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Abstract

We study orbifolds of N = 4 U(n) super-Yang-Mills theory given by discrete sub-
groups of SU(2) and SU(3). We have reached many interesting observations that have
graph-theoretic interpretations. For the subgroups of SU(2), we have shown how the
matter content agrees with current quiver theories and have offered a possible expla-
nation. In the case of SU(3) we have constructed a catalogue of candidates for finite
(chiral) N = 1 theories, giving the gauge group and matter content. Finally, we con-
jecture a McKay-type correspondence for Gorenstein singularities in dimension 3 with
modular invariants of WZW conformal models. This implies a connection between
a class of finite N = 1 supersymmetric gauge theories in four dimensions and the
classification of affine SU(3) modular invariant partition functions in two dimensions.

1 Introduction

Recent advances on finite four dimensional gauge theories from string theory construc-
tions have been dichotomous: either from the geometrical perspective of studying algebro-
geometric singularities such as orbifolds [4] [5] [6], or from the intuitive perspective of study-
ing various configurations of branes such as the so-called brane-box models [7]. (See [8] and
references therein for a detailed description of these models. A recent paper discusses the
bending of non-finite models in this context [9].) The two approaches lead to the realisation
of finite, possibly chiral, N = 1 supersymmetric gauge theories, such as those discussed in
[10]. Our ultimate dream is of course to have the flexbility of the equivalence and comple-
tion of these approaches, allowing us to compute say, the duality group acting on the moduli
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space of marginal gauge couplings [11]. (The duality groups for the N = 2 supersymmetric
theories were discussed in the context of these two approaches in [12] and [13].) The brane-
box method has met great success in providing the intuitive picture for orbifolds by Abelian
groups: the elliptic model consisting of k×k′ branes conveniently reproduces the theories on
orbifolds by ZZk × ZZk′ [8]. Orbifolds by ZZk subgroups of SU(3) are given by Brane Box Mod-
els with non-trivial identification on the torus [11] [8]. Since by the structure theorem that
all finite Abelian groups are direct sums of cyclic ones, this procedure can be presumably
extended to all Abelian quotient singularities. The non-Abelian groups however, present
difficulties. By adding orientifold planes, the dihedral groups have also been successfully
attacked for theories with N = 2 supersymmetry [14]. The question still remains as to what
could be done for the myriad of finite groups, and thus to general Gorenstein singularities.

In this paper we shall present a catalogue of these Gorenstein singularities in dimensions
2 and 3, i.e., orbifolds constructed from discrete subgroups of SU(2) and SU(3) whose
classification are complete. In particular we shall concentrate on the gauge group, the
fermionic and bosonic matter content resulting from the orbifolding of an N = 4 U(n)
super-Yang-Mills theory. In Section 2, we present the general arguments that dictate the
matter content for arbitrary finite group Γ. Then in Section 3, we study the case of Γ ⊂
SU(2) where we notice interesting graph-theoretic descriptions of the matter matrices. We
analogously analyse case by case, the discrete subgroups of SU(3) in Section 4, followed by
a brief digression of possible mathematical interest in Section 5. This leads to a Mckay-type
connection between the classification of two dimensional SU(3)k modular invariant partition
functions and the class of finite N = 1 supersymmetric gauge theories calculated in this
paper. Finally we tabulate possible chiral theories obtainable by such orbifolding techniques
for these SU(3) subgroups.

2 The Orbifolding Technique

Prompted by works by Douglas, Greene, Moore and Morrison on gauge theories which arise
by placing D3 branes on orbifold singularities [1] [2], [3], Kachru and Silverstein [4] and
subsequently Lawrence, Nekrasov and Vafa [5] noted that an orbifold theory involving the
projection of a supersymmetric N = 4 gauge theory on some discrete subgroup Γ ⊂ SU(4)
leads to a conformal field theory with N ≤ 4 supersymmetry. We shall first briefly summarise
their results here.

We begin with a U(n) N = 4 super-Yang-Mills theory which has an R-symmetry of
Spin(6) ≃ SU(4). There are gauge bosons AIJ (I, J = 1, ..., n) being singlets of Spin(6),
along with adjoint Weyl fermions Ψ4

IJ in the fundamental 4 of SU(4) and adjoint scalars Φ6

IJ

in the antisymmetric 6 of SU(4). Then we choose a discrete (finite) subgroup Γ ⊂ SU(4) with
the set of irreducible representations {ri} acting on the gauge group by breaking the I-indices
up according to {ri}, i.e., by

⊕
i

ri =
⊕
i

CNiri such that CNi accounts for the multiplicity of

each ri and n =
∑
i=1

Nidim(ri). In the string theory picture, this decomposition of the

gauge group corresponds to permuting n D3-branes and hence their Chan-Paton factors
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which contain the IJ indices, on orbifolds of IR6. Subsequently by the Maldecena large N
conjecture [15], we have an orbifold theory on AdS5 ×S5, with the R-symmetry manifesting
as the SO(6) symmetry group of S5 in which the branes now live [4]. The string perturbative
calculation in this context, especially with respect to vanishing theorems for β-functions, has
been performed [6].

Having decomposed the gauge group, we must likewise do so for the matter fields: since
an orbifold is invariant under the Γ-action, we perform the so-called projection on the fields
by keeping only the Γ-invariant fields in the theory. Subsequently we arrive at a (supercon-
formal) field theory with gauge group G =

⊗
i

SU(Ni) and Yukawa and quartic interaction

respectively as (in the notation of [5]):

Y =
∑

ijk γ
fij ,fjk,fki

ijk TrΨij
fij

Φjk
fjk

Ψki
fki

V =
∑

ijkl η
ijkl
fij ,fjk,fkl,fli

TrΦij
fij

Φjk
fjk

Φkl
fkl

Φli
fli

,

where
γ

fij ,fjk,fki

ijk = Γαβ,m

(
Yfij

)α

viv̄j

(
Yfjk

)m

vj v̄k

(Yfki
)β

vk v̄i

ηijkl
fij ,fjk,fkl,fli

=
(
Yfij

)[m

viv̄j

(
Yfjk

)n]

vj v̄k

(Yfkl
)[m
vkv̄l

(Yfli
)n]
vlv̄i

,

such that
(
Yfij

)α

viv̄j

,
(
Yfij

)m

viv̄j

are the fij ’th Clebsch-Gordan coefficients corresponding to the

projection of 4 ⊗ ri and 6 ⊗ ri onto rj, and Γαβ,m is the invariant in 4 ⊗ 4 ⊗ 6.
Furthermore, the matter content is as follows:

1. Gauge bosons transforming as

hom (Cn,Cn)Γ =
⊕

i

CNi⊗
(
CNi

)∗
,

which simply means that the original (R-singlet) adjoint U(n) fields now break up
according to the action of Γ to become the adjoints of the various SU(Ni);

2. a4

ij Weyl fermions Ψij
fij

(fij = 1, ..., a4

ij )

(4 ⊗ hom (Cn,Cn))Γ =
⊕

ij

a4

ijC
Ni⊗

(
CNj

)∗
,

which means that these fermions in the fundamental 4 of the original R-symmetry now
become

(
Ni, N j

)
bi-fundamentals of G and there are a4

ij copies of them;

3. a6

ij scalars Φij
fij

(fij = 1, ..., a6

ij ) as

(6 ⊗ hom (Cn,Cn))Γ =
⊕

ij

a6

ijC
Ni⊗

(
CNj

)∗
,

similarly, these are G bi-fundamental bosons, inherited from the 6 of the original R-
symmetry.
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For the above, we define aR
ij (R = 4 or 6 for fermions and bosons respectively) as the

composition coefficients
R⊗ ri =

⊕

j

aR

ijrj (1)

Moreover, the supersymmetry of the projected theory must have its R-symmetry in the
commutant of Γ ⊂ SU(4), which is U(2) for SU(2), U(1) for SU(3) and trivial for SU(4),
which means: if Γ ⊂ SU(2), we have an N = 2 theory, if Γ ⊂ SU(3), we have N = 1, and
finally for Γ ⊂ the full SU(4), we have a non-supersymmetric theory.

Taking the character χ for element γ ∈ Γ on both sides of (1) and recalling that χ is a
(⊗,⊕)-ring homomorphism, we have

χR

γ χ(i)
γ =

r∑

j=1

aR

ijχ
(j)
γ (2)

where r = |{ri}|, the number of irreducible representations, which by an elementary theorem
on finite characters, is equal to the number of inequivalent conjugacy classes of Γ. We further
recall the orthogonality theorem of finite characters,

r∑

γ=1

rγχ
(i)∗
γ χ(j)

γ = gδij, (3)

where g = |Γ| is the order of the group and rγ is the order of the conjugacy class containing
γ. Indeed, χ is a class function and is hence constant for each conjugacy class; moreover,

r∑
γ=1

rγ = g is the class equation for Γ. This orthogonality allows us to invert (2) to finally

give the matrix aij for the matter content

aR

ij =
1

g

r∑

γ=1

rγχ
R

γ χ(i)
γ χ(j)∗

γ (4)

where R = 4 for Weyl fermions and 6 for adjoint scalars and the sum is effectively that over
the columns of the Character Table of Γ. Thus equipped, let us specialise to Γ being finite
discrete subgroups of SU(2) and SU((3).

3 Checks for SU(2)

The subgroups of SU(2) have long been classified [19]; discussions and applications thereof
can be found in [16] [17] [18] [22]. To algebraic geometers they give rise to the so-called
Klein singularities and are labeled by the first affine extension of the simply-laced simple Lie
groups ÂD̂Ê (whose associated Dynkin diagrams are those of ADE adjointed by an extra
node), i.e., there are two infinite series and 3 exceptional cases:

1. Ân = ZZn+1, the cyclic group of order n + 1;
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2. D̂n, the binary lift of the ordinary dihedral group dn;

3. the three exceptional cases, Ê6, Ê7 and Ê8, the so-called binary or double1 tetrahedral,
octahedral and icosahedral groups T ,O, I.

