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ABSTRACT 

This thesis is concerned with the use and development of optimisation techniques 
for process supervision and control. Two major areas related to optimisation are 
combined namely model predictive control and dynamic data reconciliation. A 
model predictive control scheme is implemented and used to simulate the control 
of a coal gasification plant. Static as well as dynamic data reconciliation 
techniques are developed and used in conjunction with steady-state optimisation 
and model predictive control schemes. The inaccuracy of process data due to 
measurement errors can be considerably reduced by data reconciliation 
techniques. This in turn improves process knowledge and control system 
performance. The static and dynamic data reconciliation techniques developed in 
this thesis are tested using dynamic models of process plants. 

In the steady-state case, a static data reconciliation algorithm that uses a static 
model of the process is implemented. This algorithm has capabilities of estimating 
measured variables, unmeasured variables, systematic bias and unknown physical 
parameters. The technique is applied to static optimisation to show the 
improvements in performance of the optimiser when using reconciled data. In 
order for static data reconciliation to be applied, it is necessary to employ a 
steady-state detection scheme since the underlying assumption is that the process 
is at steady-state. An algorithm for steady-state detection is implemented and 
tested in conjunction with the static data reconciliation technique. 

In the dynamic case, a moving horizon estimator that employs a dynamic model 
of the process is used to reconcile dynamic process data. An algorithm for the 
detection, identification and elimination of gross errors is implemented and tested. 
Furthermore, an algorithm for the detection and identification of systematic bias is 
developed and implemented. These techniques are then applied in combination to 
the dynamic model of a process. The effect of dynamic data reconciliation on the 
performance of model predictive control is observed by means of applying the 
above techniques to such a scheme. 

The various algorithms outlined above are implemented in software and tested 
using appropriate simulations. It is shown that it is possible to implement a 
steady-state detection algorithm and to successfully use it in conjunction with 
static data reconciliation. The application of static data reconciliation to steady- 
state optimisation shows a marked improvement in the performance of the 
optimiser. It is further shown that it is possible to combine bias and gross error 
detection and identification algorithms and to successfully apply them to dynamic 
data reconciliation procedures. The application of dynamic data reconciliation 
techniques to model predictive control shows improvement in the performance in 
cases where the objective is not purely economic. 
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CHAPTER 1 

INTRODUCTION 

"Engineering is concerned with understanding and controlling the materials and 
forces of nature for the benefit of humankind. Control system engineers are 

concerned with understanding and controlling segments of their environment, 

often called systems, in order to provide useful economic products for society. 
Perhaps the most characteristic quality of control engineering is the opportunity to 

control machines, and industrial and economic processes for the benefit of 

society", Dorf (1992). 

1.1 OPTIMISATION OF INDUSTRIAL PROCESSES 

The principle of optimality was first mentioned by Johann Bernoulli in 1696 in 

connection with the Brachistochrone problem. Various optimality principles were 
investigated in the 1600s by P. de Fermat and in the 1700s by L. Euler and 

Hamilton. In 1958 a Russian group headed by L. S. Pontryagin developed the 

maximum principle which solved optimal control problems relying on the calculus 

of variations (see Pontryagin et al., 1962). Kalman (1960a, 1960b) published 

some major work concerning optimal control of systems and discussed optimal 

filtering and estimation theory. 

In optimisation the optimum operating conditions of a system are predicted such 

that some performance criterion is satisfied. In an industrial process, for example, 

the criterion for optimum operation is often in the form of minimum cost, where 
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the product cost can depend on a large number of interrelated controlled 

parameters. 

The fundamental elements of steady-state process optimisation, sometimes 

referred to as optimising control are a performance criterion (index) and a 

mathematical model of the plant along with relevant process constraints. The 

application of steady-state optimisation produces a set of optimal controller set- 

points. These set-points define the optimum operating point at which the process 

should be regulated until a change in economic objectives is desired. 

Dynamic opimisation or optimal control requires a dynamic model of the process 

since the aim is to manipulate certain process inputs so as to optimise a dynamic 

criterion during transient conditions. 

1.2 DATA RECONCILIATION 

Process data is the foundation upon which all control and evaluation of process 

performance is based. Inaccurate process data can easily lead to poor decisions 

which will adversely affect many parts of the process. Many process control and 

optimisation activities are also based on small improvements in process 

performance; errors in process data can easily exceed the actual changes in 

process performance. Moreover, because of the immense scale of operation, the 

impact of any error is greatly magnified in absolute terms (Mah et al., 1976). 

When flawed information is used for state estimation and process control, the 

state of the system is misrepresented and the resulting control performance may 

be poor and can lead to suboptimal and even unsafe process operation (Liebman 

et al., 1992). 

Data reconciliation is the adjustment of a set of data so the quantities derived from 

the data obey natural laws, such as material and energy balances. The adjustments 

are made using redundancies in the measurements. After adjustment, the material 
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and, if considered, the energy balances are satisfied exactly (Bodington, 1995). 

Data reconciliation may be performed on a set of steady state data, using a steady- 

state model of the process or it may be applied to dynamic data, using a dynamic 

model of the process. 

1.2.1 Identification of steady-state 

Some control and estimation techniques that use steady-state models assume that 

process measurements correspond to steady-state conditions. Steady-state models 

are widely used in model identification, optimisation and data reconciliation. For 

the purpose of data reconciliation, it is important to know when the system is at 

steady-state in order to be able to apply static data reconciliation techniques. The 

identification of steady state is also applicable to the compression of process data 

(Mo et al., 1998) and fault diagnosis. 

Although there are a few existing methods for steady-state identification, work in 

this field has been limited. A survey of methods for detecting changes in signals 

which are applicable to data reconciliation was published by Basseville (1988). A 

brief review of some of the methods available for detecting changes in steady- 

state was presented by Crowe (1996). 

1.2.2 Gross error detection and identification 

It is quite natural to assume the presence of random, normally distributed 

measurement errors, with zero mean and known covariance to be present in the 

process data. This is treated using straightforward data reconciliation procedures. 

However, a different type of error known as a gross error is sometimes present in 

the data. Gross errors can be subdivided into two categories: measurement 

related such as malfunctioning sensors and process related such as process leaks. 
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The presence of gross errors invalidates the statistical basis of data reconciliation 

procedures and thus their treatment is essential. The treatment of gross errors can 
be divided into three stages (Madron, 1992). In the first stage gross error 
detection is performed to ascertain whether gross errors are present in the 

measurements. If the presence of gross errors is detected the next stage is the 
identification of the sources of those errors. The final stage is the elimination of 
the gross errors. 

Considerable effort by a number of researchers has been expended on developing 

methods for gross error identification. 

1.2.3 Bias detection and identification 

A further type of error that is sometimes classified as a special type of gross error 
by some authors is systematic bias. This type of error usually occurs when 

measurement devices provide consistently erroneous values and may be caused by 

incorrect calibration of measurement devices. Again it is important that data 

containing such errors is identified and either treated or removed before the 

process of data reconciliation takes place. 

Only a handful of researchers have addressed the problem of identifying 

systematic bias and most of the previous work has concentrated on steady-state 

processes. 

1.3 MODEL PREDICTIVE CONTROL 

Model-based predictive control has been the subject of intensive research for 

about 20 years. The technique is based on the receding horizon concept where the 

current control action is obtained by solving a finite horizon open-loop optimal 

control problem at each sampling instant using the current state of the plant as the 
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initial state. By minimising an objective function, the optimisation yields an 
optimal control sequence from which only the first control is applied to the plant. 

Model predictive control (MPC) has enjoyed wide acceptance in industrial 

applications such as the petro-chemical industry. This success has been mainly 
due to the fact that MPC algorithms handle process constraints and multivariable 

processes. Furthermore, MPC algorithms are intuitive and relatively easy to tune. 

The literature is rich with hundreds of important contributions in the field. A 

good survey, among a number of others, is the one recently published by Mayne 

et al. (2000). 

1.4 SCOPE AND AIMS OF THE THESIS 

The aims of this thesis can be set out as follows: 

" To develop a static data reconciliation module which should have capabilities 

to estimate measured and unmeasured process variables, systematic bias and 

unknown physical parameters. 

" To find and implement a practical algorithm for the identification of steady- 

state. 

0 To apply static data reconciliation techniques to static optimisation in order to 

investigate their potential. 

" To use a model predictive control technique in the control of a practical 

process. 

" To develop a bias detection and identification algorithm. 

" To implement a gross error detection algorithm specifically for the 

identification and elimination of outliers on the process variables. 

" To investigate the potential of a dynamic data reconciliation technique based 

on the moving horizon concept which also uses the bias and gross error 

detection and identification algorithms outlined above. 

27 



9 To apply the above dynamic data reconciliation techniques to a model 

predictive control scheme. 

" To implement all the above algorithms in software and to test their 

performance using simulation case studies. 

1.4.1 Contributions of the thesis 

The main contributions of this thesis can be summarised as follows: 

f Implementation of a static data reconciliation module. 

f Implementation of an algorithm for the identification of steady-state and its 

refinement such that errors in the identification at the transition points 
between steady and non-steady state conditions are considerably reduced. 

f The application of static data reconciliation to static optimisation. 

f Development and implementation of a bias detection and identification 

algorithm. 

f Implementation of a gross error detection and identification algorithm. 

f Implementation of combined bias and gross error detection and identification 

algorithms within a dynamic data reconciliation framework. 

f The application of dynamic data reconciliation techniques to model predictive 

control. 

f The implementation of all the above algorithms in C/C++ code and interfacing 

them with the industrial process simulation software Aspen-OTISS. 

1.5 THESIS OUTLINE 

This thesis is structured in the following manner: 

Chapter 2 introduces static optimisation and specifically the modified two step 

algorithm otherwise known as Integrated System Optimisation and Parameter 

Estimation (ISOPE) developed by Roberts (1979). A short review of the ISOPE 
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family of algorithms is presented and a practical formulation developed by 
Becerra and Roberts (2000) is reproduced. Finally, the dynamic version of ISOPE 
known as DISOPE is introduced. DISOPE is used in chapter 3 while ISOPE is 

used later in chapter 6. 

Chapter 3 introduces the area of model predictive control and reviews some of 
the main algorithms available and major research activities in the field. A state- 
space model predictive control algorithm employing the receding horizon concept 

and developed at City University is used to control a gasifier plant as part of a 
benchmark challenge set by ALSTOM Mechanical Engineering Centre. The 

gasifier plant is used for the generation of power from coal. The control scheme 
is implemented and simulation results are presented. 

Chapter 4 introduces the area of static data reconciliation and presents a 
historical review of the work carried out in the field. A static data reconciliation 

module using sequential quadratic programming having capabilities of estimating 

measured and unmeasured process variables, estimating bias and physical 

parameters is implemented. The underlying assumptions here are that the process 

is at steady-state, that there are no gross errors (outliers) in the data and that it is 

known a priori which measurements (if any) are corrupted by systematic bias. 

Simulations are carried out, the results from which are then presented. 

Chapter 5 presents a workable solution to the problem of steady-state 
identification. Following a review of the work published on the subject, an 

algorithm suggested by Cao and Rhinehart (1995) is implemented. This is first 

tested separately on a model of a chemical reactor system and then it is tested in 

conjunction with the static data reconciliation module developed in chapter 4. 

The aim of this set up is to enable or disable the static data reconciliation module 

based on the information obtained from the steady-state detection algorithm 

regarding the actual state of the system. Simulation results from both exercises 

are presented. 
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Chapter 6 applies the static data reconciliation techniques developed in chapter 4 

to static optimisation introduced in chapter 2. For the purpose of comparison. two 

case studies are investigated. In the first case study static optimisation is 

performed on the untreated biased data. In the second case study, however, the 

process data is first reconciled before the static optimisation is performed. 
Simulation results from both case studies are presented to show how reconciling 
the data can improve the performance of static optimisation techniques. 

Chapter 7 introduces the areas of dynamic data reconciliation and bias and gross 

error detection and identification. Historical reviews of published research 

relating to these fields are presented. A dynamic data reconciliation algorithm 
based on the moving horizon concept is used to reconcile dynamic process data. 

An algorithm for the detection, identification and elimination of gross errors is 

implemented. Algorithms for the detection and identification of systematic bias 

are developed and an intuitive method is implemented for that purpose. 
Simulation studies are carried out to test the various algorithms in isolation as 

well as in combination. 

Chapter 8 applies the dynamic data reconciliation techniques developed and 
implemented in chapter 7 to a model predictive control scheme. The advantages 

and disadvantages of using dynamic data reconciliation in model predictive 

control are highlighted through a comparison between a scheme that uses dynamic 

data reconciliation and one that does not. Results from simulation studies are then 

presented. 

Chapter 9 draws some conclusions from the results and makes a number of 

suggestions for further research related to the work in this thesis. 
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1.6 SUMMARY 

In this chapter, a general introduction to the area of optimisation has been 

presented. The areas of data reconciliation and model predictive control which 

are related in their common use of optimisation techniques have also been 

introduced. The scope and aims of the thesis have been clearly defined and a list 

of the major contributions of the thesis has been presented. An outline of the 

thesis chapters has also been given. 

The following chapter introduces static and dynamic optimisation techniques used 

later in this thesis. 
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CHAPTER 2 

THE MODIFIED TWO-STEP METHOD 

2.1 INTRODUCTION 

In steady-state optimisation, the calculation of the optimal set points is usually 
based on a mathematical model of the plant. Since the mathematical model is not 

an exact representation of the real plant and the process will generally operate in a 

changing environment, the calculated set-points will only be optimal for the 

model. It is necessary, therefore, to make sure that the mathematical model is 

adaptable. 

In order to overcome the problem of model-reality differences, the well known 

two-step method was proposed. In this method, parameters which are estimated 

by comparing model based and measured outputs are contained in the model. This 

defines the parameter estimation problem. Further, the steady-state model is used 

to determine the optimum controller set point values to satisfy a given 

performance index (e. g. to maximise a particular product). This forms the system 

optimisation problem. Since, in general, the model will not be an exact 

representation of the real process, the two problems interact. The solution of the 

optimisation problem is dependent upon the values of the model parameters and 

the parameter estimates will change according to the controller settings. 

The two-step technique treats the system optimisation and parameter estimation 

problems separately and solves them repeatedly until convergence is obtained. 

However, Durbeck (1965) showed that this simple procedure will not converge to 

the correct optimum when the model is inaccurate unless the derivatives of the 
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real process outputs with respect to the controller set points are matched exactly 

with the corresponding derivatives in the model. 

Roberts (1979) proposed the modified two-step method which allows interaction 

between the parameter estimation and system optimisation problems. This 

method came to be known as Integrated System Optimisation and Parameter 

Estimation (ISOPE). 

2.2 ISOPE ALGORITHM -A BRIEF REVIEW 

Like the standard two-step method, ISOPE is iterative in nature using repeated 

solutions of optimisation and estimation of parameters within the model used for 

calculating the optimum. Since it was first proposed, a number of researchers 
have worked on the algorithm. Roberts and Williams (1981) investigated the 

performance and studied the stability and convergence properties of the algorithm. 
Conditions which ensure that the algorithm converges were developed by Brdys 

and Roberts (1987). Ellis et al. (1988) compared the modified two-step method 

to two other techniques one using a direct approach while the other used an 

approximate linear model. Four forms of the ISOPE family of algorithms were 

applied to a mixing process and compared (Ellis et at, 1993). A considerable 

disadvantage of the modified two-step method is that real process derivatives have 

to be measured using perturbation techniques. To overcome this considerable 

disadvantage, Zhang and Roberts (1990) employed the dynamic model 

identification method of Bamberger and Isermann (1978) and applied it 

successfully to ISOPE. Augustin and Roberts (1993) presented a hierarchical 

version of ISOPE. Becerra and Roberts (2000) developed a practical version of 

ISOPE. An extensive review of the ISOPE algorithms was published by Roberts 

(1995). 
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Further work extending the capabilities of the modified two-step method to 
dynamic optimal control was done. This came to be known as Dynamic ISOPE or 
DISOPE and is introduced in Section 2.7. 

2.3 FORMULATION OF THE MODIFIED TWO-STEP METHOD 

The following formulation of the modified two-step method (ISOPE) is a revised 

practical version presented by Becerra and Roberts (2000). The objective used is 

a function with quadratic and linear terms and the model used for the 

computations as well as the inequality constraints are linear. The derivatives of 

the real process outputs are approximated by an identified model. This version of 

the modified two-step method requires the solution of a quadratic program at 

every iteration. 

The steady-state optimisation problem consists of finding the values of 

manipulated variables that minimise an objective function subject to steady-state 

relationships of the process and constraints on manipulated and measured 

variables, if appropriate. The problem can be stated as follows: 

Problem 1: 

min J(y*, v) (2.1) 
v 

subject to: 

y* = K*(v) (2.2) 

8(y*) 0 (2.3) 

Umin <V< umaz (2.4) 

where y* E Ry is a vector of measured variables, vE R'" is a vector of 

manipulated variables, J: 9R" x 91n' -* 91 is the objective function, 

K* : gin,, _, 9ZnY represents the process static relationships between manipulated 
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variables v and measured variables y*, g: any ---> SR"I is a mapping of output 

dependent inequality constraints. 

In reality, the true process mapping K* () is not known exactly and therefore a 

model is introduced to represent the real system. Consider the following model of 

the real system: 

y= K(u, a) (2.5) 

where yE qZny is a vector of model outputs, uE 91 n° is a vector of decision 

variables, K: R' x 91"a _> ging is an approximate model of K*, and aE 91n' is 

a vector of model parameters. 

Consider now the following problem, which is based on a mathematical model 

known to be an approximation of the real process. The problem is made 

equivalent to problem 1 by the introduction of suitable equality constraints: 

Problem 2: 

min J(y, u) (2.6) 
U 

subject to: 

y= K(v, a) (2.7) 

K* (v) = K(v, a) (2.8) 

v=u (2.9) 

8(y) <o (2.10) 

(2.11) u _< u <_ U rrun max 
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Note that in equation (2.8) it is assumed that there exists a value a such that the 

equality holds. The variable u is a separation variable. By introducing the model 

parameters a and introducing u and equating it to v (equation (2.9)), the 

problems of optimisation and parameter estimation are separated into two 

independent sub-problems. 

Analysis of the optimality conditions of problem 2 shows that the optimality 

conditions of problem 1 are satisfied after convergence by iteratively solving the 

following problem (based on a model of the process), given the values of 

a, A, v, y*, pand r: 

Problem 3: 

min J(K(u, a), u) -2u+ 
12 

pw T w+ 
12 

rllu - v[ 2 (2.12) 
u, w 

subject to: 

g(K*(v)) + M(u -v) +w <0 (2.13) 

ü<uü (2.14) 
min max 

where 

ün = max(u,; n, v - b) (2.15) 
rrý 

Umax = min(urmR ,v+ 
5) (2.16) 

where bj is the maximum allowed value of Iuj-v, j =1, """, nu ,M 
is given 

by: 

ag(y) 
X 

ax*(u) 
M= 

ay 
,, =y' 

au 
/J=v 

is computed from: 

ax* (, u) [aJ(KCua)u)1T [J(y, v)1T 

ay y_y. 

(2.17) 

(2.18) 

and a is obtained from: 
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y*-K(v, a)=o (2.19) 

Equation (2.13) is a linear approximation to (2.10), wE 91" is a set of relaxation 

variables and p is a penalty factor. This penalty relaxation technique is used to 

allow the treatment of output dependent constraints as soft constraints. In this 

way output constraints are enforced when they are feasible, and any violations are 

minimised when the constraints are infeasible. Also the factor 
1 

rllu - vll2 is added 2 

to convexify the objective function, which is used in non-convex and other 
difficult cases to improve the convergence of the algorithm when problems are 

encountered (r >_ 0 is called the convexification factor and is treated as a tuning 

parameter). 

As can be seen from equations (2.17) and (2.18), process derivative measurements 

are theoretically required by the modified two-step method. The application of 

perturbations on the manipulated variables to estimate the process derivatives by 

finite differences has been regarded as inefficient in the case of slow, 

multivariable processes. Alternative methods have been devised to replace the 

real derivatives by suitable approximations. The earlier mentioned dynamic 

model identification method by Bamberger and Isermann (1978) is one such 

method. This was introduced into the Modified two-step method by Zhang and 

Roberts (1990) and is used here. 

2.4 CASE WITH QUADRATIC OBJECTIVE, LINEAR ADAPTIVE 

MODEL AND LINEAR CONSTRAINTS 

Assume that the objective J is a quadratic function: 

J(Y, u) =1 (Y-Yr)T Py(Y-Yr)+ 
1(u-ur)T 

Pu(u-ur)+PyTY+PuTu (2.20) 
22 
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where PY and P,, are matrices of the appropriate dimensions, p,. E R'' and 

Pu E 9Zn, are vectors of price coefficients for the measured and manipulated 

variables, respectively, y, and u, are reference values for the measured and 

manipulated variables, respectively. 

Assume that the model (2.5) is linear: 

y= K(u, a) = Gu+a (2.21) 

where the static matrix gain G is updated periodically by a system identification 

method (see Section 2.6). 

Assume also that the output dependent constraints (2.10) are linear: 

g(y) = Ay -b <0 (2.22) 

A common form of (2.22) is yn; n 
<_ y: 5 ym which may be written as: 

-InY 
_ 

-Ynin 0 (2.23) 
IY ny Ymax 

Ab 

Then, the calculation of a is reduced to 

y* Gv (2.24) 

and the calculation of A simplifies to 

2=Pu(v-u, )+pu-GTPy(y*-yr)-GTpy (2.25) 
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where the derivative of the real process function iK# (u) /a 
ý=t 

has been 

replaced by its approximation, the identified static gain G. 

Equation (2.13) can now be written as follows: 

Ay*-b+AG(u-v)+w<-o 

where aK* (u) / auI, 
"_v 

has also been approximated by G. 

(2.26) 

It follows by derivation that problem 3 reduces to the following Quadratic 

Programming problem: 

Problem 4: 

I 
min 2 xT Hx +f TX 

X 

subject to: 

Ax <_ b 

'xmin 
< 

'x 
<_ 

'xmax 

where: 

u 
x= 

w 

GTPyG+Pu+Tin On. 
xn 

H=yg 
Ong 

Xnu 
Pins 

[GTP(O_yr)_Puur+pu_i%+GTpy_rv] 
yf = Ong 

xl 

[AGI] 

b= [b_Ay*_AGv] 

(2.31) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.32) 

(2.33) 

(2.34) 
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The above formulation gives rise to the following ISOPE algorithm. 

2.5 PRACTICAL VERSION OF THE MODIFIED TWO-STEP 

ALGORITHM 

The following is a practical version of the modified two-step algorithm as set out 
by Becerra and Roberts (2000). The algorithm is designed to drive the real 

process to its true optimum as model-plant mismatch is addressed in its 

formulation. Achieving the true optimum is subject to the convergence of the 

procedure and the accuracy of the estimates of G. 

Algorithm 2.1: The modified two-step (ISOPE) Algorithm 

Data: Py, Pu, py, pu, y,, ur, A, b, r, p, k, i=0, v(°) and means for measuring y*(') 
and computing G(`). 

Step 1: Apply the current input 0) to the plant, wait for a steady-state to be 

reached and measure the process output y*M. 

Step 2: Update the static gain G(`) by using an identification method. 

Step 3: Compute a(') using (2.24) and A(`) using (2.25). 

Step 4: Solve Problem 4 using QP to obtain the next input candidate u(`). 

Step 5: Compute the next process input by means of the following relaxation 
formula, which is introduced to regulate convergence: 

V(I+1) _ v° + ]>(u(1) 
- 

0)) 

(2.35) 

where k E-= [0,1] is a relaxation gain. 

Step6: Seti=i+1 and go to step 1. 
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2.6 MODEL IDENTIFICATION 

As mentioned earlier, a way of estimating the derivatives of the real process 

mapping K* (") with respect to the manipulated variables, is to identify a dynamic 

model on-line and to reduce it to a steady-state model. For the purpose of this 

work, a multivariable ARMAX model with the following structure is identified: 

Y(k) _-AlY(k-1)-... _AnaY(k-na) 
+Blu(k-1)+"""+Bnbu(k-nb) (2.36) 

+. c(k)+Cle(k-1)+"""+Cn,. c(k -n, )+c 

where y E=- 9Ry is the vector of measured outputs, uE gZ"° is the vector of process 

inputs, eE 91'ßy is assumed to be zero mean white noise, k is a discrete time index, 

Al , B1, C1 are matrix coefficients of the appropriate dimensions, and cE 91ny is an 

offset vector. 

The identification algorithm used for this work is a multivariable moving horizon 

least squares based method, which is described in detail in Becerra et al. (1998a). 

Note that it is often necessary to add small perturbation signals to the manipulated 

variables, such that the inputs are sufficiently exciting and a model can be 

estimated from the measured data. 

A static model is obtained by assuming that outputs y and inputs u are at steady- 

state , and that the noise c is zero. This gives the following input-output 

relationship: 

y=[Iny +Al+"""+AnQ] 
1[Bl+"""+B�b]u+c=Gu+c (2.37) 

As mentioned previously, further work extending the capabilities of the modified 

two-step method to dynamic optimal control was done. This came to be known as 
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Dynamic ISOPE or DISOPE. The following is an introduction to the formulation 

of the DISOPE algorithm. 

2.7 DYNAMIC INTEGRATED SYSTEM OPTIMISATION AND 

PARAMETER ESTIMATION (DISOPE) 

Dynamic Integrated System Optimisation and Parameter Estimation (DISOPE) 

was developed by Roberts (1992). Extensive further work on the algorithm was 
done by Becerra (1994) and Becerra and Roberts (1996) to include, among other 

things, constraints handling and application to batch processes and nonlinear 

predictive control. DISOPE has been successfully applied within a number of 

model predictive control schemes, see for instance, Becerra et al. (1996,1997. 

1998a, 1998b). 

