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ABSTRACT 

A novel non-separable non-stationary stochastic model for the representation and 

simulation of pulse-like earthquake ground motions (PLGMs), capable to accurately 
represent peak elastic and inelastic structural responses, is proposed in this work. 
Further, the model is employed for assessing the performance of several time-frequency 

representation techniques (the harmonic wavelet transform, the Meyer wavelet packets 
transform, the S-transform and the empirical mode decomposition) in capturing salient 

features of pulse-like accelerograms.    
The significantly higher structural demands posed by PLGMs in comparison with 
similar intensity pulse-free motions led to comprehensive investigations in order to 

mitigate the damage experienced in the affected areas, such as those located near 
seismic faults. In this regard, time-frequency analysis methods are frequently employed 

for the analysis of signals recorded during these events, due to their adaptability to the 
specific evolutionary behaviour. Alongside with characterization, stochastic modelling 
of PLGMs is of interest since it allows for systematic variations of the input parameters 

in order to enhance the understanding of their influence on the structural behaviour. 
This is particularly useful since only a limited number of PLGMs are available in the 

existing earthquake databases.  
Accordingly, inspired by the time-frequency distribution of their total energy, a versatile 
PLGM model is defined as a combination of amplitude-modulated stochastic processes. 

Each process models the time-varying distribution of the energy for adjacent frequency 
ranges. Two alternative formulations are proposed for representing the low-frequency 

content characterizing the pulses. Considering a set of pulses from the literature,  
numerical results show that the pulse models‟ parameters can be calibrated to simulate 
in average the structural impact of these pulses represented using the model herein 

defined. Further, the capability of the PLGM model to generate elastic and inelastic 
spectral responses matching a given field recorded accelerogram in the mean sense is 

illustrated. The applicability of the proposed model to account for near-fault effects to 
spectrum compatible representations of the seismic action is illustrated by generating a 
fully stochastic process compatible with the response spectrum of the European 

aseismic code (EC8). Furthermore, the model can be employed in various applications 
including generation of accelerograms for nonlinear dynamic analyses of structures, 

probabilistic seismic demand analyses or as input in stochastic dynamic techniques such 
as statistical linearization. 
Finally, the capability of several time-frequency analysis methods to characterize 

PLGM accelerograms is evaluated through comparative numerical studies within a 
novel methodology, namely by considering artificial time-histories as samples of the 

proposed model. The results highlight the potential of the S-transform to be used for 
pulse identification/extraction and of the harmonic wavelet transform for record 
characterization/pulse extraction. Additionally, they confirm that from an engineering 

perspective the structural natural period is an appropriate and representative parameter 
for the definition of “pulses”. Overall, these analyses shed light into the challenges 

experienced when attempting to detect the pulse content in the accelerograms, in an 
effort to inform best practices for PLGMs characterization. 
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CHAPTER 1 : INTRODUCTION 

1.1. MOTIVATION  

Signals recorded during pulse-like seismic ground motions (PLGMs) distinguish 

themselves through the presence of unusually high amplitude, long period oscillations 

termed as “pulses”. It has been observed that such ground motions have a particularly 

strong impact on relatively flexible structures, whose dominant fundamental period is 

close to the pulse period. Consequently an important amount of research was devoted 

especially in the past two decades to understanding and characterizing such earthquakes, 

with the aim of improving the structural behaviour in the affected areas. A major 

limitation of these studies is the modest amount of field recorded data available, which 

includes less than 100 records being classified in the literature as pulse-type. As a result, 

the development of record-based stochastic models to be used for various applications is 

an essential matter in pulse-like ground motions related research. 

Deterministic pulse-like functions were initially employed for the artificial modelling of 

such earthquakes, acknowledging however the limited representation obtained this way 

(Somerville, 1998; Makris & Chang, 2000a). Accordingly, the representation of pulse-

like ground motions was revised to include stochastic models for simulating the higher 

frequency content over-riding the pulses. This update was aiming on one hand to 

produce more realistic accelerograms either in terms of content or in terms of 

appearance and structural impact. On the other hand, the purpose was to take into 

account the inherent variability in the seismic ground motions properties (e.g. 

Mavroeidis & Papageorgiou, 2003). However, since the pulse properties remained still 

invariant, in the more recent literature probability distributions are established for the 
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pulse parameters by considering specific ensembles of records (Bray & Rodriguez-

Marek, 2004; Dabaghi et al. 2011; Dickinson & Gavin, 2011). 

In this context an alternative stochastic modelling approach inspired by the time-

frequency distribution of the record's energy is proposed in this work. It employs a 

simple but popular representation method to shape the energy distribution of pulse-like 

ground motions, which has been previously used for various structural dynamics 

matters (e.g. Conte & Peng, 1997; Spanos & Failla, 2004). The approach consists in 

superposing several amplitude-modulated random processes, obtaining this way a non-

separable, non-stationary random process. Existing stochastic models for the higher 

frequency content are combined with newly defined ones for pulses. The proposed 

model aims for simplicity, consistency and flexibility in choosing the level of detailing 

for the generated processes, while offering a fully stochastic representation of pulse-like 

ground motions. It is likely that the model will be employed in diverse applications such 

as performance-based earthquake engineering studies (e.g. Taflanidis & Jia, 2011; 

Taflanidis, 2011) or statistical linearization-based applications for structural engineering 

(e.g. Spanos & Giaralis, 2008; Spanos & Kougioutzoglou, 2012). 

The capability of the herein defined models to simulate the low-frequency content and 

the corresponding structural impact is explored. Accordingly, a collection 91 pulses 

previously extracted from field recorded pulse-like accelerograms are modelled 

individually and the structural responses obtained through the simulations are compared 

with those corresponding to the actual pulses. Moreover, a given field recorded 

accelerogram is represented using the pulse-like ground motion model for illustrative 

purposes. The potential of the model to incorporate pulse-effects in synthetic 

accelerograms compatible with design response spectra is also investigated, in the 

context of the Eurocode 8 provisions. Further, the model is used as a test-bed in an 

investigation gauging the capability of several time-frequency representation techniques 
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(three wavelet-based, i.e. the harmonic wavelet, Meyer wavelet packets and S 

transforms, in addition to the empirical mode decomposition) to identify and isolate the 

characteristic pulses from pulse-like accelerograms. Two methodologies are developed 

for this purpose: one has been previously used in the literature for this sort of 

assessments, while the second one has been developed for the purpose of the herein 

study in order to exploit the advantages of using controlled-input data.  

1.2. THESIS ORGANISATION 

This dissertation consists of seven chapters and four appendices, followed by a list of 

references. The introductory first chapter presents the motivation of the objectives of 

this research work, followed by an outline of the thesis. The second chapter provides 

the necessary mathematical background for the signal processing techniques used 

throughout this work. The advantages and limitations of wavelet-based techniques, 

together with the main types of wavelet-transform are presented. The generalized 

harmonic wavelet transform, the Meyer wavelet packets transform, the S-transform and 

the empirical mode decomposition are revised. 

In the third chapter a review of the pulse-like ground motions topic is provided. The 

distinctive phenomenological features characterizing pulse-like records are exemplified 

and the physical conditions likely to cause them are presented. Further, the parameters 

used for the quantification of their characteristics and the pulse models currently 

existing in the literature are summarized. Finally, the approaches used for the 

identification and extraction of pulses from the recorded time-histories are reviewed; the 

currently employed models for modelling and simulating such ground motions are also 

presented. 

In the fourth chapter a fully non-stationary stochastic model for representing pulse-like 

ground motions is proposed. Two novel stochastic approaches for modelling pulses are 
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presented and the model employed in this work for the higher frequency content 

representation is described. In the fifth chapter the pulse models are fitted to a given 

database of pulses. Further, the pulse-like ground motion model is calibrated against a 

given accelerogram in order to portray its potential in simulating realistic structural 

elastic and inelastic responses. Additionally, its applicability for incorporating pulse-

like effects in code-compatible accelerograms is demonstrated. 

In the sixth chapter the techniques used for the characterization of pulse-like records 

and the identification/extraction of pulses are assessed. In the first part the potential of 

the generalized harmonic wavelet transform, the Meyer-wavelet packets transform and 

the S-transform to estimate the underlying energy distribution of pulse-like processes is 

evaluated. In the latter part, the same techniques, together with the empirical mode 

decomposition are evaluated by employing them for pulse extraction from artificial 

accelerograms. Finally, pulses are extracted from several field recorded accelerograms 

using the approach proposed herein and their quality is assessed in terms of structural 

responses. 

Chapter seven summarizes the main findings presented in this dissertation, 

acknowledges the limitations of this work and suggests potential future developments. 
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CHAPTER 2 : TIME-FREQUENCY ANALYSIS 

TECHNIQUES 

2.1. PRELIMINARY REMARKS 

The analysis and the characterization of ground motion signals recorded during 

earthquake events offer valuable information on the seismic source mechanisms and on 

the recorded structural impact. The amplitude of the energy content varies in both time 

and frequency, characteristic also known as non-stationarity. Consequently, such signals 

call for analysis tools able to unfold their energy on the time-frequency plane. In this 

chapter, several such time-frequency representation (TFR) techniques are briefly 

reviewed. In particular, the Short Time Fourier Transform, which overcomes some of 

the Fourier Transform limitations when dealing with non-stationary signals, is revised. 

Next, the Wavelet Transform is introduced as a technique with superior adaptability to 

the signal‟s content. After discussing the properties and characteristics of the wavelet 

functions, three wavelet-based techniques used throughout this work are presented: the 

generalized harmonic wavelet transform, the Meyer wavelet packets transform, and the 

S-transform. Further, an adaptive non-parametric signal processing technique, the 

empirical mode decomposition, is also discussed. 
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2.2. THE FOURIER TRANSFORM 

The frequency domain representation of a finite energy signal f (t) is given by the 

equation 

 
1ˆ( ) ( )
2

i tF f t e dt







    (2.1) 

This conversion from the time-domain to the frequency domain representation is known 

as the Fourier transform (FT) and is based on the agreement that any periodic function 

of time can be expressed as an infinite summation of harmonics, with specific 

amplitude, frequency and phase (Newland, 1984). The frequency content of a signal is 

thus determined by carrying out its convolution with each decomposing harmonic. High 

values of the coefficients indicate the presence of the harmonic‟s frequency in the 

signal. The time domain representation can be recovered by taking the inverse FT given 

by 

  
1 ˆ( )
2

i tf t F e d 






   (2.2) 

According to the Parseval‟s theorem the energy of the signal is conserved throughout 

the transform: 

 
22 ˆ( ) ( )En f t dt F d 

 

 

      (2.3) 
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By treating |f(t)|2 as a probability density function, information on the localization of the 

signal in time and its duration can be obtained by estimating the time average E[t] and 

the variance σt as (Cohen, 1995) 

  
2

( )E t t f t dt




   (2.4) 

     
2 22 2 2( )t t E t f t dt E t E t





       (2.5) 

In a similar way, the average frequency E[ω] and the standard deviation σω offer 

information about the frequency localization and bandwidth of the signal, i.e.:  

  
2

ˆ ( )E F d   




   (2.6) 

     
222 2 2ˆ ( )E F d E E      





       (2.7) 

The use of sinusoidal functions for signal analysis achieves the best possible 

localization in frequency, since their frequency domain representation is a delta 

function. Consequently, the FT offers optimal resolution of the frequency content of a 

signal. However, the sinusoids have infinite support in time, thus they do not possess 

any time localization properties. Therefore, the FT of a signal does not provide 

information on the variation in time of frequency components (Newland, 1984; Cohen, 

1995). For example, consider a signal obtained from the superposition of two harmonics 

with different amplitudes A1 and A2 and durations t1 and t2 plotted in the top panel of 

Figure 2.1: 
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  1 1 1 2 2 2

1 1 1

2 2 2

sin sin

0.7 25 [0,1]

0.5 125 [0.3,0.7]

f t A t A t

A t

A t

 





 

  

  

 (2.8) 

Note that the in the Fourier amplitude spectrum (Figure 2.1– bottom panel) shows the 

frequency components in the signal without any information on their location or 

duration in time. In case this information is important, the Short Time Fourier 

Transform can be employed for analysis, as detailed in the following section. 

 

  
Figure 2.1. Superposition of two sinusoids with different durations and the corresponding FT 

magnitude spectrum  

2.3. THE SHORT TIME FOURIER TRANSFORM 

The Short Time Fourier Transform (STFT) computes the FT for successive parts of the 

signal, delimited by means of a window function w(t). By sliding the window along the 

time axis using a translation parameter b, a representation of the frequency content of 

the signal localized in time is obtained as 

 
1

( , ) ( ) ( )
2

i bSTFT t f b w t b e db







   (2.9) 
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The localization in time is ensured through the following property of the window 

function w(t): 

  
1             

0             

for t around b
w t b

otherwise


  


 (2.10) 

The distribution of the signal energy on the time-frequency plane can be approximated 

using the STFT by considering the so-called spectrogram, defined as: 

    
2

2 1
, , ( ) ( )

2

i bS t STFT t f b w t b e db 







    (2.11) 

 
Figure 2.2. Spectrogram of a signal: (a) time-frequency plane discretization; (b) time-domain 

representation of the signal; (c) Fourier amplitude spectrum; (d) spectrogram of the signal  

 

In Figure 2.2 the spectrogram of the signal defined in Eq. (2.8) is illustrated. Both 

frequency components and their duration in time can be identified in the spectrogram. 

However some differences appear in comparison with the FT magnitude spectrum: 

although different in magnitude, the frequency components appear to have similar 
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bandwidth. This dissimilarity is the effect of the resolution (i.e. the level of detail) 

employed for the representation. The resolution depends on the localization properties 

of the analysing window w(t), namely the duration (which can be measured using Eq. 

(2.5)) and the bandwidth of the windowed signal (Eq. (2.7)). Ideally, the smaller σt and 

σω, the more accurate is the representation. However, the sizes of these quantities are 

interdependent and governed by the following equation:   

 
1

2
t     (2.12) 

This dependency, characteristic to all oscillatory functions, implies a trade-off between 

the resolution in time and in frequency domain and is due to the Heisenberg (or 

uncertainty) principle (Cohen, 1995). The limitations posed by this principle are very 

intuitive: if a function is contracted in time (i.e. implying that it has good time 

localization), its frequency content broadens (i.e. reduced frequency localization); if it is 

dilated, the frequency content becomes better localized.  

 
Figure 2.3.The effect of the fixed width window function on the accuracy of the time-frequency 

representation 
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In the case of the STFT the size of the window is chosen before the analysis and 

remains fixed at all times and frequencies; the result is a constant resolution across the 

time-frequency plane (Figure 2.2a). In Figure 2.3 the effect of a constant resolution 

across the time-frequency representation is exemplified. Note that as the frequency 

content analysed increases (thus the duration of the oscillations shortens) more 

oscillations are located in the same time-interval σt, leading to a less accurate 

localization of their occurrence in time. 

The selection of a window-size capable to ensure satisfactory representation of the 

signal on the time-frequency plane is a challenging issue. This becomes even more 

critical when dealing with signals characterized by broad frequency content, as it is the 

case of those encountered in earthquake engineering. The wavelet transform emerged as 

a technique capable to overcome these limitations by using windows of varying sizes, 

which adapt to the frequency content being analysed. 

2.4. THE WAVELET TRANSFORM 

2.4.1. General remarks 

The wavelet transform (WT) is a decomposing technique which employs short duration 

oscillatory functions, named wavelets, for projecting signals on the time-frequency 

plane (Daubechies, 1992; Mallat, 1989, 2009). A collection of wavelets is generally 

obtained using a given oscillatory function known as mother wavelet ψ (t). The 

“daughter wavelets” are generated by scaling the mother wavelet, i.e. dilating or 

contracting its support in time, using a scaling factor 0a  and without changing the 

number of oscillations, as shown in Figure 2.4. The daughter wavelets ψb,a(t), 

normalized by a factor
aI , are translated along the time-axis of the signal by means of a 

parameter b:  
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  ,

1
; 0,b a a

t b
t a b

I a

 
 

   
 

 (2.13) 

Having a family of wavelets which satisfy specific conditions (detailed in the following 

section), the representation of the signal on the joint time-frequency plane is obtained 

by successively performing the inner product with each wavelet in the following way: 

   *

,

1
, ( ) ( )b aa

WT b a f t t dt
I










   (2.14) 

The wavelet transform of the previously considered signal (Eq. (2.8)) can be seen in 

Figure 2.5. According to the convolution theorem, the following correspondence 

between the time and frequency domains exists for finite energy functions (Newland, 

1984; Cohen, 1995): 

       ˆˆf g t F G    (2.15) 

where the symbol „*‟ stands for convolution. Consequently, it is less computational 

demanding to perform the wavelet transform in the frequency domain. Additionally, for 

scaling the wavelet function, the following relationship exists between the time and the 

frequency domain (Figure 2.4): 

  ˆ , 0
t

f a F a a
a


 

  
 

 (2.16) 

The wavelet coefficients are a function of the wavelet‟s scale, thus the representation of 

the signal is obtained on the time-scale plane. However, the representation on the time-

frequency plane may be desirable, since it is related the notion of frequencies obtained 

by standard Fourier analysis. Such a representation can be obtained by employing the 
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following relationship between the dominant frequency of the mother wavelet ωc (i.e. 

the peak of its FT representation) and the frequency of the scaled wavelets  (Teolis, 

1998; Qian, 2002): 

 
,b a

c

a



   (2.17) 

 
Figure 2.4. Time-domain and frequency domain representation of wavelet functions obtained for 

different scaling factors 

 

 
Figure 2.5. Wavelet transform: time-scale and corresponding time-frequency representations of a 

signal  
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2.4.2. Properties for wavelet functions 

In order to ensure the reconstruction of the signal from the decomposition, wavelet 

functions must satisfy the following admissibility condition (Farge, 1992; Teolis, 1998; 

Qian, 2002; Mallat, 2009): 

 

2
ˆ ( )

C d











   (2.18) 

where Ψ(ω) is the frequency domain representation of the mother wavelet. Equation 

(2.18) implies the function has finite energy; for this to be true, the wavelet has to have 

finite duration in time: 

  t dt




  (2.19) 

A second implication is that the following equation needs to be satisfied as well: 

 
0

ˆ ( )
d






 
  (2.20) 

The integral (2.20) is finite when the function ˆ ( )  decays fast as 0 , which 

indicates that  t needs to have zero-mean and thus it has to be an oscillatory function: 

 (0) ( ) 0t dt 




   (2.21) 
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2.4.3. Wavelet normalization and reconstruction of the decomposed signals  

The magnitudes of the WT coefficients obtained at different scales have to be directly 

comparable, thus appropriate normalization of the wavelets needs to be performed. It is 

a common practice for the normalization factor
aI  to ensure that wavelets at different 

scales have unit energy content (L2 normalization) i.e. 

 

2 2

,

, 2

( ) 1
( ) 1, ( ) 0b a

b aa

t t b
dt dt t a

I aa


 

 

 

 
     

 
   (2.22) 

This type of normalization (also implemented in the MATLAB Wavelet Toolbox) is 

appealing since it guarantees the conservation of the signal‟s total energy throughout the 

transform (Farge, 1992). In this context, the time-scale representation of the signal's 

energy content distribution, known as the scalogram, can be obtained as 

    
2

2 *

,

1
, , ( ) ( )b aScal b a WT b a f t t dt

a






    (2.23) 

Further, the signal can be reconstructed from the transform by means of the following 

equation: 

    2

1
,

t b
f t C WT a b dadb

a a
  

 
  

 
  (2.24) 

Alternatively, different normalizations of the wavelet function can be performed. The 

wavelets can be normalized to have unit area (L1 normalization): 

 
,

, 1

( ) 1
( ) 1, ( ) 0b a

b aa

t t b
dt dt t a

I a a


 

 

 

 
     

 
   (2.25) 
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or unit amplitude  (L∞ norm): 

 
, ( ) 1,( ) 0b a t a


    (2.26) 

The type of normalization used for the wavelet function influences the appearance of 

the time-frequency image of the signal, emphasizing differently the component 

frequency content, as observed and discussed in the comparative studies such as Farge 

(1992), Ventosa et al. (2008) or Vassiliou & Makris (2011).  

2.4.4. Choice of the analysing wavelet function 

The characteristics of the wavelet functions also influence the image of the signal 

obtained through the decomposition and should be considered when interpreting the 

resulting representations (Farge, 1992; Torrence & Compo, 1998): 

 Complex versus real wavelets 

Complex wavelets offer information about the phase and the amplitude which makes 

them suitable for the analysis of highly oscillatory functions. Real wavelets return 

information about the amplitude and are useful for identifying peaks or discontinuities 

in the signals. 

 Orthogonal versus non-orthogonal wavelets 

Orthogonal wavelets are families of uncorrelated functions, with the zero inner product 

between any two different functions: 

    
1 2 1 2, , , , 1 2 1 2, 0, ; , 0b a b a b a b at t dt for a a a a        (2.27) 

The orthogonal WT offers the most compact representation of a signal. The number of 

convolutions is proportional to the scale of the wavelet and the WT coefficients are 
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independent. The non-orthogonal wavelets lead to over-complete representations, which 

are suitable for smooth representations of signals. 

 Width of the wavelet 

The width is relevant in terms of localization of the frequency content in time and 

frequency. Each wavelet defines a window on the time-frequency plane with the 

following area (Qian, 2002):  

  , ,t tt a t a
a a
  

   
 

     
 

 (2.28) 

 2 2 4t ta const
a





      (2.29) 

Although both WT and STFT are subjected to the limitations of the uncertainty 

principle, the difference between them lays in the fact that the resolution (i.e. level of 

detail) of the WT representation can be varied according to the range of frequencies 

analysed (as it can be seen by comparing Figure 2.2 and Figure 2.5), as long as the area 

of each box delimited by the wavelet on the time-frequency plane remains constant 

(Figure 2.4).   

 Shape of the wavelet 

This attribute refers to the smoothness of the function. The choice of the shape depends 

on the visual appearance of the signal – for smooth signals smooth functions are 

preferred, while for signals with sharp jumps, other functions might be more appropriate  

(Daubechies, 1992).  

From the numerous functions existing in the literature, the following mother wavelets 

are often encountered in earthquake-related applications: the Daubechies wavelets 

(Baker, 2007; Yaghmaei-Sabegh,  2010; Mollaioli & Bosi, 2012), the Coiflets 

(Todorovska et al., 2009; Yaghmaei-Sabegh,  2010), second or third order derivatives of 
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the Gaussian (Vassiliou & Makris, 2011; Gupta & Mukhopadhyay, 2013), Meyer 

wavelets (Yamamoto & Baker, 2013), harmonic wavelets (Spanos & Failla, 2004; 

Giaralis & Spanos, 2009; Spanos et al., 2009; Spanos & Kougioumtzoglou, 2012). 

