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Abstract 

A relatively large number of authors have proposed alternative techniques for 
the estimation of implied risk-neutral densities. As a general rule, an assumption for a 
theoretical equilibrium option pricing model is made and with the use of cross-sections 
of observed options prices point estimates of the risk-neutral probability densities are 
obtained. 

The present study is primarily concerned with the estimation of implied risk- 
neutral densities by means of a semi-parametric Edgeworth Series Expansion proba- 
bility model as an alternative to the widely criticized log-normal parameterization of 
the Black, Scholes and Merton model. Despite the relatively early introduction of this 
type of models in academic literature in the early '80s, it was not until the mid '90s that 
people started showing interest in their applications. Moreover, no studies by means 
of the Edgeworth Series Expansion probability model have so far been conducted with 
American style options. 

To this end, the present work initially develops the general theoretical framework 
and the numerical algorithm for the estimation of implied risk-neutral densities of the 
Edgeworth Series Expansion type from options prices. The technique is applicable 
to European options written on a generalized asset that pays dividends in continuous 
time or American futures options. 

The empirical part of the study considers data for the Oil and the Interest rates 
markets. 

The first task in the empirical investigation is to address general concerns with re- 
gard to the validity of an implied risk-neutral density estimation technique and its abil- 
ity to stimulate meaningful discussion. To this end, the consistency of the Edgeworth 
Series Expansion type implied densities with the data is checked. This consistency is 
viewed in a broader sense: internal consistency - adequate fit to observed data - and 
economic rationale of the respective densities. An analysis is, therefore, performed 
to examine the properties of the implied densities in the presence of large changes in 
economic conditions. More specifically, the ability of the implied Edgeworth Series 
Expansion type implied densities to capture speculation over future eventualities and 
their capacity to immediately reflect changes in the market sentiment are examined. 
Motivated by existing concerns in the literature that the differences between the esti- 
mates from an alternative parameterization and the log-normal Black-Scholes-Merton 
parameterization may be apparent - better fit to observed data - but not significant 

xvii 



in a statistical sense, the hypothesis that the use of the Edgeworth Series Expansion 
model is able to offer a statistically significant better fit compared to the log-normal 
parameterization is also tested. The information conveyed by the implied probability 
distributions, recovered by the Edgeworth Series Expansion model, proves to be con- 
sistent with the market commentary of the study period, thus, the Edgeworth Series 
Expansion type implied densities can be seen as economically sensible. The implied 
distributions are also shown to be able to capture the general market sentiment as well 
as able to incorporate isolated events with a significant impact on the market. In ad- 
dition the model is found to offer a statistically significant better fit to observed option 
prices and can, therefore, be considered a superior means - compared to the log-normal 
Black-Scholes-Merton parameterization - of extracting information implied in option 
prices. 

The second task in the empirical investigation is to assess the performance of 
the Edgeworth Series Expansion type implied densities in a more quantitative basis. 
Typical studies assess alternative techniques for the estimation of implied densities 
on the basis of the goodness of fit achieved to observed options cross-sections. The 
goodness of fit, however, should not be the sole criterion - not even the prior one. 
Implied risk-neutral densities estimation techniques defined by a number of parameters 
larger than the respective number of parameters used by other competitive techniques 
are expected to result in more accurate fit of the data. A fair comparison seems to be 
one that assesses also the robustness of these techniques or, more precisely, the degree 
of confidence that can be placed on the summary statistics calculated off the implied 
distributions. The performance of the Edgeworth Series Expansion in that respect 
is examined on a relative basis. A mixture of two log-normals specification, being 
a very commonly used parametric model which has already been studied in terms of 
stability, is used as a comparative benchmark. The results are highly supportive of the 
superior performance of the Edgeworth Series Expansion model which is found to be 
more stable than the mixture of two log-normals specification; it is found more capable 
of estimating on average densities whose summary statistics converge to the original 
solution; and also capable of estimating statistics with relatively low dispersion. 

Having examined the 'goodness' of an Edgeworth Series Expansion type proba- 
bility model in a number of ways proposed in the current literature, it is natural to seek 
an application within the framework implied densities are acknowledged to be suit- 
able for, that is in addressing a more general fundamental economic question. To this 
end the model is, finally, used to infer investor risk preferences functions from option 
prices. The estimated risk preferences functions are found consistent with existing 
empirical evidence and consistent with the market conditions of the study period. 

This is the first time an Edgeworth Series Expansion type probability model is 
studied in the context of American options. The stability of the model is investigated 
for the first time. It is also the first time that the robustness of a model belonging to the 
semi-parametric family of densities parameterisations is examined. The study's con- 
tribution is further enhanced with the exploration of the Edgeworth Series Expansion 

xviii 



type probability model's ability to properly reflect/capture investor's risk preferences. 
It is also the first a semi-parametne model is used in such an exercise. 
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1 

Preface 

Financial and economic researchers have recently become extremely interested 

in exploiting the forward looking nature of derivatives and become increasingly so- 

phisticated in their attempts to analyse market expectations embedded in traded deriv- 

ative securities. Efficient market hypothesis considerations imply that market asset 

prices contain all the available information - including costly information as well - 

and can be used to enhance the forecasts of both informed and uninformed partici- 

pants. Motivated by this fundamental principle and by the forward looking nature 

of exchange traded derivatives researchers have attempted to assess the information 

content of Futures and Options prices. On the one hand they have investigated the 

lead-lag relationships between the Futures and the underlying spot markets. On the 

other hand a large body of work has focused on Option prices trying to recover either 

the risk-neutral stochastic process followed by the underlying asset or the risk-neutral 

density function from which the asset price at expiration will be drawn. 

The present study provides an in-depth analysis in the area of implied risk- 

neutral densities. 

Applications of implied risk-neutral densities have been well documented in 

academic literature. One of the uses suggests that implied distributions be used to 

price illiquid, exotic or over-the-counter options consistently with exchange traded, 

vanilla options which also helps to develop more trivial hedging strategies. On the 

other hand implied distributions prove useful when a more qualitative/fundamental 
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economic question is addressed as they help to reveal 'market sentiment'. This is 

useful for the policy-stance of a central bank and for investors who may wish to take 

positions based upon the difference between their forecast of the distribution and the 

consensus of the market. 

To be able to make any analysis based on implied distributions one should be 

equipped with an option pricing model that adequately describes observed option 

prices. To this end one should be very cautious and make sure that a model is con- 

structed so that it adequately describes observed options data but at the same time is 

able to recover implied risk-neutral densities that are economically sensible. Thus, the 

purpose of the present study is threefold: firstly, to develop a model along the lines of 

modem option pricing theory which succeeds in describing observed prices with high 

accuracy; secondly, to explore its ability to reflect/capture the information content of 

option prices; and thirdly to suggest potential applications of implied risk-neutral den- 

sities. 

The study is organised as follows: the Black-Scholes-Merton pricing framework, 

being the foundation of nearly every option pricing analysis as well as of the one 

presented herein, is discussed in Chapter 1. Chapter 2 offers a comprehensive review 

of the studies that followed the seminal work of Black, Scholes and Merton in the 

option pricing literature. Chapter 3 substantiates the need to pursue research in the 
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area of options implied risk-neutral densities and identifies the contribution of a new 

methodology. Chapter 4 presents the theoretical framework within which the new 

method is developed and describes the procedure followed for the estimation of the 

implied risk-neutral densities. Chapter 5 examines the internal consistency of the 

model - by means of a statistically significant improved fit compared to the Black- 

Scholes-Merton parameterisation - and also its ability to recover economically sensible 

risk-neutral densities in an attempt to - rather qualitatively - assess its performance. 

Chapter 6 investigates the sensitivity of implied risk-neutral densities in the presence 

of measurement errors in an attempt to offer a more quantitative assessment of the 

model. Chapter 7 illustrates a potential application of implied risk-neutral densities 

where the information content of option prices is explicitly quantified and illustrates its 

implication with the use of the proposed methodology. Finally, Chapter 8 concludes 

the study by addressing issues related to the use of implied risk-neutral densities in 

general and the application of the proposed methodology, and also suggests topics for 

future research. 
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Chapter I 
The Black- S choles -Merton Asset Pricing 

Framework 

The pricing of options contracts is an issue that has received economists' atten- 

tion as early as the beginning of the century. The first attempt to tackle the problem 

mathematically, rather than by intuition, was made by Luis Bachelier in 1900. The 

proposed model made a key assumption, that the prices of financial assets change 

randomly, but it also relied on an interest rate of zero and allowed share prices to be 

negative. It was not until 1973 that a generally acceptable options pricing model was 

derived. Pre-1973 attempts to value options approached the problem by estimating 

the expected value of the option at maturity and then discounting its value back in 

time. This obviously requires the choice of a risk premium to use in the discounting 

which differs from person to person and from asset to asset. 

The key breakthrough of Black, Scholes and Merton (BSM hereafter) option 

pricing model is that it requires no explicit use of a risk premium. The concept be- 

hind the model is simple: it is possible to construct a portfolio which consists of 

shares and risk-free bonds with the same total risk as the options on those shares; 

since the risk of the two sets o assets is the same and the investment is the same, then f 

the returns must be the same over a short period, otherwise there should be opportu- 
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nitiesfor arbitrage. The elegance and the simplicity of the resulted pricing formula 

yielded its dominance among existing, at that time, pricing models. Moreover all 

options models of the past nearly 30 years have been refinements of the basic BSM 

model. 

1.1 The Black-Scholes-Merton model 

In the BSM asset pricing framework the following assumptions are made: 

e The short-term interest rate is known and is constant through time. 

e The underlying asset pays no dividends or other distributions. 

o The option is 'European'. 

* The asset price follows a random walk in continuous time with a variance rate 

proportional to the square of the price. Thus the distribution of possible asset 

prices at the end of any finite interval is log-normal. The variance rate of the 

return on the asset is constant. 

* It is possible to borrow any fraction of the price of a security to buy it or to 

hold it, at the short-term interest rate. 

e There are no penalties for short selling. 

* There are no transaction costs in buying or selling the asset or the option. 
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The value of the option will then depend only on the price of the underlying 

asset and time, and on variables that are taken to be known constants. It is therefore 

possible to create a hedged position consisting of a long position in the asset and a 

short position in the option, whose value will not depend on the price of the asset, 

but will depend only on time and the values of the known constants. 

To fonnally express this denote by v(S, t) the value of the option as a function 

of the asset price S and time t. The number of the options that must be shorted 

against one unit of the asset long is: 

I 

us (Sý (1.1) 

where us (S, t) is the partial derivative of the option price with respect to the asset 

price. The latter is referred to as the 'delta' of the option and expresses how much 

the value of the option is altered by a unit change in the current asset price. 

If the asset price changes by a small amount AS the option price will change 

by an amount vs (S, t) x AS, and the number of options given by Equation (1.1) 

will change by an amount AS. Thus the change in the value of a long position in 

the stock will be approximately offset by the change in value of a short position in 

Ilvs(S, t) options. This means that for reasonably small increases in the asset price, 

the profit the investor makes on the asset will be the same as the loss he incurs on 

the options, and vice versa for decreases in the asset price. As the portfolio thus 

constructed is risk-free, it must yield exactly the same return as a risk-free treasury 
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bond which matures on the same date as the option does. If it did not, arbitrage 

trading would begin to eliminate the possibility of making risk-free profits. 

If P is the value of the portfolio consisting of one unit of the asset lonc, and tý 

I lus(S, t) options and r is the treasury bond rate, following the above, the change 

AP in its value in the time interval At is given by: 

AP = rPAt 

Following the BSM assumptions, listed on page 5, the asset price evolution 

over time can be described by a Stochastic Differential Equation (SDE hereafter) as 

follows: 

dS = I-tSdt + o7SdX in continuous time 

or 

AS = AsAt + C-SAX in discrete time 

where y is the expected return of the asset, a is the standard deviation of the asset 

price returns and dX is a Wiener process. The process is known as a Geometric 

Brownian Motion (GBM hereafter). From Ito's lemma, it follows that a process 
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followed by a function v of S and t is : 

dv = VSILS + Vt + 
IVSSg2S2 

dt + vsuSdX (1.4) 2 

or 

I AV = vsys + Vt + _VSSOr2S2 At + VSOISAX (1.5) 2 

which implies that both S and v are affected by the same underlying source of un- 

certainty. 

if 

u(SI vs A t) 
is the value of the portfolio that consists of one share long and I /us (S, t) options 

short, and 

AP=AS-- I 
AV (S7 

VS 
(S7 

t) 
is the change in its value, the process followed by the portfolio value, given Equations 

(1.2) to (1.5), is 

AP psAt + USAX - USPS + Ut + USS(T 
2s2 At + USO'SAX 

Vss 2 

-vt usso- 
2s2 At 

VS 

(2 

Since the portfolio is riskless it can only yield the risk free interest rate r. 

Therefore: 

AP - rPAt 
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By substituting and dropping out At we get: 

I (-Vt 
- 

'vssa's') 
US 2 
,( 

-Vt -, vsso- 
2s2 

VS 2 

rP 

r [s 
-, v (s, ol US 

ru (S, t) = vt + rSvs +1 vsso- 
2s2 

2 

which is the SDE followed by the value of an option at each point of time t. 

(1.6) 

The significance of Equation (1.6) lies on the fact that I-L' is eliminated, thus 

creating a riskless position. As a result the option can be priced irrespective of in- 

vestors' views towards risk. The resulting differential equation can be solved subject 

to the boundary conditions that the nature of the option each time implies. In fact it 

is the heat-transfer equation of physics whose solution is given by Churchill (1963). 

In the simplest case of a European call option the solution is the following: 

v (S, t) - SN (di) - Ker(T-') N (d2) 

with 

ln(-! ýý) + (r + 10-2) (T - di K2 

O-VT -t 
d2 

,::::: di - o-VT--- t 

(1.7) 

depends on risk preferences. The higher the level of risk aversion by investors, the higher p be 
for any given asset. 
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where N (-) is the cumulative normal density function, S is the current price of the 

underlying asset, K is the strike price of the option, r is the treasury bond rate and a 

is the expected volatility of the underlying asset's returns upon maturity of the option 

in -r(= T- t) units of time. Equation (1.7), implies that the value of the option 

is given by the difference between the expected asset price - the first tenn on the 

right-hand side - and the expected cost - the second tenn - if the option is exercised. 

A few years later Black (1976), developed a fonnula for the pricing of com- 

modity options contracts. The formula serves as an extension to the original BSM 

formulaý and it is derived under the same theoretical framework. A key assumption 

to the derivation of Black's formula is that the expected return on a futures contract 

is zero, since no initial capital needs to be engaged to enter the position. A riskless 

hedge can be created, as in the case of the original model, by taking a long position 

in the option and a short position in the futures contract with the same transaction 

date. Since the value of a futures contract is always zero, the equity in this position 

is just the value of the option. The formula Black comes up with is very similar to 

the one presented in Equation (1.7) and reads: 

[FN (di) - KN (d2)1 

2 To pay equal tribute to all three authors the present study uses the acronym BSM to refer to the 
general framework rather than one of the two models. The reader may bear in mind that the relevant 
modifications are made when necessary. 
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with 

di = 
ln(-: ý! ) +. 10,2 (T 2 

V, T 
d2 

=d1-a v'-T- --t 

where F is the current price of the underlying futures contract and the remaining 

symbols correspond to the ones used in Equation (1.7). 

1.2 Conclusions 

The concept behind the BSM model is simple: it is possible to construct a portfolio 

which consists of shares and risk-free bonds with the same total risk as the options 

on those shares; since the risk of the two sets o assets is the same and the investment f 

is the same, then the returns must be the same over a short period, otherwise there 

should be opportunities for arbitrage. 

The Black, Scholes and Merton option pricing model is a closed form model 

which calculates the value of a European option - call or put - as a function of three 

observables - the current value of the underlying asset of the option, the strike price, 

and the time to expiry - and one unobservable - the expected volatility of the under- 

lying asset. Following the same principles Black (1976) derived an option pricing 

model to value options written on futures contracts. The key breakthrough of BSM's 

and subsequently Black's option pricing models is that they require no explicit use of 

a iisk premium. 
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Chapter 2 
Literature Review 

The elegance and the simplicity of the BSM pricing fon-nula yielded its domi- 

nance among existing, at that time, pricing models. Moreover all options models of 

the past nearly 30 years have been refinements of the basic BSM model. 

Over the years several authors have tested the validity of the model on em- 

pirical, grounds. Black and Scholes (1972) and Galai (1977) tested whether it was 

possible to make excess returns - higher than the risk-free interest rate - by selling 

overvalued and buying undervalued options. A number of subsequent studies were 

carried out in the same spirit and include: Black (1975), Chiras and Manaster (1978) 

who used CBOE data, MacBeth and Merville (1979) with data on individual stocks, 

Rubinstein (1985) also with data on individual stocks from the CBOE, Shastri and 

Tandon (1986) and Bodurtha and Courtadon (1987) on foreign currency data, Shastri 

and Tandon (1986) on futures options data and Chance (1986) on index options data. 

With little variation in the results, the above studies conclude that the BSMfonnula 

systematically misprices options across strike prices. 

To deal with this deficiency several of the original - and somewhat restrictive 

- assumptions behind the initial derivation of the BSM formula have been relaxed 

in the subsequent literature. This chapter reviews a large body of studies that have 

re-considered one or more of the following assumptions: 
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9 the underlying asset pays no dividends or other distributions 

0 the variance rate of the return on the asset and short-term interest rate is known 

and is constant through time 

* the asset price follows a random walk in continuous time with a variance rate 

proportional to the square of the price, or equivalently 

0 the distribution of possible asset prices at the end of any finite interval Is 

log-normal. 

2.1 The underlying asset pays dividends or other 
distributions 

In real life financial markets it is rare to find any financial asset that pays no div- 

idends or distributions'. The BSM option valuation formula can be extended to 

incorporate this feature and relatively simple modifications can be made to value op- 

tions on stocks that pay a continuous dividend yield, options on stock indices and 

currencies. Garman and Kohlhagen (1983) and Biger and Hull (1983) derived an 

option valuation formula for options on currencies under the assumption that the sto- 

chastic process that exchange rates follow is: 

dS = (r - rf) Sdt + o-SdX 

3 The only exception being the Futures contracts. 
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where S is the value of an FX security, r is the risk free interest rate of the domestic 

currency, rf is the risk free interest rate of the foreign currency and a is the exchange 

rate's retums expected volatility. 

If rf is replaced by q, which represents a continuous dividend yield rate, a 

valuation formula can be derived for options on stocks and options on stock indices 

with a continuous dividend yield [Merton (1973)]. 

The arguments that underlie the above modifications have enjoyed broad ac- 

ceptance among researchers and practitioners and is now standard practice to replace 

the expected return of currencies with (r - rf ) and general assets with expected div- 

idends q with (r - q) when valuation models are derived under the risk neutrality 

argument. 

2.2 Non-constant variance and non-constant interest 
rates 

One assumption in the BSM model that is clearly not realistic is that the variance 

rate of the return on the asset is constant. Black (1976) examined the relationship 

between asset prices and volatility and found a strong tie between them. Christie 

(1982), Schwert (1989a, b), Cheung and Ng (1992) have also identified similar pat- 

terns in volatility - stock return volatility rises after stock prices fall and vice versa 

(leverage effect)- while Giamouridis and Tarnvakis (2001) found an inverse relation- 

ship to hold in the commodity markets. 
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The introduction of the Autoregressive Conditional Heteroscedasticity (ARCH) 

and the Generalised Autoregressive Conditional Heterosceclasticity (GARCH) mod- 

els by Engle (1982) and Bollerslev (1987) respectively, gave researchers a formal 

statistical tool to model the behaviour of stock market returns in a more realistic 

framework. The model imposes a structural form on the conditional variance, which 

is expressed as a function of past squared errors and past conditional variances. 

