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ABSTRACT 

The main concern of this thesis is to advance and improve the existing 
knowledge of a dynamic optimal control technique known as DISOPE. so as to make 
it attractive on one hand for its implementation in the process industry and, on the 
other hand, as a novel nonlinear optimal control algorithm. The main feature of the 
technique is that it has been designed so as to achieve the correct optimum of the 
process in spite of inaccuracies in the mathematical model employed in the 
computations. 

Several extensions of the basic continuous time DIS OPE technique are 
proposed in this work. For the development of the algorithms, emphasis is placed on 
making the techniques implementable in digital computer based industrial process 
control problems. These extensions include discrete-time. and set-point tracking 
versions, extensions for handling control and state dependent inequality constraints. 
and a hierarchical version. 

Applications of DISOPE are proposed in the following areas: nonlinear 
predictive control, predictive optimising control based on adaptive state-space linear 
dynamic models, and batch process optimisation. 

All the algorithms and techniques proposed in this thesis have been 
implemented in software and tested with relevant simulations. These studies include 
dynamic simulations of low order chemical reaction systems and studies on the 
dynamic optimisation of an industrial-scale multicomponent distillation column using 
a rigorous process simulator. 

Comparisons with existing techniques are provided and suggestions are made 
for future research in the area treated in this thesis. 
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CHAPTER 1 

INTRODUCTION 

1.1 CONTROL SYSTEMS IN INDUSTRIAL PROCESSES 

The purpose of control systems is to influence physical processes in such a 

way that certain control objectives may be achieved. Such control objectives reflect 

the goals of the industry which operates the process. Those goals are usually related 

to product quality, safety, economics, environmental regulations and operational 

constraints. 

A physical process is a combination of operations carried out to change 

something in the physical world. Processes are characterized by their input and 

output elements in ternlS of matter, energy and information. An industrial process 

outputs products from raw materials and energy input. The input information to a 

process is a set of variables that influence or control the behaviour of the process. 

The output information of a process is a set of measured variables that characterize 

the operation of the process. Factors which cannot be manipulated but influence the 

process are called disturbances and they reflect the effects of the surrounding 

environment. The undesirable effects of external disturbances on the process must 

be suppressed. Control systems are used to achieve this. 

Many processes are essentially unstable and must be equipped with control 

systems to ensure stable and, hence, safe and reliable operation. 

Product quality and economic goals are of paramount importance. An 

industrial process should produce the desired amounts of the final products with 

certain minimum levels of quality. Also, the operation of the plant must correspond 

with the market conditions. Further, the operation should be as economical as 

possible in its use of energy, raw materials and labour. 

Quality and economics can be defined by means of optimisation. The most 

comnlon form of optimisation is steady-state optimisation, in which the optimum 

operating points are calculated and sent to the control systems as reference values 

(set-points). Control systems are used to regulate the operation of the process about 



such optimum set-points. Often, the econOmIC objectives which are pursued by 

optimisation yield optimum operational conditions which lie at the intersection of 

process constraints. Such constraints arise due to physical limitations inherent to 

process equipment and their operation, safety considerations and environmental 

regulations. Thus control systems should be able to take into account constraints in 

some way. 

In the last few decades, there has been a rapid development in the field of 

digital computers and microelectronics. The application of digital computers in 

process control has evolved from the pioneering works in the 1950' s to becoming 

a standard technique for implementation of new control systems in the 1980' sand 

90' s. This involves from single loop controllers to large-scale distributed control 

systems. Digital computers are also being used increasingly as means for the design 

and analysis of control systems. 

During the 1930' s proportional-integral-derivative (PID) controllers first 

appeared. They were originally implemented using pneumatic technology and have 

passed through several development stages. Today, most new PID controllers are 

implemented digitally. They are the standard tool for solving process control 

problems. They are relatively easy to tune and no explicit model of the process 

model is required. In the presence of process nonlinearities a change in operating 

conditions may produce loss of performance of the PID controller. The presence of 

time-delays and multiple interacting control loops complicates the tuning process and 

may also limit controller performance. Today PID controllers which possess 
o 

automatic tuning capabilities are becoming increasingly popular (Astrom and 

Hagglund, 1988). 

In the model-based approach for control, a process model is developed which 

can be used either as the basis for classical controller design methods or it can be 

incorporated directly in the control law. The latter is the starting point for many 

advanced control techniques, such as predictive control. The development of a model 

for a complicated process may be an expensive and time consuming task. However, 

the model based approach is becoming advantageous. Two reasons for this are: 

firstly, the high integration of modern processing plants makes plant operation more 

difficult; secondly, there are incentives for operating closer to limiting constraints to 

maximize profitability while taking into account safety criteria and environmental 

restrictions (Seborg et aI, 1989). 

23 



1.2 SYSTEM IDENTIFICATION AND ADAPTIVE CONTROL 

System identification is the field of mathematical modelling of systems from 

experimental data. It has acquired widespread applications in many areas. In control 

engineering system identification methods are used to obtain appropriate models for 

the design of control systems and simulation (Soderstrom and Stoica, 1989). 

Ever since the beginning of systematic controller design there has been the 

problem of finding the proper controller structure and parameters for a given process. 

Another difficulty has been the fact that the controller must perform well for a range 

of operating points. Automatic adjustment of the controller parameters was first 

proposed in the 1940' s. The term adaptive control was first used at that time 

(lsermann et ai, 1992). 

Given a process model structure, on-line system identification may be 

integrated with controller design. Thus, the parameters of the identified model and 

the performance requirements of the system are used in a controller design stage in 

order to obtain the controller parameters. The controller parameters may be updated 

on-line. This gives rise to a class of adaptive controller called self-tuning controller. 

In this class of adaptive controller the uncertainty in the estimated parameters of the 

process model is not accounted for in the controller design stage (Astrom and 

Wittenmark, 1989). 

1.3 OPTIMISATION OF INDUSTRIAL PROCESSES 

The process industry has experienced important changes during the last few 

decades due to the increased costs of energy and raw materials, and increasingly 

strict environmental regulations. It is believed that emphasis should be on improving 

efficiency and increasing profitability of existing plants rather than on plant 

expansion (Edgar and Himmelblau, 1988). To achieve such a goal, one of the most 

important means is optimisation. 

The desire to operate industrial processes optimally is not new. However. the 

capability to automate process optimisation is relatively recent. The theoretical basis 

for automating process optimisation has been available for about thirty years. 



Moreover, the computing power required for implementing such systems has been 

made available at reasonable prices during the last decade (Balchen and Mumme. 

1988). 

Steady-state process optimisation, often named optimising control, can be 

situated within the functional hierarchy of the overall plant management and control 

system at a level called supervisory control. 

The economic objective which is pursued by steady-state optimisation IS 

usually the maximisation of net profit, given the product demand, prices of final 

products, raw materials, energy, equipment wearing, pollution taxes, operational 

costs, etc. 

The basis for optimising control is the economic objective which is quantified 

by means of a performance index (or objective function), a (steady-state) 

mathematical model of the plant and knowledge of the relevant process constraints. 

The result from steady-state optimisation is a set of optimal controller set-points. at 

which the process should be regulated until a change in economic parameters 

determines a new optimum operating point. 

Optimising control is particularly common in large integrated process systems 

(oil refineries, petrochemicals, etc.). 

Dynamic optimisation is more complicated. It takes into account the dynamic 

behaviour of the process and intends to manipulate the input of the process during 

transient conditions in such a way that some dynamic criterion is optimized. Hence, 

a dynamic model of the plant is required. Dynamic optimisation is often termed 

optimal control. 

Dynamic optimisation may be applied in the process industry, for instance. 

In the following cases which are directly related with economic objectives 

(Rijnsdorp, 1991): 

* Optimisation of total process run, In cases when process behaviour 

deteriorates with time. 

* When switching continuous processes from one mode of operation to another. 

trying to minimize the amount of off-specification product. 

* Optimisation of the operation of batch processes. seeking to maximize. for 

example, product yield. 



* When disturbances with economic impact have a frequency such that the 

process rarely reaches steady state. 

However, dynamic optimisation with econorruc objectives is not widely 

applied in the process industry (Arkun and Stephanopoulos, 1980). Some reasons for 

this are (i) dynamic models are more difficult to develop than steady-state models: 

(ii) The solution of a dynamic optimisation problem is far more complicated and 

time consuming than steady state optimisation. The latter is becoming less important 

due to the increasing computer power becoming available at decreasing prices. 

One particular class of dynamic optimisation, with regulatory rather than 

economic objectives, is a technique called LQG (linear-quadratic-gaussian). This is 

an established method for the design of multivariable control systems which has the 

advantages that the input-output pairing problem is avoided, for the structure of the 

controller is given by the design; stability is guaranteed if the model is perfect, and 

it may easily handle systems with time-delays and non-minimum phase behaviour 

(Anderson and Moore, 1989). Nevertheless, this technique has not become popular 

in the process industry because a good process model is required, and hence lacks 

robustness. Additionally, it may not handle constraints explicitly. For a survey of 

LQG applications in the process industries see the paper by Johnson (1993). 

1.4 PREDICTIVE CONTROL 

A particular technique which has been widely applied within the last two 

decades in the process industry is Predictive Control based on linear input-output 

models of the plant. Predictive control belongs to the class of model-based controller 

design concepts, because a model of the plant is used to compute the control action. 

Some well known predictive controllers are Dynamic Matrix Control, DMC (Cutler 

and Ramaker, 1979), and Model Algorithmic Control, MAC (Richalet {'( ai, 1978). 

The reasons for their acceptance are many, but the main ones are: they are easy to 

tune: they nlay handle systematically process constraints. multi variable processes and 

time delays: knowledge of future set-point changes can be included: their 

conlputational requirenlents are modest (Soeterboek, 1992: Garcia et ai, 1989). 
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Linear predictive controllers, such as DMC, have been extended to handle input and 

output constraints (Garcia and Morshedi, 1986) and some of them, such as 

Generalized Predictive Control (GPC) have adaptive features (Clarke et ai, 1987). 

Predictive controllers implement dynamic optimisation in a receding-horizon 

framework. If the objective is to follow a set-point, the process model is linear, the 

performance index is quadratic, and in the absence of process constraints, then 

predictive controllers allow a relatively simple analytical solution. Otherwise, 

iterative methods have to be used (Mayne and Michalska, 1990). 

There have been growing interest in the last few years on extending 

predictive control concepts to take into account process nonlinearities. Some of those 

schemes have been presented in the literature (Sistu and Bequette, 1991: Gattu and 

Zafiriou, 1992; Balchen et ai, 1992). A common characteristic is their increased 

computational load. Most of them are based on nonlinear state space models of the 

process and some of them include state and parameter estimation to give robustness, 

adaptability, and stability to the controller. If the dynamic optimisation scheme 

allows for general performance index specifications, economic criteria can be 

included (Balchen et ai, 1992). 

1.5 DYNAMIC OPTIMAL CONTROL 

Optimal control theory is the mathematical tool used for addressing and 

solving dynamic optimisation problems. 

In the seventeenth century Bernoulli studied the brachistocrone problem and 

then initiated the classical calculus of variations. After three centuries of 

developments, optimal control theory has been formalized as a general extension of 

the calculus of variations. It has developed into a very mature field and it has 

attracted the attention of numerous researchers from very diverse disciplines. Many 

successful applications of optimal control theory have been reported in the literature. 

With the development of computers and the current emphasis of optimal 

design and operation of large-scale systems, optimal control theory has become 

increasingly inlportant. The mathematical complexity of the optimal control approach 

and the sophistication of real world problems do not allow straightforward analytical 
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solutions to optimal control problems. Thus, algorithms implemented on digital 

computers have to be used. 

The classical tool for solving optimal control problems is the calculus of 

variations. However, it cannot deal with control magnitude constraints. Two yery 

important developments were Pontryagin's minimum principle (Pontryagin et ai, 

1962) and Bellman's dynamic programming (Bellman and Dreyfus, 1962). The 

minimum principle solves problems without control constraints in a similar way to 

the calculus of variations. However, the method is more general because it can work 

with control constraints. Dynamic programming can handle control and state 

constraints. Its main disadvantage is the so called "curse of dimensionality" which 

implies that the approach requires too much computer memory even with relatively 

low order problems. 

Numerous algorithms have been proposed in the last two decades for solving 

optimal control problems. It is not the purpose to review here all of them. 

Nonetheless, it is worth mentioning a rather general classification according to the 

approach used for the solution: 

* Function space algorithms: The necessary optimality conditions obtained 

from the application of the maximum principle are enforced iteratively in 

some way. Some examples here are quasilinearization methods, function 

space gradient algorithms, variation of extremals methods (Bryson and Ho, 

1975~ Sage & White, 1977~ Kirk, 1970). 

* Parametrization methods: Here control (and sometimes state) variables are 

parametrized in an approximated way (usually in terms of basis functions) 

and then the objective function is minimized (or maximized) by using finite 

dimensional mathematical programming (Sisirena and Tan, 1974~ Sargent and 

Sullivan, 1978~ Teo et ai, 1991 ~ Biegler, 1984). 

Key algorithmic issues are convergence rates, memory requirements, 

computational load, handling of constraints, suboptimality, handling of large-scale 

systems and numerical precision. 

Provided the dynamic model is linear, the performance index is quadratic (in 

terms of state and control variables) and constraints are absent, then the optin1al 

control problem has a relatively straightforward non iterative solution usually based 
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on the solution of matrix differential (or difference) equations. This is a very 

important particular case of optimal control problems and is usually termed as LQ 

(linear-quadratic) optimal control (Anderson and Moore, 1989; Lewis, 1986a). 

1.6 ISOPE ALGORITHMS 

As has been mentioned in Section 1.2 the optimal set-points calculated by 

steady-state optimisation are based on a mathematical model of the controlled plant. 

Because, in general, the model will not be a faithful representation of the real 

physical process, the set-points so obtained will only be optimal for the model and 

not for the real plant. Moreover, the process operates in an environment which keeps 

changing. Hence it is important to provide the mathematical model of the process 

with some adaption. 

In order to take into account differences between the mathematical model and 

the real process a technique called the two-step method has been proposed. Here the 

steady-state model contains parameters which are estimated by comparing model

based and measured outputs. Then the system optimisation and parameter estimation 

problems are treated separately and solved repeatedly until convergence is achieved. 

However, there is interaction between the optimisation and parameter estimation 

problems and the solution so obtained will be, in general, suboptimal. The reason for 

this lies in the fact that inadequate output derivative information (with respect to the 

manipulated variables) from the plant is used in the model-based optimisation. 

In order to allow for the interaction between parameter estimation and system 

optimisation, the interacting variables are separated and, as a consequence, a modifier 

is introduced in the model-based optimisation. This modifier takes into account 

differences between the real process and model-based output derivatives with respect 

to the manipulated inputs. This enables the iterative technique to achieve the correct 

optimal operating point of the real process in spite of model-reality differences. This 

technique was originally introduced by Roberts (1979) and is called integrated 

system optimisation and parameter estimation (ISOPE). 

ISOPE has been established for about fourteen years and a considerable 

number of ISOPE algorithms, centralized and hierarchical, have been devcloped 

(Rohcrts, Wan and Lin, 1992). Conditions for the convergence of the algorithnlS 
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have been rigorously investigated (Brdys and Roberts, 1987). Several simulations 

and laboratory pilot-plant implementations have been carried out and the utility of 

the technique has been demonstrated. Furthermore, on-line implementation on large

scale process plants seems very likely in the near future (Lin and Griffiths. 1992: 

Griffiths et ai, 1993). 

Since the origin of the ISOPE technique its extension to dynamic optimisation 

has been suggested (Roberts, 1979). More recent works have also recommended such 

an extension (Amini-Largani, 1990). In recent research by Roberts (1992) a dynamic 

extension of ISOPE has been introduced. It has been termed DISOPE (Dynamic

ISOPE) and, as an extension, the philosophy behind the techniques remains very 

similar. However, DISOPE is in itself a new technique with a different range of 

applications. It can be considered as a distinctive field of research. Furthermore, as 

it has been mentioned in Section 1.2, dynamic optimisation is more complicated. 

The development of novel optimal control algorithms, mainly new extensions 

of the DISOPE approach, and the study of their potential applications in process 

control have been the central areas of research of the doctoral work described in this 

thesis. 

1.7 SCOPE AND AIMS OF THE THESIS 

As it was mentioned in Section 1.5 ISOPE is a well established technique for 

optimising control of industrial processes. Dynamic ISOPE, on the other hand, is 

relatively recent. 

As it was originally developed and published (Roberts, 1992), DISOPE 

addressed continuous-time, unconstrained, centralized and time invariant optimal 

control problems. 

The central aIm of this thesis is to advance and Improve the existing 

knowledge on the technique so as to make it attractive on one hand for its 

implementation in the process industry and, on the other hand, as a novel nonlinear 

optimal control algorithm. Additionally, as a result of research work carried out 

during the project, a new technique for steady-state process optimisation based on 

dynamic information (DSSO) has been developed. 
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The means through which the central objective is to be achieved are: 

To develop discrete-time versions of DIS OPE so as to make it suitable for 

digital computer on-line implementations. 

To extend the DISOPE technique to handle control and state dependent 

constraints. 

To develop hierarchical extensions of DISOPE so as to make it applicable in 

large-scale systems. 

To extend the DISOPE algorithm for taking into account reference 

trajectories which should be tracked. 

To investigate the ways the techniques developed can be applied in the 

process industry, particularly in the fields of nonlinear predictive controL 

batch process optimisation and predictive optimising control. 

To implement in software the algorithms developed and to test their 

performance through simulation studies. 

To investigate the ways the inherent flexibility of the DISOPE approach can 

be exploited. 

To compare the structure and performance of DISOPE with other existing 

techniques. 

The scope and original contributions of this thesis are briefly summarized 

below. 

Contribution to algorithm development 

Several DISOPE control algorithms have been developed. This contribution 

includes theoretical derivation, development of implementable versions and actual 

software implementation of: discrete time, set-point tracking, hierarchical, control 

constrained, state constrained and receding horizon DISOPE algorithms. Emphasis 

has been given to make the technique suitable for industrial implementation. 

Furthermore, a steady-state optimiser based on dynamic information (DSSO) has 

been developed, implemented in software and tested with simulation examples. 

Contribution to DISOPE approach flexibility exploitation 

Some novel techniques which directly exploit the inherent flexibility of the 

DISOPE approach in terms of model-reality differences in both model dynamics and 



performance indexes have been developed and investigated. This includes: (i) the use 

of saturation functions for handling control magnitude constraints by using 

(straightforward) unconstrained linear-quadratic model-based calculations (ii) The 

exact discretization scheme by which continuous time systems are dynamically 

optimized in an exact way while using model-based calculations in the (convenient) 

discrete domain. (iii) The use of penalty functions to take into account state or 

output magnitude constraints. (iv) The use of quadratic incremental control weighting 

in the dynamic performance index to provide zero off-set tracking for constant set

points. 

Contribution to the prospective industrial application of the techniques developed 

Several topics directly related with the application of DIS OPE in the process 

industry have been addressed in this doctoral work. The most relevant are: (i) the 

study of the application of the technique in nonlinear predictive control, in which the 

suitability of DISOPE to be used as a dynamic optimiser in a receding horizon 

scheme is investigated. (ii) The application of DISOPE in batch process optimisation, 

where the real dynamic optimum of the batch process is achieved by integrating the 

algorithm with the batchwise operation of the plant. (iii) The application of DISOPE 

in receding horizon as a predictive optimising controller, based on adaptive linear 

models of the controlled plant. (iv) The application of DSSO for adaptive process 

optimisation. All the topics are supported by relevant simulations and in cases (iii) 

and (iv) realistic simulations of an industrial distillation column using a rigorous, 

high fidelity process simulator are presented. 

Contribution to software implementation and algorithm testing 

All the algorithms proposed have been implemented in software. The main 

tools used have been the C and C++ programming languages. The use of object 

oriented programming has allowed a natural way of handling matrices and their 

operations which, in this framework, has facilitated the programming and debugging 

stages while keeping a high speed of execution. Code reusability principles has been 

used. Some of the algorithms developed in this work have been implemented and 

tested on an industrial process simulator environment (OTISS™). bearing in mind 

prospective on-line implementations. Several simulations with different le\'cls of 

coo1plexity ha\'e been carried out using the software de\'cloped. These simulations 
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have allowed us to gain a greater understanding of the DISOPE technique, to test 

experimentally the algorithms developed and ideas proposed, and to compare the 

results obtained with those reported in published works by using other methods. 

1.8 OUTLINE OF THE THESIS 

An outline of the thesis is given below. A more detailed introduction is given 

at the beginning of each individual chapter. 

Chapter 2: reVIews the development and algorithmic details of DIS OPE as 

originally published (Roberts, 1992), in its continuous time, unconstrained and 

centralized versions. Simulation studies are presented which illustrate the basic 

algorithm capabilities for solving highly nonlinear systems with model-reality 

differences. The effect of the tuning parameters (relaxation gains, convexification 

factors, etc.) is investigated. 

Chapter 3: seeks to extend the basic DISOPE algorithm for handling control 

dependent constraints. An extension is developed using the minimum principle and 

the resulting algorithm remains basically unchanged, the main difference being the 

explicit handling of constraints in the model-based optimisation step. An alternative 

and more convenient way of handling control magnitUde constraints by using a 

variable transformation based on a saturation function is introduced. Both approaches 

are implemented in software and tested with simulations. 

Chapter 4: describes the development of a hierarchical two-level DISOPE algorithm. 

The approach used is based on the interaction-prediction approach (Jamshidi, 1983) 

and on the basic DIS OPE technique. A new modifier is introduced to take into 

account the interactions between subsystems. The model-based problem for each 

subsystem is independent from the other subsystems, which shows that the algorithm 

is suitable for parallel or distributed processing. The algorithm is implemented in 

software and simulations are carried out. 
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Chapter 5: reports the development of a discrete-time DISOPE algorithm. An 

implementable version, using an LQ model-based problem, is also developed. The 

exact discretization scheme is introduced. This allows the application of discrete-time 

DISOPE to continuous time systems by integrating the nonlinear model dynamics 

between sampling times, so avoiding the use of approximate discretization 

techniques, such as Euler's method. A software implementation is developed and the 

algorithm's performance is studied by means of simulations. 

Chapter 6: describes the use of discrete-time DISOPE for developing a new 

technique for solving the optimal set-point tracking problem for nonlinear systems. 

This is achieved by solving a sequence of LQ tracking problems with converge to 

the correct optimal solution. The algorithm is implemented in software and numerical 

simulations are carried out. The use of quadratic incremental control weighting, 

which provides zero off-set tracking for constant inputs, is introduced exploiting the 

algorithm's flexibility, while the model-based calculations use quadratic absolute 

control weighting. Its suitability to be used in a nonlinear predictive control scheme 

is emphasized. 

Chapter 7: Extends the DISOPE technique for handling optimal control problems 

with state dependent inequality constraints. The approach used is the penalty 

relaxation technique. A state constrained simulation example is presented. 

Chapter 8: reports the application of DIS OPE in batch process optimisation. This 

is achieved by integrating the algorithm's iterations with the batchwise operation of 

the plant, in such a way that the correct dynamic optimum of the plant is achieved 

in a sequential manner in spite of model-plant mismatch. The problem of measuring 

the time-varying jacobian matrices is addressed by using the shadow model concept 

(Griffiths, 1993). Comprehensive simulation studies are provided. 

Chapter 9: describes the application of set-point tracking DIS OPE in nonlinear 

predictive control. The receding horizon dynamic optimisation is carried out at every 

sampling interval by using DISOPE. State and uncertain parameters are estimated 

fron1 the possibly noisy output measurements by using an Extended Kalman Filter 
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(Lewis, 1986b). The controller IS implemented In software and comprehensiye 

simulation studies are provided. 

Chapter 10: describes the development of two optimising controllers which are able 

to drive a process from a suboptimal operational condition to its steady-state 

optimum. The controllers use derivative and state information from the plant via a 

shadow model and an adaptive state-space linear model identifier. The new 

algorithms are developed from the basis that a nonlinear model of the process is not 

available for prediction purposes. One approach, known as DSSO, does not requires 

predictions. The second algorithm, known as LP-DISOPE, uses predictions based on 

an adaptive linear model of the process. The steady-state optimality of the procedures 

is analyzed. Both techniques are tested with simulation examples, including realistic 

industrial-scale simulations of the optimisation of a multicomponent distillation 

column. 

Chapter 11: compares the DISOPE technique with a well established nonlinear 

optimal control technique such as quasilinearization. Furthermore, comparisons with 

previous work by Hassan and Singh (1976) and Mahmoud et al (1980) are discussed. 

Chapter 12: draws conclusions from the results obtained in this thesis and presents 

a series of suggestions for further work in this area. 

1.9 SUMMARY 

The development and applications of novel optimal control algorithms is the 

central subject of the research work described in this thesis. The main objective is 

to advance and improve the existing knowledge of a dynamic optimisation technique 

called DISOPE, so as to make it attractive on one hand for its implementation in the 

process industry and, on the other hand, as a novel nonlinear optimal control 

algorithm. 

In this introductory chapter. in order to address some motivational issues. to 

review the background to the research area, and to establish the framework of the 

thesis, SOOle important topics have been discussed. A short discussion on the role of 
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control systems in industrial processes has been related to an overview on the use 

of optimisation in the process industry. Further, some historical background on 

system identification and adaptive control, model-based predictive control and on 

dynamic optimal control have also been presented. Moreover, a brief review on the 

ISOPE technique, which is the steady-state predecessor of DISOPE, has been given. 

This has been followed by a discussion on the aims, scope and original contribution 

of this doctoral work. Finally, the contents and structure of the thesis have been 

described. 
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CHAPTER 2 

CONTINUOUS TIME DISOPE ALGORITHM 

In this chapter, we shall deal with the original DISOPE algorithm as was 

introduced by Roberts (1992, 1993a). Initially, a brief introduction on the theory of 

optimal control is given. The formulation addresses the continuous time , 

unconstrained and centralized optimal control problem, with fixed terminal time and 

terminal state value constraints. The basic mathematical tool is the calculus of 

variations. Simulation examples are given illustrating the basic properties of the 

algorithm. 

2.1 THE OPTIMAL CONTROL PROBLEM 

Before introducing the DIS OPE theory, it is convenient to present some 

background on the basic optimal control problem. To solve an optimal control 

problem we must first define a goal or performance index for the process we intend 

to optimize. The performance index is selected to make the plant exhibit a desired 

kind of behaviour. This requires an appropriate definition of the problem from the 

physical point of view and a translation into convenient mathematical terms. To be 

able to apply optimal control to a process in an effective way we must estimate the 

current state of the process from the (very often incomplete and noisy) output 

measurements. This is called state estimation. Further, we must obtain a 

mathematical model with the appropriate structure and parameters so that it describes 

properly the dynamics of the process. This is called system identification. The 

optimal control problem consists in finding the best control inputs (manipulated 

variables) so as to minimize (or maximize) the performance index, given knowledge 

of the system state, and the mathematical model of the process (Sage and White, 

1977; Lewis. 1986a). 
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2.1.1 Problem formulation 

Suppose that the plant is described by the nonlinear time-varying differential 

equation 

x = f*( x(t), u(t), t) (2,1) 

where f* : ~nx~mx~~~n represents a set of state equations which describe the 

process with state X(t)E ~n and control input U(t)E ~m. Further assume that the 

following performance index has been chosen: 

t, 

J * = q>(x(9) + J L *(x(t) , u(t) , t) dt (2,2) 

to 

where [to' tIl is the fixed time interval of interest, q> : ~n~~ is a scalar valued 

terminal weighting function and L * : 9\flx9\mx9\~9\ is a continuous performance 

function. 

If the state of the system at the initial time to is assumed known (being 

measured or estimated), with value x(to) =xo' and if no constraints on the values of 

control and state variables are taken into consideration, apart from the dynamic 

constraint (2,1), the optimal control problem can be formulated as follows: 

mIn 
u(t) 

subject to 

t, 

J * = q>(x(tI)) + J L *(x(t) , u(t), t) dt 

to 

x = f*(x(t), u(t), t) 

x(to) = Xo 
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2.1.2 Necessary optimality conditions 

The problem so formulated is by no means general but will suffice our 

introductory purposes. The problem as stated can be treated by using the classical 

calculus of variations. For convenience, a scalar function H * (the Hamiltonian) is 

defined as follows: 

H*(x(t),u(t),p(t),t) = L *(x(t),u(t),t) + p(tff*(x(t),u(t),t) (2,3) 

where p(t) is a multiplier function usually termed as the costate. By using calculus 

of variations and relatively straightforward algebraic manipulations (see, for example, 

(Lewis, 1986a: 150-153) for the derivation), the following well known necessary 

optimality conditions are obtained. 

Stationarity: 

V H* = 0 (2,4) 
u 

Costate equation: 

V H* + p(t) = 0 
x 

(2,5) 

State equation: 

V H * - x(t) = 0 
p 

(2,6) 

Boundary conditions: 

x(to) = Xo (2,7) 

P(tf) = V x<p( x(t)) I t=t, 
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Thus, in order to obtain a control function u(t) to ffilnlffilze the value of the 

performance index i * one must solve the differential equations (2,5) and (2,6), with u(t) 

given by the algebraic equation (2,4). The boundary conditions for the coupled 

differential equations to be solved are split, because x(to) is given and p(tj) can be 

computed from (2,7). This is known as a two-point boundary value problem 

(TPBVP). In general, it is difficult to solve these problems. 

2.1.3 Linear-Quadratic Optimal Control 

An important family of unconstrained optimal control problems is that of the 

linear-quadratic type. The name of the linear-quadratic (often termed as LQ) 

problems arises because the system dynamics are represented by linear differential 

equations while the performance index is quadratic in terms of state and control 

variables. The linear quadratic optimal control theory will be very important for the 

developments presented in this thesis and therefore a brief introduction to the topic 

is relevant. There are two types of LQ problems: regulator and tracking problems. 

The linear-quadratic regulator problems are usually formulated as follows: 

subject to 

t
f 

~lt~ it = ~ x(tjr<l>x(tj ) + f~ [ x(tr Qx(t)+u(tr Ru(t) ] dt 
to 

i = Ax(t) + B u(t) 

x(to) = Xo 

where <1»0, Q>O and R>O are symmetric weighting matrices of the appropriate 

dimensions, A is the system dynamic matrix and B is the control distribution 

matrix. The corresponding Hamiltonian function is: 

HI = ~ ( xur Q x(t) +u(tr R fl(t) ) + p(tr ( A x( t) + B u(t) ) (2,8) 

In this case, the two point boundary value problem is relatively easy to soln:,. 

A popular method of solution. given its computational efficiency, is known ~IS the 
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backward sweep method (Bryson and Ho, 1975~ Lewis, 1986a). Here a linear 

relationship between the costate and state variables of the form p(t) = K(t)x(t), 

where K(t) is a time-varying nxn matrix, is assumed. Application of the necessary 

optimality conditions and boundary conditions outlined in Section 2.1.2 gives rise 

to the following noniterative solution procedure: 

Step a: 

Step b: 

Step c: 

1989): 

Procedure 2.1.3: Simple LQ regulator solution 

Solve backwards from tf to to the following Ricatti differential 

equation, with terminal condition K(9 =<1>: 

Compute the state x(t), tE [to,tf ] by integrating from the initial 

condition x( to) = Xo the following equation: 

x = (A - B G(t) )x(t) 

Compute the optimal control u( t), tE [to' tf ] from the state feedback 

control law: 

u(t) = -G(t) x(t) 

where the Kalman gain is given by G(t) =R -I B T K(t). 

Some advantages of using LQ optimal control are (Anderson and Moore, 
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* 

* 

* 

* 

Nearly all LQ optimal control problems have solutions achievable with 

relatively little computing effort, as opposed to some nonlinear optimal 

control problems. 

LQ optimal control results can be applied to nonlinear systems operating in 

a small signal basis. 

Under certain conditions, LQ optimal controllers possess a number of 

attractive properties regarding the stability of the system and the robustness 

of the controller. 

The relatively simple computational procedures used in LQ optimal control 

can sometimes be carried over to nonlinear optimal control problems. 

2.2 DYNAMIC ISOPE 

A key issue of the ISOPE techniques is that the computations based on an 

approximated model of the process converge to the real optimum of the plant, in 

spite of deficiencies in the mathematical model. In the DISOPE approach this 

particular aspect continues to be very important as will be shown in this thesis. The 

distinction between reality and model plays a crucial role in the DIS OPE framework. 

The definition of reality will have basically two interpretations in this thesis. On the 

one hand reality may be taken as the actual plant dynamics which are normally 

unknown and uncertain. On the other hand, reality may be interpreted as a known 

but difficult to tackle dynamic description of the plant. The differentiation between 

model and reality extends also to the performance index. There will be a distinction 

between the performance index associated to the real dynamics and the performance 

index which corresponds to the dynamic model. Thus we can refer to real and 

model-based performance indexes. In any case, the model represents an (sometimes 

convenient and intentional) approximation of reality, whatever reality means. In the 

particular applications presented in this thesis this duality should not cause any 

confusions. The particular interpretation of the term reality will be implicit or clearly 

stated. 
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2.2.1 Problem formulation and solution 

Recall now the problem formulated in Section 2.1.1, assume that the 

superscript * denotes reality and let us call it Real Optimal Control Problem (ROP2). 

Consider now the following, possibly simplified Model-Based Optimal Control 

Problem (MOP2): 

MOP2 

nun 
u(t) 

subject to 

t
f 

1m = <p(x(tj » + J L(x(t), u(t), yet» dt 
to 

i = f( x(t), u(t), a(t» 

x(to) = Xo 

where state and control vectors have the same dimensions as in ROP2, 1m is a 

model-based performance index, L : 9\nx9\mx9\--79\ is a continuous weighting 

function and perhaps a simplification of a known L *, f : 9\nx9\mx9\r --7 9\n is an 

approximated dynamic model of f*, y(t)E 9\ and a(t)E 9\r are continuous 

parameters. The role of yet) and aCt) will be to take into account model reality

differences in value. Notice that as in the original formulation of the DISOPE 

technique, the terminal weighting function <p in MOP2 is identical to that in ROP2. 

Using a two-step method, the solution of MOP2 (optimisation step) provides 

the control ll(t) as a function of the current parameter estimates a(u(t» and y(u(t». 

In turn such estimates may be obtained by matching model and real state equations 

and continuous weighting functions (parameter estimation step) at the current 

computed control u(t)=u(a(t);y(t». It is easy to notice that optimisation and 

parameter estimation interact and, III general, because thc model is only an 

approximation to reality, scvcral iterations may be required before convergencc is 

achieved. Ho\\·c\'cr. such iterations do not lead, in general, to the correct optimal 

43 



solution of ROP2 (Durbeck, 1965; Foord, 1974), and it is necessary to integrate 

optimisation with parameter estimation taking into account their mutual interaction. 

The key to integrating system optimisation and parameter estimation is to 

define an Expanded Optimal Control Problem (EOP2) which, in spite of being 

model-based, is made equivalent to ROP2 by adding appropriate equality constraints 

on state equations and continuous weighting function values. Furthermore, state and 

control variables are separated between parameter estimation and optimisation steps 

by introducing the new state and control variables z(t) and vCt), respectively. 

EOP2 

ll1ln 

uCt) 

subject to 

t
f 

Je = <p(xCtj )) + J L(xCt), uCt), yet)) dt 
to 

x = f( xCt), uCt), aCt)) 

x(to) = Xo 

f(zCt), vct), aCt)) = f*(zCt) , vct), t) 

L(zCt), vet), yet)) = L *(zct) , vct), t) 

uct) = vct) 

x(t) = zct) 

Adjoining all the equality constraints to the performance index by using 

Lagrange multipliers, we obtain the following augmented performance index J: : 
t
f 

J/ = <p(x(t
j
)) + J [L(x,u,Y) + pT(f(x,u,a)-x) + AT(V-U) (2,9) 

+ PT(z_x)+~T(f*(z,v,t)-f(z,v,a)) + ~(L *(z,v.t)-L(z,v.y)) ] dt 

where the time index has been dropped for convenience and p(t)E 9\11, A(t)E 9\"', 

PU)E 9\", ~U)E 9\171 and ~(t)E 9\ are multiplier functions. 



If we define the augmented Hamiltonian function as: 

(2,10) 

then we can rewrite (2,9) as: 

t, 

1: = [<p( x ) ] t=t, + J [ H - P T i + AT V + ~ T Z 

to 
(2,11) 

+flT(f*(z,v,t)-j(z,v,a)) + ~(L*(z,v,t)-L(z,v,y))] dt 

By applying calculus of variations to (2,11) (see for example (Kirk, 1970) for 

an introduction to the subject), and taking into account that to' tf and Xo are fixed, 

we obtain the following expression for the first variation of 1: : 
t, 

81: = Vx<pT8xlt=tJ + J{ V
U
H T8u + V

X
H T8x - p T8i + [VpH -ir8p 

to 

+ [A+(fv*-jv ffl + ~(VvL*-VvL)r8v + [~+(fz*-/ffl + ~(V:L*-V:L)r8z. 

+ [V uH -ju
Tflr8a + [V !l-~V f r8r } dt 

(2,12) 

Integrating by parts to eliminate the variation in i we obtain: 

t
J 

81: = [Vx<p -p r8x It=t, + p T8x I t=to + J{ V uH
T8u + [VxH +p r8x + [VpH - _t r8p 

to 

+ [A+(t:,* -.t:,ffl + ~(VvL * -VvL)r8v + [~+(fz* -j)Tfl + ~(V:L * -V:L)r8: 

+ [V uH -ju
Tflr8a + [V !l-~V fr8y } dt 

( 2.13) 

According to the Lagrange multiplier theory the constrained minimum of 1e 

is achieved at the unconstrained minimum of 1: , which is achieved when 81/ :=0. 

