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ABSTRACT 

In this thesis a theory for the geometrically nonlinear analysis 
of thin curved beam-type structures is proposed and an associated 
displacement finite element formulation developed. 

An exact two-dimensional large rotation theory, which is based on 
an intrinsic coordinate system, has been developed. Four 
alternative Lagrangian formulations of the theory have been 
presented for comparison. 

A family of two-dimensional thin curved beam elements has been 
developed by using the constraint technique to include the 
convective coordinate system. The elements are relatively simple 
and the minimum number of degrees of freedom necessary has been 
used. 

The Total Lagrangian formulation has been shown to be numerically 
more effective than the Updated Lagrangian formulation. A new 
Total Lagrangian formulation that includes the effect of curvature 
change on axial force in the incremental equilibrium equations has 
been developed. The formulation is based on the geometric strains 
and has the capability of predicting true axial force values in 
large rotation and curvature problems. This approach can be used 
in the general continuum mechanics largz; d3formation formulations. 

A large rotation theory for three-dimensional beams and Total 
Lagrangian formulations of the theory, which are based on the 
Green strains and the geometric strains, have been developed. 
The theory correctly describes the large rotation elastic response 
of a thin eccentric curved beam of rectangular cross-section. 
Material nonlinearity, which is based an the von-Mises yield 
function and the Prandtl-Reuss flow rule and in which isotropic 
hardening is assumed, has been included in the formulation. 

A family of three-diinensional beam elements, that can accurately 
accommodate the theory, has been developed by the constraint 
technique. The elements are suitable for use as stiffeners in 
the analysis of stiffened shell structures. 

The elements, which have been developed, have been implemented 
in the LUSAS finite element system. The accuracy of the results 
obtained has been demonstrated by comparison with*published 
results. 
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NOTATION 

Only the main symbols are listed here. Other symbols 

are defined as they first appear in the text: 

A Cross-sectional Area 

Ae First moment of area about the reference 

line 

A Matrix of displacement gradients 

obtained from the nonlinear strains 

a t Wanted element variables up to the i th 

iteration referred to the configuration 

at time t(t, = 0 or t) 

ai Wanted element variables from the 
c 

beginning of an increment up to the 

ith iteration 

B Strain matrix relating the variation 

in the continuum mechanics strains to 

the variation in displacements 

R Strain matrix relating to the variation 

in the strain resultants to the 

variation in the nodal variables 

B 0, Do 
tt Infinitesimal strain matrix with 

reference to the configuration at 

time t (t--= 0 or t) 

B L(ut)"'L (at) Linear strain matrix with reference 

to the configuration at time t 

(t =0 or t) 
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b Breadth of the cross-section 

b Unwanted element variables 

1cs]i Matrix of direction cosines at point i 

D, De Elastic modulus matrices 

13, j5e Elastic rigidity matrices 

D(c, k), D(s, k) Elasto-plastic modulus matrices 

D(s, k) Elasto-Plastic rigidity matrix 

d Depth of the cross-section 
a Displacement vector of a general point 

E Young's modulus of elasticity 

e Green strain measure of the reference 

line 

e Strains referred to spatial coordinates 

in the deformed geometry 

eyve, Eccentricities along the local y, z 

axes respectively 

F, f Yield functions 

F 
yz Shear stress resultant 

Vector of uniformly distributed loads 

acting in a fixed direction 

Gt Matrix relating the variation of the 

vector of the generalised strain 

resultants to the variation in the 

nodal variables with reference to the 

configuration at time t (t =0 or t) 

G Shear modulus 

9 Natural base vector in two dimensions 
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gx1g Vgz Displacement gradient vectors y 

9y P9 
z Vectors normal to the convected x 

surface in the deformed configuration 

H Matrix relating the Green strains or 

the geometric strains to generalised 

strain resultants 

H Matrix relating the variation in the 

geometric strains to the variation in 

the Green strains 

I Second moment of area about the reference 

line 

Unit matrix 

I 
yy, 

I 
zz 

Second moments of area about the 

centroidal axes of the cross-section 

iYj ,k Unit vectors in the global X, Y, Z 

directions respectively 

Torsional rigidity 

KO, K L(at) Infinitesimal strain and initial 

displacement stiffness matrices 

respectively 

KT Tangent stiffness matrix 

K Initial stress stiffness matrix 

K* Additional initial stress stiffness 

matrix 

K Physical curvature in two dimensions 

Kxy. %K xz 
Measures of bending curvatures about 

the local y and z axes respectively 
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k Strain hardening parameter 

kl, k 2 
Factors included in the shear rigidity 

terms to describe the torsion of a 

solid rectangular cross-section 

ks Factor included in the shear modulus 

terms to improve the shear displcement 

approximation 

L Length 

M, M* Constraint matrix in terms of the 

initial total element variables 

MM A' B Partitions of the constraint matrix 

with reference to the wanted and 

unwanted variables respectively 

M Bending moment 

Mt Bending moment with reference to the 

configuration at time t (t =0 or t) 

M 
xy'M xz -Bending moments about the local y, z 

axes respectively 

Vector normal to the natural base 

vector in the deformed geometry 

Ni Heirarchical shape functions 

Ni Parabolic interpolation functions 

Cubic interpolation functions 

n Unit vector normal to the natural 

base vector in the deformed geometry 

n ,n Unit vectors normal to the convected y z 

x surface in the deformed configuration 
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P ti The initial stress matrix with 

reference to the configuration at 

time t (t =0 or t) 

ti Additional initial stress matrix with 

reference to the configuration at 

time t (t =0 or t) 

P Applied load 

Pt Axial force with reference to the 

configuration at time t (t =0 or t) 

P Vector of follower pressure loads 

q Vector of total uniformly distributed 

load per unit undeformed length 

R Vector of''conservative equivalent 

nodal forces 

Rd Vector of deformation dependent nodal 

forces 

Position vector of a general point 

before deformation 

Position vector of a general point 

after deformation 

r Position vector of a point on the beam 

reference line before deformation 

Position vector of a point on the beam 

reference line after deformation 

S, St 2nd piola-Kirchoff stresses with 

reference to the configuration at 

time t(t =0 or t) 
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Stost Vector of stress resultants with 

reference to configuration at time, t, 

(t =0 or t), for the i th iteration 

Vector of modified initial stress 

resultants obtained from the geometric 

strains 

T Transformation matrix 

T Total torsional moment 

TyvT 
z 

Torsional moments due to the torsions 

of the y and the z normals respectively 

U, V, W Displacement components in the global 

X, Y and Z directions respectively 

U, V, W Displacement components in the local 

x, y and z directions respectively 

Ut Vector of continuum mechanics 

displacements relative to the 

configuration at time t (t =0 or t) 

Displacement vector of a point on the 

beam reference line 

Vt Volume in the configuration at time t 

(t =0 or t) 

v Volume in the deformed configuration 

W Constrained shape function array 

WN, WN* Unconstrained shape function array in 

terms of the initial total element 

variables 

W A' WB Partitions of the shap e function array 

with reference to the wanted and the 

unwanted variables respectively 
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X, Y, Z Global coordinates 

XIYIZ Local material coordinates 

xIyPz Unit vectors in the local x, y and z 

directions respectively 

ai Generalised variables defining the 

displacement variation 

a, a, e Measures of rotation about the global 

X,. Y and Z axes respectively 

Y Variables defined by the shape function 

array 

Yxypyxzoyyz Shear strains 

6, s* 
-Initial total element variables 

6W External virtual work 

6W int Internal virtual work 

Ct'Ci t Vector of strain measures w hich are 

explicit functions of the displacement 

gradients with reference to the 

configuration at time t (t =0 or t), 

for the ith iteration 

Ct Green-Lagrange strains or geometric 

strains with reference to the configuration 

at time t (t =0 or t) 

C* t Generalised strain measures of the 

reference line obtained from the 

geometric strains with reference to 

the configuration at time t (t =0 or t) 

C9 t Infinitesimal strains with reference 

to configuration at time t (t =0 or t) 
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CL Nonlinear strains with reference to 
t 

configuration at time t (t =0 or t) 

E: xx C yy 
Direct strain components 

0t Vector of displacement gradients with 

reference to the configuration at 

time t (t =0 or t) 

exle 
y '0 z 

Measures of rotation about the local 

x, y and z axes respectively 

X plastic strain rate multiplier 

V Poisson's ratio 

E Natural coordinate 

V Tiue Cauchy stresses or nominal stresses 

a effective stress 

a ya Stress components in the x and y yy xx 
directions respectively 

a Uniaxial yield stress y 
TXY#TXZ, T 

yz Shear stresses 
T IT Torsions about the local x axis of the Y z 

local y and z normals respectively 
ýj Rotation of node point j 

y Angle between the local y axes in the 

deformed and undeformed configurations 

ýz Angle between the local z axes in the 

deformed and undeformed configurations 

Nonlinear equilibrium equations 

Rotation vector (for small displacement 

displacements) 
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CHAPTER1 

GENERAL INTRODUCTION 

1.1 INTRODUCTORY REMARKS 

Modern developments in design and construction have lead 

to the increasing use of slender structural members. 

Typical examples of these are the stiffened plated box 

girders which are used in bridge structures and the 

stiffened shell constructions used in offshore structures. 

The evolution of such complex structures*has resulted in 

the establishment of extensive research and development 

programmes to improve the knowledge of the behaviour of 

these structures when they are subjected to load. 

A well established method for the study of structural 

behaviour is structural testing. The size of the 

structural members may be so large, however, that full 

scale testing becomes impractical. Thus, there are two 

alternative approaches available for structural testing. 

The first is model testing (1), which has limitations 

due to the difficulty of accurately pealing down the 

prototype including all factors affecting performance, 

such as initial imperfections and initial stresses. The 

second approach requires the testing of panels with the 

same geometry and support conditions as that of the 
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complete member (2). This approach needs a knowledge, of 

the panel width required and boundary, conditions to be 

used for the panels. There are obvious advantage! if 

the results obtained from structural testing could be 

compared with those obtained from theoretical analysis. 

The development of powerful computers has resulted in 

the application of numerical methods to solve structural 

problems. These methods have been shown to be very 

effective and to give extremely good results. To define 

the special features required for the analysis of 

stiffened structures it is necessary to state the main 

modes of failure of these structures. Due to their 

slenderness the failure of these structures is pre- 

dominantly by buckling C3 - 7). Depending on the relative 

sizes of shells and stiffeners, failure may occur by 

local buckling of panels and stiffeners while their 

junctions remain straight and while the shell is still 

el ast ic, by 'overall buckling in the form of significant 

radial movements of stiffeners or as a complex interaction 

of the two modes. In some cases these may also be 

combined with lateral torsional instability (tripping) 

of the stif femer&. It is usual not.. to include tripping 

in an analysis and the present design procedures adopt 

the criterion of limiting the depth of the stiffener in 

order to preclude the tripping effect (6,81'. An 

additional factor-which must be taken into account in 

the analysis is that the fabrication of such structures 

results in initial imperfections and introduces residual 
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stresses. Hence, the behaviour of these structures is 

such that large displacements and rotations can develop. 

This, coupled with the need to make use of the full 

load carrying capacity, may also lead to plastic 

deformation. Thus the analysis procedure must take 

into account both geometric and material nonlinearity.. 

Since these structures are normally constructed using 

steel, however, the strains can be assumed to be small. 

This nonlinear behaviour is, best treated incrementally 

especially because of the incremental nature of the laws 

governing plastic deformation. Originally the effect 

of stiffeners was taken into account employing the 

concept of smeared stiffeners, thus ignoring the 

possibility of local buckling (3). A study of the 

behaviour of stiffened cylinders under moderately large 

rotations has been carried out by Bushnell (4,5,9) 

using a double loop iteration subincremental technique 

and the finite difference energy method taking into 

account the discrete form of the stiffeners. He concludes 

that agreement between test and theory is improved if 

the analytical model reflects the discrete behaviour 

of stiffeners. 'For stiffened plates, Webb and Dowling 

(7) have presented solutions for flat, angle and Tee 

section stiffeners by applying dynamic relaxation to the 

finite difference equivalents of the governing equations. 
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The significant features of the stiffened structures, 

namely the interaction of the buckling modes, the 

yielding and discrete behaviour of the stiffeners and 

the influence of initial imperfections and residual 

stresses, are more effectively considered using the 

finite element method (10 - 14). Crisfield (6) has used 

the finite element method to obtain solutions for 

eccentrically stiffened steel plates for moderately 

large displacements. Plasticity is considered by using 

approximate yield criteria that are direct functions of 

the stress resultants and plastic curvatures, obtained 

from a modification of Ilyshin's yield function by 

making some allowance for yield in the fibres before 

full section yield. The stiffeners are modelled as two 

uniaxial line elements and a central rectangular bar 

element. Bathe and Bolourchi (15) have presented 

compatible shell and bending elements formulated-by 

interpolating the element geometry using the mid-surface 

nodal point coordinates and mid-surface nodal point 

normals. Ferguson and Clark (16) have developed two- 

and three-dimensional super-parametric eccentric beam 

elements suitable for use as stiffeners based on relaxing 

the Kirclhoff hypothesis by assuming that plane sections 

remain plane, but not necessarily normal to the beam 

axis. Both formulations, however, include shear 

deformation and the performance of such elements is 

known to deteriorate for very thin beams especially for 

large rotation problems (11,17). 
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Curved beam element formulations have attracted 

considerable interest due to their relative simplicity 

while giving insight to the more complex problems of 

shell elements. This accounts for the large number 

and different types of beam elements presented in the 

literature (16 - 32). However, to the author's 

knowledge, a generally curved eccentric beam element 

formulation that can accommodate large rotations is not 

yet available. 

1.2 SCOPE AND OUTLINE OF THESIS 

For large deformation analysis of beam and shell type 

problems two alternative approaches are generally 

adopted (15). In the classical approach, a plate or 

shell theory, which has been developed from the'three- 

dimensional continuum methanics equations by incorporating 

various assumptions appropriate to the structural behaviour, 

is used as a starting point of the element formulation 

(10,30). The alternative approach uses the continuum 

mechanics equations and then introduces approximations 

in the element formulation (10,15,35,36). The latter 

approach amounts to using a general shell or plate theory. 

In this thesis an approach similar to the classical one 

is adopted. Using the Kirchhoff hypothesis the shape 

of-the element is defined before and after deformation. 

This definition of geometry is used to obtain exact 

strain displacement relations. Elements that can correctly 

accommodate these relations are then developed. 
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Generally a small strain large rotation formulation 

for beam and shell type problems is best treated by 

using a frame indifferent measure of strains. Hence 

the most accurate approach is' to develop the theory 

using an intrinsic coordinate system. The strains 

obtained from such a description of motion are the 

Green-Lagrange strains. In a displacement finite 

element model for generally curved thin beam and shell 

type elements such a coordinate system can be defined 

accurately using the constraint technique. In the 

constraint'technique geometric relations are used to 

correctly define the shape of the element and the 

variation of the local variables. In fact the technique 

can be used to develop completely conforming elements 

if required. 

A further point of importance is the definition of the 

stress-strain relations to be used in the virtual work 

expression in a Total Lagrangian friLme of reference. 

This is necessary when attempting to obtain the same 

results for both stresses and displacements using either 

the Total Lagrangian or Updated Lagrangian formulation. 

Taking into account the added numerical effort required 

to calculate the shape function array for elements based 

on the constraint technique, the Total Lagrangian 

formulation will be numerically more effective than the 

Updated Lagrangian formulation. The displacements of 

a structure, which have been obtained using an objective 
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theory as a basis for the formulation, will be exactly 

the same using either formulation. For the calculation 

of stresses, however, for large rotation large curvature 

problems a difference in the response obtained using 

either formulation can be expected unless appropriate 

material constants are used. Hence, a transformation 

of the modulus matrix will be necessary when a Total 

Lagrangian formulation is used. To avoid this and at 

the same time reduce the computer time required for 

solution, a combined Total plus Updated Lagrangian 

formulation can be used. 

Alternatively, the conventional or geometric measure 

of strains can be used since the stresses calculated 

using these measures of strain can be assumed to be 

equal to the true stresses if the strains are small,. 

Thus the nominal stress and the conventional strain can 

be used as work conjugate variables in the virtual work 

equation. Such an approach is equivalent to assuming a 

strain energy function in terms of the Green's'deforma- 

tion tensor and satisfies the requirement of frame 

indifference (37). For beam and shell type elements 

this approach. takes into account the effect of curvature 

on the axial force thus resulting in true axial force 

values. The approach is general, however, and may be 

used in continuum mechanics based formulations (see 

Appendix II). 
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The objective ofthis thesis is: 

1. To develop a small strain large rotation exact 

theory for curved two-dimensional beam type 

structures in Total, Updated and Combined Lagrangian 

frames of reference based on the Green strain 

measure. 

2. To develop a general incremental formulation for 

geometric nonlinearity based on the conventional 

definition of strains as the change in length 

per unit initial length and the change in the right 

angle, and to show the capability of this theory to 

evaluate correctly the stresses using the Total 

Lagrangian formulation. 

3. To demonstrate the possibility of obtaining non- 

conforming and exactly conforming curved elements 

using the constraint technique. 

4. - To examine the effectiveness of these elements 

in correctly dealing with the objective-theory 

developed with a special reference to the convergence 

requirements. 

5. To present comparisons between the Lagrangian 

formulations developed and hence decide on the 

numerical effectiveness of either formulation. 
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6. To examine the possibility of extending the small 

strain large rotation theory to three dimensions 

for thin curved beam elements including material 

nonlinearity and hence develop thin generally 

durved eccentric three-dimensional beam elements 

using the constraint technique. Such elements 

would be suitable for use as stiffeners. 

Outline of Thesis: 

Sections 1.3 to 1.5 of this chapter give a brief general 

account of the conditions and difficulties encountered 

in developing amllstrain large rotation finite element 

formulations based on beam type elements and suitable 

for use in the analysis of stiffened shell construct_4ons. 

The remedies suggested in the literature to overcome 

these difficulties are also outlined. In Section 1.6 

a summary of the mathematical formulation based on the 

Lagrangian description of motion is given. 

Chapter 2 presents the exact two-dimensional large 

rotation theory for thin curved beam elements. Incremental 

equilibrium equations which are based on four alternative 

descriptions of deformation are given and these are: 

i. Total Lagrangian formulation based on the Green 

strain measure (TLG). 
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Updated Lagrangian formulation based on the Green 

strain measure (ULG). 

Combined Total and Updated Lagrangian formulation 

based on the Green-strain measure (UTLO). 

iv. Total Lagrangian formulation based on the 

conventional strain measure (TLC). 

Chapter 3 deals with the development of curved two- 

dimensional beam elements which can represent the theory 

presented in Chapter 2. The elements are formulated 

using the constraint technique. 

Chapter 4 examines the convergence requirements, gives 

an assessment of the performance of the elements and 

demonstrates the possibility of obtaining exactly the 

same results for both displacements and stresses, using 

the alternative descriptions of deformation. The results 

obtained are compared with published results. 

Chapter 5 presents the three-dimensional large rotation 

theory which is an extension of the two-dimensional 

theory. Neglecting distorsion, the theory exactly 

represents the deformation of a beam of eccentric solid 

rectangular cross-section. Material nonlinearity based 

on the von-Mises yield criterion and the Prandtl-Reuss 

flow rule with isotropic hardening is also included in 
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the formulation, For beams under torsion, however, the 

material nonlinearity presented is only correct for 

concentric square cross-sections. 

Chapter 6 presents the formulation and application of 

the-three-dimensional thin eccentric beam elements. 

The elements are developed using the constraint technique. 

The applications presented are intended to show the 

excellent capabilities of the theory and elements which 

have been developed. 

Chapter 7 presents general discussions and conclusions 

with some suggestions for possible future work. 

One of the advantages of the finite element method is 

that once a general purpose program comprising input., 

assembly and solution facilities is written, it becomes 

a relatively simple task to add new elements. One such 

very efficient general purpose finite element program 

is LUSAS (38,39). The elements and theory developed 

were implemented in the LUSAS system. In this presenta- 

tion, however, attention is focused on operations to be 

performed on a single element. 
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1.3 LARGE DEFORMATION THEORY 

The nonlinear equilibrium equations for almost any 

structure can be obtained using a variational principle 

and such an approach is basic to the finite element 

formulation C10,11). Mainly there are three types of 

finite element formulations: 

a) The displacement method: based on minimizing the 

total potential energy where the displacements 

are the unknowns. 

b) The equilibrium method: based on minimizing the 

complementary energy where the stresses are the 

unknowns. 

c) Mixed finite element models: based on the Riessener 

variational principle where both displacements 

and stresses constitute the unknowns. 

The displacement finite element method is the most 

widely used because of its simplicity and sound theoretical 

basis. The virtual work principle, which is suitable 

for both linear and nonlinear problems, is the basis of 

the finite element displacement formulation (10,11). 
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1.3.1 Geometric Nonlinearity 

The virtual work principle can either be formulated in 

terms of variables in the deformed configuration or in 

terms of variables referred to the undeformed 

configuration. For the first approach the work conjugate, 

variables are the true Cauchy stresses and the strains 

referred to a spatial coordinate system and measured 

in the deformed configuration. For the second approach 

the work conjugate variables are the second Piola- 

Kirchhoff stresses and the Green-Lagrange strains 

referred to referential or material coordinates in the 

undeformed configuration (37). These alternative 

descriptions of deformation are termed Eulerian or 

Lagrangian respectively. The Kirchhoff stresses and 

the Cauchy stresses are related by the ratio of the 

volume in the. reference state to the ratio of the volume 

in the current state (12,40). Thus, for small strains 

these stress measures are equal. 

1.3.2 The Eulerian Formulation 

The virtual work principle is written in terms of the 

unknown deformed configuration for the Eulerian 

formulation. Thus a solution is only possible by 

assuming that the reference configuration instantaneously 

coincides with the current state. McMeeking and Rice 

(401 have presented an Eulerian formulation based on 

Hill's variational principle. The special feature of 
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their formulation is the additional term in the initial 

stress stiffness matrix. The term is a function of the 

strain matrix and the initial Cauchy stresses and results 

from relating the nominal stress to a spin-invariant 

stress rate. The authors also point out, however, the 

possibility of obtaining the same results when work 

conjugate measures of stress and strain are used in the 

virtual work equation. 

1.3.3 The Lagrangian Formulation 

The Lagrangian approach is more suitable for use in 

continuum mechanics since one can always assume the 

existence of an undeformed configuration for many 

structures. An important point to note here, however, 

is that the equilibrium equations while written in the 

undeformed configuration must be satisfied in the deformed 

configuration C371. This implies that the stresses are 

measured relative to material coordinates in the deformed 

configuration. Also, their directions are always normal 

to the cross-sectional areas in the deformed configuration, 

to which the respective axes that the stresses are 

referred to are normal in the undeformed configuration. 

Hence, if a stress-strain relationship is to be writteny 

either the stresses, which are measured in the deformed 

configuration, must be referred back to the undeformed 

configuration or the strains must be referred to the 

deformed configuration so that both tensors in the 
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virtual work principle are referred to the same axes. 

This fact is basic to all the difficulties in the geometric 

nonlinear formulations presented in the literature. 

Thus, in the Lagrangian description of deformation two 

alternatives are possible in order to relate the work 

conjugate stresses and strains. In the first, which 

is known as the Total Lagrangian approach the stresses 

must be referred back to the undeformed configuration. 

This requires the'use of appropriate material constants. 

For finite elasticity Oden (12,41) has used a strain 

energy function to define the stress-strain relations. 

Hibbitt et al (42) have given the transformation necessary 

for the constitutive relations for metal structures. This 

is obtained by adopting a linear relation between true 

stress and strain increments which is necessary because 

the measure of stress and strain increments must be 

independent of the current rate of rigid body motion 

when using the Prandtl-Reuss flow rule (defined in true 

stress vs logarithmic strain) together with the von Mises 

yield criterion (43). Hence, the transformation of the 

modulus matrix is necessary in a Total Lagrangian 

formulation. In almost all the Total Lagrangian 

formulations presented in literature, however, this 

transformation is neglected (10,15,20,44,45). 
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The second approach using the Lagrangian formulation 

refers the strains to the deformed configuration by 

considering that this configuration coincides 

instantaneously with the current state C20,44 - 47). 

This approach, termed the Updated Lagrangian, is 

equivalent to the Eulerian formulation. Hence, for 

the Updated Lagrangian formulation direct proportionality 

between the stresses and strains in the virtual work 

principle can be assumed for large rotation problems 

without introducing errors. 

Thus, provided that appropriate material constants are 

used the results obtained using either the Total 

Lagrangian or the Updated Lagrangian should be identical. 

The question, which formulation to be used, now arises. 

An answer to this is that the. choice of method should 

only depend on the relative numerical effectiveness 

and ease of implementation of either method. Clearly 

the computer time required for an Updated Lagrangian 

solution will be considerably more than that required 

for a Total Lagrangian solution. This is basically due 

to the necessity of recalculating the element shape 

functions each time the geometry is updated. Bathe 

and Bolourchi (20) have concluded that for three- 

dimensional beam elements the Updated Lagrangian 

formulation is numerically more effective than the 

Total Largangian formulation. This is because their 

Total Lagrangian formulation requires a transformation 
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of the interpolation functions as a consequence of 

the definition of the axes they use. 

Most researchers agree that the difference between the 

Total and Updated Lagrangian results, if any, will 

be due to the choice of material constants (15,20,44, 

45). It has been previously stated that the modulus 

matrix transformation required by the Total Lagrangian 

formulation is always neglected. This approximation is 

valid for small strains and small rotations. For large 

rotations and/or plastic deformations, however, such 

an approximation is invalid and large errors will result 

if the transformation is neglected (42). The approxima- 

tion amounts to assuming direct proportionality between 

the 2nd Piola-Kirchhoff stresses and the Green-Lagrange 

strains in the virtual work equations. Thus, neglecting 

the transformation, the Total Lagrangian formulation 

while giving correct displacement estimations for large 

rotation problems will result in the wrong stresses. 

This is the only serious disadvantage of the general 

Total Lagrangian formulation. The remedy to this 

problem is provided in this thesis (see Section 1.3.5). 
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1.3.4 Large Deformation in Beam and Shell Type 

Problems 

The continuum mechanics nonlinear Green strain- 

displacement relations are exact (37). For beam and 

shell type problems approximations, such as the 

Kirchhoff hypothesis, are used to describe the deformation 

at a general point within an element in terms of the 

deformation of the neutral surface. This introduces 

curvature terms which can be extremely complex. In fact, 

one. of the main difficulties in dealing with beam and 

shell type problems is accounting for the effects of 

curvature. In a finite element context this difficulty 

is Pronounced for elements which include rotations as 

degrees of freedom in the non-conservative nature of 

moments which are referred to fixed axes (48). This 

is due to the fact that finite rotations referred to 

fixed axes are not vectors (37) and hence not commutative 

even for small strain formulations (see Figure 1.1). 

Thus, as has been stated by Argyris et al (48), the 

strains must be expressed as at least second order 

functions in the non-commutative nodal rotations. 

Frey and Cescotto C27) and Surana (491 have eliminated 

the restriction on rotation magnitude by defining the 

displacement field as a nonlinear function of the nodal 

rotations and basing the derivation of the element 

properties on this displacement field (Figure 1.3). 
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Argyris et al (48) have adopted the "natural method" 

where separate rigid body displacements and natural 

deformations are used for the description of the 

current state of the finite element. Thus, to avoid 

the non-commutative nature of finite rotations referred 

to fixed axes they use sbmi-tangential rotations, which 

correspond to semi-tangential torques (Figure 1.2) and 

are commutative even when large. 

Bathe and Bolourchi (20) have used Euler angle transfor- 

mations (Figure 1.5) to take into account the effect 

of finite rotations. This method has some serious short- 

comings, however, (21) and these include: 

i. The Euler angle transformation is not linearly 

dependent for all values of Euler angles. 

The generalised moments corresponding to Euler 

angles cannot be easily interpreted in a physical 

sense. 

fli. The transformations are complex and computationally 

demanding since they involve many trigonometric 

functions. 
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11, ance, as an alternative Belytschko et al C21) have used 

a rigid-convected or a co-rotational coordinate 

formulation, where each element is associated with a 

cartesian coordinate system that rotates and translates 

with the element (Figure 1.4). Slich a formulation 

involves an approximation, however, because it places 

a limitation on the amount of rotation within the 

element which might be large (12,42). 

Epstein and Murray (25) have presented a Total Lagrangian 

formulation for straight two-dimensional beam elements. 

using convected coordinates. The formulation is exact 

and results in an objective measure of curvature. 

Taking into account the fact that during rigid body 

motion a finite element remains unchanged with respect 

to a following (convective) coordinate system (48), it 

is possible to extend this formulation to curved two- 

and three-dimensional beams. This can be achieved by 

describing the deformation in terms of an intrinsic 

coordinate system for each material point within the 

finite element. In practice this means defining these 

coordinates at each integration point in the element. 

This, is the approach adopted in this thesis. 
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Epstein and Murray (251 have also stated the importance 

of the additional term, which includes a second order 

derivative of the in-plane displacement, in the curvature 

definition. They have shown that neglecting this term 

results in a relative error in curvature which is equal 

to the square of the sine of the angle of rotation. 

Hence, it is necessary to retain this term for large 

rotation and curvature problems. 

The main disadvantage of this formulation is the 

assumption of direct proportionality between the 

generalised strains and the stress resultants in the 

virtual work equation. If this assumption is not made, 

the formulation results in unsymmetrical incremental 

equations. In effect the coupling between axial force 

and bending moment, and hence the effect of the 

curvature on the axial force, is neglected. This 

approximation is the same as neglecting the modulus 

matrix transformation required by the general Total 

Lagrangian formulation (Section 1.3.3). 

Hibbitt et al (28) have presented a hybrid small strain 

large rotation beam element formulation with a hermite 

cubic interpolation of position of a point and a 

quadratic interpolation of the axial force. By 

regarding the axial force as an independent variable 

they formulate an augmented virtual work equation 

based on the first order bending theory. Using the 
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axial force and bending moment values obtained from 

this principle the true axial force and bending moments 

are then calculated, thus taking into account the 

effect of curvature on axial force. Hence, the modifica- 

tion needed to obtain the true axial force is still 

not included in the principle. It is apparent from 

this formulation, however, that when calculating the 

strains incrementally the strain increments must add 

up to the total strain values obtained by substituting 

the total displacements in the strain displacement 

relations. In the displacement finite element 

formulation this can be achieved by using the incremen- 

tal strains (44) rather than the total differential 

of strains (which is required in forming the tangent 

stiffness matrix) to calculate the stress increments. 