A typical GARCH (1,1) specification, for example, relates the variance of asset 

returns at time iAt to the variance of asset returns in time (i - 1) At and past errors 

in the following way: 

+ ac 2+ ou 2 

where ai is the volatility of the asset at time iAt and Ej is the past error. Variations of 

the above models include Nelson's (1991) Exponential GARCH (EGARCH) which 

allows the conditional variance to respond asymmetrically to positive and negative 

innovations and Zakoian's (1990) Threshold GARCH (T-GARCH) model where the 

specification of the conditional variance also allows to test the significance of the 

asynunetric effect. 

The above mentioned models are generally formulated in discrete time and pos- 

tulate a log-price process for the stock which has a conditional variance (Conditional 

Heteroscedasticity) depending on exogenous and lagged endogenous variables, and 

past residuals. 
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A quite different approach, still based on the same principle, evolves with the 

use of stochastic calculus techniques. Models in this farmly include Hull and White 

(1987), Scott (1987) and Wiggins (1987), and Melino and Turnbull (1990,1995). 

The general framework uses the following specification for the risk-neutral be- 

haviour of asset prices: 

dS == ASdt + uSdX 

du = -y (o-) dt +6 (o-) dW 

where dX and dW are Wiener processes with covariance 

dXdW - pdt 

for some correlation -I p<1. 

These models have generally the disadvantage that no closed form solution ex- 

ists and the use of extensive numerical techniques is required to solve two-dimensional 

partial differential equations. What makes these models even less appealing is the 

fact that volatility is not a traded asset, therefore, the associated risk can not be hedged 

in this setting. In addition, the introduction of two Brownian motions makes the 

model incomplete and no unique prices for stock options exist [Hobson and Rogers 

(1998)]. 

Stein and Stein (1991) relaxed the assumption of correlated Wiener processes 

and developed a closed fon-n solution for the pricing of options contracts. They 
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assumed that volatility is driven by an Ornstein-Uhlenbeck [or AR(I)] process. The 

processes they proposed for the underlying asset and the volatility are the following: 

dS =: pSdt + uSdX 

du = -b (o- - 0) dt + kdW 

where S is the asset price, u is the expected volatility of the asset retum, k, p, 6 

and 0 are constants, and dX and dW are two independent Wiener processes. Due 

to this specification, however, the model cannot capture important skewness effects 

that arise from the correlation of asset returns and volatilities. Heston (1993), also 

used the Ornstein-Uhlenbeck specification of Stein and Stein (1991) and provided a 

closed form solution by making an assumption for the 'price of the volatility risk' 

and by guessing a functional form for the option price. Hobson and Rogers (1998) 

proposed an alternative model, where the instantaneous volatility was specified in 

terms of exponentially weighted moments of the historic log-price. This introduces 

a feedback effect into the volatility process: present shocks in the asset price result 

in higher future uncertainty. 

A number of research papers have also studied models with stochastic interest 

rates. Models that incorporate non-deterministic interest rates include Stein and 

Stein (1991), Nbltersen and Schwartz (1998) and Hilliard and Reis (1998). 

Both the GARCH (n, m) and the stochastic volatility specifications generally 

result in skewed distributions for the terminal asset prices. While the tails of the dis- 



18 

tribution can be fat, depending for example on the correlation between the volatility 

and the asset price in the latter specification, multimodal shapes can not be incorpo- 

rated unless jump components are included in the diffusion (see Section 2.3). 

In conclusion, for options that last less than a year, the pricing impact of a sto- 

chastic volatility is fairly small in absolute terms (although in percentage terms it can 

be quite large for deep-out-of-the-money options). It becomes progressively larger as 

the life of the option increases, [Hull (1999)]. The hedging performance on the other 

hand is a factor that has to be considered in evaluation of the performance of pricing 

models. Stochastic volatility models can be hedged only by using other volatility 

depended instruments, such as other options. A fair comparison between stochastic 

and deterministic volatility models should therefore include the comparison of delta- 

and vega-neutral position of deterministic models with delta-neutral stochastic mod- 

els. Bakshi, Cao and Chen (1997) run such tests and conclude that BSM delta- plus 

vega-neutral strategy performs no worse than the other models' delta-neutral hedges. 

Studies, on the other hand, that use stochastic interest rate specifications seem to add 

complexity to the valuation problem without adding any significant degree of accu- 

racy. Moreover, interest rates are not expected to change significantly over short 

periods, thus making such models inappropriate for short-term options contracts. 
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2.3 Alternative Stochastic Processes 

2.3.1 Continuous-Time Models 

In the BSM framework the asset price is assumed to follow a random walk in con- 

tinuous time with a variance rate proportional to the square of the asset price. The 

equation that describes asset price dynarnics is the following: 

dS = I-tSdt + (7SdX 

Cox and Ross (1976) proposed an alternative specification for the asset price 

dynamics. In their setting the asset prices change according to the following SDE: 

dS = I-tSdt + uSl-"dX 

where 0<a<1. The model - known as the Constant Elasticity of Variance model 

(CEV) - allows the leverage effect to be incorporated since the volatility of the asset 

cS-' decreases as the asset price increases. Its weakness, however, is that it allows 

asset prices to become negative. 

Merton (1976), on the other hand, pointed out that the use of the standard BSM 

process for the asset price implies that in a short interval of time the stock price can 

only change by a small amount. It would therefore be more realistic to use a process 

which would allow for a positive probability of an asset price change of extraordinary 
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magnitude (e. g. some important information on the asset arrives). He suggested the 

dynamics of the asset price changes be composed of two types of changes: 

e the 'normal' vibrations in price, which are modelled by a standard GBM, and 

* the 'abnormal' vibrations in price, which are modelled as a 'jump' process 

in the following equation: 

dS = (a - Ak) Sdt + o-SdX + Sdq 

where a is the instantaneous expected return on the asset, A is the rate at which 

jumps occur, k is the average jump size measured as a proportional increase in the 

asset price, a' is the instantaneous variance of the return conditional on no arrivals 

of important new information, dX is a standard Wiener process, and dq is a Poisson 

process generating the jumps. The processes dq and dX are assumed to be indepen- 

dent. 

The 'Poisson' element is included in the equation to incorporate the arrival of 

a new piece of information about the asset. The arrivals of news are independently 

and identically distributed and during a small time interval (t, t+ h) : 

e the probability that an event occurs is Ah + O(h) 

9 the probability that an event does not occur is I- Ah + O(h) 

e the probability that more than one events occur is O(h) 
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where O(h) is the asymptotic order symbol defined by 0(h) = O(h) if 

lim 0 

k--*O h 

The above mentioned model contains the BSM model as a special case, when 

A == 0, which translates to the fact that no events occur. The main drawback stems 

from the fact that the risk of jumps in the underlying asset's return is not diversifiable. 

Naik and Lee (1990) pointed out that since neither the no-arbitrage argument 

nor Merton's approach is appropriate to price options under a jump process frame- 

work, a model can be derived for European calls and puts by placing restrictions on 

investors' preferences. The model shares its own disadvantages, the main one be- 

ing its principle of derivation, namely its dependence upon investors' preferences. 

Bates (1991) derived the American analogue of Merton's model and carried out em- 

pirical tests using data on the S&P 500 Index. One can easily argue that a jump in 

the market index or a large stock portfolio would also include a jump of the same, or 

even larger, magnitude in all of the stock prices meaning that such a risk cannot be 

diversified away resulting in a quite considerable disadvantage. 

In the same line of research Bates (1996) extended the jump-diffusion model 

to incorporate stochastic volatility and Scott (1997) to incorporate stochastic volatil- 

ity and stochastic interest rates as well. Bakshi, Cao and Chen (1997) used a sto- 

chastic volatility, stochastic interest rate and random jumps model which contained 

many known option pricing models as special cases. To test its validity and per- 
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formance they run a 'horse race' among known option pricing formulas including 

BSM, stochastic volatility (SV), stochastic volatility with jumps (SVJ) and stochas- 

tic volatility stochastic interest rates (SVSI). Overall they found models that admit 

stochastic volatility improve greatly the BSM formula. The inclusion of stochastic 

volatility, and random jumps improved the performance of short term option pricing 

whereas longer maturity options were priced more accurately with the stochastic in- 

terest rates consideration'. This was in a way bound to happen as asset prices seem 

to experience abrupt changes in short time intervals which tend to cancel out in the 

long run whereas interest rates are not expected to fluctuate significantly within a 

short time period. As far as the hedging performance is concerned, it was concluded 

that adding either random jumps or stochastic interest rates did not improve the SV 

model's performance despite the additional complexity they required. 

Motivated by the work of Mandelbrot (1997), finally, suggesting that pure jump 

models are able to capture both rare large moves - 'abnormal' vibrations in price - and 

-frequent small moves - 'normal' vibrations in price - several authors have recently 

focused attention on pure jump models in the Uvy class. The latter can capture 

frequent small moves through the use of a Levy density whose spatial integral is 

infinite. Three such processes are presented in Carr et al. (2001a): the normal 

inverse Gaussian model of Bamdorff-Nielsen (1998), the symmetric variance gamma 

model studied in Madan and Seneta (1990), and, finally, the generalised variance 

4 This result is probably due to the inclusion of random jumps as the stochastic volatility models do 
not perform extremely well in short-maturity options, see Section 2.2, p. 18. 
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gamma model developed by Carr et al. (2001b). Carr et al. (2001a) identify a 

potential shortcoming of the former methodologies in that their specification fails to 

accommodate the volatility persistence (volatility clustering) observed in financial 

time series and try extend the models by incorporating stochastic and mean reverting 

volatilities. 

2.3.2 Discrete-Time Models 

The models in this category follow from the seminal work of Cox, Ross and Rubin- 

stein (1979). The model assumes asset price dynamics as illustrated in the following: 

Su with probability p 

Sd wi h0 ability -P 

The stochastic process of the asset price - which is assumed to pay no dividends - is 

modelled in discrete time intervals dt. Within this small interval of time the asset 

price has a probability p of moving from S to Su, for u>1, and a probability of 

I-p of moving from S to Sd, d<1. Over the life of the option the asset price 

is assumed to be composed by a large number of the binorMal movements described 

above. The binomial tree describing the asset price dynamics is the discretization of 

the continuous-time BSM model's Brownian motion. 

The parameters of the tree are determined through risk-neutral valuation argu- 

ments, that the expected return of the asset should equal the risk-free interest rate and 

also by requiring u= Ild. The latter ensures that the tree is recombining, which 
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means that an up movement followed by a down movement leads to the same asset 

price as down movement followed by an up movement. 

The model in its initial form received great acceptance among academics and 

practitioners as it provided a very useful tool for the pricing of products with more 

complicated pay-offs i. e. options with American style exercise features. The ad- 

vantage of the methodology lies on the fact that the whole stochastic process of the 

underlying asset can be 'visualised'. 

With the quality of available data sets vastly improved in the recent years re- 

searchers have tried to take advantage of the latter and learn more about the stochastic 

process of the asset from the observed option prices. Advances in discrete-time mod- 

elling, therefore, mainly include extensions of the original Cox, Ross and Rubinstein 

(1979) model which are utilised to recover the whole risk-neutral stochastic process 

of the underlying security using option prices data'. Standard practice suggests the 

estimation of the risk-neutral distribution of the terminal asset price first; and then 

the estimation of a stochastic process, in binomial tree form, that results in the same 

terminal distribution that is implied in the option prices. 

A first attempt to address this issue was made by Rubinstein (1994) and was 

generalised later by Jackwerth (1997). The proposed methodology assumes a prior 

distribution - the binomial - as an input. The terminal distribution is then recovered 

in discrete points through an optimization procedure which essentially estimates the 

5 These models also fall within the class of 'implied models' discussed extensively in Section 2.4. 
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distribution that deviates the least from the prior so that the treasury bond, the un- 

derlying asset, and the option are priced consistently. The methodology is formally 

described in the following equations: 

min (Pj - Pj)' 
pi 

subject to: 

Pj I and Pj >0 for j= 0) ..., n 

q'r Pj Sj 

Sb <S< S' where S=( 

E Pj max [0, Sj - Kj] 
Cib < Ci < Ci' where Ci -- 

(i 

rT 

) 

for im 

with 

i the ending binomial nodes from lowest to highest 

P implied (posterior) ending risk-neutral probabilities i 

Pý prespecified (prior) ending nodal log-normal risk-neutral probabilities 3 

Si underlying (ex-payout) asset prices at the end of standard binorrUal tree 

Sb (Sq) 
current (observed) bid (ask) underlying asset price jj 

Cb (Ca) 
current (observed) bid (ask) underlying option price with striking price K, j3 

q observed annualised payout return 

observed annualised riskless return 

time to expiration 
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Jackwerth (1997) identified two drawbacks of the methodology in that options 

expiring earlier than the terminal date are not used in constructing the tree and also 

that the equal path probabilities assumption was rather arbitrary. He introduced a 

simple weight function which allowed a more flexible backward construction. As 

a consequence information from times other than the end of the tree and also from 

American and exotic options could be incorporated. 

As an alternative to the above backward constructed trees, Derman and Kani 

(1994) introduced a forward constructed tree. Derman and Kani's (1994) tree can in- 

corporate options with different maturities but requires extensive interpolations and 

extrapolations of the observed option prices. The method requires a quite substan- 

tial amount of data to perform the relevant interpolations and extrapolations. An 

additional drawback of the methodology is that it may give rise to negative proba- 

bilities which due to the fact that are remedied with add-hoc techniques result in an 

overall numerically unstable methodology. 

Several improvements to Derman and Kani's (1994) methodology have sub- 

sequently been proposed. Derman, Kani and Chriss (1996) recommended the use 

of trinomial trees while Barle and Cakici (1998) suggested some technical improve- 

ments on the original model i. e. aligning the center nodes of the tree with the forward 

price. Dupire (1994) proposed alternative models in the spirit of Derman and Kani 

(1994). Brown and Toft (1999) developed a semi -recombining tree by estimating 

risk-neutral densities for every traded expiration class of options. 
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A further development extends the implied binomial tree models to multiple 

factors considerations. Derman and Kani (1998) fit a trinomial tree to observed op- 

tion prices and allowed the transition probabilities from node to node to change ac- 

cording to a separate stochastic process. Ledoit and Santa-Clara (1998) in a similar 

approach modelled stochastic implied volatilities as opposed to the stochastic local 

volatilities in the former paper. Britten-Jones and Neuberger (2000), finally, pro- 

posed the use of an implied trinomial tree where the stochastic volatility component 

was restricted to be a Markov process. 

Despite the nearly perfect fit of cross-sectional data the above models provide 

and the attractiveness of a market implied stochastic process for the asset, implied 

tree methodologies have been subject to extensive criticism both on theoretical and 

on empirical grounds. 

Jackwerth (1999) identified a theoretical weakness of the implied tree models 

in that the methodology estimates a stochastic process which is consistent with the 

terminal distribution of the asset prices. No such unique stochastic process, however, 

exists [see also Melick and Thomas (1997)]. The asset price can evolve according 

to either a diffusion process, a jump process, or any number of alternative processes, 

which can involve jumps or additional stochastic factors such as stochastic interest 

rates or stochastic volatility. 

Dumas, Fleming and Whaley (1998) performed empirical tests on the Derman 

and Kani (1994), Dupire (1994) and Rubinstein (1994) models. They developed 
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deterministic volatility functions, which were polynomials in time and asset price, 

and used these functions as volatility surfaces of generalised diffusions. Dumas, 

Fleming and Whaley (1998) found that the parameter estimates were unstable and 

most importantly that despite the imposed complexity in the implied trees the hedging 

performance was less reliable than an ex-post ad-hoc procedure that smoothes BSM 

model implied volatilities, across exercise prices and times to expiration. Jackwerth 

and Rubinstein (1998) compare implied binomial trees, parametric models (to be 

reviewed in Section 2.4) and naive trader rules of thumb' and found that none of the 

models performed extraordinary well and that implied binorMal trees performed as 

well as the parametric models and the naive trader rules. 

2.4 Alternative distributional assumptions - The concept 
of implied risk-neutral Probability Density Functions 

The assumption regarding the stochastic process that the underlying asset's returns 

follow, implies that at the end of any finite interval the stock price is log-normally 

distributed. The symmetry that this assumption implies is rejected in unconditional 

returns distributions which seem to be skewed and highly leptokurtic. Westerfield 

(1977), Tucker and Pond (1988), and others all report severe departures from nor- 

mality for either daily, weekly or monthly exchange rate returns. Harvey and Sid- 

dique (2000) report similar patterns for U. S. monthly stock returns. In addition, the 

6 These naive rules assume that implied volatility is a function of strike price and does not change 
as time passes. 
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log-non-nal distribution has unanimously failed to describe observed option prices 

[see for example Ritchey (1990), Rubinstein (1994) and B ahra (1997)]. 

The models described in Sections 2.2 and 2.3 result in more realistic terminal 

distributions. The stochastic volatility models offer a flexible distributional structure 

in which the correlation between the two diffusion processes controls the level of 

skewness and the volatility variation coefficient controls the level of kurtosis. The 

jump diffusion models assert that it is occasional, discontinuous jumps and crashes 

that cause the negative implicit skewness and high implicit kurtosis, to exist in option 

prices, [Bakshi, Cao and Chen (1997)]. 

Alternatively the form of the terminal distribution can be explicitly defined 

to accommodate the features observed in realised asset returns distribution, using a 

rather more flexible parametric or a totally non-parametric form. 

Ross (1976) and Cox and Ross (1976) have shown that in a market that offers 

no arbitrage possibilities, a set of state space prices or Arrow-Debreu prices that 

support current values should exist. Fonnally expressed, let 19T be a basic state of 

nature at time T as perceived for the current time, t, and let QTg be the distribution 

of prices of contingent claims to wealth if state 79 occurs at time T. If an asset offers 

returns of Xq, then its current value Vx, will be given by 

V 
Tf 

tt 19 ,g 
XTgdQtg 
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or if the state and time spaces are discrete then 

Vx =E1: XTq qTg 

T 19 

where qtg is the value of an 'elementary' contingent claim'. 

(2.2) 

Ross (1976) suggests 

that no arbitrage possibilities exist if and only if (2.1) or (2.2) holds. 

Following the above, the value of an option in a market that no arbitrage possi- 

bilitiesg exist can be expressed with the following: 

00 
(T-t) 

f 

00 

(ST) f (ST) dST 

or if the state and time spaces are discrete then 

E 
qsTg (ST) 

ST 

(2.3) 

(2.4) 

where ST is the asset price at the maturity of the option (the possible states of S 

at time T), g(ST) is the payoff function (contingent on ST) and f (ST) is the risk- 

neutral probability distribution function of the stock price at maturity (the state price 

density of states of ST). Given an explicit formula for the probability distribution 

function a closed form pricing fonnula can be derived. Hence the knowledge of 

the terminal distribution would be an adequate means for pricing options and vice 

7 An 'elementary' contingent claim on any security or portfolio of securities is defined as a security 
that pays one unit of wealth at a given date in T periods, if the value of the portfolio Is M at that time; 
if the value of the portfolio is not M in T periods, the elementary claim expires paying nothing. 
8 Cox and Ross (1976) suggest that a world free of arbitrage possibilities is not quite the same as 
saying that the world is in equilibrium but this will have no effect on the value of the option. 
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versa the knowledge of option prices would be sufficient to recover the implied PDF, 

within a risk-neutral framework. 