Setting to zero the coefficients of the independent increments in (2.12), and 

concluding by inspection that ~ = 1 and J1 = p the following necessary optimality 

conditions are obtained: 
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Stationarity: 

V H = 0 u 

Costate equation: 

VxH + p(t) = 0 

State equation: 

V H * - x(t) = 0 
p 

Boundary conditions: 

x(to) = Xo 

P(tf) = V x <pC x( t) ) 1(=( 
f 

Multiplier equations: 

A(t) = [ df - df* rp(t) + [V L-V L *] 
dv dv v v 

~(t) = [ df - df* rp(t) + [V_L - V_L *] 
dz dz --

plus the following equality constraints stated in the formulation of EOP2: 

f(z(t), v(t),a(t)) = f*(z(t) , v(t),t) 

L(z(t),v(t),y(t)) = L *(z(t),v(t),t) 

v(t) = u(t) 

z(t) = x(t) 

p(t) = p(t) 

(2,14) 

(2,15) 

(2,16) 

(2,17) 

(2,18) 

(2,19) 

(2,20) 

where p(t) has been introduced as a costate separation variable. We assume that the 

structure of f and L is such that given v(t) and z(t) tE [to' f,] the values ofa(t) 

and yet) tE [to,t
l
] can be uniquely determined from (2,19). Notice that optimality 

conditions (2,14), (2.15) and (2,16) are model-based, and that AU) and~U) fE [to,t!l 



carry information on model-reality differences, in curvature, as opposed to aCt) 

and yCt) tE [to,tj] which carry information on model-reality differences in value. 

Recall our goal which is to solve ROP2. We have defined EOP2 which is 

equivalent to ROP2 and we have derived its necessary optimality conditions by using 

variational calculus. Thus if we satisfy the optimality conditions of EOP2, given the 

equivalence, we are also satisfying the optimality conditions of ROP2. We intend to 

solve ROP2 by using model-based calculations. Given values of a(t), y(t), A(t) and 

~(t) , it is easy to see that the solution of the following problem satisfies the 

definition of the augmented Hamiltonian (2,10) and also the model-based optimality 

conditions (2,14), (2,15) and (2,16), and border conditions (2,17). It is called 

Modified Model Based Problem (MMOP2) and is defined as follows: 

MMOP2 

mIn 
u(t) 

subject to 

t
f 

J M = <pC x(tj)) + f [ L (x(t), u(t), yc t)) - A(tf u(t) - ~(tf x(t) ] dt 

to 

x = f(x(t), u(t), a(t)) 

x(to) = Xo 

Now, if based on gIven values of v(t), z(t) and p(t) we compute the 

functions a(t), yCt), A(t), and ~(t) from (2,18) and (2,19), and if the solution ll(t) ,x(t) 

and p(t) of MMOP2 obtained from those functions additionally satisfy (2,20), then 

that solution is also the solution of ROP2. 

This reasoning gives rise to the following DIS OPE algorithm which. 

assun1ing convergence, achieves the solution of ROP2 via repeated solutions of 

MMOP2 (Roberts, 1992). 
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Data 

Step 0 

Step 1 

Step 2 

Step 3 

Step 4 

Algorithm 2.2.1: Continuous time DISOPE algorithm 

f, L, <p, xo' to' tf , and means for calculating f' and L * . 

Compute or choose a nominal solution u 0(t), x OCt) and p o(t). Set 

Compute the parameters a/(t), y(t) to satisfy (2,19). This is called the 

parameter estimation step. 

Compute the multipliers Ai(t) and ~i(t) from (2,18). 

With specified a(t), yet), A(t) and ~(t) solve the modified model-

based optimal control problem MMOP2 to obtain u i+l(t), X i+I(t) and 

P i+l(t). This is called the system optimisation step. 

This step tests convergence and updates the estimate for the optimal 

solution of ROP2. In order to provide a mechanism for regulating 

convergence, a simple relaxation method is employed to satisfy 

(2,20). This is: 

V i+I(t) = V i(t) + kv (u i+I(t) - V i(t)) 

Zi+l(t) = Z i(t) + kz(Xi+I(t)- Z i(t)) 

pi+I(t) = P i(t) + kp(pi+I(t)- P i(t)) 
(2,21) 

where k k and k E (0, 1] are scalar gains. If v i+l(t) = V i(t) within v' Z p 

a given tolerance stop, else set i=i+ 1 and continue from step 1. 

2.2.2 Performance index augmentation 

Variable augmentation has been used in steady-state ISOPE algorithms in 

order to make the technique insensitive to the choice of relaxation gains. with the 

additional effect that it also improves the convergence behaviour of the algorithms. 
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This is because variable augmentation convexifies the optimisation problem 

(Rockafellar, 1970, 1974; Brdys et ai, 1987). 

Augmentation was introduced by Roberts (1993a) in the DISOPE technique, 

resulting in improved algorithm stability and convergence behaviour in difficult 

cases. Similar techniques have been applied in optimal control algorithms by Hassan 

and Singh (1976) and Sakawa and Shindo (1980). 

Variable augmentation is applied in DIS OPE by adding convexification terms 

to the performance index of EOP2. This is, le becomes: 

t
f 

le = <p(x(tj)) + f [ L(x(t), u(t), y(t)) 

to 
(2,22) 

+ ~rlllu(t)-v(t)112 + ~r21Ix(t)-z(t)1I2 ] dt 
2 2 

where r
1 

and r
2 

are given scalar convexification factors. 

The definition of the augmented Hamiltonian is changed to take into account 

the new terms: 

H = L(x,u,Y) + pTf(x,u,a) - ATU-~TX 

+ ~rll1u-vf + ~r2I1x-zIl2 
2 2 

(2,23) 

By using variational calculus it is possible to find that the model-based 

optimality conditions obtained in Section 2.2.1 continue to be valid. Furthermore, the 

main change in Algorithm 2.2.1 is that the solution of MMOP2 requires information 

on v(t) and z(t), for the performance index in MMOP2 becomes: 

tf 

1M = <p(x(tj)) + f [ L(x(t), u(t), y(t)) - A(tf u(t) - ~(tf x(t) 
(2,24) 

+ ~rll1u(t) -v(t) 112 + ~r21Ix(t) -z(t) 112 ] dt 
2 2 

Notice that, at the end of the iterations, u(t) =v(t) and x(t) =:(t) so that at this 

stage the augmentation terms and their derivatives are zero. so having no effect in 

the real optio1ality of the solution. 
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2.2.3 Terminal state constraints 

In some problems we are interested in restricting functions of the terminal 

state to have prescribed values, that is: 

(2,25) 

for a gIven function 'V : 9\nx9\~9\q. Equation (2,25) is an additional equality 

constraint to ROP2, MOP2, EOP2 and MMOP2. It can be treated by using the 

Lagrange multiplier theory (see, for example, Bryson and Ho, 1975). As a 

consequence, a new boundary condition for the costate is obtained as follows: 

a T 

p(t) = V m + 'V v I f x't' -a x=x(t) X f 

(2,26) 

where VE 9\q is a Lagrange multiplier vector to be found so that the additional 

necessary condition (2,25) is satisfied. Notice that in terminal state constrained 

problems some reachability conditions must be satisfied for a solution to exist (see, 

for example, Lewis (l986a) for a discussion on the LQ case). 

2.3 DISOPE WITH LINEAR-QUADRATIC MODEL-BASED PROBLEM 

2.3.1 Formulation 

If the model-based problem (MOP2) is chosen as a linear-quadratic 

approximation of ROP2, then noniterative methods similar to Procedure 2.1.3 can be 

used for the model-based computations. 

Thus for computational advantage, a linear model-based dynamic function 

f and quadratic weighting functions Land <p may be chosen. Considering that 

a(t) and y(t) enter as shift parameters we have: 

L(x,u,y) = ~x(trQx(t) + ~ll(trRu(t) + ret) 

<p(x(tj )) = +x(tjr<l>x(tj ) 

f( x, If , a) = A x(t) + B ll(t) + a(t) 

(2,27) 

where <1»0, Q>O and R>O are symmetric weighting matrices of the appropriate 

dilnensions, A and B are matrices which represent a linear model of f· . 
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Notice that more general terminal weighting specifications may be introduced 

by exploiting the fact that a performance index of the form 

t, 

Je = <p(x(tj)) + J L *(x(t),u(t),t) 
to 

can be represented by making the following substitution (Sakawa and Shindo, 1980): 

L *(x,u,t) ~ L *(x,u,t)+VX<PTj*(X,u,t) 

By using (2,27), and including the variable augmentation discussed in Section 

2.2.2 the linear-quadratic MMOP2 can be written as: 

t, 

:t~ JM = ~ x(tjf<l>x(tj ) + J[ ~(tfQx(t)+ ~u(tf Ru(t) + y(t) 

-A \ t)u(t) - ~ T (t)x(t) + ~r111 u(t) -v(t) 112 + ~r 21Ix(t) -z(t) f] dt 
2 2 

subject to 

x = Ax(t) + B u(t) + aCt) 

x(to) = Xo 

The corresponding Hamiltonian function is: 

H = ~(x(tfQx(t)+u(tfRu(t)) + yet) + p(tf(Ax(t) +Bu(t) +a(t)) 
2 (2,28) 

-A(tfu(t) - ~(tfx(t) + ~r11Iu(t)-v(t)f + ~r21Ix(t)-z(t)112 
2 2 

Applying the model-based optimality conditions (2,14), (2,15), (2,16) and 

(2,17) with H given by (2,28), the following TPBVP is obtained: 

-1 -x = Ax(t) - BR - (B Tp(t) -A(t)) + aCt) (2,29) 
- -

p = -Qx(t) - A Tp(t) + ~(t) 

with border conditions: 
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-

x( to) = Xo 

P(tf) = <l>X(tf) 
(2,30) 

where R = R + r 1 1m and Q = Q + r l n are augmented weighting matrices and 

- -
A(t) = A(t) + r l v(t), and ~(t) = ~(t) + r2z(t) are augmented multipliers. 

This linear TPBVP can be solved by using the backward sweep method 

(Bryson and Ho, 1975; Lewis, 1986a). The key is to assume the relationship between 

costate and state as p(t) = K(t)x(t) +k(t) , where K(t) is a nxn matrix and k(t)E 9\fl . 

This gives rise to the following noniterative solution procedure (See Appendix A for 

the derivation): 

Procedure 2.3.1: Solution of linear-quadratic MMOP 

Step a: Solve backwards from ~f to to the following differential equations, 

with terminal conditions K(tf) =<1> and k(tf) =0: 

K = K(t) B R -I B T K(t) _AT K(t) - K(t) A - Q 
k = K(t)BR- 1 B T k(t)-A T k(t) -K(t)BR-

1 ~(t) -K(t)a(t) +P(t) 

Step b: Compute the time-varying Kalman gain G(t) , tE [to,tf] and driving 

input g( t) E 9\m, tE [to,tf ] from: 

G(t) = R-I B T K(t) 

g(t) = -R-1 (B T k(t) - ~(t)) 

Step c: Compute the state x(t), tE [to,tf ] by integrating from the initial 

condition x( to) = Xo the following differential equation: 

.'to = (A-BG(t))x(t)+Bg(t)+a(t) 

Step d: Compute the costate p(t), tE [to,tf] from: 

p(t) = K(t) x(t) + k(t) 
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Step e: Compute the control input u(t), tE [to' tf ] from the control law: 

uCt) = -GCt)xCt) + gCt) 

The linear-quadratic formulation enables the augmented multipliers x,( t) and 

-
~(t), tE [to,t

f
] to be expressed as (see equation (2,18)): 

x,(t) = [ df - df* rp(t) + [Rv - V L *] 
dV dV v 

(2,31) 

PCt) = [df - df* ]TpCt) + [Qz-V L *] 
dZ dZ Z 

while the calculation of parameter a( t), tE [to' tf ] becomes (see equation (2,19)), 

noting that it is not necessary to calculate y( t) : 

aCt) = f*( zCt), vet) , t) - A zCt) - B vCt) (2,32) 

2.3.2 Terminal state constraints 

Terminal state constraints of the type x j( tf ) =0, iE [ 1 , q] will be taken into 

consideration. This kind of constraint can be written as: 

(2,33) 

where C = [/ 10] is a qxn matrix. Notice that a terminal constraint of the type 
q 

x
j
( t

f
) =x

jf 
' iE [ 1 , q] can be achieved by a straightforward shift change of state 

variable. The resulting TPBVP is identical to (2,29), but with boundary conditions 

(see equation (2,26)): 
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x(to) = Xo 
(2,34) 

P(tf) = <l>X( tf ) + C TV 

where VE 9\q is a Lagrange multiplier to be determined such that (2,33) is satisfied. 

The solution of MMOP2 taking into account the terminal state constraint is again 

based on the backward sweep method (Bryson and Ho, 1975). The key is to assume 

the relationship between costate and state as p(t) = K(t)x(t) +k(t) + F(t)v, and express 

the (fixed) terminal state function as 'V = F(trx(t) + W(t)v +1l(t) = Cx(tf)' where 

K(t) is a nxn matrix, F(t) is a nxq matrix, W(t) is a qxq matrix, k(t)E 9\", and 

ll(t)E 9\q. The resulting noniterative solution procedure is as follows (See Appendix 

B for the derivation): 

Procedure 2.3.2: Solution of linear-quadratic MMOP2 with terminal 

constraints 

Step a: 

Step b: 

Solve backwards from tf to to the following set of differential 

equations, with terminal conditions K(tf) =<1>, k(tf) =0, F(tf) = C T, 

W(tf) =0, ll(~f) =0: 

i< = K(t)BR-1 B T K(t) -A T K(t) -K(t)A-Q 

k = K(t)B R- I B T k(t)-A T k(t) - K(t)BR-
1 ~(t) - K(t) aCt) + ~(t) 

F = K(t)BR-1 B T F(t) -A T F(t) 

W = F(tr BR-1B TF(t) 

1'1 = F T B R -I (B T k(t) - ~(t) ) - F(tr aCt) 

Compute the time-varying Kalman gain G(t) , tE [to,tf ] , multiplier v 

and driving input g( t) E 9\m, tE [to,tf ] from: 

G(t) = i-I B T K(t) 

v = _W(tOfl(F(tofxo -l1(to)) 

-I -
g(t) = -R- (BT(k(t)+F(t)v)-"A(t)) 
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Step c: 

Step d: 

Step e: 

Compute the state x(t), tE [to,tj] by integrating from the initial 

condition x( to) = Xo the following differential equation: 

x = (A-BG(t))x(t)+Bg(t)+a(t) 

Compute the costate p(t), tE [to,tj] from: 

pet) = K(t)x(t) +k(t) + F(t)v 

Compute the control input u(t), tE [to,tj ] from the control law: 

u(t) = -G(t) x(t) + g(t) 

2.3.3 DISOPE algorithm with LQ model-based problem 

DISOPE requires a nominal solution to start the iterations. A recommended 

starting point is to use the solution of MMOP2 under aCt) =0, A(t) =0, 

-
~(t) =0, tE [to' tj ], r 1 = r2 = 0 (relaxed MMOP2). 

It is recommended that the relaxation gains kv' kz and kp should initially be 

set to 1 and the convexification factors should be chosen as r1 = r2 =0, and adjusted 

only if convergence problems arise. 

The linear dynamic model (A, B) should approximate the real dynamics 

represented by f' in the dynamic range of interest. One way to ensure this is to 

choose the pair (A, B) as a linearization of f *( x, u , t) about an appropriate point. 

The value of the weighting matrices (Q, R) should be such that the resulting L 

approximates L * in the range of values of states and controls of interest. 

From the above analysis, the following DISOPE algorithm with linear

quadratic model based problem has been proposed (Roberts, 1993a). 
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Algorithm 2.3.3: Continuous time DISOPE algorithm with LQ model-based 

problem 

Step 0 

Step 1 

Step 2 

Step 3 

Step 4 

calculating f * and L * . 

Compute or choose a nominal solution u o(t), x OCt) and p o(t). Set 

Compute the parameter ai(t) to satisfy (3.1). This IS called the 

parameter estimation step. 

Compute the augmented multipliers ~i(t) and Wet) from (2,31). 

- -
With specified a(t), A(t) and ~(t) solve the modified model based 

optimal control problem MMOP2 (by using Procedure 2.3.1 if q=O 

or Procedure 2.3.2 if q>O) to obtain u i+l(t), X i+l(t) and p i+l(t). This 

is called the system optimisation step. 

This step tests convergence and updates the estimate for the optimal 

solution of ROP2. The simple relaxation method (2,21) is employed 

to satisfy (2,20). If v i+l(t) = V i(t) within a given tolerance stop, else 

set i =i + 1 and continue from step 1. 

In practice, the achievement of the equality v i+l(t) = V i(t), tE [t(l' tfl may be 

evaluated by using the following 2-norm (control \'ariatioll norm between iterates): 
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(2,35) 

where fl.t is the numerical integration step, and comparing its value with a given 
'-

small tolerance £ . 
v 

Notice that Algorithm 2.3.3 solves a sequence of LQ optimal control 

problems which converge to the solution of ROP2 (which may be nonlinear and non

quadratic). From this point of view, the algorithm may be compared to the 

Sequential Quadratic Programming technique (Fletcher, 1981), where a sequence of 

quadratic programming problems (consisting of a quadratic objective function with 

linear constraints) are solved to find the solution of a nonlinearly constrained 

mathematical programming problem. It is also noticeable that Algorithm 2.3.3 is an 

infeasible path approach, in the sense that intermediate solutions u(t), x(t), tE [to' tf ] 

are not exact solutions of the differential constraint .i = f *( x, u , t) . 

2.4 SIMULATION EXAMPLES 

Algorithm 2.3.3 was implemented in the C++ programnung language 

(Becerra, 1993a) using object oriented programming techniques which allow us to 

handle naturally matrices and their operations (Gorlen et ai, 1990). A fixed step size 

fourth order Runge-Kutta integrator (Press et ai, 1992) was used for solving all the 

ODE's involved in the algorithm. The trapezoidal rule was used for numerical 

quadrature. All the derivatives Uacobian matrices, gradients) were computed by using 

the Central Difference Formula (Press et aI, 1992), so avoiding tedious analytical 

derivative calculations, which are also prone to human errors. 

Note that K(t), G(t), F(t). and wet) need only be computed once and do not 

change between iterations. provided r 1 and r2 are kept constant during the process. 

The CPU times presented below are for an IBM compatible 486DX-based 

machine with 33 MHz clock speed. 

For further details about the C++ implementation of the continuous time 

DISOPE algoritho1 sec (Becerra. 1993a). 
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Example 2.4.1: continuous stirred tank reactor (CSTR). 

This example has been taken from two classical books on optimal control 

(Lapidus and Luus, 1967; Kirk, 1970) and consists of the dynamic optimisation of 

a first order irreversible chemical reaction carried out under non-isothermal 

conditions in a continuous stirred tank reactor (CSTR). Control of the reactor is 

achieved by manipulation of the flow of cooling fluid through a cooling coil inserted 

in the reactor. Here Xl (t) represents the deviation from the dimensionless 

temperature, x2(t) represents the deviation from dimensionless concentration. The 

control variable u(t) depends on the opening of the valve. It is required to find the 

optimal input u(t) so as to minimize a quadratic performance index subject to the 

nonlinear dynamic constraints. The model-based dynamics have been chosen as a 

linearization about the origin. Here we will test the sensitivity of the algorithm with 

respect to the tuning parameters r I and kv' The numerical integration step used was 

flt = 0.01 and the tolerance specified for convergence was tv =0.01. The relaxation 

gains k and k were both set to 1 and the convexification factor r2 was set to zero. 
z' p 

The reason for this selection is that current research by Roberts (1993b) indicates 

that DISOPE is more sensitive to the choice of r, and kv' than to the values of the 

other tuning parameters. 

ROP: 

ffiln 

u(t) 

0.78 J ( X ,2 + X2
2 

+ 0.1 u 2) dt 
o 
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subject to 

MOP: 

subject to 

. ( [25X J Xl = - Xl +0.25) +(X2 +0.5)exp I -( 1 +u)(x +0.25) 
X +2 I 

I 

X2 = 0.5 -x
2 
-(x

2 
+0.5)ex/ 25x, J 

lX1+2 

x(0)=[0.05 Or 

nun 
u(t) 

0.78 

f (XI
2 

+ X2
2 
+O.lu 2 )dt 

o 

X(O) =[0.05 Or 

Table 2.4.1 shows the algorithm's performance in terms of number of 

iterations, CPU time and final ( 1/ ) performance indexes, for different values of r
l 

and kl" The value of the real performance index for the nominal control II OCt) 

(which was obtained from the relaxed MMOP) was 10' = 0.031. Figure 2.4.1.1 

shows the final state responses. Figure 2.4.1.2 shows the nominal and final control 

signals, where the difference between the initial and final solutions can be 

appreciated. Figures 2.4.1.3 and 2.4.1.4 show the convergence of the real 

performance index and of the control variation norm, for the default values r l =0 

and kl' = 1 . and the best tested tuning parameter set r l =0.1 and k\. =0.8. 
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s 
x 

r1 k Number of CPU (s) J* v f 
iterations 

0 1 10 63 0.026617 

0.1 1 8 53 0.026618 

0.5 1 9 59 0.026647 

0 0.8 9 56 0.026617 

0 0.3 13 80 0.026616 

0.1 0.8 5 34 0.026620 

Table 2.4.1: Algorithm's performance for example 2.4.1 

0.06 ~-----.------.----,---.-----,---------r-----.--------' 

0.02 

-0.06 

I 
xl 

-0.08 '--_--L---~---l-----L----.L_-~=__-:_'":"""-_;: 
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

t 

Figure 2.4.1.1: Example 2.4.1, final state vector 

60 



1.8 1 --.------.---.---,---------.--_-___ _ 

1.6 

1.4 optimal 

1.2 \ 
\ 

\ , , , 
""'"' I "" ..... 
~ 

:::J 

0.8 

nominal ~ 
~ 

0.6 """ " " 
...... " ........ 

0.4 

0.2 

0 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

t 

Figure 2.4.1.2: Example 2.4.1, final and nominal control signals 
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Figure 2.4.1.3: Example 2.4.1, convergence of the real performance 

index 
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Figure 2.4.1.4: Example 2.4.1, convergence of the control variation 
norm 

It can be seen that the speed of convergence depends on the values of the 

tuning parameters r 1 and kv' Furthermore, there must be an optimum pair ( r) ,k) 

which provides a minimum number of iterations for convergence. The minimum 

number of iterations achieved with the combinations tested was 5, while the 

iterations with the default values r) =0 and kv = 1 was 10. This agrees with the 

results obtained by Roberts (1993b). 

We can observe in Figure 2.4.1.3 that the performance index does not 

decrease monotonically with r1 =0 and kv = 1, while it does with r 1 =0.1 and 

kv =0.8. The control variations are obviously smaller between iterates and 

convergence is faster with the latter set of parameters, as can be seen in Figure 

2.4.1.4. 

It is also important to test the sensitivity of the algorithm with respect to the 

nominal solution. An additional simulation was carried out using the same model

based problem, but the nominal solution was taken as: 

u(t) =0. x(t) =xo' p(t) =0. tE [0.1] 
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uSing r l =0 and kv = 1. Then convergence was achieved after 12 iterations, with an 

initial performance index 10* =0.223810. This result indicates that although the 

nominal solution obtained from the relaxed MMOP is closer to the optimum, the 

algorithm was able to find the optimum starting from a gross approximation without 

a significant increase in the number of iterations required. Furthermore, DISOPE 

does not require the nominal solution to be very close to the optimum. 

Example 2.4.2: Third order nonlinear system 

This example consist of the optimisation of a non quadratic performance 

index subject to nonlinear dynamic equations and a terminal state constraint. The 

model-based problem consists of a quadratic approximation to the original 

performance index and a linear approximation to the real dynamics. Here we will 

illustrate the sensitivity of the algorithm with respect to the linear dynamic 

approximation used in the model-based problem. The numerical integration step used 

was ~t = 0.04 and the tolerance specified for convergence was tv =0.01. Relaxation 

gains and convexification factors were set to the default values one and zero, 

respectively. It is noted that the nonlinearities in ROP are substantial and the model

reality differences are considerable. 

ROP: 

subject to 

min 
u(t) 

XI = -XI + X I X 2 + u l 

3 
X2 = XI - 2X2 + XI 

X = -3x + x') + sin(u2) 
3 I 

x(O)=[ l.2 0.0 1.0r: x l (2) = 0 
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MOP: 

2 

ffiln J (2 2 2 2 2 u(t) Xl +X2 +X3 +U I +U2 )dt 

° 
subject to 

X = Ax(t) + B u(t) + aCt) 

x(O) =[ 1.2 0.0 1.0]T; XI (2) = 0 

Table 2.4.2 shows the model based matrices used and the results obtained in 

terms of number of iterations for convergence, CPU time, nominal ( x
I
O( 2) ) and 

final ( XI (2) ) values of the terminal constrained state, and the final value of the real 

performance index J *. Notice that in case (a) the dynamic matrices were computed 

as a linearization of the real dynamics about the origin x =[0 0 Or, u=[O or, while 

in case (b) these matrices have been (arbitrarily) multiplied by a factor of 2. 

Case A B No. CPU ° x l (2) J' XI (2) 
Iter. (s) 

.- - ~ - 23 177 0.0958 -0.0060 0.4865 a 
-1 0 0 1 0 

1 -2 0 0 0 

0 1 -3 0 1 
L. - -

b .- - - 29 221 0.2769 -0.0067 0.4873 
-2 0 0 2 0 

2 -4 0 0 0 

0 2 -6 0 2 
L.. L.. -

Table 2.4.2: Algorithm's performance for example 2.4.2 
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Figure 2.4.2.1: Example 2.4.2, final state response 
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Figure 2.4.2.2: Example 2.4.2, final control signals 
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Figure 2.4.2.3: Example 2.4.2, convergence of the control variation 
norm, cases (a) and (b) 

From the results presented it can be seen that in both cases the algorithm 

achieved the same solution to ROP within the tolerance specified. However, it is 

observed that case (a) yielded faster convergence. The reason for this is that the 

linear dynamics in case (a), being a linearization about the origin, are a better 

approximation to the real dynamics. This is illustrated in Figure 2.4.2.3 where it can 

be seen that the control variation norm converges monotonically, while in case (b) 

some oscillations are present. This indicates that different model-based 

approximations to reality have distinctive convergence behaviour. 

Notice that although intermediate iterates x i(t), u i(t), tE [to,tj] satisfy the 

terminal constraint xl(t
j
) =0, the solution of i=J*(x,u,t) given II i(t), tE [toJ,] will 

only satisfy the terminal condition at the end of the iterations. 
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2.5 SUMMARY 

In this chapter, after a brief introduction to the theory of optimal control. the 

theoretical development of the DISOPE approach has been presented and the 

continuous time DIS OPE algorithm has been described as originally introduced by 

Roberts (1992, 1993a). The main mathematical tool used for the derivation is the 

calculus of variations. Topics such as variable augmentation and handling of terminal 

state constraints have been treated. Furthermore, a version of continuous time 

DISOPE with a linear-quadratic model-based problem has been implemented in 

software. Such an implementation has been used to test the algorithm through 

simulation examples. The effects of some tuning parameters, such as relaxation gains 

and convexification factors have been investigated. Moreover, the sensitivity of the 

algorithm with respect to various factors, such as the initial solution guess and the 

model-based dynamic approximation of reality, has been illustrated. The capability 

of the algorithm for solving nonlinear optimal control problems with model-reality 

differences has been emphasized. 
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CHAPTER 3 

DISOPE WITH CONSTRAINED CONTROLS 

In this chapter, an extension of the DISOPE algorithm is developed for 

handling optimal control problems with input-dependent inequality constraints. The 

new algorithm is implemented in software, and it is tested with one example with 

magnitude constraints on the control signal. Alternative ways of handling magnitude 

constraints are also treated. The research work presented in this chapter is also 

described in (Becerra and Roberts, 1993). 

3.1 OPTIMAL CONTROL WITH INPUT DEPENDENT CONSTRAINTS 

The importance of nonlinear control problems with control input dependent 

constraints is widely recognized (Quintana and Davison, 1974). These constraints 

arise naturally from the physical limitations of controllers, control valves, actuators 

and/or processes and are normally called hard constraints, because no violations are 

allowed at any time. Such constraints must be handled explicitly in any optimisation 

procedure (Soeterboek, 1992). 

3.1.1 Problem formulation 

The following formulation extends the real optimal control problem (ROP2) 

formulated in Section 2.1.1 to accommodate a set of input-dependent constraints. 

Consider the following fixed terminal time real optimal control problem (ROP3) with 

input-dependent inequality constraints: 

ROP3 

t, 

mIn 
u(t) 

J* = <p(x(tj)) + f L *(x(t),u(t),t) dt 

to 
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subject to x = j*(x(t), u(t), t) 

x(to) = Xo 

C( u(t) , t) :::; 0 

where to' tf' j*, x(t), u(t), L *, <p are defined in Section 2.1.1 and C : 9\lx9\"~9\fJ, 

is a set of input-dependent inequality constraints. 

3.1.2 Necessary optimality conditions (The minimum principle) 

The necessary optimality conditions of ROP3 are gIven in terms of the 

Hamiltonian (2,3) and it was shown by Pontryagin et al (1962) that the costate 

equation (2,5), state equation (2,6) and boundary conditions (2,7) still hold as 

necessary conditions of optimality, but at all points on C =0 (i.e. the constraint is 

active) the optimal u has the property that (Bryson and Ho, 1975) 

Furthermore if C < 0 

bH * = V H *T bu ~ 0 
u 

bC = aCT bu :::; 0 
au 

V H* = 0 
u 

(3,1) 

(3,2) 

The above conditions can be stated as "H * must be minimized over the set 

of all possible u". This is known as Pontryagin' s Minimum Principle (Pontryagin 

et ai, 1962). An equivalent approach to the above formulation is to define (Bryson 

and Ho, 1975): 

(3,3) 

where 8(t)E 9\", is a Kuhn-Tucker multiplier which has the requirement that: 
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S(t) {>O, C(u,t) =0 
=0, C(u,t)<O 

then the stationarity condition on H I IS: 

aj aCT v HI = VuL + -pet) + -S(t) = 0 
u au au 

(3,4) 

(3,5) 

Notice that as VxH' = VxH and VpH' = VpH then equations (2,5) and (2,6) 

also apply as necessary optimality conditions in this alternative formulation. 

3.2 DYNAMIC ISOPE APPROACH 

In Chapter 2, we derived the DIS OPE algorithm by using variational calculus. 

In that case we assumed that there were no constraints on the values the control 

signal may achieve. In this Section we shall take into account such constraints in the 

formulation by using the minimum principle stated above. 

3.2.1 Problem formulation and solution 

Instead of solving the real problem ROP3 the following possibly simplified 

model based problem (MOP3) is considered: 

MOP3 

ffiln 

u(t) 

subject to 

tf 

J m = <p(x(t
j
)) + J L(x(t), u(t), yCt)) dt 

to 

i = f(x(t), u(t), a(t)) 

x(to) = Xo 

C( u(t) , t) ~ 0 
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where 1m is a model-based performance index, L is a continuous weighting function 

and perhaps a simplification of a known L * ,f is an approximated dynamic model 

of f*, y(t)E 9\ and a(t)E 9\' are continuous parameters. 

Now, an expanded optimal control problem (EOP3), which is equivalent to 

the real optimal control problem ROP3, is defined as follows: 

EOP3 

subject to 

Illin 
u(t) 

tf 

le = cp(x(9) + f L(x(t), u(t), y(t)) dt 
to 

x = f( x(t), u(t), a(t)) 

x(to) = Xo 

C( u(t) , t )~O 

f(z(t),v(t),a(t)) = f*(z(t),v(t),t) 

L (z(t), vet), y(t)) = L *( z(t) , v(t), t) 

u(t) = vet) 

x(t) = z(t) 

where the role of z(t), vet) and that of the additional equality constraints has already 

been discussed in Section 2.1.1. 

Adjoining constraints, we obtain the following augmented performance index 

t, 

1: = cp(x(tj)) + f [ L(x,u,Y) + pT(f(x,u,a)-x) + A,T(V-U) 

(3,6) 
+ ~\z -x) + ~T(f*(Z, v,t)-f(z, v,a)) 

+ ~(L*(z,v,t)-L(z,v,y)) + 8 T C(u,t)] dt 
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where the time index has been dropped for convenience, p(t)E 9\" , A(t)E 9\m . 

P(t)E 9\", flCt)E 9\m and ~(t)E 9\ are Lagrange multipliers and e(t)E 9\"c is a Kuhn

Tucker mUltiplier such that (3,4) is satisfied. 

Notice that by adjoining the inequality constraint C(u,t)sO with the Kuhn-

Tucker multiplier e(t) we are firstly eliminating the inequality constraint such that 

the control variations become free, and secondly we are implicitly applying the 

minimum principle. 

Define a function (the augmented Hamiltonian): 

Thus, by applying the calculus of variations to (3,6) and taking into account 

the new definition of the augmented Hamiltonian H it is easy to see that the 

necessary optimality conditions of EOP3 are identical to those obtained for EOP2, 

namely (2,14) to (2,20). As a consequence, it follows that given values of a( t), y( t) ,A( t) 

and P(t), the solution of the following problem satisfies the definition of the 

augmented Hamiltonian (3,7) and also the model-based optimality conditions (2,14), 

(2,15) and (2,16) plus the border conditions (2,17). 

MMOP3 

mIn 
uCt) 

subject to 

t
f 

1M = <p(xCt
j
)) + J [ L(x(t), u(t), yet)) -A(tfu(t) - p(trz(t) ] dt 

to 

x = f(xCt), uCt), aCt)) 

x(to) = Xo 

C( u(t), t) sO 

The above analysis gIves nse to the following DISOPE algorithm with 

inequality constraints on the control variables. 

Define: 

n = {u.(t) C(u.t)sO, jE [1.111], tE [to.!,]} 
} 

{3,8) 
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as the set of admissible control trajectories. 

Algorithm 3.2.1: DIS OPE algorithm with input dependent inequality 

constraints 

Data 

Step 0 

Step 1 

Step 2 

Step 3 

Step 4 

f, L, <p, xo, to' tl , C, and means for calculating f * and L * . 

Compute or choose a nominal solution u Oct) E .Q, x Oct) and p o(t). 

Compute the parameters a/(t), y(t) to satisfy (2,19). This is called the 

parameter estimation step. 

Compute the multipliers 'A/(t) and W(t) from (2,20). 

With specified a(t), y(t), A(t) and ~(t) solve the modified model-

based optimal control problem MMOP3 to obtain u i+l(t), X i+l(t) and 

P i+l(t). This is called the system optimisation step. This step should 

be performed by an optimal control algorithm capable of handling 

input dependent inequality constraints. 

This step tests convergence and updates the estimate for the optimal 

solution of ROP3. In order to provide a mechanism for regulating 

convergence, the simple relaxation method (2,21) may be employed 

to satisfy (2,20). If v i+l(t) = V i(t) within a given tolerance stop, else 

set i =i + 1 and continue from step 1. 

3.3 CASE OF SIMPLE BOUNDS ON THE CONTROLS 

It is of particular practical importance the case when the control input 

magnitude is bounded at upper and lower levels (i.e. umin ::;; llj ::;; umax ' jE [I,m]). In 
} } 

this case, we have the following set of control input inequality constraints: 
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u.-u :5;0 
) max) • [1 ] 

-U.+u . <0 JE ,m 

(3,9) 

) mIn) 

One way of handling magnitude constraints on the control inputs is the use 

of a variable transformation technique. Several authors have proposed the use of 

variable transformations to convert the constrained problem into an unconstrained 

one in a new control variable (Sisirena and Tan, 1974). A particular transformation 

suitable to be used within the DISOPE framework is the following vector saturation 

function: 

u(t) = SAT( u(t)) = 
sate ul ) 

(3,10) 

sate u ) 
m 

where u(t) IS the transformed (unconstrained) control variable, u(t) is the 

constrained control variable, and the scalar saturation function sat(.) is given by: 

u u>u max ) max (3,11) ) ) 

sate u.) = u. u . :5;u<u 
) ) mIn) ) max} 

U 
min) 

U.<U 
min} ) 

By using such a transformation, unconstrained DIS OPE (i.e. Algorithm 2.3.3) 

and hence iterative LQ solution methods may be applied to the transformed problem. 

3.4 SIMULATION EXAMPLES 

Recall Algorithm 3.2.1 and notice that it requires that step 3 must be solved 

by using an optimal control algorithm capable of handling control dependent 

inequality constraints. As mentioned in Section 3.3, bound or magnitude constraints 

on the controls are a particular case of the general inequality constraints C( II • t):5; 0 

which has practical relevance. In this work, Algorithm 3.~.1 has been implemented 
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for such a particular case. A multiple-input extension of the single-input conjugate

gradient algorithm presented by Quintana and Davison (1974) is used as an auxiliary 

algorithm for solving MMOP3 at every iteration of DISOPE. The algorithm 

(described in Appendix C) is easy to implement and its convergence has been proven 

for any arbitrary and feasible initial estimate of the optimal control. The key 

concepts of this algorithm are the numerical integration of the state and costate 

equations, and a gradient in function space to update the controls which are clipped

off at the bounds so as to minimize the Hamiltonian. The algorithm has shown good 

performance and has been compared favourably with other constrained optimal 

control algorithms (Jones and Finch, 1984). 

The following simulations were run on an mM compatible 486DX -based 

microcomputer with 33 MHz clock speed. The example was solved by two methods: 

(a) Algorithm 3.2.1 (DISOPE with constrained controls), using a conjugate

gradient algorithm to find the solution of MMOP3 at every iteration. 

(b) Algorithm 2.3.3 (DISOPE with LQ model-based problem), using a variable 

transformation to handle the control bounds. 

More details on the conjugate-gradient algorithm used, together with the 

definition of its tuning parameters may be found in Appendix C. The tolerances 

specified for the conjugate-gradient algorithm were c) = 0.05 and C1 = 0.05, 

resetting the algorithm to steepest descent every 3 iterations. 