The character tables for these groups are known [25] [26] [28] and are included in Ap-
pendix I for reference. Therefore to obtain (4) the only difficulty remains in the choice of R.
We know that whatever R is, it must be 4 dimensional for the fermions and 6 dimensional
for the bosons inherited from the fundamental 4 and antisymmetric 6 of SU(4). Such an R
must therefore be a 4 (or 6) dimensional irrep of Γ, or be the tensor sum of lower dimen-
sional irreps (and hence be reducible); for the character table, this means that the row of
characters for R (extending over the conjugacy classes of Γ) must be an existing row or the
sum of existing rows. Now since the first column of the character table of any finite group
precisely gives the dimension of the corresponding representation, it must therefore be that
dim(R) = 4, 6 should be partitioned into these numbers. Out of these possibilities we must
select the one(s) consistent with the decomposition of the 4 and 6 of SU(4) into the SU(2)
subgroup2, namely:

SU(4) → SU(2) × SU(2) × U(1)
4 → (2, 1)+1

⊕
(1, 2)−1

6 → (1, 1)+2
⊕

(1, 1)−2
⊕

(2, 2)0

(5)

where the subscripts correspond to the U(1) factors (i.e., the trace) and in particular
the ± forces the overall traceless condition. From (5) we know that Γ ⊂ SU(2) inherits a 2
while the complement is trivial. This means that the 4 dimensional represention of Γ must
be decomposable into a nontrivial 2 dimensional one with a trivial 2 dimensional one. In the
character language, this means that R = 4 = 2trivial ⊕ 2 where 2trivial = 1trivial ⊕ 1trivial,
the tensor sum of two copies of the (trivial) principal representation where all group elements
are mapped to the identity, i.e., corresponding to the first row in the character table. Whereas
for the bosonic case we have R = 6 = 2trivial ⊕ 2 ⊕ 2

′
. We have denoted 2

′
to signify that the

two 2’s may not be the same, and correspond to inequivalent representations of Γ with the
same dimension. However we can restrict this further by recalling that the antisymmetrised
tensor product [4 ⊗ 4]A → 1 ⊕ 2 ⊕ 2 ⊕ [2 ⊗ 2]A must in fact contain the 6. Whence we
conclude that 2 = 2

′
. Now let us again exploit the additive property of the group character,

1 For SO(3) ∼= SU(2)/ZZ2 these would be the familiar symmetry groups of the respective regular solids
in IR3: the dihedron, tetrahedron, octahedron/cube and icosahedron/dodecahedron. However since we are
in the double cover SU(2), there is a non-trivial ZZ2- lifting,
0 → ZZ2 → SU(2) → SO(3) → 0,⋃ ⋃

D̂, T ,O, I → d, T, O, I
hence the modifier “binary”. Of course, the A-series, being abelian, receives no lifting. Later on we shall
briefly touch upon the ordinary d, T, I, O groups as well.

2We note that even though this decomposition is that into irreducibles for the full continuous Lie groups,
such irreducibility may not be inherited by the discrete subgroup, i.e., the 2’s may not be irreducible
representations of the finite Γ.

5



i.e., a homomorphism from a ⊕-ring to a +-subring of a number field (and indeed much work
has been done for the subgroups in the case of number fields of various characteristics); this
means that we can simplify χR=x⊕y as χx + χy. Consequently, our matter matrices become:

a4

ij = 1
g

r∑
γ=1

rγ

(
2χ1

γ + χ2

γ

)
χ(i)

γ χ(j)∗
γ = 2δij + 1

g

r∑
γ=1

rγχ
2

γχ
(i)
γ χ(j)∗

γ

a6

ij = 1
g

r∑
γ=1

rγ

(
2χ1

γ + χ2⊕2

γ

)
χ(i)

γ χ(j)∗
γ = 2δij + 2

g

r∑
γ=1

rγχ
2

γχ
(i)
γ χ(j)∗

γ

where we have used the fact that χ of the trivial representation are all equal to 1, thus
giving by (3), the δij ’s. This simplification thus limits our attention to only 2 dimensional
representations of Γ; however there still may remain many possibilities since the 2 may be
decomposed into nontrivial 1’s or there may exist many inequivalent irreducible 2’s.

We now appeal to physics for further restriction. We know that the N = 2 theory (which
we recall is the resulting case when Γ ⊂ SU(2)) is a non-chiral supersymmetric theory; this
means our bifundamental fields should not distinguish the left and right indices, i.e., the
matter matrix aij must be symmetric. Also we know that in the N = 2 vector multiplet
there are 2 Weyl fermions and 2 real scalars, thus the fermionic and bosonic matter matrices
have the same entries on the diagonal. Furthermore the hypermultiplet has 2 scalars and 1
Weyl fermion in (Ni, N̄j) and another 2 scalars and 1 Weyl fermion in the complex conjugate
representation, whence we can restrict the off-diagonals as well, viz., 2a4

ij −a6

ij must be some
multiple of the identity. This supersymmetry matching is of course consistent with (2).

Enough said on generalities. Let us analyse the groups case by case. For the cyclic
group, the 2 must come from the tensor sum of two 1’s. Of all the possibilities, only the
pairing of dual representations gives symmetric aij. By dual we mean the two 1’s which
are complex conjugates of each other (this of course includes when 2 = 12

trivial
, which exist

for all groups and gives us merely δij ’s and can henceforth be eliminated as uninteresting).
We denote the nontrivial pairs as 1

′
and 1

′′
. In this case we can easily perform yet another

consistency check. From (5), we have a traceless condition seen as the cancelation of the
U(1) factors. That was on the Lie algebra level; as groups, this is our familiar determinant
unity condition. Since in the block decomposition (5) the 2trivial ⊂ the complement SU(4)\Γ
clearly has determinant 1, this forces our 2 matrix to have determinant 1 as well. However
in this cyclic case, Γ is abelian, whence the characters are simply presentations of the group,
making the 2 to be in fact diagonal. Thus the determinant is simply the product of the
entries of the two rows in the character table. And indeed we see for dual representations,
being complex conjugate roots of unity, the two rows do multiply to 1 for all members.
Furthermore we note that different dual pairs give aij ’s that are mere permutations of each
other. We conclude that the fermion matrix arises from 12⊕1

′
⊕1

′′
. For the bosonic matrix,

by (2), we have 6 = (1 ⊕ 1
′
⊕ 1

′′
)2. These and ensuing aij ’s are included in Appendix II.

For the dihedral case, the 1’s are all dual to the principal, corresponding to some ZZ2 inner
automorphism among the conjugacy classes and the characters consist no more than ±1’s,
giving us aij ’s which are block diagonal in ((1, 0), (0, 1)) or ((0, 1), (1, 0)) and are not terribly
interesting. Let us rigorise this statement. Whenever we have the character table consisting
of a row that is composed of cycles of roots of unity, which is a persistent theme for 1 irreps,
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this corresponds in general to some ZZk action on the conjugacy classes. This implies that
our aij for this choice of 1 will be the Kronecker product of matrices obtained from the cyclic
groups which offer us nothing new. We shall refer to these cases as “blocks”; they offer us
another condition of elimination whose virtues we shall exploit much. In light of this, for
the dihedral the choice of the 2 comes from the irreducible 2’s which again give symmetric
aij ’s that are permutations among themselves. Hence R = 4 = 12⊕2 and R = 6 = 12⊕22.
For reference we have done likewise for the dihedral series not in the full SU(2), the choice
for R is the same for them.

Finally for the exceptionals T ,O, I, the 1’s again give uninteresting block diagonals and
out choice of 2 is again unique up to permutation. Whence still R = 4 = 12 ⊕ 2 and
R = 6 = 12 ⊕ 22. For reference we have computed the ordinary exceptionals T, O, I which
live in SU(2) with its center removed, i.e., in SU(2)/ZZ2

∼= SO(3). For them the 2 comes
from the 1

′
⊕ 1

′′
, the 2, and the trivial 12 respectively.

Of course we can perform an a posteriori check. In this case of SU(2) we already know
the matter content due to the works on quiver diagrams [1] [17] [14]. The theory dictates
that the matter content aij can be obtained by looking at the Dynkin diagram of the ÂD̂Ê
group associated to Γ whereby one assigns 2 for aij on the diagonal as well as 1 for every
pair of connected nodes i → j and 0 otherwise, i.e., aij is essentially the adjacency matrix
for the Dynkin diagrams treated as unoriented graphs. Of course adjacency matrices for
unoriented graphs are symmetric; this is consistent with our nonchiral supersymmetry argu-
ment. Furthermore, the dimension of a4

ij is required to be equal to the number of nodes in
the associated affine Dynkin diagram (i.e., the rank). This property is immediately seen to
be satisfied by examining the character tables in Appendix I where we note that the number
of conjugacy classes of the respective finite groups (which we recall is equal to the number
of irreducible representations) and hence the dimension of aij is indeed that for the ranks of

the associated affine algebras, namely n + 1 for Ân and D̂n and 7,8,9 for Ê6,7,8 respectively.
We note in passing that the conformality condition Nf = 2Nc for this N = 2 [4] [5] nicely
translates to the graph language: it demands that for the one loop β-function to vanish
the label of each node (the gauge fields) must be 1

2
that of those connected thereto (the

bi-fundamentals).
Our results for aij computed using (4), Appendix I, and the aforementioned decompo-

sition of R are tabulated in Appendix II. They are precisely in accordance with the quiver
theory and present themselves as the relevant adjacency matrices. One interesting point to
note is that for the dihedral series, the ordinary dn (which are in SO(3) and not SU(2)) for
even n also gave the binary ̂Dn′= n+6

2
Dynkin diagram while the odd n case always gave the

ordinary Dn′= n+3
2

diagram.