Gastineau (1975) presented the Gastineau and Madansky model for the pricing 

of options. The model essentially uses Equation (2.3) where f (ST) is estimated and 

numerical integration techniques are then used to obtain the option price. Jarrow 

and Rudd (1982) criticised this approach as somewhat complex due to the analyt- 

ical intractability of the density function. Cont (1998) also criticises an approach 

based on the estimation of f (ST) with historical data and calculates option prices 

using (2.3). Jarrow and Rudd (1982) proposed an alternative - more tractable - dis- 

tributional form and derived option pricing formulas, and tested, in Jarrow and Rudd 

(1983), the methodology. The model was found to consistently outperform the BSM 

model. 

An approach developed in Breeden and Litzenberger (1978) complemented 

the work of Cox and Ross (1976) and set the foundations for one of the most cele- 

brated areas of modem finance - the study of the information content of asset prices. 

Breeden and Litzenberger (1978) considered an 'elementary' contingent claim and 

expressed its price in terms of the prices of European call options on the underlying 
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portfolio'. The pricing function for the elementary claim is proved to be: 

P (M, T; AM) 
AM 

(M + AM, T) -c (M, T)] - [c (M, T) -c (M - AM, T)] 
(, AM), 

(2.5) 

and in the lin-ýt as the step size tends to zero, 

lim 
Am--ýo 

P (M, T; AM) 
AM 

a2 
c (X, T) 
aX2 

X=M 
(2.6) 

where P (M, T; AM) is the price of the call portfolio that gives a payoff of one unit 

of wealth if M occurs in T periods, AM is the step size - the distance between two 

consecutive values of the underlying portfolio - and c (X, T) denotes the price of a 

call option with strike X maturing in T periods. Thus (2.5) gives the pricing function 

of an elementary claim on M maturing in T periods in the discrete case, and (2.6) 

gives the pricing function for continuous M. Equation (2.6) is interpreted as follows: 

Proposition 2.1 Within a time-state preference framework, if European options 

prices, with the same time- to -expiration andfor strike prices spanning from zero to 

infinity, existedfor a single underlying asset, the entire risk-neutral probability den- 

sity "for that expiration date could be inferred; the risk-neutral probability density 

9 The authors highlighted the fact that an essential condition for this analysis to be valid is that 
there exists a one-to-one mapping between aggregate consumption at a given time and the level of the 
market portfolio at that time. The latter ensures that the price on an elementary claim on aggregate 
consumption will equal the price of an elementary claim on the corresponding level of the market port- 
folio. Rubinstein (1994) and Jackwerth and Rubinstein (1996), however, extended the interpretations 
of Breeden and Litzenberger to the case were options are written on securities or security indices. 

10 The terms risk-neutral probability distribution, probability distribution function and state- 
price density are usually used in the option pricing literature to define the same entity. The same 
applies to the present study. Through out the study the acronyms RND (Risk Neutral Density), PDF 
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would be obtained by calculating the second derivative of each option price with 

respect to its strike price. 

The immense contribution of the above proposition lies on the fact that given 

a set of options on an underlying asset it is possible to estimate the equilibrium or 

the aggregate risk-neutral distribution implied in the options prices for the expiration 

date of the option. 

Starting in the early 1990s financial and economic researchers have become 

extremely interested in exploiting the forward looking nature of options and became 

increasingly sophisticated in their attempts to analyse market expectations embedded 

in traded options contracts. The 'implied' information can prove important when a 

more qualitative/fundamental economic question is addressed as it helps to reveal 

'market sentiment'. This is useful for the policy-stance of a central bank" (e. g. 

Federal Reserve Bank, Bank of England etc. ) and also for investors who may wish 

to take positions based upon the difference between their forecast of the distribution 

and the consensus of the market. On the other hand implied distributions can also be 

used to price illiquid, exotic or over-the-counter options consistently with exchange 

traded, vanilla options. 

The advantages and disadvantages of implied distributions over unconditional 

distributions estimated from time series data, for applications similar to those de- 

(Probability Distribution Function) and SPD (State Price Density) will be used interchangably. 
" See Bliss and Panigirtzoglou (2000) for a comprehensive list of Central Banks' research papers on 
implied distributions. 
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scribed above, have been discussed extensively in various studies. Chang and Melick 

(1999), despite being sceptical on what the implied PDFs really represent and despite 

admitting that the risk of overinferencing the implied PDFs is always present, con- 

clude that '... an analytical approach based on PDFs [ ... ] has much to recommend 

over alternatives based on time series data'. A series of key advantages are identified; 

firstly the implied PDFs' forward looking nature allows any uncertainty inherent in 

the financial markets to be captured; secondly, implied PDFs can be easily estimated 

with the use of substantially short time-series data sets; thirdly, they are capable of 

immediately reflecting a change in the market sentiment; and finally, for certain re- 

gions representing a large percentage of total probability, it has been shown that they 

are relatively free of mathematical priors imposed by a specific economic model or 

structure 
12 

. 

In addition to the models reviewed in Section 2.3.2 (pp. 23 - 28) which fall 

in the class of 'implied' models several methods have been developed in this area 

over the years. Jackwerth (1999) classifies the models in two main categories: the 

non-parametric methods, which don't make any specific assumption on the fonn of 

the RND and allow more general functions and the parametric methods, which aim 

to find a parametric distribution more flexible than the log-normal. The following 

paragraphs review the models in each category. 

12 See Campa, Chang and Reider (1998) and Coutant, Jondeau and Rockinger (2001). 
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2.4.1 Non-Parametric models 

Non-parametric methods in general enable us to avoid the strong assumption regard- 

ing the distribution of the underlying asset's returns, by using model-free statistical 

methods based on very few assumptions about the process that generates the data. 

Three types of non-parametric methods have been proposed in the context of the 

study of option prices: kernel regression, maximum entropy and curve fitting tech- 

niques 

The kernel regression technique was introduced by Ait-Sahalia and Lo (1998). 

It is based on Equation (2.6), and uses kernel regression methods to calculate a 

smooth estimator of the relationship between the option price and the strike price. 

The second derivative of this function then gives the RND. The method makes use 

of a cross-sectional time-series of option prices and performs kernel regression across 

five dimensions: stock price, strike price, time to expiration, interest rate, and divi- 

dend yield. In the same paper they also used a reduced version with three dimen- 

sions: the forward price, the strike price and the time to expiration. Pritsker (1997) 

and Rookley (1997) have further modified and further applied the methodology. Ait- 

Sahalia and Lo (2000), finally, proposed a semi-parametric form of their initial model 

which assumes that the pricing function is given by the parametric BSM formula ex- 

cept that the implied volatility parameter of that option is a non-parametric function 

of 'moneyness'(strike price/current asset price). The maximum entropy method, 

presented in Buchen and Kelly (1996) and Stutzer (1996), is a method for estimating 
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the RND based on a statistical mechanic s/informati on theoretic approach. Equations 

(2.3) and (2.4) are essentially utilised. The method searches for a RND Pi which, 

given a phor distribution Oi, maximises the cross-entropy: 

Pi In 
(-) 

oi 

subject to constraints such as positivity of the probabilities, summing of the prob- 

abilities to one, and correct pricing of options and the underlying asset. Buchen 

and Kelly (1996) used the log-normal as the prior whereas Stutzer (1996) used the 

empirical distribution of historical asset returns. 

Curve fitting methods, finally, include methods in which either the function of 

implied volatilities across strike prices or the RND itself is approximated by some 

general function. Shimko (1993) utilised the Breeden and Litzenberger (1978) 

framework by introducing a quadratic polynomial fitting of the implied volatility 

smile. Malz (1997) applied a quadratic polynomial fitting to the function that re- 

lates implied volatilities with options' deltas rather than strike prices. Both models 

make use of the BSM formula to derive implied volatilities but do not require it to 

be correct. Brown and Toft (1999) extended Shimko's (1993) approach by using 

7"-order splines to approximate the implied volatility smile. Campa, Chang and 

Reider (1998) and Aparicio and Hodges (1998) proposed the use of cubic and cubic- 

B splines respectively to fit the implied volatility smile instead. Rosenberg (1996) 

and Rosenberg and Engle (1997) used a polynomial fitted to the log-smile to prevent 
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negative implied volatilities while Jackwerth (2000) maximised the smoothness of 

the smile. Studies that directly approximate the RND include Mayhew (1995), who 

approximated the RND with cubic splines, and Hartvig, Jensen and Pedersen (1999) 

who built up the logarithm of the RND from piece-wise linear segments. 

In a non-parametric fashion Neuhaus (1995) also develops a technique which 

can not be classified in any of the above categories. He chose to use the first deriv- 

ative of P (M, T; AM) in Equation (2.6), p. 32, to recover the Cumulative density. 

The derivatives are numerical and discrete in that only the available strikes are used. 

This technique, however, allows for probability calculations at and between strike 

prices and no information is recovered for the strikes in the regions below the lowest 

and beyond the highest traded strikes. 

However flexible non-parametric models may be, numerous disadvantages emerge 

in their application. Kernel regression techniques, for example, are highly data inten- 

sive and difficult to use in real time applications. Maximum entropy methodologies, 

on the other hand, lack smoothness constraints and as a consequence they result in 

multi-modal spiky RND shapes. Curve-fitting techniques, finally, do not guarantee 

in general that the resulting probabilities are positive and the fact that this condition 

needs to be checked independently further increases the complexity of the calcula- 

tions. 
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2.4.2 Parametric Models 

The parametric models can be divided into two groups. First, the fully parametric 

models which make an explicit assumption for the RND and the semi-parametric 

models which assume a more flexible functional form and as a consequence allow 

more flexible shapes for the RNDs. 

Fully Parametric models 

Sherrick, Garcia and Tirupattur (1996) proposed the use of the Burr type IH 

distribution - as an alternative to the log-nonnal distribution - which allows a wide 

range of skewness and kurtosis values. The Burr type IH distribution covers all the 

space regions in the skewness-kurtosis plane occupied by Pearson types IV, VI and 

bell-shaped curves of Pearson type 1, gamma, Weibull, normal, log-normal, expo- 

nential and logistic distributions [see Rodriguez (1977)]. The respective closed fonn 

solution results in three parameters instead of two in the case of the log-normal distri- 

bution. The model has received very little attention over the years. In the same spirit 

Aparicio and Hodges (1998) used generalised beta functions of the second kind. The 

parametric family was introduced in the area of finance by Bookstaber and McDon- 

ald (1987) in an attempt to estimate a general distribution for security price returns. 

Several parametric forms are nested within the generalised beta functions family - in- 

cluding the log-normal, gamma and exponential distributions and several Burr type 

distributions - which is fully specified by four parameters. Alternatively Posner and 
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Nfilevsky (1998) explored the Johnson family. The variety of shapes given by the 

latter is referred to as '... quite as great as that of the Pearson system', in Stuart and 

Ord (1987), and is also defined by four parameters. 

A large body of research in this area, on the other hand, has focused on the mix- 

ture methods. NExture methods achieve greater flexibility by drawing with different 

probabilities from several simple distributions, each with a distinct parameterisation. 

Models of this type were introduced in the finance literature by Ritchey (1990), who 

assumed that the RND can be assumed to belong to the family of the k-component 

mixture of log-normal distributions. Bahra (1997), Malz (1996,1997) and Gemmill 

and Saflekos (2000), used a mixture of two log-normal distributions and Melick and 

Thomas (1997) used a mixture of three log-normal distributions. Parameterisation 

in the k-component mixture of log-normal distributions family appears very appeal- 

ing since a desired degree of skewness as well as excess kurtosis can be obtained in 

the resulting distributions. The main drawback, however, is the estimation of large 

number of parameters, which in the simplest case of the mixture of two log-normal 

distribution are five. The number of parameters grows very fast and eight parameters 

need to be estimated in the case of a mixture of three log-normal distributions. In ad- 

dition, Cont (1998) argues that by construction a mixture of log-normal distributions 

has thin tails unless one allows high values of variance. Finally, the estimation of a 

mixture of log-normals model has been found to be sensitive to large measurement 

errors (see Chapter 6). 
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Semi-parametric models 

This category includes the expansion methods. As a general rule the RND is 

approximated by an expansion around a known statistical density in the same fashion 

as a mathematical function is approximated by a Taylor series expansion around a 

point. The general form of the assumed RND is: 

00 
P (ST 

- st < X) ý::: ý PO (X) +Z Uk Pk (X) (2.7) 
k=l 

The first term of the expansion Po (-) corresponds to the base distribution and the 

second term adds successive corrections to account for differences between Po (-) 

and the true RND. The series is then truncated to a finite number of corrections 

which gives a parametric, usually analytically tractable functional form for the RND 

and enables the derivation of closed form option pricing fonnulae. 

Abadir and Rockinger (1998) used Kummer functions as a basis for the RND. 

The resulting analytic expression includes the Normal, Gamma, Inverse Gamma and 

mixtures as special cases. The option price function across strike prices was de- 

rived in closed form. The methodology, however, requires the estimation of seven 

parameters, which is considered relatively large for this type of models. Madan 

and Milne (1994) price contingent claims as elements of a separable ffilbert space 

whereas Abken et al. (1996a, 1996b) specialised the Hilbert space basis to the fan-ffly 

of Hermite polynomials and approximate the RND with Hem-lite polynomials up to 

the 41-order. The latter results in a four-parameters model. Jondeau and Rockinger 
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(2000) and Backus et al. (1997) restrict their attention to the class of Gram-Charlier 

expansions. 

Jarrow and Rudd (1982) used a different class of expansions, the Edgeworth 

series expansions. The log-normal distribution was assumed to be the base of the 

expansion. Corrado and Su (1996,1997), Longstaff (1995) and Rubinstein (1998) 

subsequently used the Edgeworth series expansions around a log-normal, a normal 

and a binomial distribution respectively. Jarrow and Rudd (1983) performed empir- 

ical tests to examine the validity of the methodology, when used to pnce individual 

stock options. Corrado and Su (1996,1997) also tested the model using options data 

on the S&P 500 index. They showed that a model of this type outperforms the simple 

BSM pricing model, by providing a significantly better fit to observed option prices 

and by performing better when used to predict option prices one period ahead. 

The expansion methods result generally in tractable analytic expressions for 

the RND which in turn allows the derivation of closed form option pricing formulas. 

Despite being similar in spirit with more complicated models i. e. the implied bino- 

mial trees methodology of Rubinstein (1984) [Ait-Sahalia and Lo (2000)] they are 

less data-intensive and require less complex estimation procedures. As a disadvan- 

tage, Jackwerth (2000) identifies the possibility of estimating negative risk-neutral 

probabilities especially in the tails. Cont (1998) suggests that this drawback should 

not be seen as prohibitive for the whole span of strike prices but for strike prices too 

far from the money. To overcome the possibility of negative probabilities, Jondeau 
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and Rockinger (1998) provide an algorithm which guarantees positive probabilities 

in Gram-Charler expansions. The present study introduces additional constraints in 

the estimation of the RND which also guarantees positive probabilities in Edgeworth 

series expansions. 

2.5 Conclusions 

The elegance and the simplicity of the BSM pricing formula yielded its dominance 

among existing, at that time, pricing models. Moreover all options models of the 

past nearly 30 years have been refinements of the basic BSM model. 

This chapter examined the literature that followed the seminal work of BSM 

which - with little variation in the results - concludes that the BSM formula systemat- 

ically misprices options across strike prices. The studies were classified with regard 

to the assumption behind the original derivation of the BSM formula they relax. Four 

possible categories were identified in that respect: studies that assume the underly- 

ing asset pays some dividends, studies where the variance rate of the return on the 

asset and short-term interest rate is not constant through time, studies where the asset 

price follows alternative stochastic processes and finally studies which relax the as- 

sumption that the distribution of possible asset prices at the end of any finite interval 

is log-normal. 
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Chapter 3 
Motivation for Research and Thesis Outline 

The present work is motivated by the increasing interest in the study of the 

information content of option prices and the need for formally addressing issues that 

have recently emerged as research and applications in the area becomes more and 

more sophisticated. 

The study of the information content embedded in option prices focuses on the 

recovery of either the stochastic process followed by the underlying asset price or the 

density from which the asset price at expiration is drawn. While some benefits in the 

first exercise are acknowledged", the latter approach has mainly received the atten- 

tion of researchers and practitioners as to being somewhat more advantageous for a 

number of reasons. The terminal density of the underlying asset - by construction - 

encompasses many stochastic processes, thus, allowing for a more general exercise. 

This is of particular interest in situations where interest is focused on possible as- 

set price outcomes i. e. market crashes, interest rate cuts, currency devaluations etc. 

Moreover a reasonably flexible assumption for the functional form of the terminal 

density can accommodate a wide variety of shapes for the terminal distribution. 

13 See Bates (1991 and 1996a and 1996b) and Malz (1996) and the models examined in Section 2.3.2, 
p. 23. 
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The study of implied RNDs, on the other hand, has much to recommend over 

alternative approaches based on time series data. A series of key advantages are 

generally identified. Firstly the implied densities are estimated from market prices 

of options which are forward-looking and therefore allow any uncertainty inherent in 

the financial markets to be incorporated. Secondly, implied densities can be easily 

estimated with the use of substantially short time-senes data sets; in many cases one 

cross-section of observed options prices is considered enough to recover the entire 

risk-neutral density of the underlying asset. Thirdly, they are capable of immediately 

reflecting a change in the market sentiment and also incorporate 'multiple scenarios' 

speculations. Fourthly, rather than calculating a forecast for the future price of an 

asset - econometric approach - the entire distribution is estimated, which allocates 

certain probabilities over all possible outcomes in a risk-neutral framework. This 

allows the pricing of literally any claim contingent on future outcomes of the asset 

price. Finally, for certain regions representing a large percentage of total probability, 

it has been shown that they are relatively free of mathematical priors imposed by a 

specific econorMc model or structure. 

The aim of the study is threefold: 

o to develop a technique for the estimation of implied RNDs which can 

incorporate the characteristics of modem financial markets 
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e to develop realistic and economically sensible tests for the validation of 

implied RNDs and implied RNDs estimation techniques - on qualitative as 

well as quantitative grounds - and conduct them with the developed technique 

* to present an empirical use of implied RNDs and illustrate it with the use of 

that technique 

In trying to develop a RND estimation method in the spirit of this work the Cox 

and Ross's (1976) framework is employed. The value of an option is expressed as: 

00 

e-r(T-t) 
f 

00 

g(ST) f 
(ST) dST (3.1) 

Expression (3.1) is the fundamental option's risk-neutral valuation equation which 

expresses the value of an option as the discounted integral of the product of the pay- 

off function g(ST) and the density function f (ST) from which the asset pnee at 

expiration is drawn. According to Melick and Thomas (1999) it has a number of 

plausible solutions and it is the a priori structure, that is to say the functional forrn 

of the estimated density, that allows us to choose one paAicular PDE If f (ST) is re- 

placed, for example, with a log-normal parameterisation, Equation (3.1) degenerates 

to the BSM fonnula. 

The log-normal parameterisation, however, has proved to be not adequate to 

describe observed prices and various alternatives have been proposed. Given the 

large number of alternative structures that can be assumed for the terminal PDF it 
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is natural to seek a parameterisation flexible enough to encompass a wide variety of 

shapes. 

A large family of models that satisfy this criterion is the semi-parametric fam- 

ily, presented in Section 2. The probability models of this family offer a great 

flexibility with regard to the shape of the PDF and can be thought of as a smooth 

approximation of all the potential shapes which serve as solutions to Equation 3.1. 

The present study assumes a generalised Edgeworth Series Expansion (ESE 

hereafter) probability model for the parameterisation of f (ST) as in Jarrow and Rudd 

(1982). The ESE provides a method for finding a series expansion of a non-Gaussian 

probability distribution of which kind the empirical distribution of asset log-returns 

has been found to be. The most important features of the ESE probability specifica- 

tion that prove extremely useful in empirical applications and make it an appealing 

parametetisation are: 

o the ability to select from a broad range of reference distributions, providing 

flexibility in finding one that closely approaches the distribution to be 

approximated 

* the fact that by construction the coefficients in the expansion are simple 

functions of the moments of the given and the approximating distributions. 