2.4.5. Types of wavelet transform 

There are several ways to perform the WT depending on the scope of the analysis 

(Daubechies, 1992). The difference between them lies in the values adopted for the 

scaling and translation parameters and in the characteristics of the mother wavelet. The 

types of WT used in this work are briefly reviewed herein, while a more comprehensive 

treatment of this topic can be found in (Daubechies, 1992; Teolis, 1998; Mallat, 2009). 

The continuous wavelet transform (CWT) is commonly used for achieving smooth 

representations of the signals on the time-frequency plane. The dilation and translation 

parameters a and b vary continuously over the time-frequency plane, leading to highly 

redundant representations, and thus very detailed portrayals of the signal‟s content 

evolution over the time-frequency plane (see Figure 2.5). The CWT is a 

computationally demanding technique; its numerical implementation involves 

considering specific discrete values, whose density determines the resolution of the 

output.  

The discrete wavelet transform (DWT) is a complete and non-redundant version of the 

WT usually employed for data compression, for modelling purposes or for denoising 

(Teolis, 1998; Mallat, 2009). The wavelet families used for performing DWT form 

bases of orthogonal functions. The values of the scaling and translation parameters 

commonly follow a dyadic sampling, i.e.:  

 

1
, {0}

2

2 ,

i

i

a i

b k k

  

 

 (2.30) 
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From a numerical implementation point of view, an alternative and more 

straightforward approach than successively applying Equation (2.14) can be used for 

obtaining the coefficients of the DWT, namely by using filter banks (see Daubechies, 

1992; Mallat, 1989, 2009). Mallat (1989, 2009) showed that the decomposition of a 

signal on a basis of wavelets consisting of compactly supported functions sampled on a 

dyadic grid, is similar to a repeated filtering of the signals using conjugate mirror filters 

(used in filter banks). Based on this property, appropriately chosen filters can be used to 

decompose a signal on the TF plane, following the methodology detailed further on. 

Filter banks are used in signal processing for obtaining different level of approximations 

of the analysed input. The signal is passed through a pair of filters, a low-pass (LP) and 

high-pass (HP), which separate its content in approximations and details, as it can be 

seen in the left panel of Figure 2.6. The approximation coefficients (Aji) are the output 

of the LP filter and represent averages of the signal. The detail coefficients (Dji) 

correspond to the HP filter and represent its oscillatory parts, i.e. the details which are 

lost through averaging (Mallat, 1989, 2009).  

The filtering is performed successively to the output of the LP filter. At each step, the 

down-sampling ( 2 ) of the filtered signal ensures the non-redundancy of the results. 

The procedure is repeated until the desired level of approximation is obtained. For each 

level j of the decomposition, the output of the LP filter is Aj+1 = Aj + Dj. This implies 

that the original signal can be reconstructed by adding up the final output of the LP 

filter with all the detail coefficients obtained, i.e.:     

 
1

( )
n

n j
j

f t A D


   (2.31) 

In the case of the DWT, this successive filtering results in a wavelet tree (Figure 2.6). 

Notice that since only the approximations of the signal are further filtered, the wavelet 
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tree is asymmetric. The number of times the filters are applied gives the depth of the 

tree. Since in practice we work with discrete-valued signals, the maximum depth of the 

tree (J) is limited by the total number of samples (discrete points) N in a signal (Mallat, 

2009): 

 2logJ N  (2.32) 

There are cases when a more uniform resolution of the TF plane is needed. This can be 

achieved by applying the wavelet packets transform (WPT), an extended version of the 

DWT. In this case, not only the approximations of the signal, but also the detail 

coefficients are further processed until the sought level of approximation is acquired, as 

shown in the right panel of Figure 2.6. The wavelet tree obtained in this case is 

symmetrical and just like in the previous case the nodes are orthogonal to each other, 

encompassing information from adjacent frequency bands. The decomposition is still 

non-redundant, since the output of each filter and at each level is down-sampled before 

being further processed. For cases when a more detailed discretization is desired in 

specific frequency intervals, the output of the corresponding nodes is further processed. 

From a TF representation perspective, the flexibility of the WPT is important since it 

offers the opportunity to “zoom-in” within certain frequency bands at will. 

In the following sections the families of wavelets considered for the purpose of this 

work are presented: the generalized harmonic wavelets and the Meyer wavelet packets.  
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Figure 2.6. Wavelet tree for DWT(left) and for WPT (right) 

 

2.4.6. Generalized harmonic wavelet transform 

The generalized harmonic wavelets (GHW), introduced by Newland (1994), are 

complex functions characterized by a box-like shape in the frequency domain. Their 

frequency support is defined by means of two parameters: the lower limit m and the 

upper limit n (see Figure 2.7). The Fourier domain representation of GHW at scale (m, 

n) and located at the time instant b is given by the formula: 

  
   

,

1
,   2 2 ,

2 ( ) 

0,  

ˆ

    

b

m n

m n n m
n m

otherwise

  



  





 (2.33) 

The rate of decay in time for the GHW is relatively slow, i.e. proportional with1/ t , 

implying they have an average time-localization (Newland, 1994). The wavelets 

covering different frequency bands are orthogonal to each other. When the family of 

wavelets used for analysis is defined such that the functions are adjacent to each other 

and cover the entire frequency span (Figure 2.8) a complete and non-redundant 

representation of the signal is obtained.  
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Figure 2.7. Generalized harmonic wavelets at different scales  

 

 

 

 

 
Figure 2.8. Generalized harmonic wavelet basis  

 

The mathematical implementation of the generalized HWT is very straight forward, 

thanks to their characteristic shape. The Fourier coefficients of the signal are separated 

in blocks corresponding to each wavelet in the family and by taking the inverse FFT of 

each frequency band, the GHW transform coefficients are obtained (see Figure 2.9, left 

panel). In this sense the GHW transform is similar to the wavelet packets decomposition 

since it filters parts of the signal with complementary frequency content; however, due 

to the way the wavelet functions are defined it is not bounded to a dyadic discretization 

and this allows for more freedom in selecting the discretization for the time-frequency 

plane.   



Chapter 2  Time-frequency analysis techniques 

 

23 

The GHWs are used in the following chapters in a CWT context, in order to obtain a 

complete and detailed characterization of the signals (Newland, 1999). To obtain the 

CWT, the Fourier product between each wavelet and the signal is padded with zeros 

until the entire frequency axis is covered, before taking the IFFT to obtain the wavelet 

transform coefficients (Figure 2.9 - right panel). The zero-padding of the frequency 

domain product between the signal and the wavelet is equivalent with an interpolation 

between the coefficients for the intermediate time instants, leading to a smoother and 

more detailed image of the signal‟s content (Newland, 1999). 

Due to the flexibility in adjusting the resolution of the TF representation, the GHWs 

have been used in seismic related applications, i.e. for power spectrum estimation 

(Spanos & Failla, 2004; Spanos & Kougioumtzoglou, 2012) or for response spectrum 

matching modification (Giaralis & Spanos, 2009; Spanos et al., 2009). 

 

 
Figure 2.9. Discrete GHWT (left) and continuous GHWT (right) 

 

2.4.7. Meyer wavelet packets transform 

The Meyer wavelets (MW), plotted in Figure 2.10, are orthogonal functions with 

smooth shape in the frequency domain, which ensures a faster decay in time in 

comparison with the harmonic wavelets. They are constructed using conjugate mirror 
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filters and form bases, although overlapping exists between adjacent scales 

(Daubechies, 1992; Mallat, 2009). The Fourier transform of MW is defined as 

  
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where the function ν satisfies the conditions 
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 (2.35) 

 
Figure 2.10. Meyer wavelet: time domain and frequency domain representation 

 

In this work the MW are used in a WPT context, following the algorithm presented in 

Section 2.4.5. By plotting the coefficients of the transform a TF image of the signal‟s 

content with a dyadic resolution is obtained. The MW packets have been previously 

employed in earthquake engineering applications due to their localization properties and 

orthogonality (i.e. Yamamoto & Baker 2011, 2013). 
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2.5. THE S-TRANSFORM 

The S-transform (ST) was developed by Stockwell et al. (1996) as a combination 

between the STFT and the CWT.  Recalling equation (2.9), consider the following 

Gaussian window function, normalized to unit area, whose width and location can be 

varied by means of the parameters a and b 
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The equation (2.9) becomes 
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The time-width of the Gaussian window can be defined as a function of the oscillatory 

part frequency, i.e. 2 ia   , which leads to the following expression for the ST: 
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The analysing function , ( )
ib t  in Eq. (2.39) resembles to the Morlet wavelet family 

normalized to L1 norm (i.e. unit area), which is given by the following equation: 
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This type of normalization ensures a direct relationship with the Fourier amplitude, but 

does not ensure the energy conservation (Ventosa et al, 2008), as detailed in Section 

2.4.3. 

By analogy there is a clear similarity between equations (2.14) and (2.38); however, 

there are certain differences to note. First, the CWT uses the notion of scale which has 

an indirect relation to the frequency depending on the wavelet frequency – scale law, 

while the ST is defined as a function of frequency. Secondly, when generating the 

Morlet wavelet family the phase of the oscillatory part is continuously varied by means 

of the translation parameter b. In the case of the ST, the phase of the harmonic remains 

fixed as it can be observed in Figure 2.11. As a result, the localizations of the amplitude 

and phase spectra are independent from each other, property known as absolutely 

referenced (i.e. “fixed”) phase information (Stockwell et al., 1996).       

 

 
Figure 2.11. The difference between the S-wavelet and the Morlet wavelet: in the case of S-

Transform the phase is absolutely referenced to the initial point. 

 

Concerning the analysing wavelets for the ST, there are no restrictions on the mean 

value for these functions. While the zero-mean condition must be obeyed in the case of 

CWT in order to ensure the original signal is recoverable, for the ST the reconstruction 
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is secured through to the direct relationship with the Fourier spectrum (Ventosa et al, 

2008):  

   2( , ) i ft

ff t ST b dbe d 
 

 

    (2.41) 

Several windows have been proposed for the ST in order to improve its adaptability to 

various applications. McFadden et al. (1999) modified the Gaussian window by adding 

an exponential tail after the peak is attained. According to the authors, this generalized 

ST can accommodate any suitable function, without any restrictions on the symmetry. 

Stockwell (1999) generalized the S-transform by ensuring more flexibility in the choice 

of the dilation parameter by means of the parameter k, which can take various values i.e. 

 
k

a
f

  (2.42) 

Pinnegar & Mansinha (2004) introduced a symmetrical window which incorporates an 

extra parameter controlling the phase modulation and connecting the S-transform with 

the chirplet transform.  

The S-transform has been applied to a wide range of applications, from detecting 

damage (faults) in machineries (McFadden et al., 1999) to denoising seismic signals 

(Pinnegar & Eaton, 2003; Askari & Siahkoohi, 2008; Parolai, 2009). 

2.6. THE EMPIRICAL MODE DECOMPOSITION 

The empirical mode decomposition (EMD) is a non-parametric, data-driven technique 

introduced by Huang et al. (1998) which allows for the breakdown of signals in 

fundamental components, known as intrinsic mode functions (IMFs). The IMFs are 

generally defined as functions which satisfy the following conditions: (i) at each time 
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instant they have zero-mean and (ii) the number of extremes is equal to / or differs by 

one from the number of zero-crossings. An example of the EMD performed for a simple 

signal is presented in Figure 2.12. 

The scope of the EMD is to decompose highly non-stationary signals into simpler 

functions, which are characterized by a unique frequency component at each time 

instant (i.e. mono-component signals). This leads to a clear and straight forward 

characterization of the underlying frequency content distribution and evolution, which 

can be obtained by applying the Hilbert transform to the resulting IMFs (Huang et al, 

1998). 

 
Figure 2.12. Intrinsic mode functions (IMFs) and their Fourier transform coefficients of a signal  

 

The decomposition of a signal f(t) into IMFs can be obtain through the following steps 

(summarized in Figure 2.13): 

1. Set    0h t f t . 

2. Identify the jth  IMF: 

a. Identify the local extremes of the time-series; 

b. Compute the upper  upe t  and lower  loe t  envelopes, usually by cubic 

spline interpolation; 
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c. Compute the mid-point between the envelopes and subtract it from the data: 
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d. Check if the IMF criteria are met; if yes    i jIMF t h t ; otherwise repeat 

steps a-c until the IMF criteria are met; 

3. Obtain the residual signal by extracting the IMF from the data 

      
0 ii

r t h t IMF t   (2.44) 

4. Repeat the procedure until the residual becomes a monotonic function or has 

maximum two extreme values.   

 

 
Figure 2.13. Empirical mode decomposition scheme 

 

The number of IMFs obtained depends on the signal analysed, but it is also influenced 

by specific choices in the algorithm, such as the stopping criteria or the type of function 

used for enveloping (Huang et al, 2003; Dätig & Schlurmann, 2004). For highly non-

stationary signals, as is the case of those encountered in earthquake engineering, the 
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steps 2.a.- 2.c. need to be repeated several times in order to obtain adequate IMFs. The 

role of this process is to avoid having two frequency components at the same instant and 

to obtain more symmetrical waveforms. This refining procedure is known as sifting and 

continues until pre-set stopping criteria like are met. Such stopping criteria can be 

thresholds for the amplitude of h(t) or a fixed number of siftings (Huang et al, 1998; 

Huang et al, 2003; Rilling et al., 2003). Caution should be exercised when choosing the 

stopping criteria: they have to be strict enough to ensure the components are realistically 

separated, but on the other hand they have to be flexible enough not to cause smoothing 

of the data and thus lead to unrealistic results (Huang et al, 2003). 

The EMD decomposes the signal into a small number of intrinsic components compared 

to the FFT or the WT. The resulting IMFs are locally orthogonal to each other, however 

global orthogonality is not necessarily ensured, as it can be observed (Figure 2.12). 

From this perspective, the algorithm has been compared with an overlapping filter bank 

(Flandrin et al., 2004). Although mono-component, the resulting IMFs are not 

stationary, their frequency and amplitude varying over time. The high adaptability to the 

data and the intuitive, simple algorithm used for the EMD attracted the interest of 

researchers from different fields. On the other hand, due to the fact that it is based on an 

empirical algorithm rather than a mathematical formulation, any statistical processing of 

the results is quite challenging, limiting the use of the EMD mostly for characterization 

of specific records, i.e. seismic signals (i.e. Loh et al., 2001; Huang et al, 2001; Zhang 

et al., 2003; Spanos et al., 2007; Yinfeng et al., 2008), water waves (Dätig & 

Schlurmann, 2004), wind data (Huang et al., 1998), for denoising (Guo et al., 2012) or 

for damage detection (Xu et al., 2010).   
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CHAPTER 3 : PULSE-LIKE GROUND MOTIONS 

CHARACTERIZATION, EXTRACTION AND 

SIMULATION 

3.1. PRELIMNARY REMARKS 

Pulse-like seismic ground motions are characterized by the presence of high amplitude, 

long period pulses, which severely influence the behaviour of a wide range of relatively 

flexible structures in the affected areas. Historically, pulse-like ground motion (PLGM) 

related research started with the 1952 Kern County (California) event, followed by the 

1966 Parkfield and the 1971 San Fernando (California) earthquakes. However, more 

extensive research efforts were devoted after the 1994 Northridge (California), 1999 

Kobe (Japan) and 1999 Izmit (Turkey), 1999 Chi Chi (Taiwan) events, which caused 

significant structural damage especially in the case of buildings with medium to long 

natural periods (Sommerville 1997, 1998, 2000, 2002; Moustafa & Takewaki, 2010; 

Mavroeidis & Papageorgiou, 2003, Tang & Zhang, 2011). Aiming to improve the 

structural behaviour in the regions likely to be subjected to such ground motions, but 

also for seismic risk assessment studies, there is a lot of interest currently focussing on 

this topic. Several themes were identified in the PLGM related research, namely (i) the 

identification of the physical conditions which favour their occurrence and (ii) the 

identification of measurable distinguishing features, based on which they can be (iii) 

modelled and then (iv) simulated for the purpose of seismic risk assessment.  

A record-based comparison between a pulse-like and a pulse-free record is performed in 

the next section, in terms of energy distribution on the time-frequency plane, peak 
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values and structural impact in order to identify distinct features which are commonly 

associated with PLGMs. Further, the physical causes presented in the literature as 

sources for PLGMs are summarized and the parameters employed for pulse 

characterization are presented. The pulse models existing in the literature are also 

discussed, followed by the commonly used approaches for identification and extraction 

of pulses from records, which include:  

(i) fitting simplified, deterministic pulse models to time-domain representation of the 

signal (Menun & Fu, 2002; Mavroeidis & Papageorgiou, 2003; Moustafa & 

Takewaki, 2010; Yaghmaei-Sabegh, 2010) or to their response spectra (Tang & 

Zhang, 2011);  

(ii) applying time-frequency signal processing techniques to the acceleration  or 

velocity traces (Zhang et al, 2005; Baker, 2007; Xu & Agrawal, 2010; Vassiliou & 

Makris, 2011);  

(iii) filtering the low-frequency content of the signal (Ghahari et al., 2010; 

Mukhopadhyay & Gupta, 2013a).  

In the final section of this chapter the modelling approaches employed for PLGMs 

representation and/or simulation are presented. 

3.2. PHENOMENOLOGICAL AND PHYSICAL 

CONSIDERATIONS 

Consider the time-history traces of two accelerograms recorded during similar 

magnitude earthquakes, at Imperial Valley, Southern California (Figure 3.1.a). One 

belongs to the 1940 El Centro event of moment magnitude 6.9, while the second was 

recorded during the 1979 Imperial Valley strong earthquake of magnitude 6.4 and was 

classified as being of pulse-type. They were both recorded in the proximity of a seismic 

fault and have comparable peak ground accelerations.  
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In Figure 3.1.a, the distribution of the energy content in time and in frequency (TFD) is 

displayed for each accelerogram. The TFDs are obtained using the continuous wavelet 

transform and employing the generalized harmonic wavelets as decomposing functions, 

following the methodology presented in Section 2.4.6. It can be observed that both are 

characterized by broadband frequency content. In the case of the pulse-free 

accelerogram belonging to the El Centro event, the distribution of the energy in 

frequency is relatively uniform over the interval ~[5, 15]rad/s, while for the pulse-like 

Imperial Valley record most of the energy is concentrated in the low-frequency interval 

under ~5 rad/s. A first distinguishing aspect for PLGMs is thus the concentration of a 

significant amount of the total energy released during the earthquake in a narrow and 

very low-frequency band.   

Further, the plots of the velocity and displacement traces of the two records (Figure 

3.1.b) show that although the pulse may not be readily distinguishable in the 

accelerograms, it can be easily identified in the velocity and displacement records. As a 

consequence of the pulse, the pulse-like record is characterized by higher ratios between 

the peak ground velocity/peak ground acceleration and peak ground displacement/peak 

ground acceleration in comparison with the pulse-free earthquake of similar intensity.  

From a structural engineering perspective, these features are of interest because they 

result into significantly higher demands on a wide range of structures, as it is indicated 

by the corresponding response spectra (Figure 3.1.c). Malhotra (1999) argues that this is 

the result of a widening of the acceleration sensitive zone, which leads to a reduced 

apparent flexibility of buildings and consequently to the predominance of the first 

vibration mode in structural responses for a wider range of natural periods. It implies 

also that the efficiency of supplemental damping is significantly reduced. Latter studies 

showed increased base-shear demands and larger interstorey drifts in the structures 
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when subjected to pulse-like ground motions (e.g. Alavi & Krawinkler, 2001; Tothong 

& Cornell, 2008; Sehhati et al, 2011).  

 
 

Figure 3.1. Non-pulse ground motion versus pulse-like ground motion of similar magnitudes and 

peak ground accelerations, recorded at Imperial Valley, Southern California: (a) accelerograms 

and their corresponding time-frequency energy distributions; (b) velocity and displacement time-

histories; (c) 5%  elastic response spectra 

 

From a physical perspective, the presence of the strong low-frequency pulses in the 

ground motions is the result of a combination of various factors: the rupture mechanism, 

the source-to-site geometry, the displacement caused by the tectonic movement 

(temporary or permanent), asperities on the fault rupture or earth structure. However, it 
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has been observed that near-fault areas (i.e. located at 5-20(30) km from the seismic 

fault), are more likely to experience this type of ground motion as a consequence of the 

directivity effect or of the fling step effect. For this reason, pulse-like earthquakes are 

commonly referred to as near-field (fault) earthquakes, although it should be noted that 

not all the ground motions experienced in the proximity of seismic faults are of pulse-

type (Iervolino & Cornell, 2008; Shahi & Baker, 2011).  

The directivity effect is a dynamic phenomenon, caused by the tendency of the fault 

rupture to concentrate the wave energy along the fault. Depending on the position 

relatively to the fault, a specific site can experience “forward-directivity”, when the 

rupture propagates towards the site or “backward-directivity”, for ruptures propagating 

away from the site. The time-histories recorded as a consequence of forward-directivity 

(FD) effect have shorter duration and present large amplitude velocity pulses at the 

beginning of the records. The time-histories recorded in the case of backward-directivity 

have longer durations and small amplitudes (Sommerville, 1997; Dabaghi & Der 

Kiureghian, 2011).  

 
 

Figure 3.2.  Schematization of the forward directivity effect (planar view)  

 

The FD effect is the most common cause of strong pulses in seismic records and it 

attenuates as the distance from the fault increases. The pulses build-up when the rupture 
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and the shear waves propagate towards the site with similar velocity, causing all the 

seismic energy to arrive at once, as it is illustrated in Figure 3.2. If the direction of the 

waves travelling from the hypocentre to the site coincides with the direction of the slip 

on the fault, all the conditions necessary for the build-up of the FD effect are met. This 

happens usually in the case of strike-slip faults and, sometimes, dip-slip faults can 

experience this phenomenon also. The time-histories recorded for the fault-normal 

direction (FN) will present a number of two-sided oscillations and amplitudes 

significantly higher than those recorded in the fault parallel direction (FP), unlike in the 

case of far-field recorded time-histories where they have similar magnitude values. It is 

worth to be noted that not all the seismic ground-motions recorded in the proximity of 

the fault will exhibit FD effects; however the probability increases as the site is located 

closer to the fault (Sommerville, 2000; Iervolino & Cornell, 2008; Dabaghi & Der 

Kiureghian, 2011; NEHRP Consultants Joint Venture, 2011). 

Another cause of pulses is the fling step (FS) effect, which causes permanent ground 

displacement and results in one-sided pulses in the velocity time-histories and non-zero 

final displacement values. The pulses caused by the FD effect are usually treated 

separately from those caused by the FS effect, due to their different features and source 

mechanisms (Bray & Rodriguez-Marek, 2004), and are not considered in this work. 