These results should be of no surprise to us, since a similar calculation was in fact done by
J. Mckay when he first noted his famous correspondence [16]. In the paper he computed the
composition coefficients mij in R

⊗
Rj =

⊕
k

mjkRk for Γ ⊂ SU(2) with R being a faithful

representation thereof. He further noted that for all these Γ’s there exists (unique up to
automorphism) such R, which is precisely the 2 dimensional irreducible representation for
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D̂ and Ê whereas for Â it is the direct sum of a pair of dual 1 dimensional representations.
Indeed this is exactly the decomposition of R which we have argued above from supersym-
metry. His Theorema Egregium was then

Theorem: The matrix mij is 2I minus the cartan matrix, and is thus the adjacency ma-
trix for the associated affine Dynkin diagram treated as undirected C2-graphs (i.e., maximal
eigenvalue is 2).

Whence mij has 0 on the diagonal and 1 for connected nodes. Now we note from our
discussions above and results in Appendix II, that our R is precisely Mckay’s R (which we
henceforth denote as RM) plus two copies of the trivial representation for the 4 and RM plus
the two dimensional irreps in addition to the two copies of the trivial for the 6. Therefore
we conclude from (4):

a4

ij = 1
g

r∑
γ=1

rγχ
RM⊕12

γ χ(i)
γ χ(j)∗

γ

a6

ij = 1
g

r∑
γ=1

rγχ
RM⊕RM⊕1

2

γ χ(i)
γ χ(j)∗

γ

which implies of course, that our matter matrices should be

a4

ij = 2δij + mij

a6

ij = 2δij + 2mij

with Mckay’s mij matrices. This is exactly the results we have in Appendix II. Having ob-
tained such an elegant graph-theoretic interpretation to our results, we remark that from this
point of view, oriented graphs means chiral gauge theory and connected means interacting
gauge theory. Hence we have the foresight that the N = 1 case which we shall explore next
will involve oriented graphs.

Now Mckay’s theorem explains why the discrete subgroups of SU(2) and hence Klein
singularities of algebraic surfaces (which our orbifolds essentially are) as well as subsequent
gauge theories thereupon afford this correspondence with the affine simply-laced Lie groups.
However they were originally proven on a case by case basis, and we would like to know a
deeper connection, especially in light of quiver theories. We can partially answer this question
by noting a beautiful theorem due to Gabriel [20] [21] which forces the quiver considerations
by Douglas et al. [1] to have the ADE results of Mckay.

It turns out to be convenient to formulate the theory axiomatically. We define L(γ, Λ),
for a finite connected graph γ with orientation Λ, vertices γ0 and edges γ1, to be the category
of quivers whose objects are any collection (V, f) of spaces Vα∈γ0 and mappings fl∈γ1 and
whose morphisms are φ : (V, f) → (V ′, f ′) a collection of linear mappings φα∈Γ0 : Vα → V ′

α

compatible with f by φe(l)fl = f ′
lφb(l) where b(l) and e(l) are the beginning and end of the

directed edge l. Then we have

Theorem: If in the quiver category L(γ, Λ) there are only finitely many non-isomorphic
indecomposable objects, then γ coincides with one of the graphs An, Dn, E6,7,8.

8



This theorem essentially compels any finite quiver theory to be constructible only on
graphs which are of the type of the Dynkin diagrams of ADE. And indeed, the theories
of Douglas, Moore et al. [1] [14] have explicitly made the physical realisations of these
constructions. We therefore see how Mckay’s calculations, quiver theory and our present
calculations nicely fit together for the case of Γ ⊂ SU(2).

4 The case for SU(3)

We repeat the above analysis for Γ = SU(3), though now we have no quiver-type theories
to aid us. The discrete subgroups of SU(3) have also been long classified [22]. They include
(the order of these groups are given by the subscript), other than all those of SU(2) since
SU(2) ⊂ SU(3), the following new cases. We point out that in addition to the cyclic group
in SU(2), there is now in fact another Abelian case ZZk × ZZk′ for SU(3) generated by the

matrix ((e
2πi
k , 0, 0), (0, e

2πi
k′ , 0), (0, 0, e−

2πi
k

−
2πi
k′ )) much in the spirit that ((e

2πi
n , 0), (0, e−

2πi
n ))

generates the ZZn for SU(2). Much work has been done for this ZZk × ZZk′ case, q. v. [8] and
references therein.

1. Two infinite series ∆3n2 and ∆6n2 for n ∈ ZZ, which are analogues of the dihedral series
in SU(2):

(a) ∆ ⊂ only the full SU(3): when n = 0 mod 3 where the number of classes for
∆(3n2) is (8 + 1

3
n2) and for ∆(6n2), 1

6
(24 + 9n + n2);

(b) ∆ ⊂ both the full SU(3) and SU(3)/ZZ3: when n 6= 0 mod 3 where the number
of classes for ∆(3n2) is 1

3
(8 + n2) and for ∆(6n2), 1

6
(8 + 9n + n2);

2. Analogues of the exceptional subgroups of SU(2), and indeed like the later, there are
two series depending on whether the ZZ3-center of SU(3) has been modded out (we
recall that the binary T ,O, I are subgroups of SU(2), while the ordinary T, O, I are
subgroups of the center-removed SU(2), i.e., SO(3), and not the full SU(2)):

(a) For SU(3)/ZZ3:
Σ36, Σ60

∼= A5, the alternating symmetric-5 group, which incidentally is precisely
the ordinary icosahedral group I, Σ72, Σ168 ⊂ S7, the symmetric-7 group, Σ216 ⊃
Σ72 ⊃ Σ36, and Σ360

∼= A6, the alternating symmetric-6 group;

(b) For the full3 SU(3):
Σ36×3, Σ60×3

∼= Σ60 × ZZ3, Σ168×3
∼= Σ168 × ZZ3, Σ216×3, and Σ360×3.

3In his work on Gorenstein singularities [23], Yau points out that since the cases of Σ60×3 and Σ168×3

are simply direct products of the respective cases in SU(3)/ZZ3 with ZZ3, they are usually left out by most
authors. The direct product simply extends the class equation of these groups by 3 copies and acts as an
inner automorphism on each conjugacy class. Therefore the character table is that of the respective center-
removed cases, but with the entries each multiplied by the matrix ((1, 1, 1), (1, w, w2), (1, w2, w)) where
w = exp(2πi/3), i.e., the full character table is the Kronecker product of that of the corresponding center-
removed group with that of ZZ3. Subsequently, the matter matrices aij become the Kronecker product of aij

for the center-removed groups with that for Γ = ZZ3 and gives no interesting new results. In light of this,
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Up-to-date presentations of these groups and some character tables may be found in
[23] [24]. The rest have been computed with [27]. These are included in Appendix III for
reference. As before we must narrow down our choices for R. First we note that it must be
consistent with the decomposition:

SU(4) → SU(3) × U(1)
4 → 3−1

⊕
13

6 → 32
⊕

3̄−2

(6)

This decomposition (6), as in the comments for (5), forces us to consider only 3 dimen-
sionals (possibly reducible) and for the fermion case the remaining 1 must in fact be the
trivial, giving us a δij in a4

ij.
Now as far as the symmetry of aij is concerned, since SU(3) gives rise to an N = 1 chiral

theory, the matter matrices are no longer necessarily symmetric and we can no longer rely
upon this property to guide us. However we still have a matching condition between the
bosons and the fermions. In this N = 1 chiral theory we have 2 scalars and a Weyl fermion
in the chiral multiplet as well as a gauge field and a Weyl fermion in the vector multiplet. If
we denote the chiral and vector matrices as Cij and Vij , and recalling that there is only one
adjoint field in the vector multiplet, then we should have:

a4

ij = Vij + Cij = δij + Cij

a6

ij = Cij + Cji.
(7)

This decomposition is indeed consistent with (6); where the δij comes from the principal
1 and the Cij and Cji, from dual pairs of 3; incidentally it also implies that the bosonic
matrix should be symmetric and that dual 3’s should give matrices that are mutual trans-
poses. Finally as we have discussed in the An case of SU(2), if one is to compose only
from 1 dimensional representations, then the rows of characters for these 1’s must multiply
identically to 1 over all conjugacy classes. Our choices for R should thus be restricted by
these general properties.

Once again, let us analyse the groups case by case. First the Σ series. For the members
which belong to the center-removed SU(2), as with the ordinary T, O, I of SU(2)/ZZ2, we
expect nothing particularly interesting (since these do not have non-trivial 3 dimensional
representations which in analogy to the non-trivial 2 dimensional irreps of D̂n and Ê6,7,8

should be the ones to give interesting results). However, for completeness, we shall touch
upon these groups, namely, Σ36,72,216,360. Now the 3 in (6) must be composed of 1 and 2.
The obvious choice is of course again the trivial one where we compose everything from only
the principal 1 giving 4δij and 6δij for the fermionic and bosonic aij respectively. We at
once note that this is the only possibility for Σ360, since its first non-trivial representation
is 5 dimensional. Hence this group is trivial for our purposes. For Σ36, the 3 can come
only from 1’s for which case our condition that the rows must multiply to 1 implies that

we shall adhere to convention and call Σ60 and Σ168 subgroups of both SU(3)/ZZ3 and the full SU(3) and
ignore Σ60×3 and Σ168×3.
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3 = Γ1 ⊕ Γ3 ⊕ Γ4, or Γ1 ⊕ Γ2
2, both of which give uninteresting blocks, in the sense of what

we have discussed in Section 2. For Σ72, we similarly must have 3 = Γ2 ⊕ Γ3 ⊕ Γ4 or 1⊕ the
self-dual 2, both of which again give trivial blocks. Finally for Σ216, whose conjugacy classes
consist essentially of ZZ3-cycles in the 1 and 2 dimensional representations, the 3 comes from
1 ⊕ 2 and the dual 3, from 1 ⊕ 2

′
.