1.3.5 The Geometric or Conventional Strains 

It has been previously stated that the material strain 

measure, the Green strain, is to be used in the 

Lagrangian formulation. The Green strain is a function 

of the stretch ratio C37,46). To obtain exact strain 

displacement relations for beam and shell type 

structures Donnell (50) has used the geometric or 

conventional strains namely the unit stretch and angle 

change. To obtain explicit relations for strains in 

terms of displacement gradients he has used a binomial 

series expansion neglecting third and higher order 

terms in displacement gradients. Similar strain- 
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displacement relations can be obtained for flexible 

bodies such as plates and shells by expressing the 

Green strains in terms of deformation and rotation 

tensors and then neglecting second order terms in Green 

strain measures of the middle surface. Oden (12) has 

stated that this results in an improvement of the 

performance of plate and shell type elements. Thus 

the possibility of using the conventional strains in 

their exact form (37) and nominal stresses as work 

conjugate variables in the virtual work principle for 

beam and shell type elements needs to be considered. 

A total Lagrangian formulation obtained in this manner 

results in symmetrical incremental equations and true 

stress resultant values. 

1.3.6 Material Nonlinearity 

The small displacement nonlinear material analysis of 

structures using the finite element method is well 

established (10,51 - 54). The basic ingredients of 

the analysis are C45): 

i. the elastic stress-strain relations, 

ii. a yield condition that specifies the state-of 

stress corresponding to the start of plastic 

f low, 
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iii. a flow rule that relates plastic strain 

increments to the current stresses and stress 

increments subsequent to yielding, 

iv a hardening rule that specifies how the yield 

condition is modified during plastic flow. 

For metal type structures assuming isotropic hardening 

the von-Mises yield criterion and the Prandtl-Reuss 

flow rule are commonly used (33,42,45). An 

approximate yield function based on stress resultants 

and plastic curvature is used by some investigators 

in the analysis of plates and stiffened plates 

(6,7,55,56). 

The Prandtl-Reuss flow rule is defined in terms of the 

true stress and logarithmic strain. The stress and 

strain increments used in the rule must be independent 

of the current rate of rigid body motion (42,43). 

For large rotation problems it is necessary to adopt 

" frame indifferent measure of variables. Once such 

" measure is adopted, for example by the use of a 

convective coordinate system, the same formulation for 

the small displacement analysis can be used (33,42). 

The combined geometric and material nonlinear analysis 

is best dealt with by the use of the double loop 

iteration subincremental technique thus relaxing the 

limitation on load increment size (4,, 5,333. 
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1.4 THE INCREMENTAL EQUILIBRIUM EQUATIONS 

The nonlinear equilibrium equations are obtained by 

substituting the finite element representation of 

strains and displacements, in terms of the nodal 

degrees of freedom, in the virtual work expression. 

To obtain a solution it is necessary to write these 

equations in an incremental form adopting an adequate 

solution procedure. 

1.4.1 ' Solution Procedures (57 - 60) 

Basically there are two classes of solution procedures, 

namely, methods which are incremental in nature and 

which do not necessarily satisfy equilibrium and 

iterative methods which tend to follow the equilibrium 

path. Examples of the first class are (57): 

1. The pure incremental approach where the equations 

are assumed to be linear within each increment 

with no correction applied to satisfy equilibrium. 

The main advantage of this approach is the ease 

of application. The solutions obtained by this 

method tend to drift from the true solution. 
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2. The perturbation method where the displacements 

are expanded in a series form with respect to an 

incremental load parameter at some equilibrium 

state. Depending on the number of terms 

retained in the series, several sets of linear 

equations are formed and solved. Errors resulting 

from this approach tend to accumulate and the 

solution drifts from the true solution. The amount 

of drifting is dependent on the load increment 

size and the number of terms retained in the 

series. 

3. The initial value formulation in which the 

displacements are written as functions of a load 

parameter. By differentiating the equilibrium 

equations with respect to this parameter, a set 

of differential equations, in terms of displace- 

ment rates with respect to the load parameter and 

normalised generalised forces, is obtained. 

Hence, the displacement values are calculated 

by numerical integration from a known initial 

displacement value. Using Euler's method for this 

integration results in the pure incremental 

approach stated above. More accurate integration 

schemes such as the Runge-Kutta method (58) can 

be used to reduce drifting. 

I 
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There are mainly two versions of iteration techniques 

and these are the direct iteration and the Newton- 

Raphson methods. In the direct iteration technique, 

starting from an initial estimate of displacements, 

the nonlinear effects are calculated and an improved 

solution of a linear set of equations obtained. This 

solution is then back-substituted into the nonlinear 

equations and the iteration continued until convergence 

of successive iterations is obtained. The success of 

this procedure depends primarily on the initial estimate 

of displacements. The serious disadvantage of this 

method is that it will only converge for moderately 

nonlinear problems. 

The most widely used iteration solution technique is the 

Newton-Raphson method (10,28,61). This is because 

it is extremely accurate and converges quite rapidly. 

The main disadvantage of this method is the excessive 

computational effort required since the stiffness 

matrix is formed and inverted. at each cycle of iteration. 

Hence, an alternative modified Newton-Raphson method 

may be used (10,44,45). In this method the stiffness 

matrix is held constant for a number of iterations and 

then updated after the convergence rate has begun to 

deteriorate. Various acceleration procedures can also 

be used to ensure and accelerate convergence C10,59,60). 

The Newton-Raphson method has been adopted in this 

thesis. 
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1.4.2 The Tangent Stiffness Matrix 

Using the Newton-Raphson method, a Taylor's series 

expansion of the equilibrium equations about an 

equilibrium position, neglecting second and higher 

order terms in displacement increments, gives the 

incremental equations as linearised functions of the 

displacement increments (10,49,61,62). Once the 

linearised equations are solved for the increments the 

total displacements are obtained as the accumulation of 

the increments. Using the total displacements the 

gradient of-the equilibrium equations, which is the 

tangent stiffness matrix, and the out-of-balance forces, 

or residuals, are recalculated, thus giving a new set 

of linearised equations. This iteration procedure is 

repeated till a specified convergence limit is achieved. 

The convergence control criteria commonly used are (52): 

1. The maximum absolute residual limit. 

2. The limit for the norm of the residual forces. 

3. The limit for the norm of the displacement 

increments. 

To obtain an expression for the external work in the 

virtual work equation an assumption has to be made 

regarding the effect of deformation on the generalised 

forces. These forces may change in both magnitude 
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and direction as the body deforms and in general must 

be expressed in terms of the displacements and their 

gradients (12). For small strains and small rotations 

it is reasonable to assume that these forces are 

conservative. For large rotations the effect of 

deformation on the generalised forces must be taken 

into account C42). This is particularly important in 

the case of follower loads such as pressure loads. 

Inclusion of this effect results in a slight modification 

in the incremental equations in the form of an additional 

contribution to the tangent stiffness matrix, generally 

known as the load correction matrix (41,42). The load 

correction matrix is however, usually unsymmetrical. 

Frey and Cescotto (271, have presented a study of the 

effects of Including and neglecting this matrix. This 

contribution is usually negelcted (44,45) due to the 

difficulties in dealing with unsymmetrical matrices. 

Such an approximation amounts to assuming that the 

externally applied loads are conservative. Bathe et 

al C-44) and Epstein and Murray (251, while neglecting 

the unsymmetrical contribution to the tangent stiffness, 

have presented a modification to the load vector for 

deformation dependent loads. This is the'approach 

which has been followed in this thesis. 
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The form of the tangent stiffness matrix is now well 

established (10,15,42,44,45,61). For the Total 

Lagrangian formulation the tangent stiffness matrix 

is composed of three matrices. These are the 

infinitesimal strain, the initial displacement and 

the initial stress stiffness matrices. For the Updated 

Lagrangian formulation, assuming the reference 

configuration instantaneously coincides with the 

current configuration, the tangent stiffness matrix is 

composed of two matrices, the infinitesimal strain 

stiffness matrix and the initial stress stiffness 

matrix (15,20,44,45,46). 

The form of the initial stress stiffness matrix is, 

however, still a matter of controversy. Frey and 

Cescotto (27) and Surana (49) by using a displacement 

field which is a nonlinear function of the nodal 

rotations have obtained a Total Lagrangian formulation 

in which the initial stress stiffness matrix contains 

two additional terms. It has been pointed out previously 

that such a displacement field description is necessary 

to take account of the noncommutative nature of. finite 

rotations referred to fixed axes. Thus, once a measure 

of variables which is frame indifferent is adopted, 

say by using a convective coordinate system, these 

modifications to the stiffness matrix will not be 

needed. McMeeking and Rice (401 have presented an 

Eulerian formulation (which is equivalent to the 
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Updated Lagrangian formulation) in which the initial 

stress stiffness matrix includes an-additional term 

resulting from the use of a frame indifferent stress 

rate. A similar additional initial stress stiffness 

matrix has been obtained in this thesis in the Total 

Lagrangian formulation based on the geometric strains. 

1.5 ELEMENT GEOMETRY AND DEGREES OF FREEDOM 

The requirements for monotonic convergence of the 

finite element idealisation are that the elements 

should be complete and compatible (10,11). For the 

completeness requirement the displacement functions 

must be able to represent rigid body displacements 

and constant strain states. This is -due to the fact 

that as the number of elements is increased the state 

of strain within each element approaches a state of 

constant strain. The compatibility requirement is 

essentially that the displacements within elements 

and across element boundaries are continuous so that 

no gaps may develop between elements. As a consequence 

of this, the highest order displacement derivative 

present in the virtual work expression must be finite 

thus requiring the continuity between elements of the 

derivative one order lower. If the elements are only 

complete and not compatible i. e. nonconforming the 

analysis result may still converge with no guarantee 

of monotonic convergence. 
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originally finite element formulations were based on 

using generalised coordinates in defining the 

approximating polynomials which is known as generalised 

coordinate finite elements (11,14). The major 

difficulties encountered were the fact that these 

generalised coordinates are functions of the local 

coordinates, and hence difficult to define for curved 

elements, and the need for inverting the gene. ralised 

coordinate matrix, which relates the variables to the 

coordinates, with no guarantee of the existence of 

an inverse. Another factor of importance, especially 

for beam and shell type elements, is that the displace- 

ments of the element need to be independent of the 

orientation of the local element coordinate system 

i. e. geometric invariance or spatial istropy (11). 

Generally a displacement model is geometrically 

invariant if the same order polynomial terms are used 

for all displacement components with appropriate 

interchange of coordinates. For some elements it is 

difficult to obtain spatially isotropic generalised 

coordinate formulations. 

These difficulties have enhanced the development of 

element formulations in which interpolation functions 

are used. These developments lead to the formulation 

of the more general and versatile isoparametric finite 

elements and associated element families. An essential 

ingredient of the isoparametric formulations is the 
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necessity of evaluating all the integrals within the 

element using numerical integration. The most widely 

used numerical integration technique is the Gauss 

quadrature (10,11). 

There is no need for the inversion of a matrix in the 

isoparametric element formulation since both geometry 

and approximating function are interpolated using the 

same shape functions. An important concept to consider, 

specially for beam and shell type problems, is 

interpolation directionality (20). This makes it 

necessary to ensure that the interpolated nodal 

variables and coordinates are both referred to the 

same coordinate system either local or global. For 

the isoparametric elements this results in no difficulý- 

ties, since it is always possible to interpolate the 

known global nodal coordinates and the unknown global 

nodal variables using the same shape functions. The 

required variables can then be obtained by transformation, 

whenever that is necessary [10,49,61]*. Thus the 

isoparametric element formulation can be understood as 

a means of defining material coordinates in the global 

axes-directions at each of the integration points, and 

this is a factor which contributes to their success in 

both linear and nonlinear analyses [10,11,44,52]. 
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1.5.1 Nonconforming Elements 

The basic problems when using isoparametric elements 

to analyse beam and shell type structures are two fold. 

Firstly excessive shear strain energy is stored in 

the element and secondly as the element becomes 

thinner the stiffness coefficients corresponding to 

the transverse displacement degrees of freedom are 

considerably larger than those corresponding to the 

longitudinal displacements which results in numerical 

ill-conditioning (10,11). 

To eliminate numerical ill-conditioning superparametric 

elements, wherein a linear variation of the displacement 

in the thickness direction is assumed, are used (10,61). 

Such elements, however, while resulting in an 

improvement., still suffer from aspect ratio problems 

(49,61). Thus, the use of relative degrees of 

freedom or matrix conditioning schemes may be necessary 

(11,61). As an alternative one of the following two 

approaches has been suggested: 

i. The use of degenerate isoparametric elements, 

wherein the strain in the transverse direction 

is neglected and, as a relaxation to the 

Kirchhoff hypothesis, plane sections are 

assumed to remain plane, but necessarily 

normal to the middle surface (10,16,36). 
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ii. The use of element models based on indppendent 

interpolation for the displacements and 

rotations (11,17,20). 

For beam type problems-the second approach is preferred 

due to the simplicity of such element models and their 

ability to reproduce shear deformation. 

The performance of the independent interpolation 

models, wherein low order interpolation functions 

are used is known to degenerate rapidly as the beam 

becomes thin due to an overestimation of shear 

stiffness (10,11). Also, inextensional deformations 

are poorly represented by these models (17). Hence, 

the following actions are proposed as a remedy to these 

difficulties: 

a) The use of substitute shape functions which smooth 

appropriate derivatives (10,63). 

b) The use of reduced integration where a lower 

order integration rule is used for the transverse 

shear strain energy and for the extensional energy 

in the case of inextensional deformation 

(10,17,64). 
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C) The use of a penalty function approach, wherein 

conditions of zero or negligible transverse snear 

and extensional strains can be treated as the 

limiting cases when the penalty numbers reach 

infinity. Reduced integration is required to 

achieve the condition of zero or negligible 

transverse shear and extensional strains in the 

numerical implementation of penalty finite 

elements (10). 

d) The direct application of constraints in the 

generation of incompatible elements. For thin 

elements internally applied constraints enforcing 

the Kirchhoff conditions at certain points within 

the element result in effectively excluding shear 

strains (10,35,38,65,66). 

e) The use of mixed finite element models with 

independent interpolation for displacements and 

stresses (17). 

For plate bending problems the use of reduced integration 

has been shown to be equivalent to the application of 

discrete Kirchhoff constraints or the use of smoothed 

derivatives (10,63). Reduced integration or derivative 

smoothing often result in element forms which are 

equivalent to those which can be derived by hybrid 

formulations (10,17). 
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T'he direct application of discrete constraints has 

been shown to be very effective. In fact, some of 

the most successful shell and plate bending elements, 

such as the SEMILOOF shell element (35) and the ISOFLEX 

plate bending element (38), have been developed using 

this technique. In the constraint technique, geometric 

relations are used to eliminate relevant degrees of 

freedom with the added advantage of there being no 

need to store the eliminated variables. Such an 

interDretation of the constraint technique leads to 

the introduction of a "second generation of 

isoparametric elements" with the possibility of 

developing compatible thin shell and beam elements 

such as the ISOBEND element presented by Irons (35). 

In this element a side is treated as a thin beam, thus 

imposing on the midside of a shell element the 

displacement and the slope characteristics of a thin 

beam. 

The constraint technique can also be used to avoid the 

problem of interpolation directionality in curved beam 

and shell type elements. It has been stated by Bathe 

and Bolourchi (20) that because of interpolation 

directionality the-Hermite interpolation functions, 

which are necessary for compatibility in beam elements, 

can be correctly used only for straight elements. In 

the constraint technique, starting with an isoparametric 

type interpolation of the global coordinates and 

37 



variables, it is possible to define local material 

coordinates and, fonn constraint equations. The local 

coordinates correctly follow the curved element 

geometry. The constraint equations are essentially 

geometric relations in terms of the local variables 

at any point within the element. These equations 

relate the required local variables to the interpolated 

global variables. An additional advantage of this 

technique is, that once a shape function array contain- 

ing all the displacements and derivatives required for 

the calculation of element characteristics is written 

in terms of the final or "wanted" variables, no 

transformation either from local to global of the 

stress-strain relations or from global to local of 

displacements and/or their derivatives, required by 

some element formulations (10,49,61), would be 

necessary. The constraint technique has been used 

in developing the elements presented in this thesis. 

1.5.2 Convergence and the Patch Test 

The elements developed using the constraint techqique 

are usually nonconforming thus violating the require- 

ment of compatibility necessary for monotonic 

convergence (35,38,66). Such elements can be 

understood as being based on a modified virtual work 

principle thus making them of the mixed finite elements 

class (11). It is necessary, however, to ensure that 
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the essential ingredients of completeness are not 

lost for convergence of analyses by such elements. 

Hence, it is important that an assemblage of 

incompatible elements can represent constant strain 

conditions. This completeness condition on an element 

assemblage is achieved by using the patch test 

(10,11,38). 

In a geometrically nonlinear context Oden (41) has 

stated that the convergence criteria are the same as 

those required for linear solutions, namely, complete- 

ness and compatibility. For beam type problems, 

however, Crisfield, (6,56)-has used smoothed derivatives 

in the nonlinear relations only as an extension of the 

patch test. Thus, while it is possible to obtain 

complete compatibility using the constraint technique 

it might be of advantage in some cases to use 

nonconforming elements. 

1.5.3 Displacement Approximation within Elements 

In linear elastic two-dimensional finite element 

analysis using beam elements the compatibility 

criterion requires continuity of the displacements 

and the first derivative of the transverse displace- 

ment only. Hence, a linear variation of the inýplane 

displacement and a cubic variation of the out-of- 

plane displacement will be sufficient. It has been 
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stated by Dawe (22,23,24), Popov and Sharifi (67) and 

Crisfield (56) that such a displacement variation 

does not accurately represent the inter-element 

equilibrium of forces. Dawe (23) has shown that there 

is no advantage in increasing the order of the out-of- 

plane displacement unless the variation of the in-plane 

displacement is similarly increased. 

An important consideration for beam elements with 

eccentricity is the elimination of the error that 

results from an incompatibility in the in-plane 

displacements of the reference line and the centroid 

of the cross-section (68,69). Thus, the variation of 

the in-plane displacement must be at least of the same 

order as that of the gradient of the out-of-plane 

displacement. Hence, it is necessary in such a case to 

use a parabolic-cubic variation of displacements. 

It has been pointed out earlier that as a result of 

adopting--a frame indifferent measure of curvature the 

second order derivative of the in-plane-displacement 

-is included in the nonlinear curvature term (35). 

For problems where both rotation and curvature are 

large, thus increasing the importance of this additional 

term, the continuity of the first derivative of the 

in-plane displacement will be necessary and a cubic- 

cubic variation of the displacements must be used. 
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Since the first derivative of the in-plane displacement 

is used as a measure of strain, such a displacement 

variation may sometimes be undesirable. 

In the case of three-dimensional beams, two main 

additional factors appear and these are, the non- 

commutative nature of finite rotations and torsion. 

The noncommutative finite rotations are avoided by 

using a convective coordinate system. For solid cross- 

sections the linear st. Venant torsion (70,71,72) is 

usually assumed and the continuity of the angle of 

twist is necessary for compatibility (64,65). The 

effect of distorsional warping for thin walled beams 

is effectively treated using Vlasov's theory (73,74, 

75), in which case a continuity of at least the-gradient 

of the angle of twist will be necessary (26,76,77,78). 

By assuming that the elements are of solid rectangular 

cross-sections the effect of distorsion can be neglected 

and the assumption that plane sections remain plane 

used C71,73,741. Thus, thin walled beams-can be 

treated approximately'as a combination of eccentric 

beam,. elements of solid cross-sections with a common 

reference nodal line C333. 
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1.6 SUMMARY OF LAGRANGIAN FORMULATION 

The principle of of virtual work is written in terms 

of the true Cauchy stresses a and strains e as: 

6e Ta dv = SN ... 0* .. 0 0*. .. 0 .... 

where v is the volume in the deformed configuration 

and 6W is the virtual external work. 

(1.1) 

In a Lagrangian coordinate system the principle is 

defined in terms of the 2nd Piola-Kirchhoff stresses 

St and the Green-Lagrange strains c1t with reference 

to the configuration at time t as 

ETS dV 6W ... ... ... 
(1.2) 

Vtttt 

In a finite element displacement formulation the Green- 

Lagrange strains are defined in terms of the total 

displacements ut as 

ro 
iBt +1B.. 00..... 0.. L(Ut)] Ut 

Thus the variations in strain 6c I can be defined as t 

6 E! t= 
[B 

t+ 13L(ut)] 614t =B 6u t*****,, ** 

(1.3) 

(1.4) 
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The external virtual work is written in terms of the 

generalised nodal forces R and the virtual nodal 

displacements 6u t as 

6w 6tt TR... 
... 

(1.5) 
t 

Substituti ng from (1.4) and (1.5) into (1.2) gives the 

nonlinear equilibrium equations as 

%rý 
ý= 

jVt 
BTSt dV t-R=0... ... .. G 0.0 

(1.6) 

Using the Newton-Raphson method a Taylor's series 

expansion of (1.6) about'an equilibrium position 

* i+1 
gives 

IP 
i+l 21 Au' au t 

Neglecting second and higher order terms in displacement 

increments in (1.7) gives incremental relations of the 

form 

a lp 
ii 

yu- Aut =-*... ... ... ... ... 

where -! 
A is the tangent stiffness matrix and au 

i is the vector of residual nodal forces. 
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EqUation (1.8) can be solved for the displacement 

increments. Au 1 and the total displacements obtained t 

as 

u 
i+1 

=ui+ Au i ... ... ... ... ... (1.9) 
tt 

By assuming that the applied loads are conservative, 

the tangent stiffness matrix is defined from (1.6) as 

KT =-- 
gý 

= 
aBT S dV +jBT 

'Zýt dV (1.10) 
au v au ttvt 

also assuming proportionality between stresses 

and strains, the stresses are defined in terms of 

the total disDlacements as 

D ct D [Bt +1B (1.11) t2 L(ut)] Ut 

Hence, the variations in stress are defined from 

(1.11) and (1.4) as 

6s t=D 6cý =DB 6u t **, *11 *** 1*1 

The modulus matrix D in (1.12) can be modified to take 

account of material nonlinearity as is shown in 

Section 1.6.3. 
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1.6.1 The Total Lagrangian Formulation 

Referring all the variables to the undeformed 

configuration at time 0, the strain displacement 

matrix B (Equation (1.4)) is given by C. 

B=B0 -+: Bt (u 
0) ... ... ... ... ... (1.13) 

I 

The tangent stiffness matrix is defined from (1.10) 

and (1.12) as 

KT = 
JD B dV + 

aB TS 
dV (1.14) 

v au 00 

The first term in (1.14) represents the infinitesimal 

strain and the initial displacement stiffness matrices 

and the second term is the initial stress stiffness 

matrix. 

The incremental strains are defined from (1.3) and 

(1.9) as 

AC' EB +Bi)+ -1 Bi )l {Auil 
00 L(uo 2 L(Auo 0 

from which the stress increments can be obtained as 
.1 

Asi DAci... ... .... ... ... ... (1.16) 
00 
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and the total stresses are defined as 

S 1+1 Si+ AS i ... ... ... ... ... (1.17) 
000 

Hence, the residuals are obtained from (1.17). (1.13) 

and (1.6) as 

BT Si+l Rv0 dVo (1.18) 

1.6.2 The Updated Lagrangian Formulation 

With reference to the configuration at time t the 

strain displacement matrix is given from (1.4) by 

B=Bt+B L(Ut) 

Assuming that the reference configuration instantaneously 

coincides with the current configuration, the tangent 

stiffness matrix is given from (1.10) and (1.12) as 

KBTDB dV +V 3BT St dVt (1.20) T 

IV 

ttttt 
au 

wherein the initial displacement matrix, being a function 

of the unknown displacements ut, has to be neglected. 
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The incremental strains are defined from (1.3) as 

i. Ii Act [Bt + -1 B 1)] Aut (1.21) 
2 L(Aut 

The stress increments are then obtained as 
t 

AS tDAct... ... ... ... ... ... (1.22) 

and the total stresses are given by 

, i+l ii stst+ AS t ... ... ... ... ... (1.23) 

The nodal residuals are then defined from (1.23), 

(1.19) and (1.6) as 

i+l RBTS i+1 dV (1.24) 
vtttt 

1.6.3 Stress-Strain Relations 

The constitutive law relating stresses to strains for 

elastic materials can be written as 

a=Dee... ... ... ... ... ... ... (1.25) 

For an elastic-plastic material the constitutive law 

relates stress increments to strain increments as 

Au =D Ae ... ... ... ... ... ... (1.26) 
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Using the von Mises yield criterion with the Prandtl- 

Reuss flow rule the yield surface is defined as 

F= )2 -a)2+ 
ý(a 

al)2 (. 
21 (a1- cy 2+ "21(a2 323- 

3a 2 
+-3a 

2 
+. 3a 2] 112 

_a 456 

a -a y ... ... ... ... ... ... (1.27) 

where a 11 'ý12' a3 are the normal stress components, 

a 41 a5i, a6 are the shear stress components, 

u is the effective stress and 

ay is the uniaxial yield stress. 

The elasto-plastic modulus matrix is then defined as 

D e{DF, {2F ITDe /r (1.28) 30 30 

where the vector { 3F I can be obtained from (1.27) au 

and the value of r is given for isotropic hardening 

by 

T -2 iaF, e 3F 4Ek cr 
cr 

2 
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where E is the elastic modulus, k=E /(E -E PP 

is the iiardening paraxiieter and Ep is the post-yield 

uniaxial modulus for a bilinear strain hardening 

material. 

Once yielding has occurred the plastic strain rate 

multiplier X is used to test for plastic loading 

(X > 0) or elastic unloading (X < 0) and is given by 

L{ 2F, T 
... ... ... ... ... (1.30) 

r 3a 
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CHAPTER 

TWO-DIMENSIONAL LARGE DEFORMATION 
CURVED BEAM THEORY 

2.1 INTRODUCTION 

One of the important features of the curved beam problem 

is the coupling that exists between the displacement 

components in the definition of strains. In order to 

describe the large deformations in such a problem it 

is necessary to use a frame indifferent measure of 
V strains. The Green-Lagrange strain obtained using 

convective differentiation is such a strain measure. 

A consequence of using the Green-Lagrange strains 

is the necessity of defining local coordinate axes for 

each material point within the element. Whilst the 

Green-Lagrange strain-displacement relations are 

generally exact, approximations are usually introduced 

for beam and shell type problems. These approximations 

become necessary as a result of attempting to relate 

the deformation of a general point within the element 

to the deformation of the neutral surface. 

An exact large rotation formulation for two-dimensional 

straight beam elements based on the Green-Lagrange 

strains has been presented. by Epstein and Murray [251. 
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The general idea behind this formulation is that 

the Kirchhoff hypothesis, which assumes that plane 

sections remain plane and normal to the beam axis 

after deformation, is used to define the geometric 

shape of the element after deformation. The geometry 

after deformation is defined using position vectors 

and convected coordinates. The Green-Lagrange strain- 

displacement relations are then obtained from the 

relations defining geometry after deformation. A 

generalised approach which is applicable to curved 

beams is adopted in this chapter by using an intrinsic 

coordinate system at each material point within an 

element. 

There is a disadvantage, however, in using the Green- 

Lagrange strains for beam type large rotation, large 

curvature problems. This is the-necessity of assuming 

direct proportionality between the Green-Lagrange 

strains and the 2nd Piola-Kirchhoff stresses in the 

virtual work expression. For beams this amounts to 

neglecting the effect of curvature on axial force. 

An attempt to include such an effect using the approach 

presented by Epstein and Murray (25) results in 

unsymmetrical matrices (Section 2.2.1). A Total 

Lagrangian formulation based on such an approximation 

will result on giving wrong axial force values while 

predicting the displacements correctly for large 

rotatiod and curvature problems. 
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A remedy to this difficulty is the use of an Updated 

Lagrangian formulation. This is because in an Updated 

Lagrangian formulation one can reasonably assume that 

the 2nd Piola-Kirchhoff stresses are directly 

proportional to the Green-Lagrange strains in the 

virtual work expression. The main disadvantage of 

the Updated Lagrangian formulation, however, is that 

the element shape functions must be recalculated every 

time the coordinates are updated. This requires 

considerable additional computer time compared to a 

Total Lagrangian solution. Thus, the alternative 

of a combined Updated and Total Lagrangian formulation 

has to be considered. In the combined approach the 

geometry is updated at the beginning of each load 

increment only. The equilibrium iterations within the 

increment are based on the Total-Lagrangiah 

formulation. 

One approach commonly used in engineering is to assume 

proportionality between the nominal stress and the 

conventional strain (50). The assumption that third 

and higher order terms in displacement gradients 

are negligible is frequently used to obtain explicit 

relations, in terms of displacement gradients, for 

these strain measures. It-is possible, however, to 

obtain exact incremental equilibrium equations for 

two-dimensional beams, in terms of strain measures, 

which are explicit functions of displacement gradients, 
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by using the conventional strains and the nominal 

stress in the virtual work equation. In a Total 

Lagrangian formulation this approach includes the 

effect of curvature on axial force thus making it 

suitable for large rotation and curvature problems 

wherein the axial force is of importance. 

In this chapter four alternative formulations of the 

incremental equilibrium equations for small strain 

large rotation two-dimensional curved beams are 

presented for comparison. These are: 

1. A Total Lagrangian formulation based on the 

Green strains (TLG). 

2. An Updated Lagrangian formulation based on the 

Green strains (U4G). 

3. A combined Updated and Total Lagrangian 

formulation based on the Green strains (UTLG). 

4. A Total Lagrangian formulation based on the 

conventional strains (TLC). 

The contribution to the tangent stiffness matrix due 

to deformation dependent forces is neglected. The 

effect of such forces is taken into account, however, 

by modifying the applied load vector. 
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2.2. TWO-DIIIENSIONAL LARGE ROTATION THEORY 

Referring to Figure 2.1 the position vector of any 

point P on the beam reference axis before deformation 

is defined in terms of the global coordinates as 

it. =x "I +- 1T 

"j 
""".... I""II"""". (2.1) 

where X and Y are functions of the natural coordinate E. 

The local x axis is defined to be tangential to the 

reference line. A unit vector in the local x direction 

is defined from (2.1) by 

A 0'/d ý 
x ... ... ... ... ... ... (2.2) 

A unit vector in the local y direction is then given 

by 

Ax 

kx (2.3) 

The position vector of a point at distance y from 

the reference line before deformation is 

yy.... ... ... ... ... ... (2.4) 
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After deformation, the position vector of point P on the 

reference line is 

i= r-"' +ý... ... ... ... ... ... ... (2.5) 

where I is the displacement vector and is given in 

terms of the components u and v in the local coordinate 

directions by 

A Vux+vy (2.6) 

Since convected coordinates are assumed, using convective 

differentiation, the natural base vector after 

deformation is defined as 

A dTr 
+ ! lu)- 

+ -. qv - 9- -a dx x dx Y ... ... ... ... (2.7) 

-0, The vector N normal to ^g is 

-b- kX-=_ jlv %+ (1 + du). % 9 dx X 3-x Y ... ... ... (2.8) 

Since plane sections are assumed to remain plane and 

normal to the reference axis, the vector it is used 

to define the local y direction after deformation. 

