

market. Technical analysis is an approach to investment management based on belief that historical 

price series, trading volume and other market statistics exhibit regularities that can be profitably 

exploited to extrapolate future price movements. In our analysis we explore one of the most 

popular technical rules when to buy and sell in the market: the moving average rule. 
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The results from application of the moving average trading strategies to our series are intriguing. 

We document several important stylised facts. The estimates indicate that buy signals consistently 

generate higher returns that sell signals. In addition we find that returns associated with sell signals 

are negative. This fact cannot be explained by various seasonalities since it is based on a large 

fraction of trading days. There are two major opinions on the ability to predict returns. Firstly, 

predictability arises from market inefficiencies; secondly, there may be rational variation in 

expected returns, resulting from an equilibrium model. Although rational changes in expected 

returns are possible, it is hard to imagine an equilibrium model that predicts negative returns over 

such a large fraction of trading days. Our further results indicate that the second moments of the 

distributions of buy and sell signals behave quite differently. Returns associated with buy signals 

are less volatile than returns associated with sell signals. This result is inconsistent with existing 

models of changing risk. Finally, we find that for all four markets the fraction of positive returns 

associated with buy periods is significantly larger, than the fraction of positive returns generated 

from sell signals. 

The next part of the chapter employs bootstrap methodology to check whether various null models 

of stock returns are able to account for the predictability in nominal stock price series associated 

with technical trading rule profits documented in the first part of the chapter. The results reveal 

that none of these models (including AR GARCH-M and EGARCH) is very successful in 

explaining the moving average rules profits generated by the actual data. 

The inability of the linear conditional mean estimators to characterise the temporal dynamics of 

stock returns, as well as the asymmetric nature of returns and volatility over the periods of buy and 

sell signals, suggest the existence of possible non-linearities. In the next part of the chapter we 

compare the forecast performance of linear (AR and EGARCH) and nonlinear (feedforward 

networks) conditional mean estimators with past trading signals in the conditional mean equation. 
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The forecast improvements of the feedforward network regression over the linear conditional 

mean estimators are substantial. We conclude that nonlinearities play an important role in 

modelling the conditional mean of stock returns. 

Having analysed the issues related to volatility and predictability of the stock market indices of 

four transition economies, in Chapter 5 we address the question of integration of these relatively 

new markets into the global capital market. The Sharpe-Lintner-Mossin-Black mean-variance 

model of exchange, the Capital Asset Pricing Model (CAPM), is the first equilibrium asset pricing 

model, and it remains one of the foundations of financial economics. In our analysis we test a 

conditional version of the CAPM in an international setting, using parsimonious GARCH 

parameterisation of the conditional covariance matrix of assets in the system. Methodologically, 

we extend the 'BEKK' multivariate GARCH specification of Engle and Kroner (1995) to 

accommodate GARCH-M effects. The model is estimated for a dataset including returns on the 

national indices from both developed (U.S. and German) and relatively new developing (Hungarian 

and Polish) equity markets. 

International CAPM (ICAPM) implies that if international markets are fully integrated and 

purchasing power parity holds, then the world market risk is the only relevant pricing factor, and 

the assets with the same risk have identical expected return irrespective of the market. To test 

pricing restrictions of the benchmark standard ICAPM, we compare its performance to two 

alternative specifications, the partial segmentation and partial integration models, which could 

provide useful insights should the standard ICAPM fail to hold. 

The specified models are first estimated with additional assumption that the price of market risk is 

constant. The results reveal that market risk, measured by the conditional covariance between the 

return on each national index and a world-wide index, is positive and equally priced across the 
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countries. This is an important result, as it indicates that the assets in the transition markets 

command the same level of return for a given level of risk as the assets in the developed countries. 

It is consistent with ICAPM, and points to integration of the Hungarian and Polish markets into 

the global capital market. However, the estimation of the partial segmentation model shows 

individual significance of the Hungarian idiosyncratic risk, indicating some level of segmentation of 

the Hungarian market. Finally, the results of the partial integration model, which introduces a 

vector of world-wide information variables in the expected return equations, show that the 

variation in the excess returns is still predictable after accounting for market-wide risk. These 

results may be due, at least partially, to the auxiliary assumption of the constancy of market risk. In 

the next part of the chapter the price of risk is allowed to vary through time. We find that the 

relaxation of the constancy condition does not have any significant effect on the results from the 

previous testing for the specification with the constant price of risk, and the information variables 

introduced into the system by partial integration model are still priced in the markets. 

The results of this thesis suggest directions for the further research of a range of issues related to 

the econometric analysis of the data from transition stock markets, and financial data in general. 

Examination of the distributional properties of the standardised residuals of the various univariate 

and multivariate ARCH specifications of time-varying volatility employed in our work reveals that, 

although, there is a substantial reduction in the excess kurtosis observed in nominal returns, 

nonnormality remains. The subsequent research includes alternative explanations of the conditional 

nonnormality. One possibility is the new approach emerged from the work of Taylor (1986) who 

formulated a discrete time stochastic volatility (SV) model as an alternative to ARCH models. 

Until recently estimating the SV model remained almost unfeasible. Recent advances in 

econometric theory have made estimation of the SV models much easier. 
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The results in chapter 4 are consistent with technical trading rules having predictive power in 

transition equity markets of Central Europe. Our analysis was focused on the simplest trading 

rules. It would be interesting to investigate other more elaborate technical strategies, which could 

potentially generate even larger differences between conditional returns. 

The results in chapter 5 indicate that even though the conditional version of the traditional ICAPM 

applied to the dataset including new markets of Central Europe provides useful information on the 

dynamics of market premia, a more adequate model of international asset pricing should probably 

include additional factors. Alternatively, a nonlinear pricing model may be needed to explain the 

cross-section of returns we analyse. 
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