For the groups belonging to the full SU(3), namely Σ168,60,36×3,216×3,360×3, the situation is
clear: as to be expected in analogy to the SU(2) case, there always exist dual pairs of 3 rep-
resentations. The fermionic matrix is thus obtained by tensoring the trivial representations
with one member from a pair selected in turn out of the various pairs, i.e., 1⊕3; and indeed
we have explicitly checked that the others (i.e., 1 ⊕ 3

′
) are permutations thereof. On the

other hand, the bosonic matrix is obtained from tensoring any choice of a dual pair 3 ⊕ 3
′

and again we have explicitly checked that other dual pairs give rise to permutations. We may
be tempted to construct the 3 out of the 1’s and 2’s which do exist for Σ36×3,216×3, however
we note that in these cases the 1 and 2 characters are all cycles of ZZ3’s which would again
give uninteresting blocks. Thus we conclude still that for all these groups, 4 = 1 ⊕ 3 while
6 = 3⊕ dual 3̄. These choices are of course obviously in accordance with the decomposition
(6) above. Furthermore, for the Σ groups that belong solely to the full SU(3), the dual pair
of 3’s always gives matrices that are mutual transposes, consistent with the requirement in
(7) that the bosonic matrix be symmetric.

Moving on to the two ∆ series. We note4, that for n = 1, ∆3
∼= ZZ3 and ∆6

∼= d6 while for
n = 2, ∆12

∼= T := E6 and ∆24
∼= O := E7. Again we note that for all n > 1 (we have already

analysed the n = 1 case5 for Γ ⊂ SU(2)), there exist the dual 3 and 3
′
representations as in

the Σ ⊂ full SU(3) above; this is expected of course since as noted before, all the ∆ groups
at least belong to the full SU(3). Whence we again form the fermionic aij from 1⊕3

′
, giving

a generically nonsymmetric matrix (and hence a good chiral theory), and the bosonic, from
3 ⊕ 3

′
, giving us always a symmetric matrix as required. We note in passing that when

n = 0 mod 3, i.e,. when the group belongs to both the full and the center-removed SU(3),
the ∆3n2 matrices consist of a trivial diagonal block and an L-shaped block. Moreover, all the
∆6n2 matrices are block decomposable. We shall discuss the significances of this observation
in the next section. Our analysis of the discrete subgroups of SU(3) is now complete; the
results are tabulated in Appendix IV.

5 Quiver Theory? Chiral Gauge Theories?

Let us digress briefly to make some mathematical observations. We recall that in the SU(2)
case the matter matrices aij , due to Mckay’s theorem and Moore-Douglas quiver theories, are
encoded as adjacency matrices of affine Dynkin diagrams considered as unoriented graphs
as given by Figures 1 and 2.

4 Though congruence in this case really means group isomorphisms, for our purposes since only the group
characters concern us, in what follows we might use the term loosely to mean identical character tables.

5Of course for ZZ3, we must have a different choice for R, in particular to get a good chiral model, we
take the 3 = 1

′ ⊕ 1
′′ ⊕ 1

′′′
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Figure 1: Γ ⊂ full SU(2) correspond to affine Dynkin diagrams with the Dynkin labels Ni

on the nodes corresponding to the dimensions of the irreps. In the quiver theory the nodes
correspond to gauge groups and the lines (or arrows for chiral theories), matter fields. For
finite theories each Ni must be 1

2
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Figure 2: Γ ⊂ SU(2)/ZZ2 give disconnected graphs
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Figure 3: ∆3n2 ⊂ SU(3) for n 6= 0 mod 3. These belong to both the full and center-removed
SU(3).

1 1

1 1 4

4

Σ36 Σ360

1 5 5

8

9

108

2

1

1

1

1
8

2

Σ72 Σ216

3

2

1 1

2

1
8

8

8

Figure 4: Σ ⊂ SU(3)/ZZ3 gives unconnected graphs.

We are of course led to wonder, whether in analogy, the aij for SU(3) present themselves
as adjacency matrices for quiver diagrams associated to some oriented graph theory because
the theory is chiral. This is very much in the spirit of recent works on extensions of Mckay
correspondences by algebraic geometers [35] [36]. We here present these quiver graphs in
figures 3 4 and 5, hoping that it may be of academic interest.

Indeed we note that for the center-removed case, as with SU(2), we get disconnected (or
trivial) graphs; this of course is the manifestation of the fact that there are no non-trivial
3 representations for these groups (just as there are no non-trivial 2’s of Γ ⊂ SU(2)/ZZ2).
On the other hand for Γ ⊂ full SU(3), we do get interesting connected and oriented graphs,
composed of various directed triangular cycles.

Do we recognise these graphs? The answer is sort of yes and the right place to look for
turns out to be in conformal field theory. In the work on general modular invariants in the

WZW model for ̂su(n)k (which is equivalent to the study of the modular properties of the
characters for affine Lie algebras), an ADE classification was noted for n = 2 [28] [29] [30];
this should somewhat be expected due to our earlier discussion on Gabriel’s Theorem. For
n = 3, work has been done to extract coefficients in the fusion rules and to treat them as
entries of adjacency matrices; this fundamentally is analogous to what we have done since fu-
sion rules are an affine version of finite group composition coefficients. So-called generalised
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Figure 5: Σ ⊂ full SU(3). Only Σ36×3,216×3,360×3 belong only to the full SU(3), for these
we have the one loop β-function vanishing condition manifesting as the label of each node
equaling to 1

3
of that of the incoming and outgoing neighbours respectively. The matrix

representation for these graphs are given in Appendix IV.
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Dynkin diagrams have been constructed for ̂su(3) in analogy to the 5 simply-laced types
corresponding to SU(2), they are: An,D3n, E5, E9 and E21 where the subscripts denote the
level in the representation of the affine algebra [28] [31] [32]. We note a striking resemblance
between these graphs (they are some form of a dual and we hope to rigorise this similarity
in future work) with our quiver graphs: the E5, E9 and E21 correspond to Σ216×3, Σ360×3,
and Σ36×3 respectively. Incidentally these Σ groups are the only ones that belong solely to
the full and not the center-removed SU(3). The D3n corresponds to ∆3n2 for n 6= 0 mod 3,
which are the non-trivial ones as observed in the previous section and which again are those
that belong solely to the full SU(3). The ∆6n2 series, as noted above, gave non-connected
graphs, and hence do not have a correspondent. Finally the An, whose graph has complete
ZZ3 symmetry must come from the Abelian subgroup of SU(3), i.e., the Ân case of SU(2)
but with R = 3 and not 2. This beautiful relationship prompts us to make the following
conjecture upon which we may labour in the near future:

Conjecture: There exists a McKay-type correspondence between Gorenstein singu-

larities and the characters of integrable representations of affine algebras ̂su(n) (and hence
the modular invariants of the WZW model).

A physical connection between ̂SU(2) modular invariants and quiver theories with 8
supercharges has been pointed out [34]. We remark that our conjecture is in the same spirit
and a hint may come from string theory. If we consider a D1 string on our orbifold, then
this is just our configuration of D3 branes after two T-dualities. In the strong coupling
limit, this is just an F1 string in such a background which amounts to a non-linear sigma
model and therefore some (super) conformal field theory whose partition function gives rise
to the modular invariants. Moreover, connections between such modular forms and Fermat
varieties have also been pointed out [33], this opens yet another door for us and many elegant
intricacies arise.

Enough digression on mathematics; let us return to physics. We would like to conclude
by giving a reference catalogue of chiral theories obtainable from SU(3) orbifolds. Indeed,
though some of the matrices may not be terribly interesting graph-theoretically, the non-
symmetry of a4

ij is still an indication of a good chiral theory.
For the original U(n) theory it is conventional to take a canonical decomposition [5]

as n = N |Γ| [5], whence the (orbifolded) gauge group must be
⊗
i

SU(Ni) as discussed in

Section 3, such that N |Γ| = n =
∑
i

Ni|ri|. By an elementary theorem on finite characters:

|Γ| =
∑
i
|ri|

2, we see that the solution is Ni = N |ri|. This thus immediately gives the

form of the gauge group. Incidentally for SU(2), the McKay correspondence gives more
information, it dictates that the dimensions of the irreps of Γ are actually the Dynkin labels
for the diagrams. This is why we have labeled the nodes in the graphs above. Similarly for
SU(3), we have done so as well; these should be some form of generalised Dynkin labels.

Now for the promised catalogue, we shall list below all the chiral theories obtainable from
orbifolds of Γ ⊂ SU(3) (ZZ3 center-removed or not). This is done so by observing the graphs,
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connected or not, that contain unidirectional arrows. For completeness, we also include the
subgroups of SU(2), which are of course also in SU(3), and which do give non-symmetric
matter matrices (which we eliminated in the N = 2 case) if we judiciously choose the 3 from
their representations. We use the short hand (nk1

1 , nk2
2 , ..., nki

i ) to denote the gauge group
k1⊕

SU(n1)...
ki⊕

SU(ni). Analogous to the discussion in Section 3, the conformality condition
to one loop order in this N = 1 case, viz., Nf = 3Nc translates to the requirement that the
label of each node must be 1

3
of the sum of incoming and the sum of outgoing neighbours

individually. (Incidentally, the gauge anomaly cancelation condition has been pointed out
as well [9]. In our language it demands the restriction that Njaij = N̄jaji.) In the following
table, the * shall denote those groups for which this node condition is satisfied. We see that
many of these models contain the group SU(3) × SU(2) × U(1) and hope that some choice
of orbifolds may thereby contain the Standard Model.