The formulation of the DISOPE algorithm is as follows. Suppose that the real 

plant dynamics are described by the following nonlinear time-varying difference 

equation 

x(k + 1) =f* (x(k), u(k), k) (2.38) 

where k is a discrete sampling time index, f*: 9. X 91 'x 91- 91n represents a set 

of discrete-time state equations which describe the process with state x(k) E 1' 

and control input u(k) E 91'. Further assume that the following performance 

index has been chosen: 

J* = cp(x(N f )) + 
Nf-1 

1 L* (x(k), u(k), k) 
k=No 

(2.39) 

where [NO, N] is the fixed interval of sampling indices of interest, c: 91' -491 is 

a scalar valued terminal weighting function and L*: 91" x 9Zm x 9t -4 9R is a discrete 

performance (or weighting) function. 
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If the state of the system at the initial sampling time index No is assumed known, 

with value x(N0) = xo and if no constraints on the values of control and state 

variables are taken into consideration, apart from the dynamic constraint (2.36), 

the discrete time real optimal control problem (ROP) can be formulated as 

follows: 

ROP 
NI -1 

min J* = (p(x(N f )) +I L* (x(k), u(k), k) (2.40) 
ke[NO, N f -11 

k Np 

subject to 

x(k + 1) =f* (x(k), u(k), k) (2.41) 

x(NO) - xo (2.42) 

Instead of solving ROP, the following, possibly simplified, discrete-time model- 

based optimal control problem (MOP) is considered: 

MOP 
Nf-1 

min Jm = co(x(N f )) + J:, L(x(k), u(k), y(k)) (2.43) 
k4NO, Nf_1] k=No 

subject to 

x(k + 1) =f (x(k), u(k), a(k)) (2.44) 

x(NO) = xo (2.45) 

where state and control vectors have the same dimensions as in ROP, J, 
n 

is a 

model-based performance index, L: R'1 x 9t'n x 91-4 9 is a discrete weighting 

function and perhaps a simplification of a known L*, f: 9" x Jim x 9' _, gin, is an 

approximate dynamic model of f* ; y(k) E 91 and a(k) E 91' are discrete 

parameters. The role of a(k) will be to take into account differences in value 

between f* and f, while y(k) takes into account differences in value between L* 

and L. 
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By adding appropriate equality constraints, an equivalence is made between ROP 

and MOP, giving rise to the following expanded optimal control problem (EOP): 

EOP 
NJ-1 

min Je= (p(x(N f )) + Y, L(x(k), u(k), y(k)) (2.46) 
k4No N f-1] 

k-No 

subject to 

x(k + 1) =f (x (k), u(k), a(k)) (2.47) 

x(NO) = xo (2.48) 

f (z(k), v(k), a(k)) =f *(z(k), v(k), k) (2.49) 

L(z(k), v(k), y (k)) = L*(z(k), v(k), k) (2.50) 

u(k) = v(k) (2.51) 

x(k) = z(k) (2.52) 

By using Lagrange multiplier theory and differential calculus, it is possible to find 

that the values of a(k), y(k), A. (k) and , 8(k), kE [NON 
f-1] are given by (see 

Becerra, 1994) 

f (z(k), v(k), a(k)) =f *(z(k), v(k), k) (2.53) 

L(z(k), v(k), 7 (k)) = L*(z(k), v(k), k) (2.54) 

A(k) _ p(k + 1) 
äv (k) av(k) (2.55) 

+[ VV(k) L(z(k), v(k), r(k))- V 
V(k) 

L* (z(k), v(k), k)ý 

äz(k) o2z(k) (2.56) 

+[V Z(k) 
L(z(k), v(k), Y(k)) r(Z(k)L*(z(k), v(k), k)] 

where 

v(k) = u(k), kE [NO, NJ - l] (2.57) 

z(k) = x(k), k E [N0, NI] (2.58) 
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A 

P(k) = P(k), k E [N0, iv1] (?. 59) 

A 
If the values of a(k), y(k), 2(k), ß(k), v(k), z(k) and p(k) satisfy the equations 
(2.53) to (2.59) above, then the solution of the following problem satisfies the 

necessary optimality conditions of EOP. This problem is called the discrete-time 

modified model-based problem (MMOP), defined as follows: 

MMOP 
Nf-1 

min JM = cp(x(N f )) + 1: [L(x(k), u(k), y(k)) - A(k)T u(k) - ß(k)T x(k)] (2.60) 
u (k) 

k4Np. N f -1] 
k=Np 

subject to 

x(k + 1) =f (x(k), u(k), a(k)) 

x(N0) = xo 

(2.61) 

(2.62) 

Assuming convergence, the iterative solution of MMOP by means of the 

following algorithm satisfies the necessary optimality conditions of ROP. 

Algorithm 2.2: Discrete-time DISOPE algorithm 

Data f, L, (p, xo , No, Nf and means of calculating f* and L* 

Step 0 Compute or choose a nominal solution u° (k), x° (k) and p° (k). 

'° Set i=0, v° (k) = u° (k), z° (k) = x° (k), p (k) = p° (k)- 

Stete 1 Compute the parameters a(k) and y(k) to satisfy: 
f (z(k), v(k), a(k)) =f* (z(k), v(k), k) 

L(z(k), v(k), y(k)) = L* (z(k), v(k), k) 
This is called the parameter estimation step. 

Std Compute the multipliers 2` (k) and /3` (k) 

2(k) _ 
of 

- 
Of A 

P(k + 1) + [Ov(k) L(Z(k), V(k), Y(k)) - Ov(k) L* (Z(k), v(k), k)] 
dv(k) &(k) 
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ß(k) =O-° p(k + 1) + [V 
Z(k) 

L(z(k), v(k), y(k)) -0L: (:, (k ), v(k )" k) dz(k) dz(k) z(k) 

Step 3 With specified ca(k), y(k), 2(k) and 8(k), k E [No, Nf -1] solve the 
discrete-time modified model-based optimal control problem MMOP to 
obtain u i+1(k), x i+1(k) and p i+l (k). This is called the system optimisation 
step. 

Step 4 This step tests convergence and updates the estimate for 
solution of ROP. In order to provide a mechanism for 
convergence, a simple relaxation method is employed. This is: 

vz+l (k) = v` (k) + kv (u`+1 (k) - v` (k)) 

zt+l (k) = z` (k) + k2 (xl+l (k) - z` (k)) 
, i+l Ai Ai 

p (k) =p (k) + kp (pi' (k) -p (k)) 

where kv, kZ and kp are scalar gains. 

the optimal 
" regulating 

If vi+' (k) = v` (k), k E-= [NO, Nf -1] within a given tolerance stop, 
else set i=i+1 and continue from step 1. 

2.7.1 Case with Linear Quadratic model-based problem 

If the MOP is chosen to be Linear Quadratic such that 

L(x(k), u(k), r(k)) =1 x(k)T Qx(k) +1 u(k)T R u(k) + y(k) 
22 

SO(x(Nf)) =1 x(Nf)T (Dx(Nf) 
2 

and 

f (x(k), u(k), a(k)) = Ax(k)+Bu(k)+a(k) 

(2.63) 

where Q is the intermediate state weighting matrix and is the terminal state 

weighting matrix, then the solution of MMOP can be achieved by using standard, 
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non-iterative methods, such as the following solution procedure (see Becerra, 
1994). 

Procedure 2.1: Solution of MMOP 

Data A, B, Q, R, (D, No , Nf, cx(k), A(k), ß(k), k E[NONf -1] 

Stepl Solve backwards from k=Nf -1 to No the following difference 

equation, with terminal conditions S(N1) = 4), and h(N1) =0 

S(k) = Q+ATS(k+1)(A-BG(k)) 

G(k) _ 
[R+BTS(k+1)B]-'BTS(k+1)A 

h(k) = (A - BG(k))T h(k + 1) + (A - BG(k))T S(k + 1)a(k) 

-ß(k) + G(k) T 1, (k) 

Step 2 Compute the driving input g(k) from 

g(k) = [R + BT S(k + 1)Bl-1[-BTS (k + 1)a(k) - BT h(k + 1) + 2(k)] 

Step 3 Compute the state sequence x(k) , by solving from the initial 

condition xo the following difference equation: 
x(k + 1) = (A - BG(k))x(k) + Bg(k) + a(k) 

Step 4 Compute the costate p(k) from: 

p(k) = S(k)x(k)+h(k) 

Step 5 Compute the control sequence u(k) from: 

u(k) = -G(k)x(k) + g(k) 

2.8 SUMMARY 

In this chapter, the modified two-step method otherwise known as ISOPE has 

been reviewed. A brief review of some of the work done on the ISOPE family of 

algorithms has been presented. A new practical formulation of the algorithm 
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devised by Becerra and Roberts (2000) has also been presented. Finally. the basic 

formulation of the dynamic version of ISOPE (DISOPE) has been presented. The 

reason for presenting these algorithms here is because they are used in subsequent 

chapters. ISOPE is used in chapter 6 while DISOPE is used in chapter 3. 
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CHAPTER 3 

DEVELOPMENTS IN PREDICTIVE OPTIMISATION 

3.1 INTRODUCTION 

Model Predictive Control (MPC) methods are very much related to data 

reconciliation problems in that optimisation techniques used to solve both 

problems are essentially the same. In this chapter Model Predictive Control is 

introduced. Following a short historical review of the methods available, the 

formulation of a predictive optimiser developed and used at City University is 

presented. The MPC algorithm is applied to a benchmark challenge set by 

ALSTOM involving the control of a gasifier used for the generation of 

environmentally clean and efficient power from coal. This chapter paves the way 

for chapter 8 in which dynamic data reconciliation techniques developed in this 

thesis are applied to MPC. 

3.2 MODEL PREDICTIVE CONTROL 

Model-based predictive control has been the subject of intensive research for 

about 20 years. Although the theoretical solutions have been available for some 

time, industrial application only took place relatively recently due mainly to the 

lack of availability, at an acceptable price, of computing capacity (Balchen et al., 

1991). 

Model Predictive Control (MPC) has become a powerful tool for dynamic 

optimisation and control. There are a number of different MPC schemes 
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available, however the basic idea behind them all is essentially the same and can 

be summarised as follows (Lee and Ricker, 1994): 

9A prediction of future output behaviour expressed in terms of current and 

future manipulated input moves is built using a dynamic model and on line 

measurements. 

" Optimisation is then performed, based on the prediction; to find a sequence of 

input moves that minimises a chosen measure of the output deviation from 

their respective reference values while satisfying all the given constraints. 

" Since the quality of prediction may improve as more measurements are 

collected, only the first of the calculated input sequences is implemented and 

the whole optimisation is repeated at the next sampling time. This receding 

horizon implementation makes MPC a feedback control algorithm. 

A strong attribute of MPC is that various process constraints can be incorporated 

directly into the on-line optimisation performed at each time step. As a result 

MPC has been steadily gaining acceptance by the process industry since most 

control problems faced by the industry involve multivariable systems with 

constraints for which no other effective control technique exists. Other 

advantages of MPC include (Camacho and Bordons, 1999; Roberts, 1999): 

" The concepts behind MPC are intuitive which makes the schemes attractive to 

industry. 

9 MPC can be used to control a great variety of processes including systems 

with long delay times, or of non-minimum phase or unstable ones. 

" MPC compensates for measurable disturbances in a natural way by 

introducing feed-forward control. 

" The resulting controller is an easy to implement linear control law. 

" MPC is an open methodology based on basic principles which allow for future 

extensions. 

9 MPC is readily applicable to batch processes. 
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There are, of course, disadvantages associated with MPC: the most significant 
disadvantage is the requirement for an appropriate model of the process. The 

benefits obtained from MPC can be seriously affected by the discrepancies 

existing between the real process and the model. The second disadvantage is that 

although the resulting control law is easy to implement and requires little 

computation, its derivation is quite complex. Since the system dynamics will 

change and therefore the scheme must be adaptive, the amount of computation 

required at each sampling instant becomes substantial. The computations increase 

further if constraints are considered. However, with the advancement in computer 

power, this problem has become less of an obstacle. 

Nonlinear model predictive control (NLMPC) schemes use nonlinear models for 

predictions. One of the advantages of NLMPC is that nonlinear models can be 

more accurate for long term prediction beyond the local operating point. A 

further advantage is that manipulated and state variable constraints are explicitly 

handled (Sistu and Bequette, 1991). 

3.2.1 Model Predictive Control Strategy 

The strategy usually shared by the MPC family of algorithms is illustrated in 

Figure (3-1) and can be described as follows: 

1. The predicted future outputs y (t +kI t), k =1... N are calculated at each 

instant t over the prediction horizon N using the process model. These 

depend on the known values up to instant t (past inputs and outputs), 

including the current output y(t) and on the future control signals 

u(t +kI t), k=1 ... N-1, to be calculated. (Note that u(t +kI t) indicates 

the value of u at time instant t+k calculated at time t). 

2. The sequence of future control signals is computed to optimise a performance 

criterion, often a quadratic function to minimise the error between the 

51 



predicted process output signal and a reference trajectory. The control effort 
is usually included in the performance criterion. 

3. Only the current control signal u(t I t) is transmitted to the process. At the 

next sampling instant y (t + l) is measured and step 1 is repeated and all 

sequences updated. Thus u(t +1t+ 1) is calculated using the receding 

horizon concept. 

The basic structure shown in Figure (3-2) is used to implement the above strategy. 

Future plant outputs are predicted using a model and based on past and current 

values and on the optimal control actions calculated by the optimiser. 

Figure (3-1): Model Predictive Control Strategy. 
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Figure (3-2): Basic structure of MPC 

3.2.2 Models used for MPC 

Past Inputs 
and Outputs 

The various MPC algorithms available differ only in the model used to represent 

the process and the cost function to be minimised. The choice of model and 

model accuracy is of paramount importance to a successful MPC scheme. The 

chosen model must be capable of capturing the process dynamics so as to 

precisely predict the future outputs as well as being simple to implement. There 

are a number of types of model used with MPC, they are: 

" Impulse response model, 

" Step response model, 

" Transfer function model, 

" Linear state-space model, 

" Nonlinear state-space model. 

The Impulse response model, also known as the truncated impulse response 

model, is one of the most popular in industry. This type of model is easy to obtain 

requiring only the measurement of the output when the process is excited with an 

53 



impulse input. The impulse which is physically unrealisable is of course 
approximated by a pulse. As well as being intuitive, the impulse response model 
can be used for multivariable processes. The main drawbacks of this method. 
however, are the large number of parameters needed and the fact that for a process 
to be represented in this way, it must be open-loop stable. The step response 
model is closely related to this model and it is obtained when the input is a step. 

Most widespread in the academic community is probably the transfer function 

model because it is valid for a wide range of processes and requires only a few 

parameters. State variable models are also used in some formulations as they can 

easily describe multivariable processes. 

3.2.3 Model Predictive Control Algorithms 

Various versions of MPC exist and, as mentioned previously, they are 

differentiated by the type of model they use and the cost function. The most well- 
known MPC algorithms are Dynamic Matrix Control (DMC), Model Algorithmic 

Control (MAC) and Genralised Predictive Control (GPC). 

Dynamic Matrix Control was developed by Cutler and Ramaker in 1980. DMC 

uses a step response model and has the following advantages and disadvantages 

(Pike et al., 1996): 

DMC Advantages 

" Implementation of the model is straight forward - simple calculations, 

" Attractive for use by industrial personnel without extensive training, 

" No assumption about the order of the process is required. 

Disadvantage 

" Open-loop unstable processes cannot be modeled or controlled. 
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Further work on DMC was carried out by Lundstrom et al. (1995) who 
highlighted its limitations and suggested the use of an alternative algorithm which 
includes an observer. Garcia and Morshedi (1986) published an extension of 
DMC called Quadratic DMC (QDMC) which uses Quadratic Programming to 

solve the constrained optimisation problem. However Cutler et al. (1983) had 

outlined the technique a few years previously. Gattu and Zafiriou (1992) 

extended QDMC for use with nonlinear process models and refer to the algorithm 

as Nonlinear QDMC (NLQDMC). 

Model Algorithmic Control (MAC), developed by Richalet et al. (1978), and 

originally known as Model Predictive Heuristic Control, is similar to the DMC 

approach but possesses fewer tuning parameters and uses an impulse response 

model. The mathematical framework for MAC was formalised by Rouhani and 

Mehra (1982). 

Generalised Predictive Control (GPC), developed by Clarke et al. (1987), uses a 

transfer function model and thus can easily be implemented in an adaptive mode 

by using an online estimation algorithm such as recursive least squares. The 

advantages and disadvantages of this approach are: 

GPC Advantages 

" GPC is normally able to stabilise and control open-loop unstable 

processes through the choice of tuning parameters. 

" GPC is related to the properties of LQ control. 

Disadvantage 

" There are no guaranteed stability properties for GPC except under 

special conditions. 

A number of researchers have worked on various extensions and applications of 

GPC. For instance, Gawthrop et al. (1998) developed a state-space version which 

unlike the transfer function version extends readily to the nonlinear case. Rossiter 

et al. (1996) presented an approach which guarantees the retention of feasibility 
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and stability for any setpoint change. Mahfouf et al. (1997) looked at the 

application of GPC to the on-line administration of muscle relaxant drugs in the 

operating theatre. 

While the majority of the aforementioned techniques use input/ output models, 

there are a number of researchers who use state-space models and the receding 

horizon concept. Balchen et al. (1992) developed the State-Space Predictive 

Controller (SSPC) which accounts for severe process nonlinearities and general 

constraints on process variables. Becerra et al. (1998a) published a technique 

which integrates predictive control with on-line optimisation of economic 

objectives removing the need for a separate steady-state optimiser. Becerra et al. 

(1999a, 1999b) applied this technique to the Tennessee Eastman process model 

and a coal gasification plant model respectively. Some of the other researchers 

who have contributed to this field are Kwon and Byun (1989) and Mayne and 

Michalska (1990). 

There are a number of review articles on MPC such as Qin and Badgwell (1996), 

Garcia et al. (1987) and Eaton and Rawlings (1992) to name a few. A number of 

textbooks are also available on the subject, see for instance Camacho and Bordons 

(1999). 

Model predictive control has enjoyed wide industrial application. The key 

features contributing to its success are that multivariable systems and constraints 

can be accommodated effectively in the control problem, and the use of empirical 

models which can be measured from input/ output data. Qin and Badgwell (1996) 

reported the number of MPC applications at around 2200 and noted that the 

majority of applications were in refining and petrochemicals but significant 

growth was being noticed in the areas such as chemicals, pulp and paper, food 

processing, aerospace and automotive industries. From the perspective of 

Predictive Control Limited, U. K., Sandoz (1998) also noted that while in the 

petrochemical industry MPC was well exploited, the technology was slow in 

gaining ground in wider industry. A number of vendors have developed and 
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marketed predictive control software under different names such as DMC, 

IDCOM and CONNOISSEUR. 

For the purpose of this work, an MPC algorithm developed by Becerra et al. 

(1998a) has been used. As well as for this chapter, the algorithm is utilised in 

chapter 8 where data reconciliation techniques are applied to MPC. This 

algorithm is based on state-space models, the derivation of which is presented in 

detail in Becerra et al. (1998a). The following is a brief outline of the algorithm. 

3.3 RECEDING HORIZON OPTIMAL CONTROL ALGORITHM. 

In this model predictive control framework, a Receding Horizon Optimisation 

Problem (RHOP) is solved at every sampling instant. The problem is formulated 

as follows: 

RHOP 
i+N-1 

min J(i) =1 dx(i + N)T COic(i + N) + 1: {F(y(k), um (k)) 
'u(k) 2 

k=i 

+1 dx(k)T QAx(k)+ Au(k)T RAu(k) + P(y(k)) (3.1) 
22 

subject to 

Ax(k+1)=Adx(k)+BmLum(k)+b(k-i)BdAud(i) (3.2) 

Ay(k) = Cdx(k) (3.3) 

Ul ý Um ý Uh (3.4) 

Dumb <_ Ur (3.5) 

Aum(k)=0, M<_k<_N (3.6) 
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where F(y) is a steady-state objective, (D, Q, R are weighting matrices of the 

appropriate dimensions, A is the increment operator, i. e. 
Au(k + 1) = u(k) - u(k - 1), um is the vector of manipulated variables, Ud is the 

disturbance input, b (k - i) is 1 when k=1,0 otherwise (so the disturbance is 

assumed to be a step), B,,,, Bd are submatrices of the identified B matrix, 

B= [Bm Bd ], N is the prediction horizon in samples, M is the control horizon 

in samples, i denotes current time. 

Output constraint violations along the predictions are penalised in equation (3.1) 

by means of the term P(y(k)). This implies that output constraints are treated as 

soft constraints. The penalty term is calculated from: 

P(y(k)) _ p(PE(W; (y(k))))2 +4UP, (W; (y(k))) (3.7) 

where p and u are scalar penalty factors. The output constraints are given by: 

`P(y(k)) <- 0 (3.8) 

and 

x 
PE(x) _ _(, _ g)2/4p 

0 

if> 

if -E<x< (3.9) 

if X<-e 

This type of penalty term, which combines quadratic and exact (linear) penalties, 
helps avoid problems when the output constraints are infeasible but attempts to 

enforce active but feasible output constraints. 

The steady-state objective function used in this work was a quadratic regulatory 

objective: 

F(y(k)) =1 (Y(k) _ Yr )T Qy (Y(k) - YT) 2 
(3.10) 
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where Qy is a weighting matrix of the appropriate dimensions and yr is a vector of 

reference values for the outputs. Note that F(y(k)) may in general include other 

terms such as economic objectives, which are often linear, and other quadratic 

terms implementing targets for the manipulated variables. 

The optimisation algorithm used to solve the receding horizon problem 
formulated above was Dynamic Integrated System Optimisation and Parameter 

Estimation (DISOPE) which was briefly introduced in chapter 2. Further details 

of the DISOPE algorithm can be found in Becerra and Roberts (1996). 

Table (3.1): Predictive control algorithm 

Data: Q, R, (D, N, ul , uh , u, 

Step 1 Parameter estimation: Obtain values of parameter matrices A, B and C 

Step 2 Optimal prediction: Solve RHOP to obtain the predicted control 

sequence {um (i ), ... um (i +N -1)} 

Step 3 Apply the first element um (i) of the predicted input sequence to the 

plant. 

Step 4 Wait until next sampling time, set i=i+1 and go to step 1. 
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3.4 LINEAR MODEL IDENTIFICATION SCHEME 

Consider a state space model of the type: 

Ax(k+1) = AAx(k)+BAu(k) 

Ay(k) =CAx(k) (3.11) 

where k is an integer sampling index, xE 9n is a state vector, uE 91 nu is a set of 

independent inputs, yE 9' is a vector of measured outputs, A, B, C are matrices 

of the appropriate dimensions. The estimation of linear state space models of this 

type has been tackled using different system identification methods. Becerra et al. 

(1997) developed a non-iterative technique based on the least squares method and 

the multivariable ARMAX model structure. The resulting ARMAX model is then 

transformed into a non-minimal state-space realization. In this way the need for a 

separate linear state estimator is avoided since the state vector is formed from 

delayed values of the output and input vectors. The technique is based on the 

moving-horizon concept, but it exploits the displacement structure of the data 

window to considerably reduce the computational load. The following is a brief 

outline of the technique (Becerra et al., 1998a). For further details regarding the 

formulation and various advantages of this technique, the reader is referred to this 

particular paper as well as to Becerra et al. (1997). 

Assume that the output of the system at discrete time k is denoted as y(k) E any 
, 

and the input variable at time k is given by u(k) E V-. An ARMAX model of 

the system can be written as: 

A*(R-i)y(k) = B*(q-1)u(k -d)+C*(q 1)e(k)+b (3.12) 

where 
*(q-1 1 A) =I+Alq-+... +Anaq-na 

B *(q-') = Blq-1 + B2q-2+.. +B�bq-"b 
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C*(q-l) =1+ Clq-1+..... FG'ncRr-ný 

are matrix polynomials of degrees na, nb , n, respectively, in the backward shift 

operator q-1, d is the minimum pure time delay in samples from inputs to 

outputs, the sequence e(k) E ging is assumed to be zero mean discrete white noise, 

and bE 9t' is an off-set parameter vector introduced to take into account non- 

zero levels in the signals involved. 

An equivalent non-minimal state-space realization of the deterministic part of the 

ARMAX model (3.12) is as follows: 

x(k+1) = Ax(k) + Buu(k) +c 

y(k) = Cx(k) 

where 

x(k) = [y(k)T y(k -1)T ... y(k - nQ + 1)T u(k -1)T 

... u(k _d)T... u(k-d_nb+2)TIT 

(3.13) 

is a state vector which contains present and past values of the output at time k, 

and past values of the input variables, dim x=n= nyna + n,, (nb +d- 2), A and 

Bu are matrices of the appropriate dimensions which are formed in terms of the 

ARMAX model polynomial coefficients, cE 91n is an off-set vector. Notice that 

because the state vector is formed from past input and output variables, a state 

observer is not required when using these models for control purposes. For 

instance, for the case when d=1, matrices A, B,, and C are given below: 
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Al -A2 ... _Ana B2 ... B7 nb 

A=l 

I 0 ... 0 0 ... 0 
nv 

0 0 ... I 0 0 ... 0 
n Y 

0 0 ... 0 0 ... 0 

0 0 ... 0 0 ... I 0 
n 

B1 
0 

0 
Inu 

0 

B� = 

(nyna+n� (nb-1))xn� 

C=ILny o 
... 

O0... OJ 
L 

ny x(nyna+n� (nb-1)) 

+nu (nb -1)) x(nyna +nu (nb-1)) 

(3.14) 

Multiplying equations (3.13) by the difference operator A =1- q-1, the following 

incremental state space model is obtained: 

Ax(k + 1) = AAx(k) + BuAu(k) 

Ay(k) = Cdx(k) (3.15) 

This model is a locally valid linear state space model in the form used in the 

definition of the receding horizon optimisation problem above. 

3.5 SIMULATION CASE STUDY 

The predictive control technique outlined above was applied to a benchmark 

challenge to control a gasifier plant used in the generation of power from coal. 
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The following subsection presents an introduction to the challenge and the control 

aims. This is followed by a discussion of some implementation issues and a 

presentation of the results obtained. 

3.5.1 The ALSTOM Gasifier Benchmark Challenge 

In September 1997 GEC ALSTHOM Mechanical Engineering Centre (now 

ALSTOM Energy Technology Centre), presented the U. K. control community 

with a control design challenge to control a gasifier plant. The challenge drew 

considerable interest form both academia and industry and led to a seminar 
(Dixon et al., 1998) in which a number of advanced control schemes were 

presented as solutions to the problem. Dixon (1999) published a report on the 

seminar and the solutions presented. 