Example 3.4.1: continuous stirred tank reactor (CSTR) with bounded control 

This example consists of the same dynamic equations and performance index 

as in Example 2.4.1, but here the control signal is bounded between upper and lower 

levels -1 < u(t) < 1. The model-based dynamics have been chosen as a linearization 

about the origin. The numerical integration step used was I1.t = 0.01 and the 

tolerance specified for convergence of DISOPE was cl . =0.01 . The relaxation gains 

k and k were both set to 1 and the convexification factor r2 was set to zero. The 
z' p 

values of k
l
• and r) were set to 1 and 0, in method (a), and 0.9 and 0.5 in method 

(b). 
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ROP: 

subject to 

MOP: 

subject to 

ffiln 

u(t) 

0.78 

J (XI2+X22+0.1u 2)dt 
o 

Xl = -(Xl +0.25) +(X2 +0.5)exp(25X I J-( 1 +u)(x +0.25) 
X +2 I 

I 

X2 = 0.5-X2 -(X2 +0.5)exp(25XI J 
x

I
+2 

x(O) = [0.05 Or 
-1 :::; u( t) ~ 1 

ffiln 

u(t) 

0.78 

J (XI
2 

+ X2
2 

+0.1u 2 +y)dt 
o 

[
4.25 1 } [-0 25] X = (t) + O· u(t) + aCt) 
-6.25 -2 

X(O) = [0.05 Or 
-1 < u(t) ~ 1 

The performances of the methods being tested (Algorithms 3.2.1 and 2.3.3) 

are presented in Table 3.4.1. The final control signals are compared in Figure 3"+.1.1. 

The convergence behaviour is illustrated in Figures 3"+.1.2 and 3.4.1.3. 
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Algorithm Number of Number of CPU 1" J-
0 

DISOPE performance (s) 

iterations index 

evaluations 

(a) 3.2.1 6 98 281 0.053664 0.028952 

(b) 2.3.3 11 11 71 0.053644 0.028953 

Table 3.4.1: Performances for example 3.4.1 

It can be seen in Table 3.4.1 that even though Algorithm 3.2.1 required a 

lower number of iterations for convergence, the CPU time it used was significantly 

higher than that used by Algorithm 2.3.3. The CPU time per iteration in Algorithm 

3.2.1 was about 5 times higher than that in Algorithm 2.3.3, which is explained by 

the iterative nature of the conjugate-gradient algorithm used for solving MMOP3, as 

opposed by the non-iterative LQ solution procedure used in Algorithm 2.3.3 

(Procedure 2.3.1). Notice that the performance index evaluations in Algorithm 2.3.3 

are carried out for later analysis, and these are not needed for the algorithm's 

calculations. Notice also that the changes in the performance index are very small 

after a few iterations with Algorithm 2.3.3. However, the convergence of the control 

variations is slower than that of the performance index. This occurs because changes 

in the (unconstrained) model-based control are sensed by DISOPE, but the saturation 

function filters such changes when the performance index is computed. 

It can be checked that the solutions obtained satisfy the necessary optimality 

conditions (within the tolerances specified) and, therefore, the constrained DISOPE 

algorithm achieved the correct optimal solution in spite of the model-reality 

differences. This verifies, by means of simulations, the validity of Algorithm 3.2.1 

as well as the usefulness of the variable transformation technique. 
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Figure 3.4.1.1: Example 3.4.1, final control signal 
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Figure 3.4.1.2: Example 3.4.1, Convergence of the performance index 
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Figure 3.4.1.3: Example 3.4.1, control variation norm versus iterations 

3.5 SUMMARY 

An extension of the DIS OPE algorithm for handling optimal control problems 

with general control dependent inequality constraints has been developed. The 

original DISOPE algorithm remains basically unchanged when including the control 

dependent constraints, the important differences being the specification of a feasible 

nominal solution and the explicit handling of the constraints when solving MMOP3. 

The algorithm developed has been implemented in software, for the particular 

case of control magnitude bounds, using a conjugate-gradient algorithm for solving 

the constrained modified model-based problem. Additionally, a variable 

transformation technique which converts problems with simple bound constraints into 

unconstrained problems has been tested. The transformed unconstrained probkm~ 

were solved by using the DIS OPE algorithm with unconstrained LQ model ba~ed 

problem (Algorithm 2.3.3). 

The implemented constrained DISOPE algorithm and the variable 

transformation technique have been tested with one example with bounded control 

input. The results indicate that the variable transformation technique tugl'ther with 

the unconstrained version of DISOPE is a more efficient alternative for handling 
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bound constraints from the computational time point of VIew. than usmg the 

constrained version of DISOPE together with the conjugate-gradient algorithm. eyen 

though the constrained DIS OPE algorithm required less iterations for convergence. 

80 



CHAPTER 4 

HIERARCHICAL DIS OPE ALGORITHM 

In this chapter, a hierarchical DISOPE algorithm for solving large-scale 

nonlinear optimal control problems with model-reality differences is developed. The 

approach used is based on the interaction-prediction approach and on the centralized 

DISOPE technique. A new multiplier is introduced to take into account the 

constraints related with the interactions between subsystems. A version of the 

algorithm with a linear-quadratic model-based problem is developed and 

implemented in software. The technique is suitable for parallel or distributed 

processing. The algorithm implemented is tested with one simulation example. The 

research work presented in this chapter is also described in (Becerra, 1993c). 

4.1 LARGE-SCALE SYSTEMS AND HIERARCHICAL CONTROL 

Systems complexity in many real-life plants and processes has led to a new 

class of systems theory called large-scale systems. A system is considered as being 

of large-scale when it can be decomposed into a finite number of subsystems or 

when it is distributed in such a way that the concept of centrality does not hold. 

Most large-scale industrial processes consist of interconnected subsystems or sub

processes according to workshops, units, functions and geographical positions. 

Examples may be found in several industries such as chemical, petrochemical. 

electrical power, etc. One class of control of large-scale industrial processes is the 

hierarchical one, where decision units, which are positioned at upper levels in the 

hierarchy, control or coordinate the process units or subsystems located at the lower 

levels. The control or coordination functions are normally performed by a set of 

computers (decision units) connected in a hierarchical or multilevcl structure. 

Hierarchical optimisation of dynamic systems may yield substantial computational 

savings (when compared to centralized dynamic optimisation), in both storagc and 

computer time and these benefits increase when parallel processing is used (Jamshidi. 

1983; Singh. 1980). 
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4.2 PROBLEM FORMULATION AND SOLUTION APPROACH 

Consider the large-scale interconnected system described by the following 

time-varying ordinary differential equation: 

x = f*(x(t),u(t),t) 

x(to)=xo 
(4,1) 

where U(t)E 9\m, X(t)E 9\n represent the overall control and state vectors respectively. 

XOE 9\n represents a given initial state, and f* : 9\nx9\mx9\---79\n represents the 

overall dynamic system. 

This large-scale system is decomposed into N sub-systems (Jamshidi, 1983), 

giving the following dynamic equation for the ith subsystem: 

x. = .f,.*(x.(t),u.(t),t)+r.(x(t),t) 
I J" , ~, (4,2) 

x.(O)=x·O , , 

where Uj(t)E 9\mj, Xj(t)E 9\1Ij represent the ith control and state vectors respectively. 

subsystem's dynamics, Sj : 9\1Ix9\---79\n, represent the interactions or 

interconnections between subsystems and is given by 

N 

Sj(x(t) , t)= L S/x/t) , t) (4,3) 
j=l 

The objective is to find the control vectors u\ (t) ... u N(t) so that the following 

overall performance index is minimized: 
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t, 

J* = <p(X(tj)) + J L *(x(t),u(t),t) dt ( 4,4) 

to 

where <p : 9tn-79t is a given terminal measure and L * : 9tnx9tmx9t---t9t IS the 

overall performance measure function. 

It is supposed that the overall performance index is additively separable: 

performance measure function. 

Then, the large-scale system optimal control problem can be written as: 

mIn N N ~ 

u/t) J* = LJj* = ~ { <Pj(x/tj )) + J L/(xj(t),uj(t),t) dt } 
iE [1 ,N] 1=1 1=1 to 

subject to 

x/t) = h*(xjU),uj(t),t) + 8/w jU),t) 

x,Uo) = X. 
1 10 

N 

8 j( Wj(t) , t) = L ~ij(x/t), t) 
j=! 

where 8
j
E 9\11, and WjE 9\s, represent the interactions between subsystems. 

Now it is assumed that the interactions are linear. This is: , 

N 

Wi(t) = L Mijx/t) 
J=! 

mil X.I' M o~\ XII 

where CjE ~\", ijE J\ . 
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The following formulation is based on the interaction-prediction method 

(Singh, 1980; Jamshidi, 1983; Mahmoud et al, 1985) and on the centralized 

continuous time version of the DISOPE algorithm (Roberts, 1992. 1993a: see 

Chapter 2). After the above analysis and assumptions, consider the following large

scale system real optimal control problem (ROP4): 

ROP4 

ffiln N N t, 

uj(t) J* = L J j* = ~ { <Pj(XjCtj )) + f Lj*(xj(t),uj(t),t) dt } 
iE [1 ,N] 1=1 1=1 to 

subject to 

X. = +1·*(X.(t),u.(t),t) + C.w. 
I Jz I I I I 

N 

w.(t) = ~ M .. x .(t) 
I ~ I}} 

j=1 

Instead of solving ROP4, the following possibly simplified large-scale system 

model-based optimal control problem (MOP4) is considered: 

MOP4 

ffiln N 

u;Ct) J
m 

= L Jmj 

iE [1,N] j=1 

subject to 

N tf 

= L { <Pj(XjCt
j
)) + f Lj(x;Ct) ,u;Ct) ,yj(t)) dt } 

j=1 

Xj = !;(Xj(t) ,u;Ct) '(Xj(t)) 

X (to)=x. 
z 10 

where L.: 9\"'x9\I1I'x9\~9\ is a model-based performance measure function, 
I 

!; : 9\1'x9\m'x9\r'~9\"' represents a model of fj·, (Xj(t)E 9\r, and Y/(t)E 9\ arc 

continuous paran1eters. Notice that the dynamic equation in MOP"+ does not have an 

interaction tenn. It will be clarified later that the set of parameters (Xz(t)· iE [I ,V] 
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will not only take into account the model-reality differences in value between ~ and 

h* but also the interactions or interconnections between subsystems. 

Now, a large-scale system expanded optimal control problem (EOP4), which 

is equivalent to ROP4, is considered: 

EOP4 

min N N t, 

e L e, L '1'", , "I 1 
u,.(t) J = ~ J . = ~ { m.(x.( t

f
)) + f L.(x.(t) , u.(t) ,y.(t)) dt } 

iE [l,N] i=1 i=1 to 

subject to 

x .(t) = J.( x .(t) , u.( t) , a.(t) ) 
1 'I 1 1 

x.(to) = x. 
1 10 

~(Zi(t), viet) ,ai(t)) = i*(Zi(t) , viet) ,t)+Ci wi(t) 

L.( Z.(t) , v .(t), y.(t)) = Li*( Z,.(t) , V,.(t) , t) 
" 1 1 

V.(t) = u .(t) 
1 1 

Zi(t) = xi(t) 

N 

wi(t) = L Mijx/t) 
j=1 

where V(t)E 9\m j and Z(t)E 9\", are introduced as separation variables. Adjoining 

constraints in EOP4, 

N 

+~(L *( - v t) -L.(z. \'. y.)) +Q
T 
(w. -~ M x. ) ]dt } ~ i ...... , ., 1 I' I' 1 IlL I) J 

1 , . I 
)= 

n1uitiplier functions. Define: 
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s 
H j = Lj(xj,uj,y) + PjT!(xi,uj,a) - 'A.;u j - ~;Xj - LQjTMjjXj 

j=! 
(4.8) 

Following a similar procedure to that outlined in Section 2.2.1, we then use 

(4,8) and apply calculus of variations to (4,7). After concluding that Jlj(t) = pi(t) and 

~i(t) = 1, the necessary optimality conditions presented below are obtained: 

Stationarity 

VH =0 
u, 

(4,9) 

Costate equation 

VH +p. = 0 
Xi I 

(4,10) 

State equation 

i. = f.(x.(t) ,u.(t) ,a.(t)) 
I I I I I 

(4,11) 

Boundary conditions 

X.(ta) = X. 
I /0 ( 4,12) 

Multiplier equations 

(4,13) 

plus the following equality constraints stated in the formulation of EOP4 
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1; (zlt), Vi(t),U,.(t)) = f/(z.(t) , vCt),t) ~ C.w.(t) 
I I I I 

Viet) = Ui(t) 

Zi(t) = Xi(t) 

fii(t) = pi(t) 

N 

W.(t) = " M .. x .(t) 
I L- I] ] 

j=i 

(4,15) 

( 4,16) 

(4,17) 

where iE [1,N] and filt) has been introduced as a costate separation variable. 

Definition (4,8) and optimality conditions (4,9), (4,10), (4,11) and (4,12) are 

satisfied by solving the following modified model-based optimal control problem 

(MMOP4): 

MMOP4 

subject to 

mIn N N t, 

ult) JM = L JMi = L { <Pi(Xi(tj)) + J [ Li(Xi,lli'Y) 
iE [1 ,N] i=i i=i to 

N 

- A;Ui - ~;xi-L~TMjiXi] dt } 
j=i 

x. = F.(X.(t),u.(t),cx.(t)) 
I Jj I I 1 

x·(to)=X. 
I 10 

The above analysis gives rise to the following hierarchical (two-level) 

algorithm, which, assuming convergence, achieves the correct optimal solution of the 

large-scale ROP4, via repeated solutions of MMOP4. 

Algorithm 4.2.1: Hierarchical DISOPE algorithm 

Data: 1;. L i • <Pj' r(l' It and means for calculating .II·' L j ·, iE [ 1.IVl. 
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Step 0: 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Step 5: 

At level 2, compute a nominal solution ujo(t), xj°(t), pjo(t). 

At level 2, compute Wil(t), iE [1,N] from (4,6). 

At level 2, compute ait ), "fi(t), iE [1,N] from (4,15) and send to 

level 1. 

At level 2, compute nit), jE [1,N] from (4,14) and Alt), ~j(t), 

iE [1,N] from (4,13), and send to level l. 

At levell, under specified A.(t), ~.(t), n.(t) a.(t) and 'V.(t) solve 
/ / / / 1/ 

. l+l l+l l+l . 
MMOP4 to obtain Uj (t), Xj (t), pj (t), lE [1,N] and send to level 

2. 

At level 2, update the estimate for the optimal solution of ROP4. In 

order to provide a mechanism for regulating convergence, a relaxation 

method similar to (2,21) may be employed to satisfy (4,16). If 

Vl+l(t) =Vl(t) and wl(t) =MXl+l(t) within a defined tolerance, stop, else 

set t =t + 1 and continue from step 1. 

4.3 CASE WITH LINEAR-QUADRATIC MODEL-BASED PROBLEM 

4.3.1 Formulation 

For computational advantage, a linear model-based dynamic function f and 

quadratic weighting functions L j and <Pj may be chosen. Considering that aj(t) and "fj(t) 

enter as shift parameters we have: 

<Pj(Xj(t/)) = -}xj(t/r <l>jXjU/) ( .t.1 S ) 

j .(x.,ll.,a.) = A.x.(t) + B,.u,.(t) + ai(t) 
/ / / / I I 
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where <1>,>0, Q?O and R?O are symmetric weighting matrices of the appropriate 

dimensions, Ai and Bi are matrices which represent a linear model of /;*. 

Using (4,18) and adding augmentation terms, as was done in Section 2.3.1. 

equation (4,8) becomes: 

H. = ~iT Q.x. + .!..U i
T 
Ru. + Y

I
. + PiT(Axl. + Bu. + a

l
.) - A; u - ~; X 

I 2 I I 2 I I 

N 

+.!..r·11Iu.-v.112 + .!..r· 21Ix.-z.f - ~ OJ: M .. x. 
2 I, I I 2 I, I I ~ JI I 

j=1 

( 4,19) 

Applying the optimality conditions (4,9), (4,10), (4,11) and (4.12) the 

following TPB VP is obtained: 

--1 T -x. = Ax.(t)+BR. (BI• p.(t)-A.(t)) + al·(t) 
I I I I I I I (4,20) 

- -
Pi = -Qlxi(t)-A/Pi(t) + ~i(t) 

with border conditions: 

x.(to) = X. 
I 10 ( 4,21) 

where 

R. = R.+r·II 
I I I. m, (4,22) 

-
Q. = Q.+r· 21 

I I I. ni 

A.(t) =A.(t) +r. IV .(t) 
I I I. I 

N 
(4,23) 

~i(t)=~i(t)+ri,2zi(t)+ L Mj;O/t) 
j=1 

It is easy to notice that the structure of the resultant TPBVP (4.21) is 

identical to that obtained in the centralized case (See equation (2.29) l. Therefore. 

Procedure 2.3.1 may be applied to solve MMOP4 for each subsystem. 
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The linear-quadratic formulation enables the augmented multipliers ~i(t) and 

-
~i(t) to be written as: 

- at ai·* -
\(t) = [-a j __ I rp.(t) + [R.v. -v Lj*] 

v. avo I I I v, 
I I 

A,.(t) = [ af; - af * ] Tp'" .(t) [ Q v L *] ~ M T {l ( ) 
I-' a a I + jZi - Zi j + L.., jj ::'l.j t 

Zj Zj j=! 

(4,24) 

The calculation of parameter a/t) becomes, noting that it is not necessary 

to calculate ri( t) : 

a.(t) = fz,·*(Z.(t), v.(t),t) +C.w. -Az.(t) -Bv .(t) 
I I I I I I I 1 I 

(4,25) 

4.3.2 Hierarchical DISOPE algorithm with LQ model-based problem 

The following algorithm requires a nominal solution to start the iterations. A 

recommended starting point is to use the solution of MMOP4 under uj(t) =0, 

- -
\(t) =0, ~i(t) =0, r j,! = r j,2 = 0 and nit) =0, iE [1 ,N], jE [1 ,N], tE [to,tf] (relaxed 

MMOP4). 

Algorithm 4.3.2: Hierarchical DIS OPE algorithm with LQ model-based 

problem 

Data: A. B. Q. ,R., <1>., to' tt' N, r.!, r.") and means for calculating i· . L,·. 
I' I' I' 1 I . I. I ... 

iE [1 ,N]. 

Step 0: At level 2, Compute or choose a nominal solution 

() ° ° ° o() ... o() o() . [1 N] PiU). Set 1=0, l'j (t)=u i (t), ::t(t)=X j t. pj t =Pi t, IE , . 

Step 1: At level 2, compute Hit), iE [1 ,N] from (-1-.6). 
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Step 2: 

Step 3: 

Step 4: 

Step 5: 

At level 2, compute (J.i(t), iE [1,N] from (4,25) and send to level l. 

This is called the parameter estimation step. 

- -
At level 2, compute !l/t), jE[I,N] from (4,14) and \(t), Pi(t), 

iE [1,N], from (4,23) and send to level 1. 

- -
At levell, under specified A.(t), A.(t), !l.(t), (J..(t), v.(t), ~.(t) solve 

I P, I I I I 

. t+l t+l t+l . 
MMOP4 to obtain Ui (t), Xi (t), Pi (t), lE [1,N] and send to level 

2. Procedure 2.3.1 may be used to obtain the solution. This is called 

the system optimisation step. 

At level 2, test convergence and update the estimate for the optimal 

solution of ROP4. A relaxation method similar to (2,21) may be 

employed to satisfy (4,16). If v t+l(t) = V t(t) and w t(t) = M X t+l(t) within 

a defined tolerance, stop, else set t =t + 1 and continue from step 1. 

The convergence of the algorithm in step 5 can be evaluated by using the 

following set of 2-norms and comparing each of them with given tolerances fl' and 

fw' respectively: 

Control variation norm: 

(4,26) 
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Interaction norm: 

I, N N 

Ilw l -Mx l
+

11I2= _I J~ IIw\t)-~ M.X.l+1fdt 
!J.l L- I L- I)} 

1 i=1 j=l 
o 

where dt is the numerical integration step. 

- -

(4,27) 

Notice that (Xi(t) , \(t) and Bi(t) , iE [I,N] take into account not only the 

model-reality differences, but also the influence of the interactions, so that step 3 

for the ith subsystem is independent from the other subsystems. Furthermore, the 

algorithm lends itself to parallel processing as the optimisation step for each 

subsystem can be solved independently. 

Figure 4.3.2 shows the information exchange between the two levels. 

Level 2 
compute 

v(t) ,z(t) ,p(t) ,w(t) ,cx(t) ,.Q(t) ,B(t), A(t) 

Levell 

sub-system 1 
compute 

u1(t), x1(t), Pl (t) 

Levell 
SUb-system N 

compute 
uJt), ~(t) PNCt) 

Figure 4.3.2: Information exchange in Algorithm 4.3.2 

4.4 SIMULATION EXAMPLE 

Algorithm 4.3.2 was implemented in the C++ programming language based 

on previous work on centralized DIS OPE (see Chapter 2). The program implemented 

solves each subsystem in a sequential way (no parallel processing is used). Only the 

following overall variables require memory storage at level 2 during the iterations: 
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u(t), x(t), p(t), v(t), z(t), p(t) and w(t). The following simulations were run on 

a 486DX-based IBM compatible microcomputer with 33 MHz clock speed. 

Example 4.4.1: Seventh order nonlinear system 

This example consists of the optimal control of a seventh order nonlinear 

system. The numerical integration step used was !1t = 0.02 and the tolerances 

specified for convergence were tv =tw =O.OS. Relaxation gains and convexification 

factors were set to the default values one and zero, respectively. 

The overall real optimal control problem is the following seventh order 

nonlinear problem: 

subject to 

where 

1 

min ~f [X T Q * X + V T R * V] dt 
Vet) 2 

o 

Xl = -SXl +0.2X
2 
+0,SX3 +o. lXs +0,SX6 +X1X2 +0.1 V, 

)(2 = -2X
2
+O.SX4-O.SXs+O.2X6-O. 1X7 +X1

3 
+0. 1 V, 

2 2 
X3 = 0.lX2 -l.SX3 +o.SXs +0.lX6 +X3 +X4 +0.2V2 

)(4 = 0.2X2 -0,SX3 -X4 +0.2Xs +0.2V2 

)(s = 0.2X1 +0. 17X3 -Xs +X7 +XSX6 

)(6 = O.lX, -0.2X2 -X4 -0,SX6 

)(7 = 0.4X1 +0.lX2 -X3 -o.SXs -X7 +0.1 V3 

XeD) = [1.0,0.8,0.S,0.6, 1.S, 1,1 ,2r 

Q' = diag( 1 , 1 , 1 , 1 , 1 , 1 , 1 ) 

R * = diag(O.l ,0.1 ,0.1) 

The overall system was decomposed into three subsystems, glvmg the 

following decomposed ROP: 
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ROP: 

subject to 

subsystem 1: 

subsystem 2: 

subsystem 3: 

where 

rrun 3 

Ui(t) .: L 
iE [1,3] 2 i=1 

1 

J[XiTQ/Xi + UiTRi'ui]dt 

o 

Xl,1 = -5Xl ,1 +0.2X1,2 +Xl ,lX1,2 +0.IU1,1 +w 1,1 

X1,2 = -2X l ,2 +Xl\ +0.IU1,1 +W1,2 

x/D) = [1.0,0.8r 

x/D) = [0.5,0.6]T 

X3,l = -X3,l +X3,3 +X3,J X3,2 +W3,l 

X3,2 = -0.5X3,2 +W3,2 

x3,3 = -0.5X3,l -X3,3 +0.1 U3,l +W3,3 

Ql* = diag( 1 , 1); RJ* = 0.1 

Q2* = diag( 1 , 1); R2* = 0.1 

Q3* = diag( 1 , 1 , 1); R3' = 0.1 
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and the interaction vectors are given by: 

rO.5 O} [0.1 0.5 O} 
w! = l 0 0.5 2 + -0.5 0.2 -0.1 3 

w = 10 D.!} + 10.5 D.! o} 
2 lo 0.2 1 lO.2 0 0 3 

0.2 0 0.17 0 

W3 = 0.1 -0.2 + 0 -1 2 

0.4 0.1 -1 0 

The model-based problem is an LQ approximation of ROP. 

MOP: 

subject to 

subsystem 1: 

subsystem 2: 

Ill1n 3! 

uj(t) ~ L J[xjTQjXj + UjTRjUj+2Yj(t)]dt 
iE [1,3] j=! 0 

[
-5 0.2} [0.1] i = + U +(X 

1 0 -2 I 0.1 1 1 

[
-1.5 o} [0.2] i = + U +(X 

2 -0.5 -1 2 0.2 2 2 

X2(0) = [0.5,0.6 r 
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subsystem 3: 

where 

-1 0 1 0 

X3 = 0 -0.5 0 + 0 3 +a3 3 

-0.5 0 -1 0.1 

x3(0) = [l.5, l.0, l.2 r 

QJ = diag( 1 , 1); R
J 

= 0.1 

Q2 = diag( 1 , 1); R2 = 0.1 

Q3 = diag( 1 , 1 , 1); R3 = 0.1 

For the sake of comparison, ROP was also solved in a centralized way 

(without decomposition). Table 4.4.1 shows the performance of the algorithm for 

each case (centralized and hierarchical) and the final performance index J * . 

Case Number of CPU J* 

DISOPE time 

iterations (s) 

Centralized 6 134 2.210431 

Hierarchical 6 112 2.210553 

Table 4.4.1: Performances for example 4.4.1 

Figures 4.4.1.1 to 4.4.1.3 show the final state responses for each subsystem. 

Figures 4.4.1.4 to 4.4.1.6 show the computed optimal control signals for each 

subsystem. Figures 4.4.1.7 and 4.4.1.8 show the convergence behaviour of the 

hierarchical algorithm. 
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t 

Figure 4.4.1.1: Example 4.4.1, subsystem 1 state vector 
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Figure 4.4.1.2: Example 4.4.1, subsystem 2 state vector 
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Figure 4.4.1.3: Example 4.4.1, subsystem 3 state vector 
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Figure 4.4.1.4: Example 4.4.1, subsystem 1 final control signal 
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Figure 4.4.1.5: Example 4.4.1, subsystem 2 final control signal 
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Figure 4.4.1.6: Example 4.4.1, subsystem 3 final control signal 
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Figure 4.4.1.7: Example 4.4.1, control variation norm vs. iteration 
(hierarchical case) 
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Figure 4.4.1.8: Example 4.4.1, interaction norm vs. iteration (hierarchical 

case) 
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It can be seen that the hierarchical algorithm developed and implemented 

(Algorithm 4.3.2) achieved the same solution than that obtained in the centralized 

case. Moreover, it can be checked that the solutions obtained satisfy (within the 

tolerances specified for convergence) the optimality conditions of the overall real 

optimal control problem. Therefore, the hierarchical algorithm achieved the correct 

optimal solutions in spite of model reality-differences. Furthermore, the CPU times 

obtained were lower in the hierarchical case than in the centralized case which , 

indicates that parallel processing would reduce substantially the computational times. 

4.5 SUMMARY 

An algorithm for hierarchical optimal control of large-scale systems with 

model-reality differences has been developed. A version of the hierarchical DISOPE 

algorithm with linear-quadratic model-based problem was developed and 

implemented in software. The technique handles large-scale continuous time 

nonlinear systems with non-quadratic performance indexes. The implemented 

algorithm was tested with one simulation example. The algorithm achieved the 

correct optimal solutions in spite of model-reality differences. It is suitable for 

parallel or distributed processing, as the calculations for each subsystem can be done 

independently. The algorithm as implemented may yield substantial computational 

savings in terms of memory storage. 
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CHAPTER 5 

DISCRETE· TIME DISOPE ALGORITHM 

In this chapter, an algorithm for solving nonlinear discrete-time optimal 

control problems with model-reality differences is developed. A version of the 

algorithm with a linear-quadratic model-based problem is developed and 

implemented in software. A discretization scheme, which avoids the use of crude 

approximations when discretizing continuous time dynamic systems, is introduced. 

The algorithm implemented is tested with three simulation examples. The research 

work presented in this chapter is also described in (Becerra, 1993b; Becerra and 

Roberts, 1994a). 

5.1 DIGITAL COMPUTER CONTROL 

With the increasing sophistication and decreasing cost of microprocessors, 

more control schemes are being implemented digitally. In these schemes, the control 

input is switched between different values at discrete-time steps. The control signal 

is normally held constant between such switchings by a zero-order hold. Such 

controls are usually designed using a discretized version of the continuous plant. 

There are also processes which are discrete in nature and can only be controlled by 

using discrete-time controllers (Astrom and Wittenmark, 1990; Leigh, 1992; Franklin 

et ai, 1990). 

5.2 DISCRETE· TIME DISOPE ALGORITHM 

5.2.1 Problem formulation and solution approach 

Suppose that the real plant dynamics are described by the following nonlinear 

time-varying difference equation: 
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x( k - 1 ) = f· ( x( k) , u (k), k ) (5,1) 

where f· : 9tnx9tmx9t---79tn represents a set of discrete-time state equations which 

describe the process with state X(k)E 9tn and control input U(k)E 9tm • Further assume 

that the following performance index has been chosen: 

Nf-l 

J" = <p(x(Nf)) + L L *(x(k) ,u(k) ,k) (5,2) 
No 

where [No,Nf ] is the fixed time interval of interest, <p : 9tn---79t is a scalar valued 

terminal weighting function and L" : 9tnx9tmx9t---79t is a discrete performance (or 

weighting) function. 

If the state of the system at the initial time No is assumed known (being 

measured or estimated), with value x(No) =xo' and if no constraints on the values of 

control and state variables are taken into consideration, apart from the dynamic 

constraint (5,1), the discrete-time real optimal control problem (RaPS) can be 

formulated as follows: 

RaPS 

subject to 

min N,-l 

u(k) J* = <p(x(Nf))+L L*(x(k),u(k),k) 
kE [No ,Nf -1] k=No 

x(k+l) = f*(x(k),u(k),k) 

x(No) = Xo 

Define the following function (the Hamiltonian): 

H .( x(k) ,u(k) ,p(k) ,k) = L *( x(k), u(k) ,k) + p(k+ 1 ff *( x(k). li(k). k) (5,3) 

where p(k)E 9\" is a Lagrange multiplier function usually termed as the costate. 
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The necessary optimality conditions of the RaPS are as follows (see (Lewis, 

1986a: 27-30), for the derivation): 

Stationarity: 

VU(k)H * = 0 (5,4) 

Costate equation: 

VX(k)H * - p(k) = 0 (5,5) 

State equation: 

V p(k+l)H * - x(k+ 1) = 0 (5,6) 

Boundary conditions: 

x(No) = Xo 

p( Nf ) = V x(k) <pC x( k ) ) I k=N 
f 

(5,7) 

Instead of solving RaPS, the following, possibly simplified, discrete-time model

based optimal control problem (MOPS) is considered: 

MOPS 

subject to 

ffiln 

u(k) 
kE [No,N

f 
-1] 

Nf-I 

1m = <p(x(Nf )) + L L(x(k), u(k), yCk)) 
k=No 

x(k+ 1) = f(x(k), u(k), a(k)) 

x(No) = Xo 

where state and control vectors have the same dimensions as in RaP). i", i~ a 

nlodel-based performance index, L : 9\"x9\"'x9\~9\ is a discrete weighting function 

and perhaps a simplification of a known L .. f : 9\"x9\"'x9\r ~'J\ is an approximate 
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dynamic model of f *, y(k)E 9t and a(k)E 9t' are discrete parameters. The role of 

y(k) and a(k) will be to take into account model reality-differences in value. 

Following a similar reasoning to that used in Section 2.2.1. we now integrate 

system optimisation and parameter estimation by defining an expanded optimal 

control problem (EOP5) which, in spite of being model-based, is made equivalent 

to ROP5 by adding appropriate equality constraints on state equations and discrete 

weighting function values. Furthermore, state and control variables are separated 

between parameter estimation and optimisation steps by introducing the new state 

and control variables z(k) and v(k) , respectively. 

EOP5 

subject to 

ffiln 

u(k) 

Nf-l 

kE [No,N
f
-1] 

J
e 

= q>(x(N
f
)) + L L(x(k), u(k), y(k)) 

k=No 

x(k+ 1) = f(x(k), u(k), a(k)) 

x(No) = Xo 

f( z(k), v(k), a(k)) = f*(z(k) , v(k) , k) 

L(z(k),v(k),y(k)) = L*(z(k),v(k),k) 

u(k) = v(k) 

x(k) = z(k) 

Adjoining all the equality constraints to the performance index by using 

Lagrange multipliers, we obtain the following augmented performance index J: : 
N-l J: = q>(x(N

r
)) + t [L(x(k),u(k),y(k)) + p(k+lr(f(x(k).u(k),a(k))-x(k+l)) 

k=No 

+ A(kr( v(k) - u(k)) + ~(kr( z.(k) - x(k)) + fl(kr(f *( z.(k) . \'(k) . k) - f( z.(k). \'(k). a(k) )) 

+ ~(k)( L .( z.(k) . v(k) . k) - L( z.(k) . \'(k) . y(k) )) ] (5,8) 
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where p(k)E 9tn 
, A(k)E 9tm 

, P(k)E 9tn 
, ~(k)E 9tm and ~(k)E 9t are Lagrange 

multipliers. 

Define the augmented Hamiltonian function as: 

H = L(x(k) ,u(k) ,yCk)) + pT(k+l)f(x(k),u(k),a(k)) 

- A(kf u(k) -p(kr x(k) (5,9) 

then we can re-write (5,8) as 

Nf-l J: = [<p(x(Nj))] + L [H - p(k+ lrx(k+ 1) 
k=No (5,10) 

+ A(kr v(k) + p(kr z(k) +~(kr (f*( z(k), v(k) , k) - f( z(k), v(k) , a(k))) 

+ ~(k)(L *( z(k) , v(k) , k) -L( z(k) , v(k) , yCk))) ] 

Now, it is desired to examine the increment in J: due to increments in all the 

variables. It is assumed that the final time Nj is fixed. This increment is given by: 

Nf-l 

dJ: = VX(Nf)<P(x(Nj)fdx(Nj) + L {Vu(k)HTdu(k) + [VX(k)H-p(k)rdx(k) 
k=No 

+[ A(kf + ~(kr(j* v(k) - iv(k») + ~(k)(V\'(k)L * - V V(k)L) r dv(k) 

+[p(kr + ~(kr(j'z(k) -~(k») +~(k)(V;(k)L • - V;(k)L) r dz(k) 

+[ Va(k)H T - ~(kffa(k) da(k) + [V 'f.-k)H -~(k)V 'f.-k)Lr dyCk) (5,11) 

+[Vp(k+I)H - x(k+ l)r dp(k+ 1) +[V A(k)H + v(k)r dA(k) 

+[V~(k)H +z(k)rdp(k)+[j* -frd~(k) +[L * -L]d~(k) } 

According to the Lagrange multiplier theory, at a constrained minimum this 

increment dJ: should be zero. Setting to zero the coefficients of the independent 

increments in (5,11), and concluding by inspection that 

J.1(k) = p(k+l), kE[No,Nj -l] the following necessary optimality conditions arc 

obtained: 
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Stationarity: 

VU(k)H == 0 

Costate equation: 

State equation: 

Vp(k+l)H - x(k+ 1) == 0 

Boundary conditions: 

x(No) == Xo 

p(Nf) == VX(k)<p(x(k)) Ik:N 
f 

Multiplier equations: 

af af* 
A(k) == [ - rp(k+1) + [V L-V L*] 

av(k) dV(k) v(k) v(k) 

df' df'* 
~(k) == [ 'J - 'J rp(k+1) + [V L-V L*] 

. dz(k) dz(k) z(k) ::(/.:) 

plus the following equality constraints 

f(z(k),v(k),a(k)) == f*(z(k),v(k),k) 

L(z(k),v(k),y(k)) == L*(z(k),v(k),k) 

v(k) == u(k) 

z(k) == x(k) 

p(k) == p(k) 

(5,12) 

(5,13) 

(5,14) 

(5,15) 

(5,16) 

(5,17) 

(5,18) 

where kE [No,Nf-l], and p(k) has been introduced as a costate separation variable. 

We assume that the structure of f and L is such that given \'(k) and 

;(k), kE [No,Nj-l] the values of a(k) and y(k), kE [NQ,Nf-l] can be uniquely 

determined from (5.17). Notice that optimality conditions (5,12), (5.lJ) and (5.1-+) 
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are model-based, and that A(k) and P(k) kE [No,N
f 
-1] carry information on model-

reality differences, in curvature, as opposed to a(k) and y(k) kE [No,Nf
-l] which 

carry information on model-reality differences in value. Following a similar 

reasoning to that used in Section 2.2.2, we conclude that given values of a(k) , y(k), A(k) 

and P(k), kE [No,Nf -l] , the solution of the following problem satisfies the definition 

of the augmented Hamiltonian (5,9) and optimality conditions (5,12), (5,13), (5,14) 

and (5,15). We call it discrete-time modified model-based problem (MMOP5) 

defined as follows: 

MMOP5 

Ill1n 

u(k) 
kE [No,Nf

-l] 

subject to 

Nf-l 

1M = q>(x(N
f
)) + L [L(x(k),u(k),y(k)) - A(kfu(k) - P(kfx(k) ] 

k=No 

x(k+ 1) = f(x(k), u(k), a(k)) 

x(No) = Xo 

The above analysis gIves rIse to the following discrete-time DISOPE 

algorithm which, assuming convergence, achieves the solution of ROP5 via repeated 

solutions of MMOP5 (Becerra, 1993b). 

Algorithm 5.2.1: Discrete-time DISOPE algorithm 

Data f L in X N N and means for calculating f' and L • . 
, ,'t' , ° ' ° ' f' 

Step 0 Compute or choose a nominal solution u O(k) , x o(k) and p l\k). Set 

Step 1 Compute the parameters ai(k) , y(k) to satisfy (5,17). This is called 

the parameter estimation step. 

Step :2 Compute the multipliers "Ai(k) and W(k) from (5,16). 
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Step 3 

Step 4 

With specified a(k) , y(k) , A(k) and P(k) solve the discrete-time 

modified model-based optimal control problem MMOP5 to obtain 

U i+l(k) , x i+l(k) d i+l(k) an p . This is called the system optimisation 

step. 

