

City, University of London Institutional Repository

Citation: Charalambous, T. & Kalyvianaki, E. (2010). A min-max framework for CPU

resource provisioning in virtualized servers using ∞ Filters. Decision and Control (CDC), ℋ
2010 49th IEEE Conference on, 126, pp. 3778-3783. doi: 10.1109/cdc.2010.5717375

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/8178/

Link to published version: https://doi.org/10.1109/cdc.2010.5717375

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Min-Max Framework for CPU Resource Provisioning

in Virtualized Servers using H∞ Filters

Themistoklis Charalambous and Evangelia Kalyvianaki

Abstract— Dynamic resource provisioning for virtualized

server applications is integral to achieve efficient cloud and

green computing. In server applications unpredicted workload

changes occur frequently. Resource adaptation of the virtual

hosts should dynamically scale to the updated demands (cloud

computing) as well as co-locate applications to save on energy

consumption (green computing). Most importantly, resource

transitions during workload surges should occur while mini-

mizing the expected loss due to mismatches of the resource

predictions and actual workload demands. Our approach is to

minimize the maximum expected loss using the same techniques

as in two-person zero-sum games. We develop an H∞ filter

that minimizes the worst-case estimation and allocate resources

fast. Through simulations our H∞ filter demonstrates its

effectiveness and good performance when compared against

Kalman-based controllers.

I. INTRODUCTION

Virtualization of data centers has given rise to important
paradigms namely cloud and green computing. Cloud com-
puting provides an execution platform of essential means
(i.e. computing resources and software components) that
applications can use on demand. Applications might include
for example web and database servers which can be hosted
within one machine or span across machines. In addition,
green computing utilizes machines power in ways to reduce
their energy consumption as well as power and cooling
expenses.

Modern virtualization (e.g. [1]) is one of the key contribut-
ing factors to both paradigms. When virtualized, a machine is
transformed into one or more virtual execution environments,
called virtual machines (VMs) where applications can run
in isolation and share the machine resources by runtime
resource allocation. In cloud computing, virtualization is
used to dynamically create VMs according to the application
demands and online adjust their resource allocations to match
their workload needs. Furthermore, virtualization is also used
to reduce the required machines to host a certain number of
server applications. This is achieved by application consoli-
dation to a smaller group of hosting machines where unused
machines are switched off for reduced energy consumption.

To achieve efficient virtualization it is essential to ensure
performance guarantees for each co-located application and
provide them with resources according to their demands and
meet their Service Level Objectives (SLOs). However, ap-
plications exhibit highly changing workload demands which
cause difficult to predict resource fluctuations [2], [3]. There

Themistoklis Charalambous is at the Electrical and Computer Engi-
neering Department, University of Cyprus, Cyprus and Evagelia Kaly-
vianaki is at the Department of Computing, Imperial College London, UK
themis@ucy.ac.cy, ekalyv@doc.ic.ac.uk

is the need for autonomic resource management methods that
adaptively allocate resources across virtualized applications
with diverse workload and internal structure characteristics.

Autonomic resource management in a virtualized environ-
ment using control-based techniques has recently gained sig-
nificant attention. The most widely-used approach to control
the application performance is by controlling its CPU utiliza-
tion within the VM, for example [4], [5]. This approach is
further extended to dynamically distribute resources among
co-located applications under conditions of contention [4],
[6]. Finally, special attention has been given to model the
resource coupling in multi-tier virtualized applications to
provide timely allocations during workload changes [5], [7].
A key performance metric for these controllers is their re-
sponsiveness to sudden workload changes. Their parameters
can be tuned to achieve transition phases of smaller duration,
however, they do not provide any sort of control over the
maximum error of the application performance.

The maximum error occurs under conditions of contention.
In a virtualized application—resources are constantly up-
dated to match the workload demands while freeing up
resources for other applications—it is anticipated that the ap-
plication exhibits short but very frequent periods of resource
contention. It is thus important to optimize performance to
recover after these periods. To the best of our knowledge,
this is the first approach to control the maximum error of
the performance of a virtualized application in conditions of
contention.