Integrated Gasification Combined Cycle (IGCC) power plants are being 

developed around the world in order to provide environmentally clean and 

efficient power generation from coal. The gasification plant or gasifier (Figure 3- 

3) can be considered as a reactor where coal reacts with air and steam. The 

products of the gasification process are a low calorific value fuel gas, which can 

be burnt in a suitably adapted gas turbine, and char (ash from coal, limestone and 

unreacted carbon). Limestone (sorbent) is also added to the vessel to capture the 

majority of sulphur present in the coal. 

The key inputs to the gasifier are air flow, steam flow, coal flow, sorbent flow and 

char extraction flow. The main output variables to be regulated are gas 

temperature, gas pressure, gas calorific value and bed mass. The gasifier system 

is difficult to control since it is multivariable and highly nonlinear, with 

significant cross-coupling between the input and output variables. 
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3.5.1.1 Control aims 

As part of the challenge `information pack', ALSTOM provided three linear 

models obtained from a rigorous nonlinear model of the system which was not 

made available to the participants. The challenge brief was to design a controller 
based on a linear model of the gasifier running at 100% load. The specification 
included constraints on the control signals and bounds on the output variables (see 

Tables 3.2 and 3.3) as well as a set of tests and performance criteria to facilitate 

the easy comparison of the different schemes proposed. The tests included system 

response to both step and sinusoidal disturbances. Furthermore, the controller 

was to be evaluated without redesign on a further two linear models representing 

the gasifier at 50% and 0% load. 

Pressure 

Steam inlet flow 

Coal & sorbent flow 

Char 
Off-take 

Figure (3-3): Gasifier plant functional diagram. 
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3.5.2 Gasifier Model Implementation 

The supplied gasifier models were implemented as a module in the OTIS STM 

process simulator, (SAST, 1993). This software package is used for simulation in 

the process industries, particularly in the oil and petrochemical industries. 

OTISSTM allows the implementation of rigorous process models by using a 
library of components. It also allows its modular extension by the user by adding 
C/C++ routines. The integration algorithm used was the 4th order Runge-Kutta 

method, with a fixed step size of 0.005 s. The model matrices were read directly 

from the supplied Matlab data files. The gasifier load value could be specified as 

a parameter from the user interface, so that the corresponding model matrices 

could be used. Also, the corresponding steady-state values were subtracted from 

the inputs and added to the outputs. 

3.5.3 Model Identification 

In order to follow an approach that was independent from the form of the supplied 

plant models, an independent identification experiment was carried out. A similar 

experiment could have been carried out if the plant model was a nonlinear model. 

The purpose of the identification experiment was to obtain input-output data 

which was later used for identifying a discrete time model. The identified model 

was then used for control design purposes. 

A pseudo random binary sequence (PRBS) test was carried out on the model for 

100% load in order to identify a possibly lower order model. Independent PRBS 

signals were applied to the manipulated inputs and the disturbance input psink. 

The application of a PRBS to the disturbance variable is of course not very 

realistic. In a real application the PRBS would only be applied to the manipulated 

variables and it would be necessary to use the normal changes in the disturbance 

variable as an excitation. The fixed relationship between wls and wcol was taken 

into account (wls = 0.1 wcol). The data collected from the PRBS test contained 
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information for a period of one hour. The sampling time used was 0.25 seconds. 
A multivariable ARX model was identified with the following structure: 

y(k) =- Aly(k -1) - A2y(k - 2) + B, u(k -1) + B2u(k - 2) (3.16) 

where y is the vector of measured outputs, y= [cvgas, mass, pgas, tgas]T ,u is the 

vector of process inputs, u= [wchr, wair, wcol, wstm, psink] T, k is a discrete time 

index, A. , B. are matrix coefficients. The resulting ARX model was transformed 

into a state-space model using a non-minimal realisation (equations 3.13) where 
T the state vector x(k) _[ y(k), y(k -1), u(k -1)] . 

For the ARX structure given above, the corresponding dimension of the state 

vector x(k) is 13. A validation plot is shown in Figure (3-4), which compares the 

response of the supplied and identified models to a 10% increase in the air flow, 

wair, while at 100% load. In this simulation, a PI controller with proportional 

gain -0.003 and integral gain -0.00001 manipulates the char offtake in order to 

maintain the bedmass. 

3.5.4 Controller Implementation 

The predictive controller introduced in Section 3.3 was implemented as an OTISS 

module by Becerra et al. (1998a). A moving horizon identification algorithm is 

integrated with this module, to allow the identification of a suitable process 

model. Periodic adaptation of the model is also possible, although this feature 

could not be used in this case because of the rules of the challenge. A graphical 

interface allows the specification of the different parameters associated with the 

predictive controller, such as prediction horizon, weights, model structure, etc. 
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3.5.5 Controller Tuning and Simulations 

The scaling factors used internally by the predictive controller are given in Table 

(3.4). The tuning parameters of the predictive controller are given in Table (3.5). 

A different set of results employing a different set of tuning parameters was 

presented by Becerra et al. (1999b). 

The disturbance variable was the sink pressure psink. The steady-state values of 

psink were 18.5 x 105 (N/m2) at 100% load, 14.8 x 105 (N/m2) at 50% load and 

11.1 x 105 (N/m2) at 0% load. The step disturbance consists of a change of 

-2 x 104 (N/m2) at 30s. The sinusoidal disturbance had a peak value of 

2x 104 (N/m2) and a period of 25 s. 

In order to tune the controller, several simulations were carried out at 100% load 

for the step and sinusoidal disturbances. Finally, to satisfy the rules of the 

challenge, simulations were carried out using both types of disturbance at 50% 

and 0% load using the same identified model and controller tuning. 

3.5.6 Simulation Results 

The simulation results including peak rate, maximum and minimum absolute 

values for each variable, the maximum constraint violation and the relevant 

integrated absolute errors (IAE) are presented in Tables (3.6) to (3.11). These 

include cases for step and sinusoidal disturbances, as well as three different values 

of the gasifier load: 100%, 50% and 0%. Figures (3-5) to (3-17) show the 

simulation trajectories for the outputs and manipulated variables for both types of 

disturbance and for different load values. 

Figures (3-5) and (3-6) show the trajectories of the process outputs and 

manipulated inputs respectively for the case when using a step disturbance with 

100% load. It can be observed that there are no violations of any of the 
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constraints except for the variable pgas which just violates the lower constraint. 
The level of violation of this variable can be seen in Table (3.6). 

Figures (3-7) and (3-8) are related to the case when the disturbance is sinusoidal 

with a load of 100%. It is apparent that the variables cvgas and pgas periodically 

violate the constraints in small amounts. This is similar to the case when a 

sinusoidal disturbance is used with 50% load (Figures 3-11 and 3-12). 

In the case of a step disturbance with 50% load, the results are good (Figures 3-9 

and 3-10). There are no violations at all by any of the variables and the controller 

quickly rejects the disturbance. 

In the cases where the load was 0%, the results were not very satisfactory for both 

disturbance types. In the case of a step disturbance (Figures 3-13 and 3-14), there 

can be seen violations by the variables cvgas and pgas and a large violation by 

tgas. There is also some noticeable oscillation in the variable cvgas. In the case 

of a sinusoidal disturbance (Figures 3-15 and 3-16), cvgas and pgas display a 

similar response, in shape, to the 100% and 50% load cases with larger periodic 

violations. Again, however, there is a large violation by the variable tgas which is 

seen to settle in the extended simulation in Figure (3-17). 

A comparison of the results obtained here with a results obtained using a number 

of other control strategies presented as solutions to the problem at Coventry 

University in June 1998 was carried out. It is important to note that the results 

presented here are an improved set of results to those of Becerra et al. (1998). 

The comparison was made in terms of a sum of IAE values for all the step cases 

compared to the average from all the control techniques presented. A similar 

exercise was carried out for the sinusoidal disturbance cases. The results of this 

exercise are shown in Table (3.12). It can be seen that with the cases involving a 

step disturbance, the presented MPC algorithm performs better than the average 

(considerably better in the case of pgas). However, in the case of sinusoidal 

disturbances, this algorithm performs considerably worse than the average. 
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3.6 CONCLUSIONS 

A state-space model predictive control algorithm has been used to control a 

gasifier plant as part of a challenge set by the Mechanical Engineering Centre at 

ALSTOM. The challenge involved the control of models of the coal gasifier at 

different operating conditions. The models are multivariable and marginally 

stable. The controller was required to take into account constraints on input and 

output variables and be able to deal with step and sinusoidal disturbances. The 

dynamics of the process change significantly at the different load levels. For the 

above reasons the satisfaction of all the control objectives and constraints was 

truly a difficult task. 

The approch used in tackling the set problem produced an acceptable response for 

the cases of 100% and 50% load conditions which involved minor and transient 

violations of two of the output constraints. However, for the case of 0% load 

condition, the process response did not satisfy many of the constraints and control 

objectives. 

The results obtained above highlight one important aspect of model predictive 

control and that is the dependence on the accuracy of the model. In the cases 

when the load was 100% and 50%, the results were good. However, when the 

load condition was set to 0% where the process dynamics must be very different 

to those captured by the original model, the results were poor. The predictive 

control algorithm presented in this chapter has on-line model adaptation 

capabilities but this feature was disabled in order to comply with the challenge 

rules. The on-line identifier has the potential of increasing the robustness of the 

controller. 

Although in the cases with 100% and 50% load where a sinusoidal disturbance 

was used the results were somewhat satisfactory, the algorithm could be seen to 

be struggling with all cases involving a sinusoidal disturbance. This is probably 

due to the fact that the algorithm assumes a step-like disturbance and therefore 
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finds it difficult to cope with sinusoidal disturbances. The use of a more general 
disturbance model may help in improving the response for cases where a 

sinusoidal disturbance is present. 

3.7 SUMMARY 

In this chapter, model predictive control has been introduced. Following a brief 

introduction, a short review of the available algorithms was presented along with 

some of the major research activities in the field. A state-space model predictive 

control algorithm employing the receding horizon concept developed at City 

University has been presented. This algorithm was applied to a benchmark 

challenge set by ALSTOM Mechanical Engineering Centre involving the control 

of a gasifier used for the generation of power from coal. The scheme was shown 

to be successful for the majority of the cases set by the challenge but had 

difficulty in dealing with cases involving considerable departure of the process 

dynamics from the identified model. 

This chapter represents an introduction to the field of model predictive control. 

Chapter 8 applies the data reconciliation methods developed in the subsequent 

chapters of this thesis to model predictive control techniques. 
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Variable 100% 50% 0% Max. Limit Min. Limit 
cvgas (J/kg) 106 106 4.71*10 10000 -10000 
mass (kg) 10000 10000 10000 500 -500 
pgas(N/m 2) 2.0* 106 1.55 * 106 1.12* 106 10000 -10000 
tgas (K) 1223.2 1181.1 1115.1 1 -1 

Table (3.2): Measured variable parameters 

Variable 100% 50% 0% Max. Limit Min. Limit Rate Limit 

wchr (kg/s) 0.9 0.89 0.5 3.5 0 0.2 
wair (kg/s) 17.42 10.89 4.34 20 0 1 
wcol (kg/s) 8.55 5.34 2.136 10 0 0.2 
wstm (kg/s) 2.7 1.69 0.676 6 0 1 

Table (3.3): Manipulated variable parameters 

Variable Scaling Factor 

wchr 1/0.90 

wair 1/17.42 

wcol 1/8.55 

wstm 1/2.70 

cvgas 1/4.36* 106 

mass 1/10000.0 

pgas 1/2.0* 106 
tgas 1/1223.2 

Table (3.4): Scaling Factors. 

Parameter Description Value 

N Prediction horizon 80 

M Control horizon 5 

R Input move weight diag (10 5,2,1,0.005) 

Qy output target weight diag (2.5,0.005,4.0,20.0) 
Q state weight 0.1113 
(D Terminal state weight 113 

Table (3.5): Controller tuning parameters 
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Name 
Inputs 

wchr 
wair 
wcol 
wstm 
Ouputs 

cvgas 
mass 
pgas 
tjas 

Max & Min abs. Value 

0.90192 0.88069 (kg/s) 
18.5637 17.3485 (kg/s) 
9.5231 8.5486 (kg/s) 
3.0839 2.6999 (kg/s) 

Peak Rate 

0.000864 (kg/s2) 
0.39469 (kg/s2) 
0.2 (kg/s2) 
0.10902 (kg/s2) 

4360465.5 4350331 (J/kg) 2678 (J/kg s) 
10000.0537 9975.6143 (kg) 0.32812 (kg/s) 
2001290.6 1989721.4 (N/m2) 7148.5 (N/m2 s) 
1223.5901 1222.6963 (K) 0.1499 (K/s) 

IAE I Max. Viol. 

151963.4 (J s/kg) 10 (J/kg) 

117578.3 (N s/r2 ) 1279.9 (N/m2) 

Table (3.6): Case with 100% load and step disturbance. 

Name 
Inputs 

wchr 
wair 
wcol 
wstm 
Ouputs 

cvgas 
mass 
pgas 
tRas 

Max & Min abs. Value I Peak Rate I IAE I Max. Viol. 

0.9085 0.8989 (kg/s) 
17.7682 16.7934 (kg/s) 
9.2641 7.828 (kg/s) 
2.9907 2.3962 (kg/s) 

4373863.5 4344578.5 (J/kg) 
10007.367 9998.862 (kg) 
2015234 1984210.1 (N/m2) 
1223.363 1222.8 (K) 

0.000464 (kg/s2) 
0.31876 (kg/s2) 
0.2 (kg/s2) 
0.1029 (kg/s2) 

3858 (J/kg s) 
0.51562 (kg/s) 
4159.5 (N/m2 s) 
0.04541 (K/s) 

2446746.9 (J s/kg) 15417.5 (J/kg) 

2783506.1 (N s/m2) 15845.1 (N/m2) 

Table (3.7): Case with 100% load and sine disturbance. 

Name Max & Min abs. Value Peak Rate IAE Max. Viol. 
Inputs 

wchr 0.8908 0.8685 (kg/s) 0.00084 (kg/s2) 
wair 12.0727 10.8524 (kg/s) 0.3943 (kg/s2) 

wcol 6.3426 5.34 (kg/s) 0.2 (kg/s2) 

wstm 2.0804 1.69 (kg/s) 0.1089 (kg/s2) 
Ouputs 

cvgas 4490318 4480453 (J/kg) 2620 (J/kg s) 150025.4 (J s/kg) 0 (J/kg) 

mass 10000.06 9976.92 (kg) 0.33203 (kg/s) 
pgas 1551826.1 1540196.4 (N/m2) 7149.5 (N/m2 s) 263858.1 (N s/m) 0 (N/m2) 

tRas 1181.45 1180.46 (K) 0.1494 (K/s) 

Table (3.8): Case with 50% load and step disturbance. 
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Name Max & Min abs. Value Peak Rate IAE Max. Viol. 
Inputs 

wchr 0.8945 0.8867 (kg/s) 0.000464 (kg/s2) 
wair 11.2726 10.2846 (kg/s) 0.31872 (kg/s5 
wcol 6.0741 4.6594 (kg/s) 0.2 (kg/s2) 
wstm 1.9795 1.3949 (kg/s) 0.10719 (kg/s5 
Ouputs 

cvgas 4503755.5 4473603.5 (J/kg) 4142 (J/kg s) 2457445.6 (J s/kg) 6393.5 (J/kg) 
mass 10007.657 9998.596 (kg) 0.51563 (kg/s) 
pgas 1565529.5 1534592.6 (N/m2) 4040.5 (N/m2 s) 2781674.3 (N s/m2) 5474.5 (N/m2) 
teas 1181.27 1180.65 (K) 0.04736 (K/s) 

Table (3.9): Case with 50% load and sine disturbance. 

Name Max & Min abs. Value Peak Rate IAE Max. Viol. 
Inputs 

wchr 0.5161 0.0348 (kg/s) 0.007412 (kg/s2) 
wair 7.9161 3.5682 (kg/s) 1 (kg/s2) 
wcol 3.9867 1.8086 (kg/s) 0.2 (kg/s2) 
wstm 2.7985 0.1114 (kg/s) 1 (kg/s2) 
Ouputs 

cvgas 4720690 4690196 (J/kg) 9322 (J/kg s) 1297783.9 (J s/kg) 9798 (J/kg) 
mass 10000.001 9822.6299 (kg) 1.5078 (kg/s) 
pgas 1124692.4 1103290 (N/m2) 14639.5 (N/m2 s) 688951.3 (N s/m2) 6710.8 (N/m2) 
Was 1121.12 1114.63 (K) 0.4541 (K/s) 

Table (3.10): Case with 0% load and step disturbance. 

Name 
Inputs 

wchr 
wair 
wcol 
wstm 
Ouputs 

cvgas 
mass 
pgas 

Max & Min abs. Value I Peak Rate I IAE I Max. Viol. 

0.5034 0.1647 (kg/s) 0.007756 (kg/s2) 
5.5728 2.594 (kg/s) 1 (kg/s2) 
2.5097 0.3974 (kg/s) 0.2 (kg/s2) 
2.3603 0 (kg/s) 1 (kg/s2) 

4740785 4688832 (J/kg) 12658 (J/kg s) 2946452.4 (J s/kg) 20790.5 (J/kg) 

10000.165 9882.545 (kg) 1.1445 (kg/s) 
1141348.8 1096198.1 (N/m2) 5699.5 (N/m2 s) 3590381.9 (N s/m2) 13916.4 (N/m2) 

1120.7 1115.05 (K) 0.25098 (K/s) 

Table (3.11): Case with 0% load and sine disturbance. 
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Disturbance Average IAE (Seminar) Sum of IAE using NIP( 
Step - cvgus 1.6326* 10 1.. 998* 10 
Step - pgus 1.761 1* 106 1.0704* 10') 
Sine - cvgas 2.2605* 106 7.8506* 106 
Sine - pgas 4.9729* 10° 9.1556* 10° 

M: 

Table (3.12): Comparison of adopted MPC method with other control stategies. 
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at 100% load to a sinusoidal disturbance. 
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CHAPTER 4 

STEADY-STATE DATA RECONCILIATION AND 

ESTIMATION OF SYSTEMATIC BIASES. 

This chapter presents a static data reconciliation module with capabilities of 

estimating systematic bias. The underlying assumption is that the process is at 

steady-state (although some simulations are carried out when this is not the case) 

and that there are no gross errors (outliers) present. A further assumption is that it 

is known which variable is corrupted by systematic bias. The fundamental 

principles of data reconciliation are introduced and a thorough review of previous 

work is presented. The algorithm is implemented as an OTISS module using C++ 

code and is intended to fit into a larger collection of modules which together make 

up an integrated dynamic data reconciliation framework. 

4.1 DATA RECONCILIATION BACKGROUND 

Data reconciliation which is sometimes referred to as measurement error 

reconciliation, is the adjustment of a set of data so the quantities derived from the 

data obey natural laws, such as material and energy balances. Measurements 

made on processes, such as flow, tank level, or temperature, are adjusted in some 

proportion to the standard error of the measurement. The adjustments are made 

using redundancies in the measurements. After adjustment, the material and, if 

considered, the energy balances are satisfied exactly (Bodington, 1995). 

Measured process data inherently contain inaccurate information since the 

measurements are obtained with imperfect instruments. Therefore any set of 

measurements cannot be expected to obey the laws of conservation. Although we 
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would normally expect such errors to be random i. e. having an expected value of 
zero, it is often the case that biased errors are present, the expected values of 
which are other than zero. These could occur through malfunction of instruments, 

miscalibration or poor sampling and are usually broadly classified as gross errors 
or systematic biases (these are discussed in more detail later). Most data 

reconciliation techniques require that both gross errors and systematic biases be 

absent from the data before the reconciliation is carried out. If these error types 

are present, the reconciled values will exhibit `smearing' when compared with the 

true values. An additional difficulty with process data is that not all variables are 

measured because of cost considerations or technical infeasibility and therefore 

must, if possible, be estimated instead. 

It is often relevant to validate and adjust the measurements taking into account the 

degree of precision in each measurement and key physical laws. The term data 

validation has been often used to refer to techniques for detecting gross errors and 

measurement bias, while the term data reconciliation usually refers to techniques 

for reconciling measured data with physical laws. Data reconciliation may be 

performed on a set of steady-state data, using a steady-state model of the process, 

or it may be applied to dynamic data, using a dynamic model of the process. 

Process data is the foundation upon which all control and evaluation of process 

performance is based. Inaccurate process data can easily lead to poor decisions 

which will adversely affect many parts of the process. Many process control and 

optimisation activities are also based on small improvements in process 

performance; errors in process data can easily exceed the actual changes in 

process performance. Moreover, because of the immense scale of operation, the 

impact of any error is greatly magnified in absolute terms (Mah et al., 1976). 

When flawed information is used for state estimation and process control, the state 

of the system is misrepresented and the resulting control performance may be 

poor and can lead to suboptimal and even unsafe process operation (Liebman et 

al., 1992). 
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The main aim of data reconciliation is to reduce or eliminate as much as possible 

the effect of random measurement error on the analysis of process performance 

and on the predictions for future operation. Additional objectives are to improve 

confidence in the calculation of unmeasured variables and to identify process 
losses and faulty measurements. 

The fundamental procedure for data reconciliation is to develop a set of natural- 
law balances within a process that must balance exactly. These balances are used 

as constraints in a mathematical minimisation. An objective function is developed 

that is the sum of squares of the ratios of the measurement adjustments to the 

measurement standard deviations. This objective is minimised subject to the 

balance constraints. If the balances are volume or mass balances, the constraints 

are linear equations. The problem is a least squares minimisation subject to linear 

constraints (Ham et al., 1979). Other balances involving products of variables 

such as flow times composition or temperature functions (enthalpy) result in 

nonlinear constraints. The objective function remains the same (Bodington, 

1995). A quadratic objective function is desirable in reconciliation applications 

because the squared penalty associated with a quadratic reflects the Gaussian 

nature of random measurement errors (Ham et al., 1979). 

The data reconciliation module described in this chapter is intended for use with 

systems at steady-state. Although specific to steady-state systems, these tools 

may also be applied in a modular fashion to dynamic systems where parts of the 

system have no dynamics, e. g. a valve. 

4.2 STEADY-STATE DATA RECONCILIATION 

Techniques for reconciling steady-state process data are well developed 

(Bodington, 1995). Commercial products are available from different vendors. 

For instance, Aspen Technology's SPEEDUP dynamic process simulator has 

steady-state data reconciliation and parameter estimation features. DATACON, a 
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product from Simulation Sciences Inc., can be interfaced to a distributed computer 

control system to perform gross error detection and data reconciliation. RTO+, a 

plant optimisation system from MDC Process Control Consultants (UK), includes 

steady-state data validation and reconciliation modules, which are used for 

periodically tuning a rigorous steady-state model of the process (Roberts, 1997). 

While methods for solving linear steady-state data reconciliation problems have 

been available for many years, similar treatment for nonlinear and dynamic 

systems has received much less attention (Liebman et al., 1992). 

Bagajewicz and Jiang (1997) state that steady-state data reconciliation has been 

able to perform well in practice. However, when it comes to gross error detection, 

the steady-state model does not perform successfully. Due to this fact, 

Bagajewicz and Jiang conclude that recent work in the field is now moving 

towards sequential analysis, where data from different days is sequentially 

analysed with different statistical techniques, aiming at the identification of biases 

and leaks. 

4.2.1 Benefits of data reconciliation 

The benefits of reconciling process data are many; the following are some listed in 

the literature (Ham et al., 1979; Liebman, 1991): 

9 Monitoring of performance and higher accuracy of process yield 

measurements. 

" More accurate operating data for technical analysis and process 

improvement. 

" More accurate accounting and loss control. 

" Production planning. 

" Aid in detecting unintentional transactions involving raw material or 

product. 

" Aid in detecting process leaks. 
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9 Aid in detecting faulty instrumentation and in prioritisation of instrument 

maintenance. 

In reporting on the application of Data Reconciliation at Exxon Corporation, Ham 

et al. (1979) refer to several specific instances where financial benefits have been 

realised from performing data reconciliation. Furthermore, they report significant 

manpower savings as a result of having a reconciliation program to analyse the 

data. 

4.2.2 Sources and types of error 

All measurements are composed of the sum of the true value of the measurement 

and an error. Errors can arise from (Bodington, 1995): 

" Drift -a slow change in the calibration of an instrument. 

" Bias -a permanent one-sided error perhaps caused by an improper 

installation. 

" Deterioration of components, seals, etc. 

" Wear of parts. 

" Corrosion of sensor equipment. 

" Fouling of sensors or measurement lines. 

" Improper calibration of an instrument. 

" Interference in an analytical procedure. 

" Improper analytical procedure. 

Measurement errors can be classified into three different types (Liebman et al., 

1992): 

(a) Small random errors; 

Small random errors are typically assumed to be independent, zero-mean and 

normally distributed. These errors are due to the fact that measurement devices 

are unable to exactly reproduce measurements. 
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(b) Systematic biases; 

Systematic biases occur when measurement devices provide consistently 

erroneous values, either too high or too low. In this case the expected value of the 

measurement error is not zero. Bias may arise from sources such as incorrect 

installation or calibration of the measurement device. 

(c) Gross errors. 
Gross errors are usually caused by non-random events. In this case, the 

measurement bears little or no relation to the true measurement value. Gross 

errors can be further subdivided into measurement-related errors such as 

malfunctioning sensors and process related such as process leaks. 

It can be noticed in the literature that these classifications of error types are not 

well defined. A number of researchers implicitly imply that systematic biases are 

a type of gross error. Chen and Romagnoli (1998) explicitly suggest that there are 

two types of gross errors: (i) systematic biases and (ii) outliers. On the other 

hand, Rollins and Davis (1992) do not regard measurement bias or process leaks 

as gross errors. In order to avoid confusion, the classifications outlined above will 

be used throughout this text. 

The term outlier is sometimes used by researchers to mean gross error, (Tamhane 

and Mah, 1985). Albuquerque and Biegler (1996) define outliers (or gross errors) 

as being a measurement in which the error does not follow the statistical 

distribution of the bulk of the data. 