This step tests convergence and updates the estimate for the optimal 

solution of ROP5. In order to provide a mechanism for regulating 

convergence, a simple relaxation method is employed to satisfy 

(5,18). This is: 

v i+l(k) = v i(k) + kv (u i+l(k)_ v i(k)) 

z i+l(k) = z i(k) + k/x i+l(k) - z i(k)) 

P i+l(k) = P i(k) + k (p i+l(k) - P i(k)) 
p 

(5,19) 

where kv' kz and kp E (0, 1] are scalar gains. If v i+l(k) = v i(k) , 

kE [No ,Nf -1] within a given tolerance stop, else set i =i + 1 and 

continue from step 1. 

5.2.2 Performance index augmentation 

Variable augmentation has been used in continuous time DIS OPE (see 

Section 2.2.2) and has resulted in improved algorithm stability and convergence in 

difficult cases (Roberts, 1993a). Augmentation may also be applied in discrete-time 

DISOPE by adding convexification terms to the performance index of EOP5. This 

is, Ie becomes: 

N,-l 

Ie = q>(x(N
f
)) + L [L(x(k), u(k), y(k)) 

(5,20) 

+ ~rlllu(k) -v(k) 112 + ~r21Ix(k) -z(k) f ] 
2 2 

where r
l 

and "2 are given scalar convexification factors. 

The definition of the augmented Hamiltonian is changed to take into account 

the new terms: 

109 



H = L(x(k) , u(k) , y(k)) + p(k+ lrf(x(k), u(k), a(k)) - A(kf u(k) 

- p(kr x(k) + ':r11Iu(k) -v(k) 112 + ':r'lllx(k) -z(k) 112 
2 2 -

(5,21) 

By using a similar analysis to that used in Section 5.2.1 it is possible to find 

that the model-based optimality conditions obtained in Section 5.2.1 continue to be 

valid. Furthermore, the main change in Algorithm 5.2.1 is that the solution of 

MMOP5 requires information on v(k) and z(k), since the performance index in 

MMOP5 becomes: 

Nf-l 

J M = q>(x(N
f
)) + L [L(x(k), u(k), y(k)) - A(kf u(k) 

No (5,22) 

- P(k) T x(k) + ':r11Iu(k) -v(k) 112 + ':r21Ix(k) -z(k) 112 ] 
2 2 

5.2.3 Terminal state constraints 

In some problems we are interested in restricting functions of the terminal 

state to have prescribed values, that is: 

(5,23) 

for a gIven function '" : 9\"x9\~9\q. Equation (5,23) is an additional equality 

constraint to ROP5, MOPS, EOP5 and MMOP5. It can be treated by using the 

Lagrange multiplier theory (see, for example, Bryson and Ho, 1975). As a 

consequence, a new boundary condition for the costate is obtained as follows: 

[
aT ] N -v + "'Y p( f) - x(k)q> ax(k) k=N 

f 

(5,24) 

where YE 9\q is a Lagrange multiplier vector to be found so that the additional 

necessary condition (5,23) is satisfied. Notice that in terminal state constrained 

problems some reachability conditions must be satisfied for a solution to exist (see. 

for example, Lewis (1986a) for a discussion on the LQ case). 
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5.3 CASE WITH LINEAR QUADRATIC MODEL-BASED PROBLEM 

5.3.1 Formulation 

If the model-based problem (MOPS) is chosen as a linear-quadratic 

approximation of RaPS, then noniterative methods (Lewis, 1986a) can be used for 

the model-based computations. As was done in Chapter 2, for computational 

advantage, a linear model-based dynamic function f and quadratic weighting 

functions Land <p may be chosen. Considering that a(k) and y(k) enter as shift 

parameters we have: 

L(x(k) , u(k) , y(k)) = ~x(krQx(k) + ~u(kr R u(k) + y(k) 
2 2 

<p(x( Nf )) = ~(Nf) T <1> x( Nf ) (5,25) 

f(x(k) , u(k) , a(k)) = Ax(k) + B u(k) + a(k) 

where <1»0, Q>O and R>O are symmetric weighting matrices of the appropriate 

dimensions, A and B are matrices which represent a linear model of f*. 

By using (S,2S), and including the variable augmentation discussed in Section 

S.2.2 the linear-quadratic MMOPS can be written as: 

mIn Nf-I 

u(k) J = ~(Nr<1>x(N) + ~ [~(kr Qx(k)+~u(krRu(k) + y(k) 
M 2 f f ~ 2 2 

kE [No,Nf
-l] k=No 

subject to 

- A(kru(k) - ~(krx(k) + ~rlll u(k) -v(k) f + ~r21Ix(k) -z(k) 112 ] 

x(k+ 1) = Ax(k) + B u(k) + a(k) 

x(No) = Xo 

The corresponding augmented Hamiltonian function is: 

H = ~(x(krQx(k)+u(krRu(k)) + y(k) 
2 

+ p(k+ 1 r (A x(k) + B u(k) -.- a(k))- 'A(k)T u(k) - ~(kr x(k) (5,26) 

+ ~r I,u(k) -\'(k) f ~ ~r,lix(k) -:.(k) 112 
2 I 2 -
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Applying the model-based optimality conditions (5,12), (5,13), (5,14) and 

(5,15) with H given by (5,26), we obtain the control law: 

and, in addition, the following TPBVP: 

with border conditions: 

--I -
x(k+1) = Ax(k) -BR (B Tp(k+1) -A(k» + a(k) 

p(k) = Qx(k) + A T p(k+ 1) - P(k) 

x(No) = Xo 

p(Nj ) = CPx(N
j

) 

- -

(5,27) 

(5,28) 

(5,29) 

where R = R + r/ m and Q = Q + rln are augmented weighting matrices and 

- -
A(k) = A(k) + r l v(k), and P(k) = P(k) + r2z(k) are augmented multipliers. 

The linear TPBVP (5,28) can be solved by using the backward sweep method 

(Bryson and Ho, 1975; Lewis, 1986a). The key is to assume the relationship between 

costate and state as p(k) = S(k)x(k) +h(k), where S(k) is a nxn matrix and h(k)E 9\n. 

This gives rise to the following noniterative solution procedure (see Appendix D for 

the derivation): 

Procedure 5.3.1: Solution of discrete-time linear-quadratic MMOP5 

Step a: Solve backwards from k = Nj -1 to No the following difference 

equations, with terminal conditions S(Nj) = cP and heN;) = 0 : 

-
S(k) = Q + A TS(k+l)(A -BG(k» 

G(k) = [R + B TS(k+l)Br I B TS(k+l)A 

h(k) = (A -BG(k)rh(k+l) + (A -BG(k)rS(k+l)a(k) 
- -

- P(k) + G(kr'A(k) 

Step b: Compute the driving input g(k), kE [No,Nj-l] from: 
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Step c: Compute the state x(k), kE [No,NfJ by solving from the initial 

Step d: 

condition x( No) = Xo the following difference equation: 

x(k+l) = (A -BG(k))x(k) +Bg(k) +a(k) 

Compute the costate p(k) , kE [No,Nj] from: 

p(k) = S(k)x(k) + h(k) 

Step e: Compute the control input u(k), kE [No,Nf -l] from the control law: 

u(k) = -G(k)x(k) + g(k) 

The linear-quadratic formulation enables the augmented multipliers A( k) and 

-
~(k), kE [No,N

f
-l] to be expressed as (see equation (5,16)): 

A(k) = [ af - af* fp(k+ 1) + [Rv(k) - V L *] 
av(k) av(k) I(k) 

(5,30) 

~(k) = [ af - af* fp(k+l) + [Qz(k) -V .L *] 
az(k) az(k) ;:(k) 

while the calculation of parameter a(k), kE [No,Nf -l] becomes (see equation 

(5,17)), noting that it is not necessary to calculate y( k) : 

a(k) = f*(z(k) , v(k) ,k) - Az(k) - Bv(k) (5,31) 

5.3.2 Terminal state constraints 

Terminal state constraints of the type x j ( Nf ) =0, iE [ 1 ,q] will be taken into 

consideration. This kind of constraint can be written as: 

(5 • .32 ) 

where C = [/ 10] is a q:m matrix. Notice that a terminal constraint of the type 
q 

_\( N
f

) =x,r . iE II ,q] can be achieved by a straightforward shift change of state 
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variable. The resulting TPBVP is identical to (5,28), but with boundary conditions 

(see equation (5,24)): 

x(No) = Xo 
(5.33) 

p(Nf) = c'Px(N
f
) + C Ty 

where YE 9\q is a Lagrange multiplier to be determined such that (5,32) is satisfied. 

The solution of MMOP5 taking into account the terminal state constraint is again 

based on the backward sweep method (Bryson and Ho, 1975). The key is to assume 

the relationship between costate and state as p(k) = S(k)x(k) + h(k) + F(k) Y, and 

express the terminal state function as 'V = F(kfx(k) + W(k)Y +ll(k) = Cx(Nf) ' 

where S(k) is a nxn matrix, F(k) is a nxq matrix, W(k) is a qxq matrix, h(k)E 9\n , 

and ll(k)E 9\q. The resulting noniterative solution procedure is as follows (see 

Appendix E for the derivation): 

Procedure 5.3.2: Solution of LQ terminal constrained discrete-time MMOP5 

Step a: Solve backwards from k =Nf -1 to No the following difference 

equations, with terminal conditions S(Nf) =c'P and h(Nf) =0: 

-
S(k) = Q + A TS(k+I)(A -BG(k)) 

G(k) = [R + B TS(k+l)Bf1B TS(k+l)A 

h(k) = (A -BG(k)Vh(k+l) + (A -BG(k)VS(k+l)a(k) 
- -

- P(k) + G(kV'A(k) 

Step b: Solve backwards from k =Nf-l to No the following difference 

equations, with terminal conditions F(Nf) = [0 Iqr, \qNj ) =0, and 
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Step c: 

Step d: 

Step e: 

Step f: 

F(k) = (A-BG(k)rF(k+l) 

W(k) = W(k+ 1) - F(k+ lr [In + BR-1B T S(k+ 1) r 1 BR-1 B T F(k+ 1) 

l1(k) = l1(k+l) + F(k+lr[In + BR-IBTS(k+l)rl[BR-I~(k) 

-BR-
1 
B T h(k+ 1) +a(k)] 

Compute the multiplier v and driving inputg(k)E9\m, kE [No,Nj -l] 

from: 

v = _W(Notl(F(Norxo -l1(No)) 

g(k) = [R+B TS(k+l)Br1[-B TS(k+l)a(k) 
-

- B TF(k+ l)v - B T h(k+ 1) + A(k)] 

Compute the state x(k), kE [No,Nj] by solving from the initial 

condition x( No) = Xo the following difference equation: 

x(k+ 1) = (A - BG(k) )x(k) + B g(k) +a(k) 

Compute the costate p(k) , kE [No,Nj] from: 

p(k) = S(k)x(k) + F(k)v + h(k) 

Compute the control input u(k), kE [No,Nj-l] from the control law: 

u(k) = -G(k)x(k) + g(k) 

5.3.3 Discrete-time DISOPE algorithm with LQ model-based problem 

DISOPE requires a nominal solution to start the iterations. A recommended 

-
starting point is to use the solution of MMOP5 under a(k) =0, A(k) =0, 

-
~(k) =0, kE [No,Nj-l], r1 = r2 = 0 (relaxed MMOP5). 

From the above analysis, the following discrete-time DIS OPE algorithm with 

linear-quadratic model-based problem has been proposed (Becerra, 1993b). 
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Algorithm 5.3.3: Discrete-time DISOPE algorithm with LQ model-based 

problem 

Step 0 

Step 1 

Step 2 

Step 3 

Step 4 

calculating f * and L * . 

Compute or choose a nominal solution u o(k), x o(k) and p o(k). Set 

vO(k)=uo(k), kE[No,Nj -l], 

kE [No,Nj ]. 

i=O , 

Compute the parameter ai(k) to satisfy (5,31). This is called the 

parameter estimation step. 

Compute the augmented multipliers ~i(k) and W(k) from (5,30). 

- -
With specified a(k), A(k) and ~(k) solve the modified model-based 

optimal control problem MMOP5 (by using Procedure 5.3.1 if q=O 

or Procedure 5.3.2 if q>O) to obtain u i+l(k), x i+l(k) and p i+l(k). 

This is called the system optimisation step. 

This step tests convergence and updates the estimate for the optimal 

solution of ROP5. The simple relaxation method (5,19) is employed 

to satisfy (5,18). If v i+l(k) = v i(k), kE [No,Nj-l] within a given 

tolerance stop, else set i =i + 1 and continue from step 1. 

In practice, the achievement of the equalityvi+1(k) = v i(k), kE [No,Nf-l] 

may be evaluated by using the following 2-norm (control variation nonn between 

iterates ): 

(5.3.t ) 

and comparing its value with a given small tolerance E\. 
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5.4 EXACT DISCRETIZATION OF CONTINUOUS TIME SYSTEMS 

It is a common practice (Jamshidi, 1983; Teo et ai, 1991; Singh, 1980) when 

formulating a nonlinear discrete-time optimal control problem of a continuous system 

described by the differential equation i =f/ x(t), u(t) ,t) to discretize with sampling 

time T the continuous time differential equation by its first order ( or Euler ) 

approximation x(k+ 1) =x(k) + Tf/x(tk) ' U(tk) , tk). However, for this discretization 

scheme to be a good approximation of the continuous time system, it is required that 

the sampling time be very small in comparison with the dynamics of the system and 

even so, it can diverge from the actual solution (Press et al, 1992). 

To overcome the low accuracy of the first order approximation, an exact 

discretization of the differential equation can be implemented as follows: 

thl 

x(k+ 1) = x(k) + J f/ x('t) , u( 't), 't) dt (5,35) 

tk 

noticing that because of the zero order hold, the control signal is held constant 

between sampling times u('t) =u(k), 'tE [tk,tk+ I ]. Equation (5,35) denotes the 

integration of the continuous state equation from X(tk) =x(k) , given u(k) , over one 

sampling interval to obtain x(k+ 1). 

The term exact here denotes the high accuracy that may be achieved by using 

a good and well tuned ordinary differential equation (ODE) solver. A similar 

approach has been proposed by Sage and White (1977), who suggest the exact 

discretization of both the continuous dynamics and a continuous performance index. 

Notice, however, that in the scheme proposed here the performance index is 

fornlulated in discrete-time and that MMOP5 continues to be discrete. 

5.5 SIMULATION EXAMPLES 

Algorithnl 5 . .3 . .3 was implemented in the C++ programming language using 

object oriented and modular programming techniques. All the derivatives (jacobian 

matrices, gradients) were computed by using the Central Difference Formula (Pres,,> 
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et aI, 1992). The exact discretization scheme was implemented as a C++ module 

where the integration in (5,35) can be carried out by a 4th order fixed step size 

Runge-Kutta integrator, a 5th order adaptive step size Runge-Kutta integrator. or a 

stiff integrator (Press et aI, 1992) depending on the accuracy requirements, the 

numerical conditioning of the differential equation and the computational time 

restrictions. 

The following examples were run on an IBM compatible 486-DX based 

machine with 33 MHz clock speed. 

Example 5.5.1: nonlinear discrete-time system 

Consider the following example proposed by (Mahmoud et aI, 1978) and used 

later as a benchmark to compare solutions of nonlinear optimal control problems 

(Papageorgiou and Smith, 1980). The problem consists in the minimization of a 

quadratic performance index subject to nonlinear second order discrete-time dynamic 

constraints. The dynamic equation in MOP consists in a linearization of the real 

dynamics about the origin. Relaxation gains and convexification factors were set to 

the default values one and zero, respectively. The tolerance specified for convergence 

was £ =0.05. v 

Rap: 

subject to 

x
1
(k+1) = 0.9x

1
(k) + 0.lx2(k)+0.lu 1(k) 

x
2
(k+ 1) = 0.2x

1
(k) + 0.lx2(k) - O.lxzCk)2 + 0.1 u2(k) 

x(O) = [10 4.5r 
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MOP: 

subject to 

~0.9 0.1} ~0.1 x(k+ 1) = (k) + 
0.2 0.1 0 

x(O) = [10 4.5r 

o ]U(k) + a(k) 
0.1 

Table 5.5.1 shows the algorithm's performance, where 10' is the initial 

performance index and l' is the final performance index. Figures 5.5.1.1 and 5.5.1.2 

show the final state responses and control signals, respectively. Figures 5.5.1.3 and 

5.5.1.4 illustrate the convergence behaviour of the algorithm. 

No. CPU 10' l' 

iterations (s) 

5 12 31.0091 30.9781 

Table 5.5.1: Algorithm's performance, example 5.5.1 

The results presented here may be compared with those published by 

Papageourgiou and Smith (1980). 
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Example 5.5.2: continuous stirred tank reactor (CSTR) lvitlz bounded control 

This example consists in a discrete-time version of example 3.4.1, where the 

control signal is bounded between upper and lower levels -1 <u(t)~ I. Control 

bounds were handled by using the variable transformation technique described in 

Section 3.3. The model-based dynamics have been chosen as a linearization about 

the origin. The exact discretization scheme was used for handling the continuous 

dynamics, using 4th order Runge-Kutta integration. The numerical integration step 

between sampling times was fl.t = 0.004, the control signal sample interval was 

T = 0.02, and the tolerance specified for convergence was tv =0.01. The relaxation 

gains k , and k were both set to 1 and the convexification factor r 2 was set to z: p 

zero. The values of kv and r l were set to 0.9 and 0.5, respectively. 

ROP: 

subject to 

38 

:C~~ L (x l (k)2 + x2(k)2 +0.lu(k)2) 
k=O 

thl 

x(k+l) = x(k) + J f/x(t),u(k),t)dt 

x(O) = [0.05 Or 
-I ~ lI(k) :s; 1 

tt 

where the continuous dynamics represented by i = f/ x, u, t) are given by: 

[
25XI J \. = 0.5 -x~ -(x, +0.5)exp --

., !. - \'4-1 
, I -
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MOP: 

subject to 

[
1.087412 0.02046} [-0005216] x(k+ 1) - k' 

- -0.127875 0.959537 () + 0.000317 u(k) + a(k) 

x(O) = [0.05 Or 

-1 ::; u(t) ::; 1 

Table 5.5.2 shows the algorithm's performance. Figures 5.5.2.1 and 5.5.2.2 

show the final state responses and control signals, respectively. Figures 5.5.2.3 and 

5.5.2.4 illustrate the convergence behaviour of the algorithm. 

No. CPU Jo' J' 

iterations (s) 

9 48 2.685687 1.444583 

Table 5.5.2: Algorithm's performance, example 5.5.2 

It is important to make comparisons with example 3.4.1. We may remark that 

the performance index in example 5.5.2 is proportional to a first order approximation 

to the performance index in example 5.5.2. We may notice that the optimal discrete

time control signal shown in Figure 5.5.2.2 is close to its continuous counterpart, 

shown in Figure 3.4.1.1. Moreover, the CPU time per iteration is shorter in example 

5.5.2.2. This indicates that if the sampling time increases, the computational savings 

using Algorithm 5.3.3 and the exact discretization scheme increase. An increasc in 

the sampling time will be limited in practical cases by the desired resolution in the 

control signal and by other factors influencing the choice of the sampling interval 

(Astrom and Wittenmark, 1990). Noticc that in Procedure 2.J.! wc havc to solvc 

differential equations (which may rcquire short integration steps and might c\cn hc 
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numerically stiff) while in Procedure 5.3.1 we have to solve difference equations 

(which do not present such computational drawbacks). 
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Example 5.5.3: CSTR with bounded control and terminal constraints 

This example is identical to example 5.5.2, with the added difficulty of a 

terminal constraint on the values of both states: 

x(39) = [0 Or 

Table 5.5.3 shows the algorithm's performance as well as the nominal 

(x IO(39)) and final (x l (39)) values of the terminal states. Figures 5.5.3.1 and 5.5.3.2 

show the final state responses and control signals, respectively. Figure 5.5.3.3 

illustrates the convergence behaviour of the algorithm. 

No. CPU xo( 39) x(39) J* 

Iterations (s) 

38 186 
[ 0.427761 ] [ 0.001190 ] 

2.643502 

-0.469444 -0.001335 

Table 5.5.3: Algorithm's performance, example 5.5.3 
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5.6 SUMMARY 

An algorithm has been presented for the solution of discrete-time optimal 

control problems where there are differences from reality, either intentionally in 

order to facilitate the solution of complex nonlinear problems or due to uncertainties, 

and the model used in the computations. 

A version of the discrete-time DISOPE algorithm which uses a linear model 

and a quadratic performance criterion has been developed and implemented in the 

C++ programming language. 

The exact discretization scheme has been introduced for optimising 

continuous time systems using the implementation of the discrete-time DISOPE 

algorithm, which allows the use of standard (and convenient) discrete-time linear

quadratic calculations at the model-based level. 

The impleo1ented algorithm has been tested with three simulation examples 

with model-reality differences. The results show that the real optimal solution is 

obtained in spite of the differences between the real and model-based problems. The 

algorithm as implemented is capable of handling nonlinear discrete-time optimal 



control problems with terminal state equality constraints, non-quadratic performance 

indexes and multiple control inputs. 
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CHAPTER 6 

SET -POINT TRACKING DIS OPE ALGORITHM 

In this chapter, the discrete time DISOPE algorithm developed in Chapter 5 

is applied to the solution of the nonlinear tracking optimal control problem. A 

version of the algorithm with a linear-quadratic model-based problem is developed 

and implemented in software. The algorithm implemented is tested with simulation 

examples. The research work presented in this chapter is also described in (Becerra, 

1993d; Becerra and Roberts, 1994b) 

6.1 TRACKING OPTIMAL CONTROL 

When the output variables of a system are required to follow or track a 

reference trajectory over a time horizon while minimizing a given performance 

index, a so-called tracking optimal control problem is formulated. Such controls are 

important, for example, in the control of spacecraft and robot arms (Lewis, 1986a) 

and in the formulation of predictive controllers (Soeterboek, 1992). 

6.2 SET-POINT TRACKING DIS OPE ALGORITHM 

6.2.1 Formulation in discrete time 

The reader is referred to Chapter 5 for the development of the discrete-time 

DISOPE algorithm. It must be emphasized that what follows is a particular case of 

the discrete time DISOPE algorithm (Algorithm 5.2.1) in which the performance 

index has a particular structure and is expressed in terms of an output reference 

trajectory which the system output is desired to follow. Therefore, the discrete time 

DISOPE algorithm remains basically unaltered, what changes is the formulation. 

Consider the real optimal control problem (ROP5) defined in Section 5.2.1 

Assume that the performance measure functions can be expressed in terms of the 

control vector, an output vector y(k)E 9\"" given by 
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y(k) =S(x(k)) (6,1) 

where S : 9\n~9\no is the real output function, and a (known) reference trajectory 

ro(k)E 9\n", kE [No,Nj ] , in such a way that the output is required to follow or track 

the reference trajectory. The necessary optimality conditions of ROPS are given in 

Section S .2.1. Instead of solving ROPS, the possibly simplified model-based optimal 

control problem (MOPS) defined in Section S.2.1 is considered. Furthermore, MOPS 

can be chosen as a linear-quadratic approximation of ROPS where there are standard 

procedures for its solution (Lewis, 1986a, Sage and White, 1977). This provides a 

computational advantage. Assume now 

f = Ax(k)+Bu(k)+a(k) (6,4) 

where the term Cx(k) is a linear approximation of the real output function S, and 

C, <1>, Q, R, A, and B are matrices of the appropriate dimensions. Hence, including 

the augmentation terms described in Section S.2.2, the augmented Hamiltonian (S,9) 

may be written as 

H = ~(Cx(k) - r (k) f Q (Cx(k) - r (k)) + ~u(kf R u(k) 
2 0 0 2 

+p(k+lf (Ax(k) +Bu(k) +a(k)) - A(kfu(k) - ~(kfx(k) (6,5) 

+ ~rlllu(k) - v(k) 112 + ~r21Ix(k) -z(k) 112 
2 2 

Thus, based on the definition of MMOPS given in Section S .2.1 the modified 

model- based optimal control problem with reference trajectory information 

(MMOP6), whose iterative solution provides, after convergence, the solution of 

ROPS is then defined as: 
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MMOP6 

. N-I 
ffiln { 1 f 

u(k) -:/Cx(Nf)-rJNf)fc'P(Cx(Nf)-ro(Nf))-L [ ~ (Cx(k)-ro(k)rQ(Cx(k)-ro(k)) 
k=IV 

+ 21 u(krRu(k) +y(k) -A(kr u(k) -~(kfx(k) 4-~rlllu(k) -v(k) 1:2+ ~r-, Ilx(k)-::(k) 12 ] } 
22-

subject to 

x(k+ 1)=Ax(k)+B u(k)+a(k) 

x(No)=xo 

Applying the model-based optimality conditions (5,12), (5,13), (5,14) and (5,15) with 

H given by (6,5), we obtain the control law: 

(6,6) 

and, in addition, the following TPBVP: 

--I -
x(k+1) = Ax(k) - BR (BTp(k+1) - A(k)) + a(k) (6,7) 

- -
p(k) = Qx(k) + A T p(k+ 1) - ~(k) 

with border conditions: 

x(No) = Xo 
(6,8) 

p(Nf) = CTct>( Cx(Nf) -ro(Nf)) 

- -
where the augmented weighting matrices R and Q are given by: 

-
R = R + r I 1m (6,9) 

- -
and the augmented multipliers A(k) and ~(k) are expressed as: 

A(k) = A(k) + r l \'(k) 
(6,10) 

~(k) = ~(k) -.- r-,::(k) + C T Q roCk) 
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It is observed that the structure of TPBVP (6,7) is identical to that of TPBVP 

(5,28), but (6,7) has a different boundary condition on the costate and is based on 

-
a different definition for ~(k). The solution is obtained by the sweep method (Lewis. 

1986a, Bryson and Ho, 1975). The key is to assume the relationship between costate 

and state as p(k) = S(k)x(k) + h(k), where S(k) is a nxn matrix and h(k)E 9\11. This 

gives rise to the following noniterative solution procedure (see Appendix F for the 

derivation): 

Step a: 

Step b: 

Step c: 

Step d: 

Step e: 

Procedure 6.2.1: Solution of set-point tracking MMOP6 

Solve backwards from k =Nf -1 to No the following difference 

equations, with terminal conditions 

-
S(k) = Q + A T S(k+ l)(A - BG(k)) 

G(k) = [R + B T S(k+ I)Br1 B T S(k+ 1)A 

S(t ) = C T <l> C 
f 

h(k) = (A -BG(k)fh(k+l) + (A -BG(k)rS(k+l)a(k) 
- -

- ~(k) + G(kr A(k) 

Compute the driving input g(k), kE [No,Nf -l] from: 

-
g(k) = [R + B T S(k+ I)Br1 [ - B T S(k+ 1) a(k) - B T h(k+ 1) + A(k)] 

and 

Compute the state x(k), kE [No,Nf ] by solving from the initial 

condition x(No) = Xo the following difference equation: 

x(k+l) = (A-BG(k))x(k)+Bg(k)+a(k) 

Compute the costate p(k), kE [No,Nf ] from: 

p(k) = S(k)x(k) + h(k) 

Compute the control input u( k), kE [No' Nf -1] from the control law: 

lI(k) = -G(k)x(k) ~ g(k) 



The linear-quadratic formulation enables the augmented multipliers ~(k) and 

-
P(k), kE [No,Nj -l] to be expressed as (see equation (5,16»: 

'A(k) = [B - af* rft(k+ 1) + [J?v(k) - V L'] 
av(k) v(k) 

~(k) = [A - af* rp"(k+ 1) + [Q-z(k) - V L'] 
az(k) ;:(k) 

(6,11) 

while the calculation of parameter a(k), kE [No,Nj-I] becomes (see equation 

(5,17», noting that it is not necessary to calculate y( k) : 

a(k) =f*(z(k),v(k),k) -Az(k) -Bv(k) (6,12) 

DISOPE requires a nominal solution to start the iterations. A recommended 

-
starting point is to use the solution of MMOP6 under a(k) =0, A(k) =0, 

-
P(k) =0, kE [No,Nj-I], r, = r2 = 0 (relaxed MMOP6). 

The above analysis enables us to formulate the discrete time DISOPE 

algorithm (Algorithm 5.2.1) as a tracking optimal control algorithm with a linear

quadratic model-based problem. 

Algorithm 6.2.1: Set-point tracking DIS OPE algorithm with LQ model-based 

problem 

and means for calculating f *, L * and S. 

Step 0: Compute or choose a nominal solution u o(k), x o(k) and p o(k). Set 

i=O , 

Step 1: Compute the parameter ai(k) to satisfy (6,12). This is called the 

parameter estimation step. 

Step 2: Conlpute the augmented multipliers ~'(k) and WCk) fronl (6,11). 
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Step 3: 

Step 4: 

With specified a(k) , ~(k) and ~(k), solve the MMOP6 by using 

Procedure 6.2.1. This is called the system optimisation step. 

This step tests convergence and updates the estimate for the optimal 

solution of ROP5. The simple relaxation method (5,19) may 

employed to satisfy (5,18). If v i+l(k) = v i(k), kE [No,N
j
-l] within 

a given tolerance stop, else set i=i+ 1 and continue from step 1. 

In practice, the achievement of the equality v i+l(k) = v i(k), kE [No,Nj -l] 

may be evaluated by computing the control variation norm (5,34) and comparing its 

value with a given small tolerance tv' 

6.3 INCREMENTAL CONTROL WEIGHTING 

With the purpose of removing zero steady state error for constant reference 

trajectories incremental control weighting may be introduced in the performance 

index by using a term of the form i1u(kr R i1u(k) , where i1u(k) = u(k) -u(k-l) 

(Soeterboek, 1992). Even though this kind of term is not directly taken into account 

in the LQ model-based problem, where a term of the form u(kr R u(k) is considered, 

the iterations of DISOPE would deal with it as a model-reality difference between 

Land L *. 

6.4 SIMULATION EXAMPLES 

Algorithm 6.2.1 was implemented in the C++ programming language using 

object oriented and modular programming techniques. making use of existing code 

generated for the implementation of discrete-time DISOPE (see Sections 5.-+ and 

5.5). The exact discretization scheme introduced in Section 5.4 was used for the 

calculations. The following simulations were run on a IBM compatible -+86-DX 

based machine with 33 MHz clock speed. 
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Example 6.4.1: Exothermal CSTR 

This example consists of a fIrst order irreversible chemical reaction carried 

out under exothermal conditions in a continuous stirred tank reactor (CSTR). Here 

Xl represents the dimensionless concentration, x2 represents the dimensionless 

temperature (controlled variable), the control variable u is the dimensionless cooling 

jacket temperature. This reactor has a complex dynamic behaviour and represents a 

challenging control problem (Sistu and Bequette, 1992). The control signal is 

bounded between upper and lower levels -1:::; u( t) :::; 2. Control bounds were handled 

by using the variable transformation technique described in Section 3.3. There is a 

set-point change from ro=0.8859 to ro=2 at t = 1.5, and the reactor is required to 

track the set-point by minimizing a quadratic performance index. The differential 

equation is discretized in an exact way as explained in Section 3.2. The control 

signal sample interval was T = 0.25. Here t is a dimensionless time variable. 

ROP: 

subject to 

thl 

x(k+l) = x(k) + J f/x('t) ,u(k) ,'t)dt 
tt 

x(O) = [0.8560 0.8859r 

-1 < u(k) :::; 2 
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where 

y(k) = x
2
(k) 

roCk) = {~:~: !~~ 

P(q -1) is a polynomial in the backward shift operator q -I, and the continuous 

dynamics represented by x = fc(x,u,t) are given by: 

MOP: 

subject to 

x (t) 
Xl = -0.072xI(t)exp( 2 ) +( I-x (t)) 

1 +x/t)/20 1 

x2(t) X2 = 0.576x1(t) exp( ) -1.3x (t) +0.3 u(t) 
1 +x/t)/20 2 

x(k+l) = Ax(k) + Bu(k)+a(k) 

x(O) =[0.8560 0.8859r 

Here we will distinguish five different cases in order to investigate the 

influence of the integration method, the linearization point to compute the model

based matrices A and B, the effect of using quadratic incremental control weighting 

and the influence of the terminal weighting, as indicated in Table 6.4.1.1. In cases 

(a), (b), (d) and (e) the integration step used was ~t = 0.08333. Table 6.4.1.2 shows 

the algorithm's performance in every case. Figures 6.4.1.1 to 6.4.1.3 show the output 

response for cases (a), (b) and (e), respectively. Figures 6.4.1.4 to 6.4.1.6 show the 

final control signal for cases (a), (b) and (e), respectively. Figures 6.4.1.7 and 6.'+.1.8 

show the convergence behaviour of the algorithm for cases (a), (b). (d) and (e). 
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Case Integration Linearization P(q -1) <I> 

method Point 

a Fixed step size 
X=X u=O 1 0 

4th order Runge- Kutta 0 

b Fixed step size 
X=X u=O 1 -1 0 

4th order Runge-Kutta 0 -q 

C Adaptive step size X=X u=O 1 -[ 0 
5th order Runge-Kutta 0 -q 

d Fixed step size 
x=[O Or u=o 1 0 

4th order Runge- Kutta 

e Fixed step size X=X u=O 1 100 
4th order Runge- Kutta 

0 

Table 6.4.1.1: Description of cases in example 6.4.1 

Case No. of CPU J* J* 
0 

Iterations (s) 

a 16 49 115.831345 1.121004 

b 42 127 113.351143 0.493216 

c 37 247 113.352859 0.493183 

d 82 233 137.353577 1.120998 

e 17 51 117.634392 1.136164 

Table 6.4.1.2: Algorithm's performance, example 6.4.1 
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The values of matrices A and B, according to the linearization point used are: 

linearization about the origin x = [0 0] T U = 0 

A = f00764661 -00001555] 

lO.108802 0.734551 

linearization about initial condition x = xo u = 0 

2 

1.8 

1.6 

1.4 

1.2 

o 

A = f00742285 -00027646] 

lO.282072 0.935978 

2 .3 4 

t 

B = [-0.0011037] 
0.0725700 

5 6 7 8 

Figure 6.4.1.1: Example 6.4.1.a, dimensionless temperature and set-point 
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Figure 6.4.1.2: Example 6.4.1.b, dimensionless temperature and set-point 
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Figure 6.4.1.3: Example 6A.l.e, dimensionless temperature and set-point 
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Figure 6.4.1.4: Example 6.4.1.a, final control signal 
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Figure 6.4.1.5: Example 6.4.1.b, final control signal 
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Figure 6.4.1.6: Example 6.4.1.e, final control signal 
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Figure 6.4.1.7: Example 6.4.1, control variation norm VS. iterations 

142 



1003 

102 

x 
(I) 

" c 
(I) 
0 
c 101 
0 
E 
'-
0 
't: 
(I) 
0-

d 
100 

b 

iteration 

Figure 6.4.1.8: Example 6.4.1 performance index vs. iterations 

It is observed that in case (a) the output signal seems to have reached a 

steady state with a certain off-set from the final set-point (see Figure 6.4.1.1), but 

there is a deviation from that value near the end of the optimisation horizon. 

Similarly, the control signal becomes zero at the end of the horizon (see Figure 

6.4.1.4). This occurs because the final set-point value is not an equilibrium point of 

the system and the absolute value of the control signal is quadratically weighted at 

the end of the horizon. 

If we weight the terminal set-point deviation (case e) but keep the quadratic 

absolute control weighting, then the output signal seems to have reached a steady 

state with a certain off-set from the final set-point (see Figure 6.4.1.3), but near the 

end of the time horizon the off-set disappears. 

On the other hand, when we introduce quadratic incremental control 

weighting in case (b), the output signal reaches a steady-state value with zero off-set 

(see Figure 6.4.l.2). Similarly, the control signal reaches a (non zero) steady state 

value (see Figure 6.4.1.5). Notice, however, that the number of iterations for 

convergence increases when the control increments are used in the performance 

index (compare cases (b) and (a)). 
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It is observed in Table 6.4.1.2 that the use of the adaptive step size Runge

Kutta integrator (case (c)) increases the CPU time per iteration, with the advantages 

that the accuracy of integration is specified by the user and, furthermore, it is not 

necessary to specify an integration step. There is a minor difference in the number 

of iterations for convergence in cases (b) and (c), but the differences in the final 

computed values of states and control signals are not significant in this case. 

Although it is claimed that adaptive-step size integration reduces computational costs 

(Press et ai, 1992), this is not applicable in this case due to the length of the 

integration range required by the exact discretization scheme (only 1 sample 

interval). It must be emphasized that the choice of the integration method is a 

function of the particular problem being solved and the availability of different ODE 

solvers in a general implementation is important (Strand, 1991). 

Finally, the results indicate that the choice of the linearization point for 

computing the model-based dynamic matrices A and B affects the convergence 

behaviour of Algorithm 6.2.1. If we choose the linearization point as the origin 

x = [0 Or (case (d)), rather that the initial state condition x = Xo (cases (a), (b) 

and (e)), the convergence behaviour of the algorithm deteriorates significantly (see 

Figures 6.4.1.8 and 6.4.1.9 and compare cases (a) and (d)). This result will be used 

in Chapter 9, where the application of Algorithm 6.2.1 in a nonlinear predictive 

control scheme is described. 

6.5 SUMMARY 

A verSIon of the discrete-time DISOPE algorithm which uses a set-point 

tracking formulation has been developed and implemented in software. The algorithm 

solves iteratively a model-based set-point tracking optimal control problem which has 

linear dynamics and a quadratic performance criterion, and the iterations converge 

to the solution of the nonlinear problem, denominated reality, of which the model

based problem is an approximation. The implementation has been tested with one 

nonlinear set -point tracking example. The results indicate that the real optimal 

solution is obtained in spite of the differences between the real and model-based 

problems. The influence of different factors have been investigated. Such factors are: 

the use of quadratic incremental control weighting in the performance index, the 

differential equation solver used, the linearization point for the model-based matrices, 
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and the use of terminal weighting of the set-point deviation. The algorithm as 

implemented is capable of handling nonlinear optimal control problems with non

quadratic performance indexes, multiple control inputs, nonlinear output functions 

and bounded controls. 
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CHAPTER 7 

HANDLING OF STATE DEPENDENT 

CONSTRAINTS WITHIN THE DIS OPE 

FRAMEWORK 

In this chapter, the flexible structure of the DISOPE algorithm is exploited 

so as to handle optimal control problems with state dependent inequality constraints. 