The. unit vector n' in the direction of IN"is given from 

(2.8) by 
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AN dv/dx R+ (1 + du/dx)g 
n ý2 --... ... (2.9) 

IITITI (1 + 2e)1/2 

where e is the Green strain measure of the reference 

line given by 

e 
qu + j(du )2 + 

L(dv)2 
... ... ... ... (2.10) 

dx 2 dx 2 dx 

Assuming that the strain normal to the beam reference axis 

is negligible, the position vector after deformation of 

point distant y from the reference line can be written as 

R r(x) +y n^ ... ... ... ... ... ... (2.11) 

From (2.7), (2.9) and (2.11) the derivatives of R with 

respect to the convected x and y coordinates are 

an '. dA 
ax 9+y dx 

3R 
37 ... ... ..... ... ... (2.12) 

The vector 
da is normal to n and parallel to the dx 

convected x coordinate. Thus 

dfi (2.13) dx K9... ... ... ... ... ... 

where K is a measure of the physical curvature. 
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Substituting from (2.13) into (2.12) gives 

(1 -K Y)g ax 

an 
=" ay h ... ... ... ... ... (2.14) 

Therefore from (2,14), (2.10), (2.9) and (2.7) 

3R ýrt (1 -K Y)2 (1 -K Y)2 (1 + 2e) 
ax ax 9 

3R 
. 

arl 
= (1 -K y)g^. n' 0 

ax TY 

aR an ="- ay . yy- n. n ... ... ... (2.15) 

2.2.1 Internal Virtual Work in Terms of The Green 

Strain 

The Green Strain tensor in two dimensions is 

Tt an 
-i -x , -i 

an aR - 1 cr ax ay 

a 01 ay ay _j - 
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Substituting from (2.15) into (2.16) provides only one 

non-zero strain component exx which is defined as 

1(3R 3p, 
F-i ý'xx 2 3x . 3x 

2 
Y) (. 1 + e) ... ... ... (2.17) 22 

Me internal virtual work expression in a Lagrangian 

frame of reference at time t is given by the following 

definition 

sw 6e TS dV ... ... ... ... (2.18) int 

IV 

titt 

If it is assumed that the area A remains constant, the 

volume increment dV t is defined in terms of the initial 

dimensions as [251 

dVt (1 + 2e) 
1/2 

dA dL 
0 ... ... ... ... (2.19) 

Hence, in a Total Lagrangian frame of reference the 

internal virtual work expression is given from (2.18) 

and (2.19) by 

"int = 6c 
0Ts0 

(1 + 2e)' 
112 dA dL 

0 
L0A 

(2.20) 
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4 where So is the 2nd Piola-Kirchhoff StreSS. The integration 

is over the initial area A and the initial length L0. 

From (2.17) the variation in strain is 

6ej = (1 -K y)(1 + 2e)(-y 6K) + (1 - KY) 2 6e (2.21) 

Defining a new curvature term X which is an explicit, 

function of the displacement gradients as 

X=- (1 + 2e) 
3/2 

K ... ... ... ... ... (2.22) 

and substituting for 6K from (2.22) into (2.21) gives 

6e, = (1 - 2e Y 6x 
t 

K y)(1 +2K y)6e ... ... ... (2.23) 

The strain variation is then substituted from (2.23) 

into (2.20) to give 

)112 p "int 
JLO 

M 6x + [(l + 2e 
0+ 

2_K(l + 2e) , 
/2 

M)6e] dL 
0 

MSX+ N 6e 
JL 

0 
... ... ... ... (2.24) 
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where the stress resultants p and M are given by 
0 

p= (1 -K y)S dA 
0A0 

M=A (1 -K Y)y So dA ... ... ... (2.25) 

and 

R= (1 + 2e) 
112 

%+ 2K(l + 2e) 
1/2 

m ... ... (2.26) 

The internal virtual work expression of (2.24) is exact 

and the strain measures e and X are explicit functions 

of the displacement gradients and are given from (2.9), 

(2.10), (2.13) and (2.22) by 

e= 
du l(du)2 

+ 
l(dv)2 

dx +2 dx 2 dx 

3 12 dfi A 

. gl( gll A 2e) -d-x . g) 

=_d2v (1 + 
du) 

+ 
Iv-w d2u... (2.27) =2 UX dx 2 dx dx 

It can be seen from (2.24) that the axial force measure 
R which is work conjugate to the Green strain measure 

of the reference axis e is a function of both the 

strain e and the curvature K. While e can be assumed 

small compared to unity for small strains and hence 

neglected, the curvature K cannot always be neglected 
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without introducing an error. This is particularly so 

for problems where both curvatures and rotations are large 

and wherein the effect of axial force is of importance. 

Retaining this term in the virtual work expression, 

however, results in an unsymmetrical tangent stiffness 

matrix and hence it is neglected. This amounts to 

assuming direct proportionality between the 2nd Piola- 

Kirchhoff stress and the Green-Lagrange strain in the 

virtual work expression and neglecting the coupling 

between the axial and bending stress resultants. Thus, 

the strain at any point is defined in terms of the 

generalised strain resultants as 

cI [l - y] lel = Hco ... ... ... (2.28) 0 
x 

and the stress is 

s0=E co' =EH co ... ... ... ... (2.29) 

where E is Young's modulus. 

The internal virtual work expression (2.20) now takes 

the following form 
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6w 6c TIHTEH dA co dL 
int 

JA 
0A0 

cT5c dL ... ... ... ... ... 
IL 

00a '0 

in which FD is the modulus matrix. 

2.2.2 Internal Virtual Work in Terms of The 

Conventional Strain 

(2.30) 

The geometric measures of strain as unit stretch and 

angle change ate 

3R )112_ 3xj. 

i=1,3; 1,3 

yij a Ft a rl i ... ... ... ... (2.31) axi ax i 

where in (2.31) the shear strains yij are assumed to 

be small. This assumptionis valid for the thin beams 

considered here for which the shear strain is actually 

assumed to. be zerd. For the general case, however, the 

change in the right angle can be used as the definition 

of the shear (see Appendix II). 
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From (2.31) and (2.15) it can be seen that the only 

non-zero strain term is c xx , as before, and is given by 

r 
DR)112 

C: xx = (3R ýx ax 

= (1 -K y) (1 + 2e) 
112 

_1... ... (2.32) 

and its variation is 

6el =- y(l + 2e) 
112 

6K 
t 

K y) (1 + 2e) 
-112 

6e (2.33) 

The strain displacement relations can be approximated 

from (2.32) by using the binomial series expansion and 

neglecting third and higher order terms in 

displacement gradients, so that 

. du 
, 

l(dv)2 
1 ee El y] ix- 2 dx t 

-d2v (1 _ 
du) + ýv d2u (2.32a) 

d7 
Tx- dx -d-X--2'. 1 

These relations are similar to those which have been 

presented by Donnell [50] for plates. Relations 

(2'. 32a) can also be obtained by writing the Green 

strains in terms of deformation and rotation tensors 

and neglecting second and higher order terms in strains 
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as suggested by Oden [121. However, in what follows 

relations (2.32) are used in their exact form. 

The strain components are redefined as follows: 

e*' (1 + 2e) 
1/2 

(1 + 2e) 
1/2 

K ... ... (2.34) 

Taking variations of (2.34) and substituting intoý(2.33) 

gives 

6e* +y6, c* = [1 Yj e 

= HSc* ... ... ... (2.35) t 

The stress St is assumed to be proportional to the 

strain el. Therefore, from (2.32) and (2.34): t 

112 112 
st Eel =E((1+2e) 1- K(l + 2e) Y) t 

= 

. 

1 

x* 

.> 

EHct* 

... ... ... (2.36) 

The curvature. term X* is then defined in terms of the 

explicit functign of displacement gradients X. From 

(2.34), (2.22) and (2.13) we have 
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^ -0 

1/ dn :>^ 

, X* K(l + 2e) 2= Tx '*g 
(1 + 2e) 

1/2 

A 0% 
9.9 

x 

1+ 2e ... ... ... ... ... ... 

Therefore from (2.34) and (2.37) 

6e*' 1 
112 

(1 + 2e) 

&- 2X 
L (1 + 2e 

0 6e 

6x 

(1 + 2e) 

= H*6c ... ... ... ... ... ... 

From (2.35) and (2.36) the internal virtual work 

6xPression (2.18) now takes the form 

611int '2 
IV 

t6 
Ej St dV t 

6c TH *T HTEH dA c* dL 
Lt t 

lAt 

ttt 

T *T- 6ctH D ct dL t ... ... ... Lt 

where FD is the modulus matrix. 

(2.37) 

(2.38) 

(2.39) 
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This virtual work expression is equally applicable to 

both the Updated and Total Lagrangian formulations. 

This eNpression is used for the Total Lagrangian 

formulation however, because its advantage is clearly 

pronounced in this formulation with the additional 

benefit of economy in computer time. 

2.3 STRESS-STRAIN RELATIONS 

Since the strains are assumed to be small the constitutive 

relations used for small displacement formulations are 

included in all formulations developed. 

There is only one non-zero stress term which is defined 

in terms of Young's modulus E and the strain e' 

(Equations (2.9) and (2.36)) as 

S=E el =D c' ... ... .6.... ... (2.40) 

From (2.30) and (2.39) the rigidity matrix D which, relates 

the stress resultants, i. e. axial force and bending 

moment, to the generalised strains is defined as 

follows 
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5= 
IA 

HTEH dA 

A 

rEy EY ] 

dA 2 Ey 
(2.41) 

Assuming that the cross-sectional area A remains constant, 

the integration is carried out explicitly to give 

A EAe 

... ... ... (2.42) 

EAe EI 
_I 

where Ae is the first moment of area and I is the 

second moment of area about the reference axis. 

2.4 THE INCREMENTAL EQUILIBRIUM EQUATIONS 

During the development of the incremental equilibrium 

equations the applied loads are assumed to be 

conservative. In this section the tangent stiffness 

matrix and the incremental stress and strain relations 

are developed for each of the four formulations 

adopted. 
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2.4.1 Total Lagrangian Formulation Based on 

Green Strain Measure (TLG ) 

The strains at a general point are given in terms 

of the displacement gradients from (2.27) and 

(2.28) by 

duo 1 (duo )2 + 
j(dvo )2 dx 2 dx 2 dx 

E: 1= H( P, + 
0 

d2v0 dv 
0d2u0 

du d2v0 

2 dx ýX-2 dx -- 2 dx 
7 

dx 

H-{c o+ CL ... ... ... ... ... (2.43) 
00 

in which C0 is the infinitesimal strain and is 
0 

written, in a finite element representation, in terms 

of the nodal variables a0 as 

duo 

dx 
0 C02B0a0 (2.44) 

dx 2 

and cL is the nonlinear strain which can be written 0 

as 
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du 
0 

dv 
0 

L dx 

d2v0d2U0 du 
0 

dv 
0 

L dx 2 dx 2 dx dx 

du 
0 

dx 

dv 
0 

dx 

-. 
d2v 

0- 

1 

dx 2 

d2u0 

dx 

1-1 
yB L(ao)ao =y A6.00 ... ... ... (2.45) 

In a finite elemen 

00 in terms of the 

00 ={ 
du 

0 
dvo 

dx ' dx -I 

t representation defining the vector 

nodal degrees of freedom a0 we have 

dv0du 
01 

=G a (2.46) 200 dx dx 

Taking variations of (2.43) with. respept to the nodal 

variables, the strain-displacement matrix B (Equation 

(1.13)) is given by 

B0+BL (u 
0)= 

H[5 
0+ 

r3L(ao)] 

HB... ... ... ... ... ... ... (2.47) 

From (2.47), (2.41) and (2.40) the tangent stiffness 

matrix (Equation (1.14)) now takes the following form 
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KB TDB dV + 
ag S dV 

T 
iv 

00 

iv 

0 
au 00 

IL 

0 

gT (j 
A0 

HT DH dA0) ä dL0 

ILO 
@a Ao 

HTS dA dL 
0 

=j F3T F3 f3- dL+ alff T9 
dL 

Lo 01 Lo 
Ta 00 

= (K +KL (a 
0 

)) +Ka... ... ... ... (2.48) 

where 

TT 
0 

JA 

0HS0 

dAcý={Po, Mo} ... ... ... (2.49) 

is the vector of initial stress resultants composed of 

an axial force P0 and a bending moment M0. 

The explicit form of the initial stress stiffness 

matrix K (Equation (2.48)) is obtained from (2.46), 
a 

(2.45) and (2.44) as follows: 
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K ; gT i dLo = 
35 L6M 

a 
JL 

0 
3a 0 

IL 

0 
3a 00 

T 
T JL 

0G0aS0 

dL 
0 

GT 3 
o Da L 0 

GTP, 

I'] 

L00 

mo [I] 

GTG dL 
L0 oi 00 

0 

where P 
oi 

is the initial stress resultant matrix and [1] 

is a two by two unit matrix. 

- du 
0 

d2v 

dx dx 2 

dv 
0d2u 

dx dx 2 

du 

dx 

dv 
0 

dx 

0 dL aa 0 

p 
0 

mo 

JdL 

111190 

... ... ... ... (2.50) 
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Using the tangent stiffness matrix and the residual 

nodal forces, the displacement increments Aa i are 0 

evaluated. The total displacements are then obtained 

as 

2'+' a' + a' ... ... ... ... ... (2.51) 
000 

The incremental strain resultants (Equation (1.15)) 

are defined by 

Aci. -i)+ .1g 
') ] {Aa') (2.52) 

0 '1" [go + r3L(ao 
2 L(6 ao 0 

From (2.30) and (2.52) the increments of the stress 

resultants (Equation (1.16)) are given by 

F) Ac... ... ... ... ... ... (2.53) 
0 

and the total stress resultants are 

ýi+l = 5i 
. ... ... ... ... , (2.54) 

From Which the nodal residual forces are evaluated as 

follows 

- IP 
i+l R BT 5'4" dto 

0 
0 

(2.55) 
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where R is the vector of applied equivalent nodal 

forces and 

i+l B OL(ao ) 

Using the new total displacements (Equation (2.51)) 

and the new total stress resultants (Equation (2.54)), 

the tangent stiffness matrix can be reformed and hence 

used with the residuals given by (2.55) to obtain a new 

set of displacement increments. 

2.4.2 Updated Lagrangian Formu. lation 
lBased 

on 

Green Strain Measure (ULG) 

With reference to the configuration at time t the strains 

are defined from (2.27) and (2.28) as 

du t 
dx 

E1= H(ý -, td2 
vtý 

dx 2 

H(C o+ CL tt 

where 

l(dut)2 
+ 

l(dvt)2 
dx 2 dx 

dv td 
2u 

t dut d2vt 
ýx2 dx jx 

dx2 

du t 
0 dx DO a 

d2 Vt 

dx 2 

(2.56) 

(2.57) 
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and 

du t 
dx 

du t dv t dv t 

Lx dx 00 dx 

d2vtd2ut du t dv td2vt 

dx 2 dx 2 dx dx dx 2 

d2ut 

dx 2 

B (a -1 A0... ... .. (2.58) 
L O't 20t 

where 
.0t 

is given in a finite element representation 

by 

ýdut dvt d2vtd2utT 
t dx dx dx 2 dx 2Gtat (2.59) 

at being the vector of nodal variables. 

Taking variations of (2.56), the strain displacement 

matrix B (Equation (1.19)) is given by 

Bt+B L(lld = 11 [fit +BL (at)] 

=HB... ... ... 0.... ... ... (2.60) 
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Assuming that the reference configuration instantaneously 

coincides with the current configuration at time t, 

the tangent stiffness matrix (Equation (1.20)) is of 

the form 

BTDB dV + 3B TS 
dV ttt1v au tt 

T 
jLt 

2BLT r3t 
Lt t( 

lAtIFDIR 
dAt)fft dLi+ Da At 

HTSt dAt dL t 

T dL +a 
FIT 

dLt =K+ 'K 
LttttLt aa tta 

...... S"S (2.61) 

where 

tHTst dA t= 
{Pt 0m t) 

T 
... ... (2.62) 

At 

is the vector of initial stress resultants. 

The initial stress stiffness matrix Ka is obtained in 

a manner which is similar to (2.50) i. e. 

30T ý dLt GT 
3A eý dL aa tLt aa tt 

Lt t 

GP G- dL t ti tt 
,Lt 

... .. o (2.63) 
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in which the initial stress matrix P 
ti is given by 

Pt [I 

mt 111 . .... .... ... 

where [1] is a two by two unit matrix. 

(2.64) 

On forming the incremental equilibrium equations and 

solving for the displacement increments Aai, the t 

total displacements are obtained as 

ai+l al +A Ri . ... ... ... (2.65) ttt 

The incremental strain resultants (EqUations (1.21)) 

are defined by 

A C' +B (A a (A a.... ... (2.66) ttLtt 

The stress resultant increments and the total stress 

resultants are then given by 

A ýi =5A, ci 

i+ 1= ýi 51 ............ ttt (2.67) 
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The nodal residuals to be used to evaluate a new set of 

displacement increments are 

L 
gT E'+' dLt .... ... ... (2.68) 

tt 
t 

2.4.3 Combined Updated and Total Lagrangian 

Formulation Based on Green Strain 

Measure (ijTLQ, ) 

In this formulation the coordinates are updated at the 

beginning of each load increment only. The iterations 

within the increment are carried out using the Total 

Lagrangian formulation. As a consequence of this, the 

displacements from the beginning of the increment until 

convergence (a 
c) must be stored. 

Thus, the strain displacement matrix is defined as 

Bt+B L(ud =H[ 03 
t+0 L(2c)] 

Bc.. ... ... ... (2.69) 

where t refers to the beginning of a new increment. 
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The tangent stiffness matrix now takes the following 

form 

T dL + GTt G dL 
T 

JL 

tcctLt 
ti tt 

=t+K L(ad) + Ka ... ... ... ... (2.70) 

The matrix Gt is given by (2.59) but is evaluated at the 

beginning of a new increment only. The initial stress 

matrix P ti is given by (2.64) and the total displacements 

are given by (2.65). 

The displacements a. are evaluated as follows 

ai+l =ai+ Aal ... ... ... ... ... ... (2.71) 
cct 

with their value being zero at the beginning of each 

load increment. 

The incremental strain resultants are defined as 

Acl F3 +5 (a') + -1 03 (Aa')] {Aa iI... (2.72) ttLc2Ltt 

From which the stress resultants increments and the 

total stress resultants are given by (2.67). The nodal 

residuals are then obtained as follows 

R- F3 T i+l dL ... ... ... (2.73) 
LCtt t 
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2.4.4 Total Lagrangian Formulation Based on 

Conventional Strain Measure (TLC) 

The variation in stress is defined from (2.36) and (2.38) as 

6SO =E 11 H* 6co =D 11 H* 6co ... ... ... (2.74) 

The strain resultant measures co and their variations 

6C 
0 are given in terms of the displacement gradients 

and the nodal variables a0 by 

du 
01 (duo )2 + (dvo )2 dx i dx dx 

0+4h 
d2v 

01 
dv 

0d2U0 
du 

0d2 vo 
2 dx 7-2 

dx x dx 

c0+cL 

00 

Ba+ -1 r3 (a )ao =a-+A0 002L00026o 

sco= 
0 

6a 
0+L 

(a 
0 

)6ao = 6a 
0 ... ... (2.75) 

k 
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where 

. du dv 
0 

UX- dx 

d2vd2u du dv 
0 

27 -2 dx dx 
L dx dx i 

0 
du 

0 
dv 

0d2v0 
il 

d2u 
olT 

... ... (2.76) 
0{ -d -X A' Tx- , dx 2 

Thus, from these relations and (2.39) the nonlinear 

equilibrium equations are 

ij TH *T 
IHTDH 

dA c* dL R 
L0A0000- 

F3 T H* TS0 dL 
0-R=0... ... (2.77) 

in which S0 is the vector of stress resultants given 

by 

sD C* = 1POl ... ... ... ... 00 

Assuming that the equivalent nodal forces R are 

conservative, the tangent stiffness matrix, KT 

= 
3ý 

, is obtained from (2.77) as Da 

(2.78) 
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r 

jjT H *T B 2--c* dL +3 
63T 

H *T dL 
TL0 aa 0 

IL 

0 
Da 00 

9T3H *T go dLo 
aa 

K+K+ K* ... ... ... (2.79) 
La cr 

The special feature of this formulation is the additional 

term K* in Equation (2.79). The contribution of this 
a 

term to the stiffness matrix can be understood as an 

additional initial stress stiffness matrix. 

The linear strain stiffness matrix, which includes both the 

the infinitesimal strain and the initial displacement 

stiffness matrices, is defined from (2.79), (2.75) 

and (2.38) as: 

X+KL (a 
0) = 19 TH *T D H* 9 dL 

r 
IL 

0B 

*T rD B* dL 
0 

where B* = H* 9 

(2.80) 

(2.81) 

The geometric stiffness matrix Ka can be defined from 

(2.79), (2.76) and (2.75) as follows 
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Do TH 
*T SWGTQ 

3a 00 

IL 

00 
aa 

GTpG dL (2.82) 
0 oi 00 

in which 

s H*T ýo {p* M*IT ... ... ... ... (2.83) 
00 

and T? 
oi, 

the initial stress matrix, is given by 

P* [I] M* [11 00 
TRO 

M* (1] 0 (2.84) 0 

From (2.83), (2.78) and (2.38) S* is defined as 

*T 
p0 2XM 

0 
0 (1 + 2e) 1/ 2 (1 + 2e) 2 

m 
0 

... (2.85) (1 + 2e) 

Hence, from (2.85) and (2.75) 
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*T -P 0 dH so S 
(1 + 2e) 

312 

-2M 0 

_(l 
+ 2e) 2 

+ 
8x% -2M 0 
(1 + 2e) (1 + 2e) 

0 6x 

d (2.86) 

Therefore, from (2.79) and (2.86) the additional initial 

stress stiffness matrix K* takes the following form 
a 

K* gT Tp* 9 dL (2.87) 
a LO i0 

From (2.80), (2.82) and (2.87) it can be clearly seen 

that all three components of the tangent stiffness 

matrix are symmetrical. 

Upon solving the incremental equilibrium equations for 

the displacement increments Aai and evaluating the 0 
total displacements a 

i+l (Equation (2.51), the incremental 
0 

strains are obtained as 

Ac* [H*l [F3 + i3- (a') 
00L0 

+ BL(L a)] { a} (2.88) 
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The incremental stress resultants are given from (2.78) 

and (2.88) by 

-1 AS0DAc0 (2.89) 

and the total stress resultants are 

(2.90) 

The residual nodal forces are given from (2.77), (2.78), 

(2.81) and (2.90) by 

i+l RL F3 TH *T c* dlo 

R B*T ýi+l dL (2.91) 
JLO 

00 

Now the assumption that the strains are small can be 

introduced into the formulation by neglecting e in 

Equations (2.38), (2.85) and (2.86), so that 

0 

H (2.38a) 

2X 1 

p0- 2XM 
0 

s 
m0 

(2.85a) 
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and 

p0+ 8XM 
0 

2M 
0 

- -2M " 

0 

(2.86a) 

2.4.5 The External Virtual Work and Equivalent 

Nodal Forces 

So far the applied loads have been assumed to be 

conservative. Thus, the effect of deformation on 

the generalised nodal forces R was neglected and the 

well established form 4, 
(10] assumed. To take into 

account the effect of follower pressure loads and 

applied concentrated moments a modification of the 

equivalent nodal forces is necessary for a Total 

Lagrangian formulation. 

I 
Consider the two types of uniformly distributed loads, 

namely those acting in a fixed direction and ifidependent 

of deformation given by 

A 
fxx+fyy... ... ... ... ... (2.92) 

per unit undefdrmed length of the reference line and 

the follower pressure lQads acting normally to the 

reference line after deformation defined as 
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ppn (2.93) 

per unit deformed length. 

The total force per unit underformed length is given 

from (2.9), (. 2.18), (2.92) and (2.93) by 

p 

x _dv ^ r++ 
du)^ 1/2 

xX dx Y 
fx 

.+fyy+ 
(1 + 20 P(- 1/2 

(1 + 2e) 

fx+ (f ýI 
y ... (2.94) 

x- dx P)" y+ dx) P)A 

The external virtual work dup to this load is 

6Wq = 
IL 

0 

6v -q dL 
0 

=6aTNTf 
i-v 

p dL (2.95) 
0 

IL 

00x 
dx 0 

f+ (1 , 
du)p 

y dx 1 

where the shape functions N0 are given by 

N-1 (2.96) 0 5a 
V 
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in which u and v are the components of the displacement 

of the reference line in the local axes directions 

(Equation (2.6)). 

Assuming that a concentrated moment Mi is applied at 

node point j, the external virtual work due to this 

moment is 

6wm 6 ýj Mj . ... ... ... ... (2.97) 

where the angle of rotation ý is obtained from the unit 
A 

vectors y (Equation (2.3)) and n (Equation (2.9)). 

Thus 

(1 + du /dx)l 
A0 

Cos y. n 
(1 + 2e)1/2 

A 
dv 

0 
/dx 

sin IyA X nl= 
(1 +"2e)IT2 

(2.98) 

Therefore 

= aretan 
dv / dx 

(1 + du 
0/ 

dx) 

and its vatiation is 
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4.1 
du 

0)6 
dvo dv 

0 
du 

0 (2.99) 2e dx TX + 

The strain e is assumed to be small compared to unity 

and hence negligible. Substituting from (2.99) into 

(2.97) gives 

dv 
Tx- m 

8a TNT (2.100) 
0j 

du 
(1 + dx 

0)m 
i 

in which the shape functions Ni are given by 

0 
du 

dx 

N ... ... ... ... ... aa 
0 dv 

0 
U- jj 

The total external virtual work is then obtained as 

6w 6a7 (R +R... ... ... ... ... (2.102) 
0d 

where R is the conservative vector of equivalent nodal 

forces and Rd is the vector of deformation dependent 

nodal forces given from (2.95) and (2.100) by 
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dv 
0p dv 

0 dx -jx- M 

RNT4 dL + NT 
l% 

du 
01 

du 
01 

. 
dx dx 

ýi 

From (2.98) for small strains 

dv 
0 sin dx 

and 

du 
1+ dx 

0 Cos 0 ... ... ... ... ... ... 

dvo 
For axial deformation only (U- = 0) 

x 

1+ du/dx 
Cos 

(1 + 2e )1/2 

(2.103) 

(2.104) 

(2.105) 
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2.5 CONCLUSIONS 

1. The Lagrangian method for describing geometric 

nonlinearity has been used to develop a small 

strain large rotation theory for thin curved two- 

dimensional beam finite elements. 

2. The theory has been based on an intrinsic coordinate 

system defined at each material point within an 

element. 

3. Four alternative formulations of the incremental 

equilibrium equations have been presented for 

comparison in an attempt to correctly evaluate 

both displacements and stresses. 

4. The applied concentrated loads have been assumed 

to be conservative during the formulation of the 

incremental equilibrium equations. However, the 

effect of deformation dependent loads has been 

taken inio account by modifying the equivalent 

nodal loads for the Total Lagrangian formulations. 
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CHAPTER 

FORMULATION OF THIN CURVED TWO-DIMENSIONAL 
BEAM FINITE ELEMENTS 

3.1 INTRODUCTION 

The formulations presented in Chapter 2 are based on the 

use of convected coordinates and associated element 

formulations must include these coordinates. Whilst the 

theory is based on material coordinates at every point 

along element reference line, the intrinsic coordinates 

need to be defined only at the integration points. 

The correct definition of such a coordinate system is 

achieved by using the co4straint technique. In the 

constraint technique geometric relationships are used 

to define discretely the shape of the element before 

deformation and the variation of variables referred to 

the intrinsic coordinate system. The elements presented 

in this chapter are based on the c. onstraint technique 

applied to displacement finite element models, in which 

independent interpolation of the displacements and 

rotations (or displacement derivatives) is used . 
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3.2 THE REQUIREMENTS FOR THE ELEMENTS 

The choice of element degrees of freedom should be 

based on the convergence criteria of compatibility and 

completeness. For beam type problems in linear elastic 

solutions C0 continuity of the in-plane displacements 

and C1 continuity of the out-of-plane displacements 

is required. For eccentric beam element formulations 

the variation of the in-plane displacement must be at 

least of the same order as that of the gradient of the 

out-of-plane displacement. Hence, a parabolic-cubic 

variation of displacements is necessary. 

For improved element performance, however, the same 

order of variation must be used for both displacement 

components (22, "23,24,56,67]. The same convergence 

criteria of compatibility and completeness are applicable 

for geometric nonlinearity. It can be seen from the 

nonlinear strain displacement relations (Equation (2.27)) 

that Cl continuity'is required for both displacement ccMponents. 

An d0jection to such a displacement variation ý; hich is often put 

forffard is that the continuity of the gradient of the in-plane dis-t- 

placement, which is a measure of the axial strain, will contradict 

the physical laws of equilibrium when there is an 

abrupt change in thickness. The second order in-plane 

term contributes only to the nonlinear part of curvature. 

Epstein and Murray [25] have shown that by neglecting 

this term a relative error in curvature of sin 
2 being 
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the angle of rotation) results. Therefore, the effect 

of this term is substantial when both rotation and 

curvature are large, in which case a cubic-cubic 

variation of displacements is necessary. It is 

possible to obtain both conforming and non-conforming 

elements by the constraint technique depending on the 

choice of the initial displacement variations and the 

constraint equations applied (Section 3.3.1). 

Hence, three curved beam elements have been developed 

using the constraint technique. These are: 

1. ISOBEM1 element (Figure 3.1) which is a non- 

conforming curved beam element with Co continuity 

of in-plane displacement and C1 continuity of the 

out-of-plance displacement. An additional 

internal degree of freedom is introduced to 

ensure continuity between the reference line and 

the cross-section centroid for eccentric elements. 

2. ISOBEM2 element (Figure 3.2) which is a non- 

conforming beam element with C1 continuity of 

both displacement components. 

3. SUBBEAM element (Figure 3.3) which is a beam 

element with C1 continuity for both disPlacement 

components and complete conformity of the 

displacement field. 
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For all three elements a parabolic variation of the 

initial geometry is assumed. 

3.3 THE CONSTRAINT TECHNIQUE 

In the original constraint technique the Kirchhoff 

conditions of zero shear strains are applied directly at 

the elements' Gauss points to effectively exclude shear 

strain [10,35,38,66]. The technique can be interpreted, 

however, as a means of defining the element geometry and 

the assumed variation of the local displacements 

correctly for generally curved beam and, shell type 

elements. Thus, by using this technique it is possible 

to avoid the problem of interpolation directionality. 