4.2.3 Variable classification 

The processing of measurement data is usually a three step process, see Figure 4-1 

(Liebman, 1991). The data reconciliation step will be tackled further in this 

chapter and in chapter 7 when the dynamic case is taken into account. The gross 
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error detection and identification step will also be addressed in chapter 7. An 

important aspect in the processing of measurement data is that of variable 

classification. It is not always convenient or desirable to measure every process 

variable due to cost considerations or technical feasibility (e. g. extreme process 

operating conditions). However, it is often possible to estimate the value of some 

unmeasured variables through mass, energy and component balances. This 

process is called coaptation (Liebman, 1991) and can be done simultaneously 

with measured data reconciliation (Liebman et al., 1992). The ability to estimate 

a variable depends on the placement of the measuring instruments. If it is possible 

to change the value of a variable without violating the conservation constraints 

then the change is said to be feasible (Mah, 1990). Further if it is possible to 

make a feasible change for a variable without being detected by the instruments, 

then the variable is unobservable. Thus a measured variable is certainly 

observable, but an unmeasured variable may or may not be observable. 

Another fundamental concept to data reconciliation is that of redundancy. A 

measurement is said to be redundant if its value can be calculated based on other 

measurements. In other words, a given variable remains observable even if the 

measurement associated with it is deleted. Redundant measurements provide the 

conflicts with the imposed constraints which are resolved through data 

reconciliation. The concept of being able to calculate a value to be compared with 

the direct measurement is fundamental to data reconciliation (Bodington, 1995). 

The redundancy of measurements can be one of two types (Liebman, 1991): 

spatial or temporal. Spatial redundancy is as defined above, i. e. measurements 

are spatially redundant if there are more than enough data to completely define 

the process model at any instant in time. Measurements are temporally redundant 

if past measurement values are available and can be used for estimation purposes. 

Variable classification plays an important role in the design of instrumentation 

schemes and for providing more insight into how the measurements relate to the 

physical model being used. A number of researchers have addressed the issue of 

variable classification, with some describing algorithms for the classification of 
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variables (Albuquerque and Biegler, 1996; Meyer et al., 1993; Kretsovalis and 
Mah, 1987). Comprehensive reviews on this topic are available (Mah, 1987. Mah, 
1990; Crowe, 1996). 

Measurements Model 

Variable 
classification 

Determinable 

Gross error 
detection and 
identification 

Coaptation 
and data 

reconciliation 

Estimates 

Undeterminable 

Figure (4-1): Three steps in the processing of measurement data (Liebman, 1991). 

4.2.4 Review of previous work. 

The issue of steady-state data reconciliation has been well addressed by a large 

number of researchers in the field. Kuehn and Davidson (1961) were probably the 

first to address the problem of data reconciliation and solved for the optimal 

adjustments using Lagrange multipliers for the case where all component flow 

rates are measured. Vaclavek (1969) published a number of articles and was a 
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main contributor to the field in the 1960's. In particular, he looked at the case 

where a stream is completely measured or is unmeasured. Ham et al. (1979) 

reported on the use of a data reconciliation program at the Exxon Corporation 

noting the benefits achieved. 

Crowe et al. (1983) used a projection matrix to obtain a reduced set of balance 

equations from the original component balances. In particular, they examined the 
linear case where it is assumed that the total flow rate is measured in any stream 
in which a concentration is measured. Crowe (1986) omitted that assumption and 
looked at the nonlinear case where the balance equations contain products of 

unknowns. Almasy and Mah (1984) outlined an indirect method of estimating the 

variances of measurement errors. The direct method of obtaining the variances 
from serially correlated data can prove unreliable if there is a departure from the 

steady-state. Tamhane and Mah (1985) presented a thorough review of the data 

reconciliation and gross error detection problems. They outlined some problem 

areas and presented them in their basic essential mathematical framework in order 

to attract the attention of a wider circle of statisticians. They described three types 

of statistical tests that have been proposed for detecting gross errors. 

Kretsovalis and Mah (1987) studied the effect of redundancy on estimation 

accuracy and concluded that redundancy never adversely affects estimation 

accuracy but rather it always enhances it. Pai and Fisher (1988) developed an 

iterative procedure for solving nonlinear data reconciliation problems. The 

technique makes use of Crowe's matrix projection and combines a quasi-Newton 

update with the Gauss-Newton scheme. MacDonald and Howat (1988) 

presented two methods for estimating process parameters in data reconciliation. 

The first method is a sequential decoupled procedure in which the data is 

reconciled and then the process parameters are estimated using maximum- 

likelihood estimation. The second method is a coupled procedure that 

simultaneously reconciles the data to satisfy the constraints and estimates the 

process parameters. The two approaches were compared. 
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Holly et al. (1989) applied data reconciliation and gross error detection to a 

chemical extraction plant. They used the composite statistical test (Narasimhan, 

1984) to determine whether or not the process was at steady-state. Tjoa and 
Biegler (1991) presented a method to deal with data reconciliation and gross error 
detection simultaneously. They focused on problems with nonlinear constraints 
but applied to steady-state processes. The test is based on a bivariate distribution 

function constructed using the maximum likelihood principle. The resulting 

objective function which takes into account both contributions from random and 

gross errors is minimised. Takiyama et al. (1991) proposed a sensor-based data 

reconciliation method which is based on direct use of the measured variables 
instead of the conventional use of balanced variables. They applied their method 

to a pilot plant. Meyer et al. (1993) presented a data reconciliation method putting 

great emphasis on an algorithm for variable classification. 

Narasimhan and Harikumar (1993) incorporated upper and lower bounds on 

process variables in the data reconciliation and gross error detection problems. 

Bounds on process variables are directly incorporated as constraints. Islam et al. 

(1994) developed a comprehensive nonlinear data reconciliation package for an 

industrial pyrolysis reactor. They used successive linearisation and SQP for data 

reconciliation and a global test along with serial elimination for detection and 

rectification of gross errors. Fillon et al. (1995) proposed a revised formulation of 

the data reconciliation problem for application to batch reactors. Bagajewicz 

(1996) presented a new mathematical formulation of the data reconciliation 

problem to take into account distortions of the probability distribution of the 

original signal. This distortion is caused by the propagation of measurement 

errors through different devices. Chen et al. (1998a) applied data reconciliation 

and gross error detection to a Monsanto sulfuric acid contact plant using 

measurement signals contaminated by Gaussian noise for gross error rectification 

as proposed by Tjoa and Biegler (1991). 

Most recently, Romagnoli and Sanchez (2000), published a book which covers 

steady-state as well as dynamic data reconciliation and the treatment of gross 
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errors. The literature is backed up by excellent review papers, the earliest 

probably being that of Hlavacek (1977). Later reviews have been published by 

Mah (1982); Tamhane and Mah (1985); Mah (1990); Madron (1992); and Crowe 

(1996). 

4.2.5 Applications of data reconciliation. 

Applications of data reconciliation to problems of practical interest have been 

reviewed by Crowe (1996). Successful industrial application and testing has been 

reported by Ham et al. (1979) and Serth and Heenan (1986). Holly et al. (1989) 

applied data reconciliation and gross error detection to a chemical extraction 

plant. Ramamurthi et al. (1993) carried out open-loop and closed-loop simulation 

studies on a continuous stirred tank reactor to demonstrate the effectiveness of 

their successively linearized horizon based estimator (SLHE). 

Bussani et al. (1995) applied a data reconciliation and optimisation package called 

On-line Reconciliation and Optimisation (ORO) to a hydrogen plant. The ORO 

package adopts a sequential modular approach. Islam et al. (1994) and Weiss et 

al. (1996) applied static data reconciliation to an industrial pyrolysis reactor using 

successive linearization. Reconciliation has also been applied to mineral 

processes, Hodouin et al. (1988). A few years previously, Hodouin et al. (1982) 

applied data reconciliation to a cement clinker grinding process and looked at 

sensitivity analysis of material balance calculations. 

4.2.6 Formulation of the data reconciliation problem 

Data reconciliation is the process of adjusting the process measurements - which 

are subject to error, to obtain values that are consistent with the material and 

energy balances. The simplest case is a process operating in steady-state where 

all the desired variables are measured and no gross errors are present in the 
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measurements. This implies that the measurement error is Gaussian with known 

variances and the mean of measurement errors is assumed to be zero. The 

measurement vector (ym) can be written as: 

Ym Ytrue+C (4.1) 

where y,,,, e 
is the vector of the true values of the variables, c is a vector of 

random measurement errors that are normally distributed with zero mean, and a 

covariance matrix V. 

The data reconciliation problem can be stated as a constrained least squares 

estimation problem where the weighted sum of errors is to be minimised subject 

to constraints: 

min (Ym - TV-1 (ym - Yt ) 
Ytrue 

subject to: 

� 
(ytrue) = O. (4.2) 

The constraints arise because the mass balances, energy balances and any other 

performance equations must be satisfied, and are encapsulated in the term 

f (yam) 
. 

Several methods have been used to solve the optimisation problem. 

They are listed below. 

4.2.6.1 Linear solution 

If the constraints are linear, or linearised if they are almost linear, then problem 

(4.2) can be reduced to an unconstrained Quadratic Programming problem which 

can be solved analytically. The solution is obtained by the use of Lagrange 

multipliers and is given by: 
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Ytme = Ym -VAT (AVAT)-16 (4.3) 

where A is the Jacobian of the constraint equations and 6 is the residual of the 

unsatisfied balances and is described by: 

=A1=AY 

since Ay,,. is zero. 

4.2.6.2 Successive linearisation methods 

(4.4) 

A shortcoming of the linear solution is that the solution does not necessarily 

satisfy the non-linear constraints. In successive linearisation, the linear problem is 

iterated until an optimal point is obtained satisfying the non-linear constraints. As 

in the linear solution method, the advantage of successive linearisation is its 

relative simplicity and fast calculation. 

4.2.6.3 Non-linear methods 

These methods directly solve problem (4.2) as a general non-linear programming 

(NLP) problem. The non-linear programming solution makes it simple to 

augment equations (4.2) with upper and lower bounds on the variables, which 

may lead to a better formulated problem. The additional constraints are: 

. 1true, 1, z 
C . 1true, i 

< . 1true, 
u, l 

'v'i (4.5) 

where ytme 1i and Ytrue, u, i refer to the lower and upper constraints on variable yt,. ue, i . 
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4.2.7 Formulation of the bias estimation problem 

Systematic bias can be estimated as a parameter (McBrayer and Edgar, 1995). 

The objective function is formulated as follows: 

yi -(yml -bl) 

.I= 61 

[2_(2_2)]2+ 
62 

,i -(A mi 
bi )2 

6i 

subject to: 

f(y)=o. 
yl, i < yi < yu, i di, 

bl, l <_ b< <_ bu, i `di, (4.6) 

where ymi is the it' measured variable, yt is the th estimate, ß; is the measurement 

noise standard deviation of the i measured variable and bi is the estimate of bias 

on the ih measured variable. Note that bi is also included in the inequality 

constraints. This allows for physical limits on the range of admissible biases. 

4.3 THE STATIC DATA RECONCILIATION MODULE 

4.3.1 Simulation case study 

Simulations were carried out on a dynamic model of two Continuous Stirred Tank 

Reactors (CSTR) connected in series where an exothermic autocatalytic reaction 

takes place (Figure 4-2). The two units interact in both directions due to the 

recycle of a 50% fraction of the product stream into the first reactor. Regulatory 

controllers are used to control the temperature in both reactors, and the dynamics 

of these controllers are neglected. Full details of this model can be found in 

Garcia and Morari (1981) and are briefly outlined below. 
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The reaction that takes place in the reactors is: 
k+ 

A+B=2B (4.7) 
k- 

where one molecule of species A reacts with one molecule of species B to 

produce two molecules of species B and this reaction is reversible. 

The dynamic equations describing the model are as follows: 

dCal 

= 

0.5 
(CaO + Ca2) 

- 

Cal 

_ 
(k1+CalCbl 

- 
kl-Cbl2 ) 

dt Z1 Zl 

dCbl 

= 

0.5 
Cb2 

Cbl 
+ (kl+CaICbl 

- 
kl-Cbl2 ) 

dt zl zl (4.8) dCa2 

= 

Cal 

- 

Ca2 

_ 
(k2+Ca2Cb2 

- 
k2-Cb22 ) 

dt Z2 'r2 

dCb2 

_ 

Cbl 

- 

Cb2 
+ (k2+Ca2Cb2 

- 
k2-Cb22 ) 

dt Z2 Z2 

where C is the concentration of species x in tank i, z1= 30 [min] is the 

residence time of reactor 1,2 2=25 [min] is the residence time of reactor 2, 

kl+ = A+ exp(-E+ / RT) are the reaction rates where E+ /R= 17,786 [K], 

E_ /R= 23,523 [K], A+ = 9.73 x 1022 [m3/Kmol s] and A_ = 3.1 x 1030 [m3/Kmol 

s]. CaO = 0.1 [Kmol/ m3] is the feed concentration of A, T is the temperature in 

reactor 1, T2 is the temperature in reactor 2. 

In all the simulation cases that follow, the system was started from the steady- 

state condition given by the set-points T (0) = 307 K and T2(0) = 302 K, which 

yield steady state values Cbl (0) = 0.05165 [Kmol/ m3], Cb2 (0) = 0.05864 

[KmolIm3]. The sampling time for the measurements was 1 minute. Note that the 

overall open loop time constant of the process is approximately 40 minutes 

(Garcia and Morari, 1981). It is worth noting that the simulation times which 

appear in the results that follow and in subsequent chapters relate to the real plant. 

The simulations would typically run at speeds of between 10 to 100 times faster 

depending on the computational load on the algorithm. 
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Figure (4-2): Simulation case study - 
two Continuous Stirred Tank Reactors in series. 

4.3.2 Implementation issues 

The static data reconciliation module was first implemented standalone using C++ 

code and utilising an SQP algorithm developed at City University (Becerra, 1998). 

As a test case, a static model of two continuous stirred tank reactors connected in 

series was used. Tests showed that the data reconciliation algorithm was working 

very well in estimating bias. Although some of the tests concerning the 

estimation of physical parameters were not good, the fact that it worked in some 

cases indicated that the algorithm itself was working. Where in some cases bad 

results were obtained may just point to the possibility that the problem itself is ill 

conditioned or it is just not possible to estimate the parameters from the 

information available. 
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With confidence in the algorithm achieved, implementation using a dynamic 

model was the next natural step. The static data reconciliation algorithm was 
implemented as a separate OTISSTM module (Abu-el-zeet et al., 1999b, 2000). 

Testing took place using the existing dynamic model of the two CSTR plant in 

OTISSTM. A static model of the two CSTR was still used as part of the Static 

Data Reconciliation (SDR) module to reconcile the data. 

The two CSTR plant described in section 4.3.1 has 4 outputs which are basically 

concentrations in the two tanks. It is assumed here that we are able to measure 

two outputs only and must estimate the other two. The SDR module must also be 

able to estimate any bias present on any or both of the measured outputs. In 

addition the estimation of physical parameters must also be possible. 

A number of tests were carried out involving in the outset the choice of the 

starting positions (initialisation) of the various variables. An arbitrary set was 

used first, then the choice of the initial values was made as follows: 

" Unmeasured variables were set at values 10% higher than the nominal 

values. 

" Measured variables as well as their estimates were set at values 7% higher 

than the nominal values. Note that the measured variables were also 

contaminated with noise. 

The values of standard deviations used in the simulations were o 1, which was set 

at 5% of the nominal value of Cbl , and 02 which was set at 2% of the nominal 

value of Cb2 
. 

4.3.3 Simulation results 

Four sets of simulations were carried out to test the behaviour of the SDR module, 

these are: 
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1. Reconciliation of biased data and estimation of systematic bias. 

2. Estimation of physical parameters. 

3. Behaviour in the presence of transients. 

4. Behaviour when there are parametric differences between the process 

(dynamic model) and the static model. 

4.3.3.1 Reconciliation of biased data and estimation of systematic bias. 

A number of tests were carried out to test how the algorithm handles bias on the 

measurements. Different values of bias were tested, firstly on the measured 

variable C61 then on Cb2 and finally on both variables together. Table (4.1) 

shows a summary of all the tests carried out and the number of SDR iterations 

required before a solution is found. Also shown in the table is a list of Figures 

relating to the various simulations. Simulations 1 to 12 are those related to the 

estimation of bias. The level of bias added to the measurement Cbl was in the 

range -50% to +50% of the nominal value, whereas the level of bias added to Cb2 

was in the range -20% to +20% of the nominal value. 

The simulations show that the module is correctly carrying out data reconciliation, 

see Figures (4-3) and (4-4). The measured as well as the unmeasured variables 

are being correctly estimated. In the majority of the figures that follow Figure (4- 

3), the estimates of the unmeasured variables are not shown for the purpose of 

clarity. In terms of accuracy, the estimates of the unmeasured variables and those 

of measured variables are very similar. Therefore, the estimates of unmeasured 

variables will only be presented if there is a significant difference from those of 

measured variables or to highlight the algorithm's ability under varying 

circumstances. In all the simulations (1 to 12), the algorithm finds a solution in 1 

to 2 SDR iterations, a maximum of 2 minutes, despite the presence of relatively 

large magnitudes of bias. Some of these simulations were carried out with bias 

added to both Cbi and Cb2 , see for example Figure (4-5) where bias on Cbl is 

-25% of the nominal value and bias on C62 is +10% of the nominal value. 
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4.3.3.2 Estimation of physical parameters 

A number of simulations were carried out to test the algorithm's ability to 

estimate physical parameters. These are summarised in Table (4.1), simulations 
13-16. Plots of the results related to simulations 13,15 and 16 can be seen in 

Figures (4-6), (4-7), (4-8), (4-9), (4-10) and (4-11). The parameter that was 

estimated was Cao, the feed concentration. 

Figures (4-10) and (4-11) show the results when estimation is being carried out 

with no added bias on either of the measured variables. It can be seen from Figure 

(4-11) that the correct value of Cao = 0.1 is being estimated. Figures (4-6) and (4- 

7) show the estimation of Cao with bias added to Cbl equivalent to +25% of the 

nominal value. Again Figure (4-7) shows that Cao is being estimated correctly. 

Figures (4-8) and (4-9) show the estimation of CQo with bias added to both 

measured variables. Bias on Cbl is equivalent to -25% of the nominal value and 

bias on Cb2 is +10% of the nominal value. It can be observed from Figure (4-9) 

that the algorithm is not correctly estimating the parameter Cao and in fact it is 

clear from Figure (4-8) that the estimator is not coping at all with the estimation of 

any of the variables. As mentioned previously, this may indicate that the problem 

itself is ill conditioned or it is not possible to correctly estimate parameters from 

the limited information available. It can be observed from Figures (4-6) and (4- 

10) that the estimates of the measured variables follow the noise contaminated 

measurements. 

4.3.3.3 Behaviour in the presence of transients 

To test the module when a transient was present, the temperature in Tank 1 (TI) 

was changed from its steady-state value of 307K to 310K. Several simulations 

were carried out, summarised in Table (4.1), simulations 17 to 20. 
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Figure (4-12) shows the behaviour of the static data reconciliation module in the 

presence of a transient but without the presence of bias. It can be observed that 

the correct estimates are achieved following the introduction of the transient. 

There is a slight delay before this happens as can be seen from the plot and in fact 

according to Table (4.1), this is equivalent to 25 SDR iterations. This delay is 

probably due to the fact that during the transient the static model does not 

properly represent the behaviour of the process. Despite this slight delay, it is 

nevertheless interesting to note that the SDR algorithm seems to predict the 

steady-state that will be achieved by the process variables following a step 
disturbance. It is important to note that in the SQP algorithm used, the initial 

guess is retained as the final value if SQP reaches the maximum number of 

iterations without converging. This is why the estimates remain constant when a 

solution is being found. 

Figure (4-13) shows the behaviour in the presence of bias as well as the transient. 

The added bias is +25% of the nominal value on Cbl. The correct estimates of 

both measured and unmeasured variables (not shown in Figure (4-13)) are found 

although some delay is present. Figure (4-14) shows the behaviour when bias is 

present on both measured variables (-25% on Cbl and +10% on Cb2 ). The correct 

estimates are achieved instantly with one SDR iteration. The swiftness in 

achieving a solution may seem quite strange as the algorithm needed a number of 

iterations even when bias was not present (Figure 4-13). An explanation of this 

may be found by closely looking at the initialisation points of the algorithm. 

Some cases of bias may be offset by the initialisation point. A further explanation 

is that the measured variables are contaminated with random noise. So in fact 

even two identical simulation runs will not produce exactly the same results. 

Figure (4-15) shows the behaviour with bias added to Cbl and also estimating 

CQo 
. Figure (4-16) shows the estimate of Cao. It can be observed that the 

measured and unmeasured variables are all being estimated correctly. Also the 

disturbance when the transient enters is rejected and Cao is estimated correctly. 
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4.3.3.4 Behaviour in the presence of parametric differences 

Simulations 21 to 24 in Table (4.1) were carried out to show the algorithm's 
behaviour when there existed some parametric differences between the process 
(dynamic model) and the static model used for estimation. Tests were carried out 
assuming a difference in the value of CQo which equals 0.1 in the dynamic model 

of the process. Different values for Cao in the static model were tried (from 0.07 

to 0.0999). The algorithm did not converge when Cao in the static model was set 

to 0.07, Figure (4-17). However for values closer to the actual value, the 

algorithm converged but gave a slightly incorrect solution depending on how large 

the difference, see for example Figure (4-18). For a reasonable estimate the 
difference had to be 0.0001 or less (i. e. Cao in static model = 0.0999). In all cases 

where the algorithm converged, a solution was achieved in 1 to 2 SDR iterations. 

Sim. Fig. Cbl Bias Cb2 Bias CaO Estimated No. of iterations Comments 
1 3 0.0129 No 1 
2 0.0258 No 1 
3 -0.0129 No 2 
4 -0.0258 No 2 
5 4 0.00585 No 2 
6 0.0117 No 1 
7 -0.00585 No 1 
8 -0.0117 No 1 
9 0.0129 0.00585 No 2 

10 -0.0129 -0.00585 No 1 
11 5 -0.0129 0.00585 No 1 
12 0.0129 -0.00585 No 1 
13 6,7 0.0129 Yes 1 
14 0.00585 Yes 1 
15 8,9 -0.0129 0.00585 Yes No Convergence Unstable like behaviour 
16 10,11 Yes 1 
17 12 No 25 (after transient) Ti step from 307 to 310 
18 13 0.0129 No 20 (after trans. ) Ti step from 307 to 310 
19 14 -0.0129 0.00585 No 1 (after trans. ) Ti step from 307 to 310 
20 15,16 0.0129 Yes 1 (after trans. ) Ti step from 307 to 310 
21 No 2 CaO = 0.095 
22 17 No No Convergence CaO = 0.07 
23 18 No 1 CaO = 0.099 
24 No 1 CaO = 0.0999 

Table (4.1): Various simulations carried out on the SDR module. 
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Figure (4-3): Reconciliation of measurement data when Ch, is biased. 
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Figure (4-4): Reconciliation of measurement data when Ch2 is biased. 
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Ch, is biased. 
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Figure (4-17): Estimates of Ch, and Ch2 when parametric differences 
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4.4 CONCLUSIONS 

The simulations carried out show that under normal operating conditions, the 

algorithm correctly reconciles process data in the majority of cases. Even in the 

presence of systematic bias on either or both of the measurements, the results are 

encouraging. The correct estimates are achieved within a maximum of two SDR 

iterations. Considering that the bias imposed ranged from -50% to +50% of the 

nominal values, it is safe to say that in terms of systematic bias, the SDR module 

was rigorously tested. 

In the case of estimating physical parameters, the SDR module also (in the 

majority of cases) produced good results with correct estimation of the required 

parameter within one SDR iteration. This was successfully done even with 

systematic bias added to the measurements. The module was further tested for 

robustness in terms of the steady-state condition. When a transient was 

introduced, the algorithm coped well with the change and produced correct 

estimates of the measured and unmeasured variables. This was also the case when 

systematic bias was added. Even when estimating a physical parameter in the 

presence of bias and a transient, the SDR module produced good results. These 

tests are particularly important because even a so-called steady-state process is 

constantly undergoing variations about a nominal steady-state. 

It is important to note that although the robustness shown by the algorithm during 

transients is good and necessary, it is not sufficient to rely on static data 

reconciliation in the case of dynamic data. The results obtained here may be 

specific to this case. In order to properly reconcile dynamic data a dynamic model 

of the process is needed to ensure that there are no significant differences in 

dynamics between the model and the real process. 

In the presence of parametric differences between the process model and the static 

model used for estimation, the algorithm either did not converge or produced 
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erroneous results if the differences were anything above negligible. The 

algorithm relies heavily on the accuracy of the static model used for estimation. 

In the cases where the algorithm did not perform well it may be said that the 

problem itself is ill conditioned or that too much is being demanded from the 

algorithm given the limited information available. A possible test to see whether 

the results would improve is to assume 3 or 4 measured variables instead of just 

two. 

Throughout this chapter it has been assumed that if systematic bias was present, it 

was known in advance which measurements were affected. In chapter 7, an 

algorithm for bias and gross error identification is implemented. This algorithm 

automatically provides information on the measurements that are biased or 

affected by gross errors. The work presented in this chapter is extended further to 

cover reconciliation of dynamic data and to tackle the problem of gross errors. 

4.5 SUMMARY 

In this chapter an introduction to the area of data reconciliation has been 

presented. A review of previous work in the field of static data reconciliation has 

also been presented. A technique for the reconciliation of steady-state data has 

been implemented in software. This has been tested successfully using a dynamic 

model of two continuous stirred tank reactors. The results show that the technique 

is capable of reconciling process data as well as estimating bias, physical 

parameters and unmeasured variables. 

A certain amount of robustness of the technique has been shown by means of 

simulations carried out on dynamic data. In so doing, this has also exposed some 

of the limitations of using static models on dynamic data. As has been mentioned 

earlier, errors may sometimes occur during the transients due to the change in 

process dynamics and the differences between the static model and the real 
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process. In chapter 7, dynamic data reconciliation is introduced where a dynamic 

model is employed for the reconciliation process. This, along with bias and gross 

error detection and identification methods are then applied to a model predictive 

control scheme in chapter 8. 
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CHAPTER 5 

AUTOMATIC IDENTIFICATION OF 

STEADY-STATE. 