3.3. CHARACTERIZATION OF PULSES 

3.3.1. Parameters employed for pulse characterization 

An important step in enhancing the understanding and evaluation of the structural 

impact of PLGMs consists in proposing approaches for quantifying their underlying 

properties. The commonly used parameters for this purpose are detailed herein, while 

some of them are illustrated in Figure 3.3.  
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The period of the pulse (Tp) is a fundamental parameter employed for characterization, 

since its relationship to the natural period of the structure gives information on the 

expected level of structural damage to be experienced during the ground motion. Its 

value depends on a combination of factors: the magnitude of the earthquake, the earth 

structure (rock or soil), the type of rupture (forward-directivity pulses are usually of 

higher amplitude and shorter period that those due to the fling-step effect), but also on 

the approach adopted for measuring the period (i.e. Mavroeidis & Papageorgiou, 2003, 

Bray & Rodriguez-Marek, 2004, Dabaghi et al., 2011). Currently there is no generally 

accepted way to measure the period and various alternatives are being used: the distance 

between two successive zero-crossings (Bray & Rodriguez-Marek, 2004), the period of 

a truncated sine-wave that fits the pulse (Menun & Fu, 2002), the time interval until the 

velocity decays at 10% from the peak value, the period associated with   the peak value 

of the velocity pseudo-response spectrum (Alavi & Krawinkler, 2001; Mavroeidis & 

Papageorgiou, 2003) or as the dominant period of the wavelet corresponding to the 

largest coefficient of the wavelet transform, when applied to the velocity trace (Baker, 

2007). 

 

Figure 3.3. Parameters commonly employed for pulse characterization 

 

Another main characteristic is the amplitude of the velocity pulse Ap, which depends on 

the magnitude, distance from the fault, soil and number of analysed records (e.g. 

Mavroeidis & Papageorgiou, 2003; Bray & Rodriguez-Marek, 2004). 
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The number of pulses varies with the slip distribution on the causative fault (Bray & 

Rodriguez-Marek, 2004) and it is important as it may influence the size of the 

displacement for the structures with linear behaviour (Moustafa & Takewaki, 2010). 

Relevant pulses are those having amplitude over 50% from the peak velocity and their 

number can be related to the number of asperities in the fault, according to Sommerville 

(2000). 

The phase of the pulse θp encompasses information about the shape of the pulse and its 

damage potential, by indicating the speed of the energy release (Mavroeidis & 

Papageorgiou, 2003; Vassiliou & Makris, 2011). Similar information is provided by the 

pulse shape parameters, which reflect the “building” speed of pulses and have an 

important influence on the magnitude of the structural dynamic response: the more 

abrupt is the pulse, the higher the shock on the structure, leading to higher peak 

responses (He & Agrawal, 2008).  

The energy content of the pulse is another indicator of the damage potential of the 

ground motion and is estimated from the cumulative squared velocity/acceleration of 

the extracted pulse signal or, in the case of wavelet analysis, from the squared absolute 

wavelet coefficients corresponding to the pulse (Baker, 2007; Zamora & Riddell, 2011). 

The instant of the pulse arrival differentiates the pulses caused by directivity effects 

from those having different causes (Baker, 2007). 

The elastic and inelastic pseudo-response spectra are a common approach employed for 

the characterization of seismic ground motions, as the responses of the structures 

encompass information about the excitations. Since PLGMs significantly affect flexible 

structures, the velocity and displacement spectra are relevant for this purpose.  
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3.3.2. Pulse models 

Various functions are used either for approximating/extracting the pulse components 

from PLGMs or for simulation purposes. They are expected to meet some general 

criteria, which include having simple mathematical expressions and use as few 

parameters as possible in their formulation and with clear physical meaning (Mavroeidis 

& Papageorgiou, 2003; He & Agrawal, 2008; Moustafa, 2010). Interestingly, some of 

these functions also lead to closed-form solutions when deriving the response of single-

degree of freedom (SDOF) oscillators (e.g. Mavroeidis et al., 2004).  

The models existing in the literature vary from simple waveforms like those presented 

in Figure 3.4, to oscillatory functions with decaying envelopes (i.e. modified wavelet 

forms) as those displayed in Figure 3.5.  

The simplest shapes used for approximating/extracting the pulses include limited 

duration harmonic functions and simple rectangular or triangular functions. Makris & 

Chang (2000a, 2000b) proposed the use of cycloidal pulse shapes with varying number 

of oscillations.  
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In Alavi & Krawinkler (2001) triangular pulse shapes are employed for approximating 

the pulse. Xie et al. (2005) proposed to represent the pulses using successions of simple 

pulse wave-forms. They studied the effectiveness of eight sets of simple pulse 

waveforms in characterizing the FD and FS effects, starting from the basic shapes 

rectangular, sinusoidal, triangular and quadratic (Figure 3.4). The number of simple 

pulses in the succession depends on the effect (FD/FS) and the shape depends on the 
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building speed of the pulse (shock loading or gradual loading). The different types of 

pulses are compared in terms of acceleration/velocity amplitude and SDOF oscillator 

responses. 

 
Figure 3.4. Simple waveform pulse models  

 

More sophisticated models consist in diverse types of wavelets employed for the 

approximation of the velocity pulse. A widely used wavelet, calibrated for simulating 

motions with no remnant displacement, is the modified Gabor wavelet proposed by 

Mavroeidis & Papageorgiou (2003). In order to ensure closed-form solutions for the 

response for the SDOF oscillator excited with this pulse model, the Gaussian envelope 

in the Gabor wavelet is replaced with an elevated cosine function. The analytical form 

of the M&P wavelet becomes (see also Figure 3.5): 
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In the previous formula Ap controls the amplitude of the signal, fp the frequency of the 

pulse, γ accounts for the number of oscillations, ν for the phase angle and tp is the 

instant where the peak amplitude of the pulse is attained. By derivation  or integration 

the corresponding acceleration/displacement trace can be determined. In the case of the 

displacement pulse, the integration constant is set equal to zero. The pulses are extracted 

from the records by performing a simultaneous fitting of the acceleration, velocity and 

displacement time-histories and the corresponding elastic response spectra. The 

parameters for defining the pulse are correlated with the earthquake characteristics: the 

pulse frequency fp is highly dependent on the moment magnitude and type of soil, while 

the pulse amplitude Ap is related to the seismic wave velocity and to the rise time.  

In Dabaghi et al. (2011) the M&P wavelet formulation for the velocity pulse is modified 

in order to ensure zero final displacement automatically, by doing the following 

manipulation:   
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where Dr is the residual displacement and has the following form: 
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The Gabor wavelet is proposed for pulse approximation by Dickinson & Gavin (2011): 
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A similar definition is proposed by Fu & Menun (2004), i.e.:  
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The instant of the peak amplitude tp is defined as a function of the arrival time t0 and the 

pulse period. In an earlier publication (Menun & Fu, 2002), the pulse is defined in two 

steps, using two different shape parameters, one in the time interval from [0, 3/4Tp] and 

the second in the interval up to 2Tp. The calibration of the model is made using field 

recorded time-histories and their pseudo-velocity response spectra. 

 
Figure 3.5. Wavelet-based pulse models 

 

He & Agrawal (2008) use the following analytic formulation based on the Berlage 

wavelet: 

     0  sin 2 , n at

p pv t C tft e t t     (3.7) 

The parameter t0 marks the beginning of the pulse, while the decay factor α and the 

variable n determine its shape. The velocity pulse together with the acceleration and 
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displacement versions are fitted to a number of recorded time-histories and their 

corresponding response spectrums are derived in order to demonstrate the performance 

of the proposed model. 

Mukhopadhyay & Gupta (2013a) propose the use of the first and second derivatives of 

the Gaussian function for modelling velocity pulses, given by the following equations: 
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with A controlling the amplitude of the pulse and σ indicating the width of the function.  

Moustafa & Takewaki (2010) proposed two alternative models: one deterministic and 

one stochastic. The velocity pulse is defined by combining a harmonic or a stationary 

oscillatory part and a time-varying envelope. 

 ( ) ( )p stv A t v t  (3.10) 

Two options are provided for modelling the envelope, characterized by the following 

parameters: Ap controlling the amplitude, the parameters α, β, λ for the shape of the 

pulse and tp for the instant of peak velocity.   
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A deterministic approach is proposed for modelling the frequency content of the pulse 

by means of a superposition of n sinusoids with various frequencies fpi, one for each 

pulse to be modelled, i.e. 

  
1

  sin[2 ( )],
n

p pi pi pi

i

v t A f t t


   (3.12) 

By differentiating Equation(3.12), the acceleration pulse(s) is obtained in a closed-form 

solution. A second, probabilistic model is also proposed. In this case, the amplitudes of 

the pulses are defined as a set of uncorrelated, zero-mean random variables, satisfying 

the following conditions: 
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where δij is the Kronecker delta function and σι
2 is the variance of the amplitude. The 

power spectrum density function describing the low frequency content for the case 

when n pulses are considered is given by: 
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The stationary samples compatible with the thus defined power spectrum density are 

modulated using the envelope functions given in equation (3.11). From equation (3.14) 

the acceleration power spectrum of the stationary part can be obtained as 
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3.4. IDENTIFICATION AND EXTRACTION OF PULSES 

3.4.1. Record fitting 

The commonly employed approach for the identification and extraction of pulses from 

PLGM records consists in fitting deterministic pulse-models to the corresponding time-

histories (Menun & Fu, 2002; Moustafa & Takewaki, 2010; Yaghmaei-Sabegh, 2010). 

When this operation is carried out in the time domain, the velocity traces are usually 

used since they are characterized by narrow frequency content making pulses easier to 

identify. Alternatively, fitting of the model‟s response spectrum to that of the recorded 

time-history has also been considered. Makris & Black (2004a, 2004b) studied the 

response spectra of the acceleration traces of pulse-type inputs (type A and type B 

cycloidal pulses) and proposed an energy-based length scale for characterizing this type 

of motions. This length scale, a function of the pulse acceleration and pulse period (Le = 

apTp
2) is used to normalize the displacements, leading to a dimensionless response 

spectrum (Π-response spectrum). By comparing this with the spectrum of a 

deterministic model, it is easier to identify the existence of a pulse in the ground motion 

than by inspecting their time-domain representations, since it brings "a remarkable 

order in the inelastic response of the structures" (Vassiliou & Makris, 2011). Later on, 

based on this work, Tang & Zhang (2011) propose a methodology for establishing the 

pulse period and amplitude from the congruence between the Π-response spectrum of 

predefined wave forms and the response spectrum of the velocity and acceleration 

traces. Mavroeidis & Papageorgiou (2003) performed the record fitting simultaneously 

in the time and spectral domains.  
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3.4.2. Time-frequency representation analyses 

3.4.2.1. Empirical mode decomposition versus wavelet transform for seismic data 

analysis 

The EMD and the WT are popular TFR techniques used for the identification – 

extraction of pulses and for the characterization of pulse-like records. As in the case of 

record fitting, most of the analyses are performed on the velocity time-histories. 

Comparative studies have been made on the performance of these two techniques in 

characterizing highly non-stationary signals (see for example Huang et al, 1998; Huang 

et al, 2001; Kijewski-Correa & Kareem, 2006).  

The advantages of the EMD over the WT highlighted by Huang et al (1998) and Huang 

et al (2001) after analysing records of oceanic wave motions and earthquake data, refer 

to the high adaptability to the data thanks to the record-dependant timescales and the 

avoidance of the uncertainty principle limitations. 

An alternative perspective of the potential and limitations of these techniques is 

provided by Kijewski-Correa & Kareem (2006). The higher adaptability to the data of 

the EMD in comparison with the WT is acknowledged, however its resistance to 

statistical analyses resulting from this property is also recognized. On the other hand, 

the rigorous mathematical background of the WT has a more pronounced impact on the 

resulting signal representations. It is concluded that any of these techniques are suitable 

for analysis purposes as long as the user is aware of their limitations.  

3.4.2.2. The empirical mode decomposition for pulse identification  

The EMD has been employed for the analysis of specific acceleration or velocity time-

histories, proving its capability to identify and isolate the specific pulse. Loh et al 

(2001) used the EMD for accelerogram decomposition and identified and isolated the 
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pulse by visually assessing the energy contribution of each IMF to the total energy. The 

IMFs containing higher frequencies represent the “dynamic part”, while the remaining 

low-frequency IMFs are classified as the pulse part. In Zhang et al (2005) the authors 

process the velocity time-histories and separate the pulse by choosing the IMFs which 

appear to contain the pulse. Xu & Agrawal (2010) use the EMD to characterize the 

broadband part of the record remaining after the pulse is extracted by fitting a 

deterministic function. The resulting IMFs are grouped depending on their frequency 

content in relation to the pulse frequency, resulting in a higher frequency component 

and lower frequency component, whose impact on the structural behaviour is inspected.  

 Overall it can be observed that due to its empirical formulation, a relevant amount of 

subjectivity is involved when using the EMD for the characterization of pulse-like 

records. The records are decomposed in a small number of components, but their 

number varies from one record to another and cannot be known prior to the analysis. 

Although the number of IMFs can be pre-set to a fixed value, this is not recommended, 

since this defies the purpose of using the EMD in the first place (adaptability to the 

data) and it might end-up causing mode-mixing or creating unrealistic effects in the 

IMFs (Huang et al, 2003; Rilling et al., 2003). A second observation is the fact that the 

frequency content of the IMFs differs from one record to another. Although the 

frequency content decreases as the number of the IMF increases, it cannot be 

established what frequency content each IMF, or a group of IMFs, will encompass. This 

becomes a challenge when trying to analyse a database containing several records. To 

overcome this, Zhang et al. (2003) establish ranges of frequencies incorporated by each 

IMF, after visually observing a number of decomposed records, and band-pass filter 

them based on this in order to facilitate the analyses.  

On the other hand, due to the great adaptability of the algorithm to the data, the 

information carried by individual/groups of IMFs has physical meaning, matching well 
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with different parts of the total response spectra of the analysed record. Consequently 

the EMD is mostly used for characterization of individual records rather than for 

databases. 

3.4.2.3. The wavelet transform for pulse identification  

The WT has the potential to accurately approximate dominant features of seismic 

signals by using a reduced number of coefficients. Todorovska et al. (2009) assessed the 

quality of such approximations, using 1÷8% of the CWT coefficients, in terms of 

energy, peak power or time of collapse for non-linear oscillator for the velocity traces of 

strong ground motions and conclude that even a 1% approximation offers good results. 

The WT has thus been employed as a step in the following type of methodology used 

for pulse identification and extraction: the WT is applied to the signal, the maximum 

coefficient is identified and the corresponding wavelet represents the first 

approximation of the pulse. This procedure is repeated several times, until a satisfactory 

representation of the pulse is obtained. This algorithm was used by Baker (2007) for 

extracting the pulses from a database of velocity records. In order to classify them, 

Baker laid the bases of the first quantitative classification for PLGMs. The pulses were 

compared with the residual motion (remnant after the extraction of the pulse) in terms of 

peak ground velocity (PGV) and energy. Based on this information, a pulse indicator 

was defined for separating PLGMs from non-PLGMs. For an even more precise 

classification, the pulses caused by FD effects were identified by placing an additional 

constraint regarding the time of the pulse arrival. The wavelet used by Baker for the 

analysis (Db 4) was chosen based on visual inspection of the velocity time-histories.  

In a later study, Yaghmaei-Sabegh (2010) studies the influence of the type of mother 

wavelet on the features of the extracted pulses. Two groups of functions are compared: 

symmetrical bi-orthogonal wavelets (Rbio2.4 and Bior1.3) and unsymmetrical 
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orthogonal functions (Db4, Db7, Sym4, Coif2 and Haar). The pulses extracted using 

each type of wavelet are compared in terms of period, shape and pulse indicator, as 

defined by Baker (2007). It is observed that symmetrical functions preserve the linear 

phase, while the unsymmetrical ones often cause phase distortions or even exhibit a 

false pulse preceding the main one. The study is performed on two velocity traces 

belonging to ground motions classified as being of pulse-type. Although limited by the 

reduced number of time-histories analysed, the results draw attention to the impact of 

various types of analysing function on the results; in the end the use of symmetrical, 

smooth wavelets is recommended by the author for obtaining accurate representation. 

A similar study was performed by Vassiliou & Makris (2011) who evaluated the 

performance of a different group of waves, namely the type B, C1 and C2 cycloidal 

pulses, the symmetric and the anti-symmetric Ricker wavelets, the Gabor wavelet and 

the Mavroeidis & Papageorgiou (2003) (M&P) wavelet on extracting the pulses from 

accelerograms. The influence of the wavelet phase and of the number of oscillations on 

the outlook of the extracted pulses is investigated, showing that unsymmetrical 

functions may cause phase distortions of the data. The importance of the smoothness of 

the function is reasserted, confirming the observation that smoother functions lead 

better approximations using a reduced number of wavelets (Todorovska et al., 2009). In 

order to improve the adaptability to the data, 2 degrees of freedom are incorporated in 

the definition of the Gabor wavelet and M&P wavelets, allowing for the variation of 

phase and number of oscillations aside from translation and dilation of the function, 

thus indirectly proposing the chirplet transform (Mann & Haykin, 1991; Spanos et al. 

2007) as an alternative technique for the analysis of PLGMs.  

Mollaioli & Bosi (2012) applied the WT to the energy time-histories corresponding to 

the signals, rather than to the velocity/acceleration traces. The absolute and relative 

input energies are defined as functions of the earthquake recorded velocity/acceleration 
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and the structural responses. The peak wavelet coefficients indicate the time-frequency 

position of the largest amount of energy which corresponds to the pulse.   

3.4.3. Low-pass filtering  

A different approach was employed by Ghahari et al. (2010) for extracting pulses from 

a collection of PLGMs. The authors used a moving average (MA) filter to separate the 

pulse from the higher frequency content. The cut-off frequency of the filter is defined as 

a function of the main pulse period, which is approximated by applying several times 

the STFT: the window size is gradually increased until it incorporates the dominant 

pulse of the velocity time-history.  

In Mukhopadhyay & Gupta (2013a) a pulse indicator is employed first in order to check 

if the motion qualifies as pulse-type. This is based on the largest amount of energy 

between two successive zero-crossings encountered in the velocity time-history. The 

time-location of the velocity pulse is also identified based on the same energy-between-

zero-crossings principle. By “smoothening” the accelerogram in the pulse time-window 

identified (which represents essentially a type of low-pass filtering) the pulse is isolated 

and extracted from the accelerogram. Based on the inspection of the pulses extracted 

from the time-histories, two pulse-like functions are proposed for the modelling of the 

low frequency content (see Eqs. (3.8) & (3.9)).  

3.5. MODELLING OF PULSE-LIKE GROUND MOTIONS 

The need for artificial time-histories comes from the limited amount of records available 

in various regions or for specific site conditions. This is of particular concern to PLGMs 

as a limited number of records exist, associated with a handful of seismic events (e.g. 

Baker, 2007; Mukhopadhyay & Gupta, 2013). In this manner the need to account for the 

aleatory uncertainty in seismic risk assessments can be addressed. Indeed, artificial 
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accelerograms are used in engineering applications for investigating and improving the 

structural design and for the probabilistic assessment of seismic demands (e.g. 

Taflanidis, 2011; Taflanidis & Jia, 2011; Taflanidis & Vetter, 2011).   

There are two types of earthquake models which are used for simulation purposes – 

seismological models and phenomenological (or “record-based”) models (e.g. Vetter & 

Taflanidis, 2014). The first type consists of complex models which incorporate 

information about the source-to-site geometry, fault characteristics, soil conditions, 

seismic waves‟ arrival and frequency content among others. The latter are simpler, 

empirical models, which focus less on the realistic representation of the mechanisms 

causing the earthquake and more on reproducing structural responses similar to those 

observed for field recorded accelerograms. They are defined based on the features 

characterizing in the time-histories of seismic records, usually regardless of the 

causative mechanisms. 

With regards to PLGMs, a limited and relatively small number of records are identified 

as being of pulse-type, with a significant percentage of them coming from the proximity 

of San Andreas Fault. Due to these limitations, their modelling is a challenging task. 

Consequently, most of the models are either fully phenomenological or defined as a 

combination between a seismological model for the higher-frequency content and a 

phenomenological model for the pulse part.   

Since a significant amount of the total energy is released through the pulse (Moustafa & 

Takewaki, 2010), PLGMs are sometimes represented by means of only simple, 

deterministic waveforms (see Section 3.3.2). However, this type of representation does 

not account for the entire range of frequencies which may affect structures (including 

the higher modes of flexible structures). Therefore, in order to obtain more realistic 

simulations, the higher frequency (HF) content needs to be also taken into account 

(Sommerville, 1998; Makris & Chang, 2000a; Mavroeidis & Papageorgiou, 2003; 
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Mukhopadhyay & Gupta, 2013b). As a result, the following formulation is commonly 

adopted for PLGM representation: 

 ( ) ( ) ( )PL P HFy t y t y t   (3.16) 

The pulse part yP in equation (3.16) is usually obtained through differentiation from the 

velocity models previously presented in Section 3.3.2, while for the high-frequency 

content yHF probabilistic models proposed for the modelling of regular (pulse-free) 

ground motions can be employed. Empirical relationships between the parameters of the 

functions and various characteristics of the earthquake (source properties, rupture 

velocity, magnitude, soil conditions, epicentral distance etc.) are obtained by means of 

regression analyses on the databases of recorded PLGMs considered (Mavroeidis & 

Papageorgiou, 2003; Mavroeidis et al., 2004; Baker, 2007; Mukhopadhyay & Gupta, 

2013b among others). In some cases, in order to account for the variability observed in 

the pulse properties, probability distributions have been estimated for the pulse model 

parameters (Dabaghi et al., 2011; Dickinson & Gavin, 2011; Gavin & Dickinson, 2011; 

Taflanidis & Jia, 2011).  

Various alternative models are used in the literature for modelling the HF part of the 

record.  Mavroeidis & Papageorgiou (2003) use the specific barrier model which 

consists in defining the frequency content as a summation of small sub-events with 

delayed arrival times and characterized by different frequency content and amplitude, as 

it is usually the case of seismic waves.  

Fu & Menun (2004) define the HF content as a superposition of cosines with random 

phases (Φk) and varying amplitudes (Bk). The temporal variation is accounted for by 

means of a time-varying envelope (An). 
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In the previous equation, tp is the instant of peak amplitude, β controls the shape and Tp 

is the pulse period. According to the authors, the instant when the peak of the pulse and 

the peak of the higher frequency content occur are strongly related.  