This objective can be achieved as follows: 

The kndwn global coordinates are independently 

interpolated to the required order. 

The global displacements and their derivatives 

are independently interpolated using the same 

natural coordinates. 

The local (intrinsic) coordinates are defined 

at any point in terms of the interpolated 

coordinates. 

99 



iv. The constraint technique is used to define 

correctly the variation of variables referred 

to the local axes in terms of the independently 

interpolated global variables. 

3.3.1 Non-conforming and Conforming Displacement 

Variations within Elements 

The constraint equations are applied at certain points 

within the element, thus, resulting in non-conforming 

element formulations. It is possible, however, to 

obtain completely conforming elements using the constraint 

technique provided that the correct variation of 

displacements is postulated initially and the constraints 

are applied at enough points. 

To illustrate this let us assume a parabolic variation 

of both a displacement v and its derivative 0 for the 

straight beam of Figure 3.4a in terms of the natural 

coordinate C and generalised variables ai as 

ctl + ý12 + a3ý 
2 

6 2-- a4 + a5ý + a6ý 
2 

... ... ... 0.. (3.1) 
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To obtain the variables aT in terms of the nodal 

variables six equations are required. Using the two 

conditions at each of the two ends gives four equations. 

The two additional equations required are obtained by 

applying the condition that. the derivative of v with 

respect to the local (intrinsic) coordinate x is equal 

to 6 at the two Gauss points E=± 11V3. Solving these 

equations and substituting for ai in (3.1) gives 

. "12 - 21 OV1 + (-i + 'ni 

g2 )@ c 
1- Z(' 

6=_ ý_(, 
_ E2)v + 

ý_(, 
_ E2)v + 4c 1 4c 2 

1 (- 1- 29 + 39 2 )0 +1 (- 1+ 2e + 39 2 )0 (3.2) 11Z2 

where c= 
dx 
d-ý 

The same results may be obtained by starting with the 

independent interpolation of v and 6, assuming 

parabolic interpolation functions, and then using the 

condition 
dv 

=0 at the two points 11V3 to dx 

eliminate the two internal degrees of freedom v3 and 

03 (Figure 3.4b). 
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Differentiating v in C3.2) with respect to x gives 

dy- 1v+ 1ý- 
v1... (3.3) 1 2c 2 'E61 + 21 E62 

which is clearly incompatible with 6 in (3.2). 

Crisfield [61 has used a smoothed derivative the same 

as (3.3) in evaluating the derivatives of the transverse 

displacements in the nonlinear part of the strain- 

displacement relations as an extension of the path test. 

Beam elements based on displacement variations which 

are the same as that in (3.2) are known to behave as 

if a cubic vatiation of displacements is used 

[10,38,661. 

Instead of the parabolic initial variation of (3.1) a 

cubic variation of both v and e can be assumed giving 

al 2ý +a3 ý2 + C'4ý 
3 

0- ý-- a5 + a6E + C17C 
2+a 

8C 
3....... 

0. (3.4) 

Besides the four 

conditions, four 

solve for aVT 

condition 1v 
=0 dx 

These points are 

equations which are obtained from end 

additional equations are required to 

hese are obtained by applying the 

at four points within the element. ' 

chosen to be the four equidistant 
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points (Figure 3.4c). Hence, forming 

the eight equations required, solving these for ai-and 

substituting in (3.4) gives 

v=(. 
L 

_2ý+ .1 C3)v + (1 + .2C_ .1 C3)v 2441442 

e2(1 -Z-g2+ g3 )0 + . 
2(- 1-Z+Z2+ g3 )6 414 

3 ý2)v + 
2_(, 

_ ý2)v 4c 1 4c 2 

2ý + 3ý 2 )0 + 1(- 1+ 2ý + 3ý 2 )e (3.5) 142 

which is clearly a completely compatible displacement 

field. In fact, the interpolation functions in (3.5) are 

the same as the well known Hermitian interpolation 

functions. The same relations as those in (3.5) can be 

obtained by applying the constraint technique to an 

independently interpolated displacement field (Figure 

3.4d), wherein a cubic variation is assumed, to eliminate 

the four internal degrees of freedom. Appendix I gives 

the complete derivations for the two examples considered 

with the first example presented using both alternative 

approaches. 

The advantage of the constraint approach is that it can 

be easily extended to include curved elements. The 

technique is best carried out numerically. The global 

displacements and their derivatives with respect to the 
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global coordinates (or rotations) are interpolated 

independently to the required order. By applying the 

constraint equations in the local element axes certain 

degrees of freedom are eliminated. The order of 

interpolation is limited by the final or "wanted" 

degrees of freedom. 

3.3.2 Outline of the Constraint Technique 

a) Referring to Figure 3.5 the global coordinates of 

any point P(X, Y) on the beam reference line are 

given in terms of the coordinates of the nodes by 

xx 
n 

4=ZNi40. ... ... ... ... (3.6) 

YY 

where n is the number of points defining geometry 

and Ni are the shape functions. Since a parabolic 

variation of geometry is assumed for all elements 

n is equal to three. The shape functions Ni are 

the heirarchial shape functions, which consider 

the variables as departures from linearity and 

are given by 
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- N22 

N2 = 

1 N3 = 
... ... ... ... ... (3.7) 

From (2.1), (2.2) and (3.6) the unit vector RA 

defining the local x axis is obtained as 

dX/dý 1+ dY/dE 
... ... (3.8) 

((dX/dE) 2+ WY/dE) 2 /2 

The unit, vector A defining the local y direction y 

is given from (2.3) and (3.8) by 

A=AA dY/dE 1+ dX/dE J& ykXx 
((dkX/dE) 2+ (dY/dý) 2) 1/2 (3.9) 

b) The global displacements U, V and the rotation e 

(or the displacement gradient) of point P are 

independently interpolated to the required order 

as follows 

m 
E 

J=l 
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where m is the number of points defining the 

displacement approximation and Ni are the shape 

functions. 

I 

The displacement vector V of a point on the beam V, 

reference line (Figure 3.5) is defined in terms of 

the components in the global axes directions U, V 

as 

-4-. 0% A 
vi... ... ... ... 

From (3.10) and (3.11) the components of the displace- 

ment in the local axes directions are obtained as 

f ollows 

V. x 1xj. x 

V. yyi. Y- 

.. % AA ^- 
1xJ. X 

m 
Z Nj 

j=l 
4A 

yi. yv 

(3.12) 
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where from (3.8) and (3.9) 

A. ^ A%= 

-/dý)/((dX/dý) 
2+ (dY/dý )2) 

/2 
11. y (dX 

22 1/2 
(ff/dý)/((dX/dý) + (ff/dý) ) 

(3.13) 

c) Enforcing the Kirchhoff hypothesis of zero shear 

strain (or the condition that the gradient of the 

independently interpolated displacement is equal 

to the independently interpolated derivative in the 

local element axes) at discrete points within an 

element gives constraint equations of the form 

11 6=0... ... ... ... ... ... (3.14) 

where 6 is the vector of the total initial nodal 

variables. 

These constraint equations are used to relate the 

unwanted element variables to the required final 

variables. If some of the variables to be eliminated 

are in the local axes directions a transformation 

of the relevant global nodal variables in 6 will be 

necessary. From (3.12) the global displacement 

components are defined in terms of the local 

components as 
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(3.15) 

jxiyi 

If such a transformation of the nodal variables is 

required, the constraint equations (3.14) are 

modified using (3.15) to give equations of the form 

=0 (3.16) 

which can be written in terms of the wanted variables 

a and the variables to be eliminated b, as follows 

a 

I MA ", MB 1 %0 ... ... ... ... (3.17) 

b 

solving (3.17) for b in terms of a gives 

M ... ... ... ... ... (3.18) 

d) one of the most efficient computational arrangements 

for displacement finite elements is to write a shape 

function array relating all the displacements and 

gradients required for the element formulation to 

the nodal variables of the element. Thus, such an 

unconstrained shape function array is defined in 

terms of the original total variables in the 

following form 
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y= WN 6= WN *6* 

a 
[W 

A WBI ... ... (3.19) 

b, 

Substituting for b from (3.15) into (3.19) gives the 

constrained shape function array in terms of the 

final wanted element variables as 

y 2-- 
[WA 

-wBM; 
l MA] a- *** *** - (3.20) 

Figure 3.6 gives a schematic diagram of the constraint 

technique outlined above. The technique is general 

and hence applicable to all elements. Individual 

elements differ in the form of the displacement 

interpolation, the constraint equationv and the 

shape function array. These are presented in the 

following sections for each of the three elements 

which have been developed. 
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3.4 ISOBEM1 ELEMENT 

The element (Figure 3.1) is a thin curved non-conforming 

beam element with C0 continuity of the in-plane displacement. 

Two integration points are used to evaluate all integrals 

required. 

The variation of the global displacements and rotation 

is assumed to be initially parabolic. These are 

independently interpolated as follows 

UU 
3 

VENV... oo. (3o2l) 
i=l 

e 

in which Ni are the hierarchial shape functions given 

by (3.7)o 

The Kirchhoff condition of zero shear strain is applied 

at the two Gauss points E=± 11V3, thus making the 

rotation 0 equal to the derivative with respect to the 

local x of the local transverse displacement at these 

points. The condition is defined by the relation 

du 
, Iv 

=_,... 
Iv 

= (3.22) zy- 
- 

dx dx 
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which can be written in terms of the total nodal 

variables from (3.12) and (3.21) as 

U 

dNi 
AV0 

(3.23) Eyi. yN dx dx 

e 

Evaluating (3.23) at the two Gauss points 11V3 

gives the constraint matrix M of (3.14) and the total 

nodal variables 6 (Figure-3.1a) are given by 

6= {Ul, V1, el, AU2 , AV2' Ae2' UV V3' 631 T (3.24) 

The two constraint equations are used to eliminate two 

of the element's variables. These are chosen to be the 

local transverse'displacement and the rotation at the 

middle node. The remaining internal in-plane degree 

of freedom ensures a parabolic variation of the 

in-plane displacement. This is necessary for eccentric 

elements to avoid an incompatibility between the reference 

line and the centroid of the cross-section. Hence, 

the variables at the middle node are transformed to 

the local axes directions by using the transformation 

Equation (3.15). This gives, after rearrangement, M* 

of (3.16) with S* defined as 
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{Uj 
, vi f01v6 AV T A u2, U3,3' 31Z, AY 

b (3.25) 

The unconstrained shape function array is given from 

(3.12) and (3.21) by 

u 

v 

1= 

OR 

du 
dx 

du 
dy 

dv 
dx 

d2u 

d2u 

dx 2 

3 
=E 

1=1 

^A 

Ni 1. X9 
^A 

Nij. xf 0 

Ni Y, Ni J. Yt 0 

dNi 
^ 

-1 xi, 
dNi 

^A 
-J .x 0 T x U x 

0 () p- N 

dNi 
jA 

Tx- Yo 
dNi 
--J (IX -Y, 0 

dNi 
0 0 dx 

d2N d2N i %A 
2ox 

i j*x 0 
x dx 

WN 6 WN 

[WA WBI 

b 

U 

V 

ei 

(3.26) 

(3.27) 

a- 
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from which the constrained shape function array is obtained 

in terms of the "wanted" variables a by eliminating the 

"unwanted" variables b (Equation (3.20)). 

3.5 ISOBEM2 ELEMENT 

For this element, (Figure 3.2), C1 continuity of both 

displacement components is assumed. The global 

displacements and the first derivatives of displacements 

with respect to the local x are interpolated independently 

assuming a parabolic variation. The derivatives with 

respect to the local x of the local displacements, which 

are obtained from the independently interpolated displace- 

ments, are made equal to the independently interpolated 

gradients at the two Gauss points ý=± 11V3. The 

constraint equations thus formed are used to eliminate 

the degrees of freedom at the middle node. 

The resulting displacement field is incompatible with two 

variations of the displacement derivatives. In order 

to avoid the development of spurious mechanisms in the 

in-plane direction, three integration points must be 

used to evaluate the different integrals required. Also 

the axial strain in linear analysis must be defined 

by the independently interpolated gradient rather than 

the derivative of the independently interpolated in-plane 

displacement. 
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The global displacements U, V and the gradients 6, e 

are independently interpolated as follows 

UU 

VV 
3 

= EN 
1=1 

00 

C Ci (3.28) 

wherein Ni are the hierarchical shape functions 

(Equation (3.7)). 

The constraint equations are obtained from the relations 

dy 0 dx 

_C+ 
du 0 ... ... ... . 0. ... (3.29) -V 

which are given in terms of the element variables from 

(3.12) and (3.28) by 

dN 
-a- Y 

3x 

dNi A 
L ux x 

dN i 
U-x J-Y Ni 

dN i 
-d-x J-x 

.Ei. 0. (3.30) 

114 



Evaluating (3.30) at the two Gauss points ý=± 114 

results in the constraint matrix M of (3.14) and the 

total variables 6 are def ined as 

6= {Ull VlP ell ell AU21 AV21 Ae 21 A E: 21 u3'v 3' e3'c3 

Rearranging the variables we have 

{Uj, Vi. 9 oil cl, u 31 V3' 031 C3: 

b 

, AU AV AG T 
0.. 0.. (3.32) 

1 2' 21 2'Ar-21 

The unconstrained shape fundtion array is given for 

this element by the following definition 
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1=1 

1. x# 
-. 

N1j. x# 
e^^^ 

yNii. y00 

00 

u 

v 

E 

du 
dy 

d2u 
dxdy 

d2u 

dx 2 

du 
dx 

3 

i=1 
dNi 

00 dx 0 

0 
dNi 
dx 

dNi dNi A 
-d-x 1. x a- 

j. x00 

WN S= IYN* S* 

U 

V 

e 

cI 

(3.33) 

3.6 SUBBEAM ELEMENT 

The element (Figure 3.3) is completely conforming with 

C1 continuity of both displacement components. The 

final degrees of freedom are the same as those for 

ISOBEM2. The initial variation of displacements is 

assumed to be cubic and hence four points are required 

to define this variation (Figure 3.3a). Thus eight 

internal degrees of freedom are introduced. The 

eight constraint equations required for the elimination 

of the internal degrees of freedom are obtained by 
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evaluating two constraint conditions at four points 

within the element. The final variation of displacements 

is an exact cubic and it becomes necessary to use at 

least three integration points to evaluate the element 

characteristics. 

The global displacements U, V and the gradients e, c 

are now interpolated as follows 

UU 

V 4_ V 
EN 

1=]. 
ee 
Ce 

The internal degrees of freedom are defined at the third 

points t1 and are the cubic interpolation 3 
functions given by 

16 

9 
2 '16 

9 
3 '16 

1 N4 '16 

0.. ... 0. (3.34) 

++ 9c 
2_ 9ý 3 

3E - E2 + 3E 3 

3& -&2- 3ý 3 

E+ 9E2 + 9ý3 
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The constraint equations are the same as for ISOBEM2 

(Equation (3.29)), but the conditions are in terms 

of the cubic interpolation functions Ri (Equation 

(3.35)) and are defined in terms of the nodal variables 

as follows 

u 
A. d1l A 

x 
N0 dx xyiv 

0 

dNi dR i L dx i. x U-x J. X 0-N 

These are applied at the four equidistant points 
2, 

+ to obtain the constraint matrix M 
5- 

(Equation (3.14)). 

The total variables S (Figure 3.3a) are defined as 

4= {Uj, Vj, a,, el, U21 V21 02, e2, U3. V31 %, e 3' 

u 4' v 41 0 41 c41 
T 

... ... ... .. » (3.37) 

and 
0. a* 

(Ull Vll ell ell U41 V4 1 64 , e4l, U21 V21 
b 

e2l C21 U31 V31 e3l YT... ... ... (3.38) 
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The unconstrained shape function array is given by 

1= I 

u 

v 

E 

du 
dy 

dv 
dx 

d2u 

ý 2u 

4 
=E 
i=1 

Ri 1. x jx 0 0 

A Ri I. y 
'T A 

Ni J-Y 0 0 

0 0 0 Ni 

0 0 Ni 0 

dRi dR i 
UX_ 

J. A 
y Y 0 0 

0 0 
dR, 
ux- 0 

d9i ý 0 0 0 ax 
l 

WN 6= WN * S* 

W w (3.39) A B 
b 

3.7 COMPUTATIONAL IMPLEMENTATION 

The elements presented above and which incorporate the 

theory presented in Chapter 2 were implemented in the 

general purpose finite element program LUSAS. 

Simplified schematic diagrams of the computational 

procedure which has been used for the pre-solution 

and post-solution element calculations are presented 

in Figures 3.7 and 3.8 respectively. In what follows, 
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brief comments on the special features of the computational 

implementation are presented. 

The special requirements of the constraint technique 

(Figure 3.6)are: 

a) a matrix partitioning scheme in order to rearrange 

variables 

b) a matrix inversion routine to form the constraint 

matrix C (Figure 3.6). 

In addition to the computations needed for small displace- 

ment analyses, the nonlinear solutions require the 

calculation of the nodal residuals for each clement. 

For the Total Largangian solutions, the shape function 

array Is formed only once and writtenon to disc. For 

all subsequent solutions the array is read from the 

disc and used in the element computations. 

The Total Lagrangian formulation based on the Green 

strains (TLG), requires only two additional subroutines 

to be added to the small -displacement calculations. 

These are: 
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A subroutine to form the linear strain matrix 

BL and to add it to the infinitesimal strain 

matrix B 
0. 

A subroutine to form the geometric stiffness 

matrix Ka and add it to the tangent stiffness 

matrix. 

The Total Lagrangian formulation based on the conventional 

strains (TLC) needs two more routines, namely: 

i. A subroutine to form the H* matrix. 

A subroutine to form the additional geometric 

stiffness matrix K* and add it to the tangent 

stiffness matrix. 

The Updated Lagrangian formulation (ULG) requires a 

routine to update the coordinates'plus the two subroutines 

required by the TLG formuiation. 

The geometry is always assumed to be parabolic and hence 

is defined by three nodes when updating the coordinates. 

For the two end element nodes the global displacements, 

which are degrees of freedom, are added to the initial 

global coordinates to obtain the updated coordinates. 

The coordinates of the internal node are computed as 

follows: 
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a) The local displacement components are obtained 

by interpolation using the initial geometry and 

the shape function array. 

b) The displacements are transformed into the global 

directions. 

C) The global displacements are added to the initial 

global coordinates. 

Therefore, it is necessary to reform the shape function 

array for the elements whenever one of the following 

is required: 

a) Computation of the updated coordinates. 

b) Recalculation of the new shape functions which 

are needed to form the element characteristics. 

The additional requirement of the combined Updated plus 

Total Lagrangian formulation (UTLG) is the. necessity of 

storing the displacements from the beginning of the load 

increment aC. Once the solution has converged, the 

displacements aC are used to obtain the new updated 

geometry. 
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The modification necessary for deformation dependent 

nodal forces must be included for the TLG, TLC and UTLG 

formulations. 

Clearly the Total Lagrangian formulations are easier 

to implement than the Updated Lagrangian formulations. 

3.8 CONCLUSIONS 

1. The possibility of obtaining non-conf6rming and 

exactly conforming elements by using the constraint 

technique has been demonstrated. 

2. Non-conf orming and exactly conforming elements have 

been developed using the constraint technique. 

3. The choice of the degrees of freedom for the elements 

has been based on the convergence requirements of 

completeness and compatibility taking into 

consideration the two following factors: 

(i) The possibility of the elements being 

eccentric. 

(ii) The capabilitY Of the elements to represent 

correctly the large rotation theory presented 

in Chapter 2. 
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CHAPTER 

TWO-DIMENSIONAL CURVED BEAM APPLICATIONS 

4.1 INTRODUCTION 

The main objectives of the numerical results which are 

presented in this chapter are: 

To assess the performance of the three elements, 

ISOBEM 1 (Figure 3.1), ISOBEM 2 (Figure 3.2) and 

SUBBEAM (Figure 3.3), as beam finite elements in 

linear applications. 

2. To examine the performance of the three elements 

in geometrically nonlinear solutions and to assess 

their ability to represent correctly the large 

rotation theory which has been presented in 

Chapter 2. 

To present a comparison. in order to determine the 

numerical effectiveness of the four formulations 

for geometric nonlinearity, namely: 

(i) The Total Lagrangian formulation based on 

the Green strains (TLG) 

(ii) The Updated Lagrangian formulation based on 

the Green strains (ULG) 
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(iii) The combined Updated and Total Lagrangian 

formulation (UTLG) 

(iv) The Total Lagrangian formulation based on 

the conventional strain (TLC) 

Despite the fact that the elements are relatively simple 

with a small number of degrees of freedom they possess 

excellent capabilities. This is demonstrated clearly 

in the range of examples presented in the following 

sections. It should be noted that imperial units have 

been used in some examples instead of the SI system 

to conform with published results. 

4.2 LINEAR SOLUTIONS 

4.2.1 Straight Cantilever'Beam 

A straight cantilever beam was modelled by one element 

and solutions were obtained for different load cases 

using the three elements. It is apparent from the 

results which are given in Table 4.1 that all three 

elements give exact results when they are compared to 

the exact beam theory. 
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4.2.2 Curved Cantilever Beam 

A curved cantilever beam problem (Figure 4.1) was solved 

employing each of the three curved elements and straight 

ISOM 1 elements to study the convergence characteristics 

of the curved beam elements. Solutions were obtained by 

one, two, four, eight and sixteen element idealisations 

for the following two load cases: * 

(a) vertical load at the free end 

(b) concentrated moment at the free end. 

The results are presented in Tables 4.2 and 4.3 and 

are compared with the beam theory (taking into account 

the effect of both bending and axial force (Figure 4.1)). 

The displacements of the curved element idealisations 

converge to the exact solution faster than the displace- 

ments of the straight elements. This is clearly seen 

from Figure 4.2 in which the percentage errors in end 

displacements on a logarithmic scale are plotted for 

different degrees of freedom. 

The stress resultants obtained are presented in Figures 

4.3a-b and 4.4. The results of the idealisations using 

the two non-conforming elements, i. e. ISOBEM 1 and 

ISOBEM 2, converge rapidly to the correct values. The 

SUBBEAM element idealisations, however, while converging 
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to the correct values show some oscillationin the 

axial force results from coarse meshes. 

The maximum errors in displacements to seven significant 

figures when using one element only are as follows: 

(a) Vertical load at free end: 

Element % Error 

ISOM 1 2.1 

ISOM 2 1.79 

SUBBEAM 4.47 

Straight 

elements 39.96 

Displacement Component 

Vertical 

Vertical 

Horizontal 

Vertical 

Moment at f ree end: 

Element % Error Displacement Component 

ISOBEM 1 0.6 Horizontal 

ISOBEM 2 1.68 Horizontal 

SUBBEAM 1.65 Horizontal 

Straight 

elements 29.29 Vertical 

This firmly establishes the superior performance of 

the curved beam elements. 
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4.2.3 Shallow Clamped Arch 

The complete arch (Figure 4.5) sub-tends an angle of 

30 0 and has a base length of 34 in (863.6 mm). The 

arch carries a central normal load and the following 

two arch thicknesses are considered: 

(a) thick'arch -t=1 in (25.4 mm) 

(b) thin arch t=1 16 in (1.6 mm) 

Half the arch was modelled by one, two, four, eight and 

sixteen elements. Solutions were obtained considering 

the two arch thicknesses and employing each of the 

three elements. The arches were also analysed by 

thirty-two ISOM 1 elements idealisations. 

The crown displacement convergence curves on a logarithmic 

scale are given in Figure 4.6. All three elements give 

exact results for the thick arch to six significant 

figures on using sixteen or more elementsi The non- 

conforming ISOM 1 and ISOMI 2 elements perform better than the 

completely conforming' SUBBEAM element for the thin arch. 

The results for the stress resultants for the thick arch 

are presented in Figures 4.7a-b. The results from 

idealisations by each of the three elements converge 

rapidly to the exact values. Figures 4.8a-b give the 
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stress resultants for the thin arch. It can be seen 

from these figures that the. results from idealisations 

by the two non-conforming elements are not affected by 

the thickness change. The results for the axiallstress 

resultants from the SUBBEAM element idealisations, 

however, show some oscillations for the thin arch. 

4.2.4 Deep Clamped Arch 

The arch (Figure 4.9) is semi-circular with clamped ends 

and the radius of the centreline is 17 in(431.8 mm). 

The arch carries a central normal load. The same two 

thicknesses of 1 in (25.4 mm) and 
1 in (1.6 mm) are 16 

considered,. 

Half the arch was idealised by one, two, four, eight 

and sixteen elements. Solutions were obtained 

considering the two arch thicknesses and employing each 

of the three elements. Idealisations by thirty-two 

ISOBEM 1 elements were also used to obtain-solutions. 

These represented the converged answers. 

The convergence curves for the crown displacement are 

given on a logarithmic scale in Figure 4.10. For the 

thick arch the performance of the non-conforming 

elements is better than the SUBBEAM element performance 

when coarser meshes are used. But the latter element 

idealisation still converges to the same answer as 
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that obtained from the non-conforming elements' 

idealisations by the sixteen element mesh. The results 

of the non-conforming elements are not affected by the 

thickness change. The convergence of the SUBBEAM element 

results, however, is not monotonic and is slower for 

the thin arch. 

The convergence of the stress resultants (Figures 4.11a-b 

and 4.12a-b) from the ISOBEM 1 and ISOBEM 2 element 

idealisations is very rapid. Also the thickness change 

does not affect the performance of these elements. The 

bending moments from the SUBBEAM element idealisations 

converge to the correct values for the thick arch. The 

thin arch bending moment results show slight oscillations. 

However, the average nodal values (Figure 4.12b) coverage 

to the correct answers. The axial stress resultants, 

however, show some oscillations. The average nodal 

values coverage to the correct values for the thick arch 

(Figure 4.11a). The fluctuations in axial stress 

resultants for the thin arch are considerable with 

values many times the order of the correct answers. 

To conclude the convergence of the two non-conforming 

elements is very fast and is independent of the problem 

geometry and thickness. The SUBBEAM element results 

while being convergent for the thick arch, show some 
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oscillations in the axial force results. The performance 

of the element seems to be dependent on the problem 

geometry and thickness. Similar behaviour has been 

reported by Dawe [22,23,241 for curved elements with 

a cubic-cubic variation in displacements. The axial 

force resultants only, however, are affected considerably 

for the very thin deep arch. Since the deformation in 

such a case is nearly inextensional, the axial force will 

not be of importance [24]. 

4.3 GEOMETRICALLY NON-LINEAR SOLUTIONS 

In all the geometrically nonlinear applications the 

loads were applied incrementally with complete Newton- 

Raphson iterations within each increment until conver- 

gence. The overall convergence control limits of the 

residual norm and the displacement norm were used in 

conjunction with the local convergence control of 

maximum absolute residual. A value of 1% was assumed 

for the two norms. Thus, the convergence was effectively 

controlled by the maximum absolute residual value. 

4.3.1 Cantilever Under Vertical Load at Free End 

This is an example which is commonly used as a test 

problem. Exact solutions and numerical results have 

been obtained for this problem by means of elliptic 

integrals [79,80], dynamic relaxation based on 
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equilibrium equations written in the updated geometry 

(79] and hybrid finite elements [28]. 

The main characteristics of this cantilever problem are 

as follows: 

i. Both the curvature and rotation can be large. 

The interaction between axial force and bending 

moment is clearly demonstrated and both of these 

are of equal importance. 

iii. The deformation is inextensional. 

Thus this problem is used to test the accuracy of both 

the theory and the elements which have been developed. 

This is achieved by comparing the results for displace- 

ments and stresses. The displacement values obtained 

are compared with published numerical results. Since 

there are no published values for the stresses, however, 

the Updated Lagrangian results, which represent the true 

stresses, are considered to be the correct stress 

resultant values. Also, from equilibrium considerations 

the axial stress resultant should be equal to zero at 

the : ýupport. A value of 10- 2 
was-assumed for the 

maximum absolute residual convergence control in all 

the cantilever solutions. 
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The cantilever was modelled by sixteen equal elements. 

The load was applied in forty increments, with Newton- 

Raphson iterations within each increment, up to a maximum 

load of 10 EI Solutions were obtained by the ULG, 
L2 

UTLG, TLG and TLC formulations employing each of the 

three elements. The Total Lagrangian formulations and 

the combined formulation required for convergence a 

maximum of four iterations per increment. The convergence 

rate of the complete Updated Lagrangian formulation (ULG) 

was slower. A maximum of fifteen iterations for the 

ISOBEM 1 idealisation and six iterations for tile ISOBEM 2 

and SUBBEAM idealisations were required for convergence. 

The tip displacement results from the four ISOBEM 1 

element idealisation solutions are given in Table 4.4 and 

Figure 4.13 and are compared with values from ref. (79]. 

The ULG and UTLG formulations are in close agreement 

with the exact values. The TLG results, however, show 

considerable variation from the correct values, -, 

especially for large rotations. The TLC formulation, 

while giving an improvement on the TLG results, is Still 

in error. Figures 4.14a-b present a comparison between 

the stress resultants from the four formulations. 

The values from the Total Lagrangian solutions are 

clearly in error. The errors increase with the increase 

in curvature and rotation. 
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The failure of the two Total Lagrangian formulations 

was found to be primarily as a result, of the equations 

becoming indefinite (with negative pivots), when the 

rotations exceed one radian. To investigate this 

problem further it is worth noting that in the original 

ISOBEM 1 element formulation the rotation is taken as 

a degree of freedom. Also, the element degrees of 

freedom are arranged so that the rotation is obtained 

first in the solution process. 

Thus, for inextensional (or nearly inextensional) 

deformation, the axial strain is equal to zero (or 

a very small value) when the solution converges to the 

exact answer. Therefore, 

e= 
du 

+l(du)2 , j(. ±v)2 
=0 (4.1) dx 2 dx 2 dx 

Due to the arrangement of the element variables the 

values of 
1v 

are obtained first in the solution scheme. dx 
u Hence, taking (4.1) as a quadratic equation in ýL- and dx 

solving gives 

du 
--, t (1 _ (dv)2)1/2 ... ... ... ... (4.2) dx dx 

The roots in (4.2) are real if 

(dv)2 ... ... ... ... ... ... (4.3) dx 
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The incremental in-plane strains add up to e when the 

Total Lagrangian formulations are used. Since dv 
dx 

represents'the rotation for the ISOBEM 1 element, the 

rotation cannot exceed one radian for the inextensional 

cantilever example. Therefore, the equations become 

indefinite on attempting to solve for rotations that 

exceed one radian. 

For the Updated Lagrangian solutions on the other hand 

the incremental axial strains are defined as follows 

e 
dAu I(dAu)2 

+ . 
1(ýLAv)2 

... ... ... (4.4) dx +2 dx 2 dx 

Thus, the condition for real roots in an inextensional 

deformation is 

(dAV)2 
... ... ... ... . (4.4) dx 

This places a limit on the size of the rotation 

increment and hence introduces a limit on the load 

increment value. 

