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Abstract 
This project uses advanced modelling techniques to produce a design for a computer based 

advisory system for the operator of a critical, complex, non-linear system, typified by a 

nuclear reactor. When such systems are in fault the operator has to promptly assess the 

problem and commence remedial action. Additional accurate and rapid information to assist 
in this task would clearly be of benefit. 

The proposed advisory system consists of two main elements. The plant state is determined 

and then the future condition predicted. These two components are linked by a common data 
flow. The diagnosed condition is also used as input for the predictive section. 

Artificial Neural Networks (ANNs) are used to perform both diagnosis and predictions. An 

ANN, a simplified model of the brain, can be trained to classify a set of known inputs. It can 

then classify unknown inputs 

The predictive element is first investigated. The number of conditions that can be predicted 
by a single ANN is identified as a key factor. Two distinct solutions are considered. The first 

uses the important features of the fault to determine an empirical relationship for combining 

transients. The second uses ANNs to model a range of system transients. A simple model is 

developed and refined to represent an important section of a nuclear reactor. The results 

show good predicted values for a extensive range of fault scenarios. The second approach 

is selected for implementation in the advisory system. 

The diagnostic element is explored using a set of key transients. A series of ANNs for 

diagnosing these conditions are developed using a range of strategies. The optimum 

combination was selected for implementation in the advisory system. The key plant variables 

which contributed most to the ANN inputs were identified. 

An implementation of the advisory system is described. The system should be a single suite 

of programs with the predictive and diagnostic sections supported by a controller module for 

organising information. The project concludes that the construction of such a system is 

possible with the latest technologies. 
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Chapter 

1 Introduction 

1.1 Background to Thesis 

Recent advances in technology have given rise to a set of complex, critical systems. These 

are typified by having large, non-linear sets of inter-related variables and, in some situations, 

require rapid response to system changes. Examples of such systems can be found in power 

generation, intensive patient monitoring, aircraft flight control and financial markets. Many 

of these systems are currently controlled by human operators who base their decisions on 

observations from a large number of displays or screens of instrument readings. In the event 

of a system change, such as a fault state occurring, the operator has a limited time to react 
before the situation worsens. The system may be seriously affected, often with catastrophic 

results. In many cases, the most severe problems demand the fastest reaction times and 

require the operator to make rapid decisions with what may be potentially serious 

outcomes. 

This situation could be improved if the operator's skill and experience were supplemented 
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by a tool that could monitor the state of the system, advise on future plant condition and 

rapidly assist the diagnosis of any fault situations. The operator would still retain the overall 
control of the system, the tool would merely aid the ability to manage the environment 

safely, quickly and efficiently. 

A possible implementation of such an advisory tool could use artificial intelligence (AI) 

techniques. The various disciplines that contribute to this branch of science have now 

reached a level of maturity that allows practical implementations to be considered. Some 

advantages of using Al are the ability to learn, rapid operation and the use of domain 

experts knowledge. Furthermore, most Al techniques are now available as computer 

software packages and so remove the need for the development of expensive, specialised 

equipment. 

The work reported in this document investigates applying a combination of two modern 

modelling techniques; one from Artificial Intelligence, the second from Evolutionary 

Computation, to the monitoring of a power generation plant, namely a nuclear reactor. The 

two techniques considered are artificial neural networks (ANNs) and genetic algorithms 
(GAs). Briefly ANNs provide a crude model of the function of the brain; whilst a GA uses 

evolutionary techniques to solve problems. The two topics are felt to complement each 

other as the weaknesses of one technique are compensated for by the second. The two 

techniques also have some similarities in that practical solutions are obtained from randomly 

assigned initial conditions, and in some implementations the optimization of the results is 

an iterative process. 

A system of ANNs is proposed and developed which is able to both diagnose the status of 

the plant and to predict its future condition based upon that diagnosis. Each ANN is 

optimized to minimize the error in performing their respective tasks. The proposed system 

will be accurate, quick to operate, easy to update with new information and robust to noisy 

or missing plant data. 

The research on which this document reports was performed during a three year project. 

The program is part of an ongoing collaboration between the Department of System 

Science, City University, London and the Department of Nuclear Science and Technology, 

Royal Naval College, Greenwich. 
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1.2 Aims and Objectives 

The aim of this work is to investigate the use of two advanced techniques, ANNs and GAs, 

in the intelligent monitoring of a complex systems environment, typified by a nuclear 

reactor. 

The following objectives will be addressed to achieve this aim: 
*a detailed study of the state of current relevant research; 
* an in depth investigation into using neural networks for the prediction of PWR plant 

variables; 

* fundamental work on optimizing number of predictive neural networks required to 

accurately predict a suitable range of plant transients will be described; 

* the appropriateness of ANNs to PWR diagnostic problems will be explored; 
*a prototype implementation will be fully described. 

1.3 Plan of Report 

The remainder of the thesis is as follows. Chapter Two describes the potential of using Al 

techniques for application to complex systems. This chapter gives a detailed review of 

relevant research carried out in both nuclear power plants and other complex problem 
domains. Chapter Three contains the formal description of the problem addressed by this 

work. The modelling method used is described in Chapter Four. Chapters Five, Six and 

Seven are concerned with modelling the application. 

Chapter Five reports the initial investigations into the predictive nature of ANNs. The 

Chapter concludes that knowledge about the number and type of transient conditions that 

can be accurately modelled by a single ANN is an important requirement for the success of 

the project. This question is addressed in Chapter Six. Two very distinct approaches are 

considered and developed. The first investigates an empirical relationship between the 

attributes of the graphical representation of the transients. The second method develops an 

ANN based simulation of the PWR to predict a wide range of transient conditions. The 

merits of the two strategies are then discussed and the second method selected for inclusion 

in the advisory system. 

Chapter Seven considers the diagnostic element of the advisor. An iterative approach is 

19 



adopted in which the number of plant variables and number of time steps of previous 
information are varied and used as inputs for a range of ANNs. Chapter Eight discusses a 

prototype implementation of the advisor and highlights some potential problems with 

possible solutions. Chapter Nine draws some conclusions and indicates future direction.. 

Appendix A briefly introduces the Pressurised Water Reactor (PWR). Appendix B discusses 

both ANNs and GAs. The remaining Appendices contain full training details of all ANNs 

developed and sample computer program listings. These are referred to in the text for the 

relevant chapters. 

Although each chapter includes a brief introduction and summary, it is intended that the 

chapters should be read in the order that they appear in the report. 
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Chapter 

2 Critical Review 

2.1 Introduction 

This chapter describes the current research on artificial neural networks (ANNs) and genetic 

algorithm (GA) applied to complex systems. The review is mainly concentrated on the 

nuclear power industry, but other complex, critical systems are also considered. Each 

potential use is described including any specific methodology developed. Finally, a section 

on hybrid modelling methods in which integration of ANNs and GAs are discussed. 

Appendix B contains a brief introduction to each topic. 

Research into artificial intelligence is becoming increasingly popular in terms of number, 

scope and geographical location of research groups. The following figure, Fig 2.1, shows 

the number of research papers on neural networks announced for the years 1969 to 1995. 

Until 1985 the annual number of papers announced remained relatively low. This could be 

attributed to the 1969 publication of Minsky and Papert's book 'Perceptron' (Minsky, 
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Papert. 1988). This detailed serious shortcomings of the algorithms in use at the time 

causing a corresponding decline in research funding. This hiatus was reversed by the 1986 

publication of the work of Rumelhart and McClelland, the first widely available work 

containing new algorithms that answered the previous problems (Rumelhart, 1986 and 

McClelland, 1986). The annual number of papers announced has since rapidly increased 

from 88 in 1986 to 9119 in 1995. 
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Figure 2.2 shows the corresponding number of papers published for genetic algorithms. 

There is hardly any published work prior to Holland's landmark book on the subject 

(Holland, 1975). Since then research interest has steadily increased but not at the same 

pace as neural network research. 
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It would be incorrect to attribute the above results solely to the publication of landmark 

books. Other factors must also have contributed significantly. The greater availability of 

low price, high performance computers allowed more researchers to explore areas that 

had previously been the domain of select institutes equipped with mainframes or 

supercomputers. An increase in the world wide scientific population meant that more 

researchers were available to explore leading edge subjects. Also the greater 

dissemination of results, through conferences, journals and electronic methods allowed 

scientists in different places to exchange ideas and not work in isolation. Finally, the 

practical need of artificial intelligence solutions was being realized by the world at large. 

Engineering organisations began to consider incorporating the technology into their 

products to maintain a competitive lead over their rivals. Consequently they became 

involved in research either establishing their own research teams or funding academic 

institutes for a program of research. 

The large number of publications, while encouraging for the future, provides a challenge 

for the researcher wishing to review the subject. Unfortunately, a serious literature 

search has to concentrate on the most relevant areas of the topic with only little more 

than a cursory investigation of other applications. 
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2.2 Review of Neural Network Applications to Nuclear Power Industry 

2.2.1 Introduction 

As discussed in the introduction to this chapter, research into neural networks and their 

applications are becoming increasingly popular. Many diverse areas have been investigated 

to explore the benefits of neural networks, and the nuclear power generation industry is no 

Ecception. 

The attraction of neural networks to the nuclear industry is understandable. The typical 

control room of a nuclear reactor is a rather daunting place. The operator has to monitor 

many hundreds or even thousands of plant parameters. Many of these are in the form of 

visual analogue signals so the operator becomes familiar with the pattern of settings that 

relate to a particular plant condition. A pattern change then becomes associated with a fault 

condition. With many instruments to monitor, the operator could easily overlook a slight 

change in plant condition which could lead to potential disaster. Most of the reported 

research, to date, has used the classification ability of neural networks to provide a system 

which could advise the operator of any problems. 

With the exception of a few widely publicised events, there is a shortage of observed 

information on reactor incidents. Moral, ethical, ecological and financial considerations 

prevent the destructive testing of nuclear power reactors for training and experimental 

purposes. Extensive use is therefore made of computer simulations, both to train operators 

and to simulate fault conditions. Many of the training sets used in the neural networks so 

far developed have used data from simulators. The information obtained from simulators 

is free of any noise, as the simulator program functions in isolation of any external 

interference. It is therefore usual to assess the performance of the developed ANNs with 

added noise to determine the robustness of the solutions provided. 

The published results, to date, are predominantly taken from studies carried out in America; 

although some recent papers have originated from Korea and Japan. These facts may not 

give a true guide to the quantity and direction of current research. Some results may be 

proprietary or even restricted by the nature of the application and so information is not 

widely available. 

The potential of ANNs to the nuclear power industry is described in a key paper by Uhrig 
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(1991). He introduces several possible applications for ANNs in the nuclear power industry 

and reports on the progress of research in these areas. It is interesting to note that most 
subsequent work continues in the directions outlined in this review paper. 

2.2.2 Diagnosing Plant Condition 

The majority of research to date has considered the diagnosis of nuclear plant condition. 
Bartlett & Uhrig (1992) have investigated the classification of nuclear power plant 

accidents. An ANN was trained to identify normal operating and seven fault conditions. A 

simulator was used to obtain data on the twenty-seven plant variables selected as inputs to 

the diagnostic network. The output of the ANN was a 3-bit coding identifying the one 

normal and seven fault conditions. The coding of the outputs was not explained in any 
detail, although a severity ranking is suspected. 

The structure of the ANN was decided by a unique process referred to as dynamic node 

architecture (Barlett & Basu, 1991). The network learning process began with one node in 

a single hidden layer. The learning was stochastic and self-optimizing. The network was 
trained until a performance plateau was reached. A second node was then added to the 
hidden layer. The learning process continued until another plateau was reached and another 

node added to the hidden layer. This process of training and adding nodes was repeated 

until a specified performance level was reached. The least important node was then 

removed and the training process continued. Eventually the system was found to oscillate 

around the optimum number of nodes in the hidden layer. 

The methodology adopted produced a neural network that quickly responded to the onset 

of most accident conditions. All fault conditions were diagnosed well in advance of the 

reactor scram. The network also displayed a graceful degradation with 2% Gaussian noise 

added to the input set. 

This work was continued and reported in a second paper (Basu & Bartlett, 1994). The 

number of transients considered was increased to twenty-seven, and the number of plant 

variables raised to ninety-seven. They again used the dynamic node architecture to develop 

the neural network, but used the standard back propagation algorithm for learning. Again 

the training data was obtained from a simulator and the three digit coding for the outputs 

was retained for the presentation of the twenty-seven outputs. 
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Two neural networks were developed in this study. The first was simply to decide the state 

of the reactor. If the plant was found not to be operating correctly a second network was 

used to diagnose the type of fault. Two advantages of this approach, over a larger single 

network, were offered in the paper. Firstly, each network may only require a subset of the 

available data set for operation. The number of variables in the training and test sets would 

then be smaller and this would enable the resulting network to be developed easier. The 

second advantage is that each network would be developed independently and therefore not 

rely upon the satisfactory training of the previous network for its own learning. 

The two neural networks developed used the same number of inputs, despite the above 

advantage. However, they consisted of different internal architectures. 

2.2.3 Hybrid Systems for Diagnostics 

The next set of studies discussed have all adopted a hybrid of artificial intelligence 

techniques to diagnose fault conditions. The first paper reported used statistical methods 

and a genetic algorithm to identify a transient. The next two papers each utilised an expert 

system to enhance the features of neural networks. While the last paper considered a 

combination of fuzzy logic and neural networks. 

Lin, Bartal & Uhrig (1995) developed a k-nearest neighbour system to detect and classify 

the severity of a transient in a nuclear power plant. A historical database of parameters for 

a set of known transients was used to identify new transients. This was performed by 

comparing the variables of the unknown fault condition with the two nearest similar 

transients in the database. A new metric was developed to determine the similarity and 

weighting of the neighbours to the new condition and so obtain a diagnosis. The dimension 

of the vector considered for each transient was optimized by a GA. The GA fitness function 

was also developed specifically for the problem and was based on the relative error between 

predicted and observed values. 

Using an ANN, Yukiharu Ohga et al. (1993) investigated the identification of the cause of 

a scram (as described in Appendix A). A time series of five post-scram plant parameters 

were used as the input. Eight time steps were considered giving a total of forty inputs. The 

output was a three digit code for the cause of the scram. A simulator was used to generate 

the data sets. The result of the neural network classification was compared to an expert 
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system in order to confirm the diagnosis. The knowledge base consisted of digital readings 
from the plant. 

Se Woo Cheon et al. (1993) used a different approach. An ANN was developed to provide 

the knowledge base for a transient diagnostic expert system. The inputs for the network 

were twenty-four parameter trends or plant states. Each of the fourteen transients included 

in the paper was represented by a binary valued output. The training and tests sets were 

produced from a combination of measured plant data and simulation code. 

The combination of expert systems and ANNs offers several interesting possibilities. Both 

techniques have disadvantages; expert systems cannot handle missing or noisy data and 

require the extensive use of a domain expert, a neural network can offer no explanation of 
its decision making process. The amalgamation of the two techniques would appear to 

increase the potential of these techniques for diagnosis in the nuclear industry. 

2.2.4 Simulation and Modelling of Plant Condition 

As mentioned earlier, simulators and mathematical models are used extensively in the 

nuclear industry. Parlos et al. (1992 & 1994) have investigated the use of ANNs to model 

key parameters (steam dome pressure, water level and cold-leg temperature) of a U-tube 

steam generator. The inputs to the neural network were optimised to those that contributed 

significantly to outputs. The developed network was used to predict values for these 

parameters after a defined time step. The results compared favourably to a conventional 

mathematical models. 

A recurrent multi-layer ANN architecture was proposed for modelling nonlinear systems. 

Instead of feeding the output from a node to the nodes in the next layer as in a feed forward 

network, the output is also fed back to the node itself and to other nodes in the same layer. 

The use of recurrent networks is an interesting subject. Rumelhart et at. (1989) report that 

every recurrent network can be replaced by a feed forward network over a finite period of 

time. 

Two training phases were used on a heuristically developed architecture. The network was 

first trained on off-line conditions until an acceptable level of performance was reached. A 

second training set, using on-line conditions, was then used to complete the learning 
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process. This adaptive learning avoids presenting a raw neural network with the large 

parameter variations that may occur in fault conditions. Instead the network is initially 

presented with more stable information to recognize and then tuned to the idiosyncrasies 

of the abnormal conditions. The training set was large, 1870 cases, and consisted of values 
for a series of plant conditions at a sequence of ten second time steps. The effects of noisy 
data were implicity included as the empirical model was unable to avoid including the effect 

of other parameters. 

Hyun-Koon Kim et al. (1993) used a neural network to estimate the variation of Departure 

from Nucleate Boiling point (DNB) of a PWR The departure from boiling point is a 
important safety parameter used to assess the core thermal margin. The initial work was to 

develop a neural network to predict DNB off-line. The training and test sets were randomly 

selected from a larger, simulator produced data set. Three networks were developed and 

each consisted of five inputs, one hidden layer of five, five and fifteen nodes respectively 

and only one output. The five inputs in the final network were selected by a sensitivity 

analysis of PWR core parameters. Each network was trained on a different sized training 

set of nineteen, thirty-seven and fifty-six cases respectively. The second network was found 

to offer the best predictions of DNB which were close to those of the simulator. The paper 

concluded with consideration of an on-line version of the system. 

The use of neural networks for simulation and modelling offers several advantages. 
1) Nuclear reactor simulator models are generally of two types. The model can either 

accurately simulate the reactor process at the expense of operating time; or the model is 

able to run in real time, but with some loss of accuracy due to assumptions made to speed 

up calculations. By replacing the whole model or just specific computationly intensive 

sections, a neural network could speed up the run time for the simulator or allow extra 

complexity to be added to the model. 

2) ANNs can be used to model non-deterministic systems. Firstly, a neural network can 

derive implicit relationships between variables and could be used to model situations that 

cannot be calculated deterministically. Secondly, physical and safety restraints may prevent 

the measurement of variables, for example, the core temperature of a reactor. 

2.2.5 Validation of Plant Monitoring Instruments 

As mentioned at the beginning of the chapter the control room of a nuclear reactor contains 
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many instruments. The usefulness of the information they portray is dependent on the 

accuracy of the sensors or measuring equipment attached to the plant. The use of ANNs 

for signal validation has been investigated by Upadhyaya & Eryunek (1992). They 

developed an ANN to predict a sensor's signal. Slight changes in sensor behaviour are 

determined by comparing the anticipated value with that offered by the sensor. The rate of 

degradation could even reflect the remaining useful life of the device. 

In an earlier paper Holbert & Upadhyaya (1990) mapped process states to a hypercube. A 

similar technique to empirical modelling was used to train the cube on operating states. In 

operation the system compared the process states against the learned domain and identified 

any discrepancies. 

The later paper replaced the hypercube with a series of independent neural networks. One 

set of networks were developed for sensor validation during the start up of a nuclear 

reactor. A second set were produced for complete plant monitoring using multiple signal 

estimation. All ANNs were small and consisted of only three or four inputs and one output. 

The structure of each network was calculated using the following equation, from Shannon 

and Weaver's Information Theory (Shannon and Weaver, 1971). 

H=I. log2N 

Where: H= Optimum number of nodes in hidden layer 

I= Number of inputs 

N= Number of training patterns 

The networks were trained with a modified back-propagation algorithm. The new 

methodology allowed the user more flexibility in deciding the training parameters, including 

some on line updating. The predictions obtained from the networks were compared to 

actual plant values and found to offer good agreement, indicating that ANNs could replace 

empirical or physical models as estimators. 

2.2.6 Other Applications 

This section briefly introduces other reported nuclear applications of ANNs. The application 

described is not central to the main ideas considered for this project. However, the 
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underlying theory might be potentially useful. Also, to have omitted them would have given 

an incomplete picture of the potential of neural networks in the nuclear industry. 

2.2.6.1 Database Applications 

Gacem et al. (1990) has investigated using the implicit relationships developed by ANNs 

to extract additional information from a database of nuclear incidents. A self-organising 

Kohonen network was used to map cause and effect relationships onto a two-dimensional 

map. The centroids of these mappings was then used to construct a multi-layer network that 

could identify sequences of patterns and detect unusual patterns. A prototype network, 

containing a large number of incidents, was developed. The initial results appeared 

encouraging; however, no subsequent progress has been reported. 

Heger et al. (1989) described an application to develop an adaptive interface for a nuclear 

database using ANNs. The interface became an associative information evolving 

environment that allowed the user to refine queries to the database. A test database was 

used to prove the systems robustness and fault tolerance. 

2.2.6.2 Fuel Reloading Planning 

Another interesting use of ANNs in the nuclear industry is for planning PWR fuel reloading 

cycles. Fuel assemblies are classified as fresh, once burned and twice burned. During the 

reloading cycle the twice burned fuel assemblies are replaced by fresh ones. After every 

reloading process three key parameters; local peaking power, maximum bumup and 

effective multiplication factor have to be considered both for safety and economic reasons. 

Kim Han Gon et al. (1993) used two networks to predict the local peak power factor and 

the effective multiplication factor of a PWR. The neural networks they developed and 
justified were unusual as they were composed of a large number of hidden nodes; 500 nodes 

in one hidden layer for 21 inputs and 18 output nodes. The training and test patterns were 

randomly selected from a range generated by a commercial deterministic programme. 

The system they developed proved to be a very fast predictor of the two parameters, being 

several hundred times faster than the reference numerical code. It also demonstrated that 

neural networks can be used to predict core parameters. However, they concluded that the 

accuracy, although usually within an permissible range, was not sufficient enough. They 
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proposed several possible solutions to this question including improved selection of the 
training patterns. 

Uhrig (1989) and Miller et al. (1992) both considered a similar application for ANNs. The 

conventional core calculations were emulated with neural networks. Again two networks 

were developed; one for fuel depletion calculations, the second for the neutron calculation. 
An expert system was then used to shuffle the fuel in order to improve the core loading. 

The method was not approved by the Nuclear Regulatory Commission so could not be used 
for licensing. It did however produce a near optimal solution much faster and cheaper than 

existing methods. 

2.2.6.3 Safety Control 

louse et al. (1990,1993) considered the safety aspect of using ANNs in nuclear plant. A 

self-programming neural network, based on the Barto-Sutton architecture, was developed 

and trained to solve increasingly difficult tasks. The assignments ranged from stabilizing a 

reactor core to the multi-variate control of a PWR during start up. 

A system model was used to produce the required parameters for the network. The final 

system was demonstrated to synthesis the control of a four-loop PWR. The network was 

shown to be robust and able to handle new problem domains with a graceful degradation. 

2.2.7 Discussion 

As a result of the literature review several observations have become apparent. These are 

now discussed. 

There is a noticeable increase in the amount of ANN research published each year; for 

example, a recent journal on nuclear engineering contained three papers relevant to this 

study. The number of institutions reporting research results has also grown. The increase 

in research activity may give a guide to the potential for neural network applications in 

nuclear reactors. 

There have, to date, been no large scale ANN applications of an entire plant reported in the 

literature. All investigations have considered small subsets of the reactor, for example one 

loop of the primary circuit. The ANNs developed have also been small, not only in number 
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of nodes but in terms of data sets. A possible reason may be that most of the existing work 
is a preliminary investigation to determine the validity of the approach and that real, full 

plant applications are now being studied 

There is no universally accepted method of deciding the architecture of ANNs. Most papers 

adopted a heuristic approach and used an educated guess to refine the number of nodes in 

a hidden layers. Some researchers developed their own algorithm to solve the problem, for 

example the dynamic node architecture of Basu (1994). Custom solutions may create 
further problems in determining the accuracy of a solution. A neural network may fail to 

classify correctly due to limitations with the bespoke algorithm as well as problems in the 

nature of the application. 

Each paper developed a unique validation method for their neural networks. Usually this 

was a comparison of the predicted output with that obtained from a simulator or plant. This 

technique leads to a very restricted solution set. An ANN that accurately predicts the 

performance of one reactor may not enjoy similar success on a slightly different model. 

It is felt that the above problems could be improved by the use of a combination of artificial 
intelligence techniques. Uhrig (1991) briefly discussed the potential of this approach. The 

strengths of one approach could compensate for the weaknesses of another system. A 

possible example of this is an expert system providing a more rigid explanation of neural 

network decision making process. A later section of this chapter considers further 

possibilities from other fields of artificial intelligence. 

2.3 Neural Network Applications to other Non-linear Systems 

This section examines applications of neural networks in other fields of research. The 

review is by no means exhaustive and concentrates on topics and techniques relevant to the 

proposed direction of this particular research project. 

2.3.1 Financial Applications of Neural Networks 

Traditionally the financial world has made extensive use of statistical methods, such as 

exponential smoothing and auto-regression, to predict share prices, exchange rates, 

economic turning points and sales forecasting. The use of neural networks in these, and 

similar areas, has been the subject of much investigation in many countries. The majority 
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of the applications require a predictive capability and this is the area concentrated upon in 

this report. 

In general, information on the neural networks developed has been scant. A possible reason 
for this may well be to maintain any competitive advantage gained from using neural 

network technology. Any slight improvement gained by ANNs over existing techniques can 

result in large profits. Consequently the developer of a successful system is unlikely to 

publish full details of the implementation and give competitors the benefit of his labours. 

Refenes (1991) and Refenes et al. (1993) used an ANN to predict the exchange rate 
between the American Dollar and the German Mark. Two types of forecasting were 
developed. The first was a multi step prediction to identify general trends. This technique 

used a feedback approach in which the predicted values were fed back into the neural 

network as inputs. The second type of forecasting was a single step prediction. The output 

was the exchange rate one time step into the future. No feedback, using the output as input 

for longer predictions, was considered as the ANN only predicted one time step ahead at 

a time. 

A technique called 'windowing' was adopted for the forecasting. This method is used to 

identify relationships in noisy datasets. The diagram below shows the basic concept. 
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Fig 2.3 Windowing of Information 

The two windows were used to examine the dataset. The first was used as the input to 
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the ANN, the second as the output. The relationship between the two windows is a 

mapping determined by the training process. For subsequent predictions the windows are 
both moved along the time axis a defined step size. The choice of window size and step size 

are critical to the accuracy and convergence of the final network. 

The papers also introduced a dynamic learning procedure in which nodes are added to the 

hidden layer during the training process. Two similar types of dynamic learning were 
discussed. The difference between the techniques was the method of creating the inputs for 

the hidden layer. The first approach used cascade correlation, the input nodes and the 

output from the last hidden node as inputs to each hidden node. The second method was 

a fully connected network with every previous node being connected to each hidden node. 
The paper did not report a preference or any network details. The final network was able 

to successfully predict trends in the exchange rate. 

In a later paper, Refenes (1994), the performance of an ANN is discussed along with testing 

strategies and metrics. The paper comments that neural network literature contains many 

poorly tested results. One reason for this may be the inherent difficulties of statistical tests 

for non-linear models. 

Gia-Shuh Jang et al. (1993) used a similar approach to predict the buying or selling of 

shares on the Taiwan Stock Exchange. The developed ANN comprised of two modules; 

the first used a short term window of the last twenty-four days trading and the second 

module considered a long term window of the last seventy-two days trading. Feature 

extraction was used to pre-process the datasets before training. The final output of the 

neural network was a weighted combination of the results of both the short term and long 

term predictions. 

Again, a new method of training the network was developed. After randomly setting the 

weightings, an initial training set of share prices from the previous year was presented to 

the network. A moving window training scheme was then used for sensitivity tuning of the 

weights to both long and short term trends. The architecture of the network was developed 

heuristically with the testing of several hidden layer sizes until an optimum was found. 
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2.3.2 Medical Applications of Neural Networks 

Another area where ANN applications have been developed is in the medical domain. The 

medical use of artificial intelligence has a long history, going back to the 1950s. Expert 

systems such as MYCIN and some statistical systems incorporating Bayesian-based 

estimators were very successful. It is no surprise that the potential of neural networks has 

also been investigated. 

Yearworth and Sharpe (1992) report on the current situation of medical ANNs applications 
in the EC OpenLabs AIM project. The vast majority of reported medical applications of 
ANNs are for diagnosis of particular conditions. The inputs for these ANNs are usually 

patient symptoms, medical images or biophysical parameters. 

Mulsant (1990) investigated the use of an ANN in the diagnosis of dementia. The input set 

of his network consisted of a series of conditions that were classified for binary 

representation. For example, the age of patient had three binary inputs and was categorised 

as Young (<50) (10 0), Middle (50-70) (0 1 0) and Old (>70) (0 0 1). Several parameters 

consisted of two inputs; for the condition being present and absent. The case of missing or 

unknown information was permitted by setting both values to 0,5. He also reduced the 

number of possible diagnosis of dementia to seven main classes. The final network was 

found heuristically to consist of two hidden layers of ten and seven nodes respectively. An 

additional feature was a confidence facility that requested further information on 

complicated cases. 

Weller (1993) used a neural network to classify the organisms causing septicaemia. Again 

a feature selection process was used to reduce the input set to only include the most 

significant parameters. This selection process used a domain expert to identify the important 

variables. The initial set of fifty-one parameters was reduced to nine. Two of the final 

categories, 'year of infection' and 'age of patient', were real valued inputs. The range of 

these parameters was modified to use a binary representation. The 'year of infection' 

category was represented as a binary coding of the particular year with respect to when the 

recording began. For example, the recording of septicaemia bacteria was begun in 1969; so 

a patient who became ill in 1986 would be given the code 10 001 (17) for the 'year of 

infection'. The 'age of the patient' was classified into four intervals. These were 0 to 3 

months, 3 months to 4 years, 4 years to 62 years and 62 years to 100 years. A forty-five 
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year old patient would therefore have an age input of 00 10 and a two year old child's age 
input would be 0 10 0. This method enlarged the neural network to sixteen binary inputs. 

The paper also introduced a method of developing the optimum neural network 

architecture. It proposed using a genetic algorithm to evolve the number and size of the 

hidden layers. Genetic algorithms and their application in this technique are explained in the 

next chapter. 

The techniques of feature selection and evolving ANN architecture are being further 

explored in current work. The feature selection has been performed using statistical 

methods to identify the prominent parameters. This data set is then used to evolve the 

neural network architecture. This approach has the benefit of reducing an initially large data 

set to a more manageable size while still retaining the important features. 

A potential problem with ANNs is for one outcome or result to dominate and so affect the 

accuracy of the output. Medical records consist of a set of patient related readings. These 

values are measured or observed over many days and provide a guide to the eventual 

outcome or diagnosis. If an ANN were used to aid the diagnostic process the training and 

test sets would be composed of values from these readings. However, the construction of 

these data sets requires some careful thought. 

As an extreme example consider two patients, both of whom have similar symptoms but 

different conditions. One patient is in hospital for only one day for the diagnosis to be 

complete, whereas the second person requires twenty days observation for an analysis. If 

readings are taken daily the first patient would only have one set of readings compared to 

the twenty for the second person. If a neural network is now developed to aid the diagnosis 

of these conditions, the daily readings would be used to generate the training and test sets. 

Of the twenty-one members of these data sets only one has an output for the first condition 

whereas twenty are for the second illness. The data sets would be weighted towards the 

second condition. The trained neural network would be therefore be biased to this ailment 

and could give incorrect diagnosis. 

One way to resolve this dilemma is to only consider one daily reading from the second 

patient. The reading used could be selected at random from all recorded values. While this 
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method would result in an equal number of data sets for each condition it would leave a lot 

of redundant relevant information; the nineteen other readings for the second patient. 
Further work is needed to develop a suitable compromise 

There are many similarities between applying neural networks to medicine and nuclear 

power applications. They are both concerned with the well being of a complex system; there 

is a need to diagnose the condition of this system accurately and quickly; lastly, in each case 

there are a large number of possible parameters that may have unexplored implicit 

relationships that neural networks can work with. The progress of medical neural network 

applications has been monitored during this project to identify common problems and 

solutions. 

2.4 Hybrid Systems 

2.4.1 Neural Networks and Genetic Algorithms 

One of the biggest weaknesses of neural network applications is the development of the 

final structure of the network. The problem is usually addressed in one of three ways. 

The final architecture can be found heuristically, an educated guess is refined until the 

results obtained are acceptable. This method, while very common, has an element of luck 

or at least 'black magic' as part of the procedure. There is no guarantee that the obtained 

solution is optimal or even efficient. 

A second method is to use a formula to determine the structure of the network. The 

formulae used have all been developed for a particular application or based on a problem- 

specific theory and are not necessarily appropriate to the current area of interest. For 

example, an equation designed for a network to classify general trends would not be 

efficient in an application requiring specificity. 

The third method involves the development of a custom procedure to determine the 

network form. These algorithms usually function very well in the envisaged application. 

However, they require resources to develop and could well be problem specific and not 

transfer well to other problem domains. Furthermore, there is no method of verifying the 

procedure, a poor experimental result may be due to either the application or the algorithm, 

or even both. 
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As an alternative to these commonly found methods, a genetic algorithm could be used as 

an universal method of developing neural network architectures. This concept has already 

attracted some attention in the literature. 

Weller (1993) coded the number and size of the hidden layers into a genetic string. A 

maximum number of possible nodes was defined, determined by the number of inputs. The 

coding then consisted of a binary representation of the size of each hidden layer. A 

maximum of four hidden layers was allowed, although networks with less than this number 

were permitted by the coding. The string was translated into a neural network architecture, 
for example the code 0011101011000101 became a four layer network with 

three, ten, twelve and five nodes in the respective hidden layers. 

Each network in a population was trained and the fitness of each string calculated. The 

fitness was a linear combination of RMS error, network complexity and learning time. The 

traditional genetic algorithm techniques of parent selection, crossover and mutation were 

then applied to produce the next generation. The following diagram, Figure 4.1, further 

explains the process. 
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Another popular approach to the task of deciding neural network architecture has also used 

a genetic algorithm for selecting the interlayer links of a neural network, see Dasgupta et 

al. (1992), Elias (1992). The number and size of the network was first established. A coding 
for the existence of a link between nodes was then developed along with a fitness coding. 
The results reported seem to encouraging if idiosyncratic. 

Training a neural network with a genetic algorithm has also been investigated. Potter 

(1992), Karunanithi et al. (1992) both investigated methods of replacing the back- 

propagation algorithm with an evolutionary system. 

Guo et al. (1992) used a genetic algorithm for feature selection of the input layer for a 

neural network. This idea is very interesting and, if successful, could replace the current 

methods of domain experts or statistical analysis to select the input variables. A difficulty 

to be resolved is one of fitness, a good input set could be discarded because of a bad neural 

network architecture, similarly a poor data set could lead to the rejection of the optimum 

architecture. 

The genetic algorithm complements the neural network. Although they are both initiated 

by random numbers, they rely on vastly different algorithms to function. A neural network 

requires a well defined training and test set to proceed, a technique referred to as supervised 

learning. The genetic algorithm has no such restraints, the solution found is often surprising 

and unexpected. The use of genetic algorithms will be considered throughout this research 

project. 

2.4.2 Hybrid Neural Networks and Fuzzy Systems 

The combination of neural networks and fuzzy systems can be of two types. Tsoukalas et 

al. (1994) refers to these categories as neuro-centric or fuzzy-centric. 

A neuro-centric hybrid gives importance to the neural network component. The basic 

algorithm is a neural network. Fuzzy systems are used to enhance and improve the neural 

network. The neural network parameters such as threshold or link weightings are replaced 

by fuzzy regions. An example of this approach was outlined earlier, Sang Ki Moon et al. 

(1994) developed a system to predict the critical heat flux of a nuclear reactor. 
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A fuzzy-centric hybrid emphasises the fuzzy system part of the hybrid. Fuzzy rules are first 

used to formulate an algorithm to address a problem. Neural networks are then utilised to 

change the rules to an optimum state or to determine membership functions. 

Ikonomopoulos et al. (1994) used this approach for the virtual measuring of a reactors 

secondary flow control valve position 

2.4.3 Discussion 

Some of the neural network problems identified in the previous sections have been 

addressed using hybrid techniques. The solutions developed are mostly test cases but the 

results so far are very encouraging. The strengths of one form of artificial intelligence 

compensates for the weaknesses of a second form. A good example of this is the expert 

system and neural network combination. It is felt that the use of hybrid techniques will be 

of increasing importance in future artificial intelligence work. 

2.5 Summary 

The points raised earlier in the chapter appear to have also been considered by the wider 
ANN modelling community. In most arenas the applications of neural networks still appears 

to be in an investigative stage. There are as yet no large scale implementations of neural 

networks. It is possible that instead of one large all encompassing network, with the 

corresponding problems of convergence, the trend may be for flexible, linked multiple 

smaller systems. 

Again the development of the architecture of a neural network appears to have attracted 

a lot of interest. At present no one way has been adopted for general use with many 

researchers developing their own algorithm or using heuristic methods. It is hard to accept 

that the development of neural network architectures is application specific; there could 

well be a universal algorithm for all situations. 

The validation of neural networks is a challenging problem. Several researchers have 

considered this aspect but again the approaches have been very piecemeal. It is possible that 

once the use of neural networks becomes an accepted tool the means to validate them will 

assume a higher priority and methods would have to be developed for neural networks to 

become universally accepted. Conversely the widespread use of ANNs may depend on a 

successful validation process. In the critical, complex systems being considered by this 
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thesis ANN safety justification is a critical component for their acceptance and use. 
Important work has been carried out in the area of confidence factors for ANNs, for 

example Bishop (1996). 

The review of current ANN research has shown that the techniques have been applied in 

two distinct problem areas, namely diagnosis and prediction. The diagnostic applications 

are typified by the medical domain where, generally, a set of patient related inputs are used 

to train an ANN to classify the patient condition. The predictive role of ANNs, typified by 

the financial domain, frequently considers the history of a set of relevant variables and 

predicts the next set of values in the series. The results of the review show that researchers 

working in the nuclear industry have considered ANNs for both diagnostic and predictive 

tasks. The nature of nuclear reactor technology may have encouraged a diverse range of 

applications to be considered. Alternatively, engineering domains generally may have a 

greater requirement for rapid development and be more prepared to investigate emerging 
disciplines. 

The application of ANN technology was examined in several domains. Research in the 

nuclear, financial and medical domains was examined and discussed. In these cases ANNs 

appear to have been fairly successful. However the applications considered were small. The 

method of determining the optimum ANN architecture is not standardised. The safety 

justification of ANNs for complex systems still requires a formal definition. 
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Chapter 

3 Problem Definition 

3.1 Introduction 

This chapter introduces the specific problem to be addressed in this thesis. The environment 

of a nuclear reactor control room is examined and key factors that contribute to operator 

efficiency identified. These elements highlight the need for additional assistance for the 

operators to control the plant safely during fault conditions. This provides a formal 

definition of the problem to be addressed. Finally a systems approach is considered and the 

problem formulated in both systemic and systematic terms. 

3.2 Problem Definition 

A nuclear reactor typically has a single control room manned by a team of operators under 

the control of supervisors. The teams work on a shift basis. The control rooms are usually 

ergonomically designed for ease of operation. The many hundreds, or even thousands, of 

measured plant variables are displayed on large panels of both analogue and digital meters. 

Throughout their shift the operators monitor these meters for signs of abnormality. Any 

unexpected readings are referred to the supervisor for confirmation before any corrective 

42 



action is taken. The strategy to be followed in any condition is well defined in authorised 

standard operating procedures. Maintenance and repair methods are also well defined by 

authorised procedures 

Operator reliability is an essential component for the safe operation of nuclear power plants. 

The operator is a vital link for both identifying the reactor condition and for instigating the 

corrective measures required to return a faulty plant to a safe situation. Studies have been 

conducted to investigate the operator's ability to perform their tasks in varying situations 

(Swain and Guttmann, 1983). Using the Technique for Human Error Rate Prediction 

(THERP) they conclude that the two most crucial factors affecting operators efficiency are 

stress and time. 

The reported effects of stress on operator success are shown in the following figure, Fig 

3.1. 
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Fig 3.1: Graph of Stress and Success 

The optimal operator performance occurs when some stress is present. Periods of low 

stress induce boredom and brain activity becomes largely imaginative. Operators could 

"invent" situations to test themselves, potentially with dramatic results. Periods of high 

stress, such as during a reactor transient, also reduce the efficiency of the operators. The 

presence of a group of operators further amplify the effects of stress. In these situations 

it is conceivable that an operator could misread or misinterpret instrument and meter 
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readings. The effects of stress can be partially reduced by robust plant design, standard 

procedures for managing emergencies and regular operator training in simulated emergency 

situations. However, stress remains an important factor in operator efficiency and therefore 

reactor safety. 

The results of elapsed time on operator efficiency after a major incident are shown in the 
following figure, Fig 3.2. 
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Fie 3.2: Graph of Success with Time for a Large LOCA 

Fig 3.2 shows that the probability of operator error is very high for the first thirty 

minutes after the occurrence of a large Loss Of Cooling Accident (LOCA). Although 

the probability reduces rapidly a residue probability of 0.3 remains twenty five minutes 

after the occurence of the LOCA if the threat of the stress still exists. With the 

automatic safety systems in operation this probability drops to 0.1 after thirty minutes. 

The high initial probability of human error highlights the problem of a safety system 

reliant solely on human operators. This problem has been addressed at the nuclear 

power station at Sizewell B where the operator is denied access to the system for the 

first thirty minutes following a major fault sequence. A computer-based system controls 

the recovery process until the operators are permitted into the system. 

Considering the above two factors it is clear that the operators, despite their training and 

experience, are the vulnerable element for the safe operation of a nuclear reactor. 
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Indeed, the TBERP trials concluded that the probability of successful operator diagnosis 

was too low to justify inclusion of the operator as a contributory factor in the safety 
justification of civil plant design. Other factors, such as fatigue and illness, have not even 
been considered. Yet the human operator is still an essential component of the plant. Human 
intuition and reasoning cannot yet be efficiently assimilated. An important addition to 
increasing operator efficiency would be a reliable aid which contributed to reducing stress 

and, at the same time, increased awareness of the state of the reactor so giving the operator 
time to consider responses to each situation. 

The problem addressed by this work is therefore the design of a computer-based advisory 

system for the operator of a PWR. This system should be able to quickly both diagnose the 

current condition of the plant and predict the future reactor state based of that result. The 

human operator must remain an integral part of the control strategy responsible for final 

decisions relating to the system. The work will consider the primary circuit of a PWR and 

concentrate on LOCA transients. 

A LOCA is a serious potential fault situation in a Pressurised Water Reactor (PWR). At 

the high operating pressures of a PWR even a small leak can lead to a grave situation. It is 

therefore important that any potential LOCA is identified as soon as possible after its 

occurrence, so that a program of corrective and safety measures can be instigated. An early 
diagnosis of possible faults gives a maintenance team vital time to respond and contain 

the condition, thus preventing it from becoming more serious. In nuclear reactors the 

situation can change very quickly. The Chernobyl disaster of 1986 is an example of 

this; the time between the connection of the fourth cooling pump into the circuit and the 

explosion was just over twenty minutes (Reid, 1993). 

It is not the intention that a computer-based advisory system would replace staff but to 

support the operators and provide additional information at the times when it is most 

needed. 

While the above problem is considered on its own merits, it is noted that it is an example 

of controlling a complex, non-linear system in a safe, economical and reliable manner. It is 

hoped that the theory and techniques developed for this project would be applicable to 

other equally demanding fields of study. 
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In addition to the above discussion, a computer-based advisory system would have the 
following advantages. 

1) The system would be permanently on duty and not tire or become bored or distracted 

during operation. It would not require briefing at every duty change over. 

2) The same advisory system would be applicable to all models of the plant for which it was 
developed. This would provide both transferability and portability of the technology. 

3) The system would be very easy to upgrade or replace. A computer-based advisory 

system could be constructed from commerically available hardware and avoid the vast use 

of expensive bespoke equipment. 

4) The proposed advisory system would not be required to attend extensive training courses 

nor gain a wealth of experience to operate fully. All the required knowledge and experience 

would be programmed into the system. The initial development expense may be high but 

the subsequent operating costs will be low. 

5) A record of reactor history could be stored and so provide a built in audit trail. 

Although the development of an advisory system is hoped to make an important 

contribution to reactor system safety by supporting the human link in the reactor control 

chain, the work has wider reaching attractions. A similar problem exists in other non-linear, 

critical systems. Examples of this are monitoring of patients in intensive care, controlling 

air traffic and share dealing on financial markets. In all arenas a key requirement is for the 

safe operation of critical systems with a quick and accurate reaction time. 

3.3 Systems Approach to Problem 

A system has been defined as a set of interrelated parts or subsystems, each one of which 

is in charge of some mission or task. The problem defined in the previous section can also 

be described in terms of a systems approach to controlling an external environment, the 

PWR. 
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The key component of the system is the operator who has ultimate control over the reactor 

system. Information from the environment, in the form of instrument readings, displays and 

other observations is passed to the operator who decides on the appropriate action to be 

taken. In normal circumstances the operator needs to monitor the plant, make any 

operational changes and ensure safe performance of the reactor. The diagram below, Fig 

3.3, shows this system. 

Controls 

PWR 

Meter 

Panel Operator 

= Operator Instigated 
I° 

PWR Instigated 
Control Flows Data Flows 

Fig 3.3: Normal Operation of System 

In a fault situation the systems environment has changed, as depicted in Fig 3.4. A 

different set of observations are now received by the operator. The safety sub-system is 

now required and called into action by the operator. The safety system may include 

control rod movement, emergency cooler activation and the dispatching of personnel to 

begin repairs. In the previous example of Sizewell B, this system would also include the 

thirty minute operator lock out period. 

operator PW R 
Instigated - Instigated = Automatic 
Control Flows Data Flows Control Flows 

Fig 3.4: System in Fault Condition 
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The above two scenarios show the key position of the operator. Nearly all responses to 

plant condition are instigated by the operator. It is important therefore to ensure that the 

operator's decisions are based on accurate information including the current and possible 
future state of the PWR. A computer-based advisory system could provide the operator 

with rapid information. The diagram below, Fig 3.5, shows this option. 

S afcty 
Systems 

13- 
Mncr 
Psnol 

PWR 

Advisory 
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Operator 
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J- Instigated Instigated = Automatic 

Control Flows Data Flows Control Flows 

Fig 3.5: System with Operators Advisor 

The previous diagrams also show the dependence of the operator on the information 

obtained from plant monitoring equipment. The control of many complex systems is 

established upon the value of indirect measurements. For example, both safety and 

practical reasons prevent direct measurement of PWR core temperature. If any sensor or 

meter was to malfunction the operator would have an incomplete picture of plant 

condition. Experience and training would compensate to an extent but this could be a 

time consuming process. The advisory system could provide further rapid additional 

support in the case of instrument malfunction. 

3.4 Summary 

This chapter has discussed the problem to be addressed by the remainder of this thesis. 

The role of the operator of a nuclear reactor was examined and factors that affect 

efficiency, such as stress and time, identified. The need for an aid to assist the operator 

during periods of high stress and quick reaction times, as in the occurrence of a LOCA, 

was introduced. The aim of the project was then defined as the design of a computer 
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Fig 4.1 Hierarchy of ANNs 

The top most level is developed as a diagnostic tool to report the current condition of 

the reactor. A number of readings for plant variables are fed into the network. This 

information could include recent history of the reactor. This input set could be a sub-set 

of the whole range of possible plant variables. The output from this part of the system 

would be an identification of reactor condition and, if in fault, an identification of 

transient type and location. Additional information could be made available to the 

operator and allow him to consider remedial action. The figure below, Fig. 4.2, shows 

the proposed system. The diagnosis is performed at a pre-defined time interval. 

However it is possible that this interval could be modified to reflect the seriousness of 

the reactor condition. If a reactor was diagnosed as being in a serious fault condition the 

time interval between subsequent diagnosis could be reduced so more frequent 

observations were made of the plant than in normal operating conditions. 

Values at T Values at T-1 

Diagnostic ANN 

Advice to 
Operator 

Identification of Predictive ANN 

Fig 4.2: Diagnostic Stage of Advisor 
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principle to predict many steps ahead. Networks trained for more than a single transient are 

then considered and ANNs are developed to predict many transients. Finally a discussion on 

predicting PWR condition with an ANN and concludes that the number of transients a ANN 

can accurately predict is paramount to the successful development of the predictive layer of 

the operators advisor. This question is addressed, in detail, in the next chapter. 

This chapter mentions PWR components and principles, a detailed introduction to the PWR 

is included in Appendix A. 

5.2 One Step Prediction 

The simplest form of modelling the future condition of a reactor is to predict a single state 

of the plant in the near future. A set of reactor variables for a certain time are fed into a 

suitably trained ANN. The corresponding output is a prediction of these variables for a future 

time. The ANN is trained to be able to predict a set of such future values. For accurate 

predictions it may be necessary to included some of the reactor's recent history in the input 

set, as shown in the figure below, Fig 5.1. This information may consist of past values of the 

variables under consideration. Alternatively, the recent state of the plant could be represented 

as a single input for current condition, say a '0' for normal operation and a, 1' for a fault 

condition. 

Values at T Values at T-I 

ANN 

Values at T+1 State of Plant 

Fig 5.1: Prediction of Future Reactor Variables 

ANNs have been successively used to predict the future values of time series from other 

complex system domains. However, little work has been carried out to assess the 

applicability of ANNs for prediction in the nuclear industry and PWRs in particular. A 

series of tests were, therefore, conducted to investigate the ability of an ANN to predict a 
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Fig 5.2: Pressure Outputs for Transient I 
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Fig 5.3: Pressure Outputs for Transient 2 
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Fig 5.4: Pressure Outputs for Transient 3 
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Fig, 5.6: Pressure Outputs for Transient 5 

A separate ANN was then developed to predict the values of these pressures one time 

step into the future for each set of inputs. The pressure values calculated by the simulation 

program, stored in a separate file were used to produce the data for training the ANNs. 

The initial output file consisted of a time reference and the values of the pressure in each 

region at that time. This file was modified to remove any reference to time and to reflect 

the number of steps of past reactor history being used to train the ANN. For example, to 

train an ANN to predict a set of future pressure values with information from two time 

steps a training set would require data on the two successive steps of output from the 

simulator as inputs and the next set of values as output. To illustrate this idea further 

consider Table 5.1 which shows a representation of four successive sets of nodal 

pressures in a simulator output set, the letters a to f signify the different PWR regions 

under consideration and the number identifies the time step, ie c2 is the second pressure 

value for region c. 
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The following table contains the results of the best ANNs trained to predict Transient I for 

each combination of input time steps and ANN hidden layers. The full results are given in 

Appendix C. 

Time Steps Hidden Layers No. of 

Nodes 

RMS Error 

1 6 0.0314 

2 10,8 0.037558 

2 1 4 0.0281 

2 6,4 0.0381 

3 1 4 0.0261 

2 4,4 0.0305 

4 1 4 0.0351 

2 4,4 0.0395 

Table 5.3: Best ANN Results for Transient 1 

The following figure, Fig 5.7, shows the one step prediction for the best of the above 

ANNs. The accuracy of the outputs can be determined by comparison with Fig 5.2. 
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The following table contains the results of the best ANNs trained to predict Transient 2 for 

each combination of input time steps and ANN hidden layers. The results are given in full in 

Appendix D. 

Time Steps Hidden Layers No. of 

Nodes 

RMS Error 

1 1 4 0.0306 

2 10,8 0.037558 

2 1 6 0.0283 

2 6,4 0.0382 

3 1 4 0.0272 

2 6,4 0.0384 

4 1 4 0.0351 

2 2,6 0.0380 

Table 5.4: Best ANN Results for Transient 2 

The following figure, Fig 5.8, shows the one step prediction for the best of the above 

ANNs. The accuracy of the outputs can be determined by comparison with Fig 5.3. 
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The following table contains the results of the best ANNs trained to predict Transient 3 for 

each combination of input time steps and ANN hidden layers. The full results are given in 

Appendix E. 

Time Steps Hidden Layers No. of 

Nodes 

RMS Error 

1 1 6 0.0325 

2 4,4 0.0372 

2 1 8 0.0328 

2 4,10 0.0380 

3 1 8 0.0324 

2 6,6 0.0393 

4 1 4 0.0351 

2 4,8 0.0383 

Table 5.5: Best ANN Results for Transient 3 

The following figure, Fig 5.9, shows the one step prediction for the best of the above 
ANNs. The accuracy of the outputs can be determined by comparison with Fig 5.4. 

1 

09 
._ 

ice.. 0aý 

Ln ü 0.7 L 

A. oö 
u 

Co 
04. 

O 
Z es 

02L 
ihr-. _a ý.. a.. ý. z -. -ý ý ...... ý ý.... ý. ý.. -r .. --. -. .--- 

0.1 L 

0 

'ý 

'<i. r... uý". L"2i1. "t"1'1.1.1.1.1. t. L'L"111ltl: lili"ý-ý"ý"ý-ýl-td. ý. ý. ý"j y. ý-ý"ý". i"ý1-. 

Timc 
Region I Region 2 ., Region 3 

Region 12 Region 19 - Region 19 

Fig 5.9: Outputs for Best ANN Predicting Transient 3 

67 



The following table contains the results of the best ANNs trained to predict Transient 4 for 

each combination of input time steps and ANN hidden layers. The full results are given in 

Appendix F. 

Time Steps Hidden Layers No. of 

Nodes 

RMS Error 

1 1 6 0,0321 

2 4,10 0.0396 

2 1 4 0.0295 

2 6,4 0.0358 

3 1 4 0.0259 

2 6,4 0.0339 

4 1 4 0.0359 

2 6,6 0.0388 

Table 5.6: Best ANN Results for Transient 4 

The following figure, Fig 5.10, shows the one step prediction for the best of the above 

ANNs. The accuracy of the outputs can be determined by comparison with Fig 5.5. 
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The following table contains the results of the best ANNs trained to predict Transient 5 for 

each combination of input time steps and ANN hidden layers. The full results are given in 

Appendix G. 

Time Steps Hidden Layers No. of 

Nodes 

RMS Error 

1 1 6 0.0355 

2 10,8 0.0376 

2 1 4 0.0303 

2 4,6 0.0355 

3 1 6 0.0291 

2 6,4 0.0340 

4 1 15 0.0358 

2 6,4 0.0385 

The following figure, Fig 5.11, shows the one step prediction for the best of the above 

ANNs. The accuracy of the outputs can be determined by comparison with Fig 5.6. 
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The results obtained are very consistent. All five transients are fairly well predicted for each 

combination of time steps of input and ANN architecture. The ANNs are not given any 

concept of time. The inputs are presented to the network in an arbitrary order, yet the ANN 

is able to return valid predictions. Perhaps most importantly the outputs from the ANNs 

follow the general trend of the desired outputs. The rate of change of the ANN outputs 

matched the simulator outputs very closely. The main discrepancy between the two occurs 

at turning points, for example from a negative to positive gradient, in these cases the ANNs 

smooth the output to a spline. An example of this is shown below in Figure 5.12. 
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Fig 5.12: Typical ANN Output for PWR Variable Prediction 

All the ANNs converged to similar RMS error levels, all less than 0.04. This result shows 

the robustness of using ANNs to predict PWR variables. The ANNs with a larger internal 

structure may well have not converged to the same level as the smaller ANNs given the 

relatively small number of cases in the training set. If the results had not been acceptable a 

larger training data set could have been produced by two methods. The first would have 

been to continue the simulation of each transient for a longer period; however, as seen in 

Figures 5.2 to 5.6 the variables are already at new steady state values and any further 

similar values would cause the ANN training set to be dominated by the new steady state. 

The second method of producing more training data would be to record further values 

during the transient simulation. A time interval of 3 seconds was used for the current tests 

but this could have been reduced to enable the creation of sufficient information. 