This chapter presents a workable solution to the problem of Steady-State 

Detection (SSD). A brief review of the available methods is presented. One 

method (Cao and Rhinehart, 1995) is chosen for its simplicity and low 

computational effort. The algorithm is implemented as an OTISS module using 

C++ code and is intended to fit into a larger collection of modules which together 

make up an integrated dynamic data reconciliation framework. The method is 

applied to a dynamic model of two continuous stirred tank reactors connected in 

series. 

5.1 STEADY-STATE DETECTION BACKGROUND 

Some control and estimation techniques that use steady-state models assume that 

process measurements correspond to steady-state conditions. Steady-state models 

are widely used in model identification, optimisation and data reconciliation. 

Whether or not the process is at steady-state determines what treatment may be 

administered to it. For the purpose of data reconciliation, it is important to know 

when the system is at steady-state in order to be able to apply the static data 

reconciliation techniques outlined in chapter 4. Thus the identification of steady- 

state is an important task and is applicable to the compression of process data (Mo 

et al., 1998) and also fault diagnosis. 

115 



In any data reconciliation framework, it is useful to have an algorithm which 

would automatically detect when the process is at steady-state. Here a separate 

module is developed for use with other modules within the data reconciliation 
framework. This new module would serve as a point of reference for the entire 
data reconciliation set up and would help to decide which tools to employ in data 

reconciliation depending on whether or not the process is at steady-state. 

5.2 REVIEW OF EXISTING METHODS 

Although there are a few existing methods for steady-state identification, work in 

this field has been limited. A survey of methods for detecting changes in signals 

which are applicable to data reconciliation was published by (Basseville, 1988). 

Harris and Ross (1991) outlined some procedures for correlated observations. A 

brief review of some of the methods available for detecting changes in steady- 

state was presented by (Crowe, 1996). 

Narasimhan et al. (1986) presented a composite statistical test which is 

appropriate for quasi-steady state processes that remain essentially at steady-state 

for long intervals of time and change quickly from one steady-state to another. It 

is not suitable for detection of slow drifts in the variables. The technique 

examines successive time periods and consists of two tests; the first test is used to 

establish whether or not the unknown covariance matrices are equal. The second 

test is made up of two parts to establish whether the means from the two 

successive periods are equal. The first part uses the Hotelling T2 test, (Anderson, 

1958) for the case when the covariance matrices are equal but unknown. The 

second part uses a technique similar to the Hotelling T2 test (Yao, 1965) for the 

case when the covariance matrices are unequal and unknown. The power of the 

test increases with the number of variables tested together provided those 

variables change state together. A major drawback of this method is that it is 

quite involved and requires extensive computational effort. 
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Another method presented by Narasimhan et al. (1987), uses the Mathematical 

Theory of Evidence (Shafer, 1976), and is an attractive alternative to their earlier 

method. However, this method is only applicable if the variables to be tested are 
independent. 

More recently, Betha and Rhinehart (1991) presented an off-line technique which 

performs a linear regression over a data window and then performs a t-test on the 

regression slope. On-line versions require considerable data storage and 

computational effort. 

An alternative method by Crow et al. (1955) uses an F-test type statistic. A ratio 

of two variances calculated by two different methods using the same set of data 

forms the basis of the test. The first variance measure is calculated as the mean- 

square-deviation from the average. The average being an average of the most 

recent data window. The second variance measure is calculated from the mean 

squared differences of successive data. The idea being that if the time series is 

stationary i. e. the process is at steady-state, this ratio will be unity. In reality, 

however, the ratio will not be exactly unity due to random noise but will have a 

value close to unity. Alternatively, if the process is not at steady-state, the ratio of 

the variances will tend to be large. This method has a few disadvantages, namely: 

" The user must choose the size of the data window, too large a window 

implies considerable computational effort and delayed recognition of changes. 

"A large amount of data must be stored at each sampling interval. 

" Autocorrelation in the measured signal will affect the statistic. Even if the 

process is at steady-state, short-lived transient fluctuations which last a few 

sampling intervals will always trigger a non-steady-state condition. 

Considerable autocorrelation will always produce misleading results. 

Perhaps the most interesting of the methods reviewed by the author is that 

presented by Cao and Rhinehart (1995). This method is essentially the same as 

and inspired by that presented by Crow et al. (1955). However, there are some 
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notable differences. In order to avoid having to calculate variances and means 

over a whole data window at each sampling interval and thus reducing the 

computational burden considerably, the authors introduce some essential 

simplifications. The method is an F-test type of statistic which calculates the ratio 

Ri of two variances. The two variance values are calculated using different 

methods but employing the same set of data. This method is simple to implement 

and is computationally inexpensive. There are however a couple of undesirable 

points: 

" At the critical value where the system changes state, there is usually a 

short period where the identifier toggles between steady-state and non-steady- 

state conditions. This is undesirable especially if some course of action is 

dependent on this information. 

" Critical values for R1 differ from one measurement variable to another. 

Cao and Rhinehart (1997) provide tables of critical values. Some intuition is 

required to choose critical R. values for all the variables to be tested. 

5.3 STEADY-STATE IDENTIFICATION METHOD 

RHINEHART 
- CAO AND 

The steady-state identification method developed by Cao and Rhinehart is an F- 

test type of statistic originally outlined by Crow et al. (1955). The test is 

essentially a ratio Ri of two variances calculated by different methods. The first 

variance measure is the mean square deviation from the average. While the 

second variance measure is the mean of squared differences of successive data. 

The primitive way of estimating variance would be: 

6=, (xi 
- 

XN) 

N-1ý=1 
(5.1) 
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where X1 is the it' process variable measurement in the data window of length 

N. And XN is the sample mean calculated over the N samples. The 

simplification (or modification to Crow et al. 's method) begins with a 

conventional exponentially weighted moving average, or conventional first order 

filter of a process variable X1. This requires little storage and is computationally 

fast. 

X1 = Al X1 + (1- A, ) Xf; 
-I 

where 0<A1 <_ 1 is a filter factor. 

(5.2) 

If the previous filtered value X fl_, is used to replace the sample mean, XN, a 

mean square deviation can be defined as: 

v2 =E (Xi 
-Xf, _, 

)2 (5.3) 

and can be estimated by: 

,. 1N2 (5.4) v2= Y, (Xi-Xf; 
1) 

Assuming that { Xi } is uncorrelated, using the previous value of Xf, Xf, 
-, 9 

prevents autocorrelation between XI and X f, _, 
and allows one to easily estimate 

2 from v2. 

Define: 

d1 = Xi -Xf; -, 
(5.5) 
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If the process is at a steady-state condition and there is no correlation in the 
sequential measurement, then Xi and X1 

1 
are independent, then the variance on 

d is related to the variance on X and Xf: 

ad2 = 6X2 +6Xf2 (5.6) 

Further, for the exponentially weighted moving average, when ( Xi ) are 

independent and stationary, the variance on Xf from equation (5.2) becomes: 

6Xf 2=2-ý 6X2 (5.7) 

Equations (5.6) and (5.7) yield: 

X2 = 

2-Al 
ad2 =2-Al V2 (5.8) 

22 

from which the noise variance can be estimated if v2 is known. 

6X 2= 2-Al 
2 v2 (5.9) 

However, Equation (5.4) is computationally expensive; so, use a filtered value 

instead of a traditional average: 

vf, i 
2 =' 2(Xi -Xf, _, 

)2 +(1-' 2)Vf, i-I 
2 (5.10) 

where o< 22 <1 is a filter factor. 

If the process is stationary: 

E(vfi) =E((XI -X fi_1)2)=v2 
(5.11) 

120 



So, equation (5.10) is an unbiased estimate of v2 , and the variance of v ,f j' is: 

Var(v 
f l2) 

2 Var((X1 
-X f_ 

)2) 

2_A2 
(5.12) 

which means that equation (5.10) provides a computationally efficient, unbiased 

estimate of (Xi - Xfi_l )2. 

Then the estimate of the noise variance from this first approach will be: 

2 
2-A1 

2 Sl, l =2vf (5.13) 

Since equation (5.10) requires X ft_, , one would compute equation (5.10) before 

equation (5.2) to eliminate the need to store the previous average. 

Using this method, 51,12 will be increased from its steady-state value by a recent 

shift in the mean. 

The second method to estimate the variance will use the mean squared differences 

of successive data. Define: 

82 = E((Xi - X_1)2) (5.14) 

and b2 could be estimated by: 

E(S2, i2) =1 E(X1 - Xi-1) (5.15) 
2 

However, equation (5.15) is computationally expensive; so, use a filtered 

approach: 

45 f, i2 = A3(Xi 
- 

Xi-1)2 +(1 
'0ý3)6f, i-1 

2 (5.16) 
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where o< 23 <_ 1 is a filter factor. 

Again, equation (5.16) provides an unbiased estimate of 6'. 

It is easily shown that the second estimate of the noise variance would be: 

2 

2 Sf, i SZ` 
2 (5.17) 

Taking the ratio of the two estimates of variance as determined by equation (5.13) 

to equation (5.17): 

sli2 (2-A1)V 
fit Ri =S2=2 

Z, Z f ,l 

5.3.1 Algorithm for the identification of steady-state: 

Initialisation: 

1- % values and an initial sequence of measurements given, 

(5.18) 

2- Using the first 10 measurements, estimate the mean and the variance. Cao and 
Rhinehart suggest a sequence of 10 measurements for the initialisation, 

3- Set Xf and Xi-1 equal to estimated mean, 

4- Set v12 equal to estimated variance, 

5- Set 5 f, j 
2 equal to twice the estimated variance. 

At each sampling interval: 

6- For each new measurement X1 , use equations (5.10), (5.2), (5.16) and (5.18) 

to calculate the new ratio R1 . 
7- Update Xf, X i-1, v2 and J2. 
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5.3.2 Selection of A values 

A 
1, 

A2 and A3 are all filter factors. Choosing small filter factors can significantly 

reduce the noise influences on the estimates of process variances. This makes the 

two states: that of steady-state and that of non-steady-state quite distinct 

(probability density function, pdf(R1) of steady-state and pdf(R1) of non-steady- 

state), reducing both Type I and Type II errors. Type I error is the error 

associated with wrongly rejecting the null hypothesis (process at steady-state) 

when it is true. While Type II error is the error associated with wrongly accepting 

the null hypothesis when it is false. The above is all very well, however, small 
filter factors can make the Rl statistic lag behind the present process state. 

5.4 FILTERING OF THE STEADY-STATE IDENTIFIER OUTPUT 

One disadvantage of the method developed by Cao and Rhinehart is that at the 

transition between steady-state and non-steady-state condition, the identifier 

output sometimes toggles between steady-state and non-steady-state. This occurs 

when the variability measure for the measured variable straddles the critical value. 

This effect is undesirable because some process decisions may depend on this 

information. 

A new way to overcome this problem and which has been applied here is to apply 

some sort of filtering at the transition point such that the variability measure is 

held constant unless the current and two previous values are either all above or 

below the critical value. This will have the effect of filtering the calculations 

making it unlikely for the steady-state identifier to toggle between steady and non- 

steady-state conditions. However, applying this filtering technique means having 

to store an extra value i. e. R. 
_2 and also extra computational effort. Further, due 

to this filtering, the response of the identifier will lag behind the process state. 

This lag can be reduced by choosing a smaller sampling interval but at the 

expense of increased computational effort. 
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5.5 IMPLEMENTATION OF THE STEADY-STATE IDENTIFICATION 

MODULE 

For the purpose of data reconciliation, the author chose the method by Cao and 
Rhinehart, outlined above, for implementation as an OTISS module using C++ 

code. This module was implemented and tested using data from a dynamic model 

of two continuous stirred tank reactors (Abu-el-zeet et al., 1999a, 2000). There 

are two measured variables: the concentration of species B in tank 1, Cbl and the 

concentration of species B in tank 2, Cb2. The steady-state identification 

technique was first applied on Cbl then on Cb2 and finally on both these measured 

variables simultaneously. Noise was added to the measurements using a noise 

source module built into the OTISS process simulator. Critical values were 

chosen for both variables by inspection using a trial run. The critical values used 

were: 

RCRITICI = 1.45, 

RcxITIC2 = 1.25. 

The A. values used were: Al=0.05, A2=0.005 and 23=0.005 for both 

measured variables. These were obtained by trial and error. 

The filtering technique outlined above was used in this case because of the 

importance attached to the accuracy of the steady-state identifier output. 

Although this results in the response of the identifier lagging the process state 

slightly, it was judged acceptable in this case taking the process dynamics into 

consideration. 

5.5.1 Simulation Results 

Simulations were carried out on the dynamic model of the two continuous stirred 

tank reactors used in chapter 4, see Figure (4-2). In all the simulation cases that 
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follow, the system was started from 

points T, (0) = 307 [K] and T2 (0) = 

Cbl (0) = 0.05165 [Kmol/ m3], Cb2 (0) 

To simulate a realistic series of cl 

changes were applied to the process. 

changes were made: 

the steady-state condition given by the sot- 
302 [K], which yield steady-state values 

= 0.05864 [Kmol/ m3]. 

langes of steady-states, four different step 
After a period of steady-state the following 

" Change temperature Ti from 307 [K] to 310 [K]. 

" Change Tl from 310 [K] to 307 [K]. 

" Change the inlet concentration Cao from 0.1 to 0.12. 

" Change Cao from 0.12 to 0.1 and T2 from 302 [K] to 295 [K]. 

Between each change the process was allowed to settle to a new steady-state 

condition. 

A simulation run was first carried out without using the filtering technique, 

(Figure 5-1). The measured variable tested here was Cbl. The toggling effect of 

the steady-state identifier can easily be seen especially at the transition from non- 

steady-state to steady-state condition. Figure (5-2) shows the variability measure 

or the ratio of the two variances (R1) of the first measurement (Cbl ). A not-at- 

steady-state condition is triggered when this value rises above a critical value, set 

at 1.45 in this case. 

Next, simulation runs were carried out using the filtering technique, first with Cbl 

(Figure 5-3) as the variable tested then Cb2 (Figure 5-4) and finally with both 

being tested simultaneously (Figure 5-5). 

It can be seen that with all these tests, the algorithm is working very well in 

identifying when the process is at steady-state. There is a slight delay until the 

identifier realises the effect of a change but this delay is acceptable taking the 

process dynamics into consideration. There is little difference between Figures 

(5-3), (5-4) and (5-5). This is because the two measured variables are closely 
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related and change state together. Differences would be present if the measured 
variables are independent and change state independently. Comparing Figure (5- 
1) with the latter plots, it can be seen that the toggling effect at the transition 

points has been significantly reduced by use of filtering. This has not been 

eliminated completely (see Figure 5-4), though this would be possible but at the 

expense of even greater delay. As it is, the delay appears to have increased 

slightly as expected but again this is acceptable. It can be seen from Figure (5-5) 

that applying the test on two or more dependent variables at the same time 

produces better and naturally filtered results. 
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Figure (5-1): Measured process variables and output of SSD module. 
Tests based on measurement Ch, only, filtering technique not applied. 
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Figure (5-2): Ratio of the two variances (variability measure) related to Ch, 

along with the critical value and output of SSD module. 
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5.6 USE OF THE STEADY-STATE DETECTION MODULE IN STATIC 
DATA RECONCILIATION 

As well as being tested in isolation on the two CSTR system, the steady-state 
detection module was also set up to work in conjunction with the static data 

reconciliation module described in chapter 4 (Abu-el-zeet et al., 2000). The idea 

being that the SDR module would either be enabled or disabled depending on the 
information provided by the SSD module, namely whether or not the process is at 

steady-state. During the transient periods where SDR would be disabled, an 

alternative estimator such as a moving horizon estimator could be employed. A 

schematic of how the SSD and SDR modules are set up within one OTISS case 

study is shown in Figure (5-6). 
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Figure (5-6): Schematic of the SDR-SSD simulation case study in OTISS. 
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5.6.1 Simulation Results 

In order to test the capabilities of the SSD module to identify periods of steady- 

state and the ability to enable the SDR module, intermittent transient conditions 

were simulated by changing the temperature Tl from 307 [K] to 310 [K] and then 
back to 307[K]. Furthermore, to test the influence of systematic bias on the SSD 

algorithm, bias was added to one of the measurements towards the end of the 

simulations. Figure (5-7) shows the simulated plant output, the noise and bias 

corrupted measurements of Cbl and Cb2, the estimates of Cbl and Cb2 from the 

SDR module and the output of the SSD module determining whether or not the 

process is at steady-state. During the first 4.5 hours, the SSD algorithm is 

initializing and settling. Throughout this time it indicates that the process is not at 

steady-state and therefore rightly disables the SDR module. The estimates of Cbl 

and Cb2 thus remain at the initial values. Once the SSD module detects the 

presence of a steady-state condition, it enables the SDR module which 

immediately produces correct estimates of Cbl and Cb2. 

At the introduction of a transient, a delay of between 30 minutes to 1 hour can be 

seen before the SSD algorithm detects the change. The delay arises from the fact 

that the ratios of the variance measures are normally around unity when a steady- 

state condition prevails and will take time to increase past the critical values. It is 

important to point out that in this simulation, the SSD test is based on both the 

measured variables. This means that the delay in detecting a change is even 

greater due to the fact that both critical values have to be exceeded before a 

change in steady-state is flagged. The critical values used for this simulation are: 

RciuTicI = 1.45 and RCRITIC2 = 1.25. It can be seen in Figure (5-7) that due to this 

delay, the SDR module is working through a large proportion of the transient 

period. In fact, the SDR module in this case, has found correct estimates for the 

new steady-state condition before SSD detects the change. 

The introduction of systematic bias after 21 hours, does not affect the SSD 

module. This is because the bias is only on Cbl which only affects the variability 
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measure related to that measurement. Since the SSD test is based on both 

measurements, the bias has no effect on the overall output of SSD. This means 

that the SDR module is not disabled and is able to continue estimating and 

compensating for the bias. 

The problem of the increased delay associated with the SSD algorithm can be 

greatly reduced by the use of only one measurement (Cbl) for the SSD 

calculations, see Figure (5-8). It can be clearly observed that the SDR module is 

disabled immediately after the introduction of the transients. However, there is a 

considerable disadvantage to doing this and that is illustrated by the introduction 

of systematic bias on Cbl after 21 hours. The introduction of the bias causes a 

non-steady-state condition to be falsely declared. This is not desirable as the SDR 

module will be disabled throughout this period where the estimates are much 

needed. This potential problem emphasises the need for using two or more 

measurements for the SSD algorithm even though this means having to cope with 

extended delays in the detection of transients and steady-state conditions. 

With the conflicting problems of delay and false alarms due to bias in mind, the 

only means left to improve the performance of the SSD module is through the 

selection of the critical values. Figures (5-9) and (5-10) show two combinations 

of critical values. Figure (5-9), where the critical values used were 1.1 and 1.1, 

shows no delay in detecting a movement from steady-state which is good and 

ensures that SDR is disabled throughout the transient period. However, it can be 

seen that there is an extended delay until the SSD algorithm detects a new steady- 

state condition and enables SDR. Figure (5-10), where the critical values used 

were 1.1 and 1.12, shows a similar behaviour during the first transient but during 

the second transient, the SDR algorithm finds a solution to the estimates before 

SSD detects a change. A small change in one of the critical values results in a 

different behaviour. In fact, due to the variations of the noise levels on the 

measurements from one simulation to the next, it is extremely difficult to fine tune 

the SSD algorithm through the selection of critical values. Therefore the results 

obtained in Figure (5-9) serve as an acceptable compromise where there are no 
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delays in detecting a non-steady-state condition and bias does not affect the SSD 

result but where there is considerable delay in detecting that the process has 

settled at a new steady-state. 
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5.7 SUMMARY 

45 50 

A module to automatically identify steady-state has been implemented and tested. 

Simulations have been carried out on a dynamic model of two continuous stirred 

tank reactors connected in series. The results show that the algorithm used can 

accurately and efficiently detect when the process is at steady-state. Through the 

use of a simple filtering technique, some undesirable effects present in the original 

algorithm have been largely eliminated. 

The steady-state detection module has been used in conjunction with the static 

data reconciliation module outlined in chapter 4. The results from the steady-state 

detection module have been used to either enable or disable the SDR module 

depending on whether or not the process is at steady-state. 
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CHAPTER 6 

STEADY-STATE OPTIMISATION USING DATA 

RECONCILIATION AND BIAS ESTIMATION. 

Data reconciliation techniques can considerably reduce the inaccuracy of process data 

due to measurement errors. This results in improved process knowledge and control 

system performance. In this chapter static data reconciliation is applied within a 

steady-state optimisation scheme. The optimal performance of a dynamic model of 

two continuous stirred tank reactors is estimated using ISOPE, the two step method 

introduced in chapter 2. The performance of two schemes is compared. The first 

scheme being a steady-state optimisation of the process, where the measurements are 

contaminated with noise and systematic bias. The second scheme uses static data 

reconciliation techniques to reconcile the process data and estimate any systematic 

bias before the data are fed to the optimisation algorithm. 

6.1 STATIC DATA RECONCILIATION 

Reliable process data are the key to the efficient operation of chemical plants. Most 

on-line optimisation and control activities are based on small improvements in 

process performance which in large plants yield considerable gains in terms of profit. 

However, if the measured data used for the optimal predictions is contaminated with 

noise and systematic bias then the errors in the data can easily exceed or mask actual 

changes in process performance. 
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Static data reconciliation (SDR) was introduced in chapter 4. A number of 

simulations were carried out to test the capabilities of the SDR module to reconcile 

process data. Here the SDR module is applied to static optimisation with the aim of 
identifying distinct advantages in using SDR to provide reconciled estimates of 

measured variables as opposed to using raw untreated data. 

6.2 STEADY-STATE OPTIMISATION 

The optimal set points calculated by steady-state optimisation are based on a 

mathematical model of the plant. However, because of differences between the 

model and the plant, the set-points obtained will only be optimal for the model and 

not the real plant. The two-step method has been proposed to take into account 
differences between the mathematical model and the real process. The steady-state 

model contains parameters which are estimated by comparing model-based and 

measured outputs. Then the system optimisation and parameter estimation problems 

are treated separately and solved repeatedly until convergence is achieved. However, 

as mentioned previously in chapter 2, this is not sufficient since there is interaction 

between the optimisation and parameter estimation problems and thus the solution 

obtained will, in general, be sub-optimal. 

The ISOPE technique developed by Roberts (1979) and introduced in detail in 

chapter 2 allows for the interaction between the two problems. The interacting 

variables are separated and a modifier is introduced in the model-based optimisation. 

The role of this modifier is to take into account differences between the real process 

and model-based output derivatives with respect to the manipulated variables. This 

ensures the correct optimal operating point for the real process in spite of model- 

reality differences. 
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The ISOPE algorithm finds the values of the decision variables u, that minimise an 

objective function: 

(Y, uý) (6.1) 

subject to: 

y= K* (u, ) (6.2) 

umin uc < umax (6.3) 

ymin yý Ymax (6.4) 

where y is a vector of measured variables, and K represents the real process static 

relationships between decision variables u, and measured variables y. Equation (6.3) 

represents the constraints on the decision variables while equation (6.4) represents the 

constraints on the measured variables. 

The algorithm finds the optimal operating conditions of the process by repeatedly 

solving model-based optimisation and parameter estimation problems and applying 

the intermediate results to the process. The technique uses a steady-state model of 

the process. 

6.3 SIMULATION CASE STUDY 

Simulations were carried out on the dynamic model of two continuous stirred tank 

reactors introduced in chapter 4 (see Figure 4-2). Full details of this model can be 

found in Garcia and Morari (1981). 

In all the simulation cases that follow, the system was started from the steady-state 

condition given by the set-points Tl(0)=307K and T2(0)=302K, which yield steady- 
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state values Cbl(0)=0.05165[Kmol/m3], Cb2(0)=0.05864 [Kmol/m3]. The sampling 

time for the measurements was 1 minute. The updating time for steady-state 

optimisation was 60 minutes. In choosing these parameters, consideration was given 

to the dynamic and steady-state behaviour of the process noting that the open-loop 

time constant is approximately 40 minutes. 

6.3.1 Implementation Issues 

Two case studies were set up in OTISSTM in order to carry out the simulations related 

to steady-state optimisation. A schematic showing the various inputs and outputs of a 

basic set up involving no data reconciliation or noise is shown in Figure (6-1). The 

first case study involves steady-state optimisation using measurements that contain 

noise and systematic bias (Figure 6-2). The second case study uses data 

reconciliation techniques to reconcile the measurements and eliminate systematic bias 

prior to the optimisation stage (Figure 6-3). 

The SDR module developed earlier and outlined in chapter 4 was used to provide 

reconciled estimates of the biased and noisy measurements. The data reconciliation 

problem was solved using Sequential Quadratic Programming (SQP), see Appendix 

A. It is assumed that the measured variables are Cbl and Cb2. 

The bias added to the measurement Cb2 is 20% of the nominal value. The values of 

standard deviations used were 5% of the nominal value for Cbl and 2% of the 

nominal value for Cb2. The objective function used for steady-state optimisation 

reflects the requirement to maximise the concentration of product Cb2. 
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Figure (6-1): Detailed schematic of module interconnections in OTISS. 
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Figure (6-3): Schematic of case study (2), steady-state optimisation using SDR. 
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6.3.2 Discussion of Results 

Figures (6-4) and (6-6) show the results from the first case with noisy measurements 
but no systematic bias. In this case, no data reconciliation is employed. The noisy 
data is fed straight to the optimisation algorithm and the optimal estimates of 

manipulated variables are calculated based on this flawed information. Figure (6-4) 

shows the noise corrupted measurements as well as the real output of the plant. 

Figure (6-6) shows the manipulated variables which are updated by the steady-state 

optimisation algorithm. 

The above results should be compared with Figures (6-5) and (6-7) where static data 

reconciliation is used to filter the noisy measurements. Figure (6-5) shows the noisy 

measurements, the real output of the plant and the estimated measurements from the 

static data reconciliation module which are used by the ISOPE algorithm. Note that it 

is difficult to distinguish the reconciled measurements from the real output of the 

plant as they are almost superimposed. Figure (6-7) shows the manipulated variables. 