This paper treats the problem as a game against nature
and minimizes the maximum expected loss using the same
techniques as in the two-person zero-sum games [8]. It
presents a new discrete-time controller based on the H∞
filter, which minimizes the worst-case estimation error (min-
max). The H∞ controller allocates CPU resources in vir-
tualized applications and minimizes the maximum error in
their performance as measured by the requests mean response
time (mRT). Simulation results show that the H∞ controller
lowers mRT during saturation when compared against a
Kalman controller.

In Section II we provide further motivation and discuss
related work. In Section III we provide the notation used
throughout this paper. Section IV describes the models
adopted for the resource utilization and the mRT. In Sec-
tion V, the H∞ filter is designed, while in Section VI,
the performance of the H∞ filter is evaluated. Finally, we
conclude in Section VII.

II. BACKGROUND

A. Motivation

Adequate provisioning for VMs’ resources is crucial for
a high performance data center. Consider a server con-
solidation example with two single-component applications
hosted on a single physical server machine. Assume that each
application has known workload requirements and the sum
of resources from both applications does not exceed the total
available physical resources for the server machine. The left
diagram in Figure 1 illustrates two VMs, each one hosting an
application with resources allocated as required. In this way,
both applications are served adequately and the total resource
utilization of the physical machine is now increased simply
by co-locating two running servers.

Consider now the case where the workload in both ap-
plications changes, (middle diagram in Figure 1). In VM
A it increases, therefore more resources are required, while
in VM B it decreases so fewer resources are needed. In the
case of VM A, the under-provisioning results in performance
degradation, since the application does not have enough
resources to serve its incoming requests. In the case of VM B,
the over-provisioning does not affect the running application
within the VM B. However it does reduce the free available
resources for a third VM to be placed on the same machine.
Therefore, in both cases, the resource allocation needs to
adapt to the new resource demands (right most diagram in
Figure 1).

This paper concentrates on the dynamic case of the
resource adaptation while workload demands change. Our
work makes use of modern virtualization platforms which
export a user-level interface to bound the maximum resource
allocation per VM at runtime.

B. Related Work

Autonomic resource management aims to adjust resource
allocations across applications to meet their SLOs as mea-
sured by the application response times. In [9] and [10], the
authors directly control application response times through
runtime resource CPU allocation using an offline system
identification analysis to model the relationship between the
response times and the CPU allocations in regions where
it is measured to be linear. However, as this relationship
is application-specific and relies on offline identification
performance models, other approaches, such as [11] and [10],
control the response times in combination with the applica-
tion CPU utilization.

The application performance can be controlled, by control-
ling is CPU utilization. As long as the utilization remains
below the allocation by a certain threshold the application
response times stay low [12]. Furthermore, when the utiliza-
tion approaches the allocation, the response times increase
dramatically and the application performance drops. Padala
et al. [4] present a two-layer non-linear controller to regulate
the utilization of the virtualized components of multi-tier
applications. Kalyvianaki et al. [5] formulate the regulation
problem as a CPU utilization tracking one and present

Fig. 1. Resource management example in virtualized applications. Shaded
rectangles show resource utilizations and solid lines indicate allocated
resources.

adaptive Kalman-based controllers to track and maintain the
CPU utilization to a user-defined threshold. However, the
Kalman filter provides an optimal estimate if the model and
the noise statistics are known. Otherwise, it may perform
poorly if there are errors in the system model or the assumed
noise statistics.

In addition, [4], [6] control the resource allocations across
consolidated virtualized applications under conditions of
contention. When applications demand more resources than
physically available the above controllers distribute resources
among them in ways to respect their user-given priorities.
Finally, in [7] and [5] Multi-Input-Multi-Output (MIMO)
feedback controllers are presented. These controllers make
global decisions by coupling the resource usage of all
components of multi-tier server applications.

A key performance metric for controllers used for vir-
tualized servers is their responsiveness to sudden workload
changes. [5], [6] study the performance of their controllers
across their parameters against significant resource fluctua-
tions until the controllers stabilize to the new demands. The
parameters of the controllers in [5] can be tuned to achieve
transition phases of smaller duration, however, they do not
provide any sort of control over the maximum error of the
application performance. The H∞ controller presented here
is designed to minimize the max error caused by saturation
periods.