Dickinson & Gavin (2011) propose the spectral representation method to generate time-

histories compatible with a Kanai-Tajimi spectrum, which are then modulated using a 

time-varying envelope. The envelope is a function of 4 parameters which define its 

evolution over time. 
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Dabaghi et al. (2011) consider amplitude-modulated white noise filtered through a time-

varying filter to represent the residual acceleration. The white noise is first processed 

using a filter whose characteristics (central frequency and frequency bandwidth) vary in 

time. Next, a time-varying envelope is used to modulate the amplitude as in: 
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The parameter λ (τ) controls the time-variation of the filter, depending on the frequency 

and damping, σh (t) normalizes the variance of the integral to 1 and A (t) is the time-

varying envelope. 

The seismological stochastic model developed by Boore (2003) for generating 

frequency content higher than 0.1Hz is employed by Taflanidis (2011) and Taflanidis & 

Jia (2011) for modelling the higher frequency content. The power spectrum shape is 

defined as a combination between the contribution of the source of the earthquake (E), 

the path effects (P) and the site conditions (G) and the type of motion (I): 

          | , , ,W WS M R E M P R G I      (3.20) 

In the previous equation MW represents the moment magnitude and R the distance from 

the source. The duration of the simulations are controlled by means of a time-varying 

envelope given by the equation 
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/ p

b c t t

pa t a t t e


  (3.21) 

where the parameters a, b and c control the shape of the envelope and tp corresponds to 

the instant of the peak. 

A modelling approach alternative to the superposition of low and high frequency 

content is proposed by Yamamoto & Baker (2013) for the simulation of fault normal 

accelerograms. For this purpose, a database of records is analysed by means of the 

MWPT and the corresponding power spectral density is estimated. The resulting WT 

coefficients are separated based on their energy content in two groups – the major 

group, containing few coefficients which contribute to most of the total energy (70%) 

and the minor group containing a large number of coefficients which account for the 

remaining energy content (30%). The probability distribution functions to be used for 
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modelling the position and the evolution of the energy content on the time-frequency 

plane are established by means of statistical analyses. A total number of 13 parameters 

are needed to completely define the model. The resulting model accounts for the entire 

frequency content of the accelerogram at once, leading to an integrated model of the 

high and low frequency parts. However, since it relies on the wavelet transform it 

carries along some of the challenges experienced by this technique when dealing with 

very low frequency content, leading to large standard deviations for long period spectra. 

For this reason, the authors suggest the use of the proposed model in conjunction with 

techniques more suitable for simulating low-frequency pulses. 
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CHAPTER 4 : PROPOSED MODEL FOR PULSE-LIKE 

GROUND MOTIONS  

4.1. PRELIMINARY REMARKS 

The commonly used approach for the stochastic modelling of PLGMs is by superposing 

two models characterizing complementary frequency content, according to Eq. (3.16). 

The low frequency content yP is usually represented using analytically defined 

(velocity) functions, which are further differentiated in order to obtain the pulse part for 

the synthetic accelerogram. The variability in the pulse characteristics is taken into 

account through probability distributions obtained by analysing collections of records. 

Still their reliability in accounting for the uncertainty is limited by the scarcity of 

existing records which have been classified as being pulse-type. An alternative, 

probabilistic approach for the definition of pulses was proposed by Moustafa & 

Takewaki (2010) and consists in defining their spectral content by means of delta 

functions (see Eq. (3.12) – (3.15)).  

The higher frequency content yHF is modelled using non-stationary stochastic models 

which account for the evolutionary behaviour either in time or in both time and 

frequency (see Section 3.5 and Appendix B).  

Herein a novel non-separable non-stationary stochastic PLGM model is proposed, 

motivated by the phenomenological observation that pulses appear as low-frequency 

patches of energy on the time-frequency plane. This observation is made after analysing 

several PLGMs from a time-frequency perspective by using signal processing 

techniques reviewed in Chapter 2. Further, two new stochastic models for the pulses are 

defined. For the higher frequency content existing stochastic models commonly used in 
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civil engineering applications are employed. Finally, the methodology for generating 

pulse-like accelerograms is also presented. 

4.2. PULSE-LIKE RECORDS: A SIGNAL PROCESSING 

PERSPECTIVE 

In order to have a reliable phenomenological model for PLGMs it is important to 

appropriately define the signature features of recorded PLGMs, namely the long period, 

high amplitude oscillations. Focusing on this aspect, it has been argued in the literature 

that the pulses encountered in PL records can be separated in “acceleration” and 

“velocity” pulses (Vassiliu & Makris, 2011; Zamora & Riddell, 2011; Mollaioli & Bosi, 

2012). In the first category fall the pulses visible in the accelerogram which are known 

to be causing extreme damage; in the second one, pulses which are not visible in 

accelerograms, but only in the velocity and displacement time-histories. The latter 

category is assumed to be the result of a non-zero-mean “succession of high-frequency 

one-sided acceleration spikes” (Makris & Black, 2004c). 

 From a modelling perspective, the case of the “acceleration” pulses is clear since pulses 

are readily visible in all the time-histories, thus they can be taken into account using the 

modelling approach given by Eq. (3.16). In what follows, the case of several records 

characterized by “velocity” pulses is further investigated from a signal processing 

viewpoint to clarify the modelling approach for such cases. 

In particular, accelerograms belonging to the following earthquakes – 1971 San 

Fernando (California), 1989 Loma Prieta (California), 1992 Landers (California) and 

1999 Kocaeli (Turkey) are being processed using the GHWT, MWPT and ST 

(presented in Sections 2.4 - 2.5). The acceleration signal corresponding to the 0÷5 

rad/sec frequency interval is reconstructed and integrated to obtain the corresponding 
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velocity trace. This procedure is equivalent to a LP filtering of the accelerogram, using a 

5rad/sec cut-off frequency.  

According to the definition given by Makris & Black (2004c) for the “velocity” pulses, 

it is expected that once the high-frequency content is removed, the PGV will 

significantly decrease, i.e. the pulse will not appear anymore in the corresponding 

velocity traces. In Figure 4.1 and Figure 4.2 the filtered accelerograms are superposed to 

the original time-histories. The acceleration pulse extracted by Baker (2007) is also 

plotted for reference and referred to as the Db4 CWT. In the right hand side panels, the 

“velocity” signals obtained by integrating the filtered accelerograms are superposed on 

the velocities corresponding to the recorded accelerogram. The correlation coefficients 

between the actual velocity traces and those corresponding to the filtered accelerogram 

are also listed in Table 4.1.  

 

Table 4.1. Correlation coefficients between the ground motion velocity and the velocity 

corresponding to the filtered accelerograms 

 1989 Loma 

Prieta 

St. Saratoga 

1992 Landers 

St. Lucerne 

1999 Kocaeli 

St. Gebze 

1971 San 

Fernando 

St. Pacoima 

Dam 

ST 0.93 0.98 0.98 0.78 

GHWT 0.92 0.98 0.98 0.80 

MWPT 0.97 0.99 0.99 0.91 

Db4 CWT 0.64 0.79 0.77 0.69 

 

The results clearly show that very small differences exist between the two velocity 

traces and usually consist in some very low-amplitude higher frequency noise. 

Therefore, what is referred in the literature as “velocity” pulses represents the low-

frequency content already present in the acceleration trace. The integration performed in 

order to obtain the velocity trace only improves its visibility by zooming-in in the 

existing low-frequency content. This is further clarified in Appendix A, where it is 
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shown that the integration is equivalent to a low-pass filtering of signals (Worden, 

1990). 

The separation of pulses in “acceleration” and “velocity” pulses is therefore not 

justified. A less ambiguous way to refer to pulses would be as the low-frequency 

content of the recorded accelerograms. Further, if a classification from the perspective 

of their visibility due to the amount of higher frequency content characterizing 

accelerograms is to be made, an appropriate way (at least from a signal analysis 

viewpoint) would be by considering the so-called signal-to-noise ratio, where the noise 

corresponds to the high-frequency content of the accelerogram.  

A second comparative analysis is performed on the previously considered record of 

Landers earthquake and the less “noisy” record (according to the above interpretation) 

belonging to the 1999 Imperial Valley (California) earthquake. The pulses 

approximated by Mavroeidis & Papageorgiou (2003) are superimposed on the 

accelerogram and velocity time-histories in order to facilitate the visualisation of the 

low-frequency content (Figure 4.3, Figure 4.4). The time-frequency representations of 

the acceleration and velocity traces for each case are obtained by alternatively 

employing the wavelet-based techniques presented in Chapter 2. By investigating the 

frequency content between 0÷10 rad/sec of the accelerogram and velocity traces, the 

previous observation regarding the low-frequency content of the accelerogram is 

confirmed. Low-frequency energy patches, located in similar positions appear in the TF 

representation of both, regardless of how visible the pulses are in the accelerogram. In 

fact, the pulse is not visible in the Landers record because of the very low signal-to-

noise ratio, i.e. the high frequency components are very intensive. 

Based on these analyses, it is reasonable to introduce the pulses directly into the 

accelerograms, without necessarily considering the velocity traces. Accordingly, in the 

following section a non-separable non-stationary stochastic model for simulating pulse-



Chapter 4 Proposed pulse-like ground motion model 

 

60 

like accelerograms is proposed, which uses the same stochastic modelling approach for 

representing both the HF and the LF energy content. The model offers great versatility 

in modelling the HF content, being able to accommodate various representations for this 

purpose (e.g. spectrum compatible, phenomenological or seismological models), while 

the proposed approach for generating the pulses represents a more versatile alternative 

to other stochastic models existing in the literature (Moustafa & Takewaki, 2010). 
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Figure 4.1. Filtered accelerograms and the corresponding velocity traces  obtained (I) 
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Figure 4.2. Filtered accelerograms and the corresponding velocity traces (II) 
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Figure 4.3. Time-frequency representations for an accelerogram extremely corrupted with higher 

frequency components: (a) S-transform; (b) harmonic wavelet transform; (c) Meyer wavelet 

packets transform   
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Figure 4.4. Time-frequency representations for an accelerogram reasonably corrupted with higher 

frequency components: (a) S-transform; (b) harmonic wavelet transform; (c) Meyer wavelet 

packets transform 
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4.3. FULLY STOCHASTIC MODEL FOR PULSE-LIKE 

EARTHQUAKES 

Based on the approach used for modelling PLGMs as a superposition of low and high 

frequency (LF/HF) components given by Eq. (3.16), consider the following definition 

for a PLGM model:  

  
11

(( ) ( ) ( ) ) 1, ,  
i i jj

P

PL HF HF LF

R

LF
i j

y t a a t gt g t P Rt
 

     (4.1) 

In the previous equation, adjacent frequency bands characterizing the frequency content 

of PL seismic signals are modelled by means of separable uncorrelated processes. Each 

process is defined as a product between a stationary zero-mean random process g(t), 

characterized by power spectrum density G(ω) and an envelope function a(t) with an 

evolutionary behaviour over time (see Appendix B for further details). It has been 

previously shown in the literature that the energy distribution of amplitude modulated 

processes can be represented using the concept of evolutionary power spectrum density 

(EPSD) under the assumption that the envelope functions a(t) vary sufficiently slow in 

time (Priestley, 1965; Conte & Peng, 1997; Spanos & Failla, 2004), i.e. 

  
2

( ) ( ), aEPSD t t G   (4.2) 

Consequently, the EPSD characterizing the energy distribution of the pulse-process 

given in Eq. (4.1) on the time-frequency plane reads as  

    
2 2

1 1

( ) ( ), ( )
jji

P R

PL LHF HFi LFF
i j

EPSD t a ta t G G 
 

    (4.3) 
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Considering the simplest possible case in which the low-frequency pulse and the higher 

frequency content can be modelled using singular uniformly modulated processes for 

each part (P = R = 1), the model simplifies to (Lungu & Giaralis, 2013). 

  ( ) ( ) ( ) ( ) ( )PL LF LF HF HFy t a t g t a t g t   (4.4) 

      , , ,PL LF HFEPSD t EPSD t EPSD t     (4.5) 

as shown in Figure 4.5. 

For most cases the above model is considered to be sufficient for modelling the 

frequency content of PLGMs (Section 3.5). However, in case of recorded accelerograms 

characterized by richer low-frequency content (e.g. Mukhopadhyay & Gupta, 2013a), 

more than one process can be considered for representing the pulse part, as it is 

illustrated later on in Section 5.3. Further, a more detailed representation of the higher 

frequency content using the superposition of several amplitude modulated processes can 

be adopted (e.g. Conte & Peng, 1997).  

 
Figure 4.5. Application of the proposed non-separable non-stationary stochastic pulse-like ground 

motion model for the special case of P = R = 1 

 

In fact, stochastic processes of this form, with various analytical expressions for the 

envelope function ar and the power spectrum Gr, have been used in the literature to 

model the earthquake induced strong ground motion in terms of acceleration for various 
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earthquake engineering applications. For instance, Spanos & Vargas-Loli (1985) have 

considered this type of stochastic model for the generation of spectrum compatible 

accelerograms in a stochastic framework. Conte & Peng (1997) have used a similar 

model for the characterization and representation of specific field recorded 

accelerograms associated with specific historic seismic events, while Spanos & Failla 

(2004) have used it for assessing the efficiency of various wavelet bases in estimating 

the underlying evolutionary power spectrum of non-stationary processes. 

4.4. HIGH FREQUENCY PROCESS MODELLING 

4.4.1. Power spectrum density GHF 

Herein, the Clough-Penzien (CP) spectral form (Clough & Penzien, 1993) which is 

commonly used in civil engineering applications is considered for modelling the HF 

content (Figure 4.6). This power spectrum density is obtained by filtering Gaussian 

white noise using a CP filter, which is given by the equation: 

  
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 (4.6) 

The CP filter is obtained as a succession of two filters: a high pass filter, characterized 

by the cut-off frequency ωf and the steepness (slope of the filter) δf  and the Kanai-

Tajimi filter (Kanai, 1957), which accounts for the soil conditions  in a simplified way 

(soil stiffness ωg and damping ratio δg). The role of the high pass filter is to eliminate 

the low-frequency components allowed by the Kanai Tajimi filter, which are the source 
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of exaggerate responses in the case of long period structures. The term ωmax represents 

the maximum frequency allowed in the spectrum (i.e. cut-off frequency). 

 
Figure 4.6. Power spectra shapes for representing the broadband frequency content: Kanai Tajimi 

(left) and Clough Penzien (right) 

 

Alternatively, other options exist for modelling the broadband frequency content of the 

PLGM accelerograms, either phenomenological or seismological. A review of the 

commonly used models for ordinary accelerograms is provided by Shinozuka & 

Deodatis (1988), while a retrospective of the approaches used in the case of PLGMs is 

presented in Section 3.5.  

4.4.2. Time-varying envelope aHF 

The evolution over time of the ground motion intensity is determined by means of an 

envelope function. Some commonly used shapes can be found in (Shinozuka & 

Deodatis, 1988). Herein the bell-shaped function proposed by Bogdanoff et al (1961) 

and given by the following equation is considered: 

   2

bt

a t Cte


  (4.7) 

The parameter C is proportional with the peak amplitude of the envelope, while b 

controls the width and is related to the effective duration Teff of the ground motion. The 

envelope can be defined employing the non-linear relationship between Teff and the 
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parameter b developed by Giaralis & Spanos (2012) for the case when the effective 

duration is defined as the time-interval in which 90% of the total energy is released 

(Trifunac & Brady, 1975), i.e.: 

 
95 05effT t t   (4.8) 

The terms t05 and t95 in the previous equation represent the time instants at which 5% 

and 95% of the total energy is cumulated.  

 
Figure 4.7.  The BGB envelope function 

 

4.5. PROPOSED LOW-FREQUENCY PROCESS MODELLING 

4.5.1. Power spectrum density GLF 

Based on the appearance and characteristics of the low-frequency content (Section 3.3, 

Section 4.2), two new spectral shapes are proposed herein for the definition of the LF 

process stationary part (Figure 4.8): a box-like shape (BOX) and a raised cosine shape 

(COS).  

 
Figure 4.8. Power spectrum density shapes for the pulse content: BOX (left) and COS (right) 
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The BOX shape is given by the following equation 

  
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 


 (4.9) 

where the term B represents the bandwidth of the low-frequency content characterizing 

the pulse and ωp is the dominant frequency of the pulse. Due to its simplicity this shape 

can be easily employed in conjunction with random vibrations analyses techniques 

incorporating stochastic processes expressed by means of the harmonic wavelet 

transform (Spanos & Kougioumtzoglou, 2012). 

The equation for the COS spectrum is 
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 (4.10) 

where α ≤ 1 is a shape parameter. This second shape is more appropriate for time-

histories simulation thanks to its smoothness (e.g. Taflanidis & Jia, 2011). Similarly to 

the previous case, the power spectrum is centred at the pulse dominant frequency ωp. 

4.5.2. Time-varying envelope aLF 

The following envelop function depicted in Figure 4.9 is proposed herein for accounting 

for the evolutionary behaviour of the pulses: 

  
 

2
1

2

p
pt t

LFa t C e
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 
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   (4.11) 
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In the previous formulation, CLF controls the amplitude, ωp represents the dominant 

frequency of the pulse, tp is the instant of the peak and the parameter γ controls the 

shape of the envelope. Similar envelopes have been used by Tian et al. (2007) and 

Moustafa & Takewaki (2010) for this purpose.  

 
Figure 4.9. Time-varying envelope for the pulse part 

 

4.6. GUIDELINES FOR SIMULATING PULSE-LIKE 

ACCELEROGRAMS 

Pulse-like accelerograms can be readily generated using the herein proposed model by 

taking the following steps: 

I. Definition of the higher-frequency content 

- Establish the level of detail for the higher frequency content, i.e. the number of sub-

processes to be employed for its representation; 

- For each composing sub-process, set the parameters C and b for the time-varying 

envelope and ωg, δg, ωf and δf for the Clough-Penzien spectrum (see Section 4.4). 

Obtain the corresponding functions by using Eq. (4.6) and (4.7); 

- Combine each power spectrum with the corresponding time-varying envelope 

according to Eq. (4.2) to obtain the amplitude-modulated power spectra densities 

characterizing each sub-process;  

II. Definition of the low-frequency content 

- Establish complexity of the low-frequency content, i.e. the number of pulses; 
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- For each pulse, set the parameters for the envelope CLF, t0 and γ and for the power 

spectrum set ωp and B for the BOX shape or, alternatively, ωp and α for the COS 

shape (see Section 4.5).  

- Combine each power spectrum with the corresponding time-varying envelope 

according to Eq. (4.2) to obtain the amplitude-modulated power spectra densities 

characterizing each pulse;  

III. Generation of high-frequency part (HF samples) and of the pulse part (LF samples) 

of the accelerogram  

- Generate samples compatible with each sub-process using appropriate simulation 

techniques. Any qualified random field generation method for stationary random 

processes (e.g. the spectral representation method or the autoregressive-moving 

average method presented in Appendix C) can be employed for the purpose.  

IV. Generation of pulse-like accelerograms 

- Superpose the HF samples with the corresponding LF samples in order to obtain 

pulse-like accelerograms. The resulting non-separable, non-stationary time-histories 

are characterized by the evolutionary power spectrum previously defined in Eq. 

(4.5).  

The methodology for simulating artificial pulse-like accelerograms compatible with the 

herein proposed model, for the special case when a total number of two processes are 

considered is exemplified in Figure 4.10. A total number of 11 parameters are needed to 

completely define the pulse-like process: 6 for the definition of the higher frequency 

content and 5 for the definition of the pulses.  

By employing the herein proposed representation for modelling and simulation 

purposes, some of the previously mentioned limitations of the existing models can be 

avoided. The simple definition and the flexibility allows for the use of the model for 

Monte Carlo simulations (Taflanidis & Jia, 2011) or alternatively, as input for various 
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stochastic dynamic techniques such as statistical linearization, stochastic averaging etc. 

(Spanos & Kougioutzoglou, 2012).  

 

 
Figure 4.10. Methodology for generating artificial pulse-like accelerogram for the special case of P 

= R = 1 in Eq. (4.4) 
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CHAPTER 5 : USE OF THE PROPOSED PULSE-LIKE 

GROUND MOTION MODEL  

5.1. PRELIMINARY REMARKS 

In this chapter the potential of the stochastic model previously introduced to capture 

salient features of recorded PLGMs is assessed. First, the capability of the low-

frequency models (Section 4.5) to realistically capture characteristics of pulses extracted 

from field recorded time-histories is investigated. For this purpose, a database of 

acceleration pulses from the literature is considered and for each entry equivalent 

synthetic pulse processes are defined. Samples compatible with each process are 

generated and the average characteristics are compared with the target values. Since the 

model proposed herein is a record-based one, the aim is to obtain similar structural 

responses as in the case of the extracted pulses, thus a comprehensive verification from 

the structural response perspective is performed. Furthermore, empirical predictive 

equations for the low-frequency models parameters are obtained through regression 

analysis against earthquake magnitudes and distances from the fault. These relationships 

are used later on in Chapter 6 to generate pulse processes for specific seismic scenarios.  

Secondly, the parameters for defining a complete PLGM process (i.e. which 

incorporates both low frequency and high frequency content) characterizing a specific 

field recorded accelerogram are determined. A simple, record based representation is 

chosen for modelling the higher frequency content, i.e. by means of modulated Clough-

Penzien spectrum, while for the low-frequency content the two alternative shapes are 

considered. It is demonstrated that the proposed model is capable to realistically 
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simulate the structural impact of the considered record, while at the same time 

accounting for the variability in its features.  

Finally, the potential of the PLGM model to generate ensembles of code-compatible 

accelerograms which include pulse effects is also illustrated. 

5.2. FIT OF THE LOW-FREQUENCY MODELS TO A GIVEN 

DATABASE OF PULSES 

5.2.1. Description of the database 

A set of 91 acceleration pulses is considered herein for the calibration of the proposed 

low-frequency models (Appendix D). They have been extracted from a subset of 

accelerograms belonging to the Next Generation Attenuation ground motion library. 

These have been classified as pulse-type by Baker (2007) using a weighting scheme for 

the approximated pulse with regards to the original time-history. The characteristic 

pulses are approximated after performing the wavelet-decomposition of the velocity 

traces, as the superposition of the ten Db4 wavelets (Figure 5.1) which result into the 

highest coefficients. The acceleration pulses which will be used further in this work are 

obtained by numerically differentiating the thus obtained velocity pulses and are 

provided in http://www.stanford.edu/~bakerjw/pulse-classification_old.html (accessed 

25-03-2011). 