The response is much smoother than when static data reconciliation was not 

employed. The value of Cb2 increases smoothly and quickly towards the optimum. 

Figures (6-8) and (6-10) show the results when measurement Cb2 contains systematic 

bias and there is no data reconciliation used. This can be compared with Figures (6- 

9) and (6-11) respectively which show the results when the static data reconciliation 

module is working in conjunction with the optimisation algorithm. Again, due to the 

use of reconciled data for the optimisation, the resulting optimal manipulated 

variables yield a much better response in terms of accuracy and maintaining an 

optimal profile. It can be observed that Figure (6-9) shows correct estimation and 

elimination of the bias. 
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6.4 SUMMARY 

The use of data reconciliation and bias estimation has been shown to improve static 

optimisation schemes. Where corrupted data was used directly for optimisation, the 

results were not desirable even when there was no systematic bias in the 

measurements. Using static data reconciliation to adjust the measurements prior to 

optimisation has improved the results considerably. Systematic bias has also been 

correctly estimated and eliminated. 
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CHAPTER 7 

BIAS AND GROSS ERROR DETECTION IN 

DYNAMIC DATA RECONCILIATION 

7.1 INTRODUCTION 

It has been shown in chapter 4 that the use of static models in the reconciliation of 

dynamic data can sometimes produce poor results. During transient periods the 

change in process dynamics and the resulting differences between the static model 

and the real process can be a limiting factor in the success of any data 

reconciliation scheme. 

In this chapter a moving horizon estimator implemented in software is used for 

the reconciliation of dynamic process data. The algorithm uses a dynamic model 

of the process which is a dynamic simulation of two continuous stirred tank 

reactors used previously in chapters 4,5 and 6. The capabilities of the estimator 

are extended such that the identification and elimination of gross errors (outliers) 

and systematic biases are possible. In chapter 4, where a static data reconciliation 

module was developed, the estimation of systematic bias was possible but not its 

identification. There, it was a prerequisite to the estimation procedure that the 

measurements affected by bias be known a priori. Here the algorithm takes care 

of the identification process. 

Prior to the introduction of the proposed algorithms, a general review of previous 

work carried out on dynamic data reconciliation is first presented. Following an 

introduction and formulation of the moving horizon estimator, separate reviews 

on the fields of gross error and bias detection and identification are presented. 
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These reviews relate to previous work published and which deal with static or 
dynamic processes. 

7.2 DYNAMIC DATA RECONCILIATION 

Methods for reconciling steady-state process data are well developed (Bodington, 

1995). However, even so called `steady-state' processes are never truly at steady- 

state. They continually undergo variations about a nominal steady-state condition 
(Narasimhan and Mah, 1988). Therefore, dynamic models would undoubtedly be 

a far better representation of the real process. Moreover, some chemical processes 

are intrinsically dynamic and in some chemical processes disturbances with 

dynamic effects may occur frequently (Becerra et al., 1998c). For the reasons 

outlined above and for the fact that steady-state conditions are a particular case in 

a dynamic model, it is desirable to develop dynamic data reconciliation strategies. 

Process data from systems governed by dynamic equations can be reconciled 

using the Kalman filter or the Extended Kalman Filter (EKF). Unfortunately, 

chemical engineering systems often operate dynamically in highly nonlinear 

regions where the EKF may be inaccurate. In addition, the Kalman filter may not 

be adequate in the presence of inequality constraints (Liebman et al., 1992). 

A number of researchers have addressed the dynamic data reconciliation problem. 

Some have presented algorithms which simultaneously deal with dynamic data 

reconciliation and gross error or bias detection. Darouach and Zasadzinski 

(1991) were some of the first researchers to address the issue. They presented an 

on-line estimation algorithm for linear dynamic systems. Their algorithm 

involves a recursive solution technique in weighted least squares. Liebman et al. 

(1992) presented a method for nonlinear dynamic data reconciliation using 

Nonlinear Programming (NLP) techniques. Some extensions for the treatment of 

biased measurements were also discussed. Rollins and Devanathan (1993) 

proposed a backward difference approximation technique that is computationally 
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simpler than that of Darouach and Zasadzinski (1991). Estimation accuracy is 
improved by means of averaging two estimates for all time instants. 

Ramamurthi et al. (1993) presented a successively linearised horizon-based 

estimator (SLHE) for dynamic data reconciliation in closed-loop systems. They 

compare the performance of SLHE with the Extended Kalman Filter (EKF) and 

nonlinear programming (NLP) approaches. Albuquerque and Biegler (1995) 

proposed a method for dynamic data reconciliation which works by discretising 

the set of ordinary differential equations using a one-step integration method and 

then uses the Sequential Quadratic Programming (SQP) method to solve the 

resulting NLP. Karjala and Himmelblau (1996) proposed a procedure for 

dynamic reconciliation of data using recurrent neural networks and the EKF. 

Albuquerque and Biegler (1996) presented a study on data reconciliation and 

gross error detection for dynamic systems. Bagajewicz and Jiang (1997) gave a 

brief review of data reconciliation using both steady-state and dynamic models. 

They also proposed an integral method that performs dynamic data reconciliation 

on linear systems. The result is a computationally inexpensive analytical solution. 

They also discussed gross errors and proposed a method to detect bias. 

Becerra et al. (1998c and 1999e) presented a method for dynamic data 

reconciliation using sequential modular simulators using a bank of extended 

Kalman filters. Becerra et al. (1999d) proposed a dynamic data reconciliation 

method for nonlinear systems described by differential-algebraic models using the 

EKF. 

7.3 MOVING HORIZON ESTIMATION 

The moving horizon estimation problem consists of calculating the best estimates 

of the measured variables, unmeasured states, physical parameters and 

measurement bias, given a sequence of nh measurements and a dynamic model of 
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the process. A number of researchers have worked on moving horizon estimation. 
Liebman et al. (1992) presented a moving horizon dynamic data reconciliation 

algorithm which uses SQP (see Appendix A) and achieves simultaneous solution 

and optimisation by means of orthogonal collocation on finite elements. 
Ramamurthi et al. (1993) use local linearisation of the nonlinear dynamic model 

equations to define a two level strategy for the estimation of inputs and outputs 

using SQP. Henson and Seborg (1997) provide a review of moving horizon 

estimation along with a mathematical formulation. The following is a formulation 

by Becerra (1999). 

7.3.1 Formulation of the moving horizon estimator 

The moving horizon estimation problem may be defined as a nonlinear dynamic 

optimisation problem with a discrete time performance index and continuous time 

model and constraints. It is assumed that the measurements are sampled with a 

sampling time T. The process model is represented as: 

x(t) = fx (x (t), u(t), p, t) (7.1) 

where xE 91"X is a differential state vector, uE 9"- is a given input vector, 

pE %nP is a vector of physical parameters, fX is a mapping of nX state equations 

and t denotes continuous time. 

Assume that the model outputs are given by: 

y(t) = c(x(t), u(t), b, t) (7.2) 

where yE 9Zny is the vector of model outputs, bE9t is a vector of bias 

parameters and c is a mapping of ny output equations. It is assumed that system 

(7.1) is observable through (7.2). 
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Assume that a sequence of nh recent output measurements is available: 

{ym(tý), ym (to +Ts) , --- , ym (t f )} , where time tf is assumed to be present time. 

Assume also that the input variable u(t) is known during the period tE It 
, t; 

1. 

The moving horizon estimation problem is: 

nh-1 

min J=I L(y (to + kT ), ym (to + kTs ), b, k) 
x0, P, b k=0 

subject to: 

(7.3) 

.k 
(t) = fX (x (t), u(t), p, t) tE [t0, t] 9 (7.4) 

x(to) = x0 (7.5) 

y(t) = c(x(t), u(t), b, t) tE {t0, t] (7.6) 

lp (y(t), x(t), u(t), p, t) <_ 0tE Ito, tf1 (7.7) 

where ym E 91ny is the vector of measured outputs, k is a sampling index, L is a 

weighting function, yr is a mapping of n. inequality constraints, 

tf = to + (nh -1)T 

The purpose of the solution is to find the following estimates at present time: 

y(t f ), x(t f ), b(t f) and p(t f) . 

The weighting function L in a moving horizon estimation problem may be 

defined as follows: 

L(y, ym, b, k) - 
1(y-(ym 

-Sb))TV 1(y-(ym -sb)) 2 
(7.8) 
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where SE nyxnb is a bias distribution matrix, VE nyxny is the covariance matrix 

of the measured variables ym. Note that bias is not necessarily estimated in all 

measured variables. 

In order to reduce the dynamic optimisation problem defined above to a nonlinear 

programming problem, it is necessary to discretise the continuous equations. This 

may be done using 4th order Runge Kutta steps. However, the integration step h 

will not necessarily be the same as the measurement sampling time T (it would be 

normal to expect that h<_ TS). Assume that the integration time is chosen such that 

TS = nth, where n, is the number of integration steps per sampling period. Given 

that it is assumed that the input variable u(t) is known during the period 

tE [to 
,tf], then the following 

{u(to), u(to + h), u(to +2h),.. ", u(t f )}. 

input sequence is also known: 

Define the following decision vector: 

xo 
X= p 

b 

where XE 9"x+np+nb 

Define the following vector of inequality constraints: 

t'(y(to), x(to), u(to), p, to) 

V/(y(to +h), x(to +h), u(to +h), p, to +h) 

T= Y/(y(to + 2h), x(to + 2h), u(to + 2h), p, to + 2h) <_ 0 

Ky(tf ), X (tf )' u(tf ), P, tf ) 

where TE 91(', +1)n, 

(7.9) 

(7.10) 

Then the moving horizon estimation problem defined above can be reduced to the 

following nonlinear programming (NLP) problem: 
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mi n J(X) (7.11) x 
subject to: 

`1'(X) : (7.12) 

Notice that given the decision vector X and the input sequence 
{u(t0), u(to +h), u(to +2h), """, u(t f)} it is possible to integrate the model 

differential equation (7.4) to obtain the state sequence 
{x(t0), x(to + h), x(to + 2h), ". ", x(t f )} . With X and the state sequence it is 

possible to calculate, via the output equation (7.6), the output sequence 
ly(to), y(to+h), y(to+2h),.. -, y(tf)l. Given X, the measured output sequence 
fy, (to ), ym (to + T')'... ' ym (t f )} and the computed output sequence 

{y(t0), y(to +T), """, y(t f)}, it is possible to compute J(X). Thus given X it is 

possible to compute J(X) and ''(X) . 

The solution to the above nonlinear programming problem can be obtained using 

a standard SQP algorithm, see appendix A. Furthermore, given that the objective 
J(X) is often chosen to be a sum of quadratic functions such as (7.8), then a 

nonlinear least squares algorithm is probably a good choice for the solution. 

7.4 GROSS ERROR DETECTION AND IDENTIFICATION 

Gross errors are usually caused by non-random events where the measurement 
bears little or no relation to the true measurement value. Gross errors can be 

subdivided into measurement-related errors such as malfunctioning sensors and 

process related such as process leaks. Although a number of researchers regard 

measurement bias as a type of gross error, it will be regarded as a different type of 

error which will be treated separately in this text. 

153 



The techniques used to process measurement data have been identified in chapter 
4 (Figure 4.1) as three distinct steps: (1) variable classification: (2) gross error 
detection; and (3) coaptation and data reconciliation. The problem of gross error 
detection has received considerable attention from researchers in the field. This 

undoubtedly stems from the importance attached to this problem in the context of 

successful data reconciliation. 

In general, data reconciliation schemes assume that the error is normally 

distributed. A gross error severely violates that assumption. It is therefore 

paramount that gross errors are identified and removed from the data prior to (or 

simultaneously with) the data reconciliation step. If this is not done, the resulting 

variable estimates would contain significant errors, with the entering gross error 

accounted for in some or perhaps all of the estimates. This effect is referred to as 

smearing (Liebman, 1991). In practice, the gross error detection and the data 

reconciliation steps are often used iteratively. Data reconciliation is applied first. 

Then, the resulting residuals between the measurements and the estimates are 

analysed for gross errors. If a gross error is suspected, appropriate adjustments 

are made and the data reconciliation step is repeated (Liebman et al., 1992). 

A number of methods for gross error detection have been developed. The main 

approaches are listed below: 

1. Classical Hypothesis testing 

(a) The Global Test (1963,1975). 

(b) The Nodal Test (NT) also known as the constraint test (1963,1976). 

(c) The Measurement Test (MT), (1982). 

2. Generalized Likelihood Ratio (GLR), (1987). 

3. Bayesian Approach (1987). 

4. Unbiased Estimation Technique (UBET), (1992). 

5. Principal Component Test (PCT), (1994). 

6. Dynamic Integral Measurement Test (DIMT), (1997). 
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The Global Test was first published by Almasy and Sztano (1975) although Reilly 

and Carpani had previously presented the method at a conference in 1963. The 

Nodal Test was published by Mah et al. (1976) but again this had previously been 

presented by Reilly and Carpani at the same conference. The Measurement Test 

(MT) was developed by Mah and Tamhane (1982). The main drawback of the 
Global Test and the Nodal Test is that they both require a separate gross error 
identification strategy following the detection of such errors. The Measurement 

Test does not require a separate identification strategy but does require that 

process data reconciliation be carried out. Romagnoli and Stephanopoulos (1981) 

published a method to detect and rectify gross errors based on the serial deletion 

of one or more observations from the set of measurements. This is useful for the 

detection and identification of multiple gross errors (Narasimhan and Mah, 1987). 

Serth and Heenan (1986) proposed seven tests including their Iterative 

Measurement Test (IMT), the Modified IMT (MIMT) and the Screened 

Combinatorial method (SC) and compared their performance to those of the 

Measurement Test (MT) and the Nodal Test. For comparison they applied these 

methods to a simulated industrial steam-metering system. While reporting that the 

MT and the NT performed poorly in this particular application, Serth and Heenan 

concluded that a useful approach to gross error detection is to use a combination 

of the different methods so as to exploit the strengths of each. 

Narasimhan and Mah (1987) developed the Generalized Likelihood Ratio (GLR) 

test for identifying and estimating gross errors. They applied their method to a 

steady-state process and rather than using serial elimination they use serial 

compensation. A major feature of the GLR method is that it can differentiate 

between different types of errors i. e. whether outliers or systematic biases. 

Rosenberg et al. (1987) developed two composite tests: the Dynamic 

Measurement Test (DMT) and the Extended Measurement Test (EMT) for the 

detection of gross errors. They compared the performance of these composite 
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tests to those of the Global Test, and the MT. The authors conclude that the 

performance of DMT and EMT is more superior when compared to the MT. The 

word 'dynamic' in DMT does not imply the possible application of this method to 
dynamic data - it only refers to the fact that the test itself is dynamic in that the 

candidate set is not fixed. The candidate set is enlarged at each step until all 

suspected measurements are included. 

Narasimhan and Mah (1988) applied their GLR method (Narasimhan and Mah 

1987) to a dynamic process. Narasimhan and Mah (1989) considered cases where 

process variables are not measured directly and in which unmeasured variables are 

present in the constraints. 

Kao et al. (1992) proposed a composite test procedure for detecting and 

identifying gross errors in dynamic systems. This was an extension to the 

technique they had proposed two years previously for the steady-state case and 

makes use of the MT. Harikumar and Narasimhan (1993) proposed two methods 

for gross error detection that make use of their results (Narasimhan and 

Harikumar, 1993) on incorporating bounds. One of the methods makes use of 

bounded information while the other uses the GLR method. Yang et al. (1995) 

presented a method that uses a combination of the Iterative Measurement Test 

(IMT) and the Nodal Test. Albuquerque and Biegler (1996) presented a study on 

data reconciliation and gross error detection for dynamic systems. In particular, 

they developed a method for variable classification and concluded that this was 

closely linked to gross error detection. 

Tong and Crowe (1996) presented a sequential principal component test for gross 

error detection by combining principal component analysis and sequential 

analysis. Kim et al. (1997) improved Serth and Heenan's MIMT gross error 

detection algorithm by using Non-Linear Programming (NLP) techniques making 

the scheme applicable to highly nonlinear processes at steady-state. Chen and 

Romagnoli (1998) developed a method that carries out simultaneous dynamic data 

reconciliation and gross error detection based on a combination of cluster analysis 
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techniques and dynamic optimisation. Similarly, Chen et al. (1998b) published an 
integrated method for outlier detection and data reconciliation using quantile 
probability plots (Johnson and Wichern, 1992). 

Bagajewicz and Jiang (1998) presented a method applicable to linear dynamic 

processes. This was an extension to their integral dynamic data reconciliation 

method (Bagajewicz and Jiang, 1997) to allow multiple gross error estimation. 
Finally, Sanchez et al. (1999) proposed a method for the simultaneous detection of 

outliers and systematic bias but only applicable to steady-state processes. 

A number of good review papers are available on the subject (Mah, 1982: Mah, 

1987; Crowe, 1996). There are also good review sections in other papers 
(Romagnoli and Stephanopoulos, 1981; Crowe et al., 1983; Serth and Heenan, 

1986; Narasimhan and Mah, 1988; and Bagajewicz and Jiang, 1988). 

As can be clearly seen from the literature, considerable effort has been expended 

on developing methods for gross error identification in steady-state chemical 

processes. But, as mentioned previously, a `steady-state' process is constantly 

undergoing variations about a nominal steady-state which means that it is never 

truly in steady-state. Therefore, a dynamic process model is a better 

representation of the real process (Narasimhan and Mah, 1988). 

Only a handful of researchers have addressed the problem of gross error detection 

in dynamic process data. The method proposed by Chen and Romagnoli (1998) 

which is based on the moving horizon concept is adopted in this work with a 

slight modification. 

7.4.1 Gross error detection and identification algorithm 

By making use of cluster analysis techniques, Chen and Romagnoli (1998) 

propose a method which successfully distinguishes outliers from normal data. 
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They use a clustering technique proposed by Yin and Chen (1994) in which each 

object is assigned to the cluster of its nearest neighbour within a certain distance. 

The method is straightforward, the formulation of which is reproduced here. 

Given a set of nh objects y1, y2, " " ", ynh, in ad dimensional space which refers to 

the number of measurement variables, the Mean Minimum Distance (MMD) is 

defined as: 

1 nh d2 )2] 

MMD =I min; =i 
± (yak 

- y; k) 
(7.13) 

nh i=l k-1 

Because in practice the variations of individual measurements may be different, it 

is necessary to weight each variable by its own variance. If this is not done, the 

result may be that some outliers might end up hidden within a smoother variable 

containing normal variations of noisy variables. Thus equation (7.13) should be 

rewritten as: 

22 

-1 

nh d (Y-YJk) 

(7.14) 
MMD 1 min j_; 

1 
nh i=1 

[[k1 

Vk 

where Vk is the kt' diagonal element of the covariance matrix V. 

In order to incorporate outlier information into the data reconciliation procedure, 

the objective function of dynamic data reconciliation is modified as 

J_1: 11W [ yt yi f}T V -' {W [ yi - yr (7-15) 
2 

where y is the estimate of the measurement yi, W is the trust degree of y; and is 

defined as: 
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1 
W, = 2* MMD 

DIST 
t 

if DIS Ti <2*MMD 

if DISJ >2*MMD (7.16) 

Chen and Romagnoli define DIST as being equal to the minimum distance 

between measurement y1 and any other measurements in the moving window. 
This is where this algorithm is slightly modified. The definition of DIST. is 

modified to being the distance from measurement yj to the mean of all 

measurements y1, y2, """ Ynh in the data window. 

The reason for this modification is intuitive. Consider the situation where 

measurement yt is an outlier and assume that in the present data window a 

measurement yi_k has the same value or a value close to yl. Using Chen and 

Romagnoli's definition of DIST 
, the algorithm would fail to detect this outlier. 

However, using the modified version which uses the mean of all the 

measurements in the data window as a basis for calculating DIST, the outlier , 

would be detected and the appropriate weight W will be used. 

7.5 DETECTION AND IDENTIFICATION OF SYSTEMATIC BIAS 

Systematic biases occur when measurement devices provide consistently 

erroneous values, either too high or too low, and may be caused by incorrect 

installation or calibration of the measurement systems. It is important that data 

containing such bias is identified and either treated or removed prior to the data 

reconciliation stage. If the measurements are adjusted in the presence of such 

biases, all of the adjustments will be greatly affected by them and would not be 

reliable indicators of the true state of the process. 

As mentioned previously, scanning the literature reveals that a number of 

researchers regard systematic biases as being a type of gross error (Chen and 

Romagnoli, 1998). Therefore some have included the treatment for systematic 
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biases within their gross error detection algorithms (Narasimhan and Mah, 1987: 
Keller et al., 1994). Others have opted to treat systematic biases as separate from 

gross errors (outliers), (McBrayer and Edgar, 1995). This is the approach taken in 

this thesis. 

Surprisingly few researchers have explicitly addressed the problem of 
identification of systematic bias. Most of the limited previous work has focused 

on steady-state processes. Narasimhan and Mah (1987) applied their Generalized 

Likelihood Ratio (GLR) method to measurement bias and noted that in this case 

the GLR test reduces to the Measurement Test (MT), (Mah and Tamhane, 1982). 

They also pointed out that simulation studies by Rosenberg et al. (1987) indicated 

that methods based on the MT gave the best performance for identifying 

measurement bias. Rollins and Davis (1992,1993) and Keller et al. (1994) 

worked with linear systems. Rollins and Davis (1992) presented equations that 

help identify biased measurements and process leaks. They named this the 

Unbiased Estimation Technique (UBET) and looked at the linear steady-state 

case. The basic goal of UBET is to find unbiased estimates for process variables 

when gross errors in the measurements exist. Further to their UBET technique 

presented in 1992, Rollins and Davis (1993) looked at the issue of unknown 

variances and covariances. Keller et al. (1994) proposed a method for detection, 

identification and estimation of gross errors in linear steady-state processes. The 

technique improves the GLR test (Narasimhan and Mah, 1987) for the case when 

several gross errors appear simultaneously and is applicable to both gross errors 

and systematic biases. 

McBrayer and Edgar (1995) developed a method to detect and estimate bias in 

nonlinear dynamic processes. The technique uses the model based Nonlinear 

Dynamic Data Reconciliation (NDDR) method developed by Liebman (1991) and 

requires the examination of the resulting difference between the measured and 

reconciled values. Bagajewicz and Jiang (1997) proposed a method to detect bias 

in the context of linear dynamic systems. Sanchez et al. (1999) published a 

technique that simultaneously detects systematic bias and outliers. However, as 
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mentioned in the previous section, this method is only applicable to steady-state 

processes. 

It can be noted that like the gross error detection problem, bias detection in the 
dynamic case has received limited attention from researchers in the field. In 

trying to implement a simultaneous strategy to deal with gross error and bias 

detection for dynamic data, the author's initial intention was to develop an 

algorithm which combines the work of Chen and Romagnoli (1998) with that of 
McBrayer and Edgar (1995). This particular formation was indicated as further 

work to be carried out by Chen and Romagnoli. However, in attempting to 

implement the said strategy, although inspired by McBrayer and Edgar, a simpler 

method for detecting and identifying bias has been found to give good results and 

is presented here. 

7.5.1 Bias detection and identification algorithm 

Following the removal of gross errors, the typical assumptions made in data 

reconciliation are that the measurement errors are independent, zero-mean and 

normally distributed (McBrayer and Edgar, 1995). These assumptions give rise to 

the following measurement model: 

Ymi = Yj, true +Ei (7.17) 

where E, is the random error. The residuals (ymi - yl ), where y is the i th estimate 

and y, nl 
is the i ̀ h measurement, will be randomly distributed with zero-mean when 

this measurement model holds. However, in the presence of bias in the 

measurements the measurement model becomes: 

Ymj = Yi, t, ue +Ei+ bi (7.18) 
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and the residuals are no longer zero-mean. The mean of the residuals is ideally 

equal tob in this case. But this unfortunately is not the case because of the fact 

that the bias is smeared over the estimates during reconciliation. 

A bias detection method based on the moving horizon strategy has been presented 
by McBrayer and Edgar (1995). The algorithm is not very intuitive and involves 

the calculation of some base statistics. These serve as a 'base case' with which 

statistics from the actual data can be compared. The base statistics are calculated 

using base case data generated by adding Gaussian noise to the calculated 

estimates. To determine whether or not a bias is present, the residuals are 

examined. Under the null hypothesis, equation (7.17) is the correct measurement 

model for all ymj and the following two equations must be true: 

n 

e=, j yi, j=0 
j=1 

and 

(7.19) 

ei =O b'ymj (7.20) 

where ei = (yml - yj) is the residual and equation (7.20) means that the linear 

relationship between ej and yi is a horizontal line with intercept of zero. Suffix j 

refers to the measured variable while suffix i refers to the instance of variable j 

in the data window. 

The method used by McBrayer and Edgar is summarised in Figure (7-1). In the 

process of implementing this algorithm, two possibly simpler algorithms were 

devised. The first is similar to McBrayer and Edgar's and is shown in Figure (7- 

2). In step 4, instead of estimating the bias as a free parameter again, it is 

calculated using the present data window. Furthermore, unlike the original 

method, once the biased measurement is identified, the bias estimate is not 

subtracted from the measurements prior to reconciling the data again. The bias 

estimate is taken into account when recalculating the estimates during the next 
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reconciliation step. The bias b and the standard deviation ß of the bias estimates 
in step 4 are calculated as follows: 

I 
nh 2 

(Ym; yt (7.21) nh i=1 

1 
nw 

6(b) -1 (bs 
-b22 (7.22) [nw-1 

_` s_ 1 

where nw is the number of data windows, b is the average bias over the data 

windows s =1... nw. In order to get a value of 6(b) this way, a number of data 

windows are required. One way to overcome this and get a value of 6(b) using 

one data window is to use the following equation: 

6(b) = 6(ym, - yt) 

since bi = yml - y; 

This method still requires the use of base case data and statistics. 

(7.23) 

A further method developed and actually applied in this work is very intuitive and 

easy to implement. It works by simply assuming one of the measurements to be 

biased. The appropriate flags are set in order for bias on that particular variable to 

be estimated as a free parameter. Then the bias estimate of that variable is 

analysed and checked in two simple ways. The first is a check on the magnitude 

of the bias which is compared against a pre-set threshold value. The second test 

checks the bias against the standard deviation of the measurements in the current 

data window. Again this is checked against a preset threshold value. In order for 

the algorithm to flag a possible presence of bias on that particular measurement, 

the results from both tests must exceed their respective threshold values. If the 

chosen measurement is deemed to be free of bias, a different measurement is 

chosen and assumed to be biased and the procedure is repeated. This is done 
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There is no 
bias present. 

keep 
reconciling 
normally. 

