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Abstract 

A semi-empirical method is developed to describe the dynamic behaviour of check 
valves in pipeline systems. The method is based on parameterized valve models and 
dimensionless valve characteristics, which may be obtained from experiments. The 

check valve is considered as a black box with certain input and output characteristics. 
The check valve closure and associated pressure surges are the dominant phenomena. 
Undamped check valves may be considered as a special case of damped check valves. 

Much attention is paid to the description of the hydrodynamic (fluid) forces on 
the internal, moving valve elements. These elements may be considered as translating 
or rotating bodies with (at least) one plane of symmetry. The equations of motion 
for the constrained, unsteady motion of such a body in an unconfined, unsteady fluid 
flow are based on the dynamical theory of Kirchhoff, extended to an unsteady fluid 
flow. The equivalent equations for a body in a confined fluid are based on Lagrange's 
method of generalized coordinates. 

A general (dimensionless) valve equation of motion is developed, which is valid 
for most of the existing check valve types. 

Basic differential equations are derived for the transient flow in a pipe with 
constant initial flow deceleration. The equations are applied to describe the check 
valve closure under reflection free and reflecting boundary conditions in the form of 
dimensionless, analytical equations. The theory is based on conventional waterhammer 
theory. 

The pipe and valve equations are coupled via the integral form of the momentum 
equation. 

The uncoupled and coupled, (dimensionless) pipe and valve equations show 
formally which (dimensionless) variables and valve, system and fluid parameters are 
relevant to the dynamic behaviour of check valves in pipeline systems. In that sense 
they are used in a dimensional analysis to develop (dimensionless) valve characteris- 
tics and dynamic scale laws. 

Based on the dimensionless valve characteristics, models for undamped and 
damped check valves are developed and implemented in the waterhammer computer 
code CVWP (Check Valve Waterhammer Program). 

Experiments are performed in the test facility at Delft Hydraulics to measure 
several valve characteristics of weakly and strongly damped check valves. 

The dynamic scale laws are validated by means of numerical simulations. The 

valve models are validated against experimental data. 
The study has been performed within the Check Valve Research Project (CVRP). 

ix 



Nomenclature 

A area 
Ac acceleration number 
B body force 

c pressure wave speed 
C coefficient 
cl constant which accounts for the effects of support conditions 

of the pipe on the pressure wave speed 
d distance, characteristic diameter of damping device 
D characteristic diameter 
(dv/dt)_ (mean) initial flow deceleration at check valve 
(dv/dt)+ (mean) reverse flow deceleration at check valve 
e eccentricity, pipe wall thickness 
E modulus of elasticity 
Eu Euler number 
f Darcy-Weisbach friction coefficient 
f frequency 
F force 
g gravitational acceleration 
H pressure head 
I mass moment of inertia 
k radius of gyration 
K geometrical parameter 
K bulk modulus of elasticity 
L pipe length 
L Lagrangian 
m mass 
Ma Mach number 
n unit-normal 
p pressure 
q generalized coordinate 
Q flow rate, volumetric discharge 
R radius 
Re Reynolds number 
S surface of control volume 
S Strouhal number 
t time 
T kinetic energy 
T torque 
T time shift 

[m2] 
[-] 

[N/m3] 
[m/s] 

[-] 

[-] 
[m] 

[m] 
[m/s2] 

[m/s2] 

[m] 
N/m21 

[Hz] 
[N] 

[m/s2] 
[m] 

[kgm2] 
[m] 
[-] 

[N/m2] 

[m] 
[Jl 

[kg] 
[-] 
[-] 

[N/m2] 
[m or rad] 

[m3/s] 
[m] 
[-] 

[m2] 
[-] 
[s] 
[J] 

[Nm] 
[s] 

X 



v linear velocity, fluid velocity [m/s] 

vo critical velocity of check valve [m/s] 
V volume [m3] 

V potential function [J] 

x linear position; distance along pipe [m] 
Y hysteresis factor [-] 

Z elevation of pipe centreline above datum [m] 

a angular position, angle of incidence [rad] 
ß parameter characterizing the velocity-time function [-] 

y inclination angle of pipe and valve [rad] 
AH pressure head difference or variation [m] 
OP pressure difference or variation [N/m2] 

77 slope in dimensionless valve characteristic [-] 
6 angular position [rad] 
X wave-length [m] 
M pseudo-torque [Nm] 

dynamic fluid viscosity [Ns/m2] 

µ bearing friction coefficient [-] 

v Poisson's ratio [-] 
loss coefficient [-] 

p mass density [kg/m3] 

a normal stress [N/m2] 

T dimensionless time [-] 

T shear stress [N/m21 

To shear stress between fluid and pipe wall [N/m2] 

v dimensionless fluid velocity [-] 

velocity potential [m2/s] 

closure phase [-] 

X pseudo-force (component) [N] 

pseudo-force (component) [N] 

angular velocity, circular frequency [rad/s] 

relaxation factor [-] 

Subscripts 

A added mass, area 
abs absolute 
b body, begin, bearing 
B Basset 
B buoyancy 

xi 



bnd boundary 
bp bypass 
c valve is just closed 
cg centre of gravity 
cb centre of buoyancy 
d, D damping (becomes active or effective), damping fluid 
d/D downstream/downstream pressure tap location 
D drag 

e eccentricity 
eff effective 
f fluid 
f, F friction 
G gravitational 
h hose 
H hydrodynamic 
i initial 
I inertia 

m moving valve element(s) 
o valve is just fully open 
p pipe, packing 
P pressure 
pn piston 
reff reflection 
R maximum reverse flow 
S spring(s) 
th throttle valve 
u/U upstream/upstream pressure tap location 
V volume 
T shear 

X11 



1 Introduction 

1.1 General 

Check valves - recoil, reflux or non-return valves - are older than human life and 
could already be found in the hearts of mammals to enable the pumping of blood 
through the body (figure 1.1). In the Ancient Roman time check valves were used 
at the suction and discharge side of piston pumps (figure 1.2). Even today they are 
found in pumps and compressors of the reciprocating type. With the development of 
hydrodynamic engines of the rotating type (centrifugal pumps, turbines) in the last 
century the necessity for built-in check valves faded. Nowadays they are commonly 
used components in pump stations and pipeline systems. 

check valves for 
±3.000.000.000 
cycles per life 

check valves 

Figure 1.1 Check valves in the human heart 

The function of check valves in fluid circuits is to allow flow in one direction and 
to prevent flow in the reverse direction. They are used in pipelines in order to prevent 
the lines draining backwards when pumps stop running, to prevent downstream 

reservoirs from emptying, to prevent reverse flow through non-operating parallel 
pumps and booster pumps, to prevent emptying of the line in case of pipe rupture 
and to prevent reverse rotation of pumps, thereby avoiding damage to seals and to 
the brush gear of the driving motors. 

1 



Chapter 1 Introduction 

Figure 1.2 Ancient Roman piston pump (Rop, 1987) 

Check valves are simple devices consisting of a casing around one or more 
translating or rotating elements. The position of the element(s) is primarily controlled 
by the fluid passing through (figure 1.3). The position may secondarily be influenced 

by springs, a counterweight and/or a damping device, which slows down the motion 

of the element(s), in general only during the last part of closure. As distinct from 

undamped check valves, check valves with a damping device are denoted as damped 

check valves. 

1- Undamped check valve 

Damped check valve 

Figure 1.3 Undamped and damped check valves 
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1.1 General 

The ideal check valve has no resistance to flow in the normal flow direction and 
infinite resistance to flow in the reverse flow direction. In this respect the electrical 
analogue of the check valve is the diode. The ideal check valve closes at the instant 

of flow reversal. In practice however, check valves close after flow reversal due to 
inertia, friction and damping effects. The amount of reverse flow depends on the 
(initial) flow conditions, the strength of springs, counterweights, and the stroke or 
angle that the valve element(s) have to move to the closed position. 

3 
0 J 
li 

W 
N 

cl: Lo 
LL. 

Figure 1.4 Flow behaviour of check valves 

The reduction of the reverse flow to zero (valve closed) may take place instan- 
taneously (undamped check valves) or gradually (damped check valves; figure 1.4), 
and is accompanied with pressure surges in the pipeline system, a possible occurrence 
of cavitation and valve slamming. 

The pressure surges (also known as waterhammer), induced by the check valve 
closure, may lead to unacceptable overpressures in the downstream piping, and/or 
underpressures in the upstream piping. Moreover, the underpressures may lead to 
the occurrence of cavitation or fluid column separation when the vapour pressure is 

reached. The eventual collapse of the cavities in the upstream piping leads to 
overpressures, which even may exceed the overpressures in the downstream piping. 

Apart from surge effects, the combination of downstream pressure rise and 
upstream pressure drop tends to accelerate the motion of the valve element(s) onto 
the seat. Therefore, under certain flow conditions, the closure may be accompanied 
with "check valve slam", possibly damaging the valve seat element(s). This effect 
is suppressed by a damping device. 

The pressure difference across the valve, particularly at the instant of closure, 
introduces hydrodynamic forces on the valve which are transmitted to the supports 
of the pipeline system. With respect to the anchoring of these supports it is important 
to know the magnitude of these forces. 

3 



Chapter 1 Introduction 

The above-mentioned phenomena illustrate that a wrong selection of check valves 
may permit damage to the valve and the associated pipeline system with the risk of 
damage to people, plant and environment. 

With the evolution of high capacity and multi-pump systems, there is a need for 
larger pumps and pump heads. At the same time there is a tendency to design low- 
inertia pumps. Surge protection devices such as air vessels become more common. 
These developments lead to an increasing number of problems with check valves. 

Billington et al. (1985) describe a comprehensive statistical analysis of valve 
problems within BP. The analysis comprises nearly a quarter of a million valves and 
shows that 6% of the valves are check valves. Among the check valves 6.3 % give 
rise to problems varying from erosion, material failure and jamming to leakage. 

1.2 State-of-the-Art 

From the sixties on the closure behaviour of undamped check valves is studied 
in detail by means of valve response models, on-site and laboratory tests. 

The models are based on a one-dimensional valve equation of motion. The 

equations are solved numerically. In the stand-alone models the fluid velocity-time 
history is used as boundary condition. As a next step the valve models are coupled 
to waterhammer computer codes, which enables to simulate the interaction between 

valve and pipeline system. In fluid-structure analyses the valve model is coupled to 
waterhammer and/or structural dynamics computer codes, which enables detailed 

studies into e. g. the thermal and stress behaviour of check valves under extreme 
conditions. 

In general these research activities are restricted to case studies, to investigate in 
how far a specific check valve operates in a specific application. 

Researchers like Provoost, Collier and Thorley recognize that there is a need to 
identify scale laws to help generalizing the application of experimental data, that have 
been generated (private communication with prof. A. R. D. Thorley). 

The behaviour of check valves under steady flow conditions is described by 

steady-state characteristics. The characteristics provide information on the opening 
pressure, flow capacity and energy losses. 

The closure behaviour of undamped check valves is described by so-called 
"dynamic" characteristics. These characteristics provide information on the maximum 
reverse flow velocity and pressure surges due to valve closure. 

4 



1.3 Objectives and preview of study 

Delft Hydraulics developed an internationally adopted method to describe the 
dynamic behaviour of undamped check valves in specific applications (Provoost, 
1982; Koetzier, Kruisbrink and Lavooij, 1986; Kruisbrink, 1988). The method can 
be used for the selection of valves and is based on system-independent (dimensionless) 
dynamic characteristics. 

The hydrodynamic behaviour of undamped check valves is well described in the 
steady-state and dynamic characteristics. The characteristics are system independent 

and can be used in the selection of undamped check valves for any pipeline system. 

With respect to the dynamic behaviour of damped check valves there is a lack 
of knowledge. Contrary to undamped check valves the motion of damped check 
valves may be influenced by reflections of pressure waves, particularly during the 
stage of active damping. For this reason the behaviour of damped check valves is 

much more complicated and system dependent. 
Thus far no general approach, dynamic valve characteristics or valve models are 

available. The selection of damped check valves and the adjustment of damping 
devices often takes place by trial and error under operating conditions. 

1.3 Objectives and preview of study 

The objective of the present study is to develop a semi-empirical method to 
describe the hydrodynamic behaviour of check valves in pipeline systems. For this 
purpose (dimensionless) valve characteristics should be introduced, which are defined 
in such a way that they can be applied to all types of check valves. The valve 
characteristics are intended as tool in the valve selection and pipeline design, to judge 
the hydrodynamic behaviour of check valves in specific applications. This can be done 
by means of quick estimates or more detailed computer surge analyses. For the latter 

purpose numerical valve models should be developed. 

The scope of the present study is limited to self-actuating check valves (i. e. valves 
operating without power supply), with or without damping device. 

A survey of literature reveals that within the research into the dynamic behaviour 

of check valves mainly a direct approach is followed with a deterministic character 
(chapter 2). The valves are described by numerical models, which are based on 
conservation laws (mass, momentum) in the form of one or more, ordinary or partial 
differential equations. Within the enormous variety of check valve types, many so- 
called "valve response models" have been developed. These models are used in 

uncoupled or coupled mode with waterhammer computer codes. Although these 
models form a sound basis, their accuracy is limited due to uncertainties in the model 
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formulation and coefficients used. Therefore, often additional series of experiments 
are needed to quantify e. g. the flow and damping coefficients used in the model, and 
to tune and validate the model. As such both the development and the implementation 

of these models takes a lot of effort and is time consuming. 
For the above reasons, within the present study a more global, "parameterized" 

approach is chosen, which has a more non-deterministic character. The method is 
based on valve characteristics, which describe the overall behaviour of the valve. The 

characteristics are determined from experiments, whereby the check valve is con- 
sidered as a black box with certain input and output characteristics. 

Although a more global approach is chosen, much attention is paid to: 
" the development of a general valve response model (valve equations), 
" the description of the pressure surge effects of a valve closure (pipe equations), 
" the interaction between check valve and pipeline system (coupling of equations). 
The main purpose of this qualitative study is to identify which parameters are relevant 
to the check valve dynamics in pipeline systems. In that sense they form the basis 
for the development of "parameterized" models. 

Within the development of a general valve model, the concept of conservation 
of (kinetic) energy is chosen, rather than of momentum conservation laws, for the 
following reasons: 
Q Momentum equations (like the Euler and Navier-Stokes equations) are succesfully 

applied to describe the fluid forces on translating bodies (in rather slow motion). 
However, no results are obtained for rotating bodies yet. 

Q The (kinetic) energy concept allows a general treatment of the fluid forces and 
torques on a body, whereby details about the geometry, other than in the form 
of coefficients, are not required. It can thus be applied to most of the existing 
check valve types. 

Q The qualitative approach of the (kinetic) energy concept is consistent with the 
more global, "parameterized" approach to be followed here. 

An overview of check valve types (chapter 3) shows that the moving elements 
of check valves are generally characterized by translating or rotating bodies, with at 
least one plane of symmetry. This important geometrical condition is used to describe 
the hydrodynamic forces on the moving valve elements. 

From a hydrodynamic point of view the check valve closure is a typical confined 
flow problem around a moving body. The problem is rather complicated due to the 
facts that: 1) the geometry of the valve body, including the moving elements, is rather 
complex, 2) the body moves in a confined space, which implies that the overall 
geometry changes in time, 3) the body may rotate, 4) the motion of the body is flow 
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controlled, and 5) the motion of the body as well as the fluid is unsteady. The check 
valve closure is accompanied with and influenced by pressure surges, which may 
interact with the pipeline system. 

In this respect much more is known about: 1) simple geometries (e. g. cylinders, 
spheres), 2) bodies moving in an unconfined or semi-infinite space (e. g. aircraft, 
submarines, ships and small particles), 3) translating bodies, 4) controlled motion 
(e. g. control valves), and 5) steady motion. 

Due to the complexity of the confined, viscous fluid flow problem sketched above, 
a stepwise approach is chosen, starting with the relatively simple case of the uncon- 
fined, inviscid fluid as a basis for further developments. 

The motion of a body in an unconfined, inviscid fluid is described by the 
dynamical theory of Kirchhoff (chapter 4). This potential flow theory enables us to 
derive general equations of motion for a body, moving in a stagnant fluid due to 
external forces and torques. 

The general equations are very complex, when applied to an arbitrary body in 

arbitrary motion. However, the equations become more tractable by imposing 

constraints to the geometry and motion of the body. By analogy with the internal, 

moving elements of check valves, the body is assumed to have a plane of symmetry. 
The motion of the body is constrained to a motion in this plane of symmetry. 

Kirchhoff's equations are derived for the motion of a body in a stagnant fluid. 
Within the present study the theory is extended to the motion of a body in an unsteady 
fluid flow. For this purpose a non-inertial reference frame is introduced, which moves 
with the unsteady fluid flow. Moreover, by the special positioning of the body frame 
(i. e. the coordinate system which is fixed to the body) an eccentricity arises, which 
reveals an analogy with fluid viscosity. 

In the Lagrangian approach of Kirchhoff's theory the coefficients in the kinetic 

energy equations are constants, determined by the geometry of the rigid body. Note 

that for confined flows this no longer holds, since the geometry of the confined space, 
as seen from the moving body, changes. This enables the development of analytical 
expressions for the fluid force terms and coefficients. It thus offers opportunities to 

study and to describe the properties of these quantities. 

The motion of a body in an unconfined, viscous fluid is described in chapter 5. 
Fluid viscosity generally causes a move of the hydrodynamic centre, due to boundary 
layers and flow separation, which is analogous to the effect of an eccentricity. This 

analogy is used to make the step from unconfined, inviscid to unconfined, viscous 
fluids. As distinct from unconfined, inviscid fluids, the fluid force and torque 
equations generally become fully coupled now (i. e. all fluid terms appear in both the 
force and the torque equations). 
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For unconfined, viscous fluids most experimental data are available in the form 

of empirical relations for both the steady and unsteady, fluid force terms. These 

relations give a further insight into the properties of the fluid force coefficients, which 
to some extent may be applied to confined fluids. 

The motion of a body in a confined, inviscid fluid is described by Lagrange's 

method of generalized coordinates (chapter 6). The basic concept is similar to that 

of the dynamical theory of Kirchhoff. In the Eulerian approach of Lagrange's method, 
however, the coefficients in the kinetic energy equations are no longer constants, but 
functions of the generalized coordinates. This allows the development of equations 
of motion for rigid as well as non-rigid bodies in a confined space. Nevertheless, 

analytical expressions for the fluid force terms can only be developed if the above 
functional relations are known. In practice, these expressions are known for a few 

academic cases only. As for unconfined, viscous fluids, the fluid forces and torques 

are fully coupled here. This property is used to make the step from confined, inviscid 
fluids to confined, viscous fluids. The known empirical relations for the fluid force 

coefficients in unconfined, viscous fluids, form the basis for those in confined fluids. 

The fluid force terms which play a role in a viscous, unsteady fluid flow, such 
as the drag, added mass, pressure and history terms, cannot always be quantified, 
either by theory or by experiment. For this reason, in some flow problems a more 
global approach is followed, whereby the fluid force is described in the form of a 

, 
conventional drag term. For this purpose a global force coefficient is introduced, to 
account for all (steady and unsteady) effects of the fluid motion. The properties and 
form of the global fluid force (and torque) coefficients are studied (chapter 7) by 

using the results of the previous chapters. The concept of the global fluid force 

coefficients is used in the development of valve characteristics and computer models. 

The theory dealt with in the chapters 4 through 7 is primarily used to describe 
the check valve dynamics. It should be emphasized, however, that the theory holds 
for bodies in general (provided that they have at least one plane of symmetry). The 

stepwise approach of the study reveals the similarities and differences between 

unconfined and confined, inviscid and viscous, unsteady fluid flows. Such a syste- 
matic approach is not available in literature yet (as far as the author knows). At the 
same time relatively less is known about rotating bodies in unsteady fluid flows. In 
that sense the author hopes that the results of the present study are useful in a wider 
sense, i. e. beyond that of check valves. 

Nevertheless, the rest of the study deals only with check valves. 
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A general valve equation of motion is developed, which is valid for most of the 
existing check valve types (chapter 8). The equation is based on the equations of 
motion for a body in a confined, viscous fluid. It is written in a dimensionless form. 
For this purpose the critical velocity and valve diameter are introduced to define a 
velocity and a time scale. 

The hydrodynamic effects of a (check) valve closure on the pipeline system are 
studied in chapter 9. The phenomenon of unsteady (instead of the usual steady) initial 
flow conditions in pipeline systems is studied. Basic differential equations are derived 
for the transient flow in a pipe with a constant initial flow deceleration, based on 
conventional waterhammer theory. The equations are applied to describe a check 
valve closure under reflection-free and reflecting boundary conditions. The equations 
are written in a dimensionless form. For this purpose the fluid velocity at which the 
damping becomes active, and the pipeline period or reflection time are introduced 
to define a (second) velocity and time scale. 

So far the check valve and pipeline system are considered separately. To describe 
the interaction between check valve and pipeline system, a momentum equation is 
derived for the check valve as a short-length component (chapter 10). The 
(dimensionless) pipe and valve equations are coupled via this momentum equation. 
This results in an additional "coupling" parameter. 

The uncoupled and coupled, pipe and valve equations formally show which valve, 
system and fluid parameters are relevant to the check valve dynamics in a pipeline 
system. In that sense they are used in a dimensional analysis to develop dimensionless 

parameter groups (chapter 11). Note that the results of this dimensional analysis are 
not so self-evident, since several velocity and time scales are involved. The latter 
justifies a thorough study into the valve and the pipe equations. 

The parameter groups in their turn, are used to develop valve characteristics and 
dynamic scale laws. Two theoretical approaches are followed. In the first approach 
the check valve behaviour is described in terms of (dimensionless) fluid velocity and 
pressure head characteristics. The second approach is based on the concept of global 
fluid force coefficients, in terms of dynamic valve loss coefficients. 

Based on the valve characteristics, semi-empirical, parameterized valve models 
are developed to simulate the dynamic behaviour of check valves in waterhammer 
computer codes (chapter 12). Here, the above two approaches are applied to 
undamped and damped check valves, respectively. The models are implemented in 
the computer code CVWP (Check Valve Waterhammer Program). 
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A test facility is described, for the dynamic testing of check valves at Delft 
Hydraulics. Experiments are described, as performed on weakly and strongly damped 

check valves, in order to measure the valve characteristics of approach 1 and 2, and 
other valve characteristics (chapter 13 and 14). 

The dynamic scale laws are validated by means of numerical simulations. The 

experimental data are used to validate the valve models as implemented in the 
computer code CVWP (chapter 15). 

The study is completed with some final conclusions and recommendations for 
further research (chapter 16). 
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2 Survey of literature 

In this chapter a survey of literature about check valves is presented. The themes 
which pass in review (printed in bold type) are listed in an order, which corresponds 
with the chronological order of the relevant publications. After the introduction of 
a theme, the associated work of other researchers is treated under the same heading. 

2.1 Survey of literature 

Pioneers Studies into the hydrodynamic behaviour of check valves begin in the 

early fifties. Livingston (1954) describes steady-state characteristics, measured for 

a wide variety of check valves. The first dynamic tests are performed in 1951 in a 
3" test loop (Pool et al, 1962). 

Esleeck and Rosser (1959) are the first-ones that describe the phenomenon of 
check valve closure in detail. They recognize the occurrence of reverse flow and 
associated pressure surges due to a delayed valve closure. 

A one-dimensional (1D) valve equation of motion is developed for a swing type 
check valve. The equation is based on the second law of Newton, taking into account 
gravitational, inertia, spring and hydrodynamic effects. In the "stand-alone" valve 
model the fluid velocity-time history is used as a boundary condition, and derived 
from a separate surge analysis in which the check valve is kept fully open. The surge 
analysis is restricted to positive flows. After flow reversal the fluid velocity-time 
history is assumed to be linear. 

The valve model is used to calculate the valve disc position in time and the 

maximum reverse flow at the instant of closure. Assuming that the reduction of the 

reverse flow to zero takes place instantaneously, the pressure surges due to check 
valve closure are calculated from the Joukowsky equation. 

Stand-alone valve models Following Esleeck and Rosser (1959) many 
researchers develop stand-alone valve models based on a 1D valve equation of motion 
(e. g. Worster, 1959 and 1960; Pool et al., 1962; Lewinsky-Kesslitz, 1965; Douglas, 
1969; Gwinn, 1974; Deich and Jörgl, 1981; Koch, 1981; Thorley and Oei, 1981; 
Ellis and Mualla, 1983; Provoost, 1983a and 1983b; Valibouse and Verry, 1983; 
Gronau and Zwink, 1984; Schneider, 1985). 
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In general the inertia of the moving elements and the gravitational, buoyancy and 
spring effects are described in an unambigious and straightforward way. 

Added mass effects are taken into account by Worster (1959), Thorley and Oei 
(1981) and Schneider (1985) as the mass of a sphere of fluid with diameter equal to 
the disc diameter. 

Friction effects are described in several ways by Worster (1960), Pool et al. 
(1962), Deich and Jörgl (1981), Thorley and Oei (1981), Gronau and Zwink (1984). 

However, most of the differences are found in the description and determination 

of the hydrodynamic effects. Worster (1959), Pool et al. (1962) and Koch (1981) base 
the hydrodynamic torque on relative velocities between the fluid and the disc. 
Provoost (1983a) bases the hydrodynamic torque on the relative flow between the 
fluid and the disc. Thorley and Oei (1981) and Ellis and Mualla (1983) derive the 
hydrodynamic torque from closure characteristics measured under stagnant flow 

conditions in water. Worster (1959) and Valibouse and Verry (1983) obtain the 
hydrodynamic forces from steady flow measurements. Valibouse and Verry (1983) 
describe hydrodynamic forces taking into account the effect of a moving disc and an 
accelerating fluid. Schneider (1985) derives the hydrodynamic forces and torques 
from potential flow theory, modelling the valve as a source in a parallel (pipe) flow. 

Damping effects are not considered by the above-mentioned researchers. 

On-site tests Whiteman and Pearsall (1959) describe on-site tests to study the 
closure behaviour of swing type check valves in a sewage multi-pump station. During 

pump shut down the pressure drop across a partly opened valve is used as a measure 
for the flow rate. 

Following Whiteman and Pearsal (1959) on-site tests are described by e. g. 
Douglas (1969), Fox (1980), Erdödy and Bökemeier (1981), Koch (1981), Hsu and 
Ramey (1988). 

Laboratory tests Worster (1959) describes a laboratory test facility for the 
"dynamic" testing of 2" check valves. The flow rate in time is measured from the 
change of the water level in an air vessel. 

Pool et al. (1962) describe a 10" test loop, which is designed after experiences 
with 3" and 6" loops. The first experiments in the 3" loop are performed in 1951. 

Provoost (1980) describes a test facility for the dynamic testing of check valves 
up to diameters of 12" in horizontal and vertical position, using an electro-magnetic 
flowmeter. 

Collier and Hoerner (1982) describe a test facility for the dynamic testing of check 
valves in horizontal (12") and vertical (6") position, using a velocity probe as 
flowmeter. 

Pake (1983) describes a test facility for the dynamic testing of check valves up 
to diameters of 12" in horizontal and vertical position, using an electro-magnetic 
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flowmeter. 
Valibouse and Verry (1983) describe a test facility for the simulation of the check 

valve closure, starting from stagnant flow conditions, whereby the valve is kept fully 

open. 
Koetzier, Kruisbrink and Lavooij (1986) describe a test facility for the dynamic 

testing of check valves up to diameters of 32", using an electro-magnetic flowmeter. 

Standards In 1959 the Dutch standard comes out for check valves in water up 
to diameters of 50 mm (Standard, 1959). In the standard the general demands with 
respect to materials, dimensions, flanges, etc. are described. With respect to the 
hydrodynamic behaviour the minimum flow capacity is specified at pressure losses 
of 5 and 100 kPa. Leakage, opening pressure and durability tests are prescribed. The 
first revision of this standard appears in 1975 (Standard, 1975a). 

In 1963 the German equivalent of the above-mentioned Dutch standard appears 
with a first revision in 1975 (Standard, 1975b). With respect to the hydrodynamic 
behaviour here also energy loss tests are prescribed. 

In 1977 the second edition of the API standard for wafer-type check valves comes 
out (Standard, 1977). In the standard the general demands with respect to design, 

materials, dimensions and warranty are described. With respect to the hydrodynamic 
behaviour leakage tests are prescribed. 

In 1990 the Dutch standard appears for check valves up to diameters of 1200 mm 
(Standard, 1990). This is the equivalent of the above-mentioned Dutch standard 
(Standard, 1959). With respect to the hydrodynamic behaviour leakage tests are 
prescribed. With respect to energy losses the valve loss coefficient is specified within 
certain limits as function of the fluid velocity. Although pressure surges due to valve 
closure are recognized and surge control devices are mentioned, no "dynamic" 
demands are described. 

Analytical valve models Worster (1960) linearizes the valve equation of motion 
and assumes a cosines-shaped velocity-time function. Analytical expressions are 
derived for the valve disc position and the time lag between flow reversal and valve 
closure. 

Combes (1982) and Provoost (1983b) describe a simple analytical method to 
estimate the reverse flow velocity, based on the assumption that the valve displaced 

volume is equal to the fluid displaced volume during closure. Inertia effects are 
neglected. 

Valve slamming Gwinn (1974) uses a simplified 1D valve model to calculate 
the impact speed of the valve disc on its seat, simulating the event of pipe rupture 
at different initial valve disc positions and line pressures. A threshold impact speed, 
corresponding to visible fracture of the disc, is used to judge under which conditions 
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the valve will survive an event. 
Collier (1983) studies the phenomenon of check valve hammer in triplex recipro- 

cating pumps. 
Kim (1989) studies the chatter behaviour of check valves during the changeover 

of the feedwater pumps in a boiling water reactor. 

Valve design O'Keefe (1976) describes design features for several types of 
check valves with respect to sealing, wear, disc support and hingeing, opening angle 
(stroke), temperature effects and applications. 

Thorley (1983), Föllmer (1987) and Weisshaupl et at. (1989) describe (sometimes 

conflicting) design features to improve the check valve response. 
Föllmer (1987) introduces the "natural closing time" (i. e. the valve closure time 

under stagnant flow conditions, e. g. in air) as a measure for the valve response. 
Based on dynamic tests the natural closing time of a tilting disc check valve is related 
to the maximum reverse flow velocity. The semi-empirical method is used to improve 

check valve response. 

Special applications Steenhoven and Dongen (1979) study the closure behaviour 

of the aorta valve in the human heart. 
Sauren et al. (1981) investigate the operation of aorta valves for the benefit of 

the design of artificial heart valves. 
Horsten (1990) develops a numerical fluid-structure interaction model of heart 

valves. 
Cleijne and Smulders (1987) study the behaviour of a piston type check valve in 

a windmill-driven water pump. 

Fluid-structure analysis Cho and Kane (1980) combine a fluid and structure 
analysis to investigate the thermal stress behaviour of tilting disc check valves with 
dashpot in the primary sodium loops of a power plant. The computer code used for 

the fluid analysis provides the 2D (axi-symmetrical) flow distribution, heat transfer 

coefficients and liquid temperatures for specified transient conditions. The temperature 
data are used in a thermal stress analysis to investigate the ability of the valve to 

withstand thermal cycles. 
Dooley and Mosby (1983) perform a fluid-structure analysis to study the event 

of pipe rupture in the feedwater loop of a steam reactor (HDR-HeiI3dampfreaktor), 

with a plug type check valve with internal piston damper. The flow conditions are 
obtained from a transient computer code and used in a structural analysis as boundary 

condition. 
Müller (1987) studies the pipe rupture in the HDR using computer codes for a 

3D structural analysis and 1D fluid transient analysis (with two-phase flow and valve 
model) in coupled and uncoupled mode. 

14 



2.1 Survey of literature 

Valve wear Collier (1980) studies the wear of check valves. Relative wear rates 
are given for valves with upstream flow disturbances like reducers and elbows. 

Other wear studies are described by Collier et al. (1983) and Jeanmougin (1986). 

Pipe rupture tests Kirik and Gradle (1980) describe a test facility for the 
dynamic testing of 6" check valves in water. An upstream rupture disc is used to 
simulate the event of pipe rupture from initial, stagnant flow conditions with an 
artificially opened valve. 

Dooley and Mosby (1983), Travis and Torrey (1985) and Müller (1987) perform 
tests in a feedwater loop of a steam reactor with a plug type check valve with internal 

piston damper. The event of pipe rupture is simulated from initial, steady flow 
conditions using a rupture disc. The experiments, performed in a former 100 MW 

nuclear power plant in Germany, are used as benchmark problem (German standard 
problem 4A) with respect to the safety of nuclear power plants. 

Rommel et at. (1984), Huet et al. (1987), Panet and Martin (1988) and Henry 

et at. (1989) describe test facilities in the USA and France for the simulation of pipe 
rupture from initial, stagnant flow conditions using rupture discs. 

Yamada and Imao (1987) describe a test facility for the dynamic testing of 4" 

check valves, simulating pump trip and pipe rupture. Pipe rupture is simulated from 
initial, steady flow conditions by a sudden drop of the upstream pressure to atmos- 
pheric conditions. The downstream length of the measuring section can be varied 
from 5 to 50 m. 

Valve models coupled to pipe equations Provoost (1980) proposes to couple 
valve models to the equations for transient flow in pipeline systems. 

This approach is followed by several researchers like Ellis (1980), Kirik and 
Gradle (1980), Erdödy and Bökemeier (1981), Koch (1981), Kubie (1982), Ellis and 
Mualla (1983), Provoost (1983a), Siikonen (1983), Valibouse and Verry (1983), 
Rommel et al. (1984), Travis and Torrey (1985), Ellis and Mualla (1986), Henry et 
al. (1989), Kim (1989), and Suzuki et al. (1991). 

The combination of valve model and pipeline model offers opportunities to study 
the interaction between valve and pipeline, which is essential in the behaviour of 
damped check valves. 

Kirik and Gradle (1980) develop a model of a piston type check valve with an 
internal dashpot. 

Kubie (1982) develops a model of a plug type check valve with damping holes 

and air cushion. 
Provoost (1983a) models a check valve used in the cooling water circuit of a 

power plant to adjust its external hydraulic damper. 
Rommel et al. (1984) develop a model for a tilting disc check valve, and couple 

it to a 1D computer code for thermal hydraulic analysis (without pipe elasticity effects). 
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Travis and Torrey (1985) model a plug type check valve with internal piston 
damper. The valve model is coupled to a computer code for two-phase transient flow. 

Ellis and Mualla (1986) model a swing check valve with counterweight and 
dashpot in a simple pipeline system. It is concluded that counterweights only slightly 
improve the valve response. Further it is shown that an increase of the dashpot 

contact angle reduces pressure surges. 
Henry et al. (1989) study three types of damped check valves during pipe rupture 

in a high pressure reactor coolant system of a nuclear power plant. 

Scale laws Collier and Hoerner (1981) describe scale laws for check valves in 
terms of steady flow, head loss and torque coefficients. 

Koetzier, Kruisbrink and Lavooij (1986) derive scale laws for unsteady flow 

conditions. Based on a parameter study and a dimensional analysis the dimensionless 
"dynamic" characteristic for undamped check valves is introduced. 

Thorley (1989) extends the number of parameters which are involved in valve 
closure and derives a more general form of the dimensionless dynamic characteristic 
for undamped check valves. 

Added mass effects Thorley and Oei (1981) perform oscillation tests on a 
swing type check valve to determine the added mass, which seems to be approximated 
by the liquid mass of a sphere having the same diameter and centre as the valve disc. 

Valibouse and Verry (1983) relate the added mass of a piston type check valve 
to the dimensions of the translating disc and valve chamber. 

Schneider (1985) concludes from differences between measured and calculated 
dynamic characteristics, that the added mass of a split disc check valve increases with 
increasing reverse flow velocity. 

Valve characteristics Provoost (1982) introduces the "dynamic" characteristic 
for undamped check valves. In this characteristic the maximum reverse now velocity 
is plotted against a characteristic flow deceleration. The dynamic characteristic is 

composed out of a series of dynamic tests at different flow decelerations. 
In the application of the dynamic characteristics for surge analyses, in first 

approximation the flow deceleration is obtained from rigid column theory, neglecting, 
pipe friction and pump inertia effects. The pressure surges and anchor forces are 
assumed to be proportional to the maximum reverse flow velocity and calculated from 

the Joukowsky equation. 
Collier and Hoerner (1982) present a dynamic characteristic in which the pressure 

surges due to valve closure are represented versus the flow deceleration. 
Kruisbrink (1988) proposes to standardize the procedures for the dynamic testing 

of undamped check valves and the procedures for the data processing into dynamic 

characteristics. A semi-empirical valve model, based on (dimensionless) dynamic 
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characteristics, is presented to simulate the closure of undamped check valves in 

waterhammer computer codes. 

Statistics Billington et al. (1985) describe a comprehensive statistical analysis 
of valve problems within BP. The analysis comprises nearly a quarter of a million 
valves and shows that 6% of the valves are check valves. Among the check valves 
6.3 % give rise to problems varying from erosion, material failure and jamming to 
leakage. 

Non-intrusive monitoring Jeanmougin (1986) explores to what extent a non- 
intrusive monitoring technique based on acoustic emission, can be used to determine 
the valve condition with respect to loosened internals. 

Charbonneau (1988) uses non-intrusive monitoring, which is based on ultrasonic 
techniques, to determine the operational status (stable or unstable) of valves with 
respect to flow induced vibrations. 

Haynes (1991) describes non-intrusive monitoring techniques, based on the 
magnetic flux (using magnets or wire coils), to determine the operational status of 
a check valve. 

Selection criteria Rop (1987) gives an overview of the general demands and 
selection criteria for check valves. 

Working groups A special group which should be mentioned is the Nuclear 
Industry Check valve group (NIC), representing all 48 utilities (about 100 plants) of 
the nuclear power industry in the USA. Within NIC working groups are involved with 
subjects like diagnostics of check valves, check valve performance data, development 

of instructions and standards for maintenance, all on a continuous basis. 

2.2 Review and conclusions 

Studies into the hydrodynamic behaviour of check valves begin in the fifties and 
are restricted to steady flow considerations. 

In the sixties studies into the closure behaviour of undamped check valves begin. 
Many researchers develop stand-alone valve response models based on the valve 
equation of motion. Within the hydrodynamic effects differences are found in the 
description and determination of the fluid forces on the disc, added mass and damping 

effects. The equations are solved numerically, whereby the fluid velocity-time history 
is prescribed as boundary condition. 
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A small number of researchers perform on-site measurements. A few small- 
diameter test facilities come available for the "dynamic" testing of check valves under 
laboratory conditions. 

In the eighties researchers start to couple the valve models to computer codes for 
transient flow in pipeline systems. Thus the interaction between check valve and 
pipeline system can be simulated, which enables to study the dynamic behaviour of 
damped check valves. A few fluid-structure analyses are performed for the sake of 
more detailed studies, e. g. into the thermal and stress behaviour of check valves 
under extreme conditions. 

The number and the size of test facilities for the dynamic testing of check valves 
are further enlarged. Several test facilities appear for the simulation of check valve 
behaviour under the event of pipe rupture. 

Scale laws for steady flow conditions are described (1981). The "dynamic" 

characteristic for undamped check valves is introduced (1982). The first scale laws 
for unsteady flow conditions appear, together with the dimensionless dynamic 

characteristic for undamped check valves (1986). 

Summarizing it can be stated that the majority of the researchers have studied the 
dynamic behaviour of check valves in pipeline systems by following a "deterministic" 

approach. For many different types valve response models have been developed, 

whereby the description of the hydrodynamic effects is subject to some speculation. 
The models are used in uncoupled or coupled mode with waterhammer computer 
codes. The research is restricted to case studies. No attempts are made to generalize, 
non-dimensionalize or standardize the application of these tools. From the mid- 
eighties on a few researchers work on the development of dynamic scale laws for 

undamped check valves. 

Note: The survey of literature has tended to be descriptive, rather than provided 
with critical comments. This is because the "direct" approach of most research 
discussed above differs from the "parameterized" approach, which is followed within 
the present study. In that respect a qualitative analysis of the applied methods is more 
useful than a detailed and comparative, quantitative analysis. The latter may even be 

regarded as inconsistent with the more global, non-deterministic approach. 
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3 Check valve types 

The development of check valves dates from the second century B. C. It is 
therefore somewhat remarkable that under the U. S. Patent Class 137, which covers 
fluid devices, approximately 100 improvement patents on check valves continue to 
be issued each year (Collier, 1980). 

A comprehensive survey of more than fifty types of check valves is presented by 
Obering et al. (1966). A selection of the most commonly used valve types is given 
in figure 3.1. The swing type, butterfly and tilting disc valve (with rotating elements), 
and the sinking ball valve typically close due to gravitational effects. The closure of 
the piston, plug and ring types (with translating elements), and the split disc valve 
is spring assisted. The membrane check valve closes due to the elastic effects of the 
flexible membrane. The response of check valves with translating elements is, 

generally speaking, faster. On the other hand these valve types have a relatively 
small, cross sectional flow area, which results in higher energy losses and makes 
them less suited to dirty fluids (e. g. sewage water). 

Check valves may be categorized according to their built-in configuration, 
principle of operation or valve disc configuration. Further some specials can be 

mentioned. 

Within the built-in configuration a distinction is made between: 

- flanged (figure 3.1. a, b, c, e, g, h and i) 

- threaded (figure 3.1. fl 

- wafer (figure 3.1. d) 

Within the principle of operation a distinction is made between: 

- undamped check valves (figure 3.1. a, d, e, g and i) 

- damped check valves (figure 3.1 . b, c, f and h) 
* hydraulic damper (external; fig 3.1. b) 
* dashpot (internal or external; fig 3.1. c) 
* piston damper (internal; figure 3.1. f) 
* membrane (internal; figure 3.1. h) 
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Chapter 3 Check valve types 

Within the valve disc configuration a distinction is made between: 

- rotating element(s) 
* swing type (figure 3.1. a) 
* butterfly (figure 3.1. b) 
* tilting disc (figure 3.1. c) 
* split or double disc, dual plate (figure 3.1. d) 

- translating element(s) 
* piston type (straight bonnets; figure 3. e) 
* plug type (Y-bonnetsl; figure 3.1. f) 
* ring type (figure 3.1. g) 

- miscellaneous 
* membrane type (figure 3.1. h) 
* (sinking) ball type (figure 3.1. i) 

The group of check valves comprising the piston, ring and membrane types is also 
denoted as nozzle type. 

Within the specials can be mentioned: 

- swing type with secondary subvalve (Yamada and Imao, 1987) 

- multi-door or multi-disc type 

- multi-ring type 

In general the internal geometry of check valves (i. e. that of the outer and inner 

valve body inclusive the moving elements) is characterized by at least one plane of 
symmetry. Check valves with translating elements may be axi-symmetrical, while 
check valves with rotating elements usually have one plane of symmetry. 

These features are used as geometrical condition in the next chapters, to describe 

the hydrodynamic forces on the moving valve elements. 

I O'Keefe (1976) 
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a) Swing type 

c) Tilting disc d) Split disc 

g) Ring type 

i) Sinking ball 

b) Butterfly 

e) Piston type 

h) Membrane 

Figure 3.1 Check valve types 
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4 Motion of a body in an 

unconfined, inviscid fluid 

In this chapter the motion of a body in an unconfined, inviscid fluid is studied. 
This chapter is not directly relevant to the confined flow problem of check valves. 
However, as stated in section 1.3, the theory about unconfined, inviscid fluids forms 
a strong basis for the study into confined fluid flows and thus may be considered as 
a pre-investigation. Analytical expressions for the fluid force terms and coefficients 
give a better insight into the basic properties of these quantities. 

General equations of motion are described, based on the dynamical theory of 
Kirchhoff. This potential flow theory, based on a (kinetic) energy concept, enables 
the treatment of, in particular, rotating bodies in an unsteady fluid flow, which cannot 
be achieved easily by the application of (linear and angular) momentum equations. 
On the analogy of check valves the motion is constrained to a motion in the plane 
of symmetry. In the first instance the motion of the fluid is entirely due to that of 
the body. Within this study the theory is extended to the motion of a body in an 
unsteady fluid flow. Equations of motion are derived for translating and rotating 
bodies. Some physical aspects of the fluid force terms and coefficients are discussed. 

4.1 General equations of motion 

Consider the motion of a body in an inviscid and unconfined fluid. The motion 
of the fluid is entirely due to that of the body, and is therefore irrotational and acyclic 
(theorem of Helmholz). 

The geometry of the body is described in a Cartesian coordinate system x' y'-z', 
which is fixed to the body and moves with it. This system is denoted as body frame. 
The motion of the body is described by a translation of the origin 0', with lineare 

velocity components v1, v2, v3 parallel to the instantaneous positions of the x'-, y'- 
and z'-axes, and a rotation, with angular velocity components wl, w2, w3 about the 
instantaneous positions of these axes (i. e. six degrees of freedom). The motion of the 
body frame is described relative to a reference frame, which is fixed in space. 

1 The term "linear" is introduced here in the sense of "translational". 
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Chapter 4 Motion of a body in an unconfined, inviscid fluid 

After Kirchhoff, the motion of the fluid is characterized by the existence of a 

single-valued velocity potential (Lamb, 1932): 

0 =V1O1 +V242+V343+W1X1 +4'j2X2+W31(3 (4.1) 

where 01,02,03, X19 X29 X3 are functions of x', y', z', determined only by the 

configuration of the surface of the body, relative to the coordinate axes. 
The kinetic energy of the fluid Tf may be described by: 

aTf= S[SPI 
Lf ýý 1 

2 

dV 
ay' az' 

(4.2) 

where V is the volume occupied by the fluid. 
With the introduction of the nabla vector operator: 

V=: a +j a +k a 
ax' ay' az' 

Equation (4.2) may be written as: 

(4.3) 

ZTf=JtJJpf VO. ÖO dV =( tpf 
[ V. (404) 

' (A V24A 
] 

dV (4.4) 

It is assumed that the fluid is incompressible, so that the continuity equation may 
be written in the form of the Laplace equation: 

Applying the Gauss theorem gives: 

v2O =0 (4.5) 

tJ j 

Substitution of the Equations (4.5) and (4.6) in Equation (4.4) yields: 

2Tf = -pf 
jJn. (404) dS (4.7) 
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4.1 General equations of motion 

so that the kinetic energy of the fluid may be written as: 

dS 2Tf = -Pf fJO 
an 

(4.8) 

The fluid volume V around the body may be chosen such that the fluid velocity at 
the outer boundary of the volume is at rest. In that case the integration extends over 
the surface of the body only. 

The kinematic condition at the surface of the body is given by: 

l(vl+w2zI -w3y')+m(v2+w3x' -w1ZI)+n(v3+wly1 -w2x/) (4.9) 
an 

where 1, m, n are the direction-cosines of the normal (pointed towards the fluid) at 
any point of this surface. 

Substitution of the Equations (4.1) and (4.9) into Equation (4.8) yields the form: 

= CI Vi +C2 V2 +C3 V3 ZTf +2C4 v2 V3+2C5 V3 V1 +2C6 V1 V2+ 

C4 w2+2Cý ww +2C ww +2C2 w w+ 
(4.10) 

7 w1 8 w2 93 10 23 11 31 12 12 

+2w1(C 3v1+C 4V2+C Sv3)+2w2(CI16VI +C7V2+C18v3)+2w3(C 9v1+C20v2+C21v3) 

The twenty-one terms in this equation represent all possible combinations of v1, v2, 
v3, wl, w2 and CO3. The coefficients are constants determined by the form and position 
of the surface, relative to the body frame. For example: 

c= -p1 
Ifol ai 

än 
l dS = pf J41i dS (4.11) 

The kinetic energy of the body Tb can be written in a similar form, although 
strictly speaking only fifteen terms are needed, so that Equation (4.10) also holds for 
the body and for the system of body and fluid. 
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Chapter 4 Motion of a body in an unconfined, inviscid fluid 

Kirchhoff derives equations of motion, based on the supposition that the increment 

of kinetic energy of the system is equal to the work done by the external forces and 
torques on the body. The work done by the force X' is for example: 

I X1 vl dt (4.12) 

After Kirchhoff, the equations of motion are: 

d aT 
= - w3 

aT 
-w 2 

aT 
+ Ex/ 

d avl 8v2 8v3 

d aT 
= w' 

aT 
- w3 

aT 
+Y (4.13) d av2 av3 av1 

d aT 
_w -2 

aT 
w -' 

aT 
+E Z/ 

d av3 ail 8v2 

and: 

d aT 
=V 

aT 
3 _V 2 

aT 
+ Co 3 

aT 
_w 

äT 
2 +E KI 

dt awl av2 v3 awe aw3 

d aT 
dt aw2 

aT 
= V1 -5 a -V3 - V3 

aT 
aVl 

+ (`)1 
aT 
aw3 

aT 
- w3 aw1 

i +L (4.14) 

d aT 
=v 

aT 
2 _V 1 

aT 
+w 2 

aT 
w 

aT 
' + Fm/ 

d aw3 avl av2 awl awe 

where T is the kinetic energy of the system of body and fluid. EX', E', EZ' are the 
external forces on the body in the x', y' and z'-directions, respectively, and EK', EL', 
EM' are the external torques about the x', y' and z'-directions, respectively. 

For a derivation of the Kirchhoff equations it is referred to Lamb (1932). 

4.2 Constrained motion in the plane of symmetry 

The general equations of motion described in the previous section, are valid for 

an arbitrary body in arbitrary motion. In this section some constraints are imposed 

on the geometry as well as on the motion of the body. 
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4.2 Constrained motion in the plane of symmetry 

On the analogy of the internal, moving elements of check valves, the body is 

assumed to have a plane of symmetry. Let this plane be the x'-y'-plane. Now the 
kinetic energy of the motion must remain unaltered if the sign of v3, cal and w2 is 

reversed. Consequently several terms vanish in Equation (4.10). The kinetic energy 
of the system of body and fluid is then described by: 

2T = C1v1 +C2v2 +C3V3 +2C6yly2+C7WI+C8c, )2 W3+ 

(4.15) 

+2C12w1co2+2C15c,, 1v3+2C18w2V3+2w3(C19v1+C20v2) 

The coefficients in this equation refer to the system of body and fluid. For a rigid 
body solely the coefficients C1, C2 and C3 are equal and represent the mass of the 
body; C7, C8 and C9 represent moments of inertia, while C6 and C12 are zero. 

The motion of the body is constrained to a motion in the plane of symmetry. The 

constrained motion is described by a translation parallel to this plane, with linear 

velocity components vl 0 0, v2 00 and v3 = 0, and a rotation about an axis normal 
to the plane, with angular velocity components wl = 0,02 =0 and w3 0 0. Thus 
the motion has three degrees of freedom. 

Now Equation (4.15) reduces to: 

2T = Clvi +C2v2 +2C6vlv2+C903+2cW3(C19v1+C20v2) 4.16) 

Note that this result also holds if the body has no plane of symmetry. 

With the above constraints the Equations (4.13) and (4.14) reduce to: 

d öT 
=w 

öT 
+E X/ 

dt avl -3 3v2 

d aT 
_ 

aT 
+E y/ (4.17) dr -ä7V2 -W3 -ä aVl 

d aT 
_E z/ 

dr av3 
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Chapter 4 Motion of a body in an unconfined, inviscid fluid 

and: 
d aT 

v 
aT 

+ 
aT 

+E K' 
Cat acol 2 aV3 3 aW2 

d aT 
_v 

aT 
dr a02 _1 av3 

d aT 
_v 

aT 
d aw3 2 avl 

W3 
aT 

+ ELF -3 -5 aW1 

-v 
aT 

+EMI l av2 

(4.18) 

Due to the motion in the plane of symmetry the fluid force in the z' direction and 
the fluid torques about the x'- and y'-axis are zero. Consequently the sum of the 
external forces Z', and the sum of the external torques K', L' must be zero. These 

so-called forces of constraint are not of interest and further ignored. 

Substitution of Equation (4.16) in the Equations (4.17) and (4.18) yields after 
some manipulation: 

c1 
dv, 

+c6dv2+C19dW3 - w3(C6v1+C2V2+C20W3) + ýX/ 
dt dt dt 

C6dVl+C2dV2+C20dW3 = -c3(C1v1+C6v2+C19w3) + EY/ 
dt dt dt 

(4.19) 

dv2 
+C9 

dt= 
v2 (Clvl +C6 V2+C19W3)+ C19 

dtdv1 
+C20 

dt dt 

Mi _v1(C6v1+C2v2+C20w3) +E 

About a second and third plane of symmetry ..... 
If the body has a second plane of symmetry, e. g. the y'-z'-plane, then the terms vt v2 and v2 w3 vanish 
in Equation (4.15). This can easily be seen, since the kinetic energy of the motion must remain 

unaltered if the signs of vt, w2 and c03 are reversed. Consequently C6 and C20 must be zero. 
If the body has a third plane of symmetry, e. g. the x'-z'-plane, then also the term vt w3 vanishes 

in Equation (4.15). Now the kinetic energy of the motion must remain unaltered if the signs of v2, 

wt and w3 are reversed. In that case C6, C19 and C20 must be zero. 

As a next step the linear motion of the body in the plane of symmetry is further 

constrained to a translation along a straight line. This constraint enables the step to 
fluid flows (section 4.4) and enables to describe the motion of translating bodies 
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4.2 Constrained motion in the plane of symmetry 

(section 4.6). 
To describe the constrained motion a second coordinate system x-y-z is introduced, 

which is fixed in space. The x -y-plane of this reference frame is chosen parallel to 
the x'-y'-plane, so that the z- and z'-axis are also parallel (figure 4.1). 

centre of rotation c entre of rotation 
Y, 

e 

ao 

0 

Figure 4.1 Constrained motion in the plane of symmetry 

Consider the case that a certain point of the body translates parallel to the x-axis 
with a linear velocity x. Meanwhile the body rotates about this point with an angular 
velocity 9. This system point is further denoted as the centre of rotation with fixed 

coordinates (x', y', 0) = (e cosS, e sins, 0). The motion of the origin 0', relative 
to the reference frame, is now described by: 

vl =x cos0 + e9 sin6 

v2 = -z sin 0-e9 cos 6 (4.20) 

Cu3 =6 

so that: 

e x. 

ao 
r o0 

x 

dv1 
_! 

z 
cosh - z9 sin6 + esinS 

de 
dt dt dt 

dv2 
-- 

dz 
sinO - z9 cosO - ecosS 

de (4.21) 
dt dt dt 

dw3 d9 
dt dt 
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Chapter 4 Motion of a body in an unconfined, inviscid fluid 

Substitution of the Equations (4.20) and (4.21) in Equation (4.19) yields: 

EX' = (ClcosO-C6sinO) d 
+((C2-Cl)sin6-2C6cosO) O+ 

e 
+(C1esinb-C6ecosö+C19) 

d+(C2ecosb-C6esinb-C20)O2 

Yl = (C6cosO-C2sinO) 7 +((Cl-C2)cosO-2C6sinO) ö+ 

+(C6esinb -C2ecosb + C20) O 
+(Clesinb-C6ecosb+C19)62 (4.22) 

a EM(C19cosO-C20sinO) d 
+(C9+C19esin6-C20ecosb) + 

d 

+((Cl-C2)(cosöcosO+sinbsinO)+2C6(sinbcosO-cosösinO))ez9+ 

+((C1-C2)sinocos9 +C6(cos26 -sin26)) 2+ 

+((Ci -C2)ecosSsinö+C6e(sin2S -cos2S2) +C19cosS+C20sinb) e62 

The equations may be written in a general form as: 

A+Bi +cde+D92=EXI it -it 

A/dt+ B' z9+ Cl dO 
+Dl 62 = Y/ (4.23) 

dt dt 

Air' + B" ez9 + CII de 
+ D" egg + E11 2= EMI 

dt dt 

The coefficients A, B, .., A', .... are dependent on the configuration of the surface 
of the body, the angular position 0 of the body and the position of the center of 
rotation, relative to the origin 0'. 