As a result the parameters that define the PDF have a physical meaning as 

opposed to being abstract mathematical quantities as in the case of other 
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parametric families of distributions i. e. the parameters that define a mixture of 

k log-normal distribution or a Pearson type density 

* the ability to derive closed forrn expressions for the theoretical option value 

Despite this advantageous features existing literature has not explored the po- 

tential of the ESE parameterisation for the study of implied RNDs. While other 

parametric families have been examined as to how well they do in pricing options and 

also in analysing market conditions and market expectations, i. e. the mixture of two 

log-nonnals, the Burr Ed, the Hermite polynomials etc., existing studies have only 

looked into the use of ESE type parameterisations in option pricing. This work aims 

to complement the existing literature in that sense and also address issues related to 

the estimation and use of implied RNDs having the ESE probability parameterisation 

as a reference model. 

The remaining of the study is organised as follows: 

Chapter 4 is focused on the introduction of the ESE model. The chapter starts 

with a description of the data set used in the empirical applications. The functional 

form of the PDF is then demonstrated and its fundamental statistical properties are 

discussed. Following, generalised European option pricing fonnulae are derived for 

call and put options written on a general asset that pays dividends in continuous time. 

Pricing formulae for American options are then derived as weighted sums of upper 

and lower bounds. Given the latter, implied RNDs can be estimated following an 
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algorithm that minimises the sum of squared discrepancies between theoretical and 

observed option prices subject to a certain set of constraints. Finally, Chapter 4 

discusses the data used for the empirical investigation of the study. 

Chapters 5,6 and 7 compose the empirical part of the study. 

Chapter 5, aims to assess the validity of the ESE model in the context of the 

study of implied PDFs. To defend criticisms on the ability of the model to stim- 

ulate meaningful interpretations it is essential that the consistency with the data is 

checked. Chang and Melick (1999) view this consistency with the data in a broader 

sense: internal consistency - adequate fit to observed data - and economic rationale 

of the respective PDFs. In that respect Chapter 5 examines the properties of the im- 

plied RNDs in the presence of large changes in economic conditions. The ability of 

the implied RNDs recovered with the ESE model to capture speculation over future 

eventualities and their capacity to immediately reflect changes in the market senti- 

ment are examined. Finally, following the argument of Melick and Thomas (1997) 

that the differences between the estimates from an alternative parameterisation and 

the log-normal BSM parameterisation. may be apparent - better fit to observed data 

- but not significant in a statistical sense, this chapter also examines whether the use 

of the ESE model is able to offer a statistically significant better fit compared to the 

log-normal BSM pararneterisation. 

Chapter 6 assesses the performance of the ESE model on a more quantitative 

basis. Typical studies assess alternative techniques for the estimation of RNDs on the 



49 

basis of the goodness of fit achieved to observed options cross sections. The good- 

ness of fit, however, should not be the sole criterion - not even the prior one. RNDs 

estimation techniques defined by a number of parameters larger than the respective 

number of parameters used by other competitive techniques are expected to result in 

more accurate fit of the data. A fair comparison seems to be one that assesses also the 

robustness of these techniques or, more precisely, the degree of confidence that can 

be placed on the summary statistics calculated off the implied distributions. Chapter 

6 addresses this issue on a relative basis. A mixture of two log-normals specifica- 

tion, being a very commonly used parametric model which has already been studied 

in terms of stability, is used as a comparative benchmark. 

Chapter 7 illustrates an application where the information content of option 

prices is explicitly quantified, rather than be qualitatively assessed. A fundamental 

principal of econoMIc theory is employed: in the absence of arbitrage, all asset 

prices can be expressed as the expected value of the product of the pricing kernel (a 

preference function) and the asset payoff. It follows then that, the pficing kemel, 

coupled with a probability model for the future states, gives a complete description 

of asset prices, expected returns and risk preferences. Chapter 7 solves the inverse 

of the equilibrium asset pricing model to identify preference parameters - given asset 

prices and a probability modelforfutures states what can be inferred about investors' 

risk preferences. Using the ESE probability model this chapter derives risk aversion 

functions and compares them with the market conditions of the study period. 
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Chapter 8 discusses issues related to the limitations of the methodology pre- 

sented in the thesis as well as the applications perfonned. It concludes the thesis 

by presenting the general conclusions and suggests a number of issues that need to 

further be investigated in subsequent studies in the area. 
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Chapter 4 
Data and Central Methodology 

The present work aims to provide an in-depth analysis of the estimation, test- 

ing and applications of implied probability distributions. The empirical analysis is 

performed by means of a semi-parametric ESE model. 

This chapter presents the data used in the empirical exercise and develops the 

ESE model. It begins with a description of the data set in Section 4.1. Section 4.2 

offers a detailed presentation of the methodology used to recover the implied RNDs. 

More specifically, Section 4.2.1 presents the functional form which is assumed to ad- 

equately approximate the true RND. Section 4.2.2 derives closed form generalised 

pricing formulae for European options while Section 4.2.3 demonstrates the modifi- 

cations that need to be made in order to extend the methodology to incorporate the 

early exercise feature embedded in American options. Section 4.2.4 describes the 

algorithm for the estimation of the implied RNDs and Section 4.2.5 discusses the 

constraints of the optimization algorithm. Finally, Section 4.2.6 demonstrates the 

evolution of ESE implied PDFs over the sample period. Derivations and proofs are 

appended in 4. A. 
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4.1 Data 

The present study aims to develop a methodology for the estimation of implied RNDs 

and to address a number of issues related to their use in financial practice. It is 

therefore essential that the empirical investigation is not limited to a single market. 

Space constraints, on the other hand, do not allow an analysis like the one perfonned, 

to be carried out over all possible markets. 

It was, therefore, decided, that two markets-contracts be considered. Among 

possible candidates the Eurodollar contract - traded on the Chicago Mercantile Ex- 

change (CME) - and the WTI (West Texas Intermediate) contract - traded on the New 

York Mercantile Exchange (NYMEX) - were thought to be suitable for the nature of 

the study. The former are American style options on the Eurodollar time deposit fu- 

tures contract. The CME's Eurodollar futures contract reflects the London Interbank 

Offered Rate (LIBOR) for a three-month, $1 million offshore deposit. Eurodollar 

options listings include March, June, September, December, expirations and also six 

months in the March quarterly cycle and two serial months not in the March cycle 

. The options on NYMEEX's WTI futures are also American style. A WTI fu- 

tures contract calls for delivery of 1000 barrels of light sweet (low-sulfur) crude oil. 

WTI options contracts are quoted for the first twelve consecutive months, plus three 

long-dated options at 18,24, and 36 months out on a June/December cycle. 

Following are the main reasons that led to this decision. 
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Liquidity 

Liquidity considerations may affect the results of the study and may conse- 

quently lead to various misinterpretations. The above choice allows investigation to 

be made in two very distinct markets in that sense. The Eurodollar futures, on the 

one hand, are the most liquid exchange-traded contracts in the world when measured 

in terms of open interest" which ensures that any results are rather representative of 

a liquid market. The WTI futures contract, on the other hand, is the world's largest- 

volume futures contract trading on a physical commodity". It offers excellent liq- 

uidity and price transparency which makes it appropriate for a pricing benchmark. 

This allows the study of a rather illiquid market -a commodity market - in the least 

4 costly' way with the fear of 'comer solutions' due to this characteristic limited to a 

rmnimum. 

Market conditions 

The ESE model - which includes the log-normal distribution as a special case - 

is expected to perform best when the implied distributions substantially deviate from 

a log-normal. This is likely to happen during 'unsettled' periods i. e. market crashes, 

general elections, wars etc. The study is carried out for data throughout the year 

1998. This year was a very 'rich' year in terms of eventualities in both markets. 

During the fall of 1998 the Federal Reserve lowered the federal funds rate by a to- 

14 "How to Get Started Trading CME Interest Rate Products", CMEE publication. 
15 Source NYMEX. 
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tal of 75 points on three occasions - following the regularly Federal Market Open 

Comn-iittee (FOMQ meetings on September 29,1998 and November 17,1998 and 

following a conference call meeting of the FOMC on October 15,1998. The whole 

of 1998 was, on the other hand, an unsettled year for the oil market as well. The 

price of WTI fluctuated between a maximum of $17.81 / barrel on January 29,1998 

and a minimum of $10.70 / barrel on December 21,1998 an overall drop of approx- 

imately 40% of the maximum price. The fact, finally, that the study is perfon-ned 

in 1998 for both markets ensures that the findings are affected to a minimum by a 

possible change in the general market conditions, a concern expressed by Jackwerth 

(1999). 

Originality 

Last but not least in its own mean the data set should enhance the originality 

of the study. While some studies have been undertaken to examine the information 

content of Eurodollar futures options [Madan and N/Iilne (1994), McManus (1999)], 

to the author's knowledge, only Melick and Thomas (1997) have carried out similar 

research for the WTI market. Originality in that sense, however, is ensured with the 

use of this data set in the applications of Chapters 6 and 7. 

The WTI options data set was obtained from NYMEX. It contains daily obser- 

vations of Bid and Ask Prices, Settlement Prices, Trading Volumes and Open Interest 

for the all traded expirations of the WTI options contract for the period January 1, 

1998 through to December 31,1998. The data set was refined so that it did not con- 
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tain meaningless information. Options with trading volume of less than five contracts 

were excluded due to illiquidity reasons. Also on a given day, contracts with differ- 

ent strike prices, recorded to trade at the same premium, were excluded and the data 

set was also checked for arbitrage restrictions involving monotonicity, slope, concav- 

ity, and put-call parity. Finally the last three trading days of the options contracts 

were not included in the data set, due to any undesirable noise information that they 

may have conveyed. The total number of options retained for the estimation and the 

analysis of the implied PDFs varies between 10 and 23 - the average being 16. The 

minimum recorded strike price for a call option was $12.5 / barrel whereas the maxi- 

mum $25 / barrel. The respective figures for put options were $ 11 and $ 22 / barrel. 

Over the whole sample, the bid-ask spread was between minimum of $ 0.01 / bar- 

rel for out-of-the-money options and a maximum of $ 0.7 / barrel for in-the-money 

options. 

Settlement prices were used to represent the value of the options. The settle- 

ment price of the WTI options is determined at the end of each day by a settlement 

committee made up of roughly 20 market participants. The committee frequently re- 

lies on the average of bid and ask prices, during the last minutes of trading, as starting 

points for the settlement prices. Heavily traded options are priced first, with put-call 

parity used to price low volume options at the same strike when the futures markets 

has settled [Melick and Thomas (1997)]. 

Data for the underlying WTI futures contract were obtained from Datastream. 
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The data set for the Eurodollar market" consists of daily observations of the 

Eurodollar futures option settlement price for the period September 1,1998 through 

to November 30,1998 for the December 1998 contract, a total of 61 trading days. 

The original data set excluded any option that had no open interest, exercises, or 

volume, on a given day. The remaining options were checked to ensure that they 

satisfied arbitrage restrictions involving monotonicity, slope, concavity, and put-call 

parity (within ranges that would result from the transactions costs involved in elim- 

inating the arbitrage possibility). The data set was further filtered and options with 

different strike prices that were recorded to trade at the same premium were excluded. 

The total number of options - calls and puts - retained for analysis on each day ranges 

from 20 to 29, the average number of options used being 25. The minimum recorded 

strike price for a call option in the entire period was 4.5% whereas the maximum 6%. 

The respective figures for put options were 3.5% and 8%. Although it is not possible 

to provide exact figures for the bid-ask spread for the sample period, as only settle- 

ment prices were available, the bid-ask spreads for the contract under consideration 

are typically 0.005 and rarely exceed 0.01 under normal market conditions". 

For the estimation of the implied PDFs options settlement prices were used as 

the values of the options. Settlements for the Eurodollar options contracts are deter- 

16 The data set was originally used at the BIS workshop 'Estimating and Interpreting Probability 
Density Functions', Switzerland, June 1999. 

17 Peter Barker from the CME's Interest Rate products marketing department is acknowledged for 
providing this information and also for his description of the settlement prices. 
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mined by the Pit Committee", based on the levels of resting orders and spread/volatility 

relationships that existed in the market at the close of trading. 

Data for the underlying Eurodollar futures contract were collected from Datas- 

trearn and also represent settlement prices. The option strikes and the futures prices 

were subtracted from 100 with calls redefined as puts and puts redefined as calls, so 

that the RNDs are estimated with regard to the more intuitive underlying interest rate 

as opposed to the artificial index price". 

Treasury bonds data were also obtained from Datastream. Standard practice 

suggest that Treasury-bills with expiration as close as possible to the expiration of 

the option contracts are used to proxy for the risk-free interest rate. 

Finally, market news data were collected from two individual sources. The Fi- 

nancial Times of London newspaper; and the FT Discovery (the FIF Electronic Pub- 

lishing), which covers a wide variety of news vendors. A large number of relevant 

articles were reviewed, and those of greater importance were used for the analysis. 

Additional information on the data used for the analysis in the subsequent chap- 

ters is given when necessary. 

18 See www. cmerulebook. com for further details. 
19 The CME interest rate contracts are traded using a price index, which is derived by subtracting the 
futures' interest rate from 100.00. For instance, an interest rate of 5.00 percent translates to an index 
price of 95.00. Given this price index construction, if interest rates rise, the price of the contract falls 
and vice versa. Strike prices of the options contracts are also quoted in the same fashion. 
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4.1.1 Implied Volatility Patterns 

Consideration of alternative PDFs parameterisation is motivated by apparent defi- 

ciencies of the BSM model. These deficiencies are most commonly expressed in 

options cross sections as the relation between the BSM implied volatility and the op- 

tion exercise price, Dumas et al. (1998). This section illustrates this relation for the 

data set described above. 

Following the suggestion of Broadie and Detemple (1996), a 200-step binomial 

tree - modified to account for the early exercise premium - is used to calculate the 

implied volatility. The modified binomial tree is the American analogue of the BSM 

model and assumes a log-normal distribution for the underlying asset. 
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Figure 4.1: Implied Volatilities (%) across moneyness (strike price/futures price) 
calculated from July 98 WTI futures options from May 1,1998 through to June 5, 
1998 
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Figure 4.2: Implied Volatilities (%) across moneyness (strike price/futures price) 
calculated from Decemeber 98 WTI options from October 1,1998 through to No- 
vember 5,1998 

For the WTI futures options two contracts are considered - the July 98 and the 

December 98. Figure 4.1 plots volatilities implied by the July 98 contract across 

moneyness (strike price/futures price) for the period May 1,1998 through to June 

5,1998. The volatilities do not all lie on a horizontal line as the underlying model 

suggests. This pattern is often called the volatility 'smile'. While a profound 'smile' 

is not clearly apparent in Figure 4.1, out-of-the-money calls and in-the-money puts 

do imply higher volatilities than out-of-the-money puts and in-the-money calls. A 

similar pattern is also shown in Figure 4.2 which plots volatilities implied by the 

Decemeber 98 WTI options from October 1,1998 through to November 5,1998. 

The results presented in Figures 4.1 and 4.2 suggest that the assumed probability 

model - the LGN model - is not capable of assigning the required probability mass 
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Figure 4.3: Implied Volatilities (%) across moneyness (strike price/futures price) 
calculated from December 98 Eurodollar options from September 1,1998 through to 
September 29,1998 

in the far right tail area, an indication of small positive skewness and leptokurtosis in 

the data. 

Figures 4.3,4.4 and 4.5 show volatility 'smiles' calculated for December 98 

Eurodollar futures options for the periods September 1 to September 29, October 6 

to October 27, and November 3 to November 24,1998 respectively. In contrast to 

the patterns shown in Figures 4.1 and 4.2 the Eurodollar volatility 'smiles' are much 

more intense. Out-of-the-money puts and in-the-money calls imply substantially 

higher volatilities than out-of-the-money calls and in-the-money puts. This suggests 

that the underlying probability model - the LGN model - is not able to incorporate 

the probability mass in the far left tail area, an indication of negative skewness and 

leptokurtosis in the data. 
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4.2 Methodology 

4.2.1 Functional form of the RND 

It is well known in mathematical and physical works that functions can often be 

usefully expressed as a series of terms such as powers of the variable (Taylor's series) 

or trigonometrical functions (Fourier's series). In the same spirit density functions 

can be represented by series expansions. 

The problem is formulated as follows". It is desired to find a probability 

density f (ST) with cumulative density F(ST) of a stochastic va. Tiable ST (the value 

of the asset price at time T). Given that moments about the origin aj (F) exist the 

characteristic function of the probability density function f (ST) is given by: 

0 (F, -F) = exp 
00 

Kj (F) 
iT 3. tZ 
l' 1- 

j=l 

where rj (. ) are the semi-invariants or curnulants of a distribution. The cumulants 

can be expressed as a polynomial in aj (. ). An important characteristic of the cumu- 

lants is that the cumulant of n independent, identically distributed variates is simply 

n times the cumulant of the basic distribution. 

Now let Kj (F) be given as a sum of the cumulant associated with a reference 

distribution rj (A) and an error cumulant rj (E) 

Kj (F) = rj (A) + rj (E) (4.2) 

2() The approach was introduced in the finance literature by Jarrow and Rudd (1982). 
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The characteristic function of f (ST) can then be expressed as: 

0 (F, -r) = exp 
00 

Kj (F) 
(i-r)i 

exp 
00 

Kj (E) 
(i-r)' . 

(4.3) Z 
j! 

Zl 
j=l j=I 

-1 -1 

Formally expanding (4.3) in power series results in 

00 1 C>o (i7)3 . 
Z rj (E) zj! 

2Z rj 
j=I j=l 

1 00 6 

+6 rj (E) + (4.4) 
3- 

The desired series expansion of the probability density function f (ST) in terms 

of the reference probability distribution a(ST) is obtained by taking the Fourier trans- 

form of (4.4)., 
00 (- 1), . &a(ST) 

f (ST) 
= a(ST) + EEj 

j! dSTj 
(4.5) 

j=l 
where Ej are the error terms given in terms of the difference between the cumulants 

of the f (ST) and the a(ST) distributions. The first four coefficients are: 

Ei - (r, 1 (F) - rz, (A» 

E2 ý (62(F)- 1ý, 2(A)) +E2 1 

E3 ý (r�3 (F) - rb3 (A» + 3E1 ( rb2(F) - l'ý, 2 (A» +E3 1 

E4 ý (1ý, 
4(F) - K4 (A) )+4 (1'ý3 (F) - l'ý, 3 (A) ) EI + 3(rb2(F) - l'ý-2 (A) )2 

6E 2 (K2(F)- 
K2(A)) +E4 11 
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A finite series expansion of order 4 for the f (ST) in tenns of a(ST) is expressed 

as 

(ST) = a(ST) 
(r, 1 (F) - rI (A» da(S7, ) 

(4.7) l! dS7, 

+ 
(K2(F)- l'£ 2(A» d2a (ST) (1ý', 

3(F)- ri, 3(A» d3a (ST) 

2! dST2 3! dST3 

+ 
(1ý, 

4(F)- K4(A»+3 2(F) 
(A) )2 d4 a(ST) 

4! dS74, 
+ lýýN 

(ST) 

Cumulants are similar to moments". In fact, the first cumulant of a distribution 

is equal to its mean, the second is equal to its variance, the third and the fourth 

are measures of skewness and kurtosis respectively. The leading term in Equation 

(4.7) is the reference or approximating distribution which is adjusted to reflect any 

differences between its cumulants and the cumulants of the true distribution. The 

second tenn in the expansion adjusts a(ST) to account for the differences between 

the mean of the true and the approximating distributions. Sin-ularly the third and 

the fourth terms adjust a(ST) to reflect any differences between the variance and the 

skewness of f (ST) and a(ST) respectively. The fifth tenn corrects for differences 

in the kurtosis and the variance of the two distributions. The residual error EN (ST) 

21 The characteristic function of a probability distribution O(T) = E(e'-rl; ) is calculated with the 
following Taylor series expansion 

00 00 ý,, r 
exp 

E 

r! 
- 

1: 

r! 
r=l r=O 

Whereas yj are the coefficients of iLtLl, Kj are the coefficients of ilýL' in log 0(-r). j! j! 
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contains any remaining difference between the moments of the two distributions of 

order higher than 4. 