An examination of the internal structure of a sample ANN, 3_2x l af nnd, is shown below 

in Table 5.8 with Figure 5.13 showing the related links between the ANN nodes. The key 

connections for each node are identified by the size of their inter-nodal weighting. For 
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clarity these are highlighted in red. An examination of these weights reveals that no particular 
input or time step dominates the structure. All the inter-nodal weights, with the exception of 

the constant value outputs, are of a similar value. The ANN is not solely using the most 

recent values for the prediction. All the time steps appear to have a reasonable influence in 

the final output. The implicit relationships developed during the training process use all time 

steps to determine the next value of the pressures. The straight line output variables seem to 

be the most independent. 
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Fig 5.13: Node Structure of ANN 

Link Weight Link Weight Link Weight Link Weight 

1,14 -0.0226 2,17 -0.1999 3,20 -() s, -', 20,23 -O ')(`, ý, N 

2,14 -0.3045 3,17 -HH 491N 4,20 0.0706 21,23 0.0183 

3,14 0.5263 4,17 0.1165 5,20 0.0256 1,24 -0.0125 

4,14 -0.0902 5,17 -0.1633 6,20 -0.4506 14,24 0.0450 

5,14 0.1735 6,17 -0.0193 7,20 -0.3619 15,24 0.4584 

6,14 0.1327 7,17 -0.1742 8,20 -0.1084 16,24 -0.3021 

7,14 0.1870 8,17 -0.1244 9,20 -r 17,24 0.4079 

8,14 -0.2903 9,17 -0.5980 10,20 -0.0551 18,24 - 

9,14 L 10,17 0.2044 1 1,20 -0.0869 19,24 0.1096 
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Link Weight Link- Weight Link Weight Link Weight 

10,14 0.0311 11,17 0.0293 12.20 -0.4379 20,24 0.4081 

11,14 -0.0361 12,17 0.0750 13,20 1 -10', 21,24 -11 

12,14 0.2900 13,17 1,21 0.1362 1,25 0.3263 

13,14 (u 43n4 1,18 0.2267 2,21 -0.1874 14,25 0.2004 

1.15 -0.1036 2,18 -0.0714 3,21 -0.0810 15,25 0.5196 

2,15 -0.1731 3,18 -0.0127 4,21 16,25 -0.5254 

3,15 -0.2788 4,18 -u i lß)1 1 5,21 -0.3957 17,25 -0.0407 

4,15 0.1964 5,18 -0.46001 6,21 0.0725 19,25 - (, 74 

5,15 (). 3370 6,18 -0.1839 7,21 -0.3306 19,25 0.3177 

6,15 -0.2732 7,18 0.1006 8,21 -0.2145 20,25 0.1891 

7,15 0.1964 8,18 -0.0651 9,21 -0.0698 21,25 -ý) ". S 

8,15 0.1473 9,18 0.0357 10,21 1,26 0.2151 

9,15 10,18 -0.4807 11,21 14,26 0.1749 

10,15 11,18 -434) 12,21 0.0036 15,26 -0.5085 

11,15 0.1740 12,18 -0.0988 13,21 0.0307 16,26 0.3544 

12,15 -0.2531 13,18 0.2338 1,22 0.1653 17,26 -0.0798 

13,15 0.1299 1,19 0.2716 14,22 -0.4452 19,26 0.2769 

1,16 0.1965 2,19 0.0257 15,22 0.2928 19,26 

2,16 -0.0795 3,19 0.0047 16,22 -u 537(, 20,26 -1,8" I 

3,16 -0.0305 4,19 0.1486 17,22 -0.0270 21,26 0.5596 

4,16 -0.2421 5,19 0.2696 18,22 -0.2398 1,27 0.1525 

5,16 -u) 4907 6,19 -0.3136 19,22 14,27 0.5169 

6,16 0.0230 7,19 -0.1476 20,22 0.1945 15,27 0.0280 

7,16 0.0441 8,19 0.3078 21,22 -tu 6-11 16,27 0.3370 

8,16 -0.2659 9,19 0.0422 1,23 0.1944 17,27 -0.3628 

9,16 0.1326 10,19 0.0325 14,23 18,27 0.5085 

10,16 -f) S-174 11,19 0.3644 15,23 -0.3080 19,27 - 

11,16 -0.2496 12,19 16,23 0.1536 20,27 

12,16 0.1779 13,19 -0.3529 17,23 -i 6"Io 21,27 0.2237 

13,16 0.0893 1,20 0.672, + 18,23 0.1454 

1,17 -0.0861 2,20 -0.1861 19,23 0.0348 

Table 5.8: Internodal Weights for Transient 3 Prediction ANN 
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based advisory system for the plant operator. The system would diagnose the current plant 

condition and then predict the future condition based on that diagnosis. Finally the problem 

was examined in terms of a system approach. 
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Chsptp 

4 
Modelling Method 

4.1 Introduction 

This chapter discusses the proposed solution to the problem introduced in the previous 

chapter. The rational for employing the chosen techniques are described. An outline of the 

modelling methods used are introduced. Finally a hybrid model of the two techniques is 
introduced. Appendix B of this report includes a basic introduction to the Artificial Neural 

Networks (ANNs) and Genetic Algorithms (GAs). 

4.2 Modelling Methods 

The computer based advisory system proposed in the previous chapter could be 

implemented in several ways. An automatic system has several advantages. 
1) The proposed method would enable a common advisory system to be installed in every 

plant. This would enable cost effective large scale implementation. Furthermore operators 
familiar with the system would be able to change plant without retraining. 
2) A computer based advisory system would be always available for use and would not 
become tired or lose concentration. 
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3) A computer based advisory system could include an automatic audit trail for checking 
both advisor performance and PWR records 

Such a system could use statistical methods, such as Bayesian Belief Networks, or Expert 

systems. These two approaches each have a disadvantage. A Bayesian belief network does 

not allow feed-back loops, a calculus that can cope with feed-back has not yet been 

developed for causal networks. Expert systems have difficulty with missing or noisy data. 

Even fuzzy expert systems are not yet fully tested in this respect. A further possibility is to 

develop the advisor with ANNs. 

ANNs have several advantages over other possible tools for developing an operators 

advisor. 
1) An ANN is relatively easier to update with new conditions and examples. An existing 
ANN can be re-trained with a modified training set. 
2) An ANN solution can be developed in a relatively short development time. The time 

consuming element of process is the acquisition and processing of the training data. 

3) ANN technology is cheaper to both research and implement as high specification 

computers and available ANN software are now cost effective. The wide availability of 

suitable tools removes the need of expensive bespoke equipment. 
4) ANNs can try to approximate a best attempt solution for unknown fault conditions. 
5) The development of an ANN does not require extensive use of a domain expert 

However, ANNs do have some shortcomings. 

1) The safety justification of such a system is problematic although this problem is being 

addressed by other researchers (Bishop, 1996). 

2) An explanation of decision process used by an ANN is not easily available. The popular 

conception of ANNs is of a "Black Box" technology 

3) The available training data may not result in the ANN converging to an acceptable level 

ANNs will be the predominant tool used for developing this advisor. In addition to the 

above advantages of ANN technology there are several reasons for making this selection. 

It must be stressed that the human operator retains final decision regarding PWR control. 

The current research in Al has not yet been successful with modelling intuition, innovation, 

serendipity or even consciousness. 
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In a nuclear reactor, or any complex system, there is a large set of possible fault scenarios. 
Not all of this set can be realistically modelled or considered in a practical advisory system. 
The knowledge base would be far too large to use and it would not be certain that all 

possible combinations had been considered anyway. The use of a neural network is a good 

solution to this dilemma. During training the ANN develops implicit relationships between 

the variables which are used when considering previously unseen situations. 

Once trained an ANN has instantaneous operation and so gives quick results. 

As already stated an ANN based advisory system can be implemented on a computer based 

system using a commercial software package thus avoiding the need for expensive bespoke 

equipment. If, at a later date however, cost effective production quantities are required then 

the developed advisor system could be migrated to a commercially available neural network 
integrated circuit. 

4.3 Hierarchical Approach 

The computer based advisory system, described in the previous chapter, has two very 

different requirements. Whilst each requirement is a pattern recognition task, they have 

different forms of output. The diagnosis of current reactor condition is a classification 

problem where the input is assigned to one of a discrete number of classes. The prediction 

of future states based on the result of the diagnosis is an iterative problem where the 

outputs are values of continuous variables. A single ANN arrangement would be unable to 

fulfill this task as the two requirements are very different and would make contrasting 

demands on the network. The diagnostic component is designed to give a one off guide to 

the state of the reactor, while the prediction component has to give a sequence of outputs 

for the future condition of the reactor. 

A method of resolving this dilemma and also increasing the functionality and practicality of 

the advisor would be to use a hierarchy of ANNs (Basu & Bartlett, 1994). The figure 

below, Fig 4.1, shows a simple hierarchy of two layers. This arrangement is the minimum 

configuration as in practice there may well be several more levels. The blocks in the figure 

could represent arrangements of ANNs. However the underlying reasoning still remains 

valid. 
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The lower levels of the system are used to predict the future state of the reactor in the 
diagnosed condition. In normal circumstances the prediction will consist of steady state 
conditions. It is envisaged that the prediction system will consist of a number of prediction 
branches. Each of these systems could be developed for a particular range of transient 

conditions. The particular predictive system to be used is identified from the output of the 
diagnostic system. Each prediction structure so selected uses additional, relevant readings 

of plant variables as the inputs. These systems could also use the short term history of the 

reactor's condition to increase prediction accuracy. The output from the system is a 

prediction of the reactor variables at a defined time step into the future, again this function 

could be windowed to reflect the reactor condition. This reading may itself be used as an 
input to the predictive system, using a feedback principle. By this method a real-time, or 
faster, prediction for the full period of the fault condition may be obtained. The upper level 

of the advisory system will continue to monitor the reactor and, with additional information, 

refine the diagnosis. 

When the transient has been detected and addressed, the advisory system can also monitor 
the recovery of the reactor. The diagnostic element will still report the transient but can 

advise the operator of a reducing seriousness. The prediction system will, in the meanwhile, 
hopefully predict the full recovery of the reactor and be able to provide an indication of 

recovery time. 

The hierarchical system, described above, has some additional advantages over a large, 

single ANN based system. The networks in the proposed system will be much easier to 

update and modify than a single network. A revised prediction ANN can be trained, using 

additional inputs if required, and inserted into the system to replace its predecessor when 

trained and tested and approved. The remainder of the system is unchanged and functions 

as before. 

The hierarchical nature allows the system to be extended to extra prediction levels 

permitting greater detail to be included. Correspondingly, the diagnostic system can also 

be enlarged to provide more information to the operator, such as location or size of fault. 

Outputs to reactor transients unknown to the advisory system may still be produced from 

this enhanced system. The accuracy of the diagnosis from these new inputs may not be as 

good as that obtained from transients used for training the ANNs. However, the implicit 
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relationships developed in the ANN during training should enable the ANN to produce 
some guidance to the operator for unfamiliar transient scenarios. 

Once the particular ANNs are trained, tested and implemented the system would perform 

very quickly in operation. The diagnostic system will give a result as soon as the required 

number of time steps used for input have elapsed. The speed of the prediction system 

returning a guide to future reactor condition will depend upon the frequency of estimates 

and the length of the prediction. However once the initial plant data is available the 

predictions should be available very quickly. The system will perform considerably faster 

than the real time operation of the PWR. 

The outputs from both the diagnostic and predictive elements of the advisor could be saved 

to provide a record of reactor history. This information could be used for audit purposes 
and to monitor the operational accuracy of the advisor. 

4.4 Hybrid Modelling 

A nuclear reactor is a complex, data rich environment where many readings of plant 

variables are recorded. The nature of these readings includes power, temperatures and 

pressures. The operator monitors this myriad of information to assess the plant condition. 
If all possible data were to be used to construct an ANN it would, of necessity, be very 
large with many inputs and hidden nodes in the architecture. This size of network would 
be undesirable and has several disadvantages such as possible over-fitting of data compared 

to smaller networks (Masters, 1993, p 176). 

Firstly, a large ANN would be less likely to converge to the same level of accuracy as that 

of a smaller network. During training an ANN builds implicit relationships between the 

variables. Some of these connections may detract from the efficiency and accuracy of the 

performance of the network. Although some ANN training algorithms, typically back- 

propagation or a node pruning algorithm, will reduce the importance of such relationships 

their effect will not be totally removed. A smaller network consisting of only the most 

significant variables would not suffer from the same dilemma. Furthermore the ANN 

learning complexity is a function of the number of variables in a problem. For an increase 

in the number ofvariables in a problem to n, the associated complexity increases faster than 

a polynomial of order n (Basu & Bartlett, 1994). 
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Secondly, were the large network capable of being trained to an acceptable level of 

convergence, the time taken to do so would be considerable. The large number of inter- 

nodal weights in such a network need time to be iteratively optimised. A large network 

would also require a great number of examples in both the training and test datasets. One 

method used is to develop a training set with at least twice the number of inter-nodal 

weights in the network (Masters, 1993, p 177). A bigger ANN therefore requires larger 

training and test sets. The presentation of such datasets would also increase the training 

time required to converge the network. Finally in an environment such as a nuclear reactor 

the acquisition of data itself may be problematical and unavoidably result in small training 

sets. Although the use of simulators can alleviate this situation the amount of available data 

can still be a problem. 

A possible disadvantage of using the optimum number of relevant inputs is the susceptibility 

of the ANN to noisy, corrupt or missing data. The larger ANN with a number of possible 

superfluous inputs and implicit relationships will probably be more tolerant of input data 

problems. The smaller network is tuned to perform with the selected input set and has very 

little spare processing ability to handle bad or noisy input data. 

The above discussion implies that a small network dedicated to a particular task is 

preferable to a large all-encompassing ANN. A method of achieving this would be to train 

the ANN only on the most significant PWR variables. A GA could be used to evolve the 

best combination of plant readings for a particular condition. 

4.5 Summary 

This chapter has described the hierarchical neural network approach to be adopted for the 

remainder of this report. The top-most levels are to be used for diagnosing the condition 

of the reactor, while the lower levels predict the state of the PWR based upon that 

diagnosis. The chapter has also introduced an approach, using genetic algorithms, to 

minimising the size of the neural networks used in the hierarchy. The next three chapters 

explore the components of the hierarchy, diagnosis and prediction, in greater depth. 
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Chapter 
Initial Prediction Investigations 

5.1 Introduction 

This chapter examines the prediction element of the advisor in greater depth. The concept 

of the prediction layer of the proposed adviser has previously been described in Chapter Four. 

For a diagnosed reactor condition the artificial neural network (ANN) based prediction 

system could predict the behaviour of the reactor during the transient and inform the operator 

on the management of the transient. The inputs to the system would be values of recordable 

plant variables and the outputs will be values of key variables at a defined time step into the 

future. These values may be fed back into the prediction system to ascertain the behaviour 

of the plant for a longer period. 

The remainder of this chapter is as follows, the work being described in the chronological 

order that it was performed. The initial investigations into the feasibility of using ANN 

technology for prediction in the Pressurised Water Reactor (PWR) environment progresses 
into using ANNs to predict future values of selected plant variables, mainly regional pressure, 

using the recent history of the variables as input. One step prediction is described first in 

which a single view of the PWR condition is determined. This is followed by using a feedback 
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future value for a reactor during a transient. A series of ANNs were developed for a set of 

different PWR transients. These ANNs were then tested and compared to evaluate the 

potential of the ANN approach for the predictive layer of the advisor. 

The following five different transients were selected to explore the validity of one step 

prediction using ANNs. 

1) Large break from Primary to Secondary circuits 

2) Medium/Large Non-Isolated break to Pressure Vessel Outlet 

3) Medium/Small Non-Isolated break to Pressure Vessel Inlet 

4) Large break to Hot Leg 

5) Small break to Hot Leg 

These transients were selected to provide a wide range of possible fault scenarios and also 

to compare similar conditions, for example the size of leak in transients 4 and 5. Each 

transient was separately modelled on a PWR Simulator. The first four minutes of the transient 

was modelled in each case. The calculated nodal pressures were recorded for every 3 seconds 

of the leak duration giving 81 sets of values per transient. The pressures for six key regions 

of each transient is shown in Figures 5.2 to 5.6 below. These selected variables provided a 

combination of both non-linear and linear terms to explore an ANN's ability to predict 

dissimilar forms of output. 
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Time Simulator Output 

1 al blcl dlelfl 

2 a2 b2 c2 d2 e2 f2 

3 a3b3c3d3e3f3 

4 a4b4c4d4e4f4 

Table 5.1: General Example of Simulator Output 

Continuing the previous example of using two time steps for prediction, one vector set in 

the ANN training data would include the values from times 1 and 2 as inputs and the 

values from time 3 as the corresponding output. A second vector set would consist of 

times 2 and 3 for inputs and time 4 as the output. set. Table 5.2 shows this method 

applied to the data from Table 5.1 for three time steps of input. 

Number of time steps Input of training set Output of training set 

in ANN 

One al bl cl dl el fl a2 b2 c2 d2 e2 f2 

a2 b2 c2 d2 e2 f2 a3 b3 c3 d3 e3 f3 

a3 b3 c3 d3 e3 f3 a4 b4 c4 d4 e4 f4 

Two al blcl dl el fl a3b3c3d3e3f3 

a2 b2 c2 d2 e2 f2 

a2b2c2d2e2f2 a4b4c4d4e4f4 

a3 b3 c3 d3 e3 f3 

Three al bl cl dl el fl a4 b4 c4 d4 e4 f4 

a2 b2 c2 d2 e2 f2 

a3 b3 c3 d3 e3 f3 

Table 5.2: Generic ANN Trainin est Sets 

The above table shows that the total number of inputs to a predictive ANN depends on 

the number of time steps of reactor history considered. In the current tests a one time step 

predictive ANN consists of six input and six output nodes. Correspondingly a two time 

step network contains twelve input and six output nodes; a three time step ANN has 

eighteen inputs and six output nodes. 
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The total number of members in the training and test sets (N) are also determined by the 

number of time steps used (T). As the above example demonstrates for the given size of data 

examples there are three members in a one time step training set, two members in a two time 

step set but only one member in the three time step set. In general, 

N=P-T 

where P= Number of records in output file 

Four different time steps were investigated in these tests. The smallest was a single time 

step while the largest used four time steps for prediction. The larger number of time steps 

was felt to be the maximum that could be used while still retaining a quick response from 

the advisor. To avoid any bias in the tests, the same number of members were used in all 

training and test sets, irrespective of the number of time steps considered. This was 78, 

the number of four time step, the lowest, cases. The information was then randomly 
divided between training and test sets in the ratio of approx 2: 1. 

A range of ANNs were trained for each size of input time step. The backpropagation 

algorithm was used for optimising the inter-nodal weights. The networks varied in number 

and size of hidden layers. A series of tests were performed to determine the best transfer 

function, in terms of RMS error, for this application. The Tanh function was found to 

offer the best performance and was used for all ANNs developed in the remainder of this 

chapter. All networks were trained for 120,000 cycles and then for a further 40,000 cycles 

with testing every 100 cycles, the best network being saved. The training process was 

repeated with different starting conditions to alleviate the possible effect of the training 

becoming caught in a local minima of the solution space. A 10% gaussian noise was 

included in the training stage to improve the robustness of the ANNs. The results 

obtained from the best ANNs for each input time step are given below. The full results for 

all ANNs developed are given in Appendices C to G. With each table of results is a graph, 

Figures 5.7 to 5.11 respectively, of the output from the best ANN for each transient. By 

comparing these with the corresponding simulator output, shown in Figures 5.2 to 5.6, 

the accuracy of the predictions can be seen. Points representing the same parameter on 

the graph are shown joined; however there is no direct connection between them, the 

graph merely shows the outputs returned when the a set of previous values were input 

into the ANN. 
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From the results achieved in this section an ANN appears capable of accurate one step 

prediction for a range of possible transient scenarios in a PWR. ANNs would therefore seem 

to be an ideal tool to employ for the prediction component of the advisory system. Although 

each ANN has been developed for the prediction of a single transient further investigation 

into more sophisticated approaches is justified by these results. 

5.3 The optimum number of time steps for prediction 
As seen in the previous section the immediate history of the reactor is an important 

component to consider when predicting future reactor condition. This information can give 

a meaningful guide to the changes that are occurring inside the reactor and, based upon these 

changes, a sensible prediction of the future changes can be made. 

Throughout the project extensive use is made of PWR computer simulations for data 

generation. The simulation program performs calculations at pre-defined time steps, typically 

0.1 seconds, and these information has been used to produce ANN training data.. A 

prediction system will produce an output at a defined time step into the future. In both cases 

the number of time steps used for the prediction is an important element for the accuracy and 

speed of the proposed adviser. Consider the following example. Fig 5.14, shown below, show 

the range of a typical reactor variable for a single arbitrary transient. The nature of the 

transient causes the selected variable to perform in a non-linear manner. Several values, such 

as value X in Fig. 5.14, occur more than once during the fault, although the gradient at each 

occurrence is different. A system to predict the reactor's performance under this transient 

would require a sufficient knowledge of the immediate previous history of the reactor. 

V 
. -r 

Co 

X 

Time 

Fig 5.14: Sample PWR Variable during a Transient 
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Figure 5.15 shows such a system with the value of a single previous time step used as an 

input to the prediction system. Using a single time step to determine future condition does 

not permit the prediction system to clearly identify the section of the transient currently under 

consideration and so accurately predict the future values for the variable. Obviously the 

whole prediction system would examine more than one plant variable at a time but the 

implicit relationships established between the variables will still not guarantee the prediction 

of the correct sequence of values for the variable. 

N 

.a Co 
Co 

X 

Key: "- Input Values 
0- Predicted Values 

Time 

Fig 5.15: One Time Prediction for PWR Variable 

Figure 5.16 depicts the same system but with a much larger number of time steps for the 

input to the prediction system. This size of the time step is such that most of the transient 

has occurred before the prediction system has acquired enough information to allow 

prediction of the remainder of the transient. This extreme is also undesirable as the 

operator gains no additional information from the advisor. The period when the prediction 

would be an asset to the operator is occupied by collecting data. 

Kcy: Input Values 
0- Predicted Value 

Cd 

X 

Time 

Fig 5.16: Multi-Step Prediction for PWR Variable 
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Clearly an optimum situation must exist between these two extremes. The ideal number of 

time steps for the advisory system must be short enough to enable a quick response to a 

transient but it should be of sufficient length for accurate prediction. This situation is depicted 

below, in Figure 5.17. The time step used for prediction is sufficiently long for the ANN to 

determine the gradient of the variable but still short enough for the predictor to be able to 

respond quickly to fault situations. 

4) 

41 S. C* 

X 

Ka: 0- Tnput values 
0- Predicted Values 

Time 

Fig 5.17: Optimum Time Step Prediction for PWR Variable 

The prediction of future reactor variables can also be explained in terms of mapping the 

previous values to a future value. In Figure 5.15 above, using a single time step does not 

give a one to one mapping for the prediction. Figure 5.16 shows a one to one mapping 

but at the expense of response time. The current investigation can also be defined as 

optimising number of time steps required to produce a one to one mapping, if such a 

mapping should exist. 

The results from the previous section show that for the PWR variables elected the number 

of time steps of information used for the training data does not have a large impact on the 

predictions from the ANNs. The accuracy of the predictions for each transient is not 

greatly effected by the number of time steps used. The choice of the optimum number of 

time steps to use for the remainder of the work on prediction is therefore unimportant in 

terms of accuracy of ANN output. In terms of the speed of response of the system a 

smaller number of time steps is preferable so a single time step would seem to be optimal. 

However, to allow for possible noise in the system two time steps will be used for the 

ANN inputs for the remainder of this work. 
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5.4 Continuous Prediction using Feedback of predicted values 
The ability to accurately predict one time step into the future is a simple but useful feature 

for the advisor. An ANN trained on a suitable data set would be able to predict the state of 
the reactor for longer time steps, of the order of tens of minutes or hours after the diagnosis 

of the transient. This form of ANN could be used to provide the operator with a quick guide 

to the state of the plant during a particular transient. A tool could then be developed that 

would permit the operator to quickly investigate the outcome to a set of possible, what if, 

corrective actions. 

If a set of one step predictive ANNs, each trained to predict different periods, were available 

the reactor condition could then be determined for any interim period. As an example, 

consider a set of five ANNs. Each ANN is developed to predict the PWR variable values for 

a fixed future time. Let these time steps be 1,2,4,8 and 16 seconds. The ANN trained to 

predict plant variables 4 seconds ahead would therefore be trained to predict the PWR 

variables at time T given an input set composed of values at T-5 and T-4 using the two time 

step input developed in the previous section. Similarly the ANN predicting 16 secs ahead 

would use inputs from T-17 and T-16 to predict the values at T. Using combinations of these 

networks it is possible to predict reactor variables and therefore determine the plant condition 
for any period between one and thirty-one seconds. As shown below in Figure S. 18a, to 

predict the reactor condition twelve seconds ahead the current values for the variables would 
be input to the four seconds ANN the output from would then be fed into the eight seconds 

ANN the output of which would provide the required prediction. Similarly, in Figure 5.18b 

a prediction of variables twenty-seven seconds into the future is composed of the one second 

ANN followed by the two, eight and sixteen seconds ANNs outputs. 

a) Twelve Second Prcdiction 

12 Secs 
_4 

Secs 
+8 

Sus 
Predict ANN ANN 

b) Twenty-Seven Second Prediction 

127Sccs 

-1 
Sec 

J2Secs I8Sccs 
16 Secs 

I Predict ANN 
+ 

ANN 
+ ANN + ANN 

Fig 5.18: Prediction of PWR Variables using Single ANNs 
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In each of the above examples sufficient operations of the ANNs are required to produce the 

required number of ANN input sets. The order of the ANNs is not believed to be important. 

However the accuracy of each ANN is critical as error would be compounded over the 

number of presentations of the data to the systems. 

Alternatively, a smaller number of ANNs could be developed and then used more than once 
to determine future variables values. Suppose for example that ANNs were developed to 

predict reactor variables one, five and ten time steps ahead. The first of the above cases could 
then be modelled by one iteration of the ten time step ANN followed by two iterations of the 

one time step ANN, as shown in Figure 5.19a. Similarly the second case could be represented 
by two iterations of the ten time step ANN, followed by one iteration of the five time step 
ANN and two iterations of the single time step ANN, Figure 5.19b. 

a) Twelve Second Prediction 

XZ 

IZ Sccs IO Secs 
+1 

SCc 

Predict ANN ANN 

b) Twenty-Seven Second Prediction 
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Fig 5.19: Prediction of PWR Variables using Repeated ANNs 

Either of the above methods could be expanded to consider predictions for larger time 

steps. The only requirement for such a system is the construction of a minimum spanning 

set of acceptably trained ANNs. A potential disadvantage of these systems is the error 

accumulation of the multiple ANNs. The ANNs need to suffer graceful degradation for 

noise on the inputs, they must be robust for small variations on the input values. 

The robustness of the ANNs can be explained using the following two curves as 

examples. They each represent a cross section through the input/output curve of two 

different trained ANNs. Each curve depicts the effect an error in the input value has on 

the corresponding output value. Both ANNs have converged to a minimum value in their 

respective solution space. However, the gradients in the area surrounding the minimum 
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values is very different for the two examples. The first network, shown in Figure 5.20a, has 

a much lower gradient increase in the neighbourhood surrounding the minimum value than 

has the second example, Figure 5.20b. The error curves are represented as simple, 

symmetrical functions but in practice this need not be the situation. 

Fig 5.20a & b: Cross Sections of ANN outputs 

If an input with the same error (ox) is now presented to both ANNs the resulting error in 

the outputs (Sy) can be compared. The nature of the slope of each curve results in quite 

different outputs. The gradient of the first ANNs error curve, Figure 5.20a, is small so the 

ANN is quite tolerant of an error in input value. The second ANNs error curve, Figure 

5.20b, has a much steeper gradient and so the same error in the input value produces a far 

larger error in the output. 

The situation in the second case can be due to over-fitting. The ANN may have an 

excessively large number of nodes in the hidden layers. This excess of processing 

capability enables the ANN to learn insignificant features of the training set. These aspects 

are specific to the particular case being learnt not typical of the general population of 

cases. The network develops implicit relationships for both the unique and general 

features but with no method of distinguishing between the two categories. Such an ANN 

may well produce excellent results when evaluated with the training data but 

disappointing results when presented with inputs from a more general case. The problem 

can be resolved by using an appropriate number of hidden nodes, enough to enable the 

ANN to solve the problem but not too many for the general features to be lost amongst 

trivial and specific idiosyncrasies. 

The initial idea of a feedback ANN is reasonably straightforward. An obvious extension of 
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this approach is to use the same ANN to predict all future values The value of PWR 

variables can be determined for any future period by using the same ANN for the required 

number of operations. This method only requires the development of a single ANN so is 

quicker to implement than the multi-ANN prediction systems previously discussed. The 

problem of error build up, introduced above, becomes increasingly acute in the feedback 

situation so the ANN developed is required to be very accurate. 

A set of investigations were performed to explore the applicability of using feedback for the 

ANN prediction of variables during a PWR transient. The best two time step ANN developed 

for each scenario in the previous section was embedded in a computer program and then used 

to predict the full transient. The first two sets of variables as the initial inputs and thereafter 

each predicted set of values used for the most recent input set. Appendix H contains a sample 

program listing of the best predictive ANN for Transient 3. The results of the feedback 

program for this transient are given below. 
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Fig 5.21: Results of Feedback ANN for Transient 3 

The results show that the transients are generally well predicted using the feedback 

programs 
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Fig 5.22: Pressure Outputs for Transient A 

u 0.9 

0.8 
u 
i 

A., 0.7 

10 0.6 

0.4 

0.3 

0.2 L 

0. I 

0 

Fig 5.23: Pressure Outputs for Transient B 

81 

Iteration 
Region 1 Region 3 Region 13 

Region 16 Region 12 Region 19 



i 

t) 0.9 

rin 0.8 
u 4. 

0.7 
M u 
rn 0.6 

72 
0.5 

O 
Z 0.4 

0.3 

0.2ý_ 

0.111,1,,,,,,,,, ,ýýýýýý 

Region 1 Region 3 Region 13 

Region 16 Region 19 Region 19 

Fig 5.24: Pressure Outputs for Transient C 

Iteration 

The training and test sets for each transient were constructed using the two time steps 

result from the previous work. In addition extra inputs were included to simulate the 

result from the diagnostic level of the advisors hierarchy. Initially this was a single input, 

set to a value "1" for transient A, "0" for B and "-1" for C. However, it was decided that, 

in spite of varying this order, this approach assigned a form of ranking to the transients 

which did not exist (Masters, 1993, p278). The training and test sets were each modified 

to include an extra three binary inputs, one for each transient. This approach was felt to 

simulate the result of the diagnostic level more accurately while allowing for two, or 

more, transients to occur at the same time. The final details of the ANNs were 17 inputs, 

7 outputs. 

Four sets of training and tests data were produced, one for each pair of combinations 

from A, B and C, and a set with all three transient data. The data sets were constructed by 

concatenating the required individual sets which each contained 80 vectors. Again the 

ratio of training to test sets was approximately in the ratio of 2: 1. A range of neural 

networks were trained for each combination of transients. The best RMS errors obtained 
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for each association are given in the following table. The full results are given in Appendix 

H. 

Transient 

Combination 

ANN 

Structure 

Best RMS 

Error 

A and B 20 0.0243 

A and C 10 0.0228 

B and C 10 0.0528 

A, B and C 20 0.0229 

Table 5.9; Best Results for Training Combined ANNs 

The following six graphs, Figures 5.25 to 5.30, show the output from each neural network 

when the information for each training transient is input. Although the points are connected 
for clarity, no concept of time has been included in the development of the networks. The 

outputs are merely the predicted value given two successive values for the plant variables. 
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Fig 5.30: Transient C Predicted from B&C ANN 

The results show that all combinations of transients are well predicted by ANNs using a 

single step operation, ie. no feedback. The network developed for predicting dissimilar 

transients, A with C and A with B, have a lower RMS error value than the ANN 

developed for predicting similar transients, B with C. This difference may be explained by 

the similarity in the shape of the pressures curves for the transients. The graphs for 

transients B and C, Figs 5.23 and 5.24, show a similar pattern for the pressures in nodes 

1,3 and 16. The graphs have very similar curves for the latter stages of the respective 

transients. The shape of the plots for pressures l and 3 show comparable gradients and 

temporal features in both graphs. The pressures for transient A, Fig 5.22, behave in a very 

different fashion throughout the duration of the transient, notably the pressure in node 19. 

While each neural network is being trained it is attempting to provide a mapping between 

the inputs and outputs of the training and test sets. Similar transients exasperate the 

situation as the mapping is more complicated due to the data sets containing alike 

information. 
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The results from the ANNs trained to predict all three transients are even more remarkable. 

The best ANN has an RMS error lower than that of the two transient ANNs. While this 

difference is not large for the dis-similar transient ANNs (RMS error of 0.0229 compared to 

RMS errors of 0.0243 and 0.0228) it is still a surprising result. The following three graphs, 

Figures 5.31 to 5.33, show the prediction of each transient variables using this ANN. A 

possible reason for the results may be that the training data set is larger for this investigation 

than the previous cases. The training sets were formed by concatenating the individual 

transient data for each required transient. The latter training set therefore comprised of three 

sets of information compared to two for the earlier cases. This larger training set may have 

enabled the prediction solution space to be better mapped during training compared to the 

smaller training sets. Another possible explanation is that all inputs for the latter ANN 

consisted of non-zero numbers. As discussed earlier the transient being predicted is identified 

by the inclusion of three extra binary inputs which were set to I for the transient being 

predicted. 
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Transient Nodes in Hidden Layer RMS Error 

1 6 0.0286 

2 5 0.0093 

3 5 0.0130 

4 5 0.0191 

5 6 0.0286 

Table 5.11: Results of Individual Transient ANNs 

A program was produced for the best ANN of each transient. The programs featured a 

feed back of the pressures in nodes 1 and 3. Graphs of the outputs of each program are 

given below. 
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Fig 5.34: Feedback ANN and simulator Results for Transient 1 
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was used to predict each of the five transients. The results of the predictions are given below, 

in Figures 5.39 to 5.43. The original simulation output is included for comparison. 
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All five transients are well predicted in view of the feedback nature of the tests. 

Additionally the general trends of each transient are followed favourably. This last test 

was a significant advance in using ANNs for the prediction of PWR variables. The success 

of this investigation logically leads to the consideration of the number of transients that a 

single ANN can accurately predict. This question is a key milestone to the development of 

the advisory system. If a satisfactory solution can be determined then the prediction 

element of the system becomes a realistic possibility. Conversely the lack of suitable result 

may severely limit the practical use of the advisory system. 

5.7 Discussion 

The results from this chapter indicate that ANN technology is an acceptable tool for the 

development of the prediction component for the proposed PWR operators advisor. The 

suitability of ANNs for PWR predictive tasks has been extensively explored and generally 

the ANNs developed have produced accurate predictions in all the investigations. 

Furthermore ANN techniques have been shown to be quite robust for PWR predictive 

applications. The performance of the ANNs have not been adversely affected by the 
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5.5 Predicting both similar and different transients 
The above investigations have all considered only one transient per neural network. This 

approach would not be practical for the prediction level of the operator advisor. There are 

several reasons for this. Firstly, the number of neural networks required to implement a full 

PWR advisor with a full range of possible transients would be very large and unwieldy. 
Secondly, it would be very unlikely that all possible scenarios could be fully encapsulated in 

a discreet number of individual networks. Lastly, the maintenance and upgrading of such a 

system would be challenging. 

A far better solution would be to develop ANNs that can each accurately predict a set of 

transients. The transients included in each neural network would be selected to ensure 

acceptable results. This investigation explores the basic criteria of the transient selection for 

inclusion in a single ANN. 

Three of the PWR transients used in Section 5.2 of this chapter were considered in the 
investigation. They are summarised below, together with the corresponding numbers from 

Section 5.2: 

Transient A: Large leak from primary to secondary (Transient 1). 

Transient B: Large break in the hot leg (Transient 4). 

Transient C: Small break in the hot leg (Transient 5). 

Two of the conditions, B and C, were similar with only a different leak size. Transient A is 

very different to the other two. The graphs of the pressures in the regions on the PWR are 

shown below in Figures 5.22,5.23 and 5.24. As before a simulator program was used to 

produce the data. The regions of the PWR considered are also the same as the previous test. 
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5.6 Forms of input for predictive ANN 

The work so far reported has only considered one type of input to a predictive ANN. The 
value of pressure in key nodes of the PWR simulator has been used both as inputs and 
outputs of ANNS. There are other forms of input that should also be considered as these are 
important components of the full PWR system. These inputs are external to the plant and are 

either controlled or involuntary. Controlled inputs are either specified by the operator or by 

automatic systems. The operator defined inputs include throttle position, valve states, power 
levels and rod positions. The automatic system inputs are typified by the emergency cooler 
safety system. The main source of involuntary inputs are leaks in the primary circuit. 

All these types of input can be represented in one of four ways to an ANN. 

1) Defined at the beginning and then fixed throughout a transient period 

2) Defined at the beginning but changed during the transient period 
3) Defined at every step of the transient period 
4) Defined initially but thereafter output fed back as input 

An example of the first input type could be an output, such as leak site, from the diagnostic 

level of the advisor. The second form of input is typified by the valve and pump settings of 

the PWR. The settings of these components could be changed by the operator following the 
defined' corrective sequence. The third input type could model the behaviour of the leak 

during the transient. The leak size could be defined at every time step on a "look up" table 

which is referred to by the ANN at every step of the transient or this value could be 

determined by the diagnostic level of the advisor. Alternatively, the values could be calculated 

at each time step using mathematical expressions. The last form of input is used to model the 

PWR variables such as pressure and temperature. These are used to determine the reactors 

condition during the various combinations of transient and operator defined situations. 

To investigate the effect of the different forms of input on ANNs a series of tests were 

devised. A range of five transients were identified and a selection of input types chosen to 

cover all possible forms as described above. These transients were different to those already 

used during this chapter. The different forms of inputs were represented with suitable reactor 

variables, as shown in Figure 5.34, below. The heating rate of the reactor was defined at the 

start of each test and remained unchanged throughout the transient. The time dependent input 
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was represented by the emergency cooler valve. An initial valve setting was defined, along 

with a time step number for changing the state. For this initial work this valve was binary but 

the approach could be modified to cover multi-stage settings. The transient leak flow rate is 

used to represent the third form ofinput. This value is defined at every time step using a look 

up table. This approach will give additional control over the system as the leak can be 

realistically modelled for different situations. The pressures in nodes 1 and 3 are used to 

model the PWR condition. An initial value will be defined for each variable and all subsequent 

values will be determined by the neural network and fed back into the system. The details of 
the transients used for this investigation are given below, in the Table 5.10. 

Transient 1 2 3 4 5 

Heat Rate 4 1 2 2 2 

Leak Flow Rate 

(kg/see) 

10-3.357 10-5.208 10-4.674 50-6.912 20-5.345 

EC Valve Open secs 120 120 120 120 
-120--li 

Table 5.10: Details of Transients 

The simulator program was run for 600 seconds for each scenario with information being 

recorded every 10 seconds. The emergency cooler (EC) valve was opened after 120 

seconds. The neural network training and test sets were produced from the final data set 

using two time steps and the same method as before. A range of ANNs were trained for 

each transient. Each network had ten inputs (the five inputs for time T and T-1), and two 

outputs (the pressure in nodes 1 and 3 at time T+1). All the ANNs developed had one 

hidden layer and used the back-propagation algorithm for training. The results for the best 

networks are given below. The full results for all ANNs developed for these tests are 

given in Appendix I. 

90 



The results show that generally the trends of the transients are well predicted by each ANN 

with feed back. The opening of the emergency cooler valve, at 120 seconds, seems to cause 

the most inaccuracies. However, in each case the network recovers and predicts the transient 

accurately. The recovery may be due, in part, to the presence of the look up table for the leak 
flow rate. This variable has no error build up from the feed back circuit and is correct at each 

time step of the transient. The opening of the emergency cooler valve does appear to 
introduce some instability into the networks. The time of the valve opening has not yet been 

changed and is the same as that on which it was trained. 

The above neural networks have only been tested on the training and test sets used to 

develop each ANN. This situation is rather artificial as any low error network would be 

expected to produce a good response to the information with which it was trained. With the 

exception of the heating rate, the first three transients are very similar. The robustness of 

these networks could be investigated by considering the heating and leak flow rates from 

transients other than the training set. The results obtained above were considered 

encouraging enough to warrant further investigation in this area. The above ANNs were all 

trained for one transient. This arrangement was considered simplified and unrealistic as the 

predictive ANNs in the advisor would, if possible, be developed for a number of fault 

situations. A series of networks were developed to predict the pressure values for all five 

transients. 

The training and test sets used to develop the individual ANNs were concatenated to produce 

a large data set for training the combined ANN. Using the backpropagation algorithm a series 

of ANNs were developed with this dataset. Each was trained for 100,000 cycles and then a 

further 20,000 cycles with testing every 100 cycles, the structure with the lowest RMS error 

being saved. The results for the best ANN are given below, in Table 5.12, full results are 

given in Appendix J. 

Transient Nodes in Hidden Layer RMS Error 

tesallh. nnd 10-6-2 0.0448 

Table 5.12: Best Result of Five Transient ANNs 

This ANN was embedded in a computer program. A feedback feature enabled the entire 

transient to be predicted given the settings for the initial two time steps. This program 
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different requirements introduced by the tests conducted throughout the chapter, for example 
feedback of outputs, forms of input and number of time steps of input data. 

The last set of tests culminated in the development of an ANN that could successfully predict 
five single PWR transients. A knowledge of the number and form of transients that can be 

predicted by an ANN is crucial to the future implementation of an ANN based advisor. The 

number of ANNs required to predict a realistic number of transients may be very large, 

indeed given the non-linear nature of the PWR the problem may even be NP complete. 
Fortunately the results from this chapter indicate that this is not the situation and that a set 

of ANNs trained on carefully selected sets of transient information could provide a suitable 

prediction layer in the advisor. Criteria for selecting suitable combinations of ANNs that 

could be used to develop these ANNs are not defined. However the initial indications would 
be that dis-similar transients may be a more successful combination for ANN training than 

alike PWR faults. Clearly more work is required to determine both the nature of transients 

that can be combined on a ANN and hence the number of ANNs that the predictive layer of 

the advisor would contain. This crucial work is the subject of the next chapter. 

5.8 Summary 

The work reported in this chapter has examined the applicability of ANN technology for the 

prediction of PWR variables for a reactor in several fault conditions. Basic implementations 

have been explored. The first of these was the simple prediction of a set of PWR variables 

one time step into the future. The success of this work led to a discussion on the optimum 

number of time steps to use for inputs into a predictive ANN. The feedback of predicted 

values back into as inputs was then investigated and again an ANN was found to be a 

reasonable tool for this task. The form of input to an ANN was explored and four types of 

input identified. A set of ANNs were developed to determine the effect of these input types 

on ANN prediction ability. A single ANN was finally developed that successfully predicted 

future variables for five transients. The number of transients that an ANN can successfully 

predict was identified as an important requirement for a practical implementation of this 

component of the operators advisor. This question is considered in greater detail in the 

following chapter. 
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Chapter 

6 
Predicting PWR Transients 

6.1 Introduction 

This chapter builds on the work of predicting future reactor condition begun in the previous 

chapter. A key question, posed, at the end of the last section, concerned the number of 

transients an artificial neural network (ANN) that can be successfully trained to predict. 
This chapter is devoted to examining and addressing this issue. Some initial theory on 

predicting a number of transients with a single ANN is followed by the introduction and 

exploration of two distinct, possible solutions to the question. The first involves developing 

a set of empirical relationships for the mathematical elements of a transient curve. These 

relationships could then be used to calculate the parameters for each member of a set of 

fault conditions to determine which can be successfully combined to predict the transients 

for a given accuracy. This approach is shown to have severe shortcomings due to the inter- 

dependencies between the parameters. The second method, Section 6.4, develops an ANN 

based model of the Pressurised Water Reactor (PWR) capable of predicting a large number 

of transients. A basic building block is developed and then used to construct a fast, accurate 
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simulator of reactor transients. All the findings are reported in the chapter, however detailed 

neural network development results are contained in Appendices Ito R. 

6.2 Theoretical Foundations 

This section introduces and discusses some theory relating to ANN prediction of transients. 

The ideas described are used as a foundation for the later sections in this chapter. The work 
discusses using ANNs for predicting more than one transient. For the moment each 

transient being predicted is assumed to only occur singly and in isolation from other fault 

conditions. Scenarios of two different transients occurring together are unlikely due to the 

design of the PWR, however one transient may cause secondary problems, for example a 

steam leak affecting the instrumentation in the reactor compartment. For the current 
discussion all transients will be considered to occur alone although the ANN may well be 

trained to predict a number of these single transients. 

Consider the three transients, shown in the following diagram, Figure 6.1. For this 

discussion, and for the remainder of the chapter, the relationships between PWR variable 

and time used for illustrating the concepts do not represent actual PWR variables but are 

typical of the form found for several measurable plant factors such as node temperature or 

pressure. 
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Fig 6.1: Three Transient Curves 

The results from the previous chapter, Section 5.4, imply that ANNs trained with data 

for pairs of transients will be able to predict Curve A and one of the other curves fairly 
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accurately, but may have difficulty predicting Curves B and C. Whilst the two latter curves 

are very similar for the early stages of each transient, they diverge with time. Unless there 

are additional inputs to identify particular scenarios, such as the binary inputs used in the 

investigation from the previous chapter (Section 5.4), an ANN would have difficulty 

predicting either curve. In practice, with the absence of additional information, the network 

would tend to produce an output which is mid-way between the two options, as shown by 

Curve D. 

The above three curves are incorrectly depicted as continuous lines. There is no relationship 
between successive points on the curve, a set of inputs produces a single corresponding 

output. There is no record for the position of the point in the transient's history. The ANN 

is not given a sense of time. Each point on the output graph should be shown as a set of one 

step predictions, as shown in the figure below, Figure 6.2. For the remainder of this section 

the curves under discussion will be depicted as a set of disjointed points. 
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Fig 6.2: True Depiction of Transient Plot 

A closer view of the intersection of the curves A and B is shown below, in Figure 6.3. 
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Fig 6.3: One Overlap Intersection 

The two curves share a common point, at time t. An ANN, with a minimum of two time 

steps for the input set, should be able to distinguish between the curves as either t-1 and 

t or t and t+1 are elements of the inputs and each has only a single common point, time 

t. However, if instead of a single intersection point the curves shared two common 

points, as shown in the following figure, Fig 6.4, a different situation arises. 
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Fig 6.4: Two Overlap Intersection 

If two time steps are used for predicting the next value of the variable a difficulty arises 

for time t+2 as the inputs for both transients are identical. Without additional 

information the ANN has no guide as to which transient is being predicted. The ANN 

has no long term history of previous inputs only the current input set on which to 

determine the output. If this information is ambiguous the network cannot accurately 
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predict the next value of the reactor variables 

This example used two input time steps but the argument is valid for all values. A larger 

time step allows a greater number of points to be considered for the input set but the 

situation could still arise where the number of common intersection points is equal to the 

number of time steps. This situation may be less likely to occur for larger time steps but still 

remains a possibility. The above examples emphasise the requirement for additional 
information to be available to the network. The extra inputs could be the results from the 

diagnostic level of the adviser, identifying the transient under consideration. 

The above discussion has only focused on coincident points. A similar argument is valid for 

points that are close together. It has been assumed above that if two points were not 

coincident then an ANN could successively distinguish between them. However, this cannot 
be the case in practice as each ANN has a small error in the output values. While this error 
is minimised during the training process it still exists. It is possible that, with similar curves, 

the actual output is closer to that of the second fault than to the transient under 

consideration. This problem becomes compounded and more critical for ANNs using 
feedback to predict an entire transient as the error could increase during the transient run. 

For a defined ANN error there could be a minimum distance between various possible 

transient curves to enable accurate prediction. Below this distance spurious input signals, 

from feedback, noise and faulty sensors, could cause the ANN to incorrectly predict the 

second transient values even with additional input signals. 

The above discussion has considered an ANN with a single output. In practice a predictive 

ANN would output values for several relevant plant variables. These would have implicit 

relationships established during the training process and may well assist during the 

prediction process. The example of Figure 5.5 illustrates this point as the change of gradient 

in one variable, Node 3 pressure, induces the corresponding changes in the slope of the 

other variables, Node 12 pressure, and so helps in the prediction. 

This section has introduced some basic ideas for predicting many singularly occurring 

transients with an ANN. There are several potential problems of predicting the fault under 

consideration. These are mostly concerned with enabling the ANN to determine the correct 
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sequence of reactor variable values when the transient is in close proximity to a second 

possible curve. These conflicts can be resolved by supplying the ANN with sufficient 
information to distinguish each particular transient implicitly. In the proposed operator's 

advisor system this detail could be provided by the output from the diagnosis level of the 

hierarchical system, which identifies the transient occurring. 

6.3 Empirical Approach 

The previous section introduced several characteristics of transient curves, the notion of 
intersections and similar points were discussed. These features are not unique and other 

geometric characteristics can be identified. If an appropriate relationship between them 

could be established it may be used to determine whether an ANN could be successfully 

trained to predict a given set of PWR transients. The features for each member of a given 

set of transients would be used This section expands on this initial idea. Initial investigations 

result in the identification of a set of key geometric features of transient curves. A numerical 

relationship between these elements and their relationships is then explored. If successful 

the equations so developed would then be used to calculate which combinations of 

transients could be successfully predicted, by a single ANN, for a maximum defined error. 

6.3.1 Classification of Points of a Transient Curve 

One of the simplest forms of empirical classification for transient curves would be to 

allocate a numerical value to the relationship between corresponding pairs of points for the 

two transients being considered for inclusion in a predictive ANN. To illustrate this idea 

consider the following figure of two typical transient curves for a undefined plant variable. 
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Fig 6.5: Distances between points on Transient curves 
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If the two curves are considered in vertical sections according to the distances between the 

pairs of points. Some sections of the curves, where the pairs of points are quite separate, 
would be relatively easy to distinguish between and so predict. However, other sections of 

the curves are less well spaced or even coincident and this could lead to problems in the 
transient predictions. The proximity of points and the length of each section of like points 

could be a guide to the suitability of the two transients for inclusion on the same predictive 
ANN. If the length and form of each section was assigned a numerical value, these values 

could then be summed over the entire length of the transient to produce a numerical rating 
for the given combination of transients. As an interim step the type of sections could be 

classified according to their length and the proximity of the points included in the section, 

a possible classification is given in the following table. 

Code Classification 

la. 1 point coincident 

2a 2 points coincident 

pa p points coincident 

lb 1 point within 0 -º 5% 

2b 2 points within 0 -' 5% 

qb q points within 0 -' 5% 

Ic 1 point within 5 -º 10% 

rc r points within 5 -º 10% 

Id 1 point within 10 -- 15% 

sd s points within 10 - 15% 

1 1 point greater than 15% 

to t points greater than 15% 

Table 6.1: Classification of Transient Points 

It is assumed that an ANN can successfully distinguish between curves with points 

greater than 15% difference. Using this classification the relationship between the curves 

in Figure 6.5 could be described as 5e + 3d + 2c + lb + 2a + 3b + 2c + Id + 5e. The 

numerical value for each section should also include reference to some basic parameters 
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of the ANN such as number of time steps used for the input set and the number of reactor 

variables predicted by the network. 

A numerical value could then be defined for the distance between corresponding points for 

a pair of transient curves. These numbers could then be summed and compared to a 

previously established threshold value to determine the suitability of training a single ANN 

to predict the given transients to a defined accuracy. 

The determination of the threshold value is problematic. One method of producing such 

values may be to create a set of 'dummy' transients and then develop ANN prediction 

relationships for them. The method has the weakness that the result obtained may not be 

the optimal result for the selected combination occur for two reasons. Firstly, the ANN 

training may become trapped in a local RMS error minima, a more likely occurrence with 

complicated transients, so the prediction of the test 'dummy' transients introduces a measure 

of inaccuracy. Secondly the transient curves are not all equally predicted by an ANN, as 

seen in the examples in Chapter Five. Any threshold value would require consideration of 

both an ANNs ability to singly predict each condition under consideration together with 

predicting the given combination of transients. The problem is further compounded when 

considering three or more transients. 

If a realistic value for the threshold function could be determined for each combination of 

transients applying the results to PWR transients could be difficult as the inherent error in 

ANN training may not give the same results as those estimated from the 'dummy' transients. 

The wide range of possible inaccuracies highlight the inappropriateness of this approach to 

predicting transients with a single ANN. 

6.3.2 Area between Transient Curves 

A second possible method of determining the appropriateness of an ANN to predict the 

above transients could be to consider the relative areas between the curves. The magnitude 

of the area may be a guide to the success of accurate prediction. To illustrate this idea 

consider the following two pairs of transient curves as depicted in Figures 6.6a and b. The 

shading represents the areas between the graphs. 
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Figs 6.6a & b: PWR Transients 
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The curves in Figure 6.6a are very similar and so have a small area between them. However 

the transients represented in Figure 6.6b are quite different so the area between the curves 

is significantly larger. The results of the previous chapter would imply that the second pair 

of curves would be more accurately predicted, by a suitable ANN, than the first pair. This 

result may be related to the size of the area between the curves. A small area could imply 

a lower accuracy of the ANN to discriminate between the curves and so model the 

transients. A larger area could signify a better accuracy for ANN discrimination and 

prediction of the curves. 

The mathematical function for each transient is unknown so the total areas would have to 

be determined by a summation of the areas of a number of small vertical strips. If the curves 

were normalised this idea could be further developed to equate the total area with a value 

of the accuracy of prediction. Again only one plant variable has been considered. The 

number and interdependency of variables used to develop the ANNs would have an 

important effect on the final result due to the inter-relationships that exist between them. 

For example, a change in a node temperature could produce a corresponding change in 

pressure or flow rate. 

To explore this idea further the following two situations were considered, Figs 6.7 a and 

b. Each curve represents the stylised behaviour of a PWR variable during a transient along 

with the output from the best trained ANN. Pairs of transients are being considered for 

possible inclusion on the same predictive ANN. Each pair of transients have two 

intersection points, above and below the horizontal axis. To ease the calculations the 

variables are all initially represented as sinusoidal curves. 
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Figs 6.7 a and b: Curves for Area between Transient Investigations 

Area between first pair of curves = 0.626 (3 dec. p1. ) 

Area between second pair of curves = 5.657 (3 dec. pl. ) 

The above discussion would suggest that the second pair of curves would be easier to 

distinguish between, and so accurately predict the transients, compared to the first pair. 

ANNs were developed for each situation. The output from the diagnostic level of the 

advisor was simulated by the inclusion of two binary inputs into the training data. In 

each case one output was set at ' 1' to signify occurrence and '0' to represent absence. 
The resultant full data set consisted of 80 cases with 3 inputs and a single output. The 

third input represented the time from the occurrence of the transient. This set was then 

randomly divided into ANN training and test sets in the approx ratio of 2: 1. The results 

for the best of the ANNs developed are as follows: 

Transient Pair No. of Nodes RMS Error 

A 6 0.0201 

B 6 0.0207 

Table 6.2: Results of Area between Curves ANNs 

The outputs from these two ANNs were plotted to visualize the accuracy of the 

predictions. The resultant plots are shown below in Figures 6.8 a and b. 
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Figs 6.8 a and b: ANN Predictions of Curves for Area between Transients 

The best RMS errors are very similar this tends to suggest that the area between the 

curves is not a useful measure for ANN prediction accuracy. The results may be artificial 

as the same form of curve was used for each transient. To investigate this further the 

tests were repeated with a combination of linear and sinusoidal functions to represent 

the transients. Although this representation is not an accurate depiction of PWR 

transients it permits an elementary investigation of the underlying ideas. The same 

procedure as above was adopted for these new tests. The following two figures, Figs 6.9 

a and b, show the test curves. 
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Figs 6 .9a and b: Curves for Area between Transient Investigations 

Area between first pair of curves = 4.785 (3 dec. pl. ) 

Area between second pair of curves = 0.858 (3 dec p1. ) 

An identical approach to the previous tests was adopted the results for the best of the 

ANNs developed are as follows: 
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Transient Pair No. of Nodes RMS Error 

A 6 0.0804 

J 

B 6 0.0792 
ý 

__ 

Table 6.3: Results of Area between Curves ANNs 

Again the outputs from these networks was plotted and the results shown below, in 

figures 6.10 a and b. 
ist 

Figs 6.10 a . and b: ANN Predictions of Curves for Area between Transients 

The results confirm that the area between the curves is not a useful measure of ANN 

predictability. The later examples have similar areas and the same number of 

intersections as the first two cases but have quite different errors for prediction. There 

must be other contributing factors to account for this dilemma. 

The principal difference between the two sets of examples is the composition of the 

curves. The first pair consisted solely of sinusoidal representation for the transients, 

while the second pair were composed of both linear and sinusoidal elements. The results 

in Figures 6.10 a and b show that the linear components were less accurately predicted 

than the sinusoidal curves. The turning points for each linear transient were not 

accurately predicted, the ANN produced a spline to the two converging elements. 

Several node threshold options were considered in the development of the ANNs, 

however the best networks in each case used a sine function. This transfer function was 

probably preferred because of the composition of the curves used in the ANN, a 

selection of non-sinusoidal curves may have favoured a different threshold function such 
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These best results are plotted in the following graph, Fig 6.12. 
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Fig 6.12: Linearity Test Results 

The position of the linearity in the curve had an affect on the accuracy of the ANN. The 

data sets with the linear section at either extreme of the curve were not as well predicted 

as curves with a linear central section. The following diagrams, Figures 6.13 a and b, 

show the ANN output for two typical situations. The first figure depicts the prediction 

of a curve with a 25% linear section at the start, Curve B in Figure 6.11. The second 

figure consists of an identical sized linear section but in the middle of the curve, Curve C 

in the Figure 6.11. The linear extreme of the curve is not well predicted compared to the 

middle linear section. 
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Fig 6.13 a&b: Sample Outputs from Linearity ANNs (aý 25% Linearity 

The best RMS error results were used to determine a mathematical relationship between 

percentage of linearity and neural network RMS error. Linear and a quadratic formula 

were developed and these are given below together with a graph of the functions. 
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Fig 6.14: Graph of Equations of Linearity 

The results show several interesting features. The straight line, 100% linearity, was the 

best predicted curve. This result is unexpected as the threshold function used was 

sinusoidal and would not be expected to model a pure linear function. To collaborate 

this result a series of ANNs were developed for 90% linearity. 

% Linearity Best RMS Error 

90 0.0410 

Table 6.5: Best Results for Linearity Tests 

This result was added to the above graph. The result from 100% linearity was not 

considered in this graph. The revised figure is shown below in figure 6.15. 
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Fig 6.15: Refined Linearity Test Results 

The revised equations for the relationship between linearity and ANN error are given 
below. 

LINEAR y=0.000322177 x+0.0138539 
QUADRATIC y=3.07169x10-6x2 + 0.0000439959x + 0.016855 

The quadratic relationship will be used to determine the estimated ANN error for the 
linearity of a given PWR transient curve. 

The relationships are developed on the best ANNs produced to date, however better 

networks exist in the solution space but were not found in training. Repeating the training 

for a number of initial conditions gives a guide to the percentage of linearity relationship but 

the developed formula is not necessarily optimum. Furthermore the linear sections are 

shown as horizontal but this too may have an effect on the prediction ability of the 

developed ANNs. It may be that angled linear parts may be predicted with a different 

accuracy to horizontal elements. The linear and sinusoidal sections were joined tangentially 

to avoid additional problems of angle of meeting but by considering non-horizontal lines 

would introduce the angle of the line as a component so the results would not be 

independent and reflect the effect of linearity. 