Note that some terms vanish in the torque equation, if the origin 0' is moved to 
the center of rotation (e -,, 0). In that case the forces and torques about the center of 
rotation are considered. Nevertheless, the present result is of interest, since due to 
the eccentricity e an analogy with viscous fluids arises. More about this analogy in 

section 4.4. 
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4.3 Separation of body and fluid 

If the body has three planes of symmetry (C6 = 0, C19 = 0, C20 = 0), then the general form 

of Equation (4.23) changes. With A" =0 the torque equation becomes: 

B"el + Ca- + Duhe262 + E""2 = EMS (4.24) 

In section 4.5.2 the equivalent equation is developed for a rotating body in a fluid flow. 

4.3 Separation of body and fluid 

Thus far the body and fluid are considered as one system, which moves due to 
external forces on the body. In terms of (kinetic) energy and work, the body and fluid 

may also be considered separately. 

In section 4.1 it is illustrated that the kinetic energy of the body Tb and the kinetic 

energy of the fluid Tf can be described in similar terms, although strictly speaking 
fewer terms are needed for the kinetic energy of the body. Thus, the kinetic energy 
of the system T, as given in Equation (4.16), may be divided into similar equations 
for the body and fluid. The (external) forces on the system EX', El ...... 

in the 
Equations (4.17) and (4.18) may be divided into (internal and external) forces on the 
body and (internal) forces on the fluid. Consequently, the equations of motion for 
body and fluid may be treated separately and in the same manner. 

4.3.1 Equations of motion for the body 

The equations of motion for the body can be obtained by separation of the body 

and fluid terms in the general equations of motion as described above. 
However, they can also be derived in a direct way. Equation (4.23) describes the 

motion of a body in a stagnant fluid, due to external forces on the body. It may also 
be applied to the body solely, if the fluid forces on the body are considered as 
additional external forces. Let the fluid forces and torques on the body be described 
by Xf, Yf, M;. Thus follows: 
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Chapter 4 Motion of a body in an unconfined, inviscid fluid 

Ab di 
+ Bb x9+ Cb d9 

+ Db B2 = Xi +EXt dt dt 

Abdt! + Bb 16+ Cb 
dt 
d9 

+ Db 62 = Yf + Yt 

Ab + Bb ex6 + Ce 
dt 
dB 

+ Db e02 + Eä z2 = Mf + EMI 
dt 

(4.25) 

The body coefficients Ab, Bb, .., Ab', .... are dependent on the geometry and angular 
position of the body. For a rigid body the coefficient Eb" is zero. This can be easily 
seen from Equation (4.22), since for the body solely Cl = C2, while C6 = 0. 

The equations illustrate which terms are relevant to the motion of a body in a 
stagnant fluid, which moves in its plane of symmetry due to external forces and 
torques. The equations also hold if there is no fluid. For e-0 the forces and torques 
about the center of rotation are obtained. 

4.3.2 Equations of motion for the fluid 

The equations of motion for the fluid are obtained by separation of the body and 
fluid terms in the general equations of motion as described above. 

The motion of the fluid is entirely due to that of the body, so that no external 
forces and torques act on the fluid. The only forces on the fluid are exerted by the 
body via normal surface stresses. These forces are equal in magnitude, but opposite 
of sign to the fluid forces Xf', Yf , Mf' on the body, exerted via normal fluid stresses 
(i. e. pressure). Separation of the terms in Equation (4.23) gives: 

Af +B1O+Cde +D b2 
dt dt 

Afdt + Bfýz9 +C fýdt de +D/ f92 =f Y/ (4.26) 

Aii dz 
+ Býý ez9 + Cri d9 

+ Dii *2 + Eii t2 =M f dt ff dr feff 

The fluid coefficients Af, Bf, .., Af, .... are dependent on the configuration of the 
surface of the body, the angular position 0 of the body and the position of the centre 
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4.4 Motion of a body in a fluid flow 

of rotation relative to the origin 0'. 
The equations illustrate which terms are relevant to the forces and torques on the 

body, due to an inviscid fluid. 

The complete equations of motion for a body in a stagnant, inviscid fluid can be 

obtained by the summation of Equation (4.25) and Equation (4.26). As a result the 
coefficients A, B, ... in Equation (4.23) are divided into body coefficients and fluid 

coefficients, such that A= (Ab + Af), B= (Bb + Bf), .... Thus, it is demonstrated 
in a qualitative sense that the whole effect of the fluid may be represented by an 
addition to the "inertia" of the body, if the term inertia is used in a somewhat 
extended sense. 

4.4 Motion of a body in a fluid flow 

The theory of Kirchhoff (section 4.1) is developed for the motion of a body in 

a stagnant fluid. The question arises in how far the theory may be applied to the 
motion of a body in a fluid flow. 

The equations of motion are derived under the condition that the motion of the 
fluid is entirely due to that of the body. This implies that: 1) the motion of the fluid 
is irrotational, 2) the change of kinetic energy of the fluid is effected by the motion 
of the body only, so that 3) no external forces work on the fluid. 

The fluid flow is restricted to the uniform parallel flow of an ideal, frictionless 
fluid, so that: 1) the motion of the fluid remains irrotational. The flow direction is 

assumed to be parallel to the plane of symmetry, with velocity components Vl ;d0, 
V2 ;, -, 0 and V3 = 0, parallel to the instantaneous positions of the x'-, y'- and z'-axes, 
and relative to the fixed reference frame. 

Thus far the motion of the body is described relative to a reference frame, which 
is fixed in space. It may also be considered as a frame which "moves" with the 
stagnant fluid at zero velocity. The latter principle is hold in the following. 

To describe the motion of the body in a fluid flow, a reference frame is used 
which moves with the fluid. This reference frame is a so-called inertial frame or 
inertial system, as long as it moves at a uniform velocity. To such systems the 
classical mechanics (Newton's laws) may be applied. In other cases it is a non-inertial 
system, to which the classical mechanics may only be applied, if the Newtonian forces 

are replaced by so-called pseudo forces (e. g. Halliday and Resnick, 1966). 
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Chapter 4 Motion of a body in an unconfined, inviscid fluid 

About non-inertial systems and pseudo-forces ..... 
Consider the linear motion of a body with velocity v1, parallel to the flow direction with velocity Vl. 

The kinetic energy of the system, relative to a moving reference frame, is: 

2T' = Cl(vl-V1)2 

So that: 

(4.27) 

d' 
= Cl (vl - V1) 

d v1- Vl (4.28) 

The kinetic energy is described in terms of relative velocities. Note that the coefficient C1, as 

introduced in section 4.1, remains unchanged, since it is only determined by the form and position 

of the body surface relative to the body frame. 

The increment of kinetic energy of the system due to the work done by the pseudo-force x is: 

dT' =x (vl - Vi) di (4.29) 

From the Equations (4.28) and (4.29) follows: 

dvl - Vi 
X=c, (4.30) 

This example illustrates the following: a) The kinetic energy T', relative to the moving reference frame, 

is only equal to the kinetic energy T, relative to a fixed reference frame, if Vl = 0. The kinetic energy 

is a relative concept; b) The change of kinetic energy dT"/dt is only equal to dT/dt, if both Vt =0 

and dV1Idt = 0; c). The pseudo-force X is only the equal to the "real" force X if dV1Idt = 0. In that 

case the reference frame is an inertial frame. 

Inertial frames with "real" forces, and non-inertial frames with "pseudo" forces are equivalent. 

The choice of one or the other is a matter of convenience. 

The motion of the body, relative to the moving reference frame, is now described 
by the linear velocity components (vl - V1) and (v2 - V2) and the angular velocity 
component 03, which remains unchanged. 

The fluid velocity and kinetic energy far from the body are zero now, so that: 
2) the change of (relative) kinetic energy of the fluid is effected by the (relative) 

motion of the body only. 

34 



4.4 Motion of a body in a fluid flow 

In the equations in section 4.2 the velocity components vl and v2 may now be 

replaced by relative velocities (v1 - V1) and (v2 - V2), while w3 remains unchanged. 
The kinetic energy is replaced by a relative value T', while the forces and torques 
are replaced by the pseudo-forces and -torques EX', EAG', EM'. 

Let the uniform parallel flow be described by a fluid velocity v parallel to the x- 
axis of the fixed coordinate system x -y-z. The velocity components, parallel to the 
x'-, y'- and z'-axes are then given by Vl =v cos 0 and V2 = -v sin 0. The motion 
of the origin 0', relative to the moving reference frame is now described by: 

vl - Vl = (z 
-v)cosO + e9sinb 

v2-V2 = -(z-v)sinO - eOcosö (4.31) 

W3 =6 

In Equation (4.20) the linear velocity of the body z is now replaced by a relative 
velocity (z - v). The coefficients Af, Bf, ... , A1,... remain unaltered, since they are 
only determined by the geometry and angular position of the body, relative to the 
body frame. 

Just like Kirchhoff assumed that no external forces act on the fluid, it is here 

assumed that: 3) no external pseudo-forces act on the fluid. However, the latter does 

not necessarily mean that the "real" external forces on the fluid are zero. 
In the case of an unsteady flow "real" external forces bring the fluid in unsteady 

motion. In the case of an inviscid, incompressible, uniform parallel flow, the external 
forces on the fluid are proportional to the fluid velocity gradient dvldt only (as will 
be treated in section 4.6.4). This may described by: 

Xi =F 
dv Yt Fi dv 

" Mi F1 dv (4.32) Ff it f dt f dt 

The fact that the magnitude of the pseudo-forces is unknown is fully accepted 
here, since we are only interested in the terms, which are relevant to the fluid forces 

and torques. 

After replacing the term I in Equation (4.26) by the term (z - v), and returning 
to "real" forces by adding the real force terms described in Equation (4.32), the 
equations of motion for the fluid become: 
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Chapter 4 Motion of a body in an unconfined, inviscid fluid 

t 
Af + Bfýx _výe + Cf d6 

+ Dfb2 =F f 
dv 

- Xf 
dt ddt 

Al d(X-v) 
+ B/(X-v)6 + CI d6 

+ Dl e2 = F/ dv 
_ yý Ai 

dt ff dt ff dt f 

Aii d(z-v) 
+ Bn e(X-v) + Cii d9 

+ DJ« e62 + f dt ff dt f 

+Eiix-v2-F, ndv Mi f)- Ffdt -f 

(4.33) 

The equations show which fluid terms are relevant to the motion of a body in a 
uniform parallel flow. For e -- 0 the forces and torques about the center of rotation 
are obtained. 

About hydrodynamic center ..... 
For a steady motion follows (dz/dt = 0; dO/dt = 0; dvldt = 0): 

Xf = Blv-z)8 - D, OZ 

Yf = Bý v-z)8 - Dfo2 (4.34) 

Ml = Bfe(v-z)6 - Dfe62 - E1(v-z? 

The terms (v -1) 
B and 92 appear in the force as well as in the torque equations. However, the terms 

in the torque equation vanish if the origin 0' is moved to the center of rotation (e -º 0). Apparently 

the fluid forces which arise due to the motion of body and fluid act along a line through the center 

of rotation. This holds for any 0, so that the center of rotation may be considered as the hydrodynamic 

center (figure 4.2). As a result the terms in the force and torque equations become uncoupled. 
On the other hand, the term (v -x)2 appears in the torque equation but not in the force equations. 

Apparently this term gives no resulting force but only a fluid couple. 

About an analogy between eccentricity and fluid viscosity ..... 
The above case is of interest, since due to the eccentricity e, additional terms appear in the torque 

equation. Common practice learns that these terms are also found in the torque equation for viscous 
fluids, which is illustrated by means of two examples. 
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4.4 Motion of a body in a fluid flow 

Example 1: Although the fluid torque on a steady rotating body in an inviscid, stagnant fluid is 

zero, the torque is proportional to 9Z in a viscous, stagnant fluid. 

Example 2: The term (v - . z) B in the force equations does not arise from circulation, but from 

the kinematic boundary (surface) conditions. In an irrotational, inviscid and incompressible fluid no 

circulation can be generated (theorem of Kelvin). Nevertheless, in the case of a viscous flow indeed 

circulation is generated in the boundary layer. Here a fluid force arises normal to the flow direction, 

which is proportional to the linear velocity of the body and the circulation around the body (theorem 

of Kutta-Joukowsky), e. g. the top spin of a tennis ball. In general the effects of this lift force, which 

contributes to the above force term, are also found in the fluid torque. 
Apparently the effect of an eccentricity is analogous to that of fluid viscosity. The analogy must 

be found in the fact that viscous flows are generally characterized by boundary layers and separation 

points, which move the hydrodynamic center from the center of rotation (figure 4.2). 

On the other hand: Although the fluid force on a steady, translating body in an inviscid fluid is 

zero, the force is proportional to (v _. t)2 in a viscous fluid. 

i 
ý' Gý ýý 

.I 

Figure 4.2 Analogy between an eccentricity and viscosity 

The equations of motion for a body in a fluid flow are the same as those for a 
body in a stagnant fluid (section 4.3.1), since all effects of the fluid flow are 
accounted for in the fluid forces and torques on the body. 

The complete equations of motion for a body in an inviscid, fluid flow can be 

obtained by the summation of the Equations (4.25) and (4.33). 
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Chapter 4 Motion of a body in an unconfined, inviscid fluid 

4.5 Translating and rotating bodies 

The equations of motion, as developed for a body in a fluid flow (section 4.4), 

are applied to translating or rotating bodies, moving in an inviscid, uniform, parallel 
flow. The bodies are assumed to have at least one plane of symmetry, in the sense 
as described in section 4.2. The equations of motion in the constrained directions are 
not of interest and further ignored. 

4.5.1 Linear motion 

Consider a body that translates in the x-direction, so that it 00 and 6=0, the 
fluid velocity v is parallel to the x-direction, while the x'-axis is chosen to be parallel 
to the x-axis. 

The equation of motion for the body directly follows from Equation (4.25): 

(4.35) mbdt - Xf+EX 

where mb = pb Vb is the mass of the body. 
The equation of motion for the fluid directly follows from Equation (4.33)2: 

X_m d(v -z) + Vb fI dt Pf b dt 

where: 
mf= CAP1Vb 

(4.36) 

(4.37) 

The equation consists of an added mass term, where nf is the added mass of the 
body, and a pressure term due to the pressure gradient over the accelerating fluid 
(section 4.6). CA is the added mass coefficient. Note that the flow direction (v >0 
or v< 0) is not relevant here. 

Substitution of Equation (4.36) in Equation (4.35) yields the complete equation 
of motion for translating bodies in an inviscid fluid flow: 

2 For the conversion of Af, Bf, ... into physical quantities it is referred to section 4.6. 
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4.5 Translating and rotating bodies 

(mb+mf) _ (CA+1) pfVb 
di 

+ EX (4.38) 

The term (mb + mf) is known as the virtual mass of the body. 

More about the physical meaning of the fluid terms and coefficients in the sections 
4.6 and 4.7. 

4.5.2 Angular motion 

Consider a body that rotates about the z-axis, so that I=0 and 600, the fluid 

velocity v is parallel to the x-direction, while the z'-axis is chosen to be parallel to 

the z-axis. 
The equation of motion for the body directly follows from Equation (4.25) 

(e -> 0): 

Ib d8 
=Mf+ EM (4.39) 

where Ib = Pb Vb k2 is the mass moment of inertia of the body (section 4.6.3). 
The equation of motion for the fluid directly follows from Equation (4.33)2 

(e -º 0): 

Mf = CD 1 pfv2D3 + (CAI +Kp) p1Vb 
dt D- If e 

(4.40) 

where: 
If = CA2 p1Vbk2 (4.41) 

The equation consists of a drag term, two added mass terms, where If is the added 
mass moment of inertia of the body, and a pressure term (section 4.6). The nature 
of the drag term is that of a form drag. Therefore CD is introduced here (in an 
unusual way) as torque coefficient, while D is a characteristic dimension of the body. 
The coefficients CA.. are added mass coefficients, due to the linear motion of the fluid 
(subscript 1) and angular motion of the body (subscript 2), while Kp is a pressure 
coefficient. 
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Chapter 4 Motion of a body in an unconfined, inviscid fluid 

The "viscous" equivalent follows from Equation (4.33): 

Mf=(AI+Ff)± +Bfev9 -C1 -Dre62 -Efv2 (4.42) 

If the body has three planes of symmetry then A; = 0, D1" may be replaced by Df e (section 4.2), 

and Ft" may be replaced by F; e since the center of gravity lies in the origin 0'. Thus follows: 

Mf=Bfev0 -Cý -Dfe262 -E; 
v2 +Fje- (4.43) 

This equation is of interest, since it shows some analogy with the global form of the fluid torque on 

rotating bodies (section 7.3.4). 

Substitution of Equation (4.40) in Equation (4.39) yields the complete equation 
of motion for rotating bodies in an inviscid fluid flow: 

(lb+lf) d8 CD 2pfv2D3 + (CA+KpJPfvb_D + ýM (4.44) 

The term (Ib + If) is introduced as the virtual mass moment of inertia of the body. 

More about the physical meaning of the fluid terms and coefficients in the sections 
4.6 and 4.7. 

4.6 Physical aspects 

In this section the physical meaning of the terms and coefficients in the fluid 

equations of motion (section 4.4) is studied in more detail. Special attention is paid 
to translating and rotating bodies (section 4.5). 

4.6.1 General 

In the fluid equations of motion, given in Equation (4.33), three classes of force 
teens can be recognized: 
1) Terms that arise from the (relative) motion of the body. These terms are described 

by (x - v) and 6, and may be seen as drag terms, if the term "drag" is used in 

a somewhat extended sense (usually drag forces are defined in the direction of 
motion only). For inviscid fluids these forces are exerted via normal surface 
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4.6 Physical aspects 

stresses (pressure) only. In that sense they may be considered as form drags. 
2) Terms that arise from the (relative) change of motion of the body. These terms 

are described by d(z - v)ldt and dOldt, and may be considered as an addition to 
the inertia of the body. In that sense they are so-called added mass terms. 

3) Terms that arise from the external forces on the fluid. These terms are described 
by dv/dt, and are proportional to the pressure gradient over the fluid. In that sense 
they are denoted as pressure terms. 

For inviscid fluids two basic principles are available to quantify the fluid force terms 
and coefficients: 
1) The fluid coefficients Cl', C2', ... can directly be obtained from the velocity 

potential. In that case integrals in the form of Equation (4.11) must be solved. 
The conversion into the coefficients Af, Bf, .., Af, .... is then easily made. 

2) The fluid coefficients can indirectly be obtained from the superposition principle. 
The coefficients Af, Bf, .., A1"', .... are only dependent on the fluid density 
(section 4.1) and the geometry and angular position of the body (section 4.3.2). 
Therefore the terms in the fluid equations of motion may be considered separately 
and superimposed. The fluid terms may be isolated by imposing constraints to 
the motion of the body. The isolated fluid terms can then be obtained from a) the 
pressure distribution around the body, or b) the change of kinetic energy of the 
fluid (dynamical theory of Kirchhoff). 

The principles are essentially the same. Nevertheless, the combination of these 
principles may lead to a simplified velocity potential, which adopts a more tractable 
form. 

In the next sections the superposition principle is applied to isolate the drag and 
added mass terms. 

4.6.2 Drag terms 

The drag terms are isolated by considering the steady motion of a body in a 
steady, uniform parallel flow. Now Equation (4.33) reduces to (e -. 0): 

xf = Bf(v-z)9 - Df92 

Yf = Bf (v-z)9 
- Dj 92 (4.45) 

Mf = -Ef (v-x)2 
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Chapter 4 Motion of a body in an unconfined, inviscid fluid 

For the translating and rotating bodies considered in section 4.5 these equations 
reduce to: 

linear motion: 
Xf=0 (4.46) 

angular motion: 
Mf = _Efl v2 (4.47) 

The fluid force on a steady translating body in an inviscid, stagnant or steady, uniform parallel 
flow is zero (although the fluid torque differs from zero). Apparently, the sum of the normal stresses 
(pressure) over the surface of the body is zero. This phenomenon is discovered by Euler in 1745 and 

rediscovered by D'Alembert in 1752, and known as the paradox of Euler-D'Alembert. The paradox 

must be found in the fact that the statement conflicts with our daily experience (see viscous fluids). 

The fluid torque on a steady rotating body in an inviscid, stagnant flow is zero (although the fluid 

force differs from zero). The fluid torque on a stationary body in a steady flow differs from zero 
(although the fluid force is zero). Apparently, a reverse-symmetry in the pressure distribution may 

give rise to a fluid couple. 

After dimensional reasoning the above equation may be written as: 

angular motion: 
Mf = CD 2 pfv2 D3 (4.48) 

In this equation CD is introduced as a drag coefficient for angular motion. Usually 

the drag coefficient CD is only used as force coefficient in flow direction. The fluid 

couple is assumed to be proportional to the dynamic pressure 112pf V2 and the volume 
of the body, represented by D3, where D is a characteristic length. The nature of the 
fluid couple is that of a form "drag" (see definition in section 4.6.1), which arises 
from the normal stress (pressure) distribution only, since in an inviscid fluid shear 
stresses do not exist. 

4.6.3 Added mass terms 

The added mass terms cannot be isolated from the other fluid terms, which is 
illustrated by Equation (4.33). However, some of the fluid terms vanish if the motion 
of a body in a stagnant fluid is considered. Then Equation (4.33) reduces to (e -, - 0): 
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4.6 Physical aspects 

Af dt + Bfxe +C+ Df82 ° -xf dt 

fi 
d) 

+DfJ 92 =f Y/ (4.49) Af ý 
dt +Bz9+C dt 

ni dt d6 AjM f dt+ f Ciidt +ff 

For the translating or rotating bodies considered in section 4.5 this leads to: 

linear motion: 

X=A=m dt (4.50) ff dt f dt 

angular motion: 

M= G1 T, 
d6 

=-I 
de (4.51) ff If Ti 

The physical meaning of the coefficients Af and Cf" is that of an added mass and 
added mass moment of inertia of the body, respectively. In this form the added mass 
appears as a lumped, virtual amount of fluid, which moves with the body at the same 
acceleration. 

The force needed to accelerate a body in a stagnant fluid is larger than the force 

needed to accelerate it in vacuum. The extra force, needed to accelerate the fluid 

around the body, is known as the added mass force (Campbell, 1982). 
According to this definition the added mass force is an external force, which is 

equal in magnitude but opposite of sign to the fluid force, which arises due to the 

unsteady motion of the body. 

The added mass force may be obtained from the dynamical theory of Kirchhoff 
(section 4.1) under the condition that the increment of kinetic energy of the fluid is 

equal to the work done by the added mass force or torque. This can only be achieved 
if no other forces or torques contribute to the work. The forces of constraint do not 
contribute to the (virtual) work. 

According to the Equations (4.50) and (4.51) these condtions are satisfied for a 
translating or rotating body in a stagnant flow. The added mass force may now be 

calculated from Equation (4.12) as: 
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Chapter 4 Motion of a body in an unconfined, inviscid fluid 

linear motion: 
XAZ =dfI, J 

2pfv2 dV (4.52) 
I 

In a similar way the added mass torque may be calculated from: 

angular motion: 

MA 6= d 

JjJ pfv2 dV (4.53) 
I 

Thus follows: 

_J%1J v av dv XA Pf x at (4.54) 
I 

JjJ v av MA - pf 8 at 
dV (4.55) 

I 

Note that in the above equations v is not anymore the fluid velocity of the undisturbed 
flow far from the body, but a local fluid velocity. The added mass force or torque 

can be calculated if the velocity distribution in the entire flow field is known. 

The added mass is usually related to the volume of the body by the so-called 
added mass coefficient CA (e. g. Steetzel, 1984). The mass and the added mass of the 
body are now described as: 

linear motion: 

V= pb Vb (4.56) mb = 
Jb d 

Mf= CA Ipf dV = CA pf Vb (4.57) 

The equivalent equations for the mass moment of inertia and the added mass moment 
of inertia are here introduced as: 
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angular motion: 

Ib = I. Pb r2 dV 
yo 

PbVb k2 (4.58) 

If = CA2 Jb dV = CA2 P1 Vb k2 (4.59) 

Where k is known as the radius of gyration (e. g. Alonso and Finn, 1976). In these 
equations the density of the body and fluid is assumed to be constant in space. 

About the added mass of a sphere ... 
The added mass of a sphere in an inviscid, uniform parallel flow is: mf = 1h pf Vb, where Vb is the 

volume of the sphere (Merk, 1982), so that the added mass coefficient CA = ýh. 

The added mass term Af" d(z - v)ldt in Equation (4.33) accounts for the fluid 
torque due to the linear, (relative) unsteady motion of the body (without the effect 
of the pressure gradient). The term cannot be isolated from the other terms. However, 
for a translating body in a stagnant fluid the term appears with the drag term only. 
The effect is found in the pressure distribution, and assumed to be proportional to 
the volume of the body. After dimensional reasoning this may be written as: 

angular motion: 

MAI =C Al pf Vb d! D 

4.6.4 Pressure terms 

(4.60) 

The pressure terms appear at the right hand side of Equation (4.33) as external 
forces on the fluid. As such they are treated differently from the drag and added mass 
terms. 

An unsteady fluid flow is driven by external forces, which is revealed by the 
existence of a pressure gradient over the fluid. For an inviscid fluid with velocity v 
parallel to the x-axis, the pressure gradient is described by the Euler equation (without 
distributed forces per unit volume): 

1ap_av+vav 
Pf ax at ax (4.61) 
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Chapter 4 Motion of a body in an unconfined, inviscid fluid 

For an incompressible, uniform parallel flow the convective term vanishes. The force 
due to the pressure gradient, in the absence of the body, is now given by: 

LP Xp=fJJ-dxdydz 
b 

_ pf i dV = P1 vb dl 
(4.62) 

lbj 

The force works along a line through the center of gravity of the body. Therefore, 
the torque due to the pressure gradient may be written as: 

Mp = p1Vb _d ecgsin(0+Scg) = Kp PfVb dt 
D (4.63) 

The position of the center of gravity is, analogous to the origin 0' in figure 4.1, 
described by an eccentricity egg of the center of gravity from the center of rotation 
and an angle 6C911 relative to the body frame. Thus Kp is introduced as a pressure 
coefficient, which is determined by the geometry and position of the body only. 

The above equations hold for any body, no matter what the motion is. 

4.7 Fluid force and torque coefficients 

The coefficients Cl', C2', ... in the kinetic energy equation of the fluid are 
constants, determined by the form and position of the body surface (representing its 

geometry), relative to the body frame and the density of the incompressible fluid only 
(section 4.1): 

Ci , C2 , ... =f (Pf, xý, Y/, z/) (4.64) 

The coordinates are further omitted. 
The coefficients A1, Bf, .... , Af, Bf, .... in the fluid equations of motion are 

derived from the above coefficients (section 4.3). For a body which moves in its 

plane of symmetry (section 4.2) is for example: 

Af= Ci cos O- CC sing 
(4.65) 

Af = C6 cosO - C2 sinO 
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The coefficients are thus described in an analytical form, and dependent on the 
angular position of the body: 

Af, Bf, ... , Af , ... =f (Pf, 0) (4.66) 

Note that the forces and force coefficients are defined relative to the body frame (section 4.1). 

The transformation from the body frame to the fixed reference frame gives e. g. for the x- and y- 

components of the force term dz/dt (figure 4.1): 

At = AjcosO - Arsin9 
(4.67) 

Ai = Af sin0 +A; ' cos 0 

The drag and added mass coefficients, introduced in the drag and added mass 
terms of the fluid equations of motion (section 4.6), are proportional to the above 
coefficients. However, in the coefficients the dimensions of the body and the density 

of the fluid are excluded now. Thus, the dimensionless fluid force and torque 
coefficients are determined by the geometry and angular position of the body only: 

CD, A =f (O) (4.68) 

The pressure coefficient, introduced in the pressure term of the fluid equations 
of motion (section 4.6) is also only dependent on the angular position of the body: 

Kp =f (9) (4.69) 

4.8 Review and conclusions 

Equations of motion are developed for a body in an inviscid, unconfined and 
stagnant fluid. The equations are based on the dynamical theory of Kirchhoff and 
applied to the constrained motion of a body in its plane of symmetry. The equations 
of motion for the body and fluid are treated separately. The theory of Kirchhoff is 

extended to the motion of a body in an unsteady fluid flow. For this purpose the 
relative motion of body and fluid in a non-inertial system is considered. In the fluid 

equations of motion additional external forces arise, after the conversion from pseudo- 
forces to real forces, due to the pressure gradient over the fluid. 

The equations of motion are applied to translating and rotating bodies. The terms 
in the fluid equations are subdivided into drag, added mass and pressure terms, which 
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Chapter 4 Motion of a body in an unconfined, inviscid fluid 

are used in a somewhat extended sense. For these terms fluid force and torque 
coefficients are introduced, which are only dependent on the angular position of the 
body. 

The equations of motion for inviscid fluids and the properties of the fluid force 

and torque coefficients form the basis for the development of equivalent equations 
for viscous fluids. To some extent the effects of an eccentricity (of the origin of the 
body frame relative to the center of rotation) are analogous to that of fluid viscosity. 
This analogy is used in the next chapter to make the step from inviscid to viscous 
fluids. 
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5 Motion of a body in an 

unconfined, viscous fluid 

Following the theory for inviscid fluids, the motion of a body in an unconfined, 
viscous fluid is now studied. Although this chapter is not directly relevant to the 
confined flow problem of check valves, it may be considered as a pre-investigation 
for further developments (see section 1.3). 

As in the previous chapter the body is assumed to have at least one plane of 
symmetry, while the motion is constrained to this plane. 

The analogy between an eccentricity and fluid viscosity is used to make the step 
from inviscid to viscous fluids. General fluid equations of motion are developed from 

the equivalent equations for inviscid fluids with eccentricity. The equations are 
applied to translating and rotating bodies. 

For unconfined (viscous) fluids most experimental data are available in the form 

of empirical relations for both the steady and the unsteady fluid force terms. These 

relations give a further insight into the properties of the fluid force coefficients, which 
to some extent may be applied to confined fluids. 

5.1 General fluid equations of motion 

In the previous chapter it is demonstrated that the hydrodynamic centre of a steady 
moving body in an inviscid fluid, coincides with the centre of rotation (section 4.4). 
Thus, the steady fluid forces and torque about this centre are uncoupled. Due to 

viscous effects the hydrodynamic centre moves from the centre of rotation. 
Consequently, in general the fluid forces and torque become fully coupled now, i. e. 
all fluid terms appear in the force as well as in the torque equations. 

The effect of the move of the hydrodynamic centre is analogous to that of an 
eccentricity (section 4.4). This analogy is used here to make the step from inviscid 
to viscous fluids. The torque equation with eccentricity, given in Equation (4.33), 

now serves to supply all terms that are relevant to viscous fluids. This coupling of 
terms leads to: 

49 



Chapter 5 Motion of a body in an unconfined, viscous fluid 

Afdýz 
dt 
-vý + Bf(X_v)e + Cf 

dt 
A+ 

Df62 + Ef(X_v)2 _ Ffdv _ Xý 
dt 

Aid( -v) +B -vý6 + Cid9 +Diet +EI(X_vý2 = Fidv y/ Ai 
dt f1 -f -it 1f-f -it 

Aýý d(z-v) 
+ Býý e(z-v)6 + Cii d6 

+ DH e92 + Eii (X-vý2 = Fig dv 
_M fff f dt ff dt f dt 

(5.1) 

The equations of motion for the body are similar to those for inviscid fluids 
(section 4.3.1), since all the effects of the fluid are accounted for in the fluid forces 

and torques on the body. 

5.2 Translating and rotating bodies 

The equations of motion for a body in a viscous fluid flow (section 5.1) are 

applied to translating and rotating bodies, in the sense described in section 4.5. 

5.2.1 Linear motion 

The fluid equation of motion directly follows from Equation (5.1)1: 

linear motion: 

Xf = CD 
Zpf(v-, 

z)2 A+ mf 
d(v-z) 

+ pfvbdv dt dt 

(5.2) 

The fluid force consists of a drag, added mass and pressure term (section 5.3), where 
mf = CA pf Vb is the added mass of the body. The coefficients CD and CA are drag 

and added mass coefficients, respectively. The added mass and pressure terms are 
similar to those for inviscid fluids (section 4.5.1), although the added mass coefficient 
will differ in magnitude. 

More about the physical meaning of the fluid terms and coefficients in the sections 
5.3 and 5.4. 

1 For the conversion of Af, Bf, ... into physical quantities it is referred to section 5.3. 
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About history effects ..... 
Boussinesq (1885), Basset (1888) and Oseen (1927) derive an equation of motion for a (small) sphere 
in a viscous, stagnant fluid. Tchen (1947) extends the equation to an accelerating flow. In this equation 

the fluid force on the sphere with diameter D is described by: 

linear motion: 

X= 3nµ D(v-z) +1p =D3 d(v-z 
+p nD3dv J2 16 dt 16 dt 

t 
+ 3DZ nd 

v-z 1ý 
zI 

Pµf Jf0 
t-tI 

(5.3) 

This equation is derived from the Navier-Stokes equations and valid for small relative velocities 
(Re < 1) and accelerations. With a drag coefficient CD = 24/Re (Stokes equation; section 5.4.2), a 

volume of the sphere Vb = ir/6 D3, an added mass mf = Ih pf ir/6 D3 (section 4.6.3), and a Basset 

coefficient CB =6 (section 5.4.3). Equation (5.3) may be written in a general form as: 

Xf = CD 
? pf(v-z)2A + CA pfVb 

dx+ 
pfVb + 

+ CaA Pt 'r d v-. z 1 dti J 
0 dt / t-tI 

(5.4) 

In this form the equation is valid for a wider range of relative velocities (Reynolds numbers) and 

accelerations. This equation is identical to Equation (5.2), except from the last term. 
This fourth term is the so-called history or Basset term, which represents the effect of the entire 

history of the unsteady motion of the sphere (0 S t' S t). At the instant t=0 the velocities of fluid 

and particle are the same (v = x). A theoretical derivation of this term is given by Landau and Lifshitz 

(1987), who give an explanation for the convolution integral on the analogy of the thermal conduction 
in a semi-infinite medium. 

Hughes and Gilliland (1952) demonstrate by means of calculations that the history term may exceed 

the steady fluid force many times in the first stage of motion of a falling sphere. Maxey and Riley 

(1982) and Steetzel (1984) confirm this. Hereafter the motion becomes steady and the history term 

fades out. 
Odar and Hamilton (1964) use Equation (5.4) to describe the fluid forces on an oscillating sphere 

in a stagnant fluid (v = 0) for Reynolds numbers up to 62. In that case the history term can be 

described in an analytical form and related to the oscillation frequency (Steetzel, 1984). 

The added mass and history term may be described by dimensionless variables if the unsteady 
flow field can be characterized by some characteristic velocity. Let this velocity be (v - z)'. Then the 

following dimensionless variables may be introduced: 
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z=tv-z)' v= V-1 (5.5) 

The history term may now be rewritten as: 

Ds 

CBA 
(v-x)'' If ýv 

P du 1 dt' 
(5.6) 

p1(Pf v-z)' D 1o dtv i-? 

and the added mass term as: 

CD b Pf (v-z). = du (5.7) 

To get an idea about the relative importance of the history term the following dimensionless 

number, defined as the ratio of the history term and added mass term, may now be introduced as: 

Ds 

(v-x' 
du 1 dt' 

CeA 1f 
J ý Re dz z-t, (5.8) 

CA Vb du 
D di 

Suppose that dvldr' is constant, this expression reduces to: 

2 CBAD 
1- I1- D (5.9) 

CA Vb RC (V-i). 

In this case the relative importance of the history term increases in time and decreases with increasing 

Reynolds number. For small time scales and higher Reynolds numbers the ratio is much smaller than 

unity. Under these conditions the history term may be neglected. 

The history term is also used for turbulent flows (e. g. Maxey and Riley, 1982). If the turbulence 

scale is small relative to the size of the particle, the main effect of the turbulence is found as an 

increase of the flow resistance. If the turbulence scale is relatively large, the particles will tend to 

follow the turbulence components (Hinze, 1975). 

Mei et al (1991) investigate the influence of the history term on the dispersion of small spherical 

particles due to isotropic turbulence. In the statistical analysis the ratio of the turbulence time scale 

and the particle response time is varied strongly. It is concluded that the history term has very little 

effect on the macroscopic behaviour of the particle motion. This conclusion also holds if the turbulence 

time scale is one order higher than the response time of the particle. 
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Although history effects do not exist in inviscid, incompressible fluids, they do exist in inviscid, 

compressible fluids, due to a finite pressure wave speed! 

The importance of the history term for the present study must be attributed to the 
the fact that it demonstrates that the unsteady fluid force is not only dependent of 
instantaneous values, but also dependent on the history of the flow field. 

5.2.2 Angular motion 

The fluid equation of motion directly follows from Equation (5.1)2: 

angular motion: 

Mf = CDt 
2Pfv2 

D3 + CD12 
2pfvb D4 - CDZ 

2Pfe2 D5 + 

PfIf dt 

(5.10) 

The fluid torque consists of three drag, two added mass and one pressure term 
(section 5.3), where If = CA2 pf Vb k2 is the added mass moment of inertia of the 
body. The coefficients CD and CA are drag and added mass coefficients, due to the 
linear motion of the fluid (subscript 1), the angular motion of the body (subscript 2), 

and combined motion (subscript 12). The added mass and pressure terms are similar 
to those for inviscid fluids (section 4.5.2), although the added mass coefficients will 
differ in magnitude. 

More about the physical meaning of the fluid terms and coefficients in the sections 
5.3 and 5.4. 

About history effects ..... 
The history term for angular motion is unknown. 

2 For the conversion of Af, Bf, ... into physical quantities it is referred to section 5.3. 
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Chapter 5 Motion of a body in an unconfined, viscous fluid 

5.3 Physical aspects 

For incompressible, inviscid fluids the coefficients in the equations of motion can 
be derived directly from the velocity potential or indirectly from the superposition 
principle (section 4.6.1). Thus all fluid terms can be considered separately and 
described in an analytical form (section 4.7). 

For viscous fluids the dynamical theory of Kirchhoff and the superposition 
principle no longer hold, due to the dissipation of energy. The fluid terms are 
correlated now and should be considered together. In practice, however, the 
superposition principle is still applied, since there is no good alternative. 
Consequently, an inaccuracy arises in the determination and application of the fluid 
terms and coefficients, in particular for unsteady flow conditions, which magnitude 
is not known exactly. In a strict sense the terms can no longer be described in an 
analytical form. 

5.3.1 Drag terms 

The (steady) drag terms are isolated by considering the steady motion of a body 
in a steady, uniform parallel flow. Now Equation (5.1) reduces to: 

xf = Bf(v-x)e - Df62 - Ef(v-z)2 

Yf = Bf (v-z)e - Df 62 
- Ef (v-X)2 (5.11) 

Mf = Bfr e(v-z)9 - Df e62 - E7 (v-z)2 

For the translating and rotating bodies considered in section 5.2, these equations 
reduce to: 

linear motion: 
Xf = -Ef(v-z)2 

angular motion: 

(5.12) 

Mf=Bf ev6 -D1 e62 -E1 v2 (5.13) 

After dimensional reasoning the equations may be rewritten as: 
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5.3 Physical aspects 

linear motion: 

Xf = CD 2 pf(v -1)2 A (5.14) 

angular motion: 
Mf = CDC 2Pfv2 D3 + CD12 

2 pfv9 D4 - CDz 2Pfe2 D5 (5.15) 

The drag force and torque are assumed to be proportional to the dynamic pressure 
used in a somewhat extended sense (see below), and a characteristic area (e. g. the 
frontal area) or volume of the body (represented by D3), respectively. 

About dynamic pressure ..... 
The dynamic pressure ýhpf , defined as the difference between the total pressure (at the stagnation 

point upstream of the body) and the static pressure (in the wake downstream of the body), is a direct 

measure for the pressure difference across a body in a viscous fluid flow. 

The effect of a parallel flow (v) is the same as that of a translating body (4). For rotating bodies 

similar considerations hold. Thus the characteristic fluid velocity v may be replaced by 4 or -B D. 

In this way several forms arise for the dynamic pressure which are found in the above equations. 
Within the drag usually a distinction is made between form drag, due to normal stresses (pressure), 

and friction drag due to shear stresses. In a strict sense the dynamic pressure is a measure for the form 

drag only. 

The fluid torque in Equation (5.15) consists of three drag terms. For a rotating 
body in an inviscid fluid flow only the drag term with vz appears (Equation (4.40)). 
Apparently the other two terms arise due to viscous effects. The equation is similar 
to its inviscid, steady equivalent with eccentricity (Equation (4.42)). 

Although the motion of the body and that of the fluid far from the body is steady, 
the flow pattern around the steady rotating body is periodical. 

5.3.2 Added mass terms 

The added mass terms for a body in a viscous fluid are basically the same as those 
for a body in an inviscid fluid (section 4.6.3). However, Equation (5.1) illustrates 
that the terms can no longer be isolated from the other terms, e. g. the drag terms are 
always involved. The added mass terms can no longer be determined exactly, but only 
be estimated. 

5.3.3 Pressure terms 

For an incompressible, Newtonian fluid with velocity v parallel to the x-axis, the 

pressure gradient is described by the Navier-Stokes equations (without distributed 
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Chapter 5 Motion of a body in an unconfined, viscous fluid 

forces, per unit volume): 

_ 
ap aV aV 

- pf + _ 
32y a2V 02V 

++ (5.16) 

x j axe aye az2 1 
In the case of a laminar, uniform parallel flow, both the convective and viscous terms 
vanish. In the case of a turbulent flow, the effects of turbulence on the pressure 
gradient are assumed to be neglectable. Consequently, the pressure terms are propor- 
tional to äv/at and the same as those for inviscid fluids (see further section 4.6.4). 

5.4 Fluid force and torque coefficients 

5.4.1 General 

For incompressible, inviscid fluids the fluid force and torque coefficients are 
determined by the geometry and the angular position of the body only (section 4.7). 
For viscous fluids these coefficients are also determined by: 
1) the deviation of the viscous, steady flow pattern from the inviscid, steady flow 

pattern. This leads to a change of the form drag, due to the development of 
boundary layers and flow separation, and the introduction of friction drag. 

2) the deviation of the viscous, unsteady flow pattern from the inviscid, unsteady 
flow pattern. This leads to a change of the added mass terms and the introduction 

of the history term. 

According to the (dimensionless) Navier-Stokes equations the pressure field 

around a body is dependent on the Reynolds, Mach (e. g. Schlichting, 1979) and 
Acceleration number (e. g. Odar and Hamilton, 1964). These effects are found in all 
terms of the fluid equations of motion. Therefore the force and torque coefficients 
formally must be written as: 

CD, A, B =f (o, Re, Ma, Ac) (5.17) 

For the incompressible or slightly compressible fluids considered here, the 
compressibility effects, represented by the Mach number, are further ignored. 

In general the Reynolds and Acceleration number are introduced as a measure 
for the relative importance of viscous and unsteady flow effects, respectively. At the 
same time they serve to specify the (instantaneous) flow conditions around the body. 
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5.4 Fluid force and torque coefficients 

For a body which moves in its plane of symmetry in a uniform parallel flow, the 
following Reynolds and Acceleration numbers are introduced: 

pf (v-. z) D 
Ref= 

µ f 
n Re2 = 

pf 6D 2 

µf 

(5.18) 
Acl1 =D 

d(v-. t) 
'y x)2 dt 

A Ac2l 1 d6 
e2 dt 

The general form of these numbers is consistent with the terms in the general 
equations of motion (section 5.1). Note that the unsteady flow conditions (in terms 
of dv/dt) and the history of the flow field are not specified by these numbers. 

5.4.2 Drag coefficients 

The (steady and unsteady) drag coefficients are generally dependent on the angular 
position of the body (angle of incidence), the Reynolds and Acceleration numbers. 
Viscous effects are assumed to be first order effects, which dominate second order, 
unsteady flow effects. 

For the body of consideration this may be written as3: 

CD =f (O , Re1,2 , Ac122) (5.19) 

Stokes (1851) derives for the drag coefficient of a sphere in a laminar, uniform parallel flow 

(Red < 1; based on diameter d): 

linear motion: 

CD = 
24 

(5.20) Red 

Torobin and Gauvin (1961) extend Stokes expression to (1 < Red < 100): 

. 38) 5.21) CD = 
2d (i 

+ 0.197 Red. 63 + 0.0026 Red1 

Many more examples exist (e. g. Schlichting, 1979). 

I 

3 First order effects are printed in bold type. 
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Chapter 5 Motion of a body in an unconfined, viscous fluid 

The above cases demonstrate that the drag coefficient generally may be described 

or approximated by a power law as: 

C CD = 
Re k 

(5.22) 

The coefficient C and power k are functions of the angular position of the body, and 
valid for a range of Reynolds and Acceleration numbers. The power characterizes 
the flow in terms of laminar (0.5 Sk5 1) or turbulent (0 Sk<0.5) (see also 
the examples in section 6.8.2). The power k is in principle a function of the angular 
position, which is illustrated by the following example: The flow around an aerofoil 
may be laminar at zero incidence and (partly) turbulent at stalled conditions at the 
same range of Reynolds numbers. 

Note that the drag coefficient CD -º co for Re -> 0 if the power k ;40. This is 

allowed, since the drag force vanishes for small velocities, due to the presence of the 

quadratic velocity in the dynamic pressure. 

About the power law ... 
The power law is a general formulation, which allows to describe increasing or decreasing tendencies. 

Such a tendency is described by the combination of a coefficient C and power k, which are constants 

within a certain range (here of Reynolds numbers). As an example: The decreasing tendency in 

Equation (5.21) may be approximated by C= 29 and k=0.7 in the range 1< Red < 100. 

For the determination of the drag coefficients both experimental and theoretical 

approaches are used. 
The drag coefficients are usually measured under steady flow conditions, so that 

Re, 00 and Acl-1 =0 or Reg ;d0 and Ac21 = 0. In practice these conditions are 
realized by a stationary body in a steady flow (e. g. wind tunnel tests), a steady 
translating body in a stagnant fluid (e. g. the test flight of an airplane) or a rotating 
body in a stagnant fluid. 

Under laboratory conditions the drag terms are usually obtained from force or 
pressure measurements. Alternatively the terms may be obtained from the change of 
momentum per time unit, which is calculated from the velocity profile in the wake 
of the body. Under confined flow conditions a correction (e. g. for tunnel wall effects) 
may be necessary. 

Under unsteady flow conditions the drag terms cannot be isolated anymore from 

the other terms. For this reason the unsteady drag coefficient is commonly assumed 
to be equal to the steady-state value. Note that the Reynolds numbers now have 
instantaneous values. 
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5.4 Fluid force and torque coefficients 

The drag coefficients may also be obtained in a theoretical way. Within the wide 
field of computational fluid dynamics (CFD), the numerical treatment of the Navier- 
Stokes equations gains interest. However, this approach is still less accurate than the 

experimental approach, due to amongst others numerical dispersion and limitations 
in the turbulence modelling. 

More about the physical meaning of the Reynolds number in section 11.8. 

5.4.3 Added mass and Basset coefficients 

The added mass and Basset coefficients are generally dependent of the angular 
position of the body, the Reynolds and Acceleration numbers. For these coefficients 
the unsteady flow effects are assumed to be first order effects, which dominate second 
order, viscous effects. 

For the body of consideration this may be written as4: 

CA, B =f (0, Re122, Ac1,2 (5.23) 

Boussinesq (1885), Basset (1888), Oseen (1927) and Tchen (1947) take the added mass and Basset 

coefficient of a sphere as (see Equation (5.3) and (5.4)): 

linear motion: 
CA=2-t A CB=6 (5.24) 

The coefficients are valid for small relative velocities (Re < 1) and accelerations. The added mass 

coefficient is the same as that for inviscid fluids (section 4.6.3), since in both cases flow separation 

and turbulence play no role. 
Hardly anything is known about these coefficients at higher Reynolds numbers and accelerations 

(Torobin and Gauvin, 1959; Schöneborn, 1974). 

Odar and Hamilton (1964) give the following empirical relations for higher Reynolds numbers 
(Re < 62, Ac < 5), derived from oscillation tests of a sphere in a stagnant fluid: 

linear motion: 

CA = 1.05 - 
0.066 A CB = 2.88 + 

3.12 (5.25) 
Ace+0.12 (Ac+1)Z 

4 First order effects are printed in bold type. 
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Chapter 5 Motion of a body in an unconfined, viscous fluid 

so that: 
dCA 

_ 
0.132 Ac Ad 

Ca 6.24 (5.26) 
dAc (Ac2+0.12)2 dAc (Ac+1)3 

The added mass coefficient increases and the Basset coefficient decreases with increasing acceleration 

(figure 5.1). For Ac -º 0 the values in Equation (5.24) are obtained. For Ac >1 the added mass 

coefficient is about equal to unity and doubled, which is due to viscous effects. Note that dCAIdAc -º 0 

for Ac -º 0 and for Ac -º co. 
The added mass and Basset coefficients are also dependent on the Reynolds number, which is 

revealed by the fact that the validity range of the equations is restricted to Re < 62. In that sense the 

Reynolds effect may be seen as a second order effect. 

Nothing is known about added mass and Basset coefficients for angular motion. 
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Figure 5.1 Added mass and Basset coefficients of a sphere (Re < 62) 

(Odar and Hamilton, 1964) 

On the analogy of the drag coefficient, also here a power law is introduced for 

the added mass and Basset (history) coefficients: 

CAB =C 
Ac' 

(5.27) 

The coefficient C and power n are functions of the angular position of the body, and 
valid for a range of Acceleration and Reynolds numbers. Here the power may be 

positive (in a range of decreasing coefficients) as well as negative (in a range of 
increasing coefficients). 

60 



5.4 Fluid force and torque coefficients 

Note that in the above equation the added mass coefficient CA --> oo for Ac -0 0 

and CA -> 0 for Ac - oo, if the power n00. The added mass coefficient, however, 

must have a finite value for small accelerations, to ensure that the added mass force 

vanishes. This finite value must differ from zero, which follows from the dynamical 
theory of Kirchhoff for inviscid fluids. Thus the power is preconditioned by n --, - 0 
if Ac --1- 0 and for similar reasons if Ac -> oo. This is in agreement with the empirical 
relation given in Equation (5.25). 

The Basset coefficient in Equation (5.25) may be approximated by a power law with C=3.81 

and n=0.156 in the range 0.1 < Ac < 5. 

In the literature both experimental and theoretical approaches are found to 
determine the added mass and Basset coefficients of a body in a viscous, unconfined 
fluid. Within the experimental approach two principles are applied: 
1. Non periodical flow tests. Tests may be performed on an accelerating body in a 

stagnant fluid (e. g. the falling of a small sphere), or on a stationary body in an 
accelerating flow. However, in practice, an unconfined, accelerating flow can 
hardly be realized. The added mass and history terms may be derived from force 

or torque measurements, after correction for the drag and pressure terms. Hereby 

the unsteady drag coefficients are usually assumed to be equal to the steady values 
(superposition principle). Alternatively, the fluid forces may be derived from the 
trajectory which is followed by the body (e. g. Talman, 1994). 

2. Periodical flow tests. Oscillation tests are performed, whereby the oscillation 
frequency of the system (i. e. body and fluid) is chosen as a non-imposed (natural) 
frequency or an imposed (excitation) frequency. The motion of the body may be 

constrained to small displacement amplitudes, so that the drag terms can be 
ignored (e. g. Odar and Hamilton, 1964). 

The theoretical approaches are based on potential flow theory and applied to cases 
where flow separation and turbulence play a role of minor importance. History effects 
are absent here. 

More about the physical meaning of the Acceleration number in section 11.8. 

5.4.4 Pressure coefficients 

The pressure coefficients are similar to those for inviscid fluids (section 4.6.4). 
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Chapter 5 Motion of a body in an unconfined, viscous fluid 

5.5 Review and conclusions 

Equations of motion for a body in an unconfined, viscous fluid are developed. 
The equations are obtained by coupling the terms in the force and torque equations 
for inviscid fluids. The equations are applied to translating and rotating bodies. 
History effects are described for (small) translating bodies under special initial 

conditions. The history terms for other initial conditions and rotating bodies are 
unknown. 

In the description of the fluid force and torque coefficients separate Reynolds and 
Acceleration numbers are introduced for the relative, linear motion of the body, and 
for its angular motion. The drag coefficients in the fluid equations are assumed to 
be dominated by viscous effects. Based on the few empirical relations which are 
available in the literature, the added mass and Basset coefficients are assumed to be 
dominated by inertia effects. The coefficients are described in the form of power 
laws. The properties of the drag, added mass and Basset coefficients form the basis 
for the development of equivalent coefficients for confined fluids in the next chapter. 
The power law formulation for the drag coefficients enables a distinction between 
laminar and turbulent flows. For this purpose it is further used in the development 

of (dimensionless) equations of motion for check valves (chapter 8). 

62 



6 Motion of a body in a confined fluid 

The previous chapters deal with the motion of a body in an unconfined fluid. The 

unconfined flow problem is treated by the dynamical theory of Kirchhoff. Although 
this theory allows no geometrical changes, it may be considered as a pre-investigation 
for the confined flow problem of check valves. In this chapter the motion of a body 
in a confined fluid is studied. In the case of more than one moving body, or when 
the fluid is confined by fixed walls (wholly or in part), Lagrange's method of general- 
ized coordinates may be applied (Lamb, 1932). 

General equations of motion are developed, based on Lagrange's method of 
generalized coordinates. The basic concept is similar to that of the dynamical theory 
of Kirchhoff, which allows no geometrical changes. On the analogy of check valves, 
the motion is constrained to a motion in the plane of symmetry. In the first instance 

the motion of the fluid is entirely due to that of the body. Within this study the theory 
is extended to the motion of a body in an unsteady fluid flow. Equations of motion 
are derived for translating and rotating bodies. Some physical aspects of the fluid 
force terms and coefficients are discussed. The theory is applied to check valves, in 

order to develop a valve equation of motion (chapter 8). 

6.1 Method of generalized coordinates 

Consider the motion of a body in an inviscid and confined fluid. The motion of 
the fluid is entirely due to that of the body, and is therefore irrotational and acyclic. 

Let q1, q2, ......., qn, be a system of generalized coordinates, which serve to 

specify the configuration of the body. The velocity potential at any instant will be 

of the form: 

0= qi 01 + q2 02 + ....... + 4n On + ....... 
(6.1) 

where 01,029 ......., 0� are determined in a manner analogous to that in section 4.1. 

The kinetic energy of the fluid may be described by: 

dS (6.2) 2Tf = -Pf fJý 
On 
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Chapter 6 The motion of a body in a confined fluid 

Substitution of Equation (6.1) into Equation (6.2) now gives: 

2Tf= Ci qi +C2 42 + ....... +2C4142+. (6.3) 

The kinetic energy of the body Tb can be written in a similar form, so that the 

energy of the system of body and fluid is described by: 

2T =Cl 41 +C2g2 +....... +2C6g1q2+....... (6.4) 

The major difference with the dynamical theory of Kirchhoff (chapter 4) is that the 

coefficients are no longer constants, determined by the geometry of the body only, 
but functions of the coordinates q1, q2. .... , qn" 

The equations of motion in generalized coordinates, derived from the principle 

of virtual work and D'Alembert's principle, and often referred to as Lagrange 

equations, are given by (e. g. Goldstein, 1980): 

d öT 
_ 

äT 
= Fq (j = 1,2....... n) (6.5) 

dt 6qj öqj 

The components of the generalized force are defined as: 

Fq, =FF;. 
ör` 
aqi 

(6.6) 
'ý 

Where r; are the coordinates and FF the components of the forces on the system. The 

components of the generalized force do not need to have the dimension of a force, 

as long as Fq äq has the dimensions of work. 
The limitation in the application of the method of generalized coordinates lies 

in the fact that the functional relations for the coefficients C1, C2, ..... may become 

very complex. In the next sections the equations are used in a qualitative sense only. 

..... About the Lagrangian 

The forces on a system can often be derived from a scalar potential function V. In that case the 

generalized force can be written as: 

F= _av 9j clqj 
(6.7) 
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6.2 Constrained motion in the plane of symmetry 

The potential function V does not depend on the generalized velocities, so that avia4j = 0. 