The selection of the database to be used for calibration is arbitrary. It should be kept in 

mind that the quality of the low-frequency content approximation depends on the 

algorithm used for extraction and may vary across a database. If an alternative database 

of pulses, i.e. obtained by using a different weighting scheme or a different wavelet 

function (e.g. Vassiliou & Makris, 2011; Zamora & Riddell, 2011 or Mukhopadhyay & 

http://www.stanford.edu/~bakerjw/pulse-classification_old.html
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Gupta, 2013b) is employed for the calibration, different sets of pulse parameters may be 

obtained. 

 
Figure 5.1 Daubechies wavelet function of order 4 (Db4) used by Baker (2007) for pulse extraction 

5.2.2. Preliminary values for the parameters 

In order to calibrate the low-frequency models against the database considered, the 

following methodology is adopted: initial choices for the parameters are established and 

employed for defining pulse processes corresponding to each entry in the database. 

Next, ensembles of accelerograms compatible with each process thus defined are 

generated to assess the capacity of the pulse models to replicate, on average, the 

characteristics of the pulses in the database. Based on these initial results, the 

parameters of the model which need further adjustment are identified and discussed. 

Finally, regression analyses are performed in order to establish connections between the 

model parameters and the seismological characteristics for the herein considered 

database.    

The following vectors of parameters, specifying the dominant pulse frequency ωp, the 

bandwidth  α/B, the peak amplitude CLF, together with its location tp and its shape γLF,  

need to be defined for each entry in the database: 

 

p LF LF p

p LF LF p
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The dominant frequency ωp is derived from the pulse periods Tp estimated by Baker 

(2007) and repeated herein in Appendix D, using the formula: 

 
ker

2
p Ba

pT


   (5.2) 

In order to establish a suitable choice for the bandwidth of the pulse for the case of the 

BOX definition (Eq. (4.9)), the power spectral densities of the pulses in the database are 

estimated as the square value of the FT coefficients. The bandwidth is defined as the 

frequency interval around the main peak which includes the power spectral density 

values higher than 10% of the peak value. The correspondence between the resulting 

bandwidths, the pulse period and the number of records can be seen in the histogram 

plots in Figure 5.2. Since there is a linear correspondence between the bandwidth 

estimated this way and the pulse frequency, the parameter B is defined as 

 
pB   (5.3) 

 
 

Figure 5.2. Histograms of the bandwidth and dominant frequencies of the pulses across the 

database considered 
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With regards to the shape parameter α used for the definition of the COS spectrum, a 

slight dependence on the pulse period Tp is observed, i.e. the value decreases as the 

pulse frequency lowers. However since no clear connection was found, a constant value 

of 0.5 is adopted throughout this study, which leads to an overall acceptable fit. 

The time-varying envelope is calibrated using the methodology employed in Stafford et 

al. (2009) for defining an “energy-based” envelope function for the simulation of pulse-

free accelerograms. This approach is considered suitable since it accounts quantitatively 

for the energy content and its distribution, ensuring realistic structural responses and 

reliable synthetic accelerograms according to the authors. Note that the same approach 

was used by Dickinson & Gavin (2011) who employed it for calibrating the envelope 

proposed for modelling the higher frequency content which remains after the pulse is 

removed. 

In the first step, the envelopes of the acceleration pulses are evaluated using the 

following two-steps approach (Dugundji, 1958): the pre-envelope of the pulse yP is 

determined as 

       P Pz t y t iH y t   (5.4) 

where the operator H(∙) accounts for the Hilbert transform of the considered signal.  

Next, the envelope is estimated as the magnitude of the analytic signal defined as 

       2 2

P Pa t y t H y t   (5.5) 

Envelopes estimated using this approach for several pulses in the database are presented 

in Figure 5.3.  
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Figure 5.3. Envelopes estimated for pulses extracted from field recorded accelerograms 

 

By recalling Parseval‟s theorem regarding the conservation of power when shifting 

between time and frequency domains (Eq. (2.3)) and following the approach used in  

Stafford et al. (2009), the formulation for the envelope function is obtained as given in 

the following equation: 

       2 2 2

P Pa t dt y t dt H y t dt
  

  

      

    2 22 Pa t dt y t dt
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 
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    22 Pa t y t  (5.6) 
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Further, the Arias Intensity IA and the Husid plot H(t) of the acceleration pulses yP(t)  

are also calculated in order to determine the amount of energy and its accumulation over 

time: 

  2
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 (5.8) 

The normalized Husid function h(t) is obtained by taking the time derivative of the 

Husid plot and gives the shape of the envelope, i.e. 

    2
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   (5.9) 

Based on this, equation (5.6) becomes  
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The exponential function proposed by Tian et al. (2007) and by Moustafa & Takewaki 

(2010) offers a realistic approximation for the shape of the envelopes estimated, and 

was thus adopted for the function h(t): 
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The final shape of the envelope (see Figure 5.4), which is given in section (4.4.2) and 

repeated here for convenience, is obtained as 
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This can be also written as  
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The envelope‟s amplitude CLF can be thus related to the to the energy content of the 

pulse, which is expressed in this case in terms of the Arias Intensity IA of the pulse. 

Empirical relationships for estimating the IA for future records based on seismological 

characteristics have been derived in the literature; however, the performance of these 

formulas for records incorporating forward directivity effects is limited (Travasarou et 

al., 2003). Furthermore, the energy carried by the low-frequency pulse represents only a 

fraction of the total energy in the accelerogram. Although the contribution of the pulse 

part to the total energy content in terms of IΑ is investigated (e.g. Zamora & Riddell, 

2011), there is still limited information available in this sense. For these reasons the 

connection between the IA of the pulse and the peak amplitude is not exploited in the 

context of this work.   

The parameter γ in the definition of the envelope is attributed either the role of 

controlling the shape (Tian et al., 2007; Moustafa & Takewaki, 2010) or that of 

ensuring the frequency content of the envelope is lower than that of the oscillatory part 

(Mavroeidis & Papageorgiou, 2003). In Figure 5.4 analytic envelope shapes for various 

values of γ values are plotted. In the left panel the frequency domain representations for 

each case are superposed to the approximated envelope. Any possible correlation 
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between this parameter and shape characteristics of the envelope (e.g. rise time, decay 

time, effective duration) have been investigated; however no systematic relationship 

could be established.  

 

Figure 5.4. Analytic envelopes for various values of γ. Left panel: frequency domain representation 

(the pulse frequency ωp is indicated). Right panel: time domain representation. 

 

Eventually, the parameters CLF, γ and tp are estimated by fitting the function aLF to the 

approximated envelopes, by using standard nonlinear least squares regression and 

considering the parameter ωp as being a record dependant variable, set to the value 

previously discussed. The fitting is performed using the standard built-in command 

within the Curve Fitting Toolbox of Matlab.  

In order to assess the performance of the model, ensembles of time-histories compatible 

with each pulse process are generated using the spectral representation method 

(Appendix C). Accordingly, the synthetic pulses are obtained in two steps: first, 

stationary samples compatible with GLF(ω) spectra are generated as a superposition of 

cosines with random phases Φn, uniformly distributed in the [0,2π] interval. Further, 

each sample is multiplied with a time-varying envelope. For the purpose of this study, a 

number of 300 samples compatible with each process are generated. Each time history 

has a duration of 40s and is sampled at a time step Δt = 0.01s which allows for a 

maximum frequency to be captured of ωmax = 2π/2Δt = 314 rad/s (50 Hz).  Any spurious 
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very low-frequency or DC components (i.e. non-zero mean value of the signal) are 

removed by baseline correction of the samples in order to avoid unrealistic 

velocity/displacement values (e.g. non-zero velocity at the end of the record). An 

acausal Butterworth high-pass filter with a cut-off frequency of 0.63 rad/s (0.1 Hz), 

which performs a forward/backward filtering and thus it does not modify on the phase 

of the signal, is used for this purpose (see also Appendix A). 

The aim of the proposed models is to generate realistic structural responses. 

Consequently, in order to obtain an appreciation of the quality of matching across the 

database considered, the average 5% elastic pseudo-response spectra for each pulse 

process are estimated and compared with those corresponding to the original pulses 

(referred to as the “target” value). In Figure 5.5 the values of the following ratios are 

plotted against the period of the pulses for the database considered: 
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A variable quality of matching which depends significantly on the pulse period Tp, is 

observed across the database. Since an ideal fit would lead to values of the ρ ratios 

equal to 1, these preliminary results on the performance of the model can be 

summarized as follows: 

- Short pulses -  4sec 1.6 / secp pT rad   

The response spectra are significantly higher than the target ones, especially for ρD. The 

quality of matching deteriorates as the pulse period reduces, the performance of the 

model appearing very limited for periods under 1.5sec (hatched areas in Figure 5.5). 

However, the model proposed herein is targeted for the simulation of low-frequency 
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components. To this end, pulses with periods less than 1.5s do not qualify as such 

content.  

- Pulses with  4sec 6sec 1.1 / sec 1.6 / secp pT rad rad     

The response spectra are well approximated. 

- Pulses with  6sec 1.1 / secp pT rad   

The response spectra are slightly underestimated compared to the target values.  

 

 
Figure 5.5. Initial quality of matching of spectral ordinates across the database 

 

It should be noted that while the criteria employed for the calibration of the model 

against the considered database accounts for phenomenological considerations (i.e. 

envelope fitting), the assessment is made from a structural response perspective. 

Consequently, based on the preliminary observations regarding the quality of matching 

in terms of structural behaviour, together with visual investigation of the results, the 

following aspects are further investigated: the definition of the pulse dominant 

frequency and the baseline correction applied to the resulting samples.  



Chapter 5 Use of the pulse-like ground motion model 

 

85 

5.2.3. Definition of the dominant pulse frequency 

The periods of the pulses extracted from the considered records are estimated by Baker 

(2007) based on the wavelet analysis of the velocity traces corresponding to the records 

considered. The first 10 highest coefficients of the transform are identified and the pulse 

is expressed as the superposition of the corresponding wavelets. The dominant period 

corresponding to the thus isolated pulse is defined as the pseudo-frequency of the 

wavelet (Eqn. (2.6)) corresponding to the highest coefficient, out of the ten used for the 

pulse reconstruction. 

 

 
Figure 5.6. Comparison between alternative pulse period definitions  (see also Appendix D) 

 

The squared Fourier amplitude spectra coefficients of the acceleration pulses are 

computed and the frequency ωp
peak corresponding to the peak values of the spectra is 

identified. The corresponding periods are plotted in Figure 5.6 against the pulse 

dominant periods derived by Baker (2007) in order to examine the correspondence 

between the two definitions. Overall it is observed that the pulse period identified by 

Baker is consistently with at least 20% below the dominant period corresponding to the 

peak frequency characterizing their power spectra. Subsequently, in the ensuing 
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calculations thus, the pulse frequency ωp is taken as the value corresponding to the peak 

of the acceleration pulse Fourier spectral amplitude, i.e. ωp = ωp
peak. 

5.2.4. Pulse period dependent baseline adjustment 

Similar to field recorded accelerograms, artificial time-histories may need baseline 

adjustment to remove spurious low frequency or DC components which lead to 

unrealistic velocity/displacement traces or overestimate structural responses for long 

period structures (Conte & Peng, 1997; Karabalis et al, 2000; Mukherjee & Gupta, 

2002; Boore & Akkar, 2003; Boore & Bommer, 2005). While the source of noise 

corrupting field recorded accelerograms is either the instrumentation used or the human 

error (e.g. digitization of analogue records), in the case of artificial accelerograms this 

has to do with the assumptions made for the purpose of modelling and simulation. The 

approach used herein for obtaining time-histories consists in generating zero-mean 

stationary samples compatible with a given power spectrum, followed by a modulation 

of their amplitude using a time-varying envelope. As explained in Safak & Boore, 

(1988), the amplitude modulation can induce very low-frequency errors which need to 

be removed by means of baseline corrections. As previously mentioned, the corrections 

are performed herein by filtering the samples using an acausal Butterworth high-pass 

filter with a cut-off frequency of 0.63 rad/s (0.1 Hz), value commonly used for this 

purpose in the literature (e.g. Conte & Peng, 1997). 

Since generally the pulses are characterized by very low frequency content, i.e. the 

maximum period identified by Baker for example is of 12.9s, which translates into a 

frequency of 0.49 rad/s (0.08 Hz), careful consideration needs to be paid to baseline 

corrections. While a common cut-off frequency when processing non-pulse 

accelerograms using high-pass filters is 0.63rad/s (0.1Hz), such baseline corrections can 

remove some of the pulse content in the case of pulse-like time-histories and lead to 
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underestimated structural responses. On the other hand, in the case of shorter pulses a 

too low cut-off frequency may allow for too much low-frequency content in the 

simulated time-histories and thus lead to over-estimated responses. This observation is 

confirmed by the “trend” observed in the preliminary estimation of the quality of fitting 

shown in Figure 5.5.  

For this reason, pulse-dependent baseline corrections are applied to the simulated time-

histories. Three period intervals are considered for this purpose:  

- for short pulses ( 4secpT  ) the cut-off frequency of the filter is set to 0.2Hz = 1.25 

rad/s; 

- for medium pulses ( 4sec 6secpT  ) the cut-off frequency of the filter remains set 

to 0.1Hz = 0.63 rad/s; 

- for long pulses ( 6secpT  ) the cut-off frequency of the filter is set to 0.075Hz = 

0.47 rad/s. 

In Figure 5.7, Figure 5.8 and Figure 5.9 the positive impact of the period dependant 

baseline corrections on the mean response spectra for each category of pulses can be 

visualized. 
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Figure 5.7. Impact baseline corrections on the response spectra – average match for shot pulses 

(periods under 4s): (left panel) response spectra when using a uniform baseline corrections; (right 

panel) response spectra when using a pulse dependent baseline corrections  

 

 

 

 
 

Figure 5.8. Impact baseline corrections on the response spectra – average match for medium pulses 

(periods between 4s – 6s): (left panel) response spectra when using a uniform baseline corrections; 

(right panel) response spectra when using a pulse dependent baseline corrections  
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Figure 5.9.Impact baseline corrections on the response spectra – average match for long pulses 

(periods over 6s): (left panel) response spectra when using a uniform baseline corrections; (right 

panel) response spectra when using a pulse dependent baseline corrections 

 

5.2.5. Comparison of the simulated and the actual low-frequency content  

Following the alternative definition employed for the pulse dominant frequency and the 

pulse period-dependant baseline corrections employed, the performance of the model is 

reassessed. The average 5% elastic pseudo-response spectrum across the database is 

plotted in Figure 5.11. The ratios ρ defined in Eq.(5.13), which were previously 

employed for the preliminary investigation of the quality of matching across the 

ensemble, are re-computed. Additionally, the Arias Intensity of the time histories, the 

cumulative absolute velocity and the PGA, PGV, PGD of the time-histories are also 

presented, since such indicators for the quality of simulations have been previously 

employed in the literature (e.g. Conte & Peng, 1997).  

Figure 5.10 shows a satisfactory improvement in the values of the ρ ratios in 

comparison with the values displayed in Figure 5.5. The average response spectra 

across the ensemble plotted together with the average values across the simulations in 
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Figure 5.11 confirm these observations. It can be concluded that the proposed pulse 

model can be calibrated against a given database to satisfactorily simulate on average its 

structural impact in terms of response spectra.    

Further, the potential of the proposed model to generate realistic time-histories is 

explored in terms of the peak ground accelerations, velocities and displacements. The 

values in the database are plotted against the mean values of each corresponding pulse 

process in Figure 5.12. An adequate match is obtained in terms of peak acceleration and 

velocity values, while in the case of displacements the mean value tends to be 

overestimated. In Figure 5.13 similar type of scatter plots show the correspondence 

between the Arias Intensity and the cumulative absolute velocity showing acceptable 

results. 

 

 

 
Figure 5.10. Quality of matching across the database after calibration from a response spectrum 

perspective  
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Figure 5.11. Average response spectra across the database considered  

 

 

 
Figure 5.12. Peak ground acceleration, velocity and displacement of the simulations, compared with 

the values in the database 
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Figure 5.13. Arias Intensity and Cumulative absolute velocity for the simulations, compared with 

the values in the database 

 

5.3. ACCOUNTING FOR RICH LOW-FREQUENCY CONTENT 

The database of pulses considered herein contains one pulse for each record. 

Accordingly, the simplest case scenario was employed for the representation of the 

pulses, namely a single uniformly modulated process. While this appears to be a 

reasonable assumption in general, there are records with richer low-frequency content. 

For example Mukhopadhyay & Gupta (2013b) provide a list of PLGM records from 

which two pulses are extracted, rather than one. For such cases more detailed 

representations are needed in order to obtain accurate simulations.  

In Figure 5.14 the response spectra of the 1971 San Fernando record is plotted. It can be 

seen that the peak elastic displacements are significantly underestimated for periods 

longer than 4sec when a single low-frequency process is utilised. However, when a 

more detailed representation of the low-frequency content is sought by considering two 

low-frequency pulse processes rather than one, an improved representation is obtained. 
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The proposed low-frequency model can thus adapt to more complex representations of 

the low-frequency content encountered in PLGM records. 

 
Figure 5.14. Limitations of the database: the one-pulse assumption 

5.4. PREDICTIVE EQUATIONS FOR LOW-FREQUENCY 

MODELS PARAMETERS 

Based on the results obtained in the previous sections, recommendations for the 

definition of the low-frequency model parameters considering arbitrary seismic 

scenarios in terms of distance and magnitude are provided. 

Regression analysis is performed to estimate the relationship between the pulse period 

and amplitude of the pulse model and the magnitude and closest distance from the 

rupture for the considered database. Similar empirical relationships for the pulse period 

and amplitude have been previously derived in the literature for various sets of records 

(Sommerville 1998, 2003; Alavi & Krawinkler, 2000; Menun & Fu, 2002; Mavroeidis 

& Papageorgiou, 2003; Bray & Rodriguez-Marek, 2004; Baker, 2007).  In Figure 5.15 
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the relationship between the magnitude of the ground motion and the logarithm of the 

period is plotted, together with the relationship proposed by Baker (2007). Although the 

database is the same, a slight difference appears due to the pulse period definition herein 

considered. The relationship obtained for the pulse period becomes 

 
ln 6.06 1.03p WT M 

 (5.14)  

Figure 5.16 presents the relationship between the amplitude CLF and the magnitude and 

distance, given by the formula 

 ln 6.82 0.004 0.995LF WC R M    (5.15) 

 
Figure 5.15. Pulse period versus earthquake magnitude 
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Figure 5.16.  Pulse parameters versus magnitude and closest distance 

 

In order to establish what would make a suitable choice for the instant of peak 

occurrence tp, the time where 45% of total energy accumulates (Dabaghi et al., 2011) is 

estimated for the pulses in the database. The values of tp obtained from fitting the 

envelope function aLF(t) are compared with the values obtained this way. The scatter 

plot in Figure 5.17 confirms that the definition remains valid for the case of pulses. The 

following restriction however needs to be placed when choosing tp in order to ensure 

that the resulting time-histories have physical significance, i.e. zero initial acceleration: 

 
2

p

p

T
t   (5.16) 

 
Figure 5.17. The instant of the peak occurrence tp 

 

Regarding the parameter γLF, the values obtained after performing the fitting across the 

ensemble are plotted in Figure 5.18. The values obtained for the considered database 
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oscillate closely around the average value of 3.4, with a standard deviation around the 

mean of 0.27.  For the definition of the bandwidths B/α and for the appropriate baseline 

corrections to be applied to the simulated time-histories, the approach presented in the 

previous section can be employed. 

 

 
Figure 5.18. The shape parameter γLF 

 

5.5. USE OF THE PULSE-LIKE GROUND MOTION MODEL TO 

REPRESENT FIELD RECORDED ACCELEROGRAMS 

A field recorded pulse-like accelerogram, belonging to the 1999 Imperial Valley 

earthquake - station El Centro #6 is considered herein for illustrative purposes of the 

proposed model potential. The acceleration, velocity and displacement traces are plotted 

in Figure 5.19. The pulse part and the higher frequency part (residual) of the 

accelerogram, as separated by Baker (2007) and depicted in Figure 5.19, are treated 

separately for the calibration of the model. 

The Clough-Penzien spectral form is considered for modelling the power spectrum 

density of the higher frequency (HF) content GHF(ω). Fitting of the analytic spectrum by 

using nonlinear least squares regression is performed in order to obtain the values of the 

parameters. The initial guesses for the parameters ωg and δg characterizing the soil 

conditions are estimated using the empirical formulations provided by Lai (1982). The 
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two alternative LF power spectrum shapes proposed herein are considered for modelling 

the pulse.  

The parameters for the definition of the envelopes are estimated by fitting the analytic 

functions to the envelopes approximated using the approach presented in the previous 

section. When performing the fitting for aHF(t), the parameter bHF was fixed at the value 

estimated based on the effective duration of the residual (Giaralis & Spanos, 2012). For 

aLF(t) the fixed parameter was the pulse frequency ωp. The resulting values for the 

parameters are summarized in Table 5.1. 

 
Figure 5.19 Acceleration, velocity and displacement time traces for the Imperial Valley record - 

station El Centro #6 

 

 

Table 5.1. Parameters for the simulation of the Imperial Valley – station El Centro #6 accelerogram 

High frequency 

aHF 
CHF = 0.53 m/s

2
 

b = 0.5 s
-1

 

GHF 

ζf  = 0.55 

ω f  = 2.33 rad/s 

ζf  = 0.32 

ω f  = 21 rad/s 

Low frequency 

(pulse) 
aLF 

CLF = 1.65 m/s
2
 

ωp = 1.65 rad/s 

γ = 2.89 
t0 = 6.96 s 
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GLF 
ωp = 1.65 rad/s 
B  = 1.65 rad 

α = 0.50 

 

Ensembles of 200 realizations, compatible with each process (COS, BOX and HF), are 

generated using the spectral representation method (Appendix C). The time histories 

have a total duration of 40s and a time step 0.005s. They are subjected to baseline 

corrections performed by forward/backward high-pass filtering the time-histories using 

a Butterworth filter (Giaralis & Spanos, 2012). Following the methodology presented in 

Figure 4.10, the HF samples are superposed to the LF samples resulting in pulse-like 

time-histories. Arbitrary sample accelerograms corresponding to each process 

(HF+BOX and HF+COS) and the corresponding velocity and displacement traces are 

shown in Figure 5.20. 

  
Figure 5.20 Sample of the HF+COS process (left) and of the HF + BOX process (right) generated 

for the simulation of the Imperial Valley record 

 

  
Figure 5.21 Displacement samples of the HF+COS process (left) and HF + BOX process (right) 

superposed to the Imperial Valley displacement (dashed line)  
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In Figure 5.21 several synthetic displacement traces are compared with the original 

time-history. It can be seen that the variability ensured by the model in the 

characteristics of the pulses i.e. phase and number of oscillations, amplitude, instant of 

the peak value is taken into account. This qualitative observation shows the applicability 

of the considered stochastic model to generate realistic PLGM time-histories while 

ensuring a level of “randomness” within a Monte Carlo analysis context. 