Selection of a two parameter reference distribution allows any two cumulants 

of the true and the approximating distribution to be matched to corresponding cumu- 

lants of the distribution to be approximated. The two parameter log-normal distribu- 

tion, whose pre-eminence in the option pricing literature is an undoubted fact, seems 

to be a very appealing candidate for the role of the reference distribution a(ST). This 

choice also ensures that higher order terms in the remainderEN (ST) become negli- 

gible". Setting the first cumulants of the true and the reference distributions equal, 

the desired functional form of the true density becomes: 

(ST) 
a(ST) + 

(l'b2(F)- 
N2(A)) d2 a(ST) (4.8) 

2! dST2 

(K, 
3(F)- N3(A)) d3 a(ST) + 

(N4(F)- 
1ý*, 4(A)) d'a(ST) 

3! dST3 4! dST4 

where 

a (ST) exp - 
log ST - it 

2 

2 STaN/277 

is a log-normal distribution with p= log St + (r -q- U2 12)-F, St being the current 

price of the underlying asset, r the risk-free interest rate, q the continuous dividend 

yield and a the expected volatility of the underlying asset's returns. 

A natural question that arises when such expansions are truncated to a finite 

number of terms is whether the number of terms considered is adequate to ensure 

22 See Jarrow and Rudd (1982) for an anlysis on the relat've slze of the res'dual error eN (ST)' 
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convergence of the series. Schleher (1977) suggests that the series converges for a 

small number of terms and then diverges. In trying to identify a rule of thumb for 

the number of terms that need to be considered in the expansion he quotes that '... 

the ability to pick a reference distribution that closely matches the distribution to be 

approximated invariably results in high accuracy being attained by including error 

terms one beyond the highest order matching cumulant. ' The choice to truncate 

(4.7) up to the 4'- order term is on the other hand also intuitively substantiated. The 

third and the fourth tenns in (4.8) adjust a(ST) to reflect any differences between the 

skewness and the kurtosis of f (ST) and a(ST). These differences have well been 

documented in the literature of empirical distributions of asset price returns and most 

of the density parameterisations proposed aim to primarily account for these features. 

The assumption rj (F) = rl (A) is predetermined by the risk-neutrality argument. 

Although a satisfactory approximation of the true distribution can be achieved 

with a finite number of terms as suggested above, there is one inherent disadvan- 

tage that has to be dealt with when the methodology is used. The sum of a finite 

number of terms of the series in Equation 4.8 may give negative frequencies, partic- 

ularly near the tails. An investigation by Barton and Dennis (1952) offers a locus 

of possible combinations of skewness and kurtosis coefficients guaranteeing density 

positivity for a similar expansion, the Gram-Charlier expansion. It follows that fi- 

nite series expansions perform well in cases of moderate skewness - within the range 

of - 1.2 to + 1.2. While the methodology used in the present study ensures that the 
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finite series approximation of Equation 4.8 satisfies conditions in order to represent a 

density function (see Section 4.2-5), Stuart and Ord (1987) suggest that we can over- 

come inadequacies of this nature by using alternative series expansions. Potential 

candidates include the expansion presented in Gray et al. (1975) and the saddlepoint 

approximation of Bamdorff-Nielsen and Cox (1979) which can possibly improve on 

Edgeworth expansion in the tails of the distribution. 

4.2.2 Generalised pricing formulae for European options 

For ease of reference the framework developed in Section 2.4 is recalled. Ross (1976) 

and Cox and Ross (1976) have shown that in a market that offers no arbitrage possi- 

bilities, the value of an option can be expressed with the following: 

Oo 

-rr 
Ig (ST) f (ST) dST 

Oo 

where STis the asset price at the maturity of the option, g(ST) is the payoff function 

and f (ST) is the risk-neutral probability distribution function of the asset price at 

maturity. Let the terminal payoff of a European call option on the asset maturing at 

time T be max(ST- K, 0), given a terminal asset price STand a strike price K. 

Assuming that the interest rate r is constant over the remaining life of the optionT - 

then the price of the call option is the discounted pay-off (conditional upon 

finishing in the money), multiplied by the probability of finishing in the money: 

c(K) = e-" 
fKcýo 

f (ST) (ST- K)dST (4.9) 
c 
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where f (ST) is the RND function of the underlying asset price at maturity. 

Similarly, the current price of a put option with terminal pay-off function max(K - 

ST, 0) is: 

K 

p(K) 
10 

f (ST) (K - ST) dST (4.10) 

Given a tractable analytic functional form for the probability distribution func- 

tion f (ST) closed form pricing formulae can be derived for the options' values. 

The present study makes the assumption that the true RND is adequately ap- 

proximated by an the ESE specification presented in the previous section. These 

assumptions allow the derivation of closed form expressions for the values of Euro- 

pean style call and put options written on an asset that provides a continuous dividend 

yield (or any other distribution) at a rate q. It follows that the option valuation for- 

mulae for a call or a put option with strike price K are the following: 

CF(K) 
(K2(F) 

- l'ýý2(A» (r13 (F) 
- r, 3 (A» da (K) 

= CA(K) +e1 a(K) - 3! dK 
(N, 

4(F) - 1ý*, 4(A)) +3 ((N2(F)-62(A))2 )d2 a(K) + 6c(K), 
4! dK2 

PF(K) = PA 
[ (K, 

2(F)- N2(A)) 
a(K) - 

(K3(F)- 
K3(A» da (K) 

3! dK [ 2! 
(N4(F)- 

N4(A)) + 3((K2(F)- r. 2(A) 
)2 )d2 a(K) + 6p(K), ý4-12) 

4! dK2 
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where 

CA(K) = Ste-q'N(di) 
- e-"KN(d2) 

PA(K) = Ke-"N(-d2) _S te-q-rN(-di) 

log S-' 

r-q+ 
'2 

d, 

Ck) +2 

Sr-q-0,2) 
d2 

log ( 
K-'- 

)+(2 

a VTT 

and 

cumulative standard normal 

Expressions (4.11) and (4.12) give the approximate value of the option based 

on a leading term, which corresponds to the BSM value of the option and adjustment 

tenns. The first term corrects for possible differences between the true and the 

log-normal distributions while the second and the third adjustment terms correct for 

skewness and kurtosis differences respectively. The terms6c(K), NandIEp(K), Ncontain 

any residual error due to the finite number of adjustment terms in (4.11) and (4.12). 

4.2.3 Generalised pricing formulae for American options 

The early exercise premium that is embedded in American options does not allow 

the application of techniques described in Section 4.2.2. The American option value 

depends on the entire stochastic process of the underlying asset, thus, making difficult 

the recovery of implied RNDs- To deal with this deficiency the value of an American 
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option can be expressed as a combination of an upper and a lower bound, which 

restrict it within a very tight range. 

Chaudhury and Wei (1994) and Melick and Thomas (1997), present upper and 

lower bounds which restrict the value of the option within a very tight range. The 

equations giving the upper [-C, T] and lower [f, f] bounds for call and put options, 

respectively, are the following: 

C(K) Et [max f 0, ST- Kj] 

C(K) = max ý Et [ST] - K, e-r-rEt [max 10, ST- Kj]j 

-P (K) = Et [max f 0, K- STI] 

E(K) = max fK- Et [ST] 
, e-r'Et [max f 0, K- STI] 

(4.14a) 

(4.14b) 

(4.14c) 

(4.14d) 

where STdenotes the arbitrary asset price at the expiration of the option and K 

denotes the option's strike price. Time periods are indexed prior to the option's 

expiration so that r=T-t expresses the total time to expiration. Et [-] represents 

the expectation taken with respect to the RND that the asset returns are assumed to 

satisfy at current time t; r is the risk free interest rate. 

Equation (4.14a) is equal to the undiscounted otherwise equivalent" European 

call option price whereas Equation (4.14b) calculates the lower bound as the maxi- 

mum between the call option's intrinsic value and the value of an otherwise European 

style call option. Similarly, Equations (4.14c) and (4.14d) represent the undiscounted 

23 Equivalent in the sense that the option has exactly the same characteristics with the American 
option apart from the early exercise feature. 
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otherwise equivalent European style put option and the maximum of the option's in- 

trinsic value and the value of an otherwise European style put option respectively. 

Using the bounds described by Equations (4.14a) - (4.14d) the prices of American 

options can be expressed in term of 'weighted' prices of otherwise equivalent Euro- 

pean style options and the fonnulas derived in Section 4.2.2 can therefore be used for 

our analysis'. 

Applying this technique to derive implied PDFs from American options has 

both costs and benefits. The major cost is that the methodology is limited to Amer- 

ican style futures options - of which kind, however, most of the Exchange traded 

contracts are. Chaudhury and Wei (1994) suggest that while Equation (4.14a), is 

also an upper bound when the optioned asset is a stock with no dividends prior to 

maturity the case is not the same with Equation (4.14c). On the other hand the most 

important benefit of the technique arises from its flexibility, generality and direct- 

ness. A large number of alternative probability models can be considered as the 

bounds of the option values are expressed in terms of the terminal distribution alone. 

The flexibility of the ESE parameterisation ensures additional flexibility". The main 

24 The expressions that give the value for the upper and lower bounds essentially differ only by the 
discount factor. An immediate implication is that the bounds will be extremely tight in situations 
when interest rates (as expressed by r) are low and maturity is close. Even if interest rates are 
high and maturity time is long, the above equations adequately bound the American option price, as 
discussed in Melick and Thomas (1997). 

25 Longstaff (1995) suggests that this general option pricing model includes many other option pric- 
ing models as special cases. Examples of models that are nested within this general model include: 
the Black and Scholes (1973) model, the Merton (1973) stochastic interest rate model, the Merton 
(1976, eq. 17) jump diffusion model, the Merton (1976, eq. 18) jump diffusion model. In addition, 
since the risk-neutral density can match the first four moments of any continuous density, the four pa- 
rameters of the model can be chosen in such a way that closely approximates most existing option 
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advantage of this set of bounds is that they are expressed in tenns of the terminal 

distribution alone 
26 

. 

The present study, however, deals primarily with the inverse problem: giveii a 

set of observed option prices what are the parameters of an ESE specification for the 

RND that bestfit the data. 

In connection to the latter, the methodology will prove useful when a more 

qualitative/fundamental economic question is addressed". Examples of such studies 

include Leahy and Thomas (1996), who derive the RND of the Canadian dollar - 

US dollar exchange rate during the October 1995 referendum on Quebec; Melick 

and Thomas (1997), who estimate the PDFs implied by crude oil options during the 

Gulf War to recover the market sentiment during the crisis; Adao and Barros Luis 

pricing models. 
26 An alternative technique would be to calculate implied volatilities using an 'American' BSM model 
i. e. the BAW approximation or a binomial tree model and use them to calculate pseudo-European 
option prices with the BSM model. The implied PDFs could then be calculated using the pseudo- 
European prices without any adjustment. 

WMIe such a technique is set out to account for the early exercise premium some inherent de- 
ficiencies can be identified. The technique involves one extra step - that of calculating 'American' 
BSM implied volatilities - compared to the technique used in the present study, which makes it more 
complicated as a whole and gives rise to some concerns. A minor concern lies on the fact that the 
estimation of implied volatilities is done through numerical procedures. Any er-rors associated with 
the numerical algorithm used, therefore, may be carried through and may eventually distort the shape 
of the implied PDFs. A major concern - especially in the context of implied PDFs - arise from 
the fact that the technique assumes that the early exercise premium could be solely attributed to the 
implied volatility. This obviously follows from the distributional assumptions of the BAW and the bi- 
norriial trees models suggesting that the distribution of the underlying asset is about log-normal and 
log-normal in the limit respectively. And while a more flexible parametrisation would help to eventu- 
ally recover some part of this information from the pseudo-European prices we would not know what 
amount of the original information is missed. 

27 The use of the methodology may not seem ideal in the context of pricing options contracts, as 
a naive trader's model which assumes a constant implied BSM volatility smile can possibly work 
equally well, as Jackwerth and Rubinstein (1998) show for implied binomial trees, a number of para- 
metric models and naive trader rules. 
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(1999), who examine the evolution of the expectations of interest rates convergence 

around the transition of Italy and Spain towards the EW; and Gemmill and Saflekos 

(2000), who study RNI)s implied by the Equity Index options around crashes, the 

British general elections, and extraordinary events. 

4.2.4 Estimation of the implied RND 

The estimation procedure essentially extends the methodology presented in Corrado 

and Su (1996). Edgeworth series expansions, being polynomial approximations, 

have the drawback, as already highlighted, of possibly yielding negative values for 

the RNDs for certain combinations of parameters. Moreover, there does not seem 

to be an easy and analytic characterization of those parameters for which the density 

will not take negative values. In addition there is no condition that ensures the series 

expansion expressed by (4.8) integrates to unity. 

The approach proposed in this study, rather than deriving complicated math- 

ematical expressions to guarantee positivity, imposes the restriction the density be 

always positive as a constraint implicit in the constraint optimization algorithm, used 

to recover the RNDs' parameters. In addition, the constraint that the recovered den- 

sity's integral over its domain equals unity is being imposed. The above mentioned 

constraints are sufficient exclusively with regard to the RND as they allow RNDs 

with physical as well as mathematical meaning to be recovered". 

28 The imposed constraints further reduce the degrees of freedom of the system which as Melick 
(1999) pp. 3-4 discusses is of complicated nature. 
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Jarrow and Rudd (1982) argue that imposing the condition rl (F) = rl (A) is 

predetermined by risk-neutrality arguments. This leaves the second cumulants of the 

true and the approximating RNDs unrestricted and Jarrow and Rudd (1982) suggest 

equating the second cumulants as well. This argument is also justified on numerical 

grounds by Corrado and Su (1996) who notice that, without this condition, there will 

exist a problem of multicollinearity between the second and the fourth moments in 

the estimation of the implied model. 

Following the above, let the value of a call option" on a given date be c (K). 

By dropping the remainder term 'Ec(K), N Equati on (4.11) 

CF(K) CA(K) - e` 
(K, 

3(F)- l'-- 3(A» da (K) 1 
31 dK 

can be written in a simplified way as 

(K4(F)- 
K4(A)) d'a(K) 

4! dK2 
I 

CF(K) = cA(K) + AlQ3 + A2Q4 (4.15) 

where the terms Ai for i=1,2 and Qj for j=i+2 are defined as follows 

A, = -y (F) - -y (A) (4.16a) 

A2= 72(F) - ýY2 Gl) (4.16b) 

29 Identical procedures are employed to express the value of a put option. 
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and 

=_ 
[Ste(r-q)-r ]3( 

-0,2 
T Q3 e 

[Ste(r-q)r] 4 (ea2T 

Q4 

2 -' da (K) 
1) 

3! dK 
2 e-r-r d2 a(K) 

4! -dK 

In Equation (4.16a) 71 (F) and -yj (A) are skewness coefficients. Similarly in 

Equation (4.16b) 7Y2(F) and '72(A) are excess kurtosis coefficients. Skewness and 

excess kurtosis coefficients are defined in terms of the cumulants as follows 

tý, 3(A) 
3/2 (A) 62 

and 72(A) 
1'ý-4(A) 

2 (A) 2 

where the cumulants of the approximating (log-non-nal) distribution A are given by 

Kl(A) = Ste(r-q)-r 

62(A) = [Ki (A)0]2 

K3(A) = [Kl(A) 0]3 (3p+ Q3) 

0]4 02 + 1504 06 + 08) rl, 4(A) [r,, (A). (16 + 6t 

1 
and 

(eg2t 
- 1) 2, or being the (implied) volatility of the underlying asset. 

Let now z(o,, A,, A2) denote a vector of the unknown parameters of f [-] and 

let (Wl, 'W2) denote the weights that describe where the actual option price falls be- 

tween the bounds. Combining equations (4.14a) - (4.14d) with (4.11) and (4.12) and 

weighting the bounds" results in the following pricing equations for the American 

30 Two weights are used; one for options in-the-money and one for options out-of-the-money. This 
is justified by the fact that pricing errors are expected to vary systematically with the degree to which 
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futures options, in terms of the 5 estimated parameters (-z 
5 wil W2), four observables 

St, K, r and q, and an error term: 

C (K) witT7 (K; + (I - w'it) C (K; 2) + '6c 6C(K) 

P (K) wit P (K; i) + (I - wit) (K; + 6P(K) 

where 
I if call and K<St 

put and K>St 
2 otherwise 

4.2.5 Constraint Optimization 

(4.19) 

(4.20) 

On any given day, the implicit parameters (ý 01) 02) are estimated by minimizing Z7w w 

the sum squared errors: 

with 

mill 
Ef [COBS (Ki) 

- C(Ki)] 2+ [POBS(Ki) 
_ p(K i 

)]21 (4.21) 
(2, iVl, iV2) 

Ki 

= Ste(r-q) Et [ST] risk-neutrality argument (4.22) 

where C(Kj) and P(Kj) are the theoretical call and put prices, respectively, as ex- 

pressed in Equations (4.19) and (4.20). In the objective function, both the call and 

put options are included. This is not common in existing studies, e. g. Corrado and 

Su (1996,1997) use only the call or only the put options to back out the implied pa- 

rameters of their model, assuming that the Put/Call parity holds. This approach has 

an option is in- or out-of-the-money as pointed out by Melick and Thomas (1997). 



77 

the inherent disadvantage that parameters estimated separately for call or put options 

may possibly yield two different RNDs if the Put/Call parity is not satisfied. This im- 

plies that market participants have different perception of future outcomes when they 

trade different type of options or, on the other hand, that their view towards risk is 

depended upon the type of contract they trade. The latter is in contrast with the risk 

neutral valuation approach, a fundamental assumption of which is that risk aversion 

is common among agents. 

The estimation procedure differs from Corrado and Su (1996) also in that it 

imposes additional constraints on the parameter values recovered from (4.21) so that 

Equation (4.8) is always a valid PDF. Two additional conditions should be satisfied 

for Equation (4.8) to represent a valid PDF. It should always be positive and have an 

integral over its domain equal to one. Formally: 

(ST) >0V ST3 ST C [01 00) (4.23) 

f 
(ST) =I (4.24) 

These two constraints should always be imposed whether the parameters re- 

covered with Equation (4.21) are used only for pricing purposes as in Corrado and 

Su (1996), or in order to recover the risk neutral probability density function. 

The optimization is performed using MATLABO's constrained optimization 

routine which requires the function to be minimized, upper and lower bounds for 
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the parameters to be estimated, and any other constraints that should apply as in- 

puts. B ounds for the parameters were set so that 0-01<o, < 0.17, -2 < A, < '2ý 

and finally 0< A2 < 7. The additional constraints included Equations (4.23) and 

(4.24), the latter one requiring the associated integral to equal unity with a tolerance 

of ±0.001. The algorithm focuses on the relevant Kuhn-Tucker equations and at- 

tempts to compute directly the Lagrange multipliers, using a quasi-Newton updating 

procedure. Methods of this nature are commonly referred to as Sequential Quadtratic 

Programming methods and represent the state-of-the-art in non-linear programming 

methods". 