Thus Equation (6.5) may be rewritten as: 

d aL 
_ 

aL (6.8) 
dr acj, 

Jaqj 

where: 

t=T-v (6.9) 

The term Lagrange equations is usually reserved for the more general form given in Equation (6.8), 

where L is known as the Lagrangian. The equations may also be derived from Hamilton's principle, 

also known as variational principle (Goldstein, 1980). 

In the classical mechanics of rigid bodies the Lagrange equations are often applied to conservative 

systems. In that case the potential function V is no explicit function of time, so that the terms aTläqj 

may be derived from V and described in terms of qj. However, the equations are not necessarily 

restricted to conservative systems, but may also be applied if V is an explicit function of time. 
The Lagrange equations may be considered as the basic postulate, rather than Newton's laws of 

motion, since they also may be applied to non-mechanical systems, as in the theory of fields. 

The Lagrangian is not suited to check valves, since e. g. damping and friction effects are not easily 
described by potential functions. 

6.2 Constrained motion in the plane of symmetry 

The equations of motion in generalized coordinates (section 6.1) are applied to 
a body, which moves in its plane of symmetry, in the sense described in section 4.2. 

The body is assumed to have a plane of symmetry. Let this plane be the x y-plane. 
The constrained motion is described by a translation parallel to the plane, with linear 

velocity components t00, y00, and a rotation about an axis normal to this plane, 
with angular velocity component 9 Pd 0. 

The generalized coordinates are chosen as: ql = x, q2 =y and q3 = 0. This 

coordinate system may be considered as a reference frame, which is fixed in space. 

The kinetic energy of the system is now described by: 

2T = C1x2+C2y2+2C6zy+C9e2+2e(C19x+C20y) (6.10) 

where C1, C2, ....... =f (x, y, 0). Note that in the dynamical theory of Kirchhoff 
the coefficients are defined relative to the body frame (section 4.1). 
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Chapter 6 The motion of a body in a confined fluid 

Substitution of Equation (6.10) in Equation (6.5) yields: 

dClx 
+ 

dC6y 
+ 

dC196 
_ 

aT 
= EX 

dt dt dt äx 

dC6z dC2y dC200 aT 
++-_Ey (6.11) 

dt dt dt ay 

d C19z 
+d 

C20y 
+d 

C9O 
_ 

aT 
= EM 

dt dt dt ae 

The motion of the body is now further constrained to a translation along the x-axis 
= 0) and a rotation about the z-axis (section 4.2). After some manipulation the 

above equations become: 

Cl + C19de + 
aCl 2+ aCl 

+3C19 xe + 
aC19 e2 _ 

aT 
= EX 

it dt ax 80 ax ae ax 

dX de ach 
2 

ach a c20 a c20 
.2 aT' 

c6 dr + c20 d+ ax x Yo + ax xe + ae e- äy =Ey 

dX 
+C 

d8 
+ 

aC19. 
t2 + 

ac19 
+ 

ac9 
ze + 

ac9 e2 _ 
aT 

= EM C19 dt 9 dt ax ae ax TO ae 

(6.12) 

where: 

OT_ 2ac, X2+2ac9 "2+ ac19ze 
ax ax ax ax 

aT _1 
ac, z2 +1 

ac9 e2 + 
aci9 xe (6.13) ay ay ay ay 

aT _1 
act "2 +1 

ac9 e2 + 
ac19 tb ae ae ae ao 

For a rigid body the change of kinetic energy with the position of the body refers to 
the fluid only. 
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6.2 Constrained motion in the plane of symmetry 

About a sphere ..... 
Consider the one-dimensional motion of a sphere normal to an infinite plane wall. Let x be the distance 

from the wall. The kinetic energy of the system is: 

2T = cl xz (6.14) 

The coefficient Ct, as originally derived by Stokes, is given by (Lamb, 1932): 

3 
Cl = lttb +2 P' V6 1+$ 

R3 
(x > R) (6.15) 

x 

Where my is the mass, Vb is the volume and R is the radius of the sphere. 
The equation of motion becomes: 

aC 
C, +2 X2 = EX (6.16) & ax 

About unconfined fluids ..... 
The kinetic energy of the fluid in an unconfined space is independent of the linear position of the body. 

Consequently the terms Max and May must be zero. This must hold for any velocity, so that also 
aCl/ax, aC2/ax, ... , act/ay, ... must be zero. Furthermore, the kinetic energy in terms of 62 is 

independent of the angular position of the body, so that also the term aC9/a9 must be zero. This can 

easily be seen from the rotational symmetry which arises due to a pure rotation. Equation (6.12) now 

reduces to: 

+ ý, 
ae 

+ 
ac, 

z8+ 
ac19 

eZ 
aX CIA! 

ar 19 ar ae co 

C ax +C de + 
ach 

je+ 
W20 

eZ 

6 dr 20 dt ae ae 

C19- +C-Z 1x2 = EM 
a-e 

This form of the Lagrange equations is similar to that of the Kirchhoff equations for unconfined fluids, 

as given in Equation (4.23) for e -º 0. 
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Chapter 6 The motion of a body in a confined fluid 

Equation (6.12) may be written in a general form as: 

Aca +BiO + Cde +D92 +Ez2 = EX 
dt dt 

Aý +B'x6 +Cido +D'O2 +E' 2 =ýy (6.18) 
dt Ti 

All +B11xe +C1de +D' Ö2+E11 2 _EM dt dt 

The coefficients A, B, .., A', ... are dependent on the geometry of body and confined 

space, and the position of the body within the confined space, described by x and 0. 

6.3 Separation of body and fluid 

In this section separate equations of motion for the body and fluid are developed, 
just as is done in section 4.3. 

6.3.1 Equations of motion for the body 

The equations of motion for the body are similar to those for unconfined fluids. 
All effects of the fluid are accounted for in the fluid forces Xf, Yf, ... on the body. 

The equations are given by (section 4.3.1; e -)- 0): 

Abi +Bb26 + Cbae +Db62 =x1+EX dr dr 

Ab 
dt+Bb 

z9 +Ci 7t 
d9 

+D662 =Yf+EY 

An dz 
+C" 

d6 
+ Ei' z2 _MfM b dt b dt bf 

(6.19) 

The coefficients Ab, Bb, .., Ab', .... are dependent on the geometry and angular 
position of the body only (section 4.3.1). The equations also hold if there is no fluid. 

68 



6.4 Motion of a body in a fluid flow 

6.3.2 Equations of motion for the fluid 

The equations of motion for the fluid are obtained by the separation of the body 

and fluid terms in the general equations of motion, as described in section 4.3. 
Separation of the terms in Equation (6.18) gives: 

Af +Bfz6 + Cfae +Df62 +Efz2 = -X1 it dt 

Af 
dtI + B' iI + Cf 

dt 
d1 

+D 2 e+ Etz2 = -Yf (6.20) 

Ani dz 
+ Bii ze + Cn dO 

+ Dýý e2 + E//x2 = -M f dt ff dt fff 

The coefficients Af, Bf, .., Af, .. are dependent of the geometry of body and confined 
space, and the angular and linear (spatial) position of the body in the confined space. 

The equations illustrate which terms are relevant to the forces and torques on the 
body due to a confined, inviscid fluid. A comparison of Equation (4.26) (e - 0) and 
Equation (6.20) illustrates that extra terms arise in the force and torque equations, 
due to the fact that the fluid is confined now. 

6.4 Motion of a body in a fluid flow 

Just like the Kirchhoff equations, the Lagrange equations may be applied to the 

motion of a body in a fluid flow. Hereto the motion is described in a non-inertial 
reference frame, which moves with the fluid (section 4.4). The confined space around 
the body must now be considered as a second moving "body". 

The confined fluid flow is restricted to a non-uniform parallel flow, so that the 

motion of the fluid remains irrotational. The flow direction is assumed to be parallel 
to the x-axis, with a fluid velocity v, relative to the fixed reference frame. 

Now, in a manner analogous to that in section 4.4, the term I in Equation (6.20) 

may be replaced by the term (z - v). The fluid velocity must be specified now, e. g. 
as the mean velocity v= QIA. Further "real" force terms must be added due to the 

pressure gradient over the fluid. For a parallel pipe flow this term is proportional to 
dvldt (section 6.7.3). This leads to the following equations of motion for the fluid: 
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Chapter 6 The motion of a body in a confined fluid 

Afd(X-v) +Bf(X_v)e+Cfde +Dfe2+Ef(X_v)2 _ Ffdv _Xf dt dt dt 

i d(z-vý 
+B(X_v)e +Ci 

d9 
+D92 Eý(z_vý2 _ 

dv Y Af 
dt f dt ff -F f dt -f 

Aii d(x-v) 
+B' x_v)0 + Cnd9 +Dii e2 +Eii ýx_v)2 = Fn dv 

_M Ai 
dt f 

(f 
-it fff -it f 

(6.21) 

The equations show which fluid terms are relevant to the motion of a body in a 
confined, fluid flow. The complete equations of motion for body and fluid can be 

obtained by the summation of the Equations (6.19) and (6.21). 

6.5 Translating and rotating bodies 

The equations of motion, as developed for a body in a fluid flow (section 6.4), 

are applied to translating or rotating bodies, moving in an inviscid, non-uniform, 

parallel flow. The bodies are assumed to have at least one plane of symmetry, in the 

sense as described in section 4.2. The equations of motion in the constrained direc- 

tions are further ignored. 

6.5.1 Linear motion 

Consider a body which moves in the x-direction, so that I00 and 0=0, while 
the fluid velocity v is parallel to the x-direction. 

The equation of motion for the body directly follows from Equation (6.19): 

(6.22) mbdt - Xf+EX 

where mb = Pb Vb is the mass of the body. 
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6.6 Translating and rotating bodies 

The equation of motion for the fluid directly follows from Equation (6.21)1: 

Xf = CD 2 pf(v-x)2A + mf 
d(v-z) 

+ pfvb 
dv 

dt dt 

(6.23) 

The equation consists of a drag, added mass and pressure term (section 6.7), where 

mf = CA pf Vb is the added mass of the body. This equation of motion for confined, 
inviscid fluids is similar to that for unconfined, viscous fluids (section 5.2.1). 

Although the fluid force on a steady translating body in an unconfined, inviscid, 

steady, uniform parallel flow is zero (section 4.6.2), the fluid force is proportional 
to (v _. t)2 here. According to the Equations (6.12) and (6.13) the term vanishes if 
äT/ax is zero, e. g. for any body moving in a prismatic tube. 

Substitution of Equation (6.23) in Equation (6.22) yields the complete equation 
of motion for translating bodies in an inviscid, confined, fluid flow: 

(mb+mf) d. t 
= CD Zp1(v-x)2A + (CA+1) pfvb 

dv 

+ EX (6.24) -it 

The term (mb + mf) is the virtual mass of the body. 

Valibouse and Verry (1983) use a similar expression for the fluid force on the translating disc of 

a piston type check valve. However, in the pressure term the volume of the valve chamber is used 
instead of the volume of the body, which is incorrect. 

More about the physical meaning of the fluid terms and coefficients in the sections 
6.7 and 6.8. 

6.5.2 Angular motion 

Consider a body which rotates about the z-axis, so that x=0 and 000, while 
the fluid velocity v is parallel to the x-direction. 

I For the conversion of Af, Bf, ... into physical quantities it is referred to section 6.7. 
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The equation of motion for the body directly follows from Equation (6.19): 

Ib 
dt 

Mf +EM (6.25) 

where Ib = pb Vb k2 is the mass moment of inertia of the body (section 4.6.3). 
The equation of motion for the fluid directly follows from Equation (6.21)2: 

Mf = CD, 
2pfv2D3 

+ CD12 
2pfv9D4 - CD2 

2p O D5 + 

+ 
dv_IfA (cA+KP)Pfvb. D 
dt 

If 
dt 

(6.26) 

The equation consists of three drag terms, two added mass terms and one pressure 
term, where If = CA2 pf Vb k2 is the added mass moment of inertia of the body 
(section 4.6.3). This equation of motion for confined, inviscid fluids is similar to that 
for unconfined, viscous fluids (section 5.2.2). 

Substitution of Equation (6.26) in Equation (6.25) yields the complete equation 
of motion for rotating bodies in an inviscid, confined, fluid flow: 

'Im+lf) d0 
CDC 

2pfv2D3 
+ CDu 

2pfvÖD4 - CD2 
2pfe2D5 

+ 

(6.27) 

+ (CAI+KP)PIVbýD + EM 

The term (Ib + If) is the virtual mass moment of inertia of the body. 

More about the physical meaning of the fluid terms and coefficients in the sections 
6.7 and 6.8. 

2 For the conversion of A1, B1, ... into physical quantities it is referred to section 6.7. 
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6.6 Step to viscous fluids ... 

6.6 Step to viscous fluids ... 

The equations of motion for a body in an inviscid, confined fluid (section 6.4) 

are similar to those for a viscous, unconfined fluid (section 5.1). In both cases the 
fluid forces and torques are fully coupled. It is assumed that the general form of these 
equations remains unchanged for a body in a confined, viscous flow, although the 
force and torque coefficients will differ in magnitude. Thus the equations of motion 
for translating and rotating bodies (section 6.5) also hold for viscous fluids. History 
effects are not taken into account. 

About history effects ..... 
In section 5.2.1 the history term is described for a translating body in an unconfined accelerating flow, 

with initial condition (v - x) = 0. It is demonstrated that the relative importance of the history term 
increases in time and decreases with increasing Reynolds number, if the relative flow acceleration is 

constant in time. 

For confined flows the history term is unknown. However, it is expected that the history effect 
is smaller here, since the development of upstream disturbances and downstream wakes is more or 
less suppressed by the presence of a confined space. Therefore the author believes that, in a qualitative 

sense, the above-mentioned tendencies also hold for confined flows. 

Note that for check valves with translating elements the initial condition (v - z) =0 is not 

satisfied, since under steady flow conditions v00 and i=0. Dependent on the valve type, the 

turbulence scale of eddies may vary from small to large, relative to the size of the body. On the other 
hand, in the dimensionless history and added mass terms in Equation (5.8) the critical velocity may 
be chosen as characteristic velocity. For check valves and liquids the dimensionless time scale and 

critical Reynolds number are usually in the order of 10 and 105 - 106, respectively. 

6.7 Physical aspects 

The terms in the fluid equations of motion in section 6.4 are similar to those for 

unconfined, viscous fluids (section 5.1). The major difference is that the coefficients 
are now also dependent on the linear (spatial) position of the body. 

For confined, inviscid fluids the fluid terms may be determined from the velocity 
potential or by applying the superposition principle, although the isolation of terms, 
apart from some drag terms, can no longer be realized. These principles are already 
discussed in section 4.6.1. 

For confined, viscous fluids the concept of generalized coordinates and the 
superposition principle no longer hold, due to the dissipation of energy. However, 
just like for unconfined viscous fluids, the superposition principle is still applied. Also 
here the fluid terms can no longer be described in an analytical form. 
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Chapter 6 The motion of a body in a confined fluid 

6.7.1 Drag terms 

The drag terms are similar to those for unconfined, viscous fluids (section 5.3.1). 

6.7.2 Added mass terms 

For confined, inviscid fluids the added mass effects may be determined directly 

from the velocity potential. However, this approach is restricted due to the complexity 

of the potential function and hardly used in practice. 

The added mass of a sphere, which moves normal to an infinite plane wall (section 6.1), follows 

from the coefficient Cl in Equation (6.15) as: 

linear motion: 
3 

mf =2 pfV6 1+g 3R\ 
3 

(6.28) 
X3 

For x -" o the added mass is equal to the value in an unconfined space (section 4.6.3). 

For check valves a different approach is found in the literature. Valibouse and Verry (1983) 

approximate the added mass of the translating disc of a piston type check valve by: 

linear motion: 
Aý 

m1 - Pf Vcý (6.29) 
Ankam - Adiw 

where Adisc and Acham represent the area of the valve disc and chamber, respectively. Note that 

mf-r oo, if Adisc = Acham" 

Worster (1959) and Schneider (1985) take the added mass of the rotating disc of a swing type 

check valve as the mass of a fluid sphere with the same diameter as the valve disc (CA > 1): 

angular motion: 

mf = Pf 6nD 
(6.30) 

In the above equations the added mass is described in an analytical form, which is typical for 

inviscid fluids. Note that the dependency on the (linear or angular) disc position is not described. 

For the estimation of added mass effects in confined, viscous fluids experimental 
approaches are found in the literature, which are based on periodical flow tests. This 
is already discussed in section 5.4.3. Non-periodical flow tests are absent here. 
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6.8 Fluid force and torque coefficients 

Thorley and Oei (1981) determine the added mass effect of the rotating disc of a swing type check 

valve from oscillation tests. The mass moment of inertia of the disc is obtained from the natural 
frequency in air. The virtual mass moment of inertia is obtained from the natural frequency in stagnant 

water. In order to minimize bearing friction the disc is supported by knife-edges. The drag term is 

assumed to be of minor importance by allowing small displacement angles only. They confirm the 

above-mentioned results of Worster (1959) and Schneider (1985). 

Kruisbrinlc (1990) determines the added mass effect of a spring loaded pressure relief valve from 

excitation tests. Tests without spring are performed at different (average) disc positions and excitation 

frequencies. From the displacement amplitude, force amplitude, excitation frequency and phase shift 

(between displacement and excitation force), the virtual mass and viscous damping are derived. A small 

tendency of decreasing added mass could be noticed with increasing (average) disc position. The added 

mass is approximated by an average value as: 

linear motion: 

mf = 1.4 pfD , 

6.7.3 Pressure terms 

(6.31) 

For a viscous, non-uniform, parallel flow in a pipe, the pressure gradient over 
the fluid is described by the pipe equation of motion (section 9.1.2): 

_1 ap = av + vav + fvlvl (6.32) pf ax - at ax 2D 

For the transient flow in a pipe the convective terms are neglected (section 9.1). 
Further, the transient flow is assumed to be dominated by fluid inertia effects, so that 
friction effects may be neglected (section 9.3). As a result the pressure gradient is 

only proportional to the fluid velocity gradient öv/öt, just like the pressure gradient 
in an inviscid or viscous, uniform, parallel flow. For the description of the pressure 
terms it is referred to section 4.6.4. 

6.8 Fluid force and torque coefficients 

6.8.1 General 

For confined, inviscid fluids the coefficients Cl', C2', ... in the kinetic energy 
equation of the fluid are determined by the geometry, the (linear and angular) position 
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Chapter 6 The motion of a body in a confined fluid 

of the body in the confined space, and the density of the incompressible fluid (see 

section 6.1). 
In a manner, analogous to that for unconfined, inviscid fluids (section 4.7), the 

fluid force and torque coefficients may now be written as: 

CD, A =f (x, 9) (6.33) 

Just like for unconfined, inviscid fluids the coefficients may be described in an 
analytical form. However, due to the complexity of these expressions, this can hardly 
be realized in practice. 

For viscous fluids the force and torque coefficients are also dependent on the 
Reynolds, Mach and Acceleration number (section 5.4.1): 

CD, A, B =f (x, 0, Re, Ma, Ac) (6.34) 

For the incompressible or slightly compressible fluids considered here, compressibility 
effects, represented by the Mach number, are further ignored. 

For a body in a confined space, which moves in its plane of symmetry, the 
following Reynolds and Acceleration numbers are introduced: 

Ref=pfvD A Reg=PfxD 
µf µf 

n Re3 = 
pfeD2 

µf 

(6.35) 

Ac i=D dv A Ac -i _D 
dz 

' V2 dt 2 t2 dt 
n Ac3-1 _1 

d9 
e2 dt 

Here two Reynolds and Acceleration numbers are introduced for the linear 

motion, since the effect of a translating body in a confined space is no longer the 

same as that of a (non-uniform) parallel flow. Three Reynolds and Acceleration 

numbers are necessary and sufficient to describe the (instantaneous) flow conditions 
around the body, apart from the history of the flow field. 

For the translating and rotating bodies considered in section 6.5 one of the 
Reynolds and one of the Acceleration numbers is not relevant. 
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6.8 Fluid force and torque coefficients 

About the necessity of two Reynolds and two Acceleration numbers ..... 
For unconfined fluids the Reynolds and Acceleration numbers are based on the relative motion between 

body and fluid (see section 5.4.1): 

Re = 
Pf v -1 DA 

Ac-1 =Dd 
vom- (6.36) 

µ, (v-z)z 

This definition is based on the supposition that the effect of a moving body and moving fluid on the 
flow pattern is the same, which is correct for unconfined, viscous fluids, but no longer holds for 

confined, viscous fluids. A confined, stagnant flow is characterized by a uniform (zero) velocity 
distribution, whereas a confined, parallel flow is characterized by a non-uniform velocity distribution, 

due to boundary effects (no slip conditions) at the wall. Therefore the flow patterns differ in these 

cases. 
Moreover, in a confined space a steady flow (constant v) gives a steady flow pattern, while a 

steady moving body (constant z) gives an unsteady flow pattern. The latter case is characterized by 

history effects. These effects are ignored in the above definition of the Reynolds number, which 

suggests that, at a certain position of the body, the flow pattern due to a moving body is the same as 

that due to a moving fluid (this only holds for inviscid fluids). 

For the above-mentioned reasons two Reynolds and two Acceleration numbers are introduced for 

the linear motion. 

6.8.2 Drag coefficients 

The (steady and unsteady) drag coefficients are generally dependent on the linear 

and angular position of the body, and on the Reynolds and Acceleration numbers. 
Just like for unconfined fluids, the viscous effects are assumed to be first order 
effects, which dominate the second order, unsteady flow effects. 

For the body of consideration this may be written as3: 

CD =f (x, 0, Re1,2,3 
1 

AC1,2,3 ) (6.37) 

Blasius (1913) derives an empirical expression for the friction coefficient of smooth pipes with 

circular cross section. The expression is obtained from available experimental data and valid for 

turbulent flows (ReD < 105): 

A_0.3164 
0.25 
D 

3 First order effects are printed in bold type. 

(6.38) 

77 



Chapter 6 The motion of a body in a confined fluid 

Colebrook and White (Colebrook, 1939) describe the pipe friction coefficient as: 

= 1.74 -2 log 
R+ R18.7ý 

(6.39) 
V-1 

D 

The implicit equation is valid for the whole transition region from hydraulically smooth to rough pipes. 
When the relative wall roughness is small (ks/R - 0), the equation gives the same values as Blasius' 

equation in the range 5000 < ReD < 105. For high Reynolds numbers the pipe friction coefficient 
is constant, and only dependent on the relative wall roughness ks/R. 

Schultz-Grunow (1935) describes the torque coefficient of a rotating disc in a housing, in a 

stagnant, laminar flow as (ReeR <2x 105): 

angular motion: 
2.67 CM = o-3 (6.40) 
BOR 

and for turbulent flow (ReÖR >3x 105): 

0.0622 CM = 
Re os (6.41) 

6R 

Collier and Hoerner (1981) show that the drag or loss coefficient of a split disc check valve, 

measured at fixed valve disc positions, is about constant at high Reynolds numbers (ReD > 103). 

Many more examples exist (e. g. Schlichting, 1979). 

The above presented cases demonstrate that, just like for unconfined fluids, the 
drag coefficients generally may be described or approximated by a Power law as: 

CD 
Ck 

Re 

(6.42) 

However, the coefficient C and power k are now functions of the linear and angular 
position of the body. Also here the power is valid for a range of Reynolds and 
Acceleration numbers, characterizing the flow in terms of laminar (0.5 SkS 1) 

or turbulent (0 5k<0.5). 
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6.8 Fluid force and torque coefficients 

In practice the drag coefficients are measured under steady flow conditions. For 

confined flows this can only be realized on a stationary body in a steady flow and 
no longer on a steady translating or rotating body in a stagnant flow. 

Under unsteady conditions the drag terms cannot be isolated anymore. For this 

reason the unsteady drag coefficient is commonly assumed to be equal to the steady 
value. Note that the Reynolds numbers now have instantaneous values. 

More about the physical meaning of the Reynolds number in section 11.8. 

6.8.3 Added mass and Basset coefficients 

The added mass and Basset coefficients are generally dependent on the linear and 
angular position of the body, and on the Reynolds and Acceleration numbers. For 

these coefficients the unsteady flow effects are assumed to be first order effects, 
which dominate the second order viscous effects. 

For the body of consideration follows4: 

CA, B =f (x, 0, Re1,2.3 , Ac12233) (6.43) 

The added mass coefficient of a sphere in a semi-infinite space (section 6.7.2) follows from 

Equation (6.28): 

linear motion: 

3R3 C" 
z+ 16 z3 (6.44) 

Also for the other cases described in section 6.7.2 the added mass coefficients can be quantified, if 

the volume of the body is known. 

Nothing is known about added mass and Basset coefficients in confined fluids. 

On the analogy of the added mass and Basset (history) coefficients for unconfined 
fluids, here also the general power law formulation is used: 

C CAB= 

Ac's 

4 First order effects are printed in bold type. 

(6.45) 
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The coefficient C and power n are now functions of the linear and angular position 
of the body. The power is valid for a range of Acceleration and Reynolds numbers. 

The determination of the added mass and Basset coeffcients is essentially the same 
as in the case of unconfined fluids (section 5.4.3). However, the situation is much 
more complicated, since the coefficients are now also dependent on the linear (spatial) 

position of the body. Note that the added mass and history effects hardly can be 

separated, since the analytical form of the history term is unknown. 

6.8.4 Pressure coefficients 

The pressure coefficients are similar to those for inviscid, unconfined fluids (see 
further section 4.6.4). 

6.9 Review and conclusions 

Equations of motion are developed for a body in a confined, inviscid fluid. The 

equations are based on Lagrange's method of generalized coordinates and applied to 
the constrained motion of a body in its plane of symmetry. Just like for unconfined 
fluids the theory is extended to the motion of a body in an unsteady fluid flow. For 

a parallel pipe flow the external forces are similar to those for an unconfined, uniform 
parallel flow. The equations of motion for a body in an inviscid, confined fluid are 
similar to those for a body in a viscous, unconfined fluid. In both cases the fluid 
forces and torques are fully coupled. Based on this analogy the step from confined, 
inviscid fluids to confined, viscous fluids is made. 

The equations of motion are applied to translating and rotating bodies. The drag, 

added mass and pressure terms are similar to those for unconfined, viscous fluids. 
The history terms are unknown, although it is expected that the history effects are 

reduced due to the presence of a confined space. 

In the description of the fluid force and torque coefficients separate Reynolds and 
Acceleration numbers are introduced for the linear and angular motion of the body, 

and the linear motion of the fluid. Just like for unconfined fluids the drag coefficients 
in the fluid equations are assumed to be dominated by viscous effects, while the added 
mass and history coefficients are assumed to be dominated by inertia effects. Also 
here the coefficients are approximated by power laws. The fluid force and torque 

coefficients are now dependent on the linear and angular position of the body. 

The equations of motion for the body and fluid are used in chapter 8 to develop 
(dimensionless) equations of motion for check valves. 
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7 Global form of fluid equations 

In the previous chapters the fluid forces on a body are described by separate terms 
like drag, added mass, pressure and history terms. For some flow problems, in 

particular confined flow problems, these fluid terms cannot always be quantified, 
either by theory or by experiment. For this reason in the literature another, more 
global approach is also found (e. g. Steetzel, 1984). The fluid force is then described 
in a rather simple form, analogous to that of the conventional drag term. All steady 
and unsteady effects of the fluid on the body are accounted for in one single fluid 
force coefficient. This principle is studied here and applied to translating as well as 
to rotating bodies, including check valves. The results of the previous chapters are 
used to describe the properties of these global force and torque coefficients. 

The concept of the global fluid force coefficients is used in the development of 
valve characteristics (chapter 11) and computer models (chapter 12). 

7.1 General fluid equations of motion 

In the global form of the fluid equations, the fluid force is described in terms of 
a conventional drag term. Instead of the drag coefficient, a global force coefficient 
is introduced, which accounts for all effects of the motion and the change of motion 
of body and fluid, including added mass, pressure and history effects. 

For a body which moves in its plane of symmetry, the drag terms appear in 

several forms (section 4.6.2,5.3.1, and 6.7.1). From the combination of these forms 

the following global form of the fluid equations may be composed: 

Xf = CX 
2pf[(v-z) - d9] 

2A 

2 
Yf = cy I pf d b] A (7.1) 

2 
D3 Mf=CM2pfd9] D 
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Chapter 7 Global form of fluid equations 

where d is a parameter that links the linear and angular velocity terms. In the next 
sections it is demonstrated that this theoretical form has no practical value, although 
it contains all relevant drag terms. 

centre%f rotatio 

M 

hydrodynamic centre 

Figure 7.1 Link between fluid forces and torque 

The link between the fluid forces and torque is (figure 7.1): 

Mf=Xfey + Pf ex 

where eX and ey are the components of the eccentricity e. 

7.2 Fluid force and torque coefficients 

(7.2) 

The equations of motion for unconfined and confined, inviscid and viscous fluids 
(sections 4.4,5.1,6.4 and 6.6) are considered together now. The terms that appear 
in these equations are: 

d(v-. x) 
; (v_x)e ; 

de 
. e2 ; (v_z)2 dv (7.3) 

dt dt dt 

All terms appear in the fluid force and torque equations, except for unconfined, 
inviscid fluids, where less terms are needed. History terms are absent here. 

It can easily be seen that Equation (7.1) is inconsistent with the fluid equations 
developed in the previous chapters, even for a steady motion (see also section 7.3.4). 
Moreover, the form does not match with the Reynolds and Acceleration numbers, 
introduced in the previous chapters. Therefore Equation (7.1) is reduced to a more 
simple form. More sensible options for the dynamic pressure may be: 
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7.2 Fluid force and torque coefficients 

2 Pf (v-# V2 pfd 9)2 (7.4) 

2pfv2 V7 pft2 (7.5) 

Let the dynamic pressure in Equation (7.1) be described by the two options in 
Equation (7.4). A comparison with Equation (7.3) gives, after dimensional reasoning 
whereby the parameter d is replaced by a characteristic dimension D, respectively: 

CX y M= f D d(v-z) 
' 

D6 
' 

D2 d9 
' 

D dv (7.6) 
ý ý . Tv_a dt Fv 

_i) (v-. t f dt (v_)2 dt 

1 d(v-x) (v-x) i de 1 dv (7.7) x'Y''vt f 
62D dt ' DO 9 'FT ' e2D dt 

Both equations are equivalent with: 

C D6 D d(v z) 1 d9 D dv (7.8) X'Y'M f 
TV_X) ' (y_X)2 dt ' e2 dt ' (y_X)2 dt 

In this equation the Acceleration number appears in two forms (printed in bold), 
which are typical for unconfined fluids (section 5.4.1). 

Let the dynamic pressure be described by the two options in Equation (7.5). A 

comparison with the terms in Equation (7.3) then gives, respectively: 

CfD d(v-t) v-z D& D2 d9 D dv (7.9) X, 
v2 dt vv' v2 dt ' 

v2 dt 

CD d(v x) v-1 De D2 db D dv (7.10) X'Y'M -f2 dt zx 7-2T 
X2 dt 

Both equations are equivalent with: 

Cx z D9 D dv D dz 1 dB (7.11) 
, Y, M = 

.f, v2 ýt z2 dt ' b2 T vv 

In this equation the Acceleration number appears in three forms (printed in bold), 

which are typical for confined fluids (section 6.8.1). 
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Chapter 7 Global form of fluid equations 

From these results it is concluded that the options in Equation (7.4) are more 
suited to unconfined fluids, whereas the options in Equation (7.5) are more suited 
to confined fluids. 

For unconfined, inviscid fluids the drag and added mass coefficients are only 
dependent on the angular position of the body (section 4.7). In that case follows with 
Equation (7.8): 

unconfined, inviscid fluids: 

CX 8 D9 D d(v-z) 1 d9 D dv (7.12) 
'Y'M -f' (y 

_X12 
dt ' e2 dt ' (y_zý2 dt (vzý 

For unconfined, viscous fluids the drag, added mass and Basset coefficients are 
also dependent on two Reynolds and two Acceleration numbers (section 5.4.1). In 

that case follows with Equation (7.8): 

unconfined, viscous fluids: 

0 pf(v )D pf9D2 D d(v-i) 1 d9 D dv CX, Y, M =f 
11 µf ' (v-x)2 dt b2 T (V)2 dt 

(7.13) 

The first group in Equation (7.8) is covered now by the Reynolds numbers. 
For confined, inviscid fluids the coefficients are only dependent on the linear and 

angular position of the body (section 6.2). In that case follows with Equation (7.11): 

confined, inviscid fluids: 

zDbD dv D dz 1 d9 (7.14) 
lY"M 

f X' 8' 
v'v' 72 dr ' X2 

dr ' e2 dr 
CX ' 

For confined, viscous fluids the drag, added mass and Basset coefficients are also 
dependent on three Reynolds and three Acceleration numbers (section 6.8.1). In that 
case follows with Equation (7.11): 

confined, viscous fluids: 

pfvD pfxD p f9 D2 D dv D dac 1 d9 cýyý y, M = 
,fx, ,e, v2 dr ' µf µf µf X2 lit ' e2 Ct 

(7.15) 

The first and second group in Equation (7.11) are covered by the Reynolds numbers. 
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7.3 Translating and rotating bodies 

The definition of the global fluid forces and torques allows to link the global force 

and torque coefficients. From the Equations (7.1) and (7.2) follows: 

CMD3 = (CXey + Cy ex) A (7.16) 

This equation links the torque coefficient to the force coefficients via the eccentricity 
of the hydrodynamic center. This link holds, no matter what the definition of the 
global fluid forces and torques is. From Equation (7.16) it directly follows that the 
above-mentioned functional relationships for the global force and torque coefficients 
also hold for the eccentricities ex and ey. In that case they describe the move of the 
hydrodynamic centre. 

The theoretical as well as the experimental determination of the global fluid force 
coefficients is a problem. Various attempts are made to solve the Navier-Stokes 

equations, however without quantitative results (Steetzel, 1984). 

7.3 Translating and rotating bodies 

In this section the global form of the fluid equations is applied to translating and 
rotating bodies, moving in an unconfined or confined, viscous fluid. The equations 
in the constrained directions of motion are further ignored. 

7.3.1 Translating body in unconfined fluid 

The fluid force on a translating body in an unconfined, viscous fluid may be 
described by (section 7.1 and 7.2): 

Xf = CX 2 pf(v -xý2 A 

(7.17) 

A comparison with Equation (5.2) gives: 

linear motion: 

CX=CD+CA2V6 D d(v-i) 
+ 

2Vb D dv 
(7.18) 

AD (v-jý dt AD (v-. ty dt 
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where (section 5.4.1): 

_ 
1pf(v-z)D D d(v-z) (7.19) CD, A -f dt µf (v-x)2 

In this global force coefficient history effects are ignored. 

Houghton (1963) and Sellgren (1983) describe the fluid force on a small particle in a stagnant flow 

in the form of Equation (7.17). They assume in first approximation that the global force coefficient 
is equal to the drag coefficient, which is obtained from steady flow measurements. The effects of un 

unsteady motion are accounted for by an instantaneous Reynolds number, based on the relative motion 

of the particle, so that CX =f (Re (t)). 

Tchen (1947) also describes the fluid force on a (small) sphere in a stagnant fluid in the form of 

Equation (7.17). He proposes to describe the global force coefficient in the form of a series as: 

linear motion: 
Cx = fi (Re) + Ac-1 f2 (Re) (7.20) 

This equation is similar to Equation (7.18), since in a stagnant fluid the pressure term is absent. The 

equation suggests that the added mass coefficient is a function of the Reynolds number only. The 

dependency on the Acceleration number, as suggested in Equation (5.23) and illustrated in Equation 

(5.25), is not described. In that sense the function f2 (Re) is better described by f2 (Re, Ac). 

Some thoughts about history effects and time series ..... 
For laminar flow the fluid force is proportional to the instantaneous velocity (drag term) and velocity 

gradient (added mass term), which is demonstrated by Equation (5.3): 

linear motion: 

Xf =f 
((v-z) 

,d 
d2 l (7.21) 

The question arises if history effects may be taken into account by higher order terms: 

X= f (v-z) d v-z dz v-x (7.22) I' dt ' dt2 '..... 

If so, then the fluid force is described by the history of the (relative) fluid velocity in the form of a 
Taylor series, which is mathematically correct. 
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7.3 Translating and rotating bodies 

The force coefficient, defined in Equation (7.17), may then be written as: 

C11d v- 1 d2 v-x 
"""" 

7.23 X =f( (v-z) ' (v-z? dt ' (V-. t? dt2 .) 

After dimensional reasoning this may be written as: 

C= f µf Dd v-x D2 d2 v-x 
..... (7.24) x p. (v-1) D' (v-z)2 dt ' (v-z)3 dt2 ' 

In this equation the inverse Reynolds number and Acceleration number appear as the first and second 

term of a series. Let the third term be the inverse of some History number Hi. 

Equation (7.20) may now possibly be extended as: 

Cx = fi (Re) + Ac-1 f2 (Re, Ac) + Hi-1 f3 (Re, Ac) + ... 
(7.25) 

The global force coefficient in Equation (7.18) may now be developed in a series as: 

=C +Cl 
D dv-z 

+K' 
D dv 

+Ci 
D2 dtv-z 

+...... (7.26) %DA (v-X) dP (v-. t? 
B (v-X)3 dt2 

Note that the pressure term needs no development in higher order terms. 

7.3.2 Translating body in confined fluid 

For translating bodies in confined, viscous fluids (section 6.5.1) the fluid equa- 
tions are the same as those for unconfined, viscous fluids (section 5.2.1). The 
Reynolds and Acceleration numbers, however, differ. The fluid force may now be 
described by: 

Xf=CX2pfv2A 

(7.27) 

A comparison with Equation (6.23) gives after some manipulation: 

b Ddv_c 2Vb z2D dt CX=CD 
[i_]2 

+ (CA+l' 
2V 

vAD Vdt ADv 72T- 

(7.28) 
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where (section 6.8.1): 

C EX pfvD pfzD D dv D dz (7.29) 
D, A=. 

f 
D' µf µf v2dt' z2dt 

7.3.3 Rotating body in unconfined fluid 

The fluid torque on a rotating body in an unconfined, viscous fluid may be 
described by (section 7.2): 

Pf Mf= CM 2D3 

(7.30) 
A comparison with Equation (5.10) gives: 

+ CM=CDC +CDýz 
DB 

_CD2 
[DÖ [12 

vv 

+ +K 
2Vb D dv 

_C 
2Vbk2 D6 21 d9 

`CA, 

) 
D3 v2 dt A2 

D5 v e2 -It 

(7.31) 

where (section 5.4.1): 

p vD p 6D2 
__ _ 

(7.32) ffD dv 1 d8 CD, A _feµ 
y2 dt ' e2 dt f 

In the global torque coefficient history effects are ignored. 

About history effects ..... 
If history effects may be taken into account by higher order terms (section 7.3.1), this gives the form: 

2 

CM =CDC+CD, 2 
2 8_CD D6 

+CA1 
D"+ 

v 
(7.33) 

- CD62 1d8+C ID2d2v-C, D83 1d28+ 
..... A, v 

ex BI 
ys &s 62 v e; 

;2 
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7.3 Translating and rotating bodies 

7.3.4 Rotating body in confined fluid 

For rotating bodies in confined, viscous fluids (section 6.6) the fluid equations, 
Reynolds and Acceleration numbers are the same as those for unconfined, viscous 
fluids (section 5.2.2). The fluid torque may be described according to Equation (7.30) 
(see section 7.2). Therefore the equations in the previous section also hold for 

confined, viscous fluids. 

About relative motion ...... 
Several researchers like Worster (1960), Pool et al. (1962), Ellis (1980), Koch (1981) and Provoost 

(1983a) describe the hydrodynamic torque on the rotating disc of a check valve in the form: 

Mf=CMipf[v-e612D3 (7.34) 

The eccentricity e, however, which links the linear flow and the angular valve motion, is interpreted 

in different, more or less conflicting ways, as illustrated below. 

Worster (1960) and Provoost (1983a) base the relative motion on the flow volume displaced by 

the rotating disc. They assume that the radial component of the displaced flow is directed into the axial 

(flow) direction of the confined space. This leads to the relative flow term (Q - Adisc ecg 6), where 

ecg is the eccentricity of the center of gravity from the center of rotation. With Q=v Apipe, this leads 

to the above form, where CM is assumed to be a function of the angular position of the valve disc. 

The equation contains properties of both inviscid and viscous fluids: 

a) The equation actually consists of three terms, which are similar to the drag terms for confined, 
inviscid or viscous fluids. 

b) The velocity terms in the above equation are only linked by geometrical dimensions of the body. 

In terms of the eccentricty e an analogy arises with the steady version of the torque equation given 
in Equation (4.43), as developed for a body with three planes of symmetry in an unconfined, 
inviscid flow. However, an essential difference is that the terms in Equation (4.43) are linked via 

Bf, Df and Ef. The link is thus dependent on the angular position of the body. 

c) For viscous fluids the terms are not linked by hard geometrical dimensions only, but also by more 

soft dimensions, due to boundary layer effects and flow separation. For instance: Due to boundary 

layer effects the displaced flow volume is enlarged in a viscous flow, leading to a larger effective 

value of the eccentricity e. 

d) The equation gives a zero torque if v=e9, independent of the angular position of the body, 

which is incorrect for both inviscid and viscous fluids. Also for a centrical body (e = 0) in a 

stagnant fluid (v = 0), the equation gives a zero torque, which is only correct for a steady rotating 

body in an unconfined, inviscid fluid. 
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Chapter 7 Global form of fluid equations 

Koch (1981) describes the relative motion of a tilting disc check valve in terms of (v -r 6/cos B). 

The reference radius r is chosen such that the closure time in numerical valve model and experiment 
is the same. Koch recognizes that the angular disc position plays a role in the relative motion and 
introduces cos 0. However, this term leads to infinite values for 0= ir/2, which is incorrect. A better 

approach would be (v -r6 cos 0), so that the influence of the disc motion vanishes for 0= ir/2. 

It is concluded that the parameter e cannot be defined in such a way that Equation (7.34) is 

consistent with the fluid terms, which are developed for a rotating body in a confined, inviscid or 

viscous fluid (section 6.5.2), and only gives approximated values. Preference is given to the global 

form given in Equation (7.30), which is valid for unconfined and confined fluids. 

7.4 Review and conclusions 

The fluid force and torque equations are described in a global form, based on the 

conventional drag term. The properties of the global force and torque coefficients are 
studied by comparing the global fluid equations with the fluid equations, which are 
described by separate terms, as developed in the previous chapters. Hereby several 
forms of the dynamic pressure in the global force terms are explored. The properties 
of the coefficients are thus described in functional relations, in which the Acceleration 

numbers appear in different forms. It is demonstrated that some of these forms are 
consistent with and more suited to unconfined fluids, while others are consistent with 
and more suited to confined fluids. The properties of the global force and torque 
coefficients also hold for the eccentricity of the hydrodynamic centre relative to the 
centre of rotation. 

The global fluid equations of motion are applied to translating and rotating bodies. 

The global form of the equations of motion suited to confined fluids, is applied 
to check valves (chapter 8) and used to define the valve loss coefficient (chapter 10). 
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8 Valve equations 

In chapter 6 the equations of motion are described for a body in a confined flow. 

These equations are used here to develop a general equation of motion for check 
valves with rotating elements. For this purpose the external torques on the valve disc 
due to a counterweight, spring(s), a damper, etc. are described in detail. 

The valve equation of motion is written in a dimensionless form, in which the 

critical velocity is introduced as a measure for the valve response. In the valve 
closure a distinction is made between the passive and active stages of damping. 
During the stage of passive damping (the first event of closure) the flow is assumed 
to be dominated by the system. During the stage of active damping (the second event 
of closure) the flow is imposed by the combination of valve and system. 
The (dimensionless) valve equation shows in a formal way which (dimensionless) 

variables and parameters are relevant to the valve behaviour. In that sense the results 
are used in a dimensional analysis to develop valve characteristics (chapter 11) and 
parameterized valve models (chapter 12). 

8.1 General equation of motion 

The equation of motion for a rotating body in a confined flow (section 6.5.2) 
is applied to check valves with rotating elements. The principle of operation of such 
valve types is given in figure 1.3. Examples are given in the figures 3.1. a to d. 

To avoid confusion with the term "valve body", the term "body" (b), is replaced 
by "moving elements" (m). Further the term "moment" (M) is replaced by "torque" 
(1), commonly used in mechanical engineering. This leads to: 

1m6 =TH+ET 

where: 

(8.1) 

FT=TG +TB+TS+TD+TF (8.2) 

In this equation I. is the mass moment of inertia of the moving elements about the 
centre of rotation, TH is the torque on the valve disc due to Hydrodynamics, while 
ET are the external torques on the valve disc due to Gravitation, Buoyancy, Spring(s), 
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Chapter 8 Valve equations 

Damping and Friction, respectively (the italic capitals are used as subscripts). In the 
next section these torques are described in detail. 

8.2 Torques on valve disc 

In this section the (internal and external) torques acting on the valve disc are 
described due to Inertia, Hydrodynamics, Gravitation, Buoyancy, Spring(s), Friction 

and Damping, respectively. 

counterweight 

centre of rotation 
----'- 

i 
ý- 

centre of gravity 

centre of buoyancy 
i 

Figure 8.1 Rotating valve disc with counterweight; definition sketch 

Inertia The torque due to the inertia of the moving elements may be described 
by (section 4.6.3): 

TI = Im 6= pm Vm k2 6 (8.3) 

where I. is the moment of inertia, V,, the volume and k the gyration radius of the 
moving elements (inclusive counterweight, damper, spring(s), etc. ). 

Introduce dimensionless, geometrical parameters K which relate the volume and 
gyration radius of the moving elements to the valve diameter D: 

Vm = KVm D3; k2 = Kk D2; KI = Kvm Kk (8.4) 
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8.2 Torques on valve disc 

Substitution of Equation (8.4) in Equation (8.3) results in: 

TI=pmKID56 

(8.5) 

Hydrodynamics The fluid torque on the internal, rotating elements of a check 

valve is described by Equation (6.26). With the substitution of Equation (8.4) the 

equation may be written in the form: 

angular motion: 

TH = CDt 2PfV2D3 
+ CD12 2PfVOD4 

- CDz 
2PIO2D5 

+ 

+ KVm (CAI +Kp) pfD4 
dv 

- KI CA2 pf D5 dO 
1 dt Ti 

where in general terms (section 6.8): 

CD =f (0, Re, Ac) 

CA =f (0, Re, Ac) 

(8.6) 

(8.7) 

Also here the first order effects are printed in bold type. 
The above drag and added mass coefficients are approximated by power laws (see 

section 5.4 and 6.8) as: 

_ 
Cl 

_ 
C12 

_ 
C2 

CD, 
Re k 

CD12 
Re 1' 

CD2 
Re m 1 12 2 

Ci i_ C22 
CAS 

- Aci 
CA2 

Act 

(8.8) 
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where: 

Pf pvineinD3/2 p9D2 Ref= ; Re12= f; Reg= f 
µf µf µf 

Ac -1 D dv Ac -1 _1 
d9 

1 
y2 dt '2 e2 dt 

(8.9) 

The coefficients C and powers k, 1, ... are functions of the valve disc position 0. For 

a certain valve disc position C and k, 1, ... are assumed to be constants within a 
certain range of Reynolds or Acceleration numbers. The Reynolds powers charac- 
terize the flow in terms of laminar (0.5 5 k, .. 5 1) or turbulent (0 S k, .. <0.5). 
The Reynolds number Re12 is a theoretical number, used to describe the combined 
motion. Contrary to the "hard" geometrical parameters K., the coefficients CD and 
CA are "soft" dynamic parameters. 

History effects are ignored here, since no analytical expressions are available. 

Gravitation The torque due to gravitation is described by (figure 8.1): 

TG = -p .. 
V. g eCg sin(O +Ocg +-y) (8.10) 

where V. is the volume of the moving elements and egg is the eccentricity of the 

center of gravity (cg) relative to the centre of rotation. 
Introduce dimensionless geometrical parameters which relate the volume and the 

eccentricity of the moving elements to the valve diameter: 

Vm =K V. D3; egg = KeC9 D; KG = Kym Kecg (8.11) 

Note that Kecg may be a function of the valve disc position, e. g. if the centre of 
rotation of counterweight or damping device and valve disc differ. Substitution of 
Equation (8.11) in Equation (8.10) results in: 

TG = -KGp, ngD4 sin(B+Bcg+-y) 

Buoyancy The torque due to buoyancy is (figure 8.1): 

TB = pfVbg ecbsin(e+ec6+7) 

(8.12) 

(8.13) 

94 



8.2 Torques on valve disc 

where Vb is the volume of the submerged moving elements, and ecb is the eccentricity 
of the centre of buoyancy (cb) relative to the centre of rotation. 

Introduce geometrical parameters: 

Vb = KVn D3; ecb = Kein D; KB = KVb Kerb (8.14) 

Substitution of Equation (8.14) in Equation (8.13) yields: 

TB = KBpfgD4 sine+Ocb+oy) 

(8.15) 

For check valves which operate in a free surface flow KB and 9cb are functions of 
the angular valve disc position. 

Spring(s) It is assumed that the spring(s) are mounted to the pivot (centre of 
rotation). The spring torque may now be described by: 

TS (Ks + KS (0 - ec» 

(8.16) 

where Ksc is the preset spring torque in the closed position (0 = 6c). Note that Ksc 
and Ks may be considered as geometrical parameters. 

Friction The following general friction model is applied (Appendix A. 1): 

TF =- EKfrfF, sign9 

(8.17) 

where Kf is a friction coefficient, rf the moment arm of the friction force (e. g. radius 
of spindle, shaft or pin), and F, the normal force on the friction surface(s). The 
friction torque is the sum of all friction effects in both valve and damper. 

The friction coefficient Kf represents both static and sliding friction. In the case 
of static friction (B = 0) the sign of B is determined by the sum of the other torques 
0= 0+ or 0"). When the static friction torque exceeds a threshold value, the valve 
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starts moving and sliding friction becomes relevant. In most practical cases the static 
friction coefficient exceeds the sliding friction coefficient. The friction coefficient may 
be considered as a geometrical parameter since it is determined by surface roughness. 

Damping To describe (external or internal) damping devices such as hydraulic, 

piston and dashpot dampers (figures 3.1. b, c and f) the following general damping 

model is applied (Appendix A. 2): 

i2s d9 s TD CDs Pd eD+ CA3 Pd dt D 

(8.18) 

where: 

CD3 =CA CA3 = 
C33 

(8.19) 
Rep p Ac3 

and: 
2 

Re3 = 
Pd eDA 

Ac31 =1 
d9 (8.20) 

µd e2 dt 

The density pd and viscosity µd refer to the damping fluid. The damping coefficients 
are described in a similar way as the hydrodynamic coefficients of the internal, 

moving valve elements (see above). 

About turbulent and laminar damping ..... 
For turbulent damping (p = 0) and higher accelerations (q = 0) follows: 

ýZs ae TD=C3Zpd9D +C33pdLDs (8.21) 

For laminar (viscous) damping (p = 1) and small accelerations (6 = 0) follows: 

TD = C3 
2µd 

6D3 (8.22) 

In literature the damping is described in several ways. 
Rommel et al. (1984) assume that the damping torque of a tilting disc check valve is proportional 

to the disc velocity squared, while the damping coefficient is taken as a constant, independent of the 

valve disc position. 
Travis and Torrey (1985) assume that the damping force of a plug-type check valve (Y-bonnet) 

with internal piston damper is proportional to the valve disc velocity squared. The damping coefficient 

96 



8.3 Valve equation for angular motion 

is a function of the valve disc position and obtained from tuning with experiments. 

Henry et al. (1989) assume that the damping force of a plug-type check valve with internal piston 
damper is proportional to the valve disc velocity. 

Kim (1989) assumes that the damping torque of a swing check valve with internal dashpot damper 

is proportional to the valve disc velocity, while the damping coefficient is taken as a constant. 
Siegers and Wölk (year unknown) assume that the damping force of a plug-type check valve with 

piston damper is proportional to the disc velocity squared. The damping coefficient is taken as a 

constant, although experiments show that it strongly varies during the first stage of valve closure. 
Note that the above researchers use a quasi-steady approach, in which the damping effects due 

to the unsteady disc motion are ignored. 

8.3 Valve equation for angular motion 

Substitution of the torques on the valve disc (section 8.2) in the general valve 
equation of motion (section 8.1) yields: 

(KIPm + KICA2Pf + CA3Pd)D5 d9 
_ dt 

CD, 
2pfV2D3 

+ CD12 
2pfV0D4 - CD2 

2pfe2D5 
+ KVm(CAt+KP)PfD4 

d! 
+ 

- KGpmgD4 sin(O+Ocg+-y) + KBpfgD4 sine+ecb+'y) + 

- 
(Ks + Ks (0 - Or)) - CDa 

2 pd 92 D5-E Kf rf F,, sign 6 

(8.23) 

The subscripts 1,2 and 3 refer to the motion of the (pipe) fluid, valve elements and 
damping fluid, respectively. All coefficients K are hard, geometrical parameters 
which may be a function of the angular valve disc position. The hydrodynamic and 
damping coefficients CD and CA are soft, dynamic parameters, which are a function 

of the angular valve disc position, and the Reynolds and Acceleration numbers. This 

makes the equation implicit. The valve equation of motion is a higher order, ordinary, 
non-linear differential equation, valid for 9C s0s0 (the subscript o refers to the 
fully open position). 
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8.4 Hysteresis 

The motion of the valve disc may be influenced by hysteresis effects. In order 
to quantify these effects, quasi-steady state versions of the valve equation of motion 
are considered. For check valves these quasi-steady state versions only exist for the 
normal flow direction (v >_ 0). The steady drag coefficient is described by a power 
law (section 8.2). Two limit cases are considered. 

Consider an increasing flow described by 0t 01,6 4 0, vt v1, dv/dt 1 0, The 

valve equation of motion (8.23) then becomes: 

Case 1: 
Clk Ipfvi D3 = KGýp, 

ngD4 sin(91+6cg+, y) + 
Rel 

(8.24) 

- KBD p fg D4 sin(O1 +Ocb +'y) + (KSc + Ks (O - Oc)) +S Kf rf Fni 

Friction tends to delay the valve opening. 
Consider a decreasing flow described by 01 62,9 t 0, vI v2, dv/dt t 0. The 

valve equation of motion (8.23) becomes: 

Case 2: 
C2 2pfv2D3 

= KG2pmgD4 sin(92+0cg+'Y) + 
Reg 

(8.25) 

- KB2pfgD4 sin(02+Ocb+'Y) + (Ks, + Ks (02 - 9c)) - EKfrfFnz 

Friction tends to delay the valve closure. 

Now the case is considered that the angular disc position of the valve in the 
increasing flow is the same as that in the decreasing flow (01 = 02 = 0). Then the 

geometrical parameters KG1 = Kc2 = KG and KB! = Kg = KB. According to the 

power law formula, the coefficients Cl = C2 = C, if the Reynolds numbers Re, and 
Reg are in the same range. Due to hysteresis effects the hydrodynamic torques in the 
Equations (8.24) and (8.25) differ, which is revealed by the fact that v1 ; v2. 
Consequently the friction torques differ, which is denoted by Fnl ; Fn2. If it is 

assumed that F, 1= Fn2 = F,, the latter two equations yield after some manipulation: 
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Case 3: 

C it 
k1-k 

1 Pf 

2-k 
vt + 

2 

2-k 
-k V D3 = KGpmgD4 sin(9+9cg+"y) + 

(8.26) 

- KB pfg D4 sin (0 +Ocb +7) + (Ks + KS (0 - Or» 

and: 

2-k 2-k 
kl 1-k V1' - VI 3-k_ 

(8.27) 
Cµ 2pf 2D 

EKfrfFn 

In these equations vl is replaced by a fluid velocity in an increasing flow, introduced 

as vt, and v2 is replaced by a fluid velocity in a decreasing flow, introduced as v 1. 
In Equation (8.26) the effects of gravitation, buoyancy and springs are represented 
by a weighted or averaged fluid velocity, as if there is no friction: 

2-k 2-k 

v2-k _vt+ VI (8.28) 
2 

The hysteresis may now be quantified by a hysteresis factor, introduced as the 
ratio of the friction torque and the sum of the gravitational, buoyancy and spring 
torques, which are balanced with the (frictionless) hydrodynamic torque: 

2-k 2-k 

Y(O) =vt 2-k 
- V4 

2-k 
vt +V 

(8.29) 

This equation enables to estimate the friction torque as function of the valve disc 

position, if v? and vI are known from e. g. steady flow tests. In most practical cases 
the flow in the check valve is turbulent (k = 0). 