Γ ⊂ SU(3) Gauge Group

Ân
∼= ZZn+1 (1n+1)

ZZk × ZZk′ (1kk′
)∗

D̂n (14, 2n−3)

Ê6
∼= T (13, 23, 3)

Ê7
∼= O (12, 22, 32, 4)

Ê8
∼= I (1, 22, 32, 42, 5, 6)

E6
∼= T (13, 3)

E7
∼= O (12, 2, 32)

E8
∼= I (1, 32, 4, 5)

∆3n2(n = 0 mod 3) (19, 3
n2

3
−1)∗

∆3n2(n 6= 0 mod 3) (13, 3
n2−1

3 )∗

∆6n2(n 6= 0 mod 3) (12, 2, 32(n−1), 6
n2−3n+2

6 )∗
Σ168 (1, 32, 6, 7, 8)∗
Σ216 (13, 23, 3, 83)
Σ36×3 (14, 38, 42)∗
Σ216×3 (13, 23, 37, 66, 83, 92)∗
Σ360×3 (1, 34, 52, 62, 82, 93, 10, 152)∗

6 Concluding Remarks

By studying gauge theories constructed from orbifolding of an N = 4 U(n) super-Yang-
Mills theory in 4 dimensions, we have touched upon many issues. We have presented the
explicit matter content and gauge group that result from such a procedure, for the cases of
SU(2) and SU(3). In the first we have shown how our calculations agree with current quiver
constructions and in the second we have constructed possible candidates for chiral theories.
Furthermore we have noted beautiful graph-theoretic interpretations of these results: in the
SU(2) we have used Gabriel’s theorem to partially explain the ADE outcome and in the
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SU(3) we have noted connections with generalised Dynkin diagrams and have conjectured
the existence of a McKay-type correspondence between these orbifold theories and modular
invariants of WZW conformal models.

Much work of course remains. In addition to proving this conjecture, we also have
numerous questions in physics. What about SU(4), the full group? These would give
interesting non-supersymmetric theories. How do we construct the brane box version of these
theories? Roan has shown how the Euler character of these orbifolds correspond to the class
numbers [36]; we know the blow-up of these singularities correspond to marginal operators.
Can we extract the marginal couplings and thus the duality group this way? We shall hope
to address these problems in forth-coming work. Perhaps after all, string orbifolds, gauge
theories, modular invariants of conformal field theories as well as Gorenstein singularities
and representations of affine Lie algebras, are all manifestations of a fundamental truism.
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Appendix I, Character Tables for the Discrete Subgroups

of SU(2)

Henceforth we shall use Γi to index the representations and the numbers in the first row of
the character tables shall refer to the order of each conjugacy class, or what we called rγ.

Ân = Cyclic ZZn+1
1 1 1 · · · 1

Γ1 1 1 1 · · · 1

Γ2 1 ǫ ǫ2 · · · ǫn

Γ3 1 ǫ2 ǫ4 · · · ǫ2n

.

.

.

.

.

.

.

.

.

.

.

. · · ·
.
.
.

Γn 1 ǫn ǫ2n · · · ǫn
2

ǫ = exp
(

2πi

n+1

)

For reference, next to each of the binary groups, we shall also include the character table of
the corresponding ordinary cases, which are in SU(2)/ZZ2.

D̂n = Binary Dihedral

1 1 2 · · · 2 n n
Γ1 1 1 1 · · · 1 1 1
Γ2 1 1 1 · · · 1 −1 −1

Γ3 1 (−1)n (−1)1 · · · (−1)n−1 in −in

Γ4 1 (−1)n (−1)1 · · · (−1)n−1 −in in

Γ5 2 (−2)1 2 cos π

n
· · · 2 cos

π(n−1)
n

0 0

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

.

.

.

.

.

.

.

Γn+1 2 (−2)n−1 2 cos
π(n−1)

n
· · · 2 cos

π(n−1)2

n
0 0

Ordinary Dihedral Dn (n′ = n+3
2 for odd n and n′ = n+6

2 for even n)
1 2 2 · · · 2 n

Γ1 1 1 1 · · · 1 1
Γ2 1 1 1 · · · 1 −1
Γ3 2 2 cos φ 2 cos 2φ · · · 2 cos mφ 0
Γ4 2 2 cos 2φ 2 cos 4φ · · · 2 cos 2mφ 0

.

.

.

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

.

Γ n+3
2

2 2 cos mφ 2 cos 2mφ · · · 2 cos m2φ 0

n odd

m = n−1
2

φ = 2π

n

1 2 2 · · · 2 1 n/2 n/2
Γ1 1 1 1 · · · 1 1 1 1
Γ2 1 1 1 · · · 1 1 −1 −1

Γ3 1 −1 1 · · · (−1)m−1 (−1)m 1 −1

Γ4 1 −1 1 · · · (−1)m−1 (−1)m −1 1
Γ5 2 2 cos φ 2 cos 2φ · · · 2 cos(m − 1)φ 2 cos mφ 0 0
Γ6 2 2 cos 2φ 2 cos 4φ · · · 2 cos 2(m − 1)φ 2 cos 2mφ 0 0

.

.

.

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

.

.

.

.

.

.

.

Γ n+6
2

2 2 cos(m − 1)φ 2 cos 2(m − 1)φ · · · 2 cos(m − 1)2φ 2 cos m(m − 1)φ 0 0

n even
m = n

2
φ = 2π

n

Ê6 = Binary Tetrahedral T Ordinary T
1 1 6 4 4 4 4

Γ1 1 1 1 1 1 1 1

Γ2 1 1 1 w w w2 w2

Γ3 1 1 1 w2 w2 w w
Γ4 2 −2 0 1 −1 1 −1

Γ5 2 −2 0 w −w w2 −w2

Γ6 2 −2 0 w2 −w2 w −w
Γ7 3 3 −1 0 0 0 0

1 3 4 4
Γ1 1 1 1 1

Γ2 1 1 −w w2

Γ3 1 1 w2 −w
Γ4 3 −1 0 0

w = exp( 2πi

3
)

18



Ê7 = Binary Octahedral O Ordinary O
1 1 2 6 6 8 8 16

Γ1 1 1 1 1 1 1 1 1
Γ2 1 1 −3 −1 −1 1 1 0

Γ3 2 −2 0
√

2 −
√

2 1 −1 0

Γ4 2 −2 0 −
√

2
√

2 1 −1 0
Γ5 2 2 −2 0 0 −1 −1 1
Γ6 3 3 −1 1 1 0 0 −1
Γ7 3 3 −3 −1 −1 0 0 0
Γ8 4 −4 0 0 0 −1 1 0

1 3 6 6 8
Γ1 1 1 1 1 1
Γ2 1 1 −1 −1 1
Γ3 2 2 0 0 −1
Γ4 3 −1 −1 1 0
Γ5 3 −1 1 −1 0

Ê8 = Binary Icosahedral I Ordinary I
1 1 12 12 12 12 20 20 30

Γ1 1 1 1 1 1 1 1 1 1
Γ2 2 −2 −ā −1 a ā 1 −1 0
Γ3 2 −2 −a −ā ā a 1 −1 0
Γ4 3 3 ā a a ā 0 0 −1
Γ5 3 3 a ā ā a 0 0 −1
Γ6 4 −4 −1 −1 1 1 −1 1 0
Γ7 4 4 −1 −1 −1 1 1 1 1
Γ8 5 5 0 0 0 0 −1 −1 1
Γ9 6 −6 1 1 −1 −1 0 0 0

1 12 12 15 20
Γ1 1 1 1 1 1
Γ2 3 a ā −1 0
Γ3 3 ā a −1 0
Γ4 4 −1 −1 0 1
Γ5 5 0 0 1 −1

a = 1+
√

5
2

ā = 1−
√

5
2

Appendix II, Matter Content for N = 2 SUSY Gauge

Theory (Γ ⊂ SU(2))

Only the fermionic matrices are presented here; as can be seen from the decomposition, twice
the fermion aij subtracted by 2δij should give the bosonic counterparts, which follows from
supersymmetry. In the ensuing, 1 shall denote the (trivial) principal representation, 1

′
and

1
′′
, dual (conjugate) pairs of 1 dimensional representations.

Ân




2 1 0 0 · · · 0 1
1 2 1 0 · · · 0 0
0 1 2 1 · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

.
1 0 0 0 · · · 1 2


 4 = 1

2
⊕

1
′⊕

1
′′

6 = 1
2
⊕

1
′
2
⊕

1
′′
2

D̂n′=n+6

2




2 0 1 0 0 · · · 0 0 0
0 2 1 0 0 · · · 0 0 0
1 1 2 1 0 · · · 0 0 0
0 0 1 2 1 · · · 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

.
0 0 0 0 0 · · · 2 1 1
0 0 0 0 0 · · · 1 2 0
0 0 0 0 0 · · · 1 0 2




Dn′=n+3

2




2 0 1 0 0 · · · 0 0
0 2 1 0 0 · · · 0 0
1 1 2 1 0 · · · 0 0
0 0 1 2 1 · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

.
0 0 0 0 0 · · · 2 1
0 0 0 0 0 · · · 1 2




4 = 1
2
⊕

2

6 = 1
2
⊕

2
2

Ê6




2 1 0 0 0 0 0
1 2 1 0 0 0 0
0 1 2 1 0 1 0
0 0 1 2 1 0 0
0 0 0 1 2 0 0
0 0 1 0 0 2 1
0 0 0 0 0 1 2




4 = 1
2
⊕

2

6 = 1
2
⊕

2
2

Ê7




2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 1
0 0 0 1 2 1 0 0
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 1 0 0 0 2




4 = 1
2
⊕

2

6 = 1
2
⊕

2
2
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Ê8




2 1 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0
0 1 2 1 0 0 0 0 0
0 0 1 2 1 0 0 0 0
0 0 0 1 2 1 0 0 0
0 0 0 0 1 2 1 0 1
0 0 0 0 0 1 2 1 0
0 0 0 0 0 0 1 2 0
0 0 0 0 0 1 0 0 2




4 = 1
2
⊕

2

6 = 1
2
⊕

2
2

Appendix III, Classification of Discrete Subgroups of

SU(3)

Type I: The Σ Series

These are the analogues of the SU(2) crystallographic groups and their double covers, i.e.,
the E series. We have:

Σ36, Σ72, Σ216, Σ60, Σ168, Σ360 ⊂ SU(3)/(ZZ3 center)
Σ36×3, Σ72×3, Σ216×3, Σ60×3, Σ168×3, Σ360×3 ⊂ SU(3)

Type Ia: Σ ⊂ SU(3)/ZZ3

The character tables for the center-removed case have been given by [24].