Figure (7-1): Bias detection method 1 (McBrayer and Edgar, 1995) 
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Step 6 meas. to estimate 

bias as free para. 
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bias present. 

keep 
reconciling 
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Figure (7-2): Bias detection method 2, modified version of McBrayer and Edgar. 
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sequentially for all the measurement variables until the biased individual (if any) 
is found. In other words, if the algorithm has not found a biased individual it will 
assume a different measurement to be biased each time the reconciliation 
procedure is run. The algorithm is summarised in Figure (7-3). 

Figure (7-3): A new bias detection algorithm. 
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7.6 SIMULATION CASE STUDY 

A dynamic data reconciliation algorithm using the moving horizon estimator has 
been implemented using C++ code and interfaced with the process simulation 

software OTISS (Becerra, 1999). Following the testing of this new module, 
separate algorithms for the detection of bias and gross errors have also been 
implemented and tested. This collection of dynamic data reconciliation modules 
has been applied to the dynamic model of two continuous stirred tank reactors 
introduced in Chapter 4 (Figure 4-1), full details of which can be found in Garcia 

and Morari (1981). 

7.6.1 Implementation Issues 

The algorithm's capabilities in identifying and estimating bias, and identifying 

and eliminating the effects of gross errors have been tested individually and then 

in combination. To do this three separate case studies have been set up. The first 

case study was set up to test the gross error detection algorithm. In order to 

properly observe the effects of gross error detection, the algorithm's built in bias 

estimation capability was disabled. The second case study was set up to examine 

the algorithm's bias detection capabilities and, for this purpose, the gross error 

detection capability was this time disabled. Finally, the third case study was set 

up to observe the behaviour of the algorithm in the presence of both gross errors 

and systematic bias with both gross error and bias detection functions enabled. 

In order to simulate the effect of a gross error, a bias was added to the 

measurement in question for a short period of time and then removed. To 

simulate the presence of dynamic data, transients were introduced by step changes 

in T, the temperature in the first reactor. The bias detection algorithm works by 

applying two simple tests: the first tests the magnitude of the estimated bias and 

the second tests the bias against the standard deviation of the measurements. For 

a selected measurement to be suspected of bias, results from both tests must 
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exceed some pre-selected threshold values. A small absolute value of 0.00050 

was selected for the first test while the second test is specifically: 

bias 
if < 5.0 

O 

where ß is the standard deviation of the measurements, 

then it is unlikely that bias is present on this particular measurement. The 

selection of the value 5.0 was inspired by the simulation results obtained by 

McBrayer and Edgar (1995). 

The measured variables are assumed to be Cbl and Cb2, the concentrations of 

species B in the first and second tank respectively. While the unmeasured 

variables are assumed to be Cal and Cat, the concentrations of species A in the 

first and second tank respectively. The tuning parameters used for the moving 

horizon scheme were: data window length nh = 15, integration step = 10 s and the 

covariance matrix V= diag(0.5,0.5) 
. 

7.6.2 Results 

Simulation results shown in Figures (7-4) to (7-19) correspond to the three case 

studies outlined above. The results from these different case studies are analysed 

separately below. 

7.6.2.1 Gross error detection and identification 

In order to appreciate the benefits of the gross error detection module, simulations 

have been carried out to compare the behaviour of the moving horizon estimator 

when the gross error detection module is enabled against when it is disabled. 

Figure (7- 4) shows the behaviour of the moving horizon estimator in a steady- 

state case when the gross error detection module is disabled. A large outlier of 
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magnitude 0.00585 (approx. 11% of the nominal value) is present on the first 

measurement Cbl. The effect of the outlier is quite significant on the estimate of 
Cbl 

. 
The second plot in Figure (7-4) shows the measurement Cb2 

-its estimate and 

the true value. The 3rd and 4th plots of the same figure show the estimates of C1 

and Cat respectively and the true values of each. Figure (7-4) should be compared 

to Figure (7-5) which shows the case when the gross error detection module is 

enabled. The outlier present is the same as in Figure (7-4). It can be observed in 

Figure (7-5) that as a result of the gross error detection algorithm, the estimates 

are more accurate and less affected by the presence of the large gross error. The 

first plot in Figure (7-5) shows that although the gross error is not completely 

removed, the algorithm does actually recognise the presence of the outlier and. 

through weights on the objective function, tries to limit its effect. Examination of 

the other three plots in the figure confirm the improvement which also translates 

to the variables Cb2 
, 

Cal and Cat 
. 

Figure (7-6) shows the case when an outlier of magnitude 0.0025 (approx. 5% of 

the nominal value) is present on the second measurement Cb2 with the gross error 

detection capability disabled. This should be compared to Figure (7-7) which 

shows the case when the same outlier is added but when the gross error detection 

capabilities are this time enabled. Again all the estimates in Figure (7-7) are more 

accurate than those in Figure (7-6) and the outlier has been largely eliminated. 

Figure (7-8) shows the case when a large outlier of magnitude 0.007 (approx. 14% 

of the nominal value) is present on Cbl and an outlier of magnitude 0.003 (approx. 

5% of the nominal value) is present on Cb2 with the gross error detection 

capability disabled. This should be compared to Figure (7-9) which shows the 

case when the same outliers are added but when the gross error detection 

capability is enabled. Once again all the estimates in Figure (7-9) are more 

accurate than those in Figure (7-8) and the effects of the outliers have been 

considerably reduced. 
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Figure (7-10) shows the dynamic case when 3 outliers are present on Cb, and the 

gross error detection capability is disabled. This should be compared with Figure 

(7-11) when the same outliers are present but when the gross error detection 

module is enabled. The benefits of the gross error detection algorithm can again 
be appreciated in all the estimates. In the case of the unmeasured variables Cal 

and Cat, the estimator seems to accurately predict the final steady-state value 

following the step input instead of providing reasonable estimates along the 

transient. 

7.6.2.2 Bias detection and identification 

A number of simulations were carried out to test the bias detection module. The 

gross error detection algorithm was disabled throughout this set of simulations so 

that the results are not affected by it. Figure (7-12) shows a steady-state case 

where systematic bias of magnitude 0.0129 (approx. 25% of nominal value) is 

present on Cbl for the first 2 hours. It can be observed that throughout this period 

the algorithm correctly estimates all the measured and unmeasured variables. The 

sharp kick towards the beginning of the simulation is due to the initialisation of 

the estimator and the bias detection algorithm. 

After two hours the bias on Cbl is completely removed and this state remains until 

shortly before 4 hours when bias on Cb2 of magnitude 0.00585 (approx. 10% of 

nominal value) is added. Throughout the simulation all the variables are 

estimated correctly. At the transition periods when bias is either added or 

removed, there can be observed a severe temporary kick in almost all the 

estimates. This is due to the way the bias detection algorithm works. It takes the 

algorithm a short while to correctly find out where the bias actually is. In the 

meantime, because it is jumping from one variable to another with the assumption 

that that particular variable is biased, it produces erroneous estimates. 
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Figure (7-13) shows the dynamic case when systematic bias is present on C,, 
during a transient. Again, it can be seen that the measured variables are estimated 
correctly. However, instead of providing estimates along the transient. the 
algorithm seems to predict the final steady-state value as soon as the transient 

enters in the case of the unmeasured variables Cal and Cat. Figure (7-14) shows 
the case when bias is present on Cb2 which is then removed just before 4 hours. 

Once again, a similar behaviour in the estimates is seen and the algorithm is 

correctly identifying the biased measurement. 

In Figure (7-15) bias is present on Cbl until just before 4 hours when it is 

removed. During this time a transient is simulated by a step change in the 

temperature T (T is changed from 307 to 310 K). Shortly after 5 hours, bias is 

added to Cb2. Just before 7 hours, another transient is simulated by a step change 

in T (T is changed from 310 to 307 K). Finally, at approximately 8 hours, the 

bias on Cb2 is removed. Once again, it can be seen that the algorithm is correctly 

identifying the biased measurement and providing correct estimates of all the 

variables except during the transient for the case of unmeasured variables when 

the estimator provides the final steady-state value. It must be noted that the bias 

identification algorithm tends to become less accurate when the bias is switched 

repeatedly from one measurement to another. In one simulation where this was 

done, the algorithm failed to correctly identify the biased measurement. 

7.6.2.3 Combined gross error and bias detection and identification 

The final set of simulations combine the gross error and bias detection work. For 

the sake of comparison, simulations were carried out with both detection modules 

disabled in the first instance and then with both of them enabled. It is important 

to distinguish here between bias identification and bias estimation. The moving 

horizon estimator is capable of estimating bias provided it is informed in advance 

which measurements are biased. It is not, however, capable of bias identification 

without the use of the bias identification function. In the simulations in which the 
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bias detection capability was disabled, the bias estimation capability was kept 

enabled. Figures (7-16) and (7-17) show the case when bias and a number of 
outliers are present on Cbl 

. Figure (7-16) shows the case when both detection 

algorithms are disabled. Although following the correct trend, the estimates of 
C613Cal and Cat are extremely inaccurate. However, when the detection 

algorithms are enabled, Figure (7-17), the estimates are greatly improved. 

Figures (7-18) and (7-19) show the case when bias and a number of outliers are 

present on Cb2 
. Figure (7-18) shows the case when both detection algorithms are 

disabled. The estimate of Cbl can be seen to be affected by the outliers. The 

estimates of Cb2 and Cat are completely incorrect and in fact the Cb2 estimate 

religiously follows the biased measurement. Figure (7-19), on the other hand, 

shows the case when both detection algorithms are enabled. The difference can 
be clearly appreciated in terms of the accuracy of all the variable estimates. The 

outliers on Cbl seem to be largely eliminated and the algorithm correctly identifies 

the presence of bias on C62 and estimates it appropriately. Finally, the estimates 

of the unmeasured variables are accurate except during the transient where the 

estimator predicts the final steady-state values instead of providing estimates 

along the transient. 

7.7 CONCLUSIONS 

Here a dynamic model of the process has been used unlike the Static Data 

Reconciliation (SDR) case in chapter 4 where a static model was used for the 

reconciliation. This has the advantage that changes in the transient periods will 

not result in differences between the static model and the real process and 

therefore, more accurate estimates can be expected. 

The gross error detection method proposed by Chen and Romagnoli (1998) and 

modified here has been shown to work in successfully identifying and eliminating 

outliers. For comparison, the original algorithm as suggested by Chen and 

Romagnoli was implemented and tested. Simulation results from this 
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implementation, although not presented here, have shown that the modified 

version of the algorithm produces considerably better results in terms of accurate 
identification of outliers. Although the effect of the outliers is always 

considerably reduced, it is not always completely eliminated even with the 

modified version of the algorithm. 

The bias detection algorithm proposed here has been successfully implemented 

and has been shown to work effectively in identifying the biased measurement. 
Thus unlike the SDR algorithm, the moving horizon estimator with the bias 

detection capability enabled does not need a priori information on which 

measurement is biased. The method proposed and implemented here is intuitive 

and far simpler than that put forward by McBrayer and Edgar (1995). A further 

algorithm, which is essentially a simplified version of the method by McBrayer 

and Edgar has also been proposed. It may be useful as further work to implement 

this for the purpose of comparison. 

In most of the simulations involving the bias identification algorithm, a spike can 

be observed in most of the estimates towards the beginning of the simulation (see 

for instance Figure 7-12). It may be argued that this problem might be avoided if 

instead of testing just one measurement for bias at each sampling time, the 

algorithm tests all the measurements. An algorithm was implemented specifically 

for this purpose, the results from which showed that the spikes could not be 

eliminated. Therefore the original algorithm, where at each sampling instant only 

one measurement is tested for bias, was used since the extra computational effort 

was deemed unnecessary. 

An explanation for the above is that during the first 15 minutes (equal to the data 

window), the DDR algorithm is accumulating data. The bias detection algorithm 

however is working from the beginning testing each measurement in turn for bias. 

Once the period of data accumulation has passed the DDR algorithm kicks in. Up 

to this point, the bias detection algorithm will show that there is no bias on any of 

the measurements since the bias estimates from the DDR algorithm will still be 
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zero. Based on this assumption, the first set of estimates from DDR '. kvill be 

erroneous (see equation 7.8). In the next sampling instant when the DDR 

algorithm will properly estimate any bias present, the bias detection algorithm will 
detect the presence of a bias by making the DDR algorithm estimate the bias on 

all the measurements. 

The above problem is not of great importance since this happens at initialisation 

and the algorithm quickly recovers giving correct estimates. It also occurs when 

there is a significant change in bias e. g. if the bias is switched from one 

measurement to another. A similar explanation as that given above can be used to 

argue the reason for this. Simulations have shown that repeated switching of the 

systematic bias from one measurement to another causes the detection algorithm 

to become inaccurate at some stage. Fortunately, in real plants, the bias is 

unlikely to keep moving from one measurement to another since bias is normally 

caused by incorrectly installed or calibrated measurement devices. What is likely 

to occur though, is the presence of multiple biases. The algorithm as it is can only 

handle single biases at a time. In fact the method proposed by McBrayer and 

Edgar (1995) suffers from the same problem. A possible extension of the 

algorithm is thus the handling of multiple biases. 

The bias and gross error detection algorithms have been successfully combined 

producing very good results. The results have been compared with the case where 

these algorithms are disabled which highlights the benefits of having such 

algorithms within the dynamic data reconciliation scheme. The idea of combining 

bias and gross error detection was put forward by Chen and Romagnoli (1998) 

who suggested combining their outlier detection method with the bias detection 

algorithm by McBrayer and Edgar (1995). However, a personal communication 

with the former authors revealed that this had not been done. 

It can be noted that during some transient simulations the estimator seems to 

behave as a predictor in the case of the unmeasured variables (see for instance 

Figures 7-13 and 7-14). Since the model used for the estimation is a dynamic one, 
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the estimator should give reasonable results along the transient similar to the 
actual outputs of the process. It is not know exactly why this phenomenon occurs 
but it appears to happen only when estimating the unmeasured variables. 

7.8 SUMMARY 

In this chapter, a moving horizon estimator has been used to reconcile dynamic 

data generated from the continuous stirred tank reactor system. This chapter is 

thus a natural extension to chapter 4 in which a static data reconciliation algorithm 

was developed and applied to the same process. The benefits of using a dynamic 

model for dynamic data reconciliation have been highlighted in this chapter. 

Extensions to the moving horizon estimator have been made such that it is able to 

detect bias and gross errors simultaneously using two algorithms which are 

relatively easy to implement. These algorithms have been shown to work well 

separately and in combination through a number of simulations. Two new 

possible algorithms for bias detection and identification have been proposed. One 

has been implemented in this work while the other has been suggested for further 

research due to the limited time available. 

In chapter 8, the dynamic data reconciliation tools developed in this chapter are 

used in conjunction with a model predictive control scheme. 

175 



N 

U 

c 

a) 
m 
E 

a) 

T- 
(0 
O 
O 

T- 

E 
3º 

ca 
a) E 

U) 
cß 
E 

44J 
- cn 

4) 

Lf) L 

ý 
-I-- .. 

N 
tß 

- 

i -- _ 

a) cz 
ED E - 

W y 'tý 

LO LO LO 0 
0 'IT (Y) 
OOOO 

t2 
cs 

OO 

Z2o UO3 

Q 
(0 0) co I- 
O L() Li) Lf) 

OOO 
OOO 

ZgZ) -uo3 

4) 
± 

I ý 

U r 

co E 
pop 

cÜ - 

Q) 4! 
C 

o , 

U) (D 

I 

00 (D 

dF 

O 
O 

Iqo "uoo 

v 

LO 
0 

a) 
ri 

3. 

L 

C 

U an 
aý y 

U)ý y 
70 

E-0 E > 
a) 

ö E ý 

y w 

O O N 
S-e 

O O 
LO 
LO 

LO LO 
Oý 

Iq 
O 

LO 
CO 

O O O 
0 

OO 
O 

O 
0 bt 

Leo -uo3 

176 



N 
U 

c 
cu 

ca 

Co 

Co 

0 

L 

C 

F- 
(D 

cu 
- 

e- 

N 
cß 
U 

a) CU 
- 

U 

Q) 

1-0 (ß 

0) Co 
CD u-) 10 

c5 OO 
OO 

Zqo "uoo 

U 

c co 

E 

70 1 

a) 

Co 
a) 

: 55 

0 

cß 
E 

U) N 

L 
g 

L 

r- 

L 
"ý 

= r 

`J 

y I ýt o Cl) 1 ý 
0 0 0 o C) 
0 0 0 0 r. 

zeo "uo3 

LO 

a) co 

' S- I U) 
o =ý 

E° a) 
C 

aý E 
- ° 

1 (1) - 
W 

N 
cu 
E 

.v 

U 
y - 
r .. 

LO 

O 
rI Sy 

LJ 

y., b 

q) 

E > 
_ L/ 

ýOýýýýý 

(0 LO 
O LC) 
OO 

O 
iq3 -U0o 

LyV, 

LO CD oo rl- (0 
LO 

° 
C) öööö o' 

C) C) ö C) 

i. eo "uoo 



LO 

N a-' 
_- 

E 

}' CCn 
`yam 

U 

ca 
Q) I -a 

N-? LM 
(1) oE 

-0 3- 
L 

--- 

_' 

G- 

C 

N [- (0 0) CC) N- LO 

(0 (D U') LO LO LO 
OO0OOOO 
OOOOOO 

Zq: D - uo 

T- 

U -- 
aý 

aý 
E 

F 

cß cc 
W 

-0 -- _ -- E 

J ýI 
I - 

can i 
ý ý 

a) ý- 

M 
LO LO LO 
O OO 
O OO 

ýqo "uoo 

LO 

4) 
cß 
E 
Q) 

LO 
O 
O 

U) 

LO LO 
t O CO 
O 0O 
O O 

Zeo "uo3 

L .. r 

^J 

C 

- r 
cý 

L 3 

aý V 

ö 

y o 

LO 

C ý N ý 

(rü C O 

a) 

70 

a) CU -= 3 
E D a) 

Lm Ln 

aý w 
SR 

I 

LO 

O 0 O O O O 
0 C 0 0 bL 

. rte 

ý83 U03 
rý 
W 

178 



LO 

N 

E 

` U 

m 
a) 

cLn 
E _D U) 

L a) CU m 

W 
U) a) D :3 IN. 

+_- U) 

O 
N T- (D 0) 00 1ý- Lr) 'IT LO 

O O OO O O 00 
O O OO O O O 

Zqo -uoo Zeo -uoo 

ý=c 

F- a) LO cß 
öE 

a cn 
:3E ui 

o 
CY) C14 U') 

Un o 
000 
ööö 

ýqo -uo3 

0') OD r- 
ö ö ö 

ö ö ö 

ýeý "uoo 

179 

L 

ri 

o 
u clý 

V 

cs r. 

O Ö 
tp 

oV 
cý C 
yO 
P *z u 

i: 1 

VJ 
_ý 

2 C3 

aý C3 E> 
I -d 
ö 

V 

-o c0 

0ö 
ac 



N N 
N 
Ü 

m 
L N LO 

V/ -L 

LJG 
t' _- 

G) 
:3 

Lr) 
CD U) 

LLJ 7e 0 

E I L 
O O 

N (D Co (0 U') U') LO le U) n 
O Ö Ö Ö O Ö O Ö O Ö Ö 
O O O 

O O O O O O O 

Zqo -uoj ze3 "U00 

N N 
Tl- 

I LO cu Ln 
4- 70 i a) 

- 

1T U a 
4- _ a) CO 

U) 4 
a) Z U) C/) 

W a) `v -- 

F- -0 
Cl) 

, 
W 

Cl) 
cu u, - 

W .. W O 

4ý 

L L 
---- ---- ---P, 

O 
LO 
(D 

(D LO 
0 Lf) O 

(D 
0 

LO U') LO 
0 lq- 

-q- 0 
Lo 
Cl) 
0 

ýqo -uoo ýej -uoo 

J 

r-s 

r 

> 
rj 

yU 
U 

VO 

ti) 
cý U 

z 

c3 

rf 

U 

OC 

coo 

Gz. 

180 



N 

N 
-0 U 

4ý 

aD 
j LU N 

N 

_0 :3 0 

L 

(ü N 
_ý 

(D L& i 
W 

cu 

0 C`4 (D 00 (C) 
(C) (D CD U') LO Iq 
0 0 o 0 0 
ö ö ö ö ö 

Zqo "uoo 

N 

T- I 

N 

+r 

C 
tß 

U 

E 

N 

C 

C 
N 

E 

(ß 
a) 

V) w 

H 

LO U') 
(0 O IC) O Lf! U') 
OpOO 
OOOO 

iqo -UOo 

a) Ný 

LU 
M 

O0 Ö 

zeo "uoo 

a) ý 
lf) 

c 
P- O Ii 

E ci) 

cß 
E 

a) 

N 

LO 

2 

a) 

LO 
ö 

V 

C, 1 0 M 
O 
o 

O 

UU U 

Z 73 
N 

'd O 

ce 
cn 

L 

T- bfr 

uý CJ C 

1 

L 
ÖZ 

U 

NL 

a) 

Lf) C) 

O 
O0 

0 

LeO Uoo 

0 
N 

0 0 
ö ö 1. 

181 



N 

U 
a) 

C 

a) 

a--J 
Co 

E 
a) 

D 

U) 
Co 
Q% 

75 

LO 

(ß 
U 
a) 

1: -0 C 

tD 0 g a) E (L) N - 

U) 
W 

O 
LO f` LO (0 In In 'IT In 
00ÖOOÖÖO0 

OO 
OOOOO 

Zqo -uoo zeo uoo 

U 
N 
L t-N ý 

Ü 

ca a 
> CO cLn 

Q) 

m 
a) 

a) 
I-a 

w 
7p 

a) 

C/) N 
- 

a) 
- 

a c M 4 

(0 
'^ 

O 

0 

O O Lf) 
Iq 

O qT 0 
p 0 p OO 

O 0 O 0 

ýqo -uoj Deo "uoo 

182 

L 

r 

M 

aJ 
NE. '1 

cý rn 

>- 

-Oy 'sr 
co 

O 

.O 

C5 
rl ý 

r 'c J 

ly 

L-r Vý 

V 

ML 
-C My 

z_ 
> 

Nýy F- 

-0 
ýn y M L, O 
O 

Gz. 



N 

U 
a) 

D 
C 

a) 

E 
1. 
U) 
a) 

Ü 

U) 

Ca) 

L 

N- 
0 

0 

N- LO (0 
O (0 O 

O 
0 

Zqo uo'J 

d' 

N 
co CY) 
U 
a) 

2D 

E 

w 

Jp 
LO 
U, 
O 
0 

(D Z3 

ce) cu 

cý 

N a) N 
(D CU 

(D a) 
_ 

E 
0 

a) lop 
W 

a) 

E 
O 

1I^ / 

O O 0 

o o 0 
. 

qo . uo3 

a 

a) - ý 
L ý 

_ 

N i a C 

E 

a 

Cl) 
N 

M Ö 
O 

O 0 b cs cs 
O O 

eo " UOo 

ri 

,t o 

V 

N 
2 

N 

N 
rV 

N - 

0 
IC) 0 14, 0 

O OOO 
00 

O O 
0 

"- G=. 
ý2c UOO 

183 



r 'L 

L L ." N 

_0 ( 
E (n 

C 
T 

a) E 

N 

O O 
I-- CO LO CO N O 
O OO O OO 
O OO O OO 

Zqo "uoj Zej "uoo 

Cfl CO 
- 

rl 

ý 
-J 

U 
} 

a) CA 
_ý 2 

Cl) E Q) 
cu (D 

E Ä; L i a) YJ =D E _ 
a) U) 

f 1 E- U) E 
S- 

" ^` 
I -" W _ =- - r> 

+ N C 5 
U 
W y U) 2 

N 

I fl- 
0 

Cfl LO 14- 
OO0 

CO 
O 

lf) - co 
O00 

N 
0 

T11- 
0 r 

O OOO O OOO O O 

-qo "uoo ße3 "uo0 

184 



N 

U 
}, 
N 
C M CO 

CO C º c n 
N a L _-a 

M E (ß E 
+ ED 

., N 

E 

(D U) 
M W 
E 

N 

ti ö (D ö LO N 

C) O b O C 
O O O C 

Zqo "uoo 

(, 
U 

E 
co c 

0 
U) 

(ü cn 
(ß ýý L 

i i 70 

(D 
U) 

E 
1 CO 

E 
i 

= -a 
N _ CO N 

-i (D 
a) 
E0 

0 "-. 
a) -0 cu 

H - Cl) 
UJ 

N 

r- Qc) LO Lf 
O O O C 
O O O C 

[qo -uoj 

185 

CO s 

En 
a) I 

.ý 
N 
E 

t0 
: f1 

U) 
a> > 3 

Ö LO CO (Y) 0 
c 0 0 

o 

Zeo "uoo 
" U 

} 
r y 

QJ 

7 

co 
r 

y 

E 
cri 

(ß 

C) CY) 
o Gý 

p 
Q 0 tf 

o 0 Gz. 

Deo uoo 



(0 
N 
1! °4' 

0 
L 

ý1- 

73 

äE =k - -_ _ a) 

(ß 
U 

11, a) 
-L 

C: 

E-0 
N E 

1 

cn 

O 
0 
0 

ti 0 
(0 

0 
U) 

O Cl OOOO 
0OO 

ZCjo -uo3 

T- 
-0 

I 
U 
L 

m 

m 

E 

5 

O 
O 

C 
u) E 
N 

.41 Cl) 
cß 4) 
E 

a) 
E 
Cl) 4) 

O 
O LC) 
OO 

O 

ýqo "uoo 

(0 

O 
O 

U 
J 

LI 

cu 

N cu 
E 

W 

a) 

a) 

E 

LI) co 
O O 0 
O O 6 

Z60 "uo3 

- 

C) ö 

0 

a) 

Q) 

LO 
O 

LO 
rO 

Ö OO 
O 

Leo "uoo 

tc) f 

2 
a) 

E_ 
1 

N, 

O 
Ný 
0O 

sý O 

'0 C 
sy., O 

U 
O cat 

r, ýz 

7 

E 
1) 

N- 

cý 

y 

cs 
O 

L 
c'r) 
O 
O 

N 

Gz. 