A relationship has been produced for the linearity of a transient curve on ANN prediction 

accuracy. However, such an expression requires quantifying to establish the validity of the 

approach as the isolation of individual elements appears problematic. These observations 

will be further considered in the next section, which examines the effect of the angle of 

direction on ANN prediction. 
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6.3.3.2 Angle of direction as a Elementary Feature 

The angle of direction is the second curve characteristic identified as influencing a 

predictive ANN. The early, exploratory work on the suitability of ANNs for prediction, 

reported in chapter five, identified several scenarios where the PWR transient curves 

included acute angles. These situations were usually the result of a large leak or the closing 

of a system valve. An example of such a condition is depicted in the following diagram, 

Figure 6.19. The reactor parameter, pressure in Node 3, shows a very steep drop followed 

by an equally rapid recovery. The output from an ANN, trained to predict this transient, is 

also shown in the figure. The ANN is not able to accurately predict the transient at this 

point, the resultant curve being a crude spline to the transient. 
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Fig 6.16: Transient with included angle 

The included angle appears to be an important factor for predictive ANNs. To investigate 

this characteristic further a series of tests were created. The aim of these tests was to 

explore the effect of different included angles on predictive ANNs and, if possible, develop 

a relationship between included angle and neural network RMS error. The initial opinion 

was that a transient with a small number of included angles or composed of the better 

modelled included angles would be more accurately predicted by an ANN, with all other 

parameters being equivalent. 

Data for the included angles was obtained by using the linear construction shown below in 

Figure 6.17. The arrangement crosses the time axis at three positions; 0,0.5 and 1. The 

apexes, at 0.25 and 0.75, are scaled to equal ±1. The included angle is created by varying 

the 0.25 and 0.75 positions vertically, an apex closer to the time line resulting in a larger 

included angle. 
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Included Angle Best RMS Error 

10 0.064678 

30 0.065376 

50 0.0651 15 

70 0.065009 

90 0.063986 

110 0.064143 

130 0.065722 

150 0.064241 

170 0.065388 

Table 6.6: Included Angle Test Results 

The following diagram, Figure 6.18, shows the output from the best ANN in the above 

table. The diagram highlights both the tendency of ANNs to develop splines to included 

angles and the difficulty of an ANN to produce a linear output. 
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Fig 6.18: Output from Best ANN 

The above values were used to determine the following mathematical relationship between 

included angle and ANN RMS error. 

y=6.5102k102 - 4.3275X106x 

Where: y= RMS error of neural network, x= Included angle 
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6.3.3.3 Discussion 

The above sets of tests provide some interesting insights into the inner mechanisms of 

ANNs but the results obtained do not provide a conclusive argument for the validity of the 

approach. The main difficulty, which became increasingly apparent during the 

investigations, was in isolating each of the elementary features. Each test to investigate the 

effects of one feature always contained elements of the other features. Correspondingly the 

results obtained were not solely in terms of the characteristic under scrutiny. Consider the 

following two examples. 

The first set of tests considered graphs composed of varying lengths of linear section and 

curves. The curve sections were all sinusoidal as an ANN can successfully model sine 

functions, especially with a sine threshold function. However, the joining of the sections 

was an area of potential confusion. Whilst the different parts always intersected tangentially 

at a turning point on the sine curve, there is still an inherent included angle as shown in the 

following diagram, Figure 6.19a. This angle was constant throughout the tests but still had 

an influence on the results. At the least the results obtained could possibly be considered 

only as a subset of all linearity tests with a large range of included angles, as depicted in 

Figure 6.19b. 
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Fig 6.19 a&b: Diagrams of Included Angle in Linearity Tests 
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The second set of tests, investigating the included angle, were also dependent on more than 

one elementary feature. The shapes used for the tests were composed of straight lines 

meeting at the angle under test. The linear components of such arrangements are the 

elementary features investigated in the first tests of this section. The included angle tests 

could equally well have been performed with sinusoidal links between the angles, as shown 
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as sigmoid. 

These results also confirm the unsuitability of the classification approach to transient 

grouping discussed in section 6.3.1. The above pairs of curves would all have received 
different codings yet the results of ANN training show that the effect of proximity of curves 
is negligible. 

6.3.3 Elementary Features of a Transient Curve 

While the above results show that area between curves is not a contributing component for 

ascertaining combinations of transients for ANN prediction, characteristics such as linearity 

of the transient curves are important factors. Several other elementary aspects of curve 

construction, such as intersection information and gradient details, can also be identified as 

possible factors. A possible method of deciding an optimum combination of PWR transients 

may be to examine these characteristics and to develop a suitable relationship between 

them. If all the key variables for each transient under consideration could be expressed in 

terms of these basic properties perhaps by a formula, suitable combinations of transients for 

a pre-defined accuracy could be determined. 

That is for the satisfactory combination of Transients 1 to n in one predictive ANN 

Ek. l(Vk) X 

Where Vk = «Elements of Transient K) 

and x= Pre-defined accuracy of ANN 

The work in the previous section considered two combinations of curves. ANNs were 

trained to predict two sinusoidal curves and a combination of linear and sinusoidal 

curves. The two sinusoids were more accurately predicted than the mixed combination. 

Furthermore, the linear element was found to be less accurately predicted than the 

sinusoid. The amount of linearity present in a transient may be a possible guide to ANN 

prediction accuracy. 

A second feature that seems to have an affect on ANN prediction accuracy is a change 

of angle. The predictions in the previous chapter showed that drastic changes in a 

transient gradient cannot be accurately predicted by an ANN. The resultant spline often 

fails to predict the value of the PWR variable at the turning position of the curve. 
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Consequently a transient that contains a number of these features may not be satisfactorily 

grouped with other transient scenarios for accurate prediction. It is possible that such a fault 

condition could be successfully predicted by an ANN dedicated solely to the prediction of 

this transient. 

Two further features that seem to have an effect on ANN prediction accuracy concern the 

nature of any intersections between the curves under consideration. The number of 

intersections is a important feature to consider as an ANN trained to predict different 

transients would perform better for curves that do not meet compared to curves that have 

frequent intersections. The length of the intersection is also a key consideration. An ANN 

would have great difficulty predicting two curves with common values for a large duration 

of the transient. 

The final set of transient features to be considered for their impact on ANN prediction are 

the following. 

1) Linearity 

2) Angle of curves 

3) Number of intersections 

4) Length of intersections 

Each of these properties will now be examined in greater depth in order to establish any 

possible relationships. 

6.3.3.1 Linearity of Curve as an Elementary Feature 

A series of tests were devised to explore the effects of linearity of transient on a predictive 

ANN. A set of test curves were created with a varying linear element. A group of ANNs 

were developed for each curve. The results from the best ANN in each case were then used 

to develop an expression for a possible relationship between linearity and prediction error. 

The size of the linear section of the test curves ranged, in steps of 25%, from a pure curve, 

0% linearity, to a straight he, 100% linearity. The non-linear sections were represented by 

a sinusoidal waves joined tangentially to the linear sections. A sinusoidal wave was adopted 

for this task because it can usually be successfully modelled by an ANN. The possible 

effects of position of the linear section in the curve were considered by repeating the tests 
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for different combinations of linear and non-linear sections. The following diagrams, Figure 

6.11, show the full set of curves used in this investigation. 
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Fig 6.11: Set of Curves used for Linearity Tests 

Each curve was represented by a set of forty-one coordinate pairs. These normalised 

values were divided into ANN training and test sets, in the ratio of approx. 2: 1. To keep 

the models simple so that the effects of linearity could be observed the ANNs consisted 

of a single input and output nodes. A series of ANNs were developed for each curve 

with a selection of threshold functions and nodes in the single hidden layer. The best 

results obtained are given in the following table. The full details of the resulting 

networks are presented in Appendix J. 

Linearity Best RMS Error 

0 0.017273 

25 0.022907 

50 0.020590 

75 0.048667 

100 0.004451 

Table 6A Best Results for Linearity Tests 
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Fig 6.17: Diagram of Included Angle 

The training and test sets were produced using one of the following four equations. 

0s t-<0.25 x= 
t 

Tana 

0.5-t 
0.25-<t-<0.5 x= 

Tan a 
t-0.5 0.5<ts0.75 x= 
Tan a 
1.0-t 

0.75<ts1.0 x= Tan a 

A computer program was written to automate the production of the training data. The time 

step was set at 0.01 giving 101 data points which were divided into training and test sets 

in the approx ratio of 2: 1 respectively. The size of the included angle was varied between 

10 to 170 degrees, in 20 degree steps. A range of ANNs were developed for each size of 
included angle. The backpropagation algorithm was used and ANNs were trained for 

80,000 cycles with testing for every 100 cycles of the last 20,000, the best ANN being 

saved. The best RMS error results are given below the full set of results are given in 

Appendix K. 
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in Figure 6.20. However, the results obtained in this case could not be directly comparable 

with linear link results as the included angle is not independent of the links. 

ö 
v 

ne 

Fig 6.20: Diagram of included angle with linear and sine links 

The next series of tests would consider the effect of intersections on the RMS error of a 

predictive ANN. It was intended to develop a set of ANNs with a number of intersections. 

The above arguments are exacerbated in this case as both the nature of the curves and the 

angle of the intersections both have a bearing on the ANN predictability. Similarly the 

investigation for length of intersection is dependent of several parameters, namely nature 

of incident curves, angle of intersection and position of intersection in curve. 

In each case the variable under examination is not independent of the remaining variables. 

A relationship would therefore be impossible to determine purely in terms of a single 

variable. Furthermore the tests carried out have proved to be members to only a small 

subset of possible combinations of linearity or included angles. The full sets would require 
far greater testing and development, assuming they could all be identified. Finally the ANNs 

developed may not be the optimal solution to each case, a different starting point may 

produce a better final ANN. Using these results to construct mathematical relationships is 

therefore of questionable validity. 

The above problems were together considered sufficient major to curtail further 

investigations on this approach. The number of transients an ANN can accurately predict 

is still a crucial question for the development of the advisory system. A new method of 

addressing this question will need to be investigated. 
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6.4 Direct Equivalent Network Models 

This section discusses a second method of addressing the question of the number of 
transients that can be successively modelled by an ANN. The approach adopted is very 
different to that of the previous section in that the proposed network can model a large 

number of transients compared to the discrete number considered previously. This second 

method is introduced by examining the method an ANN models simple curves and PWR 

transients. This work is then enlarged with the development of a basic ANN unit which 
directly models the important non-linearities of the equation for energy conservation in the 

PWR primary system. This simple ANN based model is refined, tested and compared with 

a simulator modelling and predicting the reactor variables. A model of the entire PWR 

primary circuit is then constructed from a number of these simple, direct equivalent units. 
This model is further refined and compared with a full computer simulation model of the 

PWR. 

6.4.1 Initial Investigations 

This section of work explores the process used by an ANN to model a PWR transient. Very 

simple examples will initially be considered and by the gradual introduction of complexity 

the simpler PWR transients will be considered. The transients will be predicted by 

considering time as the input, however the method is equally valid for other plant variables. 

All the models in this section were produced on a spreadsheet program with the cells 

representing the various components of the ANN. The input nodes were described by a 

single cell containing the value of that input. The links between nodes were modelled by 

single cells holding the value of the weighting. The nodes in the hidden layer were 

represented by a set of cells. The first cell of the set contained the summation of the product 

of node inputs and weights between nodes. The second cell held the node output, the 

threshold function acting on the total input. This method permitted value changes to be 

rapidly performed and results quickly calculated. 

The simplest PWR situation to represent is the constant, linear, steady state condition. This 

situation can be modelled by an ANN consisting of two inputs, a single hidden node and 

one output, as depicted in the following diagram, Figure 6.21. One of the inputs, Node 2, 

is the Bias for the ANN while the first node is a reactor related variable. For these initial 

investigations time is used for this input. The figures given for the weightings between 
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nodes are only simple values for presenting the ideas. 

Fig 6.21: Steady State ANN Structure 

A simple constant, linear output, y, is independent of time so the weighting of the time 

input, w13, is zero. The output y therefore depends solely upon the weighting of the bias, 

w23, and the transfer function, f, of the output node. This can be represented in the 

following equations and graph. The output can take both positive and negative values, 

again determined by the weighting wem. The weighting between the hidden node and the 

output, w34, performs as a scaling factor for the output from the hidden node. For this 

ANN the value of w34 is fixed at one, no scaling. 

y= äO. f(t. Wla + W2a) 

W1Q = 0, WWO =1 

y= f(W2e) 

X 

u 

Time 

Fig 6.22: Graph of Linear Output 

The ANN output can be given a gradient by the introduction of a non-zero value to W13. 
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The slope of the output is determined by the value of W34, again the value can take both 

positive and negative forms. The following graph, Figure 6.23, shows the effect of varying 

the value of W10 for a range of values. 
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Fig 6.23: Graph of Gradient Output 

The transfer function of the hidden node also has an effect on the final curve. A linear 

transfer function produces a straight line, while using a sigmoidal function results in a 

curved output. A comparison of the two transfer functions, for the same weight of W13, 

are shown below in Figure 6.24. 

0 p 

2 

PG 

a a Linear Transfer Function 

Sigmoid Transfer Function 

Time 

Fig 6.24: Comparison of Transfer Functions 

The idea can be further refined by the addition of a second node to the hidden layer. 

This extra node produces further damping in the output. Node A is the linear element of 

the output and Node B produces the damped component. The size of the damping is 

controlled by the weights between Node B and the output, a greater weighting 

producing a more dramatic damping. A sigmoid threshold function was used for the 

nodes in this model. The following diagram, Figure 6.25, shows the arrangement of the 

nodes and the graph in Figure 6.26 shows some results for a range of W45, the weighting 
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between Node B and the output node. 

I 

W3 ) 

w3S 

"23 5 
Bias W,. 
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)124ý 4y W4s 

Fig 6.25: Restricted Flow ANN Structure 
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Fig 6.26: Sample results from Restricted flow ANN 

Link Weight 

W13 0.001 

W14 -0.1 
W23 0.9 

W24 -0.1 

W35 0.9 

W45 0.1 

These ANNs can be further refined to model the rapid emptying of a chamber, caused by 

the opening of the emergency cooler valve for example. This feature is produced by the 

addition of a third node to the hidden layer. A time for the valve to be opened is pre- 
defined, at t say, before the ANN is constructed. The weighting from node 1, the time node, 
is the reciprocal of this value, ie 1/t. This new hidden node has a hard threshold function 

with the following outputs 

Output= 
if inputs 0 
If input} 0 

The output from this node is zero until time t, after which the node output becomes 1 and 

the ANN has an additional damping element on the output, determined by the weight w36. 

This ANN is depicted in the following diagram, Figure 6.27. 
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Fig 6.27: Valve Model ANN Structure 

Link Weight 

W13 0.001 

W14 -0.1 

W15 1/t 

W23 0.9 

W24 -0.1 
W25 -1 
W36 0.9 

W46 0.1 

W56 -0.02 

In operation this ANN performs identically to the previous network until time t when 
the valve opens, the output from node C becomes positive, the chamber being modelled 

rapidly empties and the transient is then modelled for a lower value. The following 

graph, Figure 6.28, shows the results of a range of valve opening times. 
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Fig 6.28: Graph of valve opening times 

The final variation of this system is to consider various sizes of the leak. This feature is 

modelled by the addition of a third ANN input to represent leak size. The new node is an 

extra damped system with an input that reflects the size of the leak with an input of zero for 

no link The size of this input affects the degree of additional damping introduced into the 

network and so creating a range of outputs from the ANN. The developed ANN is 
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applicable for a range of scenarios as compared to the previous models which were all 

transient specific. The final network is represented in Figure 6.29, below. 

1 w4 

is 
w46 

2 wu W34 6 

W2 w56 

3 W35 

Bias 

Fig 6.29: Leak Size Model ANN Structure 

Link Weight 

W14 0.001 

W15 -0.1 

W24 0.0001 

W25 -0.9 
W34 0.9 

W35 -0.1 

W46 0.9 

w56 1 0.1 

Even with the rudimentary ANNs so far developed, the basic decay curves of some of 

the PWR variables have been successively modelled for simple transients conditions. The 

networks developed above have been for a very limited range of circumstances. 

Variables such as the damping rates and valve opening times are all pre-defined thus 

limiting more complex and realistic applications. The addition of extra nodes, to both the 

input and hidden layers, introduces more complexity into the ANN system. The 

investigations reported so far in this section have shown that basic PWR transient 

characteristics can be modelled by ANNs. The networks developed have all been hand 

designed, with no data sets or training cycles. If the above ideas were to be developed 

further then a training process could increase the accuracy of the predictions by 

modifying the inter-nodal weights, as the initial, report weightings were all defined by 

hand. The severe disadvantage of these networks is their limited range of applicability. 

The next section considers an ANN model that is able to model a greater range of 

transient scenarios. 

6.4.2 One Compartment Model 

The work reported in this section investigates a different approach to the question of the 

number of transients an ANN can model and predict. Section 6.3 explored methods of 

determining the number of transients that could be modelled by a single ANN. An 
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alternative approach would be to develop an ANN that could predict a large number of 

transient scenarios. A method of achieving this aim would be to develop an ANN based 

simulation model of the PWR primary circuit. A PWR model developed with ANNs would 

possess several advantages over an equation based simulator. Firstly, the operation of a 

slow empirical code could be enhanced by ANNs replacing some, or all, of the 

computationally intensive elements of the code. In the envisaged PWR operators advisor 

the prediction component would be required to operate well in excess of real time to enable 

a rapid, usable view of future reactor state. Secondly, the ANN simulator would be able to 

model plant variables not directly measurable, core temperature for example, and so 

enhance the model. 

This approach to modelling and predicting PWR transients simplifies the original advisors 

system layout. The previously envisaged scheme included a number of ANNs in the 

prediction layer, each designed for an optimum set of transients scenarios. The new system 

retains the diagnostic layer but the prediction element now simply consists of an ANN based 

simulator. A second ANN simulator model could also be included to model different reactor 

variables, node temperature and pressure for example. A comparison of the two hierarchical 

systems are shown in the following figures. Figure 6.30a depicts the original system layout 

with a number of optimised predictive ANNs in the lower level of the hierarchy. Figure 

6.30b shows the new system with a reduced number of ANN simulators in the predictive 
layer. 

PWR Variable Data PWR Variable Data 

Diagnostic! 
ANgnaadc AN ANN N 

Predictive Predictive Predictive predicth e ANN ANN ANN ANN 

Prediction of Future Values Prediction of Future Values 

Figs 6.30a & b: Hierarchical Systems 

The remainder of this section is as follows. Some initial work on representing 

mathematical functions with ANNs is first described. An ANN based model of a 

simplified reactor primary circuit is then developed using these functions. This simple 

model allows a wide range of scenarios to be explored and tested. The idea is then 
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refined to include standard ANN threshold functions in the model. Lastly the technique is 

expanded into a model of the primary circuit. This model is refined, tested and compared 

to a computer simulation program of the system. 

A key element to the success of an ANN based simulator is the ability of an ANN to depict 

basic mathematical functions. Although the final ANN will probably be a complicated 

mapping of many dimensions the elementary functions will still be represented. An insight 

into the internal structure of such ANNs could provide benefits when the more complicated 

models are under consideration. 

6.4.2.1 Addition and Subtraction of two numbers with an ANN 

The addition of two numbers is simply modelled by an ANN with two inputs, one for each 

number, and a single output for the summation. The weights between the nodes dictates the 

multiples of each input in the final total. For simple addition these weights are all given a 

value of one. The threshold function for the output node can be used to include further 

refinements, such as multiples, but for standard addition a linear threshold is used. This 

arrangement is shown below, in Figure 6.31. 

Where 

Wem, = Weight between Nodes X&Y 

X. = Input A 

I. = Input to Node X 

Ox = Output to Node X 

Fiji 6.31: ANN Structure for Addition 

Consider Node 3 
The input to Node 3, t3 = xl. W13 + X2"W23 

The output form Node 3, O3 = f3 (X1 
. w23 + K2 . w23) 

If the threshold function f3 is linear function ie f3(x) =x 
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ý3 = iä1-W13 + "2'W23 

The input to Node 4, r4 = W3 
4 

(X W13 + x2 W23 ) 
The output from Node 4,04 = f4 ( W34 ("'iW13 + x2%3) ) 

If Node 4 has a linear threshold 

O+ = W34 (XI 
13 + ; 

3) 

The required output from Node 4 is in terms of Xl + X2. If W13 = W23 = W23 =0 
then o4 = xl + x2 

Addition of two numbers is possible with an ANN 

The values of the weights can be changed to produce more complicated functions. For 

example, if W13 = 3, W23 = 1, W23= 2, 

then O4 = 6X1 + 2X2 

Finally if W23<1 ie a negative value 
then 0 Xl - X2 

Subtraction of two numbers is possible with an ANN 

6.4.2.2 Multiplication of two numbers using an ANN 

Multiplication is the elementary building function of any model or simulator involving 

flow. Most systems can usually be represented as a system of compartments or zones. 

The dynamics of the system is modelled by flows between these regions. The reactor 

variables modelled as flows could include temperatures, pressures or masses. The basic 

requirement of a multiplying ANN is to take two numbers as inputs and produces an 

output of their product. The simple ANNs developed in the sections above only use 

additions to produce outputs, any required multiplication is introduced by the weighting 

between nodes. An ANN of this form cannot handle direct multiplication of two terms 

so a different ANN internal structure is required. 

Consider the following three basic ANN structures, in order of complexity. 
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Where 

Wem, = Weight between Nodes X&Y 

X. = Input A 

Ix = Input to Node X 

Ox = Output to Node X 

Assume Node 4 has a linear transfer 

function. 

Fig 6.32: One Hidden Node Multiplying ANN 

Considering Node 3 
I3 = X1. W13 + X2. W23 

03 = f3 (Xl 
. W13 + X2 . W2 

3) 

If the threshold function f3 is a half square ie f3(x) =V2x2 

__ 
1X X2 2 r4 2 w34 ("1w13 + W23ý 

2 W34 
"2W 3+ 

2"'1' 
2W13w23 

+X W23) 

2 "72w13w34 + x1x2w13w23W34 +24 3W34 

The required output from Node 4 is in terms of X1. X2, the terms involving just Xl and X2 

need to be zero. Equating terms of X,, X2 and X,. X2, gives: 
W0..... (i) 

13W34 
W2 W=0...... (2) 

23 34 
W. 

3w23W34 =1...... (3) 

From Equation (1) eitherW13 =0 or w34 =0 
From Equation (2) either w23 =0 or W34 =0 

Any of the above results cannot give the required result in equation (3). ie 

If W13 = 0, W23 =0 or W34 =0 
Then W13W23W34 1 

Result: An ANN with one hidden node cannot be used as a multiplying unit 
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2) Two Hidden Nodes 

1 
W13 

3) Where 
ýý W 3s Wem, = Weight between Nodes X&Y 

X123 X, =Input A 

W14 

ýE444 T W45 

2 

Ix = Input to Node X 
----ýý Ox = Output from Node X 

Fig 6.33: Two Hidden Node Multiplying ANN 

Consider Nodes 3 and 4 
X. = Xi 

. 
W13 + X2 

. 
W2 

3 

03 = f3 (Xl 
. W13 + X2 . W2 

3) 

14 = X1. Wi 
4+ 

X2 
. W2 

4 

.: 04=f! (Xl. W14 + X2. W24} 

Again if the threshold function of f3 and f4 is a half square ie «x) ='/ve 

15 2 W35 (XlW13 +" 2W23) 
2+2W! 

5 
("'iwl! + X2%4) 2 

X _ X2 22 W35 (""1 W13 + 2"'1"X2WllW23 + X2 %3) 

1 
X2 2X 7ý2 2 +2W! 5 "1 

Wl! + 2"_l Wl4W2! +"2 w24) 

Again the required output is in terms of X1. X2, the terms involving just X, and X2 need to 

be zero. Equating terms of X1, X2 and X1. X2, gives: 

=0...... il) W3W35 +W 14W45 
W 

3W35 
+ W24wi5 =0...... (2) 

w13w23W35 + W14W24W45 =1...... (3 

From Equation (1), either w13 = Wl4 and Was =- W4s 

or W13 = -W14 and Was = W4.5 

or W13 or W35 =0 and W14 or W45 =0 

From Equation (2), either w23 = W24 and W35 = -W! s 
or W23 = W24 andW35 = W4s 

or W23 or W35 =0 and W24 or W45 =0 
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If either W35 or W45 =0 the problem reduces to a one hidden node ANN which cannot be 

used as a multiplying unit as shown in the previous case. None of the other pairs of weights 

can be zero as one of the inputs will be removed from the ANN creating a trivial example. 

All other combinations of weights do not permit Equation (3) to be correct 

Result: An ANN with two hidden nodes cannot be used as a multiplying unit 

3) Three Hidden Nodes 

W 13 3 Where 

1 
14 23 

W36 Wem, = Weight between Nodes X&Y 

w4 X, = Input A 
is 46 Ix = Input to Node X 

2 
W24 

W56 O, 
ý = Output from Node X 

Wes 

Fig 6.34: Three Hidden Node Multiplying ANN 

Considering Node 3 

Similarly 

13 = Xl 
. 

W13 + X2 . 
W2 

3 
O3 = f3(X1. w13 + X2. w23) 

04 = f, (Xl W14 + X2 W2 
4) 

05 = f5 (X1W15 + X2 W25) 

O= WO+ 
6 363 

W4604 + W5605 

W36f3 (Xl 
13 + "2W23) + W46f4 (""1W14 + X2W24) + W56f515 + "'2W25) 

Again if the threshold function of f3, f4 and fs is a half square ie t(x) ='2x2 

206 W36("'IW13 + X2W23) 2+ w46("'1W14 +' 2W24) 
2+ W56(X1W15 + X2W25) 2 

W223 W3 
6+ 

2""lX h 
3%3W36 

+ X2 W23W36 

+ '"12W14W46 + 2"'1X2W141%24W46 + X2 W24Wl6 

+ "'12W SW56 + 2" 
1X2W15w25W56 

+ 2W25W56 

Again the required output is in terms of X1. X2, the terms involving just Xl and X2 need to 

be zero. Equating terms of X1, X2 and X1. X2, gives: 
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W2 
1.3 

W36+W? 
14 

Wý6+ W15W56= ...... 
ý1ý 

w2 w+W ±Wý6 +W 
SW56 

=0...... ý2ý 

WW W+ W14W24W46 + W15%5W56 

From Equation (1), say W13 W14 and W 3, s=-W46 
then w2155 w=0...... (4) 6 

Similarly from Equation (2), if W24=W25 and W, 6=-W4,, 
then W23%6 =0...... (5) 

From (4) either wls =0 or W56 =0 

And from (5) either w23 =0 or w36 =0 

If either W= W 0, then the problem resolves to a two hidden node ANN which has 

previously been shown not to be a multiplying unit. 

"w15 
I3=0 

Putting these results into Equation (3) gives 

0+W14W24W46 +0=1 

say Wl = W2 = W46 

The structure of the ANN becomes 

X 

X 

Fig 6.35: Structure ofMultiplyingAANN 

Check 

Input to Node 3= Xl , 

:. Output from Node 3=0.5(X1)2 

Input to Node 4= Xl + X2 

: IX2 
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Output from Node 4=0.5 (XI + X2) 2 

= 0.5 (X12 + 2X1X2 + X22) 

Input to Node 5= X2, 

Output from Node 5=0.5(X2)2 

Output from Node 6= -0.5X12 + 0.5 ()12 + 2XIX2 + X2) - 0.5X2 

= XIX; 

Result: An ANN with three hidden nodes can be used as a multiplying unit 

The elementary mathematical functions of addition and multiplication have now been 

developed. This toolbox can now be used to investigate modelling the PWR primary circuit 

with an ANN. A simple, one compartmental model of the system is considered first. The 

full circuit will be considered later in this chapter. 

6.5 One Compartment PWR Model 

Consider a simple one compartmental model of a reactor as shown below in Figure 6.36. 

The main body of the model represents the reactor pressure vessel, containing the core, 

while the loop is a steam generator and piping. The system is assumed to be closed with a 

constant mass of liquid. The steam generator removes heat from the system so controlling 

the value of Ti. 

Where: P= Pressure in vessel, 

M, = Mass of liquid in vessel, 

Tl = Temperature of liquid in vessel, 

Ti,, = Temperature of incoming liquid, 

M. = Rate of flow of liquid mass, 

Q= Heat into the system. 

Fig 6.3 6: One Compartment Model of a Nuclear Reactor 

135 



The conservation of energy equation to calculate the next pressure vessel temperature for 

this system is: 

Tl k *At) -T( k)+ Q At+ Ot 
(Msn CTt k )_T2' k)) ) 

CMM 
P 

Where: Cp = Specific Heat of liquid in reactor pressure vessel, 

At = Time step between (k+l) and k. 

The intention is to develop an artificial neural network to model this system and calculate 

the next temperature of the vessel. The network will be an exact equivalent of the system. 
The first two terms of the equation are simple additions with the constant terms, Q, CP and 

M,, being modelled by the weightings between the ANN nodes. The third term contains 

a non-linearity, a multiplication, which can now be modelled using the ANN structure 

previously developed. The initial adaption of the multiplying section of the ANN model is 

shown below, in Figure 6.37. The constant term &t/M, is represented by the weightings in 

links Wem, W4. and W%. 

TI-TI 

ec(MMd -ý1)) 

Min 

Fig 6.37: Multiplying Element of Simulation Model 

This network can be further refined by replacing Node 1 with an ANN subtraction The 

multiplication is now modelled by the following network, Figure 6.38. 
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At/Mi 

Tit M16 

T&* 

-At/MMd 

et(Md(rkk Tit)) 
Ml 

Fig 6.38: Refined Model Multiplying ANN 

Combining this network with the first two terms of the energy equation produces the 

ANN model, shown in Figure 6.39, for the temperature flow in the one compartmental 

model. The central part of the network models the multiplication while the addition of 

the first two terms is included in the weights and summation in the output node. 

I 
Tit 

_I 

t/ml 

AVMI 

Mb -e ý 

i 

evc. Mi 

Fig 6.39: ANN Representation of One Compartment PWR Model 

This network was originally produced on a spreadsheet program but proved to be very 

unwieldy in operation. The ANN was coded into aC program to enable testing of the 

models performance and comparison with the computer simulation to be performed 

practically. The full code listing is given in Appendix L. The program used a feedback 

loop in which each calculated value for Ti was used as the input for Node 1 in the next 
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iteration. A series of different conditions were presented to the model and run until a steady 

state was reached. To ascertain an approximate final value of this condition consider the 

following: 

Tlx"At )_T(r)+QAt +At(M (T(r)_Tlrý)) 
11CMM in to 1 

P 

For Steady State conditions Tl *At =Tk 

Q+1 
(MIn(Tn + Tk) =0 

pl All 

M=n 1,1k + Tk) _-(1) 

p 

In 1p 
in 

Let the final compartment temperature be Tl Inal 

Suitable variable values for testing the network were obtained for a Westinghouse PWR 

(Todreas and Kazmi, 1990). These are given below in Table 6.5. 

Variable Value 

Inlet Temp., Ti. 286°c 

Outlet Temp., Tl 324°c 

Core Flow Rate, NV . 
17400 Kg/s 

Core Power Level, Q 3800 MW 

Core Volume, M 3.06 x 105 K 

Table 6.7: Test Values for One Compartment Model 

Using these values the following results shown in Figs 6.40 to 6.44, were obtained. 
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Case 1: Half Power 

I, 

t 
s r 

T, = 324°c, Ti,, = 286°c, 

M. = 17400 Kg/s, Q=2.0 x 109 

Calculated T, F"n' = 309.46°c, 
F 

l` 

r" 

ANN T, F"'al = 309.46 °c 

Fig 6.40: Half Power Condition 

3 

Case 2: Reduced Flow, Small Leak 

T, = 324°c, Ti, = 286°c, 

M. = 15000 Kg/s, Q=3.8 x 109 

Calculated T, F"Ia' = 337.70°c 

ANN TIF"" = 337.70°c 

ram 

Fig 6.41: Reduced Flow Condition 

Lo 

Case 3: Reduced Incoming Temperature 

T, = 324°c, Ti. = 250°c, 

g.. = 17400 Kg/s, Q=3.8 X 109 

Calculated T, Fin" = 294.57°c 

ANN T, F"'a' = 294.57°c 

rr 

F 6.42: Reduced Temperature Condition 
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Case 4: Increased Incoming 

L 4 Temperature lip 

T, = 324°c, Ti,, = 300°c, 

M. = 17400 Kg/s, Q=3.8 x 109 

Calculated T, ̀  = 344.57°c 

ANN T, F°', ' = 344.57°c 

ram 

F 6.43: Increased Temperature Condition 

Case 5: Increased Flow 

T, = 324°c, Ti,, = 286°c, 

M. = 20000 Kg/s, Q=3.8 x 10' 

Calculated T, F"L' = 324.78°c 

ANN T, F"W = 324.77°c 

ras. 

F jg6.44: Increased Flow Condition 

These results were very close to that obtained from the simulator program. As the ANN is 

a direct equivalent of this system the results should be identical. For all cases, with the 

exception of Case 4, the actual and predicted values of T, are correct to 2 decimal places. 

The slight variation can be explained by the handling of numerical values by the compiler 

of the computer program. A feedback technique was used to input the next value of T, into 

the program. With this method even very small differences can gradually build up and create 

a larger errors. The results obtained warranted further investigation in this method of 

prediction. 

This network is a direct equivalent of the equation but still uses the transfer function 

developed for the multiplying network. Namely: 
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0ý= 0.5(E 3 (IS. Wtj) )2 

Where: O, = Output at node j, 

I; = Input from node i, 

WW = Weighting between Nodes i and j. 

This feature is a useful theoretical tool for understanding the internal mechanism of the 

network but it is not a standard function. No saturation level is defined so the node 

output theoretically has no limit. This feature is undesirable for a practical ANN system 

as the lack of a maximum level for the node output enables possible chaotic, unseen 

situations to occur. A threshold limit will cap these extreme values to a known level and 

so prevent the simulation producing wildly inaccurate outputs. These unwanted cases 

could occur if the network was required to predict a transient scenario with catastrophic 

conditions, such as a large leak, when unrealistic values for the variables may occur, for 

example negative masses or extremely large temperatures. In the case of the PWR the 

transfer function saturation models physical limits such as the pipe diameter and the 

volumes of regions. 

A series of neural networks were developed to investigate replacing this transfer 

function with standard transfer functions. Firstly, the half square elements of the 

network were replaced by ANNs trained to square a single input. A second ANN was 

then developed that multiplied two inputs and so could replace the entire multiplying 

section of the network. Lastly, an ANN was trained to perform the entire function of the 

equation and calculate the change in temperature. In all cases the result from one 

calculation, T"' was fed back into the model as the input to determine the next 

temperature, T'`+2. These three cases are shown, along with the original ANN structure, 

in the following set of diagrams, Figures 6.45 to 6.48. The known value of the 

weightings for node links are shown. The remaining values will be determined by each 

training process. 
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Fig 6.48: ANN with Trained ANN 

This gradual replacement of the non-standard component of the simulator ANN enabled a 
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study of the different forms of ANN to be compared. The final output of each ANN output 

could also be investigated to determine any relationship between accuracy and 

standardisation. The first two ANNs would be composed of a composite structure; 

standard, trained ANNs inside a heuristically developed ANN. 

The first two combined networks, Figs 6.45 and 6.46, were still direct equivalents of the 

system equations. These embedded ANNs were trained to perform simple mathematical 

functions, squaring and multiplying. The data sets for training these ANNs were therefore 
lists of squares and multiples respectively. 

The squaring ANNs consisted of a single input, of the number to be squared, and one 

output node of the resulting square. Two sets of squaring ANNs were developed to 

investigate the process of squaring a number using an ANN. The first was trained to square 

the positive integers from 1 to 20 while the second set of ANNs considered the squares of 

the integers from -20 to 20. The ANN data set in the first case consisted of 20 cases while 

the second contained 41 examples. The main results are given in Table 6.6, below. The full 

results are given in Appendix M. 

Filename Architecture Threshold RMS Error 

square2a and 1-2-1 Tanh 0.0153 

s uare7a. nnd 1-3-1 Sine 0.0296 

Table 6.8: Results from Training Squaring ANNs 

The graphs of these ANNs with the training data are shown in Figs 6.49 and 6.50. 
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Fig 6.49: Results of Best Squaring ANN for Positive Integers < 20 
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These graphs show that most error in the ANN output is at the extremities of the curves 
For the most accurate results when using the squanng ANN the input would require 

scaling to the middle section of the input range 

The multiplying ANNs consisted of two input nodes, for each number, and a single 

output to contain the product of the inputs Awn a series of ANN% were developed to 

explore the gradual change from squaring to multiplying a range of integers by ANN 

The first networks replaced the single input of the squaring ANN with two identical 

positive inputs The second group of ANNs used both positive and negative identical 

integer values for inputs The final networks used an input set produced by varnng both 

inputs in the integer range of 0 to 10 This method produced a training data set of III 

cases In each case the information was divided into training and test sets in the approx 

ratio of 21 The full results for the multiplying ANNs are Epven in Appendix N the 

results from the best ANN. for the last stage. are Eti en in t able ( t) 

Filename Architecture Thrc*hold Ftý11 ! rrýºt 

mull I4) and 2-1-I Sine (º ýýý-5 

Table 6.9. Rciut from Trauter MWupbin t ANNi 

A comparison of the output from this ANN with the actual data is shown in Figure 6 51 
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The results again show that the product of values at the extremities of the considered range 

are least accurately calculated by this ANN. This characteristic will need to be considered 
in further investigations. A possible method of reducing the impact of this aspect could be 

to scale the ANN input values to lie in the most accurately calculated region. 

The third form of ANN to be developed, a complete 1CV model, required data from actual 

plant operating conditions to be able to produce realistic training and test sets. In order for 

the ANNs to develop relationships between the input variables the data sets need to reflect 

the form of these associations. Simple mathematical formula cannot be used to create 

simplified data sets, as in the above investigations, because the ANNs are required to 

perform a more complicated task, namely the modelling of a 1CV model of the PWR. The 

relationships between the variables are therefore more involved. Furthermore it is not 

possible to consider every possible scenario for the model. The set of combinations of all 

possible cases, even for a simple system, is large and an ANN training set designed to 

reflect these would also be sizeable. A set of scenarios were produced that, although not 

necessarily a true reflection of the actual operating situations, gave a guide to the 

relationships between the variables. A simulator model was used to model each of these 

situations with plant data from the Westinghouse PWR (Todreas and Kazmi, 1990). Initially 

each case was modelled until a steady state condition was achieved. This initial data set is 

given below in Table 6.8, the whole set consisted of 860 entries which were randomly 
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given below, in Table 6.13, details on all ANNs are given in Appendix 0. 

Filename Architecture Threshold RMS Error 

tem 13f and 4-6-1 Sine 0.0177 

Table 6.13: Result for 1 CV PWR ANN with AT, as Output 

This network was translated into aC program module and incorporated into a feed back 

program. This program also included the best ANNs previously developed for squaring 

and multiplying the input variables to the 1CV PWR module for comparison. The 

program listing is given in Appendix P. A series of tests were performed, using values 

typical of a civil nuclear reactor. Two examples of the results obtained are shown below. 
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Fig 6.55: Temperature Changes for Reactor Pressure Vessel 

The results show that the twenty-five region direct equivalent ANN model is a very 

good representation of the PWR primary circuit. The few minor differences can be 

attributed to the smoothing some of the sudden rates of change in regional temperature. 
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Filename Architecture Threshold RMS Error 

wr4 . nnd 5-6-1 Sine 0.0563 

Table 6.15: Result for Primary Circuit ANN Module 

An independent data set was created to evaluate this ANN. The range of variable values 

used are given below, in Table 6.16. 

Data Set Initial Ti,, ' (°C) Normalised Q (W) Normalised 

T, " (°C) M. (Kg/s) M, Kg 

pwr_cv4. nna 250 250- 200 0- 1 0- 5x 106 0- 1 

101 Cases 

Table 6.16: Data Set for Testing Primary Circuit ANN Module 
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Fig, 6.56: Independent Test Set Results 

The results from this ANN are not very satisfactory. The curves produced are discernable 

as part of the transient being tested but the values are not precise enough for realistic 

inclusion in an advisory system. This approach requires refining to produce better predicted 

temperatures. 

One method of improving the predictive capability of the primary circuit trained I CV model 

was to consider the immediate history of the I CV model, to include variable information 
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This ANN has a lower RMS error value than previously, however when the same data set 
from Table 6.16 was used to evaluate this ANN. The results obtained are shown below, in 

Figure 6.57. 
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Fig 6.57: Result from Two Time Step ANN 

These results are considerably worse than even the initial ANN from this section. This may 

be due to over fitting of the training data and the extra complexity in the ANN causing 

additional, unnecessary errors. The implicit inclusion of regional mass appears to complicate 

the predictive ANN. Previously the mass of each region was coded as a component of the 

final weighting between the ANN hidden layer and the output node. In contrast the last two 

investigations have introduced the regional mass as a main ANN component with a status 

equal to other variables such as temperature. This approach has meant that the ANNs have 

developed additional relationships between these variables which do not enhance the 

predictive ability of an ANN on an independent test set. The first approach to this dilemma 

was to retain regional mass as an ANN input but to only connect this node directly to the 

output node of the ANN. This structure would hopefully duplicate the direct equivalent 

model and so produce more accurate temperature predictions. The following two figures 

illustrate the revised architecture. 
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A new ANN architecture was developed in which the regional mass was retained as an 

input but only connected to a second hidden layer of nodes. A diagram of this arrangement 

is shown below. The number of nodes shown in the hidden layers are for illustration and do 

not necessarily represent the optimum ANN. 
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Fig, 6.59: Revised Two Hidden Layer ANN structure 

A series of ANNs were trained with various combinations of nodes in the two hidden layers. 

The training and test sets, pwr_cv3. nna, developed in the initial investigation in this section 

was again used. The ANNs were trained each trained for 80,000 cycles with the test set 

being presented every 100 iterations for the last 20,000 cycles. The best network structure, 

in terms of RMS error, was saved. The full results for the ANNs developed for this data set 

are given in Appendix R. The details of the best ANN developed are given below. 

Filename Architecture Threshold RMS Error 

pwr8c. nnd 5-7-3-1 Sigmoid 0.0252 

Table 6.20: Result for Primary Circuit Two Hidden Layer ANN Module 

The RMS errors for this set of ANNs were far lower than the previous investigations in 

this section. A true determination of the predictive ability of this ANN must be by using 

an independent test set. Until now the test sets have been produced by running the 

simulator program for various combinations of initial settings. These sets have not 

consciously been representative of any actual PWR conditions. This situation is not ideal 
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and does not provide the ANN with a realistic test, even if the tests sets used could have 

been more difficult to predict. To rectify this situation it was decided to test an ANN based 

PWR primary circuit model with data sets of transient scenarios. The 25 region model, 

developed earlier in this section, was retained but with the above ANN, pwr8c. nnd, 

embedded in place of the direct equivalent used previously. Two PWR transients, a primary 

coolant leak and a downstream steam leak, were modelled with the simulation program. 

The resulting simulator output files were converted into a form suitable as an input to the 

ANN. These files were then presented to the ANN based PWR model. The predicted 

regional temperatures from the ANN together with the initial simulator output for two 

loops of the PWR primary circuit are shown below, in Figs 6.60 to 6.63. 
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Fig 6.61: Reactor Pressure Vessel Temperatures for Primary Coolant Leak 
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Fig 6.63: Reactor Pressure Vessel for Downstream Steam Leak 

These results are a great improvement on those from the previous ANNs in this section. 

The regional temperatures are well predicted, the only discrepancies being the usual 

smoothing of acute gradient changes. The two hidden layer approach seems to provide a 

good solution to predicting PWR primary circuit regional temperatures. This ANN 

architecture appears to offer the best predictive capabilities in this section. 

An iterative approach to the development of this ANN has produced some interesting 

results but it is possible that a similar result could have been obtained if the two hidden layer 

ANN had been adopted in the initial investigations. A single hidden layer was used to 

develop a simple mapping between the inputs and outputs. 
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structure, in terms of RMS error, was saved. The full results for the ANNs developed for 

this data set are given in Appendix R. The details of the best ANN developed are given 
below. 

Filename Architecture Threshold RMS Error 

pwrsI 1 h. nnd 118-55-25 Sigmoid 0.0146 

Table 6.22: Result for Single Entire Primary Circuit ANN 

This ANN was evaluated on an independent test set consisting of a small coolant leak. 

Using a different sized transient was considered to be a stern test of the prediction ability 

of the ANN. However, the valve and throttle settings were not altered significantly from 

the training set. The results for two sections of the primary circuit are given below. 
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Fig 6.65: Prediction of Steam Generator Loop Temperatures 

These results show that while the ANN can predict the general trends of the transient the 

regional temperatures are not accurately predicted. The relatively low RMS error obtained 

during the training shows that the data set can be learnt but perhaps either the ANN 

becomes overtrained or the solution space is too complicated to be accurately modelled. 

A second tests gave similar results so the size of the ANN and the task required appear to 

preclude this approach from serious consideration as the prediction component of the 

advisory system. 

6.7 Discussion 

The investigations discussed in this chapter arose from considering the number of transients 

that could be modelled by an ANN. Originally a number of different networks were 

envisaged for the prediction of reactor transients (Weller et al., 1995). Each ANN would 

be developed to predict a set of transients, grouped by common features or similar 

behaviour. However, it was soon realised that the grouping was very difficult. An 

alternative method would be to develop an ANN system capable of modelling many 

transients irrespective of their features. This approach has proved successful and the model 
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divided into training and test sets. 

Initial Tl (°C) T; 
° 

(°C) M. (Kg/s) Q (MW) No of Cases 

326 250 17400 3.4x 10' 200 

326 300 17400 3.4x 109 151 

326 286 12500 3.4x 109 216 

326 286 15000 3.4x 10' 161 

326 286 20000 3.4x 109 132 

Table 6.10: Initial Data Set for ANN of I CV PWR 

A range of ANNs were developed with this data set. The full details are given in 

Appendix 0. The best network was as follows 

Filename Architecture Threshold RMS Error 

temp6. nnd 4-7-1 Sine 0.0177 

Table 6.11: Result for ANN of 1CV PWR with Steady State Data Set 

As seen in the last column of Table 6.10 this approach did not give equally sized data 

sets for each situation as the cases reached steady state at different times. Different sized 

sections of the data set could bias the ANN towards the situation with the larger 

contribution, the first or third scenarios in the above table. A comparison between this 
ANN and the simulator program for a simple scenario highlights the problem. 

A refinement was to ramp the variables between two pre-defined limits. The range of the 

scenarios modelled is shown below in Table 6.12. The model was also run for a 

specified time of 100 time steps in order for each scenario to be represented by a data 

set of equal length and so avoid biasing the ANN. The simulator program was modified 

to enable the initial and final variable values to be initially entered and then linearly ramp 

between these two limits for the duration of the simulator run. 
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Data Set Initial T1k (°C) Ti. k (°C) M. (Kg/s) Q (W) 

templ1 326 286-300 17400 -12500 3.4x109 -0 
(202 Cases) 326 286 -- 250 17400- 20000 0 -- 3.4x 109 

templ2 326 286 -300 17400 -15000 0-3.4x109 

(303 Cases) 326 286- 250 17400 -20000 3.4x 109 -º 0 

326 286 -300 17400 -- 12500 3.4x 10' - 3.6x 109 

templ3 326 286 -- 300 17400- 15000 1.7x 109 -- 3.4x 109 

(303 Cases) 326 286 - 250 17400 -- 20000 3.4x 109 -. 1.7x 109 

326 286 -- 300 17400 -12500 3.2x 109 -- 3.4x 109 

Table 6.12: Ramped Values of Variables for ANN of 1CV PWR 

Note: Each of the above rows consisted of 101 cases. The changes in variable values 

were all linear and concurrent. For example, in the last entry, in 101 steps the Tink was 
linearly ramped from 286°C to 300°C, at the same time M., was linearly ramped from 

17400 Kg/s to 12500 Kg/s and Q from 3.2x10' MW to 3.4X10' MW. The initial value 

of T, was 326°C and all future values were determined by the simulator program. For 

ANN training the entire data set was divided into training and test sets in the approx. 

ratio of 2: 1. For example the data set temp 12 was randomly divided, in the approx. ratio 

of 2: 1, to produce a training set temp I2tr. nna and a test set temp I 2te. nna. 

A series of ANNs were developed using these data sets. Full details are given in 

Appendix 0. In each case the data consisted of four inputs, one each for T1k, T�'`, Nim 

and Q, and a single output. Initially the output was the compartmental temperature at 

the next time step, Tl'`+', however it was found that during training the ANN gave a 

large weighting to the input T1k and this variable tended to dominate the network. The 

ANNs trained to use the previous value of T1k as the "Best Guess" for Tl'`+1 and not 

consider the other variables to any great extent. 

This arrangement is undesirable as although the results obtained were reasonable the 

ANNs were not establishing relationships between the input variables. The output was 

revised to contain the difference between T1 ' and T1k, AT,. Using this new form of 

output a further series of ANNs were developed using the data set templ3 (ie training 

set templ3tr. nna and test set templ3te. nna). The details of the best ANN developed are 
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The results show that the ANN based predictions compare well to the simulator output. The 
lack of accuracy in the predictions from the squaring ANN model are due to the scaling 
factor applied to the network inputs. This resulted in some values being mapped to the 

extremities, the least accurate regions, of the output of the ANN square curve. 

6.6 Modelling of PWR Primary Circuit 
While the above model produced good results in modelling non-linearity in a single region 
far more information is required for the technique to be useful as a practical component of 

the proposed advisory system. The modelling of the primary circuit needs to be expanded 
for more detailed predictions to be produced. The work reported in this section considers 
developing a suitable ANN based model of the PWR primary circuit. 

Two ANN systems are developed to investigate this requirement. The first considers 

enlarging the number of one compartment models, from the previous section, used to model 

the PWR primary circuit with twenty-five inter-connected key regions. Each one is then 

modelled by a one compartment model. The second approach retains the twenty five 

regions from the previous work but develops a single ANN for all regions. The results are 

compared and the compartmental modelling approach is found to be a significantly more 

accurate tool for the prediction element of the advisory system. 

6.6.1 Compartmental Modelling of PWR Primary Circuit 

The PWR primary circuit, as described in Appendix A, can be represented by twenty-five 

inter-connected key regions. An extension to the work from the previous section is to 

represent each of these with a one compartment ANN model. A system of such models, 

connected in the same manner as the regions in the primary circuit, could then be used to 

model PWR regional temperatures. The work initially uses the ANN direct equivalent of 

the energy equation but this is further refined to consider the single ANN model developed 

at the end of the previous section. 

Some basic assumptions were made when considering the interconnections of the PWR 

model regions. The flow rate into each region was assumed to be the sum of the total 

upstream flows. Furthermore the input temperature of a region was assumed to be the flow 

weighted average of the corresponding up-stream temperatures. 
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The change of temperature was sequentially determined for each region the entire system 

was then updated at the end of each time step. Initially this time step was one second, the 

time interval for the initial 1 CV model, however this setting was too coarse for visualizing 
the behaviour of the reactor. The time interval was therefore adjusted to 0.1 seconds. A 

computer program of this system was developed. The direct equivalent network was coded 

once and this module was used for the calculations of all regional temperatures. Arrays for 

the range of possible regional masses, flow rates and heating rates were defined at the 

beginning of the program and referred to for the relevant information at each iteration. This 

information was either used as an input to the ANN, as in the case of T1k, Tu", M. and Q, 

or as weightings to the links in the case of M,. Individual regional values were also initially 

defined by referring to the relevant array entry. The calculated temperatures were used as 
inputs for T, k in the next time step together with the values from the look up tables. In this 

way dynamic situations such as the opening of emergency cooling valves, throttle position 

changing and leak sizes could be modelled in the system. Alternatively a changing leak size 

could be represented by a mathematical expression calculated at each time step. 

The resulting computer program was capable of modelling a large number of transient 

scenarios. The opening or closing of valves was accomplished by defining the time of 

change in the initial set up for each operation. However a more sophisticated approach 

would have consisted of an entry from the computer keyboard to assimilate a real time 

change in settings. A number of transients were modelled ranging from normal operating 

conditions to large LOCAs. The results for these tests were compared to that from the 

simulator program The temperatures changes for two key areas of the PWR primary circuit 
for the same transient are given below in Figures 6.54 and 6.55. A full listing of the 

computer program is given in Appendix Q. The transient shown is not a typical fault 

transient but was constructed by providing inputs to produce a significant variation in plant 

parameters. 
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This work showed that it was possible to construct an ANN model for the PWR primary 

circuit. Again the model is artificial with a bespoke threshold function and unique coding 
for each regional in the circuit. In the above work the mass of liquid in each node is 

implicitly included as part of the weighting between the ANN hidden and output node. This 

results in additional and undesirable calculations and data manipulations that could slow 

down an operational advisory system. It is also restrictive for modelling scenarios where 

the regional mass of liquid drastically changes, for example downstream of a LOCA. The 

implicit inclusion of regional liquid mass is considered next. 

The first investigation simply included regional mass as a new input in a variant of the 1 CV 

model. An attraction to this approach is that a range of leaks, changing masses, in the 

system can be easily considered. A range of mass sizes could be included in the ANN 

training data. This set need not include every possible size of mass, indeed such a set would 

be unwieldy if it could be constructed. However, a representation of a range of masses 

could enable a suitable ANN to develop implicit relationships between the inputs and so 

enable the prediction of the future regional temperature for a vast range of masses. The 

ramping method developed in the previous section was retained for training data generation. 

The data sets for developing these ANNs were produced using the 1CV model from the 

previous section. The data generation computer program, from the previous section, was 

modified to include mass in both the output file and ramping features. The new ANN 

structure consisted of five inputs for T1k, Ti,, k, M;., Q and Ml, and one output for AT, k+'. 

The following table, Table 6.14, gives the range of values used to produce the ANN 

training data sets. 
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Data Set Initial 

T, k (°C) 

T; 
°'` 

(°C) Normalised 

M. (Kg/s) 

Q (W) Normalised 

M, Kg 

pwr_cv. nna 

2525 Cases 

250 2 Various Various Various 

pwr cvl. nna 250 250-300 0-1 0-5x 106 0 -- 0.33 

102 Cases 250 250 - 200 1-0 5x106 ,0 0.33-0 

pwr cv3. nna 250 250 - 300 0.67- 1 0- 5x106 0-1 

508 Cases 250 200-300 0-1 1X 106 _ 
5X106 

1-0 

250 200-300 1-0 0,5x106 0-. 1 

250 200 - 300 1-0 0 -- 5X106 1-0 

250 200-300 1-0 5X106_0 0-1 

250 200- 300 1-0 5x106_ 0 1-0 

250 300-200 0-1 5x106 ,0 0-1 

250 300-200 0-1 5x106-. 0 1-0 

250 300-200 0-1 5x106 0 0-1 

250 300-200 0-1 5x106_0 1-0 

Table 6.14: Ramped Values of Variables for Training Primary Circuit ANN Module 

The first set, pwr cv. nna, was an initial investigation to determine the scale of the 

problem. The full primary circuit model was used to generate the data set as all nodes 
returned to steady state conditions. A second, smaller training data set, pwr cvl. nna, 

only considered two scenarios ramping of all variables. The third set, pwr cv3. nna, was 
developed from the results of ANNs trained with the first two data sets. A range of test 

scenarios were created with a combination of variable rampings. This set was used to 
develop a number of possible ANNs. For ANN training each of the above data set was 
divided into training and test sets in the approx. ratio of 2: 1. The data set pwr cv. nna 

was randomly divided to produce a training set pwr cvtr. nna and a test set 

pwr cvte. nna. The full results for all ANNs produced are given in Appendix R. The 

details of the best ANN developed with pwr_cv3. nna data is given below. 
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from two timt stcps as inputs for the ANN. 'ihr variabics wctc still tampcd txtw ccn timils 

relevant to the PWR primary circuit- To gcncraic the ttaining data acta the ICV ptogtattt 
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A range of ANNs %wc developed using this data. The entire sct was randomly divided 

into training and test sets in the approximstc ratio of 2: 1. Each ANN dcwvclopcd was 

trained for 100,000 cycles with the test set being presented every 100 iterations for the 

last 20,000 cycles. The best network structure, in terms or MIS error, was saved The 

full results for the ANNs developed for this data set arc given in Appendix It. The 

details of the best ANN developed we given below. 
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Fig 6.58 a&b: Diagrams of ANNs with Different Internal Connections 
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A range of ANNs were developed using the structure shown in Fig 6.58b and the previously 
defined test set pwr cv3. nna. Again the ANNs were trained each trained for 80,000 cycles 

with the test set being presented every 100 iterations for the last 20,000 cycles. The best 

network structure, in terms of RMS error, was saved. The full results for the ANNs 

developed for this data set are given in Appendix R. The details of the best ANN developed 

are given below. 

Filename Architecture Threshold RMS Error 

pwr7h. nnd 5-2-1 Sigmoid 0.0543 

Table 6.19: Result for Primary Circuit ANN Module 

This result was disappointing with a higher RMS error than the two time step ANN. The 

number of nodes in the hidden layer of this ANN was unexpectedly low. Examination of 

the inter-nodal weightings showed that those between the regional mass and the output 

of the hidden nodes changed very little from their initial, random, setting. The 

backpropagation training process did not seem to optimise these connections. The 

previous work on the 1CV model showed that mass of liquid in the region was an 

important consideration for predicted regional temperature yet this ANN did not support 

this result. Re-examining the original ANN model identified that regional mass had an 

effect on the output from the hidden nodes so this must also be included in the PWR 

regional ANN. 
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6.6.2 Single ANN Modelling of PWR Primary Circuit 

A second method of modelling the primary circuit of the PWR is to develop a single ANN 

to predict the regional temperatures in a single step. The inputs to this ANN would consist 

of a set of current regional temperatures, masses, flows, throttle settings and valve 

positions. The outputs would consist of the predicted regional temperatures for the next 

time period. The final stage of primary circuit modelling was the development of a single 

ANN to predict the change in nodal temperatures. A attraction of this approach is that the 

ANN development is relatively straight forward, however the larger ANN is liable to suffer 
from the drawbacks previously discussed. 