Σ36

1 9 9 9 4 4
Γ1 1 1 1 1 1 1
Γ2 1 −1 −1 1 1 1
Γ3 1 i −i −1 1 1
Γ4 1 −i i −1 1 1
Γ5 4 0 0 0 −2 1
Γ6 4 0 0 0 1 −2

Σ72

1 18 18 18 9 8
Γ1 1 1 1 1 1 1
Γ2 1 1 −1 −1 1 1
Γ3 1 −1 1 −1 1 1
Γ4 1 −1 −1 1 1 1
Γ5 2 0 0 0 −2 2
Γ6 8 0 0 0 0 −1

Hessian Group
Σ216 ⊃ Σ72 ⊃ Σ36

1 12 12 54 36 36 9 8 24 24
Γ1 1 1 1 1 1 1 1 1 1 1

Γ2 1 w w2 1 w w2 1 1 w w2

Γ3 1 w2 w 1 w2 w 1 1 w2 w
Γ4 2 −1 −1 0 1 1 −2 2 −1 −1

Γ5 2 −w −w2 0 w w2 −2 2 −w −w2

Γ6 2 −w2 −w 0 w2 w −2 2 −w2 −w
Γ7 3 0 0 −1 0 0 3 3 0 0
Γ8 8 2 2 0 0 0 0 −1 −1 −1

Γ9 8 2w 2w2 0 0 0 0 −1 −w −w2

Γ10 8 2w2 2w 0 0 0 0 −1 −w2 −w

w = exp 2πi
3

Σ360
∼= A6

1 40 45 72 72 90 40
Γ1 1 1 1 1 1 1 1
Γ2 5 2 1 0 0 −1 −1
Γ3 5 −1 1 0 0 −1 2

Γ4 8 −1 0 1+
√

5
2

1−
√

5
2

0 −1

Γ5 8 −1 0 1−
√

5
2

1+
√

5
2

0 −1

Γ6 9 0 1 −1 −1 1 0
Γ7 10 1 −2 0 0 0 1
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Type Ib: Σ ⊂ full SU(3)

The character tables are computed, using [27], from the generators presented in [23]. In
what follows, we define en = exp 2πi

n
.

Σ36×3

1 12 1 12 9 9 1 9 9 9 9 9 9 9
Γ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Γ2 1 1 1 1 −1 −1 1 −1 1 1 1 −1 −1 −1
Γ3 1 1 1 1 e4 e4 1 e4 −1 −1 −1 −e4 −e4 −e4
Γ4 1 1 1 1 −e4 −e4 1 −e4 −1 −1 −1 e4 e4 e4

Γ5 3 0 3e2
3 0 1 e3 3e3 e2

3 −1 −e2
3 −e3 1 e2

3 e3

Γ6 3 0 3e3 0 1 e2
3 3e2

3 e3 −1 −e3 −e2
3 1 e3 e2

3
Γ7 3 0 3e2

3 0 −1 −e3 3e3 −e2
3 −1 −e2

3 −e3 −1 −e2
3 −e3

Γ8 3 0 3e3 0 −1 −e2
3 3e2

3 −e3 −1 −e3 −e2
3 −1 −e3 −e2

3
Γ9 3 0 3e2

3 0 e4 e7
12 3e3 e11

12 1 e2
3 e3 −e4 −e11

12 −e7
12

Γ10 3 0 3e3 0 e4 e11
12 3e2

3 e7
12 1 e3 e2

3 −e4 −e7
12 −e11

12
Γ11 3 0 3e2

3 0 −e4 −e7
12 3e3 −e11

12 1 e2
3 e3 e4 e11

12 e7
12

Γ12 3 0 3e3 0 −e4 −e11
12 3e2

3 −e7
12 1 e3 e2

3 e4 e7
12 e11

12
Γ13 4 1 4 −2 0 0 4 0 0 0 0 0 0 0
Γ14 4 −2 4 1 0 0 4 0 0 0 0 0 0 0

Σ216×3
1 24 1 12 12 54 54 1 12 54 72 12 · · ·

Γ1 1 1 1 1 1 1 1 1 1 1 1 1 · · ·
Γ2 1 1 1 e3

2 e3
2 1 1 1 e3

2 1 e3
2 e3 · · ·

Γ3 1 1 1 e3 e3 1 1 1 e3 1 e3 e3
2 · · ·

Γ4 2 2 2 −1 −1 0 0 2 −1 0 −1 −1 · · ·
Γ5 2 2 2 −e3 −e3 0 0 2 −e3 0 −e3 −e3

2 · · ·
Γ6 2 2 2 −e3

2 −e3
2 0 0 2 −e3

2 0 −e3
2 −e3 · · ·

Γ7 3 3 3 0 0 −1 −1 3 0 −1 0 0 · · ·
Γ8 3 0 3e3

2 −e9
2 + e9

5 −e9
2 − 2e9

5 1 e3 3e3 2e9
2 + e9

5 e3
2 0 −2e9

4 − e9
7 · · ·

Γ9 3 0 3e3
2 −e9

2 − 2e9
5 2e9

2 + e9
5 1 e3 3e3 −e9

2 + e9
5 e3

2 0 e9
4 + 2e9

7 · · ·
Γ10 3 0 3e3

2 2e9
2 + e9

5 −e9
2 + e9

5 1 e3 3e3 −e9
2 − 2e9

5 e3
2 0 e9

4 − e9
7 · · ·

Γ11 3 0 3e3 e9
4 − e9

7 −2e9
4 − e9

7 1 e3
2 3e3

2 e9
4 + 2e9

7 e3 0 −e9
2 − 2e9

5 · · ·
Γ12 3 0 3e3 −2e9

4 − e9
7 e9

4 + 2e9
7 1 e3

2 3e3
2 e9

4 − e9
7 e3 0 2e9

2 + e9
5 · · ·

Γ13 3 0 3e3 e9
4 + 2e9

7 e9
4 − e9

7 1 e3
2 3e3

2 −2e9
4 − e9

7 e3 0 −e9
2 + e9

5 · · ·
Γ14 6 0 6e3

2 e9
2 − e9

5 e9
2 + 2e9

5 0 0 6e3 −2e9
2 − e9

5 0 0 2e9
4 + e9

7 · · ·
Γ15 6 0 6e3

2 e9
2 + 2e9

5 −2e9
2 − e9

5 0 0 6e3 e9
2 − e9

5 0 0 −e9
4 − 2e9

7 · · ·
Γ16 6 0 6e3

2 −2e9
2 − e9

5 e9
2 − e9

5 0 0 6e3 e9
2 + 2e9

5 0 0 −e9
4 + e9

7 · · ·
Γ17 6 0 6e3 −e9

4 + e9
7 2e9

4 + e9
7 0 0 6e3

2 −e9
4 − 2e9

7 0 0 e9
2 + 2e9

5 · · ·
Γ18 6 0 6e3 2e9

4 + e9
7 −e9

4 − 2e9
7 0 0 6e3

2 −e9
4 + e9

7 0 0 −2e9
2 − e9

5 · · ·
Γ19 6 0 6e3 −e9

4 − 2e9
7 −e9

4 + e9
7 0 0 6e3

2 2e9
4 + e9

7 0 0 e9
2 − e9

5 · · ·
Γ20 8 −1 8 2 2 0 0 8 2 0 −1 2 · · ·
Γ21 8 −1 8 2e3 2e3 0 0 8 2e3 0 −e3 2e3