186 



r- 
s 
;, 

-r. 
r- r- 
.= 

N 

U 
N 
D L- 

4- 

_0 
C 

W 

4.1 
E 

W 
Wn` 

n` E 
a a) 'W 

in 

a) a) 

N- 
0 
0 

c 
cß 

co 
E 

a) 
ý 
Z 

Cu^' 

W 

2 

O 

QO 
N 

E 
EE 
ý U) NW 

o N- LI) (0 LI) lf) 
O (0 OO 
OOOOO 

OO 

ZgC) -uoj 

0 

4 
- = 

Ü 
z a) 

(ý (n 3 
Q) 
N( U) 

2 
C aý 

a) 

WN N 
N 

C: ) 0 
ÖÖöO 

IT 
ÖÖ CO 

OOcO0O0O O 

Lqo -uoo Leo -uoo 

0 
Tl- 

00 

U) 

4) 
L ý\ 

a) 
cß cn 

W 

N 

0 
'IT c") N 
000 
OOO 

Zeo " uoo 

O 

00 

Z 

U 

s ý. 

's - _U 

ýv c 
0 

cý s 

s 

V -J 

cc O 

C 

vý s 

z. = 

aý c 

CA 

N 

ii. 

187 



zig ý1ý 

N 

:-NC 

-; T MÜM 
f 

. ý.. I f 

Cl) C`; _0=3y 

z (D 

EN 
G) 

NN 

E 7z (D 
E 

E1 
ui 

a --- 
y 

0 
U LO CO LO In In In 
r- (D LO T- OO .OO 

O°O0Oy -= 
OO 

Zqo -uoj zeo "uoý y 

cO 

U 
, L2 

7; 

MM 
ENn 

U) E 
_ 

_y 
"ý. 

_-ý 
a) 

E (D ? Ec 

L/ 'd 

N (n - -_- - 
tü vii 
N 

° 
co I, -- (D LO CY) LO U') LO 'IT LO CY) 
oOOoOO LO o qq °ö° 
ööö0ö0°0°o0 

ýqo 'uoo Deo "uoo 

188 



N 

a) 
M c 

c'_) a) 
L y 

"1 - 
a) 

cu E 
2 

U, 
(D U) 

L- 
w N 

+r = E E 
c 

c_ E 
_0 W 

a) E 4- 
U) 

(D 

- L 
1 

/) W -0. - cu 
r 

W 
cu a) 

=3 
U) Nib 

E 
4- 

cu 

O C) 
LO N- LO CO LO LO LO M 

C) Ö C) Ö C) O 
O O C) O O O O 
O O C) O O 

Zqo -uoj Zeo -uoo 

Iq 
a) 

1 Ü 
I- > a 

N 

U 
Uýý WMI U) 

(D 4ý 
c 

ID 

(ü E N C 
N 

U w 1ý 1 E -0 co 

N w 

a m m j 
0 a 
° E t 

o O 

00 O N- C) (D OO IT C) ö It 14, M 

O d OO O O O 
O 

C) 
O 

ýqo "uo [eo -U03 

r- 

f s. "J 

r- 

f 

C ^J 

rj 

4- 

"p O 

U 
-J y 

cý V 
y -0 

cl n 
0 

bc 
cs ý 

yJ 

Cý - 

7ý 

V 

V 

N 

N 

Yr. 

189 



- U 1 " J 

aý - L- :3 co Ü co 

- 
(D N - = ý^J 

cu ^L 3 
N 

LI) 

=D "- 
N C 

CU 
C 
(D N 

_ 
- 

E 
_, 

a) 
E -0 

o 
C 4. 

(D C cu cs 
E Q) 

ýI J 

U) a) 
W N 

y 
C11 'ý > t 

O O 
00 LU N- LO CD Lf) 00 1` (0 LU 't M V 
O I. O (D O if) O O OO O O 

O O p O O O O OO O O 
O O O 

- Zed uoo 1 ZgC) uoj 1 

ri 

co 

N 
ý 

a--' N 03 O ý 

E 
a) C 

E g - 

-ý _ 
L -I-" .d 

W 

N m - - Ö r 
- 

r i J 

t` O co O if) O CD O LO LU Ln in 0 114- "T O LO M 40 `ý 

O O O C) C) O O 
0 L b CD 

_ 
[qo - uoo ß80 'U03 

190 



N 
Üý 

i Q) 

-22 

W 

U) ý (ü U) 

UE 

00 LO r- LO (0 
O f` O (0 O 
O CD O CD O 

OO 

ZgZ) -UO: D 

'14- 

N 
M co 

U 
a) 

N 
N CU 
E0 

E 
Cl) 

W 

J 

0 

O 

,, T 

LO 
LU 
O 
O 

I- 

w 
cu -a. - cu _ C a) . 

O ___-- 

U ' -- ý 
Q) 

(ü fn - =' (ß E 
to 
ui = 

ti 

O 

O 
O 
O 

iqo -U0o 

CO C 
U 
a) 

N 
2-ý 

NCU 

E 

W 

- 
Lo 
0 

0 

O 

O 

14- 

a) 
M 
E 

W 

4) 
M 

L ý1 

0 
LO 

C) CO 
CO 

ö°ö Cl ö öö 

zeo "uoo 

IT 

c'") 

Z 

` (ß 

ui 

C) 
LO LO U-) lql- Lf) 

C) C) ö 
C) 

ö 
C) ° ö C) 

ýeý "uoo 

r. r.. 

ý 
-U 

cd 

> '. 
7b 

rf 

0 

C -r 

cý 03 

tr 

`J 3 
rl 

'mow 

clý 

2 C. - 
(l 

clý 
4% 

bL 
ý7. 

191 



CHAPTER 8 

MODEL PREDICTIVE CONTROL USING 

DYNAMIC DATA RECONCILIATION TECHNIQUES 

In this chapter the dynamic data reconciliation techniques developed in this thesis 

are applied to a model predictive control scheme. Simulations are carried out on 

the dynamic model of two continuous stirred tank reactors used in the previous 

chapters. The advantages and disadvantages of using dynamic data reconciliation 

in model predictive control are highlighted through a comparison between a 

scheme that uses dynamic data reconciliation and one that does not. 

8.1 INTRODUCTION 

Dynamic data reconciliation has been introduced in chapter 7. There, a moving 

horizon estimator was used for the treatment of dynamic process data. 

Algorithms for the detection of systematic bias and outliers were proposed and 

implemented. These techniques and algorithms are now put into practice to 

improve the performance of the model predictive control scheme used in the 

control of the gasifier plant in chapter 3. 

The area of model predictive control has been introduced and discussed in detail 

in chapter 3. The reader is therefore referred to that chapter for a thorough review 

and a general introduction on the subject. 
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8.2 SIMULATION CASE STUDIES 

Two case studies have been set up in OTISS to show the effects of dynamic data 

reconciliation on a model predictive control scheme. In the first case study 
(Figure 8-1) the model predictive controller acts directly upon the biased 

measurements from the plant. However, in the second case study (Figure 8-2) the 

measurements are first treated by the dynamic data reconciliation module before 

being passed to the model predictive controller. 

The simulations were carried out on the OTISS model of the two continuous 

stirred tank reactors connected in series introduced in chapter 4, Figure (4-2). The 

concentrations of species B in both tanks are measured such that v. vm = [Cbl Cb21T. 

In all cases the system was started from the steady-state given by the set points 
T (0) = 307 K and T2 (0) = 302K, which yield steady-state values 

Cbl (0) = 0.05165 [Kmol / m3] and Cb2 (0)=0.05864 [Kmol / m3 ]. The following 

tuning parameters for the predictive controller were used in the simulations: 

prediction horizon N=25, incremental scaled state weight Q =I, incremental 

weights on the scaled manipulated variables R= diag (20000,20000) . The tuning 

parameters used for the moving horizon scheme were: data window length 

nh = 15, integration step = 10 s and the covariance matrix V= diag(0.5,0.5) . 

Three different objective types were studied in each of the cases. The first 

objective is purely economic and reflects the desire to maximise the amount of 

product B in the second tank, F(y, 
n, um) _ -Cb2 . 

The second objective type is 

purely regulatory and reflects the desire to keep a specified measurement at a 

certain predefined value. In some simulations the regulated measurement was Cb2 

(F(ym, um) _ (Cb2 - 0.065)2) while in others it was Cb, 

(F(yjn, Um) = (Cbl -0.060)2). The third type is a combination of economic and 

regulatory objectives such that F(ym, um) = (Cbl - 0.060)2 - Cb2 . 
This reflects the 

desire to regulate the measurement C61 at a value 0.060 while trying to maximise 

the product Cb2. 
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In order to simulate the effect of an outlier on the measurements, a bias was added 
to the measurement in question for a short period of time and then removed. 

Manipulated var. 
suggestions 

REACTORS 
Measured 
Variables 

Noise/ Bias Noise/ Bias 

Model 

Reactor inputs Predictive 
Controller 

Figure (8-1): Schematic of case study (1), Model Predictive Control 
without the use of dynamic data reconciliation techniques. 
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Manipulated var. 
suggestions 

REACTORS Measured. 
Variables 

Noise/ Bias Noise/ Bias 

Moving Reconciled 
Reactor inputs Horizon estimates 

Estimator _L4_ Model 
Predictive 
Controller 

Figure (8-2): Schematic of case study (2), Model Predictive Control 
using dynamic data reconciliation techniques. 

8.2.1 Results 

An objective function of the type F(ym, u, n) _ (Cb2 - 0.065) 2 was first used. This 

reflects the desire to regulate the measurement Cb2 at the value 0.065. Figure (8- 

3) shows the measured and true values of Cbl and Cb2 as well as the temperatures 

which are the manipulated variables of the plant. In this instance there are no bias 

or outliers on the measurements. It can be seen that in this case the controller 

manages to regulate Cb2 about the setpoint. This behaviour should be compared 

to Figure (8-4) where a systematic bias of magnitude 0.00585 is present on 

measurement Cbl. The deterioration in response due to the bias is evident. Figure 

(8-5) shows the same case where this time the data is first reconciled prior to the 

model predictive control stage. It can be observed that by using data 

reconciliation the predictive controller is able to meet the required regulatory 

objective with increased accuracy and speed. The other sub-figures in Figure (8- 

5) show the true and estimated values of the unmeasured variables CQ, and C,, as 
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well as the trends of the manipulated variables T and T2. Notice that there is an 
initial identification period of 2 hours when the predictive controller is not in 
operation. 

Figure (8-6) shows the case when data reconciliation is not employed but when 
bias and outliers are present on the first measurement. Here, the objective 
function is purely economic of the form F(ym, um) = -Cb2 and reflects the desire 

to maximise the amount of product Cb2. Despite the presence of large errors on 
Cbl and the fact that no data reconciliation is taking place, the controller drives the 

process to achieve a final value of Cb2 = 0.0722 Kmol / m3 within 11 hours. This 

should be compared with Figure (8-7) where the same objective function is used 
but where dynamic data reconciliation is employed. Surprisingly, it is seen that 

the performance deteriorates. The final value of Cb2 = 0.0719 but this is only 

achieved after 26 hours of simulation. 

In order to see if the model adaptation capability of the predictive controller 

played a part in this surprising result, two simulations were done during which 

model adaptation was disabled after the initial identification period of 2 hours. 

The first simulation (Figure 8-8) was carried out using no data reconciliation 

techniques. The measurement Cbl is biased and has a number of outliers towards 

the beginning of the simulation. The objective is once again to maximise the 

amount of product Cb2. The trends in Figure (8-8) should be compared to those in 

Figure (8-9) where dynamic data reconciliation is enabled. It can be observed that 

in this case where the model adaptation facility is disabled, the behavior is similar 

except that in Figure (8-9) the response seems slightly slower. 

To fully appreciate the effect of a pure economic objective and the influence of 

the dynamic data reconciliation modules, two simulations were carried out in the 

absence of bias and outliers. Figure (8-10) shows the case where data 

reconciliation is not employed when the objective is again to maximise the 

amount of product Cb2. Figure (8-11) on the other hand shows the same case but 

this time using dynamic data reconciliation techniques. Again, it can be observed 
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that the use of dynamic data reconciliation techniques in the case when the 
objective is purely economic tends to deteriorate the performance. 

The third type of objective function tested is a combined economic and regulatory 
objective. Figures (8-12) and (8-13) show the case when the objective is to 
regulate measurement C61 at a value 0.060 while at the same time maximising the 

amount of product Cb2 
. Figure (8-12) shows the case where data reconciliation is 

not employed. It can be observed that while Cb2 is maximised, the controller fails 

to regulate the measurement Cbl 
. However Figure (8-13), in which data 

reconciliation is enabled, shows the fact that Cbl is closely following the setpoint 

while the controller attempts to maximise Cb2. 

8.3 CONCLUSIONS 

Three different types of objectives have been used to test the effect of employing 
dynamic data reconciliation techniques in a model predictive control strategy. 
The data reconciliation scheme used makes use of the bias and gross error 
detection algorithms developed in this thesis. In the case of a pure regulatory 

objective, the simulations show that reconciling process data prior to the 

predictive control stage enhances the performance considerably. 

Surprisingly, however, in the case of a pure economic objective, the performance 

of the predictive control scheme tends to deteriorate when dynamic data 

reconciliation is employed. This fact may be due to the combined result of the 

two objective functions: the one associated with the predictive controller and that 

associated with the reconciliation procedure. Furthermore, the results obtained 

may be specific to this particular application. A mathematical investigation into 

the cause of this phenomenon would probably be a worthwhile exercise but is 

beyond the scope of this thesis. Also further investigations using an alternative 

process would certainly be useful. 
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In the case of a combined objective that includes regulatory as well as economic 
terms, the use of data reconciliation techniques tends to have a positive effect on 
the predictive control scheme. It has been shown in the simulations that the 

controller will hold the regulated measurement at the setpoint while attempting to 

meet the economic objective. 

8.4 SUMMARY 

In this chapter, the dynamic data reconciliation techniques developed in this thesis 

have been employed to enhance the performance of a model predictive control 

scheme. It has been shown, in this particular case, that reconciling the process 

data before it is used by the predictive controller improves the performance in 

cases where there are pure regulatory or combined objectives which include 

regulatory as well as economic objectives. However this is not the case when the 

objective is purely economic. 
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CHAPTER 9 

CONCLUSIONS AND FURTHER WORK 

9.1 CONCLUSIONS 

This thesis has been concerned with the use and development of optimisation 

techniques for process supervision and control. Two major fields related to the 

broad area of optimisation have been the focal point of this research. On the one 

hand model predictive control techniques have been used to simulate the control 

of a coal gasification plant and a two Continuous Stirred Tank Reactors (CSTR) 

system. On the other hand, dynamic data reconciliation techniques including 

gross error and bias detection methods have been developed. Predictive control 

and data reconciliation have been combined and the potential benefits of this 

combination has been studied. The research carried out in this thesis has also 

included static optimisation, steady-state data reconciliation, gross error detection, 

steady-state detection and bias detection and estimation. Extensive reviews of the 

following areas have been presented: 

" The modified two step method, 

" Model predictive control, 

" Steady-state data reconciliation, 

" Dynamic data reconciliation, 

" Gross error detection, 

" Bias detection, 

0 Steady-state detection. 
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Testing of the algorithms developed has been done using models of two chemical 

processes: a coal gasifier and a two CSTR system. Simulations were carried out 

using the industrial process system simulator Aspen-OTISS using custom 
designed C and C++ modules. 

A state-space model predictive control algorithm developed at City University 

(Becerra et al., 1998a) has been applied to a benchmark challenge process set by 

ALSTOM Mechanical Engineering Centre. The process is a coal gasification 

plant used for the generation of environmentally clean power from coal. The 

challenge involved the control of models of the coal gasifier at different operating 

conditions where the dynamics of the process change significantly from one 

operating condition to the next. The scheme employed was shown to be 

successful for the majority of cases set by the challenge but had difficulty dealing 

with cases involving considerable departure of the process dynamics from the 

identified model. 

A static data reconciliation module which uses sequential quadratic programming 

has been developed in C/C++ and interfaced with OTISS. This module has 

capabilities of estimating systematic bias, physical parameters and unmeasured 

variables. Simulations on a two CSTR process have shown that under normal 

operating conditions, the technique used accurately reconciles process data in the 

majority of cases and quickly finds the correct solution. This was observed even 

in extreme conditions when the bias on the measurements was in the range of - 

50% to +50% of the nominal values. The technique also proved successful in the 

estimation of unknown physical parameters even in the presence of systematic 

bias on the measurements. In the very few cases where the algorithm did not 

perform so well, it may be said that the problem itself is ill conditioned or that too 

much is being demanded from the algorithm given the limited information 

available. 

Although the static data reconciliation module showed some robustness when 

applied to dynamic data, errors in the estimation can sometimes occur due to the 

211 



change in process dynamics and the consequent differences between the real 
process and the static model used for the reconciliation. This fact points to the 
need for dynamic data reconciliation techniques that use dynamic models when 
the process data is dynamic. A further limiting factor of the static data 

reconciliation module is that for proper estimation of systematic bias on the 
measurements, it has to be known a priori which measurements (if any) are 
biased. 

In order for a data reconciliation technique to be able to choose from a static and a 
dynamic version depending on the state of the process, a steady-state detection 

algorithm was implemented. This is especially important because even a so- 
called steady-state process often departs from its normal operating point. The 

algorithm implemented in software and tested on the two CSTR system was 
suggested by Cao and Rhinehart (1995). Some slight modifications were made to 

overcome certain undesirable effects in the original algorithm at the transition 

stage between steady-state and non-steady-state conditions. Simulation results 
have shown that the algorithm used can accurately and efficiently detect when the 

process is at steady-state. Further testing carried out involved the use of the static 
data reconciliation module along with the steady-state detection algorithm. 
Information from the steady-state detection algorithm regarding the state of the 

process was used successfully to either enable or disable the static data 

reconciliation module. 

The static data reconciliation module has been used to improve the performance 

of a static optimisation scheme. The optimisation method used was the modified 

two step algorithm (ISOPE), as implemented by Becerra and Roberts (2000). 

Simulations have shown that where corrupted data was used directly for 

optimisation, the results were not desirable even in the absence of systematic 

biases. However, using static data reconciliation to adjust the measurements and 

estimate systematic bias (if any) prior to optimisation improves the response 

considerably. 
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As mentioned previously static data reconciliation suffers from a major drawback 

and that is the possible inaccuracy of the estimates when the data being reconciled 
is from a dynamic process. To overcome this, a moving horizon estimation 

algorithm (Becerra, 1999) was used to reconcile dynamic process data. Unlike the 

static data reconciliation module, this estimator uses a dynamic model for the 

reconciliation procedure. A further drawback of the static data reconciliation 

algorithm is the requirement for prior information on which measurements are 
biased. A procedure for the detection and identification of systematic bias has 

been devised and implemented in software and interfaced with OTISS. 

A procedure for the detection of outliers in the measurements has also been 

implemented and tested. The algorithm suggested by Chen and Romagnoli (1998) 

and which uses cluster analysis, has been modified here. A problem was foreseen 

in the original algorithm especially in the case where there are one or more 

measurements in the data window which are similar in magnitude to the outlier. It 

has been shown that in this case the algorithm would fail to detect the outlier. 

With a simple modification where averages of measurements in the data window 

are used, this problem has been successfully addressed. For comparison purposes, 

the original algorithm was implemented and it was found that the modified 

algorithm was considerably more accurate in detecting outliers. 

Simulations from the moving horizon estimator have shown that using this type of 

estimator, dynamic process data can be effectively reconciled. In terms of results, 

the dynamic data reconciliation compares favourably against the static data 

reconciliation algorithm in the presence of a transient. The former enjoys the 

advantage that changes in the process dynamics will not result in differences 

between the real process and the model used for the reconciliation procedure and 

thus more accurate estimates can be expected. 

Results have shown that through the use of a gross error (outlier) detection 

technique, outliers on the measurements can be successfully identified and 

eliminated. Furthermore, by using a simple technique bias has been successfully 
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detected and estimated. The bias detection technique proposed is intuitive and far 
simpler than that put forward by McBrayer and Edgar (1995), for example. A 
further algorithm which is essentially a simplified version of the method 
suggested by McBrayer and Edgar has also been proposed but not implemented. 
Tests involving the gross error and bias detection algorithms have been carried out 
using the two CSTR process. Simulations on the algorithms have been done 

separately as well as when both algorithms are enabled simultaneously. The 

author was inspired by the idea of combining bias and gross error detection 

algorithms from Chen and Romagnoli (1998) but has failed to find any 
researchers who have carried this out. The bias and gross error detection 

algorithms developed in this thesis have been successfully combined and their 

effects have been studied. 

Simulations on the dynamic data reconciliation module when the bias and gross 
error algorithms are enabled have shown that repeated switching of the systematic 
bias from one measurement to another can cause the detection algorithm to 
become inaccurate at some stage. Fortunately, in real plants, the bias is unlikely 
to keep moving from one measurement to another since bias is normally caused 
by incorrectly installed or calibrated measurement devices. What is likely to 

occur though, is the presence of multiple biases. The bias detection algorithm as 
it stands can only handle single biases at a time. Other methods studied by the 

author suffer from the same setback, for example McBrayer and Edgar (1995). 

The dynamic data reconciliation techniques developed in this thesis have been 

applied to a model predictive control scheme. Simulation results have shown that 

the use of data reconciliation techniques significantly enhances the performance 

of a model predictive controller in the cases where the objective is purely 

regulatory and when the objective is a combination of regulatory and economic 

terms. However, in the case where the objective is purely economic, the use of 

data reconciliation techniques has been found to cause the performance of a model 

predictive control scheme to deteriorate. This may have something to do with the 

overall combined result of the objectives: that relating to the optimisation and that 
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relating to the reconciliation procedure. A further explanation of this may be that 
the result is relevant to this particular application and that a generalisation may 
not be well founded. 

In summary, static as well as dynamic data reconciliation techniques have been 

successfully implemented. A steady-state detection algorithm has been improved 

and implemented. Testing of this algorithm was done in conjunction with Static 
Data Reconciliation (SDR) where the SDR module was enabled and disabled 

depending on whether or not the process was deemed to be at steady-state. A bias 

identification method has been developed and used in conjunction with dynamic 

data reconciliation. Furthermore, an algorithm for the detection of outliers in 

process data has been improved and used simultaneously with dynamic data 

reconciliation. The bias identification and outlier detection methods have been 

successfully combined. All these algorithms have been tested on a two CSTR 

system using industrial simulation software. A model predictive control scheme 
has been used to control a coal gasification plant. The scheme was shown to be 

successful for the majority of the cases set by the challenge but had difficulty in 

dealing with cases involving considerable departure of the process dynamics from 

the identified model. Static and dynamic data reconciliation procedures 
developed in this thesis have been applied to static optimisation and model 

predictive control schemes. Finally, the aims and objectives of this work set out 

at the beginning of the thesis have been successfully achieved. 

9.2 SUGGESTIONS FOR FURTHER RESEARCH 

The following items relevant to the work in this thesis are recommended for 

further research: 

1. The implementation and testing of the other proposed bias detection algorithm 

which is a simplification of the method put forward by McBrayer and Edgar 

(1995) is recommended. 

215 



2. The extension of the bias detection algorithm to handle multiple biases is 

essential. 

3. The static data reconciliation algorithm has been applied to the two step 
method, ISOPE. A similar exercise where the dynamic data reconciliation 

techniques could be applied to the dynamic version of ISOPE (DISOPE) may 
be beneficial, in particular, for the optimisation of batch processes. 

4. In applying dynamic data reconciliation techniques to model predictive 

control it was observed that in the case of a purely economic objective the 

performance of the model predictive control scheme deteriorated. In order to 

properly explain these results further investigation is recommended. 

5. Further testing of the algorithms proposed and implemented in this thesis is 

required by way of simulations using different case studies. 

6. The static and dynamic data reconciliation modules should be used together in 

a modular fashion where the steady-state detection algorithm may act as the 

decision unit which enables and disables the appropriate module depending on 

whether or not the process is at steady-state. This way, it is possible to avoid 

having to solve a dynamic optimisation problem when the data at hand is 

static. Conversely, when the data is dynamic then the use of a static data 

reconciliation scheme is avoided. 
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APPENDIX 

A. SEQUENTIAL QUADRATIC PROGRAMMING 

Sequential Quadratic Programming (SQP) methods employ Newton's method (or 

quasi-Newton methods) to directly solve the Karush-Kuhn-Tucker conditions 
(Bazaraa et al, 1993) for the original problem. SQP methods, also known as 
Successive, or Recursive, Quadratic Programming, basically linearise inequality 

and equality constraints and construct a convex quadratic objective function from 

gradients of the objective and constraint functions. Solution of the resulting 
Quadratic Program (QP) determines the search direction while a one-dimentional 

minimisation along this direction locates the next point (Biegler, 1984). Here 

only the linearised sets of equality constraints are solved by QP. As SQP 

converges to the minimum, the solution of the linearised sets converges to the 

solution of the equality constraints. 

The SQP approach begins by initialising the vector of optimisation variables to 

the user-supplied initial guess. Then, the initial approximation to the Hessian 

matrix is set to the identity matrix and the gradients of all functions are calculated 

(Liebman 1991). 

A quadratic approximation to the objective function is used, along with first-order 

Taylor-series approximations to all constraints, to form a QP at each iteration. 

This results in the following QP approximation to the Nonlinear Program (NLP): 

min V Ts +1 sT Bs (A. 1) 
S2 

subject to 

fj +Vf1Ts=O (A. 2) 
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g; +Vg; Ts>_o 
where 

s= vector of components of the search direction 

(A. 3 

B= symmetric positive-definite approximation of the Hessian of the 

corresponding Lagrangian function. 

Once the QP approximation has been solved, the resulting estimates are tested for 

optimality (Kuhn-Tucker conditions). A line search is used to find the optimal 

step size in the calculated direction to obtain the new estimates. The approximate 
Hessian is updated and the next iteration begins. 
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