III. NOTATION

Vectors are denoted by small, bold letters whereas matrices
are denoted by capital letters. AT and A−1 denote the
transpose and inverse of matrix A respectively. For two
symmetric matrices A and B, A � B means that A − B
is positive definite and A � B means that A − B is semi-
positive definite. By I we denote the identity matrix. âk
denotes the estimate of random vector ak for time instant k.
Pk denotes the matrix P at time instant k. The norm of a
vector or a matrix is given by � · �. a ∈ RN×1

+ represents
a vector with N nonnegative real entries and A ∈ RN×N

+

represents a nonnegative matrix, i.e. all entries in the matrix
are nonnegative.

IV. SYSTEM MODEL

A. mRT model

One of the most widely used metrics for measuring server
performance is the client mean request response times (mRT).
There are well known formulas to calculate the mRT of server

!"#$"#
%&'(

)&

*&

Fig. 2. Model of the demand D in a server.

requests. For instance, in the case of a single server M/M/1,
this is given by: mRT = s/(1 − u) (Little’s law), where s
is the mean service time and u the mean utilization. This
model predicts that when the utilization reaches saturation
the mRT goes to infinity. This is the case where the server
has no more resources to serve new requests, and hence these
are kept in the input queues and their waiting times grow
indefinitely. However, in a virtualized environment when the
server is saturated, we can dynamically increase its resource
allocations and therefore provide more resources to serve
new incoming requests and those already waiting in the
queue. In this way, as long as the server is saturated the
requests mRT will grow, however, it will drop when the
server exits saturation and has enough resources to server all
requests. This section provides a function of the mRT which
models the above characteristics. We do not aim to provide
an accurate mRT prediction model, rather, we use this model
as the cost function to evaluate the performance of the H∞
controller in a simulated environment. This model is solely
based on well known characteristics of server applications
described below.

It is very difficult to predict the exact values of the
mRT of server applications across operating regions and
different applications and workloads. However, it is known
to have certain characteristics [12]. Generally, its values can
be divided into three regions: (a) when the application is
provisioned with abundant resources all requests are served
as they arrive and the response times are kept low; (b)
when the utilization approaches 100% (e.g. around 70-80%
on average) the mRT increases above the low values from
the previous region because there are instances at which
the requests peak and approach 90-100%; (c) however,
when resources are scarce and very close to 100%, requests
compete for limited resources, they wait in the input queues
and their response times increase dramatically to relatively
high values.

It is often the case, for instance in data centers that
to maintain good server performance the operators aim to
keep machine CPU utilization below 100% of the machine
capacity by a certain value, which is usually called head-
room. Headroom values denote the boundary between the
second and the third mRT regions. At these values the server
is well provisioned and response times are kept low. If
the utilization approaches 100% due to increased workload
demands, operators increase the server resources.

In order to assimilate these characteristics into the system
we propose the following mRT model defined in (1), where
the mRT is given as a function of the ratio between workload

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

CPU Demand/CPU allocation

m
R

T
 (

s
)

Fig. 3. mRT model with respect to CPU usage, where γ = 10 and φ = 0.8.

demand D and allocation a:

mRT (D/a) =

�
eγ(

D
a −φ), if D

a ≤ 1

1 + γ(Da − φ), if D
a > 1

(1)

First, we define the demand D, in terms of CPU, at time
instant k. This is given by: Dk+1 = Dk−uk+ik+1, where uk

is the CPU utilization at time instant k and ik+1 is the CPU
from the requests at time instant k+1. A graphical illustration
of the demand model in a server is given in Figure 2. We then
include the headroom value φ and we also use the constant
γ to assign some large response time values in regions close
to saturation.

Figure 3 graphically illustrates the response time model
when γ = 10 and φ = 0.8. It is easy to distinguish
the three regions aforementioned: (a) When D/a < 0.7,
the mRT is much lower than 1 second (s). For the rest
of this paper we will use the 1s threshold to denote a
timely completed request; (b) when 0.7 ≤ D/a ≤ 0.8,
then the mRT increases, but since there are still resources
it remains below the threshold; (c) when D/a > 0.8 we
assume that some requests remain in the input queue due to
the fluctuations in demand and hence, the mRT is varying
linearly with the demand. Note that D/a > 1 means that
the maximum amount of resources has been allocated and
queues are growing in the input, making the demand even
bigger, thus increasing the mRT.