The penalty relaxation technique is used, by which penalty functions are included in 

the real performance index. Provided the model-based problem is linear quadratic, 

the use of the penalty relaxation technique allows the solution of state constrained 

nonlinear optimal control problems by using standard linear quadratic methods in the 

model-based computations. 

7.1 FORMULATION 

It is well known that many real-life optimal control problems may have, in 

addition to constraints associated with the control variables, constraints associated 

with the trajectory followed by the state variables. This type of constraints is usually 

difficult to handle both from theoretical and computational points of view and 

sometimes their presence leads to ill-conditioning of the optimal control problem 

(Bryson and Ho, 1975; Teo et ai, 1991). The ability of an optimal control algorithm 

to deal successfully and efficiently with this type of constraint is considered to be 

important. 

Suppose that the state constrained real optimal control problem (SCROP) is 

defined as follows: 
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SCROP 

subject to 

ffiln N,-1 

u(k) 10* = L Lo*(x(k),u(k),k) 
kE [No ,N

f 
-1] k=No 

x(k+ 1) = f*(x(k) , u(k) ,k) 

x(No) = Xo 

\}l(x(k)) > 0 

where f* : 9\nx9\mx9\~9\n represents a set of discrete-time state equations which 

describe the process with state X(k)E 9\n and control input U(k)E 9\m , 

Lo* : 9\nx9\mx9\~9\ is a discrete performance (or weighting) function and 

\}l : 9\nx9\~9\c is a set of state dependent inequality constraints to be satisfied 

during the fixed time interval of interest [No,Nf -l]. 

The approach proposed in this chapter to handle state dependent inequality 

constraints within the DISOPE framework is the use of the penalty relaxation 

technique (Lin, 1993; Lin et ai, 1989). 

By using the penalty relaxation technique the original state constrained 

problem SCROP is transformed into an unconstrained optimal control problem such 

as ROP5 by adding penalty terms. We define the penalized discrete performance 

function as follows: 

c 

L *(x(k),k) = Lo*(x(k),k) + p L [P£(\}l/x(k),k))]2 (7,1) 
)=1 

where pE 9\ is a large penalty factor and the smoothed function Pe (Teo et al. 

1991) is given by 
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W w~-e 

Pe(w) 
(w-e )2 

-e<w<e 
(7,2) 

= 
4e 

0 w>e 

where WE 9\ is a given argument and eE 9\ is a properly chosen small value. Each 

added penalty term becomes significant in the face of violations of the corresponding 

constraint along the time horizon, while its value is zero if the constraint is not 

violated at a given time. 

Recall that DISOPE allows for model-reality differences between the model-

based performance function L and the reality function L' . We may use the 

penalized function L * as reality, and then form the unconstrained ROP5 (which in 

this case would contain the penalty terms dependent on the state constraints and no 

terminal weighting, see Chapter 5) to be solved using DIS OPE by iterating on a 

modified model-based problem such as MMOP5 (See Chapter 5). Provided the 

model-based problem is linear-quadratic, we may iterate using standard LQ methods 

(such as Procedure 5.3.1) for solving a path constrained optimal control problem. 

The following DISOPE algorithm with state-dependent constraints, assuming 

convergence, achieves the solution of SCROP. The algorithm includes an strategy 

to decrease oscillations about the constrained optimum and improve convergence, 

which is based on increasing the control convexification factor '1 whenever the 

performance index increases during the iterations. The state convexification factor 

'2 is not changed during the iterations. 

Algorithm 7.1.1: Discrete-time DISOPE algorithm with state-dependent 

constraints 

Data 

calculating f· and L · . 

Step 0 Compute or choose a nominal solution II o(k), x o(k) and p o(k). Set 
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Step 1 

Step 2 

Step 3 

Step 4 

Step 5 

Compute the real system state response x/(k) to u i(k). Then compute 

the penalized performance index J.i given x/(k) and u i(k). If 

J * i > J .i-l, i> 1 increase the convexification factor r
1 

as follows: 

k >1 r 

Compute the parameters ai(k), 1(k) to satisfy (5,17). This is called 

the parameter estimation step. 

Compute the multipliers )...i(k) and W(k) from (5,16). 

With specified a(k), y(k), )...(k) and ~(k) solve the discrete-time 

modified model-based optimal control problem MMOP5 to obtain 

u i+l(k), x i+l(k) and p i+l(k). This is called the system optimisation 

step. 

This step tests convergence and updates the estimate for the optimal 

solution of ROP5. In order to provide a mechanism for regulating 

convergence, in addition to that given by convexification factors 

r l , r2 , a simple relaxation method is employed to satisfy (5,18). This 

IS: 

v i+l(k) = v i(k) + kv (u i+l(k) - v i(k)) 

z i+l(k) = z i(k) + k/x i+l(k) - z i(k)) 

P i+l(k) = P i(k) + kp (p i+l(k) - P i(k)) 

(7,3) 

where kv' k;: and kp E (0, 1] are scalar gains. If v i+l(k) = v i(k) , 

kE [No ,N
f 
-1] within a given tolerance stop, else set i=i + 1 and 

continue from step 1. 
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7.2 SIMULATION EXAMPLE 

The following example was run on a IBM compatible 486DX based machine 

with 33 MHz speed and is based on a c++ implementation of Algorithm 7.1.1. 

Example 7.2.1: Linear system with time varying state constraint 

This non-trivial example has been used by several authors to test state 

constrained optimal control algorithms (Teo et ai, 1991). The problem may be 

expressed as follows: 

19 

~k~ l()* = L ~ (x1(k)2 + x2(k)2 +0.005u(k)2) 
k=O 

subject to 

f'+1 

x(k+ 1) = x(k) + J f/x('t) , u(k) , k )d't 
fk 

x(O) = [0 -1 r 
qJ(x(k),k) = 8(0.05k-0.5?-0.5-x2(k) > 0 

where the continuous dynamics represented by x = f/x,u,t) are linear and given 

by: 

and the sampling interval is T = 0.05 

In order to find the solution of the above described state constrained optimal 

control problem we use Algorithm 7.1.1 with a real optimal control problem given 

by: 

ROP 

19 

mIn 1. = ~ [~(x (k)2 + X (k)2 +0.005u(k)2) +p P (qJ(x(k) , k))2 ] 
u(k) L 2 I 2 e 

k=O 
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subject to 

It.! 

x(k+l) = x(k) + J fc(x(-r),u(k),k)d-r 

It 

x(O) = [0 -1 r 

The model-based dynamics are based on a zero-order hold discretization of 

the continuous dynamics (see, for instance, Astrom and Wittenmark (1990)). The 

model-based problem given by: 

MOP: 

'9 

~k~ L ~ (x,(k)2 + x2(k? +0.005u(k)2 + 2)'(k)) 
k=O 

subject to 

~1.0 0.048771} [0001229] 
x(k+ 1) = (k) + 0'048771 u(k) +a(k) 

0.0 0.951229 . 

x(O) = [0 -1 r 

The nominal solution consisted of the solution of MOP with 

aCt) = 0, y(t) = O. Table 7.2.1.1 shows the tuning parameters used for the solution. 

Table 7.2.1.2 shows the algorithm's performance. Figures 7.2.1.1 and 7.2.1.2 show 

the final state and control trajectories. Figures 7.2.1.3 and 7.2.1.4 show the 

convergence behaviour of the algorithm. 

eO 0 r2 k tv k =k =k P r, r v z p 

0.00001 2.0 0 2.0 0.01 1 100 

Table 7.2.1.1: Tuning parameters for example 7.2.1 
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No. of Maximum Final 

iterations constraint performance 

violation index 

50 0.0064 2.0131 

Table 7.2.1.2: Performances for example 7.2.1 
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Figure 7.2.1.1: Example 7.2.1, constrained state and constraint 

152 



10 

8 

6 

4 

2 

o 

-2 

o 2 4 6 8 10 12 14 16 18 20 

t 

Figure 7.2.1.2: Example 7.2.1, final control signal 
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Figure 7.2.1.3: Example 7.2.1, control variation norm vs. iterations 
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Figure 7.2.1.4: Example 7.2.1 penalized performance index vs.iterations 

7.3 SUMMARY 

An approach for handling state dependent inequality constraints within the 

DISOPE framework has been proposed. The method is based on the use of the 

penalty relaxation technique. Using the inherent flexibility of the DISOPE approach, 

penalty terms are added to the original performance index and, provided the model

based problem is linear-quadratic, the state constrained problem is solved by using 

iterative linear-quadratic methods. 

A DISOPE algorithm with state-dependent constraints has been proposed 

which includes a strategy to decrease oscillations about the constrained optimum and 

improve convergence. The technique has been successfully tested with a simulation 

example. 
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CHAPTER 8 

APPLICATION OF DISOPE IN THE 

OPTIMISATION OF BATCH PROCESSES 

In this chapter, a DISOPE algorithm is designed for the optimisation of batch 

processes. The algorithm achieves the real dynamic optimum of the batch process 

in spite of deficiencies in the mathematical model used for the computations. A 

modification of the discrete-time DISOPE algorithm is introduced in order to 

integrate the iterations of DISOPE with the batchwise operation of the process, in 

such a way that every batch cycle corresponds with one iteration of the algorithm. 

The use of the shadow model concept is proposed in order to deal with the problem 

of accurate state and dynamic derivative estimation. The approach is illustrated with 

one simulation example. 

8.1 BATCH PROCESSES 

Industrial processes can be classified as continuous, discrete, or batch. How 

a particular process is classified depends on the way the output product is yielded: 

either in a continuous flow or in discrete batches or quantities. Batch processes are 

common in small scale processing of chemical products with high unit cost. 

A process is considered to be batch if it consists of a sequence of steps or 

phases that must be carried out in a defined order. The culmination of this succession 

of steps creates a finite amount of finished product. The sequence needs to be 

repeated to produce additional amounts of product. Batch processes present 

interesting control problems due to their inherent dynamic nature. 

Step 1 

Step 2 

Step 3 

Step 4 

A typical batch cycle can be described as follows (Ri jnsdorp, 1991): 

Transportation and storage of raw materials 

Preparation of mixtures 

Initial charging into vessesls 

Transfer to initial conditions 
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Step 5 

Step 6 

Step 7 

Transformation 

Transfer to final conditions 

Emptying and cleaning 

Batch processes have optimum conditions that will yield the maxImum 

product with minimum time and cost. The degrees of freedom for the determination 

of such optimum conditions are often a combination of the initial conditions, the set

point profile used during the transformation phase and the time allowed for this 

phase. 

During the transformation phase some process variables have to follow a 

certain function of time so as to obtain good operating conditions. This is achieved 

by manipulating controller set-points during that period. 

Procedures for determining acceptable set-point profiles include trial and 

error, previous experience, and the use of dynamic optimisation. 

Optimal set-point profiles obtained by the use of optimal control theory based 

on a dynamic model of the batch process will only be optimal for the specific model 

and parameter values used in the optimisation. This mismatch between the model and 

the actual plant behaviour may result in sub-optimal performance when the model

based optimal profile is applied to the real process. 

8.2 DISOPE APPROACH 

We have seen in the preVIOUS chapters of this thesis that the DISOPE 

algorithm has been designed so that it handles the model-reality differences between 

the model used for the computations and the real plant in such a way that the correct 

dynamic optimum is achieved in a sequential way in spite of the deficiencies in the 

model. 

The idea of applying DIS OPE to the dynamic optimisation of batch processes 

anses naturally from knowledge on the structure of the algorithm and the basic 

principles on which it was originally developed. 

An attempt to handle model-reality differences III batch process dynamic 

optimisation have been presented by Zafiriou and Zhu (1989), who use a dynamic 

version of the Two-step Method and, as a result of not dealing with the differences 

in the first order derivatives of the real process and the model used, is suboptimal. 
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It is possible to integrate the iterations of DISOPE towards the dynamic 

optimum with the batchwise operation of the process. This is achieved by 

introducing a modification on the basic algorithm such that the control profile 

obtained from model-based optimisation at each iteration is applied to the real 

process at every transformation phase. As has been discussed in Chapter 5 it is 

convenient to formulate the algorithm in discrete-time so that it is suitable for 

computer-control implementation. Then, assuming that the transformation time is 

fixed, the discrete-time DISOPE algorithm for batch processes is described as 

follows: 

Algorithm 8.2: Discrete-time DISOPE algorithm for batch processes 

Data 

Step 0 

Step 1 

Step 2 

Step 4 

Step 5 

Step 6 

/, L, <p, xo' No, Nt, and means for calculating / * and L " . 

Compute or choose a nominal solution v o(k), and p O(k). Set i=O, 

During the transformation phase, apply the control profile v i(k) to the 

batch plant. Obtain the corresponding state response Z i(k) , 

kE [NO'~f] and dynamic derivatives a/"/az and a/*/av ,kE [No,Nt-l] 

(See Section 8.3). 

Compute the parameters riCk), y(k) to satisfy (5,17). This is called 

the parameter estimation step. This may be done simultaneously with 

step 1 

Compute the multipliers Ai(k) and W(k) from (5,16). This may also 

be carried out simultaneously with step 1. 

With specified a(k) , yCk), A(k) and ~(k) solve the discrete-time 

modified model-based optimal control problem MMOP5 to obtain 

II i+l(k), x i+l(k) and p i+l(k). This is called the system optimisation 

step. 

This step tests convergence and updates the estimate for the optimal 

solution of ROP5. In order to provide a mechanism for regulating 

convergence, a simple relaxation method is employed to satisfy 

(5,18). This is: 
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v i+l(k) = v i(k) + kvC u i+l(k)_ v i(k)) 

P i+l(k) = P i(k) + kp (p i+l(k) - P i(k) ) 
(8,1) 

where kv' and kp E (0, 1] are scalar gaIns. If v i+l(k) = v i(k), 

kE [No' Nf -1] within a gIven tolerance stop, else set i =i + 1 and 

continue from step 1. 

It is important to remark that Algorithm 8.2 requires precise know ledge of 

the values of the state variables of the process during the transformation phase and, 

furthermore, the values of the derivative matrices df*/dZ and df*/dV are also 

required during that period. An approach for obtaining reliable values of these 

variables is given below. 

Notice that the algorithm is adaptive, since changes in the dynamics of the 

system or external disturbances may be detected in the estimation of the state 

variables and hence by the algorithm itself, which would lead the system to the 

correct optimum. 

Recall that the initial state conditions and transformation time are assumed 

fixed. An optimisation algorithm located at an upper level (relative to DISOPE) 

might be used in order to optimise the process with respect to such parameters. 

8.3 THE SHADOW MODEL CONCEPT 

It is proposed to use the shadow model concept, introduced by Griffiths 

(1993), for dealing with the problem of accurate measurement of state information 

from the process, required by the DIS OPE algorithm. 

The increase in relatively cheap computer power with high performance, 

together with advances in software tools, have originated significant developments 

in the area of process simulation. The real time shadow model is a highly rigorous 

mathematical model of the process based on first-principle physical laws which is 

run in parallel with the process. The use of very reliable data is vcry important for 

158 



the implementation of such an accurate model and hence data validation and 

reconciliation schemes need to be used in order to increase the validity and accuracy 

of the sometimes uncertain and noisy process measurements. This model provides 

control systems and operators with variables and parameters not measured in the real 

plant. This innovative concept has already been implemented in industrial scale 

problems as reported by Griffiths (1993). Depending on the complexity of the 

process the shadow model might consists on several hundreds of differential and 

algebraic equations, while the real process order might be considered very large 

indeed. For the practical application of DISOPE in the optimisation of batch 

processes it is then necessary to choose a number of relevant state variables to be 

measured from the shadow model. These relevant states, chosen by an expert in the 

process, should be a good representation of the dynamics of the process. 

8.4 ESTIMATION OF DERIVATIVES 

The accurate estimation of derivatives is also very important for the success 

of the application of DISOPE in batch process optimisation. A model of identical 

structure and parameters as the shadow model, but which is operated a few times 

faster than real time, might be used to obtain the derivatives by predicting the 

process response into the next sampling time based on perturbations over current 

state and control data. Then finite differences may be used to obtain the derivatives. 

8.5 CHOICE OF THE DYNAMIC MODEL FOR THE OPTIMISATION 

STEP 

It is also necessary to choose the dynamic model to be used to define the 

model based optimal control problem. The order of this model should be equal to the 

number of relevant states measured from the shadow model. It might be a nonlinear 

but simplified model based on physical laws. Alternatively, a linear dynamic model 

can be constructed from the derivative estimates. The number of DISOPE iterations, 

or in other words, the number of batches required to achieve the dynamic optimum 

will depend on the choice of this model. 
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8.6 CHOICE OF THE ALGORITHM FOR SOLVING THE MODEL-BASED 

PROBLEM 

An algorithm has to be used to solve the modified model-based problem at 

every iteration. If a simplified nonlinear model is available, then the algorithm has 

to be able so solve a nonlinear optimal control problem. On the other hand. if no 

other model is available then a linear model can be constructed from the derivative 

estimates as follows: 

x(k+ 1) = Ax(k) + B u(k) + a(k) (8,2) 

where A and B are the estimated derivatives at, say, the initial batch at time No' If, 

in addition to having linear model-based dynamics, the model-based performance 

index L is chosen as a quadratic approximation of L * then, as we have seen in the 

previous chapters, standard LQ methods, such as Procedure 5.3.1, may be used for 

solving the modified model-based problem. If so, control magnitude constraints may 

be handled in a straightforward manner by saturating the controls at the bounds when 

they are applied to the plant (see Section 3.3). Notice that if control magnitude 

constraints are handled at the model-based level by the optimisation algorithm, an 

improvement in the convergence behaviour of DIS OPE is possible (See Chapter 3). 

If a simplified nonlinear dynamic model of the process is available, its use 

might be an advantage from the point of view of the number of iterations necessary 

for convergence, since they might be lower than by using a linear model, provided 

the nonlinear model is a better approximation to reality (the batch process) than the 

simple linear dynamic model. In this case a nonlinear optimal control algorithm has 

to be used for solving the modified model-based problem. For instance, Algorithm 

5.3.3 (DISOPE with LQ model based problem), applied to the (nonlinear) model

based problem playing the role of "reality", is a possible candidate. 
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8.7 SIMULATION EXAMPLE 

Example 8.7.1: Batch chemical reactor 

This example, taken from (Ray, 1981), consists of the dynamic optimisation 

of a batch chemical reactor in which it is assumed that the reaction temperature can 

be controlled exactly. We wish to carry out the following reaction in the reactor: 

The objective is to find the optimal temperature profile that, for a fixed batch time 

of 1 hour, will maximize the production of the intermediate B. As pointed out by 

Ray (1981) the scheme given by the reaction considered here is of practical 

importance in a number of chemical processing operations, including the oxidation 

of hydrocarbons or the chlorination of aromatics. Notice that we wish to maximize 

the production of an intermediate product and hence it is necessary to prevent the 

reaction from going to completion. 

The purpose of this example is to illustrate the use of DIS OPE for the 

optimisation of batch processes. To pursue this objective we will simulate a very 

simple nonlinear "shadow model" of the process, which we will assume to be in 

ideal correspondence with the real process and from which we will measure the state 

and derivative information which DIS OPE requires for the iterations. Recall that in 

the scheme proposed in this chapter, every iteration of DISOPE corresponds with a 

batch cycle. 

The dynamics of the shadow model are given by: 

where: 

.\",= 

11= 

Xl = -kl(u(t))XI(t? 

x2 = k l(u(t))X I(t)2 - k/u(t))x/t) 

x(t=O) = [1.0 0 r 

concentration of A 

concentration of B 

reaction temperature (K) 
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4000.0 L/(mol)(s) 

620000 I/(s) 

5000 cal/(g)(mol) 

10000 cal/(g)(mol) 

The control variable u is bounded between upper and lower levels 

298 K < u < 398 K. The control signal is constant between sampling times and the 

length of the sampling interval is Ts = 3 min. States and derivatives are measured 

with the same sampling rate as the control signal is discretized. The shadow model 

was integrated between sampling times by using an adaptive 5th order Runge-Kutta 

integrator (Press et ai, 1992). The derivatives required by DISOPE were computed 

by using a central difference formula. The tolerance specified for convergence was 

£v = 2.0 K and the relaxation gains used in the iterations were kv = kp = 1. Notice 

that the initial conditions are fixed at every batch. 

The real performance index to be minimized reflects our desire to maximize 

the production of B and is given by: 

where N
f 

= 20 corresponds with the transformation time of one hour, takingNo = 0 

as the initial time index of every batch or iteration. The model-based problem was 

taken as linear dynamics and a quadratic approximation of the performance index as 

follows: 
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MOP 

nun 
u(k) 1m 

N,-l 

= -x2(Nj )+L 
k=O 

0.00025u(k)2+a(k) 

s.t. 

[
0.919217 0 l [-0000518] 

x(k+l) = 0.080756 0.998564 rk) + 0.000551 u(k) + a(k) 

The modified model-based problem was solved by using Procedure 5.3.1, where the 

recursion of h was started from the terminal condition h(N
j

) = [0 -lr, so as to 

satisfy the boundary condition (5,7). The initial guesses of control and costate 

trajectories to start the iterations were v o(k) = 298 K, kE [0, 19] , 

pOCk) = [0 Or, kE [0,20], respectively. Table 8.7.1 shows the algorithm's 

performance in terms of number of iterations for convergence, the concentrations of 

product B for the initial control guess x2( 1 h)O, and for the final batch x/ 1 h )20 . 

Figures 8.7.1.1 and 8.7.1.2 shows the final concentration and temperature profiles. 

Figure 8.7.1.3 shows the evolution of the control variation norm between iterates. 

Figure 8.7.1.4 shows the evolution of the terminal concentration of product B from 

the initial batch to the end of the iterations of DISOPE. Notice that x
2

( 1 h) grows 

monotonically with the iterations. 

No. of x
2

( 1 h)o x
2

( 1 hfo 

iterations 

20 0.46 0.61 

Table 8.7.1: Performances for example 8.7.1 
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Concentrations 
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time (hours) 

Figure 8.7.1.1: Example 8.7.1, final concentration responses 

Temperature program (K) 
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340 
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Figure 8.7.1.2: Example 8.7.1, final temperature profile 
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Figure 8.7.1.3: Example 8.7.1, control variation norm vs. iterations 

Concentration of B 
0.62 

0.6 

0.58 

x 0.56 
(1) 

"U 
c: 

(1) 0.54 
0 
c: 
0 
E 0.52 .... 
0 
't: 
(1) 
a. 0.5 

0.48 

0.46 

0.44 
0 2 4 6 8 10 12 14 16 

iteration number 

Figure 8.7.1.4: Example 8.7.1 performance index vs. iterations 
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8.8 SUMMARY 

The application of the DISOPE algorithm has been proposed for the dynamic 

optimisation of batch processes. A modification of the discrete-time DISOPE 

algorithm has been introduced in order to integrate the iterations of DISOPE with 

the batchwise operation of the process. The DIS OPE algorithm for batch processes 

achieves the real dynamic optimum of the batch process in spite of deficiencies in 

the mathematical model used for the computations. The shadow model concept has 

been used in order to deal with the problem of accurate state and dynamic derivative 

estimation, required by the DISOPE algorithm. The approach has been illustrated 

with one simulation example consisting of the dynamic optimisation of a batch 

chemical reactor. 
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CHAPTER 9 

APPLICATION OF DISOPE IN NONLINEAR 

PREDICTIVE CONTROL 

In this chapter, a nonlinear predictive controller based on state space models 

of the controlled plant has been developed and implemented in software. The 

receding horizon long range prediction and dynamic optimization is carried out at 

every sampling time by using the DIS OPE algorithm. States and parameters are 

estimated from the possibly noisy output measurements by using an Extended 

Kalman Filter. The technique has been tested with simulation examples and its 

performance has been evaluated. The controller is flexible and is able to handle input 

bound and state dependent constraints. The research work presented in this chapter 

is also described in (Becerra, 1993e). 

9.1 PREDICTIVE CONTROL 

Industrial processes have been typically operated using linear controllers. 

However, most processes are inherently nonlinear and linear controllers yield 

satisfactory action only if the process operating point does not change significantly. 

Process dynamic characteristic may change dramatically if large disturbances 

occur or after a significant set -point change. Additionally, batch processes work over 

very different operating ranges, which makes batch process controllers difficult to 

tune. 

Predictive Control techniques, based on linear models of the plant, have been 

developed and widely applied in process plants in the last two decades. Predictive 

control belongs to the class of model-based controller design concepts, because a 

model of the plant is used to compute the control action. The reasons for their 

acceptation are many, but the main ones are: they are easy to tune: they may handle 

systen1atically process constraints, multivariable processes and time delays: 
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knowledge of future set-point changes can be included~ their computational 

requirements are modest (Soeterboek, 1992~ Garcia et ai, 1989). However, linear 

predictive controllers are only locally valid. Even if the linear input-output model 

is updated through an estimation scheme, its long-range prediction capabilities may 

be poor in the presence of nonlinearities if such predictions lie out of the (local) 

linear region in the state space. 

There have been growing interest In the last few years on extending 

predictive control concepts to take into account process nonlinearities. Some of those 

schemes have been presented in the literature (Sistu and Bequette, 1992; Gattu and 

Zafiriou, 1992~ Balchen et ai, 1992). A common characteristic is their increased 

computational load. Most of them are based on nonlinear state space models of the 

process and some of them include state and parameter estimation to give robustness, 

adaptability, and stability to the controller. Therefore, it is assumed in this chapter 

that a nonlinear model of the process is available for prediction purposes. If the 

dynamic optimisation scheme allows for general performance index specifications, 

economic criteria can be included (Balchen et ai, 1992). If the control objectives 

pursued are to regulate the plant about the current set-points in spite of external 

disturbances and to track changes in such set-points in an appropriate way, then a 

nonlinear predictive controller has to solve a tracking optimal control problem in a 

receding -horizon fashion. 

In Chapter 6 the discrete time formulation of DISOPE is used to solve 

nonlinear optimal set-point tracking problems. This algorithm is appropriate for use 

in a nonlinear predictive control scheme. Experimental results indicate that if the 

model-based problem is chosen as a linearization of the nonlinear system about the 

initial state condition, then convergence may be achieved faster than if other 

linearization points are chosen. This suggest that if DISOPE is used in a nonlinear 

predictive control scheme, then the current state estimate, which is the initial 

condition for the receding horizon optimization, may be used as a linearization point 

to obtain the linear model based dynamics. 

In this chapter, a nonlinear predictive controller is developed and 

implemented in software. The receding horizon dynamic optimisation is carried out 

at every sampling time by the DIS OPE algorithm. State estimation from possibly 

noisy measurements is carried out by using an Extended Kalman Filter (EKF). The 

controller may have adaptive features because the EKF can be used to continuously 
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estimate relevant uncertain parameters. The controller is able to handle input, output 

and internal state magnitude constraints. Simulation examples illustrating the 

capabilities of the controller are presented. 

Predictive controllers are usually formulated in discrete time. The way a 

predictive controller operates is illustrated by Figure 9.2.1. Based on present and past 

output measurements and control action, the controller predicts the future output 

response (using an internal model of the plant) and chooses the best future control 

sequence by minimizing a given performance index. The plant may be required to 

follow a desired output trajectory. Then, only the first element in the computed 

control sequence is applied to the plant. Such calculations are performed at every 

sampling interval in a receding-horizon fashion. The control horizon is the number 

of future control steps which are computed. The prediction horizon is the number of 

output samples which are predicted. 

reference 
tra~ctory I 

I 
I 

prediction horizon 
I 

~ predicted 
output 

past icurrent 
predicted 
control 

control control 
I action\ I ~ I ~ I I I next 

I control 

past I future 
I 
control 
horizon 

Figure 9.2.1: Predictive control approach 
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9.2 NONLINEAR PREDICTIVE CONTROL 

9.2.1 Formulation 

When the plant is nonlinear, appropriate models can be defined in the state 

space. Thus, the receding horizon optimisation to be solved at every sampling time 

can be formulated as follows: 

Plant dynamic model: 

dx = F*(x(t'),u(t'),S,t') 
dt' 

yet ') = s (x(t ') ) 

Receding Horizon Optimisation 

mIn t+Nc 

(9,1) 

u(j) J,(u,t) = <p(x(t+l+N))+ L L *(x(k),u(k) ,/).u(k),y/k) ,roCk),k) 
kE [k + 1 ,k + Nc ] k= t+ 1 

subject to 

where 

II 

/).u 

tt'l 

x(k+l) = j*(x(k),u(k),S,k) = jF*(x('t),u(k),S,'t)dt 
tk 

x(t+ 1) = x(t+ 11 t) 

y(k) = S(x(k),k) 

u. <u~u 
min max 

\}1(x(k)) ~ 0 

m-dimensional control vector 

m-dimensional control increment vector 

( =u(k)-u(k-l)) 

n-dimensional state vector 

1l -dimensional vector of estimated parameters e 
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Y - no -dimensional model-based output prediction vector 

Ym - no -dimensional vector of measured outputs 

Yc - no -dimensional vector of corrected output predictions 

ro - no -dimensional reference trajectory vector 

U . ,U - m-dimensional vectors of control bounds mm max 

t - current discrete time index 

N - control horizon c 

F* - 9\nx9\mx9\--79\, mapping of continuous state equations 

f* - 9\nx9\mx9\--79\, mapping of discrete state equations 

~ - 9\n--79\no output mapping 

J (u,t) - receding horizon performance index r 

L* - 9\nx9\mx9\mx9\nox9\nox9\ --79\ performance function 

cp - 9\n--79\ scalar terminal weighting function 

~ - 9\ n--79\ nc system of state dependent constraints 

x(t+ 1 It) - n-dimensional vector of state predictions at t+ 1 based 

on estimation at t 

The performance index may weight deviations from desired set-points or it 

may reflect economic objectives. It is expressed in discrete time. The plant dynamics 

are discretized in an exact way, by integrating the continuous state equation between 

sampling times (exact discretization scheme, see Section 5.4). The relationship 

between control horizon N c and prediction horizon Np is fixed: Np = Nc ' 

Knowledge of future set-point changes can be included. This may be important in 

batch processing or in scheduled operations. 

The output prediction is corrected by adding, along the prediction horizon, 

the current prediction error to the model based prediction, in the same way as future 

disturbances are characterized in the formulation of Dynamic Matrix Control (Garcia 

171 



and Morshedi, 1986). This is equivalent to the estimation of output disturbances. 

The current prediction error d
y 

is given by: 

(9,2) 

where Y met) is the measured output at discrete time t. 

The initial state condition x(t+ 1) is the current state estimate x(t) (which is 

based on the latest output measurement at discrete time t ) projected one step ahead 

in the future by integrating a plant model from t to t+ 1 . This prediction is based 

on the current control input being applied to the plant (Sistu and Bequette, 1992). 

If the structure of the model is incorrect, then after the uncertain parameters 

are estimated, there will still be a difference between output predictions and 

measurements. This remaining error is estimated as an output disturbance by using 

the output correction outlined above. This combines both parameter estimation and 

disturbance estimation in the feedback path (Eaton and Rawlings, 1990). 

The controller has a time delay of one sampling period to account for the 

controller calculations. Thus, it is assumed that all the controller calculations can be 

done in one sampling interval. With the increasing computer power becoming 

available at decreasing prices, this will not be a limitation. 

9.2.2 Nonlinear predictive control algorithm (NLP-DISOPE) 

The predictive controller can be described in an algorithmic way as follows: 

Algorithm 9.2.2: Nonlinear predictive control using DISOPE (NLP-DISOPE) 

Step 0 

Step 1 

Step 2 

Step 3 

Initialization 

Measure plant output y(t) 

Apply current control u(t) to the plant. 

Simultaneously with step 2, do the following calculations 

3.1 Estimate the current state x(t) and parameter vector 8 by using 

the Extended Kalman Filter. 
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Step 4 

3.2 Predict the state one step ahead in the future to obtain x(t+ lit) by 

integrating a nonlinear model of the plant from the current estimate 

based on the control signal being applied to the plant. 

3.4 Solve the nonlinear dynamic optimization problem over the 

specified prediction horizon using DISOPE, with x(t+ 11 t) as initial 

state condition to obtain the control sequence { u(t+ 1), ... , u(t+N) }. 

Wait until the next sampling time, then set t = t+ 1 and go to step 1. 

Figure 9.2.2 shows an schematic diagram of the nonlinear predictive controller. 

nOlse ~ dlsturb ances 

physical 
plant 

yet) 

state! tuning 
u(t+l) parameter 4-parameters 

reference trajectory 
constraints 
objectl ve function 
tuning parameters 
predicted disturbances 

estimator 
(EKF) 

O~timizer b racking 
ISOPE) 

i 
fast 
predictive 
model 

A e 

Figure 9.2.2: Schematic diagram of the controller 
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9.3 DYNAMIC OPTIMISATION ALGORITHM 

In this work, the receding horizon optimisation formulated in Section 9.2.1 

IS solved at every sampling interval by using the set-point tracking DIS OPE 

algorithm (Algorithm 6.2.1). The reader is referred to Chapter 6 for the development 

of Algorithm 6.2.1. 

9.3.1 Choice of the LQ model-based problem in set-point tracking DISOPE. 

An advantageous choice (see Example 6.4.1) within the framework of 

predictive control for the model-based dynamic matrices A ,B, C is a linearization 

about the initial state condition (which is the current state estimate projected one step 

ahead based on the current control). Therefore we have: 

_ af* 
A - ax 1.£(t+llt),u(t).t+l 

_ af* 
B - au I£(t+ 11 t) , u(t) , t+ 1 (9,3) 

_ a~ 
C - ax I.£(t+ lit), t+ 1 

The choice of the model-based weighting matrices Q, R should be done in 

such a way that the model based performance function L represents an 

approximation of the not necessarily quadratic L * . 

9.3.2 Handling of control magnitude constraints 

Control magnitude constraints may be handled by uSIng the variable 

transformation technique described in Section 3.3. 

9.3.3 Handling of state dependent constraints 

State dependent constraints may be handled by using the penalty relaxation 

approach described in Chapter 7 
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9.3.4 DISOPE algorithm initialization (nominal solution) 

Th '1 l' ° ° ° e nonuna so utIon u , x , p for the DISOPE algorithm may be taken as 

xO(k) = xo' pOCk) = 0, kE[t+l,t+Nc+l], and uO(k) = u(t), kE[t+l,t+N
c
]' where 

Xo = x( t+ 1 It) is the predicted state at t+ 1 given information up to t , and u(t) is 

the latest applied control. 

9.4 STATEIPARAMETER ESTIMATION ALGORITHM 

A very important aspect for the performance of the nonlinear predictive 

controller is the correct initialization of the state vector at each receding horizon 

optimization. Normally, such states are not directly available for measurements. Even 

if the full state vector is available from plant measurements, the performance of the 

controller can be very poor in the presence of model-plant mismatch and/or 

measurement noise (Bequette, 1991). Thus it is very important to estimate uncertain 

parameters and also to estimate the state vector from possibly noisy and incomplete 

output measurements. 

When using state-space models developed from first principles, the number 

of uncertain parameters is usually small. According to Ba1chen et. al. (1992): 

" One of the most important features of a state-space model 

developed by first principles is that most of the model parameters are 

either given or reasonable values can be found from physical 

considerations. The number of unknown parameters is then reduced 

to a minimum" 

9.4.1 Extended Kalman Filter 

The nonlinear state estimator used in this work is the well known Extended 

Kalman Filter (EKF) (Maybeck, 1982; Lewis, 1986b). In order to estimate 

simultaneously states and uncertain parameters the state vector can be augmented 

with such parameters. 

Assume the nonlinear stochastic continuous-time system with discrete-time 

measurelnents. as described as follows 
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dx 
d1 = F*(X,U,1) + G/1)W(1) 

(9,4) 

ym(t) = S(x(t))+vm(t) 

where 1 is a continuous time variable and t is a discrete time variable. 

is the state vector, UE 9tm is the control vector, Y mE 9t"o is the measurement vector, 

W(1)E 9t"s and v m(t)E 9tno 
are zero mean, white noise processes uncorrelated with 

each other and with the expected value of the initial state x(O), Ex(O) = xo; Qf' R
f 

and Po are covariance matrices of the appropriate dimensions corresponding to 

W(1) , v m(t) and x(O) , respectively; Gf is the process noise distribution matrix. 

Define 

A( ) =aF*(x,U,1) 
f X,1 ax 

C (x) = as(x) 
f ax 

A description of the continuous-discrete EKF is given in Algorithm 9.4.1. 

Algorithm 9.4.1: Extended Kalman Filter 

Data Qj' Rf , Gf , Po and access to F * and S. 

Step 0 Filter initialization t=O, k=O, P(O) = Po, x(O) =xo' where P is the 

error covariance matrix. 

Step I Time update. Integrate from t r_1 to 1( the following differential 

equations to obtain x -(1) and P -(1(): 

estimate 

x = F(x(t), U(1).t) 
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Step 2 

error covariance 

Measurement update. Wait until next sampling time, measure the 

current output Y met) and then compute: 

Kalman gain 

error covariance 

corrected estimate 

then set t = t + 1 and go to step 1. 

9.4.2 Kalman Filter tuning 

The parameters to be initially specified when implementing a Kalman filter 

are the initial error covariance matrix Po' the expected value of the initial state Xa, 

the measurement noise covariance matrix Rf and the process noise covariance matrix 

0..,. These values should be chosen from physical considerations whenever possible. 

taking into account that the value of the error covariance matrix is a measure of the 

uncertainty in the value of the initial state. 

In the presence of model structure uncertainty, unmodelled dynamics. 

parametric uncertainty and poor information on process noise statistics, there are 

strategies to prevent the divergence of the estimates and give robustness to the filter 

(Lewis. 1986b: Maybeck. 1982). Such approaches prevent the covariance error. and 

hence the Kalman gain from going to zero with time. This keeps information from 

plant measurements entering into the filter calculations, so avoiding too much 
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confidence in the filter predictions. One of those approaches, called fictitious process 

noise injection, consists in increasing the values of the process noise covariance 

matrix Qf' or using a finite positive value if believed to be zero. 