Further, the performance of the model in generating structural responses comparable 

with the recorded accelerogram is investigated. For this purpose, the average elastic and 

inelastic response spectra for 5% damping ratio corresponding to each process are 

compared. For the inelastic response spectral ordinates, a ductility factor μ = 2 is 

considered. This factor represents the ratio between the maximum displacement of a 

bilinear hysteretic single-degree-of-freedom (SDOF) oscillator and the displacement 

which causes yielding under a given excitation. The ratio between the initial stiffness 

and the post-yielding stiffness is taken α = kelastic/kplastic = 0.05. Basic statistics (mean 

and standard deviation) on the spectral responses for each process are superposed to the 

target values corresponding to the original accelerogram in Figure 5.22. Finally, the 

following response ratio between the average displacement spectrum of each process 

and the displacement spectrum of the field recorded accelerogram is defined: 
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A similar indicator was previously used by Fu & Menun (2004) for assessing the quality 

of their simulations. The response ratios for the HF+COS process (top panel) and for the 

HF+BOX process (bottom panel) are shown in Figure 5.23.  

A good overall agreement is observed between the spectral responses derived for the 

simulated time-histories and those corresponding to the target accelerogram. The mean 
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response spectral values for each ensemble fluctuate closely around the target value 

regardless of the option LF spectral shape chosen. A better agreement is observed for 

longer periods (greater than 2sec) in comparison with shorter periods, where the 

response is controlled by the higher frequency content. An improved matching may be 

obtained by employing more sophisticated models for representing the higher frequency 

content which can capture more accurately its characteristics (e.g. Conte & Peng, 1997; 

Yamamoto & Baker 2011, 2013).   

 

   

  
Figure 5.22. Elastic response spectra of the HF+BOX and HF+COS processes (left). Inelastic 

response spectra of the HF+BOX and HF+COS processes for a ductility factor μ=2 (right) 

 

 
Figure 5.23 Response ratio for the HF+COS and HF+BOX processes  
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5.6. INCLUSION OF PULSES IN ACCELEROGRAMS 

COMPATIBLE WITH THE EUROCODE 8 SEISMIC 

RESPONSE SPECTRA  

The extensive amount of damage experiences in the areas affected by PLGMs calls for 

incorporation of regulations in this regard in the structural design standards. 

Accordingly, valuable research is devoted to evaluating the probability to experience 

such ground motions, especially for sites located close to seismic faults (Iervolino & 

Cornell, 2008; Shahi & Baker, 2011; Chioccarelli & Iervolino, 2013). Further, the 

incorporation of pulses effects in design ground motions for the purposes of nonlinear 

response history analysis is also explored (e.g. NEHRP Consultants Joint Venture, 

2011; Almufti et al, 2013).  

In this context, the herein proposed model is employed for including pulse effects in 

accelerograms in an alternative manner. Consider a Clough-Penzien evolutionary power 

spectrum compatible with the elastic response spectrum of the European EC8 aseismic 

code (CEN 2004) (Giaralis & Spanos, 2012). Assuming this represents the HF content 

of a pulse-like process, by adding at least one low-frequency process to model the 

characteristic pulses, a code-compatible pulse-like process is obtained in virtue of Eqn. 

(4.5). In Table 5.2 the parameters for defining a Eurocode 8 -compatible process for a 

specific scenario are provided (Giaralis & Spanos, 2012); for generating the pulse part 

the LF processes derived in the previous section are considered (Table 5.1).  

 

Table 5.2. Parameters for defining the HF content compatible with EC8 spectrum (Giaralis & 

Spanos 2012)  

High frequency 

 

PGA = 0.36g; Soil B; 

damping ratio 5% 

aHF 
CHF = 0.18 m/s

2
 

b = 0.58 s
-1

 

GHF 

ζf  = 0.90 

ω f  = 2.33 rad/s 

ζf  = 0.78 

ω f  = 10.73 rad/s 
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Random time-histories compatible with the pulse-like EC8 and pulse-free EC8 

compatible processes are shown in Figure 5.24. By inspecting the peak elastic and 

inelastic structural responses illustrated in Figure 5.25, the major impact of pulses 

especially for periods longer than 2s can be clearly observed. It can be concluded that 

this approach may represent a viable alternative to spectrum matched accelerograms for 

accounting for pulse effects.  

 

 
Figure 5.24 Acceleration samples compatible with EC8: pulse-free (a) and pulse-like (b, c)  

 

  

Figure 5.25. Elastic response spectra for pulse-like EC8 compatible processes (left). Inelastic 

response spectra for pulse-like EC8 compatible for a ductility factor μ=2 (right). 
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CHAPTER 6 : PERFORMANCE ASSESSMENT OF 

WAVELET-BASED REPRESENTATION 

TECHNIQUES FOR THE CHARACTERIZATION OF 

PULSE-LIKE GROUND MOTIONS 

6.1. PRELIMINARY REMARKS 

In recent years, wavelet-based and other TFR techniques have been employed for 

signals‟ representations on the time-frequency plane in various structural dynamics 

applications. The review paper of Spanos & Failla (2005) for example provides an 

overview of the topics investigated using these methods, which range from denoising, 

characterization or simulation of signals, to damage detection and modal identification. 

In this context various TFR methods have been also employed for the analysis and 

characterization PLGM records, as reviewed in Chapter 3. Although TFR techniques are 

quite mature from the theoretical viewpoint, their effectiveness in signal representation 

and feature extraction remains case-dependant. Along these lines, comparative 

assessments of the performance of certain TFRs for analysing recorded PLGMs have 

been considered in the literature (e.g. Yaghmaei-Sabegh, 2010; Vassiliou & Makris, 

2011; Mollaioli & Bosi, 2012). However, the issue of which technique is more 

appropriate to apply for the analysis of PLGMs remains open. This is caused mainly by 

some built-in limitations of the performance of TFR techniques when dealing with such 

signals which, as previously discussed, are characterized by rich and broadband 

frequency content.  
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An investigation on the performance of several such methods which have been 

previously used in seismic related applications, namely the HWT, MWPT, ST and EMD 

is carried out in this chapter. Contrary to previous comparative studies of limited scope 

which use specific recorded PLGM records for the purpose, this numerical 

experimentation uses artificial pulse-like processes/accelerograms, with known 

properties. Specifically, the PLGM model proposed in Chapter 4 is considered. Two 

Monte Carlo simulation-based methodologies are considered for assessing the 

performance of TFR techniques for PLGMs. The first one evaluates the potential of the 

wavelet-based techniques to characterize the underlying energy distribution of pulse-

like ground motion processes, using an approach previously employed in the literature 

to benchmark TFR techniques for pulse-free ground motions. The second methodology 

is novel and has been developed for the purpose of this study to investigate the quality 

of the pulses extracted from synthetic accelerograms by comparing them with the low-

frequency content of the PLGM stochastic model. The previously mentioned wavelet-

based techniques, together with the EMD, are employed for filtering out the pulses; 

several indicators are considered for evaluating the impact of the techniques on the 

quality of the information extracted. 

The numerical results obtained reason the use of wavelet-based techniques for 

characterization of PL accelerograms and, if used with care, for identification and 

extraction of pulses. This is exemplified by considering three field recorded 

accelerograms, classified as being of pulse type. 

6.2. DESCRIPTION OF THE SYNTHETIC PULSE-LIKE 

PROCESSES 

The performance of the herein considered TFR techniques is assessed by considering 

artificial time-histories, rather than field recorded, since their main attributes are user 
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defined and thus known in advance. The pulse model proposed in Chapter 4 is 

employed for generating pulse-like processes. The regressive relationships developed in 

Chapter 5 are used for obtaining the values of the parameters considering specific 

seismic scenarios in terms of magnitude and distance.  

Firstly some basic statistics on the pulse periods and magnitudes characterizing records 

in the herein considered database (Appendix D) are obtained. In Figure 6.1 a probability 

distribution fitting of the pulse periods in the database is performed. A lognormal 

distribution offers a reasonable fit for the data considered. Based on this information, 

the pulses in the database are separated in two groups – the “short” pulses with periods 

under 4sec which characterize the majority of the PL records (over 50% of the database) 

and the “long” pulses with periods over 4sec. Accordingly, two scenarios are 

considered: one representative for the “short” pulses, i.e. an earthquake of magnitude of 

6.5 and distance of 10km and a second one, specific to the more extreme cases 

characterized by longer period pulses, i.e. magnitude of 7.5 at the same distance from 

the rupture. The parameters for the definition of the pulse-processes are reported in 

Table 6.1.  

 
Figure 6.1. Probability distribution fitting of pulse periods across the database considered 
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Figure 6.2. Statistics for the pulse periods and magnitudes in the database 

 

For modelling the power spectral density of the pulses, the box-like and the raised-

cosine shapes are used. A uniformly modulated Clough-Penzien spectral shape is 

considered to represent the higher frequency content. The parameters of the high-pass 

filter ωf and δf are appropriately chosen to ensure the LF and the HF contents do not 

overlap. After superposing the LF content with the corresponding HF content as given 

in Eq. (4.5) and illustrated in Figure 4.5, four pulse-like processes are obtained: two for 

the short pulses (SCOS and SBOX) and two for the long pulses (LCOS and LBOX). 

Collections of 250 pulse-like samples compatible with each process are generated using 

the spectral representation method (Appendix C). The time-histories have a total 

duration of 40s and are sampled at a time step dt = 0.01s, which allows for a maximum 

frequency of 314 rad/s. The samples are baseline corrected by forward/backward 

filtering them with a Butterworth filter of order 2 and a cut-off frequency of 0.2Hz for 

the SEPSDs and 0.15Hz for the LEPSDs. Following the methodology presented in 

Figure 4.10, pulse-like accelerograms are obtained by superposing the LF and HF 

samples. 
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Table 6.1. Parameters for defining pulse processes  

SEPSD 

 

 
Mw = 6.5 

R = 10 km 

High frequency 

aHF 
CHF = 0.18 m/s

2
 

b = 0.58 s
-1

 

GHF 

ζf = 0.90 
ωf = 15 rad/s 
ζg = 0.78 
ωg = 10.73 rad/s 

Low frequency 
(pulse) 

aLF 

CLF = 2.02 m/s
2
 

ωp = 3.32 rad/s 
γ = 3.40 
t0 = 5 s 

GLF 
ωp = 3.32 rad/s 
B = 3.32 rad 
α = 0.50 

LEPSD 

 
 

Mw = 7.5 
R = 10 km 

High frequency 

aHF 

CHF = 0.18 m/s
2
 

b = 0.58 s
-1

 

GHF 

ζf = 0.90 
ωf = 5 rad/s 
ζg = 0.78 
ωg = 10.73 rad/s 

Low frequency 
(pulse) 

aLF 

CLF = 0.7 m/s
2
 

ωp = 1.20 rad/s 
γ = 3.40 
t0 = 5 s 

GLF 
ωp = 1.20 rad/s 
B = 1.20 rad 
α = 0.50 

6.3. ASSESSMENT IN TERMS OF ENERGY DISTRIBUTION 

6.3.1. Methodology  

Considering a TFR technique which locally and globally conserves the energy of the 

signal (Eq. (2.23)), the EPSD characterizing non-stationary processes can be 

approximated from the coefficients of the transform in the following way (Spanos & 

Failla 2004, 2005; Spanos et al., 2005; Liang et al., 2007; Huang & Chen, 2009; 

Giaralis & Spanos, 2009; Spanos & Kougioumtzoglou, 2012):  

  
2

( , ) ,EPSD t E TFR t  
 

 (6.1) 
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where the operator E[∙] represents the mathematical expectation value (i.e. the ensemble 

average). The degree of accuracy in the previous equation depends on the time 

localization properties of the analysing functions and on the degree of variation of the 

envelope. Consequently, it has been shown that the relationship holds for “slowly” 

varying envelopes (Spanos & Failla 2004, 2005; Spanos et al., 2005).  

TFR techniques have been previously employed in the literature for estimating the 

underlying EPSD characterizing various types of non-stationary processes. Spanos & 

Failla (2004) compared the performance of three types of wavelets for estimation of 

analytically defined EPSDs. In a later study of Spanos et al. (2005) harmonic wavelets 

are assessed in EPSD estimation for artificial and recorded time-histories. Liang et al. 

(2007) employ the STFT, Morlet WT and EMD in a comparative study for the 

evaluation of a field recorded accelerogram EPSD. Harmonic wavelets have been used 

by Spanos & Kougioumtzoglou (2012) for the evaluation of the EPSD in the case of 

non-linear oscillators‟ responses. 

The MWPT and HWT are employed herein for the estimation of the underlying EPSD 

of PLGMs (Eq.(4.5)) due to their energy conserving properties (Section 2.4), in order to 

assess their performance following the methodology presented in Figure 6.3. The 

average energy distribution of each ensemble of PLGM process realizations is 

compared with the theoretical EPSD in virtue of the Eq. (6.1). The attention is focused 

on the potential of each technique to identify the benchmark low-frequency content, in 

the presence of notable high frequency content as encountered in recorded 

accelerograms. As discussed in Section 4.2, from a signal processing perspective the 

latter can be interpreted as high frequency coloured noise corrupting the low-frequency 

(pulse representative) content. The comparisons are made under the assumptions that 

the time envelopes corresponding to each component process are varying slowly enough 
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to ensure the equality in Eq. (6.1) and that a sufficiently large number of EPSD 

realisations are considered.  

Additionally, the ST is considered for the characterization of the energy content of the 

pulse-like processes by evaluating the average TFR of the ensembles of realisations. It 

emphasized herein that the ST is not an energy conserving TFR due to the type of 

normalization employed for the analysing function (see also Section 2.4.3), thus it 

cannot be used for EPSD estimation. 

 

 
Figure 6.3. Assessment of time-frequency representations via the EPSD 

6.3.2. Numerical results 

The TFRs of the accelerograms corresponding to each pulse-like process are obtained 

by means of the ST, the HWT and the MWPT. Prior to being processed with any TFR 

technique, the samples are zero-padded up to the next power of 2 in order to increase 
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the speed of the calculations and to diminish the end-effects (Giaralis & Lungu, 2012). 

In order to obtain satisfactory representations given the broad frequency content of the 

time-histories, two different resolutions (i.e. levels of detail) are considered when 

performing the MWPT and the HWT depending on the frequency interval analysed, as 

shown in Table 6.2. The values for the parameters (window width for the HWT and 

level of decomposition for the MWPT) are selected upon extensive numerical 

experimentation considering the quality of approximation in Eq. (6.1) in terms of 

energy leakage, location of the peaks on the time-frequency plane, locus of the maxima 

(i.e. ridges) for the LF and HF content and other pertinent criteria.   

 

Table 6.2. Frequency dependant level of resolution employed for each type of wavelet transform  

Wavelet Transform 
Frequency bandwidth 

(0 – 10) rad/sec (10 – 314) rad/sec 

HWT 
δω = 0.5 rad/sec 
(δω = (n1-m1)Δω) 

δω = 2 rad/sec 
(δω = (n2-m2)Δω) 

MWPT 
Depth of wavelet tree: 

Level 9 
(δω = 0.61 rad/sec) 

Depth of wavelet tree: 
Level 7 

(δω = 2.45 rad/sec) 

 

 

Contour plots of the theoretical EPSD, the estimated EPSDs by means of the MWPT 

and HWT, together with the average TFR obtained using the ST for the four pulse-like 

processes are pictured in Figure 6.4 - Figure 6.7. Although diverse in appearance, the 

techniques considered offer satisfactory representation of the energy density 

distributions in the case of the “short” pulses. Regarding the LEPSDs, characterized by 

very low frequency energy, the ST offers the clearest representation. An expected side-

effect when using wavelet-based techniques is the leakage of the energy content towards 

higher frequencies, which is sometimes combined with a shift of the predominant 
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frequencies towards higher values. This is clearly visible for all the representations, 

being slightly more accentuated in the case of the ST.  

In general, the existence of two patches of energy with different locations on the TF 

plane corresponding to each component process can be identified. This is readily visible 

for the cases where COS shapes are used for modelling the pulses and for the short 

processes. In Figure 6.8 and Figure 6.9 the ridges of the HF and LF contents identified 

by each technique for each process are compared with the target values. For the chosen 

time-frequency discretizations, the LF content is well localized in frequency. The HF 

content is closely approximated by the HWT, while the ST presents the most significant 

shift in peak values.   

 

 

 

 

 
Figure 6.4. Theoretical EPSD for the SCOS process. EPSD estimated via HWT and MWPT. 

Average TFR using the ST 
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Figure 6.5. Theoretical EPSD for the SBOX process. EPSD estimated via HWT and MWPT. 

Average TFR using the ST 

 

 

 

 

 

 
Figure 6.6. Theoretical EPSD for the LCOS process. EPSD estimated via HWT and MWPT. 

Average TFR using the ST 



Chapter 6  Performance of time-frequency representation methods 

 

113 

 

 

 
Figure 6.7. Theoretical EPSD for the LBOX process. EPSD estimated via HWT and MWPT. 

Average TFR using the ST 

 

 

 
Figure 6.8. Identification of the low-frequency (left panel) and high frequency ridges (right panel) 

for the short processes: SCOS (top) and SBOX (bottom) 
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Figure 6.9. Identification of the low-frequency (left panel) and high frequency ridges (right panel) 

for the long processes: LCOS (top) and LBOX (bottom) 

 

 

While in general any of the considered techniques performs reasonably well for pulse 

identification, when very low frequency content exists in the accelerograms the ST 

achieves better performance in identifying simultaneously the LF and the HF content, 

while employing a uniform resolution over the entire time-frequency plane.  

The GHWT and the MWPT are able to identify the low frequency content in 

accelerograms if a very fine discretization is used in the corresponding frequency 

bandwidth. However, for establishing the limits of the bandwidth where such a 

discretization is needed, the user‟s subjective input is needed. In order to avoid this, it 

appears tempting to employ a constant and very fine discretization  of the frequency 

axis; this results into a very broad discretization in time. While in the case of very low-

frequencies this is not a significant issue given the short duration of earthquake records, 

when looking at higher frequencies such long time-windows lead to poor time 

localization and visibility. This is caused by the fact that the windows used for these 
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techniques are commonly normalized to have unit energy and thus the high frequency 

energy is spread over time. The use of a unique resolution is therefore not optimal for 

broadband signals like the accelerograms; in order to obtain a good visibility over the 

entire TF plane, several windows sizes need to be used in the analysis. As a matter of 

fact, this is the reason why pulse identification in generally performed on the velocity 

time histories, which constitute low-passed filtered versions of the accelerograms (as 

discussed in Appendix A) and thus have narrower bandwidth (see also Moustafa & 

Takewaki, 2010).  

The results reported herein offer an insight in the potential of the ST, HWT and MWPT 

for pulse identification in accelerograms. Overall, the three techniques have the ability 

to identify the presence of the very low-frequency characterizing pulse-like processes. 

Although subjected to limitations, the ST has better performance in identifying 

simultaneously the LF and the HF content, while employing a uniform resolution over 

the entire time-frequency plane, which implies minimum subjective intervention. From 

this perspective, it can thus be used as a preliminary technique for identifying the 

potential presence of pulses. Based on the information obtained this way, the 

advantageous bandwidth-dependent detailing offered by the MWPT or the HWT can be 

utilized for characterization purposes in a reliable way, focusing on the frequency 

content of interest. 

6.4. ASSESSMENT IN TERMS OF RECONSTRUCTED PULSES 

6.4.1. Methodology 

A second comparison is made to assess the performance of TFR techniques for PLGMs 

following the novel benchmark methodology detailed in Figure 6.10. As previously 

presented in Chapter 4 and in Figure 4.10, pulse-like accelerograms are obtained by 
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superposing the low-frequency samples (LFSs) modelling the “pulses” with the higher 

frequency samples.  

 

 
Figure 6.10. Assessment of time-frequency representations via reconstructed pulses  (RP) 

 

Herein, the ST, HWT, MWPT and the EMD are employed for extracting the pulses 

from the resulting accelerograms and their performance is evaluated by comparing these 

pulses with the original LFSs. The following steps are taken for this purpose:  

- The time-frequency decompositions of the analysed signals are performed using 

each technique. 
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- The frequency bandwidth expected to characterize to the low-frequency content (i.e. 

pulses) is established. 

- Based on the inversion properties of the considered techniques (discussed in Chapter 

2), the signals corresponding to the LF bandwidth are restored. The corresponding 

signals are referred to as the “reconstructed pulses” (RPs).  

- Comparison between the RPs and the LFSs is performed by considering several 

indicators of the level of similarity. It is expected to obtain this way an insight into 

the impact of the TFR methods on the synthesized information. 

6.4.2. Frequency bandwidth 

Based on the statistics obtained for the periods in the database considered in this study 

(Figure 6.1 and Figure 6.2), in the ensuing numerical experimentations the frequency 

interval considered to be generally representative for the low-frequency content is set to 

[0, 5] rad/s. This corresponds to pulse components with periods longer than 1.25 sec.  

Although for the artificial processes considered herein the frequency range of the LF 

process is known prior to the analysis, this type of assumption needs to be made when 

blindly analysing field recorded accelerograms. The aim herein is to clarify its influence 

on the accuracy of the extracted pulses and to be taken into account when assessing the 

performance of the techniques.  

6.4.3. Reconstruction of pulses  

In the case of the wavelet-based techniques (HWT, MWPT and ST) the RP signals are 

retrieved from the decompositions using Equations (2.24) and (2.41), by performing the 

frequency integration over the herein considered low-frequency bandwidth. 

Additionally, the EMD is also considered for the reconstruction of pulses since it has 

emerged in the recent years as a technique suitable for analysing and characterizing 
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seismic signals. As remarked in previous chapters, the most attractive advantage of the 

EMD consists in its high adaptability to the data, while one of its most relevant 

disadvantages appears to be its resistance to statistical analysis. This is mainly caused 

by the fact that the number of IMFs and their frequency content varies from record to 

record. Since a large number of records are analysed herein, an algorithm for selecting 

the IMFs capturing the pulse is needed. After careful numerical experimentation, an 

energy-based procedure is developed for identifying and isolating the pulses. This 

choice is motivated by the fact that energy-based approaches have been previously used 

in the literature to separate the pulse-part from the remaining frequency content (i.e. 