For the rest of this paper, we will use (1) along with
the Root-Mean-Square-Error (RMSE) of the allocation to
evaluate the performance of the virtualized application when
its CPU allocation is controlled by our H∞ filter and
the other filters we use for comparison. Without loss of
generality this enables us to evaluate the performance of the
H∞ filter across operating regions.

B. The CPU Usage and Allocation
The purpose of the H∞ controller is to control the

allocation of the VMs running a server application while
observing its utilization across VMs. We assume multi-tier
server applications composed of N components, where each
component runs on a different VM. We start by modeling the
time-varying CPU utilization per component as a random
walk given by the following linear stochastic difference
equation:

xk+1 = xk + rk, (2)

where xk ∈ RN×1
+ is the vector of the percentages of the total

CPU capacity actually used by the application components
during interval k; each row corresponds to a component.
The independent random vector rk ∈ RN×1

+ represents the
process noise. The process noise models the utilization be-
tween successive intervals caused by workload changes, e.g.
requests being added, doing work from previous intervals, or
leaving the server.

We denote ak ∈ RN×1
+ as the CPU capacity of a physical

machine allocated to the VMs; each row corresponds to a
component. ak shows the maximum amount of resources
a VM can use. We denote uk ∈ RN×1

+ as the total CPU
utilization actually observed in the VMs; again each row
corresponds to an application tier. uk models the observed
application utilization xk in addition to any usage noise
coming from other sources, such as the operating system,
to support the application.

The purpose of the H∞ controller is to maintain good
server performance in the presence of workload changes.
This is achieved by adjusting the allocation to values above
the utilization. For each time-interval k the desired relation-
ship between the two quantities is given by:

uk = Cak + vk, (3)

where C ∈ RN×N
+ is a diagonal matrix with the target

value ci for each component i along the diagonal, and
denotes the gap between the allocation and the utilization;
vk ∈ RN×1

+ denotes the utilization measurement noise at
each component. To maintain good server performance, the
allocation should follow the utilization and therefore is also
modeled as a random walk. The allocation for the next time-
interval (k + 1) is given by:

ak+1 = ak +wk, (4)

where wk ∈ RN×1
+ denotes the process noise of the alloca-

tion signal.

V. THE H∞ CONTROLLER

We formulate the allocation problem as a state estimation
problem. Kalman filters [13] are commonly used to estimate
the states of a dynamic system and they have also been used
for the allocation problem [5]. Their attractiveness relies on
the fact that the Kalman filter is the optimal linear filter when
minimizing at each time step the two-norm of the expected
values of the estimation error. However, they do not provide
any guarantees in terms of limiting the maximum estimation
error. Alternatively, H∞ filters minimize the worst-case
estimation error—they are called minimax filters—and can be
used to incorporate more robustness into the state estimation
problem.

The cost function for our problem formulation is given by:

J =

�N−1
k=0 �ak − âk�22

�a0 − â0�2P−1
0

+
�N−1

k=0

�
�wk�

2
Q−1

k

+ �vk�
2
R−1

k

� (5)

where P0 ∈ RN×N , Qk ∈ RN×N and Rk ∈ RN×N are
symmetric, positive definite matrices defined by the problem

specifications, i.e. P0 is the initial error covariance matrix,
Qk and Rk are the process and measurement covariance
matrices for time interval k, respectively; âk is the estimate
of the CPU allocation. The direct minimization of J in (5) is
not tractable, and as a result we choose a performance bound
and our controller is designed based on that threshold. In
our problem, the target is to keep the mRT below a certain
threshold (e.g. less than a second). Therefore, our controllers
are designed based on the fact that J < 1/θ, where θ is
specified such that the desired mRT is less than a certain user-
specified threshold. Considering (5), the steady-state H∞
filter bounds the following cost function:

J = lim
N→∞

�N−1
k=0 �ak − âk�22

�N−1
k=0

�
�wk�

2
Q−1

k

+ �vk�
2
R−1

k

� . (6)

Let Gâe be the system that has e = [w v]T as its input and
â as its output. Since the H∞ filter makes the cost (6) less
than 1/θ for all wk and vk, then according to [14]:

�Gâe�
2
∞ = sup

ζ

�a− â�22
�w�2Q−1 + �v�2R−1

≤
1

θ
, (7)

where ζ is the phase of �w�2Q−1 + �v�2R−1 comprised by
the sampling time of the system and the frequency of the
signals. Since we want the mRT to be less than a certain value
(usually around 1 second), we have to keep the CPU usage
to less than a threshold set by our mRT model. Therefore,
using (7) we want:

sup
ζ

�Φ− C�22

�w�2Q−1 + �v�2R−1

≤
1

θ
, (8)

which is equivalent to:

θ ≤ inf
ζ

�w�2Q−1 + �v�2R−1

�Φ− C�22

. (9)

where Φ and C are diagonal matrices with the headroom val-
ues φi and target values ci for each component, respectively,
along the diagonal. Inequality (9) suggests that a higher value
of θ can be accommodated when the system is very noisy
or the CPU usage u is very closed to the headroom value
φ. Note, however, that the necessary condition to ensure that
Pk remains positive definite and the system retains stability
for the above H∞ filter is that:

I − θPk + CTR−1
k CPk � 0. (10)

To design the controller we consider inequalities (9) and (10).
Note that the Kalman filter gain is smaller than the H∞

filter gain for θ > 0, meaning that the H∞ filter relies more
on the measurement and less on the system model. As θ goes
closer to zero, the H∞ filter gain goes closer to the Kalman
filter gain [14].

For the cost function (5), the H∞ filter is thus given by:

Kk = Pk[I − θPk + CTR−1
k CPk]

−1CTR−1
k (11)

âk+1 = âk +Kk(uk − Câk) (12)
Pk+1 = Pk[I − θPk + CTR−1

k CPk]
−1 +Qk (13)

where Kk is the gain matrix and Pk is the error covariance
matrix and it is positive definite (since P0 is positive def-
inite and if Pk is positive definite, then from (13) positive
definiteness is preserved in Pk+1).

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the H∞
filter using a simulated virtualized environment which we
have built using MATLAB. For simplicity, a Single-Input-
Single-Output (SISO) system is used, in order to high-
light the characteristics of our controller. For the current
evaluation we measure the performance of the controller
around the mRT using (1) and the RMSE of the allocation.
We compare our controller against the conceptually similar
Kalman controller from [5]. Both controllers use the same
utilization model, however, the Kalman controller aims to
minimize the mean prediction error, while our controller
minimizes the maximum error.

We evaluate the H∞ controller across two workload
conditions. First, we simulate gradual workload variations
to decreasing and increasing demand. Results are shown in
Section VI-A. Second, we simulate a flash crowd, where
the workload demand repeatedly peaks for a very short
time following a saw-tooth pattern. Results are shown in
Section VI-B. In both cases, we study the performance of the
H∞ controller when the process wk and the measurement
noise vk are either normally or uniformly distributed.

Finally, the parameters used in the current evaluation are
the following: c is set to 0.95 which is above the headroom
value φ = 0.8. This makes our system to constantly operate
near conditions of contention, in order to better observe the
H∞ filter performance. θ is set to the high value of 0.7
because we set the system to be noisy, which is depicted by
the value of Q that we set to 4. Different values for the rest
of the parameters showed similar results and therefore they
are not presented here.

A. Gradual workload changes
The performance of the H∞ controller is measured when

the utilization exhibits gradual changes towards decreasing
from an initial 60% to 30% and then increasing again to
60%. We study the controller allocations when the process
(wk) and measurement (vk) noises are taken to be normally
distributed in Figure 4 and when these noises are uniformly
distributed in Figure 5. Numerical results for the mRT and the
RMSE of the allocation for the duration of the experiments
are shown in Table I. The RMSE measures the error between
the observed allocation and the predicted allocation, given
the utilization for each interval and the headroom value c.
It measures the variation of the controller’s allocations with
respect to the reference value c.

Figures 4(a) and 5(a) illustrate the allocations of the
H∞ controller as the utilization demand varies. The same
figures also show the allocations of the Kalman controller
for comparison purposes. Although both controllers adjust
their allocations to match the workload demands, the H∞
controller allocates resources faster during conditions of

contention than the Kalman controller. This is better shown
for the intervals 50 to 80 where the workload demand
increases gradually and saturation here causes the mRT to
jump to high values as shown in Figures 4(b) and 5(b).