According to the Equations (8.26) and (8.27) the hysteresis factor is dependent 

on the valve disc position and valve diameter. In general the relative roughness of 
sliding surfaces decreases with increasing valve size. Therefore this factor is expected 
to decrease with increasing valve size, which may 'be described by (h < 0): 

Y(O) = yl (O) + y2(°) Dh (8.30) 
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8.5 Critical velocity and Reynolds number 

8.5.1 Critical velocity 

The critical velocity is introduced as a fluid velocity at which the check valve is 
just fully open (0 = 80). Since the hydrodynamic and damping coefficients are soft, 
dynamic parameters, the critical velocity is also a soft, dynamic parameter. In 

principle the critical velocity is dependent on the Reynolds and Acceleration numbers 
(or in a more general sense: on the history of the flow field). It thus is not easily 
defined or determined in an unambiguous way. This problem is further discussed in 

section 8.7.2. For practical reasons the critical velocity is defined as a steady- state 
fluid velocity (0 = 00,6 = 0,6 = 0, etc). 

Due to hysteresis effects three different critical velocities may be distinguished: 
1) The critical velocity in an increasing flow, denoted as v0 t: 
2) The critical velocity in a decreasing flow, denoted as vo I: 
3) An averaged critical velocity, denoted as v0: 

These three cases are described by the Equations (8.24) to (8.26), applied to the fully 

opened valve. The latter case gives: 

Case 3: 

2-k 2-k [Vo 
T +Coµý i 

pý-k 
2o 

D3-k = KGopmgD4 sin(Bo+°cg+'Y) 

- KBopfgD4 sin(00+Ocb+'Y) + (Ksc + Ks (O - ec)) 

(8.31) 
The average critical velocity is now introduced as: 

2-k 2-k 

V 2-k 
_ 

Vot + V04 
0 

2 

(8.32) 

The average critical velocity is thus defined as the fluid velocity at which the check 
valve is just fully open under steady flow and frictionless, valve conditions. In that 
sense it fully represents the net effect of gravitation, buoyancy and spring(s), and may 
be considered as a measure for the valve response. 
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8.5 Critical velocity and Reynolds number 

Scaling the critical velocity The average critical velocity vo can be used for 

scaling to e. g. other valve diameters or spring configurations, since friction effects 
are eliminated. A general expression for the relationship between the critical velocities 
of two geometrically similar check valves can be obtained from Equation (8.31). For 

many check valve types the gravitational, buoyancy and spring effects do not appear 
together. In those cases simpler relations can be found, as illustrated below. 

If spring effects play no role (e. g. swing type check valve) the critical velocity 
represents the gravitational and buoyancy effects only. In that case the relationship 
between the critical velocities of two geometrically similar check valves 1 and 2 is 

given by: 

µf1 
k 

Pf, 
1-k voý 2-k D1 

3-k 

µ f2 Pf2 v02 D2 

(8.33) 
KGopm, gD1 sln(9o+Býg+y) - KBopfIgD1 Si11(eo+Ocb+y) 

KGo pmt g D2 sin 60 + °cg +'y) - KBo pfi g D4 sin Deo + 0cb +, y ) 

If all the moving valve elements are submerged (e. g. sinking ball valve), the above 
equation simplifies to (KG = KB; 0 Cg = 0cb if homogeneous mass distribution): 

Vol 2-k 

_ 
µf, -k [pik Pmi I'pfi -1 D1 

l +k 
(8.34) 

v02 µfz pf2 pmt /pf2 -1 D2 

If gravitational and buoyancy effects play no role, the critical velocity represents 
the spring effects only. Now the relationship between the critical velocities of two 
geometrically similar check valves 1 and 2 is: 

2-k -k k-1 k-3 
yo1 

_ 
µfi pfi D1 

v02 µf2 
pf2 D2 

Ksc, + Ks, (e0 - ec) 

Ks +K5 2 
(00 -0c) 

(8.35) 
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If the preset spring torque is relatively small this may be approximated by: 

2-k -k k-1 k-3 
Vol µfß Pfý D1 's1 

(8.36) 
v°i [;;; ) pf2 D2 KS2 

When the (scaled) average critical velocity is known, the actual critical velocities 
in an increasing flow and decreasing flow can be determined by using the hysteresis 
factor (section 8.4). Substitution of Equation (8.32) in Equation (8.29) yields after 
some manipulation: 

vot2-k 
2-k 

+Y0) 
(8.37) 

voy2-k _ 
2-k (1 YO) 

8.5.2 Critical Reynolds number 

Based on the critical velocity, the critical Reynolds number is introduced as: 

Reo = 
pf v° D 

(8.38) 
µl 

Similarity of the critical Reynolds number is satisfied if: 

I -1 µfi Pfi I"oil ID1) 
=1 (8.39) 

ID; J 
For several valve types the ratio of the critical velocities is given in the Equations 

(8.33) to (8.36). These equations illustrate that similarity of the critical Reynolds 

number is not easily satisfied and can only be realized under exceptional conditions, 
e. g. with different fluids. 

In most practical applications the critical Reynolds number is of the order of 105 

or higher order, so that the critical flow is turbulent (k = 0). 
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8.6 Dimensionless valve equation of motion 

8.6 Dimensionless valve equation of motion 

In the development of a dimensionless valve equation of motion, average fluid 

velocities are considered, so that hysteresis effects can be excluded (section 8.4). 
Then the valve equation for angular motion (section 8.3) reduces to: 

(Kipm + KICAZpf + CA3pd Dye = 

CD, 
2PfV2D3 

+ CDi2 
2pfV0D4 - CD2 

2pfe2D5 
+ KVm(CAi+KP)PfD4 

ljl 
+ 

- KGp�zgD4 sine+Ocg+-y) + KBpfgD4 sin(O+OCb+-y) + 

- (Ks + KS (0 - 0v)) - CD3 2 Pd e2 D5 

(8.40) 

The critical velocity becomes (0 = 90,6 = 0,6 = 0, v= vo, dvldt = 0): 

CDo pfv°D3 = KG 
opmgD4 

sine°+eýg+ý) - KBopfgD4 sin(9°+ecb+'Y) + TSo 

(8.41) 

Elimination of the term gD4 from the Equations (8.40) and (8.41) and division by 
'h pf vö D3 yields after some manipulation: 

2 KI Pm 
+ KI CA2 

Pf 
+ 

Pd D2 CA3 
Pf vo 

22 

CD 
[vj 

+CD v D6 
_CD 

Db 
+2KV +KP 

Ddv 
+ vo 12 vo vo 2 vo m 

CCA 

y2 
dt 

0 

- 

[CDO l'sKG pmsn(0+ecg+ý, ) - KBpfsin(0+ecb+, y) + 2 pfyö D3 KG° pm sin(eo+ecg+-y) - KB'0pfsin(Bo+ecb+'Y) 

_ 

(Ks + KS (0 - ec» 
_C 

Pd D6 CD3 

2 p1 v0 D3 Pf VO 

(8.42) 
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Now the following dimensionless variables may be introduced: 

«1 =0; vl =v; 7-1 
t vo 

= 
vo D 

so that: 
da 

_D9 :; - 
(_ alb 

v 10 

d2a1 
(= äl) = 

D2 B 

dr 22 
1 VO 

(8.43) 

dvl 
_D 

dy 
(8.44) 

dTl v2 dt 
0 

The critical velocity, as measure for the valve response, and the valve diameter are 
now used to define a velocity and a time scale. 

As a next step the drag and added mass coefficients are replaced by power laws 

according to the Equations (8.8) and (8.19). The Reynolds numbers in these equations 
are converted to the critical Reynolds number, defined in Equation (8.38). With the 
dimensionless variables in Equation (8.43) this gives after some manipulation: 

2K Pm 
+K C1 

dial 
+C 

pd 1 dal q dal 
= t 

Pf 
1 22 IXi dTl 33 

Pf ýi drl drl 

Clk 
U2-k + 

C12 
v1-21 a1-21 _ 

C2 
ý2-m + 1 11 1m1 

T0 Re0 Reo 

l +n 

+2 Cl, KV vi 2n dvl 
+2 KPKv 

A, 
+ m dTl m dTl 

- 
Co 

- 
Tso KGpmsin(al+acg+-y)-KBpfsin(al+acb+'? ) 

Reö 1 pfvö D3 KGopmsin(ao +a cg +7) -Kß pfsin(ao +acb +'Y) 

_ 

(Ksc 
+ KS («1 - «cý) 

_ 
C3 µd 

p 
Pd 

lp&2 

1 

2 p1 v° D3 Re° [. j Pf 

(8.45) 
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8.6 Dimensionless valve equation of motion 

In this higher order, ordinary, non-linear differential equation the dimensionless 

angular valve disc position is described as function of a dimensionless time, with the 
dimensionless fluid velocity as boundary condition. The coefficients and powers are 
functions of the valve disc position. This dimensionless valve equation of motion is 

valid for ac S al 5 ao. 

In general the Reynolds powers k, 1, m and p in this equation may differ from 

zero. In that case the critical Reynolds number Reo as well as the ratios of the fluid 

viscosities µd/µf and fluid densities pd/p f must be similar, in order to ensure physical 
similarity. (Note that this condition for physical similarity is not equivalent with 
Reynolds similarity of the flow in the valve and damper. ) Only under these conditions 
the flow in the valve and damper can be considered apart, i. e. the flow in the valve 
may be turbulent, while the flow in the damper may be laminar or vice versa. 
However, as mentioned before, in common practice similarity of Reo is hardly or not 
satisfied (section 8.5.2). 

A more general application of the dimensionless valve equation is enabled by one 
or more relaxations. The ratio of the fluid viscosities µdI f vanishes, if the power p 
is zero. This implies that the flow in the damper is turbulent. The critical Reynolds 

number Reo vanishes, if the powers k, 1, m (valve) and p (damping) are zero. This 
implies that the flow in both the valve and damper is turbulent. 

The powers are relevant during all stages of closure and may be a function of the 
angular valve disc position. Therefore the flow should be turbulent at all valve disc 

positions, also when the fluid velocity is about zero (i. e. during flow reversal). The 
transition from a turbulent to a laminar pipe flow is not very likely here, since the 
time scale of closure is rather small. The stage of (active or effective) damping may 
be initiated from a stagnant damping fluid. In that case a transition from a laminar 
to a turbulent (damping) flow must take place. 

The above relaxations do not require that the Acceleration powers n, o and q are 
zero. However, if viscous effects play a role of minor importance (e. g. at higher fluid 

velocities and fluid accelerations), then these powers are expected to be zero too (see 

examples in section 5.4.3). 
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If all powers are zero, then Equation (8.45) reduces to: 

dcz 
2 

IKJf! 
+KJC22+C33f. 

ld 1_ 

Pf Pf drl 

Ci "i+ C12 v1 1- CZ ixi + 24 
m 

Cii +Kp) 
dr, 

+ 
i 

T'So KG pmsin(al +acg +, y) -KB pfsin(al +acb +f) 
CO 

Kp sin a +a +K sin a +a + ZP 
fVO D3 Go mo cg ý1'ý Bopf o cb ýý 

_ 

(Ksc + Ks (al - ac)) pa .2 Cil 2pfv0D3 Pf 

(8.46) 

About other time and velocity scales ..... 
The time and velocity scales which are introduced in Equation (8.43) are based on the critical velocity 

and valve diameter. In principle other time and velocity scales can be used to develop dimensionless 

valve equations. 

A typical time scale of the stage of active damping is the damping time. The damping time, however, 

is not a direct measure for the valve response and not relevant to undamped check valves. 

8.7 Initial and boundary conditions 

Self-actuating check valves operate without power supply and are primarily 

controlled by the fluid passing through. Therefore the initial and boundary conditions 

are determined by and may be fully described in terms of flow conditions. 

8.7.1 Boundary conditions (tb <ts tt) 

In the (dimensionless) valve equation of motion the fluid velocity appears as 
boundary condition. In general this boundary condition is described by: 

V =f(t) 
(8.47) 
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Figure 8.2 Closure behaviour of damped check valves 

Or in a dimensionless form: 

Ui =f (71) (8.48) 

Here the boundary conditions are described in a global form. The valve closure 
is assumed to be preceded by steady flow conditions. During closure two events are 
distinguished: 1) a stage of passive damping, denoted as the first event, and 2) a stage 
of active damping, denoted as the second event (figure 8.2). 

First event During the stage of passive damping Q. <t5 td ; ed <0s °b) 

the check valve is assumed to have a minor influence on the fluid flow. The valve 
closure is a result of flow changes which are imposed by the system. The system 
conditions are described in terms of pipeline configuration and transient conditions 
like pump trip, pump failure, etc. In first approximation the fluid velocity is assumed 
to change linearly in time: 
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Or in a dimensionless form: 

Vi 

V= Vb + 
dv 

dt(t 
- tb) 

=vb+D 
1dv T Tb 

Vo V2 
dt 

_`1) 0 

Where the (mean) initial flow deceleration is defined as: 

td 

dv 1 dv vd - vo dt_ 
dt td - to dt td - to 

a 

(8.49) 

(8.50) 

(8.51) 

The subscript - refers to the sign of the mean initial flow deceleration, which is 

negative during the first event of closure (vo > vd). 

Second event During the stage of active damping (td St< tc ; Oc <0s 0d) 

the flow is imposed by the combination of the valve and system. The damping time 

(type of damping) and system reflection time play an important role here. At the 
beginning of the second event the fluid velocity is per definition equal to vd. At the 

end of this event the valve is closed, so that the fluid velocity is zero. This leads to 

the following conditions (figure 8.2): 

t=td. V =Vd 

t=tc: v=0 

n dv dv 
dt dr 

_ (8.52) 

Analogous to the (mean) initial flow deceleration, as flow characteristic for the 
first event, the (mean) reverse flow deceleration may now be introduced for the 

second event: 

tc 
dv 1 dv Vd 

_ dt _ - dt + tc - td dt tc - td 

(8.53) 
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The subscript + refers to the sign of the mean reverse flow deceleration, which is 

generally positive during the second event (if vd < 0). The parameter gives global 
information about the damping time, but no details about the velocity-time history. 

This leads to the following dimensionless boundary conditions: 

Vd 
T1 = Td . vl =V 

0 

dvl D dv 
drl = v2 dt 

0 (8.54) 

71 = Tc : U1 =O 

and: 

dul 
=D 

dy 
drl v2 [ij+ [j+ 0 

(8.55) 

The undamped check valve has no stage of active damping. Nevertheless, the 
motion of the valve disc against the seat may be seen as damped motion. In that sense 
the second event of closure may be considered as a limit case with infinitesimal 
damping time, so that (dv/dt)+ -> oo. 

About alternative descriptions of the boundary conditions ... 
The velocity-time history may be described in several forms, e. g. by polynomials: 

ul (z1) = as + a1 -r 1+ a2 si + ... 
(8.56) 

Or by the time derivatives in a Taylor series: 

du, d2ul d3u1 

1 dz 
lz 

dT 
is 

However, in general an infinite number of terms are needed. 
Alternatively the velocity-time history may be described by a set of combinations of the fluid 

velocity and velocity gradient, which forms a trajectory in the v-dv/dt-plane: 

ID 
dui 

=O (8.58) v 1 2, di, 

The latter approach is used in the valve model for damped check valves (section 12.2). 
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8.7.2 Initial conditions 

The valve closure is assumed to be preceded by steady flow conditions, so that: 

Tl t Tb : U, = 
vb Al=0 (8.59) 

o 
duj 

The initial fluid velocity vb may be smaller or greater than the critical velocity vo. 
Therefore two cases must be distinguished: 

Ti t Tb : 

Vi <1. al = ab ; czl =0; 
dal 

=0 (a) 
T1 

Vl aao 1a=0 (b) dTl 

(8.60) 

If the valve is initially, partly open (vl < 1), the hydrodynamic torque balances the 

sum of the gravitational, buoyancy and spring torque, while there is no damping 

torque. Under these conditions Equation (8.45) holds. If the valve is initially, fully 

open (v1 ? 1) the hydrodynamic torque additionally balances the torque, exerted by 

the mechanical stop that restricts further opening. 

After the steady flow period, according to Equation (8.50), the initial unsteady 
flow conditions are described by: 

So that: 

Ti ' Tb : 

Vb dui D dv 
T1 y Tb vi v dT =2 [1j (8.61) 

01 vo - 

Vi <1. al = ab ; ixl =0; 
dal 

0 (a) 
T1 

U1 z1 al =a0 ;c =0 ; 
al 

= d0 (b) 
T1 

(8.62) 
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8.7 Initial and boundary conditions 

Consider the case that the valve is initially partly open (v1 < 1). Substitution of 
Equation (8.62. a) in Equation (8.45) leads to (o = 0): 

-2n 
Vb D 1dv l+n D [±v 

dczl 
Cl I KV 

m vo ("; i-ii_) + KP KVm 
vö dt 

dTl 
L 

KI 
Pf 

+ C22 
f 

(8.63) 

The four above-mentioned torques are absent here, since they are balanced, while 
the damping is assumed to be passive (C33 = 0). The power o must be zero, in order 
to obtain a finite value for the added mass coefficient CA2 if Ace --> 0 (section 5.4.3). 
Formally another solution exists: if the power o ;d0 then di 1ldT1 = 0. 

Now consider the case that the valve is initially fully open (vl z 1). Under these 
conditions the valve does not begin to close immediately, but at the instant that the 
fluid velocity equals the critical velocity: 

Vi y vo dvl 
_D 

dv 
vo dTl v2 dt 

_ 
Ti t To : (8.64) 

Cl =ao ixt =0 
dix 

;10 
dTl 

The critical velocity vo" is introduced here as a dynamic value, at which the valve 
starts closing. This parameter should be distinguished from the steady-state value vo, 
which is introduced in section 8.5. The question arises to what extent these two 
critical velocities coincide. 

About the steady-state and dynamic critical velocity ... 
Considering the valve equation of motion, it can be concluded that theoretically vo* must be greater 
than vo, since additional forces arise proportional to dv/dt (< 0), which tend to close the valve. 

For the measurement of the dynamic critical velocity the valve disc position must be known. The 

determination of vo' is complicated, due to the fact that dO/dv is zero when the valve starts closing, 

while fluctuations in the disc position signal and strong hysteresis effects (butterfly valve) may play 

a role. For these reasons the accuracy of v0 is rather limited. Thus far no reliable, quantitative results 

are obtained, although it can be seen that vo' is dependent on the Acceleration number. Further 

research is needed here. 
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The influence of the initial fluid velocity on the valve response is assumed to be 

small for fluid velocities greater than the critical velocity. In other words: history 

effects are assumed to be neglectable. In that case the initial fluid velocity may be 

replaced by, and is fully equivalent with the initial valve disc position. Thus either 
of these parameters may be used. 

Kruisbrink (1988) investigates the influence of the initial fluid velocity on the valve response for 

initial fluid velocities above the critical velocity. Experiments are performed with a piston check valve 

with initial fluid velocities, varying from once to twice the critical velocity. After the steady flow 

period the flow deceleration is about constant until valve closure. The test results are presented in 

dynamic characteristics and show that the valve response is hardly influenced by the initial fluid 

velocity. Only for small initial flow decelerations up to 2.5 m/s2 a small influence is observed. 

About history effects ..... 
In the research of Kruisbrink (1988) history effects are indirectly taken into account. They appear in 

the experiments but do not seem to have a significant effect on the motion of the valve disc. 

The kink in the fluid velocity-time history at the instant t= tb (figure 8.2) is not 
very realistic. In practice the transition from the steady flow conditions to the 

unsteady flow conditions takes place gradually. 

8.8 Fluid force and torque coefficients 

In this section the properties of the fluid force and torque coefficients in the valve 
equation of motion are studied. 

For this purpose the drag and added mass coefficients are considered in the 

general sense beyond that of the power law formulation. According to Equation (8.7): 

CD , CA =f (0, Re, Ac) (8.65) 

The Reynolds and Acceleration numbers of the flow in the valve and damper are 
given in Equation (8.9) and (8.20), respectively. These numbers may be converted 
to the dimensionless variables in the Equations (8.43) and (8.44), and the critical 
Reynolds number. This leads to: 

112 



8.8 Fluid force and torque coefficients 

valve: 

v fv D DO D dv D2B .. 
CD, CA -f. e1 ýP 

oA (8.66) 
vo Nf vo v2 

dt 
v2 00 

damping: 

CD , CA = ,fe, 
µd 

, 
Pd 

, 
pf v0 D, De, D2e (8.67) Af Pf µf vo vo 

In practice the valve disc position and motion cannot always be determined (e. g. 
in the case of membrane check valves, multi-disc and multi-ring check valves). The 

check valve is primarily controlled by the fluid passing through. Therefore it may 
be assumed that at a certain instant of time the position and the motion of the disc 

are fully determined by the history of the flow field. 

Consider the dimensionless valve equation of motion given in Equation (8.42). 
This implicit equation describes the dimensionless valve disc position as a function 

of time with the dimensionless fluid velocity as boundary condition. Let the boundary 

conditions be described by the Taylor series given in Equation (8.57). Then the 
following functional relationship holds: 

vD dv D2 dtv 8f CD.. CA.. 
... , vo v2 dt ' 

v3 dt2 ' ... (8.68) 

00 

From the combination of the Equations (8.65) to (8.68) it now follows: 

e D9 D20 µd Pd Re "" 
vD dv D2 dtv 

""" VO vö µf Pf vo vö dt yö d 

(8.69) 

Thus the Equations (8.66) and (8.67) may both be rewritten as: 

Ad Pd vD dv D2 dtv CD 
, 

CA =f-, -, Reo 
, ... ,-,,... (8.70) 

µf Pf yo v0 dt vö dt2 

In this relation the drag and added mass coefficients are written as implicit functions 

of the fluid parameters and flow variables. 
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Finally the step to the global force and torque coefficients is made. Hereto the 
hydrodynamic forces on the valve elements are written as (section 7.1 and 7.3): 

XH=CX 1 
2pfv 

2 D2 

122 YH=Cy2pfv D 

I23 TH= CT2pfv D 

A comparison with Equation (8.6) gives after some manipulation: 

angular motion: 

CT 
2=cv2+cv 

De _ cD2 De 
2 

T VO 
D1 T D12 

yo Vo vo 0o 66 

D226 
+2 Kvm (CAý +KPý 

D 
dt -2 KI CA2 D22e 

vo vo 

With the Equations (8.69) and (8.70) follows directly: 

(8.71) 

(8.72) 

Ad Pd vD dv D2 d 2y 
CT =f-,, Reo , ... ,-,,... (8.73) 

µf Pf vo yö dt yo dt2 

For confined fluids the fluid forces and torque are fully coupled (section 6.4). 
Therefore the above result also holds for the global force coefficients CX and Cy. 

The above result should be considered together with the (other) coefficients and 
parameter groups in the dimensionless valve equation of motion. In that sense the 
fluid parameters polpf, pd/pf and Re, may be excluded from the above functional 

relation and added to the parameter list. 
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The latter two steps lead to: 

Iv D dv D2 dtv CX' Y. Tf vo 0 
vö dt ' 

vö dt 2 ..... (8.74) 

In this expression the global force and torque coefficients are described in the form 

of series. 

About history effects ..... 
The above result is similar to Equation (7.26), which is developed from the idea that the history term 

may be represented by higher order terms (section 7.3.1). Although the history term is absent in the 

valve equation of motion, the history of the flow field is described here by the boundary conditions 

and in the form of a Taylor series. 

As alternative, the boundary conditions may be described by trajectories in the 

v-dv/dt-plane, as introduced in Equation (8.58). In that case holds along a trajectory, 
which is followed during closure: 

CX, Y, T =fv 
vo 'D 

dy 
v2 

dt 
0 

(8.75) 

This result is further used in the development of valve characteristics (chapter 11). 

About conservative systems ..... 
Consider a check valve in a pipe with an inviscid, stagnant fluid. This system is a conservative system 
(section 6.1), if friction effects in the valve and in the damping fluid are absent too. In that case history 

effects play no role. The fluid force and torque coefficients are now a function of the angular valve 
disc position only (section 6.2). Under such conditions only the instantaneous state of the system is 

relevant, and not the path (i. e. the history) which is followed from one state to the other. 
The question arises if the above still holds for an inviscid, fluid flow. Consider the check valve, 

now in a pipe with an inviscid, non-uniform parallel flow. The external force, which acts on this 

system due to the pressure gradient across the fluid, is proportional to the fluid velocity gradient dv/dt 

(section 6.7.3). Let this force be described by: 

Xp pf (Vb+Vf) Ö. %6) 
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Chapter 8 Valve equations 

where Vm and Vf are the volumina of the moving elements and the pipe fluid, respectively. 
The energy DE which is added to this system in the time interval [tt, t2] is: 

t2 12 

DE =f Xpv dt = pf (V. +Vf) fdv dt =2 pf (Vs, +Vfý ývZ 
-vl) (8.77) 

ti ti 

The equation illustrates that the path which is followed in the v-dv/dt-plane from state 1 to 2 is not 

relevant. As a next step it should be investigated, if the above also holds for the valve disc position. 
The latter is hard to prove, seen the implicit and non-linear character of the valve equation of motion. 
If so, then Equation (8.75) is not only valid along a trajectory, but more generally applicable. If 

friction and fluid viscosity play a role of minor importance, this inviscid fluid flow concept may even 
be applied to viscous fluid flows. In practice, however, most damped check valves are non-conservative 

systems, due to a strong dissipation of energy in the damping device. 

8.9 Physical similarity 

In this section the conditions for physical similarity between two check valves are 
summarized. 

In the dimensionless valve equation of motion (section 8.6) the dimensionless 

valve disc position is described as function of a dimensionless time: 

CY1 =f (TI) (8.78) 

A necessary condition for physical similarity is that all coefficients (i. e. dimensionless 

parameters or parameter groups, powers, Reynolds and Acceleration numbers) in the 
valve equation of motion are similar functions of the angular valve disc position or 
constants. Further the initial and boundary conditions must be similar. Usually a 
distinction is made between geometric, kinematic and dynamic similarity. 

Geometric similarity The following parameters ensure geometric similarity of 
both valve, counterweight, damper and free surface (involves [L] only): 

KI'Kvm'Kp ; KG 'KB; ao+acg+acbº7 (8.79) 

The geometrical parameters K may be a function of the angular disc position only. 
Note that geometric similarity is a necessary condition for similarity of the drag and 
added mass coefficients. 
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8.9 Physical similarity 

Kinematic similarity Two flows are kinematically similar (i. e similarity of 
motion), if the ratios of corresponding velocities and accelerations are the same 
throughout the flow field at corresponding times (e. g. Massey, 1971; Vennard and 
Street, 1982). 

To ensure kinematic similarity for the motion of the valve disc the boundary 

conditions, in terms of dimensionless fluid velocities, must be similar: 

vl =f (TI) (8.80) 

The following parameter groups help ensure kinematic similarity for the first event 
(involves [L, T] only): 

Vb 
,D 

dv 
vo v2 dt 

_ 
(8.81) 

0 

The first group in this expression is equivalent with ab/ao. 
The following parameter groups help ensure kinematic similarity for the second 

event: 

Vd D dv D 1dv 
(8.82) 

vo v2H Vo dt 
00 

Dynamic similarity The following parameter groups help ensure dynamic 

similarity (i. e. similarity of forces and torques) (involves [M, L, T] only): 

CC Pm"P"Re 
"µd" 

TS° Ts 
D, Ao, (8.83) 

Pf Pf µf Pfv0 22 D3 PfvO 3 D 

The preset spring torque KS, is represented by TSB since Ts = -KSc. The spring 
constant KS is fully represented by Tso, Ts and ao. The fifth group in this expression 
vanishes, if the flow in the valve and damper is turbulent. The sixth group vanishes 
if the flow in the damper is turbulent. 
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8.10 Review and conclusions 

A general valve equation of motion is developed for check valves with rotating 

elements, including inertia, hydrodynamic, gravitational, buoyancy, spring, friction 

and damping effects. The equation is based on the equation of motion for a rotating 
body in a confined, viscous fluid. The drag and added mass coefficients in the 

hydrodynamic torque on the valve disc are described by power laws. History effects 

are ignored. The hysteresis factor is introduced to represent friction effects. The 

critical velocity is introduced to represent gravitational, buoyancy and spring effects. 
In order to enable scaling, a weighted or averaged value of the critical velocity is 

introduced, such that hysteresis effects are eliminated. 
The valve equation for angular motion is described in a dimensionless form, 

whereby the critical velocity and valve diameter are used to define a velocity and a 
time scale. The (dimensionless) velocity-time history is used as boundary condition, 
and described in terms of global flow conditions, defined for the stages of passive 

and active damping. 

The (dimensionless) valve equation of motion shows, together with the initial and 
boundary conditions, which (dimensionless) variables, parameters and parameter 

groups are relevant to the check valve closure. In that sense they are used in a 
dimensional analysis (chapter 11). The dimensionless quantities show under which 

conditions physical similarity is ensured. A more general application of the 
dimensionless valve equation of motion is enabled, if the flow in the damper or the 
flow in both the valve and damper is turbulent. 

A dimensionless valve equation for check valves with translating elements can 
be derived in a similar way. For this purpose the equation of motion for a translating 
body in a confined, viscous fluid should be used. It can be shown that the results 

obtained for rotating type check valves are also valid for translating type check 
valves. Here the torques should be replaced by forces, while the angular position 
should be replaced by a linear one. 
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9 Pipe equations 

In this chapter the hydrodynamic effects of a (check) valve closure on the pipeline 
system are studied. The valve is considered as a system component without physical 
dimensions, and is described in terms of fluid velocities and pressure heads. 

The transient flow in the pipes is described by conventional waterhammer theory. 
It is assumed that the transient flow is dominated by fluid inertia, so that effects such 
as pipe friction may be ignored. The phenomenon of unsteady, initial flow conditions 
in pipeline systems is studied. Basic differential equations are derived for the transient 
flow in a pipe with a uniform flow deceleration as initial condition. The differential 

equations are used to describe the pressure head changes due to a valve closure under 
reflection free and reflecting boundary conditions. The theory is extended to pipe 
junctions and varying head boundaries. 

As a result (dimensionless) pipe equations are developed which describe the event 
of a (check) valve closure under unsteady, initial flow conditions. The equations show 
which (dimensionless) variables and parameters are relevant to the valve closure. As 
in the previous chapter, the results are used in a dimensional analysis to develop valve 
characteristics (chapter 11) and parameterized valve models (chapter 12). 

9.1 Basic differential equations for transient flow 

9.1.1 Continuity equation 

Consider the unsteady flow of a fluid in a tube. Due to the pressure surges 
associated with flow changes the tube wall may stretch and expand. The tube is 

assumed to be slender so that pressure and density variations over the cross section 
may be neglected (long wave-length approximation, X> D). By considering mean 
values of the fluid velocities over the cross sectional area of the tube the flow may 
be treated as a one-dimensional flow. 

The differential form of the one-dimensional continuity equation is: 

öpfA 
+ 

öpfAv 
=0 (9.1) 

at ax 
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Chapter 9 Pipe equations 

In terms of total derivatives, defined with respect to the motion of a fluid particle, 
this equation may be rewritten as: 

1dpf+1d0 
Pf dt A dt x (9.2) 

No restrictions are made with respect to the shape of the cross sectional area, so that 
the Equations (9.1) and (9.2) hold for converging or diverging tubes. 

The first term in Equation (9.2) accounts for the compressibility effects of the 
fluid. The term may be related to the pressure by the equation of state: 

APf 
= 

Pf (9.3) 
Op K 

Or, in terms of total derivatives: 

1dpf 
_1 

dp (9.4) 
dt K dt . 4) 

The bulk modulus of elasticity K is a function of the pressure and temperature. 
K may be approximated by a constant value if the temperature variations are small 

(isothermal conditions) and the pressure is much smaller than the bulk modulus of 
elasticity (p 4 K). In that case the use of the bulk modulus is limited to slightly 
compressible fluids. 

The second term in Equation (9.2) deals with the elasticity of the tube. The 
deformation of a tube is dependent on the pressure, wall thickness and elasticity, 
cross sectional shape and the support conditions of the tube. For prismatic tubes the 

cross sectional area is a function of the pressure only (Wylie and Streeter, 1993): 

dA 
= 

dA dp (9.5) 
dt dp dt 

Substitution of the Equations (9.4) and (9.5) in Equation (9.2) yields: 

1dp 11 
+ 

Kd4 
+vx =0 (9.6) 

K dt A7 
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9.1 Basic differential equations for transient flow 

The pressure wave speed can be derived to be (e. g. Wylie and Streeter, 1993): 

K 

c2 . 
Pf (9.7) 

1+KAA 
AAp 

For linear elastic fluids and pipe wall materials the pressure wave speed is constant 
(only if K is a constant). The term DA/Op makes the pressure wave speed dependent 

of the support conditions of the pipe (section 14.2). 
Substitution of Equation (9.7) in Equation (9.6) yields after some manipulation: 

dP 
+ p1 c2 vx =0 (9.8) 

Introduce now the piezometric head or pressure head H as: 

p= Pf8 (H-z) (9.9) 

With äz/öx = siny Equation (9.8) becomes: 

2 
Ht + [v H., -vsi n7 ]+- vX =0 

9 

(9.10) 

This is the one-dimensional continuity equation for slightly compressible fluids in 

prismatic tubes at any slope. The equation may be simplified under the assumption 
that the fluid velocity is much smaller than the pressure wave speed (v ß c), known 

as the acoustic approximation. In that case the convective terms (between square 
brackets) may be neglected. 

Note that cross sectional area changes are usually not considered under steady 
flow conditions (Hr = 0; vx = 0). In that case the steady flow in sloped tubes, with 
or without friction is not correctly described. This inconsistency disappears, when 
the convective terms are neglected. 
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Chapter 9 Pipe equations 

9.1.2 Pipe equation of motion 

Consider an unsteady fluid flow in a tube, which is inclined with the horizontal 

at an angle y. The forces on the fluid are surface forces (pressure and shear) and 
body forces (gravitation). 

The one-dimensional equation of motion is: 

pxA + 707rD + pfgA sin-y + pfA dt =0 (9.11) 

The shear stress To is assumed to be the same as if the flow were steady. It thus can 
be related to the mean fluid velocity by introducing the Darcy-Weisbach friction 

coefficient f 

To = Pf 
fy8y l 

(9.12) 

The equation is obtained from the Darcy-Weisbach equation Ep =f (LID) Shp? and 
a steady flow force balance, described by Op '/a 7rD2 = To irDL, as applied to a 
horizontal pipe of length L and diameter D. 

Substitution of the Equations (9.9) and (9.12) in Equation (9.11) yields after some 
manipulation the one-dimensional equation of motion: 

gHx+vt+[vvx]+f2ý =0 

(9.13) 

The equation is valid for the fluid flow in converging or diverging tubes at any slope. 
This equation is also commonly used in a simplified form, where the convective term 
(between square brackets) is neglected (see section 9.2). 

9.2 Method of characteristics 

The basic differential equations for the transient flow in a pipe are the equations 
of motion and continuity (section 9.1). These equations form a pair of quasi-linear, 
hyperbolic, partial differential equations in terms of two dependent variables, the fluid 

velocity and pressure head, and two independent variables, the distance along the pipe 
and time. The equations can be transformed into four ordinary differential equations 
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9.2 Method of characteristics 

by applying the method of characteristics. The equations, grouped and identified as 
C+-and C"-equations, are: 

C +-equations: 

gdH + 
dv 

c dt dt 
g vsina 
c =o 2D 

(9.14) 

C --equations: 

T= 
[v] 

-c 

T= [v] +c 

_gdH + 
dv 

+g vsins 
c Ti Ti 

IC 
=o 2D 

(9.15) 

The terms between square brackets vanish if the simplified forms of the respective 
equations of motion and continuity are used. This will be done from now on. 

Multiplying by c dt/g and integration of the simplified Equations (9.14) and (9.15) 

along the characteristic dx/dt = +c (from point A to P), and dx/dt = -c (from point 
B to P) yields, respectively: 

Hp+CQp= HA +c QA - f' 
ALAP QP I QA 

gA gA D 2gA2 

(9.16) 

Hp- c QP=HB -CQBf 
Pa QPI Q 

g gA D 2gA2 

(9.17) 

These two compatibility equations are the basic algebraic relations that describe the 
transient propagation of pressure and flow along the characteristics dx/dt =±c. In 

these equations the friction term is used in the form, as proposed by Wylie (1983). 
The equations are commonly used in waterhammer computer codes. 
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Chapter 9 Pipe equations 

9.3 Fluid inertia and pipe friction effects 

According to the simplified Equation of motion (9.13) the pressure head gradient 
along the pipe is determined by a linear fluid inertia effect and a non-linear friction 

effect. It is assumed that the transient flow is dominated by fluid inertia and that 
friction may be neglected: 

2 vt DI 
(9.18) 

In most practical cases f is of the order 0(10-2), v is 0(1) and D is O(10-1) or of 
higher order, so that the friction term at the left hand side is of the order 0(10'1). 
Thus, the inertia term at the right hand side should be 0(1) or higher. If friction may 
not be neglected and the fluid inertia and friction term are of the same order, then 
the fluid deceleration will generally be small. In that case the pressure surges induced 
by the check valve closure play no significant role, with the exception of long 

pipelines, where line packing and fluid inertia effects may become significant. 

Neglecting pipe friction, the Equations (9.16) and (9.17) reduce to (f = 0): 

H+Cv= constant along: 
d= 

+c (9.19) 
g 

H-9v= constant along: Ti = -c (9.20) 

These linear compatibility equations describe the relationship between the pressure 
head and fluid velocity along the characteristic lines dx/dt =fc. The constants are 
determined by the initial and boundary conditions. 

The frictionless form of the compatibility equations enables the development of 
scale laws for unsteady flow conditions since all terms are linear. 

9.4 Initial and boundary conditions 

Check valves operate in pipeline systems under typical conditions like pump trip, 
pump shut-off, pump failure, the closure of control valves or pipe rupture. The 

unsteady flow conditions are determined by system parameters like pipe lengths, 

pump inertia, the presence of air vessels, surge towers, etc. These conditions may 
be considered as the initial and boundary conditions of the valve closure. 
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9.4 Initial and boundary conditions 

9.4.1 Initial conditions 

In general the following condition holds along any path between two constant head 
boundaries bnd i and bndj: 

bndj 
ýH dz = constant (9.21) 

bndi 

To ensure a continuous function H(x), it is assumed that components along the path 
like control valves, etc. are not fully closed. Differentiation in time yields: 

bndj 
8f ýH dz =o (9.22) 

bnJd i 

As initial condition it is assumed that the tube does not stretch or expand (M/at =0 
and äA/at = 0). In that case the integral and differential operator in Equation (9.22) 
may be exchanged: 

bndj 

aaxdx _o (9.23) 
bJ at äx 

A solution which satisfies the above equation is: 

HXt =0 (9.24) 

This condition is further used as general initial condition. 
The equation states that aH/öx is constant in time, so that with constant head 

boundaries follows: 

LH7=0 
(9.25) 

This condition not only represents steady flow conditions, as will be shown later. 
The above pressure head conditions may be related to flow conditions via the 

basic differential equations for transient flow (section 9.1), since the initial conditions 
form a special solution of these equations. 
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Chapter 9 Pipe equations 

Converging or diverging tubes Consider a branched pipeline system consisting 

of converging and diverging tubes with constant head boundaries. Check valves or 
other system components may be regarded as short tubes as long as they are not fully 

closed. 

If the pressure head is constant in time then, according to Equation (9.3), also 
the fluid density is constant in time. With 3A/3t = 0, Equation (9.1) becomes: 

apf Q=o 
(9.26) 

äx 

Note that Equation (9.10) may not be used, since it is valid for prismatic tubes only. 
With öp/öt =0 and öplöt = 0, Equation (9.4) becomes after the substitution of 

Equation (9.9): 

Opi 
_ Pf 

2 

ap Pf g aH - sing (9.27) ax K Tx K ax 

The velocity gradient vt may be 0(10) in relatively short tubes, so that according to 
Equation (9.13) the pressure head gradient HX is 0(1). For slightly compressible 
fluids like water pf is O(103) while K is 0(109), so that öp/äx is 0(10"2). For pipes 

shorter than 1000 m the variation in the density is smaller than 1% and neglectable. 
In that case Equation (9.26) reduces to: 

aQ 
TX 

With the introduction of v= QIA Equation (9.13) may be rewritten as: 

(9.28) 

äH 
= _1 

1 öQ 
_Q 

öA 
+ 1QQ _ 

Q2 äA 
+fQIQý 

(9.29) 
äx gA Wt A2 at ý2 -X- A3 Ox 2D A2 

A system component may be described here by a loss coefficient, which is related to the (net) 

pressure difference across the component by (section 10.2.3): 

Op=& v (9.30) 
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9.4 Initial and boundary conditions 

This equation is similar to the Darcy-Weisbach equation (section 9.1.2) if Z is replaced by fefL/D. 

In that sense check valves or other system components may be described by an equivalent or effective 

pipe friction coefficient. Thus pipes and components can be treated in the same way. 

According to Equation (9.24) follows with öA/at =0 and aQ/ax = 0: 

aQ + 1-212 aA +fQIQI= C2 (9.31) at A3 ax 2D A 

where c2 is an integration constant. 
An approximate solution of the above equation is (f = 0): 

aQ 
= constant Hr 

(9.32) 

About other solutions ..... 
A trivial solution, known as the steady-state condition, is: 

QQ_ aQ Q2 aQ (9.33) at =0A c2 2D A Az ax 

Other solutions exist for f ;d0. Hereby a disctinction can be made between c2 <0 (tangential 

functions), c2 =0 (reciproke functions), and c2 >0 (exponential functions). The solutions for Q(t) 

show in how far öQ/at varies in time, and may be approximated by a constant. 

Neglecting the convective term and assuming that friction effects in the pipes and 
components are relatively small, the initial conditions become: 

aQ 
- constant ; 

aH 1 öQ 
; 

öH öQ 
_ öt ax TA Wt Wt 'Tx 

(9.34) 

These unsteady, initial flow conditions are valid for an arbitrary pipeline system with 
converging or diverging tubes, including system components like check valves, etc. 
Note that pump inertia effects caused by e. g. pump trip are not described. 
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Chapter 9 Pipe equations 

Prismatic pipes If cross-sectional area variations due to the initial pressure head 

gradient along the pipe are not considered, the initial conditions for prismatic pipes 
directly follow from Equation (9.34) as: 

av 
= constant ; 

ax 1av; aH 
_0; 

av 
=0 at ax 9 at at ax 

(9.35) 

These initial conditions are consistent with the simplified form of the transient 
equations as given in Equations (9.10) and (9.13), if pipe friction effects are ignored. 

9.4.2 Boundary conditions 

Typical boundary conditions under which check valves operate are: 

- upstream reservoirs and pumps 

- downstream reservoirs, air vessels, surge towers 

- parallel pumps 
Although the pressure head at these boundaries may vary, in the first instance the 
boundary conditions are simplified to (upstream and downstream) constant head 
boundaries. Pipe junctions and varying head boundaries are treated in section (9.7). 

Within the boundary conditions two cases are distinguished: reflection free 
boundary conditions and reflecting boundary conditions. 

Reflection free boundary conditions In general a (check) valve may induce 

pressure waves, which may reflect at e. g. reservoirs, air vessels or pipe junctions. 
If these reflected pressure waves arrive at the valve after closure (trefl z tc), the 
motion of the valve disc is not influenced by reflections of pressure waves. 

Let the reflection time of pressure waves or pipeline period 2LIc be introduced 

as the time increment between the initiation of a pressure wave (at instant td) and the 
arrival of the reflection wave (at instant t,,, , fl), so that t,,, fl - td = 2LIc. 

The reflection free boundary conditions are now described by: 

tc - td S 
Hu 

A tc - td SL (9.36) 
Cu Cd 
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9.5 Valve closure under reflection free boundary conditions 

Reflecting boundary conditions If the reflected pressure waves arrive at the 

valve before closure (t,. efi < tc), the motion of the valve disc is influenced by reflec- 
tions of pressure waves. 

The reflecting boundary conditions are described by: 

tý - td > 
2Lu 

V tc - td >d (9.37) 
Cu Cd 

9.5 Valve closure under reflection free boundary conditions 

Consider the closure of a (check) valve in a flow with a uniform flow deceleration 

as initial condition, and under reflection free boundary conditions. For these flow 

conditions basic differential equations are derived in Appendix B. 1. The relationship 
between pressure head and fluid velocity at any point along the prismatic pipe is: 

C Hrr tc vrr =0 

(9.38) 

The positive and negative signs in this equation are valid at the initial, upstream and 
downstream side of the valve, respectively. 

About the sign convention ... 
The sign convention introduced here is: 

upper sign = valid at upstream side (9.39) 
lower sign = valid at downstream side 

Integration of Equation (9.38) yields: 

aH ax 
_c 

av 
_ 

av (9.40) 
ýt - at g ýt ät 

Note that (Mat); =0 as initial condition (section 9.4.1). 
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Chapter 9 Pipe equations 

The pressure head changes are now described by: 

t 
OH(t) = 

aä dt d 

d 

t 
= T- c 

at ät 
_ 

dt (9.41) 
8J t-td 

(t - td) v(td) - 1&ittd 8 

The equation describes the changes of the pressure head due to changes of the fluid 

velocity gradient. The fluid velocity v(td) represents the value at the instant td, at 

which the flow deceleration öv/öt starts to deviate from its initial value. Due to the 
fact that the pressure wave speed has a finite value, the instant td and the fluid 

velocity v(td) will vary along the pipe. 

About other relations ... 
The relationship between the pressure heads in two points along the pipe is given in Appendix B. 1.2. 

The relationship between the fluid velocities in two points along the pipe is given in Appendix B. 1.3. 

The equations are of interest for experiments, since they relate measured pressure heads or fluid 

velocities (at some distance from the valve) to the pressure heads or fluid velocities at the valve. 

Thus far the equations are valid at any point along the (infinite) pipe. Hereafter 

only the pressure head changes at the valve will be considered. For this purpose vd 
is introduced as the fluid velocity v(td) at the valve. The value may now also be 

regarded as the fluid velocity at which the damping of a check valve becomes active 

or effective. In most cases this takes place after flow reversal, so that vd <0 and 

may be introduced as a reverse flow velocity. 
Since variations along the pipe (x-direction) are no longer considered, the partial 

derivatives are replaced by total derivatives. The initial fluid velocity gradient at the 

valve may now be replaced by the (mean) initial flow deceleration, which is already 
introduced for check valves in section 8.7: 

av 
_ 

dv 

tar r=: d 
dr 

_ 

(9.42) 

Two cases are distinguished now: the pressure head changes, which are induced 

at the (check) valve, during closure and after closure. 
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9.5 Valve closure under reflection free boundary conditions 

During valve closure The pressure head changes during valve closure directly 
follow from Equation (9.41). In a dimensionless form this yields: 

gzH(t) = v(t) 
_1_ 

dv (t - td) 
(tdSt<tc) (9.43) 

CVd Vd dt 
_ 

Vd 

The pressure head changes during valve closure are determined by the reverse flow 

velocity vd, the initial flow deceleration (dv/dt)_ and the instantaneous fluid velocity. 
For check valves the character of the velocity-time function v=f (t) is dependent on 
the type of damping. 

After valve closure Assuming that the valve does not reopen after closure 
(v = 0) Equation (9.41) becomes: 

ge(t) =1+ 
dv (t ' td) 

(t > t) 
(9.44) 

CVd dt Vd 

The velocity-time history in the time interval [td, tj is not relevant anymore. This 
implies that the pressure head changes due to the closure of damped and undamped 
check valves are equal, if the same fluid velocity vd and instant t are considered. In 

that respect a damping device is not very useful, when the closure takes place under 
reflection free conditions. 

Equation (9.44) may now be split up as: 

g AH(t) 
=1+ CVd 

v d 
+ dt 

- Vd 
dv 
dt 

_ Vd 
(9.45) 

With the (mean) reverse flow deceleration in the time interval [td, tc], already 
introduced in section 8.7, Equation (9.45) may be rewritten as: 

t g°H(t) =1- dv dv dv (9.46) 
CVd dt 

- 
t-aij+ dt Vd 

The pressure head changes due to valve closure are proportional to the initial flow 
deceleration (dv/dt)_ and the fluid velocity yd and inversely proportional to the mean 
reverse flow deceleration (dv/dt)+. The first term at the right hand side of this 

equation describes the pressure head changes at the instant of closure, the second term 
the additional changes after closure. After valve closure the pressure head changes 
linearly in time and proportionally to the initial flow deceleration. This phenomenon 
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is attributed to the inertia of the adjacent fluid columns, which continue to decelerate 

after valve closure. It should not be confused with the phenomenon of line packing, 
which is the result of friction effects. 

About special cases ... 
For undamped check valves follows after the instant of closure (td = tc so that (dv/dt)+ - co): 

tgAH(t) =i+ 
(dvl t t` (t 2 r, ) 

(9.47) 

cvd dtJ_ Vd 

For damped check valves follows at the instant of closure: 

tg 
AH(r, ) (9.48) 

cvd l dt J_ dr 

For undamped check valves follows at the instant of closure: 

tgAH(t) 
CVd 

(9.49) 

The latter equation is the equivalent of the well-known Joukowsky equation, after Joukowsky (1898). 

The Joukowsky equation describes the pressure surges due to a gradual, reflection free valve closure 

under initial, steady flow conditions. However, the above equation is the result of an instantaneous 

valve closure under initial, unsteady flow conditions. The Joukowsky equation directly follows from 

Equation (9.46) as a special case, by imposing (dv/dt). = 0. In that sense Equation (9.46) may be seen 

as an extension of the Joukowsky equation. 

The latter two equations show that the pressure head changes at the instant of closure are smaller 

in the case of undamped check valves, if vd is equal in both cases. However, in general the vd of a 

damped check valve differs, since the damping becomes active before closure. 

The equations illustrate that undamped valves may be considered as a special case of damped 

valves. 

9.6 Valve closure under reflecting boundary conditions 

Consider the closure of a valve in a pipeline system without pipe junctions and 

with upstream and downstream constant head boundaries. The initial flow deceleration 
is assumed to be constant. The flow deceleration at the valve starts to deviate from 
its initial value (dv/dt)_ at the instant t= td when v= vd. 
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9.6 Valve closure under reflecting boundary conditions 

The relationship between the pressure head and fluid velocity at either side of the 

valves is given by (Appendix B. 2): 

R MI(t) =V(t) - Vd - 
dv 

-(t 
- td) + 

00 

+2 (-1)` [ v(t-i2L/C) - Vd ] q(t-td-i2L/C) + (9.50) 
i=1 

-2 (-1)i 
dV [ t-td-l2LIC ] c(t-td-l2LIc) 

i=1 dt 
- 

0 ifys0 

where: 0(y) ={ 
1 ify>0 

The first three terms at the right hand side of this equation form the solution under 
reflection free conditions (see Equation (9.43)). The other terms describe the effects 
of reflections and show that the valve closure is system dependent now. 

The equation may be written in a dimensionless form as: 

gMH(t) _ v(t) 2LIc dv t_ td 
+ CVd Vd Vd dt 

- 
2L/c 2L /c 

[vt-ia/c) 

_ 
(9.51) 

+2E (-1) 1 e(t-td-i2L1c) + 
i=1 Vd 

Co 2LlC td 

LlC 2LlC 
i o(t-td-i2L1c) -2 (_1)' 

[dt]- 
2 Vd 

Thus, the following dimensionless variables are introduced: 

V_t U2 __ Vd 
T2 

2L /c 

1 See sign convention in Equation (9.39). 

(9.52) 
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Equation (9.51) may now be rewritten as (Td = td /(2L/c)): 

gOH(2L1c72) [du21 
= U2(2L/cr2) -1- (72 - Td) + 

CVd dT2 
_ 

00 
+2E (-1)' [U2(2LIC(72-i» 

i=1 

Co [du21 
i=1 dr2 

- 

[T2-Td-1 ] 0(T2-7d-i) 

(9.53) 

Taking into account the sign convention, this dimensionless equation is valid at either 
side of the valve. Therefore a distinction must be made between the upstream and 
downstream reflection time. After valve closure (v = 0) the function has a periodical 
character with a period T2 = 2. 

As an example the equation yields for 2< r2 - rd 5 3: 

gAH(214ct2) 
- 

v(2L/cs2) 
- 

2v(2I4c(T2-1)) 
+ 

2v(21Jc(r2-2)) 
+ 

C Vd Vd Vd Vd 
(9.54) 

-1-2uc(tl_ z2 
d 

and for 3< T2-rd S 4: 

gE H(2L/c'r2) 
- 

v(2L4c z2) 
- 

2v(2L/c (t2-1)) 
+ 

2v(2L/c (s2-2)) 
+ 

CVd Vd Vd Vd 

(9.55) 

- 
2v(2L/c)(t2-3) 

+1+ 
214c 4 

vd Vd 

(i)- ý2- ) 

About special cases ... 
For undamped check valves at the instant (r2 - rd) = 1, at which the first reflected pressure wave 

arrives at the valve (rd = rc; rZ rc: v= 0): 

gAH(2uc r2) 
_ 

2I4C dv 
CVd V 

1d (dt) (9.56) 
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9.7 Pipe junctions and varying head boundaries 

Analogous to the initial flow deceleration, the dimensionless form of the (mean) 

reverse flow deceleration is: 

due 
_ 

2LIc dv (9.57) 
dr2 Vd dt 

4- 

1 

The importance of the above analytical equations must be found in the fact that 
they show which parameters are relevant to the valve closure under reflecting 
boundary conditions: 

2LIc dv 2LIc dv g_H (9.58) 
Vd dt 

-' Vd dt +' CVd 

In this respect the equations are used in a dimensional analysis (chapter 11). 
The question arises whether and under which conditions the above sequences can 

be described in the form of mathematical functions. 

9.7 Pipe junctions and varying head boundaries 

Thus far a pipeline system is considered without pipe junctions and with constant 
head boundaries. In this section the theory is extended to pipeline systems with 
junctions and varying head boundaries (e. g. air vessels, surge towers). 

9.7.1 Pipe junctions 

In case of pipe junctions the reflection times of all pipe sections at both the 
upstream and downstream side of the valve play a role. For M pipe sections this leads 
to a series of M-1 additional dimensionless groups: 

2LIlc1 
2Ljlcj 

(i,. 1 E N) (9.59) 

Consider a pipe junction between two pipe sections. A pressure wave (Hw - H) 

and coupled flow wave (QK, - Q) are approaching the junction from the downstream 

side. The reflected pressure and flow wave, as derived from the compatibility 
equations without friction term, are described by (e. g. Wylie and Streeter, 1993): 
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Hý -Ho 
_2 Hw - Ho 

1+ c2 /gA2 (9.60) 

cl /gAI 

and: 
Qj-Q0 2 
QQo 

1+ cl/gA1 (9.61) 

c2 /gA2 

The index 0 refers to the initial, steady flow conditions, while the indices 1 and 2 

refer to the pipe sections upstream and downstream of the junction, respectively. The 

parameter c/gA is known as the characteristic impedance. Similar equations hold for 

the transmitted waves. 
Note that for a flow with constant initial flow deceleration the situation is more 

complex, since in that case öQ/at plays a role, while öH/öx differs from zero. 
However, under these conditions the above equations still hold. This can be seen by 

restricting the considerations to the vicinity of the pipe junction. This can be achieved 
by imposing the limit At -)- 0 on the equations, so that the term öQ/öt At vanishes. 