As mentioned the ANNs developed for this task would have the full set of primary circuit 

variables as inputs and the predicted change in temperature for each node as output. These 

networks therefore consisted of 118 inputs and 25 outputs. The training data was produced 

using a full simulator program which used the original energy equation, from Chapter Five, 

to determine the regional temperatures. The effect of changes in valve settings were also 

considered in the training data. All the valves were included in the simulator system and set 

to an initial state. During the transient the valve states could be changed either at defined 

times or when a set of criteria were satisfied, for example the emergency systems. These 

changes in valve states were reflected in the corresponding system flows and their affect on 

the node temperature. Information from three transient scenarios were included in the 

training data. The type and number of time steps included are given in the following table. 

Transient Type No. of Time Steps 

Steady State 120 

Primary Coolant Leak 120 

Downstream Steam Leak 120 

Table 6.2 1: Single ANN Training Set Components 

The Primary Coolant and Downstream Steam leaks were represented by medium sized 

leaks. The resulting data set was divided into training and test sets in the approx ratio of 

2: 1. A series of ANNs were trained on this data. Each was trained for 80,000 cycles with 

the test set being presented every 100 iterations for the last 20,000 cycles. The best network 
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consisting of a two hidden layer ANN has shown that a number of transients can be 

modelled by this system and accurate predictions made for regional temperatures. The 

strength of the technique is that each compartment predicts its own next temperature 
independently. The variables from upstream compartments are only considered at the next 

calculation and then in terms of the four inputs to the ANN. 

The initial requirement for the predictive element of the advisory system was for a fast 

accurate method of predicting a wide range of PWR primary circuit transients. The above 

compartmental system may be a method of achieving that goal. Some extreme scenarios 

may still require a bespoke ANN but the majority of situations could be modelled by a 

refined version using the above concepts. 

Throughout this chapter reference has been made to a simulator program or to established 

energy conservation equations. An advisory system could be constructed based solely upon 

this methods however the time required to accurately calculate each iterative regional 

temperature was felt to be a disadvantage. Although the ANN based solution developed 

may not prove to be as accurate as the discrete equations the gain in operating speed is felt 

to offer significant benefits. Once trained the ANN solution provides instantaneous results 

in operation. 

A second observation from these investigations is that the selection of members in the 

training and test sets is also of importance. A balanced set of cases is essential for the 

development of a sensible ANN. An ANN trained solely upon steady state conditions can 

hardly be expected to accurately predict a range of LOCAs. The other extreme of including 

every possible transient scenario is not only impractical but would lead to unwieldy ANNs. 

A compromise was developed for this work. The ANN training sets used consisted of 

combinations ofPWR variables ramped between their limits and the resulting effect on the 

remaining variables. This approach certainly resulted in accurate predictive ANNs but may 

not be the optimal method of producing training data. It is possible that in the solution to 

the question posed at the beginning of the chapter a further question on the optimum 

number of training cases that should be included in the training set needs to be considered. 

The compartmental ANN approach has a wider appeal outside the nuclear industry. It is 

easily modified for any multi-compartment model providing that the links between 
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compartments can be defined. A method of training such a system is presently under 
investigation. If successful it would allow modelling of compartments whose variables are 
problematic to measure. 

6.8 Summary 

The ANN prediction of PWR variables is further examined in this chapter. The question of 

the number of PWR transients that can be modelled by an ANN, posed at the end of 
Chapter 5, is addressed. An empirical approach proves unsatisfactory due to the 

interdependencies of the variables concerned. A modelling approach however proves far 

more successful. A direct equivalent of a simple PWR circuit is first developed and refined 

as a non-standard transfer function is initially used. This is an exact equivalent for the 

energy equation in the simulator program. Furthermore it is proven to be the minimum 

structure that can model the equation. A number of these basic elements are combined to 

consider the entire PWR primary circuit. This structure is successfully tested on actual PWR 

transient scenarios. This system should be capable of predicting all the fault conditions the 

simulator can model. The ANN version consisting of 25 basic elements to model the PWR 

primary circuit model is therefore selected for inclusion in the advisory system. 
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Chapter 
Diagnosing PWR Fault Conditions 

7 

7.1 Introduction 

This chapter reports on applying Artificial Neural Networks (ANNs) to diagnose the condition 

of a Pressurised Water Reactor (PWR). The result of this work is envisaged as the top layer of 

the proposed operators advisory system. As outlined earlier, in Chapter 4, it is intended that PWR 

data are input into a suitable ANN system in order to determine the current state of the plant and, 
if found to be in a fault condition, to ascertain the cause of the abnormality. The results from this 

diagnostic ANN are then to be conveyed to the operator and also used as inputs for the predictive 
ANN structure developed in the previous chapter. 

The diagnostic work reported in this chapter is a different application of ANNs, compared to the 

predictive ANNs of the preceding two chapters. The diagnostic ANN is a classification tool that, 

once trained, uses the non-linear relationships between its variables to determine to which 

category a particular set of inputs belong. The trained predictive ANN is a multi-dimensional 

surface mapping that endeavours to fit a given input set to a suitable region of this surface and 

so establish the next value, or set of values, for that surface. The two approaches are intrinsically 

different, both in the training data and the outputs required. The form of the output from the 

diagnostic ANN can be binary. An output node is used for each possible condition and the coding 
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used for the presence or absence of that condition, although in practice a range of tolerance is 

usually defined for the final outcome. The predictive ANN generally has a continuous multi- 

valued output for the future value of each variable. The outcome from this ANN may be used as 

the value for the next time step, it may even be used as an input for the ANN in a feed back loop. 

These differences in requirements and outputs preclude the development of a single ANN to 

perform both tasks. 

The remainder of this chapter begins with the introduction of some practical considerations for 

using ANNs for diagnostics. The development of an ANN system for diagnosing a set of PWR 

conditions is then reported. The results of the investigation are then compared with a second 

system developed to perform the same task. The performance of these approaches is examined 

and discussed with the various merits identified. The chapter concludes with some general 

comments on diagnosing the condition of a complex system with ANNs. The main result from this 

work is that the developed ANN successfully diagnoses a selection of key PWR transients. 

7.2 Practical Considerations 

The diagnosing of PWR condition is a classification problem for which an ANN approach is 

ideally suited. Several such applications were reported in Chapter 2, all of which were deemed to 

be successful for their particular tasks. The inputs to such a system would be a set of values for 

plant variables and the output would be the corresponding classification of the PWR characteristic 

under consideration. 

It is important that a realistic set of possible output classes be established. An ANN needs to be 

trained to diagnose between a sensible group of possible conditions. The inclusion of an unrelated 

output could cause the training process to create invalid relationships between the variables, it 

may even cause the ANN to totally fail to converge during training. Using the PWR as an 

example, a bad set of output conditions would include a diagnosis on the state of a turbo 

generator when the inputs and remaining output conditions all relate to the primary circuit. 

A second key requirement for a classification ANN is that the structure of the ANN be balanced. 

An ANN designed to distinguish between a large number of possible conditions requires a 

realistically sized input set to establish the classification. For a extreme example, an ANN 

designed to classify between twenty possible conditions would probably not be very accurate if 

only two variables were used as inputs. In general an ANN would, at a minimum, require a similar 
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number of inputs as outputs. 

The training data also needs to be balanced to avoid biasing the ANN towards a particular 

outcome. Each possible condition needs to be equally represented in the training data. An output 

that dominates the training data will bias the ANN towards that output. For example, consider an 
ANN designed to determine if a PWR is either operating correctly or in fault, that is one of two 

possible outputs. If the training set was simply created by collecting data for a period of operation 

the number of normal readings would greatly outnumber the number of fault readings. An ANN 

trained on this data set would correspondingly be weighted towards the normal condition. Any 

abnormalities would therefore probably be incorrectly diagnosed as normal operation, with 

possible serious consequences. If instead the training set contained an equal number of normal and 
fault outputs the ANN would be balanced and capable of more accurate diagnosis. 

There are situations when it may be advantageous to bias the data towards a particular outcome. 
For example, a primary coolant leak is one of the more serious fault transient that can occur in 

a PWR. Every occurrence of such a condition should be identified even at the expense of a similar 

transient being incorrectly diagnosed as a primary coolant leak. For these situations a higher 

number of examples of primary coolant leaks could be included in the training data set. The 

number of cases are not required to dominate the training sets only to bias the training towards 

the more serious outcome. 

A second problem is highlighted by this simple example, namely the availability of data. The 

number of operational occurrences of a reactor fault are very rare indeed so a balanced ANN 

training set would be correspondingly small and possibly result in an ANN that fails to converge. 

In the PWR application this potential problem is resolved by using a computer model to simulate 

the reactor and collect data for scenarios that are seldom, if ever, experienced on real plant. Other 

complex environments may not be easily modelled and balanced data collection could remain a 

serious problem. 

The accuracy of the diagnosis from an ANN is also an important consideration. A 

backpropagation ANN is trained to minimise the error between the actual output and a target 

output in the training set. Even for well trained ANNs there remains a small error, indeed if the 

output perfectly matched that of the training set the ANN would probably be over trained and 

only able to classify members of the training set. This residue error can manifest itself in one of 
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two ways, it can be evenly distributed throughout the ANN or it can all be associated with just 

a few nodal weights. The latter possibility can easily result in incorrect classifications even if a 

threshold level is used for both membership and non-membership of each class of output. A 

corollary to this idea is that data points not correctly identified by a set of different ANNs could 

be classified as outliers. 

A second ANN trained on the same data set would, because of the initial random nodal 

weightings, result in a different set of internodal weightings. Even if this second ANN had the 

same error value it is very unlikely that each network would give exactly the same results for a 

particular input although, with the threshold level, the final diagnosis may well be the same. This 

feature enables a more accurate ANN system to be constructed using different ANNs trained to 

perform the same task. If a number of such ANNs were constructed they could be used in parallel 

to produce a more accurate overall diagnostic system. Each ANN would use a set of values of 

PWR variables to perform an individual diagnosis of plant condition. The results from these ANNs 

would then be examined and the final diagnosis determined. The diagram, Figure 7.1, below 

illustrates the concept. 
Set of PW R Variables 

IIII 
ANN 1I ANN 2I TANN 3 ANN 4 

Decision Maker 

Final Diagnosis 

Fig 7.1: Multi-expert ANNs 

The determination of the final output could be one, or more, of several methods. 

1) A simple voting strategy, in which the outputs from each ANN are combined and the 

highest scoring output is used as the diagnosis. 

2) Statistical methods such as Jordan (1994). 

3) The outputs from the ANNs could be used as inputs to a further AI technique, another 

ANN or an expert or fuzzy system. 

The diagnostic ANN structure can be extended to produce a hierarchy of diagnostic tools. 
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Each lower level could be developed for more detailed diagnosis. The outcome from one level of 
the hierarchy would be an input in a lower level and used to obtain further insight into the nature 
of the transient, for example location of leak. The following diagram illustrates the concept. 

Plant Statue 

0 
Area of Fault 

Site of Fault 

Faulty Device 

Fig 7.2: Hierarchy of Diagnostic ANNs 

This approach may be restricted by the availability of plant data. This limitation may be caused 
by both practical and economical considerations. It is not always possible to position 
instrumentation in all areas of a PWR, the reactor core for example. A leak in a pipe may be 

very accurately located but the cost of installing and positioning the required number of 

sensors may prohibit implementation. A further limitation to the degree of diagnosis that could 

be performed is the availability of ANN training data. The computer simulator program would 

require extensive modification to produce such detailed leak information. 

The confidence that should be applied to the ANN diagnosis of PWR condition depends on 

several important considerations. The accuracy of the data being input into the ANN is 

affected by the precision of the instrumentation used to record the data, noise from 

surrounding systems and interference collected by the wiring connecting the instruments to the 

computer running the advisor program. The nature of ANN training also results in an implicit 

error always being present in any output node. This is reflected by the value of the outputs not 

being purely binary, a '1' or '0', but as a range between these limits. To compensate for all 

these possible discrepancies diagnostic ANN outputs are usually post-processed to obtain a 

binary result. An upper limit is defined above which the output is a'1'. Similarly a lower limit is 

defined for a '0' output. For these investigations the upper limit has been set as 0.85 and the 

lower limit as 0.15. The confidence given to the results of the diagnostic ANNs is further 

discussed later in the Chapter, in Section 7.4. 
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For a diagnostic ANN to be useful in the advisory system it would be required to produce a rapid 

accurate assesment of the PWR condition. Two classes of ANN features, dynamic and static, can 
be identified as effecting ANN accuracy. The main dynamic condition is the ANN training 

algorithm. The static conditions are members of the training set, the number of time steps of data 

and the learning parameters of the algorithm, such as transfer function and momentum factor. A 

successful ANN would require an optimum combination of these factors, a suitable combination 

of static conditions together with an acceptable set of inter-nodal wieghtings, established by the 

training process. An iterative approach is adopted for this purpose where a set of ANN structures 

are trained for a selected combination of static features. 

7.3 Implementation 

This section describes the work undertaken to develop a diagnostic ANN. The approach adopted 

and the results obtained are presented and discussed. It was intended to develop the best possible 

diagnostic ANN for the defined task and within the limitations of data availability. A method of 

achieving this could be by varying both the number of time steps of data and variables used for 

inputs until a suitable ANN is developed. The starting point would be a training set of a large 

input data set of PWR variables at one time step. If this format proved unsatisfactory the training 

data would be modified to include more time steps of information and a different number of 

variables. 

A complex system such as a PWR primary circuit has a large number of possible faults and 

transients that could occur. An ANN developed to diagnose all of these in detail would 

correspondingly be large and with all the associated problems of training large ANNs. A more 

practical approach would be to consider a smaller set of generic transients and develop an ANN 

to diagnose these classes of faults. A set of important PWR transients was identified to use in all 

the ANNs. This set was designed to include the most serious conditions and also to provide some 

scenarios with similar characteristics in order to compare the ability of an ANN to differentiate 

between alike outputs. 

The first phase was to identify the transient conditions on which the ANNs would be trained. 

These transients would be the outputs from the ANNs. While there are potentially a large number 

of fault conditions that may occur, they can be classified into one of six generic forms. 
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1) Normal operating conditions 

2) Primary coolant leak 

3) Downstream steam leak 

4) Throttle opening transient 

5) Rod drop 

6) Group Drop 

The normal operating conditions category is required to identify the "no fault" situation. A 

separate, dedicated output is used instead of considering a zero output from all the remaining fault 

condition nodes to signify normal conditions. A separate output allows a positive identification 

of the reactor condition to be made as opposed to implying normal conditions from a lack of 

identification of the other transients, for example an actual transient may exist but is not 

satisfactorily identified by an ANN without a normal condition output, the outputs would all be 

zero but the PWR is definitely not operating normally. The addition of the extra output clarifies 

the situation because although no particular transient is identified the normal operating node 

output should also be zero indicating an unidentified transient condition. 

As already stated a primary coolant leak poses a serious threat to a PWR and should be identified 

as quickly and accurately as possible to avoid even more serious consequences. The downstream 

steam leak is also a serious transient condition. Although not directly associated with the primary 

circuit the best indications of the occurrence of this form of leak are given in the primary circuit. 

The downstream steam leak is similar in appearance to a normal operating condition of throttle 

opening. This transient was therefore included in the list in order to compare the accuracy of 

identification between the two conditions. Two reactivity problems were included in the transient 

list. A single rod drop, the lowering of a control rod into the core, and a group drop, the rapid 

lowering of a set of rods into the core during a partial scram, were included in the list to provide 

further comparisons of similar transient conditions. 

7.3.1 Using Full Data Set for ANN Development 

A PWR simulator program was then used to model the selected transients and produce a data set 

of PWR variables. This program was run for 120 seconds with recordings every second. The 

required transient was instigated after an initial stabilising period when the reactor settled to 

steady state conditions. The full data set consisted of 67 variables. The inputs consisted of 

temperature in the reactor regions, throttle, rod, pump and valve settings and various PWR 

172 



parameters. The nature of these variables were either real numbers, binary valued or a percentage 

of the maximum available value. The set of variables selected are easily measured and recorded 

in an actual PWR. The following table, Table 7.1, shows the form of the variables used for the 

training data. 

Number of Inputs Type of input Form of Input 

25 Nodal Temperature Real Number 

4 Throttle Setting Binary 

4 Rod Position Percentage 

12 Flow Rate Settings Binary 

11 Valve Settings Binary 

I Tav Real Number 

1 Neutron Population Real Number 

I Pressuriser Pressure Real Number 

I Pressuriser Level Real Number 

6 Power Levels Real Number 

I Start Up Rate Real Number 

Table 7.1: Details of Input Data Set 

These results were used to produce all the training and test sets for subsequent ANN 

development to ensure consistency of data. The simulator outputs were concatenated and 

modified by the addition of a suitable output set and to reflect the number of time steps 

required to produce ANN training and test sets. The ANN output set consisted of one output 

for each of the six conditions. A binary coding was used with a 'I' signifying the presence of 

the transient and similarly a '0' for the absence. The full data set was randomly divided into 

independent training and test sets in the approximate ratio of 2: 1. 

A series of ANNs were then trained and tested on these data sets. The backpropagation 

learning algorithm was used with 10% gaussian noise for the training together with various 

combinations of transfer function and momentum rate. Each ANN was trained for 80,000 

cycles with testing every 100 cycles with the independent test set, the best network being 

saved. The best ANN in terms of RMS error was then used for more detailed tests and 
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comparisons. The full results are given in Appendix M. 

The details of the first training set are given below, in Table 7.2. 

Training Set Normal TOT PCL DSL RD GD 

test I. nna 120 120 

Table 7.2: Details of First Training Sets 

Key: TOT - Throttle Opening Transient, PCL - Primary Coolant Leak, DSL - Downstream 

Steam Leak, RD - Rod Drop, GD - Group Drop. 

The training set, test 1. nna, consisted of two outputs, normal operating and throttle opening, to 

gain some initial experience on the expected performance of the ANN training. An ANN 

consisting of one hidden layer of 20 nodes produced a RMS error of 0.1897 when trained of 

test 1. nna. The plots of the respective ANN outputs for each case are shown in figures 7.3 and 

7.4. 
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Fig 7.3: Normal Operating Conditions 
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Both conditions are correctly identified but the diagnosis is not quick. If a threshold level of 

greater than 0.85 is used for the existence of a condition, approximate to 1, and less than 0.15 for 

the corresponding absence, an approximate to 0, the normal operating conditions are not 

successfully identified until 26 seconds and the throttle opening diagnosed in 21 seconds. An 

analysis of the data set revealed that the throttle opening data consisted of a combination of both 

throttle opening and normal operating conditions. The following figure, Fig 7.5, shows the throttle 

settings used during the computer simulation. 
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testl. nna : Throttle Settings 
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Fig 7.5: Transient Throttle Settings 

Throttle Fbsition 

The ramped periods designate changing throttle settings whilst the level sections signify constant 

throttle setting. Both situations were classified as a throttle opening transient in the ANN output 

set. During training the ANN could have established the relationship that if the throttle setting is 

greater than 0.1, the initial throttle position used for the normal operating conditions, then the 

PWR was in a throttle opening condition. This would be an incorrect relationship, the actual 

relationship should be developed for when the throttle setting is changing. This characteristic will 

be addressed in the future training sets when only the periods of changes in throttle settings will 

be classified as a throttle opening transient. Periods of decrease in throttle setting were also 

classified as a throttle transient. This approach resulted in a reduced number of cases that were 

classified as throttle opening. To compensate for this a further number of different simulation runs 

were made in which the throttle position was changed at different rates and times. 

A further alteration to the data sets was to classify each period prior to the instigation of the leak 

as normal operating conditions. However this modification created a bias towards the reactor 

settling period as the same values for the PWR variables occurred for each transient condition and 

so duplicated the information in the training set. These stabilising periods in the datasets were 

therefore removed with the exception of the normal operating conditions and so avoiding biasing 

the ANN output towards normal conditions. 
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Overall the results were considered to be acceptable enough to encourage further work with this 

approach. A series of ANNs were developed with extra conditions included. By developing the 

diagnostic ANN in this iterative way a transient condition that caused poor results could be easily 
identified. A second training set, test2. nna, was constructed containing data from a downstream 

steam leak and a rod drop in addition to the conditions considered in the first data set. The details 

of this data set are given below in Table 7.3. A mid-range leak size was used for the downstream 

steam leak. 

Training Set Normal TOT PCL DSL RD GD 

test2b. nna 120 70 70 68 

Table 7.3: Details of Diagnostic Training 

Kam: TOT - Throttle Opening Transient, PCL - Primary Coolant Leak, DSL - Downstream 

Steam Leak, RD - Rod Drop, GD - Group Drop. 

A series of backpropagation ANNs with differing structures were trained with this training set 

for 80,000 cycles with testing every 100 cycles with the test set, the best network being saved. 

The best network had a RMS error of 0,1373. The full data set was then presented to this 

ANN to explore the accuracy and distribution of error. The results are given in Figures 7.6 to 

7.9. 
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Each output is correctly identified and in a faster time than the best ANN trained with the 

previous test set The RMS ems r was considerably lower than the previous network even though 

more conditions were represented The removal of the PWR stabilising period from the portion 

of the non-normal data sets were felt to be the main reason for this improvement The throttle 

transient output graph, Figure 7 7. highlights the sensitive nature of diagnosing this particular 

condition The initial eight seconds are diagnosed by the ANN as normal operating conditions. 

although the training set defined this period as a throttle transient An examination of the data set 

showed that the first eight seconds were incorrectly classified as a throttle transient instead of 

normal operating conditions This situation may have also contributed to the noticeable throttle 

transient output in the normal operating condition output graph. Figure 76 

The next training set produced inckided data from a primary coolant leak Two leak sizes. 25 kg/s 

and 75 kg/s. were modelled The two sizes were included to explore the ability of the ANN to 

extrapolate of other leak sm and to investigate the biasing of the ANN towards the more serious 

condition The size of each data set members is given below in Fable 74 
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Training Set Normal TOT PCL DSL RD GD 

test5a. nna 120 69 70+70 68 68 

Table 7.4: Details of Diagnostic Training Sets 

Kew: TOT - Throttle Opening Transient, PCL - Primary Coolant Leak, DSL - Downstream 

Steam Leak, RD - Rod Drop, GD - Group Drop. 

A further series of ANNs with differing structures were trained with this training set for 

80,000 cycles with testing every 100 cycles with the test set, the best network being saved. 

The best network had a RMS error of 0,0516. The full data set was then presented to this 

ANN to explore the accuracy and distribution of error. The results are given in Figures 7.10 to 

7.15. 
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Fig 7.10: ANN Result for Normal Operating Conditions 
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Fig 7.11: ANN Result for Throttle Transient 

Fig 7.12: ANN Result for Large Primary Coolant Leak 
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Fig 7.13: ANN Result for Small Primary Coolant Leak 
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Fig 7.14: ANN Result for Downstream Steam Leak 
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Fig 7.15: ANN Result for Rod drop Transient 
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This result is a significant improvement on the previous data set. The training set contains data 

for an extra transient condition yet the RMS error for the best ANN is lower than the previous 

case. A possible reason for this may be that the misclassification of the first data points of the 

throttle opening condition as throttle opening not normal operating conditions in the previous 

training set. The two primary coolant leaks are both correctly identified. The larger leak, shown 

in Figure 7.12, is diagnosed very quickly in less than two seconds. The smaller leak, shown in 

Figure 7.13, is initially diagnosed as normal operating conditions but is correctly identified in 5 

seconds. The downstream steam leak and rod drop conditions, shown in Figures 7.14 and 7.15, 

are both quickly identified correctly. The inclusion of the second data set for a primary coolant 

leak condition does not appear to detrimentally affected the ANN, the other transient conditions 

are still diagnosed correctly and quickly. 

The data sets that have been used to test the ANNs to date have only been the training and test 

data used to train the ANNs. This situation is very artificial and does not give a true guide to the 

ANNs ability to diagnose data from a condition scenario unknown to the ANN. The ANN may 

have been trained to correctly identify the transients conditions used for training but cannot 

diagnose new data. Whilst the ANN so far developed have not considered a full set of transient 

conditions and therefore permit extensive testing on new transient scenarios, a test with a scenario 

not used for training would give a guide to the generality of the ANN. 
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A downstream steam leak with a smaller leak size and throttle settings other than the transient 

used for training was modelled on the PWR simulator program. The output was converted into 

a test set and presented to the best ANN from the last training set. The result is shown in Figure 

7.17. The leak was instigated after 50 secs and this is correctly identified. Initially the ANN 

successfully diagnoses normal operating conditions. The throttle is gradually opened to approx 

40% and this action is also correctly identified although the ANN output node for this transient 

does not reach 1. The downstream steam leak is conclusively identified within two seconds of 

instigation. 

Normei 

TOT 

PCL 

DSL 

RD 

Fig 7.16: Untrained Downstream Steam Leak 

While this test shows that the diagnostic ANN can successfully diagnose an unlearnt transient 

scenario it is by no means conclusive. A more complete range of conditions would require testing 

on a suitable ANN to gain confidence in the generalisation and accuracy of the diagnosis. It would 

be more profitable to perform this testing once an ANN with a complete range of conditions is 

included in the output set. This test does however, show the ability of the ANN to successfully 

diagnose multiple conditions. Further tests to investigate this feature will also be made with an 

ANN developed with the full output. 

The next set of tests were made with new ANN training and test sets. A group drop transient was 

modelled on the PWR simulator and the results were included in the data sets. All of the selected 

transient conditions were now represented in the data set. A single example of the primary coolant 
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leak was included for comparison with the previous investigation. 

Training Set Normal TOT PCL DSL RD GD 

testl3. nna 120 69 70 70 70 70 

Table 7.5: Details of Diagnostic Training Sets 

Key: TOT - Throttle Opening Transient, PCL - Primary Coolant Leak, DSL - Downstream 

Steam Leak, RD - Rod Drop, GD - Group Drop. 

As before the full data set was randomly divided into training and test sets in the approximate 

ratio of 2: 1. A series of ANNs, with varying internal structures, were trained with this training 

set for 80,000 cycles with testing every 100 cycles with the test set, the best network being 

saved. The best network had a RMS error of 0,0868. The full data set was then presented to 

this ANN to explore the accuracy and distribution of error. The results are given below in 

Figures 7.17 to 7.22. 
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Fig 7.17: Normal Operating Training Set 
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Fig 7.18: Throttle Transient Training et 
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Fig 7.20: Downstream Steam Leak Training Set 

Fig 7.2 1: Rod Drop Training Set 
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Fig 7.22: Group Drop Training Set 
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The training transients are all diagnosed quickly and accurately. The primary coolant and 

downstream steam conditions were both modelled with a medium sized leak. The RMS error for 

this ANN was larger than that of the previous network. The addition of the group drop transient 

data may have complicated the implicit relationships in the ANN due to the similarity between a 

group drop transient and a single rod drop. Another possible reason for the difference in the RMS 

values could be due, despite testing several ANN structures, to the second, more complicated 

network being caught in local minima. The solution space of the second data set is more 

complicated than the first due to the extra transient. This increased complexity increases the 

possibility of the training process becoming trapped in a local minima. 

While the training data were well diagnosed it was a very artificial evaluation of the ANN. A 

further series of tests were conducted to evaluate the ANN response to new transient data, not 

used for training. New scenarios were modelled on the PWR simulator including different leak 

sizes, throttle settings and multiple transient conditions. The simulator output was modified for 

use as an ANN input set. No output terms were included in these data sets. The following tests 

were conducted. 
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Fig 7.23: ANN Results for Large Primary Coolant Leak 
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7.24: ANN Result for Small Primary Coolant Leak 
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Fig 7,25: ANN Result for Large Downstream Steam Leak 

Fig 7.26: ANN Result for Small Downstream Steam Leak 
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7.27: ANN Result for Large Coolant Leak and Small Steam Leak 
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Fig 7.28: ANN Result for Medium Coolant Leak and Medium Steam Leak 
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7.29: ANN Result for Small Coolant Leak and Large Steam Leak 

1.2 

1 

0.8 

4.1 L 0.6 

Z 0.4 

0.2 

0 

-0.2 
Time 
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7.31: ANN Result for Large Coolant Leak and Rod Drop 
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7.32: ANN Result for Small Steam Leak and Rod Drop 
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Fig 7.33: ANN Result for Large Steam Leak and Rod Drop 
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Fig 7.34- ANN Result for Small Coolant Leak and Group Drop 
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Fig 7.35: ANN Result for Small Steam Leak and Group Drop 
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Fie 7.36: ANN Result for Group Drop and Rod Drop 

Generally these results are very encouraging. All the single transient conditions have been 

correctly diagnosed for a range of leak sizes. The results for combinations of transients are even 

196 



A series of ANNs were trained with this data. In each case the training data was presented for 

80,000 cycles with testing every 100 cycles with the test set, the best network being saved. The 

full results obtained are given in Appendix M. The best ANN developed had a RMS error of 

0.1015. This value is higher than the best one time step ANN previously developed. A reason for 

this may be that during training the larger, more complex, network was more prone to become 

trapped in a local minima and despite several attempts a more optimum solution was not found. 

A sample of the results obtained by presenting the training data to this ANN are given below in 

Figure 7.37 to 7.39. 

Fig 7.37: ANN Results for Normal Operating Conditions 
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Fig 7.38: ANN Results for Primary Coolant Leak 
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Fig 7.39: ANN Results for Downstream Steam Leak 

The above results show that while the transients are correctly identified the time to do so is 

noticably slower than the one time step ANN. The inclusion of an extra time step has produced 

a far more complicated network with many additional internal relationships between the plant 
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that were key inputs for a diagnostic ANN. The set consisted of three region temperatures, the 

pressuriser pressure, the pressuriser level and the reactor start up rate. These six variables were 
found to have a far greater relevance on the ANN output than the remaining variables so the 

subjective nature of the method is reduced. The training data set was modified to only contain 

these six variables as inputs, the outputs remained as before. This set was randomly divided into 

training and test sets in the approximate ratio of 2: 1. 

A further series of ANNs were trained on this data. As before the training data was presented for 

80,000 cycles with testing every 100 cycles with the test set, the best network being saved. The 

full results obtained are given in Appendix M. The best ANN developed had a RMS error of 

0.2414. This value is far higher than both the best one step ANN RMS of 0.0868 for the full data 

set and the best two time step ANN RMS error of 0.1015. Although the most important input 

variables were used for developing the ANN this result indicates that the other variables also 

contribute to the accuracy of the diagnosis. The diagnosis accuracy is still acceptable as shown 

in the following sample of output graphs, Figures 7.40 and 7.41. 
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Fig 7.40: ANN Results for Primary Coolant Leak 
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Fig 7.41: ANN Results for Normal Operating Conditions 

The next four most important input variables were then included into the training data sets to 

investigate this idea further. These inputs were additional regional temperatures and the energy 

going into the steam generators. The addition of these extra inputs increased the number of ANN 

inputs to ten. As before the full data set, of 554 cases, was randomly divided into training and test 

sets in the approximate ratio of 2: 1. A further series of ANNs were trained for 80,000 cycles with 

testing every 100 cycles with the test set, the best network being saved. The full results obtained 

are given in Appendix M. The best ANN developed, test 16b. nnd, had a RMS error of 0.2530. 

This ANN was tested with the same scenario as the previous ANN, a primary coolant leak 

instigated at 50 secs, The resultant output is shown below in Figure 7.42. 
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Fig 7.42: ANN Results for Untrained Transient Test 
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This result was an improvement over the previous ANN but, while producing an accurate 
diagnosis, was still was not as rapid a diagnostic tool as the full data set ANN. This process could 

be continued and the next most important input variables could be included in the training data 

and a further series of ANNs trained but the results do not suggest that a significantly better 

diagnostic tools would result. The investigation was therefore halted at this stage. 

An accurate and rapid diagnostic ANN has been developed for the identification of a set of key 

PWR transients. Several approaches have been explored to obtain the optimum diagnostic tool. 

These have included combinations of input data set and time steps of data. The best diagnostic 

ANN developed consisted of a single time set of the full data set of measurable plant variables. 

7.4 Discussion 

The results obtained in the previous section are now discussed in more general terms. The 

developed diagnostic ANNs are then examined and contrasted with a similar ANN developed for 

the same task (Weller et al., 1997b). 

In general the accuracy of all the diagnostic ANNs was very good. No transient conditions were 
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Fig 7.43: Three Time Step ANN Results for Throttle Opening Transient 

Fig 7.44: Three Time Step ANN Results for Downstream Steam Leak at 

Full Power State, 60% Reactor Power 

The comparison between the best ANNs from the two investigations show some significant 

differences. These indicate that an ANN trained with a single time step of a large data set may 

provide the better diagnostic system. 
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more remarkable given that the training data consisted entirely of single transient conditions. The 

resulting trained ANN is sufficently robust that combinations are generally well diagnosed, Figures 

7.29 and 7.35 being exceptions with some other combinations being dominated by one of the 

transients, for example the primary coolant leak in Figure 7.31. The salient features of each 
transient has been embedded in the internal ANN architecture but the embedding has been 

sufficiently general to enable different leak sizes to be successfully diagnosed. In reality an extra 

transient condition has been included in all the above tests as the throttle position was initially 

slightly increased. Many of the previous Figures show this situation, Figure 7.32 for example 

shows the throttle transient being diagnosed at approx. eight seconds. 

The time for accurate diagnosis is also very encouraging. The single transient conditons were 

instigated at fifty seconds and in all cases these were reasonably quickly diagnosed. The size of 

transient was reflected in the time for diagnosis. A large primary coolant leak, as shown in Figure 

7.23, is correctly diagnosed in about ten seconds whereas a small primary coolant leak, Figure 

7.24, is not correctly diagnosed until seventy seconds after occurrence. A human operator would 

experience similar difficulties and could take a similar period to respond. The two transient 

scenarios are also diagnosed in a respectable time. The second transient was instigated at seventy- 

five seconds and these transients, if identified, are done so in a similar time to the single condition, 

Figure 7.27 for example. 

The ANN developed in this section appears to be a possibility for the diagnostic element of the 

proposed advisory system. However, for completeness, the strategy outlined in the introduction 

will be followed and alternative methods developing the diagnostic ANN will be investigated. 

7.3.2 Using Two Time Steps for ANN Development 

All the ANNs developed have consisted of one time step of plant information while the results 

obtained have been very accurate better solutions may possibly be obtained from a different 

arrangement of training data. Tests were conducted to investigate the effect of two time steps of 

PWR data on the diagnostic ability of an ANN. The data sets from the last test, testl3. nna, were 

modified to include two sets of 69 variables as inputs, 138 inputs in total. The 6 output nodes 

used in the previous tests were retained. The concatenation of data files reduces the number of 

examples in the training set by one example. This new data set was randomly divided into training 

and tests in the approximate ratio of 2: 1. 
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variables. These are proving to be counter productive to the final result of the output nodes. 

The next stage in this line of investigation was to develop an ANN with three time steps of input 

information. However, the degregation in response time suffered by two time steps of input data 
does not warrent further investigations in this area. 

7.3.3 Using the Optimum Data Set for ANN Development 

A further method of improving the performance of the one time step ANN was investigated. It 

is possible that a more optimum combination of PWR variables could achieve better results. All 

the ANNs developed so far have used training data composed of a large number of recordable 

PWR variables. This arrangement may not be optimal as some of the implicit relationships during 

the training process could be detrimental to the accuracy of the final ANN. A particular variable 

may not be important to the diagnostic process yet the links between this input and the rest of the 

ANN structure still have a weighting which may become very small during the training process 

but will never reach zero. Each of these little weightings adds to the final error of the trained 

ANN. If these superfluous inputs were pruned out of the network training data a better, more 

accurate ANN may result. 

To investigate this concept further the best ANN developed earlier was examined to determine 

the most important inputs. The one step training and test sets were then modified to only contain 

these variables. A new series of ANNs were trained on this information and the results compared 

to the previously developed ANNs. The following method of interrogating the ANN was used. 

The weightings between each output node and the nodes in the last hidden layer were considered 

and the most important, largest, links identified. The weights for all outputs were inspected as the 

key components contributing to the zero valued outputs not just the required diagnosis node are 

also important. The nodes connected by the largest weighted links were then examined to identify 

which nodes from the next, earlier, hidden layer that contributed major largest weighted links to 

these nodes. This process of identifying the most important nodes is continued backwards through 

the ANN until the input layer is reached and the key PWR variables determined. The range of the 

inputs does not have a bearing on this approach as the ANN design software package used 

normalises each input so all variables presented to the ANN are in the range 0 to 1. Whilst this 

method is very subjective it should give a guide to the most important variables. 

The results of applying this method to the best one step ANN identified a set of six plant variables 
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incorrectly classified although the results from some of the poorer performers were close to the 

threshold levels. These were pre-defined as an output value greater than 0.85 to be classified as 

a1 and less than 0.15 to be classified as a 0. The time taken for the diagnosis was also good, 

certainly comparable and in many cases faster than an operator. The results obtained for single 

time step ANNs are more surprising as, apart from the Start Up Rate, the ANNs were not trained 

on or given any reference to rates of change. The data is presented as a discreet value with no 

mention of the previous values for each variable. The ANNs trained with two time steps of PWR 

data are the exception and had a concept of variable rate of change implicit in their structure but 

their diagnostic capabilities were not an improvement over the one time step ANNs. 

The same techniques for ANN development were employed for a separate continuation 
investigation into the diagnostic ability of ANNs (Weller et al., 1997b). For this work the nature 

and contents of the input set was defined by a domain expert. A set of twelve PWR variables were 

selected and these were used to construct training data sets. A further contrast was the use of 

three time steps of plant information for the ANN input. The same six transient conditions were 

used for outputs. The ANNs therefore consisted of thirty-six inputs and six binary outputs. As 

before the transients were modelled on a PWR simulator. The resulting data file was modified into 

an ANN input set and randomly divided into training and test sets. An extensive range of ANNs 

were developed with these data sets, the best one, with a RMS error of 0.014, was used for 

further testing on a similar range of scenarios as before. A sample of the ANN outputs obtained 

are shown in the following set of diagrams, Figures 7.43 and 7.44. The threshold criteria for 

classifying an output was set at greater than 0.9 for an output of 1 and less than 0.1 for an output 

of 0. The RMS error result for the best of these ANNs was considerably better than those of the 

previous ANNs. 
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The first of these is the response to changes in the power level of the PWR. An example of this 

difference can be seen by comparing Figures 7.25 and 7.44. The one step ANN, Figure 7.25, was 

able to consider different power levels and correctly diagnose the transient condition. The three 

time step ANN, Figure 7.44, was unable to satisfactorily diagnose transients at power levels other 

than the power level in which training occurred. A possible reason for this difference could be for 

the whole of the simulation of the three time step transients the reactor heaters were modelled as 

on. This feature could have reduced the sensitivity of the ANN to different power levels. Another 

possible reason for the differences could be the time each ANN takes to respond to a change in 

power level. The relevant inputs in the one time step ANN are affected immediately by a change 

in power level. In contrast the three time step ANN requires three time steps for all the related 

inputs to be affected. The reduced input set of the three time step ANN may also not be as 

sensitive as the large input set of the one time step ANN. 

A second difference is the ANN responses to throttle transients. This topic has been considered 

earlier in this chapter but the comparisons between the throttle output in Figures 6.19 and 6.43 

illustrate the effect of only using the actual changes in throttle position to identify the transient. 

A further difference between the two approaches is in the speed of response, the elapsed time 

between the occurrence of the transient and successful ANN identification. An example of this 

difference can be seen by comparing Figures 7.21 and 7.44. The three time step ANN, Figure 

7.44, takes longer to respond to a transient than the corresponding one time step ANN, shown 

in Figure 7.21. This may be due to the construction of the three time step ANN involving rates 

of change between the input variables. The one time step ANN in comparison only utilises discreet 

values for the inputs and so is able to respond more rapidly to a changing environment. 

The last major difference between the two forms of ANNs is in the accuracy of diagnosing 

multiple transients. As stated earlier the occurrence of such conditions on actual plant is so rare 

that the diagnosis of them is of more academic than practical interest. An example of this 

difference can be seen by comparing Figures 7.33 and 7.44. The one time step ANN, Figure 7.33, 

is considerably better at diagnosing all multiple transient conditions than the three time step ANN, 

Figure 7.44. The main reason for this may be in the construction of the initial training data sets. 

If the data for each transient condition was not edited to remove the initial normal operating 

period or throttle opening information the ANN may lose some specificity on training. The ANN 

possessed a better RMS error than the one time step ANN but any generality was lost with the 
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complex nature of the training data. The possible reliance of the three time step ANN on rates of 
change between a small set of variables may not be as robust as the large single data set of the one 

time step ANN. 

The latter work also investigated a extra refinement in that the best ANN was interfaced with the 

simulator to provide an on-line and real time diagnosis of the PWR condition. The ANN was 

coded as a module of the simulation computer program and operated in parallel with the 

simulator. As a transient was initiated on the simulator the ANN provided a continuous diagnosis. 

The results of this work (Weller et al., 1997b) showed that all single transient conditions were 

correctly identified. Furthermore the time for diagnosis was quicker than that for an operator. 
Additionally some combinations of transients were also correctly diagnosed. The success of this 

work indicates that the on-line operators advisor introduced in Chapter 4 could be a practical 

consideration. 

All of the ANNs produced a reasonable diagnostic system. Every ANN converged during training 

and produced sensible results with the test data. The results were not necessarily optimum, a 

slightly better ANN may have been obtained by extra training but the improvement would not 

have been significant. None of the ANNs developed were considered particularly bad. A reason 

for this may be that the training data was well organised and the outputs realistic. Furthermore, 

a PWR may be a well organised system which can be modelled by a smooth, continuous, multi- 

dimensional surface although some drastic rates of change may occur, especially during large Loss 

Of Cooling Accidents (LOCAs). 

All the ANNs were trained on single fault conditions, a downstream leak or a rod drop for 

example, yet the trained ANN was able to successfully diagnose combinations of these conditions 

without having been presented with the combination during training. 

Throughout the investigation the ANN with the lowest RMS error was considered as the best 

ANN for each particular task. As described in section 7.2 this is not always the case. An ANN 

with a large number of little inaccuracies would be a better diagnostic ANN than one with a large 

error providing small errors within upper limit for correct output. However the randomly selected 

test data, although not totally independent of the training process, was felt to be a sufficient test 

for diagnostic accuracy. While this approach may not have selected the absolute best ANN for 

further investigation, the ANNs chosen were sufficiently accurate to justify the selection criterion. 
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The biasing of the ANN training data appears not to be a very sensitive process. In all the ANNs 

developed the data for normal operating conditions outweighed each example of the other 

transients. There were 120 cases of normal operating data compared to 70 cases of each of the 

remaining conditions. This asymmetrical loading did not seem to have an adverse effect on the 

performance of the ANNs. The biasing of the training data towards particular transients, for 

example a primary coolant leak, similarly did not produce enhanced diagnostic capabilities for the 

selected condition. The final training data set only contained one example of each transient with 

a medium sized leak, the exception was the throttle transient which contained a number of throttle 

opening and closing scenarios to produce an equal number of cases. 

A final, trivial observation of the ANN output graphs is the almost symmetrical nature of the 

values. Several of the graphs exhibit symmetry about a horizontal line approximately through the 

ANN output of 0.5, Figure 7.36 for example. This symmetry may as a result of the rapid diagnosis 

produced by the ANNs. As one output condition is less likely to be the cause of the transient a 

second condition correspondingly gains in likelihood output. The overall total value of the system 

is approximately unity. 

7.5 Conclusions - Diagnosing condition of complex systems 

From this investigations an ANN would seem to be an ideal tool for diagnosing the condition of 

a complex system. The results obtained for a wide range of scenarios have been both accurate and 

quickly obtained, including multiple transients. The speed of diagnosis compares very favourably 

with that of a human operator. 

As reported in Chapter 2 the use of ANNs to diagnose the condition of a nuclear reactor is not 

a new application. However, few of the reported systems have considered a PWR. The results of 

this chapter are therefore a contribution to rectifying that void. 

Several different approaches to developing a diagnostic ANN have been investigated. In terms 

of speed of response, accurate diagnosis of previously untrained conditions and flexibility of 

response the input set containing a single time step of large PWR variables would appear to 

produce the better diagnostic ANN for the six conditions selected. It should be stressed that all 

the ANNs developed could have been used for a diagnostic system, the chosen approach only 

provided the best diagnostic ANN. 
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7.6 Summary 

The work reported in this chapter has been concerned with developing a diagnostic ANN for 

determining the condition of a PWR. Some practical ideas were first described. The method of 

producing ANNs was then introduced. Six key transient conditions, including normal operation, 

were selected. A PWR simulator was then used to model these scenarios. The output from the 

simulator was modified for use in an ANN development computer program. Several forms and 

structures of ANN were then considered and produced. The best of which contained an input set 

of sixty-seven PWR measurable variable. This ANN was tested on a wide range of untrained 

transient conditions including different leak sizes and multiple faults. The results show a good 

generality of diagnosis as nearly all of these scenarios were correctly and promptly diagnosed. The 

model was felt to be sufficiently robust and generalised to be used as the diagnostic element of 

the advisory system. 
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Chapter 

8 
8.1 Introduction 

Implementation 

This chapter discusses a possible implementation of the methods developed in the previous 

chapters. This stage combines the predictive and diagnostic Artificial Neural Networks (ANNs) 

elements to form the advisor for the operator of a Pressurised Water Reactor (PWR) as 
introduced in Chapter Four. Currently the two systems have been developed separately with very 
little interface between them. Whilst this approach was necessary to explore the details and 

understand each requirement, a practical operators advisor requires both systems to communicate 

and interface together. The diagnostic component of the structure providing a guide to the 

condition of the PWR and the predictive section reporting future values of plant variables while 
in that condition. 

The ideas discussed in this chapter are theoretical in nature. A prototype operators' adviser has 

yet to be constructed. Some practical experience was gained from interfacing the three time step 
diagnostic system with a PWR simulator, as discussed in the previous chapter. This was still 

artificial as the ANN resided as a program on a parallel computer and shared data files with the 

main simulator program. 
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The remainder of the Chapter is as follows. The strategy behind such an implementation is 

introduced and discussed. A set of practical considerations for this proposal are then addressed. 

The chapter also includes some thoughts on possible future work and direction. 

8.2 Strategy for Implementation 

The strategy for implementation is that all components of the advisor must be interfaced together 

so that they appear as a single program with no user input required to enable the program to 

function or to initiate any features. The result from the diagnostic ANN is automatically passed 

to the predictive ANN. This program can be initially configured for user preferences, such as 

screen colours or layout, but the key elements such as the ANNs cannot be user adjusted. 

An important component not previously considered in great depth is a further program to control 

and maintain the system. This would also be a self-contained computer program embedded in the 

overall advisor package. It is envisaged that the controller software would manage and perform 

the important tasks of maintaining a record of the results of the diagnostics and predictions. A 

second vital task that this module could perform is that of organising the signals received from 

the PWR and organising them into the correct form and order for presentation to the ANNs. This 

function could also include a check or estimate on the acceptability of the data being received 

from the plant. A diagram showing the envisaged functions for the advisor management program 

is shown below in Figure 8.1. 

PWR Parmocers 

Dom 

wairld Now" 
RDTnfrnh{ A Evdu kn D oak Tnýiodan 

Operator 

Fig 8.1 - Management Program Tasks 

A new section shown in the above diagram is concerned with the updating of ANNs. Currently 

a neural network will not be changed once it has been developed. Training and test sets used 

in producing are established using data from simulators. In operation any situations that are 
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different from these scenarios may be evaluated and the outcome determined by the implicit 

relationships within the ANN. However some unanticipated situations may occur that are outside 

even this framework and not included in the original data sets. A facility to update and, if possible, 
improve the performance of the advisor would be a necessary requirement of any practical 
implementation. 

The training and test sets information could be stored in a database of conditions. During 

operation, each data set measured from the PWR could be compared to the contents of the 
database. If a similar information set is not currently part of the database the new details are 

added. After a predefined number of additions to the database or a predefined time period, the 

relevant neural network is retrained on an updated training set. The revised neural network is then 

implemented into the system. Initially it could operate in parallel with its predecessor but once its 

performance has been evaluated it could replace the old neural network if found to be an 
improvement. The following diagram, Fig 8.2, shows the proposed ideas. 

ýl 
PWR Parameters 

Database Updai 

At Defined Period 
Neural Networks Re-Trained 

Now Neural Network 

Best 

Fig 8.2 Proposed ANN Updating Sequence 

It may not be possible to carry out the recording of a new condition in one stage. The data 

sets for the prediction element of the advisor will need to be stored temporarily until 

information on the actual plant condition is available and the outcome can be combined with 

the input set. 
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8.3 Practical Considerations 

A realistic implementation of the operators advisor would consist of a software program, a 

computer with the facility to receive data from analogue and digital sources. The software 

program contains the embedded coding of the ANNs and the controlling software. Later versions 

of the advisor could utilise dedicated ANN circuitry but until this technology has become more 

accepted and usable a software solution is preferable. 

The connection between the advisor and the source of data, either a simulator or a PWR, needs 

to be a high speed link to ensure real time monitoring. The required information is already 

available in the control room as inputs to the various displays currently monitored by the operator. 
The only additional connection therefore required would be between the computer with the 

installed advisor software and the control room instrumentation. The impact of such a system on 

safety, power loading and speed of data traffic would clearly need to be established. 

The manner in which the output from the advisor is conveyed to the operator also requires 

investigation. Currently the ANNs merely produce a real valued output for both diagnosis and 

prediction. The method by which these results is represented to the operator is vital both in terms 

of the valuable of the advisor and the acceptability of the advisor by the operators as a useful tool. 

Many new fields of information representation, such as data mining, virtual reality or other 

Artificial Intelligence techniques could be explored to develop an optimum user interface. 

The reliability and accuracy of the data being received by the advisor is an important consideration 

for a practical implementation. At present all the data has been produced with a PWR simulator 

and, although an element of noise was added during training, the information has been complete 

and accurate. The problem of data reliability is resolved in current PWR control rooms by an in- 

built redundancy of data measurement. Key variables are independently measured more than once 

and a comparison or voting technique used to determine the final value. A similar procedure could 

be adopted for the advisor. The duplicated readings could all be presented to the system and a 

method of resolution used to determine the variable value to be used for the ANNs. The 

techniques developed by Upadhyaya and Eryunek (1992) could be used to also give information 

on the accuracy of the readings. 

One of the most important requirements of the operators advisor is that it operate in real time. 

The usefulness of the system as a tool for assisting the PWR operator is the speed of diagnosis 
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and prediction. Good accuracy of the outputs is also an obvious criteria but this is a result of the 

ANN training and data selection. The accuracy of the ANN output is not a function of the speed 

of the system operation. Any practical implementation would need careful consideration of the 

operational quickness of each component and link in the system. 

8.4 Summary 

The chapter briefly examined a possible approach to a practical implementation of the operators 

advisor. Some of the envisaged problems were identified and potential solutions addressed. Some 

areas that require further investigation were highlighted and discussed. Although theoretical in 

nature the proposed approach should provide a sound basis for development of a usable tool. 
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many hierarchical layers, as introduced and discussed in Chapter Four. Instead a single ANN has 
been developed for each task. As considered earlier, in Chapters Four and Seven, the diagnostic 

feature could be expanded to produce more detailed results but this would require considerably 

more development of a PWR simulator program to produce sufficiently detailed training data. The 

optimisation of the ANN input nodes was also far simpler than initially envisaged. Chapter Four 

discussed the use of Genetic Algorithms for producing the best ANN input set. However the 

approach adopted for the predictive element defined the ANN input set and the diagnostic element 

used the full set of possible plant variables, although it is possible that some rationalisation is 

possible. 

The ANNs that were finally developed were composed of relatively simple structures for the 

complexity of the tasks required of them. Most of the ANNs produced during the entire project 

contained only one or two layers of hidden nodes. The experiments with three hidden layers 

yielded no improvement on the results obtained with the simpler architecture. This result may be 

due to the nature of the PWR data which, although non-linear, is not chaotic. The solution space 

that the ANNs attempt to model is therefore well organised and this perhaps requires few hidden 

nodes to accurately map. The restricted scenario set considered during the project may have 

enhanced this observation but the conclusion is still believed to be valid. 

A further general observation is that only information from one time step was required for both 

the elements of the advisory system. Originally a series of recent plant history was envisaged for 

input to the ANNs. However comparisons in ANN performance vs number of time steps for both 

predictive and diagnostic functions, reported in Chapters Five and Seven, reveal no advantage 

gained with the larger number of time steps. The converse is probably more likely as the resulting 

larger ANNs would be harder to train and require more information for learning. 

It is intended that the techniques investigated are valid in applications in other critical, non-linear 

systems, such as patient monitoring in a hospital intensive care unit or share dealing in the 

financial markets. In such arenas it is believed that the results from this work could make an 

important contribution. 

9.2.1 Discussion on Predicting PWR Variables 

This work has shown that an ANN can be successfully used to predict PWR condition both one 

and many time steps ahead. The predictions are generally accurate enough for the PWR operator 
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Chapter 

9 
9.1 Introduction 

Conclusions 

This final chapter discusses the results of the previous chapters and assesses the achievements of 

the project. 

9.2 Discussion 

This work has shown that Artificial Neural Networks (ANNs) can be successfully used as the 

basis for a Pressurised Water Reactor (PWR) operators advisor. The ANNs developed during the 

project effectively performed their envisaged tasks, diagnostics and prediction. The advisor is 

capable of diagnosing a limited, though important, range of PWR conditions and then predicting 

future plant state based on that diagnosis. While these systems will require further refinement and 

evaluation for a prototype advisor to be constructed, the initial concept and grounding appears 

sound. 

A surprising result from the investigations is that the proposed structure of the advisory system 
is quite simple, consisting merely of a hierarchy of two ANN structures. This result is quite 
different to the initial concept which consisted of a far larger number of ANNs configured into 
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to assess the future state of the plant and gauge the results of changes made to the PWR. One 

sophisticated model, containing a single basic ANN element, can be used to predict a large range 

of PWR conditions. An ANN direct equivalent of a simple one compartment model has been 

developed, refined and shown to be a minimum structure. This is used to model PWR non- 
linearity for the prediction of plant temperature many time steps ahead and for a wide range of 

conditions. 

The results and conclusions from the work on predicting PWR variables, reported in Chapters 5 

and 6, can be summarised as follows: 

- ANN technology has been shown to be a valid tool for predicting variables in a PWR 

-A set of different forms of PWR variables suitable for use as ANN inputs have been identified 

- The number of PWR transients that can be accurately predicted by an ANN was identified as a 
key consideration 

- An exact equivalent of the energy conservation equation was developed to resolve the predicting 

of a number of transients problem 

- This model was refined to include only standard ANN transfer functions 

- The refined model was proved to be the minimum structure for this task 

-A model of the PWR primary circuit was constructed using 25 of these basic ANN elements 

- This model was shown to accurately predict PWR transients 

- The structure is capable of predicting all the fault conditions that the simulator could model 

9.2.2 Discussion on Diagnosing PWR Condition 

A second ANN was successfully developed for the diagnosis of six key PWR transient conditions. 

These transients were successfully diagnosed at different power levels to those used for the 

training sets. Furthermore the developed ANN was sufficiently generalised to correctly identify 

transient scenarios not included in the training data. Combinations of transients, again not in 

training set, were also correctly diagnosed. From this work a key set of PWR variables were 

identified. 

The results and conclusions from this work can be summarised as follows: 

-A set of six key PWR transients has been identified 

-A single time set of PWR variables is sufficient for accurate ANN diagnosis of plant condition 

- Correspondingly a large set of PWR variables is better for accurate ANN diagnosis of plant 

condition compared to a selected set of perceived key variables. 
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- An ANN trained to identify single fault conditions can also correctly diagnose multiple transient 

scenarios, which were not included in the training data. 

9.3 Summary 

This project has shown that ANN technology can be used as a basis for the construction of a 

computer based PWR operators advisory system. Although further work and testing is required 

to develop these ideas into a usable prototype the ideas from this project will provide a sound 

framework. 
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Appendix 

A Pressurised Water Reactor 

Introduction to Pressurised Water Reactors (PWRs) 

This section gives a basic description of a PWR. The account is, of necessity, rather brief more 
detailed explanations are referred to in the bibliography. 

The Pressurised Water Reactor (PWRs) is one of the world's most popular design for nuclear 

reactors. A simplified diagram, Fig A. 1, showing the main components is given below. 
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Fig A. 1: Diagram of a PWR, (From Patterson) 
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The whole assembly is enclosed in heavy shielding. The main structure is a large pressure vessel 

made of welded steel. It has a lid which is secured to the vessel by a ring of heavy bolts. The 

pressure vessel contains the reactor core and the control rods. The core is composed of a lattice 

of fuel elements containing enriched Uranium 235. The remaining volume in the pressure vessel 
is filled with water under a pressure of 150 atmospheres. The water is used as coolant and a 

moderator. Heat is generated by the fission of the Uranium and is absorbed by the circulating 

water. 

Water leaves the pressure vessel through pairs of heavy pipes welded to the vessel. One pipe 

carries heated water away from the core and is referred to as the 'hot leg'. The other pipe carries 

water back to the core and is called the 'cold leg. Each reactor has two or more loops of these 

pairs of pipes. In some PWRs valves are included for isoslating particular areas of the primary 

circuit. The hot leg takes the heated pressurised water to a steam generator. The generator is a 

heat exchanger composed of many small tubes surrounded by water. These tubes are filled with 

the heated water from the core. The pressurised primary circuit water inside the tubes cannot boil, 

but the water in the shell surrounding the generator tubes does. The steam produced in this 

secondary circuit is then processed and used in a turbine to produce electricity. The cooler 

pressurised water is then pumped back to the pressure vessel through the cold leg. Any 

downstream steam leaks in the steam generator circuit have an important bearing on the primary 

circuit. 