The Extended Kalman filter can be used to estimate poorly known parameters 

within the state-space model of the plant. This is achieved by modelling the 

unknown parameters as additional states. Then the original state vector is augmented 

with the following state vector corresponding to the parameter vector 8E 9\119 to be 

estimated: 

(9,5) 

where 11E 9\n9 is a zero mean white noise process with covariance Qe. Thus. it is 

necessary to specify initial estimates of the parameter vector 8
0 

and its covariance 

matrix P e(O) , and also the covariance matrix Qe of the pseudo-noise 11. These are 

considered as tuning parameters. The process covariance matrices are then 

augmented correspondingly. 

9.5 SIMULATION EXAMPLES 

Simulation software implementing the above described nonlinear predictive 

controller was developed in the c++ programming language using object oriented 

programming and modular programming techniques, making use of existing code of 

an implementation of set-point tracking DISOPE. The simulations were run on a 

SUN SPARC-station ELC. The results of examples 9.5.1, 9.5.2 and 9.5.3 may be 

compared with those presented by (Sistu and Bequette, 1992). 

Example 9.5.1: Exothermal CSTR 

This example consists of a first order irreversible chemical reaction carried 

out under exothermal conditions in a continuous stirred tank reactor (CSTR). Here 

XI represents the dimensionless concentration, x2 represents the dimensionless 

temperature (controlled variable), the control variable II is the dimensionless cooling 
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jacket temperature. The control variable is bounded between upper and lower levels. 

This reactor has a complex dynamic behaviour (parametric sensitivity, multiplicity 

of steady states) and represents a challenging control problem (Sistu and Bequette, 

1992). Here t' is a dimensionless continuous time variable and t is the corresponding 

discrete time variable. 

Plant dynamics: 

where 

dx X 
_2 = ~<\>xlexp( 2) -(q+8)x2+8u+qx2! 
dt' 1 +x/y 

y(t) = x/t) 

x(O) = [0.8560 0.8859r 

u(O) = 0 

-1 < u(t) ::; 2 

[<\>, y, 8, q, XI!' ~,X2!] = [0.072,20,0.3,1,1,8,0] 

Performance index: 

t+N 
c 

Jr(u,t) = ~L [(yC(k)-roCk))2+0.05~u(k?] 
k=t+ I 

Model-based performance index: 

t+N c 

J m( u, t) = ~ L [ (y C(k) -roCk))2 +0.05 U(k)2 +2 y(k) ] 
k=t+ I 

There is a set-point change from the stable lower steady state Ysp =0.8859 

to the set-point Y,I'P =2 at t = 0 (Sistu and Bequette, 1992). The sampling interval of 

the controller was T, = 1.0. Ten steps of fixed step-size Runge-Kutta integration per 
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sample interval were used to discretize the continuous dynamics. An ideal model was 

assumed. The control horizon used was N = 10. Table 9.5.1.1 shows the controller c 

performance in terms of maximum and average number of iterations per sample 

interval, and also maximum and average CPU time used for the controller 

computations per sample interval. Figure 9.5.1.1 shows the output response of the 

reactor. Figure 9.5.1.2 shows the corresponding control signal. Figure 9.5.1.3 shows 

the number of DISOPE iterations performed per sample interval. Notice that the 

number of iterations per sample interval increases in the transient periods and it is 

only one at steady state. 

Maximum No. Average No. Maximum CPU Average CPU 

DISOPE iter. DIS OPE iter. time (s) time (s) 

23 2.9 126 16.3 

Table 9.5.1.1: Example 9.5.1, controller performance 

2~--~~~--------------------------------~ 
/ 

1.8 

1.6 

1.4 

1.2 
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t 

Figure 9.5.1.1: Example 9.5.1, dimensionless temperature and set-point 
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Figure 9.5.1.2: Example 9.5.1, control signal 
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Figure 9.5.1.3: Example 9.5.1, number of DIS OPE iterations per sample 
interval 
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Example 9.5.2: Exothermal CSTR with parametric uncertainty 

This example consists of the same reactor system as in Example 9.5.1. but 

here we want to illustrate the performance of the controller in the face of model 

uncertainties. Parametric uncertainty was simulated assuming that the model has a 

heat transfer coefficient 0=0.2, while the true plant value was 0=0.3. Here we make 

use of the parameter adaption capabilities of the EKF to give robustness to the 

estimates. The effects of uncertain parameter estimation on the performance of the 

controller are clearly shown. 

Using the same performance index as in Example 9.5.1, the responses for the 

EKF tuning cases (a) (without uncertain parameter estimation, see Table 9.5.2.1), and 

(b) ( with estimation of parameter 0 from the initially incorrect value 0=0.2 ) are 

shown in Figures 9.5.2.1 and 9.5.2.2, respectively. The parameter estimate and 

control signal for case (b) are shown in Figures 9.5.2.3 and 9.5.2.4, respectively. It 

is observed that in (a) there is a steady state off-set, while the steady state off-set is 

removed by estimating the uncertain parameter in (b). 

Case 
Qf Po 

-
Xo R

f 

a 

[~ ~] [ 0.8560 ] 
0.001 

[0.01 0] 0.8859 
o 0.01 

r- - -
[ 0.8560 ] 

0.001 b 
0.1 0 0 0.01 0 0 

0.8859 
0 0.1 0 0 0.01 0 0.2 

0 0 0.2 0 0 0.05 
- .... 

Table 9.5.2.1: Extended Kalman Filter tuning parameters for example 9.5.2 
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Figure 9.5.2.1: Example 9.5.2, dimensionless temperature and set-point, 
case (a). 

2~-(~~~------------------------~ 

1.8 ~ 

1.6 ~ 

1.4 ~ 

1.2 ~ 

1 ~ 

o 5 10 15 20 25 30 35 

t 

Figure 9.5.2.2: Example 9.5.2, dimensionless temperature and set-point, 
case (b). 
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Figure 9.5.2.3: Example 9.5.2, parameter estimate, case (b) 
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Figure 9.5.2.4: Example 9.5.2, control signal case (b) 
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Example 9.5.3: Exothermal CSTR under load disturbance 

This example consists of the same reactor of Example 9.5.1, but here we 

want to illustrate the disturbance rejection of the system. This was tested with a 

simulated feed concentration (x lf ) increase of 20% at t=5. The system was assumed 

to be operating at its lower steady state before the disturbance occurred. The 

parameter X lf was initialized with its correct nominal value xlf= 1. The performance 

index specifications used were the same as in Example 7.5.1. 

Here we will distinguish two cases according to the tuning of the Kalman 

filter (see Table 9.5.3.1): 

(a) Fictitious process noise injection~ 

(b) Continuous estimation of the faulty parameter Xl!, 

Case R
f 

-
Po Qf Xo 

a 0.001 [ 0.8560 ] [0.1 0] [0.01 0] 0.8859 
o 0.1 o 0.01 

b - 0.001 -[ 0.8560 ] 0 0 0.1 0 0 0.8859 
0.01 

0 0.1 0 1 0 0.01 0 

0 0 0.2 0 0 0.05 
L.. --

Table 9.5.3.1: Extended Kalman Filter tuning parameters for example 9.5.3 

Figure 9.5.3.1 shows the output response for cases (a) and (b). Notice that in 

case (a) there is a steady state off-set and that such an off-set is removed by 

estimating the faulty parameter in case (b). Figure 9.5.3.2 shows the estimate OfXlf 

where the parameter adaptation can be appreciated. Figure 9.5.3.3 shows the control 
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signal for cases (a) and (b), noticing that the estimation of Xl! results in feed-forward 

action since the controller in case (b) responds faster than in case ( a). 

1 . .3 

1.2 

a 

1.1 

1 

0.9 ~--..L-------l,~~--------------------l 

o 5 10 15 20 25 .30 35 

t 

Figure 9.5.3.1: Example 9.5.3, dimensionless temperature and set-point, 
cases (a), (b). 
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Figure 9.5.3.2: Example 9.5.3, parameter estimate, case (b) 
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Figure 9.5.3.3: Example 9.5.3, control signal for cases (a) and (b) 

Example 9.5.4: Optimisation of two CSTR in series 

This example, originally presented by Garcia and Morari (1981) and later 

used by Jang et al (1987), consists of two CSTR's in series in which an exothermic 

autocatalytic reaction is taking place. The units interact in both directions due to the 

recycle of a 50% fraction of the product stream into the first reactor. Regulatory 

controllers are used to control the temperature in both reactors. The dynamics 

associated with these controllers are neglected. Here t' (min) is a continuous time 

variable and t is the corresponding discrete time variable. The performance index 

optimised by the nonlinear predictive controller reflects economic objectives 

associated with the achievement of maximum production of substance B. The 

reaction is: 

k+ 
A+B .... 2B 

k 

The dynanlics of the reactor are given by: 
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dCa2 Cal Ca2 
- (k2+ Ca2 Cb2 - kl_Cb2

2) = 
dt' 12 12 

dCb2 Cb I Cb2 - k2_ Cb2
2) = -- + (k2+ Ca2 Cb2 dt' 12 12 

where 

Cal = Concentration of A in reactor 1 

Cb I = Concentration of B in reactor 1 

Ca2 = Concentration of A in reactor 2 

Cb2 = Concentration of B in reactor 2 

1 I = Reactor 1 residence time, 30 min. 

12 = Reactor 2 residence time, 25 min. 

k. = A exp( -E+/ RT. ) 
I± ± I 

E /R= 17786 K + 

E /R= 23523 K 

A = 9.73xl022 m 3lkmols 
+ 

A = 3.1xl030 m 3lkmols 

Cao= Feed concentration of A, 0.1 

TI = Temperature of reactor 1 (manipulated variable) 

T, = Temperature of reactor 2 (manipulated variable) 

The manipulated variables are bounded between upper and lower levels: 
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The measured variables are Cbl and Cb2 , while Cal and Ca
2 

are estimated 

by using the Extended Kalman Filter (see Table 9.5.4.1). The sampling interval used 

was Ts = 5 min. An ideal model was assumed for the model-based open loop 

optimal control calculations. The continuous dynamics were integrated between 

sampling times by using an adaptive step-size Runge-Kutta integrator (Press et al, 

1992). 

The real performance index reflects our objective of maxnllising the 

concentration of B in the second reactor and, in addition, we use quadratic weighting 

on the increments of the manipulated variables: 

Ir = L ( -Cb2(k) + 0.002~TI(k)2 + 0.002~T2(k)2 ) 
k=t+1 

with a control horizon Nc = 5 . 

The model-based performance index used for the iterations of DISOPE was: 

t+N 
r 

= L 
j=t+ I 

Notice that in this example, SInce the performance index is based on 

economic objectives, no reference trajectory is specified and the predictive controller 

decides where to take the system (the steady-state optimum) and how it takes the 

system to that operating point. 

The reactor is started at the suboptimal steady-state point specified by the set-

points TI = 307 K and T2 = 302 K. Figure 9.5.4.1 shows the response of the 

concentration of B in the second reactor. Figure 9.5.4.2 shows the evolution of the 

control signals. The steady-state optimum set-points obtained were TI = 312 K, 

T2 = 309.39 K, while the optimal concentration of B was Cb2 = 0.07251 . 
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-
Qf Po Xo R

f 

,... - ,... ,... 

0.1 0 0 0 0.1 0 0 0 0.048351 [00001 0] 
0 0.1 0 0 0 0.1 0 0 

0.051649 o 0.001 0.041362 
0 0 0.1 0 0 0 0.1 0 0.058638 

L.. -
0 0 0 0.1 0 0 0 0.1 

'- - -

Table 9.5.4.1: Extended Kalman Filter tuning parameters for example 9.5.4 

0.075 .----__ ..---__ r-------r--~--____r_--____r_--__.______, 

0.07 

N 
.0 0.065 
u 

0.0550L---2.L.0---40L..-_-.l6-0 ---180---1....L.0-O --,..L..20---'...L..40-----l 

time (min) 

Figure 9.5.4.1: Example 9.5.4, trajectory of concentration of B in the 

second reactor 
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Figure 9.5.4.2: Example 9.5.4, control signals, temperatures in reactors 1 
and 2 

9.6 SUMMARY 

A nonlinear predictive controller has been developed and implemented in 

software. The controller uses a Extended Kalman Filter (EKF) for state/parameter 

estimation and the DISOPE algorithm for the solution of the receding horizon 

dynamic optimisation. The controller has been tested with simulation examples, 

where its capabilities for handling nonlinear systems, model-plant mismatch and 

parameter adaptation, disturbance rejection and inequality constraints have been 

evaluated. Both set-point tracking and economic performance indexes have been 

handled by the same algorithm. 

The set-point tracking DISOPE algorithm presented in Chapter 6 and used for 

the dynamic optimisation in this chapter, appears to be very appropriate for its use 

in predictive control. The choice of the performance index is flexible, allowing the 

inclusion of different control strategies, including economic objectives. 

191 



CHAPTER 10 

NOVEL DEVELOPMENTS IN STEADY-STATE 

PROCESS OPTIMISATION USING DYNAMIC 

INFORMA TION 

In this chapter, an optimising controller that is able to drive a plant from a 

suboptimal operational condition to its steady-state optimum in a continuous way 

based on dynamic information, is designed. Using standard results from optimisation 

theory and discrete optimal control, the solution of a steady-state optimisation 

problem is achieved by solving a receding-horizon optimal control problem which 

uses derivative and state information from the plant via a shadow model and a state

space identifier. The new algorithm is developed from the basis that a nonlinear 

model of the process is not available for predictions and, hence, some of the ideas 

in developed in Chapter 9 are not applicable. The optimality of the procedure is 

analyzed and algorithms with and without control rate constraints are developed. A 

way of overcoming the lack of a nonlinear model for prediction purposes is 

developed. This enables the use of DISOPE in a predictive control framework by 

using a linearized model of the process for the predictions. Both algorithms are 

tested with simulation examples, including realistic simulations of an industrial 

distillation column using a rigorous process simulator. 

10.1 LINEAR STATE-SPACE MODEL IDENTIFICATION SCHEMES 

Two alternatives for the identification of a linear state space model of the 

process are treated in this work. 

In the first alternative, a discrete state-space model in observable canonical 

form and in which the output variables are equal to the states, is identified and 

updated with a certain period using input-output data with a fixed length (data 

window) obtained from the shadow model of the plant (Griffiths, 1993: see Chapter 
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8). This identification scheme for estimating dynamic derivatives has been devised 

and implemented by Lin (1993). The identified state-space model has the following 

structure: 

x(k+l) = Ax(k) + Ba(k) (10,1) 

where: 

x = x - x (t) 
r 

(10,2) 
a = U - ur(t) 

are deviations from state and control reference trajectories, respectively, XE 9\11 and 

UE 9\m. The value of the state vector x(t) at present time t is also available. 

The values of the estimated matrices A, 13 are updated every Nu samples 

uSIng data from the previous Nd samples. The states of the identified model 

correspond with a number of relevant states measured from the shadow model, 

which, chosen by an expert in the plant, are a good representation of the dynamics 

of the process. 

In the second alternative, the derivative estimates are computed by using a 

recursive extended least squares estimator (Ljung, 1987) based on the multivariable 

ARMAX model: 

A(q -l)y(t) = B(q -1)U(t)+C(q -I)e(t) (10,3) 

where the overbar denotes data differencing, which is done In order to avoid 

estimating offsets, e(t) is a zero mean uncorrelated random variable, A(q -I), B(q -I), 

and C(q -I) are first order matrix polynomials: 

A(q -I) = Iny + A1q-1 

B(q -I) = B1q-1 

C(q -I) = Iny + C1q-1 

The equivalent state space model has the following structure, in innovations form: 
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x(t+ 1) = A(S) x(t) + B(S) u(t) + K(S) e(t) 

y(t) = Cx(t) +e(t) 
(10,5) 

where S is a parameter vector related with the polynomial coefficients in (l0,4). In 

the particular case when the output matrix is equal to the identity matrix (C = In)' 

and the order of the matrix polynomials (l0,4) is equal to one, it is easy to find that 

there is a direct relationship between the identified matrix coefficients in (l0,4) and 

the state space matrices as follows: 

A(S) = -A 1 

B(S) = Bl 

K(S) = C1-A1 

(10,6) 

The general approach treated in this chapter is illustrated in Figure 10.1. 

controller 
set-points 

~ plant r-

(\ measu red outputs 
;, 

data validation 
=> and 

reconcilia bon 

il key parameters a nd reconcilied data 

::> shadow model 

lJ states 

::> identifier 

D model matrices A and B 
predictions dynamic pecifications operator <'" s 

K " optimiser 

Figure 10.1: Simplified diagram of shadow model approach for plant dynamic 
optimisation 
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10.2 PRELIMINARY ASSUMPTIONS 

A10.2.l 

A10.2.2 

A10.2.3 

For any admissible set of set-points, the corresponding steady-state of 

the process is asymptotically stable. 

The rate of update of the identified model is fast compared to the 

dynamics of the process. 

The derivatives of f*(x, u) with respect to its arguments exist and are 

Lipschitz continuous. 

10.3 INITIAL FORMULATION 

Assume that the process dynamics may be described by the following 

nonlinear and unknown difference equation: 

x(t+l) = f*(x(t),u(t)) (10,7) 

where f* : 9\nx9\m~9\n is an unknown set of nonlinear discrete state equations. 

Approximation 10.3 

Under assumptions AI0.2.2 and AI0.2.3 the following approximation holds 

at a given instantaneous operating point xo(t) , uoCt) 

df*(x,u) I ~A 
dX 

xo(t), uo(t) 

(10,8) 
df*(x,u) I ~ 13 

du xo(t), uo(t) 

Proof 

Let us examine the increment in x(t+ 1) given small increments in x(t) and 

u(t) : 
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x(t+ 1) + Llx(t+ 1) = j*(x(t) + Llx(t), u(t) + i1u(t)) (10,9) 

Expanding by Taylor's series the right hand side: 

aj* a+'* (10,10) 
x(t+ 1) + Llx(t+ 1) = j*(x(t), u(t)) + Llx(t) + 'J i1u(t) + 

ax(t) au(t) 

Subtracting equation (10,7) from (10,10) and neglecting higher order terms we have: 

Llx(t+ 1) = aj* Llx(t) + aj* i1u(t) 
ax(t) au(t) 

(10,11) 

Comparison with equation (10,1) yields the approximation. 

Q.E.D. 

We want to drive the plant to its steady-state optimum, given a steady-state 

objective function N *(x, u). In mathematical terms we want to solve the following 

steady-state optimisation problem (SSOP): 

SSOP 

subject to 

mIn 
uE9\n N*(x,u) 

g *(x,u) = ° 
C(u) =::; ° 

where x and u are steady state values of state and control vectors, 

g * : 9\nx9\m~9\n is the steady state mapping of the plant, and C: 9\m~9\p 

represents a set of inequality constraints dependent on the control variables. 

Notice that in the steady state equation (10,7) becomes: 

x = j*(x,u) (10,12) 

which is equivalent to: 

g *( x, u) = j *( x ,u) -.'( 
(10,13) 
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Instead of solving SSOP directly by a two-step or modified two-step method 

(Roberts, 1979), which involves long settling times after every set-point change, we 

consider the following receding horizon dynamic optimal control problem (RHDOP). 

RHDOP 

subject to 

nun t+N-J 

u(k) <p(x(t+N)) + L L *(x(k) , u(k)) 
kE [ t , t + N - 1 ] k=t 

x(k+ 1) = f*(x(k), u(k)) 

C(u(k)) ::;0 

x(t) given 

tE [0,00] 

where L * : 9\nx9\m~9\ is a discrete performance function and <p : 9\n~9\ IS a 

terminal weighting function. 

In other words, we want to reach the optimum solution (us,x) of SSOP by 

solving RHDOP in real time. 

10.3.1 First order necessary optimality conditions of SSOP 

The Lagrangian function of SSOP, using equation (10,13), is: 

~/X,U,Il,A) = N*(x,u) + IlT(f*(X,U) -x) + ATC(U) 

where IlE 9\" is a Lagrange multiplier and AE 9\P is a Kuhn-Tucker multiplier. The 

following necessary optimality conditions can be stated (Fletcher, 1981; Lewis, 

1986a): 

v ~ = V N * + [af 
* - I JIl = ° 

x s x ax n 

(10,15) 
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df*T dCT 
V ~ = V N" + _II + --A = 0 

U S U du r- du 

VIl~S = f"(x,u) - x = 0 

A {=o 
>0 

C(u)<O 
C(u) =0 

10.3.2 First order necessary optimality conditions of RHDOP 

Define the Hamiltonian function as: 

H(x,u,p,k) = L*(x,u) + p(k+lrf"(x,u) + 8(krC(u) 

(10,16) 

(10,17) 

(10,18) 

(10,19) 

where kE [t, t+N-l], pE 9\n (the costate) is a Lagrange multiplier and 8E 9\P is a 

Kuhn-Tucker multiplier. The following necessary optimality conditions can be stated 

(Bryson and Ho, 1975): 

VX(k)H - p(k) = 0 

df*T 
~ VX(k)L" + p(k+ 1) - p(k) = 0 

dx(k) 

VU(k)H = 0 

df*T dC T 

~ VU(k)L * + p(k+l) + 8(k) = 0 
duCk) duCk) 

Vp(k+l)H = x(k+l) = f*(X,ll) 
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8(k) {~ C(u(k))<O 
C(u(k)) =0 

(10,23) 

(10,24) 

10.4 FIRST APPROACH: DSSO, A STEADY -STATE OPTIMISER BASED ON 

DYNAMIC INFORMATION 

As we have no access to the function f*(x,u), we cannot solve RHDOP in 

general. However, in the particular case when N = 1 and the terminal weighting 

function has the linear form: 

where <j>E 9\n is a given vector, it is not necessary to predict the state into the future 

in order to solve RHDOP, since the terminal condition (10,23) on the costate then 

becomes: 

p(t+l) = <j> (10,26) 

10A.1 Steady-state optimality of a RHDOP controller with N=l 

Assumptions 

AI0.4.1 

AI0.4.2 

Assume that by applying to the plant (10,7) a control sequence 

{u(O), u(1) .... u(t)} computed from the solution of RHDOP with 

N = 1 and <p = <j>Tx(t+l), the system achieves a steady-state(xd,ud) 

(in practical terms) for some finite time t,. 

Assulne that, in the steady state, the following holds: 
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N*(x(t),u(t)) = lim 
t~oo 

L *(x(t),u(t)) (10,27) 

AIOA.3 Assume that the solution of SSOP (xs,us) exists and is unique. 

AIOAA Assume that the estimation of the derivatives of f*(x, u) with respect 

to x and u is perfect in the steady state. 

AIOA.5 Assume that derivatives of L *( x, u) and N *( x , u) with respect to 

their arguments exist and are Lipschitz continuous. 

The achievement of the solution of SSOP via RHDOP with N=l is given by the 

following theorem. 

Theorem 10.4.1 - Steady state optimality of RHDOP solution with N=l 

Under assumptions AIO.2.1, AIO.2.3, AIOA.I-AIOA.5, if the linear terminal 

weighting vector <I> is given by: 

<I> = [I - af*(x,u) TJI V L '(x,u) I 
n":\ x (xd,U) 

aXd 

(10,28) 

then the steady state solution (xd , ud ) of RHDOP with N=l satisfies also the 

necessary optimality conditions of SSOP. 

Proof 

Since the system is in steady-state then <I> as given by (10,28) is constant. 

This implies that the costate p is also constant and equal to <1>. This can be proved 

by noticing that the steady state solution (x d' U d) satisfies the optimality conditions 

of RHDOP. Therefore, from (10,23): 

p(t+ 1) = <I> 
(10,29) 

Furthermore, from (10,20) we have: 
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(10,30) 

If we assume that p(t) = <I> from (10,30), we obtain 

(10,31) 

which agrees with (10,28). 

together with p(t) = <1>: 

(10,32) 

Notice that <I> as given by (10,28) will exist only if 

(10,33) 

which is guaranteed by assumption AI0.2.1 (AI0.2.1 says that the system is 

supposed to be asymptotically stable at (xd , ud ), hence the magnitude of each 

eigenvalue of dJ*/dx is lower than one. Notice that the only way the determinant 

(10,33) is equal to zero is that dJ*/dx has at least one eigenvalue \ = 1). 

From (10,21) we have, using (10,29) and AI0.4.2: 

(10,34) 

From (10,22) we have, in the steady state, 
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(10,35) 

Finally, from (10,24) 

=0 C(ud)<o (10,36) 
8 

>0 C(ud)=O 

We note that (10,32), (10,34), (10,35) and (10,36) are consistent with the necessary 

optimality conditions of SSOP (10,15), (10,16), (10,17) and (10,18). Moreover, from 

AI0.4.3 we have: 

<I> = Jl 

8=A 

(10,37) 

Q.E.D. 

10.4.2 Development of a steady-state optimiser based on the above analysis 

Assume the following structure for the dynamic objective function L * 

L *(x,u) = N*(x,u) + ~~u(trR~u(t) 
2 

(10,38) 

which satisfies AIOA.2, where R'2:.0 is a symmetric matrix of the appropriate 

dimensions and ~u(t) = u(t) - u(t-l). 

For notational simplicity, define: 

A * = af*(x,u) I ax x(t). u(t) 

(10,39) 

B * = af*(x,u) I a u xU) • u(t) 
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uSIng N = 1, p(t+ 1) = <I> and assurrung In order to ease the analysis that no 

constraints are saturated we have from (10,21): 

R~u(t) + VuN*(x,u) + B *TtI-. I - ° 't' x(t),u(t)- (10,40) 

but from (10,28): 

(10,41) 

Then from (10,40): 

~u(t) = -R -I[ B *T[I -A *T]-I V N * + V N * 1 
n x u x(t) , u(t) 

(10,42) 

Thus 

u(t) = -R -I[ B *T[I -A *T]-I V N* + V N* 1 + u(t-1) 
n x u x(t) ,u(t) 

(10,43) 

However, in order to make the above control law realizable, we need the right hand 

side of (10,43) to be in terms of known quantities at time t . Now, we approximate 

VU(t)N*(x(t),u(t» = VU(t_I)N*(x(t),u(t-I» (this is exact in the steady state), and 

furthermore, we use the estimates of the derivatives A' = A * and B = B * rather than 

their exact values. Therefore we have: 

u(t) = -R- I [ BT[In-A'T]-IVxN*(.) + V N*(.) 1 + u(t-l) (10,44) 
u x(t) , u(t-l) 

This is a recursive control law. Notice that at time t we have available the current 

state estimate xU), estimates of the derivatives A • and B *, and also the control 

applied to the plant in the last sample interval u(t-l). Also notice that in the steady 

state u(t) = u(t-l) and from Theorem lOA. 1 the plant under control law (10,44) will 

reach the steady-state optimum (x" us) solution of SSOP. 
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Assume now that there are only bound constraints on the control signal 

u . :::; u(t) :::; U 
mm max (10,45) 

Define the following saturation function: 

S S~ max max 

sate s 'Smin' Smax) = S S . <s<s mm max 
(10,46) 

S . S:::;S . mm mm 

where S is a vector with bounds smax' smin' and where every element S of is 

saturated independently. 

The above analysis gives rise to the following control algorithm, noticing that 

the set-point update period of the controller, Ne , may be greater than the sampling 

rate of the identifier. 

Algorithm 10.4.2: Steady-state optimiser based on dynamic information 

(nSSO) 

Data: N *, R, u ,u., k ,N and estimates of A *, B', and x(t). max mm v e 

Step 0 Initialize controller, set t=O. 

Step 1 Obtain values of x(t), .4, 13. Then compute the next control candidate 

aCt) from: 

a(t) = sat (u(t), urn in ' Umax ) (10,47) 

where u(t) is given by (10,44). 

Step 2 Filter the next control candidate with: 
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u(t) = u(t-l) + kv(u(t) - u(t-l)) 

where kv E (0,1] is a scalar relaxation gain, to obtain the next control u( t) 

and apply it to the plant. Wait until next updating time, then set 

t = t+Ne and go to Step 1. 

10.4.3 Analysis of the converged Algorithm 10.4.2 when the control is saturated 

Assume a single control for simplicity and only an upper bound. In this case 

we have: 

C(u) = u-u ~ 0 max 

ac = 1 
au 

(10,49) 

Assume that the system under control Algorithm 10.4.2 has achieved steady state and 

that the constraint (10,49) is active so that: 

then we have: 

-R -I [ B *T [I - A * T]-I V N * (x u) + V N' (x ,u ) 1 ~o 
n Xd d' d U d d d 

(10,51) 

which implies 

(10,52) 
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But from (10,37) 

(10,53) 

Then we have from (10,52) 

(10,54) 

But from (10,21) we have that at the steady state, the dynamic optimum satisfies 

(10,55) 

gIven (10,50), (10,54) and (10,55) we conclude that e > 0, which satisfies the 

Kuhn-Tucker condition (10,24). Given the equivalence ensured by Theorem 1004.1, 

we conclude that the simple saturation scheme of Algorithm 1004.2 yields the steady 

state optimum solution of SSOP (with control bound constraints) when Algorithm 

1004.2 converges. The analysis for the multivariable case is similar. 

10.4.4 DSSO Algorithm with rate constraints 

Assume that in addition to the bound constraints (10,45) the rate of variation 

of the manipulated variables is also constrained by: 

-~u ::;; ~u(t) ::;; ~u 
max max 

where ~u(t) = u(t) -u(t-l) . 

In this case the application of the relaxation filter in Algorithm 1 becomes 

unnecessary and we can formulate the following DSSO algorithm with rate 

constraints: 

Algorithm 10.4.4: DSSO with rate constraints 

Data: N°, R, u ,[{., ~u , N and estimates of A '. B·. and xU). max min max e 

Step ° Initialize controller, set t=O. 
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Step 1 

Step 2 

Obtain values of x(t), A, iJ. Then compute the next control change 

~u(t) from: 

~u(t) = sat (~v(t), -~u , ~u ) 
max max 

(10,57) 

where 

~v(t) = -R -I [ iJT[In -AT]-I VxN *(x,u) + V N *(x,u) 1 
u x(t), u(t-l) 

(10,58) 

Compute 

u(t) = sate u(t-l) + ~u(t), u . ,u ) 
min max 

to obtain the next control u(t) and apply it to the plant. Wait until 

next sampling time, then set t = t+Ne and go to Step 1. 

10.4.5 Comments on the structure of the control law 

The structure of the control law (10,44) may be decomposed in the following 

terms: 

u(t) = u(t-l) R -I V ~I 
u x(t), u(t-l) 

(10,60) 

where the gradient is given by 

V ~ = iJT th +V N * I 
u 'V u x(t),u(t-I) 

(10,61) 

and <I> is given by: 

(10,62) 

Notice that, neglecting any constraints, gradient (10,61) is an approximation 

to the steady-state gradient (10,16), with an estimation of f.l given by (10.62), lIsing 

the dynamic derivative estimates (A, iJ), and evaluated at the instantaneous operating 
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point (x(t), u(t-1) ). This instantaneous operating point is not necessarily the 

solution of the steady state mapping g *( x, u) = 0, but corresponds to the dynamic 

response of the system governed by x(k+ 1) = J*(x(k), u(k)). Notice, also, that under 

the assumptions of Theorem 1 004.1, gradient (10,61) is equivalent to gradient (10,16) 

in the steady state. Then DSSO can be regarded as a gradient -descent optimising 

algorithm which leads the plant to the steady-state optimum through an unfeasible 

path from the steady-state point of view (but feasible from a dynamic perspective). 

It is this infeasibility that gives DSSO the potential to achieve the steady-state 

optimum faster than other on-line optimising methods in which steady-state 

feasibility is required (and hence long settling times). 

Notice that the structure of the control law in DSSO is thus similar to the 

gradient-type control law of the adaptive on-line optimisation algorithm originally 

proposed by Bamberger and Isermann (1978) and later modified and used by Garcia 

and Morari (1981) and Rolf and Henry (1984). The main differences between DSSO 

and the techniques described in the above references are: 

* DSSO is derived from a state-space perspective uSIng constrained 

optimisation theory and discrete optimal control. 

* The states used in DSSO are derived from the shadow model of the plant and 

not merely from output measurements. 

* DSSO explicitly takes into account input dependent constraints and rate 

constraints. 

10.5 SECOND APPROACH: LONG RANGE PREDICTION WITH A 

LINEARIZED STATE·SPACE MODEL OF THE PROCESS (DISOPE AS A 

STEADY·STATE OPTIMISER) 

We have discussed in Chapter 9 the application of DISOPE as a dynanlic 

optimiser in nonlinear predictive control. A nonlinear model of the plant was then 

llsed for the long range predictions. However, as we discussed in Section 10.1, it 

nlay be the case that a nonlinear model of the process is not available for prediction 

purposes. In this is case, instead of a nonlinear model, a linearized state-space model 
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of the process may be identified as shown in Section 10.1. In this section, we will 

explore the possibility of using a linearized model for performing the long range 

predictions and dynamic optimisation. The fact that this linear model is locally valid 

and that its parameters are adapted may be exploited in order to gradually achieve 

the steady state optimum of the plant. The necessary information is readily available 

from the performance index specifications, the values of state variables and the 

adaptive matrix coefficients of the linear model. We propose here to force the state 

and control variables to remain reasonably close (along the prediction horizon) to the 

current operating point from which the predictions are started, so that the predictions 

performed with the linear model remain valid. A clear advantage of the long range 

predictive control approach is that the saturation of (state and control dependent) 

constraints may be anticipated and appropriate action may be taken by the controller 

in advance. Predictions may also be displayed to plant operators for different 

purposes. The economic objectives are included in the dynamic performance index, 

so that no separate optimising algorithm is required. 

10.5.1 Formulation 

Based on the information available (see Section 10.1) a locally valid dynamic 

model of the process may be written as follows, in terms of incremental variables: 

~x(t+j) = A~x(t+j-l) + 13~u(t+j-l) (10,63) 

where A, 13 are the estimated matrices as explained in Section 10.1, x(t) is the 

current state of the process, and the incremental state and control variables are given 

by: 

~x(k) = x(k) -x(k-l) 

~u(k) = u(k) -u(k-l) 
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Suppose now that the steady state objective function is N *(x,u) : 9\nx9\m---79\. 

that the control vector is bounded between upper and lower levels u
min 

::; u(t) < u
max

' 

and that \}Ie x »0, \}I:9\n---79\c is a given set of state dependent inequality 

constraints. Thus we define the real optimal control problem to be solved by 

DISOPE in a receding horizon fashion as: 

ROPIO 

subject to 

where 

Ill1n t+N-I 

l1u(k) ~ I1x(t+Nf c'P I1x(t+N) + L [N *(x(k) , u(k)) 
kE [t , t + N - I ] k=t 

+ ~ I1x(krQl1x(k) + ~ 11 u(krRI1u(k) + P(x(k) , u(k)) ] 

~x(k+l) = Al1x(k) + B~u(k) 

i1x(t) = x(t) - x(t-I) 

-l1u < l1u(k) ::; l1u 
max max 

kE [t , t + N - I ] 

k 

x(k) = x(t-I) + L i1x(j) 
j=t 

k 

u(k) = u(t-I)+L l1u(j) 
j=t 

(10,65) 

x(t) and u(t-I), the current state and control variables, are known, x(t-I) is also 

known, c'P, Q and R are weighting matrices of the appropriate dimensions, N is the 

prediction horizon, P(x(k) , u(k)) is a penalty term dependent on the saturation of 

control magnitude constraints umin :::; u(k) :::; umax and on the activation of state 

dependent constraints 'I'(x)~O (See Chapter 7). Notice that the decision variables 

are control increments rather than absolute values and, hence, rate constraints on the 

controls may be handled by a saturation function as explained in Chapter 3. 

The model-based problem is chosen so as to use convenient linear-quadratic 

methods in the model-based calculations. 
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MOPIO 

rmn 
~u(k) 

kE [ t, t+N -1 ] 

subject to 

t+N-l 

J = ~ ~x(t+Nr <t>~x(t+N) + L [':~x(krQ~x(k) 
2 

k=t 

+ ~ ~u(kr R ~u(k) + yCk) ] 

~x(k+ 1) = Am~x(k) + Bm~u(k) + a(k) 

~(t) = x(t) - x(t-I) 

kE [t , t + N - 1 ] 

where Am and B m are model-based dynamic matrices of the appropriate dimensions. 

Then Algorithm 5.3.3 in conjunction with Procedure 5.3.1 may be used for solving 

ROPIO. Notice that the values of the model-based matrices A and B may be m m 

different from those of the reality matrices A and B. In the case of using batch 

identification with a moving data window, it may be convenient to have two sets of 

identifiers operating in parallel but with different update periods. The identifier with 

the shorter update period would provide the matrices A and B and that with the 

longer update period would provide the matrices Am and B m. This may provide 

savings in terms of computational time since the Riccati matrices G(k) andS(k) 

would only need updating when the model-based matrices Am and Bm are updated 

(See Procedure 5.3.1). The use of two identifiers would be justified in the case when 

the additional burden of the second identifier is lower than the savings of 

computation time in the optimisation calculations. 

Based on the above discussion, the following predictive control algorithm is 

proposed. It is called LP-DISOPE (Linear-Predictive DISOPE). Notice that the set-

point update period of the controller, Ne , may be greater than the sampling rate of 

the identifier. This may be convenient since the computational burden of the 

optimiser is reduced by increasing Nt. without affecting the optimality of the steady-

state solution. 

211 



Algorithm 10.5.1: Predictive optimising algorithm based on DISOPE and an 

adaptive linear model of the process (LP.DISOPE) 

Data: N *, R, umax ' umin ' N, Ne, the latest applied control u(t-l) and 

Step 0 

Step 1 

Step 2 

estimates of A *, B *, and x(t) , x(t-1). 

Initialize controller, set t=O. 

Obtain values of x(t), A, 13, Am' Bm' Solve ROP10 by uSIng 

Algorithm 5.3.3 to obtain the predicted control sequence 

u(t) ... u(t+N-1), and state predictions x(t) ... x(t+N). Apply the first 

control u( t) to the plant. 