To examine the impact of not imposing the constraints given by Equations 

(4.23) and (4.24), the optimization procedure was run with - and without - impos- 

ing the constraints. The results indicated that it is essential that the constraints be 

imposed. Figures 4.1 and 4.2 show how the shape and the information conveyed by 

the risk neutral density function would significantly differ, depending on the way the 

optimization was carried out. For economy of space results are plotted only for one 

of the contracts examined. 

In Figure 4.1 a the parameters were recovered without imposing the constraint 

that Equation (4-8) be always positive. This has led to negative values of the PDF 

for certain values of the underlying asset, which is mathematically not feasible. An 

apparent practical implication of recovering a PDF with the shape of Figure 4.1a 

31 See Schittowski (1985). 
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Figure 4.1: Probability distributions recovered for the WTI July 98 futures con- 
tracts on June 9th without and with positivity constraints 

would be the overestimation of the probability that the underlying asset takes values 

below 15, resulting in overpricing of put options with strike prices within that range. 

As is obvious from Figure 4.1 a, the distribution is more peaked in the former, having 

greater mass below the value of 15 to compensate for the fact that it becomes partly 

negative beyond that point, while forced to maintain an integral equal to 1 at all times. 

A situation very similar to the one described in the previous paragraph arises if 

the restriction, that the integral of the recovered distribution function be equal to one, 

is not imposed. 

In Figure 4.2a, the parameters have been recovered without imposing the con- 

straint that the integral of the distribution recovered be equal to one. Imposing this 

restriction leads to a significantly different shape for the implied risk neutral PDF de- 

picted in Figure 4.2b. The shape of the distribution in this figure approaches more 

that of the fitted log-normal. It is less leptokurtic and its right tail is considerably 
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Figure 4.2: Probability distributions recovered for the WTI July 98 futures con- 
tracts on May 26th without and with integral constraints 

smoother. For a policy maker, this implies that, relying on a distribution of Figure 

4.2a to extract the market sentiment, he would find that there are two possible scenar- 

ios in the market, indicating a strong bimodality, while the situation would be much 

more 'normal' than would have been thought. 

4.2.6 Evolution of ESE implied PDFs 

This section demonstrates the evolution of ESE implied PDFs over time. Figure 

4.3 shows the evolution of the PDF implied by the July 98 WTI futures options 

contract from May 1,1998 through to June 5,1998 on a weekly basis. Figure 

4.4 plots PDFs implicit in options on December 1998 futures contracts for the period 

October 1,1998 through to November 5,1998 weekly. While Figures 4.3 and 4.4 

suggest that the ESE implied PDFs are not too far from being log-normal (LGN) 

a positive skewness and higher-than-the log-normal kurtosis patterns are apparent. 

Figures 4.5 and 4.6 show the evolution the PDF implied in December 98 Eurodollar t: ) 
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futures options for the period September 1,1998 to November 17,1998 weekly. The 

difference between the ESE and the BSM LGN implied PDFs are somewhat more 

profound than in Figures 4.3 and 4.4. The data shows large negative skewness and 

leptokurtosis which result in the allocation of higher probabilities in the states below 

approximately 4.5% compared to the probabilities assigned by the BSM model. The 

shape of the implied PDFs is also explained by the patterns of the volatility 'smiles' 

in Figures 4.1 to 4.5. 
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Figure 4.3: Implied PDFs calculated from July 98 WTI options from May 1,1998 
through to June 5,1998 for the ESE and the LGN parametrisations 
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Figure 4.4: Implied PDFs calculated from Decemeber 98 WTI options from Octo- 
ber 1,1998 through to November 5,1998 for the ESE and the LGN parametrisations 
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Figure 4.5: Implied PDFs calculated from December 98 Eurodollar options from 
September 1,1998 through to October 6,1998 for the ESE and the LGN parametri- 
sations 
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Figure 4.6: Implied PDFs calculated from December 98 Eurodollar options from 
October 13,1998 through to November 17,1998 for the ESE and the LGN parametri- 
sations 
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4. A Derivations and proofs 

4. A. 1 Asymptotic Distribution Expansion 

The Edgeworth group of asymptotic distribution expansion is based on the approxi- 

mation of the characteristic function of a probability density. Once the characteristic 

function has been approximated the probability distribution function can be obtained 

with the application of the inverse Fourier transform. 

Consider an arbitrary distribution F(ST) called the true distribution and a given 

probability distribution A(ST), called the approximating". The analysis that fol- 

lows is carried out for the restricted class of distributions with continuous density 

functions, that is dA(ST)IdST = a(ST) and dF(ST)IdST =f (ST) exist. 

The jth moment aj (F), the 3 -th central moment [tj (F), and the characteristic 

function O(F, -r) of the approximated distribution F(ST), are given by 

00 

cej (F) =1 STjf (ST)dST 

00 

/il (F) =1 (ST - cej (F» jf (ST) dST 

00 

(F, -r) =1e' 
ST f (ST) d Sr 

00 

where i2 =: -1 and aj (F) exists for j<n. 

32 The derivations for the call option formulas herein are presented in Jarrow and Rudd (1982). 
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Given ce, (F) exists, the first n-1 cumulants rj (F) from i=II..., n-I also 

exist. These are defined by 

log 0 (F, -r) = 
n-1 

Kj(F) 
iT 

13. 
+O(T n-I ) (4.25) E.. 

j=1 

where 

o(, T'-') satisfies lim o(T'-')IT n-1 =0 
T--+O 

From (4.25), letting N= inf (n, m), 

N-1 N-1 

log 0 (F, -r) =Z (Kj (F) - rj (A» 
j! rj (A) 

j! 
+ O(T 

j=i i-i 

But for the approximating distribution 

N-1 (ir), . 

E nj (A) 
j! 

log 0 (A, t) + o(7- 
j=1 

and by substitution 

N-1 

log 0 (F, -r) =Z (rj (F) - rj (A» 
ji 

+ log o(A, 7-) + 0(7- N-1) (4.26) 
j=i 

1 

By taking exponentials and using e'(' 
N-1) 

= 1+0 (T N-1 ), equation (4.26) transforms 

into 

N-1 (i-ry . 

O(F, 7-) = exp Z (rj (F) - rj (A» O(A, -r) + o(-r'-1) (4.27) 
j=l 3 

Stuart and Ord (1987), p. 228, discuss the sufficient conditions that a density function 

with a continuous derivative should satisfy in order to be developed in a series. Jar- 

row and Rudd (1982) suggest that the fact that exp 1.1 is an analytic function ensures 
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that O(F, -r) can analytically be expanded as an infinite polynomial. Consequently 

there exists Ej, j=0,1, ---, N-1, such that 

N-1 (i7)3 . N-1 (i-F)' . 

exp Z (rj (F) - rj (A» 
j! =Z Ej 

j! 
+o(7- (4.28) 

j=l 

11 

j=l 

The first five coefficients are 

Ei = (r� (F) - r� (A» (29a) 

E2 N, 2(F)- K, 2(A)) +E2 (29b) 1 

E3 1ý' 3(F) - N3 (A)) + 3E, (62(F)- 
N2(A)) +E3 (29c) 1 

E4 (1'ý, 
4(F) - r, ý4 

(A» +4 (r, 3 (F) - K, 3(A» Ei + 3(r-2(F) 
- ý£2 (A»2 (29d) 

6E, (62(F)- 
K2(A)) + El 

The substitution of (4.28) into (4.27) and the fact that lim,, O O(A, -r) =: 1, give 

N-1 (ir)3 . 

O(F, E Ej- 
jýl 

j! 
0 -r) +o (-r (4.30) 

The inverse Fourier transfonn of (4.30) using also 

Oo 

f (ST) 
-I 

-i-rST 0 (F, -r) dT 
27r 

I 

00 
Oo 

a (ST) e-i-rSTO(A,, r)d-r 2,7r 

-00 
Oo 

dia(ST) I -iTST 

dST3 27r 

fe 
(i -F) 30 (A, t) d-r 

Oo 
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gives 
N-1 (-1)' di a (ST) 

f (ST) =a (ST) + EEj 
j! dSTj 

+ EN (ST) (4.31) 
j=l 

where 
Oo f 

eiTST ( -T)jo(, FN-1 EN (ST) = 27r 

_c>o 

z )dr 

N-1 

jý The error term exists since E Eý dST3 a(ST) and f (ST) are finite. 
j=0 

The approximated probability distribution is then given by substituting Equa- 

tions (4.29a) - (4.29d) into (4.3 1) 

(ST) = a(ST) 
(r� (F) - r� (A» da(ST) 

' (4.32) 
l! dST 

+ 
(K, 

2(F)- l'£ 2(A» d2 a(S1, ) 
(1'ý, 

3(F)- ýb3(A» d3 a(ST) 
2! dST2 3! dST3 

+ 
(K, 

4(F) - ý£4 (A» + 3(1'ý-2(F)- l'ý, 2(A) 
)2 d4a(ST) 

+ EN (ST) 
4! 

where a(ST) is the log-normal distribution defined by 

I (log ST_ tL)2 
a(ST) exp STa V2--7r-F 2a N/ F 

p= logSt+(r-q-U2 12)-r, St being the current price of the underlying asset. The 

errorEN 
(ST) captures terms neglected in the expansion. 
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Tenns contained in (4.32) are calculated by the following expressions 

da(ST) I dg(ST) 
g(ST) 

S') dST STo-V12-7-7 

( 
dST T 

d2 a(ST) Id2 g(ST) dg(ST) I) 
ST2 dST2 STa,, /-2-7T 

( 

dST2 -2 
dST ST + 2g(ST 

,) 

d3 a(ST) Id3g (ST) 
-3d2g 

(ST) 1 
+6 

dg(ST) I_ 
6g(ST) 

I 
dST3 STuV2-7rT 

( 

dST3 dST2 ST dST ST2 ST3 

d4 a(ST) 1d4g (ST) 
-4d39 

(ST) 1 

+12 
d29 (ST) I- 

dST4 STo, V2-7 -rT dST' dST3 ST dST2 S 
T2 

11 

-24 -S3 + 24g(ST) S4 dST TT 

where g(ST) = exp .1 
109ST-P ) 2]. 1- 

2(o, V--r 

4. A. 2 European Options Formulae 

The value of a European option is obtained by solving the generalized Cox and Ross 

(1976) option pricing equation 

c(K) = e-" 
JKOO 

f (ST) (ST- K)dST 

which gives the value of a call options, where f (ST) is the RND function of the 

underlying asset price at maturity and 

K 

p(K) 
fo 

f (ST) (K - ST) dST 
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which gives the value of a put option. 

Substituting Equation (4.32) in the above we obtain the pricing formula for a 

call option 

Oo 

CF (K) CA(K) + -, r-r 
(62(F)-62(A)) 

max [0, ST-K] dST 
2! 

-oc 
dST2 

00 

-, r-r 
(r�3 (F) - (A» 

max [0, ST - K] 
d3 a(ST) dST 

3! 

1d 

S71, 

, >O 

+, -r7- 
(r1,4(F) 

- rb4 (A» + 3(1'£4(F) 
- l'ý, 4 (A) )2 

4! 
00 

max [0, ST 
- K] 

dSTI 
dST + 6c(ST), N (4.33) 

-00 

and also for a put option 

00 

PF (K) PA (K) +e -r7, 
(1'ý, 

2(F)- N2(A)) 
max [K - 

ST, 0] 
Ut2 

dST 
21 

f 
dF t 

CIO 
00 

-e-r-r 
(1'ý, 

3(F) - N3(A)) 
max [K - 

ST, 0] d3 a(ST) dST 
3! 

1 
dST' 

+, -rt 
(64(F)- 

N4(A)) + 3(I'ý4(F)- N4(A) )2 

4! 
00 

max [K - 
ST, 0] 

dSTI 
dST + 6p(ST), N (4.34) 

-00 
Expressions (4.33) and (4.34) involve the calculation of integrals of the follow- 

ing type, for j>2: 
00 

f 
(ST- K) 

dSTý 
dST (4.35) 

K 

and of the type: 
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K 

0 

(K - ST) 
dSTý 

dST (4.36) 

respectively. 

These can be integrated by parts. For j ý: 2, equation (4.35) gives: 

00 00 

(ST- K) dST (ST- K) 'dj-'a(ST) 
] Oo 

(ST- K)' 
dj-'a(ST) 

dST 
f 

dST dST K dST 
KK 

lim x 
d3 . -la(x) 

X--->OO dST 

lim 
dj-'a(x) 

+ 
X--+C)O dST 

and similarly equation (4.35) gives: 

-K lim 
&-la(x) 

x-oo dST 
&-2 

a(K) 
dST 

dj-'a(ST)- K dj-'a(ST) f (K - 
ST) 

d STj 
dST = 

I(K 
- ST) 

dSTj-l -_ 
0 

(K - ST)' 
dSTj- I- 

dST 

00 

- -K lim 
d3. -1a(x) 

+ 
di-'a(K) 

- lim 
d' . -2 a(x) 

STi- 12 j-2 
T 0d dS77 x-0 dSýj 

For the log-normal distribution 

(109 ST 2 

a (ST) = 
ST a v/-2 -7-r exp 2 o, VIT 

- 

it is known [see Kendall and Stuart (1977), p. 180] that for u>0 

lim x'a(x) -0 X-4C)O 

and also it can be proved that for j>2 

(4.37) 

lim 
d3 -'a(x) lim 

&-'a(x) 
=0 

x---*O dST x-O dSTý -2 



93 

Therefore 

K 00 

(K - ST) dST (ST- K) dST= 
dj-'a(K) 

dSTj 

f 

dSTj dSTj 2 

0K 

The expressions for the approximate call option price is then given by 

CF(K) : --- CA(K) + e` 
(1'ý-2(F)- K2(A» 

a(K) - 
(K, 

3(F)- K13(A» da(K) 1 
2! 3! dK 

+ 
(rý, 

4(F)- 1£4(A» +3 «1'ý2(F)- 
r1,2(A) )2 )d2 a(K) + 

4! dK2 

and for the put option price 

pF (K) - pA (K) + e` 
(1'ý, 

2(F) - r1,2 (A» 
a(K) -( 

l'ý, 3(F) - l'ý, 3 (A» da(K) 1 

3! dK 

+ 
(1ý, 

4(F) - l'ý, 4 (A» +3( (rb2(F) 
- K, 2 (A) )2 )d2 a(K) + 'Ep (K), N 

4! dK2 

where 

CA(K) = St e -q'N(dl) - e-"KN(d2) 

_S e-q'N(-di) PA(K) Ke-"N(-d2) t, 

s 0.2) log (--, ) + (r 
-q+2T K 

di = 

log Sr-q- 0-2) 

di = 
K-') 

( 

u 
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and 

cumulative standard normal 
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Chapter 5 
Economic Rationale and Significance of the 

Internal Consistency of the Edgeworth 
Series Expansion model 

This chapter attempts to empirically assess the ESE model. Typical studies in 

this direction compare option pricing methodologies in terms of the Mean Squared 

Errors (MSE) - the Sum of Squared Errors given by Equation (4.21), p. 76, divided 

by the number of contracts used for its calculation. Coutant et al. (2001), for exam- 

ple, compared a number of methodologies including a single log-normal, a mixture 

of three log-normals, a Hermite expansion (similar to Edgeworth expansion) and 

a Maximum Entropy model. McManus (1999), also compared a number of models 

including a single log-normal, a mixture of two log-normals, a jump diffusion, a Her- 

mite expansion and a Maximum Entropy model. Corrado and Su (1996) compared 

the ESE with a single log-normal model. 

A number of other issues, however, may arise with regard to the use of altema- 

tive parameterisations for the RND. One can argue that a particular parameterisation 

fits observed prices very well due to purely mathematical reasons and at the same 

time offers no intuition on the 'physics' of the problem. Moreover, while better fit is 

achieved it is interesting to examine what can one say on the statistical significance 

of this better fit. 
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This chapter addresses the above issues in order to explore the validity of the 

ESE model. The information conveyed by the implied probability distributions, 

recovered by the ESE method is 'compared' with the market conditions at the time 

to ensure that the model is able to capture the general market sentiment and also 

able to incorporate isolated events causing a significant impact on the market. In 

addition, the model's explanatory ability is tested against that of the corresponding 

nested single log-normal to check whether it offers a statistically significant better 

fit to observed option prices and can, therefore, be considered a superior means of 

extracting information implied in option prices. 

The remaining of the chapter is organized as follows. Section 5.1 summarises 

the ESE methodology for the estimation of implied RNDs and incorporates the mod- 

ifications so the methodology can be used with American futures options. Section 

5.2 discusses the data set used for the analysis. Section 5.3 describes the application 

and discusses the results and, finally, Section 5.4 concludes. 

5.1 Estimation of the implied RND 

The implied RNDs are derived by means of an ESE model. Chapter 4 comprehen- 

sively presents the methodology for the estimation of implied RNDs from options on 

a generalised asset that pays continuous dividends at a rate q. The contracts, how- 

ever, considered in the present study are options on futures. Similar mathematical 
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formulas can be derived by substituting in Equations (4.11) - (4.22), 

qr 

The respective fonnulas are now derived for the ESE specification with the 

following analytic form: 

(ST) = a(ST) - 

(K3(F)- 
rb3(A» d3 a(ST) 

+ 
(rb4(F)- l'ý, 4(A» d4 a(ST) 

3! dS7,41 d S7, 

In Equation (5.1) a(ST) is the log-normal density defined by 

a(ST) exp 
I (log ST 2 

STa 2a Vý-F- 

with mean 

[L = log St - or 
2 /27- 

and vatiance 

= 

where St is the current price of the underlying futures (time t), STis the price of 

the underlying futures upon maturity of the option, -r (= T- t) is the time between 

now and the expiry date of the option, and u the expected volatility of the returns of 

underlying futures contract. 

Following the argument of Ross (1976) and Cox and Ross (1976) the value of 

an option in a market that offers no arbitrage possibilities can be expressed with the 
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following: 
00 

V= e-" 
I 

g(ST)f (ST) dST 

_C, O 
where g(ST) is the pay-off function of the option and f (ST) the distribution of asset 

prices at the end of any interval between t and T. 

The above framework results in the following option pricing formulae 

CF(K) CA(K) - e-" 
(1"-3(F)- 

N. 3(A)) da(K) (1'ý, 
4(F)- 1ý*, 4(A)) d2 a(K) 

31 dK 4! dK2 
1 

(5.2) 

PF (K) - PA (K) 
(K3(F) 

- K3(A)) da(K) (K4(F) 
- K4(A)) d2a(K) 

31 dK 4! dK2 
1 

(5.3) 

In Equations (5.2) and (5.3) 

CA(K) = e-" [StN(di) - KN(d2)] 

PA(K) = e-" [KN(-d2)- StN(-di)] 

( St + 0,2 , log K2F di --. 1 
d2 

01%/7 

and 

di - avTT 

cumulative standard normal 
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Recalling the analysis in Chapter 4 (pp-69-73) an American style option can be 

expressed as a weighted sum of the following bounds: 

C(K) Et [max ý0, ST- Kj] 

C(K) = max I Et [ST] - K, e-"Et [max f 0, ST - Kj] I 

where O(K) and C(K) are the upper and lower bounds for a call option and 

P(K) Et [max f 0, K- STI] 

E(K) = max ýK - Et [ST], e-"Et [max f 0, K- STI] I 

and 75(K) and P(K) are the upper and lower bounds for a put option. The expecta- 

tions in the above are taken with respect to the distribution the terminal asset price is 

assumed to be drawn from. 