The above equations show that a necessary and sufficient condition for similarly 
shaped reflection waves is: 

A1lcl 
= Cjj (i, j EN) 

Aj /cj 
(9.62) 

where C; ý are constants. Note that the characteristic impedance as such is not relevant. 
For branched pipeline systems similar conditions hold. 

9.7.2 Varying head boundaries 

Thus far only constant head boundaries are considered. Neglecting pipe friction 

effects the pressure head Hb, d at the boundaries can be related to the initial, flow 

gradient 8Q/at (section 9.4.1). For check valves these conditions are described in 

terms of a (constant) initial flow deceleration (dv/dt)_. The above parameters are thus 

equivalent and either one of them can be used. 

For varying head boundaries additional information is needed to characterize the 
boundary. It is presumed that this may be done by the following general condition: 

Hbnd 
= .f 

(T2) Hbnd (Tb) (9.63) 

136 
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where Hbnd(Tb) is the initial pressure head at the boundary. The dimensionless time 

T2 can be based on the reflection time of any pipe section as long as Equation (9.59) 
is satisfied. The correctness of this group is proved in the numerical validation 
(section 15.1). The group allows the development of dynamic scale laws for system 
components like e. g. air vessels, pumps, etc. The above condition must be satisfied 
in order to ensure the similarity of the unsteady flow conditions. 

A consequence of allowing varying head boundaries is that the flow deceleration 

may already vary during the first event of closure, and that reflections of pressure 
waves may play a role. Nevertheless, the varying head boundaries may still be 

represented by the initial flow deceleration, if the mean value of the initial flow 
deceleration is considered. In that case the groups are still equivalent and either of 
them may be used. 

9.8 Rigid column theory 

For the transient flow in a pipe the relationship between the fluid velocity and 
pressure head is described by the continuity equation and the equation of motion 
(section 9.1). The simplified forms of these equations are rewritten as: 

1 +v 
cx 

=0 (9.64) 

gHx+vt+f2ý =0 (9.65) 

It is assumed that the fluid moves as a rigid column, so that vx 0 along the pipe. 
According to equation (9.64) this approximation is allowed if the pressure head 

changes in time are relatively small, so that gHt /c2 < 1. Note that this form of the 

continuity equation is only valid for prismatic tubes (section 9.1). Under these 
conditions Equation (9.65) can be used in an uncoupled mode. 

In section 9.4.1 it is shown that the rigid column theory may also be applied to 
converging or diverging tubes. In that case, according to Equation (9.1), the rigid 
column condition vX =0 should be replaced by Qx = 0. 

The rigid column theory may be applied to estimate the unsteady, initial flow 

conditions. Consider a serial pipeline system, consisting of prismatic pipe sections 
and a (check) valve between constant head boundaries. The pipe flow is described 
by rigid column theory, and obtained from the integration of Equation (9.65). The 
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flow in the valve is described by the momentum equation (section 10.2.3). 
This leads to: 

Hbndj - Hbnd2 - 
LiQ 

+A 
L` Q Q2 

+Q(Q 
(9.66) 

i=1 gAý dt i=1 Di 2gAi 2gA2 

The equation describes the head difference between two boundaries, due to fluid 
inertia and friction effects in the N pipe sections and head losses across the valve. 
Usually the pipe friction effects and head losses across the valve are relatively small 
(at least for higher velocity gradients), and may be neglected. Pump inertia effects, 
which may lead to a significant reduction of the flow deceleration, are not considered 
here. This leads to: 

dv Hbnd, - Hbnd2 

dt 
AE 

Li (9.67) 

9Ai 

In this equation the initial flow conditions, expressed as a (mean) initial flow 
deceleration, are linked to the boundary conditions, expressed by constant head 
boundaries. Thus, it is shown that either of these parameters may be used. Preference 
is given to the initial flow deceleration, since it is physically more directly related 
to the check valve (constant head boundaries are located at some distance from the 

check valve). Note that, under the above conditions, the initial flow deceleration is 

a system parameter and not a valve parameter. 

The rigid column theory may be applied to calculate the pressure head changes, 
induced by the check valve, if the second event of closure takes place relatively slow 
((ta - td) > 2L/c). This results in an approximate analytical solution, whereby pipe 
friction is ignored (f = 0): 

AH(t) =Tgff ii1 
[dv]_l 
dr 

(9.68) 

where L is the distance from the check valve to the upstream/downstream boundary. 

Note that the rigid column theory is inconsistent with waterhammer theory, since 
the pressure wave speed plays no role here. In that respect no additional scale laws, 

such as similarity of (Li/Ai)/(Lj/Aj) or Li/Lj, may be derived from the above equations. 
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9.9 Review and conclusions 

Conventional waterhammer theory is applied to the transient flow in a pipeline 
system with unsteady, initial flow conditions instead of the usual steady, initial flow 

conditions. The transient flow is assumed to be dominated by fluid inertia effects, 
so that non-linear effects as pipe friction may be neglected. Thus the development 

of scale laws for unsteady flow conditions is enabled. It is shown that under such 
conditions a constant, initial flow acceleration or deceleration does exist in pipeline 
systems with prismatic tubes and constant head boundaries. For pipeline systems with 
converging and diverging tubes, including system components these conditions can 
only be realized in approximation. 

Basic differential equations are derived for the transient flow in a pipe with 
constant initial flow deceleration and reflection-free boundary conditions. The second 
order differential equations are applied to describe the closure of a damped check 
valve under reflection-free boundary conditions. In these analytical expressions the 

classical Joukowsky equation is covered and extended to unsteady flow conditions. 
Undamped valves may be considered as a special case of damped valves. In addition 
the closure of a damped check valve under reflecting (constant head) boundary 

conditions is described in an analytical way. In that case the valve closure is system- 
dependent. 

The closure is accompanied with pressure surges. Under reflection-free boundary 

conditions these pressure surges are proportional to the initial flow deceleration, the 
fluid velocity at which the pressure surge is initiated (damping becomes active) and 
the time interval during which the damping is active. Under these conditions a 
damping device is not very useful. Under reflecting boundary conditions the pressure 
surges are also influenced by reflections of pressure waves. 

The pipe equations are described in a dimensionless form, whereby the fluid 

velocity at which the pressure surges are initiated, and the reflection time are used 
to define a velocity and a time scale. 

The dimensionless pipe equations show in a formal way which dimensionless 
(groups of) parameters are relevant to the check valve closure in pipeline systems, 
during the stage of active damping. In that sense they are used in the dimensional 

analysis. 

The theory may also be used to describe the closure of control valves under 
unsteady, initial flow conditions. 
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10 Coupling of pipe and valve equations 

Thus far the check valve and pipeline system are considered separately. The fluid 

velocity at the check valve is considered as a boundary condition in both the valve 
equations (chapter 8) and pipe equations (chapter 9). In this chapter the check valve 
and pipeline system are considered together. 

For this purpose the integral form of the momentum equation is applied to the 
check valve as a short-length component. To describe the interaction between the 
check valve and pipeline system, the (dimensionless) valve and pipe equations are 
coupled via this integral momentum equation. This coupling results in an additional 
"coupling" parameter, which is used in the dimensional analysis (chapter 11) and 
parameterized valve models (chapter 12). The momentum equation is further used 
in the processing of the experimental data, to convert heads measured at some 
distance from the valve, to net values at the valve (chapter 13). 

The check valve is considered as a short-length component in a pipeline system 
with a slightly compressible fluid. The valve is subjected and responds to its upstream 
and downstream flow conditions. A control volume is introduced, which is relatively 
short and fixed to the pipe (figure 10.1). The valve and adjacent pieces of pipe are 
assumed to be rigid bodies, so that they have no storage capacity. The valve closure 
is assumed to be slow, relative to the system reflection time. Thus the control volume 
is fixed in space. 

Control Volume 

Xf 
Pl vi p2 

IvI 

Control Surfoce 

x 

Figure 10.1 Check valve in short pipe 

V2 
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10.1 Conservation of mass 

The integral form of the continuity equation is: 

aý v. ndA=0 
a cpfdV+ Jpf _ 

vs 
(10.1) 

The equation describes the rate of change of mass within the control volume CV, due 

to the exchange of mass via the control surface CS, where n is the outward normal. 
The only exchange of mass takes place via the inlet and outlet surfaces. It is 

assumed that the mass flow entering the CV is equal to the mass flow leaving the CV. 
This approximation is allowed if the CV is relatively short so that density variations 
due to transients or pressure surges may be neglected. In that case the continuity 
equation reduces to: 

a Pfau =o r (10.2) 
v 

10.2 Conservation of momentum 

The integral form of the momentum equation is: 

Jspf a £'""' 

The equation relates the rate of change of momentum of the system to the external 
forces acting on the system. 

10.2.1 Change of momentum 

The exchange of momentum takes place via the inlet and outlet surfaces only. It 
is assumed that the momentum entering the CV is equal to the momentum leaving 

the CV. This approximation is allowed if the CV is so long that the velocity profile 
is able to recover after the fluid has passed the valve disc. In that case the momentum 
equation reduces to: 

pfvdV = ET (10.4) 
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10.2 Conservation of momentum 

About unsteady flow velocity profiles ..... 
It is expected that under unsteady flow conditions, the fluid velocity profiles need less length for 

recovery. The inertia effects, which dominate above viscous effects, tend to flatten the profiles. This 

phenomenon is confirmed by Van de Sande et al. (1980), who measured fluid velocity profiles in 

accelerating pipe flows from initial, stagnant flow conditions. The profiles were measured in time, 

using a Laser Doppler Anemometer. The results showed, both during the laminar and turbulent 
development stages, much resemblance with a plug flow. 

The momentum equation in axial direction may now be written as: 

TI 
j1vcosa dA dx =x (10.5) 

xA 

where a is the angle between the velocity vector and the axial direction. 
The volume flow in axial direction is: 

Q=Jv Cosa dA (10.6) 

Neglecting the density variations over the cross section gives: 

TJ pf Jvcosa dAdx =a JPJQ dx = EX (10.7) 
xAX 

If the CV is fixed in space the integral and differential operator may be 

exchanged: 

apf Q 
dx =FX at 

(10.8) 1 
x 

It is assumed that the density variations due to pressure surges may be ignored. 
Further it is assumed that the length L of the CV is so small that Qz =0 and thus 
QXt =0 (rigid column), which leads to: 

pfLdQ=EX 

(10.9) 
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10.2.2 External forces 

The external forces acting on the control volume arise from surface stresses 
(normal a and shear r) and distributed (body) forces B per unit volume: 

ET= [adA 

s+ 

JsT dA + fdv (10.10) 

The surface stresses act on the inlet, wall, disc and outlet surface of the CV. The 

normal and shear stresses on the CS are equal to the normal and shear stresses exerted 
by the fluid inside the CV, but of opposite sign. Differences between the normal 
stresses and fluid pressures are ignored. Only forces in axial direction are considered. 

Inlet and outlet The pressure distribution across the inlet and outlet is assumed 
to be uniform. The axial component of the normal stresses is now described by: 

1 ax dA +f ax dA = P1A1 - P2A2 (10.11) 
inlet outlet 

Introduce the pressure head H as: 

P= Pfg (H-z) + Patm (10.12) 

It is assumed that the inlet and outlet areas are equal. In that case the substitution 
of Equation (10.12) in Equation (10.11) yields: 

J aX dA +J vdA = pfgA (Hl -H2) + pfgAL 
(z2 -zl 

nL inlet outlet (10.13) 

= p1gA (H1-H2) + pfgAL sing 

Where -y is the inclination angle of the pipe centre line with the horizontal. 
The inlet and outlet surfaces are normal to the axial direction, so that the shear 

stresses do not contribute to the axial component of the surface forces. 

Wall It is assumed that the axial component of the net pressure force on the wall 
is relatively small and neglectable. Thus the axial component of the normal stresses 
on the CV is: 
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IadA 0 (10.14) 
wall 

This generally holds for cylindrical valve bodies. It also holds for axi-symmetrical 
bodies if the pressure gradient along the non-cylindrical part of the CV is relatively 
small. Note that the flow in the "dead chamber" around the disc is characterized by 

recirculation zones in which the pressure is about constant. 
The shear stresses on the CV due to wall friction are approximated by: 

f Tx dA -To wDL (10.15) 
wall 

Where ro is an average wall shear stress acting on a cylinder with an equivalent wall 
roughness, diameter D and length L. The Darcy-Weisbach friction coefficient f is 
defined as (section 9.1.2): 

To = Pf .f 
QI QI 

(10.16) 
8A 

Substitution of Equation (10.16) in Equation (10.15) yields: 

rTxdA = -f 
L PfQI QI 

(10.17) 
D 2A 

wall 

Disc The surface forces on the CS are equal to the fluid (or: hydrodynamic) 
forces on the disc, but of opposite sign. Thus, the axial component of the surface 
forces may be described by: 

isc 
ax dA + 

isc 
Tx &I = -XH (10.18) 

The fluid forces may be described in the global form of the fluid equations, as 
introduced in chapter 7. The axial component of the hydrodynamic force on the 
moving valve elements is given by (section 8.8): 

XH=CX2pfQ2 (10.19) 
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Distributed forces Distributed (body) forces generally arise due to gravitational, 
electrical and magnetic fields. Here only gravitation is taken into account. The axial 
component of the gravitational force is: 

BxdV 

.- JjP1gsindAd r 
v xA 

(10.20) 

It is assumed that the volume of the non-cylindrical part of the CV is about equal to 
the disc volume. In that case the fluid mass is more or less equally distributed along 
the x-axis. Now Equation (10.20) becomes: 

f BxdV = -pfgAL sin-y 
v 

(10.21) 

Sum of external forces Summation of the Equations (10.13), (10.17), (10.18) 

with (10.19), and (10.21) gives for the axial component of the external forces: 

EX = p1gA(H1- H2) -f pfQ2 - CXpfQZ 
2A 2A 

10.2.3 Momentum equation 

(10.22) 

Substituting Equation (10.22) in Equation (10.9) yields the momentum equation: 

Q2 2 
pjL 

t= 
pfgA (Hl -H2) -f 

L 
Pf - Cx pf 

Q (10.23) 

Or: 

Hl -H2 = 
gA dQ 

+f 
L Q2 

2+ 
CX Q22 (10.24) 

2gA 2gA 

This equation describes the pressure head difference across the CV due to 1) fluid 
inertia, 2) wall friction, and 3) the fluid forces on the valve disc. 

Prost (1992) investigates the behaviour of control valves under dynamic operating conditions. He 

measures the head loss and torque of a butterfly valve during linear opening and closure. The head 

loss and torque coefficients are derived from a similar equation, obtained from energy considerations. 
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Consider the limit case that the length of the CV becomes zero (L -º 0). In that 

case the fluid inertia and wall friction are reduced to zero. Thus follows: 

2 
Hl -H2 = CX 

2gA2 
(10.25) 

In this equation the fluid forces on the disc are directly related to the net pressure 
head difference across the check valve, which is further denoted as AH. The global 
force coefficient CX may therefore also be considered as a head loss coefficient. For 

valves this value is better known as the valve loss coefficient t. The head loss 

coefficient is equal to the energy loss coefficient if the inlet and outlet area are equal. 
The equation may now be rewritten as: 

AH=e Q2z 
2gA 

(10.26) 

This one-dimensional momentum equation links the upstream and downstream 

pressure head to the flow through the valve. It thus enables the coupling of the pipe 
and valve equations as described in the next section. 

10.3 Coupling of pipe and valve equations 

The momentum equation derived in the previous section is used to couple the 
valve equations (chapter 8) to the pipe equations (chapter 9). 

The pressure head difference across the check valve may now be described as: 

Hu(t) - Hd(t) _ (t) 
Q" (t) (10.27) 
2gA2 

The subscripts u and d refer to upstream and downstream, respectively. 
Conservation of mass across the check valve (section 10.1) gives: 

Qu (t) = Qd (t) =Q (t) (10.28) 
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Introduce the upstream and downstream pressure head changes due to the closure 
of the check valve as (t z td): 

OHu = Hu (t) - Hu (td) 
(10.29) 

AH, = Hd(t) - Hd(td) 

Substitution of the Equations (10.28) and (10.29) in Equation (10.27) gives after 
some manipulation: 

2 
AHu - AHd =E (t) 

Q (t2 
- (td) 

Q2 (td2 
(10.30) 

2gA 2gA 

With the mean fluid velocity the equation may be rewritten as: 

z 

OHu - OHd =2 Ed 2d 
110.31) 

SS 

This equation may be written in terms of dimensionless pressure head changes and 
fluid velocities as: 

gnu [cal gad ICd 
=2V2d 

CuVd Vd CdVd Vd Vd 

(10.32) 

In this form the equation links the dimensionless pipe equations (section 9.5 and 9.6) 

and valve equation of motion (section 8.6) via the dimensionless fluid velocity. By 

coupling the equations the following (new) dimensionless parameter groups appear: 

1cu Cd (10.33) 
Vd Vd 

These groups represent the pressure wave speed and describe the interaction between 
the valve and pipeline system. The pressure wave speed is proportional to the 
pressure head changes induced by a valve closure. It thus has an indirect influence 

on the valve motion. As such the groups are of importance, but only during the stage 
of active damping, when pressure surges are induced. The flow conditions during this 
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stage are, to a large extent, dominated by the valve and dependent on the type of 
damping. For this reason the real importance of the groups is unknown. Note that 
the pressure wave speed is also found in the dimensionless pressure head changes. 

10.4 Review and conclusions 

The integral form of the momentum equation is applied to describe the check 
valve as short-length component in a pipeline system. The momentum equation is 

obtained from the following assumptions: The check valve and adjacent pieces of pipe 
are assumed to be rigid bodies. The valve closure is slow, relative to the system 
reflection time. The control volume is fixed in space. The control volume is so short 
that density variations due to pressure surges may be neglected. The flow rate is 

constant along the control volume (rigid column). The control volume is so long that 
the flow profile is able to recover. The pressure distribution across the inlet and outlet 
area is uniform. The inlet and outlet areas are equal. The axial component of the 

normal stresses on the valve body is relatively small. The gravitational forces are 
assumed to be equally distributed along the control volume. 

The momentum equation describes the pressure head difference across the short- 
length control volume due to fluid inertia, pipe friction and the fluid forces on the 

valve disc. It can therefore be used to convert measured head differences at some 
distance from the check valve to the net head loss across the valve. 

The momentum equation is applied to a control volume with infinitesimal length. 
It therefore directly relates the fluid forces on the valve elements to the pressure 
difference across the valve. The valve loss coefficient is introduced as a global, 
unsteady force coefficient (defined in axial direction) to describe the relationship 
between the net pressure difference across the valve and the flow through the valve. 

The pipe and valve equations (chapter 8 and 9) are coupled via the momentum 
equation. This coupling results in a (new) "coupling" parameter, which has the form 

of a Mach number. The parameter represents the pressure wave speed and describes 

the interaction between check valve and pipeline system. As such it is only relevant 
during the stage of active damping, when the flow conditions are, to a large extent, 
dominated by the valve. Although the physical meaning of this group is understood, 
the real importance of the group is unknown. 
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11 Dimensional analysis 

In this chapter a dimensional analysis is described. Here, the uncoupled and 
coupled pipe and valve equations (chapters 8,9 and 10) serve to supply all valve, 
system and fluid parameters, which are relevant to the check valve dynamics in a 
pipeline system. The dimensional analysis becomes more complicated, since several 
velocity and time scales are involved. From the parameters dimensionless groups are 
developed, according to the Buckingham H-theorem. 

The dimensionless groups in their turn form the basis for the development of 
several valve characteristics and dynamic scale laws. Two theoretical approaches are 
followed. In the first approach the check valve behaviour is described in terms of 
(dimensionless) fluid velocity and pressure head characteristics. The second approach 
is based on the concept of global fluid force coefficients (chapter 7), in terms of 
dynamic valve loss coefficients. The valve characteristics are used in the development 

of valve models (chapter 12). 

The check valve closure is split up into two events (figure 8.2): 
1) The stage of passive damping (to 5t< td), denoted as the first event of closure, 

is characterized by a (more or less) constant initial flow deceleration. Pressure 
surges play no role. 

2) The stage of active damping (td St< tc), denoted as the second event of 
closure, is associated with pressure surges. 

11.1 Variables 

The variables that are relevant to the check valve behaviour are: the valve disc 

position (0), the fluid velocity (v), the pressure or pressure head (p or IH), time (t), 

and the distance along the pipe (x). The variables t and x are independent variables, 
while the others are dependent variables. 
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To ensure kinematic similarity for the valve motion the following dimensionless 

variables are introduced (section 8.6): 

a=0; vl =v; Tl 
t vo 

= 
vo D 

(11.1) 
Hereby the parameters vo and D are chosen to define a velocity and a time scale. 
Thus follows for the dependent variables: 

dal 
-D 

d9 d2a1 D2 d20 
dT12 v2 dt2 dTl - vo it ... 

0 

(11.2) 

avl D av a2v1 
_ 

D2 a2v 
äT1 = 

vo 
är ' 

ar12 vö at2 
; ..... 

To ensure kinematic similarity for the pipe flow (during and after the second event 
of closure) the following dimensionless variables are introduced (section 9.6): 

vt 
«2=9 ; V2= vd ; T2- 2LýC 

(11.3) 

Here the parameters vd and 2L/c are chosen as velocity and time scale. Thus follows 
for the dependent variables: 

d«2 
= (2L/c) de 

dr2 dt 
d2a2 

= (2L/c)2 d20 
; 

dr22 dt2 ... 

(11.4) 

aU2 
_ 

(2Lic) av äT2 _ 
Vd at 

a2U2 (2L/c)2 a2v 
ar22 Vd ar2 ; ... 

Note that the distance along the pipe, which plays a role during the second event, 
is represented by the time via the characteristics dx/dt =±c. 
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The relationship between the dimensionless variables given in Equation (11.1) 

and those given in Equation (11.3) is: 

a a2 U1 = 
Vd 

U2 
(2LI c) v,, 

1=; - Tl = T2 (11.5) 
vo D 

The two time and velocity scales are linked by: 

Vd D 
Vo ' (2Ic) 

Vo 

(11.6) 

The two sets of dimensionless variables are equivalent if they are considered together 

with the dimensionless groups in Equation (11.6). In that case either of the sets of 
dimensionless variables can be used. 

About an alternative time scale ..... 
A typical time scale of the second event is the damping time (tc-td). This would lead to: 

_ 2Z_2 
Vd to-=d 

(11.7) 

In that case follows for the relationship with the dimensionless variables given in Equation (11.3): 

a2 = az ; U2 = uz T2 / 
-2ýý1ýJ" s2 (11.8) 

The parameter group that links the two time scales is obtained from the Buckingham 11 theorem 

(section 11.3.2). 

11.2 Parameters 

The parameters that are relevant to the first event of closure are obtained from: 
1) the valve equation of motion without the friction and damping terms (section 8.6), 
2) the initial and boundary conditions (section 8.7), and 3) the momentum equation 
(section 10.2). The parameters are: 

� 
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D characteristic valve diameter 

Pf density of pipe fluid 

vo critical velocity 
K, geometrical parameters of valve and damper (including 90,6c8 and 6cb) 

PM density of the moving valve elements 
APO net pressure difference across the valve in open position 
Tso (Fso) spring torque (force) on the moving element(s); valve is open 
Tsc (Fs) spring torque (force) on the moving element(s); valve is closed 
ly valve inclination angle 

µf dynamic viscosity of pipe fluid 

v. initial, steady fluid velocity 
B1 (x1) initial angular (linear) valve disc position 
(dvldt)_ (mean) initial flow deceleration 

Pbnd = pfgHbnd pressure (head) at boundary 

The parameters that are relevant to the second event of closure are: 1) those of 
the first event, and the parameters obtained from: 2) the valve equation of motion 
including damping terms (section 8.6), 3) the pipe equations (section 9.5 and 9.6), 

and 4) the coupled pipe and valve equations (section 10.3). Transients in the damping 

device, which is relatively small, are ignored. Thermodynamic effects in both pipe 

and damping device are also ignored. The additional parameters are: 

Vd fluid velocity when damping becomes active 
2L/c reflection time or pipeline period 
Cd damping coefficient(s) 

Pd density of damping fluid 

µd dynamic viscosity of damping fluid 
(dv/dt)+ (mean) reverse flow deceleration 

tc - td damping time 
pp = pfgMH pressure (head) changes due to valve closure 
c pressure wave speed 

About turbulent viscosity ... 
The turbulent viscosity as parameter is not included in the above parameter list for the following 

reasons. The effects of turbulence are already globally described by the power law formulations for 

the drag coefficients (section 8.2). In the case of a laminar flow (powers of about 1) the parameter 

is irrelevant. In the case of a fully developed turbulent flow (powers of about 0) the fluid viscosity 

plays no role as parameter (section 8.6). Only in the transition zone from laminar to turbulent (powers 

between about 0 and 1) the turbulent viscoity is relevant. Many check valves types operate outside 

this transition zone, i. e. the flow in the valve is turbulent, while the damping flow is laminar. 

Moreover the turbulent viscosity is not easily defined and measured under unsteady flow conditions. 
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11.3 Dimensionless groups 

If the variables or parameters involved in a physical phenomenon all can be 
identified, the form of the equation relating them can be globally determined by a 
dimensional analysis. For this purpose the following procedure may be applied. Find 

all the dependent and independent variables (the latter are variables which can be 

changed in magnitude without affecting each other) that describe the event. Denote 

the number of fundamental dimensions (e. g. mass, length, time) they contain as m. 
According to the Buckingham II-theorem (e. g. Douglas et al., 1979) the variables 
can be arranged into (n - m) independent dimensionless groups. From the independent 

variables repeating variables are chosen, which will appear in more than one group. 
The repeating variables should contain all the fundamental dimensions that are 
relevant to the problem, and be quantities which are likely to have a substantial effect 
on the dependent variables. 

11.3.1 First event 

The first event is described by n= 14 parameters with m=3 fundamental 
dimensions. Choosing D, pf and vo as repeating variables n-m= 11 dimensionless 

groups can be developed' : 

pp TT 
K,; Pm 

;22°: 
2`: 'Y (1... 6) 

Pf Pfyo Pfyo D3P fyo D3 
(11.9) 

pfyoD vi D dv Pf SHbnd 

... l if V° ' 
B1 ' 

v2 
ljt 

V2 
(7 11) 

0 Pf 0 

The first group in this list represents the valve geometry. The geometrical parameters 
are already dimensionless and ensure geometric similarity. 

The second group represents inertia effects of the moving valve elements including 

the damping device. The group appears in the inertia term of the dimensionless valve 
equation of motion. Under steady flow conditions, when inertia does not play a role, 
the density of the moving valve elements is fully represented by the critical velocity. 

The third group represents the hydrodynamic effects. The hydrodynamic forces 

on the valve disc are related to the net pressure difference across the valve by the 
momentum equation (section 10.2.3). In that sense this group may also be considered 
as a head or valve loss coefficient to. It can thus be used to represent the internal 

1 The parameters are printed in bold type; (1... 6) refers to group numbers. 
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valve geometry (if it is not strongly dependent of the Reynolds number), and replaces 
the geometrical parameters K 

.. 
The group may also be considered as a global force 

coefficient C, , which is directly linked to the global torque coefficient CT (section 
7.2 and 8.8), so that in principle either of them can be used. 

The fourth and fifth groups represent spring effects. The fourth group is fully 

represented by the third group if gravitational and buoyancy effects play no role 
(section 8.5). In that case the fourth group can be omitted. The fifth group is needed 
to describe the preset spring conditions. 

The sixth group represents the built-in conditions in terms of an inclination angle. 
The seventh group represents the viscosity effects of the pipe fluid, described by 

the critical Reynolds number. 
The eighth and ninth groups represent the initial, steady flow conditions before 

closure. The groups are equivalent (section 8.7.2) and either of them may be used. 
The initial valve disc position, already dimensionless, is of importance when the valve 
is initially partly open. 

The tenth group characterizes the initial, unsteady flow conditions of the first 

event, expressed as a (mean) initial flow deceleration. 
The eleventh group represents the boundary conditions. 
The latter two groups are related (section 9.8). Neglecting pipe friction and the 

head losses across the valve, the groups are equivalent, so that either of them can 
be used. Preference is given to the initial flow deceleration, since it is physically 
more directly related to the check valve (section 9.8). 

11.3.2 Second event 

The second event is described by n= 14+9 = 23 parameters with m=3 
fundamental dimensions. Choosing 2L/c, pf and vd as repeating variables n-m= 
20 dimensionless groups can be developed: 

D 
"V ýo (1... 2) 

(Y/ C) Vd vd 

Pm Apo Tso Ts 
,c 

Pf Pfvd pfvd (2LIC)3 p fvd (2LIC)3 
(11.10) 

Pf 
2 

Vd2L/C 
' 

V1 
' 

ei ; 
2L/C dv PfgHbnd 

(9... 13) 
Af Vd Vd 1dt _p V2 Pf d 

2 
Pd pfVdZ, l. IC 

' 
2LIc dv tc-td Pf9 

.c (14... 20) Cd 
Pf ' µd Vd dt 

+ 
/c 

pfvd 
Td 
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11.3 Dimensionless groups 

The first group in this equation represents the valve size in terms of a characteristic 
valve diameter. 

The second group represents the net effect of gravitation, buoyancy and spring(s) 
in terms of the critical velocity. 

The first and second group are dimensionless forms of the repeating variables of 
the first event. They are equivalent to the groups in Equation (11.6). 

The physical meaning of the third to the thirteenth group is described above. The 

groups are (other) dimensionless forms of the parameters of the first event. 
The fourteenth group represents damping effects, in terms of an (adjustable) 

dimensionless damping coefficient. 
The fifteenth and sixteenth group represent the properties of the damping fluid 

in terms of a dimensionless density and viscosity. 
The seventeenth and eighteenth group characterize the flow conditions of the 

second event, expressed as a (mean) reverse flow deceleration and damping time, 
respectively. According to Equation (8.53) the groups are per definition equivalent 
and either of them can be used. Preference is given to (dv/dt)+, since it is similar 
to the initial flow deceleration (dv/dt)_. 

The nineteenth group represent the pressure (head) changes due to valve closure. 
The twentieth group represents elasticity effects of pipe and fluid, expressed by 

the pressure wave speed in the form of a Mach number. The parameter group appears 
due to the coupling of the pipe and valve equations. 

11.3.3 Transformations 

The dimensionless groups developed sofar are obtained from the repeating 
variables in a formal way. This does not necessarily mean that these forms are the 
most convenient ones. Other forms may be obtained by multiplying groups. 

The dimensionless valve diameter (as repeating variable of the first event) may 
be rewritten as: 

D Vd D 
(2L/c) vd vo (2LIc) vo 

(11.11) 

The group may be considered as a Strouhal number (section 11.8). 
The dimensionless parameter groups in Equation (11.9) are equivalent with the 

groups 3... 13 in Equation (11.10). For example: 

2 
D dv D Vd 2LIc dv (11.12) 
y2 dr = (2LIc) Vd ' vo Vd dr 

_ U 
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Preference is given to the forms listed in Equation (11.9). 

The dimensionless spring torque in closed position may simply be written as: 

Tso pfv02 D3 
- 

Tso 

Pfvö D3. TSc - TSc 
(11.13) 

The initial valve disc position 01, absolute and already dimensionless, becomes 

relative in the more general form: 

of-ec (11.14) 
eo - ec 

The subscripts o and c refer to the open and closed valve, respectively. 
In a similar way the damping coefficient Cd may be replaced by a percentage of 

damping. 
The dimensionless dynamic viscosity of the damping fluid may be rewritten as: 

pfvd (2Llc) D vo µf 
= 

Pf (11.15) 
µd (2Llc) vd vd " Pf voD µd 

The dimensionless form of the pressure (head) changes due to valve closure may 
be rewritten as: 

PfgAH Vd 
__ gtH (11.16) 

pfV2 C CVd 

The dimensionless pressure wave speed may be rewritten as: 

C. vd 
_C (11.17) 

Vd Vo Vo 

In most of the above groups the reverse flow velocity vd is eliminated now and 
replaced by the critical velocity v0. 

The previous operations lead to the following groups for the first event: 

Pm tpo TSo Tso pfyoD Oi-ec 
.D 

dv 
dt 

- Pf pf y2 p y2D 3 T5 'Y 
11 

' eoec . 
y2o 
_ 

[] 

ofof 

(11.18) 
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And additional groups for the second event: 

D Vd 
(2L/c) vo ' vo 

(11.19) 

% damping Pd µd 2L/c dv g AH c ; 
Pf µf Vd dt J +cvd vo 

11.3.4 Pipe junctions and varying head boundaries 

Thus far only pipeline systems are considered without pipe junctions and with 
constant head boundaries. In the case of pipe junctions and varying head boundaries 

additional groups are needed. 

The effects of pipe junctions are represented by the following series of 
dimensionless groups that describe the ratio of the reflection times and characteristic 
impedances of all pipe sections between the boundaries (section 9.7.1): 

2Li/cl Ai /ci 
2L lc A lc 

(i, j EIii) (11.20) 

In the case of more than one pipe section the reflection time 2L/c in the 
dimensionless groups must be specified (e. g. 2L; /ci or 2Lu/cu, 2Ld/cd, """)" 

Varying head boundaries are represented by the mean initial now deceleration 
(section 9.7.2). In that sense no new group is needed here. 

11.3.5 Check valves with translating elements 

The above set of dimensionless groups applies to check valves with rotating 
elements. For check valves with translating elements the torques must be replaced 
by forces, while the angular valve disc position is replaced by a linear one: 

Fs0 Fso Xi xc (11.21) 
Pfv0D2 FSc ; xo-xc 
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11.4 Valve and system parameters 

The dimensionless parameter groups developed in the previous section may be 

regrouped according to: 

Valve parameters, characterizing the valve materials, valve geometry, spring 
properties, damping and built-in conditions (e. g. horizontal, vertical): 

Pm Apo Ts. T 
so 

-, -; % damping ;y (11.22) 
Pf Pfvo Pfv0D3 TSc 

System parameters, characterizing the pipeline system in terms of reflection times 
and characteristic impedances: 

2LIlc; 
. 

Ailci 
(11.23) 

2Ljlcj ' Aj/cj 

Valve-system parameters, characterizing the combination of check valve and 
pipeline system: 

D' v° (11.24) (2i /ci) vo Ci 

Fluid parameters, characterizing the properties of the pipe and damping fluid in 

terms of densities and viscosities: 

Pd 
_ 

PfvoD µd 

Pf 
Reo- 

µf µf 
(11.25) 

(Steady and unsteady) flow parameters, characterizing the (first and second) event 
of closure: 

6i -Bc D dy vd 2i I ci dy 
,S 

LHi 
, 2 eo-9c 

v0 
it 

- vo Vd 
[dtj (11.26) 

+' Ci Vd 

The flow parameters are listed in chronological order. The first parameter group 
describes the initial, steady flow conditions. The second group describes the initial, 

unsteady flow conditions during the first event. The third group describes the flow 
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conditions at the end of the first event. The fourth and fifth group describe the flow 

and pressure head changes during the second event. According to the basic equations 
for transient flow the pressure head may be derived from the fluid velocity or vice 
versa. In that sense the parameter groups are fully equivalent. 

Complete matching of all valve and system parameters between "model" and 
"prototype" will be impossible. However, some of the groups are of minor import- 

ance (see further section 12.2). 

11.5 Valve characteristics approach 1 

11.5.1 Flow characteristics 

Consider a check valve in a pipeline system. The valve and system parameters, 
except for the flow parameters, are constants. 

From the flow parameters, formally five flow characteristics may be developed by writing one 

parameter as function of the others. Hereby the chronologic order of the events must be taken into 

account (an event is only influenced by previous events). Thus the following flow characteristics may 
be developed from Equation (11.26): 

ä 1- 
eo-gc 

Drf �-e: (11.27) 

v3f e' D J-] (11.28) 
0oc Vo 

2L4Ici dv 
=f@, -@c v dv vd (11.29) 

vd 

(dr) 

e@ ' v2 
(d) 

' 
V. 

0 

gtf@, -@c n dv Vd 2Lt/ci (dýº (11.30) 
civil 

f 
,t y2o(dt)_ 

' vo . vd 
I 

)+ 

` 

The characteristic given in Equation (11.27) is rather useless, since the initial flow deceleration 

may be considered as a system parameter and not as a valve parameter (section 9.8), and can be 

omitted. According to Equation (11.28) the last group in Equation (11.29) is fully represented by the 

others and can be omitted here. Similar considerations hold for the last two groups in Equation (11.30). 
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From the flow parameters the following flow characteristics may be introduced: 

The fluid velocity characteristic for the first event, which supplies information 

about the (reverse) flow velocity at which the damping becomes active: 

Vd 
-f 

Oi-ec D dv 
(11.31) 

_ vo L00_0c v 
Ti 

0 

The fluid velocity characteristic for the second event supplies information about 
the damping time, boundary conditions and character of damping (section 11.5.2): 

2ul cu dv 
_f 

ei-Oc D dv (11.32 
Vd Ti 

+ 6o-ec ' v2 
dr 

_) 0 

or: 
2Ly lcd dv 

_f 
ei ec D dv 

(11.33) 
d dt [00-OC 'v dt 

0 

The pressure head characteristics for the second event supply information about 
the upstream and downstream pressure surges induced by the check valve closure: 

g AHu 
f 

ei -ec D [dv]] 
cued 00-0c ' 

v2 
d_ (11.34) 

0 

and: 

gad f. 
ei -ec D dv 

(11.35) 
CdVd L0_0c ' 

v2 t-ii_j 0 

Two pressure head characteristics are needed, since the pressure head changes at the 

upstream and downstream side are of opposite sign and in general different of 
magnitude. The subscripts u and d refer to upstream and downstream, respectively. 

In these characteristics the mean, initial flow deceleration is defined as: 

dv vd - vo 

1"iJ_ td - to 
(11.36) 
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and the mean, reverse flow deceleration as (section 8.7; figure 8.2): 

dv - Vd 
dt + tc - td 

(11.37) 

The flow characteristics are based on fluid velocities. The fluid velocity may be 

considered as a more basic unit than the pressure since the latter is dependent on the 
fluid density and pipe properties (found in the pressure wave speed). 

About special cases ..... 
Under certain conditions the flow characteristics may be described in an analytical form. 

For an ideal check valve follows: 

Vd 
=U V. 

(11.38) 

With the introduction of the mean reverse flow deceleration, the boundary conditions for a 

reflection free valve closure (section 9.4.2) may be rewritten as: 

2Lu/cm ±1 
-1 Vd 

( 
dt). . A 2dfc°(dv) 

ý -1 (11.39) 

and the reflecting boundary conditions as: 

-1<2L. 
/c"( ) 

4s0 
V -1 <2 

výcd (±),. 
s0 (11.40) 

Under reflection free boundary conditions the pressure head changes, at the instant of closure, 

are described by (see Equation (9.48)): 

D dv dv 
gAH(t) v. dr 

11 `dt/- 
t =- =- CVd D Va 2L/c dv dv 

(2uc) v0 V. vd \ýJ, " 

For undamped check valves at the instant of closure (see Equation (9.49)): 

t 
gAH(tt) 

=1 CVd 

(11.41) 

(11.42) 
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For undamped check valves at the instant the first reflections reach the valve (see Equation (9.56)): 

gAH(2LJcv2) (21Ic)vo Vo D dv 21/c (dv 

cva 
= -1 -D va . v2 

(dl 

__ 
-1 - 

va `ät)_ 
(11.43) 

V02 / 

Note that in the above pressure head characteristics the initial valve disc position does not appear. The 

effect of the initial conditions is represented by vd. The question arises, if this parameter may generally 
be omitted from the pressure head characteristics given in the Equations (11.34) and (11.35). 

11.5.2 Damping characteristics 

The character of damping may be related to the fluid velocity characteristic for 

the second event. Hereto the damping is classified into three categories. In the case 
of no damping (or: no effective damping) the closure takes place under reflection free 
boundary conditions. In the case of weak damping the damping time is said to be of 
the same order of magnitude as the reflection time. The valve closure takes place 
under reflecting boundary conditions. In the case of strong damping the damping is 
(at least) one order higher than the reflection time. Reflections play a significant role. 
The character of the damping may now be quantified by: 

no damping: 
2Lu I cu dy < -1 Vd Ti 

+ 

weak damping: 

-1 < 
Vd 

[dv].,. 
Ti 

strong damping: 

A 
2J 1'Cd 

d 

di 
S -1 (11.44) 

+ 

V -1<2d'Cd 
dv 

s-0.1 
vd dt + 

(11.45) 

-0.1 < 
2L Ic" dv 

S0V -0.1 < dv -5 0 
Vd dt Vd dt 

(11.46) 

The conditions for strong damping overrule those for weak damping. Thus an overlap 
in the domain of the two parameters is avoided. 
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11.6 Valve characteristics approach 2 

In the previous section the valve behaviour is described by more or less global 
flow parameters. In this section it is described in more detail. From the momentum 
equation (section 10.2.3) the following valve characteristic may be derived: 

Op _2 pfy2 (11.47) 

With the dimensionless variables (section 11.1) the following dimensionless form 

may be developed: 

g°2tvVIV (11.48) 2 
Vo 00 

where the global force or head loss coefficient may be written as (section 8.8): 

=f v, D dv 
(11.49) 

vo vö dt 

From the latter two equations directly follows: 

gAH =f 
vvý dt 

(11.50) 
vo ° vo 

11.7 Other valve characteristics 

From the parameter groups many other representations of valve characteristics 
can be developed. In a mathematical sense these functional relations may be perfectly 
valid. However, many of them will not be very useful. 

Useful representations of valve characteristics may be: 

n =1 
APO 
Pfvo 

where: 

(11.51) 
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d 
vd 

77 
v ° (11.52) 

dD dv 

vö dt 

where d.. /dx represents a derivative. The characteristic correlates the steady flow 
behaviour (energy losses) and the unsteady flow behaviour (valve response). Hereby 
the slope of the fluid characteristic for the first event (approach 1) is taken as a 
measure for the valve response. By considering the slope, hysteresis effects (e. g. at 
small initial fluid decelerations) can be excluded. In a general sense this slope will 
decrease with increasing valve loss coefficient. This may be illustrated by the 
following consideration. 

Consider a swing check valve. Let the maximum opening angle be 00. Now a new 
valve design is created by reducing the maximum opening angle, so that the internal 

valve geometry is modified. In that case the loss coefficient ýo increases, while the 

response becomes faster, so that vd/vo reduces at the same initial flow deceleration. 
Generally the response of check valves is faster when they are initially partly open 
(Thorley, 1989). 

Another useful representation may be: 

Pm 
n _f 

Pf 
(11.53) 

This characteristic shows in how far the valve response is influenced by the inertia 

effects of the moving elements. The characteristic may be of importance e. g. when 
scaling from liquids to gasses. 

11.8 Common dimensionless numbers 

The physical meaning of some common dimensionless numbers is studied. An 

overview is given of the forms in which they are introduced for check valves. 

Euler number The Euler number is generally defined as: 

Eu = 
Pfv2 
Op 

(11.54) 
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It represents the ratio of inertia and normal (pressure) forces and is commonly used 
for steady flow conditions. Note that the term pf v2 only represents the convective 
acceleration of the inertia forces and not the local acceleration. For inviscid fluids 

similarity of the Euler number is satisfied, since the flow coefficients are only a 
function of the (linear and angular) position of the body. 

The Euler number is equivalent with and related to the head loss or valve loss 

coefficient via: 

Eu = (11.55) 

For check valves the following form is introduced (section 11.3): 

pfvö (11.56) 
Euo = Apo 

Reynolds number The Reynolds number is generally defined as: 

Re =pvD (11.57) 
µ 

It represents the ratio of inertia and shear forces and is commonly used for steady 
flow conditions. In literature also the time-dependent Reynolds number is found, 

which is based on an instantaneous fluid velocity. 
Other forms are (section 5.4.1): 

Re, = 
pf(v-x)D 

µf 
n Reg = 

pfÖD2 

µf 
(11.58) 

For check valves the critical Reynolds number is introduced as (section 8.5.2): 

Reo = 
pf v° D 

(11.59) 
µf 

Mach number The Mach number is generally defined as: 

Ma =v (11.60) 
c 
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It represents the influence of compressibility effects and is commonly used for steady 
flow conditions. 

For check valves the following form is introduced (section 11.3): 

Mao = 
v° (11.61) 
c 

Acceleration number The Acceleration number is defined as: 

Ac -1 =D 
av 

(11.62) v2 at 

It represents the ratio of inertia forces and forces due to changes of the local fluid 

velocity in time (äv/ät). In other words: the ratio of the forces due to convective 
acceleration (equivalent to the above inertia forces) and local acceleration. In the 
literature also the reciprocal form of the Acceleration number is found. For steady 
flow conditions this reciprocal form is per definition zero (v ;4 0). 

Other forms are (section 5.4.1): 

Ac-1 =D 
d(v-z) n Ac "2 

1 d9 (11.63) 1 (v_X)2 dt 2 e2 dt 

For check valves the following form is introduced (section 8.6): 

Acs 1=D dv 
(11.64) 

v0 

Strouhal number The Strouhal number is defined as: 

S=fD 
v 

(11.65) 

It relates the frequency f of alternating Von Karman vortices, downstream of a body, 
to the fluid velocity and is commonly used for steady flow conditions. 

For check valves the following form is introduced (section 11.1): 

D S° _ (2L / c) v° 
(11.66) 
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11.9 Review and conclusions 

A dimensional analysis is described. All variables and parameters that are relevant 
to the valve closure are gathered from the uncoupled and coupled, pipe and valve 
equations, as derived in the previous chapters. 

Based on the dimensionless pipe and valve equations, the variables are written 
in a dimensionless form. As a result two sets of dimensionless variables ensure the 
kinematic similarity for the valve motion and pipe flow, respectively. These sets are 
linked by two dimensionless parameter groups. 

The parameters that are relevant to the check valve behaviour are listed, whereby 
a distinction is made between the first and second event of closure. Based on the 
Buckingham II-theorem dimensionless groups are developed. The repeating variables 
for the first and second event are consistent with the two sets of dimensionless 

variables. 

The dimensionless parameter groups are subdivided into valve, system, valve- 
system, fluid and (steady and unsteady) flow parameters. From the (global) flow 

parameters several valve characteristics, such as fluid velocity, pressure head and 
damping characteristics are developed (approach 1). The damping characteristics are 
used to quantify the character of damping. 

Alternatively, the valve behaviour is described in more detail in terms of dynamic 
valve loss coefficients, as derived from the momentum equation (approach 2). 

From the dimensionless parameter groups additional valve characteristics are 
developed, which correlate the steady and unsteady flow behaviour, or correlate the 
inertia effects and unsteady flow behaviour. The former characteristic enables a 
comparison of check valve types with respect to the two essential aspects of the 
hydrodynamic design. The latter characteristic should enable the comparison between 

gas and liquid service. 

Finally an overview is given of some common dimensionless numbers and the 
form in which they are applied to check valves. 

The valve characteristics of approach 1 and 2 are used in the development of 
models for undamped and damped check valves in the next chapter. 
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12 Valve models 

Semi-empirical, one-dimensional (1D) valve models are developed to simulate 
the dynamic behaviour of check valves in waterhammer computer codes. The models 
for undamped and damped check valves are based on the valve characteristics of 
approach 1 (section 11.5) and approach 2 (section 11.6), respectively. The models 
are implemented in the computer code CVWP (Check Valve Waterhammer Program). 

12.1 Undamped check valve 

The model for the undamped check valve is based on the valve characteristics of 
approach 1 (section 11.5). 

Basic principle The valve closure takes place under reflection-free boundary 

conditions (section 9.4.2). There is no stage of active damping, so that the reverse 
flow velocity vd now becomes the maximum reverse flow velocity, in literature often 
denoted as vR. The undamped check valve closes (almost) instantaneously, after the 
maximum reverse flow velocity is reached (Kruisbrink, 1988). Hereby the valve may 
shortly interact with the system. This has, however, no consequences for the pressure 
head changes after closure (section 9.5). As such the system and valve-system 
parameters (section 11.4) play no role. The instant of closure is determined from the 
velocity-time history (figure 12.1 . a) as the instant at which the actual fluid velocity 
underexceeds the maximum reverse flow velocity: 

if: v(t) <_ VR then: t+ At = tc A v(t+Ot) =0 (12.1) 

The maximum reverse flow velocity is derived from the fluid velocity characteristic 
for the first event (figure 12.1. b): 

VR OrOc 

yo v-f Loooc t 

The parameters 91 and (dv/dt)_ represent the initial, steady and unsteady flow 

conditions, respectively. The second parameter has no influence on the first one. 
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Closure I Reopening 

Fully opened (vl=vol 
Iv 

; kk 

t =ho `ý . 1 ý. 
23 

a. Velocity-time history 

f 
ýVRI 

Reclosure 

Partly opened ( vi -vo ) 

I 

i 
.L ti 

Time P. 

I dv/dtl º 

b. Fluid velocity characteristic for the first event 

Figure 12.1 Valve model - undamped check valve 

The first parameter may have influence on the second one, in particular for partly 

opened valves. In most cases, however, the influence of the check valve on the initial 

flow deceleration may be ignored (section 9.8). The correlation between the two 

parameters is assumed to be weak, so that their influence can be described by separate 
functions: 

VR D dv (12.3) 
vo 

=fi eo-ec 
f2 

v02 dr 
_ 

Function fl This function accounts for the effect of an initially, partly opened 
valve on the valve response. It generally may be approximated by a polynomial or 
Taylor series as: 
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2 
61-0,61-0,6i-9, (12.4) fl 
9o-ec 

= al 
eo-9c 

+ a2 
[o-o 

+ ... 

The initial valve disc position may in its turn be related to the initial fluid velocity 
via the steady flow characteristic. In dimensionless form this yields (0 5 v/vo S 1): 

0- oc Iv 
bl 

00 - ec - vo 

2 

+ b2 v + ... VO 
(12.5) 

Note that the sum of b1, b2, ... must be one. Experiments show that in many cases 
the function has the character of a linear or root function. 

Substitution of Equation (12.5) in Equation (12.4) gives the form: 

2 
e! -ec vi VI (12.6) 

fi eo-ec _ ý1 vo + C2 vo + ... 

The form of this function is unknown and needs further investigation. In first instance 

the linear version is used in CVWP (al = bl = cl = 1; a2, ... = 0). 

About the function fl in the case of a swing check valve ... 
To get an idea about the character of the function, the valve response model developed in chapter 8 

is applied to a swing check valve without friction and damping. The valve is subjected to a constant, 
initial flow deceleration, starting with steady flow conditions. The flow coefficients CDC and CA2 are 

taken from literature (Thorley and Oei, 1981; Thorley 1991). The other flow coefficients are unknown, 
but varied during the series of calculations. These tentative results indicate that the relation between 

vR and 9; is indeed more or less linear. However, for relatively small initial flow decelerations this 

tendency reverses, i. e. vR becomes inversely proportional to 9;. The latter indicates that there exists 

a correlation between the parameters 6f and (dv/dt).! The above tendencies hold for all series. 

About inertia effects ... 
Strictly speaking the above result may only be applied to the steady flow conditions before (the first) 

closure, since inertia effects are not included. In the case of reopening inertia effects, which will delay 

the opening, may play a role. If dynamic opening characteristics are not available, the following 

principle may be applied: The inertia effects during closure are the same as those during opening under 

similar, but reversed unsteady flow conditions. Thus, the information about inertia effects which is 

contained in the dynamic closure characteristics, can be used for a better estimation of the "initial" 

valve disc position after reopening. 
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Function f2 This function represents the fluid velocity characteristic for the first 

event for an initially, fully opened valve (function fi = 1). The characteristic is 

usually obtained from experiments. 
The (mean) initial flow deceleration is calculated from (figure 12.1. a): 

dv v- Vi (12.7) T il t- ti 

with the boundary conditions: 

if Vmax z vo then vi = vo A t; = to 
(12.8) 

if vmax < vo then vi = vmax A ti = tmax 

where vmax is the maximum (steady or unsteady) fluid velocity before (re)closure. 
Thus it is accounted for an initially, partly opened valve and its reclosure. 

About additional options ..... 
Resistance The (partly) opened check valve may be modelled as a resistance with a specified, 

constant, valve loss coefficient. In that case the influence of the check valve on the initial, steady and 

unsteady flow conditions is taken into account. However, as stated before, in most cases this influence 

may be neglected (section 9.8). 

Opening criteria A closed valve (re)opens when the pressure head difference across the valve 

exceeds a threshold value: 

Hl - x2 > exoaý (12.9) 

Check valves need some positive head difference to open, due to e. g. the preset conditions of springs 

or counterweights. 
The above options are available in CVWP. 
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12.2 Damped check valve 

12.2 Damped check valve 

The model for the damped check valve is based on the valve characteristics of 
approach 2 (section 11.6). 

A valve characteristic of approach 2 may be represented by a set of points in a 
three-dimensional, physical space: 

vD dv giH E R3 vo v2 dt , 
v2 

(12.10) 
00 

The characteristics are dependent on the valve and system parameters (section 11.4). 
Consider a set of points for which the valve and system parameters are constant. It 
is assumed that this set of points forms a surface in the physical space. 

This surface may be represented by: 

vD dv gOH _0 (12.11) 
vo vö dt v2 

The domain of the valve characteristic is divided into four quadrants, in terms 
of a v-dv/dt-plane. Consider a possible trajectory which is followed during valve 
closure as illustrated in figure 12.2. The valve closure is assumed to start from steady 
flow conditions by entering quadrant 4 (v > 0; dv/dt < 0) from the horizontal axis. 

Basic principle In quadrant 4, in the adjacent part of quadrant 3, and quadrant 1, 
the partly opened check valve (v/vo < 1) is modelled by: 

gAH vD dv 
(12.12) 2 -f(v' 2 dt v° ° v° 

The fully opened check valve (v/vo z 1) is modelled as a resistance with valve 
loss coefficient to. Thus the physical domain of the valve characteristic is limited to 
v/vo 5 1. 

In quadrant 1 (v > 0; dv/dt > 0) the opening behaviour is described. However, 
if no experimental data are available the opening behaviour may be modelled by 
the steady flow characteristics. Hereto the points (v, dv/dt) in this quadrant are 
projected on the horizontal axis (v, 0). 
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--- Trajectory followed 
during closure 

D dv 
partly open fully open 0 Ay-= f (L Vol dt 

v2dt v0 
No data 
available 

Prescribed 
trajectory 

Test 11 

ý ýý-- 
_Test 

2/ 
Vo 

--------------------- /. 

Test3 
--------------------- 

AH ', vD dv , 
V. r '70-*-V-OFW 

Figure 12.2 Valve model - damped check valve 

In quadrant 2 and in the adjacent part of quadrant 3, the partly opened check 

valve is in its last stage of closure. The valve behaviour becomes physically unstable 
here, i. e. the valve will always tends to close under the reverse flow; no steady-state 

conditions exist. However, the closure is more or less controlled by the damping, 

which is active here. The flow conditions are assumed to be dominated by the valve 
and modelled by so-called prescribed trajectories (Appendix C: section C. 3.5): 

D dt 
= .f 

(v gA) (12.13) 
vo o vo 

To enable a general application of the prescribed trajectories a relaxation is applied 
to the head difference iH. In that case a valve closure is ensured. 