Wait until next set-point update time, then set t = t+Ne and repeat 

from step 1. 

10.5.2 Optimality 

Now the optimality of the steady-state solution of Algorithm 10.5.1 will be 

analyzed. For the sake of simplicity, we will neglect state and control dependent 

constraints in this analysis. Thus we intend to solve a steady state optimisation 

problem like SSOP (see Section 10.4) without any inequality constraints. The 

following assumptions will be made: 

AlO.S.2.l 

AIO.5.2.2 

Assume that by applying to the plant (10,7) a control sequence 

{u(O), u(l) .... u(t)} computed from the solution of Algorithm 

10.5.1, the system achieves a steady-state (Xd,Ud ) (in practical terms) 

for some finite time ts' 

Assun1e that the solution of SSOP (x , u ) exists and is unique. s s 

212 



AIO.S.2.3 

AIO.S.2.4 

AIO.S.2.S 

Assume that the estimation of the derivatives of i·(x, u) with respect 

to x and u is perfect in the steady state. 

Assume that derivatives of i*(x, u) and N *(x, u) with respect to their 

arguments exist and are Lipschitz continuous. 

Assume that [A ,B] is stabilizable (i.e. the unstable poles of A may 

be manipulated via linear state feedback). Suppose also that 

[A, /Q] is observable (i.e. all the modes of A may be observed 

through the fictitious output matrix /Q) and that R>O, Q>O. 

Preliminarily, we will state the following result (see Lewis, (l986a) for the 

proof): 

Theorem 10.5.2.1 (Lewis, 1986a) - Assume R>O, Q~O and suppose that [A,/Q ] 

is observable. Consider the Riccati Difference Equation 

S(k) = Q + A TS(k+I)(A-BG(k)), SeN) = ell 

G(k) = [R + B T S(k+ I)Br' B T S(k+ I)A 

(10,66) 

associated with an LQ optimal control problem. Then [A, B] is stabilizable if and 

only if : 

a. There is an unique positive definite limiting solution S 00 to the Riccati difference 

equation. Furthermore S 00 is the unique positive definite solution to the Algebraic 

Riccati equation. 

(10,67) 

b. The closed loop plant: 

x( k + 1) = (A - B Goo )x( k) (10,68) 

is asymptotically stable, where Goo is the limiting solution to G(k). 

213 



The achievement of the solution of SSOP via Algorithm 10.5.1 is given by the 

following theorem. 

Theorem 10.5.2.2 - Optimality of the steady-state solution of Algorithm 10.5.1 

Under assumptions A10.5.2.1-A10.5.2.5, if the prediction horizon N--1- oo , then the 

steady state solution (xd ' ud ) of Algorithm 10.5.1 satisfies also the necessary 

optimality conditions of SSOP. 

Proof 

Neglecting inequality constraints, ROP10 may be re-written as follows 

ROPIOb 

ffiln t+N-I 

liCk) ~x(t+Nr <l>x(t+N) + L [N*(x(k)+x(k-I),li(k)+u(k-1)) 
2 

kE [t , t + N - I ] k=t 

+ ~x(krQx(k) + ~li(krRli(k) ] 
2 2 

subject to 

x(k+ 1) = Ax(k) + B li(k) , x(t) = x(t) -x(t-l) 

where x(k) = x(k) - x(k-1) and liCk) = u(k) - u(k-l). 

The Hamiltonian of ROPIOb may be written as follows 

H* = N*(x(k) +x(k-l),li(k) +u(k-l))+ ~x(krQx(k) 

+ ~u(krRu(k) + p(k+ lr( Ax(k) + B u(k) ) 
2 

Now, the necessary optimality conditions of ROPIOb are: 

From n H' = 0 we obtain: v ii(k) 

u(k) = -R -I( B Tp(k+ 1) + V ii(k)N' ) 
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From V x(k)H * = p(k) we obtain: 

(10,71) 

From V p(k)H * = x(k+ 1) we obtain: 

x(k+ 1) = Ax(k) + 13 li(k) , x(t) = ° (10,72) 

But the fact that the system has achieved a steady state implies that 

liCk) = 0, k = t, t+ 1. .. and as a consequence x(k) = 0, k = t, t+ 1. ... The solution 

to the TPBVP defined by (10,71) and (10,72) is given by: 

p(k) = S(k)x(k) + h(k) (10,73) 

where S(k) is the solution of the Riccati Difference Equation and h(k) is the solution 

of the following difference equation (see, for instance, Procedure 5.3.1): 

(10,74) 
h(k) = (A-BG(k)fh(k+l) + (VX(k)N* - G(kfVu(k)N* ), heN) = ° 

Since N~oo, then from assumption AI0.S.2.S and Theorem 10.6.2.1 S(k) has 

a limiting solution S 00 and the matrix (A - B Goo) has all its eigenvalues inside the 

unit circle, where Goo is the limiting solution of G(k). Therefore, h(k) also has a 

limiting solution hoo since the non-homogeneous term in (10,74) is constant and 

bounded. Furthermore, it follows that the costate is constant. 

Given that liCk) = 0, x(k) = ° and p(k+ 1) = p(k) = 11 (a constant), using the 

chain rule to find that V X(k)N * = V X(k)N * and V U(k)N * = VlI(k)N *, and exploiting 

()+* 
AI0.S.2.3 to substitute A = _'J_ and 13 

aXd 

af* = , we have from (10,70) and (10,71): 
aUd 
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(10,75) 

(10,76) 

which are in turn the necessary optimality conditions of SSOP (l0,15) and (l0,16) 

without inequality constraints, noticing that (l0,17) is satisfied by assumption 

A10.5.2.4. 

Q.E.D. 

10.5.3 Practical considerations 

It was convenient for the purposes of the above analysis to assume that the 

prediction horizon N--:;oo. However, in practice, a finite choice of N is mandatory. 

A recommended value of the prediction horizon is N ::::: (2 ... 5)'t
d 

/ T
s

' where 'td is 

the dominant time constant of the process and Ts is the sampling period of the 

identifier. 

It is possible to define a control horizon Nc <N after which the control signals 

are held constant, as is done is other predictive controllers (Soeterboek, 1992). This 

is achieved by using a large value of the control increment weighting matrix R--:;oo, 

for k > N . c 

Regarding the values of the quadratic weighting matrices { <1>, Q ,R }, they 

must be chosen so as to obtain an adequate speed of response. 

If the set-point update period Nu is greater than one, it is possible to apply 

to the plant the average of the first Nu predicted controls. 

In order to avoid numerical ill-conditioning, the steady-state objective. state 

variables, control variables and constraints should be properly scaled (see, for 

instance, Fletcher (1981)). 

216 

-



The maximum of speed of response of the set-points should not only take 

account of any physical rate constraints associated with the process, but also such 

speed of response should be in agreement with the ability of the identifier to 

properly adapt the parameters in the face of changes in the operating point. 

Notice that provided the steady-state objective function N "(x,u) is linear 

(which is common if the objective function is based on economic criteria) and if no 

inequality constraints are active, then the solution of ROP10 in Step 1 of LP

DISOPE (Algorithm 10.5.1) requires only one iteration of Algorithm 5.3.3. This is 

a computational advantage. When inequality constraints become active, then the 

necessary number of iterations increase. 

In the formulation of Theorem 10.5.2.2 it was assumed that no inequality 

constraints were saturated at the optimum. However, the results obtained, as regards 

the optimality of the steady-state solution of Algorithm 10.5.1, are thought to be true 

even for the constrained case. Simulation experience confirms this belief. 

If a simple procedure such as the clipping-off of unconstrained solutions was 

used for handling control magnitude constraints (as is done with DSSO), LP-DISOPE 

would still drive the process to its steady-state optimum (this can be proved by an 

analysis similar to that presented in Section 1004.3). 

10.5.4 A link between LP-DISOPE and DSSO 

An interesting link between the dynamic predictive optimiser based on 

DISOPE and the dynamic optimiser DSSO is given in the following Theorem. 

Theorem 10.5.4: Neglecting inequality constraints and assurrung: (a) 

N~oo Q = <l> = 0 A = A and 13 = B in ROP10 and MOP10; (b) A has all its , , m m 

eigenvalues inside the unit circle; (c) the steady-state performance index is linear 

N *(x,u) = q TX + r TU, then the control law provided by the solution of ROP10 is 

equivalent to the control law in DSSO, Equation (10,'+4). 
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Proof' The equivalence follows by substitution in Procedure 6.2.1. Taking into 

account that Q = <I> = 0 implies S(k) = 0, G(k) = 0 and since Ii is assumed to 

be stable then h(k) has a limiting solution hoc = [In-liTrl q . Furthermore, 

'A(k) = - rand P(k) = -q. Finally, we obtain the control law 

objective. 

Q.E.D. 

10.6 SIMULATION STUDIES 

LP-DISOPE and DSSO have been implemented in software, using the C and 

C++ programming languages, and their performance has been tested with the 

following simulation examples, including industrial-scale simulations of a 

multicomponent distillation column using the rigorous process simulator OTISS™ 

on a UNIX-based computer system at SAST Ltd (U.K.). 

Example 10.6.1: Second order nonlinear system 

This example consists of the optimisation of a nonlinear second order 

discrete-time dynamic system with respect to a linear performance index and two 

manipulated variables. In this case the derivative estimates were computed by using 

a recursive extended least squares estimator as explained in Section 10.1. In this 

example, the steady state performance index is given by 

(10,77) 

while the dynamics are given by: 

(10,78) , 
x

2
(k+ l) = 0.2XI (k) + 0.lx2(k) + 0.1 u2(k) - 0.1 x2-(k) 
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with initial conditions: 

and the following constraints: 

x(O) = [0 Or 

u(O) = [0 or 

-1 ::; u.(t) ::; 1 
I 

-1 ::; u.(t) ::; 1 
I 

-0.001 < ~u(t) ::; 0.001 

(10,79) 

(10,80) 

In order to illustrate the adaptive features of the DSSO controller, a change 

in the cost parameter q 1 from 1.00 to 1.05 at discrete time t = 900 is simulated. 

The results were obtained using an implementation of Algorithm 2 with 

R = diag( 20 , 20 ). The solution of the corresponding steady state optimisation 

problem has also been found using a constrained optimisation function of 

MATLAB's Optimisation Toolbox. The numerical results are shown in Table 

10.6.1.1. 

Notice that a pseudo-random binary signal of amplitude +/- 0.01 has been 

added to the inputs in order to enhance identifiability and to avoid the divergence 

of the estimates. In order to track parameter changes a forgetting factor A =0.95 was 

used in the estimation algorithm. The presence of the additional excitation noise is 

reflected in the state responses, which explains that the results obtained by using 

DSSO have less significant figures than those obtained by using MA TLAB' s 

Optimisation Toolbox (see Table 10.7.1.1). In order to provide the controller with 

good initial estimates, the recursive identifier was started at t =0, while the controller 

was started at t =200. 

Control signals and state trajectories are presented in Figures 10.6.1.1 and 

10.6.1.2. The evolution of the objective function is shown in Figure 10.6.1.3. 
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DSSO ql =1 MOTB ql=l DSSO MOTB 

ql=1.05 ql =1.05 

u1 
0.75 0.7472 0.66 0.6619 

u2 
1.00 1.0000 1.00 1.0000 

XI 0.42 0.4205 0.36 0.3635 

x
2 

0.20 0.2001 0.19 0.1880 

N* -1.279 -1.279 -1.26 -1.259 

Table 10.6.1.1: Optimal results obtained using DSSO and MATLAB's 

optimisation toolbox. 

1.2.-------.-----,-------.-----,-----------.---------, 
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Figure 10.6.1.1: Example 10.6.1, control signals 
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Figure 10.6.1.2: Example 10.6.1, state trajectory 

0.2 

0 

-0.2 

x 
Q) -0.4 "0 
t:: 

Q) 
0 
t:: -0.6 0 
E ..... 
0 
't: -0.8 Q) 
Q. 

-1 

-1.2 

-1.4 
0 200 400 600 800 1000 1200 

t 

Figure 10.6.1.3: Example 10.6.1, evolution of the performance index 
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Example 10.6.2: Optimisation of a multicomponent distillation column 

This simulation study consists of the optimisation of a multicomponent 

stabilizer distillation column, having 14 theoretical trays, and for which a rigorous 

mathematical model exists. The process was simulated using the high fidelity 

simulator OTISS™. This system provides a library of high fidelity, first principle 

dynamic models from which a chemical plant can be simulated. Figure 10.6.2.18 

shows an schematic diagram of the process. The column normally receives a 

hydrocarbon feed of 153,000 kg/h at 177°C. 

The manipulated variables for optimisation are the set -points of the following 

controllers: 

TIC4000: Condenser temperature, u1 (OC) 

TIC3000: Reboiler temperature, u2 (OC) 

PIC 1000: Top pressure, u3 (bar) 

The control variables are bounded between upper and lower levels: 

55 :::; u
l 

:::; 75 (OC) 

255 :::; u
2 

:::; 290 ( ° C) 

19 :::; u
3 

:::; 24 (bar) 

(10,81) 

In this example, the number of relevant states chosen was n = 30, while the 

actual process model consists of about one thousand of differential equations and 

several thousands of algebraic equations. The dominant time constant of this process, 

as computed from the eigenvalues of the identifed system matrix Ii at the initial 

steady state, is "Cd :c:::: 7.5 min. The problem has been scaled for its solution 

The linear steady state objective function is based on economic criteria and 

is given by: 

(10,82) 

where ql = -0.03 (£/kg), r
l 

= -2.5 (£/hOC), r 2 = '5 (£/hOC). and XI (kg/h) 

is the top vapour flow rate. 
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This steady-state optimisation problem has been previously solved by using 

the Modified Two-step method (MTS) where the steady-state derivatives ha\'e been 

computed using the system identification method (Lin and Griffiths, 1992). In that 

study, the optimal solution was achieved after 3 MTS iterations. 

Table 10.6.2.1 shows the tuning parameters of LP-DISOPE (case (a)). Table 

10.6.2.2 shows the tuning parameters of DSSO (case b). Table 10.6.2.3 shows the 

tuning parameters of the identifier, noticing that in case (a) only one identifier has 

been used. A square wave of small magnitude has been added to the set-points so 

as to improve identifiability. In case (a), the control applied to the plant when the 

set-points were updated consisted of the average of the first Ne predicted samples. 

Case <I> Q R Control Prediction Update 

Horizon horizon period 

NT NT NT c s s e s 

(min) (min) (min) 

a 0 10/30 3000/3 6 15 6 

Table 10.6.2.1: LP-DISOPE tuning parameters 

Case R ~umax(l) ~umax(2) ~uma/3) Update 

°Clh °Clh barlh 
period 

N"T.s (n1in) 

b 30/3 
3 3 0.3 4 

Table 10.6.2.2: DSSO tuning parameters 
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Case Data length N d Ts Update period Sampling period 

(min) NuTs (min) Ts (s) 

a 30 18 0.5 

b 40 12 0.5 

Table 10.6.2.3 : Identifier tuning parameters 

The results are presented in Table 10.6.2.4, together with those obtained by 

the Modified Two-step method and with the corresponding parameters of the design 

case. Figures 10.6.2.1 to 10.6.2.6 show the actual trajectories of different variables 

corresponding to case (a). Figure 10.6.2.7 to 10.6.2.11 show the predicted variables 

from t=O as compared with the actual ones. Figures 10.6.2.12 to 10.6.2.17 show the 

trajectories of different variables corresponding to case (b). Notice that in every case 

there is an identification period equal to the data length of the identifier and which 

is not shown in the above mentioned figures. The initial steady state corresponds 

with the set-point values of the design case. Notice that in Table 10.6.2.4 the steady

state values for cases (a) and (b) have been averaged using the last ten samples in 

order to filter the noise present in some signals. 
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Parameter Design Case a Caseb MTS 

case method 

Condenser temperature 63 74.9 75 75 

u
l 

(OC) 

Reboiler temperature u2 (0 C) 272 284.0 282.1 285.5 

Top pressure u3 (bar) 20.7 19.0 19 19 

Top vapour flow rate 23994 30620 30552 30686 

Xl (kg/h) 

Methane mole fraction of 0.2869 0.2467 0.2475 0.2465 

vapour x2 

Performance index N * (£/ h) -197 -395.9 -398 -394 

Table 10.6.2.4: Results obtained as compared with the design case and the MTS 

method 

xl04 Top vapour flow rate (kg/hour) 
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2.7 .... 
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2.4 0LL-.----'--------'-2 -----...J3L....-.----L.4-----5.l..----~6-------:-7 ----~8 

time (hours) 

Figure 10.6.2.1: Example 10.6.2.a, Top vapour flow rate trajectory 
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Concentration of methane 
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Figure 10.6.2.2: Example lO.6.2.a, concentration of methane trajectory 
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Figure 10.6.2.3: Example lO.6.2.a, condenser temperature controller set

point 
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Figure 10.6.2.4: Example lO.6.2.a, reboiler temperature controller set-point 
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Figure 10.6.2.5: Example lO.6.2.a, top pressure controller set-point 
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Figure 10.6.2.6: Example lO.6.2.a, evolution of the steady-state objective 
function 
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Figure 10.6.2.7: Example lO.6.2.a, Top vapour flow rate predicted and 
actual trajectories 
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Figure 10.6.2.8: Example lO.6.2.a, concentration of methane predicted and 
actual trajectories 
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Figure 10.6.2.9: Example lO.6.2.a, predicted and applied condenser 
temperature controller set-point 
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Figure 10.6.2.10: Example 10.6.2.a, predicted and applied reboiler 
temperature controller set-point 
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Figure 10.6.2.11: Example lO.6.2.a, predicted and applied top pressure 

controller set -point 
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Figure 10.6.2.12: Example lO.6.2.b, top vapour flow rate trajectory 

Concentration of methane 
0.3~------,-------,--------,------~-------'--------r-> 

0.29 

0.28 

~ 0.27 

0.26 

0.25 

0.240L------...J...2----------14--------6.1.....-------...L8----------'-1 o----------J
1 

'-2---l 

time (hours) 

Figure 10.6.2.13: Example lO.6.2.b, concentration of methane trajectory 
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Condenser temperature set-point nC4000 (C) 
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Figure 10.6.2.14: Example IO.6.2.b, condenser temperature controller set
point 
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Figure 10.6.2.15: Example 10.6.2.b, reboiler temperature controller set
point 
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Top pressure set-point PIC1000 (bar) 
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Figure 10.6.2.16: Example lO.6.2.b, top pressure controller set-point 

Objective (pounds/hour) 
-150~------~------~------~------~------~------~~ 

L 
::::J 
o 

..c:: 
........... 

Ul -300 
-0 
c:: 
::::J 
o 
a. 

-350 

-400 

-45ooL-------~2------~4--------6L-------~8-------1~0------~12~ 

time (hours) 

Figure 10.6.2.17: Example lO.6.2.b, evolution of the steady-state objective 

function 
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Figure 10.6.2.18: Example 10.6.2, schematic diagram of the process 

Example 10.6.3: Optimisation of two CSTR in series 

This example consists of the same dynamic system of Example 9.5.4. Here 

two CSTR's in series in which an exothermic autocatalytic reaction is taking place, 

interact in both directions due to the recycle of a 50% fraction of the product stream 

into the first reactor. Regulatory controllers are used to regulate the temperature at 

both reactors. The dynamics associated with these controllers are neglected. The 

steady-state performance index reflects economic objectives associated with the 

achievement of maximum production of substance B. The dynamic equations 

describing the process, the initial conditions of the system and the nomenclature used 

are described in Example 9.5.4. In order to drive the process to its steady-state 

optimum we will use the optimisers developed in this chapter: (a) ossa, and (b) 

LP-DISOPE. The problem has been scaled for its solution. The results presented here 

may be compared with those obtained in Example 9.5.4. In case (b), the control 

applied to the plant when the set-points were updated consisted of the a\'cragc of the 

first Ne predicted samples. 
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The steady-state objective function is given by: 

N * ( x, u) = -x 4 (10,83) 

where x4 = Cb2 is the concentration of B in the second reactor. In this example, the 

matrices A, B were computed by finite differences. No identifier was used. The 

sampling period for computing these matrices was Ts = 1 min. Table 10.6.3.1 shows 

the tuning parameters of DSSO. Table 10.6.3.2 shows the tuning parameters of LP

DISOPE. Table 10.6.3.1 shows the steady-state optimum achieved in each case. 

Figure 10.6.3.1 shows the trajectory of concentration Cb
2 

for case (a). Figure 

10.6.3.2 shows the control signals for case a. Figure 10.6.3.3 shows the trajectory of 

concentration Cb2 for case b. Figure 10.6.3.4 shows the control signals for case b. 

Case R ~u (1) ~u (2) Update 
max max 

°C °C 
period 

NeTs (min) 

a 0.4/2 
4 4 5 

Table 10.6.3.1: DSSO tuning parameters 

Case cI> Q R Control Prediction Update 

horizon horizon period 

NT NT NT c s s e s 

(min) 

b 14 14 0.8/2 
5 25 5 

Table 10.6.3.2: LP-DISOPE tuning parameters 

235 



Case Cb2 Tl T2 

( °C ) ( °C ) 

a 0.072525 312 309.6562 

b 0.072525 312 309.6530 

Table 10.6.3.3: Steady-state results obtained 

0.075 .-_-.--_--._----,,--_-.----_--.-_----,-__ .---_--r--_-----r--_~ 
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0.055 L.-_~_---'-----'---'-----'-------'---"'L.--...L...-----'-----....J 
60 80 100 1 20 140 160 180 200 o 20 40 

time (min) 

Figure 10.6.3.1: Example 10.6.3a, trajectory of concentration of B in the 

second reactor 
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Figure 10.6.3.2: Example lO.6.3a, control signals, temperatures in reactors 
1 and 2 
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Figure 10.6.3.3: Example 10.6.3b, trajectory of concentration of B in the 

second reactor 
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Figure 10.6.3.4: Example 10.6.3b, control signals, temperatures in reactors 
1 and 2 

10.7 REMARKS 

It is important to point out that both optimising controllers (LP-DISOPE and 

DSSO) depend for their control action on the values of the identified system 

matrices. Therefore, the tuning of the identifier should be given careful consideration. 

In order to enhance identifiability, some suitable noise may be added to the set

points. In the case of a moving data window identifier, a sufficiently long data length 

and an appropriate update period should be specified, depending on the expected 

speed of change of the control variables. An appropriate forgetting factor should be 

specified in the case of a recursive identifier. 

Notice that because of the short sampling period of the identifier used in the 

the distillation column case, some eigenvalues of A are close to the point (1,0) on 

the z-plane. This causes the matrix (In - AT) (which inverse is used in the 

calculations of DSSO, see Section 10.4) to be near singular at one point along the 

state trajectory. This produces the sudden change of direction of the set-points 

noticeable in Figures 10.6.2.14 and 10.6.2.15. For this reason, DSSO had to be tuned 

for a slow response in order to avoid too drastic changes in the set-points in the face 

238 



of the above mentioned event. This was not a problem in the LP-DISOPE case, 

where state weighting was used. The use of state weighting with a sufficiently long 

prediction horizon allows stable predictions even when the system has local 

eigenvalues on or outside the unit circle. Therefore, state weighting has a direct 

stabilizing effect which should be further investigated (see Bitmead et al. 1990). On 

the other hand, notice that state weighting is not possible in DSSO. 

The value of the control weighting matrix has an obvious effect on the speed 

of response of the controller (This effect is not shown in the simulations presented 

here). The set-point update period also affects the speed of response of the controller 

(if all the other parameters are fixed, the longer the set-point update period, the 

slower the speed). 

Provided the assumptions stated hold, LP-DISOPE and DSSO are able to 

drive the plant to its steady state optimum in a continuous way, so avoiding the need 

to wait for the system to achieve steady-state after every set-point change. The 

optimum achieved is the real plant optimum as far as the assumptions stated hold 

and the relevant states chosen represent the dynamics of the plant in an accurate way 

(It is well known that the order of many real-world plants is in practical terms 

infinite and any assumptions regarding the order of the process are often convenient 

and unavoidable). 

The predictive nature of LP-DISOPE gives it the ability to anticipate the 

saturation of constraints in the future and to take appropriate control action in the 

face of such events. The controller is able to handle control magnitude, control rate 

of change and state dependent constraints. The predictions may be displayed to plant 

operators for different purposes. The loop may be closed by the operator. 

The calculations LP-DISOPE needs to perform every time the set-points are 

updated are iterative LQ methods. Its computational load depends on the prediction 

horizon, on the dimensions of the system, and on the activation of inequality 

constraints. On the other hand, the calculations DSSO needs to perform every time 

the set-points are updated simple and non-iterative. Thus its computational load is 

modest. 

Both optimising controllers should be able to track in a rapid way changes 

in the optimal operating conditions due to disturbances or price changes. 

Both LP-DISOPE and DSSO have been successfully applied to a simulated 

n1ulticOInponent distillation column at SAST Ltd. and the optimum of the plant has 
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been achieved in the simulations. Additional tests have been performed with low 

order examples with known solution and the correct optimum has also been 

achieved. 

10.8 SUMMARY 

In this chapter, two optimising controllers have been designed which are able 

to lead a process from a suboptimal operational condition to its steady-state optimum 

in a continuous way. The controllers use derivative and state information from the 

plant via a shadow model and an adaptive state-space linear model identifier. The 

new algorithms are developed from the basis that a nonlinear model of the process 

is not available for predictions and, hence, DSSO does not require predictions and 

LP-DISOPE uses predictions based on a linearized model of the process. The 

optimality of the procedures has been analyzed. Both techniques have been tested 

with simulation examples, including realistic industrial-scale simulations of the 

dynamic optimisation of a multicomponent distillation column using a rigorous 

process simulator. 
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CHAPTER 11 

COMPARISONS OF DISOPE WITH 

OTHER ALGORITHMS 

In this chapter the DISOPE algorithm is placed within the general 

classification of nonlinear optimal control approaches presented in Section 1.4. 

Furthermore, similarities and differences between a DISOPE algorithm and a well 

established approach such as quasilinearization are drawn. Moreover, comparisons 

with previous work by Hassan and Singh (1976) and Mahmoud et al (1980) are 

made, taking into account some similarities between the DISOPE technique and these 

methods, but also remarking the differences. 

11.1 DISOPE AS AN OPTIMAL CONTROL ALGORITHM AND 

COMPARISONS WITH OTHER TECHNIQUES 

DISOPE may be broadly classified as a function space algorithm, since the 

necessary optimality conditions obtained from the minimum principle (or a 

variational approach) are enforced iteratively using costate variables and the 

gradients of the Hamiltonian in the iterations. It is important to point out that in this 

thesis, following the objectives stated in Chapter 1, the DISOPE technique has been 

extended to handle practical problems taking into account the needs of industry. 

Therefore, extensions for handling of control magnitude constraints, state dependent 

constraints, as well as discrete time, hierarchical and set-point tracking versions have 

been developed. Its applications on the fields of nonlinear predictive control, steady 

state process optimisation based on dynamic information, and on the optimisation 

of batch processes have been studied. 

It is not the purpose here to draw comparIsons of DISOPE with every 

nonlinear optimal control technique proposed in the literature. Rather. we \\i11 

concentrate on some techniques which, for several reasons and to different degrees, 

have similarities with the DISOPE approach. The techniques chosen for comparison 
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purposes are quasilinearization (see, for instance, Sage and White (1977) ), the two

level approach to the dynamic optimisation of nonlinear systems by Hassan and 

Singh (1976) and the hierarchical approach to the joint problem of systems 

identification and dynamic optimisation by Mahmoud et al (1980). Comparisons 

regarding the performance of the techniques lie beyond the scope of this thesis. 

11.1.1 Comparisons between DIS OPE and the quasilinearization approach. 

For comparison purposes we will use the following discrete time optimal 

control problem: 

subject to 

nun Nf-l 

u(k) J* =LL*(x(k),u(k),k) 
kE [No,N

f
-1] k=No 

x(k+1) = f*(x(k),u(k),k) 

x(No) = Xo 

where XE 9\n and UE 9\m are state and control variables, respectively, 

L * : 9\nx9\mx9\~9\ IS a discrete performance measure function, 

f* : 9\nx9\mx9\~9\n is a set of discrete-time state equations. 

Application of the stationarity condition (see Chapter 5) gives the 

following expression for the control variable: 

u(k) = h(x(k),p(k),k) 
(11,1) 

where the costate pE 9\n and the state variables and are given by the solution of the 

following nonlinear two point boundary value problem (TPBVP): 

x(k+1) = f*(x(k) , h(x(k),p(k)) , k), x(No)=xo 

p(k+l) = g(x(k),p(k),k), p(Nf ) = 0 

(11,2) 

By using a quasilinearization approach, a nominal solution vector is chosen 

x o(k). p O(k) so as to satisfy as many of the boundary conditions as possible. The 
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state and costate difference equations are linearized about the nominal trajectories 

and a succession of non-homogeneous, linear TPBVP's is solved until convergence 

is achieved. Define X i(k) = [ x i(kr, p i(kr r as the solution vector for the i-th 

iteration and F(X,k) = [J*(X,kr , g(X,kr r. The linear TPBVP to be solved at 

every iteration is as follows (Sage and White, 1977): 

where: 

= aF(X i(k),k) 

aX i(k) 

U i(k) = F(X i(k),k) - A(k)iX i(k) 

x(N) = Xo 

P(Nf) = 0 

(11,3) 

(11,4) 

This TPBVP is linear with varying coefficients. It may be solved, for instance, by 

the sweep method. We may draw the following comparisons with the DISOPE 

approach with linear-quadratic model-based problem (Algorithm 5.3.1): 

* The iterations in both quasilinearization and Algorithm 5.3.3 are based on the 

solution of a linear TPBVP and the successive solutions converge to the 

solution of a nonlinear optimal control problem. 

* The idea of linearization has been used in Algorithm 5.3.3 to define the 

(constant) model-based dynamic matrices, however, such linearization is 

performed about a particular point in the state space and not about a 

trajectory. Then the matrix coefficients of the TPBVP solved by Procedure 

5.3.1 are constant as opposed to those in the quasilinearization approach, 

which are time-varying. 

11.1.2 Comparisons with prel'ious work by Hassan and Singh (1976) 

AlgorithITI 2.3.1 has similarities with the two-level method for optimisation 

of nonlinear dynaIuic systems proposed by Hassan and Singh (1976). The method 
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is described below in its centralized version and using an appropriate notation to 

facilitate comparisons with the DISOPE approach. In the work by Hassan and Singh 

(1976) augmentation terms are added to the performance index with the purpose of 

improving convergence, as is done in the DIS OPE approach, but these are not 

included in the description below for the sake of simplicity. 

It is desired to solve the following nonlinear optimal control problem with 

a quadratic performance index: 

subject to 

ffiln 

u(t) 

t
f 

J * = J ~ ( x(tr Q x(t) + u(tr R u(t) ) dt 
to 

x = j*(x(t), u(t), t) 

x(to) = Xo 

where XE 9\n and UE 9\m are state and control variables, respectively, Q and R are 

weighting matrices of the appropriate dimensions. 

Expanding by Taylor series the dynamic equation about the (assumed) 

equilibrium point x = 0, u = ° and keeping only first order terms, the following is 

obtained: 

x = Ax(t) + Bu(t) + a(x,u,t) 
(11,5) 

where 

a(x,u,t) = j*(x,u,t) - Ax(t) - Bu(t) 
(11,6) 

Suppose now that an upper-level provides state and control predictions 

z(t), vet) which are used in (11,6) to obtain a( z, \', t) which is then fixed. The 

following condition additionally is required for an optimal solution: 



u(t) = v(t) 

z(t) = x(t) 

A Hamiltonian is then formed as follows: 

H =~(x(tr Qx(t) +u(tr R u(t)) + p(tr(Ax(t) + Bu(t) +a(z, v, t)) 
2 

+ ~T(t)( Z(t) - X(t) ) + A(tr( V(t) - U(t) ) 

(11,7) 

(11,8) 

where A(t)E 9\m, ~(t)E 9\n are Lagrange multipliers and p(t)E 9\11 is the costate vector. 

Now, using a variational approach, the following necessary optimality conditions are 

obtained, in addition to (11,7): 

u(t) = -R -I( B Tp(t) - A(t) ) (11,9) 

p = -Qx(t) + A Tp(t) - ~(t) , P(tf) = 0 (11,10) 

i = Ax(t) + BR-I(-BTp(t) - ACt) ) + a(z,v,t) , x(to) = Xo (11,11) 

A(t) = ( B - df*(z, v,t) rp(t) 
dv 

~Ct) = ( A - df*( z, v, t) r p(t) 
dz 

(11,12) 

Finally, based on the above analysis, an algorithm is formulated as follows: 
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Algorithm 11.1.2: Two-level method for optimisation of nonlinear dynamic 

systems by Hassan and Singh (1976) 

Step 0 

Step 1 

Step 2 

Step 3 

Step 4 

At the upper level, select an initial guess v o(t), z 0(t), p Oct) . AO(t) 

and pOet), t E[to,tfL Set i=O. 

At the upper level, compute a( z, v, t) to satisfy (11,6). 

At the lower level, with specified v(t), z(t), a( z , v , t), A(t) and P( t) 
solve the linear two point boundary value problem defined by (11,10) 

and (11,11) to find x( t) and p(t). Also find the control variable u(t) 

from (11,9). 

At the upper level, if u(t) = v(t) stop the iterations, else set 

v(t) = u(t), z(t) = x(t) and i = i + 1 . 

At the upper level, compute the multipliers A(t) and p(t) from 

(11,12) and repeat from step 1. 

The following comparisons between Algorithm 11.1.2 and the continuous 

time DISOPE algorithm (see Chapter 2, Algorithms 2.2.1 and 2.3.3) may be drawn: 

* For the particular case in which the real and model-based performance 

indexes are identical in Algorithm 2.3.3 and, furthermore, assuming that the 

relaxation gains are all set to one and the convexification factors are set to 

zero, and provided that the initial guess for the multipliers in Algorithm 

11.1.2 A(t) and P(t) are computed from (11,12) given v Oct). :: 0(t). and 

p 0(t), then Algorithms 11.1.2 and 2.3.3 are equivalent. 

* DISOPE was originally developed as a dynamic extension of ISOPE, with a 

philosophy directed towards the handling of model-reality differences in 

dynamic optimisation. The general continuous time DISOPE algorithm 

(Algorithm 2.2.1) reflects these aims, and Algorithm 2 . .3.3 is a particular ca"c 
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of Algorithm 2.2.1. Thus, even though it may be said that Algorithms 11.1.2 

and 2.3.3 are similar, their origins and philosophy are different. The ability 

of DIS OPE for handling model-reality differences is used in Chapter 8, where 

its application has been proposed for the dynamic optimisation of batch 

processes. 

In the DISOPE approach, the real performance index may be general, the 

difference between the real and model-based performance index being 

properly accounted for. This feature is important since it has allowed 

practical extensions of the DISOPE approach such as the handling of control 

magnitude constrains (see Chapter 3) and state dependent constraints (see 

Chapter 7), the use of incremental control weighting to provide zero steady 

state off-set for constant set-points (see Chapter 6), and the application of 

DISOPE in problems where the performance index is not quadratic. A 

modification of the method by Hassan and Singh (1976) has been proposed 

by Singh and Titli (1978) which allows for non-quadratic performance 

indexes to be handled. The approach is similar to that used in Algorithm 

2.3.3. Therefore, it may be said that Algorithm 2.3.3 and the modified 

algorithm by Singh and Titli (1978) (in its centralized version) are equivalent. 

In the original work by Hassan and Singh (1976), a version of Algorithm 

11.2.1 for the dynamic optimisation of large-scale systems is presented. The 

approach uses a similar Taylor expansion as in Equation (11,5), but the matrices A 

and B are the block diagonal parts of the corresponding jacobian matrices. The off

diagonal parts of the jacobian are included in the calculation of a( x, U , t) and also 

appear in the multipliers ACt) and ~Ct). It is assumed that the performance index is 

quadratic and additively separable. Then, at the lower level, N independent linear

quadratic sub-problems are solved and, at the upper level, the updating of the 

coordination vector [ v Z A ~ r is carried out. Following this description, the 

following comparisons can be made with the hierarchical DISOPE algorithms 

(Algorithm 4.2.1 and 4.3.2): 

* The algorithms may be compared in similar terms as with Algorithms 2.2. I 

and 2.3.1 with Algorithm 11.1.2 above. However, the way of handling the 
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interactions between subsystems is different, since Algorithm 4.3.2 uses an 

approach based on the interaction prediction method (Jamshidi, 1983), an 

additional multiplier Q(t) is introduced to take account of the 

interconnections, and the interaction vector wet) is part of the coordination 

vector. In both approaches, the resultant sub-problems to be solved at the 

lower level are independent. 

11.1.3 Comparisons with previous work by Mahmoud et al (1980) 

In the research work presented by Mahmoud et al (1980) a hierarchical 

technique for solving the joint problem of parameter estimation and dynamic 

optimisation is proposed. The solution of the problem is done by using a four level 

hierarchical structure. The technique is structurally different from the DIS OPE 

approach, but since the type of problem addressed is apparently similar to that dealt 

with by DISOPE, namely the integration of system dynamic optimisation and 

parameter estimation, it is worth discussing the differences between the approaches. 

The dynamic optimisation problem is defined as follows: 

subject to 

ffiln 

u(t) 

If 

J = J ~ ( x(tf Qx(t) + u(tf R u(t) ) dt 
10 

x = f*(x(t), u(t), a(t» 

x(to) = Xo 

(11,13) 

given the (time-varying) parameter vector a(t)E 9\', where XE 9\n and UE 9\m are 

state and control variables, respectively, Q and R are weighting matrices of the 

appropriate dimensions. The parameter identification problem is defined as follows: 

I, 

mm 
aU) 

V = J ~( (Yo(t) - Y r W(t)( yo(t) - y(t» ) dt 

10 
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subject to 

yet) = D(x(t), u(t), a(t)) (11.14) 

where yE 9{
n

o is the output vector, YoE 9\no is the vector of observations, and W(t) 

is a suitable weighting matrix, and D : 9\nx9\mx9\' --79\no is an output mapping. 