Clearly condition (4.3) does not apply for the approximate 

theory based on the conventional strains (Equation 

(2.32a)) in which the axial strains are given by 
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e= 
du + l(dv)2 

... ... ... ... ... (4.6) EIR 2 dx 

Strain-displ acement relations similar to those given 

by Equation (2.32a) are commonly used in the analysis 

of plate and shell type problems [6,10,50,55,56]. 

Thus, Total and Updated Lagrangians solutions were 

obtained for the cantilever example to test the accuracy 

of the approximate theory. Sixteen element ISOBEM 1 

idealisations, in which the approximate theory was 

employed, were used. It can be seen from the results, 

which are presented in Figure 4.15, that the limitation 

on the rotation size has been removed. The Total 

Lagrangian results are, however, still in error compared 

to the exact and the Updated Lagrangian solutions. 

The disadvantage of the Updated Lagrangian solutions is 

that considerably more computer time is required by these 

compared to the Total Lagrangian solutions. It will be 

of great advantage therefore if correct Total Lagrangian 

solutions are developed.. The difficulty outlined above 

can be avoided by taking into account the following 

two facts. 

(a) Condition (4.3) can be satisfied by the use of the 

displacement derivatives (which are rotation 

measures) rather than the rotations as degrees 

of freedom. 
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(b) The convergence criteria for a geometrically 

nonlinear solution are the same as those for linear. finite 

elpraent solutions i. e. caripatibility and cappleteness 141] 
. 

These factors lead to the development of the ISOBEM 2 

element by adopting an alternative interpretation of 

the constraint technique. In the ISOBEM 2 element 

the constraint equations are obtained by making the 

gradients of the independently interpolated displacements 

equal to the independently interpolated displacement 

derivatives. The SUBBEAM element was formulated by 

the same procedure to eliminate the incompatibility 

in displacement gradients within the ISOM 2 element. 

The displacement results obtained by these elements for 

the cantilever example are exact for all four formula- 

tions. Idealisations by both the ISOBEM 1 and SUBBEAM 

elements give almost identical results, Tables 4. 
_. 

5 and 

4.6. Figures 4.16 and 4.17 give plots of these results. 

The rotations obtained by all four formulations are 

in very good agreement. The sine of the angle of 

rotation is equal to the derivative of the out-of-plane 

displacement with respect to the in-plane coordinate 

for the two Total Lagrangian formulations (Equation 

(2.104)). 
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Considering the variation of the stress resultants 

along the length, however, the difference between the 

four formulations is clearly apparent. The bending 

moments obtained from all four formulations are almost 

identical. These are presented in'Figure 4.18a. The 

axial force results are shown in Figure 4.18b. The 

TLG formulation results are obviously wrong since the 

values at the support are expected to be zero from 

equilibrium considerations. - The error in these results 

increases with the increase in curvature (along the beam) 

and rotation. Hence, it results from neglecting the 

effect of bending on the axial force (Equation (2.26)) 

when using the Green strains. 

It can be seen from Figure 4.19 that the correct axial 

force values are obtained if Equation (2.26) is used to 

calculate the true axial force. A similar procedure 

for the evaluation of the true stress resultants has 

been suggested by Hibbitt et, al [28]. It is only 

possible, however, to evaluate the total true axial 

forces by this procedure. The true increments in axial 

stress resultants, which might be required in a 

materially nonlinear problem, are not available. This 

is where the TLC formulation provides an advantage. 

While retaining the advantages of the Total Lagrangian 

formulation, mainly the saving in computer time, the 

TLC formulation gives the true stress resultants 

(Figure 4.18) and in incremental form if required. 
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The UTLG formulation, which initiates as the TLG 

formulation for the first load increment, tends to 

correct itself and thus gives correct displacements 

and stresses (Figures 4.16,4.17 and 4.18). The use 

of the UTLG formulation saves computer time compared 

to the use of a complete ULG solution. 

The cantilever example was solved applying twenty and 

ten load increments with Newton-Raphson equilibrium 

iterations up to a total load of 10 E, to study the 
R2 

effect of load increment size on the performance of 

the four formulations. The tip displacement results are 

presented in Figures 4.20 and 4.21. It can be seen 

from these figures that the TLG solution is not affected 

by the increment size. The other three formulations 

are affected slightly by the increment size. The apparent 

slight dependence of the TLC formulation results on the 

increment size can be attributed to the fact that the 

Green strain measure of the centreline e, which is 

included in the incremental formulation (Equations 

(2-38), (2.85) and (2.86)), was assumed small and 

neglected. Hence, it may'be of advantage to retain this 

term in the formulation. 

The axial force results are shown in Figures 4.22 and 

4.23 for the twenty increments and ten increments 

solutions respectively. The TLG results beiýg wrong 
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are not shown in the figures. It can be seen from 

these results that the TLC formulation gives values 

which are almost identical to the correct ULG 

formulation results. The UTLG formulation axial force 

results depend on the increment size and are wrong 

initially. This result was expected and is mainly due 

to the error introduced from thib complete TLG solution 

for the first load increment. 

Thus, the UTLG formulation needs to be modified to 

eliminate the error in the first increment. This may 

be achieved by adopting one of the following two 

alternatives: 

(a) The use of a complete Updated Lagrangian solution 

for the first increment. 

(b) The use of a combined formulation based on the 

conventional strains. 

Generally the UTLG formulation is more complex, relatively 

difficult to implement and requires more storage compared 

to the other three formulations. 
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4.3.2 Symmetrical Buckling of Two-hinged Deep Arch 

Wood and Zienkiewicz [61] have obtained the buckling 

response of a two-hinged deep arch (Figure 4.24) by 

using the Total Lagrangian formulation and paralinear 

elements. This example was*chosen to test the accuracy 

of the curved elements in nonlinear solutions, 

especially when employing the Total Lagrangian 

formulations. 

Half the arch was idealised with eight elements. Sixty 

equal displacement increments with Newton-Raphson 

iterations were applied up to a total crown displacement 

of 0.36 R. Solutions were obtained by the four 

formulations using each of the three elements. Since 

the rotations are only moderately large and the curvatures 

are'relatively small, all solutions are expected to be 

in close agreement. The maximum number of iterations 

required for convergence with a relative error (maximum 

-4 absolute residual) of 10 was four for the ULG formula- 

tion and three for the other three formulations. The 

results of the central load versus deflection and 

central load versus horizontal reaction from each 

element idealisation are compared with results from 

ref. [61]. 
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Figures 4.25a-b give the results from the ISOBEM 1 

idealisation. These show close agreement. There is 

a difference, however, in the post-buckling response 

between the Total and Updated Lagrangian results. This 

is due to the fact that the rotation and curvature 

become large in the post buckling phase. 

The results from the ISOBEM 2 (Figure 4.26a-b) and the 

SUBBEAM (Figure 4.27a-b) idealisations are in very close 

agreement for all formulations. Table 4.7 gives the 

ISOBEM 2 element idealisation results. 

The values of the buckling loads obtained from all 

solutions are as follows: 

Element Type Buckling Load (x EI 
j2- 

ULG UTLG TLC TLG 

ISOBEM 1 15.23 15.31 15.06 15.04 

ISOBEM 2 15.23 15.23 15.31 15.29 

SUBBEAM 15.25 15.25 15.26 15.25 

These closely agree wi th the value of, 15.3 EI 

R 
(and 

15.2 EI) 
given 2 in ref. 161]. 

R 
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4.3.3 Cantilever Under Pure Moment 

This example was chosen to demonstrate the capability 

of the theory and of the elements to deal with very 

large rotations (up to 27 radians). To obtain a solution 

by the Total Lagrangian formulations (TLG and TLC) and 

the combined formulation (UTLG), the modification of 

the applied load vector (Equation (2.103)) must be 

included in the computations. This modification, being 

a function of the displacement derivatives at a node 

point, is included in the computations for the two C 

continuous elements, ISOBEM 2 and SUBBEAM only. 

The cantilever (Figure 4.28) was modelled by six equal 

elements. The moments were applied in thirty increments 

to bend the cantilever into a complete circle. Newton- 

Raphson equilibrium iterations were used within each 

increment to achieve convergence. 

The four solutions obtained from the SUBBEAM element 

idealisation are in close agreement. The average number 

of iterations required for convergence, within an 

increment with a relative error of 10- 4, 
was six- 

Comparative results for values at the free end obtained 

by the TLG formulation and exact values from ref. (25] 

are presented in Table 4.8. These show very good 
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agreement. Figure 4.28 gives some sample deformed 

configurations obtained by the TLG solution compared 

with the exact deformed configurations, which are 

circular segments of radius 
1, for. sufficiently large M 

area [25]. 

Figures 4.29a and 4.29b give plots in a non-dimensional 

form of the displacements and the displacement-derivatives 

of the free end, respectively. The two Total Lagrangian 

formulations give almost identical results. This is to 

be expected since the axial force is zero. The derivative 

of the local transverse displacement with respect to 

the in-plane coordinate is equal to the sine of, the angle 

of rotation from the ULG and UTLG solutions. The UTLG 

results show a slight departure from the exact curves 

for very large rotations. The two Updated Lagrangian 

solutions, being a function of the developing element 

curvature result for large rotations, in elements which 

are too curved to be correctly defined by the assumed 

parabolic variation of element geometry. This is an 

idication that the use of more elements is required in 

these formulations. 

The Total Lagrangian solutions are clearly in very good 

agreement with the exact solution. A drift from the 

exact curves occurs for large rotations, however, on 

applying these formulations and the six ISOBEM 2 

150 



element idealisation to solve the cantilever under pure 

moment problem. This can be seen from the results 

presented in Figures 4.30a-b. This is due in part to 

the incompatibility in the displacement gradients within 

the ISOBEM 2 element. The incompatibility effect can be 

reduced by increasing the number of elements used. An 

improved response, therefore, is to be expected if the 

number of elements is increased. Closer agreement with 

the exact curves is obtained by both formulations for 

the cantilever example by increasing the number of 

ISOBEM 2 elements used to twelve (Figure 4.3la-b). 

4.3.4 Numerical Effectiveness of Formulations 

Sample relative computer times which were required for 

solution are given in Table 4.9 to examine the numerical 

effectiveness of the four formulations. The Total 

Lagrangian solutions are clearly numerically more effec- 

tive than the Updated Lagrangian solutions. Generally, 

using the Total Lagrangian formulations can save up to 

50% or more in computer time compared to the ULG 

formulation. 

The ULG formulation always results in correct answers, 

but requires considerably more computer time compared to 

the other three formulations. 

4 
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The UTLG formulation can save in computer time compared 

to a complete ULG solution. It is worth noting, however, 

that the UTLG solution computer time was more than the 

ULG solution time for the cantilever under pure moment. 

The TLG formulation gives exact displacement predictions 

and is independent of the load increment size. 

The TLC formulation gives true incremental stress - 

resultants for problems in which both rotation and curva- 

ture are large and in which the axial force is of 

importance. 
. 

The TLC approach is general and can be applied to all 

large deformation problems. To demonstrate this point, 

the two-dimensional theory which is presented in 

Appendix II was introduced into isoparametric element 

computations. The cantilever beam under vertical load 

at the free end was modelled by four 8-noded isoparametric 

elements (Figure 4.32). A single load increment of 
EI 

L2 

was applied with Newton-Raphson equilibrium iterations. 

Two solutions were obtained by the TLG and TLC formula- 

tions. The results obtained for the axial stresses along 

the centreline of the cantilever are presented in, Figure 

4.32. The TLC formulation gives the correct stress 

results at the support where the TLG results are 

obviously wrong. This demonstrates the superiority of 
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the TLC formulation in predicting the true stresses. 

The isoparametric elements, however, were numerically 

ill-conditioned in both solutions. These elements 

are, therefore, unsuitable for use in the analysis of 

very thin structures. 

4.3.5 Cantilever Under Uniformly Distributed Load 

and Follower Pressure Loading 

A cantilever beam (L =5m, EI = 833.4 kNm 2$ EA = 10 6 kN) 

was modelled by eight elements. Ten uniformly distri- 

buted load increments with Newton-Raphson equilibrium 

iterations within each increment, were applied up to a 

total load of 10 E-I 
per unit length. The load was kept 

L3 
in a fixed direction. The two Total Lagrangian formula- 

tions TLG and TLC were used to obtain solutions by each 

of the three elements. The good agreement between all 

solutions was expected since the rotations are only 

moderately large and the axial forces are small. 

The ISOBEM 2 element idealisation results are presented 

in Table 4.10. Figures 4.33,4.34 and 4.35 give the 

results from the ISOBEM 1, ISOBEM 2 and SUBBEAM element 

idealisations respectively. The results are compared 

with the analytical solution presented in ref. . 
[81]. 

These show very close agreement. 

153 



The modification which is required for follower 

pressure loading (Equation (2.103)) was included in the 

computations for the two C1 continuous elements. The 

cantilever beam idealised by eight elements was subjected 

to a follower pressure loading. The load was applied 

in ten increments up to a total load of 1 EI 
per unit 

L3 
length. Newton-Raphson equilibrium iterations were 

used within each increment to achieve convergence. 

The ULG and TLG formulations were used to obtain solu". -* 

tions for comparison. The results for, the tip 

displacements of the cantilever are presented in Table 

4.11 and Figure 4.36. These show very good agreement 

between the two formulations. The ratio of the computer 

time required for the TLG solution to that required for 

the ULG solution is 0.3456. This is further evidence 

of the numerical effectiveness of the Total Lagrangian 

formulation. 

4.3.6 The Post-bifurcation of a simply Supported 

Beam 

This problem which has been presented by Hibbitt et al 

[28] is one of the classical elastica problems. The 

problem consists of a force in a constant direction 

applied to the beam so that the beam buckles at a load 

p 
cr ý-- IT 

2 EI/(4L 2 ), where L is the original beam half 

length. The simply supported beam (Figure 4.37) has 

a slenderness ratio L/R of 2.81 x 103. 
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Half the beam was modelled by ten equal elements. Ten 

equal displacement increments of L/5, with Newton- 

Raphson equilibrium iterations were applied at the 

pinned end. 

An initial imperfection was assumed in order to initiate 

buckling. The undeformed geometry was defined by a 

sine curve. Two values of 2L/1000 and L/1000 were 

assumed for the maximum imperfection at mid-span. A 

third approach in which an eccentricity in the form of a 

sine curve was introduced in the modulus matrix (Equation 

(2.42))was used to check the eccentric element formula- 

tion. A maximum value of L/10000 was assumed for the 

ecGentricity at mid-span. 

The results from the three solutions obtained by using 

the SUBBEAM element idealisation and the TLG formulation 

are presented in Table 4.12. The TLG formulation was 

used since it is not affected by the increment size. 

The three solutions are in very close agreement. The 

number of iterations which were required for convergence 

within each increment with a relative error of 10-6 is 

given in Table 4.12. A maximum of thirty, thirty-two 

and twenty-nine iterations were required in the first 

increment for each of the three solutions respectively. 
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The position of the beam centreline is shown in 

Figure 4.37 at various loads during flexure. A plot 

of the load obtained from these solutions as a function 

of the position of the end of the beam compared with the 

results from ref. [28] is presented in Figure 4.38. 

This shows that the results which have been obtained 

are in excellent agreement with those from ref. (28). 

The same beam was analysed using ten ISOBEM 2 elements. 

The results, which closely agree with those from ref. 

[28], are presented in Figure 4. ý9- 

4.4 CONCLUSIONS 

1. The results obtained by using each of the three 

elements have been shown to be exact when they 

are compared to the results obtained from the 

beam theory for straight elements in linear 

elastic solutions. The elements have been proven 

to be very accurate when used as curved beam, 

elements. The performances of the ISOBEM 1 

element and ISOBEM 2 element have been shown to 

be independent of problem geometry and thickness. 

The SUBBEAM element results have been found to be 

slightly dependent on the problem geometry and 

thickness. 
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2. The Total Lagrangian formulations TLG and TLC 

have been proven to be numerically more effective 

than the Updated Lagrangian formulation ULG and 

the combined formulation UTLG. 

3. It has been demonstrated that for problems in 

which both curvature and rotation are large the 

TLC formulation is more suitable if incremental 

true axial stress resultants are required. The 

TLG formulation has been proven to be very 

effective in predicting the correct displacements 

for any size of load increment. 

4. It has been found that the element used in large 

rotation and curvature problems must be C 

continuous in both displacement components for 

the TLG and TLC formulations to converge to the 

correct answers. This requirement of the theory 

(Chapter 2) results from adopting the Kirchhoff 

hypothesis which states that plane sections remain 

plane and normal to the beam axis after deforma- 

tion. This point has been proven by the excellent 

results obtained by the ISOBEM 2 and SUBBEAM 

element idealisations. The ISOBEM 1 element on 

the other hand has been found to be unsuitable 

for use in the analysis of large rotation and 

curvature problems when a Total Lagrangian 

solution is adopted. 
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5. The ISOBEM 1 element can be used with either the 

ULG or the UTLG formulation if C1 continuity 

is physically objectionable. It has been shown 

that the UTLG formulation can save in computer 

time compared to the ULG formulation. It has 

been found, however, that the UTLG formulation 

should be modified to use large increments and 

at the same time predict correct stress values. 

6. The load vector modification, which is necessary 

for the convergence to the exact answers of large 

rotation Total Lagrangian solutions of structures 

under applied concentrated moment, is a function 

of the displacement derivatives. It has been 

found that the incompatibility of these 

derivatives in the ISOBEM 2 element can affect 

the performance of this element in the analysis 

of such problems. It has been demonstrated, 

however, that such an effect can be reduced by 

increasing the number of elements. 

7. It has been shown that follower pressure loading 

can be successfully dealt with in a Total 

Lagrangian formulation by modifying the applied 

load vector.. 
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8. It has been proven that eccentric beam problems 

and beams with initial imperfections can be 

successfully included in a large deformation 

formulation by introducing the eccentricity 

(or imperfection) into the modulus matrix. 
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v PR 2/EI HR 2/EI 
R 

TLG TLC UTLG ULG TLG 
- 

TLC UTLG ULG 

0.03 6.3293 6.3305 6.3288- 6.3294 4.7596 4.7605 4.7593 4.7598 

0.06 9.8582 9.8617 9.8538 9.8546 7.6058 7.6084 7.6030 7.6037 

0.09 12.0816 12.0874 12.0702 12.0711 9.6444 9.6489 9.6375 9.6382 

0.12 13.5419 13.5499 13.5206 13.5215 11.2656 11.2719 11.2528 11.2536 

0.15 14.4870 14.4969 14.4527 14.4535 12.6436 12.6517 12.6231 12.6239 

0.18 15.0462 15.0579 14.9962 14.9970 13.8675 13.8776 13.8375 13.8384 

0.21 15.2943 15.3076 15.2255 15.2263 14.9861 14.9982 14.9461 14.9470 

0.24 15.2792 15.2938 15.1857 15.1865 16.0275 16.0416 15-9780 15.9789 

0.27 15.0336 15.0490 14.9060 14.9067 17.0101 17.0263 16.9508 16.9518 

0.30 14.5789 14.5949 14.4058 14.4065 17.9488 17.9669 17.8747 17.8757 

0.33 13.9259 13.9423 13.6991 13.6997 18.8567 18.8766 18.7554 18.7564 

0.36 13.0764 13. OS31 12.7965 12.7970 19.7431 19.7646 19.5953 19.5963 

TABLE 4.7 Symmetrical Buckling of Arch - ISOBEM 2 Results. 
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Time/ULG Time 
Example Element 

Type ULG UTLG 
_TLC 

TLG 

Cantilever ISOBEM 1 1.00 0.2923 - - 
under vertical 
load ISOBEM 2 1.00 0.4781 0.3998 0.5200 

20 increments 
16 elements SUBBEAM 1.00 0.3502 0.2590 0.3298 

Cantilever ISOBEM 1 1.00 0.3185 - - 
under vertical 
I oad ISOBEM 2 1.00 0.5225 0.4821 0.4373 

10 increments 
16 elements SUBBEAM 1.00 0.3534 0.2773 0.2446 

Symmetrical ISOBEM 1 1.00 0.5714 0.6278 0.4672 

buckling of 
Arch ISOBEM 2 1.00 0.5688 0.5038 0.4614 

60 increments 
8 elements SUBBEAM 1.00 0.3987 0.3196 0.2608 

Cantileter 

under pure 
moment SUBBEAM 1.00 1.0723 0.4412 0.5176 

30 increments 
6 elements 

TABLE 4.9 Relative Computer Times 
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A3 
ET- V/L L-U 

-F 2ý*/7r 

TLG TLC TLG TLC TLG TLC 

1 . 1235 . 1243 . 9912 . 9912 - 1052 . 1061 

2 . 2385 . 2400 . 9669 . 9666 . 2047 . 2065 

3 . 3397 . 3416 . 9315 . 9309 . 2950 . 2974 

4. . 4252 . 4272 . 8901 . 8892 . 3745 . 3772 

5 . 4959 . 4977 . 8466 8456 . 4432 4459 

6 . 5540 . 5557 . 8035 . 8025 . 5023 . 5051 

7 . 6016 . 6031 . 7625 . 7614 . 5528 . 5556 

8 . 6408 . 6422 . 7240 . 7229 . 5960 . 5988 

9 . 6733 . 6762 . 6884 . 6852 . 6330 . 6382 

10 . 7006 . 7030 . 6555 . 6526 . 6646 . 6696 

sin- 
I dv 

27 

TABLE 4.10 Cantilever under Uniformly distributed Load 

ISOBEM 2 Results. 
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wL2 V/L 1-U 
--u-- 2e/7r 

ULG TLG ULG TLG ULG TLG* 

1 . 1235 . 1244 . 9911 . 9911 . 1060 . 1060 

2 . 2436 . 2456 . 9650 . 9648 . 2114 . 2116 

3 . 3573 . 3604 . 9230 . 9221 . 3157 . 3163 

4. . '4619 . 4662 . 8668 . 8649 . 4187 . 4196 

5 . 5555 . 5607 . 7986 . 7952 . 5198 . 5212 

6 . 6365 . 6423 . 7209 . 7157 . 6187 . 6207 

7 . 7040 . 7102 . 6365 . 6291 . 7151 . 7179 

8 . 7578 . 7639 . 5478 . 5381 . 8088 -. 8125 

9 . 7981 . 8038 . 4574 . 4451 . 8994 . 9038 

10 . 8256 . 8304 . 3676 . 3525 . 9869 . 9919 

sin- 
I dv 

ux- 

TABLE 4.11 Cantilever under Follower Pressure Loading 

SUBBEAM Result. 
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CHAPTER 

THREE-DIMENSIONAL LARGE ROTATION 
ELASTO-PLASTIC THEORY FOR THIN CURVED 

ECCENTRIC BEAM ELEMENTS 

5.1 INTRODUCTION 

A geometrically nonlinear theory for three-dimensional thin 

curved displacement beam finite elements, which is based 

on the Total Lagrangian formulation, that admits large 

rotations is not yet available. This is mainly due to 

the difficu lty arising from the fact that finite rotations 

referred to fixed axes in space are not vector quantities 

and hence not commutative. This difficulty has lead to 

the conclusion that for three-dimensional beam elements 

the Updated Lagrangian formulation is numerically more 

effective than the Total Lagrangian formulation [20]. 
1 

It has been shown, however, in Chapter 4 that the 

disadvantage of the Updated Lagrangian formulation is 

the excessive amount of computer time required compared 

to a Total Lagrangian solution time. 

For small displacement formulations it is reasonable 

to assume that the rotations are small and so equal to 

the relevant displacement gradients for thin beams. 
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It is possible to obtain good results using this 

assumption for linear beam finite element solutions. 

For nonlinear solutions, once the theory is correctly 

formulated taking into account the assumption that 

displacement gradients are used as measures of rotation, 

the performance of the element can be expected to be of 

the same accuracy as that of the linear element. This 

is a consequence of the same convergence criteria 

applying for both linear and geometrically nonlinear 

finite element solutions(411. 

It has been shown in Chapter 2 that, taking into considera- 

tion beam assumptions, exact small strain Total Lagrangian 

formulations, based on either the Green-Lagrange strains 

or the conventional strains, can be obtained for thin 

curved two-dimensional beams. This Chapter extends that 

theory to three-dimensional thin curved beam formulations. 

The theory presented here is based on linear elements 

v, herein the assumption that rotations are small is used. 

Thus the displacement gradients, which are vectors, 

are used as measures of rotation. The large rotation 

effects are contained in the definition of the nonlinear 

strain-diesplacement relations. This is achieved by 

using a convective coordinate system within the element., 

225 



The theory is based on the assumption that plane 

sections remain plane and normal to the beam reference 

line after deformation. Distortional warping is, 

therefore, not permitted. The cross-section of the 

element is assumed to be solid rectangular for which 

warping can be neglected (71,73,741. The cross- 

section can vary with length and can be eccentric 

(Figure 5.1). Cross-sections other than solid 

reqtangles are considered as combinations of eccentric 

beam elements with a common nodal line. This presents 

an approximate approach for the analysis of thin 

walled beams. An additional assumption that longitudi- 

nal warping of the reference line is small and hence 

negligible is used. This amounts to assuming that 

the torsional curvature is small. The effects of 

large rotations on the torsional moments, however, 

are taken into consideration. 

5.2 GEOMETRIC DEFINITION OF ELEMENT REFERENCE LINE 

The assumptions stated above are used to define the 

geometric shape of the reference line before and 

after deformation. The nonlinear strain-displacement 

relations are obtained from the definition of geometry 

after deformation using convected coordinates. 
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The geometry of the reference line before deformation is 

defined by four nodes, three along the reference nodal 

line and the fourth-is positioned to define the local 

axes (Figure 5.1). The fourth node is introduced to 

fix the direction of the binormal thus avoiding the 

difficulty that arises when using the general definition 

of the principal normal and the binormal (Figure 5.2), 

especially for straight elements. This gives the user 

a control on the directions of the local axes. On 

considering the geometry of deformation and taking 

variations, however, both normals are assumed to deform 

as principal normals. 

The local x axis is tangential to the reference line 

frora nodes 1 to 3 CFigure 5.1). The variation of the 

reference line geometry before deformation is defined 

by the three nodes and is therefore parabolic. The . 
local z is defined to be normal to the plane formed by 

the two end nodes and the fourth node. The second node 

is assumed to lie on this plane. Local y is normal to 

both x and z and is defined so that x, y and z form a 

right-handed system. This definition of axes assumes 

that the four element nodes lie on one plane. Hence, 

for a generally curved beam the second and fourth nodes 

must coincide. 
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Referring to Figure 5.3, the local axes are defined 

as follows: 

a) The position vector of any point on the reference 

line is 

I= X'l + YJ + Zk^ ... ... ... ... ... (5.1) 

where the global coordinates X. Y and Z are 

functions of the natural coordinate ý. 

b) The unit vector (defining the local x axis) 

tangential to the reference line is given by the 

following definition 
, 

dX/dC + dY/dE* i+ dZ/dE k 
((dX/dE) 2+ (ff/dE) 2+ (dZ/dE) 2 )"12 

(5.2) 

c) From Figure 5.1 a vector normal to the plane 

1-3-4 is 

V 13 xV 14 (5.3) 

from which the unit vector defining the local z 

is obtained as 

.. %- -W 

V13 x V14 
TxV. - 

13 141 
.. S """ ""S " "" (5.4) 
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The vector normal to plane plane 1-2-4 is 

Z2=v 

12 xV 14 (5.5) 

--w For node 2 to lie on plane 1-3-4, Z2 must be 

parallel to Z i. e. 

-a- --* 

zxz20... ... ... ... ... (5.5a) 

This is used as a check for the condition that the 

four element nodes lie on the same plane. 

d) The local y is normal to both x and z. It is 

defined so that x, y and z form a right-handed 

system. Therefore, 

yzxx... ... ... ... ... (5.6) 

5.3 DEFORMATION GEOMETRY 

The position vector of a point on the beam reference 

line after deformation (Figure 5.3) is 

- 

r r+V (5.7) 

229 



where V is the displacement vector and is obtained in 

terms of the components u, v, w in the local axes 

directions as 

u x- +v^+w Z^ (5.8) 

Using convected coordinates and the Kirchhoff hypothesis 

for beams, the displacement gradient vectors for the 

reference line are defined from (5.7) and (5.8) as 

follows 

(1 + 
du) ý, Iv A, dw - xZ 9x 

dx dx Y dx 

9 
dv ^+-+ dw ^ 

y ix- xy dy Z 

A dw 
9 ! iW- 

Xy+Z... ... ... ... (5.9) 
dx y 

Referring to Figure 5.3 , the position vector of a 

point (y, z) before deformation is 

A 
Rr+ yy + Zz ... ... ... ... ... (5.10) 

From the assumption that plane sections remain plane 

and normal to the reference line after deformation 

and using convective coordinates, the position vector 

of point (y, z) after deformation is given by 
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A 

F(x) +yny+znz... ... ... ... 

in which n' y and h" are unit vectors normal to the 

, tangent to the reference line after deformation. 

These unit vectors are evaluated as follows 

y 

gy 

9z 

lgzl ... ... ... ... ... ... 

where gY and gz are vectors which are normal to the 

convected x coordinate surface in the deformed 

configuration. These vectors are reciprocals of the 

tangent vectors gy and gz respectively. The three 

reciprocal vectors are given in terms of the 

displacement gradient vectors by the following 

definition (121 

9-1 
ijk 

(5.13). 2 7G- XQ 

c 
ijk 

c ijk being the permutation symbol given by 

e123 ' 1ý231 " 'o "ý e3 12 

e "2 1 213 '" C132 'ý C321 'o - 

E ijk =0 if i=J, j=k or k=i 
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and 

VG 191* (g2 x g3)1 = lox' (oy xg Z)l 
(5.15) 

Thus, in terms of the displacement gradient vectors 

(Equation (5.9)), relations (5.12) become 

9z xgx 
n y Igz x gxl 

. gx xg... 
... (5.16) 

nI Y- 
zI gx xgyI 

Using the hypothesis that the strains normal to the 

reference line and the shear strains are zero, (5.16) 

can be written in the following form 

w 
1/2 

nyNy/ (i + 2e) 

= -. 0.1/2 ... ... ... ... (5ol7) 
nzNz /(l + 2e) 

where e is the Green strain measure of the reference 

line defined by 

e (g .9 
qu + 

I(du)2 
+ I(dv)2 

+ 
I(dw)2 

xx dx 2 dx 2 dx 2 dx 

... I.. 0(5.18 ) 
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The definitions of the unit vectors in (5.17) are similar 

to the definition of the vector n"' after deformation of 

the two-dimensional beam theory (Equation (2.10)). An 

approach similar to that used for the two-dimensional 

formulation is followed here to obtain the strain- 

displacement relations. 