The difference between the H∞ and the Kalman controller
is better shown in the case where the noises are normally
distributed. In this case, the server is saturated for many
intervals (i.e. intervals 50-60) and the mRT increases a lot.
However, as soon as the demand starts to stabilize the server
is able to serve new incoming requests and those already left
in its input queue. The H∞ controller manages to serve all
requests faster than the Kalman controller as shown by the
lower maximum mRT. The Kalman controller also serves all
requests, but its mRT increases to higher values. Overall, the
H∞ controller achieves better performance for the duration
of the experiment as also shown in Table I.

When the process and measurement noise are uniformly
distributed the workload utilizations vary less than in the
case of the normally distributed noises. When the noise is
uniform, the H∞ controller also recovers faster after a period
of contention; the mRT of the H∞ controller is lower than
the Kalman mRT around the intervals 50−60 in Figure 5(b).
However, its overall performance for the duration of the
experiment is very close to the Kalman performance, Table I.

The most important aspect of the H∞ filter that differ-
entiates it from other controllers is that is minimizes the
maximum error. When the noise is normal, it operates very
well when compared against the Kalman controller which
is designed under this assumption. In addition, the H∞
filter performs better near the maximum error for uniformly
distributed noise.

B. Saw-tooth demand for CPU usage
In this case we vary the utilization in a saw-tooth structure.

This is a very demanding workload, where the utilization
changes rapidly from very large to very small values. In
this case it is very important for the controller to adapt the
allocations in a timely fashion. To achieve overall good per-
formance the error during contention should be minimized.

Figures 7 and 6 illustrate the performance of the H∞
controller against the Kalman filter in cases where the
process (wk) and measurement (vk) noises are taken to be
normally and uniformly distributed, respectively. Numerical
results for the duration of the simulations, given in Table II,
show that the H∞ controller keeps the mRT in both cases to
lower values than the Kalman controller. The H∞ controller
allocates resources faster during periods of contentions as
also shown by its increased utilization when the workload
demand increases in Figure 7(a) and 6(a).

VII. CONCLUSIONS

We have used a minimax framework and developed an H∞
filter for CPU resource provisioning in virtualized servers.
As virtualization technologies enable the runtime CPU al-
location, it is important to build controller that adjust the
allocation in a timely fashion and avoid resource saturation.
To this end, we adopt a minimax approach that minimizes

0 10 20 30 40 50 60 70 80 90 100
25

30

40

50

60

70

80

90

time interval

C
PU

 (%
)

H
!

CPU usage (H
!
)

Kalman
CPU usage (Kalman)

(a) CPU allocations and utiliza-
tions

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

time interval

m
R

T
(s

)

H
!

Kalman

(b) mRT

Fig. 4. Gradual Workload Changes: H∞ controller performance when the
process (wk) and the measurement (vk) noise are normally distributed.

0 10 20 30 40 50 60 70 80 90 100
25
30

40

50

60

70

80

90

time interval

C
PU

 (%
)

H
!

CPU usage (H
!
)

Kalman
CPU usage (Kalman)

(a) CPU allocations and utiliza-
tions

0 10 20 30 40 50 60 70 80 90 100
1.5

2

2.5

3

3.5

4

4.5

5

time interval

m
R

T
(s

)

H
!

Kalman

(b) mRT

Fig. 5. Gradual Workload Changes: H∞ controller performance when the
process (wk) and the measurement (vk) noise are uniformly distributed.

Distribution Normal Uniform

Filter RMSE mRT RMSE mRT
H∞ 2.9893 5.7186 1.6433 2.5633
Kalman 3.5798 7.2353 1.7168 2.5823

TABLE I
RMSE AND mRT VALUES FOR GRADUAL WORKLOAD CHANGES

0 10 20 30 40 50 60 70 80 90 100
25
30

40

50

60

70

80

90

time interval

C
PU

 (%
)

H
!

CPU usage (H!)
Kalman
CPU usage (Kalman)

(a) CPU allocations and utiliza-
tions

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

time interval

m
R

T
(s

)

H
!