Weighting the upper and lower bounds the values of call and put options are 

expressed as 

C (K) wjtý7 (K; i) + (I - w'it) C (K; i) +64C(K) 

P (K) wit P (K; + (I - wit) P (K; ý)+6P(K) 

where 
1 if taU and K<St 

put and K> St 

2 otherwise 
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Implied RNI)s are then recovered by minimising the sum squared errors 

-"' I [COBS (K 2_ p(Ki)]21 min i) - C(Ki)] + [p OBS(Ki) 
Ki 

subject to 

Et [ST] =- St 

and 

(ST) >0V ST, ST E [0,00) 

i 
(ST) -I 

where St is the cur-rent price of the underlying futures contract. 

5.2 Data 

This chapter examines whether the qualitative information, recovered from option 

prices, is consistent with the market commentary of the study period in order to ex- 

amine whether the ESE model is capable of recovering economically sensible RNDs. 

The model is also compared with a single log-normal. model to investigate whether 

the additional complexity introduced is also associated with significantly - in a sta- 

tistical sense - superior explanatory ability. 

Since the primary task is to investigate if the implied distributions are consis- 

tent with the market commentary, it is not necessary to examine the whole of the data 

set in the following analysis. It is, however essential that the most 'reliable' market 

information is used. Heavily traded contracts are said to be more 'reliable' in that 
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respect. While volume data are available for the WTI options and we can be confi- 

dent that near-month contracts are the most heavily traded ones we hypothesise that 

closest-expiration Eurodollar options contracts are in line with the former prerequi- 

site. An additional criterion suggests that periods with increased market activity - 

in terms of 'events' - should be considered, as it is more likely that implied distrib- 

utions deviate from a log-normal during such periods. Finally, the selection should 

also account for the contracts listings. 
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Figure 5.1: Eurodollar rate from January 2,1998 to December 31,1998 

During 1998 the Eurodollar market was fairly stable until the end of August 

when a rather turbulent period is observed which extends until the end of the year (see 
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Figure 5.1 and discussion on p. 53). For the study of this period the December '98 

Eurodollar futures options seems to satisfy the criteria set above fairly well. The WTI 

contracts were examined on a selective basis. Contracts due to expire in a month 

when oil prices followed an 'abnormal' pattern were selected. Figure 5.2 suggests 

that two appropriate candidates for this task were the July '9 8 and the December '9 8 

futures contracts and, consequently, the respective options contracts. 

18 
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Figure 5.2: Near month WTI futures contract in $[barrel from January 2,1998 to 
December 31,1998 

For the model's statistical comparison, however, it is essential that the largest 

possible amount of available information is used and therefore all WTI options con- 
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tracts are also considered for the whole of the period staring on January 2,1998 

through to December 31,1998. The latter include all appropriate trading days for 

every traded expiration month. 

5.3 Application and results 

This section examines the properties of the implied RNDs in the presence of large 

changes in economic conditions. A number of events are considered and the impact 

on the implied RNDs is investigated. Section 5.3.1 explores the ability of the implied 

RNDs recovered with the ESE model to capture speculation over future eventualities 

whereas Section 5.3.2 examines their capacity to immediately reflect changes in the 

market sentiment. Finally Section 5.3.3 examines whether the use of the ESE model 

is able to offer a statistically significant better fit when compared with a single log- 

normal BSM model. 

5.3.1 Multimodal scenarios 

The data for the WTI July futures options span a time period of around 40 days 

starting from May 1, through to June 10,1998. During this period oil prices were 

sliding, due to increased supply in the oil market while, at the same time, demand 

was at relatively low levels. Demand in Asia had fallen due to the Asian crisis. The 

International Energy Agency (EEA), expected demand for oil for the whole year to 

increase only by 1.7%, while the percentage increase the previous year was 2.7%. 
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In a meeting which took place in Riyadh in March, OPEC and non-OPEC countries 

agreed to make a total cut in production of 1.5m barrels per day, in order to stabilize 

the oil market. 

During May, there was growing concern as to whether it was feasible for oil 

prices to sustain the then current levels without any further action on behalf of the oil- 

producing countries. Oil prices were expected to drop even more, unless further cuts 

in production were made which would stabilize or even raise them. This 'bimodality' 

in traders' beliefs could not obviously be detected simply by observing the price of 

oil futures contracts. However, the use of an implied distribution is assumed to offer 

greater insight into investors' available information and as a consequences be capable 

of revealing the bimodal scenario that was dominant in investors' expectations at the 

time. 

As can be seen in Figure 5.3, the distribution recovered using the ESE model 

does, indeed, capture the bimodal scenario. It assigns a greater mass than a fitted - 

log-normal does in values around the mean (thus being more leptokurtic) while, at 

the same time, it also assigns larger probability mass at the right tail, consistent with 

the scenario of further anticipated future cuts. This bimodal pattern is a standard 

feature of most of the probability density functions recovered for that period. 

Despite OPEC's decision on the 24th June for further cuts in oil production, 

the market consensus did not dramatically change in the subsequent months. Implied 

distributions recovered for the period October-November '98, exhibited very similar 
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Figure 5.3: Probability distribution implied by July '98 WTI options contracts on 
May 12,1998 

characteristics to those implied by the July contracts. The Fall of '98 was a period of 

great uncertainty for oil prices. Prices declined, mainly due to increasing supplies, 

since non-OPEC members were not willing to comply with the organization pump- 

ing limits. In addition to that, Venezuela, one of the major oil exporting countries, 

announced that the previously decided exploration cuts would cease to apply. The 

International Monetary Fund (IMF) lowered its predictions for oil prices for the cur- 

rent - and the following - year and the American Petroleum Institute (API) reported a 

surge in US crude oil stocks. Iraq's confrontation with the UN arms inspectors, and 

the forecast for a cold northern winter on the other hand, gave rise to speculation for 

higher oil prices. A bimodal pattern that was present in most of the recovered dis- 

tributions from December WTI options contracts, similar to that observed in the July 

contracts' distributions, further confirms the consistency of the ESE model. 
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Figure 5.4: Probability distribution implied by December '98 Eurodollar options 
contracts on September 24,1998 

The data for the Eurodollar futures options span a time period of 61 days start- 

ing from September 1, through to November 30,1998, a period which included 3 

meetings of the FOMC. The FOMC makes decisions with regard to the Federal Re- 

serves's interest rate policy. The study period coincides with an international market 

turmoil the effects of which were likely to affect the US economy. In the event, 

Alan Greenspan, the chainnan of the Federal Reserve, warned that '... the US cannot 

remain an oasis of prosperity unaffected by a world that is experiencing increased 

stress', giving rise to speculation over interest rate cuts. The dollar sank sharply af- 

ter Alan Greenspan said the risk of an economic slowdown in the US had increased. 

The news 'hit' the market on September 24,1998 just five days before the scheduled 

meeting of the FOMC. In the event, expectations the Fed may cut interest rates in- 
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tensified. 'Deteriorating foreign economies and their spillover to domestic markets 

have increased the possibility that the slowdown in the growth of the American econ- 

omy will be more than sufficient to hold inflation in check' Alan Greenspan told a 

Senate committee. Figure 5.4 plots the RND implied by December '98 Eurodollar 

options contracts on September 24,1998. A bimodal pattern - hump on the left side 

of the distribution - reveals expectations consistent with the fear of interest rates cut, 

confirming the economic sensibility of the implied RNDs recovered with the ESE 

model. This scenario would not be captured with a single log-normal parameterisa- 

tion. Similar shapes are recovered in the subsequent days. 

5.3.2 Isolated events 

Market sentiment reflects investors' expectations about future values of the underly- 

ing asset, which are formed, based on available information. However, news arrives 

randomly in the market on an every day basis, forcing investors to constantly revise 

their expectations in the light of this newly arrived infonnation. This section investi- 

gates whether implied distributions recovered with the ESE model are consistent with 

this feature, whether in other words implied RNDs estimated with the ESE model are 

able to reflect the extent to which important news arrival has an impact on market 

participants' reactions. To this end, a series of isolated events, and the information 

one could infer by recovering the implied distributions of option prices, is examined. 
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Figure 5.5: Implied probabilities for the July WTI futures contract trading below 
$12 / barrel upon expiration of the July WTI option contract for the period May 
1,1998 through to June 12,1998. The line indicates the date when the American 
Petroleum Institute published data showing an 8.79m barrel increase in US crude 
stocks 

On May 20,1998, the American Petroleum Institute published data showing an 

8.79m barrel increase in US crude stocks, when the market expected a fall of roughly 

2.5m barrels. Stocks went up to 353.13m barrels, the biggest stock of crude oil since 

August 1993. The news was reflected in the implied distribution of WTI futures 

prices. Figures 5.5 and 5.6 plot the probability of the WTI being less than $12 or less 

than $10 per barrel respectively as calculated by the ESE and the BSM LGN models. 

A peak was observed on that day with the probability of WTI being less than $12 

being three almost times higher than it had been the previous day for both models. 

The probability of the WTI being less than $ 10 per barrel is found to be nearly twenty 

times larger than its corresponding value the previous day when calculated with an 
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Figure 5.6: Implied probabilities for the July WTI futures contract trading below 
$10 / barrel upon expiration of the July WTI option contract for the period May 
1,1998 through to June 12,1998. The line indicates the date when the American 
Petroleum Institute published data showing an 8.79m barrel increase in US crude 
stocks 

ESE model. While the BSM model also shows a peak on the that day, it fails to 

capture the magnitude, due to its incapability to assign high probabilities in the tails. 

Examining the December WTI options contracts, an exactly similar situation 

arises on October 20,1998, when Venezuela's energy minister announced that his 

country's oil output would return to normal levels in the second half of 1999, after 

the two production cuts in 1998. This was in contrast to traders' hopes for a sustained 

reduced oil production throughout the whole of 1999. This is highlighted in Figures 

5.7 and 5.8, where probabilities exhibit a 'jump' around the October 20,1998. The 

difference between the calculated probabilities by the ESE and the BSM LGN models 

is not as big as above - if at all different. This is somewhat expected as the implied 
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Figure 5.7: Implied probabilities of the December WTI futures contract trading 
below $12 / barrel upon expiration of the December WTI option contract for the 
period October 1,1998 through to November 11,1998. The line indicates the date 
when Venezuela's energy minister announced that his country's oil output would 
return to normal levels in the second half of 1999, after the two production cuts in 
1998 

PDFs during the study period were right skewed and leptokurtic (see Figure 4.4) 

assigning higher probabilities, mainly, in the right tail. 

On Thursday, June 4, an unexpected meeting took place in Amsterdam between 

Saudi Arabia, Venezuela and Mexico. The three oil-exporting countries announced 

that they would reduce production by a total of half a million barrels per day. The 

initial reaction of the markets was positive; prices rose on the Friday. During the 

weekend that followed, however, investors realized that the cuts were not of the extent 

that they expected and that the possibility of further cuts seemed more distant now 

than before" 

33 Hopes for further cuts were placed at the June 24th meeting of the OPEC countries. 
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Figure 5.8: Implied probabilities of the December WTI futures contract trading 
below $10 / barrel upon expiration of the December WTI option contract for the 
period October 1,1998 through to November 11,1998. The line indicates the date 
when Venezuela's energy minister announced that his country's oil output would 
return to normal levels in the second half of 1999, after the two production cuts in 
1998 

A similar pattern is observed for the Eurodollar contracts. Over the period Sep- 

tember 1,1998 through to November 30,1998 the FOMC lowered the target federal 

funds rate by a total of 75 basis points on three occasions - following the regularly 

meetings on September 29,1998 and November 17,1998 and following a conference 

call meeting of on October 15,1998. Figures 5.9 and 5.10 plot implied probabilities 

for the Eurodollar futures trading below 5% and 4.5% respectively upon expiration 

of the December Eurodollar option contract as calculated by the ESE and the BSM 

LGN models. The vertical lines indicate the three occasions when Federal Reserve 

lowered the federal funds rate. Melick (1999) argues that while the September 29 

cut was somehow expected the rate cut on October 15 came as a great surprise to fi- 

0 
1/10/98 6/10/98 11/10/98 16/10/98 21/10/98 26/10/98 31/10/98 5/11/98 10/11/98 
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Figure 5.9: Implied probabilities for the Eurodollar futures trading below 5% upon 
expiration of the December Eurodollar option conatract for the period September 1, 
1998 through to November 30,1998 for the December 1998 contract. The lines 
indicate the three occassions when Federal Reserve lowered the federal funds rate by 
25 basis points each time 

nancial market participants. He justifies his results on the basis of an increase in 

the dispersion of the percentiles following each of the changes. In a similar fash- 

ion Figure 5.10 plot an abrupt jump in the implied risk neutral probability associated 

with declines of the rate below 4.5% whereas somewhat regular changes occur on 

the days following the September 29 and November 17 cuts. The difference in the 

probabilities calculated by the ESE and the LGN models is now more profound espe- 

cially in Figure 5.10. In addition, the probabilities calculated with the BSM for the 

rate below 4.5% occuring, seem to fluctuate more, relatively to the respective ones 
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Figure 5.10: Implied probabilities for the Eurodollar futures trading below 4.5% 
upon expiration of the December Eurodollar option conatract for the period Septem- 
ber 1,1998 through to November 30,1998 for the December 1998 contract. The 
lines indicate the three occassions when Federal Reserve lowered the federal funds 
rate by 25 basis points each time 

calculated with the ESE model, an indication of instability with regard to how much 

probability the fonner assigns in the left tail. 

Another typical feature of implied RNDs is clearly evident in Figures 5.11 

and 5.12 which plot the inter-quartile ranges" of the recovered distributions across 

time. As expiration of the options approach uncertainty over the terminal value of 

the underlying asset tends to fall and as a consequence the largest mass of the implied 

RNDs is concentrated around the mean, Melick and Thomas (1999). This is reflected 

34 The inter-quartile range of a distribution is defined as the difference between the 75 and 25 percent 
quartiles. It is the interval that contains the central fifty percent of the distribution. 
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in Figures 5.11 and 5.12 which show that the inter-quartile range is decreasing with 

time. 

5.3.3 A Statistical Comparison 

This section examines the goodness of fit of the ESE model versus that of the fitted 

single log-normal one. Even though there is enormous literature documenting the su- 

periority of alternative parametric and non-parametric models over the BSM mode135, 

to the author's knowledge, existing studies [the only exemption being Melick and 

Thomas (1997)], make comparisons in terms of the Mean Squared Errors (MSE) and 

offer no discussion on the statistical significance of the accuracy that is achieved by 

using a model with additional to the BSM parameters. Although a comparison with 

the BSM would favour literally any altemative parameterisation it could be the case 

that even an unfair comparison of this nature results in differences that are not sig- 

nificant in a statistical sense. My concern is to examine whether the use of the ESE 

model is able to offer a statistically significant better fit - not just a better fit. 

To this end, a single log-normal model is estimated, using the same optimiza- 

tion procedure that was used for the ESE model. Option prices are expressed as a 

combination of the bounds described in Equations (4.14a)-(4.14d) but, this time, the 

expectation is taken over a single log-normal distribution. This implies that the opti- 

35 Recent papers include Coutant et al. . (2001), who compared a single lognormal, a mixture of 
three log-normals, a Hem-iite expansion and a Maximum Entropy model and McManus (1999), who 
compared a single lognormal, a mixture of two log-normals, a jump diffusion, a Hermite expansion 
and a Maximum Entropy model. 
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May 1,1998 through to June 12,1998 
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mization procedure involves the estimation of three parameters, namely, the implied 

standard deviation a and the two weighting factors w, and 'W2 (since the mean is set 

equal the current futures price to ensure risk-neutrality). As the log-normal distribu- 

tion is a special case of the ESE density the BSM model can be seen as a nested one 

within the ESE model. 

The ESE model is expected to provide a better fit to observed option prices 

than the nested single log-normal one, since it involves the estimation of additional 

parameters. We hypothesise that the single log-normal distribution could adequately 

describe the distribution of the underlying asset returns. If the latter proves to be 

true the use of terms correcting for skewness and kurtosis in the proposed method 

would not significantly improve thefit to observed option prices. 

To examine the significance of these terms, a test that compares two competing 

non-linear models needs to be employed. Let VESE [9), ý1; A27 W1) W2 I Q] denote the 

option valuation formula for a call or a put option that results from the ESE method. 

Q represents an information matrix that contains strike prices, interest rates and times 

to maturity. If VBSM [0'1 Wl i W2 I Q] is the corresponding formula consistent with the 

BSM assumptions, then it is obvious that the latter formula arises from the former, 

by imposing the restrictions that A, : -` 
A2 :: --::: 0- 

Since the two option pricing formulae do not represent different functional 

foIM. jS _ 
VBSM [ 

.. 
] is nested within VESE [. ] 

-a Likelihood-Ratio (LR) test, testing the 

hypothesis that the two coefficients are jointly zero, can be applied. It will effectively 
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test whether the ESE method provides superfluous information for the description of 

the underlying asset's distribution or whether the additional complexity introduced 

by the ESE model is, indeed, useful in explaining distributional characteristics of 

option prices. 

In the case of call options the problem is formulated as follows. The unre- 

stricted ESE model 

Cobs :: ý Cth (al A, ) 
A2) U)I) W2 I Q) + EC, UR (5.7) 

is estimated and we wish to test the restrictions A, ý A2 =0 resulting in the BSM 

model 

Cobs :' Cth (G'i 03 0) Wl ý W2 19) + EC, R (5.8) 

Under this setting the null hypothesis is that the restrictions A, : -- A2 =0 are sup- 

ported by the data. The error terms 6C, UR and 6CR capturing any differences between 

the observed and the theoretical value of the option are assumed to be sufficiently 

small (see also discussion in Section 4.2.1, p. 62) and, given the large number of 

observations, be asymptotically normally distributed with 0 mean. The maximum 

value of the likelihood of the unrestricted model, LUR, is obtained by maximising the 

likelihood function consistent with Equation 5.7, and maximum value of the likeli- 

hood of the restricted model, LR, is given by maximising the likelihood function of 

the constrained model presented in Equation 5.8. Similar formulation applies for the 

put options case. 
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Under general conditions, the statistic 

ýLR =: -2(LR - LUR) 

can be shown to have a limiting X 2(M) under the null hypothesis, where m is the 

number of parameter restrictions [Engle (1984)]. The restricted model (the BSM 

model), imposes two restrictions: the first is that the skewness of the distribution is 0 

and the other that the kurtosis of the distribution is a known function of its variance. 

The number of parameter restrictions are, therefore, two -m=2, and the critical 

values for the X2 (2) at the 95% and 99% levels are 5.99 and 9.21, respectively. A 

statistic greater than 5.99 implies that the null hypothesis that the restrictions apply, 

can be rejected. 

The test was carried out separately for call and put options since they have 

different valuation fonnulas. 

Table 5.1 reports the results of the LR test, carried out for the data set of WTI 

futures options while Table 5.2 contains the respective results for the Eurodollar fu- 

tures options data set. 