Referring to Figure 5.2, since plane sections are 

assumed to remain plane, the derivatives of the vectors 

in (5.16) with respect to the convected x coordinate 

are 

A 

dn 
y -r n- K 9- dx zz xz x 

z 
dn 
ux- Tyny-K xy 9x (5.19) 

-where K 
xy and K 

xz are measures of the'bending 

curvatures about the local y and z axes respectively, 

and T, T are the torsions about the local x of the 

y and z normals respectively. 

From (5.11) and (5.19), the derivatives of the 

position vector after deformation with respect to the 

convected coordinate axes are given by 
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9 
day 

+z 
daz 

Ux x+Y dx dx 

Kxz -z Kxy)gx +Y TZ nz+zTynz 

2-R ^n 
ay y 

DR 
9z nZ... ... ... ... ... 0.. 000 (5.20) 

Assuming that second order terms in torsion are negligible 

i. e. neglecting longitudinal warping of the reference 

line, the components of the deformation tensor are 

obtained from (5.20) and (ý. 18) as 

3R 3R (1 + 2e) (1 -y Kx z Kxy) TX * -ýX- -z- 

aR 
. 

3R A 
dnz 

ax ay -y* dx Zry 

aR 3R dfiy 
-ý i ýz y n. dx yTz 

3R 3R 
ynyn 

3R 3R 
-g-z - T-z = nz .nz 

DR 3R 
y ny . nz 

=1 

=1 

... ... ... ... 0 (5.21) 
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5.4 THE INTERNAL VIRTUAL WORK EXPRESSION AND 

NONLINEAR STRAIN-DISPLACEMENT RELATIONS 

5.4.1 Conventional Strains at a General Point 

Using the conventional definition of strains, the only 

non-zero direct strain term is exIx in the local x 

axis direction. Thus, from (5.21) 

EIX (3R . 
''DFI)1/2 

x ax 5x 

= (1 + 2e) 
112 

(1 -yK xz -z fcýy) -1 (5.22) 

and the shear strains are obtained from the relations 

LR 
, 

3R 
Ty = (1 + 2e) 

1/2 
YX'Y ax By 

DR aR 1/2 
i-x ZZ 

(1 z 2e) 
xz 

5y. -äz ny* nz yyz 00 . ... ... (5.23) 

OR 

y ly =z Ir /(l + 2e) 
1/2 

xy 

yI ý-- Y TZ /(l + 2e) 
1/2 

xz 

y yz =ny. nZ... 
.... 

... Ute 000 (5.24) 

6 
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Therefore, from (5.22) and (5.24), the strain vector cl 

of a general point within an element-is defined as 

follows 

Ct = 

+ 2e) 
1/2_ 

1-y(l + 2e) 
1/2 

Kz (1 + 2e) 
1/2 

K' 
xz- XY 

Ty /(l + 2e) 
112 

TZ/(l + 2e) 
1/2 

Yyz 

fe 060 0.9 .. » (5.25) 

in which 

z y 0 0 0 

0 0 0 z 0 0 

0 0 0 0 -Y 0 

0 0 0 0 0 1 (5.26) 

and 
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e* 

= 

xxy 

X* 
xz 

T* 
y 

T 
Z 

Yyz 

(1 + 20 1 

-(1 + 2e) 
1/2 

K 
XY 

-(1 + 2e) 
1/2 

ýxz 

Ty /(l + 2e) 
1/2 

-T z 
/(l + 2e) 

1/2 

Yyz 

From (5.25) the variation in strain SO is 

6c, = ... ... .... ... 0.. 

(5.27) 

(5.28) 

The measures of curvature in (5.27) are now defined in 

terms of measures which are explicit functions of the 

displacement gradients, so that 

x* 
xy 

xz 

T* 
y 

T* 
Z 

1+ 2e 

xxy 

xxz 

xy 

xz I ... ... ... ... (5.29) 
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The variations in strain 6c* in (5.28) are obtained 

from (5.27) and (5.29) as 

6 C* H* 6C (5.30) 

where 

6c {6e, 6X 
xy , 6xxz , axy 6xz 6yyz T l ... 

(5.31) 

and 

; 1/ 
1+2 

0 0 0 0 0 
( e 2 

-2 Xxy 

(1 + 2e) 21 +2 0 0 0 0 

X xz H 
(1 + 2e) 2 0 1+ 2e 0 0 0 

-2 Xy 0 0 
- 
)2 (1 +2 

0 01 + 2e 
e 

- 2. Xz 0 0 0 1 
1+ 2e 0 

(1 + 2e) 2 

0 0 0 0 0 

532 

From (5.28) and (5.30), the internal virtual work 

expression in a Lagrangian frame of reference at time t 

(Equation (1.2)) takes the following form: 
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6w 6c, TS dV int vt ttt 

6c TH *T HT S dA dL (5.33) IV 

tt 

JA 

tttt 
*11 

5.4.2 Green-Lagrange Strains at a General Point 

The Green-Lagrange strain tensor in three dimensions is 

ra Ri R 
xx 

j( aR 3R 
Dy 3x 

A3R 

-5-Z 
-5x 

M DR DR 
- - 

3R 100 ax jy a 5E iz 

- 010 ay 57 U y az 

ah ah gii 
« - 

22 00 1 
aZ* 57 i z4 ýZ 

1 

... ... . .... 0 ... (5.34) 

The Green-Lagrange strain vector is given from 
(5.21) and (5.34) by 

2(1+ 
e) xx Y Kxz -z ýxy) 

Yxy ZTy 

C, 

YXZ YTz 

I Yyz, nyn (5.35) 
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Assuming proportionality between the 2 nd Piola-Kirchhoff 

stresses and the Green-Lagrange strains in the virtual 

work equation, thus neglecting the coupling between 

the strain resultant measures the Green-Lagrange 

strain vector cl and its variation 6c' are written ad 

cI=Hc 

Scl =H6c (5.36) 

wherein H is given by (5.26) 

The strain resultants e are defined by 

T 
c {e, Xxy , Xxz , Xy , Xz , yyzl 4.0 (5.37) 

The internal virtual work expression (Equation (1.2)) 

now takes the following form 

' Wint =iv Sc ;Tst dV t 

Sc T, HT St dLt 
Ltt At ... 0.. (5.38) 
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5.4.3 Strain Resultants in Terms of Displacement 

Gradients 

From (5.29), (5.27), (5.19) and (5.18), the generalised 

Strain resultant measures c are 

e 

xxy 

C 

xxz 

xy 

xz 

y 
yz 

-I(g. - g. 2 

3 da 
((l+ 2e) 

12 

dx 
z. gx)/(gx. gx) 

3 
((l + 2e 2y.. 

9 Mg .9 dx xxx 

dn 1/2 `, 
Z6% (1 + 2e) Z- n xy 

-(l+ 2e) 
112 dfiy 

n dx *z 

ny .nz (5.39) 

The explicit form of the relations in (5.39) are obtained 

as follows: 

a) For the unit vectors in (5.15) a binornial series 

expansion, neglecting third and higher order terms 

in displacement derivatives, gives 
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dw dw dv u l(dv)2 
n= (- (1- ýl- 

_ 
l(lw)2)^ )Ay 

y dx dy x dx x+2 dx U dy - --Z- 

dw dy dw A (ir 
-uU 

vx yx)z 

A dv dw dw du ý dw dv dy A nz =( dx dy -M (1 - dx»x + (_ 
dy -U dx)y 

+ (1 _ 
l(dv)2 

_ 
l(dw)2)^ 

.. 0 .. 0 9.. (5.40) 
2 dx U dy Z 

dnAy daz 
The derivatives dx - and dx are then obtained from 

(5.40) as 

dýy 
= (_ d2w dw dw d2wd2v du dv' d2 UA 

dx dx 2 Ty- - -U a-x-dy +U =dx)x 

+ 
dv d2v dw d2w )^+ (d 

2w dw d2v dy dýw A 
UY dxdy Y dxdy - H-x ý-2 - Ux- -d7 Z 

x 

dfi 
zd2v dw 

+ qv d 2w d2w du). 
+ 

dw d 2u 
^ 

dx V U-y dx Tx- -dy - =dx (1 - ax- u ;; P X 

d2w dw d2v dv d2w dw d2w ýw 42w + (_ jýd-y - UX 
dx 2 Ux- j-X2 )y"% + (_ Ux- ýX-2 - 7ly dxdy 

40.00.0.. 0000004.0(5.41) 

b) The deformation measures are, therefore, given from 

(5.9), (5.40) and (5.41), neglecting third and 

higher order terms in displacement derivatives, by 
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9 .91+2 
dtk + (du)2+ (dv)2 + (S! iv)2 

xx dx dx ux- dx 

day 
gd 

2v 
+ dy d2u dw d2w dx x dx 2 dx dx 2 dy 

dx 2 

dn 
zd2w dw d2 u dw d2v 

-, 9+ ify ux- x ýX2 + dx dx 2 dx 2 

dfi ZAd2w dw d2v 
n Y' Ux -dy 2 dx dx 

dn"'y 
^_d2w dv d2w 

dx .nZ- Tx--dy 

A 0% dv dw 
n Y. nz Tx- dx (5.42) 

Substituting from (5.42) and (5-18) into (5.39) 

using the binomial series expansion and neglecting 

third and higher order terms in displacement 

derivatives, the following relations for the 

strain resultants c in terms of the displacement 

gradients are obtained 
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dtt + 
j, ju)2 , 

l(dv)2 + 
l(dw)2 

ix- 2 dx 2 dx 2 dx 

_d2w (1 + 
du) , 

dw d 2u 
, 

dw d2v 

dx 2 dx dx dx 2 dy dx 2 

_d2 
v(1 + du) , 

dv d2u_ dw d2w 

dx 2 dx dx dx 2 dy dx 2 

_d2w (1 + 
du) 

_ 
dw d2v 

dxdy dx dx dx 2 

_d2w (1 , 
du) 

, 
dv d2w 

dxdy dx dx dx 2 

dv dw 
- 'ä -x Tx- .0. (5.43) 

C1 continuity in all three displp. cement components is 

a necessary requirement for relations (5.43). It has 

been shown in Chapter 4 that the equations become 

indefinite if strain-displacement relations similar to 

(5.43) are used with elements which are only C0 continuous 

in the in-plane displacement in a Total Lagrangian 

solution of large rotation and curvature problems. 

Approximate strain-displacement relations based on the 

conventional strains can be used in these elements. 

Using the binomial series expansion and neglecting 

third and higher order terms in displacement derivatives, 

the following relationship is obtained from Equations 

(5.19), (5.25) and (5.42) 
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du 
,1 

dv 2 l(dw)2 
Tx- «22(jx-) + «i dx 

_d 
2w(1 

_ 
ýu) , 

dw d 2u 
+ 

dw d2v 

dx 2 dx dx dx 2 dy dx 2 

_d2 
v(1 

_ 
du) + dv d2u dw d2w 

dx 2 dx dx dx 2- j-y 7x2 

_d2w (1 - 
du) 

_ 
dw d 2v 

dxdy dx dx dx 2 

_d 
2w 

(1 _ 
du) 

+ 
dy d2w 

dxdy dx dx dx 2 

dv dw 
"a 3E Tx- 

5.5 STRESS-STRAIN RELATIONS 

(5.43a) 

Since the strains are assumed to be small the stress- 

strain relations are considered to be the same as the 

constitutive relations employed in small displacement 

elasto-plastic formulations. 

5.5.1 Elastic Material 

For an elastic material, the stresses at a general 

point (y, z) are given in terms of the strains by 
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s 
xx 

E 
xx 

T xy 
0 G/k 

s00 Yxy 

T xz 
00 G/k 

s0 YXZ 

T yz L000 
G/k 

Si Yyz 

OR 

S=De C1 ... ... ... ... ... ... (5.44) 

where E is Young's modulus and G is the shear modulus. 

The factor ks included in the shear terms to improve 

the shear displacement approximation is taken as 

1.2 [10]. 

From (5.38) (or (5.33)), (5.44) and (5.36) (or (5.28)), 

the stress resultants are 

JA 
HTS dA =y 

1z AeH dy dz e 

= jD- ec 
... ... ... .. (5.45) 

in which r)e is the modulus matrix given from (5.45) 

and (5.26) by 
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Ez Ey 000 

rje 
y 

Iz 

For an ecCE 

the integra 

= 

Ez 2 Eyz 000 

Symm Ey 2000 

Gz 200 

k 

Gy 20 

ks 

G 
k 

S. 

ntric rectangular cross-sect 

tion in (5.46) explicitly gi 

EA EA e EA e0 

II 

dy dx 

... (5.46) 

ion carrying out 

ves 

00 

E(I +Ae 2 EA ee00c zz zyz 

E (I +Ae2) 00c 
yy y 

G- (I +Ae 
2c 

ks ZZ Z) 
0 

G2 
Symm ks (I yy +Ae y 

... ... ... ... (5.47', 
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where A is the area of the cross-section, ey j ez are 

the eccentricities along the local y, z axes respectively, 

and I 
yy 91 zz are the second moments of area about the 

centroidal axes of the cross-section. 

The relations for torsion in (5.47) are strictly true for 

a circular cross-section only. These relations are 

modified to represent exactly the torsion of a rectangular 

cross-section, so that 

EA EA e000 

E(I +Ae 2 EA ee000 zz zyz 

E(I +Ee 2000 
yy y 

r)e = 
Gk 1* 1 

zz 
0 

Symm Gk 21 yy 
0 

GA 
ks 

... ... ... ... (5.47a) 

The factors k1 and k2 are defined in terms of the cross- 

section dimensions d and b (Figure 5.1) as follows [81 
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k 2[l - 0.63 1+0.052(d)2] 
bb 

db 

kkx (d)2 21b 

k2 
[1 

- 0.63 22 + 0.052(b ) 2] 
2dd 

d>b 

k, kx (b)2 2d 

... ... ... ... ... (5.47b) 

Alternatively, the integration in (5.46) can be carried 

out numerically. Referring to Figure 5.1, the local 

coordinates (y, z) of the corner nodes of the cross- 

section at, any point E along the element are interpolated 

from the coordinates of the cross-sections at the three 

nodes to give. 

3- 
yi Nyn 

n=j+ 4(1-1), J=l, 4 

3_ 
zNizn... 

... ... ... ... ... (5.48) 

in which are the parabolic interpolation functions. 

The modulus matrix (Equation (5.46)) at any point along 

the beam is then obtained by using the coordinates 

(5.48), the shape functions of the 4-node isoparametric 
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element and a2x2 numerical integration rule. The 

modification of the torsional rigidity presented in 

(5.47a) and (5.47b), however, is not included in this 

case. Thus, the shear stresses are correctly evaluated 

only for a concentric square cross-section. 

5.5.2 Elasto-Plastic Material 

For elasto-plastic materials, the stress increments at a 

general point are related to the strain increments by 

A3= D(S, k)A ý 
... ... ... ... ... ... (5.49) 

in which D is the elasto-plastic modulus matrix (Equation 

(1.28)), 

is the current stress level, and 

k is a strain hardening factor. 

Using the Yon-Mises yield criterion (Equation (1.27)), 

for beams the following inequality must hold for any 

stress state 

f 1, (S2 +3T2+3T 2' 
+3T2 

52 

Gy 
2 xx XY xz YS CF2 y 

... ... ... ... (5.50) 

where ay is the uniaxial yield stress and 

is the effective stress. 
I 
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Therefore, from (5.50) 

af1T 
as 

CFY 
2 

(2 S 
xx 

6 Txy v6 -r xz ,6 -r yd 

From (1.28), (5.44) and (5.51), the elasto-plastic 

modulus matrix is defined as follows 

D(s, k) De_D e{. jfj jaflT De /r as as 

The factor r is given for isotropic hardening by 

r j3f}T De {3f }+4Ek 
F2 

as 4 
y 

in which k is the hardening parameter given by 

Ep /(E -Ep) 

(5.51) 

(5.52) 

(5.53) 

Ep being the post yield uniaxial modulus for a bilinear 

strain hardening material. 

The plastic strain rate multiplier X (Equation (1.30)) 

is obtained from (5.51) and (5.53) as follows 

.1 (2f IT 
r 3s (5.55) 
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From (5.49) and (5.36) (or (5.28)), the relation between 

the increments in stress resultants (5.45) and the 

generalised strain increments now takes the form 

T ASH AS dA 
JA 

HTD(s, k)H dy dz Ac 

= FD(s, k)Ac ... ..... (5.56) 

Thus, B(s, k) is the tangential elasto-plastic rigidity 

matrix that relates the stress resultant increments to 

the generalised strain resultant increments Ac of the beam 

beam reference line. 

I The integral in (5.56) for 5(s, k) is evaluated numerically 

using the local y, z coordinates of the cross-section 

(Equation (5.48)), the shape functions Of the four node 

isoparametric element and a5x5 Gauss point rule. 

For beams under torsion, however, the tangential elasto- 

plastic rigidity matrix evaluated in this manner is 

correct only for a concentric square cross-section. 

The state of stress at a general point within the element 

is evaluated by employing the sub-incremental technique 

[33] because of the complex non-linear nature of the 

elasto-plastic modulus matrix (Equation (5.49)). In 
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this technique the strain increment Acl is divided into 

n sub-increments AJ Acl, j=1, n. The stress sub- 

increments are then determined from the linearised 

version of Equation (5.49) as 

A Sj = D(sJ, k)AjAcl ... 0. ... 0.. 

from which the new total stresses are given by 

sj+l = si Asi ... ... ... ... ... 

(5.57) 

(5.58) 

This procedure is repeated for the n strain sub-increments. 

Thus, the total stresses are evaluated following the 

stress-strain curve more accurately. The advantage of 

the sub-incremental technique is that fewer load increments 

can be used for a given accuracy. 

5.6 THE INCREMENTAL EQUILIBRIUM EQUATIONS 

In formulating the incremental equilibrium equations 

the applied load vector is assumed to be conservative. 

Thus, the load correction stiffness matrix which is 

unsymmetrical is neglected. In Section 5.6.3 the 

effect of follower pressure loads and applied concentrated 

moments is introduced to the equilibrium equations as 

a modification of the applied load vector. 
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5.6.1 Total Lagrangian Formulation Based on 

Green Strains (TLG) 

The strains at a general point are written from (5.36) 

and (5.43) in terms of the displacement gradients in the 

following form 

ef H(c 0+ CL ... ... ... ... ... (5.59) 
00 

where c0, the infinitesimal strain, is given in a finite 
0 

element representation by 

c0={ 
du 

0d2 wo d2v0d2 WO d2 WO 
o} T 

0 U_x 
-2 2 dxdy dxdy 

dx dx 

B oao ... ... ... ... ... ... ... (5.60) 

ao being the vector of nodal variables. 

The nonlinear strain cL is written in terms of the 0 
displacement gradients as 

L=1ka=I F3 
0 ýF 10o2 L(ao)ao 

in which 

(5.61) 
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du dv dw 0 u-x UX- -d x- 
0000 

d2w, d2u dw 
0 

dw du d2v 0 7 
x2. dx 2 dx dy dx dx 2 

d2vd2 dv 
-. 
20 du dw d2w 

- - 0 - - 
(IX2 dx2 

7 2 d dx Y dx 

Ae =I 
d2w 

- - 0 d2v0 e00 du 
NX dy dx 2 dx dx 

d2w 
- - 

d2 
_Z - 0 dv du 0- - 0 

xd y 2 dx 
ä x dx 

0 
dw 
dx 

dv 0 dx 0000 

(5.62) 

and 

2u d2vd2w dw d2w 
0 (duo 

dvo dwo d0000 
o)T 

0 dx ' dx Ux- -2 TX-2 '- TX--2 ' Ty-' dxdy dx 

G0 ao (5.63) 

Taking variations of (5.59) with respect to the nodal 

variables, the strain-displacement matrix B is given by 

B0+BL (U 
0)= 

H[O 
0+ 

ii 
L (a 

0)1 

= ... ... ... ... (5.64) 
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From (5.38), the nonlinear equilibrium equations now 

become 

FBT H TS 
0 

dA 
0 

dL -R 

HTs0 dL 
0-R0... ... ... (5.65) 

The vector of stress resultants S is given 0 

by 

go = 
Ao 

HTS 
0 

dA 

= {P, Mxy v Mxz , Ty s TZ ,F YZI 
T (5.66) 

where P is the axial force, 

Mxy VM xz are the bending moments about the y, z axes 

respectively, 

Ty 9Tz are the moments due to the torsions about the 

x axis of the y, z axes respectively (Total torque T 

=Ty+Tz), and 

F 
yz 

is the shear force. (See Figure 5.4). 
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From (5.65), (5.64) and (5.56), the tangent stiffness 

matrix (Equation (1.14)) now takes the following form 

r3TrD B dLo + 
2. fl T 

dL KT Da aa 00 
2ý 

ý- 
Lo 

ILO 

L0 
f3 Tr) B dL 

0+. Lo 

TpG dL 
0 oi 00 

= (K 
0+K L(ao)) + Ka .0.0.... 00.0 

in which P 
ai 

is the initial stress matrix which is 

defined in terms of the initial stress resultants 

(Equation. -. (5.66)) by 

[pil [Ml [Tl] 

Tpoi 0 [M21 

Symm 0 ... ... ... ... L -i 

where 

(5.67) 

(5.68) 
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p00 

0P yz 3x3 

.0F yz 

0Mm 
xz xy 

[M mxz0Tz 

3x3 
Lmxy Ty0 

0 (T 
y+ 

Tzý 

[Tl] =00 
3x2 

LO 0 

00 

IM21 
'o -Mxy 0 

3x2 

mxz 0] ... ... ... ... ... (5.69) 

5.6.2 Total Lagrangian Formulation Based on 

Conventional Strains (TLC) 

The variation in the conventional strain is written 

from (5.28), (5.30) and (5.64) in a finite element 

representation as follows. 

6c 
0' =H H* 6co =H H* r3 6a0 

=HB6 ao ... 0. ... (5.70) 
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From (5.70), (5.56) and (5.38), the nonlinear equilibrium 

equations then become 

IP =B *T 90 dL 
0-R=0.. * .. * .. 9 (5.71) 

IL 

0 

S0 being the stress resultant vector defined in (5.66). 

The tangent stiffness matrix is obtained by differen- 

tiating (5.71) with respect to the nodal variables. 

Thus, 

KB *T 13 B* . dL + 2-rH *T dL T aa L0L aa 00 

+ OT ýll*T 
'_9 dL 

La00 
0 

= (K* + K*(a »+K+ K* ... 0.4 4.0 (5.72) L00a 

The initial stress stiffness matrix K is evaluated as 

follows 

K LBTH *T dL a 

ILO 

Da 00 

GT rp G dL 
L0 oi 00 

0 
... 0.0* 0. (5.73) 
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in which the initial stress matrix P 
oi 

is given by 

[Pi]* [M, ]* [Tl] 

0 (M 
oi 21 

Symm 
0 (5.74) 

and its components are the same as (5.69), but are 

functions of the initial stress vector 

ä* = H*T N0... 
0.. .. 0 .. 0 0*. 0** (5.75) 

The additional geometric stiffness matrix K, * is defined 

from (5.72), (5.70), (5.66) and (5.32) as 

T aH 5, dL 
IL 

0 
aa o0 

BT p* fi dL ... 6.0 . .. 0.. (5.76) 
L oi 0 

0 

where the additional initial stress matrix iP-* is 
oi 

given in terms of the initial stress and strain 

resultants by 
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Pai 

2M 
xy 

2M 
xz 

2y TZ 
0 

(l+2e) (l+2e) (l+2e) (l+2e) 

0 00 0 0 

00 0 0 

0 0 0 
Symm 

0 0 

0 

.. 0 0.. 0.. 0.. (5.77) 

pp+8 
xxy mxy 

+8 
Xxz Mxz 

33 (1+2e? 
72 

(1+2e) (1+2e) 

+8XyTy+8 
Xz TZ 

(1+2e) 3 (1+2e)3 

For small strains, e can be assun-M to be small 

compared to unity and hence neglected in (5.77), (5.75) 

and (5.32). 

On using the approximate relations for the conventional 

strains in terms of displacement derivatives (Equation 

(4.43a)), the tangent stiffness matrix becomes 

K ý1ý B IT BBI dL T 'ý 'ý a 
IL 

00 

+ GT Po'i Go dL 
100 

. 0. ... ... 4.. (5.72a) 
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and its component matrices are defined by the following 

relations: 

B'= 13- 
0+ 

BL(ao) = go +AaGo 

A= 

0 dv 
UX- 

dw 
U 0 0 00 0 

d2w -0 d2U dw dw du d2v 
- -_ 0 

dx 2 dx 2 dx dy Ux j2 

d 2v d2U 0 dv du 
- 

dw d 2w 
0. 

dx 2 dx 2 U 717 dy dx2 

d2w 0 d2v 0 dw 
- 00 du 

dxdy dx 
ä x dx 

d2w 
dxdy 

d2w 

dx 2 0 0 0 dv 0 dx 
du 
dx 

0 dw 
U 

dv 
-crx- 0 0 

... 

00 

... 0.0 

0 

0.. 

lpil N11 [Tjj 

pt 0 [H 
01 Symm 

21 

0 ... 0.0.00 

(5.72b) 

(5.72c) 

(5.72d) 
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0 

[Pil, -.,: o 3x3 

0 

00 

p -F yz 

-F p 
yz 

0 -M xz -M XY 

m 
xz z 3x3 

LmT0 xy y 

0 -(T y+TZ; 
[Tjj 

00 
3x2 

00 

00 
[H 

21 
'= 

-M xy 
0 

3x2 
Lm 

xz 

0... 00.... 00000 (5.72e) 

5.6.3 Follower Pressure Loads and Applied 

Concentrated Moments 

To take into account the effect of follower pressure 

loads and applied concentrated flexural moments, it 

becomes necessary to modify the equivalent nodal forces 

when usingthe Total Lagrangian formulation. 

Consider follower pressure loads acting normally to 

the reference line after deformation and defined as 

-0. AA p -2 py ri y+pznz..... 0 0.0 *.. (5.78) 

per unit deformed length of the reference line. 
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For small strains, neglecting second and higher order 

terms in displacement gradients and substituting from 

(5.40) into (5.78) we obtain 

)" ++ 
du) 

+ ! jw A 
p (. 

qw- 

p 
I-V 

pxp 

dx z- dx y dx y dy Pdy 

+ «1 + lu )P ! iW--)P X ... .. 00000.0 (5.79) 
dx z- dy y 

per unit undeformed length of the reference line. 

The external virtual work due to this load is 

dw dv 
u Pz - ax- Py 

SV -'> dL =T NT 

j(1 

, du 
p, 

dw UP p0 6a -, -y p, dL 
IL 

00 

IL 

00 
dx ycZ0 

du)pz_ #W 
p dx dy y 

... .. 0 0.0 0.. 0.0 (5.80) 

where the shape functions N0 are given by 

u. 

NV0... ... ... 0*0 000 (5.81) aa 

w 
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Consider that concentrated moments MJ and MJ are xy xz 

applied at node point j. The external virtual work 

due to these moments is 

6w 6ýj mi +6 OJ mj my xz z xy (5.82) 

The angles of rotation ý and are obtained from 
yz 

the following relations 

Cos ý AA y. n y y 

sin ýy 
AA ly 

xn 

Yl 

Cos ý 
AA 

z. n z z 

sin ý 
A 

zxn P I 
z Z 0...... *. 0.. 060 (5.83) 

Assuming that the strain e and the torsional rotation 

measure 
dw 

are small, the rotation angles are given dy 
from (5.83), (5.17) and (5.16) by 

ýy arctan 
dv/dx 
1+ du/dx 

dw/dx ýz arctan 1+ du/dx 

and their variations are 
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6ý = 
dv(1 + du) 

_ 
dy 6du 

y dx dx dx dx 

6ý=6! Lw(l + ýL) -"6 z dx dx dx dx 

Substituting from (5.85) into (5.82) gives 

6w T dv m dw m 
m0 dx xz dx xy 

4 (1 + 
du )m 3-x xz 

(1 + du m dx xy i 

The shape functions Ni are given by 

du 
EE 

a dv N - j 5a dx 
o 

dw 
t . dx 

.. S ""S 

.0... 0.0.. 00 

(5.85) 

(5.86) 

(5.87) 

The total external virtual work is then obtained as 

SW SaT (R +R)..... 0.. **. **00 (5.88) 
0d 
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in which R is the conservative vector of equivalent 

nodal forces and Rd is the deformation dependent 

vector of nodal forces. Thus, from (5.80) and (5.86) 

dw dv 
P JL' 

dv dw m -m i - z dx y dx x xz dx xy 

R2NT, d 
du 

p+ 
l-w 

p d Z 
dL +N T 

J 
du m d L0 y y 0 x xz 

0 

du dw du m p dx -"z dy Y dx xy i , i 

0.. 609 (5.89) 
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5.7 CONCLUSIONS 

1. A theory and Total Lagrangian formulations of the 

theory, which are based on the Green strains and 

the conventional strains, have been presented 

for geometrically nonlinear, elasto-plastic, thin, 

curved, eccentric three-dimensional beam elements. 

The theory has been developed assuming that the 

strains are small, but the rotations may be 

large. An intrinsic coordinate system has been 

used. The theory is an extension of the exact 

two-dimensional theory which has been presented 

in Chapter 2, the only additional feature being 

the effect of torsion. 

Plane sections have been assumed to remain plane 

and normal to the beam reference line after 

deformation. So the cross-section has been 

considered to be solid rectangular and hence 

does not distort. Cross-sections other than 

solid rectangles have been considered as 

combinations of eccentric beam elements with a 

common reference line. This presents an approxi- 

mate method for the analysis of thin walled beams. 

268 



3. The torsional curvature has been assumed to be 

small so that second order terms in torsion are 

negligible. Thus, longitudinal warping of the 

reference line has been neglected. The nonlinear 

effect of large bending rotations on torsion has 

been taken into account by considering the torsional 

deformation of the local x-y and x-z planes 

separately. 

4. The torsional rigidities have been modified for 

elastic materials to represent correctly the 

torsion of a rectangular cross-section. The 

development of the elasto-plastic modulus matrix 

has been based on the Von-Uises yield criterion, 

the Prandtl-Reuss flow rule and isotropic 

hardening. Such a formulation is suitable for 

metal structures. For beams under torsion the 

elasto-plastic formulation is correct only for 

concentric square cross-sections. 
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CHAPTER 

THREE-DIMENSIONAL ECCENTRIC CURVED THIN 
BEAM ELEMENTS-FORMULATION AND APPLICATIONS 

6.1 INTRODUCTION 

The formulation of the elements is based on the large 

rotation theory which has been presented in Chapter 5. 