Now, a joint problem which combines both problems is formulated as 

follows: "Determine aCt) and u(t) so as to minimize J and V subject to the equality 

constraints (11,13) and (11,14)". An appropriate combined form of the twin objective 

is formulated using the parametric approach: 

t
f 

rrun 
u(t), aCt) 

Z = £V+(1-£)J = (1-£) f ~ ( x(tf Qx(t) + u(tf R u(t) ) dt 
to 

t
f 

+ £ f ~ ( (Yo(t) - D(x,u,a) f W(t)(Yo(t) - D(x,u,a)) ) dt 

to 

subject to (11,13), where 0 < £ < 1 . The following separation variables are 

introduced: 

z(t) = x(t) 

v(t) = u(t) 

a(t) = aCt) 

Next, a penalty term ~ p Ila(t) -aCt) 112 is introduced in the joint performance index so 

as to further ensure convergence of the parameter estimates. In addition, the model 

dynamics (11,13) are expanded by Taylor series about the predicted trajectories 

z(t), v(t) , a(t). 
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Thus: 

If 
Ill1n 

u(t), aCt) Z = EV+(I-E)J = (I-E)j ~( x(trQx(t) + u(trRuCt)) dt 

t
f 

+ Ej ~( (Yo(t)-D(x,u,a)rw(t)(YoCt)-D(x,u,a)) + plla(t)-a(t)/l2) ) dt 
to 

subject to 

where 

and 

i=A(z, v,a)x(t) +B(z, v,a)uCt) +S(z, v,a)aCt) +\jI(z, v,a) 

A(z,v,a) = 

B(z, v, a) = 

S(z, v, a) = 

df(z,v,a) 

dZ 
df(z,v,a) 

dV 
df(z,v,a) 

da 

(11,16) 

(11,17) 

\jI(z, v,a) =f(z,v,a) -A(z,v,a)x(t) -B(z,v,a)u(t) -S(z,v,a)a(t) (11,18) 

Then a Hamiltonian is formulated as follows: 

H = ~(I-E)( x(tr Q xCt) + u(tr R u(t) 
2 

+ ~E( (yo(t) -D(x,u,a)rW(t)(Yo(t) -D(x,u,a) + plla(t)-aCt)11 2 
) 

+p(tr( A(z,v,a)x(t) + B(z,v,a)u(t) + F(z,v,a)a(t) + \jI(z,v,a)) 

+ A(tr ( v(t) - u(t)) + p(tr (z( t) - x(t)) + SCtr ( a(t) - aCt) ) 

(11,19) 

where A(t)E 9\'\ P(t)E 9\11, S(t)E 9\r are Lagrange multipliers and p(t)E 9\" is the 

costate. Now, using a variational approach, the following necessary optimality 

conditions are obtained, in addition to (11,15) and (11,16): 
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u(t) = 1 
(1-£) R -Ie B(z,v,arp(t) - A(t) ) (11,20) 

p = -(1-£)Qx(t) + A(z,v,ar p(t) - ~(t) , P(tf) = 0 (11,21) 

A(t) = _( dAx dBu dSa d'V dD T 

dv + av + av + dv rp(t) + £ dv W(yo -D(z,v,a)) 

~(t) = - (dAx dBu dSa d'V dD T 

dz + az + az + dz rp(t) + £ az W(y 0 -D(z, v, a)) 

a(t) = _( dAx + dBu dSa d'V)T () dD T 

da da + da + da p t + £ da W(Yo -D(z,v,a)) + £p (a-a) 

(11,22) 

1 
aCt) = - ( £ P a (t) - F(z, v ,a) Tp(t) + a(t) ) 

£p 
(11,23) 

Finally, a hierarchical algorithm is proposed for solving the joint problem as follows: 

Algorithm 11.1.3: Hierarchical algorithm for solving the joint problem of 

systems identification and dynamic optimisation by Mahmoud et al (1980) 

Step 0 At level 4, select an initial guess for £ and send it to the lower 

levels. Set i =0. 

Step 1 At level 3, an initial estimate for the variables 

L 0 = [ z, v, a, A, ~, a r is predicted and sent to the lower levels. 

Set j=O. 

Step 2 At level 2, an initial trajectory for the costate p(t) is predicted and 

sent to level 1. Set k=O. 

Step .3 At the levell, using the supplied information, the control u(t) is 

determined from (11.20), and the unknown vector a(t) is ohtained 

251 



Step 4 

Step 5 

Step 6 

from (11,23). Then the state vector x(t) is computed from (11,13). 

These results are transferred to level 2. 

At level 2, compute the new costate p k+l(t) from (11,21). If 

p k+l(t) = P \t) then transfer [x, u, a, p] to level 3. Else set 

k = k+ 1, send p k+l(t) to level one and repeat from step 3. 

At level 3, a new set of variables Lj+l = [ z, v, 0', A, ~, e r IS 

determined from Equations (11,15) and (11,23). If Lj+l = L j continue 

with step 6, else set j = j+ 1, send Lj+l to levels 1 and 2 and repeat 

from step 3. 

At level 4, update £ with £i+l = k££i, where k£E (0,1) is a given step 

size, send £ to the lower levels and go to step 5. 

As explained in the paper by Mahmoud et al (1980), a sequence of 

decreasing values of £ starting from a value lower than one to a value close to zero 

produces a solution which solves what the authors interpret as the joint problem of 

system identification and dynamic optimisation. After reading the introduction of the 

paper and the initial formulation of the joint problem a reader of that research work 

would expect that the resultant algorithm would involve some kind of interaction 

with the real plant in order to obtain the information from the output measurements 

necessary for identification purposes. However, this kind of interaction does not 

appear in Algorithm 11.1.3, and in the simulation example provided by the authors 

a fixed set of measured output data yo(t) is used. Thus, it appears that Algorithm 

11.1.3 starts by finding a set of parameters a(t) and control vector u(t) so that the 

model-based output variables are close to the set of previously measured output data 

yo(t), and then, as £ is gradually decreased, the dynamic performance index J is 

Ininimized. If this interpretation is correct, the identification stage, in the sense of 

computing the best parameters for a model structure given a set of input-output 
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information, is inadequate. Furthermore, the authors do not appear to take account 

of the input data from which the fixed set of output data was generated. 

On the other hand, in the DISOPE approach interaction with the real system 

occurs, since at every iteration the values of the state variables and the real 

derivative information necessary for the optimisation is measured using the current 

values of the control trajectory (see, for instance, Chapter 8). Therefore the set of 

output data is not fixed but is measured as the iterations progress. The difference 

between the model-based and real derivative information is compensated, in addition 

to the difference between the real state response and the model based state 

predictions, and the real optimum of the plant is achieved in spite of the 

inaccuracies in the dynamic model of the process. 

Finally, it appears that the type of joint system dynamic optimisation and 

parameter estimation problems dealt with by Mahmoud et al (1980) is different from 

that treated in this thesis. 

11.2 SUMMARY 

In this chapter the DISOPE technique has been placed within the general 

classification of nonlinear optimal control approaches as a function space method. 

Furthermore, similarities and differences between a DISOPE approach and a well 

established method such as quasilinearization have been drawn. Moreover, a 

comparison have been made with previous work by Hassan and Singh (1976), which 

consists of a two-level approach for the optimisation of nonlinear systems, where 

similarities between this approach and DISOPE have been discussed and the 

differences have been pointed out. Finally, an analysis has been made of the work 

of Mahmoud et al (1980), consisting of a hierarchical approach to the joint problem 

of systems identification and dynamic optimisation, and important differences 

between this approach and DISOPE have also been discussed. 
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CHAPTER 12 

CONCLUSIONS 

12.1 CONCLUSIONS 

The development and applications of novel optimal control algorithms has 

been the central subject of the research work described in this thesis. An optimal 

control technique known as DISOPE (dynamic integrated system optimisation and 

parameter estimation), developed by Roberts (1992) in its continuous time, 

unconstrained and centralized form, has been the starting point for the project. Being 

the dynamic extension of ISOPE (Roberts, 1979), DISOPE was originally devised 

with the purpose of handling model-reality differences in dynamic optimisation. 

Following the objectives stated in Chapter 1, several extensions of the technique 

have been developed and tested in this thesis. Furthermore, potential applications of 

the algorithms developed have been proposed. Particular emphasis has been placed 

on possible uses of the techniques within the process industry. 

Bearing in mind that in real processes control signals are usually constrained, 

an extension of DISOPE for handling control dependent constraints has been 

developed. The approach reduces to the handling of the control dependent constraints 

at the model-based level (or lower level), which would require the use of an iterative 

optimal control algorithm at this level. For computational reasons it may be 

convenient to use noniterative linear-quadratic methods at the model-based level. In 

the case of bound constraints on the control variables a simple saturation function 

has been used, such that this nonlinear function becomes part of the nonlinearity of 

the real problem, in such a way that convenient linear quadratic methods may be 

used at the lower level. 

Many industrial processes are considered as being of large-scale. In order to 

address large-scale dynamic optimisation problems using DISOPE, a hierarchical 

extension of the technique has been proposed. The overall system is decomposed into 

more manageable sub-systems according to suitable criteria. The technique 

differentiates between real and model based problems, and the real dYI1aIllic optimum 
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IS achieved by uSIng a two-level hierarchical technique in which the resultant 

problem for each sub-system is independent from the others. The technique uses the 

interaction-prediction approach for handling the (linear) interactions between 

subsystems, while the internal dynamics of each subsystem may be nonlinear. The 

algorithm is suitable for parallel or distributed processing and savings in terms of 

memory storage are possible. 

With the increasing sophistication and decreasing cost of computers, most 

modern control algorithms are implemented using digital computers. Digital controls 

are usually designed taking into account the discrete-time nature of the operation of 

computers. A discrete-time DISOPE algorithm has been proposed in this thesis. The 

discrete-time DISOPE algorithm with a linear quadratic model-based problem is 

computational attractive since the equations to be solved at the lower level are 

difference equations, as opposed to differential equations which arise in a continuous 

time formulation. Continuous dynamics are handled in an exact way by using an 

exact discretization scheme, based on modern differential equation solvers employed 

at the upper-level (in contrast with the use of crude discretizations of continuous 

time systems, such as Euler's method), while convenient linear quadratic discrete

time methods are used at the lower level. 

When certain variables of a system are required to follow or track a reference 

trajectory a set-point tracking control problem arises. An extension of discrete-time 

DISOPE with linear quadratic model-based problem has been developed in such a 

way that a tracking problem with nonlinear dynamics and a not necessarily quadratic 

performance index may be solved by using standard linear-quadratic tracking 

formulations at the lower level. The use of quadratic incremental control weighting 

has been used for eliminating steady-state off-sets for constant reference trajectories. 

In some cases and for several reasons (quality, safety, environmental 

regulations, etc.), some variables of a process (states or functions of the states) are 

constrained to lie within a particular region of the state space. The ability of an 

optimal control algorithm for handling this type of constraint is considered important. 

A technique for handling state dependent constraints within the DIS OPE framework 

has been proposed in this work. The technique uses the penalty relaxation approach 

by which a penalty term is added to the real performance index. This penalty term 

is activated only when a constraint is violated. At the model-based level, the prohlem 

renlains unconstrained and then standard linear quadratic methods may be used fnr 
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solving a path constrained optimal control problem. A technique for improving the 

convergence behaviour about the constrained optimum has been proposed. 

The application of DISOPE for the dynamic optimisation of batch processes 

has been proposed. The algorithm achieves the correct dynamic optimum of the 

batch process in spite of deficiencies in the mathematical model used in the 

computations. The iterations of DISOPE are integrated with the batchwise operation 

of the plant, in such a way that there is a correspondence between batches and 

iterations. The use of the innovative shadow model concept (Griffiths, 1993) has 

been proposed for solving the problem of acquisition of unmeasured state variables 

and also of the derivative information required by DISOPE. 

Model-based predictive control (based on linear input-output models of the 

process) has gained wide acceptance in the process industry in the last two decades 

(Soeterboek, 1992). Assuming that a nonlinear state-space model of the process is 

available for on-line prediction purposes, a nonlinear predictive controller has been 

developed, implemented and tested with simulations of chemical reactors. The 

technique uses the set-point tracking DISOPE algorithm in a receding horizon 

framework for the long-range predictions and dynamic optimisation. An Extended 

Kalman Filter is used for the estimation of states and uncertain parameters, in such 

a way that the controller has adaptive features. The certainty equivalence principle 

(Astrom, 1970) has been used since the estimated parameters are considered to be 

exact when computing the optimal controls. Both set-point tracking and economic 

performance indexes have been used, which indicates the flexibility of the approach, 

and the controller is able to handle bound constraints on the controls and well as 

state dependent constraints. 

Research on steady-state process optimisation using dynamic information has 

been presented in this thesis. In some cases, a nonlinear model of the process may 

not be available for on-line prediction purposes. Then, a linear state-space model of 

the process may be identified (Lin, 1993) using state measurements from the shadow 

model of the process, in such a way that the linear model adapts itself in the face of 

changes in operating conditions. With this information available two procedures havc 

been developed for gradually driving a process from a suboptimal opcrating 

condition to its steady-state optimum. Firstly, a steady-state optimiser bascd on 

dynamic information (DSSO) has been developed. The approach has hccn deri \'cd 

using standard results from optimisation theory and discrete-time optimal control. 



Based on the information available, a recursive control law has been derived and its 

steady-state optimality has been analyzed. Algorithms based on the control law 

derived have been formulated. The technique naturally handles control bound 

constraints as well as constraints on the rate of change of the control signals. The 

approach has been related with gradient descent approaches proposed in the past 

(Bamberger and Isermann, 1978). Secondly, the linear identified model has been 

used for producing (locally valid) long range predictions. The steady state objective 

is included in the dynamic performance index and DISOPE is used for solving a 

problem with linear dynamics, but taking into account control magnitude, control 

rate-of-change and state dependent constraints, in such a way that the optimal control 

problem to be solved in a receding horizon framework is nonlinear. The approach 

is abbreviated as LP-DISOPE. The steady-state optimality of the procedure has been 

analyzed and the real steady state optimum of the process may be achieved provided 

the prediction horizon is long enough. Predictions of important variables may be 

displayed to operators for different purposes (such as the evaluation of the 

performance of the optimiser and possible decisions based on such an evaluation). 

A clear advantage of the long range predictive control approach is that the saturation 

of (state and control dependent) constraints may be anticipated and appropriate action 

may be taken by the controller in advance. Both approaches have the advantage that 

it is not necessary to wait for the system to settle after every set-point change. Since 

the steady-state objective is included in the dynamic performance index, no separate 

steady-state optimiser is required. Furthermore, both optimising controllers should 

be able to track in a rapid way changes in the optimal operating conditions due to 

disturbances or price changes. Both LP-DISOPE and DSSO have been successfully 

applied to realistic simulations of an industrial multicomponent distillation colun1n 

using a rigorous process simulator and a shadow model consisting of thousands of 

differential and algebraic equations, using thirty representative states for the linear 

model. 

In summary, it may be said that the objectives stated in Chapter 1 have been 

achieved. Firstly, novel optimal control algorithms have been developed in this 

thesis, extending the initial formulation of the DIS OPE approach for handling 

relevant and practical problems. Secondly. important applications within the process 

industry of the techniques developed have been proposed. The LP-DISOPE technique 

has been found attractive by an important firm within the process area. which has 
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allowed the technique to achieve a degree of maturity In terms of software 

implementation that its on-line application to a real process is feasible. 

12.2 SUGGESTIONS FOR FURTHER RESEACH 

As has been indicated, the existing knowledge of the DIS OPE approach has 

been significantly enhanced during the research work reported in this thesis. 

Furthermore, relevant applications of the approach have been proposed. However, 

the author considers that research in this area is far from finished. On the contrary, 

important questions are yet to be answered. Some relevant areas for further research 

are described below. 

(a) Convergence analysis of DIS OPE. Even though work has been carried out in 

this particular area (Becerra and Roberts, 1994; Roberts, 1994) convergence 

proofs for the general case with a nonlinear real problem are yet to be 

developed. Furthermore, techniques for improving local convergence and 

ensuring a decrease of the performance index at each iteration should be 

developed. 

(b) Further research is recommended in the hierarchical extension of the DISOPE 

approach. Particular emphasis should be made on its applicability to real 

systems or processes. 

(c) The extension of the DISOPE approach for handling time-delays in the 

dynamics of the (in general nonlinear) real optimal control problem is 

suggested. 

(d) The extension of the DISOPE approach for handling systems described by 

mixed differential and algebraic equations is recommended. 

(e) Further studies are required regarding the feasibility of the application of 

DISOPE for the optimisation of batch processes. The computer hardware 

technology required for implementing the approach proposed is available in 
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the market. Partnership between academics and an interested industrial fIrm 

would be convenient for this kind of study. 

(0 Given the potential and good performance of the nonlinear predictive control 

approach, as has been shown in this thesis and elsewhere (Wright and Edgar 

(1994); Balchen et ai, (1992)), further research should be carried out on the 

application of DISOPE in this area. Particular emphasis should be made on 

practical applications. 

(g) The application of LP-DISOPE for steady-state process optimisation using 

long-range predictions based on adaptive linear dynamic models of the 

process has achieved an important degree of maturity in terms of software 

implementation and realistic simulation experience. Given the performance 

of the approach (shown in the simulation studies of Chapter 10), and the 

attractive features associated with its predictive nature, further studies are 

recommended directed towards its on-line implementation on real industrial 

processes. Studies regarding the conditions for convergence of the LP

DISOPE approach and the (probably beneficial) effects of state weighting on 

the stability of the solution are also required. 
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APPENDIX 

A. DERIVATION OF PROCEDURE 2.3.1 

Here we want to solve the following two-point boundary value problem 

(TPBVP) 

--1 -
x = Ax(t)+BR (B Tp(t)-'A(t)) + aCt) 

- -
p = -Qx(t)-A Tp(t) + ~(t) 

with border conditions: 

x(to) = Xo 

P(tf) = <l>x( tf ) 

(A,I) 

(A,2) 

where all the quantities are defined in Chapter 2 and the control law is given by: 

--1 -
u(t) = -R (B Tp(t) - A(t)) (A,3) 

This linear TPBVP can be solved by using the backward sweep method (Bryson and 

Ho, 1975; Lewis, 1986a). The key is to assume the relationship between costate and 

state as 

p(t) = K(t)x(t) + k(t) (A,4) 

where K(t) is a nxn matrix and k(t)E 9\n. Then we have: 

p(t) = K(t) x(t) + K(t) x(t) + fe(t) (A,S) 

From (A, 1) we obtain 

p(t) = K(t)x(t) + K(t)(Ax(t) - BR-\B Tp(t) - ~(t)) + a(t)) + fe(t) (A,6) 

269 



PCt) == KCt)xCt) + K(t)Ax(t) - K(t) B R -1 B T( KCt)x(t) - k(t)) 

--1-
+ K(t) B R A(t) - K(t) a(t) + k(t) 

(A,7) 

--1-
+ K(t) B R A(t) - K(t) aCt) + k(t) 

(A,8) 

But, from (A,l) we have 

pet) == (-Q-A TKCt))x(t)-A Tk(t) + ~Ct) (A,9) 

Comparison between (A,8) and (A,9) gives 

. --1 -
K(t) == K(t)BR B T K(t) - K(t)A - A T K(t) - Q (A,lO) 

(A,ll) 

with terminal conditions K(tf) == <I> and k(tf) = O. Substitution of (A,4) in (A,3) 

gIves: 

--1 --1 --1-
uCt) = -R B T K(t)xCt) -R B T kCt) - R ACt) (A,12) 

Define: 

--1 
G(t) = R B TKCt) 

(A,13) 
--I -

get) == -R (B T kCt) - A(t) ) 

Then we can write the control law as 

u(t) = -G(t)x(t) + get) (A,14) 

Substitution of (A, 14), (B,23) in the state equation i = Ax(t) -.- B u(t) -.- a(t) gives: 

.r = (A - BG(t) )x(t) + Bg(t) ... a(t) 

A straightforward reasoning on the dependence of the different \'ariables 

involved, gives rise to Procedure 2.3.1. 
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B. DERIVATION OF PROCEDURE 2.3.2 

Here we will include terminal constraints in the values of the state variables 

Xi(tf)=O, iE [1 ,q], which can be written as follows 

(B,l) 

where C = [Iq\O] is a qxn matrix. 

Thus, we want to solve the following two-point boundary value problem 

(TPBVP) 

--1 -x = Ax(t)+BR (B Tp(t)-A(t)) + aCt) (B,2) 
- -

p = -Qx(t)-A Tp(t) + ~(t) 

with border conditions: 

x(to) = Xo 
(B,3) 

P(tf) = cI>x( tf ) + C TV 

where VE 9\q is a Lagrange multiplier to be determined such that (B, 1) is satisfied. 

The control law is given by: 

u(t) 
--1 -

= -R (B Tp(t) - A(t)) 
(B,4) 

This linear TPBVP can be solved by using the backward sweep method (Bryson and 

Ho, 1975; Lewis, 1986a). The key is to assume the relationship between costate and 

state as 

p(t) := K( t)x(t) + k(t) + F(t) v 
(B,5) 

and express the (assumed fixed) terminal constraint function as 
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'V = F(tr x(t) + W(t)v + 11 (t) (B,6) 

where K(t) is a nxn matrix, F(t) is a nxq matrix, Wet) is a qxq matrix, k(t)E 9i" . 

and l1(t)E 9iq
• Then we have: 

pet) = K(t)x(t) + K(t)x(t) + k(t) + F(t)v (B,7) 

From (B,2) we obtain 

-I -
pet) = K(t)x(t) + K(t) (Ax(t) - BR - (B Tp(t) - A(t)) + a(t)) 

(B,8) 
+ k(t) + F(t)v 

. --I 

pet) = K(t) x(t) + K(t) Ax(t) - K(t) B R B T (K(t)x(t) + k( t) + F( t)v ) (B,9) 

+ K(t) B R -I ~(t) - K(t) a( t) + k(t) + F(t)v 

. --I --I 
p(t) = (K(t) + K(t)A - K(t)BR B T K(t))x(t) - K(t)BR B Tk(t) (B,lO) 

+ (K(t)BR-1BTF(t) + F(t))v + K(t)BR-I~(t) - K(t)a(t) + k(t) 

But, from (B,2) we have 

- -
p(t) = (-Q-A TK(t))x(t)-A Tk(t) + p(t) - A TF(t)v (B,ll) 

Comparison between (B,IO) and (B,ll) gives 

(B,12) 
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(B,13) -
- K(t)a(t) + p(t) 

(B,14) 

with terminal conditions K( tf ) = <I>, kCtf ) = 0 and FCt
f

) = CT. In addition, since 

we have that the terminal constraint function (B,6) is assumed constant, then its time 

derivative vanishes: 

d\f1 d 
- = -(F(trx(t) + W(t)v +1l(t)) 
dt dt (B,15) 

• T . 

= F (t)x(t) + F(trx(t) + W(t)v + 1'l(t) = 0 

Substitution of (B,2) in (B,lS) gives, using (B,S) and grouping terms 

--1 --1-
+ (-F(t)BR B Tk(t) + F \t)BR A(t) + F T(t)a(t) + 1l(t)) = 0 

Equating coefficients in (B,16) to zero results in a repeat of (B,14) plus the 

following differential equations which can be solved backwards from W( tf ) = 0 and 

(B,17) 

(B,18) 

We need to find an expressIon for the multiplier v. Then, from the terminal 

constraint function (B,6) we obtain: 
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v = W(trl( F(tfx(t) - l1(t)) (B,19) 

which is valid for all tE [to' tf ]. However, noticing that W( t
f
) is singular, we may 

write, for instance: 

(B,20) 

If W(t) is singular for all tE [to' tfL then the system is not controllable and the 

terminal constraint may not be satisfied (Bryson and Ho, 1975). 

Substitution of (B,5) in (B,4) gives: 

u(t) (B,21) 

Define: 

G(t) = i-iE TK(t) 

--I -
g(t) = -R (B T( k(t) + F(t)v) - A(t) ) 

(B,22) 

Then we can write the control law as 

u(t) = -G(t)x(t) + get) (B,23) 

Substitution in the state equation i = Ax(t) + B u(t) + aCt) gives: 

i = (A - BG(t) )x(t) + Bg(t) + aCt) (B,24) 

A straightforward reasoning on the dependence of the different variables 

involved, gives rise to Procedure 2.3.2. 

C. A CONJUGATE-GRADIENT OPTIMAL CONTROL ALGORITHM 

A multiple-input extension of the single-input conjugated-gradient algorithm 

presented in (Quintana and Davison, 1974) is used as an auxiliary algorithm for 

solving the modified model-based problem in Algorithm 3.2.l. The algorithm is easy 
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to implement and its convergence has been proven for any arbitrary and feasible 

initial estimate of the optimal control (Quintana and Davison, 1974). The key 

concepts of this algorithm are the numerical integration of the state and costate 

equations, and a gradient in function space to update the controls which are clipped

off at the bounds so as to minimize the Hamiltonian. The Quintana-Davison (QD) 

algorithm solves the following class of optimal control problems: 

subject to 

rrun (t 
u(t) J = <I> (x(tj)) + J

o 

f ~(x(t), u(t), t) dt 

x = F (x(t),u(t),t) 

x(to)=xo 

where <I> : 9\n---t9\ is a gIven terminal weighting, ~: 9\nx9\mx9\---t9\ IS a 

performance measure and F : 9\nx9\mx9\---t9\n is a dynamic model. 

Define: 

H = ~(x(t),u(t),t) + P T(t)F (x(t),u(t),t) 

where 

Define the signum function as: 

where X is a scalar argument. 

{
I X>O 

sgn(X)= -1 X<O 
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Define the j-th diagonal element of the mxm saturation matrix Set) as: 

0: u/(t)=u or uj.i(t)=u. and sgn(uji(t))=-sgn(gui(t)) 
m~ ~~ ) 

1: otherwise 

and the off-diagonal element as: 

Sj~(t)=O; ftk 

Define the vector saturation function as: 

SAT(u(t)) = 
sat(u ) 

m 

where the scalar saturation function is given by: 

sat(u.) = 
j 

Define the following quantity: 

~ 

'(/ = 0.5K~ 

0 

where 

u u>u 
rna'S ] max) 

u. u. 5:u <u 
] mIn} ] max) 

i i 
Ko<Km 

i> i Ko-Km 

1t~ =0 or 1t~ =0 

where the inner products 1t;, ITl, and 1t~ are given by: 
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(C,4) 

(C,6) 

(C,7) 

(C,8) 

(C,9) 



1[i = It/ gui(trs i(t)gui(t)dt 1 to 
i = It/ g~-l(trs i(t)g~-ldt 1[2 (C,IO) to 
i 

= It/ gui(trs i(t)d i(t)dt 1[3 
to 

Given the above definitions, the following multiple-input extension of the Quintana

Davison (QD) algorithm is described as follows: 

Algorithm C.I: Multiple input extension of the conjugate-gradient algorithm by 

Quintana and Davison (1974) 

Step a 

Step b 

Step c 

Step d 

Step e 

Choose an initial estimate U°(t)EQ, determine guo=VuoH and set 

Choose the step length 8°~0 to minimize J[ SAT( u Oct) +8° S °(t)d(t)) ] . 

Let u 1(t)=SAT(u°(t)+8°S°(t)d°(t)) and i=O. 

Set i =i + 1, compute the new saturation matrix S i(t) and determine 

the direction of search as follows: d i(t) = -gui(t) +t,iS i(t)d i-l(t). 

Choose 8 i>0 to rmnlrmze J[SAT(u i(t)+8iS i(t)d i(t))]. Let 

Repeat steps c and d until IJ[Ui+1]-J[u i]I~8J[Ui+l] where 8 IS a 

given tolerance. 

In order to improve convergence, the algorithm may be reset to steepest 

descent (i.e. set t,;=0) every certain number of iterations (typically 2-10). 
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D. DERIVATION OF PROCEDURE 5.3.1 

Here we want to solve the following discrete-time two-point boundary value 

problem (TPBVP) 

--1 -
x(k+ 1) = Ax(k)+BR (B Tp(k+ 1) -"A(k)) + a(k) 

p(k) = -Qx(k) + A Tp(k+ 1) - P(k) 

with border conditions: 

x(No) = Xo 

P(Nf) = <t>x(Nf ) 

(D,!) 

(D,2) 

where all the quantities are defined in Chapter 5 and the control law is given by: 

(D,3) 

This linear TPBVP can be solved by using the backward sweep method 

(Bryson and Ho, 1975; Lewis, 1986a). The key is to assume the relationship between 

costate and state as 

p(k) = S(k)x(k) +h(k) (D,4) 

where S(k) is a nxn matrix and h(k)E 9\n. Substituting (D,4) in the first equation in 

(D,I) we obtain: 

x(k+l) = Ax(k)+BR-\B T(S(k+l)x(k+l) +h(k+l))-~(k)) + a(k) (D,S) 

Grouping terms results in the following: 

x(k+1) = (In +BR-
1
B TS(k+1)f1(Ax(k) + BR-l~(k) 

+ a(k) - BR-1B Th(k+ 1)) 

Substituting (D,4) in the second equation in (D,1) we have 

S(k)x(k) + h(k) = Qx(k) + A TS(k+l)x(k+l) + A Th(k+l)-~(k) 

Substituting (D,6) in (D.7) and grouping terms: 
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(D,6) 

(D,7) 



[ -S(k) +Q+A TS(k+ l)[In +BR -IB TS(k+ l)rlA ]x(k) 

+[A T -A TS(k+ l)[In +BR -IB TS(k+ 1) rIBR-1 B T] h(k+ 1) -h(k) -P(k) (D,S) 

+A T S(k+ l)[/n +BR -lB TS(k+ 1) rl[BR-
1 ~(k) +a(k)] = 0 

Equating coefficients to zero in (D,8) results in the following set of difference 

equations which can be solved backwards from the terminal conditionsS(N1) = <l> 

h(k) = [A T-A TS(k+l) [In + BR-IBTS(k+l)rIBR-IBT]h(k+l) 

- ~(k) + ATS(k+l)[In+BR-IBTS(k+l)rl[BR-IA(k)+a(k)] 

(D,9) 

(D,lO) 

By using the matrix inversion lemma (See, for instance, Lewis (l986a)) we obtain 

the following equivalence: 

and define G(k) as: 

(D,l2) 

Now, we can re-write (D,9) and (D,lO) as follows: 

S(k) = Q + A TS(k+l)(A -BG(k)) 
(D,l3) 

h(k) = (A-BG(k))Th(k+l) + (A-BG(k)rS(k+l)a(k) (D,14) 
- -

- ~(k) + G(kr A(k) 
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Substituting (D,4) in (D,3) we obtain: 

-I 
u(k) = -R- BT[S(k+1)x(k+1) + h(k+1)] + i-lACk) (D,15) 

which can be re-written as follows: 

u(k) = -G(k)x(k) + g(k) (D,16) 

where 

-
g(k) = [R + B TS(k+1)Br l [-B T S(k+1)a(k) 

- (D,17) 
- B Th(k+1) + A(k)] 

Finally, uSIng (D,16), the state equation x(k+ 1) = Ax(k) + Bu(k) +a(k) can be 

written as 

x(k+ 1) = (A - BG(t) )x(k) + Bg(k) + a(k) (D,18) 

A straightforward reasoning on the dependence of the different variables 

involved, gives rise to Procedure 5.3.1. 

E. DERIVATION OF PROCEDURE 5.3.2 

Here we will include terminal constraints in the values of the state variables 

xj(N
f

) =0, iE [ 1 , q], which can be written as follows 

where C = [/ 10] is a qxn matrix. 
q 

(E,l) 

Thus, we want to solve the following two-point boundary \'aJue problem 

(TPBVP) 

280 



- 1 -
x(k+ 1) = Ax(k)+BR - (B Tp(k+ 1)-'A(k)) + a(k) 

(E,2) 
p(k) = -Qx(k) + A Tp(k+ 1) - ~(k) 

with border conditions: 

x(No) = Xo 
(E,3) 

p(N
f

) = <t>x(N
f

) + C TV 

where VE 9\q is a Lagrange multiplier to be determined such that (E, 1) is satisfied. 

The control law is given by: 

(E,4) 

This linear TPBVP can be solved by using the backward sweep method 

(Bryson and Ho, 1975; Lewis, 1986a). The key is to assume the relationship between 

costate and state as 

p(k) = S(k)x(k) +h(k) + F(k)v (E,5) 

and express the (assumed fixed) terminal constraint function as 

'V = F(krx(k) + W(k)v +ll(k) (E,6) 

where S(k) is a nxn matrix, F(k) is a nxq matrix, W(k) is a qxq matrix, h(k)E 9\" , 

Substituting (E,5) in the first equation in (E,2) we obtain: 

--1 
x(k+ 1) = Ax(k)+BR (B T(S(k+ l)x(k+ 1) (E,7) 

+h(k+l) +F(k)v)-A(k) ) + a(k) 

Grouping terms results in the following: 

-_I --1-

x(k+ 1) = (I" + B R B T S(k+ 1) r l (Ax(k) + B R A(k) (E,8) 
--I 

+ a(k) - BR BT(h(k+I)+F(k+l)\,)) 
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Substituting (E,5) in the second equation in (E,2) we have 

S(k)x(k) + h(k) +F(k)v = Qx(k) + A TS(k+ l)x(k+ 1) + A T h(k+ 1) 
_ (E,9) 

+ A TF(k+ l)v - ~(k) 

Substituting (E,8) in (E,9) and grouping terms: 

[-S(k) +Q+A TS(k+ l)[In +BR -IB TS(k+ 1)rIA ]x(k) 

+[A T -A TS(k+ l)[In + BR -IB TS(k+ 1) riB R-I B T] h(k+ 1) - h(k) - P(k) 

+A T S(k+ 1)[ln +BR -IB TS(k+ 1) rl[BR-
I ~(k) +a(k)] 

(E,lO) 

[A T F(k+ 1) - F(k) -A T S(k+ 1) [In + BR-
I 
B T S(k+ 1) r l BR-

I 
B T F(k+ l)]v = 0 

Equating coefficients to zero in (E, 10) results in the following set of difference 

equations which can be solved backwards from the tenninal conditions S(Nf) = CP, h(Nf ) = 0 

h(k) = [A T -A TS(k+ 1) [In + BR-
I 
B T S(k+ 1) rIBR-

I 
B T] h(k+ 1) 

- ~(k) + A TS(k+1)[In+BR-IBTS(k+l)rI[BR-IA(k)+a(k)] 

(E,ll) 

(E,12) 

In addition, we have assumed that the constraint function (E,6) is constant and 

hence: 
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\Jf = F(kfx(k) + W(k)v +l1(k) = F(k+ Ifx(k+ 1) 

+ W(k+l)v + l1(k+l) 
(E,l..t ) 

Substitution of (E,8) in (E,14) and grouping terms, results in a repeat of equation 

(E,13) plus the following difference equations which may be solved backwards from 

the terminal conditions W(Nf) = 0 and 11 (Nf) = 0: 

(E,15) 
W(k) = W(k+l) - F(k+lf[In+BR-lBTS(k+l)rlBR-'BTF(k~l) 

l1(k) = ll(k+l) + F(k+lf[In + BR-IBTS(k+l)rl[BR-'~(k) 

-BR-'B Th(k+l) + a(k)] 

(E,16) 

We need to find an expreSSIon for the multiplier v. Then from the terminal 

constraint function (E,6) we obtain: 

(E,17) 

which is valid for all kE [No,Nf ]. However, noticing that W(Nf ) is singular, we may 

write, for instance: 

(E,18) 

If W(k) is singular for all kE [No,NfJ, then the system is not controllable and the 

terminal constraint may not be satisfied (Bryson and Ho, 1975). 

By using the matrix inversion lemma (See, for instance, Lewis (1986a)) we obtain 

the following equivalence: 
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and define G(k) as: 

-
G(k) = [R + B T S(k+ 1)Br l B T S(k+ 1)A 

Now, we can re-write (E,ll) and (E,12) as follows: 

-
S(k) = Q + A T S(k+ l)(A -BG(k» 

h(k) = (A -BG(k)rh(k+l) + (A -BG(k)rS(k+1)a(k) 

- ~(k) + G(k) T ~(k) 

Substituting (E,5) in (E,4) we obtain: 

(E,20) 

(E,21) 

(E,22) 

u(k) = -i-IB T[S(k+l)x(k+l) + h(k+1) + F(k+1)v] + i-IA(k) (E,23) 

which can be re-written as follows: 

u(k) = -G(k)x(k) + g(k) (E,24) 

where 

-
g(k) = [R + B TS(k+1)Br l [-B TS(k+1)a(k) 

- (E,25) 
-B TF(k+ l)v - B T h(k+ 1) + A(k)] 

Finally, uSIng (E,24), the state equation x(k+ 1) = Ax(k) + Bu(k) +a(k) can be 

written as 

x(k+ 1) = (A - BG(t) )x(k) + Bg(k) + a(k) (E,26) 

A straightforward reasoning on the dependence of the different variables 

involved, gives rise to Procedure 5.3.2. 



F. DERIVATION OF PROCEDURE 6.2.1 

Here we want to solve the following discrete-time two-point boundary yalue 

problem (TPBVP) 

x(k+ 1) = Ax(k)+BR-1(B Tp(k+ 1)-~(k» + a(k) 

p(k) = -Qx(k) + A Tp(k+ 1) - P(k) 

with border conditions: 

x(No) = Xo 

p(Nj ) = CT<t>Cx(Nj ) - CT<t>ro(Nj) 

(F,I) 

(F,2) 

where all the quantities are defined in Chapter 6 and the control law is given by: 

(F,3) 

This TPBVP is identical in structure to (D,1), with a different terminal 

condition for the costate. The solution may also be found by the sweep method 

(Bryson and Ho, 1975). The key is to assume the relationship between costate and 

state as 

p(k) = S(k)x(k) + h(k) (F,4) 

where S(k) is a nxn matrix and h(k)E 9{n. The derivation is identical to that 

presented in Appendix D, the only difference being the terminal conditions in S(k) 

and h(k) which are as follows: 

p(N
j

) = C T<t>C 

h(Nj) = -C T<t>r(Nj) 
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