Kalman

(b) mRT

Fig. 6. Saw-Tooth Workload Changes: H∞ controller performance when
the process (wk) and the measurement (vk) noise are normally distributed.

the maximum error during conditions of contention. In these
conditions, the H∞ controller provides better performance
than other approaches. But, there are no assumptions on the
noise characteristics and hence the H∞ controller is more
robust than other controllers.

REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of
Virtualization,” in Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), 2003, pp. 164–177.

0 10 20 30 40 50 60 70 80 90 100
25
30

40

50

60

70

80

90

time interval

C
PU

 (%
)

H
!

CPU usage (H!)
Kalman
CPU usage (Kalman)

(a) CPU allocations and utiliza-
tions

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

time interval

m
R

T
(s

)

H
!

Kalman

(b) mRT

Fig. 7. Saw-Tooth Workload Changes: H∞ controller performance when
the process (wk) and the measurement (vk) noise are uniformly distributed.

Distribution Normal Uniform

Filter RMSE mRT RMSE mRT
H∞ 6.0463 11.5674 4.575 10.5759
Kalman 5.7544 12.7232 5.0099 12.0326

TABLE II
RMSE AND mRT VALUES FOR SAW-TOOTH-LIKE WORKLOAD CHANGES

[2] M. Arlitt and T. Jin, “A Workload Characterization Study of the 1998
World Cup Web Site,” IEEE Network, vol. 14, no. 3, pp. 30–37,
May/June 2000.

[3] A. Iyengar, J. Challenger, D. Dias, and P. Dantzig, “High-Performance
Web Site Design Techniques,” IEEE Internet Computing, vol. 4, no. 2,
pp. 17–26, Mar/Apr 2000.

[4] P. Padala, K. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Mer-
chant, and K. Salem, “Adaptive Control of Virtualized Resources in
Utility Computing Environments,” in Proceedings of the European
Conference on Computer Systems (EuroSys), 2007, pp. 289–302.

[5] E. Kalyvianaki, T. Charalambous, and S. Hand, “Self-Adaptive and
Self-Configured CPU Resource Provisioning for Virtualized Servers
using Kalman Filters,” in Proceedings of the 6th International Con-
ference on Autonomic Computing (ICAC). New York, NY, USA:
ACM, 2009, pp. 117–126.

[6] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Sing-
hal, and A. Merchant, “Automated Control of Multiple Virtualized
Resources,” in Proceedings of the 4th ACM European Conference on
Computer Systems (EuroSys ’09). New York, NY, USA: ACM, 2009,
pp. 13–26.

[7] E. Kalyvianaki, T. Charalambous, and S. Hand, “Resource Provi-
sioning for Multi-Tier Virtualized Server Applications,” Computer
Measurement Group (CMG) Journal, vol. 126, pp. 6–17, 2010.

[8] T. Basar and P. Bernhard, H∞ - Optimal Control and Related Minimax
Design Problems: A Dynamic Game Approach, 2nd ed. Boston, MA:
Birkhäuser, 1995.

[9] Z. Wang, X. Zhu, and S. Singhal, “Utilization and SLO-Based Control
for Dynamic Sizing of Resource Partitions,” in Proceedings of the
IFIP/IEEE International Workshop on Distributed Systems: Opera-
tions and Management (DSOM), October 2005, pp. 133–144.

[10] X. Zhu, Z. Wang, and S. Singhal, “Utility-Driven Workload Manage-
ment using Nested Control Design,” in Proceedings of the American
Control Conference (ACC), 2006, pp. 6033–6038.

[11] Z. Wang, X. Liu, A. Zhang, C. Stewart, X. Zhu, T. Kelly, and
S. Singhal, “AutoParam: Automated Control of Application-Level
Performance in Virtualized Server Environments,” in Proceedings of
the IEEE International Workshop on Feedback Control Implementation
and Design in Computing Systems and Networks (FeBID), 2007.

[12] L. Kleinrock, Queueing Systems, Volume 1, Theory. Wiley-
Interscience, 1975.

[13] R. E. Kalman, “A New Approach to Linear Filtering and Prediction
Problems,” Transaction of the ASME–Journal of Basic Engineering,
vol. 82, no. Series D, pp. 35–45, 1960.

[14] D. Simon, Optimal State Estimation: Kalman, H-infinity, and Nonlin-
ear Approaches. John Wiley & Sons, 2006.