The theory has been developed by using an intrinsic 

coordinate system definition. The constraint technique, 

which has been discussed in Chapter 2, has been used to 

formulate the elements to include discretely such a 

coordinate system. While it is possible to obtain 

completely conforming elements by the constraint 

technique, the non-conforming elements are preferred 

since they show improved performance in linear analyses. 

(See Chapter 4). The non-conformity. in the elements 

seriously affects the results only in large rotation 

problems in which the applied loads are not conservative. 

It has been demonstrated in Chapter 4, however, that this 

effect can be reduced by increasing the number of elements. 

Therefore, only the non-conforming elements ISOBEM 3 and 

ISOBEM 4, which are the three-dimensional versions of the 

ISOBEM 1 and ISOBEM 2 elements respectively, are presented 

in this chapter. The SEMILOOF thin beam element 
[64,65,83], which is compatible with the SEMILOOF shell 

element is also presented. 
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I The main objectives of the linear applications which 

were carried out are: 

(i) to assess the performance of the three elements 

under in-plane, bending and torsional deformations 

(ii) to test the eccentric element formulation. 

The three-dimensional large rotation theory (Chapter 5) 

is an extension of the two-dimensional theory. The three- 

dimensional theory therefore possesses all the excellent 

capabilities of the two-dimensional theory which have been 

demonstrated in Chapter 4. Cl continuity of the three 

displacement components is a requirement of the theory 

when a Total Lagrangian formulation is employed. Thus, 

only the ISOBEM 4 element (Figure 6.3) can be correctly 

used with this theory in the analysis of large rotation 

and curvature problems. Idealisations by any one of the 

three elements are expected to give satisfactory results 

for small curvature and rotation problems. The large 

rotation Total Lagrangian formulations (TLG, TLC) are, 

therefore, tested by using ISOBEM 4 elements. The 

solution of a three-dimensional 450 bend is presented to 

demonstrate the excellent capability of the element and 
the formulations. The other two elements can be used by 

employing the approximate theory which is based on the 

conventional strains, when C1 continuity of the in-plane 
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displacement component is undesirable. The example of 

the straight cantilever under vertical load is used to 

assess the approximation. 

This thesis has been primarily concerned with the study 

of geometric nonlinearity. Therefore, existing nonlinear 

material routines in the LUSAS system were used without 

carrying out an in depth study of material nonlinearity. 

The formulation that combines geometric and material 

nonlinearity has been tested using the SEMILOOF beam 

element. The aim of the applications which were carried 

out is to test the combined formulation and to demonstrate 

that the elements are suitable for use as stiffeners. 

6.2 FORMULATION OF ELEMENTS 

The geometry of the reference line of the elements is 

defined by four nodes (Figure 5.1). The local 
A, A) 

coordinate system (, X^, Yz is defined by Equations 

(5.2) to (5.6). 

A minimum of six degrees of freedom which are the three 

translations and the three rotations are required at the 

end nodes to ensure a definite path for the bending and 

torsional moments and to avoid hinging. 
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Referring to Figure 6.1, for infinitesimal strains and 

small displacements, the normals to the centreline after 

deformation are given from Equations (5.16) and (5.9) 

by the following relations 

dv , dw ^ ny 9y -ý -Ux+Y+ dy Z 

dw , dw � 
Z2UX- -dy Y+Z (6.1) 

The rotations are defined in this case, from the Kirchhoff 

hypothesis that the shear strains are zero, as 

6= dy dw 
x dx dy 

ey = 
du dw 
dz dx 

0= du dv 
dy dx (6.2) 

The position vector of a point P(y, z) after deformation 

can be written in terms of the displacement vector d -0, 

of point P(y, z) and the position vector before 

def ormation R, so that 

R=R+ (6.3) 
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Substituting from (6.1), (6.2) and (5.7) into (5.11) 

gives 

A 

7" XI +y0 zx +y+ax Z) 

z(6 y x, -6xy+ Z) ... ... .. 0... (6.4) 

Therefore, from (6.4), (6.3) and (5.10) the displacement 

vector d is given by 

-4 

MI+ 

Y(- a zx +eX Z) + z(O yx Oxy) 00 (6.5) 

from which the components of the displacement in the local 

axes directions are obtained as follows 

.+ , %. , 1. 
x d. xY ez + Zo y 

A dyyZx 

a. 2 Z- y 

x 
yZ+Z6 Y' 

=1v-Z6xh 

w+y0x (6.6) 

The shear strains to be used to obtain the constraint 

equations are 
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dv 
xy a- x zx 

dw 
6+0 (6.7) 

x xz yx 

The displacement vector V of a point on the beam 

reference line is given in terms of the displacement 

components in the global axes directions by 

A 
iv+w k ... ... ... (6.8) 

A rotation vector ý can be defined in terms of rotations 

about the global axes for small rotations.. Therefore, 

ek... ... ... ... (6.9) 

The displacement components in the local axes directions 

are now defined from (6.8) by the relations 

V. x 1. X J. x u 
vyyiy 

v. 

Z1. Zj. Zk. Zw.. 0 

Similarly the local rotation components are approximated 

from (6.9) as follows 
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x1x 

YA 1. y 

ez 1 P. Z-] L. z^ 

^^^A k. x 

k. y 

k. zj (6.11) 

By assuming a parabolic variation of the initial geometry 

of the elements, the global coordinates of any point 

on the reference line are obtained by interpolation 

from the nodal coordinates, so that 

Ni 4y 

Z ... ... ... ... ... (6.12) 

where Ni are the hierarchial shape functions (Equation 

(3.7)). The local coordinate system is then defined 

explicitly at any point on the reference line by 

Equations (6.12) and (5.2) to (5.6). 
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6.2.1 ISOBEM 3 Element 

The element (Figure 6.2) is a thin non-conforming beam 

element with Co continuity of the in-plane displacement 

and C1 continuity of the out-of-plane displacements. 

Two Gauss integration points are used to evaluate the 

element characteristics. 

The initial variation of the global displacements and 

rotations is assumed to be parabolic. Thus, the total 

number of variables is eighteen. Four constraint 

equations are obtained by applying the two shear 

constraints (Equation (6.7)) at the two Gauss points 

(E =± 11V3). These are used to eliminate the two 

transverse displacements and the two bending rotations 

at the middle node. 

The global displacements and rotations are defined in 

terms of the nodal values as 

U 

V 

w 

0 

3 
E N. 

i=1 1 

U 

V 

w 
a 

0 (6.13) 
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By applying the zero shear strain constraints (6.7) 

at the two Guass points (I, II) 

IdNj dNi d1li u 
Nj. A, AA 

YXY i. Y, J. yp a- k. Y. 4 1z -Nij. z, - Nik. z v 
3' 
Ew0 

i=l 
cl dlý. dNý 

A Yx, 
ý 1. z. z, U- k. zf Nii. y, NiS. Y^, Nik .y dx 

Jiji 

OR 

6= 

, rhe middle node (2) displacements and -rot'ati8ns are 

transformed into the local axes directions so that 

6 

where the transformation matrix T is given by 

0 

ICS] 
2 

T ICSI 
2 

0 

(6.15) 

(6.16) 
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in which 

1 0 d 
-^ ^ 

1. x 
^% 

y 
A 

1z 

0 1 0 and [CS] A 
J. X *YA 

AA 
iz 

0 0 1. 
A 

k. x 
AA 

k. y k. Z., 

. ..... ... .. (6.17) 

Substituting from (6.15) into (6.14) gives constraint 

equations of the form 

MxT S* 60. ..... ... ... (6.18) 

which are written in terms of the wanted variables a 

and the variables to be eliminated b, as 

M* S* = IM I Ij 
aj 

0 ... ... (6,19) 
A BI b 

in which 

T 
a= {Uj, VlWj, aj, ýj, 0j#AU21 Ae 

x2' 
u 3' v 3' w 3' ct 3'ý3'031 

b= {Av 
21 Aw 21 Ae 

y2l 
Aez: 21 

T (6.20) 

Solving (6.19) for the unwanted variables in terms of 

the wanted variables we have 

b M- 1m... 
... ... ... ... ... (6.21) 

BA 
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The shape function array defines the local displacements 

and their derivatives at any point on the beam 

reference line in terms of the nodal variables. From 

(6.10), (6.11) and (6.13) the unconstrained shape function 

array is 

u 

v 

w 

du/dx 

dv/dx 

dw/dx 

x 

y 

Z 

dox/dx 

d6y /dx 

d6Z /dx 

d2 u/dx 
2 

OR 

y 

3 
=E 

1=1 

WN 6 

N. (CS] 0 
1 

dN. [CSI 0 

Ni(CSI 

dx' 
I CSI 

2Nd2N 
A- 

ni k X, 0,0, C 1--2N 
jx ýd ý i. x 

x dx dx 

u 

v 

... ... ... ... ... ... (6.22) 
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The unconstrained array is modified by transforming the 

middle node displacements into the local axes directions. 

The array is then partitioned to be in terms of the 

wanted and unwanted variables, so that 

Ia. 

WN xT S* = (W W ... ... (6.23) A BI 

.b 

The shape function array is constrained by substituting 

for the unwanted variables from (6.21) into (6.23) to 

give 

[w 
AwBmBm A] 

Wa... ... ... ... ... ... (6.24) 

6.2.2 ISOBEM 4 Element 

The three displacement components are C1 continuous for 

the ISOBEM 4 element (Figure 6.3). The global displace- 

ments and their derivatives are independently interpolated. 

A set of constraint equations is formed by equating the 

independently interpolated displacement gradients to 

the derivatives of the local displacements with respect 

to the local x coordinate at the two Gauss points 

(C =± lIV3). These are used to eliminate appropriate 

degrees of freedom. 
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The axial strain is def ined by the independently 

interpolated in-plane strain term to avoid the 

developemnt of spurious mechanisms. Three integration 

points are used to evaluate the element characteristics. 

The resulting element is non-conforming with two sets 

of variations for the displacement derivatives - one 

parabolic and the other linear (or smoothed). The use 

of the smoothed derivatives for the nonlinear strain 

terms in geometric nonlinearity computations improves 

the element results. 

The constraint equations are given for this element by 

the following relations 

dv 
e dx z 

dw 
x 

ey = U- +0 

du 
-E=0... ... ... ... ... ... (6.25) dx 

A parabolic variation of variables is assumed initially 

and the element has twenty-one degrees of freedom 

(Figure 6.3). Six constraint equations are obtained 

by evaluating Equation (6.25) at the two Gauss points 

(ý =± 11V3). These are used to eliminate the three 
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local translations, the two bending rotations and the 

in-plane strain variable at the middle node. 

The global displacements and their derivatives are 

independently interpolated as follows 

u 

v 

w 

ei. 

0 

C 

Ni 

u 

v 

w 

OL 

(6.26) 

in which Ni are the hierarchical shape functions. 

The constraint equations are obtained by evaluating 

(6.25) at the two Gauss points (I, II). Therefore, 

from (6.26), (6.10) and (6.11) we have 
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dNý 
EF Y' 

dN A 

j i Y' 
dN i 
- R- 

AAA Oý 

-, i -Nii .zI -Njk. z2o ky -N iz0 

u 

( b b v 

3 CINj A 

E 1. Z, 
dN 

J. Z 
dN 

j 
U- 

A 

k. zNN Njý. ý 
il. Y, ij - Y, Y, 0 

w 

a dx 

dNi 
I. X, 

dN i 
j. X, 

dNi 
k. x, 0 0,0 -Ni 

0 

= 14 S= 0. ... ..... . 0. ... ... ... (65.27) 

which is modified and written in terms of the wanted and 

unwanted variables to give 

a 
0 ... ... (6.28) BI '--- 

b 

The wanted variables a are now given by 

a= IU,, V,, Wl, al, ý13'ellcl, Aex2l u 31V31 IV 3a 3103103 e 31 
T 

... ... ... 0.. 00. M29a) 

The variables to be eliminated are 

b= {Au 
21AV21 Aw 2' Ae 

y2'Aez2, 
Ac2l T 

-00 0.. ... (6.29b) 

The unwanted variables are obtained in terms of the 

wanted variables from Equation (6.28). 
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The unconstrained shape function array is 

u 

v 

w 

du 
dx 

dv 
dx 

dw 
dx 

y 

Z 

d0 
x 

dx 

d6 
--y 

dx 

d6z 

dx 

c 

de 
dx 

OR 

3 
=E 

i=1 

N. [CS] 

dN. 
Ux I (CS1 0 

Ni[CS] 

0 dý- [CS] el 

0,0,0,0,0,0, Ni 

0,0,0,0,0,0, ei 
dx - 

U 

V 

w 

8 

0 

c 

y WN 6 

w WN *sA W13] (6.30) 

.b 

289 



The constrained shape function array is then obtained 

from (6.30) and (6.28) as 

wAwB 

W 000 ... tot 0. (6.31) 

6.2.3 The SEMILOOF Beam Element 

The nodal configuration of the SEMILOOF BEAM (Figure 6A) 

is closely linked with that of the SEMILOOF shell 

element. The global displacements at the three nodes 

and the normal rotations at the two Gauss points 

(LOOF nodes) ensure Co continuity between the shell 

and the beam elements. Three additional rotational 

degrees of freedom are introduced at each of the end nodes for 

the beam to avoid hinging. The bending rotations are not 

not necessarily equal between the shell and the beam 

elements at all points [64,65,83]. 

The original thin beam element shape functions [65] have 

been modified to introduce the-four node definition of 

geometry and include the second derivative of the 

in-plane displacement. All the element characteristics 

are evaluated by using the three point integration rule 

since the shear strains are assumed to be equal to zero. 
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The displacements and rotations are independently 

interpolated initially. A parabolic variation is 

assumed for the global displacements. The variation 

of the rotations is assumed to be cubic. Thus, the 

element originally has twenty-one degrees of freedom 

(Figure 6.5). 

The global displacements of any point on the reference 

line are interpolated from the nodal variables, so 

that 

u u 

3 
V EN V 

i=l 

W W 
, , i ... ... ... ... . (6.32) 

where Ri are the quadratic interpolation functions 

given by 

N2 

N32... 
... ... ... ... (6.33) 

These shape functions are also used to define the 

geometry of the reference line (Equation (6.12). 
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The rotations about the global axes are defined in 

terms of the nodal values as 

a. 

4- 
=zN. 

1=1 1 

0 
16, 

i..,. 0... 6.0- 

in which Ni are cubic interpolation functions 

given by 

2 
Ng 2 

g ) 2) 

2 
N)( 2 (1 -g2 

ý g) 
29) 

2 )( N3 E+ 9)- 
(1 _ g2) (2g) 

22 
N9+ 4 

g2) (2) 

11V3 

(6.34) 

(6.35) 

The four internal bending rotations are eliminated 

by introducing the constraints of zero shear strain 

(Equation (6.7)) at the two Gauss points (I, II). 

The constraint equations can be written as 
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dN i dN dNi 
k y u J. y$ . 

V 

cX dg i dN i , L 
e^ j. Z, Wk. ZJ I, I, w 

4 -N i i. z, Ni i. z, -Nik. z 

Ni 1. y, N i 
JA ̂  J-YP Ni k. y 

. �� 
01 

OR 

(6.36) 

where 

S= {Ul'Vl'Wl'U2'V2W2'U3V3'W3'(11'ý11611cL2Iß2 0 21 CL 3' ß3 03'a 41 ß4164 T 

The internal rotations are then truLsformed into the 

local axes directions and substituted into the constraint 

equations (5.36) to give 

a 
T S* = IMA I' MBI (6.37) 

b 

in which the transformation matrix T is given by 
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0 

[CS] I 
0 (CS] J, 

.. 0.. 0 (6.38) 

where [I] and Ics] are given by (6.17). 

The wanted and unwanted variables (Figure 6.5) are 

a= {U,, V,, W,, U2, V2, W2, T,, T, I, U3, V3, W3, al, $1,61, a4l a4164 IT 

b {Bj, A,, BII, AIJIT 

The unconstrained shape function array is of the following 

form 
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u 

v 

w 

du 
dx 

6 
x 

y 

Z 

d6 

dx 

d0 
y 

dx 

dO 
x 

dx 

YXY 

I YXZ 

d2u 

dx 2 

Ni 

Ni , U. 

0 0 

dR AA(: U 
A 

aii. x, v X, 
dN- 
vx 

0, 0 

3 
E 0 0 0 

0 0 0 

0 0 0 

0, 0, $ 
0 

dg., - A (JR. AA 

Vi. -ij. y, Y, 
dR .AA 

Vk. y dx 
A 

gi A% 

dx Zpdx J 
dR AA 

d2N. A 
i 

- , -' 
Ad 2: R. 

I d2N. AA X - i k 24 ; 2 . 
x, J. 

, . 2,2 l dx 

if 

,v 

wl 

0, 

0,0,0 

=AA-%% 0% 

i. xj. x, kx 

A'AAA% i. y, Ni j. Y, Ni ky 

AAAA% Ril. zo Rij. z , 
Ri k. z 

dN- l' A- dN. A Z'IdýKi J- Z'UI l"- Z 

clg. dR. A CIR i-Yjul Y --ik. y Ch 

dN. clg. AN A 

1? 1. x, Us j. ýc, ai k. x 
=AA 

-Ni i. Z, - 
gi JA. ZA 9 -gi 

ý. ZA 

R A. A gi A. ^, = ^. 4 

iiY, Jy Nik y 

000 

OR 

y WNS 

= WN xT6 1w 
A: WBI '--- p .06 

(6.40) 

.b. 

The constrained shape function array is obtained from 

(6.40) and (6.37) as follows 

Y [WA 
-WB MB 1mA 

Wa... (6.41) 

C, 

OL 
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The three elements presented above in which the theory 

presented in Chapter 5 was incorporated, were 

implemented in the LUSAS finite element system. 

Figures (6.6), (6.7) and (6.8) give flow diagrams of 

the computational procedure for the element shape 

functions, the pre-solution calculations and the post- 

solution calculations respectively. 

The following applications were carried out to test 

the elements and the theory. 

6.3 LINEAR ELASTIC SOLUTIONS 

The linear elastic applications were carried out to 

assess the performance of the three elements in bending 

and torsion. The torsions of the x-y and x-z planes 

have been considered to be independent as a requirement 

of the large rotation theory. The total torque is 

equal to the summ of the torsional moments Ty and T 

which are equal in all the examples considered. 

6.3.1 Straight Cantilever Beam 

The cantilever beam (7igure 6.9) was modelled by one 

element. A square cross-section and a rectangular 

cross-section were considered. Solutions were obtained 

by using each of the three elements for the six 
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concentrated load cases at the free end. The results 

are presented in Tables 6.1 and 6.2 for the square 

and rectangular cross-sections respectively. These 

are in exact agreement with values obtained from the 

beam theory. 

A channel-section cantilever beam (Figure 6.10) was 

idealised by three eccentric rectangular elements to 

test the eccentric formulation of the elements. The 

six concentrated load cases were applied at the free 

end. Solutions were obtained by each of the three 

elements. Table 6.3 gives the results compared with 

the beam theory. These show excellent agreement. 

6.3.2 L-Type Cantilever Frame 

The cantilever frame (Figure 6.11) was idealised by 

four elements. The frame was subjected to a concen- 

trated transverse load at the free end. Idealisations 

by each of the three elements were used to obtain 

solutions. 

A plot of'the displacement, bending moment and torsion 

is given in Figure 6.13. These demonstrate that the 

bending moments have been accurately transferred into 

torsion from one beam to the other. The results from 

idealisations by each of the three elements are in 
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exact agreement. The use of the ISOBEM 4 element in 

such a problem, however, is not desirable unless careful 

attention is given to the arrangement of the degrees 

of freedom at the joint. It is necessary in this case 

to realise that the in-plane strain degree of freedom 

is in the local in-plane direction. 

6.3.3 Semi-circular Beam 

The semi-circular cantilever beam (Figure 6.12) was 

analysed by the employment of a three-element 

idealisation to assess the performance of the elements 

as curved beam elements. The beam was subjected to a 

concentrated transverse load at the free end. Solutions 

were obtained by each of the three elements. For 

comparison a nine SEMILOOF beam elements idealisation 

was also used to solve the semi-circular beam. 

The results are preaented in Figure 6.14. These clearly 

show that the elements can accurately accommodate very 

large curvatures. 

6.4 GEOMETRICALLY NON-LINEAR SOLUTIONS 

It has been shown in Chapter 4 that elements which are 

not C1 continuous in all displacement components will 

give satisfactory results for small curvature problems 

only. The use of the correct large rotation theory 
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with such elements in the analysis of large rotation 

and curvature problems results in the equations becom- 

ing indefinite. The approximate theory based on the 

conventional strains (Equations (5.43a) and (5.72a) to 

(5.72d), which is commonly used in plate and shell 

problems, can be employed in cases where the use of 

such elements is essential. It is important to note, 

however, that only approximate answers are obtained 

by this theory. Therefore, the accuracy of the Total 

Lagrangian large rotation formulations is tested by 

using ISOBEM 4 elements only. 

6.4.1 Straight Cantilever Under Point Load 

at Free End 

The cantilever beam (Figure 6.9a), subjected to a point 

load at the free end in the global Y direction, was 

modelled by eight ISOBEM 4 elements. Twenty load 

increments, with Newton-Raphson equilibrium iterations 

within each increment, were applied up to a total load 

EI 
of 10 

--ff . 
Solutions were obtained by the TLG and TLC 

L 
formulations. 

An average of four iterations per increment was required 

for convergence to a relative error of 10-3 by both 

formulations. The results are presented in Table 6.4 
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and Figure 6.15. These are in very good agreement with 

values from reference (791. 

The eight element cantilever model was also solved using 

the SEMILOOF and ISOBEM 4 beam elements in which the 

approximate theory based on the geometric strains was 

employed. The results are shown in Figure 6.16. The 

ISOBEM 4 elements solution was carried out to show 

the effect of the approximation introduced in the 

theory. It can be seen from Figures 6.15 and 6.16 

that the approximation results in errors of up to 27% 

in the displacement components. This is a confirmation 

of the importance of the correct large rotation theory 

which has been developed. 

6.4.3 Three-dimensional 45-degree Bend 

Bathe and Bolourchi [20] have presented the solution to 

the problem of a cantilever 45-degree bend (Figure 6.17) 

by the Updated Lagrangian formulation. They modelled 

the bend by eight beam elements and sixteen 16-node 

three-dimensional solid elements for comparison. The 

solution was obtained by applying the load in sixty 

equal steps. 
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The bend is used here to test the accuracy of the Total 

Lagrangian formulations of the three-dimensional large 

rotation theory which has been developed. This example 

is the only one, for which a solution is available, that 

can clearly demonstrate the excellent capabilities of 

the Total Lagrangian formulations. 

The circular bend was idealised by eight ISOBEM 4 

elements. The load was applied in thirty increments 

with Newton-Raphson equilibrium iterations within each 

increment. Solutions were obtained by the TLG and TLC 

formulations. 'An average of four iterations was 

required for convergence to a relative error of 10-3 

for both solutions. 

The results for the tip displacements are presented 

in Table 6.5. These show very close agreement between 

the two Total Lagrangian formulations. Figure 6.18 

gives a plot of the results compared with those from 

reference [20] and can be seen to be in good agreement. 

A plot of sample deformed configurations of the bend 

at various load levels is presented in Figure 6.19. 

The results clearly demonstrate the accuracy of the 

Total Lagrangian formulations in predicting 

displacements. 
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The stress resultants from the two formulations are 

compared in Figures 6.20a-e for the fifteenth load 

increment PR 2=3.6). 
All six stress resultants 

(Figure 5.4) are equally important for the convergence 

of the solution to the correct answers. 

Identical results are obtained from the two formulations 

for the two bending moments M 
xz 

(Figure 6.20a) and 

M 
xy 

(Figure 6.20b). 

In the development of the large rotation theory 

(Chapter 5) the torsion of th6 local y and z normals has 

been considered independently. The results for the two 

torsional moments Ty and Tz have been found to be 

almost identical in this example. The requirement that 

the two torsions should be considered independently has 

arisen, however, from the definition of the local axes 

and the nonlinear strain-displacement relations. Figure 

6.20c gives the variation of the total torsional moment 

(T =Ty+Tz) along the length. This shows excellent 

agreement been the two formulations. 

The values of the shear force F 
yz show slight oscilla- 

tions in both formulations. The average nodal values 

from the two formulations (Figure-6.20d) are in very 

good agreement. 
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ThLý, -axial force results, however, demonstrate clearly 

the difference between the two formulations. This 

can be seen from Figure 6.20e. The TLG results are 

obviously wrong since the axial force is expected to 

be zero at the support (Point A, Figure 6.20e). The 

error reduces with the reduction in curvature along 

the beam. The values from the two formulations agree 

at the free end where the curvature is zero. The error 

is, therefore, due to neglecting the effect of curvature 

change on the axial force when using the Green strains. 

The axial force values from the TLC formulation 

represent the true axial forces. The slight error at 

the support in these values, compared to the TLG results, 

and the slight variations between elements in the shear 

force F 
yz values can be considered to be an tDdication 

that more elements are required in order to obtain the 

exact answers. 

6.5 COMBINED GEOMETRIC AND MATERIAL NON-LINEARITY 

SOLUTIONS 

The following combined geometric and material nonlinearity 

solutions were carried out in the earlier stages of the 

research by using the SEMILOOF beam element. A geometric 

nonlinearity theory in which the curvatures were assumed 

to be small was used [331. Such an approximation will 

have no effect on the results since the curvatures 
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are small in the three examples considered. An elastic 

perfectly plastic stress-strain relationship was used 

in all solutions. 

6.5.1 Fully-Encastre Beam Under Central Point Load 

This problem has been studied by Crisfield [6] using 

finite elements and experimentally by Campbell and 

Charlton 184] using a mild steel beam. The properties 

of the beam are given in Table 6.6. 

Half the beam was modelled by six equal length SEMILOOF 

beam elements. The load was. applied incrementally with 

five Newton-Raphson equilibrium iterations within each 

increment. The results are presented in Table 6.6. 

The relationship between the central load and central 

deflection is compared with results from references (61 

and [84] in Figure 6.21. The relationship between the 

axial force and central deflection is shown in Figure 

6.22. The values obtained closely agree with Crisfield's 

finite element solution in which an allowance is made 

for fibre yield. The results also agree with the 

experimental values. 
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6.5.2 Simply Supported Rectangular Strut 

The complete load-central deflection relationship for 

a simply supported strut (Figure 6.23) has been obtained 

by Crisfield using finite elements (61 and a Ritz 

procedure [85) 
. 

Half the span of the strut was idealised by six equal 

length SEMILOOF beam elements. The solution was obtained 

incrementally applying displacements with a residual 

correction within each increment. An initial imperfection 

in the form of a sine wave was assumed with a maximum 

value at mid-span of 
L, 

where L is the span of 1000 

the strut. 

The results are presented in Table 6.7. Figure 6.23 

shows the relationship between the axial load and 

central deflection compared with values from references 

[6] and [85]. The SEMILOOF beam solution is in 

excellent agreement with the Ritz method solution. 

6.5.3 Continuous T Beam Strut 

A single span of the continuous Tý--beam strut (Figure 6.24) 

was modelled by two sets of eight eccentric SEMILOOF 

beam elements along the length. The solution was 

carried out by applying displacement increments with a 

residual correction within each increment. The initial 
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deflected shape was defined by a sine wave with a 

maximum value of at mid-span. 750 

The results are given in Table 6.8. Figure 6.24 shows 

the relationship between the axial load and maximum 

deflection. These are compared with finite element 

solutions which have been obtained by Crisfield and 

Moan and Soreide (6]. This indicates close agreement 

between the solutions. 

6.6 CONCLUSIONS 

1. The formulation of the three eccentric thin curved 

-three-dimensional beam elements ISOBEAI 3, ISOBEU 4 

and SEMILOOF has been presented. The elements 

have been developed by using the constraint 

technique. The elements are suitable for use as 

stiffeners. 

2. The elements are of rectangular cross-section. 

It has been demonstrated that the linear elastic 

solutions by the elements are in excellent agreement 

with the beam theory results. 

3. It has been shown that the ISOM 4 element, in 

which all three displacement components are C 

continuous, can exactly accommodate the Total 
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Lagrangian large rotation formulations which have 

been developed. The capability of the formulations, 

when used with this element, to correctly predict 

the large rotation response of curved beam structures 

in a three-dimensional space has been demonstrated. 

4. The superiority of the Total Lagrangian formulation 

which is based on the conventional strains (TLC) 

compared to the Total Lagrangian formulation which 

is based on the Green strains (TLG) in predicting- 

true axial forces in large rotation and curvature 

problems has been reaffirmed. 

5. The SEMILOOF and ISOBEM 3 beam elements, which 

are only C0 continuous in the in-plane displacements, 

are not suitable for use in the Total Lagrangian 

solution of thin structures in which both the 

rotation and curvature are large. It has been 

shown, however, that these elements can be used 

when the approximate theory based on the geometric 

strains is employed. This gives an approximate 

method for the analysis of large rotation and 

curvature problems in which the continuity of the 

linear axial strain measure is objectionable. 
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6. Combined geometric and material nonlinearity 

solutions agree with published experimental and 

finite element results. The solutions having been 

obtained using the SEMILOOF beam element which 

has been presented in this chapter. 
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i Finite Element Solution Beam Load Case on Descript 
(at Free End) of Value ISOBEM 3 ISOBEM 41 SEMILOOF Theory 

Axial compressive Ux 105 - . 125 - . 125 - . 125 PxL 
125 

load 

Px I PA -1.0 -1.0 -1.0 Px =-1.0 

Point load in Vx 102 - . 3125 - . 3125 . 3125 PL3 y 
y-direction -. 3125 

zz 

P ex 102 - . 1875 - . 1875 . 1875 P L2 
1875 y 

zz 

M 
xy(A) 

2.5 2.5 2.5 -P yL2.5 

Point load in Wx 102 - . 3125 -. . 3125 . 3125 P 
ZO 

=- - . 3125 
z-direction yy 

PzI ax 102 . 1875 . 1875 . 1875 _Pz L2 
. 1875 

yy 
Mxz(A)__ 2.5 2.5 2.5 -PzL 2.5 

Torque ax 102 -. 231043 -. 231043 -. 231043 MXL 
231043 

TA 1.0 1.0 1 .0 -M x=1.0 

Concentrated WX 10 2 
. 1875 . 1875 . 1875 -M y 

L2 

ZLI 
moment 

yy 

My ax 10 2 
-. 15 - . 15 - . 15 ML 

? 
r- =- . 15 
yy 

Mxz(A) -1.0 -1.0 -1.0 My=-1.0 

Concentrated Vx 10 2 
-. 1875 - . 1875 - . 1875 Mz LZ 

. 1875 
moment zz 
Mz 0x 102 -. 15 - . 15 - . 15 MZL 

15 rizz 

M 
xy(A) 

1.0 1.0 1.0 I-Mz 1.0 

TABLE 6.1 Straight Cantilever Beam Results (square x- section). 
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Finite Element S lution Beam Load Case Description 
(at Free End) of Value ISOBEM 31 C c ISOBEM 4 SEMILOOF Theory 

Axial compressive Ux 106 25 

r6 

625 -. 625 PxL 
. 625 AE 

Load 

P 1 PA _1 -1. 1.0 -1.0 -1.0 P 1.0 
x X 

Point load in 
3 Vx 10 . 390625 -. 390625 -. 390625 3 PL 

390625 0- AE7 
- 

Y-direction , Zz 

P 1 
3 ex 10 234375 . 234375 -. 234375 2 PYL 

y o- . 234375 2EI 
zz 

Mxy(A) 2.5 2.5 2.5 -P yL2.5 

Point load in W -x 10 2 15625 -. 15625 -. 15625 Pz 
15623 3El 

Z-direction yy 

P 0X 10 3 
. 9375 . 9375 . 9375 -P zL 9375 z 2EI 

yy 

M 2.5 2.5 2.5 -PZL 2.5 
xz(A) 

Torque ax 10 3 698424 -. 698424 -. 698424 MxL 
a 698424 Uý . 