Loh et al., 2001). The following steps are taken in order to identify the IMFs 

contributing to the low-frequency content: 

1. The total energy of the record and of each decomposing IMF are computed (Eq. 

(2.3)). The IMFs contributing more than 1% to the total energy of the record are 

identified: 

 

max
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0
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IMF

IMF d

En

F d




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 




 (6.2) 

The amount of energy located in the low-frequency interval (up to 5rad/sec in this case) 

is estimated: 
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
  (6.3) 

The IMFs satisfying the following condition are retained: 
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05 0.5IMFEn   (6.4) 

The RP is obtained as a summation of the selected IMFs. Appropriate baseline 

corrections are applied to the isolated pulses in order to remove numerical errors 

induced by the algorithm.  

6.4.4. Quality of the reconstructed pulses  

6.4.4.1. Degree of correlation  

A first indicator used to investigate the accuracy of the information extracted from the 

accelerograms is the correlation coefficient between the each RP and the corresponding 

LFS signal. This coefficient indicates the existence of a linear relationship between the 

considered signals and is given by the equation: 

  
  

, , 1,...,
i i

i i

i RP i LFS

i i

RP LFS

E RP LFS
Corr RP LFS i N

 

 

  
    (6.5) 

where N is the number of samples considered, μ stands for the mean, σ for the standard 

deviation of the samples and E[∙] represents the expectation. The correlation coefficient 

varies in the interval [-1; 1], indicating positive or negative correlation of the analysed 

data. Perfect linear dependence exists when Corr takes the values +/-1.  

6.4.4.2. Pulse indicator 

Pulse indicators (PI) are parameters which quantify the contribution of the extracted 

pulses to the pulse-like records. Several such indicators exist in the literature; they are 

defined based on various properties of the pulses and of the records, like peak ground 

velocity and energy (Baker, 2007), inner products between the records and the pulses 
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(Vassiliou & Makris, 2011), intensity of the pulses (Zamora & Riddell, 2011) or energy 

between consecutive zero-crossings (Mukhopadhyay & Gupta, 2013a). They are 

commonly employed for classification purposes when analysing sets of records. 

Herein, the following PI proposed by Vassiliou & Makris (2011) is used in a different 

context, namely for TFR assessment purposes. Since no indication of any connection 

between PIs and the approach used for analysis/pulse extraction procedure is provided 

by the authors, it is assumed that it represents an appropriate choice. 

 

 
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2 2
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 (6.6) 

In the previous definition the terms PLGMu and PLGMu represent the acceleration and 

velocity traces of the ground motion, while Pa
 

and Pv
 

represent the extracted 

acceleration pulse and its corresponding velocity trace, which is obtained through 

integration from ap. In the ensuing calculations, the PI is first calculated considering the 

LFSs are the pulses, i.e. 

 ;
i iP i P ia LFS v LFS dt    (6.7) 

Secondly, the RPs obtained using each TFR technique are considered for the evaluation 

of the PI, meaning that 

 ;
i iP i P ia RP v RPdt    (6.8) 
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The number of time-histories which qualify as being of pulse-type for pulses extracted 

using the TFR methods is compared with the LFS case, which represents the target case.  

It is noted herein that similar approaches have been employed by Yaghmaei-Sabegh 

(2010) and Vassiliou & Makris (2011) for assessing the performance of various 

wavelets on pulse extraction, by considering field recorded time-histories.  

6.4.4.3. Response spectra 

In terms of peak structural responses, the elastic and inelastic pseudo-response spectra 

for 5% critical damping are evaluated and compared for the RPs and the corresponding 

LFS signals. For the inelastic responses a pre/post yielding stiffening ratio of 0.05 is 

considered, and the responses for three alternative ductility factors of μ = 2, 4 and 8 are 

computed. The contribution of the reconstructed pulses RP to the total structural 

response is evaluated by defining the following pulse response ratio: 

  
( )

,
( )

pulse

d

record

d

E S T
T

E S T
 

  
  

 (6.9) 

and compared to the target values obtained for the cases of the LFSs. 

6.4.5. Numerical results 

A total number of 1000 artificial pulse-like accelerograms, coming from 4 different 

pulse-like processes, are analysed. In Figure 6.11 and Figure 6.12 two such 

accelerograms, one compatible with the SCOS process (Figure 6.4) and the other with 

the LBOX process (Figure 6.7) are pictured together with the corresponding velocity 

and displacement traces. The pulses reconstructed from each accelerogram (RPs) using 

the TFR techniques are displayed superposed to the original LFS signals. The frequency 

bandwidth for the reconstruction is set to the interval [0, 5] rad/sec, as previously 
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discussed. Note that in the case of the MWPT, the actual bandwidth of the pulses is 

slightly limited by the dyadic discretization of the frequency axis, the resulting pulses 

having the frequency content [0, 5.49]rad/sec. 

 
Figure 6.11. Pulse-like accelerogram (arbitrary sample of the SCOS process). Left panel: 

acceleration, velocity and displacement traces. Right panel: corresponding LF sample (grey) versus 

reconstructed pulses RPs (black) 

 

 
Figure 6.12. Pulse-like accelerogram (arbitrary sample of the LBOX process). Left panel: 

acceleration, velocity and displacement traces. Right panel: corresponding LF sample (grey) versus 

reconstructed pulses RPs (black) 
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The correlation coefficients defined in Eq. (6.5) are determined. Scattered plots of the 

values obtained for each process and for the case of each technique considered are 

presented in Figure 6.13÷Figure 6.16. Table 6.3 lists the average correlation coefficient 

for each case and information on their level of dispersion expressed in terms standard 

deviation around the mean. High positive correlation values are generally obtained for 

the “short” pulses, with very good agreement for pulses extracted by means of ST and 

HWT. This confirms the suitability of the proposed techniques for reconstructing 

(filtering) pulses from accelerograms and also indicates that the frequency interval 

considered for this purpose ([0, 5] rad/sec) is relevant for extracting the pulses. 

Regarding the “long” pulses, the ST and the HWT still offer the closest representation; 

however the correlation is weaker overall, with higher dispersion around the mean 

values. This is caused by the fact that for such low frequency content of the pulses, the 

reconstruction frequency interval of [0, 5] rad/s is too large, allowing for too much 

higher frequency content compared to the target pulses (see also Figure 6.12). In the 

case of the MWT, the freedom of controlling the frequency interval is restricted by the 

dyadic discretization of the time-frequency plane, the pulses extracted are the least 

similar to those in the input. 

  

 Table 6.3 Mean value and standard deviation of the correlation coefficients between the 

reconstructed pulses and the low-frequency samples 

  MWT HWT ST EMD 

  μ σ μ σ μ σ μ σ 

S
h

o
rt

 COS 0.90 0.09 0.98 0.02 0.97 0.03 0.88 0.11 

BOX 0.90 0.08 0.95 0.03 0.94 0.04 0.85 0.13 

L
o

n
g

 COS 0.48 0.15 0.76 0.13 0.78 0.12 0.58 0.21 

BOX 0.47 0.14 0.75 0.12 0.76 0.11 0.59 0.20 
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Figure 6.13. SCOS pulses – correlation between the LF samples and the reconstructed pulses  

 

 

 
Figure 6.14. SBOX – correlation between the LF samples and the reconstructed pulses  
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Figure 6.15. LCOS – correlation between the LF samples and the reconstructed pulses  

 

 

 

 

 
Figure 6.16. LBOX – correlation between the LF samples and the reconstructed pulses  
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The pulse indicator PI given in Eq. (6.6) is calculated for each time-history analysed, 

alternatively using the RPs and the LFSs. The percentage of records qualifying as being 

of pulse-type out of the total number for each case is listed in Table 6.4. The high 

percentage of records classified as being of pulse-type based on the contribution of the 

LFS to the accelerograms proves its suitability for the herein considered experiment. 

The number of records classified as being of pulse-type is very accurate for the case of 

the ST and HWT and slightly overestimated when using the MWPT for reconstruction.  

Finally the contribution of the RPs and of the LFSs to the structural responses is 

evaluated (Eq. (6.9)). The values of ψ ratios are displayed in Figure 6.17-Figure 6.20 for 

natural periods ranging from 0.1 to 10 s and for the elastic case (μ = 1) or when various 

levels of inelastic response are considered (μ = 2, 4, 8).  

It can be observed that for periods longer than 2 sec (for “short” pulses) or 4 sec (for 

“long” pulses) the structural responses are controlled by the low-frequency content and 

they are well captured by the RPs using the wavelet based techniques. This is expected 

having in mind that the approach used for extraction is to reconstruct the signal 

corresponding to the lowest frequency bin. Incongruities appear however around the 

value of the natural period where the pulse begins to control the structural behaviour. 

This has to do with the upper limit of the frequency bin considered for the pulse 

reconstruction, confirming the previous observations regarding its overestimation for 

the extraction of “long” pulses. As a result, the contribution of the reconstructed pulses 

to the structural responses is constantly overestimated for these cases. It is thus 

important to be careful when choosing the interval relevant for the pulse reconstruction. 

However, once the frequency content of the pulses is established, the corresponding 

pulse-signal reconstructed using the wavelet based techniques considered herein offers 

reliable approximation. 
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In what concerns the RPs obtained using the EMD, the numerical results are relatively 

poor in comparison with the wavelet-based techniques. This is understandable since it is 

indeed challenging to establish criteria for the selection of the IMFs which are part of 

the LF pulse. As an exemplification, while in the case of the artificial time-histories an 

amount of 50% of the energy located in the [0, 5] rad/s leads to a reasonable 

approximation of the pulse, when field recorded accelerograms were analysed such a 

percentage did not ensure an appropriate isolation of the pulse and a smaller energy 

threshold (i.e. 20%) needed to be set. From this perspective, the numerical experiments 

performed justify the fact that in the literature the empirical mode decomposition is 

usually employed for the characterization of specific records, rather than in an 

automated type of signal processing protocol of the accelerograms. 

 

 

Table 6.4 Percentage of records identified as being of pulse-type based on the pulses extracted using 

several time-frequency representation techniques  

  LF samples 
% 

MWT 
% 

HWT 
% 

ST 
% 

EMD 
% 

S
h

o
rt

 COS 98 99.2 98.4 98.4 85.2 

BOX 98.4 100 98.8 98.4 83.6 

L
o

n
g

 COS 90.8 100 96.4 96.0 57.6 

BOX 96.8 100 97.6 97.6 64.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6  Performance of time-frequency representation methods 

 

128 

 

 
 

Figure 6.17. Average pulse response ratios for the SCOS samples for ductility factors μ = 1, 2, 4, 8 

 

 

 
 

Figure 6.18. Average pulse response ratios for the SBOX samples for ductility factors μ = 1, 2, 4, 8 
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Figure 6.19. Average pulse response ratios for the LCOS samples for ductility factors μ = 1, 2, 4, 8 

 

 

 
Figure 6.20. Average pulse response ratios for the LBOX samples for ductility factors μ = 1, 2, 4, 8 
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6.5. FIELD RECORDED ACCELEROGRAMS 

The wavelet-based techniques considered herein are employed for extracting the low-

frequency content from three field recorded pulse-like accelerograms: the 1979 San 

Francisco (station Pacoima Dam), the 1989 Loma Prieta (station Saratoga) and the 1994 

Northridge (Rinaldi Receiving Station). Figure 6.21, Figure 6.25 and Figure 6.29 

display the time-domain and frequency domain representations of the acceleration, 

velocity and displacement traces; the TFR obtained for the accelerograms using the ST 

and the energy distributions obtained by means of HWT and MWPT are also shown. 

The pulses are extracted from these time-frequency representations of the records by 

reconstructing the sub-signals corresponding to [0, 5] rad/s bandwidth and can be seen 

in Figure 6.22, Figure 6.26 and Figure 6.30 together with the corresponding velocity 

traces. The pulses approximated by Mavroeidis & Papageorgiou (2003) and Baker 

(2007) for each case, are also plotted for reference. 

In the case of the San Fernando and Loma Prieta earthquakes, the velocity traces 

corresponding to the pulses extracted from the accelerograms offer a very good match 

to the original velocity traces. In comparison with the fitted pulses, the reconstructed 

pulses offer a more compete image, accurately capturing all the LF oscillations. This is 

an expected outcome since they are obtained by low-pass filtering the actual 

accelerogram.    

Further the 5% elastic response spectra (i.e. μ = 1) and the 5% inelastic responses 

considering the ductility factors of μ = 2, 4 and 8 and a 0.05 elastic-to-plastic stiffening 

ratio are calculated. In Figure 6.23-Figure 6.24, Figure 6.27-Figure 6.28, Figure 6.31-

Figure 6.32 comparative plots for each type of pulse are displayed.  

Notice that in the case of the San Francisco and Loma Prieta records, a very good 

estimation of the structural responses for the cases where the response is controlled by 

the pulse is obtained. The reconstructed pulses offer a significantly better approximation 
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that in the case of the pulses obtained fitting wavelets to the velocity traces (Baker, 

2007), due to the fact that the entire low frequency content in extracted. A less accurate 

approximation is obtained for the Northridge record, where the first peak in the spectral 

responses is not captured by the reconstructed pulses. This implies the frequency 

interval taken as being representative for the low-frequency content is not broad enough 

to capture all its effects for the case of this record and should be extended. By looking at 

the velocity traces in Figure 6.26, the presence of a higher frequency component 

overriding the low-frequency pulse and not incorporated in the reconstructed pulses is 

observed.  

Regarding the extraction of the pulses from recorded time-histories, the approach 

commonly used (with some exceptions, e.g. Mukhopadhyay & Gupta, 2013) is to fit  

various waverforms to the time-histories or, alternatively, their response spectra to the 

record‟s pseudo-velocity spectra. The purpose is to use the thus extracted pulses either 

for the calibration of proposed pulse models or, in other cases, for investigating their 

impact on structural responses. The identification/extraction is commonly made on the 

velocity trace. The velocity represents a low-pass filtered version of the accelerogram 

using a cut-off frequency which depends on the sampling step Δt, thus it is record 

dependant. In other words, the information in the velocity trace can be retrieved in the 

accelerogram, by zooming-in in a specific low-frequency interval. This has been proved 

by reconstructing the signal corresponding to a specific low frequency interval of the 

accelerogram, comparing it with the defined pulses and inspecting its impact on the 

elastic and inelastic response spectra. The advantage offered by this approach is that it 

ensures a constant frequency bandwidth for all the records analysed and thus a uniform 

analysis of structural responses for various records. From the structural responses point 

of view, it ensures more realistic and comprehensive evaluations since the information 

existing in the time-histories is used, rather than approximations which can be limited in 
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the cases when the low-frequency content is richer than expected, as it is the case of the 

San Fernando earthquake record for example. 

However, as it is concluded from the previous numerical results, establishing a 

frequency interval or a cut-off frequency generally representative for pulses can be quite 

challenging. From this perspective an approach for classifying the low-frequency 

content in PLGMs considering the structural natural frequencies of interest might be 

more effective.   
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Figure 6.21 1971 San Francisco (Pacoima Dam): acceleration, velocity and displacement traces time 

domain and frequency domain representations. 

 

 

Figure 6.22 1971 San Francisco: reconstructed pulses (acceleration and velocity time-histories) 
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Figure 6.23 1971 San Francisco: spectral responses for constant ductility factor μ = 1 (elastic) and  

μ = 2 

 
Figure 6.24 1971 San Francisco: spectral responses for constant ductility factor μ = 4 and μ = 8 
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Figure 6.25 1994 Northridge (Rinaldi): acceleration, velocity and displacement traces time domain 

and frequency domain representations. 

 

 
 

Figure 6.26. 1994 Northridge: reconstructed pulses (acceleration and velocity time-histories) 
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Figure 6.27 1994 Northridge: spectral responses for constant ductility factor μ = 1 (elastic) and      μ 

= 2 

 

 
Figure 6.28 1994 Northridge spectral responses for constant ductility factor μ = 4 and μ = 8 
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Figure 6.29 1989 Loma Prieta (Saratoga): acceleration, velocity and displacement traces time 

domain and frequency domain representations. 

 

 
Figure 6.30 1989 Loma Prieta: reconstructed pulses (acceleration and velocity time-histories) 
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Figure 6.31 1989 Loma Prieta: spectral responses for constant ductility factor μ = 1 (elastic) and     

μ = 2 

 

 

 
Figure 6.32 1989 Loma Prieta spectral responses for constant ductility factor μ = 4 and μ = 8 
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CHAPTER 7 : CONCLUDING REMARKS 

 

The present dissertation focuses on the stochastic representation of pulse-like ground 

motions and on their characterization by means of joint time-frequency representation 

techniques. The following sections discuss the contributions of this work, the limitations 

and potential paths for future research. 

7.1. SUMMARY OF CONTRIBUTIONS  

Pulse-like ground motions attracted the research community interest over the past 

decade due to the significant demands they pose on a wide range of structures, which 

may lead to extensive damage in the affected areas. The research work carried herein 

investigated two aspects of this topic, namely the stochastic modelling of pulse-like 

ground motion records and the performance of several techniques employed for seismic 

records‟ analysis. Consequently, a versatile phenomenological non-stationary stochastic 

model has been proposed for the representation of pulse-like ground motions. The 

model was further employed for investigating the potential of several time-frequency 

analysis techniques to capture the underlying features of the corresponding 

accelerograms.  

Basic signal processing concepts were firstly reviewed, followed by a discussion of 

several time-frequency analysis methods. Three wavelet-based decomposing 

techniques, namely the S-transform, the generalized harmonic wavelet transform and 

the Meyer wavelet packets transform, together with the empirical mode decomposition 

method were considered for the purposes of this research. Subsequently, the topic of 

pulse-like ground motions was introduced. The main features of the records and the 
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structural impact particularities which differentiate them from the ordinary (pulse-free) 

ones were identified. The physical conditions which facilitate the occurrence of such 

seismic ground motions were presented, followed by the parameters used for 

characterizing the specific pulses and the simplified models currently used for 

identification or, alternatively, for simulation. Finally, the methodologies for pulse-

extraction, together with the procedures for the simulation of artificial PLGMs were 

identified. Based on this review, the following aspects concerning PLGMs records were 

identified and addressed in this work: the stochastic modelling and the performance of 

different characterization methods employed. 

Considering the amount of uncertainty coming from the limited amount of information 

available (less than 100 earthquake records classified as being of pulse-type), together 

with the open debate on the approach to be used for identification and extraction of the 

characteristic pulses, the stochastic modelling represents an important aspect of the 

pulse-like ground motions study. The approach commonly used for modelling pulse-like 

ground motions employs different representation techniques depending on the 

frequency content considered. Consequently, the low-frequency content in the 

accelerograms is generally modelled through deterministic velocity models which are 

differentiated in order to obtain the corresponding acceleration traces. Certain 

researchers have taken into account the uncertainty in the pulse properties by 

establishing probability distributions determined for various collections of records for 

the parameters of the model utilized. Regarding the higher frequency content of the 

acceleration trace, this is represented by using either seismological-based or record-

based stochastic acceleration models. The artificial pulse-like ground motions are 

obtained by superposing these two representations. 

In this work an alternative non-separable non-stationary stochastic model has been 

developed, which employs a similar approach for modelling the entire frequency 
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content of the accelerograms. This consists in parametrically defining pulse-like 

processes as a superposition of several uncorrelated amplitude modulated processes, 

each modelling the energy distribution in specific regions of the time-frequency plane. 

In its simplest form, the proposed model can generate pulse-like ground motion 

processes by considering only two separable uncorrelated processes, one for the low-

frequency content and a second one for the higher frequency content. The proposed 

modelling approach was motivated by the intuitive signal analysis interpretation that 

pulses represent richer-than-usual low-frequency content of the accelerograms. This 

observation was made after analysing several records using time-frequency 

representation techniques. 

Two alternative shapes were proposed for modelling the spectral low-frequency content 

and a time-varying envelope for accounting for its evolutionary behaviour. All the 

functions were defined using parameters with clear physical meaning. The first shape is 

a raised cosine, a smooth function suitable for simulation purposes - for example Monte 

Carlo type of analyses for risk assessment purposes (e.g. Taflanidis & Jia, 2011; 

Taflanidis, 2011). The second one is a box-like function; due to its simplicity this may 

be more appropriate in conjunction with random vibrations applications, such as 

statistical linearization methods (Spanos & Kougioumtzoglou, 2012). The higher 

frequency content can accommodate representations with various levels of complexity 

(e.g. Conte & Peng, 1997; Boore, 2003; Yamamoto & Baker, 2013). Herein the 

uniformly modulated Clough-Penzien spectrum was used for this purpose. Synthetic 

accelerograms can be readily obtained as realisations of the thus defined pulse-like 

ground motion model by employing sample generation techniques appropriate for 

stationary processes. 

The capability of the model to realistically capture salient attributes of recorded pulse-

like ground motions has been investigated. Consequently, the proposed low-frequency 
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models have been calibrated against a database extracted pulses reported in the 

literature. The overall performance in simulating pulses extracted from recorded time-

histories with various characteristics, together with their structural impact was deemed 

satisfactory. Accordingly, regression analyses were performed in order to obtain 

indicative relationships for defining the pulse model parameters considering various 

seismic scenarios. In addition, the potential of the models to account for rich low-

frequency content (i.e. more than one pulse) was highlighted. Further, the pulse-like 

ground motion model was calibrated against a field recorded accelerogram. Numerical 

results indicated that the proposed model leads to similar elastic and inelastic structural 

responses in average, while accounting for the variability in the characteristics of the 

ground motion. The applicability of the model for generating code compatible pulse-

like accelerograms was also demonstrated by employing an EC8 compatible 

representation for the higher frequency content. It is believed therefore that the 

proposed model might represent an alternative to representing the seismic action by 

means of PLGM spectrum matched accelerograms, which is an issue of interest in 

earthquake engineering (NEHRP Consultants Joint Venture, 2011). 

Once the reliability of the model to represent pulse-like processes and generate artificial 

time-histories was validated, this was employed to benchmark the potential of various 

signal processing techniques used in the literature for seismic signal analyses. Their 

performance in characterizing accelerograms (rather than velocity time-histories) is 

assessed considering several artificial pulse-like ground motion processes representative 

for the database of records considered in this work. The argument behind this idea was 

to demonstrate that the necessary information about PLGMs (i.e. the pulse) can be 

readily obtained from accelerograms. This is useful since accelerograms are used for 

processing structural responses; furthermore these are the signals recorded during 

seismic ground motions, thus less bias induced by data processing techniques affects the 
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results (Worden, 1990). However, significant amount of research is carried out on 

velocity traces due to their narrower frequency bandwidth. The numerical results proved 

that the performance of the TFR techniques considered herein depends on the scope of 

the analysis. The S-transform is suitable for preliminary identification of pulse-like 

accelerograms, requiring minimum subjective intervention; the generalized harmonic 

wavelet transform or Meyer wavelet packets transform appear more suitable for 

characterization. For filtering out the low-frequency content specific to pulses from the 

accelerograms, the S-transform and harmonic wavelet transform offered the most 

accurate results. The suitability of empirical mode decomposition for the 

characterization on individual records, rather than for databanks was confirmed. 