One of the pressurised water loops contains a pressuriser which evaporates a quantity of coolant 

to maintain the water pressure in the primary vessel. This component is also used to compensate 

for the unexpected pressure changes resulting from a transient or fault condition. 

Control rods are mounted in the top of the pressure vessel. In normal operation groups of control 

rods are raised or lowered into the core to control the power level of the PWR. In an emergency 

these can be driven down into the core and control the fission process. This condition is known 

as a 'scram'. It is possible for a single rod to become detached and drop into the core. This 

condition is referred to as a rod drop. Similarly, a sub-group of rods may become detached and 

drop into the core, a condition known as a group drop. This condition causes an inadvertant 

partial scram of the reactor. 
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Other very important components of a PWR are the safety systems. The pressurised nature of the 

system means that if a leak occurs in one of the primary pipes, a primary coolant leak, a large 

amount of the cooling water may be lost very quickly. Continued cooling must be maintained to 

prevent damage to the core. This type of fault is referred to as a "Loss Of Coolant Accident" 

(LOCA), and will be referred to throughout this report. 
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Appendix 

B Introduction to Artificial Neural Networks and 
Genetic Algorithms 

B. 1 Introduction 

This appendix introduces the two modelling techniques used in this research, artificial neural 

networks (ANNs) and genetic algorithms (GAs). The topics are only briefly described and further 

information can be obtained from the specialist books recommended in the last section of the 

appendix. 

B. 2 Artificial Neural Networks 

An ANN is a form of pattern classifier that functions on similar principles to the human brain, 

although far simpler and smaller. They have been researched and investigated from the early days 

of the computer age. The principal component of an ANN is a node, the computer equivalent of 

the neuron in the biological brain. A number of these nodes are used to form a network and are 

usually arranged into layers. A number of ANN methodologies have been developed with different 

forms of nodal links and pattern processing. Each of these operate in separate ways and model 
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various brain features. All the ANNs developed for this research project are fully connected feed- 
forward ANNs. 

In a fully connected ANN each member of a layer is connected to all the members of both the 

preceding and succeeding layers with the computer equivalent of synapse and axonal paths of the 

brain. A simple ANN is shown in the following diagram, Fig B. 1. The first layer is for the 

presentation of the pattern under consideration while the last layer contains the result of the 

ANNs action on the pattern. A pattern is presented to the input layer, processed by the hidden 

layers and the result produced at the output layer. The information flows forward from the input 

to the output layer. The figure represents a very small ANN, in practice they consist of more 

nodes in all layers. However, there is seldom a requirement for more than two hidden layers. 

Input 
Layer 

Hidden Layers 

Output 
Layer 

Flow of Information 

Fig B. 1 Diagram of a simple ANN 

The links between nodes have a weighting which is a factor by which the output from one 

node is multiplied before it enters the next node. The node performs as if it were a summation 

function, combining all of the individual input signals into a single value. With the exception of 

the input layer each node also has a transfer function which is applied upon the sum of the 

inputs. This process models the sodium/potassium chemical transfer process of excitation in 

the biological brain. The summation and transfer processes are shown in Figure B. 2. The 

processed input signal is then sent as an input to the nodes in the next layer. 
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output= trraaafer ýLk_1 Xk Wk 

Several transfer functions are used in this project, the main ones are: 
Sigmoid function: 

f (x) =1 
1+e -x 

Hyperbolic Tangent function: 

tanh(x) = 
ex - e-x 
ex + e-x 

An important feature of neural networks is their facility to be taught to discriminate between given 

patterns. The ability to learn a complex set of classifier conditions or test patterns was one reason 
for the recent renewed interest in the subject. Through learning, the neural network creates 

implicit relationships between variables. Several ANN training algorithms exist but the procedure 

used for the majority of this research project is referred to as error back-propagation using the 

generalised delta rule. 

To implement this algorithm an ANN structure needs to be created. The number of input and 

output nodes are usually problem defined and fixed during the training process. The number of 
hidden nodes and layers can be user selected. Various heuristic methods have been proposed but 

for the majority of this project the following equations from Masters (Page 177) have been used. 
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For One Hidden Layer: N= (mn)'n 

For Two Hidden Layers: N1=mr2 

N2=mr 

Where: m= number of output neurons, n= number of input neurons, r= (n/m)'13 

The final item of training information consists of a set of inputs and the corresponding known 

output. This is a set of known inputs and their respective outputs. In practice this set is divided 

into two; the larger set is used to train the ANN while a second, smaller, independent set is used 

to test the training. The initial values for the internodal weights are randomly assigned. These 

values are then gradually changed to minimise the error between the actual ANN output and the 

desired output from the training set. This iterative process is detailed in the pseudocode below. 

Procedure ANN 

begin 

randomly assign weightings and threshold values 

while termination state not achieved do; 

begin 

for size of training set do; 

begin 

present a member of the training set to the network 

calculate the output from the ANN to this input 

calculate the error between ANN output and actual 

adjust weights and thresholds to minimise the error 

end 

end 

end. 

The method of adjusting the internodal weights is performed using a gradient descent rule. This 

algorithm is repeated for a number of cycles, usually thousands, or until the error is below a pre- 

defined value. The trained network can then be used to examine new conditions, including those 

with noisy or incomplete data. 
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For One Hidden Layer: N= (mn)"2 

For Two Hidden Layers: N1=mr2 

N2=nu 

Where: m= number of output neurons, n= number of input neurons, r= (n/m)" 

The final item of training information consists of a set of inputs and the corresponding known 

output. This is a set of known inputs and their respective outputs. In practice this set is divided 

into two; the larger set is used to train the ANN while a second, smaller, independent set is used 

to test the training. The initial values for the intemodal weights are randomly assigned. These 

values are then gradually changed to minimise the error between the actual ANN output and the 

desired output from the training set. This iterative process is detailed in the pseudocode below. 

Procedure ANN 

begin 

randomly assign weightings and threshold values 

while termination state not achieved do; 

begin 

for size of training set do; 

begin 

present a member of the training set to the network 

calculate the output from the ANN to this input 

calculate the error between ANN output and actual 

adjust weights and thresholds to minimise the error 

end 

end 

end. 

The method of adjusting the internodal weights is performed using a gradient descent rule. This 

algorithm is repeated for a number of cycles, usually thousands, or until the error is below a pre- 

defined value. The trained network can then be used to examine new conditions, including those 

with noisy or incomplete data. 

231 



B. 3 Genetic Algorithms 

In evolution a parent's characteristics are carried forward to their offsprings by coded information 

contained in the gene. Each parent contributes a set of features; for example, brown eyes or blond 
hair. Some combinations of these attributes can enable members of one generation to be better 

equipped for their environment than were the previous generation. By natural selection and 

survival of the fittest these features can be enhanced and the species becomes more dominant. 

A Genetic Algorithm is a recent (Holland, 1975) and robust alternative method of problem solving 

which uses the techniques from natural selection to search for and evolve the best solution. It 

requires little specific knowledge of the problem domain. This is achieved by considering the task 

as a "Black Box" and using the inputs and outputs to evolve the solution as shown in the 
following figure, Fig B. 3. The inputs to the problem are formulated as a form of genetic code 

which is initially selected at random. These chromosomes are then tested on the given problem 

and an output determined for each code. This output gives the acceptability, or fitness, of the 

code. 

Pairs of chromosomes are then randomly chosen to produce the next generation of possible 

solutions. The probability of a chromosomes selection is in proportion to its fitness. The fitter, 

more acceptable, codes therefore have a greater probability to contribute to the next generation 
but less fit members could also be selected although with less frequency. The new population is 

produced by exchanging part of the information of the selected codes, a process known as 

crossover. The simplest crossover technique is called one-point crossover and occurs when the 

parts of two parents chromosomes are swapped at a randomly selected point to make two 

children. The first child having the code of the first parent up to the cross over point and the code 

of the second afterwards. The second child has the reverse, the second parent's code to the 

crossover and then the first parent's code. For example, using a crossover point of 3, the two 

codes below are used to produce two members of the next generation. 

Parentl al a2 a3 I a4 a5 

Parent2 bl b2 b3 I b4 b5 

Childl al a2 a3 I b4 b5 

Child2 b1 b2 b3 I a4 a5 

These new codes produced are then themselves evaluated and then used to generate a new 

population of codes. This process is repeated for a number of generations. 
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The other important ingredient of genetic algorithms, again a technique observed in biological 

genetics, is mutation. Each element of a code, an allele, could be modified again using a random 

chance factor. This could also result in an improvement in the solution and avoiding the solutions 
becoming trapped in a local minima of the solution space. 

The underlying principle is that by combining the best features of one generation, better, fitter 

solutions should exist in the succeeding one. The important feature of genetic algorithms is that 

through initially using random numbers a sound, sensible and sometimes unexpected solution can 
be arrived at. 

Initial Evaluation Parent X Over Point X Over & 
Conditions Selection Mutation 

___ 
ri/ 7- 

-LII1 
/- 

+ 

___________ 

Fig B. 3: Basic Principles of Genetic Algorithms 

To implement a genetic algorithm it is necessary to define the problem in a form that can be 

understood by the technique. The first requirement is to code the possible solutions as a 

genetic string. Usually this is a binary representation but other codings are possible. A measure 

of suitability of the possible solutions, the fitness, also needs to be defined. This fitness is a 

mapping of each genetic string to a discrete value, with respect to the other members of the 

population, the best solutions have a better fitness. The steps are highlighted in the 

pseudocode below: 
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Procedure GA 

begin 

randomly select initial population members; 

while termination state not achieved do; 
begin 

evaluate fitness of population members; 
for size of population do; 

begin 

randomly select two parents based on fitness; 

crossover their strings at randomly selected point(s) to produce new 
population members; 

end 

consider mutation; 

end 

end. 

Once the problem has been defined it can be coded into a computer program, along with several 
variables, such as mutation rate and terminating conditions. The program is then run for a defined 

number of generations or until the population has converged. The solution to the problem is the 

code to which the population has converged, or if convergence has not occurred the best code 
in the last generation is then used as the solution. 

There are several useful refinements to the basic genetic algorithm described above. They are all 
intended to assist the evolution process while not affecting the underlying principles. 

One of the potential problems with a genetic algorithm is that using the cross-over technique does 

not guarantee that the new generation will contain better members than the previous one. It is 

possible that the random selection of cross-over position joins elements of fit chromosomes in a 

retrograde combination. To prevent a new generation consisting of a population of less fit 

members the fittest chromosome of the previous generation is automatically carried forward to 

the new generation. This technique is known as an Elitist policy. 

The one point crossover technique, described above, has a serious weakness. It is not good for 
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preserving the fitness of chromosomes whose key alleles are situated at, for example, at either end 

of the string. Unless key arrangements of alleles, called schema, can be propagated the genetic 

algorithm has little chance of evolving to the best solution. A method of resolving this problem 
is to use two point crossover. In this method two points are randomly selected and the alleles 

exchanged between these two points. For example the following two codes, with crossover points 

of two and three, produce the two children shown with two point crossover. 

Parentl al I a2 a3 I a4 a5 
Parent2 bl I b2 b3 I b4 b5 

Childl al I b2 b3 I a4 a5 
Child2 blI a2 a3 I b4 b5 

If either of the points selected equals an end point on the chromosome then the crossover 

procedure reduces to the original one point crossover. 

If the algorithm is close to convergence all the population members will have a similar fitness. The 

task of selecting the fittest members as parents is complicated as all the codes have a similar 

probability of being selected. A method of scaling is sometimes used to redefine the fitness values 

and recalculate the probabilities for selection based on these new values. There are two most 

popular scaling methods. The first is a simple fitness ranking order with the worst member of a 

population of n having a ranking 1 and the fittest a ranking of n. The second method defines a new 

base value, for example the worst member of the population, and all other chromosome fitnesses 

are expressed by their value over this base level. 

In many applications a large population size is used and it is possible that many codes will be 

produced more than once. This arrangement is generally undesirable as the information is repeated 

and computational time is wasted calculating the same fitness value. A refinement to the crossover 

technique, called a 'no duplicates policy', is to compare a new code with its peers and produce 

another code if that chromosome already exists. This policy requires careful monitoring as 

possible new codes will become very scarce as the solutions converge to the final answer. 

Some applications of genetic algorithms are for problems that do not easily lend themselves to a 

binary coding. An example is the class of problems are concerned with determining a minimal path 

between a set number of locations, traditionally referred to as the travelling salesman problem. 

The solutions to a genetic algorithm of this class of problem are coded as a possible route between 
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the locations. A binary coding of such a problem would be rather unwieldy so a coding relating 

to the number of locations would be used. As an example, the code 3 14 2 would be translated 

as a journey starting at point 3 and travelling to point 2 via points 1 and 4 respectively. The fitness 

function for this type of problem would be the total distance travelled by following this route. 
Care needs to be taken with the crossover element of the algorithm to prevent the same location 

appearing more than once in a chromosome. 

B. 4 Further Reading 

This appendix has only briefly introduced ANNs and GAs. For father details the following books 

may help. 

Eberhart RC., Dobbins R. W. eds. Neural Network PC Tools, A Practical Guide 

Academic Press, 1990, ISBN 0-12-228640-5 

Goldberg D. E., Genetic Algorithms in Search, Optimization & Machine Learning 

Addison Wesley, 1989, ISBN 0-201-15767-5 

Haykin S. Neural Networks, A Comprehensive Foundation 

Macmillan College Publishing, 1994, ISBN 0-02-352761-7 

Mitchel M., An Introduction to Genetic Algorithms 

MIT Press, 1996, ISBN 0-262-13316-4 
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Appendix 

C Appendix C 

This appendix contains the full results of all the ANNs trained to predict Transient 1 in Section 

5.2. The ANNs were all designed to predict the values of PWR variables one step ahead. Four 

sets of recent PWR variables were used as inputs the ANNs. These were one to four time steps. 

For each input set a range of one and two hidden layer ANNs were developed. The number of 

nodes in the hidden was varied from a maximum of 18 to a minimum of 2. The values in between 

were in steps of two nodes. In the case of two hidden layers both layers were varied between 

these limits. All the ANN training was repeated four times to avoid possible local minima. The 

value recorded in each case is the lowest RMS error for the training. As explained in Chapter 5 

all ANNs were trained for 120,000 cycles of presentation of the training set and then a further 

40,000 iterations with presentation of the test set every 100 cycles. The best performing ANN in 

terms of RMS error was saved for further testing. In the following tables the best RMS error 

result for each ANN architecture is underlined while the best overall ANN for each hidden layer 

configuration is in bold. 
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One Time Step Input for One Step Prediction 

Filename Size of 

ANN 

RMS Error 

1 lxlaa 18 0.0344 0.0345 0.0354 0.0347 

1 lxlab 16 0.0399 0.0361 0.0351 0.0342 

1 lxlac 14 0.0336 0.0349 0.0348 0.0341 

1 lxlad 12 0.0335 0.0336 0.0348 0.0340 

1 lxlae 10 0.0340 0.0342 0.0345 0.0353 

1 lxlaf 8 0.0346 0.0341 0.0359 0.0334 

1 lxlag 6 0.0336 0.0326 0.0343 0.0325 

1 lxlah 4 0.0326 0.0337 0.0334 0.0333 

1 lxlai 2 0.0381 0.0389 0.0381 0.0380 

1 lx2aa 18,18 0.0395 0.0399 0.0398 0.0406 

1 lx2ab 18,16 0.0397 0.0419 0.0390 0.0393 

1 lx2ac 18,14 0.0393 0.0399 0.0397 0.0392 

1 lx2ad 18,12 0.0392 0.0392 0.0391 0.0396 

1 lx2ae 18,10 0.0390 0.0390 0.0390 0.0390 

1 lx2af 18,8 0.0390 0.0389 0,0389 0.3389 

1 lx2ag 18,6 0.0386 0.0387 0.0386 0.0387 

1 lx2ah 18,4 0.0384 0.0387 0.0385 0.0385 

1 lx2ai 18,2 0.0386 0.0383 0.0384 0.0386 

1 lx2aj 16,18 0.0393 0.0392 0.0395 0.0393 

1 lx2ak 16,16 0.0392 0.0394 0.0396 0.0391 

1 lx2al 16,14 0.0394 0.0391 0,0390 0.0393 

1 lx2am 16,12 0.0396 0.0397 0.0390 0.0388 

1 lx2an 16,10 0.0390 0.0393 0.0389 0.0390 

1 lx2ao 16,8 0.0388 0.0388 0.0390 0.0386 

1 lx2ap 16,6 0.0391 0.0386 0.0385 0.0388 

1 lx2aq 16,4 0.0384 0.0383 0.0385 0.0381 

1 lx2ar 16 2 0.0386 0.0385 0.0384 0.0387 
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Filename Size of 

ANN 

RMS Error 

1 lx2as 14,18 0.0395 0.0391 0.0392 0.0394 

1 lx2at 14,16 0.0394 0.0392 0.0389 0.0389 

1 lx2au 14,14 0.0388 0.0392 0.0390 0.0387 

1 lx2av 14,12 0.0388 0.0388 0.0389 0.0385 

1 lx2aw 14,10 0.0388 0.0387 0.0389 0.0390 

1 lx2ax 14,8 0.0388 0.0390 0.0389 0.0386 

1 lx2ay 14,6 0.0386 0.0387 0.0387 0.0385 

1 lx2az 14,4 0.0384 0.0383 0.0385 0.0381 

1 lx2ba 14,2 0.0385 0.0385 0.0384 0.0389 

1 lx2bb 12,18 0.0388 0.0389 0.0393 0.0391 

1 lx2bc 12,16 0.0391 0.0391 0.0391 0.0392 

1 lx2bd 12,14 0,0386 0.0387 0.0392 0.0390 

1 lx2be 12,12 0.0390 0.0387 0.0388 0.0388 

1 lx2bf 12,10 0.0385 0.0386 0.0388 0.0388 

1 lx2bg 12,8 0.0383 0.0389 0.0387 0.0384 

1 lx2bh 12,6 0.0383 0.0381 0.0384 0.0383 

1 lx2bi 12,4 0.0385 0.0382 0.0380 0.0378 

1 lx2bj 12,2 0.0388 0.0385 0.0386 0.0383 

1 lx2bk 10,18 0.0388 0.0387 0.0388 0.0392 

1 lx2bl 10,16 0.0386 0.0389 0.0387 0.0389 

1 lx2bm 10,14 0.0386 0.0386 0.0391 0.0384 

1 lx2bn 10,12 0.0384 0.0392 0.0389 0.0389 

1 lx2bo 10,10 0.0387 0.0385 0.0388 0.0385 

1 lx2bp 10,8 0.0385 0.0386 0.0383 0.0385 

1 lx2bq 10,6 0.0376 0.0378 0.0379 0.0379 

1 lx2br 10,4 0.0384 0.0377 0.0377 0.0387 

1 lx2bs 10 2 0.0383 0.0384 0.0385 0.0388 
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Filename Size of 

ANN 

RMS Error 

1 lx2bt 8,18 0.0389 0.0388 0.0386 0.0387 

1 lx2bu 8,16 0.0386 0.0389 0.0390 0.0389 

1 lx2bv 8,14 0.0387 0.0388 0.0385 0.0385 

1 lx2bw 8,12 0.0382 0.0387 0.0383 0.0384 

r 

1 lx2bx 8,10 0.0386 0.0388 0.0383 0.0385 

1 lx2by 8,8 0.0388 0.0386 0.0383 0.0385 

1 lx2bz 8,6 0.0386 0.0382 0.0385 0.0378 

1 lx2ca 8,4 0.0380 0.0382 0.0385 0.0377 

1 lx2cb 8,2 0.0385 0.0384 0.0381 0.0383 

1 lx2cc 6,18 0.0390 0.0389 0.0385 0.0385 

1 lx2cd 6,16 0.0389 0.0387 0.0384 0.0385 

1 lx2ce 6,14 0.0390 0.0389 0.0389 0.0381 

1 lx2cf 6,12 0.0383 0.0383 0.0381 0.0387 

1 lx2cg 6,10 0,0382 0.0382 0.0384 0.0385 

1 lx2ch 6,8 0.0381 0.0387 0.0384 0.0391 

1 lx2ci 6,6 0.0384 0.0377 0.0380 0.0387 

1 lx2c3 j 6,4 0.0381 0.0385 0.0380 0.0384 

1 lx2ck 6,2 0.0387 0.0384 0.0384 0.0383 

1 lx2cl 4,18 0.0390 0.0599 0.0389 0.0391 

1 lx2cm 4,16 0.0378 0.0387 0.0393 0.0386 

1 lx2cn 4,14 0.0383 0.0384 0.0393 0.0390 

1 lx2co 4,12 0.0391 0.0388 0.0382 0.0380 

1 lx2cp 4,10 0.0380 0.0386 0.0377 0.0385 

1 lx2cq 4,8 0.0383 0.0387 0.0384 0.0383 

1 lx2cr 4,6 0.0380 0.0378 0.0380 0.0384 

1 lx2cs 4,4 0.0383 0.0372 0.0376 0.0374 

11 x2ct 42 0.0387 0.0386 0.0386 0.0384 
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Filename Size of 

ANN 

RMS Error 

1 lx2cv 2,18 0.0583 0.0568 0.0556 0.0569 

1 lx2cw 2,16 0.0438 0.0545 0.0767 0.0581 

1 lx2cx 2,14 0.0614 0.0574 0.0576 0.0577 

1 lx2cy 2,12 0.0573 0.0551 0.0587 0,0422 

1 lx2cz 2,10 0.0473 0.0405 0.0581 0.0567 

1 lx2da 2,8 0.0558 0.0465 0.0413 0.0434 

1 lx2db 2,6 0.0388 0.0394 0.0430 0.0564 

1 lx2dc 2,4 0.0384 0.0416 0.0386 0.0461 

1 lx2dd 2,2 0.0433 0.0387 0.0781 0.0716 

Two Time Steps Input for One Step Prediction 

1 2xlaa 18 0.0359 0.0336 0.0348 0.0356 

1 2xlab 16 0.0359 0.0361 0.0378 0.0363 

1 2xlac 14 0.0364 0.0363 0.0346 0.0355 

1 2xlad 12 0.0345 0.0346 0.0363 0.0352 

1 2xlae 10 0.0363 0.0358 0.0349 0.0364 

1 2xlaf 8 0.0360 0.0347 0.0328 0.0360 

1-2x I ag 6 0.0354 0.0373 0.0340 0.0354 

1 2xlah 4 0.0381 0.0356 0.0360 0.0351 

1 2xlai 2 0.0392 0.0391 0.0391 0.0395 

1 2x2aa 18,18 0.0436 0.0415 0.0426 0.0422 

1 2x2ab 18,16 0.0424 0.0428 0.0419 0.0408 

1 2x2ac 18,14 0.0446 0.0416 0.0416 0.0422 

1 2x2ad 18,12 0.0406 0.0418 0.0405 0.0410 

1 2x2ae 

L 

18,10 0.0410 0.0419 0.0405 0.0412 

1 2x2af 18,8 0.0400 0.0404 0.0410 0.0399 

1 2x2a 18 6 0.0400 0.0403 0.0402 0.0406 
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Filename Size of 

ANN 

RMS Error 

1 2x2ah 18,4 0.0403 0.0401 0.0399 0.0396 

1 2x2ai 1822 0.0411 0.0450 0.0407 0.0394 

1 2x2aj 16,18 0.0412 0.0410 0.0414 0.0417 

1 2x2ak 16,16 0.0417 0.0409 0.0417 0.0419 

1 2x2al 16,14 0.0417 0.0422 0.0414 0.0429 

1 2x2am 16,12 0.0410 0.0417 0.0414 0.0410 

1 2x2an 16,10 0.0414 0.0408 0.0406 0.0412 

1 2x2ao 16,8 0.0409 0.0412 0.0401 0.0405 

1 2x2ap 16,6 0.0407 0.0400 0.0408 0.0403 

1 2x2aq 16,4 0.0411 0.0400 0.0395 0.0397 

1 2x2ar 16,2 0.0411 0.0406 0.0411 0.0405 

I 
-Was 

14,18 0.0407 0.0424 0.0414 0.0416 

1 2x2at 14,16 0.0413 0.0414 0.0405 0.0417 

1 2x2au 14,14 0.0413 0.0412 0.0408 0.0410 

1 2x2av 14,12 0.0409 0.0404 0.0402 0.0416 

1 2x2aw 14,10 0.0409 0.0406 0.0404 0.0409 

1 2x2ax 14,8 0.0403 0.0403 0.0402 0.0410 

1 2x2ay 14,6 0.0401 0.0393 0.0395 0.0406 

1 2x2az 14,4 0.0402 0.0393 0.0401 0.0392 

1 2x2ba 

F 

14,2 0.0407 0.0410 0.0411 0 0405 

1 2x2bb 12,18 0.0408 0.0416 0.0408 0.0417 

1 2x2bc 12,16 0.0406 0.0417 0.0411 0.0412 

1 2x2bd 12,14 0.0407 0.0405 0.0408 0.0407 

1 2x2be 12,12 0.0409 0.0402 0.0406 0.0400 

1 2x2bf 12,10 0.0400 0.0399 0.0399 0.0403 

1 2x2bg 12,8 0.0395 0.0406 0.0401 0.0398 

1 2x2bh 12,6 0.0404 0.0394 0.0405 0.0393 

1 2x2bi 123,4 0.0402 0.0397 0.0391 0.0402 

1 2x2b' 12,2 0.0404 0.0389 0.0407 0.0404 
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Filename Size of 

ANN 

RMS Error 

1 2x2bk 10,18 0.0423 0.0405 0.0409 0.0411 

1 2x2b1 10,16 0.0407 0.0401 0.0409 0.0400 

1 2x2bm 10,14 0.0413 0.0399 0.0405 0.0402 

1 2x2bn 10,12 0.0404 0.0405 0.0402 0.0407 

1 2x2bo 10,10 0.0404 0.0402 0.0409 0.0407 

1 2x2bp 10,8 0.0391 0.0395 0.0386 0.0398 

1 2x2bq 10,6 0.0397 0.0410 0.0395 0.0406 

1 2x2br 10,4 0.0393 0.0397 0.0393 0.0390 

1 2x2bs 10,2 0.0411 0.0392 0.0404 0.0401 

1 2x2bt 8,18 0.0406 0.0411 0.0404 0.0406 

1 2x2bu 8,16 0.0406 0.0398 0.0407 0.0409 

1 2x2bv 8,14 0.0402 0.0403 0.0399 0.0401 

1 2x2bw 8,12 0.0402 0.0403 0.0400 0.0399 

1 2x2bx 8,10 0.0396 0.0401 0.0391 0.0393 

1 2x2by 8,8 0.0392 0.0394 0.0396 0.0390 

1 2x2bz 8,6 0.0398 0.0386 0.0398 0.0399 

1_2x2ca 8,4 0.0392 0.0400 0.0403 0.0391 

1 2x2cb 83,2 0.0392 0.0411 0.0389 0.0391 

1 2x2cc 6,18 0.0404 0.0401 0.0397 0.0407 

1 2x2cd 6,16 0.0399 0.0402 0.0398 0.0397 

Y 2x2ce 6,14 0.0396 0.0403 0.0399 0.0400 

1 2x2cf 6,12 0.0399 0.0393 0.0395 0.0394 

1 2x2cg 6,10 0.0395 0.0390 0.0392 0.0389 

1 2x2ch 6,8 0.0393 0.0391 0.0397 0.0383 

1 2x2ci 6,6 0.0385 0.0392 0.0390 0.0396 

1 2x2cj 6,4 0.0393 0.0399 0.0381 0.0386 

1 2x2ck 6,2 0.0404 0.0399 0.0402 0.0395 

1 2x2c1 4,18 0.0395 0.0395 0.0387 0.0404 

1 2x2cm 4916 0.0396 0.0404 0.0405 0.0395 
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Filename Size of 

ANN 

RMS Error 

1 2x2cn 4,14 0.0393 0.0400 0.0402 0,0386 

1 2x2co 4,12 0.0406 0.0396 0.0408 0.0393 

1 2x2cp 4,10 0.0391 0.0383 0.0386 0.0395 

1 2x2cq 4,8 0.0392 0.0394 0.0390 0.0392 

1 2x2cr 4,6 0.0399 0.0391 0.0393 0.0398 

1 2x2cs 4,4 0.0384 0.0391 0.0406 0.0388 

1 2x2ct 4,2 0.0403 0.0406 0.0402 0.0402 

1 2x2cu 2,18 0.0736 0.0563 0.0825 0.0777 

1 2x2cv 2,16 0.0753 0.0761 0.0795 0.0664 

1 2x2cw 2,14 0.0830 0.0734 0.0822 0.0739 

1 2x2cx 2,12 0.0683 0.0827 0.0802 0.0688 

1 2x2cy 2,10 0.0741 0.0789 0.0678 0.0505 

1 2x2cz 2,8 0.0792 0.0611 0.0588 0.0726 

1 2x2da 2,6 0.0714 0.0408 0.0813 0.0649 

1 2x2db 2,4 0.0715 0.0395 0.0785 0.0415 

1 2x2dc 21.2 0.0401 0.0421 0.0421 0.0401 

Three Time Steps Input for One Step Prediction 

1 3xlaa 18 0.0303 0.0298 0.0297 0.0297 

1 3xlab 16 0.0295 0.0291 0.0295 0.0290 

1 3xlac 14 0.0293 0.0296 0.0292 0.0287 

1 3xlad 12 0.0280 0.0286 0.0279 0.0285 

1 3xlae 10 0.0278 0.0283 0.0283 0.0281 

1 3xlaf 8 0.0276 0.0274 0.0277 0.0279 

1 3xlag 6 0.0278 0.0272 0.0276 0.0278 

1 3xlah 4 0.0289 0.0263 0.0261 0.0264 

1 3xlai 2 0.0363 0.0366 0.0360 0.0359 

1 3x2aa 18,18 0.0406 0.0411 0.0436 0.0429 
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Filename Size of 

ANN 

RMS Error 

1 3x2ab 18,16 0.0406 0.0401 0.0421 0.0427 

1_3x2ac 18,14 0.0425 0.0386 0.0420 0.0433 

1 3x2ad 18,12 0.0399 0.0408 0.0420 0.0419 

1 3x2ae 18,10 0.0388 0.0390 0.0416 0.0417 

1 3x2af 18,8 0.0381 0.0390 0.0421 0.0419 

1 3x2ag 18,6 0.0387 0.0389 0.0412 0.0407 

1 3x2ah 18,4 0.0395 0.0374 0.0403 0.0412 

1 3x2ai 18,2 0.0386 0.0384 0.0420 0.0414 

1 3x2aj 16,18 0.0403 0.0416 0.0431 0.0434 

1 3x2ak 16,16 0.0394 0.0413 0.0438 0.0426 

1 3x2a1 16,14 0.0392 0.0405 0.0415 0.0423 

1 3x2am 16,12 0.0394 0.0396 0.0420 0.0419 

1 3x2an 16,10 0.0386 0.0394 0.0418 0.0409 

1 3x2ao 16,8 0.0385 0.0385 0.0423 0.0419 

1_3x2ap 16,6 0.0375 0.0387 0.0412 0.0409 

1 3x2aq 161,4 0.0366 0.0370 0.0406 0.0409 

1 3x2ar 1622 0.0381 0.0378 0.0411 0.0412 

1 3x2as 14,18 0.0428 0.0398 0.0424 0.0425 

1 3x2at 14,16 0.0401 0.0426 0.0419 0.0416 

1 3x2au 14,14 0.0385 0.0393 0.0420 0.0423 

1 3x2av 14,12 0.0386 0.0385 0.0418 0.0414 

1 3x2aw 14,10 0.0383 0.0381 0.0413 0.0411 

1 3x2ax 143,8 0.0380 0.0382 0.0411 0.0409 

1 3x2ay 14,6 0.0393 0.0374 0.0399 0.0410 

1 3x2az 14,4 0.0381 0.0378 0.0408 0.0400 

1_3x2ba 14,2 0.0383 0.0385 0.0408 0.0408 

1 3x2bb 12,18 0.0397 0.0392 0.0420 0.0423 

1 3x2bc 12,16 0.0398 0.0415 0.0416 0.0411 

1 3x2bd 12,14 0.0391 0.0393 0.0419 0.0414 
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Filename Size of 

ANN 

RMS Error 

1 3x2be 12,12 0.0388 0.0379 0.0416 0.0415 

1 3x2bf 12,10 0.0386 0.0384 0.0413 0.0413 

1 3x2bg 12,8 0.0376 0.0374 0.0408 0.0411 

L 

1 3x2bh 12,6 0.0377 0.0396 0.0404 0.0408 

1 3x2bi 12,4 0.0375 0.0384 0.0405 0.0410 

1 3x2bj 12,2 0.0379 0.0376 0.0413 0.0409 

1 3x2bk 10,18 0.0391 0.0391 0.0413 0.0410 

1 3x2b1 10,16 0.0394 0.0384 0.0413 0.0434 

1 3x2bm 10,14 0.0385 0.0386 0.0410 0.0411 

1 3x2bn 10,12 0.0378 0.0397 0.0409 0.0407 

1 3x2bo 10,10 0.0389 0.0393 0.0406 0.0406 

1 3x2bp 10,8 0.0372 0.0364 0.0406 0.0416 

1 3x2bq 10,6 0.0373 0.0366 0.0420 0.0406 

1 3x2br 10,4 0.0370 0.0371 0.0393 0.0401 

1 3x2bs 10,2 0.0380 0.0379 0.0395 0.0413 

1 3x2bt 8,18 0.0382 0.0388 0.0410 0.0424 

1 3x2bu 8,16 0.0385 0.0378 0.0412 0.0414 

1 3x2bv 8,14 0.0384 0.0396 0.0409 0.0412 

1 3x2bw 8,12 0.0381 0.0384 0.0404 0.0404 

1 3x2bx 8,10 0.0377 0.0383 0.0400 0.0411 

1 3x2by 8,8 0.0370 0.0372 0.0407 0.0411 

1 3x2bz 8,6 0.0382 0.0363 0.0404 0.0410 

1 3x2ca. 8,4 0.0364 0.0373 0.0403 0.0406 

1 3x2cb 8,2 0.0373 0.0376 0.0408 0.0411 

1 3x2cc 6,18 0.0376 0.0386 0.0421 0.0408 

1 3x2cd 6,16 0.0383 0.0378 0.0405 0.0402 

1 3x2ce 6,14 0.0379 0.0394 0.0414 0.0399 

1 3x2cf 6,12 0.0373 0.0370 0.0399 0.0408 

1 3x2c 6 10 0.0373 0.0365 0.0402 0.0401 
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Filename Size of 

ANN 

RMS Error 

1 3x2ch 6,8 0.0378 0.0372 0.0392 0.0401 

1 3x2ci 6,6 0.0364 0.0365 0.0393 0.0390 

1 3x2cj 6,4 0.0380 0.0359 0.0402 0.0399 

1 3x2ck 6,2 0.0378 0.0374 0.0408 0.0411 

1 3x2c1 4,18 0.0406 0.0385 0.0401 0.0407 

1 3x2cm 4,16 0.0376 0.0370 0.0407 0.0415 

1 3x2cn 4,14 0.0378 0.0379 0.0407 0.0402 

1 3x2co 4,12 0.0377 0.0359 0.0405 0.0401 

1 3x2cp 4,10 0.0368 0.0349 0.0450 0.0402 

1 3x2cq 4,8 0.0372 0.0357 0.0404 0.0400 

1 3x2cr 4,6 0.0370 0.0367 0.0384 0.0382 

1 3x2cs 4,4 0.0341 0.0351 0.0375 0.0394 

1 3x2ct 4,2 0.0383 0.0378 0.0769 0.0399 

1 3x2cu 2,18 0.0776 0.0786 0.0763 0.0782 

1 3x2cv 2,16 0.0554 0.0756 0.0580 0.0870 

1 3x2cw 2,14 0.0846 0.0775 0.0781 0.0863 

1 3x2cx 2,12 0.0519 0.0690 0.0777 0.0745 

1 3x2cy 2,10 0.0842 0.0997 0.0804 0.0748 

1 3x2cz 2,8 0.0830 0.0840 0.0428 0.0841 

1 3x2da 2,6 0.0411 0.0482 0.0546 0.0413 

1 3x2db 2,4 0.0864 0.0740 0.0372 0.0401 

1 3x2dc 22 0.0710 0.0391 0.0402 0.0402 

Four Time Steps Input for One Step Prediction 

I 4xlaa 18 0.0388 0.0388 0.0390 0.0395 

1 4xlab 16 0.0388 0.0377 0.0383 0.0373 

1 4xlac 14 0.0382 0.0390 0.0383 0.0388 

1 4xlad 12 0.0384 0.0387 0.0377 0.0381 
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Filename Size of 

ANN 

RMS Error 

1 4xlae 10 0.0378 0.0387 0.0366 0.0371 

1 4xlaf 8 0.0368 0.0369 0.0388 0.0374 

1 4xlag 6 0.0383 0.0362 0.0370 0.0364 

1 4xlah 4 0.0351 0.0380 0.0381 0.0356 

1 4xlai 2 0.0391 0.0390 0.0390 0.0397 

1 4x2aa 18,18 0.0483 0.0446 0.0470 0.0453 

1 4x2ab 18,16 0.0454 0.0457 0.0449 0.0457 

1 4x2ac 18,14 0.0452 0.0454 0.0452 0.0451 

1 4x2ad 18,12 0.0447 0.0441 0.0448 0.0445 

1 4x2ae 18,10 0.0441 0.0449 0.0440 0.0438 

1 4x2af 18,8 0.0439 0.0447 0.0445 0.0443 

1 4x2ag 18,6 0.0433 0.0433 0.0437 0.0434 

1 4x2ah 18,4 0.0436 0.0427 0.0434 0.0435 

1 4x2ai 183.2 0.0442 0.0442 0.0442 0.0441 

1 4x2aj 16,18 0.0464 0.0475 0.0446 0.0457 

1 4x2ak 16,16 0.0449 0.0458 0.0458 0.0450 

1 4x2a1 16,14 0.0451 0.0443 0.0445 0.0444 

1 4x2am 16,12 0.0470 0.0445 0.0447 0.0442 

1 4x2an 16,10 0.0440 0.0438 0.0433 0.0443 

1 4x2ao 16,8 0.0441 0.0441 0.0432 0.0443 

1 4x2ap 16,6 0.0441 0.0439 0.0436 0.0445 

1 4x2aq 16,4 0.0436 0.0431 0.0428 0.0436 

1 4x2ar 161,2 0.0442 0.0447 0.0437 0.0440 

1 4x2as 14,18 0.0466 0.0443 0.0449 0.0447 

1 4x2at 14,16 0.0457 0.0454 0.0457 0.0462 

1 4x2au 14,14 0.0446 0.0454 0.0447 0.0452 

1 4x2av 14,12 0.0444 0.0437 0.0437 0.0441 

1 4x2aw 14,10 0.0434 0.0436 0.0437 0.0439 

1 4x2ax 14 8 0.0437 0.0430 0.0434 0.0431 
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Filename Size of 

ANN 

RMS Error 

1 4x2ay 14,6 0.0431 0.0432 0.0434 0.0440 

1 4x2az 1424 0.0438 0.0424 0.0424 0.0434 

1 4x2ba 1422 0.0440 0.0443 0.0449 0.0439 

1 4x2bb 12,18 0.0450 0.0441 0.0446 0.0442 

1 4x2bc 12,16 0.0441 0.0440 0.0445 0.0459 

1 4x2bd 12,14 0.0448 0.0434 0.0440 0.0444 

1 4x2be 12,12 0.0443 0.0439 0.0438 0.0433 

1 4x2bf 12,10 0.0439 0.0446 0.0439 0.0438 

1 4x2bg 12,8 0.0440 0.0425 0.0430 0.0425 

1 4x2bh 12,6 0.0436 0.0419 0.0430 0.0435 

1 4x2bi 12,4 0.0422 0.0432 0.0422 0.0427 

1 4x2bj 12,2 0.0439 0.0442 0.0536 0.0442 

1 4x2bk 10,18 0.0444 0.0457 0.0439 0.0436 

1 4x2b1 10,16 0.0443 0.0440 0.0439 0.0437 

1 4x2bm 10,14 0.0431 0.0436 0.0435 0.0438 

1 4x2bn 10,12 0.0439 0.0439 0.0441 0.0436 

1 4x2bo 10,10 0.0435 0.0435 0.0435 0.0433 

1 4x2bp 10,8 0.0444 0.0435 0.0437 0.0433 

1 4x2bq 10,6 0.0435 0.0436 0.0418 0.0428 

1 4x2br 10,4 0.0437 0.0431 0.0423 0.0419 

1 4x2bs 10,2 0.0441 0.0435 0.0439 0.0439 

1 4x2bt 8,18 0.0441 0.0439 0.0442 0.0422 

1 4x2bu 8,16 0.0432 0.0436 0.0439 0.0438 

1 4x2bv 8,14 0.0437 0.0430 0.0434 0.0431 

1 4x2bw 8,12 0.0432 0.0435 0.0427 0.0435 

1 4x2bx 8,10 0.0431 0.0433 0.0433 0.0422 

1 4x2by 8,8 0.0434 0.0420 0.0431 0.0434 

1 4x2bz 8,6 0.0431 0.0421 0.0434 0.0426 

1 4x2ca 84 0.0417 0.0429 0.0426 0.0439 
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Filename Size of 

ANN 

RMS Error 

1 4x2cb 8,2 0.0435 0.0438 0.0436 0.0440 

1 4x2cc 6,18 0.0435 0.0432 0.0446 0.0436 

1 4x2cd 6,16 0.0424 0.0427 0.0435 0.0448 

1 4x2ce 6,14 0.0437 0.0432 0.0435 0.0430 

1 4x2cf 6,12 0.0435 0.0429 0.0428 0.0434 

1 4x2cg 6,10 0.0430 0.0434 0.0425 0.0421 

1 4x2ch 6,8 0.0425 0.0429 0.0412 0.0414 

1 4x2ci 6,6 0.0425 0.0424 0.0426 0.0434 

1 4x2cj 63,4 0.0436 0.0435 0.0433 0.0424 

1 4x2ck 6,2 0.0436 0.0429 0.0436 0.0430 

1 4x2cl 4,18 0.0433 0.0432 0.0430 0.0498 

1 4x2cm 4,16 0.0430 0.0432 0.0427 0.0425 

1 4x2cn 4,14 0.0429 0.0426 0.0436 0.0439 

1 4x2co 4,12 0.0408 0.0425 0.0428 0.0505 

1 4x2cp 4,10 0.0413 0.0417 0.0421 0.0429 

1 4x2cq 4,8 0.0401 0.0403 0.0416 0.0426 

1 4x2cr 4,6 0.0413 0.0427 0.0423 0.0420 

1 4x2cs 43,4 0.0440 0.0427 0.0419 0.0416 

1 4x2ct 43,2 0.0437 0.0438 0.0424 0.0434 

1 4x2cu 2,18 0.0598 0.0900 0.0817 0.0882 

1 4x2cv 2,16 0.0730 0.0862 0.0853 0.0877 

1 4x2cw 2,14 0.0889 0.0509 0.0524 0.0594 

1 4x2cx 2,12 0.0937 0.0862 0.0873 0.0769 

1 4x2cy 2,10 0.0744 0.0764 0.0761 0.0884 

1 4x2cz 2,8 0.0771 0.0485 0.0825 0.0828 

1 4x2da 2,6 0.0465 0.0689 0.0467 0.0665 

1 4x2db 2,4 0.0692 0.0711 0.0743 0.0580 

1 4x2dc 22 0.0568 0.0437 0.0945 0.0751 
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Appendix 

D Appendix D 

This appendix contains the full results of all the ANNs trained to predict Transient 2 in Section 

5.2. The ANNs were all designed to predict the values of PWR variables one step ahead. Four 

sets of recent PWR variables were used as inputs the ANNs. These were one to four time steps. 
For each input set a range of one and two hidden layer ANNs were developed. The number of 

nodes in the hidden was varied from a maximum of 18 to a minimum of 2. The values in between 

were in steps of two nodes. In the case of two hidden layers both layers were varied between 

these limits. All the ANN training was repeated four times to avoid possible local minima. The 

value recorded in each case is the lowest RMS error for the training. As explained in Chapter 5 

all ANNs were trained for 120,000 cycles of presentation of the training set and then a further 

40,000 iterations with presentation of the test set every 100 cycles. The best performing ANN in 

terms of RMS error was saved for further testing. In the following tables the best RMS error 

result for each ANN architecture is underlined while the best overall ANN for each hidden layer 

configuration is in bold. 

251 



One Time Step Input for One Step Prediction 

Filename Size of 

ANN 

RMS Error 

2_lxlaa 18 0.0329 0.0323 0.0321 0.0322 

2 lxlab 16 0.0324 0.0321 0.0325 0.0321 

2_lxlac 14 0.0321 0.0317 0.0326 0.0317 

2 lxlad 12 0.0319 0.0324 0.0318 0.0318 

2_lxlae 10 0.0314 0.0318 0.0319 0.0325 

2 lxlaf 8 0.0332 0.0317 0.0311 0.0321 

2 Ixlag 6 0.0307 0.0325 0.0312 0.0323 

2 lxlah 4 0.0325 0.0343 0.0319 0.0306 

2 lxlai 2 0.0386 0.0386 0.0381 0.0386 

2 lx2aa 18,18 0.0395 0.0399 0.0398 0.0406 

2 lx2ab 18,16 0.0397 0.0419 0.0390 0.0393 

2 lx2ac 18,14 0.0393 0.0399 0.0397 0.0392 

2_lx2ad 18,12 0.0392 0.0392 0.0391 0.0396 

2 lx2ae 18,10 0.0390 0.0390 0.0390 0.0390 

2 lx2af 18,8 0.0390 0.0389 0.0389 0.0389 

2 lx2ag 18,6 0.0386 0.0387 0.0386 0.0387 

2 lx2ah 18,4 0.0384 0.0387 0.0385 0.0385 

2_lx2ai 18,2 0.0386 0.0383 0.0384 0.0386 

2 lx2aj 16,18 0.0393 0.0392 0.0395 0.0393 

2 lx2ak 16,16 0.0392 0.0394 0.0396 0.0391 

2_lx2al 16,14 0.0394 0.0391 0.0390 0.0393 

2 lx2am 16,12 0.0396 0.0397 0.0390 0.0388 

2_lx2an 16,10 0.0390 0.0393 0.0389 0.0390 

21 x2ao 16,8 0.0388 0.0388 0.0390 0.0386 

2 lx2ap 16,6 0.0391 0.0386 0.0385 0.0388 

2 lx2aq 16,4 0.0384 0.0383 0.0385 0.0381 

11 21 x2ar 16,2 0.0386 0.0385 0.0384 0.0387 
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Filename Size of 

ANN 

RMS Error 

2 lx2as 14,18 0.0395 0.0391 0.0392 0.0394 

2 lx2at 14,16 0.0394 0.0392 0.0389 0.0389 

2 Ix 
- 

2au 14,14 0.0388 0.0392 0.0390 0.0387 

2 lx2av 14,12 0.0388 0.0388 0.0389 0.0385 

2 lx2aw 14,10 0.0388 0.0387 0.0389 0.0390 

2_lx2ax 14,8 0.0388 0.0390 0.0389 0.0386 

2_lx2ay 14,6 0.0386 0.0387 0.0387 0.0385 

2_lx2az 14,4 0.0384 0.0383 0.0385 0.0381 

2_lx2ba 14,2 0.0385 0.0385 0.0384 0.0389 

2 lx2bb 12,18 0.0388 0.0389 0.0393 0.0391 

21 x2bc 12,16 0.0391 0.0391 0.0391 0.0392 

2_lx2bd 12,14 0.0386 0.0387 0.0392 0.0390 

2_lx2be 12,12 0.0390 0.0387 0.0388 0.0388 

2_lx2bf 12,10 0.0385 0.0386 0.0388 0.0388 

2 lx2bg 12,8 0.0383 0.0389 0.0387 0.0384 

2_lx2bh 12,6 0.0383 0.0381 0.0384 0.0383 

2 lx2bi 12,4 0.0385 0.0382 0.0380 0.0378 

2 lx2bj 12,2 0.0388 0.0385 0.0386 0.0383 

2_lx2bk 10,18 0.0388 0.0387 0.0388 0.0392 

2 lx2b1 10,16 0.0386 0.0389 0.0387 0.0389 

2_lx2bm 10,14 0.0386 0.0386 0.0391 0.0384 

2_lx2bn 10,12 0.0384 0.0392 0.0389 0.0389 

2_lx2bo 10,10 0.0387 0.0385 0.0388 0.0385 

2 lx2bp 10,8 0.0385 0.0386 0,0383 0.0385 

2 lx2bq 10,6 0.0376 0.0378 0.0379 0.0379 

2 lx2br 103,4 0.0384 0.0377 0.0377 0.0387 

2 lx2bs 10 2 0.0383 0.0384 0.0385 0.0388 11 
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me Size of 

ANN 

RMS Error 

2bt 8,18 0.0389 0.0388 0.0386 0.0387 

2bu 

F 

8,16 0.0386 0.0389 0.0390 0.0389 

bv 8,14 0.0387 0.0388 0.0385 0.0385 

21 bw 8,12 0.0382 0.0387 0.0383 0.0384 

2 lx2bx 8,10 0.0386 0.0388 0.0383 0.0385 

2_lx2by 8,8 0.0388 0.0386 0.0383 0.0385 

2_lx2bz 8,6 0.0386 0.0382 0.0385 0.0378 

2 lx2ca 8,4 0.0380 0.0382 0.0385 0.0377 

2_lx2cb 8,2 0.0385 0.0384 0.0381 0.0383 

2_lx2cc 6,18 0.0390 0.0389 0.0385 0.0385 

2 lx2cd 6,16 0.0389 0.0387 0.0384 0.0385 

2 lx2ce 6,14 0.0390 0.0389 0.0389 0.0381 

2_lx2cf 6,12 0.0383 0.0383 0.0381 0.0387 

2 lx2cg 6,10 0.0382 0.0382 0.0384 0.0385 

2_lx2ch 6,8 0.0381 0.0387 0.0384 0.0391 

2_lx2ci 6,6 0.0384 0.0377 0.0380 0.0387 

2 lx2cj 6,4 0.0381 0.0385 0.0380 0.0384 

2_lx2ck 63.2 0.0387 0.0384 0.0384 0.0383 

2_lx2cl 4,18 0.0390 0.0599 0.0389 0.0391 

2_lx2cm 4,16 0.0378 0.0387 0.0393 0.0386 

2_lx2cn 4,14 0.0383 0.0384 0.0393 0.0390 

2 lx2co 4,12 0.0391 0.0388 0.0382 0.0380 

4,10 0.0380 0.0386 0.0377 0.0385 

4,8 0.0383 0.0387 0.0384 0.0383 

2_lx2cr 

r 

4,6 0.0380 0.0378 0.0380 0.0384 

4,4 0.0383 0.0372 0.0376 0.0374 

2lx2ct 4,2 0.0387 0.0386 0.0386 0.0384 
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Filename Size of 

ANN 

RMS Error 

2 lx2cv 2,18 0.0583 0.0568 0.0556 0.0569 

2_lx2cw 2,16 0.0438 0.0545 0.0767 0.0581 

2_lx2cx 2,14 0.0614 0.0574 0.0576 0.0577 

2_lx2cy 2,12 0.0573 0.0551 0.0587 0.0422 

2_lx2cz 2,10 0.0473 0.0405 0.0581 0.0567 

2_lx2da 2,8 0.0558 0.0465 0.0413 0.0434 

2_lx2db 2,6 0.0388 0.0394 0.0430 0.0564 

2l x2dc 2,4 0.0384 0.0416 0.0386 0.0461 

2 lx2dd 22 0.0433 0.0387 0.0781 0.0716 

Two Time Steps Input for One Step Prediction 

2_2x I aa 18 0.0323 0.0313 0.0324 0.0327 

2_2xlab 16 0.0318 0.0314 0.0314 0.0323 

2_2x 1 ac 14 0.0302 0.0312 0.0306 0.0311 

2_2x I ad 12 0.0308 0.0309 0.0308 0.0308 

2_2x I ae 10 0.0297 0.0300 0.0308 0.0308 

2 2xlaf 8 0,0284 0.0294 0.0293 0.0302 

2_2xlag 6 0.0308 0.0299 0.0283 0.0318 

2_2x IA 4 0.0303 0.0286 0.0288 0.0299 

2_2x I ai 2 0.0390 0.0390 0.0391 0.0390 

2_2x2aa 18,18 0.0411 0.0401 0.0403 0.0414 

2_2x2ab 18,16 0.0400 0.0404 0.0409 0.0402 

2_2x2ac 18,14 0.0399 0.0399 0.0404 0.0405 

2 2x2ad 18,12 0.0406 0.0393 0.0398 0.0399 

2_2x2ae 18,10 0.0396 0.0395 0.0399 0.0399 

2 2x2af 18,8 0.0394 0.0397 0.0391 0.0400 

2 
_Wag 

18,6 0.0392 0.0391 0.0388 0.0391 

2 2x2ah 18,4 0.0392 0.0393 0.0390 0.0393 
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Filename Size of 

ANN 

RMS Error 

2 2x2ai 183.2 0.0388 0.0389 0.0388 0.0391 

2 2x2aj 16,18 0.0407 0.0400 0.0404 0.0401 

2_2x2ak 16,16 0.0401 0.0396 0.0400 0.0400 

2 2x2a1 16,14 0.0395 0.0397 0.0401 0.0395 

2_2x2am 16,12 0.0399 0.0393 0.0394 0.0397 

2_2x2an 16,10 0.0404 0.0396 0.0396 0.0397 

2_2x2ao 16,8 0.0393 0.0392 0.0397 0.0394 

2_2x2ap 16,6 0.0399 0.0394 0.0395 0.0390 

2 2x2aq 16,4 0.0389 0.0390 0.0387 0.0387 

2 2x2ar 16,2 0.0389 0.0390 0.0390 0.0390 

2_2x2as 14,18 0.0410 0.0400 0.0402 0.0402 

2 2x2at 14,16 0.0398 0.0404 0.0398 0.0400 

2_2x2au 14,14 0.0395 0.0397 0.0401 0.0397 

2 2x2av 14,12 0.0396 0.0395 0.0395 0.0399 

2 2x2aw 14,10 0.0392 0.0394 0.0395 0.0396 

2_2x2ax 14,8 0.0393 0.0395 0.0391 0.0392 

2 2x2ay 14,6 0.0388 0.0389 0.0388 0.0391 

2_2x2az 14,4 0.0388 0.0384 0.0389 0.0394 

2_2x2ba 14,2 0.0390 0.0393 0.0392 0.0392 

2 2x2bb 12,18 0.0398 0.0402 0.0400 0.0398 

2_2x2bc 12,16 0.0402 0.0400 0.0396 0.0396 

2_2x2bd 12,14 0.0395 0.0397 0.0394 0.0398 

2_2x2be 12,12 0.0402 0.0395 0.0394 0.0394 

2 2x2bf 12,10 0.0393 0.0391 0.0392 0.0395 

2 2x2bg 12,8 0.0391 0.0388 0.0391 0.0392 

2_2x2bh 12,6 0.0386 0.0391 0.0390 0.0397 

2_2x2bi 123.4 0.0389 0.0391 0.0392 0.0387 

2 2x2bj 123,2 0.0391 0.0392 0.0391 0.0391 

2 2x2bk 10 18 0.0398 0.0396 0.0396 0.0399 
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Filename Size of 

ANN 

RMS Error 

2 2x2bl 10,16 0.0398 0.0395 0.0398 0.0397 

2_2x2bm 10,14 0.0395 0.0395 0.0395 0 
., 
0390 

2_2x2bn 10,12 0.0393 0.0394 0.0393 0.0395 

2_2x2bo 10,10 0.0390 0.0395 0.0394 0.0396 

2 2x2bp 10,8 0.0392 0.0392 0.0391 0.0391 

2 2x2bq 10,6 0.0387 0.0386 0.0388 0.0389 

2_2x2br 10,4 0.0389 0.0391 0.0387 0.0387 

2_2x2bs 10,2 0.0393 0.0388 0.0389 0.0390 

2_2x2bt 8,18 0.0396 0.0399 0.0398 0.0397 

2_2x2bu 8,16 0.0397 0.0397 0.0394 0.0396 

2_2x2bv 8,14 0.0396 0.0394 0.0393 0.0399 

2_2x2bw 8,12 0.0397 0.0392 0.0393 0.0389 

2_2x2bx 8,10 0.0393 0.0394 0.0396 0.0391 

2 2x2by 8,8 0.0392 0.0389 0.0388 0.0389 

2_2x2bz 8,6 0.0389 0.0388 0.0389 0.0396 

2_2x2ca 8,4 0.0395 0.0390 0.0384 0.0385 

2_2x2cb 8,2 0.0391 0.0388 0.0389 0.0391 

2_2x2cc 6,18 0.0407 0.0397 0.0395 0.0395 

2_2x2cd 6,16 0.0392 0.0394 0.0397 0.0395 

2_2x2ce 6,14 0.0395 0.0394 0.0396 0.0395 

2 2x2cf 6,12 0.0395 0.0393 0.0394 0.0394 

2 2x2cg 6,10 0.0392 0.0394 0.0394 0.0391 

2_2x2ch 6,8 0.0391 0.0391 0.0389 0.0391 

2 2x2ci 6,6 0.0388 0.0390 0,0386 0.0388 

2 2x2cj 6,4 0.0382 0.0384 0.0389 0.0386 

2 2x2ck 6,2 0.0394 0.0391 0.0392 0.0391 

2 2x2c1 4,18 0.0401 0.0400 0.0402 0.0397 

2 2x2cm 4,16 0.0395 0.0397 0.0400 0.0395 

2 2x2cn 4 14 0.0394 0.0393 0.0389 0.0391 
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Filename Size of 