M 1 T 1.0 1.0 1.0 M 1.0 _M X A x 

Concentrated Wx 10 3 
. 9375 . 9375 . 9375 . 9375 

yy 
moment 9L 

my ax 103 75 -. 75 -. 75 EI 
yy 

-. 75 

Uxz(A) -1.0 -1.0 -1.0 MY 1.0 

z Concentrated VX 10 3 
-. 234375 -. 234375 -. 234375 - -. 234375 2EI 

zz 
moment 

M L 
M-- 1 3 

ex 10 -. 1875 -. 1875 -. 1875 z 
--. 1875 Ef z -- zz 

9 
xy(A) 

1.0 1.0 1.0 -Mz 1.0 

TABLE 6.2 Straight Cantilever Beam Results (Rectangular x-Section). 
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I i Finite Element Solution B , oad-Case Descript on eam 
(at Free End) of Value ISOBEM 3 ISOBEM 4 SEMILOOF Theory 

Axial compressive Ux 10 6 
-. 438908 -. 438908 -. 438908 

PxL 
-. 438908 Wr 

load 

Px p A -1.00 -1.00 -1.00 Px 
x 

Point load in Vx 10 3 
-. 718794 -. 718794 -. 718794 

3 P, L 
= -*718794 3EI- 

Y-direction Zz 

P 
6x 10 3 

-. 353737 -. 353737 -. 353737 PL 
= -. 353737 

y zz 
Mxy(A) 3.0480 3.0480 3.0480 -PyL-3.048 

Point load Wx 10 4 
-. 110688 -. 110688 -. 110688 PzO 

-. 110688 
in Z-direction 5 

yy 
2 ax 10 . 544724 . 544724 . 544724 P L 

z 544724 
Pz yy 

M 
xz(A) 

3.0480 3.0480 3.0480 - PZL 3.048 

Torque (I x 102 -. 550451 -. 550451 -. 550451 
ML 

x- 550451 . GJ 
Mx TA 1.00 1.00 1.00 M 1.0 

x 

Concentrated wx 10 5 
. 544724 . 544724 . 544724 M L2 

ifT- - . 544724 
moment yy 

Bx 10 5 
-. 357430 -. 357430 -. 357430 MyL 

- -. 357430 E EI yy 

=-1 m 
y 

Hxz(A) -1.00 -1.00 -1.00 my 1.0 

Concentrated 3 Vx 10 -. 353737 -. 353737 -. 353737 M 
z 353737 2EI 

moment zz 

3 ex 10 -. 232111 -. 232111 -. 232111 
MzL 

LI . -. 232111 
zz. 

U 
Z M 

xy(A) 
1.00 1.00 1.00 UZ = 1.00 

TABLE 6.3 - Straight Cantilever Beam Results (Channel Section). 
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PL 2 V/L LLU 
Tr 

z 

EI TLG TLC Ref (79) TLG TLC Ref (79) TLG TLC 

1 . 3019 . 3054 . 302 . 9435 . 9427 . 944 . 2936 . 2993 

2 . 4939 . 4972 . 494 . 8390 . 8374 . 840 . 4969 . 5040 

3. . 6040 . 6062 . 603 . 7448 . 7435 . 745 . 6249 . 6319 

4 43709 . 6724 . 670 . 6700 . 6692 . 671 . 7071 . 7141 

5. . 7149 . 7159 . 714 . 6111 . 6107 . 612 . 7610 . 7682 

6. . 7458 . 7465 . 744 . 6539 . 5640 . 566 . 7964 . 8039 

7. . 7688 . 7692 . 676 . 5254 . 5259 . 528 . 8192 . 8271 

8 . 7866 . 7868 . 785 . 4934 . 4942 . 496 . 8332 . 8415 

9 . 8008 . 8009 . 799 . 4663 . 4674 . 469 . 8413 A3498, 

10 . 8125 . 8125 . 811 . 4430 . 4444 . 445 . 8452 . 8538 

* ýz = sin-le 

TABLE 6.4 Cantilever* under Point Load at Feee End 

ISOBEM 4 Results. 
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a. Beam Properties: 

Thickness t=7.87 mm 

Depth d=7.72 mm 

Span L= 495 mm 

Young's Modulus E 197400 N/mm2 

Poisson's Ratio 0.3 

Yield stress ay 248 N/mm 2 

b. Finite Element Solution Results: 

Applied Load (M) Central Deflection(mm) Axial Force(kN) 

0.100 1.0332 . 2575 

0.200 1.9767 . 7101 

0.300 2.8128 1.2758 

0.350 3.1978 1.5648 

0.400 3.5922 1.8658 

0.450 3.99111- 2.1803 

0.475 4.2006 2.3465 

0.500 4.4130 2.5255 

0.525 4.6783 2.6551 

0.550 4.9770 2.8449 

0.575 5.2722 3.0564 

0.600 5.5667 3.2517 

0.625 5.8902 3.4453 

0.650 6.2094 3.6644 

TABLE 6.6 Fully-Encastre Beam Properties and Results. 

(6 Equal Length SEMILOOF Beam Elements 

for Half Span -ý 5 N-R It6rations per 

Increment). 

335 



07 

0-6 

0-5 

fý 0.. 

C3. 
I= 1, 

--<0 .3 

Crisfield FE. S. (assuming eld F. 
"full section" yield)[61 A 

SEMILOOF Campbell &Charlton 
theoretical (641 

Cristletd EE. S. (attowlng for 
"fibre yield")161 

& Experiment 1841 

0-2 

01 

0-0 
1.0 2-0 3-0 4-0 5-0 6-v 7-0 

Central deflection (mm) 

FIGURE 6.21 - Fully-Encastre Beam - Relationship Between 

Applied Load and Central Deflection 

336 



3-5 
Campbell & Chariton 
theoretical 1841 

Crisfield F E. S. (assuming 
"full section yield")161 

SEMIL00F 

3-0 

2-5 

so 2-0 �I 

0 

�V 

Crisfield F E. S. 
(allowing for"fibre yield") 

161 

, , 1-5 

14 ExMiment 184) 1 

1.0 

0.5 

0.0 
0.0 1.0 2.0 3-0 4-0 5.0 6-0 7.0 

Central deflection (mm) 

FIGURE 6.22 - Pully-Encastre Beam - RelationsAip Between 
Axial Force and Central Deflection 

337 



0.9 

0-8 

0-7 

0-6 

�I 
0.5 

er 
w 

0-4 

0.3 

0-2 

Crisfield F. E. M. 161 1 

I --.. z 

Ritz method 1851 

SEMILOOF. 

Ea 206000 N1mm2 

Cy y= 
350 N/MM2 

L= 600 mm 

Initial deflection So. - L 
1000 

3( 

. -Z- 

---i ý-lomm 
0-1 

0.0 L- 
--- 

i 

0.1.0 2-0 3-0 4-0 5-C 
Central deflection ratio 10004,11. 

FIGURE 6.23 - Simply Supported Rectangular Strut - 
Relationship Between Load and Out-of- 

Plane Deflection 
338 



60S 0.6 mm 
p 

Axial Displacement A- 
(mm) 

Central Deflection 6 
(mm) 

Axial Load P 
(M) 

0.01 0.0098 2.0549 
0.02 0.0200 4.1092 
0.03 0.0305 6.1632 
0.04 0.0414 8.2166 
0.05 0.0527 10.2695 
0.06 0.0643 12.3218 
0.07 0.0764 14.3736 
0.08 0.0889 16.4249 
0.09 0.1019 18.4754 
0.10 0.1154 20.5254 
0.14 0.1749 28.7180 
0.18 0.2451 36.8966 
0.22 0.3292 45.0570 
0.26 0.4316 53.1923 
0.30 0.5588 61.2915 
0.32 0.6348 65.3219 
0.34 0.7208 69.3354 
0.335 '0.7934 72.3315 
0.365 0.8461 74.3208 
0.375 0.9027 76.3026 
0.385 0.9637 78.2757 
0.395 1.0295 80.2389 
0.405 1.1487 82.0374 
0.415 1.4460 83.2024 
0.425 2.6000 79.8677 

TABLE 6.7 Simply Supported Rectangular Strut Results. 

(6 Equal Length SEMILOOF Beam Elements for 

Half Span-Solution obtained Incrementally 

with Residual Correction within Increment). 
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p _-. 

0- - 

6.5922 mr 

, r-- -- - 

6.7213 mra 
.* 

Axial Displacement 
A(MM) 

Central Deflection 
61(mm) 

Maximum Deflection 
62(mm) 

Axial Load P 
(kN) 

0.20 0.1124 0.1164 36.6450 
0.40 0.2293 0.2374 73.2779 
0.60 0.3507 0.3633 109.8980 
0.80 0.4771 0.4944 146.5050 
1.00 0.6088 0.6311 183.0970 
1.20 0.7460 0.7736 219.6750 
1.40 0.8891 0.9224 256.2360 
1.60 1.0386 1.0779 292.7810 
1.80 1.1949 1.2406 329.3070 
2.00 1.3584 1.4109 365.8130 
2.20 1.5297 1.5895 402.2990 
2.40 1.7093 1.7769 438.7610 
2.60 1.8980 1.9739 475.1990 
2.80 2.0963 2.1811 511.6100 
3.00 2.3051 2.3993 547.9910 
3.20 2.5252 2.6296 584.3400 
3.40 2.7575 2.8728 620.6550 
3.60 3.0031 3.1301 656.9300 
3.80 3.2632 3.4028 693.1620 
4.00 3.5390 3.6922 729.3460 
4.10 3.6833 3.8436 747.4180 
4.20 3.8321 3.9998 765.4760 
4.30 3.9856 4.1611 783.5190 
4.40 4.1441 4.3275 801.5460 
4.50 4.3077 4.4995 819.5570 
4.60 4.4767 4.6772 837.5490 
4.70 4.6515 4.3610 855.5230 
4.80 4.8722 5.0975 873.2280 
4.90 5.2042 5.4594 890.2550 
5.00 5.8135 6.1340 905.3070 
5.10 7.1606 7.6422 914.6800 
5.20 9.7390 10.5461 911.4260 
5.30 14.4070 15.8495 880.7250 
5.40 18.7805 22.0139 827.8330 
5.50 23.8545 26.7816 779.8350 

TABLE 6.8 Uniaxially Compressed Continuous T-Beam 

Strut (2 Sets of Eccentric 8 SEMILOOF Beam 

Elementsfor Single Span). 
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-C HýA-P TER7 

GENERAL CONCLUSIONS 

7.1 SUMMARY OF WORK 

The wo rk described in'this thesis has involved the 

development of the following: 

(i) An exact large rotation two-dimensional theory 

for thin curved eccentric beams, its finite 

element formulations"in a Lagrangian coordinate- 

system and a family of two-dimensional beam 

elements that can accurately accommodate the 

theory. 

(ii) A general Total, Lagrangian formulation based 

on the geometric strains that has the capability 

of predicting iheýtrue stresses'in large rotation 

and curvature'problems. 

(iii) A three-dimensional 1ýrge`rotation theory for 

thin curved eccentric, beams its f inite element 

f ormulat ions -'in a Total LI ag . rangia n coordinate 

system and'a'family - of'three-dimensional beam 

elements that can accurately accommodate the 

theory. 
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7.2 CONCLUDING REMARKS 

The Total Lagrangian formulations have been proven to 

be numerically more effective than the Updated Lagrangian 

formulation. The large rotation Total Lagrangian 

formulation of thin curved beam finite elements in two- 

-been shown to be and three-dimensional. space. has 

possible provided that the displacement derivatives, 

which are rotation measures, ' are used as degrees of 

-freedom. 

7. The constraint technique has been successfully used to 

develop the elements' that are necessary for use with the 

theory. The, completely, conforming element developed by 

the technique has. been found to, be incapable of 

correctly. reproducingýaxialýforce. variations in very 

thin, deep structures,, in. which the, deformation is in- 

'extensional. The convergence, of idealisations by this 

element of such structures -is not monotonic. The 

element has been shown, --however,. to be effective in 

-The,, "parent" element is a nonlinear applications. 

subparametric, element in, which the geometry is defined 

by three nodes'and_., the'-variation of the displacements 

is defined by four nodes'. The convergence of 

subparametric; elements, is,,, monotonic., The variation of 

the variables-, in- the_111f inal" -element, while'being an 

exact cubic, "is defined bytwo nodes only. Therefore, 

the "final" elenent-may be consideredýto be a 
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superparametric element. This explains the peculiar 

element behaviour since the convergence of super- 

parametric elements is not always monotonic. 

The only limitation of the'exact large rotation theory 

'that C continuity of the which has been developed is 

in-plane displacement is essential. An approach that 

avoids this limitation needs to be considered. Such. 

an approach will make the use of existing successful 

elements, such as the SEMILOOF shell element possible 

without having to m6dify'theýalready complex shape 

function routines. '', 

The qu rement has arisen from adopting C continuity re i 

the Kirchhoff hypothesis that plane sections before 

deformation remain'plane'ýnd normal to the beam reference 

line after deformation. The' strain-displacement terms 

that result in this requirement. therefore- can be elimi- 

nated by relaxing the-ý'Condition`of normality after 

def ormat ion. -Sucb: a'modificition will, however, result 

in the introdu"ction'' of nonl'in ;e ar shear strain- 

displacement terms. Further investigation of this 

point is necessary. 

The requirement of using the displacement'derivatives 

as-rotation measures in"large rotation problems in which 

the deformitiOn i-i"in-extensional, however, still 

remains. The use, of the Updated Lagrangian avoids this 

requirement. The serious disadvantage of an Updated 
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Lagrangian solution is that 'it requires a considerable 

amount of computer time. "The combined formulation has 

been shown to retain most of the advantages of the 

Updated Lagrangian formulation while saving in 

computer time. Hence, the use of the combined formula; - 

tion in the analysis of problems in which C continuity 

of the in-plane displacement iSý objectionable could 

be considered. It has been shown, however, 'that the 

combined formulation needs, to be modified for its 

results to be'independent of the-load: ý increment size. 

The possibility of"developing a'combined formulation 

based on the'conventional' strains may be considered. 

This will combine'the advantages "6f'the Updated and Total 

Lagrangian formulations while being'independent of the 

load increment size. ' It is4important to realise that 

the limitation will then beonýthe rotation increment 

size rather than the"total rotation size. The 

disadvantage of the combined formulation is that its 

computationai impl'ementation'is1complex and relatively 

difficult compared-to the Updated and Total Lagrangian 

formulations. 

The Total Lagrangian formulation based on the gp9metric 

strains is general:. -"It'has been demonstrated that the 

formulation can-be'successfullyýused 'Withý the -versatile 

isoparametrie elements' --The additional advantage of 

this formulation is that -ii'is'ap' licable in''large strain p 
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problems. The three-dimensional , version of the 

formulation in terms of-continuum mechanics stresses 

and strains can be easily, 'developed following the 

procedure used for the. two-dimensional theory 

(Appendix II). 

The materially nonlinear formulation has been based on 

the von-Mises yield criterion and the Prandtl-Reuss 

flow rule. The continuum mechanics strains required 

has been obtained from the generalised strain resultants 

and the local coordinates Numerical integration, over 

the'rectangular crosS7section, has been used to evaluate 

the nonlinear modulus matrix. The shear stresses from 

such a formulation are, however, strictly correct only 

for a concentric square cross-section. Therefore, a 

modification of this materially nonlinear formulation 

is necessary. An alternative approach that may resolve 

the difficulty is the )ase of yield functions which are 

defined in terms of stress and strain resultants 

The success of the large rotation theory can be 

primarily attributed to the use of an intrinsic 

(convective) local coordinate system. It is of the 

opinion of the author that the use of such a coordinate 

system in theisoparametric element formulation needs 

to be considered. The well known difficulties that 

arise when the isoparametric elements are used in 
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the analysis of very thin structures may be resolved 

by adopting this approach. Such a possibility arises 

because the use of a local coordinate system will 

eliminate the coupling between the terms in the Jacobian 

matrix. It is obvious that the success of a formulation 

of this kind will have great advantages in'both linear 

and geometrically nonlinear structural analyses. 

T'' 
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AP P'E, N, D 1, X 

EXPLICIT FORM OF THE CONSTRAINED' 
DISPLACEMENT FIELD FOR THE 
2-D STRAIGHT BEAM ELEMENT 

The transvers displacement variation for a straight two 

dimensional beam element (Figure 3.4) is. obtained by the 

constraint technique., It, is possible to obtain either 

ýa non-conforming or an exactly conforming displacement 

field using alternative choices for the initial assumed 

variation of displacement. Two alternative approaches 

that give identical results are available. These are 

assuming the initial variation in terms of 

generalised variables 

using independent interpolation of the initial 

vairables. 

The first method can be used to formulate straight 

elements explicitly. 'The second, method is best carried 

out numerically and is, therefore',, suitable to be used 
in the development of curved elements. '" 



INCOMPATIBLE DISPLACEMENT FIELD 

The non-conforming displacement field is derived by each 

of the two methods for compaiison. 

GENERALISED VARIABLES 

Consider that parabolic variations of 

V and its derivative O''for a straight 

(Figure 3.4a) are defined in terms of 

coordinate C and generalised variable 

the displacement 

beam element 

the natural 

s a, as follows 

v= a, + a2ý + C13 
2 

a4+a 5ý + C16 C2 

The derivative of v with respect, to the local x coordinate 

is then given by 

dv dv ! (a + 2a (1.2) UX dZ dx C2 3" 

Four of the six equations required for a solution for 

ai in terms of the nodal variables. (vl, 01, v 21 e2) 

are obtained from the two end conditions as 



V1 a1- Ct 2+a3 

v2a1+a2+a3 

61 Ot 4- CL 5+a6 

02 a4+a5+a6 (1.3) 

The two additional equations required are obtained by 

dv 
applying the condition 0= a- at the two Gauss points x 

1//3. Therefore, from (I. 1) and (1.2) we have 

a+11-2 4 ga5 a6 ý(a2 ga3) 

a+ ga +1+ 20a (1.4) 
45 a6 FCa2 3) 

in which g WV3 

Equation (1.4) gives relations between the generalised 

variables for v and those for e of the form 

ac+ga 2 C14 36 

asa 325 

Solving the six equations (1.3) and (1.5) for ai gives 
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aIv+ .1v+R00 2122 

v+1v ct2 2122 

C13 cc 
44 02 

a3+ 
ýL 

v .16 ; 
lr 0 4 4c 11 4c 24 1- 

= .16+. 10 
- "ff 12 

a333e+ 6 qc V1 - 4-c V2 +1142 

The constrained displacement field is then obtained 

by substituting for ai from (1.6) into (I. 1), so that 

C)v + (. 1 
+ .1 ý)v + -Sla -2 )e 122241- 

_ 
c(1 

_ g2 )0 4 

3 (1 _ Z2)v + 
2_(, 

_ e2)v 
2, 6 -3 - Tc- + 

l(- 1:. - 29 + 39 )0 
1 4c 41 

1+ 2ý + 3E 2 )e 
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1.1.2 Independent Interpolation 

The displacement v and the derivative 6 (Figure 3.4b) 

are defined by independint interpolation from the nodal 

values as follows 

VV 
3 

=EN. 

i=1 1 

aa".. "".. ""... (I. 8) 

where the hierarchical shape function N are given in 

terms of the natural coordinate by 

1-1-. 1, 

and the variables at the middle node are the departures 

from linearity Av 3 and AO 3* 

The derivatives of Ni( Equation (1.9)) with respect 

to the local x are 

dN dN 21 dN 32 
dx 2c I dx ýFc , Tx-- 'F 

(I. 10) 

in which c- 
dx 
UT 
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The constraint equation to be applied at the two Gauss 

points t 11V3 is defined fran (1.8) as follows 

33 dN i 6+ dv 
ENe+E0 dx i=l ii i=l dx 'i 

Substituting from (1.9) and (I. 10) into (I. 11) and 

evaluating this at ý=± 11V3 gives 

1v+1v+ 2g Av C(. 
1 

+ E)e 
21223221 

2c 

.1vc(. 
1 

- R) 6 2g Av 3ý221 

+c(. 1 +Ce+ 19- Le 22233 

where g 11V3 

Solving (1.12) for the displacements to be eliminated 

AV 3 and Ae 3 we have 

- Cc Ct 
V3 -" vi - v2 

Ae 3v+3v2e2e 
4-C 1 4c 2-442 

371 



The constrained displacement field is now obtained by 

substituting from (1.9) into (1.8) and using (1.13) 

to eliminate the unwanted variables Av 3 and AO 3* 

Therefore 

E)v 21 

c(l 
_ E2)6 4.2 

32 )v + 
L(l 

_ ý2)v + -1(- 1- 2ý +3 ý2 )e + 4-C 1 4c 241 

12 
7; r. 

- 
-13ý)6 

which is exactly the same as (1.7). 

Differentiating v in (1.7) with respect to the local 

x gives 

dy 16+ 
a 'f -C 2c 2212 

This "Smoothed" derivative is clearly incompatible with 

e in Equation (1.7). The two derivatives are equal at 

the Gauss points 11V3 only. 
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It is possible, however, to obtain a completely 

compatible displacement field by assuming the original 

independent interpolation of both v and 6 to be cubic 

and then eliminating the four internal degrees of freedom 

(Figure 3. Ad). 

1.2 CONFORMING DISPLACEMENT FIELD 

Following the approach of using generalised variables 

the variation of v and e is assumed to be 

a2ý+a3 ý2 + a4 ý 

a5+a6+ ct7 + ct 8 

The derivative of v with respect to the local x is 

given from (1.15) by 

dv dv dE 
=1 (a + 2a C+ 32 dx TZ- u X- -c* 23 014 ý 

The four equations obtained from (1.15) by applying 

the end conditions are 
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a2+a3-a4 

v2 ctl + a2 + (13 + a4 

el a5- CL6 +a7- a8 

5+ Cl 6+a7+a8 

The four additional equations required are given by 

applying the constraint conditionq-v =6 at the four 
cLx 

points as 55 

16+ 27 
ol a3+ 

ýL 27 
a c -2 5c -3 25c 455 -6 25 -7 125 8 

1++27 27 
c -2 5c 3 25c -4 5+ 

ý5 
a6 + 90ý 

a7 + 125 -8 

12+3C, 
a1+ 

1- 1. 
a c -2 5c -3 25c45 -- 5 -6 25 -7 125 

1+ 
-ý- a+3a+ .1 (x + 1ý- 

(I + -. 
I- 

a c -2 5c 3 25c -4 556 25 7 125 8 

..... .. 0. ... (1.18) 

which gives relations between the generalised variables 

for v and those for 0 of the form 
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CL 2c ct 5 

CL 3a 

a4 cl 7 

cl 80... ... ... ... ... ... (1.19) 

Solving the eight equations (1.19) and (1.17) for ai 

gives 

CL " 1- v+1 22 

v+s 24 
0 

14 
6 

2 

CL 2 v+ 1 2v 42 c 1- 42 

CL 3 + 41 .90 42 

CL 4 v 41-4 v+ 24 + 14 0 2 

CL 5 - 4c 'l +3v 4c 2 Ie 41 10 42 

a 6 + 2122 

OL 7 = 
ýL 

v 4c 1- 
3 

v+ 4c 2 
3 + 1 42 

a8 =0 ... .. . ... ... ... ... (1.20) 
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The completely conforming constrained displacement 

field is then obtained by substituting from (1.20) into 

(1.15) as follows 

+ .1 ý3)v + (. 1 
+2E_ .1 ý3)v 412442 

92+ g3 )0 + (- i-e+e2+ g3 )0 

ý3 (1 2 3c(l 
_ E2 E2)61 _c )v +- '(- 1- 2E +3 4c 1 qc N+4 

+1 (- 1+ 29 + 39 2 )0 
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APPEND1 Xý Il 

TOTAL LAGRANGIAN MODIFIED INCREMENTAL 

EQUILIBRIUM EOUATIONS FOR A T140-DIMENSIONAL 

STATE OF STRESS 

The Total Lagrangian formulation for a general state of 

stress, in which isoparametric elements are used, is 

well established. Many investigators have demonstrated 

the accuracy and generality of such a formulation. All 

formulations that have been presented in literature are, 

however, based on the Green-Lagrange strains and direct 

proportionality is assumed between these strains and 

the 2nd Piola-Kirchhoff stresses in the internal virtual 

work expression. A formulation which is based on true 

stress measures will have obvious advantages especially 

for combined geometric and material nonlinearity 

solutions since the established flow rules are based 

on true stresses. The modified incremental equilibrium 

equations for a two-dimensional state of stress are 

developed here by using the conventional strain and 

the nominal stress as work conjugate variables in the 

virtual work expression. The formulation is suitable 

for use with the versatile isoparametric elements. 
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II. 1 STRESS-STRAINS RELATIONS 

The three stress components in two-dimensions are defined 

in terms of the strains as follows 

aEf x xx 

cry [D] ýy 

LT xyj 
Yx, y 

OR 

c '. = 

where u is the nominal stress vector, c' is the 

conventional strain vector and D is the modulus matrix. 

11.2 STRAIN-DISPLACEMENT RELATIONS 

The direct strains eý, and E: ýy are defined by the change 

in length per unit initial length of line elements 

originally oriented parallel to the X and Y axes 

respectively. The shear strain is the change in the 

right angle. This shear strain is assumed to be 

small so that siny' can be assumed to be equal to y'. 

Convected coordinates and differentiation are to be 

used. 
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I 
gy 

deformed 

v ij 

undeformed 

yi j 

FIGURE I. I. 1 - DEFORMATION GEOMETRY 

Referring to Figure II. 1, the position vector of a 

point P(x, y) after deformation is 

R= (X + U) T+ (Y + V) j (11.2) 

in which U and V are the components of displacement 

in the global axes directions. 

The displacement gradient vectors are given from (11.2) 

by 
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. 
ýR + 

dV 
9x + q, 

-) ax dx dx 

3R 
g 

dU + (1 + ýLV) 
y Hy ... ... ... (11.3) ý_)( dY 0 

from which the Green-Lagrange strains are obtained as 

follows 

c1 (IR .DR xx ax ax 
R 3R 

yy 2 (2DY ,ay 
A ali 

:., 
Yx 

y Ux * "5-y 

p dU 
+ . 

1(ýU)2 
+ 

I(dV)2 
dX 2 dX 2 dX 

dV + j(! LU)2 + 
I(dV)2 

, u-y 2 dY 2 dY 

dU 
+ dV + 

dU ! jU + 
fV dV (IIA) 

. 
a-y -dff dX dY dX UY 

Now defining the direct strains as change in length per 

unit initial length gives 

aR 3R 112 112 
cx'x (ak . 3K) -1= (1 + 2exx) 

3R 3'A 112 112 
Cýy 5-y . ay )-1= (1 + 2c 

yy 
)-1 (11.5) 
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The shear strain is defined as the change in the right 

angle. Assuming that the shear angle is small we 

obtain 

. 
3R DR DR R, 

cos(go Yx, y xy 5x . 5y = 1. ýXj 12- 
Y) ay 

(1 + 2e ) 
112 

x (1 2c ) 
112 

yI xx yy xy 

(11.6) 

which gives the shear strain as 

Y Xly =- 
Yxy 

(11.7) 
(1 + 2r:. 

XX)112 x (1 + 2e 
yy 

)112 

from (11.5) and (11.7) the, variation in strain is 
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d 6W 
int ý 

iv 
6c TH *T D dc' dV + 

iv 
d6C 

TH *T 
cr dV 

ac T dH *T a dV 
v 

= 6aT[(K +K )da +K da + K* da] 

... (11.10) 

The first and second terms in (II. 10) define the well 

known linear strain (infinitesimal strain and initial 

displacement) and geometric stiffness matrices 

respectively. The third term introduces an additional 

geometric stiffness matrix. 

11.3 FINITE ELEMENT FORMULATION 

The Green strains c (Equation (11-4)) and their 

variations Sc are defined in terms of the nodal 

variables in a finite element representation as follw 

follows 

- dU dU dU dV 0 0 UY 
dX TE TY 

dV 
dV 1 dU dV Tx- + 0 0 dX TY dy 

dU 
dU dV dU dV dU dV dy 

+ - - - TV dX Ld Y Ty dX dX j dV 
dY 

B' a 0 
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Eu dV dU dVjT 
=G (11.12) 

dx ' Tx- ' UYY ' UYYJ 

6c = [B 
0+B L(a)] 6a 'ý [Bo + AeGI 6a =B 6a ... 

From (11.8) and (11.13) the variations in the geometric 

strains are now given by 

6c' =H* 6c = R*B 6a= B* 6a (11.14) 

TheAncremental equilibrium equations are obtained by 

substituting from (11.14) into (II. 10) and equating the 

internal work to the external work. Since the applied 

loads are considered to be conservative we have 

KTAa =R- 
iv 

B TU*T 
c dV ... ... ... ... 

where R is the vector of applied equivalent nodal 

forces. The tangent stiffness matrix KT is given 

from (II. 10) by 

K "- (Ko +K+ Ka + K* ... ... ... ... T L) a 

Therefore from (II. 1), (II. 10) and (11.14) 

K0+KLý 
iv 

BTH *T D H* B dV =Iv B*T D B* dV (11.17) 
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The geometric stiffness matrix K is obtained from 

(11.10), (11.12) and (11.13) as follows 

C! B T 

K 
IV ABT H*Tcr dV 

IV 
_. I 

L 111*Tcr dV 
a. da da 

= 
IV 

GT 
dAe 

H *T v dV = GTS G dV (11.18) 
da V 

where 

S 

cr 
X,, xy 

xy 
[I] cr 

............ yy 

in which 

cr 
xx 

yy 

xy 

*T 

(11.20) 

and (I] is a2x2 unit matrix 
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