The valve model is formulated in table 12.1. For a detailed model description 
it is referred to Appendix C. 
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partly open fully open 

gAH(v 
, 0) gAH=2to vIv 

Quadrant 1 
vo vo vo 00 

to =2g (1,0) 
2 

vo 

Quadrant 2 gAH D dv (v ) 
and 

o v2 dt vo vö 
' --- 

Quadrant 3 
(0 5 0.3*) 

Quadrant 3 
" 

gAH vD dv ) ( ' ) (0 > 0.3 2 dt 2 v 
vo 0 vo --- 

gAH(v D dv) gAH =i to vlvl 
2 2 v0 V0 v0 dt vý vo vo 

Quadrant 4 

to =2 gAH(1, D dv) 
22 dt 

vo vo 

Table 12.1 Valve model - damped check valve 

* The closure phase 0 is defined as (see figure 12.2 and Appendix C: section C. 3.5): 

_D 
dv /v (12.13) 

2 vo dt vo 
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Valve and system parameters The dynamic valve characteristics are dependent 

on the valve and system parameters (section 11.4). Information about the valve 
parameter ýo = Opo/'hpfv2 and unsteady flow parameters is implicitly included in 

the valve characteristics of approach 2. The other parameters must be specified: 

valve: 
P"` T S° 

;T 
S° 

Pf TS 
B% 

damping y 
pfvöD3 

2Lu lcu 
. 

Au lcu 
system: /c 'A lc dddd 

valve-system: (ý 
ý) 

vvcvc 
(12.14) 

uuoud 

fluid: Pd 
; Reo = 

Pfv0D µd 

Pf µf µj 

flow: 
01-0c 

00-ec 

In principle the system parameters must be specified for all pipe sections of a 
pipeline system. Here only the upstream and downstream (subscripts u and d) pipe 
sections adjacent to the check valve are described, since: 1) not all pipe sections 
influence the check valve behaviour, 2) the valve characteristics are available for 
(other) simple pipeline configurations without pipe junctions and with constant head 
boundaries (i. e. laboratory conditions), and 3) for complex pipeline configurations 
it is unpractical to specify all pipe sections. This restriction implies that the valve 
characteristics may only applied to operational conditions which are more or less 

similar to the laboratory conditions, i. e. constant head boundaries (e. g. reservoirs, 
air vessels, headers), while the influence of the pump as resistance is small. 

Within the parameters listed in Equation (12.15) a distinction can be made 
between parameters which are expected to be of major imortance (a) and those of 
minor importance (b): 

Tso 
damping 

2Lu/cu D 9_-ec (a) 
Pf yö D3 2Ldl Cd (2Lu I cu) vo oo-Bc 

(12.15) 

Pm 
.T 

so Au lcu vo vo Pd 
; 

'Id 
Pf TS, AdlCd Cu Cd Pf µf 
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The parameter group pm/pf is of minor importance as long as the scaling takes 

place from liquid to liquid. However, the group may be of significant importance 

when scaling from liquids to gasses. The parameter group Tso/Tsc is of minor 
importance if the preset spring force is relatively small. The parameter 'y is of minor 
importance if gravitational and buoyancy effects are relatively small (e. g. spring- 
assisted valves) or independent of -y (e. g. sinking ball). The group (AU/cu)/(Ad/cd) is 
irrelevant if the diameter of check valve and adjacent pipe sections is equal. The 
importance of the parameter groups v01 cu and Vol cd is not quite known yet, but 

expected to be less than those of category a. The parameter groups pd/p f and µd/µ f 
may be about constant for a certain valve type and its application (e. g. check valves 
for water service with oil as damping fluid). The parameter Re, is not relevant if the 
flow in both the valve and damper is turbulent. The parameter group µd/µf is not 
relevant if the flow in the damper is turbulent. 

More insight in the influence of the parameters may be obtained from a sensitivity 
analysis. In principle this can be done by means of simulations with a waterhammer 
computer code. Hereto enough experimental data, i. e. test series at different valve 
and system conditions, must be available. 

Note: The parameter set applies to check valves with rotating elements. For check 
valves with translating elements the torques (7) should be replaced by forces (F), 

while the angular valve disc position (0) should be replaced by a linear one (x). 

12.3 Numerical procedures 

In waterhammer computer codes like CVWP a distinction is made between pipes 
and components like pumps, valves, vessels, etc. The flow in the pipes is described 
by the transient equations and treated by the method of characteristics (section 9.2). 
Components are described by hydraulic equations, which are solved in a linearized 
form within an iteration process, together with the compatibility equations of the 
adjacent pipe sections. In the case that components are clustered a set of hydraulic 

equations must be solved simultaneously. 

12.3.1 General components 

In CVWP a component between two nodes (fall type) is generally described by: 

1l (HI (t), H2 (t), Q1(t), Q2(t)) =0 

(12.16) 
f2 (HI (t), H2(t), Q1(t), Q2 M) =0 
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The architecture of the scheme allows that two phenomena (e. g. energy losses and 
storage capacity) can be modelled at the same time. 

Linearization of these equations results in: 

, 
fl`+1 (HI 

, 
H2 

9 
Q1 

9 
Q2) =�i! (HI 

, 
H2 

9 
Q1 

0 
Q2) + 

+ 
of 

1 OFI, i+ 
afi 

ßr2 i+ 
aft 

ýQl i+ 
If, 

ýQ2 i 

aHl aH2 aQl aQ2 

and: 
f2`+1 (HI, H2, Q1, Q2) = f2` (H1, H2, Q1, Q2) + 

+ 
af2 

AH, ' + 
af21 

AH21 + 
af21 

OQli + 
af21 

OQ2i 
äH1 OH2 . Ql äQ2 

where: 
AH, ' 

= Hl"' - Hl' 

OQji = Qli+l - Q11 

OH2` =H2`+i -H2l 

AQ2i = Q2i+l - Q21 

(12.17) 

(12.18) 

(12.19) 

The superscripts i and i+1 refer to the values at the old and new instant of time. 
Suppose that Equation (12.17) is satisfied at the instant i+1. Then the above 

equations adopt the form: 

i+l 
afl af, afl afl H, 

aHl aH2 aQl aQ2 H2 

aft aft aft aft Ql 
aH1 axe aQl aQ2 Q2 

where: 
i 

CON, =afiHli+ öHl 

ii aHI Hei + 
afi Ql i a2 aQ, 

CONI (12.20) iCON2 

a f, 'Q2 
a -J1 

(12.21) 
ii 'H 

i+ af2Qii+ af2Q2i-fz 
CON2= 

aH21 
Hi 

a2 
i+ a222 

aQl aQ2 
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Equation (12.21) is solved in an iteration process, together with the other component 
equations of that (cluster of) node(s), until a convergence criterion is satisfied. 

In order to solve the equations the matrix coefficients and constants must be 

specified. This can be done each time step (explicit) or each iteration step (implicit). 
In an explicit scheme the linearized equations remain unchanged during the iteration 

process. In the fully implicit scheme the equations are updated every iteration step 
(Newton-Raphson). In the semi-implicit scheme the constants are updated, while the 
slope of the linearized equations is kept constant (semi-Newton-Raphson). 

12.3.2 Damped check valve 

For the damped check valve the hydraulic equations are: 

fi Hl -H 2- fl Qi 
dQl 

' dt =0 
(12.22) 

f2: Q1 -Q2=o 

where: 

f'* Ql, 
dQl 

- 
vo gOH vID dv (12.23) 

dt g v2 vo v2 dt 
00 

The function fl is basically derived from the momentum equation (section 11.6), 

where fl* represents the valve characteristic of approach 2, given in Equation (11.50). 
In that sense it describes the conservation of momentum. The function f2 describes 
the conservation of mass. Although the effect of rigid or non-rigid moving elements 
on the flow is described, it is assumed that the elements have no storage capacity. 
The latter assumption does not hold for the membrane type check valve tested 
(section 14.6). In order to describe the storage capacity the flow rate at both the 
upstream and downstream side of the check valve Q1 and Q2 must be known. 

The coefficient matrix now becomes: 

1 -i - 
of 1° (12.24) 0Q, 

001 -1 
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The derivative off, * is determined numerically from the valve characteristics. This 
is done by an imposed increment AQ1, whereby the variation of dQ1Idt in the 
direction of motion (i. e the trajectory followed during closure) is taken into account. 

The linearized equations are solved in a semi-explicit scheme. 

As stated in section 12.2, the check valve behaviour becomes physically unstable 
during the last stage of closure. Consequently also the above numerical procedure 
becomes unstable. For this reason the valve closure is modelled here by prescribed 
trajectories. The hydraulic equation is basically described by: 

dQ, 2 
D2 . 

Vo 
.D 

dv v (12.25) 
dt 4D y02 dt vo 

The prescribed trajectory is solved iteratively by an adapted form of the 0-method. 
(Appendix C: section C. 3.5). 

Smoothing parameter The velocity gradient dv/dt is an instantaneous value, 
which is sensitive to the velocity fluctuations coupled with pressure surges. Therefore 

the sign of dv/dt may change from positive to negative. High-frequency fluctuations 

and sign changes may be suppressed by applying a low-pass filter to dv/dt (just like 
is done in the processing of experimental data; see also section 13.7.2). The velocity 
gradient is smoothed according to: 

v(t_(n_1)At) 
j 

v(t_(n+nl_1)Ot) 
dV(t) 

_ 
ng n=1 ng n-I 

(12.26) 

dt ntAt 

The smoothed velocity gradient is obtained from two clusters in the velocity-time 
history, where ng is the number of data per cluster, nt is the number of time steps 
between the clusters and At is the time step. 

Interpolations Within the iteration proces two interpolations are performed. One 
interpolation is performed within a valve characteristic of approach 2, the other within 
the valve and system parameters. 

Suppose that m valve characteristics are available with the corresponding sets of 
valve and system parameters. The interpolation procedure is as follows: Within each 
valve characteristic the head difference OH, is obtained from a linear interpolation, 
i. e. AHj =f (v, dvldt). This yields m head differences OHI, AH2, .. AHI, .. OHm. 

182 



12.3 Numerical procedures 

The actual head difference AH is obtained from a (scaled) linear interpolation within 
the m parameter sets (laboratory conditions), based on the actual values of the 

parameters (application). The interpolation is described by: 

BFI = al OH1 + a2 OH2 + ... + am AH,. (12.27) 

where al, a2, ..., am are the weight factors. In most cases the number of valve 
characteristics is smaller than the number of valve and system parameters. Then the 
determination of the weight factors is based on the principle of minimum variation. 

The interpolation procedure for the fluid velocity gradient dv/dt (prescribed 
trajectories) is essentially the same. However, in order to perform the interpolation 
between m prescribed trajectories it is necessary to introduce a second closure phase. 
The closure phase, which is defined in Equation (12.13) and is based on physical 
grounds, appears to give rise to inconsistent trajectories, which violate the condition 
dvld(dv/dt) =0 on the negative v -axis. In order to guarantee valid trajectories, which 
satisfy the above condition, the second closure phase is now defined as (quadrant 2): 

v 
VR 

(12.28) 

where vR is the maximum reverse flow velocity of the prescribed trajectory. 
The velocity gradient is then obtained from: 

d! 
(0) = al dt 

(e) + a2 
dv (0) + ... + am 

dv (e) (12.29) 
12m 

Extrapolated prescribed trajectories (i. e. as final result of the two interpolation 

procedures) are allowed under the following conditions: 1) the extrapolated prescribed 
trajectory leaves quadrant 2 via the vertical axis, and 2) the maximum reverse flow 

velocity of the prescribed trajectory lies on the negative, horizontal axis. If these 
conditions are not satisfied the extrapolated trajectory is assumed to be too far from 

the available data. 

For detailed descriptions of the two interpolation procedures, and other aspects 
like the computational domain, implicit functions, stability and flow loops, it is 

referred to the appendices C and D. 
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12.4 About neural networks ... 

In the valve models the check valve is considered as a black box with input and 
output characteristics in terms of fluid velocities and pressures. The question arises 
in how far neural networks (NN) can be applied in these models. 

The NN's considered here are so-called multi-layerperceptra (MLP), also known 
as feed fon%'ard error back propagation networks. 

A MLP consists of a set of processing elements (neurons) which are ordered in 

an input layer, one or more hidden layers and an output layer (figure 12.3). Each 

neuron is connected to all the neurons of the preceding and subsequent layer. Within 

a neuron two operations are performed. The first operation is a weighted summation 
of all the inputs of the neuron. This weighted sum represents the internal state of the 

neuron. The second operation applies a transfer or activation function to the internal 

state and generates the output of the neuron. The character of this transfer function 

makes the NN concept non-linear. 
The weight factors are determined within an iteration process, which is known 

as the training of the NN. Herefore a data set is required, which consists of known 

combinations of input and output data. The process should converge to the best fit 
between the input and output data. Hereby the proper choice of the architecture, i. e. 
the number of neurons and the number of hidden layers is essential. After the training 

of the NN the performance is tested with an additional data set, which should be 

statistically equivalent to the training set. 

output layer 

hidden layers 

input layer 

Figure 12.3 Architecture of MLP neural network 

Within the model for damped check valves two interpolations are performed 
(section 12.3.2). In principle these interpolations can also be performed by a NN. 
The application of NN's to the valve characteristics of approach 2 is further explored 
in section 14.7.1. 
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12.5 Review and conclusions 

Semi-empirical valve models are described to simulate the dynamic behaviour of 
check valves in waterhammer computer codes. The model for undamped check valves 
is based on the (dimensionless) valve characteristics of approach 1. The model for 
damped check valves is based on the valve characteristics of approach 2. 

The models are implemented in the waterhammer computer code CVWP. 
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13 Experimental set up 

In this chapter the test facility and test valves, the measuring procedures and 
equipment are described, which are used to measure the valve characteristics, defined 
in chapter 11. Measuring procedures are developed to obtain the dynamic pressures 
and flows at the check valve from values, measured at some distance from the valve. 
The data acquisition and the data processing into the valve characteristics of approach 
1 and 2 are described. 

13.1 Requirements 

The measurements should take place under well-defined initial and boundary 
conditions. At the same time the range of applicability of the experimental data should 
be as wide as reasonably possible. In that sense the tests should simulate operating 
conditions. In order to measure the valve characteristics which are introduced in 

section 11.5 and 11.6, a test facility is required with the following features: 

- The initial flow deceleration is as constant as possible and adjustable. 
- The measuring section of the test facility has constant head boundaries. 

- The measuring section has no pipe junctions. The diameter of the piping is equal 
to the diameter of the valve. 

- The reflection time of the pipe sections, upstream and downstream of the check 
valve, is adjustable. 

- The measurements take place under cavitation free conditions. 

13.2 Test facility 

The test rig for check valves, as available at Delft Hydraulics, is shown in 
figure 13.1. It consists of a pump station with eight centrifugal pumps, a head tank 
with overflow, an air vessel (upstream boundary), test section, high pressure tank 
with connected air reservoir (downstream boundary) and a control valve. 
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ULVE 

TO BASEMENT TANK 

Figure 13.1 Test rig for check valves at DELFT HYDRAULICS 

Principle of operation Eight centrifugal pumps supply water from the basement 
tank to the head tank. The water level in the head tank is fixed by means of an 
overflow at a height of about 25 m. Excess of water flows back through the return 
pipeline into the supply reservoir. 

The steady flow conditions (in advance of a dynamic test) are controlled by a 
(600 nun) control valve. The water level in the upstream air vessel is adjusted. The 

air reservoir, which is isolated from the high pressure tank by a closed (300 mm) air 
valve, is pressurized to a desired level. The water level in the high pressure tank is 

controlled by a vent valve. 
The unsteady flow conditions (a so-called dynamic test) are obtained by rapidly 

increasing the pressure head at the downstream side of the test section to a constant 
level. This is achieved by opening the fast-acting air valve. Due to the high air 
pressure the flow in the measuring section will be decelerated. The reverse flow of 
water is supplied by the high pressure tank. 

After the closure of the check valve the air valve is shut off. Consequently the 

pressure in the high pressure tank will be reduced, the check valve reopens and the 
steady flow conditions are readjusted, so that the next test can be carried out. 
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13.3 Test valves 

About the upstream boundary ..... 
As upstream boundary an air vessel (volume 3 m3) is used with a pressure relief on top of the vessel. 
The surge effects of the air vessel and pressure relief valve are studied by Van Hulst from the KEMA 

by means of simulations with the waterhammer computer code WTSL+ (Van Hulst and Kruisbrink, 

1993). As a result the necessity for the air vessel, in particular for the testing of larger check valves, 
is demonstrated. The set pressure of the pressure relief valve is adjusted to 3.50 bar (i. e. 0.10 bar 
higher than the stationary flow pressure in the test section). 

The test section is located between the upstream air vessel and the downstream 
high pressure tank as shown in figure 13.2. The test section is available in 200 mm 
and 500 mm piping. The meterrun as unit (i. e. the shaded part with test valve and 
flowmeter) can be installed at different locations in such a way that the ratio of the 
upstream and downstream pipe lengths is adjustable to 1/3,1 or 3. The check valve 
can be replaced by a dummy piece of pipe. 

air- 
vessel 

high 
pressure 
tank 

U3 D3 " 
U4 U2 U1 D1 D2 D4 

6D 1D 1D6D 

Figure 13.2 Test section with pressure tap locations 

13.3 Test valves 

The valves which have been tested are a 200 mm, weakly damped, membrane 
check valve, and 200 and 500 mm, strongly damped, butterfly check valves. 

Membrane check valve The valve has a flexible membrane as closing element 
(figure 13.3). The membrane and its seat, which consists of a plate with holes, give 
a certain resistance in the normal flow direction. In the reverse flow direction the 
membrane moves to the plate. The elastic properties of the membrane give the valve 
a certain damping and storage capacity, in particular when it closes against the seat. 
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ýNý membrane 

Sea 

Figure 13.3 Membrane check valve 

Butterfly check valve The valve has a disc as closing element. The closure is 

assisted by a counterweight and an external hydraulic damper (figure 13.4). The 

principal parts of the 200 and 500 mm valves, such as the valve disc, the centre of 
rotation of the disc and center of rotation of the damping device, are geometrically 
similar (scale 1: 2.5). The valve is fully open at 90 = 53.5 °, the damping device 
is activated at Bd = 11.4° and the valve is closed at 0, = 0.0°. In the fully open 
position the weight arm is in a horizontal position (both valves). 

The mass density of the valve disc and counterweight is pm = 7350 kg/m3. The 

mass density of the weight arm and hydraulic damper is 8000 kg/m3. 

The damper of the butterfly check valve consists of a cylinder with piston and 
bypass. The bypass consists of two flow loops. The first and second loop are used 
during the stage of passive and active damping, respectively. The throttle valve in 

the second loop controls the degree of damping. It is an active flow controller, 
designed to maintain a constant flow, independent of the pressure. This should result 
in a linear motion of the piston and a constant damping time. The damping time can 
be controlled by adjusting the amount of flow through the throttle valve. The response 
time of the throttle valve, as specified by the manufacturer, is of the order of milli- 
seconds. 

The principal parts of the damping devices of the 200 and 500 mm valves, such 
as the stroke of the piston over the first and second loop, and the diameter of the 
piston and cylinder, are geometrically similar (scale 1: 2.5). The diameter of the 
bypass pipe is not scaled. The throttle valves of the 200 and 500 mm valves are 
different, although their principle of operation is similar. 

The density of the damping fluid (oil) is pd = 860 kg/m3, and its kinematic 
viscosity vd = 34 x 10-6 m2/s at 20 °C. 
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Figure 13.4 Butterfly check valve 

13.4 Measuring procedures 

In this section the measuring procedures are described, which are applied to obtain 
the pressures and flow at the check valve. 

The upstream and downstream pressures cannot be measured at the check valve 
due to a pressure recovery effect and a non-uniform pressure distribution over the 
cross sections at the valve. The flow cannot be measured at the check valve due to 
the physical dimensions of a flowmeter and possible recirculation zones at the valve. 
For these reasons the pressures and flow(s) have to be measured at some distance of 
the check valve. 

Transient flow conditions offer opportunities for alternative measuring procedures, 
which cannot be applied to steady flow conditions. 

13.4.1 Standards 

With respect to the testing of (check) valves under unsteady flow conditions no 
standards or instructions are available. For this reason the standards for the testing 
of control valves under steady flow conditions are used as a guideline. 

In table 13.1 the upstream and downstream straight piping (ll and 14) and the 
pressure tap locations (12 and 13) are given, as prescribed by the British BSI and 
German VDUVDE standards. 
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11 12 13 14 

BSI BS 5793 standard 20D 2D 6D 7D 

VDINDE 2173 standard 20D 1D 1OD 15D 

Table 13.1 Standards for the testing of control valves 

The length of the straight piping ensures more or less fully developed fluid velocity 
profiles at the pressure tap locations, which on their turn ensure a uniform pressure 
distribution over the cross section of the pipe. The downstream pressure tap is located 

at some distance from the valve, taking account of the pressure recovery effect. The 
location of the flowmeter is not prescribed in these standards. 

11 12 13 14 

200 mm test section 56D 1D or 6D 1D or 6D 56D 

500 mm test section 22D 1D or 6D 1D or 6D 22D 

Table 13.2 Testing of check valves 

In table 13.2 the upstream and downstream straight piping and pressure tap 
locations are given, which are applied here for the testing of check valves. 

During a dynamic test the flow direction reverses from positive (normal flow) 
to negative (reverse flow), so that the pressure recovery effect may appear in both 
flow directions. For this reason the upstream and downstream requirements are also 
chosen identical with the check valve as point of symmetry. 

The pressures are measured at several other locations along the test section too, 
as shown in figure 13.2. This offers opportunities to explore and compare measuring 
procedures. At the same time some redundancy is built in. 

Under transient flow conditions the flow rate may differ along the pipe. In that 
case the location of the flowmeter becomes relevant. The flow is measured 6D 
downstream of the check valve; only one (fast-acting) flowmeter is available. 

13.4.2 The pressures and flow close to the check valve 

Taking into account fluid inertia, pipe friction and pressure recovery effects, 
several measuring procedures can be developed to obtain the pressures and flows 
close to the check valve (i. e. at a distance of 1D or 6D). The procedures are based 
on the equations for transient flow, but differ in number and location of the pressure 
and flow taps (figure 13.5). 
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Figure 13.5 Pressure and flow measuring procedures 

For details about these procedures reference is made to the CVRP report part II 
(Kruisbrink, 1993a). An alternative procedure for the flow measurement is described 
below. 

About an alternative principle for flow measurement ..... 
The response of flowmcters, with a frequency range typically in the order of 10 to 102 Hz, is limited. 

In that sense pressure transducers, with a frequency range in the order of 104 Hz, have much better 

properties. For this reason it is interesting to investigate in how far unsteady flows can be measured 
from dynamic pressures only. This principle is studied here. 

Consider the x-t diagram in figure 13.5. According to the compatibility equations (section 9.2) 

the relationship between pressure heads and fluid velocities along the pipe is given by: 
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Summation of these equations gives: 
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(13.3) 

In this equation the flow rate is related to the flow rate and pressure head at previous instants of time 

and other locations. The flow rate at the other location (D4) may be derived from Equation (13.1). 
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Thus the fluid velocity may be fully derived from (measured) pressure heads, provided that the initial 

flow rate is known. 

This alternative flow measurement has been evaluated by Mrs. L. Thorley as representative of 
the City University London. In first instance friction effects are assumed to be dominated by fluid 
inertia effects and ignored. In that case Equation (13.3) reduces to (f = 0): 

vDi - VD, +1 (H - 2HD4 + ND, ) (13.4) 

Note that friction effects can only be dominated by fluid inertia effects under unsteady flow conditions. 
However, for reasons of consistency, frictions effects must also be ignored under steady flow 

conditions (HD2 = Ha = Ham, in order to prevent a drift of the steady fluid velocity. 
The results of a dynamic test with the membrane check valve are used as test case. The calculated 

fluid velocity at location D2. according to Equation (13.4), could thus be compared with the measured 
one. The calculated results show a drift of the fluid velocity, after the initial steady-state period 
(assuming that the flowmeter measures correctly). This drift or error accumulation is attributed to (in 

order of importance): 

- Friction: The measured dynamic pressure heads are subject to friction. 

- Dynamic head: The pressure transducer at location D4 (in the high pressure tank) measures 
changes in total head, while the other transducers measure changes in static head in the pipe. The 
dynamic head, which has the same order of magnitude as the friction term, is usually ignored in 
waterhammer theory. 

- Single pressure taps: Due to the unsteady character of the flow the pressure head may vary across 
the pipe cross section. However, for the plug type of flow this error is expected to be small. 

- Pressure wave speed: The theoretical instants of time (t - Lic) do not coincide with the available 
instants of time (samples). 

From these results it is concluded that the alternative procedure cannot be used in its present form. 
Friction effects must be taken into account. The friction terms in Equation (13.3) must be solved, or 
approximated by a friction term in which the fluid velocity at location D4 is absent. If necessary, 
unsteady instead of steady pipe friction coefficients should be used. 

Due to the inductive or repetitive character, the procedure is sensitive to error accumulation. 
Nevertheless, it is believed that the procedure offers opportunities for the flow measurement under 
transient conditions, at least for relatively short time scales. The frequency range of the pressure 
transducers is orders higher than that of flowmeters. However, the usefulness and accuracy of this 
alternative flow measurement needs further investigation. For further details about the evaluation it 
is referred to CVRP report part III: appendix D (Kruisbrinlc, 1993b). 

The measuring procedure which is applied here is based on a direct measurement 
of the pressures and flow at a distance of 1D or 6D from the check valve. 
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13.4.3 The pressures and flow at the check valve 

The measuring procedures in the previous section supply pressures and flows close 
to the check valve. In this section a procedure is described to convert these values 
to pressures and flows at the check valve (i. e the locations Kl and K2; figure 13.5). 
The virtual points K1 and K2 are located at the upstream and downstream, centre of 
the check valve, so that the virtual length of the check valve is reduced to zero. The 

procedure accounts for both fluid inertia and pipe friction effects. 

Assume that the pressure head and the flow at the locations U2 and D2 are known. 
According to the compatibility equations the relationship between pressure heads and 
fluid velocities along the pipe is given by (figure 13.5): 

H cu 
v= 

9 K, 
H+ Cu 

v 
g u2 

- 
2LK, Uz VKK I VU2I (13.5) 

D 2g 

Cd 
-v= g K2 

C 
JH 

-dv g D2 

A5L K2D2 VK2 (VD2 ( 
(13.6) 

D 2g 

It is assumed that at a certain instant of time 8QIöx is zero along the fluid column 
between the points U2 and D2 (rigid column). The relation between the flow at the 
points K1 and U2, and the points K2 and D2 may be approximated by, respectively: 

VKI = vU2 + 
ZLK'U2 dv°2 

(13.7) 
cu dt 

and: 

VK2 = VD2 + 
ALK2D2 dvD2 

(13.8) 
Cd dt 

Substitution of these respective equations in the above compatibility equations 
gives for the pressure heads at the check valve: 

HN 
OLK1U2 VK 

I 
(VU !_ 'LK1U2 dvU2 

(13.9) 
Ký ý2 - 'f D 2g g dt 
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HK =H + .f 2 D2 

ALK2D2 VK2 I VD2 I 

D 2g + 
ALK2D2 dvD2 

(13.10) 
g dt 

For the relation between the pressure heads at the points Kl and U1, and the points 
K2 and Di similar expressions hold. 

In a mathematical sense the Equations (13.7) and (13.8) may be replaced by: 

QK1(t) = Qui(t) = QD2(t) (13.11) 

QK2(t) = QD2(t) (13.12) 

In this formulation the velocity gradient is not present anymore, so that it is more 
stable in a numerical sense. 

In this form the equations are used in the data processing. 

About rigid column theory ..... 
The above procedure is based on the equations for transient flow in a pipe, whereby time and distance 

are coupled via the pressure wave speed. The rigid column theory (section 9.8) is applied by setting 

all time intervals between the pressure tap locations equal to zero. Comparing these results with results 
from the above procedure shows hardly any difference in the valve characteristics of approach 2. There 

is no significant wave activity between the measuring locations. 

13.5 Measuring equipment 

13.5.1 Flow 

For the measurement of the flow rate, fast-acting electro-magnetic flowmeters 
(200 mm Foxboro and 500 mm Fischer & Porter) are used. The flow rate is measured 
at location D2 (figure 13.2). 

The flowmeters are calibrated under steady flow conditions (see section 14.3.1). 
A first attempt is made to calibrate the 200 mm flow meter under unsteady flow 
conditions (section 14.3.2). 

About the choice of a tlowmeter ..... 
Within flow measuring three principles may be distinguished: the point measurement (e. g. pitot tube, 
laser doppler anemometer), the line measurement (acoustic/ultrasone flowmeter) and the plane 

measurement (electro-magnetic flowmeter, turbine meter). 
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13.5 Measuring equipment 

In principle the (integral) plane measurement is not sensitive to fluid velocity profiles. However, 

the flowmeters may be inaccurate if located in recirculation regions, characterized by simultaneous 

positive and negative fluid velocities at a cross section. The response of turbine flowmeters is affected 

by inertia effects, while pressure surges may cause physical damage. 

Preference is given to the plane measurement, since the velocity profiles under transient flow 

conditions are unknown. Within the plane measurements, preference is given to the electro-magnetic 
flowmteter. 

About the response of the flowmeters ..... 
The response of the flowmeters used here is mainly determined by two third order Bessel filters. The 

low band-pass filters are characterized by a linear phase characteristic (Johnson et at., 1982): 

4kca) -- -CIO 

The time shift is given by: 

(13.13) 

T(w)i-a___ -z, (13.14) 

where 0 is the phase angle, w= 2x f the circular frequency and rt a time constant. Since the phase 

characteristic is linear the time shift is constant and independent of the frequency. Consequently, within 
the frequency range, the flow signal is measured undistorted but with a time delay. 

The response of the flowmeters is improved at Delft Hydraulics by increasing the frequency of 

the voltage supply. The phase shift and amplitude characteristics of the filter combinations are 

measured at the Instrumentation Division of Delft Hydraulics. The time shift of the 200 and 500 mm 
flowmeters appears to be 4.3 and 14.2 ms, the frequency range (-3 dB point) is 100 and 30 Hz, 

respectively. For the time shift a correction is made (see also section 13.7.1). 

The increase of the frequency range causes, however, a decrease of the stability. The flowmeters 

appear to be sensitive to mechanical shocks, causing a zero offset. For this offset a correction is made 
(see also section 13.7.1). 

13.5.2 Pressures 

The absolute pressure is measured with a pressure transducer (Statham, series 
2000) with a pressure range of 0-10 bar and an accuracy better than ± 1% of the 
measured value. The absolute pressure is measured at location U2 (see figure 13.2), 

only during the initial, steady flow conditions. 
The pressure difference across the valve is measured with diffused silicon AP/I 

transducers (Honeywell, model 411) with an overall accuracy better than ± 0.5 % 

of the measured value. The pressure difference is measured between the pressure tap 
locations U2 and D2 (see figure 13.2), only during the initial, steady flow conditions. 
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The above pressure transducers are sensitive to mechanical shocks. For protectional reasons they 

are disconnected from the test rig after the initiation of a dynamic test. Due to the low-frequency range 

the transducers are unable to measure dynamic pressures. 

The dynamic pressures are measured with piezo-electric pressure transducers 
(Kistler, type 410B), with a pressure range of 100 bar, frequency range of 40 kHz 
and an overall accuracy within ±1%. The dynamic pressures are measured at the 
pressure tap locations Ul to U4, and Dl to D4 (see figure 13.2). The transducers 
registrate pressure changes (and no absolute pressures). To start with zero values they 
must be reset in advance of each dynamic test. For the remaining (small) zero offset 
a correction is made (see also section 13.7.1). 

13.5.3 Other instruments 

The valve disc position is measured by a potentiometer fixed to the hinge pin (not 
applicable to the membrane check valve). 

The axial valve motion is measured by means of a displacement transducer (HBM 
type W20) with a displacement range of 20 mm, frequency range 0-1 kHz and an 
overall accuracy of ±1% of the measured value ± 0.01 mm. 

For the measurement of other signals like the sound pressure level (SPL) and anchoring forces 
it is referred to CVRP report part III: section 2.4 (Kruisbrink, 1993b). 

13.6 Data acquisition 

The measurement signals are recorded on two 8 channel data acquisition cards, 
with a storage capacity of 6000 samples (1000 pretrigger and 5000 posttrigger 
samples) and a sample frequency of 500 or 1000 Hz. The flow rate is used as trigger 
signal (trigger level: 85% of the initial flow rate). The experimental data are stored 
on two parallel 486 PC's, where also the graphical representation of the physical data 
is carried out. 

13.7 Data processing 

In this section the conversion from measured pressures to pressure heads and from 
flow rates to fluid velocities is described. The application of numerical filters is 
described. Further it is described how the valve characteristics are obtained from the 
(processed) measuring signals. 
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13.7 Data processing 

The data processing is executed on a HP 9000/8F30 computer (server) under the 
UNIX operating system. Hereto the voltage output of the instruments is converted 
to physical data, which are stored in data files (extension . PHD). The physical data 

are converted to pressure heads and fluid velocities and processed according to the 
measuring procedures in section 13.4. Herefore a FORTRAN computer code is 
written. 

13.7.1 Pressure heads and fluid velocities 

The absolute pressure is measured at location U2 and during the steady flow 
period only (section 13.5.2). To obtain the values at the other locations pipe friction 

effects and the pressure difference Ap across the valve (measured between the 
locations U2 and D2; figure 13.2) are taken into account. As an example, this yields 
for the downstream location D3: 

-_f 
LD2D3 

p v2 (13.15) PabsP3 - Pobsu: D2l 

The piezo-electric pressures transducers, used for the measurement of the dynamic 

pressures, registrate pressure changes (and no absolute pressures) with initial values 
of about zero (see section 13.5.2). For the small zero offset, which is calculated as 
the average value over the first 500 pretrigger samples, a correction is made. The 

corrected dynamic pressures are added to the steady flow absolute pressures. The 

pressure heads are obtained from: 

H_ Pabs +Ptransducer (13.16) 
pf8 

The flowmeters reveal a significant zero offset after mechanical shocks induced 
by check valve closure (see section 13.5.1). For this reason, only the flow rate of 
the first dynamic test of a series is measured correctly up to the instant of valve 
closure. After this instant the flow rate may be shifted in magnitude. Consequently 
the flow rates of subsequent dynamic tests may be shifted too. For the zero offset 
a correction is made by assuming that the initial flow rate of a dynamic test is equal 
to the initial flow rate of the first dynamic test of that series (during a series of 
dynamic tests the controlled pump speed and disc position of the 600 mm control 
valve in the test section remain unchanged). The initial flow rate of a dynamic test 
is calculated as the average value over the first 500 pretrigger samples. 
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The fluid velocity at location D2 is calculated from the measured flow rate, and 
based on the pipe diameter. Hereby a correction is made for the time shift of the 
flowmeter (section 13.5.1). The fluid velocities at the check valve are based on the 
inlet diameter of the check valve. 

13.7.2 Numerical filters 

dv/dt-filters The pressure heads at the check valve (locations Kl and K2) are 
calculated according to the Equations (13.9) and (13.10). The fluid velocity gradient 
in these equations is, in first instance, calculated from its definition: 

dv(t) 
= v(t+&t) - v(t) (13.17) 

dt At 

As expected the velocity gradient reveals strong fluctuations, varying from 

positive to negative values and vice versa. To suppress these fluctuations a dv/dt-filter 
is introduced: 

dv(t) 
= 

v(t+n&t) - v(t-n&t) (13.18) 
dt 2n &t 

where n is denoted as the order of the filter. 

Examples of unfiltered and filtered pressure head signals are given in figure 13.6. 
The pressure heads at the locations Kt and K2 are derived from and compared with 
the pressure heads measured at the locations U2 and D2, respectively. 
The unfiltered signals show strong fluctuations with frequencies in the order of 
100 Hz, which are considered to be physically unrealistic, since they cannot be found 
in the measured ones. The fluctuations in the calculated pressure heads vanish when 
dv/dt-filters are used. The differences between the filters are relatively small. The 

correlation between the measured and the filtered pressure head histories is good, 
when 8th- or 12th-order dv/dt-filters are used. For the data processing an 8th-order 
dv/dt-filter is used. 
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13.7 Data processing 

Shumann-filters are generally defined as: 

x(t) = 4x(t-i) + 4x(t) + 4x(t+1) 
(1st order) 

x(t) =1 x(t-2) + 2x(t-1) + 3x(t) + 2x(t+1) +1 x(t+2) (2nd order) 99999 

x(t) _ ........ +3 x(t-1) +4 x(t) +3 x(t+l) + ........ (3rd order) 16 16 16 

(13.19) 

Shumann filters are applied to the fluid velocity, pressure head, and the processed 
E-values. The order of the v-filter and H-filter is chosen the same, since the pressure 
head and flow are coupled. This coupled filter is further denoted as v/H-filter. 

Several combinations of second-, fourth- and eighth-order, v/H- and s-filters are 
explored. Comparing the results with "no filters" shows that the WH-filter as well 
as the E-filter reduces the scatter in the E-values. Thus the pattern which is followed 
during valve closure becomes better visible (figure 13.7). The second- and fourth- 

order v/H-filters do not affect, while the s-filters do affect the peak values, in 

particular the extreme E-values at negative fluid velocities. There is hardly any 
difference between the second- and fourth-order v/H-filter. Based on these results it 
is decided to apply the second order v/H-filter in the data processing. 

For details about the investigation into numerical filters it is referred to CVRP 

report part III: appendix E (Kruisbrink, 1993b). 

About pressure recovery effects ... 
In first instance the pressures close to the check valve are taken from the locations U2 and D2. 

Alternatively the pressures may be taken from the locations Ut and D1. At these locations pressure 

recovery effects may play a role. 

The pressure recovery effect is the conversion of kinetic energy per unit volume lhpvz into 

pressure, which takes place downstream of the vena contracts. In practice the pressure recovery is 

moved in a downstream direction due to flow separation. 
In figure 13.7. b and c, dynamic valve loss coefficients are presented, which are derived from the 

locations at 6D and ID from the check valve, respectively. The latter results show (apart from a 

reduction of scatter) that the E-values are generally lower and even in better agreement with the steady 
flow values (see figure 14.14). The pressure recovery effect tends to increase the E-values in the 

normal as well as in the reverse flow direction. For this reason it is concluded that the pressures at 

the locations Ut and Dt are not visibly influenced by pressure recovery effects. 
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It is believed that under unsteady flow conditions the pressure recovery effect becomes less 

dominant. The wake is per definition caused by flow separation and characterized by recirculation 

zones with capricious velocity profiles. As such it is the typical result of viscous effects. In an 

accelerating flow the development of the wake may be suppressed by inertia effects, which dominate 

the viscous effects and tend to flatten the velocity profiles. 
Van de Sande et al. (1980) measure fluid velocity profiles in accelerating pipe flows from 

stationary flow conditions. The profiles are measured in time, using a Laser Doppler Anemometer. 

The results show, during both the laminar and turbulent development stages, much resemblance with 

a plug flow. 

Apart from the above spatial pressure recovery another pressure recovery effect exists. This effect 
is revealed by the valve characteristics of approach 2. The experimental results in the next chapter 
(figures 14.14 to 14.17) show that, after the transition from normal to reverse flow, the initially 

positive pressure head difference across the valve is maintained for a while. This unsteady flow effect 

may be considered as a time pressure recovery, not to be confused with the above described spatial 

pressure recovery. However, the two are related, since during the time pressure recovery the transition 

of the spatial pressure recovery from the initial downstream side to the upstream side takes place. A 

typical example of the time pressure recovery is that the net pressure difference at zero now has a 

positive value instead of zero. 

13.7.3 Valve characteristics 

The valve characteristics of approach 1 (section 11.5) are obtained from the 
pressures measured at 1D from the check valve (locations Ul and D1), and the flow 

rate measured at 6D from the valve (location D2). The values are not converted to 
values at the valve. The error thus introduced is estimated by comparing the pressure 
head changes MHD1 and OHD2 at 1D and 6D from the valve. The differences between 
these pressure head changes are within 5 %. 

To obtain the valve characteristics of approach 1 several fluid velocities, pressure 
heads and instants of time need to be determined from the (processed) measurement 
signals (figure 8.2). 

The critical velocity vo is determined from steady flow tests as the fluid velocity 
at which the check valve is just fully open. If necessary a correction is made for 
hysteresis effects (section 8.5). 

The instant to is determined from the fluid velocity signal as the instant at which 
the critical velocity vo is reached. 

The instant td (damping becomes active or effective) is determined from the 
pressure head signal as the instant at which the downstream pressure head, induced 
by valve closure, visibly starts rising. Note that this instant is not derived from the 
valve disc position at which the damping device is activated. 
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If the pressure head rise is taken from a measured pressure head (close to the 

check valve), the instant td is corrected to the value at the check valve (weakly 
damped check valve only). 

The reverse flow velocity yd is defined as the fluid velocity at the instant td. Up 

to this instant the initial flow deceleration and fluid velocity are about constant along 
the test section (vX = 0, vXt = 0; rigid column theory). 

The instant tc (valve is just closed) is determined from the valve disc position 
signal. Time shift effects of the valve disc position indicator are assumed to be 

neglectable. 
If the valve disc position is not measured, this instant is taken from the fluid 

velocity as the instant at which the reverse flow becomes zero. Hereby it is assumed 
that the fluid velocity at the check valve and flowmeter are equal (rigid column 
theory). In that case a maximum error of iL/c =1 ms is made. 

The pressure head changes A Hu and OHd are defined as the difference between 

the first extreme value of the pressure head after the instant td and the pressure head 

at the instant td. 

The valve characteristics of approach 2 (section 11.6) are obtained from the 

pressures measured at 1D or 6D from the check valve (locations U1, D1 or U2, D2), 

and the flow rate measured at 6D from the valve (location D2). These values, 
measured close to the check valve, are converted to the values at the valve according 
to the procedures described in section 13.5.3. Thus the pressure head difference 

across the valve is a net value which is corrected for fluid inertia and pipe friction 

effects. 

The fluid velocities at the check valve, such as vo and yd are based on the inlet 
diameter of the check valve. 

13.8 Review and conclusions 

The requirements for the measurement of the valve characteristics are defined. 
The test facility and test valves are described, which are used to measure the valve 
characteristics of approach 1 and 2, and other valve characteristics. 

For the dynamic testing of (check) valves no standard procedures are available. 
Measuring procedures are described, which are used to measure the pressures and 
flow close to the check valve. Hereby the standards for the testing of control valves 
are used as guideline. The values close to the valve (i. e. at a distance of 1D or 6D) 

are converted to the pressures and flow at the check valve. This conversion is based 
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on the compatibility equations, accounts for pipe friction and fluid inertia effects and 
shows much resemblance with the rigid column theory. 

For the dynamic testing of (check) valves no standard equipment is available. For 

this purpose special pressure transducers and flowmeters are used. The response of 
the flowmeters is characterized by a time shift and a zero offset (the latter due to 
mechanical shocks). For these effects corrections are made. 

Fluctuations in the calculated fluid velocity gradient lead to physically unrealistic 
fluctuations in the calculated pressure heads at the check valve, and a scatter in the 
calculated dynamic valve loss coefficients. To suppress these fluctuations a numerical 
filter is applied. In addition Shumann-filters are applied to the fluid velocity, pressure 
head and the calculated E-values. The effects of these filters are explored. As a result 
an 8th-order dv/dt-filter in combination with second-order v/H-filters are used in the 

processing of the experimental data. 

The pressures measured at a distance 1D from the check valve are not visibly 
influenced by "spatial" pressure recovery effects. For this reason the pressures at 
these locations may be used in the data processing. Applying these pressures instead 

of the pressures at a distance 6D from the check valve reduces the fluid inertia and 
friction correction terms, and even reduces the scatter in the dynamic valve loss 

coefficients. 

The measuring procedures are applied to the experimental results, which are 
presented in the next chapter. 
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14 Experimental results 

In this chapter the experimental results are described. Steady-state tests are 

performed to determine the pipe friction coefficients. Dynamic tests are performed 
to determine the pressure wave speeds in pipes, with and without flexible hoses. The 
flowmeters are calibrated under steady and unsteady flow conditions. Steady-state and 
dynamic tests are performed on weakly and strongly damped check valves. From the 

experiments the previously defined, valve characteristics are derived. 

14.1 Pipe friction coefficient 

The pipe friction coefficient of the test section is obtained from pressure loss 

measurements, which are performed under steady flow conditions without check 
valve. Hereto the effective pipe friction coefficient fell is introduced as: 

Op = feff 1 pfV 2 (14.1) 

The pressure loss across the test section is the result of pipe friction and losses across 
the flanges. Equation (14.1) may therefore be written as: 

'5 

1+n 
kflange 

2 pfv2 (14.2) AP 
[fie 

Thus follows: 

feff = fpipe +D Lit tinge (14.3) 

Two series of pressure loss measurements are performed with a different number 
of flanges, but at the same Reynolds numbers. Thus the pipe friction and flange loss 

coefficients can be derived from Equation (14.3). The results of the 200 mm test 
section are given in table 14.1 (columns 1 through 3). 
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Re 

[*105] 
fpipe 

[-] 
Eilange 

[-] 
feff 

[-] 
2.957 0.0103 0.0943 0.0197 

4.480 0.0083 0.1099 0.0192 

6.834 0.0063 0.1297 0.0192 

9.076 0.0056 0.1310 0.0186 

11.463 0.0047 0.1418 0.0188 

Table 14.1 Pipe friction and flange loss coefficients 

The pipe friction coefficients in this table have unrealistic low values at higher 
Reynolds numbers; they are even smaller than those for hydraulically smooth pipes. 
This is attributed to the fact that the energy losses over the pipe and flanges are 
mixed. A flange may cause a local flow separation with a downstream recirculation 
zone. This zone shortens the effective pipe length along which pipe friction plays a 
role and should not be taken into account in the calculation of the pipe friction 

coefficient. Since the size of these recirculation zones is unknown, the pipe friction 

coefficient is calculated from the full pipe length, which leads to the low values 
presented above. 

The effective pipe friction coefficient of the entire test section (L = 22.80 m, 
D=0.206 m, n= 11 flanges) is calculated from Equation (14.3). Hereby it is 

assumed that the friction coefficient of the flowmeter and expansion joint are equal 
to the pipe friction coefficient. The results are given in table 14.1 (column 4). In good 
approximation the effective pipe friction coefficient is feff = 0.019. This constant 
value is used in the data processing. 

14.2 Pressure wave speed 

The pressure wave speed in circular pipes can be derived to be (e. g. Wylie and 
Streeter, 1993): 

c2 
=pfK+D cl (14.4) 

where cl is a constant which accounts for the support conditions of the pipe: 
cl =1- v/2 if the pipe is anchored at its upstream end only, 
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cl =1- v2 if the pipe is anchored throughout against axial movement, 
cl =1 if the pipe is anchored with expansion joints throughout. 

Remenieras (1952) developed the following expression for the pressure wave 
speed in a circular pipe with an air filled flexible hose in it: 

1=1+ Ap D+ Ah 1 (14.5) 
C2 

- pf K A. -Ah Ee Ap-Ah Phose 

where AP and Ah are the cross sectional areas of the pipe and flexible hose, while 
Phose is the initial pressure of the compressed air in the hose. The three terms in this 
equation describe the storage capacity of the pipe fluid, pipe wall and compressed 
air, respectively. The storage capacity of the wall of the flexible hose is neglected 
by assuming that the wall is thin and that the wall stresses are much smaller than the 

pressures. Note that the constant cl is assumed to be 1 here. 

The overall pressure wave speed may be determined from the pipeline period. 
Hereto the propagation of a pressure wave through a pipeline system with constant 
head boundaries is considered. At a certain location the pressure-time history is a 
harmonic function with a period equal to the pipeline period or reflection time 2L/c. 
The pressure wave speed may now be determined from: 

AT n (14.6) 
c 

Where AT is the overall time, 2LIc is the reflection time or pipeline period and n is 

the number of periods. 

About the local pressure wave speed ..... 
The pressure wave speed may be also determined from the time shift between two pressure signals, 

measured at different locations. This is only allowed under reflection free conditions and if friction 

effects may be neglected. In that case the pressure waves propagate without significant deformation, 

which may be written as (Appendix B. 1.2): 

L (14.7) HP1(t) = HpI(t-L/c) + 
(8H)r. 

o lax 

where L is the distance between the pressure tap locations Pt and P2. The method gives information 

about the local pressure wave speed. For test results see CVRP report part III (Kruisbrink, 1993b). 
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14.2.1 Standard pipe 

The pipe data of the 200 and 500 mm test section are given in table 14.2. The 
fluid is water with a density pf = 998.23 kg/m3 and a bulk modulus of elasticity 
K=2.19x109(T=20°C). 

material D 

[m] 
e 

[m] 
E 

[N/m2] 
v 
[-] 

steel 0.206 0.0059 2.1 x 1011 0.3 

steel 0.489 0.0095 2.1 x 1011 0.3 

Table 14.2 Pipe data 

The theoretical pressure wave speed, according to Equation (14.4), is given in 

table 14.3 for different support conditions. Since the exact support conditions are 

unknown, the theoretical pressure wave speed is taken as the average value, which 
results in c= 1282 m/s (200 mm test section) and 1212 m/s (500 mm test section). 

support 
conditions 

200 mm 
test section 

500 mm 
test section 

cl = 0.85 1294 1227 

cl = 0.91 1284 1214 

cl = 1.00 1268 1195 

Table 14.3 Theoretical pressure wave speed 

The pressure wave speed in the 200 mm test section is obtained from dynamic 

tests without check valve. Pressure surges are generated in the high pressure tank 
from initial, stagnant flow conditions. A typical example of such a test is given in 

figure 14.1 (for pressure tap locations see figure 13.2). The (overall) pressure wave 

speed is obtained from the periodical pressure signals, according to Equation (14.6), 

and varies between 1222 and 1285 m/s with an average value c= 1241 m/s. This 

value is about 3% lower than the theoretical value. It is further used in the data 

processing. 
For the 500 mm test section the theoretical value c= 1212 m/s is used in the data 

processing, since no experimental data are available. 

210 



14.2 Pressure wave speed 

600 

W L 

in 400 
N 
N 
E 
a 
U 
E 200 
(0 
c 
T 
0 

I 

"- location D1 --- location 03 

---------- location D2 ----- location 04 

_ _ _( _ _ _ _ _ 

7 

. 

__ _ __ __ __ 

i t_ 
_ _ _ _ _I _ _ _ _I 

1600 1d00 2000 2200 2400 

-Time (ms) 

Figure 14.1 Measurement of pressure wave speed (200 mm test section) 

14.2.2 Pipe with flexible hose 

To reduce the pressure wave speed in steel pipes flexible hoses may be used. The 

effect of such a wave speed reduction is that liquid pulsations (pressure surges) and 
pipe vibrations are reduced. For this purpose also plastic pipes, non-circular pipes 
or gas dampers are applied. An additional effect of a wave speed reduction is that 
the reflection time of the pipe section is enlarged. In the latter sense the flexible hoses 
are applied here. The idea is to give the test section the properties of a longer section, 
without changing its physical dimensions. In this way a smaller and larger check 
valve can be tested, under such conditions that one of the dynamic scale laws, i. e. 
similarity of the dimensionless group D/(2L/c)/vo, is satisfied. More about this in 

section 14.5. 

To reduce the pressure wave speed in the steel pipes of the test section a flexible 
hose is used. The air filled, floating hose is mounted in the pipes along the entire test 
section (see figure 14.2). To enable the installation of a check valve in the test section 
the hose is divided into an upstream and a downstream piece. The two hose ends are 
connected to a small air vessel outside the test section, which is used to control the 
initial air pressure in the hose. The pressure wave speed is controlled by adjusting 
the initial air pressure. 
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Figure 14.2 Test section with flexible hose 

Two types of flexible hoses are used: Type I is a non-toxic, reinforced, PVC hose 
(Polyflex) with an operational pressure of 14 bar and a burst pressure of 30 bar, 

which has resistance against collapsing due to underpressures. Type II is an industrial 

rubber (water) hose (Inducord type 10) with an operational pressure of 10 bar, which 
has hardly any resistance against collapsing due to underpressures. The flexible hose 

data are given in table 14.4. The modulus of elasticity of these hoses is unknown. 

material D 
[m] 

e 
[m] 

flexible PVC 0.019 0.004 

rubber 0.022 0.004 

Table 14.4 Flexible hose data 

The theoretical pressure wave speed, according to Equation (14.5), varies from 

c= 108 to 279 m/s (hose type I), and from c= 93 to 245 m/s (hose type II), for 

air pressures phose from 1 to 7 bar. 

The pressure wave speed in the 200 mm test section is obtained from dynamic 

tests without check valve, from initial, stagnant flow conditions with a water pressure 
of 3.35 bar. During the test series the initial air pressure in the hose is varied from 
1 to 7 bar. The amplitude of the pressure wave is varied by controlling the level of 
the downstream pressure rise (Op = 2,3 or 4 bar). Some tests are performed with 
the small air vessel disconnected, so that the air inside the hose cannot escape into 

this vessel. Remenieras (1952) uses hoses with compartments of 10 m long, separated 
by diaphragms, to suppress the transmission of pressure surges in the hose. 

The (overall) pressure wave speed is obtained from periodical pressure head 

signals, measured at the locations Ul and U3, according to Equation (14.6). Hereby 

the following remarks are made: The periodical character of the pressure signal is 
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14.2 Pressure wave speed 

clearly visible, if the hose has already collapsed in advance of a test (at low initial 

air pressures). Damping effects are relatively small. The periodical character of the 

pressure signal is hardly or not visible, if the hose collapses during a test (at medium, 
initial air pressures). The collapsing of the hose is coupled with strong damping 
(storage) effects. The periodical character of the pressure signal improves with 
increasing air pressure, if the hose does not collapse at all (at higher initial air 
pressures). The amplitude of the signal increases. Damping effects are still strong, 
but become smaller. 

The test results are presented in figure 14.3, where the pressure wave speed is 

represented against the initial air pressure in the hose. 
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Figure 14.3 Measured pressure wave speeds (200 mm test section) 

From these results the following conclusions may be drawn: 

- The pressure wave speeds, as derived from the pressure head signals at location 
U1 and U3, show no remarkable differences (as expected). 

- The amplitude of the pressure wave has no significant, direct influence on the 
pressure wave speed, but is indirectly found in the phenomenon of collapsing. 

- The pressure wave speeds, measured with and without air vessel, are the same. 
Apparently, the influence of the (connected or disconnected) small air vessel on 
the storage capacity of the entire hose system is small. 

- Hose type I shows a slight increase of the wave speed (from 700 to 760 m/s) with 
increasing air pressure. This may be attributed to an increasing rigidity of the 
hose, which is proportional to the air pressure in the hose. However, this effect 
was expected to be much larger. 
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- Hose type II behaves like the more rigid, since it gives higher pressure wave 
speeds. This was not expected since this non-reinforced hose is more sensitive 
to collapsing. 

- The measured pressure wave speeds are much higher than the theoretical ones. 
Apparently, the influence of the rigidity of the hose, which is not taken into 

account in Remenieras' Equation (14.5), cannot be neglected. 

The tendency of increasing pressure wave speed with increasing air pressure is 

not strong enough to control the pressure wave speed over a wider range. This is 

attributed to a relatively high wall thickness of the hose and a relatively small range 
of air pressures from 1 to 7 bar. The latter is confirmed by the results of Remieneras, 

who considers air pressures up to 100 bar. 
It is recommended to use the flexible hose type I as pressure wave speed reducer. 

This hose gives a stronger reduction of the pressure wave speed, allows some degree 

of controlling the pressure wave speed, and is less sensitive to collapsing. The hose 

should be pressurized in such a way that it is either always collapsed or does not 
collapse at all. Under these conditions the pressure wave speed is the best defined. 

14.3 Calibrations 

The electro-magnetic flowmeters are calibrated under steady flow conditions. A first 

attempt has been made to perform a calibration under unsteady flow conditions. 

14.3.1 Steady flow 

The 200 mm and 500 mm electro-magnetic flowmeters are calibrated under steady 
flow conditions in the calibration rig for flowmeters at Delft Hydraulics. The cali- 
bration is based on the principle of weighing tanks. The flowmeters are calibrated 
in normal and reverse flow direction. 