ANN 

RMS Error 

2_2x2co 4,12 0.0389 0.0401 0.0393 0.0394 

2_2x2cp 4,10 0.0393 0.0391 0.0389 0.0392 

2_2x2cq 4,8 0.0388 0.0388 0.0391 0.0383 

2_2x2cr 4,6 0.0389 0.0391 0.0387 0.0390 

2_2x2cs 43,4 0.0389 0.0383 0.0393 0.0389 

2_2x2ct 43,2 0.0390 0.0392 0.0392 0.0391 

2_2x2cu 2,18 0.0945 0.0517 0.0517 0.0518 

2_2x2cv 2,16 0.0512 0.0516 0.0466 0.0504 

2_2x2cw 2,14 0.0518 0.0947 0.0491 0.0485 

2_2x2cx 2,12 0.0943 0.0508 0.0943 0.0945 

2 2x2cy 2,10 0.0944 0.0449 0.0439 0.0462 

2 2x2cz 2,8 0.0415 0.0400 0.0429 0.0429 

2_2x2da 2,6 0.0454 0.0404 0.0497 0.0929 

2 2x2db 2,4 0.0450 0.0442 0.0394 0.0463 

2 2x2dc 21.2 0.0501 0.0399 0.0393 0.0396 

Three Time Steps Input for One Step Prediction 

2_3xlaa 18 0.0385 0.0384 0.0386 0.0387 

2 3x1ab 16 0.0391 0.0382 0.0384 0.0387 

2_3xlac 14 0.0386 0.0384 0.0389 0.0390 

2_3xlad 12 0.0386 0.0388 0.0384 0.0386 

2_3xlae 10 0.0383 0.0388 0.0375 0.0381 

2_3xlaf 8 0.0376 0.0372 0.0388 0.0377 

2 3xlag 6 0.0382 0.0374 0,0373 0.0376 

2 3xlah 4 0.0367 0.0360 0.0363 0.0366 

2_3xlai 2 0.0368 0.0383 0.0381 0.0378 

2_3x2aa 18,18 0.0420 0.0416 0.0413 0.0410 

2 3x2ab 18,16 0.0441 0.0415 0.0417 0.0406 
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Filename Size of 

ANN 

RMS Error 

2 3x2ac 18,14 0.041 0.0404 0.041 0.041 

2 3x2ad 18,12 0.0407 0.042 0.042 0.041 

2_3x2ae 18,10 0.041 0.04 00403 0.041 

2 3x2af 18,8 0.041 0.0399 0.04 0.04 

2 3x2ag 18,6 0.04 0.04 0.0398 0.04 

2 3x2ah 18,4 0.0391 0.039 0.039 0.04 

2_3x2ai 18,2 0.04 0.042 0.0392 0.039 

2_3x2aj 16,18 0.043 0.0410 0.041 0.042 

2_3x2ak 16,16 0.041 0.041 0.042 0.0409 

2 3x2a1 16,14 0.0407 0.042 0.041 0.041 

2_3x2am 16,12 0.041 0.0404 0.041 0.041 

2_3x2an 16,10 0.0402 0.0402 0.04 0.0402 

2 3x2ao 16,8 0.0396 0.04 0.04 0.04 

2_3x2ap 16,6 0.0395 0.04 0.04 0.04 

2 3x2aq 163.4 0.0393 0.039 0.04 0.04 

2_3x2ar 163,2 0.0393 0.0393 0.042 0.0393 

2_3x2as 14,18 0.0407 0.042 0.042 0.042 

2_3x2at 14,16 0.041 0.041 0.043 0.0402 

2_3x2au 14,14 0.0403 0.041 0.041 0.041 

2_3x2av 14,12 0.04 0.04 0.0402 0.041 

2_3x2aw 14,10 0.04 0.04 0.0399 0.04 

2_3x2ax 14,8 0.04 0.04 0.0395 0.04 

2 3x2ay 14,6 0.04 0.0395 0.0395 0.04 

2_3x2az 14,4 0.04 0.0392 0.039 0.04 

2 3x2ba 141.2 0.04 0.04 0.0394 0.0394 

2_3x2bb 12,18 0.041 0.0405 0.041 0.041 

2_3x2bc 12,16 0.041 0.041 0.042 0.0403 

23 x2bd 12,14 0.04 0.04 0.0400 0.041 

2 3x2be 12 12 0.04 0.042 0.04 0.0399 
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Filename Size of 

ANN 

RMS Error 

2_3x2bf 12,10 0.04 0.04 0.0396 0.0396 

2_3x2bg 12,8 0.04 0.04 0.0393 0.04 

2_3x2bh 125,6 0.04 0.039 0.04 0.0390 

2_3x2bi 123.4 0.04 0.039 0.0388 0.039 

2 3x2bj 12,2 0.0394 0.04 0.0394 0.04 

2_3x2bk 10,18 0.041 0.04 0.0401 0.041 

2 3x2b1 10,16 0.0400 0.041 0.04 0.04 

2 3x2bm 10,14 0.041 0.04 0.04 0.0402 

2 3x2bn 10,12 0.0397 0.04 0.04 0.04 

2 3x2bo 10,10 0.04 0.0394 0.04 0.04 

2 3x2bp 10,8 0.04 0.0395 0.04 0.04 

2_3x2bq 10,6 0.04 0.0389 0.039 0.039 

2 3x2br 10,4 0.039 0.0389 0.039 0.04 

2 3x2b s 10,2 0.039 0.04 0.0393 0.0393 

2_3x2bt 8,18 0.0401 0.0404 0.0406 0.0416 

2_3x2bu 8,16 0.0401 0.0404 0.0400 0.0402 

2_3x2bv 8,14 0.0402 0.0402 0.0400 0.0402 

2_3x2bw 8,12 0.0402 0.0400 0.0398 0.0395 

2_3x2bx 8,10 0.0393 0.0395 0.0398 0.0396 

2 3x2by 8,8 0.0396 0.0391 0.0393 0.0395 

2_3x2bz 8,6 0.0395 0.0394 0.0397 0.0394 

2_3x2ca 8,4 0.0387 0.0392 0.0390 0.0390 

2_3x2cb 83,2 0.0393 0.0392 0.0397 0.0392 

2_3x2cc 6,18 0.0400 0.0402 0.0403 0.0400 

2 3x2cd 6,16 0.0401 0.0399 0.0400 0.0398 

2 3x2ce 6,14 0.0404 0.0398 0.0400 0.0397 

2_3x2cf 6,12 0.0396 0.0398 0.0402 0.0394 

2 3x2cg 6,10 0.0394 0.0395 0.0391 0.0393 

2 3x2ch 68 0.0393 0.0396 0.0394 0.0396 
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Filename Size of 

ANN 

RMS Error 

2_3x2ci 6,6 0.0393 0.0390 0.0393 0.0394 

2 3x2cj 6,4 0.0391 0.0387 0.0393 0.0384 

2 3x2ck 6,2 0.0395 0.0391 0.0395 0.0393 

2 3x2c1 4,18 0.0401 0.0410 0.0401 0.0399 

2 3x2cm 

L 

4,16 0.0407 0.0426 0.0401 0.0400 

2 3x2cn 4,14 0.0398 0.0396 0.0408 0.0396 

2_3x2co 4,12 0.0395 0.0405 0.0400 0.0411 

2_3x2cp 4,10 0.0392 0.0401 0.0393 0.0404 

2 3x2cq 4,8 0.0403 0.0406 0.0396 0.0393 

2 3x2cr 4,6 0.0389 0.0390 0.0391 0.0401 

2_3x2cs 4,4 0.0390 0.0389 0.0390 0.0385 

2_3x2ct 4,2 0.0396 0.0391 0.0397 0.0405 

2_3x2cu 2,18 0.0962 0.0543 0.0488 0.0965 

2_3x2cv 2,16 0.0486 0.0966 0.0487 0.0474 

2 3x2cw 2,14 0.0487 0.0474 0.0964 0.0575 

2_3x2cx 2,12 0.0963 0.0815 0.0462 0.0558 

2 3x2cy 2,10 0.0473 0.0492 0.0493 0.0494 

2_3x2cz 2,8 0.0450 0.0453 0.0484 0.0405 

2_3x2da 2,6 0.0468 0.0477 0.0446 0.0444 

2 3x2db 2,4 0.0433 0.0401 0.0422 0.0401 

2 3x2dc 22 0.0458 0.0415 0.0441 0.1052 

Pour Time Steps Input for One Step Prediction 

2 4xlaa 18 0.0388 0.0388 0.0390 0.0395 

2 4xlab 16 0.0388 0.0377 0.0383 Q, 0373 

2 4xlac 14 0.0382 0.0390 0.0383 0.0388 

2 4xlad 12 0.0384 0.0387 0.0377 0.0381 

2-4x I ae 10 0.0378 0.0387 0.0366 0.0371 

2 4xlaf 
MERM= 

8 0.0368 0.0369 0.0388 0.0374 
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Filename Size of 

ANN 

RMS Error 

2 4xlag 6 0.0383 0.0362 0.0370 0.0364 

2 4xlah 4 0.0351 0.0380 0.0381 0.0356 

2 4xlai 2 0.0391 0.0390 0.0390 0.0397 

2_4x2aa 18,18 0.0427 0.0428 0.0441 0.0438 

2_4x2ab 18,16 0.0430 0.0431 0.0434 0.0444 

2 4x2ac 18,14 0.0436 0.0431 0.0426 0.0429 

2_4x2ad 18,12 0.0438 0.0423 0.0424 0.0420 

2_4x2ae 18,10 0.0422 0.0424 0.0422 0.0431 

2_4x2af 18,8 0.0420 0.0417 0.0436 0.0420 

2_4x2ag 18,6 0.0409 0.0419 0.0419 0.0411 

2 4x2ah 18,4 0.0408 0.0416 0.0419 0.0411 

2 4x2ai 18,2 0.0407 0.0408 0.0412 0.0405 

2 4x2aj 16,18 0.0426 0.0444 0.0442 0.0445 

2 4x2ak 16,16 0.0438 0.0421 0.0437 0.0421 

2 4x2a1 16,14 0.0428 0.0417 0.0422 0.0425 

2 4x2am 16,12 0.0422 0.0420 0.0428 0.0436 

2 4x2an 16,10 0.0425 0.0419 0.0413 0.0413 

2_4x2ao 16,8 0.0428 0.0413 0.0417 0.0414 

2_4x2ap 16,6 0.0412 0.0416 0.0411 0.0407 

2 4x2aq 16,4 0.0407 0.0405 0.0414 0.0413 

2 4x2ar 16,2 0.0404 0.0406 0.0408 0.0406 

2 4x2as 14,18 0.0426 0.0424 0.0428 0.0439 

2 4x2at 14,16 0.0432 0.0421 0.0415 0.0419 

2 4x2au 14,14 0.0431 0.0426 0.0413 0.0436 

2 4x2av 14,12 0.0420 0.0417 0.0420 0.0424 

2 4x2aw 14,10 0.0422 0.0425 0.0418 0.0412 

2 4x2ax 14,8 0.0413 0.0412 0.0410 0.0413 

2 4x2ay 14,6 0.0409 0.0411 0.0409 0.0405 

2 4x2az 14 4 0.0413 0.0406 0.0414 0.0407 
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Filename Size of 

ANN 

RMS Error 

2 4x2ba 14,2 0.0405 0.0404 0.0406 0.0402 

2 4x2bb 12,18 0.0414 0.0414 0.0431 0.0415 

2 4x2bc 12,16 0.0422 0.0426 0.0419 0.0420 

2 4x2bd 12,14 0.0415 0.0424 0.0418 0.0417 

2 4x2be 12,12 0.0409 0.0413 0.0412 0.0413 

2_4x2bf 12,10 0.0417 0.0409 0.0414 0.0420 

2_4x2bg 123.8 0.0411 0.0407 0.0419 0.0412 

2 4x2bh 12,6 0.0415 0.0402 0.0413 0.0411 

2_4x2bi 12,4 0.0407 0.0403 0.0404 0.0402 

2 4x2bj 12,2 0.0408 0.0400 0.0400 0.0404 

2 4x2bk 10,18 0.0413 0.0412 0.0420 0.0416 

2 4x2 b1 10,16 0.0411 0.0417 0.0417 0.0417 

2 4x2bm 10,14 0.0411 0.0408 0.0412 0.0410 

2 4x2bn 10,12 0.0416 0.0415 0.0412 0.0415 

2 4x2bo 10,10 0.0409 0.0406 0.0412 0.0407 

2 4x2bp 10,8 0.0412 0.0399 0.0407 0.0413 

2_4x2bq 10,6 0.0406 0.0400 0.0408 0.0409 

2_4x2br 10,4 0.0408 0.0402 0.0404 0.0404 

2 4x2bs 10$2 0.0400 0.0401 0.0404 0.0403 

2 4x2bt 8,18 0.0413 0.0409 0.0410 0.0412 

2 4x2bu 8,16 0.0418 0.0408 0.0415 0.0415 

2_4x2bv 8,14 0.0414 0.0411 0.0405 0.0410 

2 4x2bw 8,12 0.0409 0.0406 0.0408 0.0409 

2_4x2bx 8,10 0.0404 0.0403 0.0407 0.0409 

2_4x2by 8,8 0.0403 0.0403 0.0403 0.0403 

2 4x2bz 8,6 0.0395 0.0402 0.0407 0.0407 

2 4x2ca 8,4 0.0394 0.0402 0.0399 0.0399 

2 4x2cb 822 0.0399 0.0406 0.0403 0.0401 

2 4x2cc 

M L 

61,18 0.0403 0.0405 0.0406 0.041111 
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Filename Size of 

ANN 

RMS Error 

2 4x2cd 6,16 0.0405 0.0403 0.0408 0.0406 

2 4x2ce 6,14 0.0401 0.0408 0.0406 0.0402 

2 4x2cf 6,12 0.0402 0.0406 0.0398 0.0412 

2 4x2cg 6,10 0.0407 0.0408 0.0396 0.0396 

2 4x2ch 6,8 0.0397 0.0407 0.0392 0.0396 

2_4x2ci 6,6 0.0391 0.0395 0.0400 0.0400 

2 4x2cj 6,4 0.0390 0.0401 0.0401 0.0397 

2 4x2ck 6,2 0.0406 0.0400 0.0402 0.0397 

2 4x2cl 4,18 0.0415 0.0408 0.0400 0.0397 

2 4x2cm 4,16 0.0400 0.0399 0.0400 0.0401 

2 4x2cn 4,14 0.0404 0.0394 0.0404 0.0408 

2 4x2co 4,12 0.0397 0.0409 0.0396 0.0399 

2_4x2cp 4,10 0.0394 0.0389 0.0397 0.0393 

2 4x2cq 4,8 0.0391 0.0403 0.0400 0.0393 

2_4x2cr 4,6 0.0402 0.0401 0.0401 0.0392 

2 4x2cs 4,4 0.0393 0.0395 0.0387 0.0392 

2 4x2ct 4,2 0.0397 0.0394 0.0394 0.0402 

2 4x2cu 2,18 0.0975 0.0526 0.0828 0.0543 

2_4x2cv 2,16 0.1004 0.0973 0.0551 0.097.5 

2 4x2cw 2,14 0.0974 0.0611 0.1016 0.0542 

2 4x2cx 2,12 0.0583 0.0578 0.0454 0.0924 

2_4x2cy 2,10 0.0468 0.0470 0.0930 0.0494 

2 4x2cz 2,8 0.0465 0.0428 0.0502 0.0483 

2_4x2da 2,6 0.0393 0.0386 0.0389 0.0412 

2 4x2db 2,4 0.0492 0.0389 0.0390 0.0401 

2 4x2dc 2,2 0.0399 0.0397 0.0392 0.0510 
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Appendix 

E Results of One Step Prediction Tests 

for Transient 3 

This appendix contains the full results of all the ANNs trained to predict Transient 3 in Section 

5.2. The ANNs were all designed to predict the values of PWR variables one step ahead. Four 

sets of recent PWR variables were used as inputs the ANNs. These were one to four time steps. 

For each input set a range of one and two hidden layer ANNs were developed. The number of 

nodes in the hidden was varied from a maximum of 18 to a minimum of 2. The values in between 

were in steps of two nodes. In the case of two hidden layers both layers were varied between 

these limits. All the ANN training was repeated four times to avoid possible local minima. The 

value recorded in each case is the lowest RMS error for the training. As explained in Chapter 5 

all ANNs were trained for 120,000 cycles of presentation of the training set and then a further 

40,000 iterations with presentation of the test set every 100 cycles. The best performing ANN in 

terms of RMS error was saved for further testing. In the following tables the best RMS error 

result for each ANN architecture is underlined while the best overall ANN for each hidden layer 

configuration is in bold. 

265 



One Time Step Input for One Step Prediction 

Filename Size of 

ANN 

RMS Error 

3 lxlaa 18 0.0344 0.0345 0.0354 0.0347 

3 lxlab 16 0.0399 0.0361 0.0351 0.0342 

3 lxlac 14 0.0336 0.0349 0.0348 0.0341 

3 lxlad 12 0.0335 0.0336 0.0348 0.0340 

3_lxlae 10 0.0340 0.0342 0.0345 0.0353 

3 lxlaf 8 0.0346 0.0341 0.0359 0.0334 

3 lxlag 6 0.0336 0.0326 0.0343 0.0325 

3 lxlah 4 0.0326 0.0337 0.0334 0.0333 

3 lxlai 2 0.0381 0.0389 0.0381 0.0380 

3 lx2aa 18,18 0.0395 0.0399 0.0398 0.0406 

3_lx2ab 18,16 0.0397 0.0419 0.0390 0.0393 

31 x2ac 18,14 0.0393 0.0399 0.0397 0.0392 

3_lx2ad 18,12 0.0392 0.0392 0.0391 0.0396 

3 lx2ae 18,10 0.0390 0.0390 0.0390 0.0390 

3 lx2af 18,8 0.0390 0.0389 0.0389 0.0389 

3_lx2ag 18,6 0.0386 0.0387 0.0386 0.0387 

31 x2ah 18,4 0.0384 0.0387 0.0385 0.0385 

3 lx2ai 18,2 0.0386 0.0383 0.0384 0.0386 

3 lx2aj 16,18 0.0393 0.0392 0.0395 0.0393 

3_lx2ak 16,16 0.0392 0.0394 0.0396 0.0391 

3_lx2al 16,14 0.0394 0.0391 0.0390 0.0393 

3_lx2am 16,12 0.0396 0.0397 0.0390 0.0388 

3_lx2an 16,10 0.0390 0.0393 0.0389 0.0390 

3 lx2ao 16,8 0.0388 0.0388 0.0390 0.0386 

3_lx2ap 16,6 0.0391 0.0386 0.0385 0.0388 

3_lx2aq 16,4 0.0384 0.0383 0.0385 0.0381 

3 lx2ar 16 2 0.0386 0.0385 0.0384 

11 

0.0387 
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RMS Error 

3_lx2as 14,18 0.0395 0.0391 0.0392 0.0394 

3_lx2at 14,16 0.0394 0.0392 0.0389 0.0389 

3_lx2au 14,14 0.0388 0.0392 0.0390 0.0387 

3 lx2av 14,12 0.0388 0.0388 0.0389 0.0385 

3_lx2aw 14,10 0.0388 0.0387 0.0389 0.0390 

3_lx2ax 14,8 0.0388 0.0390 0.0389 0.0386 

3 lx2ay 14,6 0.0386 0.0387 0.0387 0.0385 

3_lx2az 14,4 0.0384 0.0383 0.0385 0.0381 

3_lx2ba 143.2 0.0385 0.0385 0.0384 0.0389 

3_lx2bb 12,18 0.0388 0.0389 0.0393 0.0391 

3 lx2bc 12,16 0.0391 0.0391 0.0391 0.0392 

3 1x2bd 12,14 0.0386 0.0387 0.0392 0.0390 

3 lx2be 12,12 0.0390 0.0387 0.0388 0.0388 

3 lx2bf 12,10 0.0385 0.0386 0.0388 0.0388 

3_lx2bg 12,8 0.0383 0.0389 0.0387 0.0384 

3_lx2bh 12,6 0.0383 0.0381 0.0384 0.0383 

3_lx2bi 12,4 0.0385 0.0382 0.0380 0.0378 

3 lx2bj 12,2 0.0388 0.0385 0.0386 0.0383 

3_lx2bk 10,18 0.0388 0.0387 0.0388 0.0392 

3 1x2b1 10,16 0.0386 0.0389 0.0387 0.0389 

3_lx2bm 10,14 0.0386 0.0386 0.0391 0.0384 

3 lx2bn 10,12 0.0384 0.0392 0.0389 0.0389 

3 lx2bo 10,10 0.0387 0,0385 0.0388 0.0385 

3_lx2bp 10,8 0.0385 0.0386 0.0383 0.0385 

3_lx2bq 10,6 0.0376 0.0378 0.0379 0.0379 

3 lx2br 10,4 0.0384 0.0377 0.0377 0.0387 

3_lx2bs 103-2 0.0383 0.0384 0.0385 0.0388 
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3_lx2bt 8,18 0.0389 0.0388 0.0386 0.0387 

3 lx2bu 8,16 0.0386 0.0389 0.0390 0.0389 

3_lx2bv 8,14 0.0387 0.0388 0.0385 0.0385 

3 lx2bw 8,12 0.0382 0.0387 0.0383 0.0384 

3_lx2bx 8,10 0.0386 0.0388 0.0383 0.0385 

3_lx2by 8,8 0.0388 0.0386 0.0383 0.0385 

3 lx2bz 8,6 0.0386 0.0382 0.0385 0.0378 

3_lx2ca 8,4 0.0380 0.0382 0.0385 0.0377 

3_lx2cb 8,2 0.0385 0.0384 0.0381 0.0383 

3_lx2cc 6,18 0.0390 0.0389 0.0385 0.0385 

3_lx2cd 6,16 0.0389 0.0387 0.0384 0.0385 

3 lx2ce 6,14 0.0390 0.0389 0.0389 0.0381 

3_lx2cf 6,12 0.0383 0.0383 0,0381 0.0387 

3_lx2cg 6,10 0.0382 0,0382 0.0384 0.0385 

3_lx2ch 6,8 0.0381 0.0387 0.0384 0.0391 

3_lx2ci 6,6 0.0384 0.0377 0.0380 0.0387 

3 lx2cj 6,4 0.0381 0.0385 0.0380 0.0384 

3 lx2ck 63,2 0.0387 0.0384 0.0384 0.0383 

3 lx2cl 4,18 0.0390 0.0599 0.0389 0.0391 

3 lx2cm 4,16 0.0378 0.0387 0.0393 0.0386 

3_lx2cn 4,14 0.0383 0.0384 0.0393 0.0390 

3 lx2co 4,12 0.0391 0.0388 0.0382 0.0380 

3_lx2cp 4,10 0.0380 0.0386 0.0377 0.0385 

3 lx2cq 4,8 0.0383 0.0387 0.0384 0.0383 

3_lx2cr 4,6 0.0380 0.0378 0.0380 0.0384 

3 lx2cs 4,4 0.0383 0.0372 0.0376 0.0374 

31 x2ct 42 0.0387 0.0386 0.0386 0.0384 
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3_lx2cu 2,18 0.0583 0.0568 0.0556 0.0569 

3_lx2cv 2,16 0.0438 0.0545 0.0767 0.0581 

3 lx2cw 2,14 0.0614 0.0574 0.0576 0.0577 

3_lx2cx 2,12 0.0573 0.0551 0.0587 0.0422 

3_lx2cy 2,10 0.0473 0.0405 0.0581 0.0567 

3_lx2cz 2,8 0.0558 0.0465 0.0413 0.0434 

3 Ix2da 2,6 0.0388 0.0394 0.0430 0.0564 

3_lx2db 2,4 0.0384 0.0416 0.0386 0.0461 

3 lx2dc 2,2 0.0433 0.0387 0.0781 0.0716 

Two Time Steps Input for One Step Prediction 

3 2xlaa 18 0.0359 0.0336 0.0348 0.0356 

3_2x 1 ab 16 0.0359 0.0361 0.0378 0.0363 

3 2xlac 14 0.0364 0.0363 0.0346 0.0355 

3 2xlad 12 0.0345 0.0346 0.0363 0.0352 

3 2xlae 10 0.0363 0.0358 0.0349 0.0364 

3 2xlaf 8 0.0360 0.0347 0.0328 0.0360 

3 2xlag 6 0.0354 0.0373 0.0340 0.0354 

3 2xlah 4 0.0381 0.0356 0.0360 0.0351 

3 2xlai 2 0.0392 0.0391 0.0391 0.0395 

3_2x2aa 18,18 0.0403 0.0403 0.0403 0.0402 

3_2x2ab 18,16 0.0417 0.0398 0.0398 0.0402 

3 2x2ac 18,14 0.0397 0.0402 0.0402 0.0407 

3_2x2ad 18,12 0.0395 0.0397 0.0397 0.0400 

3_2x2ae 18,10 0.0396 0.0395 0.0395 0.0393 

3_2x2af 18,8 0.0392 0.0395 0.0395 0.0395 

3_2x2ag 18,6 0.0390 0.0397 0.0397 0.0393 

3 2x2ah 18,4 0.0391 0.0385 0.0385 0.0389 
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3_2x2ai 18,2 0.0394 0.0340 0.0389 0.0390 

3 2x2aj 16,18 0.0401 0.0402 0.0402 0.0400 

3_2x2ak 16,16 0.0408 0.0399 0.0400 0.0402 

3 2x2al 16,14 0.0402 0.0398 0.0398 0.0396 

3_2x2am 16,12 0.0398 0.0395 0.0394 0.0395 

3_2x2an 16,10 0.0395 0.0397 0.0396 0.0393 

3_2x2ao 16,8 0.0393 0.0392 0.0393 0.0394 

3_2x2ap 16,6 0.0391 0.0392 0.0392 0.0392 

3 2x2aq 16,4 0.0392 0.0394 0.0394 0.0392 

3_2x2ar 1672 0.0406 0.0471 0.0471 0.0391 

3_2x2as 14,18 0.0399 0.0403 0.0403 0.0400 

3_2x2at 14,16 0.0397 0.0398 0.0398 0.0400 

3 2x2au 14,14 0.0396 0.0398 0.0398 0.0396 

3_2x2av 14,12 0.0396 0.0396 0.0396 0.0397 

3_2x2aw 14,10 0.0395 0.0394 0.0394 0.0394 

3_2x2ax 14,8 0.0396 0.0393 0.0393 0.0394 

3_2x2ay 14,6 0.0389 0.0391 0.0391 0.0389 

3_2x2az 14,4 0.0389 0.0393 0.0393 0.0393 

3_2x2ba 14,2 0.0391 0.0393 0.0393 0.0390 

3_2x2bb 12,18 0.0396 0.0395 0.0395 0.0404 

3 2x2bc 12,16 0.0402 0.0396 0.0396 0.0398 

3_2x2bd 12,14 0.0395 0.0397 0.0397 0.0396 

3_2x2be 12,12 0.0394 0.0395 0.0395 0.0394 

3 2x2bf 12,10 0.0392 0.0394 0.0394 0.0396 

3 2x2bg 12,8 0.0391 0.0391 0.0391 0.0390 

3 2x2bh 12,6 0.0391 0.0392 0.0392 0.0390 

3 2x2bi 12,4 0.0385 0.0393 0.0393 0.0388 

3 2x2bj 12,2 0.0392 0.0390 0.0391 0.0393 

3 2x2bk 10 18 0.0394 0.0397 0.0398 0.0394 
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3 2x2b1 10,16 0.0400 0.0396 0.0398 0.0400 

3_2x2bm 10,14 0.0396 0.0394 0.0395 0.0396 

3_2x2bn 10,12 0.0393 0.0398 0.0393 0.0393 

3_2x2bo 10,10 0.0397 0.0396 0.0391 0.0397 

3_2x2bp 10,8 0.0391 0.0391 0.0390 0.0391 

3_2x2bq 10,6 0.0392 0.0396 0.0392 0.0388 

3_2x2br 10,4 0.0391 0.0389 0.0390 0.0391 

3 2x2bs 10,2 0.0392 0.0389 0.0393 0.0391 

3_2x2bt 8,18 0.0398 0.0399 0.0397 0.0398 

3_2x2bu 8,16 0.0395 0.0395 0.0396 0.0397 

3_2x2bv 8,14 0.0398 0.0397 0.0396 0.0400 

3 2x2bw 8,12 0.0395 0.0392 0.0393 0.0394 

3_2x2bx 8,10 0.0395 0.0393 0.0393 0.0389 

3_2x2by 8,8 0.0393 0.0389 0.0389 0.0391 

3_2x2bz 8,6 0.0392 0.0389 0.0387 0.0384 

3_2x2ca 8,4 0.0391 0.0392 0.0387 0.0391 

3_2x2cb 8,2 0.0394 0.0395 0.0394 0.0393 

3_2x2cc 6,18 0.0396 0.0396 0.0400 0.0397 

3 2x2cd 6,16 0.0398 0.0400 0.0400 0.0395 

3_2x2ce 6,14 0.0395 0.0395 0.0395 0.0393 

3_2x2cf 6,12 0.0391 0.0391 0.0393 0.0394 

3 2x2cg 6,10 0.0393 0.0392 0.0393 0.0396 

3_2x2ch 61.8 0.0392 0.0393 0.0391 0,0387 

3 2x2ci 6,6 0.0386 0.0389 0.0391 0.0391 

3_2x2cj 6,4 0.0390 0.0391 0.0388 0.0394 

3_2x2ck 6,2 0.0392 0.0392 0.0393 0.0389 

3 2x2c1 4,18 0.0392 0.0396 0.0395 0.0397 

3 2x2cm 4,16 0.0400 0.0393 0.0396 0.0397 

3 2x2cn 4 14 0.0397 0.0387 0.0397 0.0399 
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3_2x2co 4,12 0.0382 0.0396 0.0400 0.0389 

3_2x2cp 4,10 0.0393 0.0388 0.0380 0.0394 

3 2x2cq 4,8 0.0393 0.0393 0.0393 0.0394 

3_2x2cr 4,6 0.0388 0.0387 0.0398 0.0389 

3_2x2cs 4,4 0.0390 0.0393 0.0393 0.0393 

3_2x2ct 4,2 0.0395 0.0398 0.0392 0.0397 

3_2x2cu 2,18 0.0572 0.0533 0.0610 0.0577 

3 2x2cv 2,16 0.0574 0.0480 0.0554 0.0601 

3_2x2cw 2,14 0.0545 0.0562 0.0546 0.0505 

3_2x2cx 2,12 0.0514 0.0474 0.0470 0.0470 

3_2x2cy 2,10 0.0419 0.0734 0.0563 0.0460 

3_2x2cz 2,8 0.0459 0.0469 0.0486 0.0403 

3_2x2da 2,6 0.0566 0.0545 0.0471 0.0417 

3_2x2 db 2,4 0.0389 0.0406 0.0455 0.0477 

3 2x2dc 22 0.0418 0.0394 0.0404 0.0395 

Three Time Steps Input for One Step Prediction 

3_3xlaa 18 0.0346 0.0347 0.0346 0.0351 

3 3xlab 16 0.0344 0.0342 0.0350 0.0343 

3_3xlac 14 0.0346 0.0341 0.0342 0.0345 

3_3xlad 12 0.0330 0.0339 0.0348 0.0334 

3_3xlae 10 0.0343 0.0332 0.0337 0.0337 

3 3xlaf 8 0.0333 0.0341 0.0333 0.0324 

3_3xlag 6 0.0329 0.0335 0.0350 0.0336 

3_3xlah 4 0.0353 0.0326 0.0331 0.0348 

3_3xlai 2 0.0400 0.0394 0.0394 0.0401 

3_3x2aa 18,18 0.0415 0.0423 0.0420 0.0416 

3 3x2ab 18,16 0.0418 0.0411 0.0419 0.0412 
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3 3x2ac 18,14 0.0411 0.0413 0.0410 0.0413 

3 3x2ad 18,12 0.0414 0.0412 0.0416 0.0411 

3 3x2ae 18,10 0.0406 0.0408 0.0408 0.0409 

3 3x2af 18,8 0.0405 0.0408 0.0405 0.0406 

3 3x2ag 18,6 0.0399 0.0403 0.0405 0.0404 

3 3x2ah 18,4 0.0403 0.0399 0.0399 0.0402 

3 3x2ai 18,2 0.0400 0.0409 0.0405 0.0400 

3 3x2aj 16,18 0.0413 0.0415 0.0414 0.0410 

3_3x2ak 16,16 0.0413 0.0416 0.0413 0.0421 

3 3x2a1 16,14 0.0414 0.0415 0.0414 0.0412 

3_3x2am 16,12 0.0409 0.0415 0.0408 0.0411 

3_3x2an 16,10 0.0405 0.0409 0.0405 0.0402 

3_3x2ao 16,8 0.0405 0.0406 0.0403 0.0408 

3 3x2ap 16,6 0.0402 0.0404 0.0402 0.0404 

3 3x2aq 16,4 0.0401 0.0399 0.0396 0.0401 

3_3x2ar 16,2 0.0403 0.0403 0.0402 0.0399 

3 3x2as 14,18 0.0426 0.0414 0.0408 0.0415 

3_3x2at 14,16 0.0413 0.0412 0.0410 0.0412 

3_3x2au 14,14 0.0408 0.0416 0.0416 0.0410 

3 3x2av 14,12 0.0407 0.0408 0.0409 0.0407 

3 3x2aw 14,10 0.0410 0.0405 0.0404 0.0415 

3_3x2ax 14,8 0.0407 0.0406 0.0402 0.0401 

3_3x2ay 143,6 0.0405 0.0401 0.0402 0.0400 

3_3x2az 14,4 0.0407 0.0400 0.0402 0.0400 

3_3x2ba 14,2 0.0398 0.0399 0.0401 0.0401 

3_3x2bb 12,18 0.0411 0.0414 0.0412 0.0413 

3 3x2bc 12,16 0.0412 0.0409 0.0414 0.0414 

3_3x2bd 12,14 0.0409 0.0413 0.0408 0.0413 

3 3x2be 12 12 30 0.0411 0.0410 0.0409 0.0404 
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3_3x2bf 12,10 0.0407 0.0408 0.0403 0.0404 

3_3x2bg 12,8 0.0401 0.0406 0.0410 0.0401 

3 3x2bh 12,6 0.0401 0.0400 0.0400 0.0401 

3 3x2bi 12,4 0.0404 0.0399 0.0394 0.0399 

3 3x2bj 

r 

12,2 0.0401 0.0400 0.0399 0.0399 

3 3x2bk 10,18 0.0411 0.0411 0.0408 0.0410 

3 3x2b1 10,16 0.0417 0.0406 0.0406 0.0410 

3 3x2bm 10,14 0.0407 0.0408 0.0411 0.0407 

3_3x2bn 10,12 0.0405 0.0402 0.0404 0.0404 

3 3x2bo 10,10 0.0401 0.0402 0.0406 0.0404 

3 3x2bp 10,8 0.0401 0.0401 0.0402 0.0405 

3_3x2bq 10,6 0.0401 0.0404 0.0402 0.0401 

3 3x2br 10,4 0.0398 0.0395 0.0406 0.0404 

3 3x2bs 10,2 0.0400 0.0398 0.0399 0.0399 

3 3x2bt 8,18 0.0408 0.0407 0.0407 0.0417 

3_3x2bu 8,16 0.0410 0.0406 0.0407 0.0406 

3_3x2bv 8,14 0.0408 0.0406 0.0405 0.0406 

3 3x2bw 8,12 0.0401 0.0404 0.0407 0.0402 

3 3x2bx 8,10 0.0402 0.0403 0.0403 0.0400 

3_3x2by 8,8 0.0400 0.0403 0.0404 0.0403 

3_3x2bz 8,6 0.0398 0.0401 0.0402 0.0399 

3 3x2ca 8,4 0.0397 0.0398 0.0399 0.0395 

3 3x2cb 8,2 0.0400 0.0400 0.0400 0.0399 

3 3x2cc 6,18 0.0409 0.0415 0.0408 0.0413 

3_3x2cd 6,16 0.0406 0.0405 0.0404 0.0413 

3_3x2ce 6,14 0.0407 0.0414 0.0404 0.0405 

3_3x2cf 6,12 0.0402 0.0406 0.0405 0.0403 

3_3x2cg 6,10 0.0402 0.0403 0.0402 0.0409 

3 3x2ch 68 0.0400 0.0399 0.0401 0.040211 
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3x2ci 6,6 0.0400 0.0393 0.0405 0.0405 

F 

3 3x2cj 6,4 0.0400 0.0394 0.0397 0.0388 

3 3x2ck 6,2 0.0401 0.0398 0.0398 0.0402 

3 3x2c1 4,18 0.0406 0.0400 0.0409 0.0404 

3_3x2cm 4,16 0.0405 0.0399 0.0406 0.0404 

3 3x2cn 4,14 0.0404 0.0404 0.0401 0.0410 

3_3x2co 4,12 0.0405 0.0403 0.0399 0.0402 

3_3x2cp 4,10 0.0401 0.0399 0.0395 0.0400 

3 3x2cq 4,8 0.0405 0.0402 0.0397 0.0403 

3 3x2cr 4,6 0.0398 0.0393 0.0398 0.0403 

3 3x2cs 4,4 0.0398 0.0402 0.0396 0.0394 

3_3x2ct 4,2 0.0405 0.0455 0.0402 0.0406 

3_3x2cu 2,18 0.0726 0.0519 0.0811 0.0521 

3 3x2cv 2,16 0.0476 0.0527 0.0809 0.0584 

3_3x2cw 2,14 0.0519 0.0557 0.0503 0.0515 

3_3x2cx 2,12 0.0516 0.0515 0.0491 0.0795 

3_3x2cy 2,10 0.0466 0.0480 0.0763 0.0521 

3 3x2cz 2,8 0.0513 0.0432 0.0480 0.0407 

3 3x2da 2,6 0.0480 0.0406 0.0735 0.0441 

3 3x2db 2, 
,4 

0.0454 0.0419 0.0979 0.0413 

3 3x2dc 22 0.0401 0.0397 0.0401 0.0401 

Four Time Steps Input for One Step Prediction 

3 4xlaa 18 0.0388 0.0388 0.0390 0.0395 

3 4xlab 16 0.0388 0.0377 0.0383 0.0373 

3 4xlac 

U 

14 0.0382 0.0390 0.0383 0.0388 

3 4xlad 12 0.0384 0.0387 0.0377 0.0381 

3 4xlae 10 0.0378 0.0387 0.0366 0.0371 

3 4xlaf 8 0.0368 0.0369 0.0388 0.0374 
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3_4xlag 6 0.0383 0.0362 0.0370 0.0364 

3_4xlah 4 0.0351 0.0380 0.0381 0.0356 

3_4xlai 2 0.0391 0.0390 0.0390 0.0397 

3 4x2aa 18,18 0.0415 0.0499 0.0419 0.0435 

3 4x2ab 18,16 0.0422 0.0424 0.0420 0.0422 

3 4x2ac 18,14 0.0425 0.0418 0.0414 0.0409 

33 4x2ad 18,12 0.0430 0.0409 0.0414 0.0413 

3 4x2ae 18,10 0.0419 0.0418 0.0413 0.0417 

3 4x2af 18,8 0.0410 0.0418 0.0405 0.0411 

3_4x2ag 18,6 0.0403 0.0396 0.0404 0.0407 

3_4x2ah 18,4 0.0404 0.0407 0.0407 0.0408 

3 4x2ai 18,2 0.0402 0.0399 0.0407 0.0399 

3 4x2aj 16,18 0.0417 0.0418 0.0420 0.0420 

3 4x2ak 16,16 0.0420 0.0423 0.0420 0.0414 

3 4x2a1 16,14 0.0420 0.0419 0.0422 0.0414 

3 4x2am 16,12 0.0415 0.0416 0.0415 0.0412 

3 4x2an 16,10 0.0415 0.0409 0.0413 0.0422 

3 4x2ao 16,8 0.0411 0.0409 0.0401 0.0424 

3_4x2ap 16,6 0.0406 0.0402 0.0412 0.0406 

3_4x2aq 16,4 0.0401 0.0400 0.0400 0.0401 

3 4x2ar 16,2 0.0399 0.0398 0.0403 0.0398 

3_4x2as 14,18 0.0414 0.0420 0.0418 0.0415 

3 4x2at 14,16 0.0426 0.0413 0.0423 0.0415 

3 4x2au 14,14 0.0420 0.0418 0.0410 0.0420 

3_4x2av 14,12 0.0410 0.0413 0.0412 0.0414 

3 4x2aw 14,10 0.0411 0.0411 0.0407 0.0415 

3_4x2ax 14,8 0.0408 0.0403 0.0402 0.0406 

3 4x2ay 14,6 0.0404 0.0415 0.0408 0.0411 

3 4x2az 14 4 0.0404 0.0398 0.0402 0.0399 
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3 4x2ba 14,2 0.0415 0.0398 0.0400 0.0400 

3 4x2bb 12,18 0.0409 0.0408 0.0412 0.0411 

3 4x2bc 12,16 0.0417 0.0412 0.0406 0.0418 

3 4x2bd 12,14 0.0407 0.0418 0.0413 0.0406 

3 4x2be 12,12 0.0408 0.0408 0.0403 0.0409 

3 4x2bf 12,10 0.0412 0.0407 0.0406 0.0405 

3 4x2bg 12,8 0.0401 0.0407 0.0411 0.0408 

3 4x2bh 12,6 0.0407 0.0399 0.0398 0.0402 

3 4x2bi 12,4 0.0395 0.0397 0.0402 0.0406 

3 4x2bj 12,2 0.0397 0.0402 0.0399 0.0396 

3 4x2bk 10,18 0.0411 0.0415 0.0406 0.0410 

3 4x2b1 10,16 0.0402 0.0406 0.0417 0.0409 

3 4x2bm 10,14 0.0405 0.0407 0.0409 0.0421 

3 4x2bn 10,12 0.0412 0.0401 0.0405 0.0405 

3 4x2bo 10,10 0.0402 0.0403 0.0408 0.0401 

3_4x2bp 10,8 0.0406 0.0403 0.0397 0.0398 

3 4x2bq 10,6 0.0403 0.0401 0.0398 0.0401 

3 4x2br 10,4 0.0401 0.0392 0.0396 0.0401 

3_4x2bs 10,2 0.0397 0.0399 0.0396 0.0402 

3_4x2bt 8,18 0.0407 0.0404 0.0408 0.0408 

3 4x2bu 8,16 0.0409 0.0403 0.0401 0.0403 

3 4x2bv 8,14 0.0406 0.0409 0.0404 0.0401 

3 4x2bw 8,12 0.0403 0.0401 0.0400 0.0401 

3 4x2bx 8,10 0.0396 0.0398 0.0398 0.0401 

3_4x2by 8,8 0.0403 0.0398 0.0402 0.0398 

3 4x2bz 8,6 0.0393 0.0392 0.0394 0.0396 

3 4x2ca 8,4 0.0387 0.0389 0.0397 0.0406 

3 4x2cb 8,2 0.0394 0.0400 0.0392 0.0395 

3 4x2cc 6 18 0.0401 0.0405 0.0405 0.0402 
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Filename Size of 

ANN 

RMS Error 

3 4x2cd 6,16 0.0394 0.0398 0.0395 0.0404 

3 4x2ce 6,14 0.0397 0.0401 0.0399 0.0397 

3_4x2cf 6,12 0.0395 0.0394 0.0400 0.0402 

3 4x2cg 6,10 0.0398 0.0399 0.0385 0.0399 

3 4x2ch 6,8 0.0394 0.0393 0.0395 0.0391 

3_4x2ci 6,6 0.0391 0.0386 0.0395 0.0393 

3 4x2cj 6,4 0.0389 0.0394 0.0390 0.0393 

3 4x2ck 6,2 0.0392 0.0393 0.0396 0.0396 

3 4x2cl 4,18 0.0400 0.0397 0.0396 0.0402 

3_4x2cm 4,16 0.0402 0.0399 0.0397 0.0400 

3_4x2cn 4,14 0.0387 0.0401 0.0511 0.0396 

3 4x2co 4,12 0.0397 0.0393 0.0393 0.0391 

3 4x2cp 4,10 0.0398 0.0396 0.0395 0.0393 

3 4x2cq 4,8 0.0388 0.0383 0.0394 0.0389 

3_4x2cr 4,6 0.0394 0.0387 0.0387 0.0395 

3_4x2cs 4,4 0.0389 0.0383 0.0388 0.0391 

3 4x2ct 4,2 0.0394 0.0391 0.0393 0.0391 

3_4x2cu 2,18 0.0579 0.0579 0.0576 0.0563 

3_4x2cv 2,16 0.0744 0.0567 0.0560 0.0781 

3 4x2cw 2,14 0.0567 0.0560 0.0580 0.0458 

3 4x2cx 2,12 0.0970 0.0563 0.0586 0.0561 

3_4x2cy 2,10 0.0422 0.0594 0.0810 0.0561 

3_4x2cz 2,8 0.0571 0.0811 0.0569 0: 0495 

3_4x2da 2,6 0.0533 0.0461 0.0456 0.0406 

3 4x2db 2,4 0.0570 0.0525 0.0389 0.0428 

3 4x2dc 22 0.0390 0.0561 0.0389 0.0556 
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Appendix 

F Results of One Step Prediction Tests 

for Transient 4 

This appendix contains the full results of all the ANNs trained to predict Transient 4 in Section 

5.2. The ANNs were all designed to predict the values of PWR variables one step ahead. Four 

sets of recent PWR variables were used as inputs the ANNs. These were one to four time steps. 

For each input set a range of one and two hidden layer ANNs were developed. The number of 

nodes in the hidden was varied from a maximum of 18 to a minimum of 2. The values in between 

were in steps of two nodes. In the case of two hidden layers both layers were varied between 

these limits. All the ANN training was repeated four times to avoid possible local minima. The 

value recorded in each case is the lowest RMS error for the training. As explained in Chapter 5 

all ANNs were trained for 120,000 cycles of presentation of the training set and then a further 

40,000 iterations with presentation of the test set every 100 cycles. The best performing ANN in 

terms of RMS error was saved for further testing. In the following tables the best RMS error 

result for each ANN architecture is underlined while the best overall ANN for each hidden layer 

configuration is in bold. 
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One Time Step for One Step Prediction 

Filename Size of 

ANN 

RMS Error 

4_lxlaa 18 0.0347 0.0347 0.0359 0.0362 

4 lxlab 16 0.0360 0.0366 0.0352 0.0338 

4 lxlac 14 0.0352 0.0347 0.0359 0.0352 

4 lxlad 12 0.0348 0.0349 0.0331 0.0338 

4_lxlae 10 0.0341 0.0344 0.0332 0.0344 

4 lxlaf 8 0.0333 0.0337 0.0333 0.0333 

4 lxlag 6 0.0335 0.0345 0.0336 0.0321 

4 lxlah 4 0.0331 0.0343 0.0354 0.0377 

41x1 ai 2 0.0393 0.0423 0.0424 0.0422 

4 lx2aa 18,18 0.0433 0.0435 0.0435 0.0434 

4l x2ab 18,16 0.0424 0.0463 0.0427 0.0431 

4_lx2ac 18,14 0.0432 0.0445 0.0426 0.0425 

4_lx2ad 18,12 0.0418 0.0427 0.0429 0.0428 

4 lx2ae 18,10 0.0424 0.0427 0.0426 0.0431 

4_lx2af 18,8 0.0424 0.0418 0.0425 0.0422 

4 lx2ag 18,6 0.0407 0.0424 0.0412 0.0427 

4_lx2ah 18,4 0.0426 0.0427 0.0415 0.0406 

4 lx2ai 18,2 0.0427 0.0426 0.0424 0.0426 

4 lx2aj 16,18 0.0453 0.0427 0.0432 0.0448 

4_lx2ak 16,16 0.0425 0.0425 0.0430 0.0436 

41 x2al 16,14 0.0427 0.0431 0.0424 0.0433 

4_lx2am 16,12 0.0427 0.0427 0.0423 0.0427 

4 lx2an 16,10 0.0413 0.0422 0.0425 0.0428 

4_lx2ao 163,8 0.0422 0.0419 0.0419 0.0423 

4 lx2ap 16,6 0.0425 0.0419 0.0423 0.0426 

41 x2aq 163,4 0.0425 0,0415 0.0419 0.0417 

4_lx2ar 163,2 0.0419 0.0424 0.0429 0.0421 
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Filename Size of 

ANN 

RMS Error 

4 Was 14,18 0.0423 0.0431 0.0422 0.0433 

4 lx2at 14,16 0.0422 0.0425 0.0423 0.0422 

4_lx2au 14,14 0.0423 0.0422 0.0425 0.0429 

41 x2av 14,12 0.0416 0.0416 0.0422 0.0422 

4_lx2aw 14,10 0.0422 0.0421 0.0420 0.0424 

41 x2ax 143,8 0.0421 0.0424 0.0419 0.0426 

41 x2ay 143.6 0.0431 0.0418 0.0417 0.0417 

4 lx2az 1424 0.0416 0.0414 0.0401 0.0410 

4_lx2ba 14,2 0.0427 0.0425 0.0425 0.0425 

41 x2bb 12,18 0.0419 0.0423 0.0426 0.0421 

4 lx2bc 12,16 0.0419 0.0426 0.0416 0.0422 

41 x2bd 12,14 0.0426 0,0417 0.0423 0.0422 

4 lx2be 12,12 0.0415 0.0422 0.0425 0.0411 

4_lx2bf 12,10 0.0432 0,0417 0.0427 0.0418 

4_lx2bg 12,8 0.0419 0.0430 0.0421 0.0420 

4 lx2bh 12,6 0.0420 0.0429 0.0403 0.0411 

41 x2bi 123,4 0.0418 0.0424 0.0422 0,0415 

41 x2bj 12,2 0.0430 0.0427 0.0426 0.0426 

4_lx2bk 10,18 0.0424 0.0425 0.0425 0.0413 

4_lx2bl 10,16 0.0422 0.0421 0.0420 0.0417 

41 x2bm 10,14 0.0418 0.0419 0.0424 0.0420 

4 lx2bn 10,12 0.0414 0.0415 0.0433 0.0425 

41 x2bo 10,10 0.0419 0.0414 0.0413 0.0411 

41 x2bp 10,8 0.0424 0.0416 0.0418 0.0418 

4 lx2bq 10,6 0.0413 0.0407 0.0415 0,0404 

4_lx2br 10,4 0.0425 0.0416 0.0420 0.0405 

4 lx2bs 10,2 0.0425 0.0431 0.0431 0.0415 
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Filename Size of 

ANN 

RMS Error 

4 
_lx2bt 

8,18 0.0418 0.0418 0.0423 0.0424 

4 1 x2bu 8,16 0.0416 0.0417 0.0417 0.0413 

4 1 x2bv 8,14 0.0418 0.0415 0.0414 0.0424 

4 lx2bw 8,12 0.0406 0.0413 0.0420 0.0426 

4 lx2bx 8,10 0.0409 0.0416 0.0404 0.0421 

4 1 x2by 8,8 0.0418 0.0409 0.0415 0.0409 

4 l x2bz 8,6 0.0411 0.0427 0.0415 0.0413 

4 
_lx2ca 

8,4 0.0421 0.0424 0.0409 0.0418 

4 lx2cb 8,2 0.0427 0.0431 0.0416 0.0406 

4 
_lx2cc 

6,18 0.0414 0.0405 0.0416 0.0422 

4 lx2cd 6,16 0.0413 0.0411 0.0424 0.0420 

4 
_lx2ce 

6,14 0.0417 0.0409 0.0415 0.0425 

4 lx2cf 6,12 0.0432 0.0430 0.0408 0.0421 

4 lx2cg 6,10 0.0418 0.0424 0.0427 0.0423 

4 lx2ch 63,8 0.0416 0.0418 0.0417 0.0426 

4 l x2ci 6,6 0.0424 0.0416 0.0420 0.0411 

4 lx2cj 6,4 0.0431 0.0411 0.0405 0.0397 

4_ lx2ck 63,2 0.0423 0.0432 0.0413 0.0426 

4 lx2cl 4,18 0.0415 0.0418 0.0440 0.0434 

4 l x2cm 4,16 0.0429 0.0429 0.0429 0.0427 

4 lx2cn 4,14 0.0414 0.0419 0.0426 0.0402 

4 l x2co 4,12 0.0411 0.0402 0.0401 0.0409 

4 lx2cp 4,10 0.0407 0.0398 0.0403 0.0396 

4 lx2cq 4,8 0.0417 0.0425 0.0406 0.0408 

4_ lx2cr 4,6 0.0414 0.0400 0.0399 0.0425 

4 lx2cs 4,4 0.0397 0.0431 0.0401 0.0410 

4 lx2ct 422 0.0428 0.0439 0.0425 0.0432 
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Filename Size of 

ANN 

RMS Error 

4 lx2cu 2,18 0.0576 0.0655 0.0809 0.0584 

4_lx2cv 2,16 0.0659 0.0524 0.0764 0.0748 

4_lx2cw 2,14 0.0763 0.0819 0.0476 0.0679 

4_lx2cx 2,12 0.0817 0.0550 0.0671 0.0817 

4 lx2cy 2,10 0.0576 0.0466 0.0659 0.0544 

4_lx2cz 2,8 0.0522 0.0785 0.0486 0.0561 

4_lx2da 2,6 0.0724 0.0425 0.0544 0.0403 

4_lx2db 21.4 0.0418 0.0442 0.0449 0.0746 

41 x2dc 22 0.0411 0.0434 0.0598 0.0412 

Two Time Steps for One Step Prediction 

4_2x 1 aa 18 0.0367 0.0347 0.0349 0.0345 

4 2xlab 16 0.0340 0.0360 0.0354 0.0340 

4_2x 1 ac 14 0.0349 0.0336 0.0355 0.0367 

4 2xlad 12 0.0346 0.0367 0.0370 0.0348 

4_2x 1 ae 10 0.0340 0.0343 0.0339 0.0348 

4 2xlaf 8 0.0351 0.0334 0.0363 0.0341 

4 2x1ag 6 0.0339 0.0306 0.0349 0.0309 

4_2x 1 ah 4 0.0295 0.0379 0.0329 0.0341 

4_2x l ai 2 0.0389 0.0390 0.0389 0.0422 

4_2x2aa 18,18 0.0436 0.0435 0.0426 0.0413 

4_2x2ab 18,16 0.0424 0.0422 0.0419 0.0418 

4 2x2ac 18,14 0.0446 0.0409 0.0416 0.0407 

4_2x2ad 18,12 0.0406 0.0413 0.0405 0.0411 

4 
_Mae 

18,10 0.0410 0.0417 0.0405 0.0412 

4 2x2af 18,8 0.0400 0.0411 0.0410 0.0408 

4 2x2ag 18,6 0.0400 0.0407 0.0402 0.0409 

4 2x2ah 18,4 0.0403 0.0408 0.0399 0.0406 
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Filename Size of 

ANN 

RMS Error 

4_2x2ai 18,2 0.0411 0.0399 0.0407 0.0406 

4 2x2aj 16,18 0.0412 0.0420 0.0414 0.0421 

4_2x2ak 16,16 0.0417 0.0414 0.0417 0.0439 

4 2x2a1 16,14 0.0417 0.0414 0.0414 0.0422 

4_2x2am 16,12 0.0410 0.0412 0.0414 0.0402 

4_2x2an 16,10 0.0414 0.0422 0.0406 0.0404 

4_2x2ao 16,8 0.0409 0.0424 0.0401 0.0398 

4 2x2ap 16,6 0.0407 0.0406 0.0408 0.0398 

4 2x2aq 16,4 0.0411 0.0401 0.0395 0.0399 

4 2x2ar 16,2 0.0411 0.0398 0.0411 0.0403 

4 2x2as 14,18 0.0407 0.0415 0.0414 0.0425 

4 2x2at 14,16 0.0413 0.0415 0.0405 0.0408 

4 2x2au 

L 

14,14 0.0413 0.0420 0.0408 0.0415 

4 2x2av 14,12 0.0409 0.0414 0.0402 0.0411 

4_2x2aw 14,10 0.0409 0.0415 0.0404 0.0398 

4_2x2ax 14,8 0.0403 0.0406 0.0402 0.0410 

4 2x2ay 14,6 0.0401 0.0411 0.0395 0.0409 

4 2x2az 1474 0.0402 0.0399 0.0401 0.0404 

4 2x2ba 14,2 0.0407 0.0400 0.0411 0.0404 

4_2x2bb 12,18 0.0408 0.0411 0.0408 0.0407 

4 2x2bc 12,16 0.0406 0.0418 0.0411 0.0406 

4 2x2bd 12,14 0.0407 0.0406 0.0408 0.0403 

4_2x2be 12,12 0.0409 0.0409 0.0406 0.0409 

4 2x2bf 12,10 0.0400 0.0405 0.0399 0.0401 

4 2x2bg 12,8 0.0395 0.0408 0.0401 0.0405 

4_2x2bh 12,6 0.0404 0.0402 0 00405 0.0405 

4 2x2bi 12,4 0.0402 0.0406 0.0391 0.0392 

4 2x2bj 123,2 0.0404 0.0396 0.0407 0.0407 

4 2x2bk 105.18 0.0423 0.0410 0.0409 0.0409 
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Filename Size of 