2 · · ·
Γ22 8 −1 8 2e3

2 2e3
2 0 0 8 2e3

2 0 −e3
2 2e3 · · ·

Γ23 9 0 9e3
2 0 0 −1 −e3 9e3 0 −e3

2 0 0 · · ·
Γ24 9 0 9e3 0 0 −1 −e3

2 9e3
2 0 −e3 0 0 · · ·

12 9 9 9 12 72 36 36 36 36 36 36
Γ1 1 1 1 1 1 1 1 1 1 1 1 1

Γ2 e3 1 1 1 e3 e3 e3 e3 e3
2 e3

2 e3
2 e3

Γ3 e3
2 1 1 1 e3

2 e3
2 e3

2 e3
2 e3 e3 e3 e3

2

Γ4 −1 −2 −2 −2 −1 −1 1 1 1 1 1 1

Γ5 −e3
2 −2 −2 −2 −e3

2 −e3
2 e3

2 e3
2 e3 e3 e3 e3

2

Γ6 −e3 −2 −2 −2 −e3 −e3 e3 e3 e3
2 e3

2 e3
2 e3

Γ7 0 3 3 3 0 0 0 0 0 0 0 0

Γ8 e9
4 + 2e9

7 −1 −e3
2 −e3 e9

4 − e9
7 0 −e9

4 e9
4 + e9

7 −e9
5 e9

2 + e9
5 −e9

2 −e9
7

Γ9 e9
4 − e9

7 −1 −e3
2 −e3 −2e9

4 − e9
7 0 e9

4 + e9
7 −e9

7 e9
2 + e9

5 −e9
2 −e9

5 −e9
4

Γ10 −2e9
4 − e9

7 −1 −e3
2 −e3 e9

4 + 2e9
7 0 −e9

7 −e9
4 −e9

2 −e9
5 e9

2 + e9
5 e9

4 + e9
7

Γ11 2e9
2 + e9

5 −1 −e3 −e3
2 −e9

2 + e9
5 0 −e9

5 e9
2 + e9

5 −e9
4 e9

4 + e9
7 −e9

7 −e9
2

Γ12 −e9
2 + e9

5 −1 −e3 −e3
2 −e9

2 − 2e9
5 0 e9

2 + e9
5 −e9

2 e9
4 + e9

7 −e9
7 −e9

4 −e9
5

Γ13 −e9
2 − 2e9

5 −1 −e3 −e3
2 2e9

2 + e9
5 0 −e9

2 −e9
5 −e9

7 −e9
4 e9

4 + e9
7 e9

2 + e9
5

Γ14 −e9
4 − 2e9

7 2 2e3
2 2e3 −e9

4 + e9
7 0 −e9

4 e9
4 + e9

7 −e9
5 e9

2 + e9
5 −e9

2 −e9
7

Γ15 −e9
4 + e9

7 2 2e3
2 2e3 2e9

4 + e9
7 0 e9

4 + e9
7 −e9

7 e9
2 + e9

5 −e9
2 −e9

5 −e9
4

Γ16 2e9
4 + e9

7 2 2e3
2 2e3 −e9

4 − 2e9
7 0 −e9

7 −e9
4 −e9

2 −e9
5 e9

2 + e9
5 e9

4 + e9
7

Γ17 −2e9
2 − e9

5 2 2e3 2e3
2 e9

2 − e9
5 0 −e9

5 e9
2 + e9

5 −e9
4 e9

4 + e9
7 −e9

7 −e9
2

Γ18 e9
2 − e9

5 2 2e3 2e3
2 e9

2 + 2e9
5 0 e9

2 + e9
5 −e9

2 e9
4 + e9

7 −e9
7 −e9

4 −e9
5

Γ19 e9
2 + 2e9

5 2 2e3 2e3
2 −2e9

2 − e9
5 0 −e9

2 −e9
5 −e9

7 −e9
4 e9

4 + e9
7 e9

2 + e9
5

Γ20 2 0 0 0 2 −1 0 0 0 0 0 0

Γ21 2e3
2 0 0 0 2e3

2 −e3
2 0 0 0 0 0 0

Γ22 2e3 0 0 0 2e3 −e3 0 0 0 0 0 0

Γ23 0 −3 −3e3
2 −3e3 0 0 0 0 0 0 0 0

Γ24 0 −3 −3e3 −3e3
2 0 0 0 0 0 0 0 0
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Σ360×3

1 72 72 72 72 72 72 1 1 · · ·
Γ1 1 1 1 1 1 1 1 1 1 · · ·
Γ2 3 −e5 − e5

4 −e5
2 − e5

3 −e15 − e15
4 −e15

7 − e15
13 −e15

11 − e15
14 −e15

2 − e15
8 3e3

2 3e3 · · ·
Γ3 3 −e5

2 − e5
3 −e5 − e5

4 −e15
7 − e15

13 −e15 − e15
4 −e15

2 − e15
8 −e15

11 − e15
14 3e3

2 3e3 · · ·
Γ4 3 −e5 − e5

4 −e5
2 − e5

3 −e15
11 − e15

14 −e15
2 − e15

8 −e15 − e15
4 −e15

7 − e15
13 3e3 3e3

2 · · ·
Γ5 3 −e5

2 − e5
3 −e5 − e5

4 −e15
2 − e15

8 −e15
11 − e15

14 −e15
7 − e15

13 −e15 − e15
4 3e3 3e3

2 · · ·
Γ6 5 0 0 0 0 0 0 5 5 · · ·
Γ7 5 0 0 0 0 0 0 5 5 · · ·
Γ8 6 1 1 e3

2 e3
2 e3 e3 6e3

2 6e3 · · ·
Γ9 6 1 1 e3 e3 e3

2 e3
2 6e3 6e3

2 · · ·
Γ10 8 −e5 − e5

4 −e5
2 − e5

3 −e5
2 − e5

3 −e5 − e5
4 −e5

2 − e5
3 −e5 − e5

4 8 8 · · ·
Γ11 8 −e5

2 − e5
3 −e5 − e5

4 −e5 − e5
4 −e5

2 − e5
3 −e5 − e5

4 −e5
2 − e5

3 8 8 · · ·
Γ12 9 −1 −1 −1 −1 −1 −1 9 9 · · ·
Γ13 9 −1 −1 −e3

2 −e3
2 −e3 −e3 9e3

2 9e3 · · ·
Γ14 9 −1 −1 −e3 −e3 −e3

2 −e3
2 9e3 9e3

2 · · ·
Γ15 10 0 0 0 0 0 0 10 10 · · ·
Γ16 15 0 0 0 0 0 0 15e3

2 15e3 · · ·
Γ17 15 0 0 0 0 0 0 15e3 15e3

2 · · ·

120 120 45 45 90 90 45 90
Γ1 1 1 1 1 1 1 1 1

Γ2 0 0 −e3 −e3
2 e3

2 e3 −1 1

Γ3 0 0 −e3 −e3
2 e3

2 e3 −1 1

Γ4 0 0 −e3
2 −e3 e3 e3

2 −1 1

Γ5 0 0 −e3
2 −e3 e3 e3

2 −1 1
Γ6 2 −1 1 1 −1 −1 1 −1
Γ7 −1 2 1 1 −1 −1 1 −1

Γ8 0 0 2e3 2e3
2 0 0 2 0

Γ9 0 0 2e3
2 2e3 0 0 2 0

Γ10 −1 −1 0 0 0 0 0 0
Γ11 −1 −1 0 0 0 0 0 0
Γ12 0 0 1 1 1 1 1 1

Γ13 0 0 e3 e3
2 e3

2 e3 1 1

Γ14 0 0 e3
2 e3 e3 e3

2 1 1
Γ15 1 1 −2 −2 0 0 −2 0

Γ16 0 0 −e3 −e3
2 −e3

2 −e3 −1 −1

Γ17 0 0 −e3
2 −e3 −e3 −e3

2 −1 −1

Type Ic: Σ ⊂ both SU(3) and SU(3)/ZZ3

Σ60
∼= A5

∼= I

1 20 15 12 12
Γ1 1 1 1 1 1

Γ2 3 0 −1 1+
√

5
2

1−
√

5
2

Γ3 3 0 −1 1−
√

5
2

1+
√

5
2

Γ4 4 1 0 −1 −1
Γ5 5 −1 1 0 0

Σ168 ⊂ S7

1 21 42 56 24 24
Γ1 1 1 1 1 1 1

Γ2 3 −1 1 0
−1+i

√
7

2
−1−i

√
7

2

Γ3 3 −1 1 0 −1−i
√

7
2

−1+i
√

7
2

Γ4 6 2 0 0 −1 −1
Γ5 7 −1 −1 1 0 0
Γ6 8 0 0 −1 1 1

Type II: The ∆ series

These are the analogues of the dihedral subgroups of SU(2) (i.e., the D series).
∆3n2

Number of classes Subgroup of Some Irreps
n = 0 mod 3 8 + 1

3
n2 Full SU(3) 9 1’s1

3
n2 − 1 3’s

n 6= 0 mod 3 1
3
(8 + n2) Full SU(3) and SU(3)/ZZ3 3 1’s, 1

3
(n2 − 1) 3’s
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∆6n2

Number of classes Subgroup of Some Irreps
n = 0 mod 3 1

6
(24 + 9n + n2) Full SU(3) −

n 6= 0 mod 3 1
6
(8 + 9n + n2) Full SU(3) and SU(3)/ZZ3

2 1’s, 1 2, 2(n − 1) 3’s,
1
6
(n2 − 3n + 2) 6’s

Appendix IV, Matter content for Γ ⊂ SU(3)

Note here that since the N = 1 theory is chiral, the fermion matter matrix need not be
symmetric. A graphic representation for some of these theories appear in figures 3, 4 and 5.

Fermionic Bosonic

Σ36




2 0 1 1 0 0
0 2 1 1 0 0
1 1 2 0 0 0
1 1 0 2 0 0
0 0 0 0 4 0
0 0 0 0 0 4







2 0 2 2 0 0
0 2 2 2 0 0
2 2 2 0 0 0
2 2 0 2 0 0
0 0 0 0 6 0
0 0 0 0 0 6




1 ⊕ (1 ⊕ 1
′
⊕ 1

′′
) (1 ⊕ 1

′
⊕ 1

′′
)2

Σ60




1 1 0 0 0
1 2 0 0 1
0 0 1 1 1
0 0 1 2 1
0 1 1 1 2







0 1 1 0 0
1 1 0 1 2
1 0 1 1 2
0 1 1 2 2
0 2 2 2 2




1 ⊕ 3 3 ⊕ 3
′

Σ72




1 1 0 0 1 0
1 1 0 0 1 0
0 0 1 1 1 0
0 0 1 1 1 0
1 1 1 1 2 0
0 0 0 0 0 4







1 1 0 0 2 0
1 1 0 0 2 0
0 0 1 1 2 0
0 0 1 1 2 0
2 2 2 2 2 0
0 0 0 0 0 6




1 ⊕ (1
′
⊕ 2) (1 ⊕ 2) ⊕ (1

′
⊕ 2)

Σ168




1 1 0 0 0 0
0 1 1 1 0 0
1 0 1 0 0 1
0 0 1 1 1 1
0 0 0 1 2 1
0 1 0 1 1 2







0 1 1 0 0 0
1 0 1 1 0 1
1 1 0 1 0 1
0 1 1 0 2 2
0 0 0 2 2 2
0 1 1 2 2 2




1 ⊕ 3 3 ⊕ 3
′

Σ216




2 0 0 0 1 0 0 0 0 0
0 2 0 0 0 1 0 0 0 0
0 0 2 1 0 0 0 0 0 0
0 1 0 2 0 0 1 0 0 0
0 0 1 0 2 0 1 0 0 0
1 1 0 0 0 2 1 0 0 0
0 0 0 1 1 1 2 0 0 0
0 0 0 0 0 0 0 3 0 1
0 0 0 0 0 0 0 1 3 0
0 0 0 0 0 0 0 0 1 3







2 0 0 0 1 1 0 0 0 0
0 2 0 1 0 1 0 0 0 0
0 0 2 1 1 0 0 0 0 0
0 1 1 2 0 0 2 0 0 0
1 0 1 0 2 0 2 0 0 0
1 1 0 0 0 2 2 0 0 0
0 0 0 2 2 2 2 0 0 0
0 0 0 0 0 0 0 4 1 1
0 0 0 0 0 0 0 1 4 1
0 0 0 0 0 0 0 1 1 4




1 ⊕ (1 ⊕ 2) (1 ⊕ 2) ⊕ (1 ⊕ 2
′
)