The flow range of the 200 mm flowmeter can be adjusted to 60,150 or 3001/s. 
The relative error is smaller than 2% of the measured value in the 20-100 % flow 

ranges. Within the 0-20 % ranges the relative error increases rapidly towards zero 
flow. The absolute error in the 0-100 % ranges is within 1 1/s, except for the flow 

range of 150 1/s, in which case an absolute error within 2 1/s is found. 
The flow range of the 500 mm flowmeter is 20001/s. The relative error is smaller 

than 4% of the measured value in the 20-100 % flow ranges. Within the 0-20 % 

range the relative error increases rapidly towards zero flow. The absolute error in 

the 0-100 % range is within 12 1/s in the normal flow direction and within 60 1/s in 
the reverse flow direction. 
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14.3.2 Unsteady flow 

The purpose of the unsteady flow calibration is to determine the reponse of the 
flowmeter to transient flow conditions. The calibration is based on the principle that 

changes in the fluid velocity and pressures are related to each other. The response 
of pressure transducers (frequency range in the order of 10 kHz) is much higher than 
the response of flowmeters (frequency range in the order of 10-100 Hz), so that the 

pressures can be used as reference. 

The relationship between the fluid velocity and pressure head is described by the 
basic equations for transient flow (section 9.1). Assuming that storage effects are 
small (rigid column theory), the relationship is described by the pipe equation of 
motion (section 9.1.2): 

gHx + vt +f 2Dv 
I=0 (14.8) 

This equation may be applied to flow conditions, where vt is approximately constant 
along the fluid column of consideration. In that case also HX is about constant and 
can be calculated from the pressure head difference across the fluid column, after 
correction for pipe friction effects. 

The experimental data which are used for the unsteady flow calibration are taken 
from the dynamic tests with the check valves, which are characterized by a more or 
less, constant initial flow deceleration. An example of such a calibration is presented 
in figure 14.4, where the fluid velocity at location D2, the pressure heads at the 
locations D2 and D3, the calculated pressure and velocity gradients, and the difference 
between these gradients are plotted against time. The initial flow deceleration is about 

-15 m/s2 here. 

The fluid velocity gradient vt is derived from the flow signal by using an 8th-order 
dv/dt-filter (section 13.7.2). The pressure head gradient H. is calculated from the 

pressure head difference between the locations D2 and D3, after correction for pipe 
friction effects, and the distance between these locations (4.38 m 22D). 

Comparing the fluid velocity and pressure head gradients show that the response 
of the flowmeter, measured in terms of -11g dv/dt, is about equal to dH/dx and even 
tends to exceed it. The latter means that the flowmeter is able to measure the fluid 

velocity gradients considered. 
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14.4 Steady state characteristics 

14.4 Steady-state characteristics 

Membrane check valve The steady-state characteristics of the 200 mm valve 
are given in figure 14.5, where the pressure loss across the valve and the valve loss 

coefficient are plotted against the fluid velocity. The values are corrected for pipe 
friction effects. The graphs show data measured during a (stepwise) increasing and 
(stepwise) decreasing, steady flow. 

From these results it is concluded that there is no hysteresis at all, so that the 
hysteresis factor Y(O) = 0. The critical velocity vo is 7.60 m/s. 
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Butterfly check valve The steady-state characteristics of the 200 mm valve 
(counterweight 9.6 kg) are presented in figure 14.6. 

The differences between the characteristics, as measured during increasing and 
decreasing flow, are attributed to hysteresis effects, mainly caused by strong friction 

effects in the hydraulic damper. From these results it is concluded that the critical 
velocity in an increasing flow vo t=5.21 and in a decreasing flow vo J=2.97 m/s. 
The average critical velocity, calculated from Equation (8.32), is vo = 4.24 m/s. 
Hereby the critical flow is assumed to be turbulent (k = 0). 

In figure 14.7 the hysteresis factor Y(O), as derived from the steady flow charac- 
teristics according to Equation (8.29), is presented as function of the valve disc 

position. The factor decreases with increasing valve disc position. Apparently, the 
importance of hysteresis decreases, relative to the net effect of gravitation and 
buoyancy (or: hydrodynamic effects). The results of the 500 mm valve illustrate that 
the hysteresis decreases with increasing valve size. 
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14.5 Dynamic tests 

Membrane check valve The dynamic tests with the membrane check valve are 
performed under the conditions listed in table 14.5. During the test series 1 and 2 

the 200 mm valve (D = 0.201 m) is installed in the middle of the test section, so that 
(2u/cu)1(2Ld/cd) =1 and upstream in the test section, where (2Lu/cu)1(2Ld/cd) = 1/3. 

In principle the initial fluid velocity is chosen about 15 % above the critical 
velocity, to ensure that initiation effects are more or less damped out before the check 
valve starts closing. However, at this fluid velocity cavitation was observed in the 
check valve. Therefore the initial fluid velocity is chosen about 4% higher than the 
critical velocity, so that the valve is still initially fully opened ((B, Bc)/(9ö Bc) = 1). 

A typical recording of a dynamic test is presented in figure 14.8, where the flow 

rate at location D2, the pressures at the locations D4, D2, U2 and U4, and the axial 
displacement of the valve are plotted against time (see figure 13.2 for the pressure 
tap locations). 

The results show that the initial flow deceleration is approximately constant. The 

maximum reverse flow velocity is quickly reduced to zero (valve closed), so that the 

stage of active damping is short. The damping effect of the membrane is relatively 
low. 

After closure the upstream and downstream pressure heads become in phase. 
From this phenomenon it is concluded that the valve reopens. 

Butterfly check valve The dynamic tests with the butterfly valve are performed 
under the conditions listed in table 14.6. The test series 1 and 2 are performed on 
the 200 mm valve (D = 0.198 m) with a counterweight of 9.6 kg (v0 = 4.24 m/s) 
and a counterweight of 5.0 kg (v0 = 3.18 m/s). The series 3 and 4 are performed 
on the 500 mm valve (D = 0.500 m) with strong damping (75%) and medium 
damping (50%), in both cases with a counterweight of 47.8 kg. 

During the test series 1 and 2 the initial fluid velocity is chosen about 15 % above 
the critical velocity vo t=5.21 m/s (counterweight 9.6 kg). Consequently the valve 
is initially fully opened, so that (6; 6c)/(0ö 6) = 1. 

During the test series 3 and 4 the initial fluid velocity is chosen about 22% lower 

than the estimated critical velocity (v0 = 4.77 m/s), to ensure that the tests are 
cavitation free and that air entrainment from the upstream air vessel into the 'test 

section is avoided. The capacity of the test rig is not sufficient to open the 500 mm 
valve fully, so that (O 9c)/(6ö Bc) = 0.83. The critical velocity of the 500 mm valve 
is an estimated value, which is obtained by means of scaling from the steady-state 
characteristics of the 200 mm valve. 
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During all the test series the check valve was installed in the middle of the test 

section, so that (2Lu1cu)/(2Ldl cd) 1. 
The Reynolds numbers Reo and Red show that the (initial) flow in the valve is 

turbulent while the flow in the hydraulic damper is laminar. 

About the Reynolds number in the hydraulic damper ..... 
The Reynolds number Red of the flow in the damper is based on the diameter of the bypass pipe, the 

average fluid velocity in the bypass pipe during the stage of active damping, and the kinematic viscosity 

of the damping fluid. 

The average fluid velocity in the bypass pipe is calculated from the displaced piston volume, 
divided by the damping time. Here the damping time is about constant within a test series. 

About scale laws ..... 
In first instance it was tried to satisfy the scale laws, so that all relevant valve and system parameters 

are similar for the two test series with the 200 and 500 mm valve. For this purpose the pressure wave 

speeds of steel pipes with flexible hoses is measured (section 14.2.2). 

Consider the parameter group D/(2Lu/c�)/vo. The valve diameter (200 mm valve) is increased by 

a factor 2.5 (500 mm valve). Geometric scaling of the 5.0 kg counterweight (200 mm valve) gives 

a value of 5.0 x 2.53 = 78.1 kg (500 mm valve). For this a 83.5 kg counterweight was available. 
Scaling of the critical velocity vo = 3.18 m/s (200 mm valve) gives vo = 3.18 x -, %2.5 = 5.03 m/s 

(500 mm valve). Consequently, also the reflection time should be enlarged by a factor s%2.5. This can 

be achieved by reducing the pressure wave speed from 1241 m/s (200 mm standard piping) to 

1241 / J2.5 = 784 m/s (500 mm piping). This is a typical value, which is obtained with flexible hose 

type I in the 200 mm piping (section 14.2.2). 

If the reflection time is increased by a factor f2.5, then also the damping time should be enlarged 
by a factor , /2.5. Scaling of the damping time of about 1.2 sec (96% damping; 200 mm valve) gives 

a damping time 1.2 x , %2.5 sec = 1.9 sec (96% damping; 500 mm valve). Note that in principle the 

degree of damping does not need to be altered for this purpose. 
However, the above scale laws could not be satisfied for two reasons. Scaling the counterweight 

would lead to a further reduction of the initial valve disc position. The flow capacity of the test rig 
is not sufficient to open the valve fully. Scaling the damping time could not be realized. The capacity 

of the high pressure tank is not sufficient to deliver a reverse flow until valve closure, if the damping 

time exceeds about 1.7 sec (strong damping). 

A typical recording of a dynamic test is presented in figure 14.9. The maximum 
reverse flow velocity is gradually reduced to zero (valve closed), so that the stage 
of active damping is long here. The damping effect of the hydraulic damper is 

relatively high. The disc position signal shows that the valve closes linearly in time 
during the stage of active damping. In that respect the hydraulic damper operates as 
expected. 
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parameters series 1 series 2 

D [m] 0.201 0.201 

vo [m/s] 7.60 7.60 

Pmlpf 

to 1.55 1.55 

TS0I (Pf v2 D3) *** *** 

TSol TSC *** *** 

damping *** *** 

7 0 0 

(O -edl (9ö 6c) 1.00 1.00 

(2Lulcu)/(2Ld/cd) 1 1/3 

(Aulcu)l(AdlCd) 1 1 

D/(2LUIcu)lvo 1.44 2.88 

v0/cu 0.0612 0.0612 

v01 Cd 0.0612 0.0612 

pdlP *** *** 

Reo 1.53 106 1.53 106 

µdlµf 
_ 

*** *** 

Red 
7 

*** *** 

Table 14.5 Valve and system parameters; membrane check valve 
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14.5 Dynamic tests 

parameters series 1 series 2 series 3 series 4 

D [m] 0.198 0.198 0.500 0.500 

vo [m/s] 4.24 3.18 4.77 4.77 

PM/Pf 7.35 7.35 7.35 7.35 

to 4.10 4.10 3.90 3.90 

Ts01(p 02 D3) *** *** *** *** 

TSOITSC 

damping 96% 96% 75% 50% 

7y 0 0 0 0 

(B; -Bc)/(O ec) 1.00 1.00 0.83 0.83 

(2LulCu) l (2LdlCd) 1.00 1.00 1.07 1.07 

(A ul cu)I (Adl cd) 1.00 1.00 1.00 1.00 

DI(2Lulcu)Ivo 2.54 3.39 5.40 5.40 

vo/cu 0.0034 0.0026 0.0039 0.0039 

vo/Cd 0.0034 0.0026 0.0039 0.0039 

pd/Pf 0.86 0.86 0.86 0.86 

Reo 8.38 105 6.29 105 2.38 106 2.38 106 

µd4Uf 29.24 29.24 29.24 29.24 

Red 37 42 287 441 

Table 14.6 Valve and system parameters; butterfly check valve 
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14.6 Valve characteristics approach 1 

The valve characteristics of approach 1 are defined in section 11.5. 

Membrane check valve The results of the two series of dynamic tests with the 
200 mm membrane check valve are presented in figure 14.10, in which the fluid 

velocity characteristics for the first and second event and the pressure head character- 
istics for the second event are given. 

The fluid velocity characteristics for the first event are similar for the two test 
series, and independent of the location of the valve in the test section, as expected. 

The downstream pressure head changes of series 2 exceed those of series 1. This 
is expected since the the influence of the downstream boundary is smaller, if the valve 
is located upstream in the test section. For opposite reasons the (absolute values of 
the) upstream pressure head changes of series 2 are smaller. Although the pressure 
head changes AHd and JHu differ for the two test series, the difference (AHd - AHu) 
is about the same at corresponding initial flow decelerations! 

Note that not all tests are cavitation free. Cavitation is observed during test series 1 only, when 

the initial flow deceleration exceeds about 10 m/s2 (dv/dt < -10 m/s2). 

The magnitude of the pressure head changes at the upstream and downstream side 
differ significantly. This is not expected, since the pressure head changes in theory 

are reversely symmetrical, if the check valve is located in the middle of the test 

section. The differences are not attributed to: 1) cavitation, since they are also found 
for cavitation free tests, 2) pressure recovery effects, since they are also observed at 
other pressure tap locations, 3) the fact that the constant head boundaries are not 
ideal, since the time scale of the head changes at the boundaries (order 1 sec) is much 
larger than that of the head changes induced by the check valve (order 0.01 sec), 

while the magnitude of the head changes is much smaller (figure 14.8). Finally, the 

phenomenon is attributed to the check valve itself. Apparently, The effects of the 
damping or storage capacity of the flexible membrane differ at the upstream and 
downstream side. This is attributed to the presence of the valve seat (figure 13.3). 

In figure 14.11 the valve characteristics are presented in a dimensionless form. 
The fluid velocity characteristic for the second event shows dimensionless reverse 
flow decelerations between -1.0 and -0.1, which means that the damping time is of 
the same order as the reflection time and that the valve may be categorized as a 
weakly damped check valve (section 11.5.2). 
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14.6 Valve characteristics approach 1 

For one test both (2Ld/cd)lvd (dv/dt)+ S -1 and (2Lu/cu)lvd (dv/dt)+ 5 -1, which 
are the boundary conditions for a reflection free closure (section 11.5.2). In this 

particular case the dimensionless pressure head changes exceed ±1 (the equivalent 
of the dimensionless Joukowsky pressure head change for undamped check valves), 
which is in agreement with the theory. 

Butterfly check valve The results of the two series of dynamic tests with the 
200 mm butterfly check valve are presented in figure 14.12. 

The fluid velocity characteristic for the first event shows smaller reverse flow 

velocities for series 1 (9.6 kg counterweight). The valve response improves with 
increasing critical velocity, as expected. The reverse flow velocities for series 1 are 
relatively high at small initial flow decelerations, which is attributed to friction 

effects. The relative influence of friction effects, which tend to delay the valve 
closure, vanishes with higher initial flow decelerations. Note that the net effect of 
inertia, gravitational, buoyancy and hydrodynamic effects is unknown. 

The fluid velocity characteristic for the second event shows a similar tendency, 
due to the fact that the damping time in (dv/dt)+ = -vdl(tc - td) is about constant. The 
dimensionless reverse flow decelerations lie between -0.1 and 0, which means that 
the valve may be categorized as a strongly damped check valve (section 11.5.2). 

The pressure head characteristics show that the upstream and downstream pressure 
head changes, as induced by the check valve closure, are more or less reversely 
symmetrical, as expected. The pressure head changes of test series 2 (5.0 kg 

counterweight) exceed those of series 1 (9.6 kg counterweight), which is a direct 

consequence of the fact that the reverse flow velocities are higher, while the damping 
time is about the same (see below). 

In figure 14.13 the valve characteristics are presented in a dimensionless form. 
The figure shows that, despite geometrical differences and strong friction effects, the 
dimensionless fluid velocity characteristics for the first event more or less coincide. 

The fluid velocity characteristic for the second event shows that for all tests, both 

-1 < (2Ld/cd)lvd (dv/dt)+ <0 and -1 < (2Lu/cu)lvd (dv/dt)+ < 0, which are the 

reflecting boundary conditions. The damping time is much larger than the reflection 
time, about constant for test series 1 (tc - td = 1.2 s) and slightly decreasing for 

series 2. The hydraulic damper, designed to maintain a constant damping time, 
operates as expected. At the highest flow decelerations the damping time tends to 
decrease. Here the hydraulic damper is overloaded, which is confirmed by a strong 
increase of the pressure head changes and the fact that valve hammer was observed. 
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Chapter 14 Experimental results 

The pressure head characteristics show that the absolute values of the 
dimensionless upstream and downstream pressure head changes are much smaller 
than 1 (the equivalent of the dimensionless Joukowsy pressure head change for 

undamped check valves). The damping strongly reduces the pressure head changes. 

14.7 Valve characteristics approach 2 

The valve characteristics of approach 2 are defined in section 11.6. 

Membrane check valve The results of one single dynamic test are presented in 
figure 14.14, where the dynamic valve coefficient, dimensionless pressure head 
difference across the valve, and the dimensionless fluid velocity gradient are plotted 
against the dimensionless fluid velocity. 

About the representation of the dynamic valve loss coefficients ..... 
The dynamic valve loss coefficients are usually represented on a logarithmic scale, which only allows 

positive values. Here the coefficients E are represented by a root function E°"2, since the root function 

allows negative values if the root power is an odd number, while coefficients of the order 1 or 10 

(which are relevant during the main part of closure) remain their order. 

The valve characteristics show four datasets: Data (samples) measured during the 
first event in the time interval [to, td], data measured during the second event in the 
time interval [td, ta], and steady flow values, measured during a (stepwise) increasing 

and (stepwise) decreasing flow (dv/dt = 0). The dynamic characteristics reveal the 

pattern which is followed during valve closure. 
Starting at a high fluid velocity (v/vo > 1) the dynamic valve loss coefficients 

coincide with the steady flow ones. With decreasing flow the unsteady flow values 
slightly exceed the steady flow ones (this effect is stronger for series 2). At the 

asymptote a limit case is reached with infinite positive values (v/vo 1 0) and infinite 

negative values (v/vo ? 0). After the maximum reverse flow is reached the loss 

coefficient increases to infinite positive values again (valve closed). 

The characteristics show negative t-values after flow reversal. Apparently, the 

pressure head is still positive after flow reversal. This effect is better visible for the 
butterfly valve (see below). 

In figure 14.15 the results of four dynamic tests, at different initial flow 
decelerations, are presented. 
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14.7 Valve characteristics approach 2 

The valve loss coefficient is defined as: 

_ 
EH 2g (14.9) 
VIvI 

This definition finds its origin in the fact that under steady-state conditions always 
positive E-values are guaranteed, i. e. under normal and reverse flow conditions. 
However, for check valves no steady-state conditions exist under reverse flow 

conditions. 

Butterfly check valve The results of one single dynamic test with the 200 mm 
butterfly check valve (series 1) are presented in figure 14.16. 

Also here, the dynamic valve loss coefficient and pressure head difference 

coincide with the corresponding steady flow ones. It is interesting to see that the 
values measured during valve closure, tend to exceed the steady flow ones, measured 
during a (stepwise) decreasing flow. 

In figure 14.17 the results of four dynamic tests are presented. The scatter just 
before closure (v t 0) is the result of valve hammer, observed during the test with 
the highest initial flow deceleration. 

The characteristics show negative s-values after flow reversal, due to the fact that 
the pressure head difference remains positive for a while. Apparently the pressure 
head difference needs some time to change sign. This effect may be seen as a "time" 

pressure recovery effect, not to be confused with the "spatial" pressure recovery 
effect (see further the notes in section 13.7.2). 
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Chapter 14 Experimental results 

14.7.1 Neural networks 

In this section the application of neural networks to the valve characteristics of 
approach 2 is explored. 

The neural network (NN) used here is a multi-layer perceptron (section 12.4) with 
the following architecture: an input layer with two neurons, one hidden layer with 
6,9 or 12 neurons, and an output layer with two neurons. Based on the number of 
neurons in the hidden layer, the three options are denoted as NN6, NN9 and NN12. 
The inputs of the NN are the dimensionless forms of the fluid velocity v and velocity 
gradient dv/dt. The outputs of the NN are a scaled form of the absolute value of the 
dynamic valve loss coeffient ItI and the sign of ý. 

About scaling the loss coefficient ..... 
Just like in the graphical representation of the valve characteristics, the loss coefficients are scaled 

according to t -º E0 2. The range of t-values [-105,1051 is reduced to [-10,10]. It thus could be 

avoided that the training is too much concentrated on the accurate reproduction of large s-values only. 

About the number of output neurons ..... 
In first instance the NN was trained with one output neuron t115. In that case the performance of the 
NN was reasonably well, both for the train and test set. However, the accuracy near the asymptote 

v=0 was less satisfactory. This transition region is characterized by Z too for v i* 0 and t1 -oo 
for vt0. Furthermore, the sign of the predicted E-values did not always correspond with the sign 

of the E-values of the targets in the train and test set. Obviously, this sign performance depends on 

the architecture of the NN. In the case of NN12 at least 10 incorrect signs are found. The performance 

of the NN could significantly be improved by separating the magnitude and sign of the loss coefficients. 
Hereto the absolute value of Etas is considered, while the sign of t is added as second output neuron. 
Thus the steep slope in the transition region from tt oo to t4 -oo is not "seen" by the NN. 

As data set four dynamic tests are selected from series 1 of the 200 mm butterfly 

valve (table 14.6), whereby only samples are used in the time interval [t,, tc]. This 

results in a set of about 3000 samples, from which 2000 samples are used as train 

set and the rest as test set. 

The performance of the NN is presented in table 14.7, where the differences 
between the output of the NN and the targets (i. e. training set or test set) are given 
in the form of RMS-values. The performance of the NN on the training set and test 
set is very similar, since the sets are statistically equivalent (i. e. the samples of the 
two sets are taken random from the same data set). The performance of the NN 
improves with increasing number of neurons in the hidden layer, as long as the NN 
is not "overtrained". 
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14.7 Valve characteristics approach 2 

NN6 NN9 NN12 

training set 0.42 0.25 0.22 

test set 0.43 0.27 0.23 

Table 14.7 Performance of neural network 

More detailed information about the performance is given in scatter plots, where 
the output of the NN is presented against its target. An example of such a plot is 

given in figure 14.18 (the + and X sign refer to training and test set, respectively). 

A three-dimensional graphical representation of the valve characteristics of 
approach 2 is given in figure 14.19. The loss coefficients are generated with NN9 

on a grid in the v-dv/dt-plane. In the graph also the original data, i. e. the trajectories 

of the four selected dynamic tests, are plotted. Note that quadrant 1, which is 

reserved for opening characteristics, is extrapolated from closure characteristics. 

About the quality of the data set ..... 
The quality of the original data set plays a role in the choice of a NN architecture. It makes no sense 

to strive for a high reproducibility if the quality of the data set is poor. 

The quality of the dynamic tests is determined by the quality of the test facility and measuring 

equipment. The fluid velocity and velocity gradient are subject to fluctuations, which are partly 

attributed to initiation effects, non-ideal boundary conditions and possibly, the response of the 

flowmeter. Due to these fluctuations the trajectories, which are followed during valve closure, have 

a more or less capricious character (figure 14.19). The question arises in how far these fluctuations 

must be incorporated in the valve characteristics. 

About the number of neurons in the hidden layer ..... 
The above-mentioned "capricious character" of the original data set is reproduced better if the number 

of neurons in the hidden layer increases (i. e. more degrees of freedom). This tendency is found inside 

the domain of the original data set (interpolation area), but also outside it (extrapolation area). In the 

latter case the fluctuations may even be amplified, in particular at remote extrapolation areas, which 

leads to oscillations. Although the performance improves with an increasing number of neurons, it 

is doubtful if these oscillations have a physical meaning. 

As long as the NN is only used for interpolation, NN12 gives the best performance. However, 

if it is also used for extrapolation, physical aspects must be taken into consideration (during training 

and interpretation of the results). An example of such a physical aspect might be that the output values 

show minimal variation in extrapolation areas. These additional, physical or mathematical conditions, 

which must be satisfied during training (optimisation or calibration) are known as regularizations. This 

is not further considered here. 

As compomise between reproducibility and physical reality NN9 is qualified as the best. 
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14.8 Other valve characteristics 

The benefits of NN's may be: 

- The interpolation within the valve characteristics of approach 2 is non-linear. In 

principle, the accuracy of the interpolation is improved, in particular in regions 
with strong gradients and in extrapolation areas. 

-A better insight into and a more complete overview of the surface is obtained, 
which is formed by a series of dynamic tests in the three-dimensional physical 
space of the valve characteristics of approach 2. 

- The application the NN's may be extended to the interpolation within the valve 
and system parameters and possibly to the phenomenon of flow loops. 

14.8 Other valve characteristics 

In figure 14.20 the axial valve displacement of the 200 mm membrane and the 
butterfly check valves is presented as function of the initial flow deceleration. The 

graph represents the changes induced by the check valve closure (during the second 
event). The axial valve displacement increases more or less linear with the initial now 
deceleration and is limited to about 1 mm. 

The axial valve motion gives information about the importance of fluid-structure 
interaction effects, which are ignored in the theory. From the valve displacement 

signal it is concluded that the axial valve velocity is of the order 0.001/0.02 = 
0.05 m/s (membrane check valve) and 0.0005/0.1 = 0.005 m/s (butterfly valve). 
Tijsseling and Lavooij (1989) and Tijsseling (1993) have performed an extensive 
study on the effects of fluid-structure action. In small-scale test facilities with elbows, 
etc. axial pipe wall velocities are measured, typically in the order of 1 m/s. Compar- 
ing the results it is concluded that fluid-structure effects play no role of significance 
here. 

In figure 14.21 the steady-state and dynamic behaviour of the check valves are 
correlated. The steady-state behaviour is represented by the valve loss coefficient tb, 
i. e. the initial value in advance of a dynamic test (the valve may be partly opened). 
The dynamic behaviour is represented by the slope q in the dimensionless fluid 

velocity characteristic for the first event (see section 11.7). By considering the slope 
at relatively high, initial fluid decelerations, friction effects are excluded. Obviously 
the characteristic of the ideal valve would coincide with the origin. 

The results of the butterfly valves show that the valve response improves with 
increasing initial valve loss coefficient. Note that the 500 mm valve is initially partly 
opened (table 14.6). 
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14.9 Review and conclusions 

14.9 Review and conclusions 

The (effective) pipe friction coefficient of the pipes in the test section is measured, 
taking into account pipe friction and losses across the flanges. The values are used 
in the data processing. 

The pressure wave speed of the water filled pipes in the test section is measured, 
without and with an air filled, flexible hose. The flexible hoses reduce the pressure 
wave speed from about 1240 m/s (200 mm standard pipe) to 730 m/s (hose type I) 

and 980 m/s (hose type II). The influence of the air pressure on the pressure wave 
speed is not strong enough to control the pressure wave speed within the test range 
of 1 -7 bar. The hoses are sensitive to collapsing. The collapsing is coupled with 
strong damping effects. 

The measured pressure wave speeds of the standard pipe are used in the data 

processing. The results of the flexible hoses are not used. However, in principle the 
hoses can be used as pressure wave reducer in order to satisfy the dynamic scale 
laws. For the scaling of the rotating type of check valve from 200 to 500 mm, in 

theory the pressure wave speed must be reduced by a factor x%2.5, at equal pipe 
lengths. For this purpose hose type I seems to be suited if its dimensions are scaled 
up to the 500 mm piping, in such a way that the pressure wave speed remains 
unchanged. 

The theoretical pressure wave speeds of Remenieras are much smaller than the 
measured ones. The influence of the rigidity of the hose cannot be neglected in his 

equation. 

The flowmeter is calibrated under unsteady flow conditions. Hereby the pressure 
head gradient along the pipe is used as a reference. It is demonstrated that the 
response of the flowmeter can be measured by comparing the instantaneous fluid 

velocity gradient with the instantaneous pressure head gradient along the pipe. As 

a result the flowmeter tested is able to respond to the flow decelerations imposed. 

Steady-state characteristics are measured. The characteristics supply information 

about hysteresis and the critical velocities in an increasing and decreasing now. From 
these values the average critical velocity and critical Reynolds number are calculated. 

Several series of dynamic tests are performed on weakly and strongly damped 

check valves under different laboratory conditions, whereby the location of the valve 
in the test section, the critical velocity and the degree of damping are varied. 
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Chapter 14 Experimental results 

From the series of dynamic tests the valve characteristics of approach 1 and 2 and 
other valve characteristics are derived. 

From the fluid velocity characteristic for the second event (approach 1) the 

character of damping is determined. The membrane and butterfly check valves are 
categorized as weakly and strongly damped check valves, respectively. From the 
pressure head characteristics of the strongly damped check valve it is concluded that 
the damping strongly reduces the pressure head changes, relative to those induced 
by an undamped version. 

The pressure head difference across the valve and dynamic valve loss coefficients 
(approach 2) reveal a time pressure recovery effect. From the axial valve displace- 

ment it is concluded that fluid-structure interaction plays no role of significance. 
The overall behaviour of the valves is described in a valve characteristic, which 

correlates the steady and dynamic behaviour. Thus a better comparison of valve types 
can be made. 

The application of neural networks to the valve characteristics of approach 2 is 

explored. In principle the accuracy of the interpolation and the extrapolation within 
a valve characteristic is improved by the NN. It gives a better insight into and a more 
complete overview of the surface, which is formed by a series of dynamic tests in 

the three-dimensional physical space of the valve characteristics of approach 2. 
In principle the NN concept can also be applied to the interpolation within the 

valve and system parameters and possibly to describe the phenomenon of flow loops. 
This needs further investigation. 
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15 Numerical and experimental validation 

In this chapter the dynamic scale laws, as derived in the dimensional analysis 
(chapter 11), are validated by means of numerical simulations. Further the model for 
damped check valves (chapter 12) is validated against experiments. 

15.1 Numerical validation of scale laws 

To verify the scale laws, which are applied to the valve characteristics of 
approach 1 (section 11.5), simulations are made of a serial pipeline system with pipe 
junctions and constant head boundaries. The system consists of four pipe sections and 
a check valve between the second and third section (figure 15.1). The simulations 
are made with a special version of the waterhammer computer code WTSL+, which 
enables to start from unsteady, initial flow conditions instead of from the usual 
steady, initial flow conditions. The (check) valve is modelled as a component with 
prescribed velocity-time history. 

During the first event the fluid velocity at the (check) valve is prescribed by a 
constant, initial flow deceleration (figure 8.2). During the second event it is pre- 
scribed by a third-order polynomial, described by: 

V= al + a2 (t-td) + a3 (t-td)2 + a4 (t-td)3 

With the boundary conditions: 

t =td. V =Vd 

t=tc: v=0 

dv dv A 
dt dt 

dv dv A [ ] 
dt dt 

(15.1) 

(15.2) 

The parameter ß is introduced to vary the character of the velocity-time function. 
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Chapter 15 Numerical and experimental validation 
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Figure 15.1 Check valve in serial pipeline system 
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15.1 Numerical validation of scale laws 

The valve and system parameters, which are used in the simulations are listed in 

table 15.1. a and b. The parameters are chosen in such a way that the numerical value 
of the dimensionless groups is equal in the simulations. The character of the velocity- 
time function is chosen to be represented by ß=0 here. The simulation time is 

chosen as t= 25 (2L2/c2) seconds, while the time step At = (2L2/c2)/16 seconds. 

The results of the simulations are presented in figure 15.2, where the fluid 

velocity and the pressure head at the check valve, at the upstream side of the pipe 
junction and at the downstream boundary are given as function of time (downstream 

piping only). 
In figure 15.3 the same results are presented in a dimensionless form, where the 

gravitational acceleration is chosen equal to 10 m/s2. 
Note that the dimensionless fluid velocities and pressure heads are based on local 

values of c and vd. However, the dimensionless pressure head may also be based on 
remote values, since the terms (c. vd)i and (c. vd)j are related via the ratio of the 
characteristic impedances of the pipe sections i and j. The dimensionless fluid velocity 
cannot be based on remote values. Here, flow rates instead of fluid velocities may 
be considered as an alternative. 

The results of different flow conditions and pipeline configurations are reduced 
to one single curve as long as the numerical values of the dimensionless groups and 
the character of the velocity-time function remain the same. Thus it is demonstrated 

that the (dimensionless) unsteady flow parameters (section 11.4) are well defined, 

and that the dimensionless fluid velocity and pressure head changes, as induced by 
the (check) valve closure, may be described by dimensionless flow characteristics in 

the form of the Equations (11.31) through (11.35). 
The scale laws hold for any point along the pipe. If these points are considered 

as varying head boundaries, the results demonstrate that the general condition, as 
formulated in Equation (9.63), is correct. 

Note that this validation refers to the pipe equations only and not to the valve 
equations, since the fluid velocity at the valve is prescribed as boundary condition. 
In that respect similarity of the valve-system parameter c/vo is not satisfied. However, 

similarity of the groups D/(2L/c)/vo and vdlvo is a necessary condition, since the 
dimensionless initial flow deceleration is described in terms of D and v0. 
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Chapter 15 Numerical and experimental validation 

15.2 Experimental validation of valve models 

The model for damped check valves (section 12.2), which is implemented in the 

waterhammer computer code CVWP, is validated by the simulation of dynamic tests 

with the membrane and butterfly check valves (chapter 14). 

15.2.1 Model 

The test facility (figure 13.1) is modelled by an upstream high reservoir (B1), 

vertical pipe section (P1), two horizontal pipe sections with a resistance (P2, P3, R1), 

an air vessel (A1), test section with check valve (P4, C1, P5), and a downstream 

reservoir (B2). A hydraulic scheme of the test facility is given in figure 15.4. 

82 

Figure 15.4 Hydraulic scheme of the test facility 

The pipes are modelled by the transient equations and treated by the method of 
characteristics (section 9.2). The pipe data are given in table 15.2. 

Pipe L 
[m] 

D 
[MM] 

f 
[-l 

e 
[] 

E 
[N/m2] 

Pl 22.6 1000 0.017 10.0 2.1 1011 

P2 3.28 1000 0.017 10.0 2.1 1011 

P3 8.85 390 0.015 7.9 2.11011 

P4 11.39 206/489 0.019 5.9/9.5 2.11011 

P5 11.39 206/489 0.019 5.9/9.5 2.11011 

Table 15.2 Pipe data 
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15.2 Experimental validation of valve models 

The air vessel is modelled as a vertical, non-vented, air vessel (AIRVvn) with 
a volume of 3 m3, a chamber area of 1 m2, an initial fluid level of about 2m and 
a Laplace coefficient 1 (isothermal expansion). 

The pressure relief valve on top of the air vessel was not active during the dynamic tests with the 

200 mm valves. For this reason it is not modelled here. 

The upstream and downstream reservoir are modelled as constant head bound- 

aries. In order to simulate a dynamic test with decelerating flow, the downstream 

pressure head is increased to a constant level by prescribing the pressure head in 
time. 

The resistance accounts for the air vessel inflow losses (with loss coefficient 1.0) 

and bend losses (90° bends with loss coefficients of 0.2 each). 
The check valve is modelled as a damped check valve (section 12.2). For the 

membrane and butterfly valves the valve characteristics of approach 2 are available 
in the check valve database in CVWP. 

15.2.2 Simulations and results 

Several simulations are made, whereby the numerical time step, dv/dt-smoothing 

parameter (section 12.3.2) and closure phase angle 0 (section 12.2) are varied. 
Some of these results are given in the figures 15.5 to 15.7, where the measured 

and calculated flow rate at location D2, and the pressures at the locations D4, D1, U1 

or U2, and U4 are plotted against time (see figure 13.2 for pressure tap locations). 

Figure 15.5 shows a simulation of a dynamic test with the membrane check valve. 
The maximum pressures are predicted rather well, while the minimum pressures are 
underestimated. The latter is attributed to the fact that cavitation is not modelled 
(CVWP has no cavitation model). 

Figure 15.6 shows a simulation of a dynamic test with the butterfly check valve. 
The agreement between simulation and experiment is rather good, except for the 
pressure head oscillations, which are quickly damped in the experiment. 

Figure 15.7 shows a simulation of a dynamic test with valve hammer due to an 
overloaded damper. The flow rate and pressures are predicted reasonably well up to 
the minimum flow rate. Hereafter the measured pressures at the check valve show 
violent oscillations. The effects of valve hammer are not seen in the simulation, since 
the flow loops associated with reopening and reclosure are not represented in these 
characteristics. 
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15.3 Review and conclusions 

For the complete data set and further details about the simulations it is referred 
to CVRP report part V (Kruisbrink, 1996). 

General remarks with respect to the simulations are: 

- The locations in the simulations (i. e. grid points) are time step dependent. 
Therefore these locations do not exactly coincide with the pressure tap locations 

of the experiments. 

- The pressure at the high pressure tank is too low in the simulations, while the 
initial flow deceleration is correctly simulated. This is attributed to inertia effects 
in the high pressure tank and in the short adjacent 800 mm pipe, which are not 
taken into account (the short pipe with a length of 1.50 m is not modelled). 
Including these inertia effects would require a higher pressure at the pressure 
tank. 

Based on all simulations the following general conclusions can be made (note that 

not all conclusions can be drawn from the results presented here): 

- The resemblance between simulation and experiment increases slightly with 
decreasing time step, as expected, although the sensitivity for the time step is 

rather small. 

- The resemblance between simulation and experiment slightly decreases with 
increasing filtering, as expected, although the differences are rather small. 

- The influence of the closure phase angle 0 is small here. 

- The effects of cavitation are not simulated (CVWP has no cavitation model). 

- The effects of valve hammer are not simulated. 

- The overall accuracy in terms of fluid velocities and pressure head changes at the 

check valve is within 15 %, with the exception of cavitation and valve hammer 

effects. 

15.3 Review and conclusions 

The dynamic scale laws are validated by means of numerical simulations with a 

special version of the waterhammer computer code WTSL+, which enables to start 
from initial, unsteady flow conditions. It is concluded that the dimensionless, unsteady 
flow parameters and the dimensionless valve characteristics of approach 1 are well 
defined and consistent with conventional waterhammer theory. 

The model for damped check valves is validated against experiments. The 

simulations of dynamic tests show an acceptable reproducibility (overall accuracy 

within 15 %), with the exception of cavitation and valve hammer effects, which are 

not described by the valve characteristics of approach 2. 
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16 Conclusions and recommendations 

16.1 Final conclusions 

A semi-empirical method is developed to describe the dynamic behaviour of check 
valves in pipeline systems. The method is based on "parameterized" valve models, 
which describe the overall behaviour of the check valve in the form of dimensionless 

valve characteristics. The characteristics are determined from experiments, whereby 
the check valve is considered as a black box, and described in terms of dimensionless 
flow variables, valve and system parameters. The method can be applied to all types 
of check valves. Undamped check valves may be considered as a special case of 
damped check valves. 

An extensive survey of literature reveals that within the research into the dynamic 
behaviour of check valves mainly a direct approach is followed. For many different 

valve types, valve reponse models are developed, whereby the description of the 
hydrodynamic effects is subject to some speculation. The valve response models are 
used in uncoupled or coupled mode with waterhammer computer programs. The 

research is restricted to case studies. No attempts are made to generalize, non- 
dimensionalize or standardize the application of these tools. 

More general studies in the field of aerodynamics and hydrodynamics are mainly 
restricted to translating bodies. Not much is known about the unconfined or confined 
flow problem of rotating bodies in unsteady fluid flows. 

Although many different check valve types exist, the internal geometry of the 
valves including the moving elements, is characterized by at least one plane of 
symmetry. In most cases the moving elements are translating or rotating bodies. 
These geometrical conditions are used to derive general equations of motion for check 
valves, and descriptions for the hydrodynamic (fluid) forces on the moving elements. 

Much attention is paid to the description of the hydrodynamic (fluid) forces on 
translating or rotating bodies with one plane of symmetry, in inviscid or viscous, 
unconfined or confined, unsteady fluid flows. 

The equations of motion for a body in an unconfined, inviscid fluid are based on 
the dynamical theory of Kirchhoff, extended to an unsteady fluid flow. Based on an 
analogy between an eccentricity and viscosity the step from inviscid to viscous fluids 
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Chapter 16 Conclusions and recommendations 

is made. The equations of motion for a body in a confined, inviscid fluid are based 

on Lagrange's method of generalized coordinates. 
In the Lagrangian approach of the dynamical theory of Kirchhoff the coefficients 

in the kinetic energy equations are constants, determined by the geometry of the 
body. This enables the development of analytical expressions for the fluid force terms 

and coefficients. It thus gives insight into the basic properties of these quantities. 
In the Eulerian approach of Lagrange's method of generalized coordinates the 

coefficients in the kinetic energy equations are not longer constants. Analytical 

expressions generally become very complex, but do exist for a few academical cases. 
The equations are used in a qualitative sense only. 

In both approaches the fluid forces and torques are described by drag, added 
mass, history and pressure terms, used in a somewhat extended sense. The drag 

coefficients are assumed to be dominated by viscous effects, while the added mass 
coefficients are assumed to be dominated by unsteady flow effects. The coefficients 
are approximated and described by power law formulations. 

The fluid equations are described in a global form, analogous to the conventional 
drag term, whereby several options for the dynamic pressure are explored. Based on 
the properties of the fluid force coefficients it is concluded that some of these options 
are more suited to unconfined fluids, and others to confined fluids. The global form 

of the fluid equations for confined fluids is applied to check valves. 

A general valve equation of motion is derived for most of the existing check valve 
types. The equation is described in a dimensionless form, whereby the critical 
velocity and the valve diameter are used to define a velocity and a time scale. 

Conventional waterhammer theory is applied to describe the transient flow in a 
pipeline system due to a valve closure under unsteady, initial flow conditions and 
reflection free or reflecting boundary conditions. Hereto basic differential equations 
are derived for a flow with constant initial flow deceleration. The classical Joukowsky 

equation is extended to unsteady flow conditions. 
The integral form of the momentum equation is used to describe the check valve 

as short length component. The fluid forces on the valve elements, described in the 
form of a global force coefficient (i. e. the dynamic valve loss coefficient), are related 
to the pressure difference across the valve. The valve and pipe equations are coupled 
via this momentum equation. This leads to a dimensionless group in the form of a 
Mach number, of which the importance is unknown here. 

The uncoupled and coupled, (dimensionless) pipe and valve equations show 
formally which (dimensionless) variables and valve, system and fluid parameters are 
relevant during the stages of passive and active damping. In that sense they are used 
in a dimensional analysis to develop valve characteristics and dynamic scale laws. 
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16.1 Final conclusions 

Two approaches are followed. In the first approach the check valve behaviour 
is described in terms of global, (dimensionless) fluid velocity, pressure head and 
damping characteristics. In the second approach the behaviour is described more 
detailed in terms of dynamic valve loss coefficients. 

Additional dimensionless valve characteristics are introduced. A characteristic 
which correlates the steady and unsteady flow behaviour, enables a more general 
comparison of check valve types. A characteristic which correlates the inertia effects 
to the unsteady flow behaviour should enable the scaling from or comparison between 
liquid and gas service. 

Semi-empirical models are developed to simulate the dynamic behaviour of check 
valves in waterhammer computer codes. The models for undamped and damped check 
valves are based on the valve characteristics of approach 1 and 2, respectively. The 
behaviour of undamped check valves is system-independent, which enables to define 

a valve model, that is generally applicable. The behaviour of damped check valves 
is system-dependent. Therefore the application of the valve characteristics is restricted 
to applications, which are about similar to the laboratory conditions. 

The application of neural networks (NN) is explored for the non-linear interpola- 

tion and extrapolation in the valve characteristics of approach 2. The NN gives a 
better insight into the surface which is formed by a series of dynamic tests in the 

three-dimensional physical space. 
The valve models are implemented in the waterhammer computer code CVWP. 

A method is described to calibrate flowmeters under unsteady flow conditions. 
The method is based on rigid column theory, whereby the pressure head gradient 
along the pipe is used as a reference. It is demonstrated that the method can be 

applied in practice. 

Several series of steady and dynamic tests on weakly and strongly damped check 
valves are performed in the test rig for check valves at Delft Hydraulics. From the 

experimental data the valve characteristics of approach 1 and 2 and other valve 
characteristics are derived. 

The dynamic scale laws laws are validated by means of numerical simulations and 
found to be consistent with the conventional waterhammer theory. The valve models 
are validated against the experimental data by simulating the dynamic tests in the 
laboratory with the waterhammer computer code CVWP. The results show an 
acceptable reproducibility (accuracy within 15 %). Hereby the effects of cavitation 
and valve hammer, which are not modelled, are excluded. 

259 



Chapter 16 Conclusions and recommendations 

The results of the study provide a method for valve comparison and classification, 
and an engineering tool in pipeline and valve design, valve selection, adjustment of 
damping devices and pressure surge analyses. 

16.2 Recommendations for further research 

In the model for undamped check valves (approach 1) a function is introduced, 

which accounts for the effect of an initially, partly opened valve on the valve 
response. This function is in first instance chosen as a linear form of the steady flow 
characteristic, whereby inertia effects are ignored. Further research is needed into 
the character of this function. In principle the information about inertia effects, which 
is contained in the dynamic closure characteristics, can be used for a better estimation 
of the "initial" valve disc position after reopening. 

During the last stage of closure the check valve behaviour is physically unstable. 
This is revealed by numerical instabilities in the model for damped check valves 
(approach 2). To overcome these instabilities prescribed trajectories are introduced. 
The question arises, if the prescribed trajectories in the present model can be replaced 
by another numerical procedure which ensures stability. In this respect it should be 

mentioned that the valve disc position is not used here, since it cannot always be 

measured. However it possibly may be used as auxiliary variable to ensure a stable 
closure (e. g. linear motion during the stage of active damping). 

The storage capacity of check valves with non-rigid, moving elements, like the 
membrane check valve, is neither described in the model for damped check valves, 
nor measured. In order to describe this effect, the upstream and downstream flow 

rate must be known (In the present study only one flowmeter is used). Since the 
differences between these flow rates are generally very small, measurement equipment 
is needed with an extreme high accuracy, far beyond that of the flowmeters used. 

The relative importance of all valve and system parameters is not yet known, (e. g. 
the ratio of fluid density and density of the moving valve elements, the ratio of 
critical velocity and pressure wave speed). For this purpose a sensitivity analysis must 
be performed. In principle this can be performed by means of simulations with a 
computer code like CVWP, after enough experimental data have become available. 

The application of neural networks is thus far restricted to the flow variables 
within the valve characteristics of approach 2. However, in principle it may be 

extended to the valve and system parameters as well. In that case the valve and 
system parameters must be added to the NN as input parameters. As a next step the 
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16.2 Recommendations for further research 

phenomenon of flow loops may also be described by the NN. Here some counter may 
be added to the input parameters for the registration of the flow loop number. 

The present study is limited to the measurement of closure characteristics. In 

addition also opening characteristics can be measured, although their practical 
relevance is less. Thus the (re)opening model for undamped check valves can be 
improved, and the gap in the characteristics for damped check valves (quadrant 1) 

can be filled in. 

Although it was strived after, an experimental validation of the scale laws could 
not be realized, due to practical problems with the valves as well as with the test 
facility. In this respect it is encouraging that the follow up of the Check Valve 
Research Project is ensured within the Large Installations Program (LIP part III) of 
the EC. Within this program a project proposal about the validation of dynamic scale 
laws, by means of series of dynamic tests under different laboratory conditions has 
been accepted. 

As a next step the validation of the valve models against practical applications 
can be mentioned. 

The present study is restricted to slightly compressible fluids. An important step 
is that from liquid to gas service. It is believed that, in a qualitative sense, the present 
results are also applicable to compressible fluids, if the Mach number is relatively 
low (smaller than about 0.15). 

In this respect it should be mentioned that Novacor and NOVA Gas Transmission 
(Canada) work on compressible flow applications. Botros et al. (1996) describe a 
large scale, air test loop for the dynamic testing of check valves. Botros and Roorda 
(1996) apply the dimensional analysis of the present study to compressible flow 

applications. Although pressure surges are less relevant in gases, the check valve 
becomes more sensitive to valve chatter. 

The results of the present study may directly be applied to control valves. The 

major difference is that the disc position of control valves is prescribed in time. In 

that sense control valves may be considered as a special case of check valves. 

The dynamic scale laws, as developed for check valves in pipeline systems, allow 
the development of equivalent scale laws for other system components like air vessels, 
pumps, etc. The theory may be extended to fluid-structure interaction. In that case 
additional velocity and time scales arise, due to the structural motion and wave speed. 
It is concluded with the remark that, as such, the study forms a basis for a further 

generalization of the methodology (by means of dimensional analysis or otherwise) 
for pipeline systems and its components. 
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Appendix A Valve equations 

In this appendix general friction and damping models are described, which may 
be applied to most of the check valves types. 

A. 1 Friction model 

Friction has a non-linear character which is not easily described. Several 

researchers like e. g. Worster (1960), Pool et al (1962), Piwinger (1971), Deich and 
Jörgl (1981), Thorley and Oei (1981), Gronau and Zwink (1984) have made attempts 
to describe the friction torque of check valves. 

Worster (1960) describes the friction torque of a swing type check valve by: 

TF=A(FG +FB)rf . 
(A. 1) 

Where µ is a friction coefficient, (FG + FB) represents the weight of the moving parts 
in water (all parts are submerged) and rf is the radius of the sliding surface of the 

pivot pin. 
Pool et at (1962) describe the bearing friction torque of a swing type check valve 

by: 

TF=µ(FG+FH +F, )rf= µFG rf (A. 2) 

Where µ is the bearing friction coefficient, F, represent the forces due to gravitation, 
hydrodynamics and inertia, and rf is the radius of the pivot pin bearing. Since the 

vector sum of the bearing forces is difficult to deterjmine, in first approximation only 
the disc weight is used as bearing load. 

Piwinger (1971) describes the friction torque of a check valve with eccentrical 
disc and counterweight. He distincts packing friction: 

a 
TF = µp 

d2 
(sign 9) (A. 3) 

A. 1 



Appendix A Valve equations 

And bearing friction: 

d 
TF = Pb (FG + FH) 2 (sign 9) (A. 4) 

Where df is the diameter of the packing. The friction coefficient µP is taken as a 
constant. The bearing force is the vector sum of the gravitational and hydrodynamic 
forces, and thus a function of the angular valve disc position. Piwinger distincts static 
friction and sliding friction, both represented by the friction coefficient µ. 

Deich and Jörgl (1981) follow the ideas of Piwinger. 
Gronau and Zwink (1984) describe packing friction by: 

6 ;d0: TF = µp d2 sign (9) 

6 =0 A TG - THSTF. : TF=(TG-TH) 
(A. 5) 

The sliding friction torque TF (9 ; 0) is taken as a constant, similar to Piwinger's 

value for packing friction. The static friction torque TF (6 = 0) is taken as the net 
gravitational and hydrodynamic torque, as long as a threshold value (i. e. maximum 
static friction torque) is not exceeded. 

Thorley and Oei (1981) describe the friction torque of a swing check valve in the 
form: 

TF=Kfz +K12 (A. 6) 

Where K11 and K are constants and n is an arbitrary, and perhaps constant, power. 
However, they conclude from experiments that this approach is not very succesfull. 

By combining the above-mentioned ideas the following friction model is applied 
without loss of generality: 

TF =E Kf rf f, sign 6 

(A. 7) 

Where Kfis a friction coefficient, rfthe moment arm of the friction force (e. g. radius 
of spindle, shaft, pin), and F� the normal force on the friction surface(s). The friction 
torque is the sum of all friction effects in both valve and damper. 

A. 2 



A. 2 Damping model 

The friction coefficient Kf represents both static and sliding friction. In the case 
of static friction (9 = 0) the sign of 9 is determined by the sum of the other torques 
(9 = 0+ or 6= 0-). When the static friction torque exceeds a threshold value, the 
valve starts moving and sliding friction becomes relevant. In the common practice 
the static friction coefficient exceeds the sliding friction coefficient. The friction 

coefficient may be considered as a geometrical parameter since it is determined by 

surface roughness. 

In the above friction model the friction force is proportional to the normal 
components of the (other) forces on the valve disc and damper. Thus it is suggested 
that the friction force is scalable, if the (other) forces are scalable. However, in 

practice the friction torque is hardly scalable due to: 
in the relative surface roughness of larger valves is generally speaking smaller, 

so that friction coefficients tend to decrease with increasing valve size. 
Q clearance fits and tolerances are per definition unscalable. 
Q the magnitude of the static as well as the sliding friction coefficient is rather 

unpredictable due to wear (erosion and corrosion). 

A. 2 Damping model 

The damper is modelled as a piston moving in a cylinder with bypass and throttle 
valve (figure A. 1). 

The damping torque on the valve shaft is described by: 

TD = (Pi -P2) Apn ed (A. 8) 

Where AP,, is the cross sectional area of the piston and ed is the eccentricity of the 
piston from the centre of rotation of the valve disc. 

It is assumed that the pressure difference across the piston is about equal to the 
pressure difference across the bypass: 

Pi -P2 ýPbp (A. 9) 

The momentum equation for the fluid in the bypass is (section 10.2.3): 

PdLbpAbp 
ddtp 

= Pd gAbpOHbp -fp2 Pdvbp Abp -Xf (A. 1O) 
bp 

A. 3 
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bypass with 
throttle valve 

Figure A. 1 Damping model 

Where AHbp is the pressiere head difference across the bypass, f is the friction 

coefficient and Lbp is the length of the bypass pipe, and Xf is the fluid force on the 
throttle valve. 

Although active or self-controlling throttle valves do exist (e. g. tested butterfly 

check valve), it is assumed that the throttle valve does not move (x = 0). The fluid 
force on the throttle valve (th) may now be described by (section 6.5.1): 

Xf= CD, 
h 2 

Pd vb, A bp + (CA,, +1/ Pd V 
ih 

dvtp 
(A. 11) 

Substitution of Equation (A. 11) in Equation (A. 10) gives: 

AP bp 

[CDrh 

+fDP2 Pd V bp + 
((cAth 

+ 1) with + LbP Abp) Pf dybP 

bpp dt 

(A. 12) 

The first term in this equation may be considered as the drag of the bypass, while 
the second term may be considered as the sum of the added mass and pressure term 
of the bypass. 

Substitution of the Equations (A. 12) and (A. 9) in Equation (A. 8) gives for the 
damping torque: 

TD = CDrn +fDp2 pd vbp Apn ed + 

[(CArn 

+ 1) 
with 

+ Lbp Pd 
dvbp 

Apn ed 
bp Abp dt 

(A. 13) 

A. 4 

centre of rotation 



A. 2 Damping model 

Where (section 6.8): 

CDth = 
Ct 

A CArn = 
CU 

(A. 14) 
Red Acd 

And: 

Red A Acd 1=d 2p d_bP 
(A. 1$) 

µd v bp 

The damping torque is now described in terms of damping parameters. As a next step 
the above parameters are converted to valve parameters. 

The Reynolds number of the flow in the damping device may be based on the average fluid 

velocity in the bypass pipe, during the stage of active damping. This is described by: 

It 

vbp =If vbp dt (A. 16) 
t, - td 

t, 

With the substitution of Equation (A. 18): 

to 

v-fAv dt =I °" \ 
(A. 17) 

AbP(re-td) 
td 

p p� AbP(tt-td) 

Where VP,, is the displaced piston volume and (tc - td) the damping time. 

The dimensions of the damping are assumed to be small, relative to those of the 

pipeline system, so that pressure surges in the damping device may be ignored. In 

that case the fluid velocity vbp in the bypass is proportional to the piston velocity vp,, 
(continuity; no leakage): 

AbpVbp = ApnVp� (A. 18) 

The piston velocity on its turn may be related to the angular disc position by: 

vpn = Kapo OD (A. 19) 

In general KP� is a function of the angular valve disc position. 

A. 5 
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All the dimensions of the damping device may now be related to the valve 
diameter via geometrical parameters K.. =f (B). For instance: 

ed = KedD ; Apn = KApn D2 ; ..... (A. 20) 

After some manipulation the Equations (A. 13) to (A. 15) may now be written in 

the form: 

2s d9 s TD = CD3 
2 

Pd eD+ CA3 Pd 
dt 

D 

(A. 21) 

Where: 

C 
C3 

D3 
Rea 

AC 
C3 

A3 = 
Ac3q 

(A. 22) 

And: 

Rea = 
pd6D2 

µd 
n Ac3 1=1 de (A. 23) 

e 

Note that the free motion of the piston in the cylinder, during the stage of passive 
damping, is not described here. For this purpose the present form of the momentum 

equation may not be used. 
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Appendix B Pipe equations 

In this appendix basic differential equations are derived for a flow with constant 
initial flow deceleration, under reflection free and reflecting boundary conditions. The 

relations between pressure head and fluid velocity are derived from the compatibility 
equations (section 9.2). Pipe friction effects are ignored. 