ANN 

RMS Error 

4 2x2b1 10,16 0.0407 0.0409 0.0409 0.0400 

4_2x2bm 10,14 0.0413 0.0421 0.0405 0.0401 

4_2x2bn 10,12 0.0404 0.0405 0.0402 0.0397 

4_2x2bo 10,10 0.0404 0.0401 0.0409 0.0402 

4_2x2bp 10,8 0.0391 0.0398 0.0386 0.0409 

4_2x2bq 10,6 0.0397 0.0401 0.0395 0.0393 

4_2x2br 10,4 0.0393 0.0401 0.0393 0.0395 

4 2x2bs 10,2 0.0411 0.0402 0.0404 0.0409 

4_2x2bt 8,18 0.0406 0.0408 0.0404 0.0411 

4_2x2bu 8,16 0.0406 0.0403 0.0407 0.0412 

4_2x2bv 8,14 0.0402 0.0401 0.0399 0.0397 

4_2x2bw 8,12 0.0402 0.0401 0.0400 0.0403 

4_2x2bx 8,10 0.0396 0.0401 0.0391 0.0403 

4 2x2by 8,8 0.0392 0.0398 0.0396 0.0403 

4_2x2bz 8,6 0.0398 0.0396 0.0398 0.0391 

4 2x2ca 8,4 0.0392 0.0406 0.0403 0.0388 

4 2x2cb 8,2 0.0392 0.0395 0.0389 0.0399 

4_2x2cc 6,18 0.0404 0.0402 0.0397 0.0396 

4_2x2cd 6,16 0.0399 0.0404 0.0398 0.0408 

4 2x2ce 6,14 0.0396 0.0397 0.0399 0.0400 

4 2x2cf 6,12 0.0399 0.0402 0.0395 0 0395 

4 2x2cg 6,10 0.0395 0.0399 0.0392 0.0395 

4_2x2ch 6,8 0.0393 0.0391 0.0397 0.0393 

4 2x2ci 6,6 0.0385 0.0393 0.0390 0.0402 

4 2x2cj 6-4 0.0393 0.0393 0.0381 0.0358 

4 2x2ck 63.2 0.0404 0.0396 0.0402 0.0410 

4 2x2c1 4,18 0.0395 0.0402 0.0387 0.0461 

4 2x2cm 4,16 0.0396 0.0400 0.0405 0.0399 

4 2x2cn 4 14 0.0393 0.0396 0.0402 0.0404 11 
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RMS Error 

4_2x2co 4,12 0.0406 0.0391 0.0408 0.0426 

4 2x2cp 4,10 0.0391 0.0393 0.0386 0.0397 

4_2x2cq 4318 0.0392 0.0389 0.0390 0.0380 

4 2x2cr 4,6 0.0399 0.0395 0.0393 0.0390 

4_2x2cs 4,4 0.0384 0.0391 0.0406 0.0391 

4 2x2ct 4,2 0.0403 0.0391 0.0402 0.0389 

4 2x2cu 2,18 0.0736 0.0563 0.0825 0.0526 

4 2x2cv 2,16 0.0753 0.0781 0.0795 0.0765 

4 2x2cw 2,14 0.0830 0.0458 0.0822 0.0550 

4 2x2cx 2,12 0.0683 0.0561 0.0802 0.0732 

4 2x2cy 2,10 0.0741 0.0561 0.0678 0.0716 

4 2x2cz 2,8 0.0792 0.0495 0.0588 0.0487 

4 2x2da 2,6 0.0714 0.0406 0.0813 0.0388 

4 2x2db 

r 

2,4 0.0715 0.0428 0.0785 0.0484 

4 2x2dc 21,2 0.0401 0.0556 0.0421 0.0408 

Three Time Steps for One Step Prediction 

4_3xlaa 18 0.0301 0.0300 0.0298 0.0296 

4_3xlab 16 0.0296 0.0294 0.0295 0.0299 

4_3xlac 14 0.0291 0.0294 0.0292 0.0296 

4_3xlad 12 0.0286 0.0292 0.0296 0.0284 

4_3xlae 10 0.0282 0.0277 0.0281 0.0283 

4_3xlaf 8 0.0283 0.0275 0.0272 0.0275 

4_3xlag 6 0.0270 0.0280 0.0272 0.0266 

4 3xlah 4 0.0259 0.0264 0.0265 0.0279 

4_3xlai 2 0.0365 0.0362 0.0362 0.0362 

4 3x2aa 18,18 0.0392 0.0411 0.0404 0.0426 

4 3x2ab 18,16 0.0397 0.0393 0.0427 0.0417 

286 



Filename Size of 

ANN 

RMS Error 

4_3x2ac 18,14 0.0397 0.0394 0.0400 0.0404 

4 3x2ad 18,12 0.0409 0.0393 0.0394 0.0395 

4 3x2ae 18,10 0.0394 0.0389 0.0386 0.0394 

4 3x2af 18,8 0.0403 0.0396 0.0384 0.0393 

4 3x2ag 18,6 0.0383 0.0384 0.0383 0.0379 

4 3x2ah 18,4 0.0379 0.0380 0.0380 0,0378 

4 3x2ai 183,2 0.0386 0.0391 0.0386 0.0386 

4 3x2aj 16,18 0.0404 0.0405 0.0413 0.0410 

4 3x2ak 16,16 0.0404 0.0414 0.0410 0.0400 

4 3x2al 16,14 0.0409 0.0389 0.0394 0.0394 

4 3x2am 16,12 0.0396 0.0393 0.0389 0.0391 

4 3x2an 16,10 0.0380 0.0391 0.0377 0.0398 

4 3x2ao 16,8 0.0385 0.0397 0.0386 0.0386 

4_3x2ap 16,6 0.0378 0.0384 0.0388 0.0377 

4_3x2aq 16,4 0.0380 0.0375 0.0387 0.0380 

4_3x2ar 16,2 0.0387 0.0382 0.0384 0.0382 

4_3x2as 14,18 0.0405 0.0397 0.0398 0.0402 

4 3x2at 14,16 0.0397 0.0393 0.0417 0.0403 

4_3x2au 14,14 0.0389 0.0394 0.0395 0.0387 

4 3x2av 14,12 0.0400 0.0391 0.0385 0.0428 

4 3x2aw 14,10 0.0382 0.0386 0.0387 0.0377 

4_3x2ax 14,8 0.0387 0.0383 0.0394 0.0383 

4 3x2ay 14,6 0.0377 0.0370 0.0384 0.0377 

4_3x2az 14,4 0.0378 0.0380 0.0374 0.0376 

4_3x2ba 14,2 0.0380 0.0379 0.0379 0.0385 

4_3x2bb 12,18 0.0391 0.0395 0.0394 0.0404 

4_3x2bc 12,16 0.0393 0.0390 0.0393 0.0387 

4 3x2bd 12,14 0.0385 0.0393 0.0387 0.0385 

4 3x2be 12 12 0.0387 0.0391 0.0378 0.0394 
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Filename Size of 
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RMS Error 

4_3x2bf 12,10 0.0378 0.0386 0.0379 0.0381 

4 3x2bg 12,8 0.0380 0.0381 0.0373 0.0370 

4_3x2bh 12,6 0.0380 0.0374 0.0381 0.0377 

4_3x2bi 12,4 0.0374 0.0376 0.0377 0.0374 

4 3x2bj 12,2 0.0383 0.0382 0.0385 0.0387 

4_3x2bk 10,18 0.0382 0.0387 0.0398 0.0397 

4 3x2b1 10,16 0.0397 0.0386 0.0386 0.0380 

4_3x2bm 10,14 0.0380 0.0384 0.0398 0.0385 

4_3x2bn 10,12 0.0382 0.0381 0.0386 0.0378 

4_3x2bo 10,10 0.0386 0.0377 0.0390 0.0376 

4 3x2bp 10,8 0.0374 0.0377 0.0383 0.0378 

4_3x2bq 10,6 0.0376 0.0391 0.0376 0.0377 

4 3x2br 10,4 0.0346 0.0363 0.0375 0.0371 

4 3x2bs 10,2 0.0380 0.0370 0.0384 0.0383 

4_3x2bt 8,18 0.0387 0.0383 0.0380 0.0391 

4 3x2bu 8,16 0.0380 0.0383 0.0382 0.0379 

4_3x2bv 8,14 0.0384 0.0382 0.0375 0.0376 

4_3x2bw 8,12 0.0380 0.0375 0.0388 0.0374 

4_3x2bx 8,10 0.0373 0.0370 0.0378 0.0378 

4 3x2by 8,8 0.0369 0.0377 0.0373 0.0369 

4_3x2bz 8,6 0.0360 0.0373 0.0379 0.0373 

4_3x2ca 8,4 0.0349 0.0373 0.0368 0.0380 

4_3x2cb 8,2 0.0382 0.0379 0.0382 0.0376 

4 3x2cc 
Z 1 

6,18 0.0381 0.0390 0.0385 0.0382 
- - 

4_3x2cd 6,16 0.0375 0.0376 0.0393 0.0381 

4 3x2ce 6,14 0.0373 0.0385 0.0382 0.0382 

4_3x2cf 6,12 0.0381 0.0372 0.0372 0.0374 

4_3x2cg 6,10 0.0369 0.0378 0.0378 0.0370 

4 3x2ch 6,8 0.0359 0.0361 0.0357 0.0359 
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RMS Error 

4 3x2ci 6,6 0.0362 0.0364 0.0346 0.0344 

4 3x2cj 6,4 0.0360 0.0372 0.0364 0.0339 

4_3x2ck 6,2 0.0370 0.0379 0.0382 0.0379 

4 3x2c1 4,18 0.0372 0.0369 0.0381 0.0376 

4 3x2cm 4,16 0.0382 0.0377 0.0393 0.0387 

4 3x2cn 4,14 0.0367 0.0378 0.0366 0.0386 

4_3x2co 4,12 0.0383 0.0377 0.0368 0.0409 

4 3x2cp 4,10 0.0378 0.0440 0.0369 0.0368 

4 3x2cq 4,8 0.0368 0.0371 0.0373 0.0377 

4_3x2cr 4,6 0.0368 0.0352 0.0361 0.0367 

4 3x2cs 4,4 0.0371 0.0344 0.0359 0.0389 

4 3x2ct 4,2 0.0383 0.0763 0.0381 0.0370 

4_3x2cu 2,18 0.0780 0.0750 0.0828 0.0774 

4 3x2cv 2,16 0.0580 0.0560 0.0557 0.0822 

4 3x2cw 2,14 0.0845 0.0764 0.0832 0.0855 

4 3x2cx 2,12 0.0878 0.0760 0.0849 0.0753 

4 3x2cy 2,10 0.0533 0.0528 0.0819 0.0543 

4_3x2cz 2,8 0.0755 0.0755 0.0417 0.0699 

4_3x2da 2,6 0.0846 0.0753 0.0687 0.0785 

4 3x2db 2,4 0.0383 0.0523 0.0700 0.0526 

4 3x2dc 2,2 0.0707 0.0801 0.0808 0.0856 

Four Time Steps for One Step Prediction 

4 4xlaa 18 0.0401 0.0402 0.0408 0.0399 

4 4xlab 16 0.0393 0.0393 0.0398 0.0411 

4 4xlac 14 0.0393 0.0402 0.0395 0.0398 

4 4xlad 12 0.0395 0.0390 0.0398 0.0405 

4 4xlae 10 0 0401 0.0407 0.0385 0.0397 
. 
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Filename Size of 

ANN 

RMS Error 

4_4x I af 8 0.0371 0.0381 0.0380 0.0386 

4 4xlag 6 0.0375 0.0381 0.0413 0.0401 

4 4xlah 4 0.0409 0.0377 0.0362 0.0359 

4_4x 1 ai 2 0.0422 0.0428 0.0423 0.0427 

4_4x2aa 18,18 0.0463 0.0448 0.0453 0.0451 

4 4x2ab 18,16 0.0458 0.0453 0.0446 0.0445 

4 4x2ac 18,14 0.0466 0.0449 0.0452 0.0466 

4 4x2ad 18,12 0.0447 0.0445 0.0450 0.0450 

4 4x2ae 18,10 0.0435 0.0442 0.0450 0.0436 

4_4x2af 18,8 0.0439 0.0447 0.0444 0.0447 

4_4x2ag 18,6 0.0432 0.0440 0.0449 0.0437 

4 4x2ah 18,4 0.0447 0.0427 0.0437 0.0431 

4 4x2ai 18,2 0.0441 0.0438 0.0440 0.0439 

4 4x2aj 16,18 0.0463 0.0454 0.0462 0.0453 

4 4x2ak 16,16 0.0450 0.0453 0.0447 0.0456 

4 4x2a1 16,14 0.0445 0.0479 0.0461 0.0452 

4 4x2am 16,12 0.0447 0.0475 0.0444 0.0443 

4 4x2an 16,10 0.0438 0.0441 0.0446 0.0452 

4 4x2ao 16,8 0.0441 0.0438 0.0442 0.0438 

4 4x2ap 16,6 0.0440 0.0432 0.0438 0.0442 

4 4x2aq 162.4 0.0424 0.0438 0.0436 0.0444 

4 4x2ar 16,2 0.0439 0.0439 0.0441 0.0438 

4_4x2as 14,18 0.0448 0.0443 0.0450 0.0446 

4_4x2at 14,16 0.0466 0.0445 0.0442 0.0446 

4_4x2au 14,14 0.0444 0.0450 0.0442 0.0454 

4_4x2av 14,12 0.0455 0.0436 0.0437 0.0445 

4_4x2aw 14,10 0.0442 0.0441 0.0439 0.0439 

4 4x2ax 14,8 0.0443 0.0450 0.0431 0.0427 

4 
_4x2ay 

1426 0.0436 0.0445 0.0426 0.0439 
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Filename Size of 

ANN 

RMS Error 

4 4x2az 14,4 0.0422 0.0438 0.0441 0.0428 

4 4x2ba 14,2 0.0439 0.0443 0.0442 0.0439 

4 4x2bb 12,18 0.0443 0.0439 0.0444 0.0450 

4 4x2bc 12,16 0.0442 0.0446 0.0440 0.0444 

4_4x2bd 12,14 0.0444 0.0437 0.0441 0.0444 

4 4x2be 12,12 0.0442 0.0444 0.0437 0.0433 

4_4x2bf 12,10 0.0436 0.0442 0.0431 0.0432 

4_4x2bg 12,8 0.0434 0.0433 0.0430 0.0438 

4 4x2bh 12,6 0.0424 0.0433 0.0420 0.0414 

4 4x2bi 12,4 0.0408 0.0412 0.0417 0.0433 

4_4x2bj 12,2 0.0438 0.0435 0.0438 0.0441 

4_4x2bk 10,18 0.0442 0.0438 0.0439 0.0447 

4 4x2b1 10,16 0.0435 0.0442 0.0441 0.0450 

4 4x2bm 10,14 0.0437 0.0438 0.0438 0.0438 

4 4x2bn 10,12 0.0433 0.0436 0.0435 0.0432 

4 4x2bo 10,10 0.0435 0.0441 0.0427 0.0434 

4 4x2bp 103,8 0.0437 0.0432 0.0439 0.0429 

4 4x2bq 10,6 0.0431 0.0434 0.0422 0.0430 

4 4x2br 10,4 0.0437 0.0432 0.0430 0.0418 

4 4x2bs 10,2 0.0439 0.0439 0.0438 0.0440 

4 4x2bt 8,18 0.0433 0.0441 0.0438 0.0446 

4_4x2bu 8,16 0.0440 0.0434 0.0429 0.0444 

4 4x2bv 8,14 0.0438 0.0431 0.0435 0.0434 

4_4x2bw 8,12 0.0431 0.0433 0,0428 0.0430 

4_4x2bx 8,10 0.0419 0.0433 0.0443 0.0435 

4 4x2by 8,8 0.0430 0.0421 0.0431 0.0426 

4 4x2bz 83,6 0.0430 0.0413 0.0429 0.0412 

4 4x2ca 8,4 0.0431 ' 0.0416 0.0433 0.0428 

4 4x2cb 872 0.0435 0.0436 0.0438 0.0442 
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Filename Size of 
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RMS Error 

4 4x2cc 6,18 0.0437 0.0431 0.0439 0.0439 

4 4x2cd 6,16 0.0435 0.0432 0.0491 0.0439 

4 4x2ce 6,14 0.0421 0.0430 0.0434 0.0437 

4_4x2cf 6,12 0.0421 0.0419 0.0430 0.0427 

4 4x2cg 6,10 0.0429 0.0427 0.0416 0.0432 

4 4x2ch 6,8 0.0393 0.0433 0.0426 0.0434 

4 4x2ci 6,6 0.0388 0.0408 0.0414 0.0434 

4_4x2cj 6,4 0.0421 0.0408 0.0406 0.0432 

4 4x2ck 6,2 0.0441 0.0435 0.0439 0.0437 

4 4x2c1 4,18 0.0437 0.0430 0.0434 0.0433 

4_4x2cm 4,16 0.0414 0.0458 0.0435 0.0428 

4 4x2cn 4,14 0.0443 0.0413 0.0429 0.0427 

4 4x2co 4,12 0.0425 0.0435 0.0421 0.0413 

4 4x2cp 4,10 0.0432 0.0416 0.0419 0.0414 

4 4x2cq 43,8 0.0433 0.0435 0.0431 0.0431 

4 4x2cr 4,6 0.0412 0.0417 0.0410 0.0436 

4 4x2cs 43.4 0.0391 0.0435 0.0574 0.0412 

4 4x2ct 4,2 0.0437 0.0435 0.0429 0.0435 

4_4x2cu 2,18 0.0922 0.0915 0.0814 0.0795 

4 4x2cv 2,16 0.0834 0.0885 0.0779 0.0798 

4 4x2cw 2,14 0.0873 0.0674 0.0760 0.0885 

4_4x2cx 2,12 0.0742 0.0704 0.0792 0.0887 

4 4x2cy 2,10 0.0797 0.0849 0.0587 0.0494 

4 4x2cz 2,8 0.0562 0.0489 0.0856 0.0836 

4_4x2da 2,6 0.0492 0.0738 0.0472 0.0411 

4 4x2db 2,4 0.0544 0.075 0.0434 0.0459 

4 4x2dc 2,2 0.0428 0.0914 0.0861 0.0470 
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Appendix 

G Results of One Step Prediction Tests 

for Transient 5 

This appendix contains the full results of all the ANNs trained to predict Transient 5 in Section 

5.2. The ANNs were all designed to predict the values of PWR variables one step ahead. Four 

sets of recent PWR variables were used as inputs the ANNs. These were one to four time steps. 

For each input set a range of one and two hidden layer ANNs were developed. The number of 

nodes in the hidden was varied from a maximum of 18 to a minimum of 2. The values in between 

were in steps of two nodes. In the case of two hidden layers both layers were varied between 

these limits. All the ANN training was repeated four times to avoid possible local minima. The 

value recorded in each case is the lowest RMS error for the training. As explained in Chapter 5 

all ANNs were trained for 120,000 cycles of presentation of the training set and then a further 

40,000 iterations with presentation of the test set every 100 cycles. The best performing ANN in 

terms of RMS error was saved for further testing. In the following tables the best RMS error 

result for each ANN architecture is underlined while the best overall ANN for each hidden layer 

configuration is in bold. 
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One Time Step Input for One Step Prediction 

Filename I Size of I RMS Error 

ANN 

5 lxlaa 18 0.0344 0.0345 0.0354 0.0347 

5 lxlab 16 0.0399 0.0361 0.0351 0.0342 

5 lxlac 14 0.0336 0.0349 0.0348 0.0341 

5 lxlad 12 0.0335 0.0336 0.0348 0.0340 

5 lxlae 10 0.0340 0.0342 0.0345 0.0353 

5 lxlaf 8 0.0346 0.0341 0.0359 0.0334 

5 lxlag 6 0.0336 0.0326 0.0343 0.0325 

5 lxlah 4 0.0326 0.0337 0.0334 0.0333 

5 lxlai 2 0.0381 0.0389 0.0381 0.0380 

5 1x2aa 18,18 0.0395 0.0399 0.0398 0.0406 

5 lx2ab 18,16 0.0397 0.0419 0.0390 0.0393 

5 1x2ac 18,14 0.0393 0.0399 0.0397 0.0392 

5 1x2ad 18,12 0.0392 0.0392 0.0391 0.0396 

5 1x2ae 18,10 0.0390 0.0390 0.0390 0.0390 

5 lx2af 18,8 0.0390 0.0389 0.0389 0.0389 

5 lx2ag 18,6 0.0386 0.0387 0.0386 0.0387 

5 lx2ah 18,4 0.0384 0.0387 0.0385 0.0385 

5 1x2ai 18,2 0.0386 0.0383 0.0384 0.0386 

5 lx2aj 16,18 0.0393 0.0392 0.0395 0.0393 

5 1x2ak 16,16 0.0392 0.0394 0.0396 0.0391 

5 1x2al 16,14 0.0394 0.0391 0.0390 0.0393 

5 1x2am 16,12 0.0396 0.0397 0.0390 0.0388 

5 1x2an 16,10 0.0390 0.0393 0.0389 0.0390 

5 1x2ao 16,8 0.0388 0.0388 0.0390 0,0386 

5 lx2ap 16,6 0.0391 0.0386 0.0385 0.0388 

5 1x2aq 16,4 0.0384 0.0383 0.0385 0.0381 

5 1x2ar 16,2 0.0386 0.0385 0.0384 0.0387 
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Filename Size of 

ANN 

RMS Error 

5 lx2as 14,18 0.0395 0.0391 0.0392 0.0394 

5 lx2at 14,16 0.0394 0.0392 0.0389 0.0389 

5_lx2au 14,14 0.0388 0.0392 0.0390 0.0387 

5_lx2av 14,12 0.0388 0.0388 0.0389 0.0385 

5 lx2aw 14,10 0.0388 0.0387 0.0389 0.0390 

5_lx2ax 14,8 0.0388 0.0390 0.0389 0.0386 

5_lx2ay 14,6 0.0386 0.0387 0.0387 0.0385 

5 lx2az 14,4 0.0384 0.0383 0.0385 0.0381 

5 lx2ba 14,2 0.0385 0.0385 0.0384 0.0389 

5 lx2bb 12,18 0.0388 0.0389 0.0393 0.0391 

5 lx2bc 12,16 0.0391 0.0391 0.0391 0.0392 

5 lx2bd 12,14 0.0386 0.0387 0.0392 0.0390 

5 lx2be 12,12 0.0390 0.0387 0.0388 0.0388 

5 lx2bf 12,10 0.0385 0.0386 0.0388 0.0388 

5_lx2bg 12,8 0.0383 0.0389 0.0387 0.0384 

5_lx2bh 12,6 0.0383 0.0381 0.0384 0.0383 

5 lx2bi 12,4 0.0385 0.0382 0.0380 0.0378 

51 x2bj 12,2 0.0388 0.0385 0.0386 0.0383 

5 lx2bk 10,18 0.0388 0.0387 0.0388 0.0392 

5_lx2bl 10,16 0.0386 0.0389 0.0387 0.0389 

5 lx2bm 10,14 0.0386 0.0386 0.0391 0.0384 

5 lx2bn 10,12 0.0384 0.0392 0.0389 0.0389 

5 lx2bo 10,10 0.0387 0.0385 0.0388 0.0385 

5_lx2bp 10,8 0.0385 0.0386 0.0383 0.0385 

5_lx2bq 10,6 0,0376 0.0378 0.0379 0.0379 

5 lx2br 10,4 0.0384 0.0377 0.0377 0.0387 

5 lx2bs 10,2 0.0383 0.0384 0.0385 0.0388 
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5 lx2bt 8,18 0.0389 0.0388 0.0386 0.0387 

5 lx2bu 8,16 0.0386 0.0389 0.0390 0.0389 

5 lx2bv 8,14 0.0387 0.0388 0.0385 0.0385 

5 lx2bw 8,12 0.0382 0.0387 0.0383 0.0384 

5 lx2bx 8,10 0.0386 0.0388 0.0383 0.0385 

5 lx2by 8,8 0.0388 0.0386 0.0383 0.0385 

5_lx2bz 8,6 0.0386 0.0382 0.0385 0.0378 

5 lx2ca. 8,4 0.0380 0.0382 0.0385 0.0377 

5 lx2cb 8,2 0.0385 0.0384 0.0381 0.0383 

5 lx2cc 6,18 0.0390 0.0389 0.0385 0.0385 

5 lx2cd 6,16 0.0389 0.0387 0.0384 0.0385 

5 lx2ce 6,14 0.0390 0.0389 0.0389 0.0381 

5_lx2cf 6,12 0.0383 0.0383 0.0381 0.0387 

5_lx2cg 6,10 0.0382 0.0382 0.0384 0.0385 

5 lx2ch 6,8 0.0381 0.0387 0.0384 0.0391 

5 lx2ci 6,6 0.0384 0.0377 0.0380 0.0387 

51 x2cj 6,4 0.0381 0.0385 0.0380 0.0384 

5 lx2ck 6,2 0.0387 0.0384 0.0384 0.0383 

5 lx2cl 4,18 0.0390 0.0599 0.0389 0.0391 

5 lx2cm 4,16 0.0378 0.0387 0.0393 0.0386 

51 x2cn 4,14 0.0383 0.0384 0.0393 0.0390 

5 lx2co 4,12 0.0391 0.0388 0.0382 0.0380 

5_lx2cp 4,10 0.0380 0.0386 0.0377 0.0385 

5_lx2cq 4,8 0.0383 0.0387 0.0384 0.0383 

5 lx2cr 4,6 0.0380 0.0378 0.0380 0.0384 

5 lx2cs 4,4 0.0383 0.0372 0.0376 0.0374 

5 lx2ct 4,2 0.0387 0.0386 0.0386 0.0384 
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5 lx2cu 2,18 0.0583 0.0568 0.0556 0.0569 

5 lx2cv 2,16 0.0438 0.0545 0.0767 0.0581 

5_lx2cw 2,14 0.0614 0.0574 0.0576 0.0577 

5 lx2cx 2,12 0.0573 0.0551 0.0587 0.0422 

5_lx2cy 2,10 0.0473 0.0405 0.0581 0.0567 

5_lx2cz 2,8 0.0558 0.0465 0.0413 0.0434 

5 lx2da 2,6 0.0388 0.0394 0.0430 0.0564 

5 lx2db 2,4 0.0384 0.0416 0.0386 0.0461 

5 lx2dc 22 0.0433 0.0387 0.0781 0.0716 

Two Time Steps Input for One Step Prediction 

5 2xlaa 18 0.0367 0.0362 0.0343 0.0357 

2x1ab 16 0.0355 0.0364 0.0339 0.0376 

5 2xlac 

F F 

14 0.0356 0,0344 0.0344 0.0350 

5 2xlad 22 12 0.0318 0.0345 0.0345 0.0350 

5 2xlae 10 0,0325 0.0346 0.0339 0.0347 

5_2xlaf 8 0.0363 0.0331 0.0363 0.0364 

5_2x I ag 6 0.0328 0.0369 0.0333 0.0315 

5 2xl ah 4 0.0379 0.0313 0.0303 0.0325 

5 2xlai 2 0.0390 0.0391 0,0387 0.0389 

5_2x2aa 18,18 0.0414 0.0417 0.0422 0.0415 

5_2x2ab 18,16 0.0417 0.0423 0.0415 0.0425 

5_2x2ac 18,14 0.0405 0.0418 0.0438 0.0414 

5_2x2ad 18,12 0.0412 0.0409 0.0427 0.0411 

5_2x2ae 18,10 0.0412 0.0414 0.0411 0.0414 

5_2x2af 18,8 0.0411 0.0406 0.0411 0.0405 

5_2x2ag 18,6 0.0399 0.0404 0.0407 0.0401 

5 2x2ah 18,4 0.0394 0.0398 0.0408 0.0399 
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5 2x2ai 183,2 0.0402 0.0407 0.0419 0.0411 

5 2x2aj 16,18 0.0419 0.0461 0.0423 0.0415 

5 2x2ak 16,16 0.0424 0.0416 0.0421 0.0414 

5 2x2a1 16,14 0.0410 0.0418 0.0415 0.0410 

5 2x2am 16,12 0.0409 0.0415 0.0414 0.0410 

5_2x2an 16,10 0.0407 0.0409 0.0405 0.0409 

5 2x2ao 16,8 0.0420 0.0407 0.0414 0.0408 

5 2x2ap 16,6 0.0400 0.0399 0.0395 0.0401 

5 2x2aq 16,4 0.0403 0.0401 0.0395 0.0406 

5 2x2ar 16,2 0.0402 0.0403 0.0413 0.0411 

5_2x2as 14,18 0.0433 0.0418 0.0428 0.0427 

5_2x2at 14,16 0.0423 0.0419 0.0414 0.0415 

5 2x2au 14,14 0.0415 0.0406 0.0408 0.0427 

5 2x2av 14,12 0.0413 0.0407 0.0409 0.0406 

5 2x2aw 14,10 0.0408 0.0408 0.0410 0.0406 

5 2x2ax 14,8 0.0411 0.0406 0.0408 0.0410 

5_2x2ay 14,6 0.0408 0.0401 0.0397 0.0410 

5 2x2az 14,4 0.0395 0.0390 0.0406 0.0403 

5 2x2ba 14,2 0.0406 0.0410 0.0402 0.0411 

5 2x2bb 12,18 0.0410 0.0416 0.0407 0.0405 

5 2x2bc 12,16 0.0405 0.0422 0.0413 0.0409 

5_2x2bd 12,14 0.0408 0.0413 0.0407 0.0400 

5 2x2be 12,12 0.0408 0.0401 0.0409 0.0404 

S 2x2bf 12,10 0.0406 0.0395 0.0399 0.0408 

5 2x2bg 12,8 0.0405 0.0410 0.0397 0.0411 

5 2x2bh 12,6 0.0400 0.0397 0.0393 0.0404 

5_2x2bi 12,4 0.0387 0.0396 0.0400 0.0400 

5 2x2bj 12,2 0,0393 0.0404 0.0401 0.0411 

5 2x2bk 10 18 0.0407 0.0406 0.0414 0.0401 
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5 2x2b1 10,16 0.0409 0.0399 0.0409 0.0404 

5 2x2bm 10,14 0.0403 0.0396 0.0411 0.0405 

5 2x2bn 10,12 0.0406 0.0401 0.0399 0.0401 

5_2x2bo 10,10 0.0403 0.0411 0.0394 0.0396 

5 2x2bp 10,8 0,0395 0.0399 0.0400 0.0403 

5_2x2bq 10,6 0.0398 0.0404 0.0392 0.0394 

5_2x2br 10,4 0.0400 0.0409 0.0399 0.0402 

5_2x2bs 10,2 0.0393 0.0391 0.0407 0.0396 

5 2x2bt 8,18 0.0405 0.0401 0.0404 0.0400 

5_2x2bu 8,16 0.0403 0.0403 0.0406 0.0399 

5_2x2bv 8,14 0.0388 0.0400 0.0405 0.0405 

5_2x2bw 8,12 0.0396 0.0400 0.0398 0.0397 

5_2x2bx 8,10 0.0394 0.0399 0.0399 0.0398 

5 2x2by 8,8 0.0399 0.0407 0.0400 0.0399 

5_2x2bz 8,6 0.0398 0.0395 0.0403 0.0406 

5_2x2ca 8,4 0.0400 0.0391 0.0397 0.0406 

5 2x2cb 8,2 0.0400 0.0407 0.0404 0.0411 

5 2x2cc 6,18 0.0394 0.0402 0.0402 0.0399 

5 2x2cd 6,16 0.0400 0.0405 0.0399 0.0405 

5_2x2ce 6,14 0.0387 0.0395 0.0397 0.0389 

5_2x2cf 6,12 0.0403 0.0396 0.0400 0.0405 

5_2x2cg 6,10 0.0392 0.0398 0.0399 0.0400 

5 2x2ch 6,8 0.0386 0.0403 0.0394 0.0396 

5 2x2ci 6,6 0.0395 0.0400 0.0376 0.0382 

5 2x2cj 6,4 0.0388 0.0380 0.0395 0.0379 

5_2x2ck 6,2 0.0409 0.0402 0.0401 0.0409 

5 2x2c1 4,18 0.0423 0.0399 0.0391 0.0401 

5 2x2cm 4,16 0.0403 0.0396 0.0399 0.0402 

5 2x2cn 4,14 0.0393 0.0394 0.0394 0.0403 
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5_2x2co 4,12 0.0401 0.0399 0.0389 0.0400 

5_2x2cp 4,10 0.0392 0.0400 0.0384 0.0390 

5_2x2cq 4,8 0.0401 0.0388 0.0383 0.0400 

5_2x2cr 4,6 0.0396 0.0383 0.0390 0.0355 

5_2x2cs 4,4 0.0371 0.0382 0.0390 0.0379 

5 2x2ct 4,2 0.0409 0.0402 0.0394 0.0406 

5 2x2cu 2,18 0.0764 0.0822 0.0587 0.0837 

5 2x2cv 2,16 0.0719 0.0769 0.0542 0.0748 

5 2x2cw 2,14 0.0532 0.0744 0.0714 0.0750 

5_2x2cx 2,12 0.0820 0.0732 0.0810 0.0530 

5 2x2cy 2,10 0.0641 0.0595 0.0672 0.0515 
E5 

2x2cz 2,8 0.0821 0.0519 0.0411 0.0706 

5 2x2da 2,6 0.0754 0.0683 0.0400 0.0739 

5_2x2db 2,4 0.0720 0.0382 0.0401 0.0688 

5 2x2dc 2,2 0.0416 0.0402 0.0401 0.0392 

Three Time Steps for One Step Prediction 

5_3xlaa 18 0.0342 0.0341 0.0341 0.0327 

5_3xlab 16 0.0353 0.0359 0.0354 0.0348 

5 3xlac 14 0.0359 0.0331 0.0337 0.0351 

5_3xlad 12 0.0328 0.0329 0.0321 0.0347 

5_3xlae 10 0.0309 0.0303 0.0314 0.0328 

5_3xlaf 8 0.0344 0.0325 0.0344 0.0306 

5 3xlag 6 0.0293 0.0292 0.0327 0.0291 

5_3xlah 4 0.0314 0.0307 0.0314 0.0345 

5_3xlai 2 0.0503 0.0366 0.0367 0.0422 

5 3x2aa 18,18 0.0411 0.0398 0.0404 0.0404 

5 3x2ab 18,16 0.0401 0.0402 0.0438 0.0409 
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Filename Size of 

ANN 

RMS Error 

5 3x2ac 18,14 0.0415 0.0401 0.0411 0.0403 

5 3x2ad 18,12 0.0388 0.0403 0.0399 0.0404 

5_3x2ae 18,10 0.0398 0.0396 0.0393 0.0424 

5 3x2af 18,8 0.0385 0.0387 0.0386 0.0388 

5_3x2ag 18,6 0.0380 0.0383 0.0382 0.0376 

5_3x2ah 18,4 0.0375 0.0372 0.0377 0.0388 

5_3x2ai 18,2 0.0385 0.0384 0.0382 0.0381 

5 3x2aj 16,18 0.0412 0.0403 0.0402 0.0393 

5_3x2ak 16,16 0.0429 0.0400 0.0400 0.0411 

5 3x2al 16,14 0.0405 0.0394 0.0394 0.0398 

5 3x2am 16,12 0.0390 0.0401 0.0400 0.0435 

5_3x2an 16,10 0.0383 0.0394 0.0386 0.0393 

5_3x2ao 16,8 0.0386 0.0383 0.0385 0.0407 

5_3x2ap 16,6 0.0383 0.0382 0.0370 0.0385 

5_3x2aq 16,4 0.0384 0.0371 0.0383 0.0385 

5_3x2ar 16,2 0.0380 0.0380 0.0380 0.0382 

5 3x2as 14,18 0.0395 0.0412 0.0388 0.0395 

5 3x2at 14,16 0.0382 0.0404 0.0394 0.0385 

5 3x2au 14,14 0.0401 0.0400 0.0399 0.0397 

5 3x2av 14,12 0.0385 0.0388 0.0379 0.0384 

5_3x2aw 14,10 0.0381 0.0386 0.0389 0.0381 

5_3x2ax 14,8 0.0379 0.0400 0.0399 0.0384 

5_3x2ay 14,6 0.0382 0.0378 0.0370 0.0381 

5_3x2az 14,4 0.0390 0.0382 0.0380 0.0374 

5 3x2ba 14,2 0.0383 0.0384 0.0382 0.0384 

5 3x2bb 12,18 0.0398 0.0391 0.0396 0.0392 

5 3x2bc 12,16 0.0390 0.0389 0.0391 0.0393 

5_3x2bd 12,14 0.0392 0.0388 0.0385 0.0409 

5 3x2be 12 12 0.0389 0.0383 0.0392 0.0398 
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Filename Size of 

ANN 

RMS Error 

5_3x2bf 12,10 0.0382 0.0369 0.0381 0.0388 

5 3x2bg 12,8 0.0376 0.0378 0.0377 0.0377 

5_3x2bh 12,6 0.0376 0.0383 0.0378 0.0377 

5_3x2bi 12,4 0.0381 0.0370 0.0371 0.0367 

5_3x2bj 12,2 0.0382 0.0376 0.0375 0.0384 

5_3x2bk 10,18 0.0390 0.0403 0.0390 0.0389 

5 3x2b1 10,16 0.0388 0.0383 0.0388 0.0385 

5 3x2bm 10,14 0.0384 0.0387 0.0383 0.0385 

5 3x2bn 10,12 0.0386 0.0386 0.0381 0.0381 

5 3x2bo 10,10 0.0379 0.0374 0.0385 0.0375 

5 3x2bp 10,8 0.0382 0.0375 0.0376 0.0376 

5 3x2bq 10,6 0.0371 0.0368 0.0362 0.0377 

5 3x2br 10,4 0.0374 0.0368 0.0373 0.0374 

5 3x2bs 10,2 0.0380 0.0394 0.0380 0.0382 

5 3x2bt 8,18 0.0385 0.0386 0.0384 0.0403 

5 3x2bu 8,16 0.0384 0.0384 0.0386 0.0384 

5 3x2bv 8,14 0.0382 0.0385 0.0389 0.0381 

5 3x2bw 8,12 0.0381 0.0380 0.0389 0.0372 

5_3x2bx 8,10 0.0382 0.0362 0.0377 0.0373 

5_3x2by 8,8 0.0374 0.0377 0.0373 0.0376 

5 3x2bz 8,6 0.0362 0.0368 0.0370 0.0372 

5_3x2ca 8,4 0.0371 0.0368 0.0358 0.0379 

5_3x2cb 8,2 0.0377 0.0381 0.0379 0.0373 

5_3x2cc 6,18 0.0386 0.0402 '0.0378 0.0384 

5 3x2cd 6,16 0.0377 0.0373 0.0399 0.0387 

5_3x2ce 6,14 0.0373 0.0374 0.0382 0.0377 

5_3x2cf 6,12 0.0378 0.0373 0.0372 0.0380 

5_3x2cg 6,10 0.0370 0.0347 0.0372 0.0382 

5 3x2ch 6,8 0.0370 0.0363 0.0373 0.0370 
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Filename Size of 
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RMS Error 

5 3x2ci 6,6 0.0353 0.0364 0.0369 0.0365 

5 3x2cj 6,4 0.0340 0.0359 0.0364 0.0367 

5 3x2ck 6,2 0.0380 0.0373 0.0381 0.0382 

5 3x2c1 4,18 0.0376 0.0467 0.0410 0.0377 

5 3x2cm 4,16 0.0382 0.0363 0.0355 0.0382 

5 3x2cn 4,14 0.0369 0.0385 0.0374 0.0364 

5 3x2co 4,12 0.0371 0.0359 0.0370 0.0423 

5 3x2cp 4,10 0.0363 0.0359 0.0376 0.0365 

5 3x2cq 4,8 0.0372 0.0355 0.0370 0.0380 

5 3x2cr 4,6 0.0353 0.0357 0.0348 0.0366 

5 3x2cs 4,4 0.0352 0.0342 0.0356 0.0352 

5 3x2ct 4,2 0.0365 0.0376 0.0379 0.0378 

5 3x2cu 2,18 0.0848 0.0830 0.0760 0.0829 

5 3x2cv 2,16 0.0769 0.0769 0.0731 0.0854 

5 3x2cw 2,14 0.0754 0.0842 0.0761 0.0775 

5_3x2cx 2,12 0.0752 0.0540 0.0764 0.0687 

5_3x2cy 2,10 0.0766 0.0770 0.0827 0.0756 

5_3x2cz 2,8 0.0752 0.0514 0.0529 0.0752 

5 3x2da 2,6 0.0784 0.0769 0.0824 0.0415 

5 3x2db 2,4 0.0692 0.0825 0.0830 0.0396 

5 3x2dc 22 0.0864 0.0426 0.0378 0.0380 

Four Time Steps for One Step Prediction 

5_4xlaa 18 0.0388 0.0388 0.0390 0.0395 

5 4xlab 16 0.0388 0.0377 0.0383 0.0373 

5 4xlac 14 0.0382 0.0390 0.0383 0.0388 

5 4xlad 12 0.0384 0.0387 0.0377 0.0381 

5 4xlae 10 0.0378 0.0387 0.0366 0.0371 
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5 4xlaf 8 0.0368 0.0369 0.0388 0.0374 

5 4xlag 6 0.0383 0.0362 0.0370 0.0364 

5 4xlah 4 0.0351 0.0380 0.0381 0.0356 

5 4xlai 2 0.0391 0.0390 0.0390 0.0397 

5 4x2aa 18,18 0.0458 0.0467 0.0457 0.0486 

5 4x2ab 18,16 0.0450 0.0454 0.0460 0.0462 

5 4x2ac 18,14 0.0455 0.0445 0.0459 0.0453 

5 4x2ad 18,12 0.0445 0.0442 0.0449 0.0443 

5 4x2ae 18,10 0.0457 0.0430 0.0448 0.0451 

5 4x2af 18,8 0.0436 0.0436 0.0442 0.0438 

5_4x2ag 18,6 0.0438 0.0434 0.0438 0.0436 

5_4x2ah 18,4 0.0429 0.0436 0.0435 0.0440 

5 4x2ai 18,2 0.0436 0.0438 0.0439 0.0437 

5 4x2aj 16,18 0.0452 0.0498 0.0457 0.0457 

5 4x2ak 16,16 0.0451 0.0447 0.0466 0.0444 

5 4x2a1 16,14 0.0444 0.0447 0.0445 0.0446 

5_4x2am 16,12 0.0443 0.0445 0.0443 0.0450 

5 4x2an 16,10 0.0439 0.0436 0.0443 0.0439 

5_4x2ao 16,8 0.0440 0.0440 0.0436 0.0440 

5_4x2ap 16,6 0.0437 0.0438 0.0443 0.0446 

5 4x2aq 16,4 0.0437 0.0434 0.0440 0.0432 

5 4x2ar 16,2 0.0441 0.0440 0.0441 0.0442 

5 4x2as 14,18 0.0453 0.0449 0.0448 0.0479 

5 4x2at 14,16 0.0440 0.0444 0.0447 0.0443 

5 4x2au 14,14 0.0462 0.0455 0.0444 0.0441 

5 4x2av 14,12 0.0439 0.0437 0.0438 0.0440 

5 4x2aw 14,10 0.0437 0.0436 0.0441 0,0436 

5 4x2ax 14,8 0.0427 0.0442 0.0434 0.0443 

5 4x2a 14,6 0.0436 0.0428 0.0438 0.0433 
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5_4x2az 1424 0.0415 0.0427 0.0412 0.0440 

5 4x2ba 14,2 0.0440 0.0434 0.0437 0.0440 

5_4x2bb 12,18 0.0441 0.0443 0.0448 0.0444 

5 4x2bc 12,16 0.0448 0,0439 0.0441 0.0451 

5 4x2bd 12,14 0.0440 0.0436 0.0443 0.0447 

5 4x2be 12,12 0.0438 0.0440 0.0432 0.0435 

5 4x2bf 12,10 0.0436 0.0435 0.0425 0.0436 

5 4x2bg 12,8 0.0441 0.0432 0.0441 0.0435 

5 4x2bh 12,6 0.0428 0.0435 0.0425 0.0429 

5_4x2bi 12,4 0.0434 0.0421 0.0435 0.0427 

5 4x2bj 12,2 0.0438 0.0439 0.0442 0.0439 

5 4x2bk 10,18 0.0443 0.0462 0.0436 0.0439 

5 4x2b1 10,16 0.0438 0.0447 0.0440 0.0434 

5_4x2bm 10,14 0.0433 0.0438 0.0440 0.0434 

5_4x2bn 10,12 0.0445 0.0440 0.0434 0.0437 

5 4x2bo 10,10 0.0436 0.0431 0.0431 0.0437 

5_4x2bp 10,8 0.0442 0.0441 0.0436 0.0422 

5 4x2bq 10,6 0.0434 0.0424 0.0420 0.0428 

5 4x2br 103,4 0.0427 0.0427 0.0433 0.0425 

5 4x2bs 10,2 0.0440 0.0439 0.0436 0.0435 

5 4x2bt 8,18 0.0435 0.0440 0.0440 0.0463 

5_4x2bu 8,16 0.0429 0.0442 0.0437 0.0433 

5 4x2bv 8,14 0.0433 0.0437 0.0425 0.0432 

5_4x2bw 8,12 0.0436 0.0438 0.0420 0.0432 

5 4x2bx 8,10 0.0430 0.0443 0.0439 0.0432 

5 4x2by 8,8 0.0424 0.0431 0.0424 0.0432 

5 4x2bz 83,6 0.0441 0.0435 0.0426 0.0432 

5 4x2ca 8,4 0.0417 0.0405 0.0423 0.0422 

5 4x2cb 8,2 0.0428 0.0434 0.0438 0.0437 
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5 4x2cc 6,18 0.0432 0.0434 0.0436 0.0431 

5 4x2cd 6,16 0.0434 0.0436 0.0433 0.0429 

5 4x2ce 6,14 0.0430 0.0434 0.0425 0.0435 

5 4x2cf 6,12 0.0423 0.0414 0.0428 0.0429 

5 4x2cg 6,10 0.0408 0.0412 0.0418 0.0431 

5 4x2ch 6,8 0.0419 0.0408 0.0414 0.0419 

5_4x2ci 6,6 0.0419 0.0422 0.0421 0.0427 

5 4x2cj 61,4 0.0385 0.0426 0.0436 0.0420 

5 4x2ck 6,2 0.0435 0.0432 0.0437 0.0436 

5 4x2c1 4,18 0.0417 0.0403 0.0426 0.0457 

5 4x2cm 4,16 0.0417 0.0433 0.0429 0.0433 

5_4x2cn 4,14 0.0417 0.0428 0.0553 0.0430 

5 4x2co 4,12 0.0432 0,0430 0.0440 0.0436 

5 4x2cp 4,10 0.0423 0.0413 0.0430 0.0423 

5 4x2cq 4,8 0.0399 0.0417 0.0422 0.0434 

5 4x2cr 4,6 0.0433 0.0415 0.0432 0.0413 

5 4x2cs 4,4 0.0400 0.0404 0.0434 0.0424 

5 4x2ct 4,2 0.0437 0.0438 0.0436 0.0439 

5 4x2cu 2,18 0.0840 0.0856 0.0828 0.0885 

5 4x2cv 2,16 0.0608 0.0882 0.0864 0.0876 

5 4x2cw 2,14 0.0873 0.0707 0.0751 0.0817 

5 4x2cx 2,12 0.0507 0.0800 0.0808 0.0874 

5 4x2cy 2,10 0.0754 0.0894 0.0880 0.0887 

5_4x2cz 2,8 0.0584 0.0742 0.0838 0.0736 

5 4x2da 2,6 0.0817 0.0469 0.0768 0.0458 

5 4x2db 2,4 0.0913 0.0588 0.0746 0.0430 

5 4x2dc 2,2 0.0877 0.0827 0.0436 0.0424 
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Appendix 

H Results of Training an ANN to Predict 

Different Transients 

This appendix contains the full results of all the ANNs trained to predict combinations of the three 
Transients introduced in Section 5.5. The ANNs were all designed to predict the values of the 
PWR variables one step ahead. Two time steps of recent plant data was used as inputs the ANNs. 

For each combination of transient pairs a set of one hidden layer ANNs were developed. The 

number of nodes in the hidden layer was varied from a maximum of 20 to a minimum of 10. All 

the ANN training was repeated four times to avoid possible local minima. The value recorded in 

each case is the lowest RMS error for the training. All ANNs were trained for 60,000 cycles of 

presentation of the training set and then a further 20,000 iterations with presentation of the test 

set every 100 cycles. The best performing ANN in terms of RMS error was saved for further 

testing. 
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Results of Training an ANN to Predict Different Transients 

Filename Size of ANN Training Set Test Set RMS Error 

a bx. nnd 16-9-7 a btral. nna a_btesl. nna 0.027 

a bl. nnd 15-20-7 a btra. nna a btes. nna 0.0243 

a blx. nnd 16-10-7 a btral. nna a btes1. nna 0.0255 

a b2. nnd 15-20-7 a_btra. nna a_btes. nna 0.0263 

a_b2x. nnd 16-11-7 a btral. nna a_btesl. nna 0.0252 

a_b3. nnd 15-10-7 a_btra. nna a btes. nna 0.0252 

a b3x. nnd 16-12-7 a btral. nnd a btesl. nna 0.0246 

a b4. nnd 15-11-7 a btra. nna a_btes. nna 0.0251 

a_b4x. nnd 16-13-7 a btral. nnd a btesl. nnd 0.0254 

a_b5x. nnd 16-14-7 a btral. nnd a btes1. nnd 0.0251 

a b6x. nnd 16-12-7 a btral. nnd a_btesl. nnd 0.026 

a cl. nnd 15-20-7 a ctra. nnd a ctes. nnd 0.0236 

a_c2. nnd 15-20-7 a ctra. nnd a_ctes. nnd 0.0235 

a c3. nnd 15-10-7 a_ctra. nnd a_ctes. nnd 0.0228 

a c4. nnd 15-12-7 a_ctra. nnd a_ctes. nnd 0.0247 

a_c5. nnd 15-11-7 a_ctra. nnd a_ctes. nnd 0.0232 

a_c9. nnd 15-10-7 a_ctra. nnd a_ctes. nnd 0.023 

b_c. nnd 15-1-7 b_ctra. nnd b_ctes. nna 0.1332 

b_cl. nnd 15-20-7 b ctra. nnd b ctes. nna 0.0547 

b_c9. nnd 15-10-7 b_ctra. nnd b_ctes. nna 0.0528 

abc. nnd 15-20-7 ab ctra. nnd ab ctes. nnd 0.0229 

ab c1. nnd 15-20-7 ab ctra. nnd ab ctes. nnd 0.0250 

ab c2. nnd 15-10-7 ab ctra. nnd ab ctes. nnd 0.0230 

ab c3. nnd 15-11-7 ab ctra. nnd ab ctes. nnd 0.0235 

ab c4. nnd 15-12-7 ab ctra. nnd ab ctes. nnd 0.0238 

ab c5. nnd 15-13-7 ab ctra. nnd ab ctes. nnd 0.0246 

ab c9. nnd 15-10-7 ab ctra. nnd ab ctes. nnd 
_2.0235_jl 
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Appendbc 

Results of Training an ANN to Predict 

Transients with different forms of Input 

This appendix contains the full results of all the ANNs trained to predict Transients with different 

forms of inputs as introduced in Section 5.6. The ANNs were all designed to predict the values 

of the PWR variables one step ahead. Two time steps of recent plant data was used as inputs the 

ANNs. For each combination of transient pairs a set of one hidden layer ANNs were developed. 

The number of nodes in the hidden layer was varied between 5 and 7. All the ANN training was 

repeated four times to avoid possible local minima. The value recorded in each case is the lowest 

RMS error for the training. All ANNs were trained for 100,000 cycles of presentation of the 

training set and then a further 20,000 iterations with presentation of the test set every 100 cycles. 
The best performing ANN in terms of RMS error was saved for further testing. The'*' in the 

training/test column indicates tra for the training file and tes for the test file, ie an ANN using 

squ *4. nna has a training file named squ tra4. nna and a test file named squ tes4. nna. 
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Results of Training an ANN for different forms of input 

Filename Size of ANN Train/Test Transfer RMS Error 

tesla. nnd 10-5-2 tesl*. nna TanH 0.0674 

teslb. nnd 10-5-2 tesl*. nna TanH 0.0348 

teslc. nnd 10-4-2 tesl*. nna TanH 0.0296 

teslg. nnd 10-5-2 tesl*. nna TanH 0.0465 

teslh. nnd 10-5-2 tesl*. nna TanH 0.0419 

tesli. nnd 10-5-2 tesl*. nna TanH 0.0286 

teslj. nnd 10-5-2 tesl*. nna TanH 0.0481 

teslk. nnd 10-5-2 tesl*. nna TanH 0.0565 

tesll. nnd 10-5-2 tesl *. nna TanH 0.0406 

teslm. nnd 10-5-2 tesl*. nna TanH 0.0496 

tesln. nnd 10-5-2 tesl*. nna TanH 0.0470 

teslo. nnd 10-5-2 tesl*. nna TanH 0.0565 

tes2a. nnd 10-5-2 tes2*. nna TanH 0.0256 

tes2b. nnd 10-5-2 tes2*. nna TanH 0.0512 

tes2c. nnd 10-6-2 tes2*. nna TanH 0.0336 

tes2d. nnd 10-6-2 tes2*. nna TanH 0.0165 

tes2e. nnd 10-5-2 tes2*. nna TanH 0.0093 

tes3a. nnd 10-5-2 tes3*. nna TanH 0.0373 

tes3b. nnd 10-5-2 tes3*. nna TanH 0.0349 

tes3c. nnd 10-5-2 tes3*. nna TanH 0.0130 

tes4a. nnd 10-5-2 tes4*. nna TanH 0.0191 

tes4b. nnd 10-5-2 tes4*. nna TanH 0.0342 

tes5a. nnd 10-6-2 tes5*. nna TanH 0.0512 

tes5b. nnd 10-5-2 tes5*. nna TanH 0.0304 

tes5c. nnd 10-5-2 tes5*. nna TanH 0.0296 
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Filename Size of ANN Train/Test Transfer RMS Error 

tes5d. nnd 10-6-2 tes5*. nna TanH 0.0286 

tes5g. nnd 10-5-2 tes5*. nna TanH 0.0559 

tes5h. nnd 10-5-2 tes5*. nna TanH 0.0317 

tes5i. nnd 10-5-2 tes5*. nna TanH 0.0492 

tes5j. nnd 10-5-2 tes5*. nna TanH 0.0305 

tes5k. nnd 10-5-2 tes5*. nna TanH 0.0320 

tes5l. nnd 10-5-2 tes5*. nna TanH 0.0446 

tes5m. nnd 10-5-2 tes5*. nna TanH 0.0443 

tes5n. nnd 10-5-2 tes5*. nna TanH 0.0469 

tes5o. nna 10-5-2 tes5*. nna TanH 0.0346 

tesalla. nnd 10-5-2 allt*. nna TanH 0.0549 

tesallb. nnd 10-6-2 alit*. nna TanH 0.0513 

tesallc. nnd 10-7-2 alit*. nna TanH 0.0603 

tesallg. nnd 10-6-2 alit*. nna TanH 0.0564 

tesallh. nnd 10-6-2 allt*. nna TanH 0.0448 

tesalli. nnd 10-6-2 allt*. nna TanH 0.0598 

tesallj. nnd 10-6-2 allt*. nna TanH 0.0554 

tesallk. nnd 10-6-2 allt*. nna TanH 0.0616 

tesalll. nnd 10-6-2 allt*. nna TanH 0.0535 

tesallm. nnd 10-6-2 allt*. nna TanH 0.0591 

tesalln. nnd 10-6-2 allt*. nna TanH 0.0489 

tesallo. nnd 10-6-2 allt*. nna TanH 0.0638 
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Appendix 

J Results of Training an ANN to Predict Linearity 

This appendix contains the full results of all the ANNs trained to predict linearity in a transient 

curve as discussed in Section 6.3.3.1. Each ANNs consisted of a single input, for the % linearity, 

and single output node, for predicted PWR variable value. For each percentage linearity a set of 

one hidden layer ANNs were developed. The number of nodes in the hidden layer was varied 
between 5 and S. All the ANN training was repeated four times to avoid possible local minima. 