Σ360 4(δij)7×7 6(δij)7×7
1
4

1
6
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Σ36×3




1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0 0 1 0 1 0 0
1 0 0 0 0 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1 0 1 0 1 0 0
0 1 0 0 0 0 0 1 0 0 0 0 1 1
0 0 0 0 0 1 0 1 1 1 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 1 0 1 0 0 1 1 0 0
0 0 0 1 0 0 0 0 0 0 0 1 1 1
0 0 0 0 1 0 1 0 1 0 1 0 1 0
0 0 0 0 1 0 1 0 1 0 1 0 0 1







0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0
1 0 0 0 0 1 0 0 0 1 0 1 1 1
1 0 0 0 1 0 0 0 1 0 1 0 1 1
0 1 0 0 0 0 0 1 0 1 0 1 1 1
0 1 0 0 0 0 1 0 1 0 1 0 1 1
0 0 1 0 0 1 0 1 0 1 0 0 1 1
0 0 1 0 1 0 1 0 1 0 0 0 1 1
0 0 0 1 0 1 0 1 0 0 0 1 1 1
0 0 0 1 1 0 1 0 0 0 1 0 1 1
0 0 0 0 1 1 1 1 1 1 1 1 0 0
0 0 0 0 1 1 1 1 1 1 1 1 0 0




1 ⊕ 3 3 ⊕ 3
′

Σ216×3



1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1







0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1
0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 1
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0
0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0




1 ⊕ 3 3 ⊕ 3
′

Σ360×3




1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 2
0 0 0 0 0 1 1 0 0 1 1 1 0 0 1 0 1







0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0
0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1
0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 1 1
0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 0 1
0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0
0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1
0 0 0 0 0 1 1 0 1 1 1 1 0 1 1 0 2
0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 2 0




1 ⊕ 3 3 ⊕ 3
′

∆3n2

n = 2

(
1 0 0 2
0 1 0 2
0 0 1 2
2 2 2 4

) (
0 0 0 4
0 0 0 4
0 0 0 4
4 4 4 6

)

1 ⊕ 3 3 ⊕ 3
′

n = 3




1 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1 3
1 1 1 1 1 1 1 1 1 0 1







0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1 1
1 1 1 1 1 1 1 1 1 0 3
1 1 1 1 1 1 1 1 1 3 0




1 ⊕ 3 3 ⊕ 3
′
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n = 4




1 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 1 1
0 0 0 1 1 2 0 0
1 1 1 0 0 1 1 1
0 0 0 1 1 0 2 0
0 0 0 1 1 0 0 2







0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 2 2
1 1 1 1 0 2 1 1
1 1 1 1 2 0 1 1
0 0 0 2 1 1 2 0
0 0 0 2 1 1 0 2




1 ⊕ 3 3 ⊕ 3
′

n = 5




1 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 1 1
0 0 0 0 1 0 1 1 1 0 0
0 0 0 1 0 1 2 0 0 0 0
1 1 1 0 0 0 1 0 0 1 1
0 0 0 1 0 0 0 2 0 0 1
0 0 0 1 0 0 0 0 2 1 0
0 0 0 0 1 1 0 0 1 1 0
0 0 0 0 1 1 0 1 0 0 1







0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 1 1 1 1
0 0 0 1 0 0 1 1 1 1 1
1 1 1 1 0 0 2 0 0 1 1
1 1 1 0 1 2 0 0 0 1 1
0 0 0 1 1 0 0 2 0 0 2
0 0 0 1 1 0 0 0 2 2 0
0 0 0 1 1 1 1 0 2 0 0
0 0 0 1 1 1 1 2 0 0 0




1 ⊕ 3 3 ⊕ 3
′

n = 6




1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 2 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 1 2 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 2







0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 2 2 0 0 0 0 0 0 0 0
1 1 1 1 1 1 0 0 0 2 0 2 0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 1 1 2 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 2 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 1 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 2 1
0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 1 2




1 ⊕ 3 3 ⊕ 3
′

∆6n2

n = 2




1 0 0 1 0
0 1 0 0 1
0 0 1 1 1
1 0 1 2 1
0 1 1 1 2







0 0 0 1 1
0 0 0 1 1
0 0 0 2 2
1 1 2 2 2
1 1 2 2 2




1 ⊕ 3 3 ⊕ 3
′

n = 4




1 0 0 1 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
1 0 1 2 1 0 0 0 0 0
0 1 1 1 2 0 0 0 0 0
0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 1 1 1 1 2







0 0 0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 2 2 0 0 0 0 0
1 1 2 2 2 0 0 0 0 0
1 1 2 2 2 0 0 0 0 0
0 0 0 0 0 0 0 1 1 2
0 0 0 0 0 0 0 1 1 2
0 0 0 0 0 1 1 0 0 2
0 0 0 0 0 1 1 0 0 2
0 0 0 0 0 2 2 2 2 2




1 ⊕ 3 3 ⊕ 3
′
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n = 6




1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 3 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 2 0
0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 2







0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
1 1 2 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0
1 1 2 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 2 0
0 0 0 2 2 2 0 0 0 0 0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0 0 0 2 2 0 0 2 2 0 2 0
0 0 0 0 0 0 0 0 2 2 0 0 2 2 0 0 0 0 2




1 ⊕ 3 3 ⊕ 3
′

n = 8




1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 2







0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 0 0 0
0 0 0 0 0 2 2 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 2 2 2 2 0 0 0 0 0 0 0 0 0 0 2




1 ⊕ 3 3 ⊕ 3
′

References

[1] M. Douglas and G. Moore, “D-Branes, Quivers, and ALE Instantons,” hep-th/9603167.

[2] M. Douglas and B. Greene, “Metrics on D-brane Orbifolds,” hep-th/9707214.

[3] M. Douglas, B. Greene, and D. Morrison, “Orbifold Resolution by D-Branes,” hep-
th/9704151.

[4] S. Kachru and E. Silverstein, “4D Conformal Field Theories and Strings on Orbifolds,”
hep-th/9802183.

[5] A. Lawrence, N. Nekrasov and C. Vafa, “On Conformal Field Theories in Four Dimen-
sions,” hep-th/9803015.

[6] M. Bershadsky, Z. Kakushadze, and C. Vafa, “String Expansion as Large N Expansion
of Gauge Theories,” hep-th/9803076.

26

http://arXiv.org/abs/hep-th/9603167
http://arXiv.org/abs/hep-th/9707214
http://arXiv.org/abs/hep-th/9704151
http://arXiv.org/abs/hep-th/9704151
http://arXiv.org/abs/hep-th/9802183
http://arXiv.org/abs/hep-th/9803015
http://arXiv.org/abs/hep-th/9803076


[7] A. Hanany and A. Zaffaroni,“On the Realization of Chiral Four-Dimensional Gauge The-
ories using Branes,” hep-th/9801134.

[8] A. Hanany and A. Uranga, “Brane Boxes and Branes on Singularities,” hep-th/9805139.

[9] R. Leigh and M. Rozali, “Brane Boxes, Anomalies, Bending and Tadpoles,” hep-
th/9807082.

[10] R. Leigh and M. Strassler, “Exactly Marginal Operators and Duality in Four Dimen-
sional N=1 Supersymmetric Gauge Theories,” hep-th/9503121.

[11] A. Hanany, M. Strassler and A. Uranga, “Finite Theories and Marginal Operators on
the Brane,” hep-th/9803086.

[12] S. Katz, P. Mayr and C. Vafa, “Mirror symmetry and Exact Solution of 4D N=2 Gauge
Theories I,” hep-th/9706110.

[13] E. Witten, “Solutions of Four-Dimensional Field Theories via M-Theory,” hep-
th/9703166

[14] A. Kapustin, “Dn Quivers from Branes,” hep-th/9806238.

[15] J. Maldecena, “The Large-N Limit of Superconformal Field Theories and Supergravity,”
hep-th/9712200.

[16] J. Mckay, “Graphs, Singularities, and Finite Groups,” Proc. Symp. Pure Math. 37,
183-186 (1980).

[17] K. Intrilligator and N. Seiberg, “Mirror symmertry in 3D gauge theories,” hep-
th/9607207.

[18] P. Kronheimer, “The Construction of ALE Spaces as Hyper -Kähler Quotients,” J. Diff.
Geometry, 29 (1989) 665.

[19] F. Klein, “Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom
fünften Grade,” Teubner, Leipzig, 1884.

[20] P. Gabriel, “Unzerlegbare Darstellugen I,” Manuscripta Math. 6 (1972) 71-103.

[21] I. N. Bernstein, I. M. Gel’fand, V. A. Ponomarev, “Coxeter Functors and Gabriel’s
Theorem,” Russian Math. Surveys, 28, (1973) II.

[22] H. F. Blichfeldt, “Finite Collineation Groups”. The Univ. Chicago Press, Chicago, 1917.

[23] S.-T. Yau and Y. Yu, “Gorenstein Quotients Singularities in Dimension Three,” Mem-
oirs of the AMS, 505, 1993.

[24] W. M. Fairbairn, T. Fulton and W. Klink, “Finite and Disconnected Subgroups of SU3

and their Applications to The Elementary Particle Spectrum,” J. Math. Physics, vol 5,
Number 8, 1964, pp1038 - 1051.

27

http://arXiv.org/abs/hep-th/9801134
http://arXiv.org/abs/hep-th/9805139
http://arXiv.org/abs/hep-th/9807082
http://arXiv.org/abs/hep-th/9807082
http://arXiv.org/abs/hep-th/9503121
http://arXiv.org/abs/hep-th/9803086
http://arXiv.org/abs/hep-th/9706110
http://arXiv.org/abs/hep-th/9703166
http://arXiv.org/abs/hep-th/9703166
http://arXiv.org/abs/hep-th/9806238
http://arXiv.org/abs/hep-th/9712200
http://arXiv.org/abs/hep-th/9607207
http://arXiv.org/abs/hep-th/9607207


[25] J. Lomont, “Applications of Finite Groups,” Academic Press NY 1959.
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