Consider the closure of a (check) valve in a pipeline system. Until the instant td 
the initial flow deceleration is assumed to be constant. After this instant the flow is 
influenced by the valve (e. g. damping). The velocity-time history v=f (t) at the 
valve is assumed to be known. 

B. 1 Valve closure under reflection free boundary conditions 

B. 1.1 Relationship between pressure head and fluid velocity 

Consider the x, t-plane as shown in figure B. 1. The horizontal axis represents the 
distance along the pipe with the valve as boundary condition, while the vertical axis 
represents the time. The point pairs {A1, P1} and {A2, P2) are connected by 

characteristic lines dx/dt = +c, and the pairs {B1, Q1} and {B2, Q2} are connected 
by characteristic lines dx/dt = -c. 

t (5i 

x Imi 

Figure B. 1 Relationship between pressure head and fluid velocity 

B. 1 
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According to the compatibility Equation (9.16) the relationship of the point pairs 
at the initial upstream side is given by: 

H = H + c v 
S PI 9 A, 

c H + v = H + c v 9 P2 9 A2 

(B. 1) 

(B. 2) 

The limit case in which point P2 approaches point Pl is given by: 

H+cv 
g Pz 

lim 
AX-0 

- H+ V H+ cv 
JA2 g P`=tm 

AX-0 OX 

(B. 3) 

Or: 
a H+ cv=a H+ cv (B. 4) TX 9 

lpI 

ä. X 9 
JA1 

The initial flow conditions are (section 9.4.1): 

av 
=constant ; 

aH 1 [2V) 
; 

aH 
_ 0; [av =0 at 

, 

[OX JAý g Aý 
t8jA, 

z 
[JA1 

(B. 5) 

Substitution of Equation (B. 5) in Equation (B. 4) yields: 

H+Cv= 2H 
= constant (B. 6) TX 

Pi Ai 

Differentiation of Equation (B. 6) in time yields: 

Hxt +C vxt 0 (B. 7) 
9 

H 
g Aý 

B. 2 



B. 1 Valve closure under reflection free boundary conditions 

Differentiation of the simplified Equations (9.10) and (9.13) in time yields (f = 0): 

c2 (B. 8) Htt +g vxt =0 

(B. 9) 
gHxt+vtt=0 

Finally, after some manipulation with the Equations (B. 7), (B. 8) and (B. 9) follows: 

Hu+ C 
gvrr-0 

(B. 10) 

This relation is valid in any point along the prismatic tube at the upstream side of 
the valve. 

In a similar way it can be derived that at the initial downstream side of the valve 
the relationship between the pressure head and fluid velocity is given by: 

Hrr- C 
gvrr°0 

(B. 11) 

B. 1.2 Relationship between pressure heads along the pipe 

:. Consider the x, t-plane in figure B. 2. The point pairs {A1, P1}, {A2, P2) and 
{K, Q2, Q1} are connected by characteristic lines dx/dt = -c, and the pairs {B1, Q1}, 
{B2, Q2} and {K, P1, P2) are connected by characteristic lines dx/dt = +c. 

B. 3 
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t [sl 

td B1 B2 xx Al A2 P1 P2 

x (m) 

Figure B. 2 Relationship between the pressure heads along the pipe 

The relationship between the points along the characteristic lines is given by the 
Equations (9.16) and (9.17): 

IH+Ivl = H+ cv (B. 12) 
9 P, gK 

C+ -equations: 
{ 

H+ cv= H+ cv (B. 13) 
9 P2 gK 

[_H 
+Cv= -H +cv (B. 14) 

9 PI 8 JA1 

C- -equations: 
{ 

[_H 
+cvI -H +cv (B. 15) 

S p2 9 A2 

From the Equations (B. 12) and (B. 13) follows at the initial downstream side of the 

valve: 

HPZ - HPA 
9 

(VP2 - vp) (B. 16) 

From the Equations (B. 14) and (B. 15) follows: 

Hp2 - Hp1 _+g 
(Vp2 

-V PI) + HA2 - HAS - 
(v42 

- VA (B. 17) 
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B. 1 Valve closure under reflection free boundary conditions 

Summation of the Equations (B. 16) and (B. 17) gives: 

2 (Hp2 - Hp1) = H42 - HA1 - (VA2 - VAI) (B. 18) 

According to the initial conditions given in Equation (B. 5): 

VAS = VA2 A HA2 - HAS = 
ýH 

td 

(x42 
- XA1) (B. 19) 

Further: 

XA2 - XA1 =2 (Xp2 -X p1) (B. 20) 

Substitution of the Equations (B. 19) and (B. 20) in Equation (B. 18) results in: 

Hp2 -HPA aH 
ax t=td 

(XP2 
-x p1) (B. 21) 

Equation (B. 21) is valid along the characteristic line dx/dt = +c and may be 

rewritten as: 

Hp2(t) = Hpl(t - (xp2 -x pl)l c) + 
aH (Xp2 

-x pl) (B. 22) 
`td 

In words: the pressure head in point P2 is, except from a constant, i. e. the initial 

pressure head difference over the points PI and P2, equal to the pressure in point 
P1 with a time delay of (Xp2 - xpj)/c seconds. 

In a similar way it can be derived that at the initial upstream side of the valve 
the relationship between the pressures in two points is given by (figure B. 2): 

HQZ(t) = HQ, (t + (xQ2 - xQ, )Ic) + 
äH (XQ2 - xQJ) (B. 23) 

1 =td 

These results are of particular interest for experiments since they relate measured 
pressures (at some distance of the valve) to the pressures at the valve. 

B. 5 



Appendix B Pipe equations 

B. 1.3 Relationship between fluid velocities along the pipe 

Substitution of Equation (B. 21) in Equation (B. 16) results in: 

___- g lau 
V P2 - 'P. 

C ax 
r=r 

(XP2 
- XP'" 

d 

Substitution of Equation (B. 5) in (B. 24) results in: 

VD - VD _ 

This equation may be rewritten as: 

äv 
(XP2 - xp ) 

1-äiJt=td c 

VP2(t) = VPi(t - (X p2 - XP1)/C) + 
äv 

(XP2 
- XP, ) 

är [Jttd 
c 

(B. 24) 

(B. 25) 

(B. 26) 

In words: the fluid velocity in point P2 is, except from a constant, equal to the fluid 
velocity in point P1 with a time delay of (Xp2 - xpl)/c seconds. 

In a similar way it can be derived that at the initial upstream side of the valve 
the relationship between the fluid velocities in two points is given by (figure B. 2): 

V (t) =V (t + (x -X )lc) -a 
(XQ, 

- xQIý 
(B. 27) Qz QI QZ QI T 

t=td c 

Also these results may be of interest for experiments since they relate measured 
fluid velocities (at some distance of the valve) to the fluid velocities at the valve. 
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B. 2 Valve closure under reflecting boundary conditions 

B. 2 Valve closure under reflecting boundary conditions 

Consider the closure of a (check) valve in a pipeline system with upstream and 
downstream constant head boundaries, as shown in the x-t-diagram in figure B. 3. 

i td"3L/c 

td «L/c 

Figure B. 3 The relationship between pressure head and fluid velocity 

(initial conditions) 

The initial flow conditions are (section B. 1.1): 

av ax 1 av aH av (B. 28) 
Tr constant äx =-g öt är =0' öz =0 

Integration of the second initial condition in Equation (B. 28) along x yields: 

x ax dr = 
x-1 av dx (B. 29) 

äx tad g tJat t= :d 

With: 
äv 

= 
dv 

at r=t 
dt 

_ 
(B. 30) 

d 

follows that: 

HP(td) - Hc(td) _ _x 
dv (B. 31) 

g dt 
_ 

B. 7 
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Appendix B Pipe equations 

The pressure head at the downstream boundary is described by (x = L; HD = 
constant): 

HD - Hc(td) = -g 
!_ (B. 32) 

d 

Integration of the fourth initial condition in Equation (B. 28) along x yields: 

vp(td) = vC(td) (B. 33) 

td <tS td+2L/c (re lectionfree conditions) 

Applying the compatibility equations along the characteristic lines (i. e. the dashed 
path in figure B. 3) yields: 

Il (l) -C vß(1) = Hp(rd) -! Vp(td) (B. 34) 
99 

Substitution of the Equations (B. 31) and (B. 33) in Equation (B. 34) gives: 

"C(t) - VC(t) = NC(td) -z 
dv 

-I vc(td) (B. 35) 
88 di 

_9 

With dz/dt =c or x=c (t - td) this may be rewritten as: 

Hi(t) -9 Vc(t) = He(ld) - 'ý 
( dv 

dt 
- 

(t - td) -9 Vc(td) (B. 36) 

Substitution of Equation (B. 32) yields: 

11C(t) =g [vc(t) - vc(td)] - 
dl 

_t- 
td -L+ HD (B. 37) 

B. 8 



B. 2 Valve closure under reflecting boundary conditions 

td+L/c <r5 td+3L/c 

Applying the compatibility equations along the dashed path in figure B. 3 yields: 

cHD + tiD(t) = AHc(t-Llc) + vc(t-Llc) (B. 38) 

HC(t - L/c) is described by Equation (B. 37) which is valid L/c seconds before. 
Replacing t by (t - L/c) and substitution in Equation (B. 38) yields: 

VDI) = 2VC(l-LlC) - VC(td) - ýt t- td - 
2L 

(B. 39) 

f1+2L/c <15r +4L/c 

Applying the compatibility equations along the dashed path in figure B. 3 yields: 

Hc(t) -c ve(t) = HD -c VD (t-Llc) 
99 

(B. 40) 

vD(t - L/c) is described by Equation (B. 39) which is valid L/c seconds before. 
Replacing t by (t - Lc) and substitution in Equation (B. 40) yields: 

Hc(l) =g [Vc(t) - 2Vc(1-2IJC) + vc(td)] 

(B. 41) 
c 

dt 
_ 

[t_td_2]+HD 

8 

Continuing this procedure along the dashed path in figure B. 3 yields: 

jd+3L/c <rSr +5L/c 

vn(t) = 2vc(t-L! c) - 2vc(t-3LIc) + vc(td) 

+ 
d'' 

Ltt] _ 
4L 

(B. 42) 

[ij dc 

B. 9 
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td+4LIc <t< tj+6L/c 

Hc(t) =8 [vo(r) - 2vc(1-2Uc) + 2vc(r-4L/c) - vc(td)] 

(B. 43) 

-c 
dv [z-: 

d-j 
SL 

+H 
-cD 

td+5L/C <tSr +7L/c 

vD(t) = 2vc(t-LIc) - 2vc(t-3LIc) + 2vc(t-5LIc) - vc(td) 

- 
dv 

t- td - 
6L (B. 44) 

lau _c 

td+6L/c <r5 td+8L/c 

Hc(t) _I Evc(t) - 2vc(t-2LIc) + 2vc(t-4L/c) - 2vc(t-6L/c) + vc(td)] 
(B. 45) 

+c dt 
- 
[: -: d-j 

'c 
+H 

8D 

....... etc ....... 

The previous results may be summarized in the following sequence: 

g Nc(t) = vc(t) - vc(td) - 
dv 

t- td -L+g HD 
c dt 

_cc 
00 

+2 
jE 

(-1)f [ Vc(t-i2L/C) - Vc(td) ]'(t-td-i2LIc) (B. 46) 

GO 

- 
dv [ t-td-i2Uc] b(t-td-i2l/C) 

i-l dt 
- 

Where: 

0 if yso 
O(v) = 

i if y>0 
B. 10 



B. 2 Valve closure under reflecting boundary conditions 

With the introduction of MHc = Hc-(t) - Hc(td) and substitution of Equation (B. 32) 
this may be rewritten as: 

cAHc(t) = VC(l) - '"c(td) - dr _ 
(t - td) 

Ca 

+2 (-1)' [ vc(t-t2L1C) - Vc(td) ] 0(t-td-i2LIC) (B. 47) 
i-1 

00 

-2E (_1)i 

[. _J 
[t -td-l2LIC l cb(t-td-l2LIc) 

i-1 - 

In this equation the pressure head changes at the valve are related to the fluid 
velocity at the valve. The first three terms in the right hand side of this equation form 
the solution for a valve closure under reflectionfree conditions (see Equation (9.41)). 
The other terms describe the influence of reflections and show that the valve closure 
is system dependent. The equation is valid at the initial downstream side of the valve. 

In a similar way follows for the pressure head changes at the initial upstream side 
of the valve: 

9ONB(1) 
VB(1) + VB(ld) +v_ (t - td) 

co 

-2E (-1)' [ VB(t-i2L/C) - VB(td) ] 4(t-td-i2LIC) (B. 48) 

00 

+2E (-1)' dV [ t-td-l2L/C ] 00-td-12LIC) 
1ý1 dt 

- 

Whereby 2L/c is now the upstream reflection time. 
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Appendix C 

Interpolation in valve characteristics 

In this appendix the interpolation procedure is described, which is performed 
within one single valve characteristic of approach 2. 

C. 1 Representation of valve characteristics 

C. 1.1 Physical domain 

The valve characteristics of approach 2 (section 11.6) may be represented by a 
set of points in a three-dimensional, physical space: 

IvD dv g AH C ý3 (C. 1) 
vo ' 

y2 dt 2 
0 y0 

In general the valve characteristics are dependent of the valve and system parameters 
(section 11.4). Consider a set of points for which the valve and system parameters, 
except from the unsteady flow parameters, are constants. It is assumed that this set 
of points forms a surface in the three-dimensional physical space. Replacing the 
coordinates in the above equation by x, y and z, respectively, this surface S may be 

represented by: 

S: ={ (x, y, z) E R3 i (xx, y, z) = o} (C. 2) 

C. 1.2 Computational domain 

The surface S is represented by a finite number of grid points. These grid points 
are mapped from the physical domain (x, y, z) to the computational domain (i, j): 

S: ={ (x,, 1, Y,, i'zi) E ]33 1 4, (x1' 'yli"Zf, i) =0} (C. 3) 

C. 1 
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Figure C. 1 Representation of valve characteristics 
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C. 2 Interpolation 

The grid points form a rectangular grid in the computational domain. The discrete 

coordinate i (1,2, ..., M) represents a point along a trajectory or path which is 
followed during closure (read: the path followed during a dynamic test). It represents 
a certain stage of the valve closure. The initial stage i=1 represents the fully opened 
valve (v/vo = 1), while the final stage i=M represents the closed valve (v/vo t 0). 

The discrete coordinate j (1,2, ..., N) is the trajectory or path number (read: test 
number). The trajectory j=1 represents steady flow values (dv/dt = 0). The 
trajectories j=2,3, ... represent successive tests with increasing initial flow 
deceleration. An example of a discrete valve characteristic is given in figure C. 1. 

C. 2 Interpolation 

The surface S is reconstructed from the grid points by means of interpolation. 
Hereto, from the grid points a grid cell is formed. The interpolation is based on the 
local formation of grid cells, so that no grid generation or storage is needed. 

C. 2.1 Interpolation surface 

The surface S between four adjacent grid points is approximated by (figure C. 2): 

xA Xi,! [Xj+1, J_XjJl 

YA =I yi; +« Yi+i, 1-Yj,; (C. 4) 
[ZA 

1, jj 
[ZI+i, 

J_ZI, JJ 

XB zi, i+l xl+l, i+l -xi, l+1 

YB = Yij+l +«Y; +l , i+l -y;, i+l (c. 5) 

ZB Zj, l+l Zi+t, i+l -Zi, j+1 

x* XA XB -XA 

Y*= YA +ß yB - yA (C. 6) 
Z* ZA ZB -ZA 

Where a and 0 are interpolation coefficients. 
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P(i, j. 1) 

P(i"1, j) 

Z 

i 

x 

Figure C. 2 Interpolation in valve characteristics 

Substitution of the auxiliary Equations (C. 4) and (C. 5) in Equation (C. 6) yields a 
four-points interpolation, described by: 

fx *i Ixi, J Xi+l, i 

y (1-a)(1-ß) yi, i + ()I (i - Yl+l i+ 

1z * tzi, 
jj Izi+1, jj 

(C. 7) 
Xi, i+l 

+ Q(1-«) IYj, j+iI 

zi, i+l 

1xi+l, l+l 

+ «ß Yi+l i+l 

[z1+1 
�j+1 

The interpolated surface S* may now, in short notation, be represented as: 

S*: _{ (i, J) E N2 ; (a, ß) E R2 1 4* (i +«,. 1 +ß) = 0) (C. 8) 

Two special classes of functions are: 

S": ={ (i. I) E N2 ; (a, ß) E R3 14 * (io+«o, J+ß) =01 (C. 9) 

C. 4 



C. 2 Interpolation 

And: 

S" :_{ (i, j) EE R3 I* (i +«, jo+ßo) =0} (C. 10) 

Where i0, Jo are integer constants and c t, ßo are real constants. Each class yield a 

set of straight lines which form a curved surface S* (figure C. 2). The class of 
functions in Equation (C. 10) is used to describe so-called "prescribed" trajectories 
in the valve model (section C. 3.5). 

C. 2.2 Interpolation coefficients 

Equation (C. 7) forms a set of three equations with five unknowns, i. e. x*, y*, z*, 
a, and P. In order to interpolate two of the five must be known. It is assumed that 
two of the variables x*, y*, z* are known. 

Suppose that x and y are known, so that x" =x and y* = y. In that case the 
interpolation coefficients can be solved implicitly from Equation (C. 7), or explicitly 
from the auxiliary Equations (C. 4) to (C. 6). This may be written as a, ß=f (x, y). 
A graphical representation is obtained by considering the projections of the points 
on the x -y-plane (figure C. 2). When a and ß are known, z is approximated from the 

remaining equation, which may be written as: z* =f (a, ß). Combining the latter 

two functions yields an implicit function of the form z*(x, y). 
The other variables x'` and y'` may be treated in a similar way, so that formally 

three implicit functions exist: 

x* (y, z) Ay* (x, z) Az* (x, y) (C.!! ) 

In the computational domain the implicit functions may be written as: 

x* (i+« ýl+ß) 
nY* (i+«, +ß) Az* (i+« ,. l+ß) 

(C. 12) 

The implicit functions can be used for interpolation (0 SaS1 and 0SßS 1) 

as well as extrapolation (a <0 or a>1 and ß<0 or ß> 1). For extrapolation 
extra rules are necessary in the case that the (inner or outer) boundaries are concave 
curves. The allocation of extrapolation areas to cells is given in figure C. 3. In the 
case of concave curves the extrapolation areas become triangular. 
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Figure C. 3 Extrapolation in valve characteristics 

In principle either of the three implicit functions may be used, although they will 
not give exactly the same interpolation coefficients. However, some of them are more 

suited to interpolation than others. The properties of the implicit functions are studied 
in the next section. 

C. 3 Implicit functions 

C. 3.1 Implicit function theorem 

The implicit functions which may formally be derived from 4(x, y, z) =0 are: 

x (Y, Z) Ay (x, Z) Az (X, y) (C. 13) 

The above implicit functions exist locally if, respectively: 

H(xo9yo9zo) 
#0; 

aý_xoyou, zo) 0 
a4ix0, yo, zo) 0 

ax ay az 
(C. 14) 

This condition is known as the implicit function theorem. 

The implicit functions are used for an interpolation, which takes place within an 
iteration process. The interpolation is the most accurate and the iteration process is 

C. 6 



C. 3 Implicit functions 

the most stable for the implicit function, which derivative in Equation (C. 14) is 

relatively high. Then the implicit function is a "weak varying" function and well 
conditioned. Consequently the other implicit functions are relatively poor conditioned. 
For example: If 04/öz is high, then z(x, y) is a "weak varying" function, while the 

others x(y, z) and y(x, z) are "strong varying" functions. 

C. 3.2 Properties of implicit functions 

In this section the properties of the implicit functions are studied. The functions, 
for convenience represented by physical variables, are numbered as the first, second 

} and third implicit function, respectively: 

vD dv gMH D dv v gMH gOH vD dv 
22; 2-, 2; 2-, VO V 

dt 
VV 

dt Vo VV Vo V2 
dt 

000000 

(C. 15) 

Further the three-dimensional physical domain is divided into sections. Hereto 
the v-dv/dt-plane is divided into four quadrants, which are numbered in the usual way 
(e. g. in the second quadrant v<0 and dv/dt > 0). 

The properties of the functions are studied by means of the measured valve 
characteristics in figure C. 1. For this purpose also the virtual tests in figure C. 4 and 
the experimental results in section 14.7 may be used. 

Quadrant 4 During the first stage of closure the pressure head difference is 

characterized by small values, which are about equal to the steady flow values, and 
small variations. It has an almost linear character for v/vo < 1, and a parabolic 
character for v/vo > 1. The third implicit function is a "weak varying" function, 

which is well conditioned and suited to interpolation. Consequently the other implicit 
functions are poor conditioned here. 

Quadrant 3 This stage of closure is characterized by a decrease of the pressure 
head difference to relatively large, negative values, coupled with an increase of the 
fluid velocity gradient from negative values to zero. The quadrant forms the bridge 
between quadrant 2 and 4. The implicit functions have the properties of those in the 
adjacent quadrants. 

Quadrant 2 The last stage of closure is characterized by high negative values 
and strong variations of the pressure head difference. 

For weakly damped check valves these variations are more or less proportional 
to the fluid velocity gradient (figure 14.15). In that sense they do not violate the 
conditions of the third implicit function. 

For strongly damped check valves, the fluid velocity gradient is characterized by 

C. 7 
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small values, which are gradually reduced to zero (valve closed). These values are 
hardly dependent of the previous flow conditions (figure 14.17). In those cases the 
second implicit function is a weak varying function. Consequently, the other implicit 
functions are poor conditioned, and not suited to interpolation here. 

Quadrant 1 In this quadrant the properties of the implicit functions are unknown 
since no opening characteristics are available. 

, The properties of the three implicit functions are summarized in table C. 1. 

Quadrant x (y, z) y (x, z) z (x, y) 

4 -- -- ++ 

3 - - + 

2 -- ++ -- 
1 ? ? ? 

++ well conditioned -- poor conditioned 

Table C. 1 Properties of implicit functions 

It is concluded that the properties of the implicit functions may vary strongly from 

quadrant to quadrant. In particular for strongly damped check valves not all the 
functions are suited to interpolation, so that a good choice is strictly necessary. 

C. 3.3 Trajectories in the v-dvdt-plane 

In this section the properties of the trajectories in the v-dv/dt-plane are studied. 
The trajectories have some special features due to the fact that the fluid velocity and 
velocity gradient are coupled. 

The velocity time history may generally be described by a polynomial as: 

v= ao + a, t+ a2 t2+..... + aN tN (C. 16) 

So that: 
dv 

= a. +2 a2 t+..... + NaN tN-1 (C. 17) dt 
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C. 3 Implicit functions 

Consider the trajectories described by Equation (C. 10) and suppose that the 

projection of these trajectories on the v-dv/dt-plane may also be described in the form 

of a series as: 

v =A +A 
d'' 

+A 
dv 2+..... 

+A 
[dv] []M (C. 18) 

01 dt 2 dt M dt 

It is evident that the order of the Equations (C. 16) and (C. 18) must be the same. 
After the substitution of Equation (C. 17) in Equation (C. 18) follows: 

N=(N-1)M (C. 19) 

The only solution is N=2 and M=2, which means that both the velocity time 
history as well as the projected trajectory must be approximated by second order 
polynomials (parabolic functions). In that case the second derivative of the fluid 

velocity in time is constant. 

From the above result the following can be concluded. If the projections of the 
measured trajectories (ßo = 0) on the v-dv/dt-plane are approximated by polynomials, 
the interpolation must be of second order or lower order, for reasons of consistency. 

About parabolic functions ... 
If the velocity time history is of second order (N = 2) then Equation (C. 16) reduces to: 

v=as+alt+a2t2 (C. 20) 

So that: 
dv 

_a1 +2a2t dt 

Elimination of t from the above equations gives: 

(C. 21) 

i2 
v= ao - 4a2 +4 

a2 
(mal (C. 22) 
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So that the coefficients in Equation (C. 18) become: 

2 

Ao=a0- al 
; Al=0 ; A2= 

4a2 4a2 

Thus follows with Equation (C. 18): 

d (dv/dt) =2 A2 (dt ) 

With on the horizontal axis (dv/dt = 0): 

dv 
=0 d (dv/dr) 

(C. 24) 

(C. 25) 

The latter condition must also hold for other functions than the above polynomials, since the velocity 

time history is characterized by a local extreme value here. 

Now reconsider the functions in Equation (C. 9) and (C. 10) and the measured valve characteristics 

in figure C. 1. The condition in Equation (C. 25) demonstrates that the two classes of functions form 

an orthogonal grid around the horizontal axis of the v-dv/dt-plane. It is presumed that the orthogonality 

also holds for the rest of the plane. However, this needs to be proven. 

C. 3.4 Stability 

In order to study the stability of the check valve behaviour the term stability must 
be defined. The check valve behaviour is said to be stable if the (steady or unsteady) 
flow conditions can be reproduced after a small disturbance, without intermediate 

valve closure. The check valve is primarily controlled by the flow, which means that 

also the valve disc position must be reproducable. Let the flow conditions be 

described in terms of v, dvldt and AH. In a mathematical sense the definition for 

stability may be formulated as: The valve behaviour in the point (v, dv/dt, OH) is 

said to be stable if there exists a flow loop around this point. In that case the process 
is reversible. 

Suppose that the valve is subjected to a flow disturbance: 

v=vb+Asinwt 

... 
(C. 23) A3 =0 .1 

(C. 26) 
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So that: 
dv 

=Aw cos wt (C. 27) 
dt 

Thus a flow loop is created around the point (vb, 0) in the v-dv/dt-plane, with basis 
2A and altitude Aw. The stability of the valve can be studied by substituting the above 
flow disturbance in the valve equation of motion. Here the stability analysis is 

restricted to more qualitative considerations. 
Consider the check valve under initial, steady state conditions, described by the 

points (vb, 0, OH) where vb > 0. It is obvious that a flow loop exists around this 
point if the flow disturbance is small and low frequent. Let the flow disturbance be 
small but finite (A = 0) and high frequent. In the limit case w --> oo, the valve disc 
has no time to change of position (6 -' 0), due to inertia. Now a flow loop is created 
around the point (vb, 0) in the v-dv/dt-plane, with basis 2A and altitude Aw -º oo. All 

the points within such a flow loop are stable. Thus it is illustrated in a qualitative 
sense that the check valve behaviour in the quadrants 1 and 4 is stable. 

Consider the check valve under initial conditions, described by (vb, 0, OH), while 
vb < 0. In this case no steady state conditions exist. In the quadrants 2 and 3 the 

valve disc is closing under the reverse flow, so that 9<0 here. Consequently no 
flow loop exists that results in the same disc position. The valve behaviour is an 
unstable, irreversible process that ends in a closure. 

About the physical and numerical aspects of the unstable valve behaviour the 
following. The fluid velocity gradient changes from negative, more or less constant 
values in quadrant 2, to positive values in quadrant 3. According to the principles 
of waterhammer this increment of dv/dt is coupled with a downstream pressure rise 
and upstream pressure drop (chapter 9), resulting in a decrement of AH. A small 
increment of dv/dt leads to a relatively large decrement of AH, which on its turn leads 
to a further increment of dv/dt, etc. 

In a qualitative sense this unstable behaviour is physically correct. The combi- 
nation of decreasing upstream pressure and increasing downstream pressure tends to 
accelerate the motion of the valve disc into its seat. 

In a quantitative sense this behaviour may give rise to numerical instabilities 

within the solver of the coupled pipe and valve equations (section 12.3). This is 

revealed by an uncontrolled, accelerated closure (like undamped check valves). 

C. 3.5 Prescribed trajectories 

In the previous section it is illustrated that the valve closure is, physically as well 
as numerically, unstable in the last stage of closure. To overcome the numerical 
problems associated with these instabilities "prescribed" trajectories are introduced. 
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Appendix C Interpolation in valve characteristics 

Reconsider the trajectories given in Equation (C. 10) together with the physical 
domain: 

(D v' Ddtg 
=0A 4(i+a, j0+(3o) =0 (C. 28) 

2 vo yo yo 

Prescribing a trajectory implies that the relationship between v, dvldt and OH is 

prefixed. This relationship is obtained from tests and therefore consistent with 
laboratory conditions. If the characteristics are applied to other conditions the 

consistency of the variables is no longer guaranteed. To enable a general application 

of prescribed trajectories a relaxation must be applied to one of the variables. In that 

case formally six functions implicit functions arise: 

vD dv vg AH D dv v 
vo yö dt v0 v0 yö dt vo 2 

(C. 29) 

Ddv giH gAH v' gAH Ddv 
2 dt 22 vo v2 v2 

dt 
v0 v2 v0 00 

The main features of these functions are: 

Q The fifth and sixth implicit function do not guarantee a valve closure. The 
fluid velocity gradient must be increased from negative values to positive 
values. Hereto a certain critical (negative) pressure head difference is needed, 
which in general is system-dependent. When this critical value is not 

exceeded, the flow continues to decelerate. The (absolute value of the) 

prescribed pressure head difference may be too small to create such a positive 
fluid velocity gradient, which is necessary to reduce the reverse flow to zero 

and close the valve. 
Q The second and fourth implicit function may be ambigious within a quadrant, 

i. e. AH gives more than one solution for v and dv/dt (figure C. 1 and C. 4. c). 
Q Similar considerations hold for the first implicit function. 

Q The third implicit function is unambigious, stable and always guarantees a 

valve closure. 

Based on the above arguments the relaxation is applied to AH. 
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C. 3 Implicit functions 

The prescribed trajectories may now be described by: 

tvo 
Dt=0A (i +a , ja + ßo) =0 (C. 30) 
Vo 

About the 0-method ... 
The prescribed trajectory may numerically be solved by the well known 0-method. For this purpose 
Equation (C. 30) is discretized as: 

c" 
(oV+1+(1_o)Vh 

, 
''n*1-''" 

=o 
er 

(C. 31) 

Where n represents the discrete time. The equation is solved iteratively by (k is iteration step): 

v (C. 32) 
Ar 

And a relaxation: 

v"`l, k =w v"'l. k+(1-w)v". i, t-i (C. 33) 

With as initial value vfl", o = W'. The 0-method is stable in quadrant 2 for 0=0 (explicit), and in 

quadrant 3 for 0=1 (fully implicit). 

In CVWP the prescribed trajectories are treated by an adapted form of the above- 
mentioned standard 0-method. Hereto Equation (C. 32) is replaced by: 

yn+l, k-yn 
=0 *(vn+l, k-1) + (1-6) «*(Vn) (C. 34) 

At 

Where 0= '/2, while no relaxation is applied (co = 1). The standard 0-method and 
adapted version give the same solution for linear functions 4*. However, the adapted 
version gives an exact solution for parabolic functions. 

In section C. 3.3 it is demonstrated that the trajectories in the v-dv/dt-plane may 
only be described by second order or lower order polynomials. Here, linear forms 

of the function are used, except for grid points around the horizotal axis, where 
parabolic functions are used (see below). 

C. 13 



Appendix C Interpolation in valve characteristics 

About points on the v-axis ... 
The prescribed trajectories are basically used to reconstruct the velocity-time history. For this purpose 
linear functions can be used, except for points around the v-axis. Once a point on this axis is arrived 

at, it will never be left, since the velocity does not change in time anymore (dv/dt = 0). This is 

physically incorrect, at least for negative velocities. To pass the v-axis higher order information is 

needed, which is found in e. g. the second derivative of the velocity-time history. In order to include 

such information, non-linear functions must be used. The presribed trajectory around the negative v- 

axis is in CVWP described by (see also section C. 3.3): 

4! 2 
v=Ao+A2( (C. 35) 

This formulation allows changes of the fluid velocity gradient. The parabolic functions are constructed 
from two (measured) grid points of the same trajectory, one on and one close to (below or above) the 

horizontal axis, and the condition in Equation (C. 25). 

Note that in the case of parabolic functions the interpolation becomes of second order. This has 

consequences for the determination of the interpolation coefficients ao and (3o, although ao in good 

approximation may be obtained from linear interpolation here. 

The question arises in howfar the prescribed trajectories may be used. The flow 

conditions in a pipeline system are generally influenced by the system as well as the 
check valve. However, certain flow conditions are dominated by the system, others 
by the check valve. The prescribed trajectories may only be used in the region where 
the flow conditions are dominated by the check valve. This region may be defined 
by means of the valve characteristics of approach 1. 

The fluid velocity characteristic for the first event (approach 1) gives information 

about the reverse flow velocity at which the damping becomes active (section 11.5). 
It thus gives direct information about the end of the first event and the beginning of 
the second event. Experiments show that the characteristic in many cases has a linear 

character. Based on this linear relationship the closure phase angle, that divides the 

v-dv/dt-plane into the first and second event may now be introduced as: 

D dv v Od =2/d (C. 36) 
vo dt 

_ vo 

The first event is dominated by the system, while the second event is dominated by 

the check valve. The latter event is characterized by pressure surges induced by the 

check valve. 
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C. 4 Flow loops 

Although «d varies from valve type to valve type, in CVWP in first instance a 
fixed value is used. The prescribed trajectories are used in the region'O S 0.3, which 
is illustrated in figure 12.2. 

With the prescribed trajectories a compromise is found between robustness 
(numerical stability) and accuracy. The valve behaviour is stable and a valve closure 
is guaranteed. 

C. 4 Flow loops 

In this section the phenomenon of flow loops is studied. This is done by means 
of virtual valve characteristics. 

Consider the virtual tests in figure C. 4. The time histories for the fluid velocity, 
pressure head difference and valve disc position in figure C. 4. a are composed of 
third-order polynomials. The valve loss coefficient in this figure is derived from the 
other variables. The same data are plotted in figure C. 4. b and C. 4. c against the fluid 

velocity and pressure head difference, respectively. The virtual valve characteristics 
thus obtained are representative for the measured valve characteristics of approach 2 
(section 14.7). 

Now consider the simulation in figure C. 4. The velocity-time history is assumed 
to be known. The other variables are obtained from linear interpolation within the 

virtual tests. Hereby the interpolation coefficients of and ß are obtained from the 
trajectories in the v-dv/dt-plane. 

Flow loops arise through the combination of a local minimum and local maximum 
in the velocity-time history (figure C. 4. a). They are imposed by the system, not by 
the valve, and temporarily interrupt the valve opening or closure. Flow loops are 
formed across the horizontal axis of the v-dv/dt-plane (figure C. 4. b), so that always 
more quadrants are involved. In theory a loop can be formed over four quadrants. 
In that case the vertical axis (v = 0) is passed without valve closure. However, this 
case is not considered further. Here only loops across two quadrants are considered. 
The loop across the quadrants 1 and 4 is introduced as normal flow loop (v > 0) and 
the loop across the quadrants 2 and 3 is introduced as reverse flow loop (v < 0). 

In the following models for the normal and reverse flow loop are described. 

C. 15 



1 

1.5 

1.0 

0.5 

4 0.0 

-0.5 

-in 

------- Virtual tests Simulation 

rtý ý, 
-, o. o 

to 
u 

0 
N 

O 

-lo T, 

a' -20 

-30 

48.0 

15 

r-. 1o 

N 

0 

-5 

-18.0 

1.0 r 

m 0.5 

l. U d. u 

2.0 

1.0 2.0 

3.0 

3.0 

3.0 

- -ý-ýýý 

0.84- 
.0 

1.0 2.0 3.0 

Time [s] 

Figure C. 4. a Interpolation in valve characteristics 

C. 16 



., ------- Virtual tests Simulation 

13 
>1 

No 0 

C 

-3. -1.0 -v. 5 U. U U. 5 1.0 1.5 

10 

0 
N 

O 

-10 

-20 IZ 

-0.5 

1.0 1.5 

15 

i0 

clu 
05- IN - 

0- 

-5 

-101.0 -0.5 0.0 0.5 1.0 1.5 

1.0 

0.5 

0'1.0 
-0.5 0.0 0.5 1.0 1.5 

v/vo (-] 

Figure C. 4. b Interpolation in valve characteristics 

C. 17 



------- Virtual tests Simulation 

1.5 

ý- 1.0 

o 0.5. - 

0.0. - 

-0.5-- 

-1 .0 40 
u 

2 
0 

> 1 

n'o 0 

-1 

-2 

-340 

15 

10 

N 

C; 5 

0 

-5 

-1040 

1.0, - 

u 

0.5 

ýýýý 

1V 

-30 -20 -10 0 10 

0.040 
-30 -20 -10 p 10 

Dl- Qi H/vo2 [-) 

Figure C. 4. c Interpolation in valve characteristics 

C. 18 

-30 -20 -10 0 10 



C. 4 Flow loops 

C. 4.1 Normal flow loop (v > 0) 

If quadrant 1 is entered from quadrant 4, or vice versa, the valve opening or 
closure is interrupted by a normal flow loop (figure C. 4. b). 

In principle the valve closure may be modelled by the third implicit function, 

which is well conditioned in quadrant 4 and expected to be well conditioned in 

quadrant 1. However, if no opening characteristics are available in quadrant 1, 
another approach must be followed. 

Experiments show that in quadrant 4 the pressure head difference is about equal 
to the steady flow values (even for higher flow decelerations). It is expected that this 
tendency also holds for quadrant 1, at least close to the v-axis. For this reason a 
substitute for the valve characteristics in quadrant 1 is the steady flow characteristic. 
This leads to the implicit function: 

gAH vD av gAH =0V (i+, 1 � =1) (C. 37) 
v2 vo y2 

at 
v2 000 

The path number j=1 represents steady flow values. In that sense it may be 
considered as a prescribed trajectory. The model error is expected to be small, since 
the pressure head difference in (the lower part of) quadrant 1 is relatively small. 

C. 4.2 Reverse flow loop (v < 0) 

If quadrant 3 is entered from quadrant 2, or if quadrant 2 is re-entered from 
quadrant 3, the valve closure is interrupted by a reverse flow loop (figure C. 4. b). 

Consider the case that quadrant 3 is entered from quadrant 2. The standard 
interpolation in the valve characteristics gives a valve loss coefficient that temporarily 
decreases and a valve disc position that temporarily increases in time (figure C. 4. a). 
This is physically incorrect since the increasing reverse flow velocity tends to close 
the valve and increase the (dynamic) valve loss coefficient. 

The above inconsistency arises from the fact that it is assumed that the valve 
characteristic forms one single surface in the 3D physical space (section C. 1.1). Thus 
it is suggested that this surface can be crossed in all directions, which is only true 
if the process is a reversible process. The latter no longer holds here. Consequently, 
the reverse flow loop cannot be described by this valve characteristic in the present 
form, unless additional information is added. 
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Appendix C Interpolation in valve characteristics 

ýI1The valve closure may be modelled as: 
i 

gOHvv 
2200 (C. 38) 
0 VO 

Where: 

tQ2-'Q3 + at 
(t -tQ2. 'Q3) (C. 39) 

Q2-. Q3 

The subscript Q2-'Q3 refers to the instant that quadrant 3 is entered from quadrant 2. 
The procedure is based on the principle of increasing valve loss coefficient. This is 

physically correct since the increasing reverse flow velocity tends to accelerate the 

closure. The increase of the valve loss coefficient may even be stronger than above 
described. In that case higher order information is needed. 

Consider the case that quadrant 2 is re-entered from quadrant 3. The valve is now 
further closed then if quadrant 2 is entered for the first time. The valve may be 

modelled by the principle of increasing valve loss coefficient, as described above. 
However in the last stage of closure the order of the valve coefficient changes 

rapidly. A better approach is: 

gAH = gAH (l +a, l +ß) +C .ý2 22 Q3 Q (C. 40) 
V0 V0 

The pressure head difference is no longer determined from the valve characteristics 

only. The effects of the reverse flow loop are taken into account by a constant. In 

order to guarantee a continuous transition from quadrant 3 to quadrant 2, the constant 

may be determined as: 

CQgMIQ3-Q2 - 
gAH((i+«)Q3 

Q2, (J+ß)) Q3-Q2 (C. 41) ß'Q2 -22 
Vo VO 

Where Q3 -. Q2 represents the entrance values of quadrant 2. The first term may 

now e. g. be obtained from Equation (C. 38). Note that the entrance values of the 

coordinates io+ao and jo+(3o are no longer the same in the x -y-plane and x-z-plane. 
The interpolation in the x -y-plane appears to give a smooth transition, while the 
interpolation in the x-z-plane gives a kink in the pressure head-velocity relation. 
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C. 5 Valve model 

C. 5 Valve model 

The final valve model is based on the valve characteristics of approach 2, as given 
in Equation (C. 1). For the interpolation the valve characteristics are mapped from 

the physical to the computational domain, and described by discrete coordinates i 

(path along trajectory) and j (number of measured trajectory). The initial stage i=1 

represents per definition the fully opened valve (v/vo = 1), while i=M represents 
the closed valve (v/vo t 0). The discrete coordinate j=1 represents per definition 

the steady flow values (dv/dt = 0). 

The characteristics are applied in the form of implicit functions. The properties 
of these functions vary strongly per quadrant. Therefore only functions can be used 
which are well conditioned. A scheme of these functions is given in table C. 2. 

Quadrant 4 The valve is in its initial stage of closure. The pressure head 

difference is described as function of the fluid velocity and velocity gradient. 

Quadrant 3 See quadrant 4 and 2. 

Quadrant 2 The valve is in its last stage of closure. The velocity gradient is 

described as function of the fluid velocity by means of prescribed trajectories. Hereby 

the coordinates jo and ßo are constants, that are prefixed at the values at which the 

closure phase 0=0.3 is crossed. 
Note: The prescribed trajectories may be used for interpolation and extrapolation. 

In the case of interpolation positive values are guaranteed (if the tests are consistent). 
However, extrapolation may lead to negative fluid velocity gradients (in the region 
of small velocities and velocity gradients), which interrupt the valve closure. Such 

an extrapolation is only allowed under certain conditions (see further section 12.3.2). 

Quadrant 1 The opening behaviour is modelled by steady flow characteristics, 

since no opening characteristics are available, so that j=1 here. 

Note: The normal flow loop is included in the valve model in modified version, 

since no opening characteristics are available. The reverse flow loop is not included 

in the valve model, but suppressed by using prescribed trajectories. 
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Appendix C Interpolation In valve characteristics 

partly opened fully opened 

Quadrant 1 gMH (i+a, j =1) gMI =t t° vIVI 
2 

vö vo vo vö 

to =2 9AH(i=1, J=1) 
V 

2 
0 

Quadrant 2 D dv (i + a'iO+aO) 
and v2 dt --- 

Quadrant 3 
(0 S 0.3*) 

Quadrant 3 g AH (l+a'i+O) 
(0 > 0.3`) 2 v --- ° 

Quadrant 4 gMH 
,ý (3) (i+a + giH =tvIv 2° 

V02 V0 vo ° 

to =2 gAH(i=1I+Q) 

v ° 

Table C. 2 Model for damped check valves in computational domain 

* The closure phase is defined as: 

dv V1 
[ 

[vo 2 o 
(C. 50) 
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Appendix D 

Interpolation in valve and system parameters 

In this appendix the interpolation procedure is described, which is performed 
within the valve and system parameters. 

List of notations 

"N is the total number of valve characteristics 
"M is the number of parameters in a valve characteristic 
" The vector (x, ', x,. "" xM) r represents the M parameters of the n-th valve 

characteristic 
" r"" is a compact notation for the vector 

(x1', 
x, "", xM 

T 

" t" represents the loss coefficient for the n-th valve characteristic 
" f(") is a function RM-ºR that describes the dependency of the loss coefficient on 

the parameters of the valve characteristic 
" superscripts are used for the number n (1 S n: 5 N) of a valve characteristic 
" subscripts are used for the valve parameters 
" Vf )" is the gradient of f(") at r" , i. e. 

T 

i p. Pii 2 I, ri M r, rn 

" IS' q denotes the norm of vector s" 
" e" is a random noise denoting the uncertainty in the loss coefficient 
" q" is the standard deviation of the noise e" 
" E[E] is the expected value of e based on a probability density function 
"1 is the unit diagonal matrix = diag [ 1,1, ..., 1] 
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Appendix D Interpolation in valve and system parameters 

D. 1 Introduction 

In general terms the interpolation problem can be formulated as follows. Given 

are N valve characteristics. For each characteristic a valve loss coefficient or pressure 
head difference is available (hereafter the pressure head differences are omitted). The 

valve and system parameters and loss coefficients of these valve characteristics can 
be represented by a set: 

1 (xi', 
x2s, .. . 'xZ; 

v') 11snsN, Z' -f (x, XZ, .. . 'x 
)} (D. 2) 

Given a 'new' combination r := (xl, x2, """, xM )T of the valve parameters, the 
available parameters and loss coefficients (P"; ') (1 SnS N) are used to estimate 
the loss coefficient & =f(r) 

With respect to the available number of valve characteristics three cases may be 
distinguished: 

Case A. The number of valve characteristics is greater than the number of 
valve and system parameters, inclusive t, so that N> M+1. 

Case B. The number of valve characteristics is equal to the number of valve 
and system parameters, including t, so that N= M+1. 

Case C. The number of valve characteristics is smaller than the number of 
valve and system parameters, including t, so that N< M+1. 

These three case will be considered below. The proposed interpolation technique is 

outlined in the following three paragraphs. Finally a summary of the procedure is 

given. 

D. 2 Normalisation of valve and system parameters 

The parameters, represented by the components of the vector r have different 
orders of magnitude (e. g. the Reynolds number may vary from from 0 to 107, 
whereas the Mach number varies from 0 to 1). Therefore an appropriate scaling is 
applied to the xm-coordinates before the interpolation is applied. 

This scaling is as follows. Let the coordinate xm (1 5m5 M) assume values 
between its extremes -wm and wm. xm is then scaled to x, � according to: 

XI _x 
WM 

(D. 3) 

D. 2 



D. 3 Interpolation 

In the following the primes in the coordinates xn will be omitted although it is 
worked with the scaled coordinates. 

D. 3 Interpolation 

Hereafter the valve characteristic n will be represented as a point with coordinates 
xl , x2 ,--- , xM, in a (M+1)-dimensional space. 

Case A (N > M+ 1) 

The number of points N is greater that the dimensions of the space M+1. The 
system is overdetermined and no unique solution exists for t. In principle enough 
information is available to apply a higher-order interpolation method. Another 
approach is to reduce the number of available valve characteristics to N=M+1 and 
apply a first order (linear) interpolation method (case B). The reduction of the valve 
characteristics may be based on the distance between r and r" . 

Case B (N =M+ 1) 

The number of points N is equal to the dimension of the space M+1. In that case 
a "plane" N-1 dimensional surface can be constructed through the N 

points (F"; ý") . With P' as 'origin', such a plane can be described by the linear 
function P. e- ]R defined by: 

M 
Z =f(x1, x2, .. . 'XM) = gn +E Sm"(xm - x, 

) (D. 4a) 

m-1 

In short notation this may be written as: 

. 
f(r) = ý" +P (r (r - r") (D. 4b) 

Vectors (sl, s2, s3, """, sm)' is a normal vector of the plane through the N 
points (r'; V) . In the next, expressions will be derived for s" . With this vector 
the loss coefficient t is then estimated by the right hand side of Eq. (D. 4). 

Obviously Eq. (D. 4) gives &" , but for any j (1 SjSN, j ;d n) 
it must hold that: 

g> = f(r1) = g" S -. (F1 - r-") (D. 5) 
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Appendix D Interpolation in valve and system parameters 

This leads to the following linear equation fors 

M 

-"= 
(XMI- xn )sm (D. 6) 

M-1 

This approach can be followed for all data sets j with j ;dn leading to a set of N-1 
linear equations: % 

&1_ &n 

2 
_n 

n-1 n= 

n+l 
_n 

N- n 

1n 
x1-x1 

1 it X2 _x2 
1 it x3 -x3 

2n 
xl -xl 

2n 
X2 -x2 

2n 
X3 -X3 

n-1 n x1 -x1 
n-1 it x2 -x2 

-1 n n x3 -x3 

n+l it 
x1 -x1 

n+l n x2 -x2 
n+1 it 

x3 -x3 

Nn N_ nN xi -xi xt x2 x3 -x3 

In 
XM-XM 

2n 
XM_XM 

n-1 n xM _xM 

n+l n xM -xM 

Nn 
XM _XM 

Si 

SZ 

S3 

S4 

In compact form this can be written as: 

Hs=1 z 

(D. 7) 

SM-3 

SM-2 

SM-1 

SM 

(D. 8) 

H is a matrix of dimension (N-1) xM and z is a vector of length N-1. As a result 
a unique solution fors only exists if N-1 =M (where it is assumed that the M-1 

equations are not inconsistent or dependent). 

Case C (N <M+ 1) 

In most practical cases the number of points N will be much smaller than the 
dimension of the space M+1 (recall that N is the number of valve characteristics). 
In that case the Eqs. (D. 7,8) form an underdetermined system that cannot be solved 
in a strict sense, since infinitely many solutions exist for .. If additional constraints 
are applied, however, a unique solution can be found. A reasonable constraint that 
makes sense is to require that the function f(") has minimal variation. Since 

T 

S=NY )" _ �... �_L 
(D. 9) 

I 
aX2aXM 

j. 
ax 
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D. 4 Dependent systems, stochastic environment 

this means that of all the admissable s the one with the minimal norm must be taken. 
This leads to the minimization of a cost function J, defined by 

M 

. 
%ý S_1/21 1s- 12= STS = 1/2 (Sm )2 (D. 10) 

under the restrictions of Eq. (D. 8). 

The solution of this problem is: 

HT(HHT)-1z (D. 11) 

For details on the solution procedure see e. g. Tarantola (1987) or Maybeck (1979). 

Note It is easily seen that the expression found fors does not depend on the 
choice of the 'origin' r" . This means that the same plane will be found if instead 

of Eq. (4), f(") is initialized by f (F) = &k + s--(r- -r k) for some k, kn and 
1 Sk<_N. 

Example The normal vector s- is determined for the case that N=2 valve 

characteristics are available, (r-', &') and (r2, &2) . It is then easily seen that Z 
2-r1 q2 is a scalar, z=2-1, His the 1 xM matrix (r 2 -r-')T , and HHT = IF 

As a result: 

2-1 
S= (r 2-r 1) (D. 12) 

Ur2 - rl12 

D. 4 Dependent systems, stochastic environment 

The procedure of the preceding section requires that the N-1 vectors 
{rl_rn, 

r2_rn, r_r 3n rn-1 _Tn rný l 
_ýnrN_ýn 

(D. 13) 

are independent. In that case the square (N-1)x(N-1) matrix HHT is not singular. 

If the vectors are dependent two alternative approaches are feasible: 
" Reduce the data set of Eq. (D. 2) until N' samples are found (hereby N' < N, 

while N' is as large as possible) for which the corresponding vectors 
{FJ- r" 11 sjs N' ,j *n } are independent. This approach may lead to loss 
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Appendix D Interpolation in valve and system parameters 

of information and should be avoided if possible. 
" Generalize the present approach where the valve characteristics of Eq. (D. 2) are 

embedded in a stochastic environment. The latter approach and its consequences 
for the solution of the vectors are summarized in the next. 

In section D. 3 the calculation of the normal vector s is considered for the non- 
degenerated case that the N-1 vectors of Eq. (D. 13) are independent. If this is not 
the case the procedure must be generalized. This can be done by embedding the valve 
characteristics E" = f(r ") in a stochastic environment. This approach is not new 
and is quite commonly used in linear estimation theory. The technique, and the result 
for the estimate of the vectors are summarized below. 

The basic idea is that the loss coefficient tl is considered as a random variable. 
The n-th valve characteristic then has the form of a stochastic linear equation: 

n_ f(r n) + En (D. 14) 

In Eq. (D. 14) ¬' is a random noise with zero mean and standard deviation q". 

Embedding the original deterministic equations in a stochastic environment offers 
many advantages. Two of these are: 

13 With the addition of random terms it is possible to account for measurement and 
model errors. This is not of purely academic interest, since in practice usually 
no perfect models or perfect measurements are available. 

o In the stochastic model the Eqs. (D. 14) (1: 5 nS N) are not dependent or inconsist- 

ent as long as the random terms E" are not omitted (i. e. variance Var[E°] >0). 
This is even true if N>M, i. e. when there are more equations than unknown 
variables. For the original non-stochastic equation dependencies or inconsistencies 

may easily occur, especially for overdetermined systems. 

The random noise c" in Eq. (D. 14) denotes the (model) uncertainty in the loss 

coefficient. Its standard deviation is denoted by q°. The standard deviation may be 

taken proportional to t": qn=6"t° (e. g. 6=21h%). Moreover the E" (1 SnSN), are 
assumed to be mutually independent. As a result the covariance matrix of the random 
vector E is: 

covar[E] = E[EET] = diag[(gl)2, (q2) 2,... 
, 

(qN)2] (D. 15) 

Because of the randomness of the t° also the set of linear equations for the normal 
vectors are random, i. e. instead of Eq. (D. 8) we must write: 
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D. 4 Dependent systems, stochastic environment 

Hs +e=z (D. 16) 

The e in these measurement equations are random vectors of dimension (N-1) X1 
with zero mean. From Eqs. (D. 7,8,16) it is seen that the relation between e" and E is 

as follows: 

el 

e2 

en-1 

8n 

err-1 

E1 -6n 

E2 En 

_ En-1 En 

En+] _ En 

EN - En 

(D. 17) 

As a result of Eqs. (D. 15,17) the covariance matrix Q of e is an (N-1) x (N-1) 

matrix and has the following form: 

Q= dia8 (q1)2 
, 

(42)2 
, 

(q3)2 
, ... , 

(qn-1\2 
, 

(4�+1)2 
, 

(4n+2)2, ... , 
(qN)2 + 

1111 
1111 

(D. 18) (q") 1111 

1111 

In section D. 3 it was argued that constraints must be introduced in order to obtain 
a unique solution for the vectors . This was done in the form of a minimal norm 
as expressed by the cost function in Eq. (D. 10). It is possible to translate this cost 
function to the stochastic model by means of the following stochastic linear equation 
that must be solved in combination with the measurement equations in Eq. (D. 16): 

=Ö o (D. 19) 

The Mx1 vector Eo is a random noise with zero mean and covariance matrix I. 
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Appendix D Interpolation in valve and system parameters 

The N-1 stochastic equations of Eq. (D. 16) and the M stochastic equations of Eq. 
(D. 19) can be solved in maximum-likelihood sense. The solutions minimizes the 
cost function 

J= 1/2 sTS + 1/2 (Hs - z)TQ-l(Hs - z) (D. 20) 

with the following result: 

HT(HHT + Q)'lz (D. 21) 

Comparison of Eq. (D. 11) and Eq. (D. 21) clearly shows the relation of the 
solutions of this section and the one of section D. 3: if Q=0 (i. e. no uncertainty in 
the loss coefficients), the solution in the stochastic model reduces to the solution in 
the original deterministic approach, as expected. 

The main advantage of Eq. (D. 21) is that the matrix HHT+Q is non-singular for 
any positive definite covariance matrix Q, even if matrix H is singular. Therefore 
the solution of Eq. (D. 21) is preferred for computer implementation. 

Summary 

The interpolation technique described above can be summarized as follows. 

Step 1: The valve and system parameters xm (1 S m! -, M) are scaled according 
to Eq. (D. 3). 

Step 2. The normal vectors is determined on the basis of N known valve 
characteristics. This vector is prescribed by Eq. (D. 11) or Eq. (D. 21). 
The matrix H in these expressions is defined in Eq. (D. 7) and (D. 8), 
and the covariance matrix Q is given in Eq. (D. 18). 

Step 3: For the combination r: = (xl, x2, """, xM )T of valve and system 
parameters, the loss coefficient ý is determined from Eq. (D. 4). 
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