The value recorded in each case is the lowest RMS error for the training. All ANNs were trained 

for 40,000 cycles of presentation of the training set and then a further 10,000 iterations with 

presentation of the test set every 100 cycles. The best performing ANN in terms of RMS error 

was saved for further testing. 
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Filename Suffix Transfer HL Nodes RMS Error 

25aa 1 Sine 5 0.046304 

2 6 0.045032 

3 7 0.040742 

4 8 0.043617 

25ab 1 Tanh 5 0.028471 

2 6 0.027906 

3 7 0.028692 

4 8 0.034959 

25ac 1 Linear 5 0.284452 

2 6 0.284396 

3 7 0.284266 

4 8 0.284231 

25ba 1 Sine 5 0.037717 

2 6 0.035634 

3 7 0.035739 

4 8 0.03 6242 

25bb 1 Tanh 5 0.022907 

2 6 0.028809 

3 7 0.025364 

4 8 0.027814 

25bc 1 Linear 5 0.370216 

2 6 0.370231 

3 7 0.370067 

4 8 0.369972 

25ca 1 Sine 5 0.036780 

2 6 0.037091 

3 
- - 

7 0.035745 

4 
J 

_ 
8J 0.035910 
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Filename Suffix Transfer HL Nodes RMS Error 

25cb 1 Tanh 5 0.027190 

2 6 0.029554 

3 7 0.026856 

4 8 0.027893 

25cc 1 Linear 5 0.370012 

2 6 0.370223 

3 7 0.369993 

4 8 0.370032 

25da 1 Sine 5 0.045498 

2 6 0.042752 

3 7 0.025228 

4 8 0.046095 

25db 1 Tanh 5 0.032690 

2 6 0.028120 

3 7 0.027296 

4 8 0.030714 

50aa 1 Sine 5 0.028009 

2 6 0.028800 

3 7 0.029482 

4 8 0.029525 

50ab I Tanh 5 0.024770 

2 6 0.020590 

3 7 0.023012 

4 8 0.023115 

50ba 1 Sine 5 0.102453 

2 6 0.101561 

3 7 0.100380 

4 8 0.128022 
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Filename Suffix Transfer HL Nodes RMS Error 

50bb 1 Tanh 5 0.057344 

2 6 0.040284 

3 7 0.048163 

4 8 0.060863 

50ca 1 Sine 5 0.029358 

2 6 0.033676 

3 7 0.029385 

4 8 0.030267 

50cb 1 Tanh 5 0.025207 

2 6 0.023809 

3 7 0.023809 

4 8 0.027339 

75aa 1 Sine 5 0.054545 

2 6 0.06463 

3 7 0.070238 

4 8 0.048667 

75ab 1 Tanh 5 0.108147 

2 6 0.111393 

3 7 0.114466 

4 8 0.084984 

75ba 1 Sine 5 0.065286 

2 6 0.056608 

3 7 0.067679 

4 8 0.060335 

75bb 1 Tanh 5 0.082521 

2 6 0.097371 

3 7 0.115471 

4 8 0.122033 
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Filename Suffix Transfer HL Nodes RMS Error 

100aa 1 Sine 5 0.005533 

2 6 0.007427 

3 7 0.004451 

4 8 0.004968 

100ab 1 Tanh 5 0.009670 

2 6 0.012296 

3 7 0.007194 

4 8 0.007394 

Oaa. 1 Sine 5 0.017273 

2 6 0.018206 

3 7 0.019386 

4 8 0.017758 

Oab 1 Tanh 5 0.112501 

2 6 0.108689 

3 7 0.111768 

4 8 0.110860 
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Appendix 

K Results of Training an ANN for 

Predicting Angularity 

This appendix contains the full results of all the ANNs trained for predicting the included of a 
Transient curve as introduced in Section 6.3.3.2. The ANNs were all designed to predict the 

values of the PWR variables given the angle of change in the transient curve. For each included 

angle a set of one and two hidden layer ANNs were developed. The number of nodes in the 
hidden layers were varied from a maximum of 10 to a minimum of 3. All the ANN training was 

repeated four times to avoid possible local minima. The value recorded in each case is the lowest 

RMS error for the training. All ANNs were trained for 60,000 cycles of presentation of the 

training set and then a further 20,000 iterations with presentation of the test set every 100 cycles. 
The best performing ANN in terms of RMS error was saved for further testing. 
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Results of Training an ANN to Predict Angularity 

Filename Size of ANN Training Set Test Set RMS Error 

t5a. nnd 1-5-1 t5tra. nna t5tes. nna 0.0741 

t5al. nnd 1-5-1 t5tra. nna t5tes. nna 0.0737 

t5aa. nnd 1-8-4-1 t5tra. nna t5tes. nna 0.0639 

t5ab. nnd 1-10-5-1 t5tra. nna t5tes. nra 0.069 

t5ac. nnd 1-6-3-1 t5tra. nna t5tes. nna 0.0788 

t5ad. nnd 1-10-5-1 t5tra. nna t5tes. nna 0.0624 

t5b. nnd 1-6-1 t5tra. nna t5tes. nna 0.0742 

t5c. nnd 1-7-1 t5tra. nna t5tes. nna 0.0732 

t5d. nnd 1-8-1 t5tra. nna t5tes. nna 0.0671 

tl5a. nnd 1-5-1 tI5tra. nna tl5tes. nna 0.0734 

tl5aa. nnd 1-8-4-1 tl5tra. nna tl5tes. nna 0.0653 

t15b. nnd 1-6-1 tl5tra. nna tl5tes. nna 0.0717 

tlSc. nnd 1-7-1 tl5tra. nna tl5tes. nna 0.0683 

tl5d. nnd 1-8-1 tl5tra. nna tl5tes. nna 0.0654 

t25a. nnd 1-5-1 t25tra. nna t25tes. nna 0.0778 

t25b. nnd 1-6-1 t25tra. nna t25tes. nna 0.0681 

t25c. nnd 1-7-1 t25tra. nna t25tes. nna 0.0703 

t25d. nnd 1-8-1 t25tra. nna t25tes. nna 0.0712 

t35a. nnd 1-5-1 t35tra. nna t35tes. nna 0.0736 

t35b. nnd 1-6-1 t35tra. nna t35tes. nna 0.0664 

t35c. nnd 1-7-1 t35tra. nna t35tes. nna 0.065 

t35d. nnd 1-8-1 t35tra. nna t35tes. nna 0.0671 

t45a. nnd 1-5-1 t43tra. nna t45tes. nna 0.0718 

t45a1. nnd 1-5-1 t45tra. nna t45tes. nna 0.0737 

t45aa. nnd 1-10-5-1 t45tra. nna t45tes. nna 0.0624 

t45ab. nnd 1-10-5-1 t45tra. nna t45tes. nna 0.0623 
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Filename Size of ANN Training Set Test Set RMS Error 

t45b. nnd 1-6-1 t45tra. nna t45tes. nna 0.0753 

t45c. nnd 1-7-1 t45tra. nna t45tes. nna 0.0682 

t45d. nnd 1-8-1 t45tra. nna t45tes. nna 0.0682 

t55a. nnd 1-5-1 t55tra. nna t55tes. nna 0.0696 

t55aa. nnd 1-10-5-1 t55tra. nna t55tes. nna 0.0624 

t55b. nnd 1-6-1 t55tra. nna t55tes. nna 0.0712 

t55c. nnd 1-7-1 t55tra. nna t55tes. nna 0.0641 

t55d. nnd 1-8-1 t55tra. nna t55tes. nna 0.065 

t65a. nnd 1-5-1 t65tra. nna t65tes. nna 0.0744 

t65aa. nnd 1-10-5-1 t65tra. nna t65tes. nna 0.0624 

t65b. nnd 1-6-1 t65tra. nna t65tes. nna 0.0738 

t65c. nnd 1-7-1 t65tra. nna t65tes. nna 0.0661 

t65d. nnd 1-8-1 t65tra. nna t65tes. nna 0.0679 

t75a. nnd 1-5-1 t75tra. nna t75tes. nna 0.0724 

t75a1. nnd 1-5-1 t75tra. nna t75tes. nna 0.0736 

t75aa. nnd 1-10-5-1 t75tra. nna t75tes. nna 0.0624 

t75b. nnd 1-6-1 t75tra. nna t75tes. nna 0.0745 

t75c. nnd 1-7-1 t75tra. nna t75tes. nna 0.067 

t75d. nnd 1-8-1 t75tra. nna t75tes. nna 0.0673 

t85a. nnd 1-5-1 t85tra. nna t85tes. nna 0.0743 

t85a1. nnd 1-5-1 t85tra. nna t85tes. nna 0.0742 

t85aa. nnd 1-10-5-1 t85tra. nna t85tes. nna 0.0626 

t85ab. nnd 1-8-4-1 t85tra. nna t85tes. nna 0.0627 

t85ac. nnd 1-10-5-1 t85tra. nna t85tes. nna 0.0624 

t85b. nnd 1-6-1 t85tra. nna t85tes. nna 0.0680 

t85c. nnd 1-7-1 t85tra. nna t85tes. nna 0.0655 

t85d. nnd 1-8-1 t85tra. nna t85tes. nna 0.0689 
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Appendix 

Code Listing for One Compartment Direct 

Equivalent ANN Program 

The following program listing is the ANN for the one compartment model of a PWR discussed 

in Section 6.5. The program was written and complied using Borland Turbo C, Version 2. The 

program inputs are entered from the keyboard and the output is a ASCII text file of the series of 

model variables. Plotted results from the program are included in Chapter 6 as Figs 6.40 to 6.44. 
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1*************************************************************** 

Program of coding of neural network molecule 

Author :PR Weller Copyright (c) 1996 

26/04/96 - Version 0.1 

13/06/96 - Version 0.2 - Modified to produce NWorks *. nna files 

**************************************************************1 

#include <stdio. h> 

#include <conio. h> 

#include <stdlib. h> 

#include <math. h> 

FILE *temp; 

mainO 

{ 

float q, t_1, t_1 old, tin, min, m, cp, t_1 dill; 

float ip_1, ip 2, ip 3, op_l, op 2, op 3, ip out, op_out; 

int time; 

time = 1; 

t_l old = 0; 

t_ldiff= 100; 

ip_1= ip 2= ip_3 = op_1 = op __2 
= Op j= ip_out = op-out = 0; 

cp = 4900; 

if ((temp = fopen("temp. txt", "w")) = NULL) 

{ 

printf("The temperature file could not be opened\n"); 

return (1); 

} 

printf("\nlnput initial temperature of PV 

scann"%f , &t_1); /* Value of T1 */ 
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printf("\nInput initial temperature of cold leg : "); 

scanf("%f', &t in); /* Value of Tin 

printf("\nlnput liquid mass in PV : "); 

scanf("%f', &m); /* Value of M1 

print«"\ünput rate of change of mass of cold leg : 

scang"%f', &m in); /* Value of Min 

printf("\nlnput the heat rate : "); 

scanf("%f', &q); /* Value of Q 

fprintf(temp, " %d %f', time, t-1); 

time ++; 

while (t_ldiff> 0.0001) /* Stopping Condition 

{ 
t_lold = t-1; 

/* Hidden Node 1 */ 

ip_1 = t_in - t_1; 

op_i = 0.5 * (pow(ip_1,2)); /* Half Square Threshold */ 

/* Hidden Node 2 */ 

ip 2=tin+m in-t 1; 

op 
_. 

2 = 0.5 * (pow(ip 2,2)); /* Half Square Threshold */ 

/* Hidden Node 3 */ 

ip_3 =m 
-in; 

op j=0.5 * (pow(ip 3,2)); /* Half Square Threshold */ 

/* Output Node */ 

ip_out = (op 2/m) - (op-11m) - (op 3/m) +t 
-I 

+ (q/(cp*m)); 

op out = ip out; /* Linear Thrshold */ 

t_1 = op out; 

t_ldiff = finod(t 1, t_lold); 

fprintf(temp, "fin %f %f %f %f %f', t Told, t_in, min, q, t_1); 
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time ++; 

fclose(temp); 

j************************** End of Program ***********************j 
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Appendix 

Results of Training an ANN to 

Square a Number 

This appendix contains the full results of all the ANNs trained to square a number of the as 
discussed in Section 6.5. The ANNs were all designed to take a single value as input and produce 
its square at the output. Two sets of one hidden layer ANNs were developed. The first had an 
input range of between 1 and 20 while the second range was -20 to 20. The number of nodes in 

the hidden layer was varied between 2 and 5. All the ANN training was repeated four times to 

avoid possible local minima. The value recorded in each case is the lowest RMS error for the 

training. All ANNs were trained for 40,000 cycles of presentation of the training set and then a 
further 10,000 iterations with presentation of the test set every 100 cycles. The best performing 
ANN in terms of RMS error was saved for further testing. 
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Results of Training an ANN to Square a Number 

Filename Size of ANN Train/Test Threshold RMS Error 

squarela. nnd 1-2-1 squ_*. nna Tanh 0.0224 

square2a. nnd 1-2-1 squ_*. nna Tanh 0.0153 

square3a. nnd 1-3-1 squ_*. nna Sigmoid 0.0313 

s uare4a. nnd 1-3-1 su*. nna Tanh 0.0175 

square5a. nnd 1-4-1 squ * 1. nna Tanh 0.0605 

square6a. nnd 1-5-1 squ_* 1. nna Tanh 0.0554 

s uare7a. nnd 1-3-1 squ *l. nna Sine 0.0296 

The'*' in the training/test column indicates tra for the training file and tes for the test file, ie an 
ANN using squ * 1. nna has a training file named squ tra1. nna and a test file named squ tes 1. nna. 

the presence of a' 1' in the training set name signifies the input range of -20 -- 20. 

325 



Appendix 

Results of Training an ANN to 

Multiply Two Numbers 

This appendix contains the full results of all the ANNs trained to multiply two given numbers as 
discussed in Section 6.5. The ANNs were all designed to have an input of two numbers, between 

0 and 10, and output the product. A set of one hidden layer ANNs were developed. The number 

of nodes in the hidden layer was varied between 3 and 7. The value recorded in each case is the 

lowest RMS error for the training. All ANNs were trained for 40,000 cycles of presentation of 

the training set and then a further 10,000 iterations with presentation of the test set every 100 

cycles. The best performing ANN in terms of RMS error was saved for further testing. 

The '*'in the training/test column of the following table indicates tra for the training file and tes 
for the test file, ie an ANN using squ_*4. nna has a training file named squ tra4. nna and a test file 

named squ tes4. nna. 
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Results of Training an ANN to Multiply Two Numbers 

Filename Size of ANN Train/Test Threshold RMS Error 

test8a. nnd 2-3-1 su *2. nna Sine 0.0200 

test9a. nnd 2-3-1 squ_*3. nna Sine 0.0298 

testlOa. nnd 2-4-1 su *3. nna Sine 0.0304 

testba. nnd 2-3-1 squ_*4. nna Sine 0.0250 

testbb. nnd 2-4-1 squ_*4. nna Sine 0.0248 

testbc. nnd 2-5-1 squ_*4. nna Sine 0.0234 

multl. nnd 2-6-1 squ *4. nna Sine 0.0249 

mult2. nnd 2-7-1 squ *4. nna Sine 0.0822 

mult3. nnd 2-3-1 squ *4. nna Sine 0.0239 

mult4. nnd 2-4-1 squ_*4. nna Sine 0.0808 

mult5. nnd 2-5-1 squ_*4. nna Sine 0.0820 

mult6. nnd 2-6-1 squ_*4. nna Sine 0.0254 

mult7. nnd 2-7-1 squ_*4. nna Sine 0.0237 

mult8. nnd 2-3-1 squ *4. nna Sine 0.0230 

mult9. nnd 2-4-1 squ *4. nna Sine 0.0242 

multl0. nnd 2-5-1 squ *4. nna Sine 0.0243 

multll. nnd 2-6-1 squ_*4. nna Sine 0.0842 

multl2. nnd 2-7-1 squ *4. nna Sine 0.0249 

multl3. nnd 2-3-1 squ *4. nna Sine 0.0840 

multl4. nnd 2-4-1 squ *4. nna Sine 0.0230 

multl5. nnd 2-5-1 squ_*4. nna Sine 0.0236 

multl6. nnd 2-6-1 squ_*4. nna Sine 0.0815 

multl7. nnd 2-7-1 squ *4. nna Sine 0.0228 

multl8. nnd 2-6-1 squ *4. nna Sine 0.0820 

multl9. nnd 2-3-1 squ_*4. nna Sine 0.0225 

mult2O. nnd 2-5-1 su *4. nna Sine 0.0830 
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Appendix 

Results of Training an ANN to Model 

a One Compartment PWR 

This appendix contains the full results of all the ANNs trained to model a one compartment PWR 

as introduced in Section 6.5. The ANNs were all designed to predict the temperature of the PWR 

variables one step ahead. The four variables from the energy equation on Page 127 were used as 
inputs the ANNs. A set of one and two hidden layer ANNs were developed. The number of 

nodes in the hidden layer was varied from a maximum of 10 to a minimum of 5, and several trial 

ANNs of a single hidden layer of 80,1 and 0 nodes. All the ANN training was repeated four 

times to avoid possible local minima. The value recorded in each case is the lowest RMS error 
for the training. All ANNs were trained for 60,000 cycles of presentation of the training set and 
then a further 20,000 iterations with presentation of the test set every 100 cycles. The best 

performing ANN in terms of RMS error was saved for further testing. 

The '*'in the training/test column of the following table indicates tra for the training file and tes 
for the test file, ie an ANN using squ *4. nna has a training file named squ tra4. nna and a test file 

named squ tes4. nna. 
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Results of Training an ANN to Model a One Compartment PWR 

Filename Size of ANN Train/Test Threshold RMS Error 

templ. nnd 4-5-1 temp_*. nna Sine 0.0191 

temp2. nnd 4-5-1 temp *. nna Sine 0.0187 

temp3. nnd 4-6-1 temp_*. nna Sine 0.0188 

temp4. nnd 4-6-1 temp_*. nna Sine 0.0183 

temp4a. nnd 4-80-1 temp_*. nna GRNN 0.0708 

temp5. nnd 4-7-1 temp_*. nna Sine 0.0178 

temp6. nnd 4-7-1 temp_*. nna Sine 0.0177 

temp7. nnd 4-4-1 temp_*. nna Sine 0.0180 

temp8. nnd 4-4-1 temp_*. nna Sine 0.0186 

temp9. nnd 4-6-3-1 temp_*. nna Sine 0.0211 

tem 10. nnd 4-6-3-1 temp *. nna Sine 0.0203 

templl. nnd 4-7-1 tem ll. nna Sine 0.0123 

templ2. nnd 4-7-1 Ltempl2. 
tma Sine 0.0145 

templ3. nnd 4-7-1 temp 13. nna Sine 0.0225 

templ3a. nnd 4-8-1 templ3. nna Sine 0.0215 

templ3b. nnd 4-8-1 templ3. nna Sine 0.0218 

templ3c. nnd 4-9-1 templ3. nna Sine 0.0241 

templ3d. nnd 4-8-1 templ3. nna Sine 0.0209 

templ3e. nnd 4-8-1 templ3. nna Linear 0.0186 

temp 13f and 4-10-1 templ3. nna DNNA 0.0669 

templ3g. nnd 4-5-1 templ3. nna Linear 0.0174 

templ3h. nnd 4-5-1 templ3. nna Linear 0.0184 

templ3i. nnd 4-2-1 templ3. nna- Linear 0.0183 

templ3j. nnd 4-1-1 templ3. nna Linear 0.0183 

templ3k. nnd 4-0-1 tem 13. nna Linear 0.0258 
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Filename Size of ANN Train/Test Threshold RMS Error 

tempal. nnd 4-7-1 tempa. nna Sine 0.0160 

tempa2. nnd 4-6-1 templ. nna Sine 0.0188 

tempa3. nnd 4-7-1 templ. nna Sine 0.0178 

tempa4. nnd 4-8-1 templ. nna Tanh 0.0326 

tempa5. nnd 4-6-1 templ. nna Sine 0.0190 

tempbl. nnd 4-7-1 temp2*. nna Sine 0.0195 

tem b2. nnd 4-7-3-1 temp2*. nna Sine 0.0193 

tempcl. nnd 4-7-1 tem 3*. nna Sine 0.0196 

tempdl. nnd 4-7-1 temp4*. nna Sine 0.0194 

tempd2. nnd 4-7-1 temp4*. nna Sine 0.0205 

tempel. nnd 1-7-1 temp5*. nna Sine 0.0214 

tempfl. nnd 4-7-1 temp6*. nna Sine 0.0254 

The following table gives full details of the training data mentioned above. 

No of Cases Ti. Start Ti. Finish M;,, Start Mn, Finish Q Start Q Finish 

tempa. nna 

200 250 250 17400 17400 3.0109 3.0109 

131 286 286 20000 20000 3.0109 3.4x 109 

temp1. nna 

200 250 250 17400 17400 3.4x 10' 3.4x 109 

temp2. nna 

150 300 300 17400 17400 3.4x109 3.0109 

temp3. nna 

215 286 286 12500 12500 3.4x 109 3.0109 

temp4. nna 

160 286 286 15000 15000 3.4x 109 3.0109 

temp6. nna 

131 286 286 20000 20000 3.0109 34x109 
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Appendix 

Code Listing for ANN based One 

Compartment Prediction Program 

This appendix contains the full program listing for the ANN based one compartment prediction 

program introduced in Section 6.5, Page 139. The program was written and complied using 

Borland Turbo C, Version 2. The program are entered from the keyboard and the output is an 

ASCII text file of the compartment temperature for the conditions defined. Plotted results from 

the program are given as Figs 6.52 and 6.53. 
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1*************************************************************** 

Program of coding of neural network molecule 

Author :PR Weller Copyright (c) 1996 

26/04/96 - Version 0.1 

10/06/96 - Version 0.2 - NWorks trained square function added 

11/06/96 - Version 0.3 - Combined Square + NWorks trained NN 

11/06/96 - Version 0.4 - NWorks trained multiplying NN 

14/06/96 - Version 0.5 - Full NWorks 1CV model added 

21/06/96 - Version 0.6 - Ramping added for variables 

24/06/96 - Version 0.7 - Graphics added 

#include <stdio. h> 

#include <conio. h> 

#include <stdlib. h> 

#include <math. h> 

#include <graphics. h> 

FILE *templ, *temp2, *temp3, *temp4; 

float Yin[4]; 

float Yout[1]; 

float q, min, m, cp, tin; 
float q 

_start, 
q 
_end, 

m in start, m in end, t in start, t in end; 

float t 
-I 

a, t1 aold, t_1 adiff, 
float t lb, t lbold, t_lbdiff; 

float t1c, t_I cold, t_l cdiff; 
float tld, tl dold, t_l ddiff; 

float ip_la, ip 2a, ip 3a, op_la, op 2a, op 3a, ip outa, op outa; 
float ip lb, ip 2b, ip 3b, op_lb, op 2b, op 3b, ip outb, op outb; 

float ip_l c, ip 2c, op c, ip outc, op outc; 
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int time; 

double Xout[15], Xsum[15]; /* work arrays */ 

main() 

{ 

int driver, mode, font, direct; 

register int i; 

driver = VGA; 

mode = VGAMED; 

initgraph(&driver, &mode, ""); 

ip_la = ip 2a = ip 3a = op_la = op 2a = op_3a = ip_outa = op_outa = 0; 

ip_Ib = ip 2b = ip 3b = op_lb = op 2b = op 3b = ip_outb = op_outb = 0; 

ip_lc=ip 2c=op op. 
_outc=op_outc=0; 

cp = 4900; 

printf("\nInput initial temperature of PV 

scarf "%f', &t_1 a); 

t_lb=t_lc=t_ld=t la; 

printf("\nInput initial temperature of cold leg : 

scanf("%f', &t_in start); 

printf("\nInput final temperature of cold leg : 

scanf("%f', &t_in end); 

printf("\nInput liquid mass in PV 

scan f("%f , &m); 

printf("\nlnput initial rate of change of mass of cold leg : 

scanf("%f', &m in start); 

print f("\nlnput final rate of change of mass of cold leg : 

scan«"%f', &m in end); 

print«"\nlnput the initial heat rate : "); 
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scanf("%f', &q start); 

printfg"\nInput the final heat rate 

scann"%f', &q_end); 

/* ** Graphics Screen and Axis ** */ 

clrscrO; 

rectangle(O, 0,639,349); 

setcolor(LIGHTCYAN); 

setfillstyle(SOLIDFILL, LIGHTCYAN); 

floodfill(1,1, LIGHTCYAN); 

setcolor(BLACK); 

line(25,10,25,310); 

line(25,310,625,310); 

settextstyle(DEFAULT FONT, HORIZ DIR, 1); 

outtextxy(2,10, "375"); 

outtextxy(2,85, "350"); 

outtextxy(2,160, "325"); 

outtextxy(2,235, "300"); 

outtextxy(2,310, "275"); 

/* ** System with square threshold ** */ 

for (time = 0; time <= 100; time ++) 

{ 
q= q_start + ((q_end - q_start) * time / 100); 

tin =t in statt + ((t in end -t in start) * time / 100); 

min =m in start + ((m in end -m in start) * time / 100); 

if ((temp 1= fopen("temp l . txt", "a")) = NULL) 

{ 

print«"The temperature file could not be opened\n"); 
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return (1); 

} 
fprintf(templ, "fin %d %f %f %f %f', time, t_la, t in, min, q); 
fclose(temp 1); 

/* Hidden Node 1 */ 

ip la=tin-t la; 

op_la = 0.5 * (pow(ip_la, 2)); 

/* Hidden Node 2 */ 

ip 2a=tin+m in -t_la; 
op 2a = 0.5 * (pow(ip 2a, 2)); 

/* Hidden Node 3 */ 
ip 3a=min; 

op 3a = 0.5 * (pow(ip_3a, 2)); 

/* Output Node for A */ 
ip outa = (op 2a/m) - (op_la/m) - (op 3a/m) +t 

_la 
+ (q/(cp*m)); 

op outa = ip outa; 

t 
-I a= op outa; 

setcolor(RED); 

outtextxy((25+6*time), (10+3*(375-t_la)), "*"); 

/* ** System with NWorks trained square function ** */ 

for (time = 0; time <= 100; time ++) 

q= q_start + ((q end -q _start) 
* time / 100); 

tin =t in start + ((t in end -t in start) * time / 100); 

min =m in start + ((m in end -m in start) * time / 100); 
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if ((temp2 = fopen("temp2. txt", "a")) = NULL) 

{ 
printf("The temperature file could not be opened\n"); 

return (1); 

I 

fprint«temp2, "fin %d %f %f %f %f', time, t_lb, tin, min, q); 
fclose(temp2); 

/* Hidden Node 1 

ip_lb=tin-t_lb; 

Yin[O] = ip_lb / 6; 

squared ; 

op_lb = 0.5 * Yout[O] * 36; 

/* Hidden Node 2 */ 
ip 2b=tin+m m_in lb; 

Yin[O] = ip 2b / 1200; 

squared ; 

op 2b = 0.5 * Yout[0] * 1440000; 

/* Hidden Node 3 

ip 3b=min; 

Ym[O] = ip 3b / 1200; 

squared ; 

op 3b = 0.5 * Yout[0] * 1440000; 

/* Output Node for B */ 

ip_outb = (op 2b/m) - (op lb/m) - (op 3b/m) +t 
-lb 

+ (q/(cp*m)); 

op outb = ip outb; 

t_lb = op outb; 

setcolor(GREEN); 

outtextxy((25+6*time), (10+3*(375-t_lb)), "*"); 
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/*** System with NWorks multiplying function ***/ 

for (time = 0; time <= 100; time ++) 

{ 

q= q_start + ((q_end - q_start) * time / 100); 

tin =t in start + ((t in end -t in start) * time / 100); 

min =m in start + ((m in end -m in start) * time / 100); 

if ((temp3 = fopen("temp3. txt", "a")) = NULL) 

{ 

printft"Temperature file 3 could not be opened\n"); 

return (1); 

} 

fprintgtemp3, "fin %d %f %f %f %f', time, t_lc, t_in, min, q); 
fclose(temp3); 

ip_lc=tin-t_lc; 

Yin[0] = ip lc / -10; 
ip 2c=m in; 

Yin[ 1]= ip 2c / 2000; 

mulm; 

op_c = Yout[O] * -20000; 

/* Output Node for A */ 

ip outc = (op cJm) + t_l c+ (q/(cp*m)); 

op outc = ip_outc; 

t_1 c= op outc; 

setcolor(WHITE); 

outtextxy((25+6*time), (10+3*(375-t_1c)), "*"); 

/*** System with NWorks full 1CV model ***/ 
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for (time = 0; time <= 100; time ++) 

{ 

q= q_start + ((q end - q_start) * time / 100); 

Un=t in start + ((t in end -t in start) * time / 100); 

min =m in start + ((m in end -m in start) * time / 100); 

if ((tempo = fopen("temp4. txt", "a")) = NULL) 

{ 

printf("Temperature file 4 could not be opened\n"); 

return (1); 

fprint«temp4, "fin %d %f %f %f %f', time, t_ld, tin, min, q); 
fclose(temp4); 

Yin[O] = t_ld; 

Yin[1] = tin; 

Yin[2] =m in; 

Ym[3]=9; 

modeln; 

t_ld =t ld + Yout[O]; 

setcolor(YELLOW); 

outtextxy((25+6*time), (10+3*(375-t_1d)), "*"); 

} 

getcho; 

restorecrtmodeO; 

} 

*******sss****s**************************************************/ 

squared 
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{ 
/* Read and scale input into network */ 

Xout[2] = Yin[O] * (0.05); 
LAB 107: 

/* Generating code for PE 0 in layer 3 */ 
Xsum[3] = 0.0377354249 + 0.0497449599 * Xout[2]; 

/* Generating code for PE 1 in layer 3 */ 

Xsum[4] = (-0.0688849837) + (-0.0891667157) * Xout[2]; 

/* Generating code for PE 2 in layer 3 */ 
Xsum[5] = (-1.5718521) + (-1.6629894) * Xout[2]; 

/* Generating code for PE 0 in layer 3 */ 
Xout[3] = sin( Xsum[3] ); 

I* Generating code for PE I in layer 3 */ 

Xout[4] = sin( Xsum[4] ); 

/* Generating code for PE 2 in layer 3 */ 

Xout[5] = sin( Xsum[5] ); 

/* Generating code for PE 0 in layer 4 */ 

Xsum[6] = 0.629029393 + 0.0245846715 * Xout[3] 

+ (-0.0388228707) * Xout[4] 

+ 1.5541158 * Xout[5]; 

Xout[6] = sin( Xsum[6] ); 

/* De-scale and write output from network */ 

Yout[O] = Xout[6] * 250 + 200; 

/* Generating code for PE 0 in layer 4 */ 

return(0 ); 
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} 

/*********************************************************$*******/ 

multO 

{ 

/* Read and scale input into network */ 

Xout[2] = Yin[0] * (0.2) + (-1); 

Xout[3] = Yin[l] * (0.2) + (-1); 

LAB 107: 

/* Generating code for PE 0 in layer 3 */ 

Xsum[4] = (-0.186730966) + (-0.478621244) * Xout[2] + 

0.451036364 * Xout[3]; 

/* Generating code for PE 1 in layer 3 */ 

Xsum[5] = 0.831040561 + (-0.629294634) * Xout[2] + 0.601229131 * Xout[3]; 

/* Generating code for PE 2 in layer 3 */ 

Xsum[6] = (-0.744259298) + 0.427741736 * Xout[2] + 0.440952927 * Xout[3]; 

/* Generating code for PE 0 in layer 3 */ 

Xout[4] = sin( Xsum[4] ); 

/* Generating code for PE 1 in layer 3 */ 

Xout[5] = sin( Xsum[5] ); 

/* Generating code for PE 2 in layer 3 */ 

Xout[6] = sin( Xsum[6] ); 

/* Generating code for PE 0 in layer 4 */ 

Xsum[7] = (-0.143988386) + (-0.72245121) * Xout[4] 

+ 0.794204772 * Xout[5] + 1.4647512 * Xout[6]; 
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Xout[7] = sin( Xsum[7] ); 

/* De-scale and write output from network */ 

Yout[O] = Xout[7] * (62.499999) + (50); 

/* Generating code for PE 0 in layer 4 */ 

return( 0 ); 

/*****************************************************************/ 

modeln 
{ 

/* Read and scale input into network */ 

Xout[2] = Yin[O] * (0.0280331816) + (-8.7412243); 

Xout[3] = Yin[1] * (0.04) + (-11); 

Xout[4] = Yin[2] * (0.000266666667) + (-4.3333333); 

Xout[5] = Yin[3] * (1.1764706e-009) + (-3); 

LAB 107: 

/* Generating code for PE 0 in layer 3 */ 

Xsum[6] = 0.0432699621 + 0.173500374 * Xout[2] + (-0.25696522) * Xout[3] 

+ (-0.0618465208) * Xout[4] + (-0.118797004) * Xout[5]; 

/* Generating code for PE 1 in layer 3 */ 

Xsum[7] = (-0.167464197) + (-0.180572703) * Xout[2] + 

0.263423711 * Xout[3] + ("0.0826175511) * Xout[4] + 

0.0946433693 * Xout[5]; 

/* Generating code for PE 2 in layer 3 */ 

Xsum[8] = (-0.143358409) + 0.515659809 * Xout[2] + 

(-0.159966484) * Xout[3] + (-0.087270394) * Xout[4] + 

(-0.0688505024) * Xout[5]; 
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/* Generating code for PE 3 in layer 3 */ 

Xsum[9] = 0.0936020315 + (-0.26459676) * Xout[2] + 0.214385584 * Xout[3] 

+ (-0.336718529) * Xout[4] + 0.132838547 * Xout[5]; 

/* Generating code for PE 4 in layer 3 */ 

Xsum[1O] = 0.0503302142 + (-0.781614959) * Xout[2] + 0.623369515 * Xout[3] 

+ (-0.371508271) * Xout[4] + 0.200226009 * Xout[5]; 

/* Generating code for PE 5 in layer 3 */ 

Xsum[11] = (-0.0832801238) + (-0.14036642) * Xout[2] + 

0.295333862 * Xout[3] + (-0.14117153) * Xout[4] + 

(-0.150969371) * Xout[5]; 

/* Generating code for PE 6 in layer 3 */ 

Xsum[12] = (-0.070078738) + (-0.542544127) * Xout[2] + 

0.145031795 * Xout[3] + (-0.0677929074) * Xout[4] + 

0.128840894 * Xout[5]; 

/* Generating code for PE 7 in layer 3 */ 

Xsum[13] = (-0.0182786733) + 0.735283971 * Xout[2] + 

(-0.372215182) * Xout[3] + 0.118579939 * Xout[4] + 

(-0.230088666) * Xout[5]; 

/* Generating code for PE 0 in layer 3 */ 

Xout[6] = Xsum[6]; 

/* Generating code for PE 1 in layer 3 */ 

Xout[7] = Xsum[7]; 

/* Generating code for PE 2 in layer 3 */ 

Xout[8] = fi[g]; 

/* Generating code for PE 3 in layer 3 */ 

Xout[9] = Xsum[9]; 
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/* Generating code for PE 4 in layer 3 */ 

Xout[1O] = Xsum[1O]; 

/* Generating code for PE 5 in layer 3 */ 

xout[i I]= Xsom[1 i]; 

/* Generating code for PE 6 in layer 3 */ 

Xout[12] = Xsum[12]; 

/* Generating code for PE 7 in layer 3 */ 

Xout[13] = Xsum[13]; 

/* Generating code for PE 0 in layer 4 */ 

Xout[14] = 0.133136854 + (-0.237154871) * Xout[6] + 0.120102882 * Xout[7] 

+ (-0.314193368) * Xout[8] + 0.570697844 * Xout[9] + 

0.962584555 * Xout[10] + 0.0576984398 * Xout[11] + 

0.581108391 * Xout[12] + (-0.62760669) * Xout[13]; 

/* De-scale and write output from network */ 

Yout[O] = Xout[14] * (0.96921938) + (-0.365341514); 

/* Generating code for PE 0 in layer 4 */ 

return(0 ); 

************************** End of Program ***********************/ 
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Appendix 

Q Code Listing for Full PWR Model using ANN 

Modules Program 

This appendix contains the full program listing for full PWR model using ANN modules program 

as introduced in Section 6.6.1. The program was written and compiled using Borland Turbo C, 

Version 2. The program variables are entered from the keyboard and the output is both an ASCII 

text file and simple graph plot of regional temperature against time. Plotted results from the 

program are given in Figs 6.54 and 6.55. 
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*****************s«***«******s********************************* 

Program of coding of full PWR using 

neural network molecules 

Author :PR Weller Copyright (c) 1996 

04/07/96 - Version 0.1 - First Version 

10/07/96 - Version 0.2 - NWorks trained mole added 

****s***sý***ýs«**********************************************ý 

#include <stdio. h> 

#include <conio. h> 

#include <stdlib. h> 

#include <math. h> 

FILE *temp, *reactor, 

int num nodes, time, v, w, x, y, z; 

float cp, init temp, m, min, q, tin; 

doubleYin[5], Yout[1]; /* Data */ 

double Xout[23], Xsum[23]; /* work arrays */ 

float t_1 [30]; 

float t lold[30]; 

float mass in[10]; 

float heat[8]; 

/* Array fort 1 values */ 

/* Array for old tl values */ 

/* Array for flow rates 

/* Array for heating rates 

float mass[12]; 
float power[100][4]; 

mainO 

/* Array for masses */ 

/* Array for reactor power */ 

mass-in[l] = 0; mass in[2] = 0; mass_in[3] = 295; mass in[4] = 5; 

mass_in[5] = 0; mass in[6] = 300; mass in[7] = 300; 
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mass in[s] = 0; mass in[9] = 0; 

heat[0] = 0; heat[1] = 5000000; heat[2] = 10000; heat[3] = 25000000; 

heat[4] = 50000000; 

mass[O] = 50; mass[t] =100; mass[2] = 250; mass[3] = 300; 

mass[4] = 400; mass[5] = 440; mass[6] = 480; mass[7] = 500; 

mass[8] = 1000; mass[9] = 1200; mass[10] = 3000; mass[11] = 10000; 

if ((reactor = fopen("power. txt", "r")) = NULL) 

{ 

printf("The reactor power file could not be opened\n"); 

return (1); 

for (z = 0; z <= 99; z++) 
{ 

for (y = 0; y <= 3; y++) 

fscanffreactor, " %f ", &power[z][y]); 

} 

fclose(temp); 

time = 1; 

cp = 5000; 

w= 10; 

printg"\rünput initial temperature of PWR 

scant("%f , &init temp); 

for (z=0; z<=29; z ++) 

t_1 [z] = init temp; 

t_lold[z] = init temp; 

for (time = l; time <= 1000; time++) 

{ 
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x=1; 

v= floor(time / 10); 

/* node 1 */ 

m= mass[8]; tin =t lold[1]; min = -mass in[1]; q= heat[O]; 

X++; 

/* node 2 */ 

m= mass[1 I]; tin = t_lold[12]; min = mass in[2]; q= heat[O]; 

dir equO; 

modeln; 
x-H-; 

/* node 3 */ 

m= mass[2]; q= heat[O]; 

min = mass in[1] + mass in[3] + mass in[4] + mass in[9]; 

tin = ((t_lold[l] * mass in[1]) + (t_lold[7] * mass in[3]) 

+ (t_lold[8] * mass in[4]) + (t_lold[23] * mass in[9])) / min; 

dir equo; */ 

modeln; 
X+; 

/* node 4 */ 

m= mass[7]; m 
-in 

= mass in[5] + mass in[6]; q= heat[O]; 

tin = ((t_lold[11] * mass in[5]) + (t lold[14] * mass in[6])) / min; 

dir equo; 

modeln; 
X-H-; 

/* node 5 */ 

m= mass[1]; t in = t_lold[4]; min = mass_in[3]; q= power[v][0]; 

dir equo; 

modeln; 
x++* 
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/* node 6 */ 

m= mass[4]; tin = t_lold[5]; min = mass in[3]; q= heat[O]; 

dir equo; */ 

model(); 

X'ý; 

/* node 7 */ 

m= mass[t]; tin= t_lold[6]; min = mass in[3]; q= power[v][1]; 
dir equo; 

modelO; 
X++; 

/* node 8 */ 

m= mass[3]; min =2* mass in[4]; q= heat[O]; 

tin = ((t_lold[4] * mass in[4]) + (t_lold[24] * mass in[4])) / min; 

dir equO; */ 

modelQ; 
x++; 

/* node 9 */ 

m= mass[t]; tin = t_lold[23]; min = mass in[9]; q= heat[O]; 

dir equO; 

modeln; 
X++; 

/* node 10 */ 

m= mass[4]; tin = t_lold[9]; min = mass in[9]; q= -heat[2]; 
/* dir equo; */ 

model(); 
X++; 

/* node 11 */ 

m= mass[ 1 ]; tin =t _I 
old[ 10]; min = mass in[9]; q= heat[O]; 

/* dir equo; */ 
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model(), 

x++; 

/* node 12 */ 

m= mass[5]; tin = t_l old[3]; min = mass in[6]; q= heat[O]; 

dir equo; 

modelO; 

x++; 

/* node 13 */ 

m= mass[6]; tin = t_lold[26]; min = mass in[6]; 

q= -heat[1] * (t lold[13] -t lold[18]); 

/* q value depends on temp difference: UA. (tl-t2) 

dir equo; */ 

modelO; 

x++; 

/* node 14 */ 

m= mass[9]; tin =t lold[13]; min = mass in[6]; q= heat[O]; 

dir equO; 

modelO; 

x++; 

/* node 15 */ 

m= mass[5]; tin = t_lold[23]; min = mass_in[7]; q= heat[O]; 

dir equO; 

modeln; 

x++; 

/* node 16 */ 

m= mass[6]; tin = t_lold[27]; min = mass in[7]; 

q= -heat[1] * (t_lold[16] - t_lold[ 19]); 

/* q value depends on temp difference: UA. (tl-t2) 

/* dir equO; */ 
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modeln; 
Xý'; 

/* node 17 */ 

m= mass[9]; tin =t lold[16); min = mass in[7]; q= heat[O]; 
dir equo; */ 

modeln; 
X++; 

/* node 18 */ 

m= mass[10]; tin =t lold[18]; m in = 0; 

q= (heat[1] * (t lold[13] -t lold[18])) - heat[4]; 

/* q value depends on temp difference: UA. (tl-t2) 

dir equO; */ 

modeln; 
x++; 

/* node 19 */ 

m= mass[ 10]; tin =t 
-I 

old[ 19]; min = 0; 

q= (heat[1] * (t lold[16] -t lold[19])) - heat[4]; 

/* q value depends on temp difference: UA. (tl-t2) 

dir equO; 

modeln; 

X++; 

/* node 20 */ 

m= mass[ 10]; tin =t1 old[20]; min = 0; q= heat[2]; 

dir equo; 

modeln; 
X++; 

/* node 21 */ 

m= mass[t]; tin =t lold[24]; min = mass in[3]; q= power[v][2]; 
/* dir equo; */ 
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modeln; 
Xý"f ; 

/* node 22 */ 

m= mass[t]; tin =t lold[25]; min = mass in[3]; q= power[v][3]; 

dir equo; 

modeln; 

X++; 

/* node 23 */ 

m= mass[2]; min = mass in[3] + mass in[4]; q= heat[O]; 

tin = ((t lold[8] * mass in[4]) + (t_lold[22] * mass in[3])) / min; 
dir equo; 

modeln; 
X'+; 

/* node 24 */ 

m= mass[7]; min = mass_in[7] + mass in[8]; q= heat[O]; 

tin = ((t_lold[14] * mass in[8]) + (t lold[17] * mass in[7])) / min; 

dir equo; */ 

modelO; 

x++; 

/* node 25 */ 

m= mass[4]; tin = t_lold[21]; min = mass in[3]; q= heat[O]; 

dir equO; */ 

modeln; 
X++ 2 

/* node 26 */ 

m= mass[ 1 ]; tin = t_1 old[ 12]; min = mass_in[6]; q= -heat[O]; 
dir equO; 

modeln; 
X'+; 
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/* node 27 */ 

m= mass[t]; tin =t lold[15]; min = mass in[7]; q= -heat[O]; 
dir equO; 

modeln; 

x++; 

/* node 28 */ 

m= mass[O]; tin = t_lold[28]; min = 0; q= heat[O]; 

dir equo; 

modeln; 

x++; 

/* node 29 */ 

m= mass[O]; t -in 
= t_1 old[29]; min = 0; q= heat[O]; 

dir equo; 

modelO; 

x++; 

if (w =10) 

{ 

if ((temp = fopen("temp2. txt", "a")) = NULL) 

{ 

printf("The temperature file could not be opened\n"); 

return (1); 

} 

fprintf(temp, "fin %d ", time/10); 

for (z = 1; z <= 29; z++) 

fprintf(temp, " %f ", t_1 [z]); -- 
fclose(temp); 

W=O; 

} 
W++; 

for (z = 1; z <= 29; z++) 

t_lold[z] = t_1[z]; 
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} 
for (z=1; z<=29; z++) 

Pmt«" %f ", t_l [z]); 

1s***********s****************************************************1 

dir equo 
{ 

float ip_1, ip 2, ip 3, op 1, op 2, op 3, ip out, op_out; 
ip_I = ip_2 = ip 3= op_1 = op 

-. 
2 = op j= ip out = op-put = 0; 

/* Hidden Node 1 */ 
ip_1 = t_in - t_lold[x]; 

op_1 = 0.5 * (pow(ip_l, 2)); 

/* Hidden Node 2 */ 
ip 2 =tin + min - t_1 old[x]; 

op 
__2 

= 0.5 * (powCip_2,2)); 

/* Hidden Node 3 */ 
ip 3=m 

-in; 
op 

__3 = 0.5 * (pow(ip 3,2)); 

/* Output Node */ 

ip out = 0.1 *((op 2/m) - (op_1/m) - (op 3/m)) + t_1 old[x] + 0.1 *(q/(cp*m)); 

op-put = ip out; 

LI [x] = op out; 

/*****************************************************************/ 

modeln 
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Yn[O] = t_lold[x]; 

Yin[ 1] =tin; 
Yin[2] =m in; 

Yn[3] = q; 
Yn[4] = m; 

Xout[2] _ Yin[0] * (0.0 18946897) + (-4.8008711); 

Xout[3] = Yin[1] * (0.02) + (-5); 

Xout[4] _ Yin[2] * (0.00677966102) + (-1.0338983); 

Xout[5] = Yin[3] * (4e-007) + (-1); 

Xout[6] = Yin[4] * (0.000689655172) + (-1.0689655); 

LAB 107: 

/* Generating code for PE 0 in layer 3 */ 

Xsum[7] = 0.0781149119 + (-0.0729916766) * Xout[2] + 

0.0706214681 * Xout[3] + (-0.0290338751) * Xout[4] + 

(-0.0163256004) * Xout[5] + 0.000542022928 * Xout[6]; 

/* Generating code for PE I in layer 3 */ 

Xsum[8] = (-0.017377425) + 0.0524926223 * Xout[2] + 

(-0.0471051335) * Xout[3] + 0.01708184 * Xout[4] + 

(-0.0169406552) * Xout[5] + 0.00986460038 * Xout[6]; 

/* Generating code for PE 2 in layer 3 */ 

Xsum[9] = 0.207093343 + (-0.202051669) * Xout[2] + 0.240440086 * Xout[3] 

+ (-0.0796540454) * Xout[4] + (-0.0218407735) * Xout[5] + 

0.0485103354 * Xout[6]; 

/* Generating code for PE 0 in layer 3 */ 

Xout[7] = tanh( Xsum[7] ); 

/* Generating code for PE 1 in layer 3 */ 

Xout[8] = tanh( Xsum[8] ); 
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/* Generating code for PE 2 in layer 3 */ 

Xout[9] = tanh( Xsum[9] ); 

/* Generating code for PE 0 in layer 4 */ 

Xsum[1O] = 0.718770266 + 0.133371726 * Xout[7] + (-0.0482432991) * Xout[8] 

+ 0.388276219 * Xout[9]; 

Xout[10] = tanh( Xsum[10] ); 

/* De-scale and write output from network */ 

Yout[0] = Xout[10] * (10.169) + (-6.8647995); 

t_1 [x] = t_I old[x] + Yout[O]; 

/* Generating code for PE 0 in layer 5 */ 

return( 0 ); 

**$*s***$$* ***$*******s** End of Program ***********************ý 
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Appendix Results of Training an ANN for Temperature 
R Prediction with Different Regional Masses 

This appendix contains the full results of all the ANNs trained to predict PWR regional 
temperature for different regional masses as discussed in Section 6.6.1. The ANNs were all 
designed to predict the regional temperature one step ahead. The inputs for the ANNs are the five 

plant variable developed from the energy equation in Section 6.5. For various training data a set 

of one and two hidden layer ANNs were developed. The number of nodes in the hidden layer was 

varied from a maximum of 15 to a minimum of 2, with a test ANN consisting of a single node in 

the hidden layer. All the ANN training was repeated four times to avoid possible local minima. 
The value recorded in each case is the lowest RMS error for the training. All ANNs were trained 
for 100,000 cycles of presentation of the training set and then a further 20,000 iterations with 

presentation of the test set every 100 cycles. The best performing ANN in terms of RMS error 

was saved for further testing. 

In the following tables the ' *' in the training/test column indicates tra for the training file and tes 
for the test file, ie an ANN using squ_*4. nna has a training file named squ tra4. nna and a test file 

named squ tes4. nna. 
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Results of Training an ANN to Model 1CV with Different Regional Mass 

Filename Size of ANN Train/Test Transfer RMS Error 

pwrl. nnd 5-9-1 pwr cv*. nna Sine 0.0926 

pwrla. nnd 5-15-1 pwr_cv*. nna Linear 0.0918 

pwrlb. nnd 5-15-1 pwr cv*. nna TanH 0.0611 

pwrlc. nnd 5-15-8-1 pwr cv*. nna TanH 0.0980 

wrld. nnd 5-15-8-1 pwr cv*. nna TanH 0.0974 

pwr1e. nnd 5-10-1 pwr cvl*. nna TanH 0.0740 

pwrlf and 5-10-5-1 pwr cvl *. nna TanH 0.0794 

pwrlg. nnd 5-15-8-1 pwr cvl*. nna TanH 0.0873 

pwrlh. nnd 5-10-5-1 pwr cvl*. nna Sine 0.0753 

wrli. nnd 5-7-3-1 pwr cvl*. nna Sine 0.0847 

pwr3a. nnd 5-7-3-1 pwr cv3*. nna Sine 0.0883 

pwr3b. nnd 5-10-5-1 pwr cv3*. nna Sine 0.0885 

pwr3c. nnd 5-7-3-1 pwr cv3*. nna Sine 0.0881 

pwr3d. nnd 5-7-3-1 pwr cv3*. nna Linear 0.0884 

pwr3e. nnd 5-8-4-1 pwr cv3*. nna TanH 0.0879 

pwr3fnnd 5-3-1 pwr cv3*. nna TanH 0.0871 

pwr3g. nnd 5-3-1 pwr cv3 *. nna Sine 0.0876 

pwr4a. nnd 5-3-1 pwr cv3 *. nna Sine 0.1054 

pwr4b. nnd 5-8-4-1 pwr cv3*. nna Sine 0.0725 

pwr4c. nnd 5-6-1 pwr cv3*. nna TanH 0.0693 

pwr4d. nnd 5-4-1 pwr cv3*. nna TanH 0.0689 

pwr4e. nnd 5-3-1 pwr cv3*. nna Sine 0.0741 

pwr4fnnd 5-3-1 pwr cv3 *. nna Sigmoid 0.0566 

pwr4g. nnd 5-2-1 pwr cv3*. nna Sigmoid 0.0563 

wr4h. nnd 5-2-1 pwr cv3*. nna Si oid 0.0556 
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Filename Size of ANN Train/Test Threshold RMS Error 

pwr4i. nnd 5-1-1 pwr cv3*. nna Sigmoid 0.0550 

pwr4j. nnd 5-1-1 pwr cv3*. nna Sigmoid 0.0543 

pwr4k. nnd 5-2-1 pwr cv3 *. nna Sigmoid 0.0562 

pwr4l. nnd 5-3-1 pwr cv3*. nna Sigmoid 0.0566 

pwr4m. nnd 5-3-1 pwr cv3*. nna Sigmoid 0.0569 

wr4n. nnd 5-3-1 pwr cv3*. nna Linear 0.2964 

wr4z. nnd 5-5-1 pwr cv4*. nna Sigmoid 0.1071 

pwr5a. nnd 4-3-1 pwr cv5*. nna Sigmoid 0.0307 

pwr5b. nnd 4-4-1 pwr cv5*. nna Sigmoid 0.0300 

wr5c. nnd 4-5-1 pwr cv5*. nna Si oid, 0.0308 

pwr6a. nnd 10-4-1 pwr_cv6*. nna Sigmoid 0.0372 

wr6b. nnd 10-5-1 pwr cv6*. nna Sigmoid 0.0298 

pwr6bl. nnd 6-7-1 pwr cv6b*. nna Sigmoid 0.0629 

pwr6b2. nnd 6-4-1 pwr cv6b*. nna Sigmoid 0.0595 

pwr6b3. nnd 6-5-1 pwr cv6b*. nna Sigmoid 0.0604 

wr6b4. nnd 6-5-1 pwr cv6b*. nna Sigmoid 0.0604 

pwr6c. nnd 10-6-1 pwr cv6*. nna Sigmoid 0.0278 

pwr6d. nnd 10-7-1 pwr cv6*. nna Sigmoid 0.0252 

pwr6dl. nnd 8-7-1 pwr cv6a*. nna Sigmoid 0.0399 

pwr6d2. nnd 8-4-1 pwr cv6a*. nna Sigmoid 0.0421 

pwr6d3. nnd 8-6-3-1 pwr cv6a*. nna Sigmoid 0.0436 

wr6d4. nnd 8-10-1 pwr cv6a*. nna Si oid 0.0401 

pwr6e. nnd 10-8-1 pwr cv6*. nna Sigmoid 0.0300 

wr6f and 10-7-1 pwr cv6*. nna Sigmoid 0.0268 

pwr7a. nnd 5-5-1 pwr cv7*. nna Sigmoid 0.0448 

pwr7b. nnd 5-3-1 pwr cv7*. nna Sigmoid 0.0469 

pwr7c. nnd 5-3-1 pwr_cv7*. nna Sigmoid 0.0471 

pwr8a. nnd 4-4-1 pwr cv8*. nna Sigmoid 0.0472 

pwr8b. nnd 4-4-1 wr cv8a*. nna Sigmoid 0.0528 
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pwr8c. nnd 4-10-5-1 pwr cv8a*. nna Sigmoid 0.0474 

pwr8d. nnd 4-4-1 pwr cv8a*. nna Sigmoid 0.0529 

pwr8e. nnd 4-5-1 pwr cv8a*. nna Sigmoid 0.0530 

pwr8fnnd 4-3-1 pwr cv8a*. nna Sigmoid 0.0531 

pwr8g. nnd 3-5-1 pwi cv8b*. nna Sigmoid 0.0461 

wr8h. nnd 3-5-1 wr cv8b*. nna Sigmoid 0.0773 

The following table gives the full details of the training data mentioned above. 

No of Cases T1 Start Ti. Finish M. Start M, Finish Q Start Q Finish 

tempa. nna 

200 250 250 17400 17400 3.4x 109 3.4x 109 

131 286 286 20000 20000 3.4x 109 3.4x 109 

temp l . nna 

200 250 250 17400 17400 3.4x 109 3.4x 109 

temp2. ma 

150 300 300 17400 17400 3.4x109 3.4x109 

temp3. nna 
215 286 286 12500 12500 3.4x109 3.4x109 

temp4. nna 

160 286 286 15000 15000 3.4x 109 3.4x 109 

temp6. nna 

131 286 286 20000 20000 3.4x 109 3.4x 109 

temp. nna 

200 250 250 17400 17400 3.4x 109 3.4x 109 

151 300 300 17400 17400 3.4x 109 3.4x 109 

216 286 286 12500 12500 3.0109 3.4x 109 

161 286 286 15000 15000 3.4x109 3.4x109 

132 286 286 20000 20000 3.4x109 3.4x109 
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No of Cases Ti. Start Ti. Finish Mn Start M. Finish Q Start Q Finish 

tempi l. nna 

101 286 300 17400 
-- 

12500 3.4x 109 0 

101 286 250 17400 
t 

20000 0 3.4x10' 

temp 12. nna 

101 286 300 17400 15000 0 3.0109 

101 286 250 17400 20000 3.4x109 0 

101 286 300 17400 12500 3.4x109 3.6X109 

templ3. nna 

101 286 300 17400 15000 1.7x 109 3.4x 109 

101 286 250 17400 20000 3.4x 109 1.7x 109 

101 286 300 17400 12500 3.2x10 9 3.4x 109 
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Appendix 

Results of Training a Diagnostic ANN 

This appendix contains the full results of all the ANNs trained to diagnose the condition of a PWR 

as discussed in Section 73. The majority of the ANNs used a single step of values of PWR 

variables as inputs, but two time steps, with 134 inputs, were also considered. For each 
combination of transient pairs a set of both one and two hidden layer ANNs were developed. The 

number of nodes in the hidden layers varied from a maximum of 80 to a minimum of 10. All the 
ANN training was repeated four times to avoid possible local minima. The value recorded in each 

case is the lowest RMS error for the training. All ANNs were trained for 60,000 cycles of 

presentation of the training set and then a further 20,000 iterations with presentation of the test 

set every 100 cycles. The best performing ANN in terms of RMS error was saved for further 

testing. 

The'*' in the TrainfFcst column of the following tables indicates tr for the training files and to for 

the test file, ie an ANN using the training data test3*. nna uses the training set test3tr. nna and the 
test set test3te. nna. 
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Filename Size of ANN Train/Test Threshold RMS Error 

testllc. nnd 67-30-6 testll*. nna TanH 0.1263 

testlld. nnd 67-50-25-6 testll*. nna TanH 0.1407 

test 1lz. nnd 67-30-15-6 testll*. nna TanH 0.0307 

testl2a. nnd 6-6-6 testl2*. nna TanH 0.2923 

testl2b. nnd 6-20-10-6 testl2*. nna TanH 0.2414 

testl2c. nnd 6-30-15-6 testl2*. nna TanH 0.2512 

testl2d. nnd 6-10-10-6 testl2*. nna TanH 0.2436 

testl3a. nnd 67-30-15-6 testl3*. nna TanH 0.1388 

testl3al. nnd 67-30-15-6 testl3*. nna TanH 0.1431 

testl3aa. nnd 67-30-15-6 testl3*. nna TanH 0.0905 

testl3b. nnd 67-40-20-6 testl3*. nna TanH 0.1454 

testl3ba. nnd 67-30-15-6 testl3*. nna TanH 0.0909 

testl3bb. nnd 67-30-15-6 testl3b*. nna TanH 0.0883 

testl3c. nnd 67-50-25-6 testl3*. nna TanH 0.1514 

testl3ca. nnd 67-30-15-6 testl3c*. nna TanH 0.0868 

testl3d. nnd 67-25-12-6 testl3*. nna TanH 0.1386 

testl3da. nnd 67-30-15-6 testl3d*. nna TanH 0.0886 

testl3db. nnd 67-21-6 testl3d*. nna TanH 0.1667 

testl4a. nnd 134-30-6 testl4*. nna TanH 0.1489 

testl4b. nna 134-60-30-6 testl4*. nna TanH 0.1192 

testl4c. nna 134-80-40-6 testl4*. nna TanH 0.1226 

testl4d. nna 134-20-10-6 testl4*. nna TanH 0.1031 

testl4e. nna 134-20-10-6 testl4*. nna Sigmoid 0.1021 

test l4fnna 134-30-6 testl4*. nna Sigmoid 0.1015 

testl4g. nna 134-40-6 testl4*. nna Sigmoid 0.1025 

363 