Lastly, the low-frequency content from three field recorded accelerograms was isolated 

and the spectral responses were evaluated. While the discussion regarding the 

distinctive border between high and low frequency content remains open, the numerical 

results showed that this approach accurately captures the structural responses for the 

case of flexible buildings. 

7.2. LIMITATIONS AND FUTURE WORK 

A common critique concerning stochastic models for seismic ground motions is that 

they are perhaps not always capable to realistically account for the variability 

encountered in recorded ground motions. It has been shown that the model proposed 

herein allows for variability in the characteristics of the ground motion; however the 

extent at which this is realistic is still difficult to establish given the amount of data 

available. Nevertheless, studies on stochastic models showed that by randomizing the 

model parameters, the variability in the parameters' characteristics can be increased (e.g. 

Taflanidis & Jia, 2011; Vetter & Taflanidis, 2014). Future studies in this direction are 

expected to overcome possible limitations in this sense of the developed pulse models. 
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The potential of the proposed models to lead to realistic structural responses has been 

investigated from the perspective of the response spectra. It should be kept in mind this 

offers a limited representation of the structural behaviour (based on the peak 

displacement) (Huang et al, 2001, NEHRP Consultants Joint Venture, 2011). The 

reliability of the information provided through the response spectra is questioned by 

some researchers, since a good representation in the frequency domain (e.g. through the 

response spectrum) requires a relatively uniform spread of energy over the time 

(Sommerville 2000, 2002; Bray & Rodriguez-Marek, 2004). At the same time the 

response spectrum remains a prevalent means to evaluate structural behaviour in the 

field, due to its simplicity, and thus is deemed satisfactory in the context of this research 

work. 

A further extension of this work could explore the use of the proposed model in 

conjunction with techniques like statistical linearization in order to approximate the 

non-linear structural response under pulse-like excitations. Regarding the pulse 

extraction, further investigations can be done in establishing natural-period-dependant 

definitions for separating the accelerogram content in low and high frequency. 

 

Aiming to bypass limitations caused by epistemic uncertainties in pulse-like ground 

motions related research, but also to account for the inherent variability in their 

properties, an effective fully stochastic model was developed throughout this work 

which allowed for the investigation of time-frequency techniques potential to 

characterize the corresponding accelerograms. 
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APPENDIX A: INTEGRATION AND BASELINE 

CORRECTIONS VIA FILTERING  

A.1. INTEGRATION AS A LOW-PASS FILTERING OPERATION 

Consider the acceleration signal a(t) having a total duration T and its Fourier domain 

representation ˆ ( )accF  . The relationship between the two representations is given by 

the equation 

    
0

1 ˆ
2

i t

acca t F e d 




   (A.1) 

The velocity trace can be obtained from the accelerogram by integration, i.e. 

    
0

T

v t a t dt   (A.2) 

This can be also written as 
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which can be rearranged as 
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On the other hand, analogous to Eq. (A.1), the relationship between the time domain 

representation v(t) and Fourier domain representations  ˆ ( )velF  of the velocity is: 

    
0

1 ˆ
2

i t

velv t F e d 




   (A.5) 

From Eq. (A.4) and (A.5) it can be observed that the integration in the time domain is 

similar to division with iω in the frequency domain (Pallás-Areny & Webster, 1999), 

i.e.: 

  
 ˆ
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F
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
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And consequently the frequency domain representation of the displacement trace will be 
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The multiplication of the frequency domain representation with the factor 1/iω can be 

interpreted as a filtering of the signal with a filter characterized by the transfer function 

H(z) given bellow (see also Worden, 1990; Pallás-Areny & Webster, 1999). 

  
1

,H z where z i
z

   (A.8) 

The magnitude and the phase of the filter H(z), known as integrator in the signal 

processing field, are plotted in Figure A.1. Note that H(z) diminishes the amplitude of 

the frequency components as their frequency increases and also performs a -90 deg 

phase-shift. Consequently, the passage from acceleration to velocity and further to 
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displacement can be interpreted as a successive low-pass filtering of the initial input 

signal (i.e. the accelerogram). 

 
Figure A.1 Frequency domain interpretation of the time-domain integration 

A.2. THE BUTTERWORTH FILTER FOR BASELINE 

CORRECTION 

The Butterworth filter is used in the present work for performing the baseline correction 

of the simulated accelerograms. The filter was introduced in 1930 by St. Butterworth, in 

an attempt to reduce as much as possible the rippling and the roll-off of the filter‟s 

transfer function (obtain a transfer function as flat as possible – see Figure A. 2). 

The frequency response function of an order n prototype Butterworth filter 

characterized by the desired cut-off frequency ωc is given by the formula (Pallás-Areny 

& Webster, 1999)  

   
1

1
n

c

H i
i






  
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For the purpose of baseline correcting accelerograms, this filter is modified into a high-

pass filter by performing the transformation *

c ci i    , where ωc
* represents the 

actual cut-off frequency. 

 

 
Figure A. 2 High-pass Butterworth filter: cut-off frequency ωc = 50rad/s and orders n = 1 and 2  
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APPENDIX B: APPROACHES FOR EARTHQUAKE 

MODELLING 

 

A basic approach for modelling seismic ground motions utilizes amplitude modulated 

stationary stochastic processes for this purpose (Shinozuka & Deodatis, 1988; Grigoriu, 

1995; Boore, 2003; Giaralis & Spanos, 2009). Consider a stationary process fst(t), whose 

frequency content is characterized by the power spectrum density function Sfst(ω) and 

an envelope a(t) with time evolving intensity. A non-stationary random process of the 

separable kind can be defined by the equation 

     ( ) ( )stf t a t f t  (B.1) 

Under the assumption that the envelope function varies slowly enough, the time-

dependant power spectrum density of the process f(t) can be estimated by 

(Priestley,1965; Conte & Peng, 1997; Spanos & Failla, 2004): 

 
2

( , ) ( ) ( )
stf fS t a t S   (B.2) 

Note that the frequency content of the above process remains constant in time; only the 

time-evolving ground motion intensity which is taken into account.  

However, the frequency content of field-recorded accelerograms is also evolving over 

time. This is caused by the fact that seismic waves characterized by different dominant 

frequencies arrive at different times. Usually higher frequencies dominate the beginning 

of the ground motion, with lower frequency components prevailing at later times (Wang 
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& Zhou, 1999). It is observed that the frequency non-stationarity has an impact on the 

structural behaviour for both linear and non-linear structures (e.g. Conte & Peng, 1997; 

Rezaeian & Der Kireghian, 2008). Therefore, realistic stochastic models of seismic 

records should take into account not only the intensity evolution in time, but also the 

frequency non-stationarity. 

One approach for modelling the frequency non-stationarity consists in utilizing two-

parameter time-frequency varying envelopes a(t,ω) to modulate the stationary process, 

(Liu, 1970; Yeh & Wen, 1990; Liang, Chaudhuri & Shinozuka, 2007) as in 

  , ) ) (  ( stf a t f tt   (B.3) 

Analogous to the previous case, the characteristic evolutionary power spectral density 

can be estimated as 

 
2

( , ) ( , ) ( )
stf fS t a t S    (B.4) 

This is a “fully” non-stationary process of the non-separable kind, as is allows for time-

evolution of both intensity and frequency content. 

A special class of fully non-stationary processes of particular interest to this work is 

defined by the summation of R uniformly modulated processes, each one characterized 

by a specific time envelope and power spectrum density (Spanos & Vargas Loli, 1985; 

Conte & Peng, 1997; Spanos & Failla, 2004): 
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r r st
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As long as the constituent processes fr(t) are uncorrelated and satisfy the slow-varying 

envelope condition, the total evolutionary power spectral density can be approximated 

as the superposition of the power spectra corresponding to each component process, i.e. 

 
2

1

( , ) ( ) ( )
st

R
r

f r f
r

S t a t S 


  (B.6) 

The power spectral density can be obtained by filtering either Gaussian white noise 

processes or Poisson processes through time-varying or time-invariant filters 

(Shinozuka & Deodatis, 1988). In Shinozuka & Deodatis (1988) the two alternatives are 

compared and it is shown that both lead to the same results up to the second moment 

under certain specifications. Although Poisson processes are better amenable to physical 

interpretation, their numerical generation is more computationally demanding. Due to 

this historical reason, filtered Gaussian white noise is nowadays more commonly 

encountered in seismic related applications.  

Regarding the enveloping function, many shapes have been proposed in the literature, 

including the Heaviside unit step function, triangular or rectangular functions, various 

types of exponential functions or piecewise defined functions (Shinozuka & Deodatis, 

1988; Quek et al., 1990; Jangid, 2004 among others). The studies of Quek et al. (1990) 

and Jangid (2004) show that the shape of the envelope has a limited influence on the 

structural response and it is the energy of the ground motion which needs to be 

appropriately taken into account.  

Realisations of the processes f(t) can be synthesized using appropriate sample 

generation techniques in order to obtain artificial time-histories. 
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APPENDIX C: SAMPLE GENERATION TECHNIQUES 

C.1. THE SPECTRAL REPRESENTATION METHOD 

Realizations of stationary zero-mean random processes can be obtained as a summation 

of cosines with random phases using the spectral representation method (Shinozuka & 

Deodatis, 1991).  

Consider the uni-dimensional – uni-variable zero-mean stationary stochastic process 

( )sf t , characterized by the following power spectral density Sff(ω) and the 

autocorrelation function Rff(τ) 
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 (C.1) 

where E[∙] represents the expected value. 

According to the Cramer and Leadbetter theorem, a uni-dimensional – uni-variable 

stationary stochastic process ( )sf t  with zero-mean and two-sided power spectrum 

density ( )ffS  , can be expressed as a function of two real and mutually orthogonal 

processes ( )u   and ( )v  , with the increments ( )du   and  as in: 

          
0

  [cos sin ]sf t t du t dv   
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The processes ( )u   and ( )v   and their increments are defined for 0  and have the 

following properties: 
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 (C.3) 

The previous equations are based on the assumption that fs(t) can be associated with a 

differentiable power spectrum distribution SFF(ω) such that 
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In the discrete frequency domain a frequency ωmax is set after which the values of Sff(ω) 

are considered negligible. The power spectrum is discretized in N values with a step Δω. 

As the value chosen for the step Δω becomes smaller, the number of discrete values N 

→ ∞ and the process ( )stf t  is asymptotically Gaussian.  
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In the discrete time domain, the integral Error! Reference source not found. becomes 

a summation: 
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In Shinozuka & Deodatis (1991) the following form is obtained for the process, after a 

number of manipulations: 

  
1

0

  2 cos(     )
N

st n k k

k

f t B t




    

    2   ,   1,2, ,  1n ff nB S n N       (C.7) 

where N is the number of samples in the frequency discretization and Φk ϵ  [0,2π] are 

the random independent phase angles of each cosine. In order to ensure the zero-mean 

of the samples 
0B needs to be set equal to 0, i.e. ( 0) 0ffS   . The resulting samples 

are periodic, with a period of  

 
0

2
 T






 (C.8) 

and the time-step 
max t    in order to avoid aliasing. 

The spectral representation method has been used throughout this work for the purpose 

of generating realizations of the defined processes. 

C.2. AUTOREGRESSIVE-MOVING AVERAGE METHOD 

Discrete time realisations of stationary random processes can be obtained by means of 

the autoregressive-moving average (ARMA) algorithm (Spanos & Mignolet, 1990). 

This consists in filtering band-limited white noise w[n] through an ARMA filter as 

shown in Figure C.1. This type of filter generates every sample at index n as a linear 

combination between the previous p outputs and the contribution of the input white 

noise, according to the following formulation: 
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        
1 0

[ ]
p q

k l

f n c k f n k b l w n l
 

      (C.9) 

In the previous equation c[k] are coefficients applied to the previous outputs and b[l] 

those applied to the input white noise. The samples [ ]f n  are located 
max/ (sec)t     

apart one from the other to avoid aliasing, where max0     is the clipped white 

noise frequency band. The transfer function for the ARMA filter is  

   0

1

 
1

q k

ll
ARMA p k

kk

d z
H z

c z













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 (C.10) 

 

 
Figure C.1 ARMA method for time-histories simulation 

 

The coefficients of the ARMA filter needed for defining time-histories with a given 

power spectral density are evaluated by performing the following error minimization: 
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where 

    *( ) i t i t

ARMA ARMA ARMAS H e H e     (C.12) 



Appendix C Sample generation techniques 

 

156 

The following conditions need to be fulfilled in order to ensure the filter remains stable 

and causal: the output of the filter has to be finite (stability) and the realisations of the 

filter for n < 0 need to be equal to zero, i.e.: 

 

0

[

] 0,

 ]

[ 0

n

f n

f n for n















 (C.13) 

The latter condition is fulfilled by ensuring the values of the white noise are not 

correlated and the values of the present output depend only on previous input values: 

 , 0,      0              , 0,     0n n k n n kw w fork and f w for k      (C.14) 

Generally, large numbers of samples are required for obtaining good approximations of 

the target spectra. From this perspective the spectral representation method can 

sometimes be computationally expensive; is such cases the auto-regressive moving 

average method may be more appropriate for sample generation. 
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APPENDIX D: DATABASE OF PULSE-LIKE RECORDS 

 

Table D.1. Database of pulse-like records considered for the calibration of the low-frequency part 

of the model 

# Event Station Year Mw 
R

*
 

(km) 

Tp
**

 

(sec) 

Tp
***

 

(sec) 

1 Imperial Valley-06 El Centro Array #3 1979 6.5 12.9 4.0 5.2 

2 Imperial Valley-06 El Centro Array #4 1979 6.5 7.1 3.9 4.6 

3 Imperial Valley-06 El Centro Array #5 1979 6.5 4.0 3.3 4.0 

4 Imperial Valley-06 El Centro Array #6 1979 6.5 1.4 3.5 3.8 

5 Imperial Valley-06 El Centro Array #7 1979 6.5 0.6 3.1 4.2 

6 Imperial Valley-06 El Centro Array #8 1979 6.5 3.9 4.2 5.4 

7 Imperial Valley-06 
El Centro Differential 
Array 

1979 6.5 5.1 4.9 5.9 

8 Imperial Valley-06 Holtville Post Office 1979 6.5 7.7 4.2 4.8 

9 Mammoth Lakes-06 
Long Valley Dam (Upr L 
Abut) 

1980 5.9 -- 0.9 1.1 

10 Irpinia, Italy-01 Sturno 1980 6.9 10.8 2.2 3.1 

11 San Fernando 
Pacoima Dam (upper left 
abut) 

1971 6.6 1.8 1.2 1.6 

12 Westmorland Parachute Test Site 1981 5.9 16.7 3.1 3.6 

13 Coalinga-05 Oil City 1983 5.8 -- 0.5 0.7 

14 Coalinga-05 Transmitter Hill 1983 5.8 -- 0.7 0.9 

15 Coalinga-07 
Coalinga-14th & Elm 
(Old CHP) 

1983 5.2 -- 0.3 0.4 

16 Morgan Hill 
Coyote Lake Dam (SW 
Abut) 

1984 6.2 0.5 0.7 1.0 

17 Morgan Hill Gilroy Array #6 1984 6.2 9.9 0.9 1.2 

18 Taiwan SMART1(40) SMART1 C00 1986 6.3 -- 1.1 1.6 

19 Taiwan SMART1(40) SMART1 M07 1986 6.3 -- 1.1 1.6 

20 N. Palm Springs North Palm Springs 1986 6.1 4.0 1.2 1.4 

21 San Salvador Geotech Investig Center 1986 5.8 6.3 0.6 0.9 

22 Coyote Lake Gilroy Array #6 1979 5.7 3.1 0.9 1.2 

23 Whittier Narrows-01 Downey - Co Maint Bldg 1987 6.0 20.8 0.8 0.8 

24 Whittier Narrows-01 LB - Orange Ave 1987 6.0 24.5 0.7 1.0 
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# Event Station Year Mw 
R

*
 

(km) 

Tp
**

 

(sec) 

Tp
***

 

(sec) 

25 Superstition Hills-02 Parachute Test Site 1987 6.5 1.0 2.0 2.3 

26 Loma Prieta 
Alameda Naval Air Stn 
Hanger 

1989 6.9 71.0 1.7 2.0 

27 Loma Prieta Gilroy Array #2 1989 6.9 11.1 1.3 1.7 

28 Loma Prieta 
Oakland - Outer Harbor 
Wharf 

1989 6.9 74.3 1.4 1.8 

29 Loma Prieta Saratoga - Aloha Ave 1989 6.9 8.5 4.0 4.5 

30 Erzican, Turkey Erzincan 1992 6.7 4.4 2.1 2.7 

31 Cape Mendocino Petrolia 1992 7.0 8.2 2.2 3.0 

32 Landers Barstow 1992 7.3 34.9 8.0 8.9 

33 Imperial Valley-06 Aeropuerto Mexicali 1979 6.5 0.3 1.9 2.4 

34 Landers Lucerne 1992 7.3 2.2 5.3 5.1 

35 Landers Yermo Fire Station 1992 7.3 23.6 6.3 7.5 

36 Northridge-01 Jensen Filter Plant 1994 6.7 5.4 2.6 3.5 

37 Northridge-01 
Jensen Filter Plant 
Generator 

1994 6.7 5.4 2.6 3.5 

38 Northridge-01 
LA - Wadsworth VA 
Hospital North 

1994 6.7 23.6 2.0 2.4 

39 Northridge-01 LA Dam 1994 6.7 5.9 1.3 1.7 

40 Northridge-01 
Newhall - W Pico 
Canyon Rd. 

1994 6.7 5.5 2.3 2.4 

41 Northridge-01 Pacoima Dam (downstr) 1994 6.7 7.0 0.4 0.5 

42 Northridge-01 Pacoima Dam (upper left) 1994 6.7 7.0 0.9 0.9 

43 Northridge-01 Rinaldi Receiving Sta 1994 6.7 6.5 1.2 1.2 

44 Imperial Valley-06 Agrarias 1979 6.5 0.7 1.7 2.3 

45 Northridge-01 Sylmar - Converter Sta 1994 6.7 5.4 2.7 3.5 

46 Northridge-01 
Sylmar - Converter Sta 
East 

1994 6.7 5.2 2.9 3.5 

47 Northridge-01 
Sylmar - Olive View Med 
FF 

1994 6.7 5.3 2.2 3.1 

48 Kobe, Japan Takarazuka 1995 6.9 0.3 1.1 1.4 

49 Kobe, Japan Takatori 1995 6.9 1.5 1.5 1.6 

50 Kocaeli, Turkey Gebze 1999 7.5 10.9 4.7 5.9 

51 Chi-Chi, Taiwan CHY006 1999 7.6 9.8 2.0 2.6 

52 Imperial Valley-06 CHY035 1999 7.6 12.7 1.3 1.4 

53 Imperial Valley-06 CHY101 1999 7.6 10.0 4.3 4.8 

54 Imperial Valley-06 TAP003 1999 7.6 102.4 2.6 3.4 
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# Event Station Year Mw 
R

*
 

(km) 

Tp
**

 

(sec) 

Tp
***

 

(sec) 

55 Imperial Valley-06 Brawley Airport 1979 6.5 10.4 3.8 4.0 

56 Imperial Valley-06 TCU029 1999 7.6 28.1 4.7 6.4 

57 Imperial Valley-06 TCU031 1999 7.6 30.2 4.5 6.2 

58 Imperial Valley-06 TCU034 1999 7.6 35.7 6.4 8.6 

59 Imperial Valley-06 TCU036 1999 7.6 19.8 5.6 5.4 

60 Mammoth Lakes-07 TCU038 1999 7.6 25.4 6.4 7.0 

61 Irpinia, Italy-02 TCU040 1999 7.6 22.1 5.6 6.3 

62 San Fernando TCU042 1999 7.6 26.3 6.4 9.1 

63 Westmorland TCU046 1999 7.6 16.7 6.5 8.6 

64 Coalinga-05 TCU049 1999 7.6 3.8 9.0 11.8 

65 Coalinga-05 TCU053 1999 7.6 6.0 9.0 12.9 

66 Coalinga-07 EC County Center FF 1979 6.5 7.3 4.0 4.5 

67 Morgan Hill TCU054 1999 7.6 5.3 8.2 10.5 

68 Morgan Hill TCU056 1999 7.6 10.5 10.0 12.9 

69 Taiwan SMART1(40) TCU060 1999 7.6 8.5 11.2 12.0 

70 Taiwan SMART1(40) TCU065 1999 7.6 0.6 4.3 5.7 

71 N. Palm Springs TCU068 1999 7.6 0.3 9.0 12.2 

72 San Salvador TCU075 1999 7.6 0.9 4.3 5.1 

73 Coyote Lake TCU076 1999 7.6 2.8 3.1 4.0 

74 Whittier Narrows-01 TCU082 1999 7.6 5.2 7.5 9.2 

75 Whittier Narrows-01 TCU087 1999 7.6 7.0 8.2 9.0 

76 Superstition Hills-03 TCU098 1999 7.6 47.7 6.4 7.5 

77 Loma Prieta 
EC Meloland Overpass 
FF 

1979 6.5 0.1 2.5 3.3 

78 Loma Prieta TCU101 1999 7.6 2.1 8.2 10.0 

79 Loma Prieta TCU102 1999 7.6 1.5 6.9 9.7 

80 Loma Prieta TCU103 1999 7.6 6.1 7.5 8.3 

81 Erzican, Turkey TCU104 1999 7.6 12.9 10.0 12.0 

82 Cape Mendocino TCU128 1999 7.6 13.2 6.4 9.0 

83 Landers TCU136 1999 7.6 8.3 8.2 10.3 

84 Imperial Valley-07 Jiashi 1997 6.1 -- 1.0 1.3 

85 Landers Napa Fire Station #3 2000 5.0 -- 0.6 0.7 
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# Event Station Year Mw 
R

*
 

(km) 

Tp
**

 

(sec) 

Tp
***

 

(sec) 

86 Landers CHY024 1999 6.2 19.7 2.4 3.2 

87 Northridge-01 CHY080 1999 6.2 22.4 1.0 1.4 

88 Northridge-01 El Centro Array #10 1979 6.5 6.2 4.1 4.5 

89 Northridge-01 TCU076 1999 6.2 14.7 0.8 0.9 

90 Northridge-01 CHY101 1999 6.3 36.0 2.1 2.8 

91 Northridge-01 El Centro Array #11 1979 6.5 12.5 5.6 7.4 

*
 Closest distance from the ruptured area to the recording site (when available) 

**
 Pulse period estimated in Chapter 5. 

***
 Pulse period estimated by Baker (2007)  
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