The test indicated that, in both cases, the coefficients which correct the RND 

assumed within the BSM for non-zero skewness and excess kurtosis, are jointly sta- 

tistically significant at the 5% and 1% level for each of the contracts examined. This 

implies that the proposed functional form for the distribution of the underlying asset's 
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Likelihood-Ratio Test 

Call Options 
Restricted: Cobs ý Cth (0'i0i0iW15W2 I Q) 

Unrestricted: Cobs = Oth(aj ý 1) 
A2) W1) W2 I Q) 

Contracts Obs. Lo g-Likelihood Log-Likelihood ýLR 

Restricted Unrestricted 
May 1051 967.74 1211.82 488.16 
Jun 1014 919.54 1126.39 413.70 
Jul 961 841.32 1120.88 559.12 

Aug 837 1002.71 1107.35 209.28 
Sep 837 540.01 782.49 484.96 
Oct 694 735.16 946.36 422.40 
Nov 590 655.64 869.23 427.18 
Dec 1789 526.50 1196.79 1340.58 

Restricted: 
Unrestricted: 

Put Options 
Pobs Pth (91 01 07 W1) W2 

Pobs fDth (07) Al, A2, W1, W2 

Contracts Obs. Log-Likelihood Log-Likelihood ýLR 

Restricted Unrestricted 
May 916 700.06 788.04 175.97 
Jun 643 536.20 631.55 190.70 
Jul 638 452.68 587.96 270.56 

Aug 588 394.17 517.49 246.64 
Sep 597 322.43 552.21 459.56 
Oct 456 507.24 572.46 130.46 
Nov 438 483.78 653.78 339.99 
Dec 935 422.35 534.76 224.82 

Table 5.1: Likelihood-Ratio test for all traded expirations of WTI call and put 
options for the period January 1,1998 to December 31,1998 
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Likelihood-Ratio est. 

Call Options 
Restricted: Cobs Oth (0') 0) 0; 'Wl) W2 

Unrestricted: Cobs Oth (alAl) A2) W1) W2 I Q) 

Contracts Obs. Log-Likelihood Log-Likelihood ýLR 
Restricted Unrestricted 

Dee 473 1370.04 1412.82 85.56 

Put Options 
6 Restricted: Pobs I th (0') 0) 0) W1) W2 I Q) 

Unrestricted: Pobs fDth (07) Al 
i 
A2) W1) W2 1 ý2) 

Contracts Obs. Log-Likelihood Log-Likelihood ýLR 
Restricted Unrestricted 

Dec 1022 2997.26 3193.60 392.68 

Table 5.2: Likelihood-Ratio test for December Eurodollar call and put options for 
the period September 1,1998 to November 30,1998 

returns serves as a more realistic representation of the 'true' RND than the standard 

single log-normal assumption. 

Melick and Thomas (1997) performed similar tests under the assumption that 

the underlying asset returns distribution is a mixture of three log-normal distribu- 

tions. In their tests, however, they compared their model with the Barone-Adesi 

and Whaley (1987) model, arguing that it is the most commonly used model among 

practitioners. Available evidence", however, examining the relative performance of 

alternative American option pricing models highlights that, even though the BAW 

model is the fastest such model, it is also the least accurate one. 

36 See Broadie and Detemple (1996). 
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The specification of the single log-normal model, as suggested in this study, 

makes it consistently comparable with the model against which it is being tested. 

Both models use the same bounds for the American option price being different only 

in the assumed functional form of the distribution. Intuitively, this seems to be a rela- 

tively more valid way to assess the distributional differences through the examination 

of option prices. 

5.4 Conclusions 

This chapter examined the economic sensibility of the implied RNDs recovered with 

the ESE model and also the statistical significance of the improved fit of the ESE 

parameterisation when compared with the standard BSM single log-normal assump- 

tion. 

The information conveyed by the implied probability distributions, recovered 

by the ESE method, proved to be consistent with the market commentary at the time. 

The implied distributions were also shown to be able to capture the general market 

sentiment as well as able to incorporate isolated events with a significant impact on 

the market. 

In addition, the model's explanatory ability was tested against that of the cor- 

responding nested single log-normal. It was found to offer a statistically significant 

better fit to observed option prices and can, therefore, be considered a superior means 

of extracting information implied in option prices. 
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Chapter 6 
Testing the Effect of Measurement Errors 

on the Estimation of RNDs 

Chapter 5 addresses concerns expressed in Chang and Melick (1999) that im- 

plied PDFs should be consistent with available data both internally - adequate fit - 

and 'externally - economically sensible - in order to assess the validity of the intro- 

duced ESE methodology. 

The above criteria should not, however, be used exclusively when one tries to 

identify a generally 'good' model for the estimation of implied RNDs. Observed 

option prices, which are used as inputs in the estimation, are subject to various er- 

rors; and, as a consequence, deviations from what one would expect to obtain under 

the models' assumptions, are present. It is natural then that the effect of these mea- 

surement errors is also examined and the robustness of RNDs estimation techniques 

or the degree of confidence that can be placed on the summary statistics calculated 

off the implied RNDs. Implied distributions would be a far more reliable tool for fi- 

nancial. analysis if they were accompanied by some kind of confidence assessment, 

rather than just been taken for granted. 

To further explore the validity of the proposed model this chapter examines the 

stability of the implied RNDs estimated with the ESE method. The mixture of two 

log-normals (MLN hereafter) specification, being a very commonly used parametric 
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model and also studied in terms of stability in other studies, is used as a comparative 

measure. This application also helps to see some more general features of implied 

RNDs. 

The chapter is organised as follows. Section 6.1 sets the theoretical framework 

of the study: Subsection 6.1.1 offers a literature review of the subject area; Subsection 

6.1.2 develops the models used for the empirical investigation. Section 6.2 includes 

the description of the market examined and the data set used. Section 6.3 discusses 

the hypothesis under question. Section 6.4 discusses the results of the study and 

Section 6.5 concludes. 

6.1 Theoretical Framework 

6.1.1 Literature review 

Sbderlind and Svensson (1997) were, to the author's knowledge, the first researchers 

to raise the issue of the stability of implied RNDs. To test the confidence that can 

be placed on implied RNDs, they calculated 95% point-by-point confidence inter- 

vals for the RNDs using the Delta method. They assumed that a mixture of n nor- 

mal distributions was the 'correct' model for the underlying asset's log-prices and 

that actual option prices differ from theoretical prices by a random error term. The 

parameters of the model were then estimated in a non-linear least squares fashion 

and the possibility of heteroscedastic price errors was taken into account by using a 
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heteroscedastic-consistent estimator for the covariance matrix. The methodology re- 

sulted in quite narrow confidence intervals, across all strike prices. The authors also 

proposed the use of Monte Carlo simulation as an alternative method for constructing 

confidence intervals. 

Melick and Thomas (1999) performed Monte Carlo simulations" in a study 

where a modified boot-strapping method was also utilized. A mixture of two log 

normal distributions was assumed to represent the underlying asset's PDR For the 

Monte Carlo approach a point estimate of the parameter vector was obtained along 

with a covariance matrix from the Hessian of the constrained maximum likelihood. 

The error between the estimated and the true parameters was assumed to follow a 

multivariate normal distribution with zero mean and a covariance matrix equal to 

the covariance matrix obtained from the maximum likelihood estimation. Sampling 

from that distribution allowed them to construct confidence bands for the true pa- 

rameters. In contrast to the former, the boot-strapping methodology required no 

particular structure for the generating process of the error terms. A pseudo-sample 

of observations was created by drawing with replacement from the original set and 

the model was estimated many times based on this pseudo-sample. The authors were 

eventually very reluctant to draw any definite conclusions on the findings. 

In a more recent study, SOderlind (2000) also questioned the uncertainty about 

the 5th and 95th percentile of estimated risk-neutral distributions for Short sterling 

37 Monte Carlo simulations are claimed to have wider applicability compared to the Delta method, 
since the latter requires derivatives of the function of interest, which are not always available. 
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contracts. Ffis tests assumed that the underlying asset's log-price distribution was a 

mixture of two normal distributions. The parameters of the model were estimated by 

generating discrepancies between theoretical and observed option prices in two dif- 

ferent ways: by sampling pseudo-random numbers from an i. i. d. normal distribution, 

with the same variance as the original price errors, and by boot-strapping the original 

errors. In either case the 90% confidence interval was found to be very narrow. 

A slightly different approach was taken by Cooper (1999) and Bliss and Pani- 

girtzoglou (2000). Rather than making any assumptions on the error generating 

process, they concentrated on the observed prices and the small errors in prices that 

may be present in real world, due to the existence of discrete tick size intervals. The 

methodology both studies used is described in Bliss and Panigirtzoglou (2000). Ob- 

served option prices are perturbed by a random number, which is uniformly distrib- 

uted between -1/2 and +1/2 a 'tick size', and implied distributions are re-estimated 

from the perturbed options cross-sections. Cooper (1999), applied the methodology 

with simulated options prices assuming that 'true' option prices can be generated by 

Heston's (1993) stochastic volatility model. Implied distributions were estimated 

using a smoothed volatility smile method" and a model assuming a mixture of two 

log-normal distributions for the underlying asset. He found that the smoothed volatil- 

ity smile model was superior to the mixture of two log-normal distributions model 

in terms of stability. Bliss and Panigirtzoglou (2000), arrived at the same conclu- 

38 See Campa, Chang and Reider (1998). 
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sion using observed options cross-sections. The results presented in Cooper (1999) 

and Bliss and Panigirtzoglou (2000), however, are somehow questionable. Cooper 

(1999), made use of close intervals between strike prices which may have favoured 

the smile approach", whereas Bliss and Panigirtzoglou (2000) used different weight- 

ing schemes' to formulate the sum of squared errors which may also have favoured 

the smoothed volatility smile method. On the other hand a fair comparison of two 

models should also take into account qualitative factors, as for example the degrees of 

freedom of the two models and, consequently, the computational capacity that needs 

to be engaged for the estimation of the model's parameters. 

6.1.2 Development of the ESE and MLN models 

Following are the theoretical models employed. 

The derivation of implied RNDs with the ESE model is thoroughly described 

in Chapter 4 and the relevant adjustments are presented in Chapter 5 to modify the 

methodology so it can be used with the data set of the study. For ease of refer- 

ence, however, the procedure followed to derive implied RNDs with the ESE model 

is briefly demonstrated below, along with the respective procedure needed for the 

estimation of RNDs under the MLN probability specification. 

39 See Neuhaus (1999). 
40 The authors claim that vega weighting the implied volatility errors in the smoothed volatility smile 
method is equivalent to equally weighting the fitted price errors of the options in the mixture of two 
lognormal distributions method. This is rather arbitrary if not incorrect when only one type of con- 
tracts - calls or puts - is used in the estimation of the implied RNDs. Away from the money options 
have low vegas which in turn means that the approach assigns low weights to pricing errors of these 
options. This introduces a bias in favour of the smoothed volatility smile method. 
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The ESE parameterisation assumes the following analytic representation for 

the RND 

(ST) a (ST; o, ESE A ESE) 
_ 

(K, 
3(F)- N3(A)) d3 a(ST; o-ESE A ESE) 

31 dST' 
(1'ý, 

4(F)- 1ý', 4(A)) d4 a(ST; a 
ESE A ESE) 

4! dST' 

Alternatively, following the work of Ritchey (1990), implied RNDs can be 

represented as a k-component mixture of log-normal distributions. A mixture of two 

log-normal distributions is employed in this chapter (k = 2). The analytic form of 

this parameterisation is the following": 

f (ST)MLN= Oa(S; a 
MLN A MLN) + (I - O)a(ST- UMLN A MLN) (6.2) 11)22 

where 0 is weighting factor (0 <0< 1) and ui, pi, i=1,2 are the volatilities and 

the means of the two independent log-normal distributions. 

In Equations (6.1) and (6.2) a(ST; o,, M) is the log-nonnal density defined by 

(ST; a, I-L) epI( 
log ST _ 11)2 

ST 2a V/7- 

with mean 

,4= logst -u2 /2-F 

where St is the current price of the underlying futures (time t), ST is the price of 

the underlying futures upon maturity of the option, -r (= T- t) is the time between 

41 For a detailed derivation see Bahra (1997) and for empirical applications also Bahra (1997), Malz 
(1996,1997), Genunill and Saflekos (2000). 
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now and the expiry date of the option, and a the volatility of the underlying futures 

contract. 

Following the argument of Ross (1976) and Cox and Ross (1976) the value 

of an option in a market that no arbitrage possibilities can be expressed with the 

following: 
00 

V= -r-r 
I 

g(ST)f (ST) dST 

-00 
where g(ST) is the payoff function of the option and f (ST) the distribution of asset 

prices at the end of any interval between t and T. 

The above framework results in the following option pricing formulae 

c'(K) CA(K) _ -r-r 
[ (I'ý. 

3(F)-63(A)) da(K; ESE,,, ESE) 

F 31 dK 
(r, 

4(F)- 64(A)) d2 a(K; a 
ESE 

A ESE) 

4! dK2 

I 

p'F"(K) PA(K) 
(N3 (F) - 63 (A)) da (K; u 

ESE 
I I-L ESE) 

31 dK 
(64 (F) - r14 (A)) d2 a(K; a 

ESE ESE) 

4! dK2 
I 

for the ESE model, and 

r, r MLN) MLN) 
cm'(K) e- 0 

[eý"'ýIN(dj 
- KN(d2 

I 

(6.3) 

(6.4) 

(6.5) 

fi MLN) MLN) A2+ 
2N(d3 - KN (d4 

II 
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r-r MLN) MLN p"(K) e- 0 
[-ell"226(-dj 

- KN (-d2 )] 

fi MLN) MLN + 0) 
[-e P2+ 

2N(-d3 - KN (-d4 

for the MLN model. 

In Equations (6.3) and (6.4) 

CA(K) e-" [StN(d ESE) 
- KN(d ESE)] 

12 

PA(K) [KN(-d ESE) 
- StN(-d ESE)] 

21 

S 

d ESE 
- 

log. (N +2 

1a ESE 
Vý. 

-T 

whereas in Equations (6.5) and (6.6) 

In St 
MLN 

(ýKý) +27. 

1 
01 MLN�, Fr 

1 

In +7 MLN K2 
3 MLN, 

ýVF7 o'2 

d ESE 
=d 

ESE 
- 07ESE -- 

21 VIT 

d MLN 
=d 

MLN 
_aMLN,, vFT 211 

d MLN 
=d 

MLN 
_ UMLNý, FT 

432 

and 

cumulative standard normal 

(6.6) 

Recalling the analysis in Chapter 4 (pp. 69-73) an American style option can be 

approximated by a weighted sum of the following bounds: 

C(K) Et [max ý0, ST- KII 

C(K) = max ý Et [ST] - K, e-"Et [max 10, ST- Kj]j 
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where ýý(K) and C(K) are the upper and lower bounds for a call option and 

P(K) Et [max f 0, K- STI] 

P(K) = max ýK - Et [ST] 
I e-"Et [max f 0, K- STI] I 

and P(K) and P(K) are the upper and lower bounds for a put option. The expecta- 

tions in the above are taken with respect to the distribution the terminal asset price is 

assumed to be drawn from - the ESE and the MLN. 

Weighting the upper and lower bounds the values of call and put options are 

expressed as 

C (K) 

P (K) 

where 

wit C (K; + (1 - w'it)! 2 (K; ý)+ "E4C(K) 

wit P (K; + (I - wit) f (K; ý)+ 6P(K) 

i if ýcaHandK<St 

put and K> St 

2 otherwise 
Implied RNI)s are then recovered by minimising the sum squared errors 

min 
Eý [COBS (Ki) - C(Ki)] 2+ [POBS(Ki) 

_ p(K i (i, i-vl, fý2) 
Ki 

6.2 Data 

(6.10) 

The analysis is carried out on a subset of the data set described in Chapter 4. 
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This consists of, the full data set of Eurodollar options -a period starting on 

September 1,1998 finishing on November 30,1998 for the December 1998 contract 

- and data for the July 1998 and December 1998 WTI futures option contracts for the 

periods May 1 to June 10,1998 and September I to November 11,1998 respectively. 

The data sets were chosen so that they corresponded to 'unsettled' periods 

when the behaviour of implied RNDs is likely to be more sensitive (see Section 5.3). 

6.3 Hypothesis and application 

Observed option prices, which are used as inputs in the estimation, are subject to 

various errors; and, as a consequence, deviations from what one would expect to 

obtain under the models' assumptions, are present. This section discusses the nature 

and the possible sources of measurement errors that may affect the robustness of 

implied RNDs estimation techniques. 

Bliss and Panigirtzoglou (2000) and Melick and Thomas (1998), argue that 

these errors mainly include: 

1. Errors due to the use of asychronous quotes for the option and the underlying 

asset. 

Errors due to possible liquidity premia, arising from the potential impact of 

differential liquidity on prices. 

Errors in recording and reporting the data. 
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Errors arising from quoting, trading and reporting prices in discrete increments, 

rounded to the nearest tick. 

The use of end-of-day settlement prices in most of the existing studies, rniti- 

gates the first two sources of errors but, the existence of the others remains a problem. 

The fact also that implied distributions essentially represent the solution to a rather 

complicated numerical problem, further increases the possibility of obtaining PDFs 

which, on the one hand, correspond to a solution of the mathematical problem but, 

on the other, may be 'financially' irrelevant to the situation under examination. 

The robustness of the ESE model, as well as any other methodology, can be 

tested by examining the sensitivity of the resulting RNDs in the presence of errors 3 

and 4. The methodology employed consists of two main steps: first, the recorded 

options prices are perturbed by a random quantity, and then implied PDFs are repeat- 

edly re-estimated from the 'artificial' options cross-sections. 

The first step aims to simulate errors 3 and 4 by perturbing the observed option 

prices by a random quantity between -1/2 and +1/2 a tick, independently generated 

with a continuous uniform distribution. For every trading day a set of 100 'obser- 

vationally equivalent' options cross-sections are produced. The magnitude of the 

perturbation was chosen so that it reflected the possible measurement error, espe- 

cially error 4 42 
. 

The size of the tick for the Eurodollar option under examination is 

42 The fact that the same magnitude of perturbations is used across strike prices may raise concerns 
as the disturbances could potentially be large changes for the lowest-priced options and rather small 
changes for the largest-priced options. An alternative would be to use a moneyness based weighting 
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1/4 basis points or 0.25%, whereas the size of the tick for the WTI option contract is 

$0.01. 

The second step included the estimation of implied PDFs from the artificially 

produced options cross-sections, using the ESE and the MLN methods. 

As it is literally impossible to examine the stability of the actual PDFs, the 

stability of their descriptive statistics could be assessed instead. An extended set 

of what is referred to as 'a standard set of results' by Melick (1999) is considered, 

which also included the skewness and the kurtosis coefficients. The full set included 

the computation of the following descriptive statistics for the implied PDFs: 

&: The standard deviation or the second central moment of the distribution. 

Sk : The skewness coefficient defined as the third central moment normalized 

by the cube of the standard deviation. 

-3 
Sk =&3 

Kurt : The kurtosis coefficient, defined as the fourth central moment 

normalized by the square of the variance 

7ý0 
Kurt = &4 

scheme for the perturbations. Although the study acknowledges that large disturbances in option 
prices would affect lowest-priced options more, this choice is driven by two facts. Firstly, an option, 
for example, on the Wrl futures with recorded settlement price of $1.81 is 'observationally equivalent' 
to any option that is worth any price within the range $1.805 and $1.8149. Secondly, both calls and 
puts are used in the estimation of the implied PDFs from Equation 6.10. In-the-money contracts are 
bound to contribute more in the Sum of Squares, thus, minirrUsing any potential distortions arising 
from using disturbances of the same magnitude. 
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X,, : The percentilesXO05 , 
X01) X05 

7 
X10) X25) X50) X75 

7Xgo, X95, X99 and 

X995- X,, is the solution to the equation n= F(X), F been the cumulative 

density, using interpolation where necessary. 

The estimation procedure, as well as the computation of the statistics listed 

above, involves the use of numerical techniques, thus, increasing the possibility of 

suspect outliers. To further proceed with the analysis all values outside the range 

defined by the 0.5% and 99.5% percentiles of each of the daily distributions of the 

100 observations were excluded, thus placing 99% confidence in the results. In ad- 

dition, if a recovered distribution, within a daily series, resulted in at least one outlier 

summary statistic, it was excluded from the series. This process led to removing 

589 observations (9.7% of the sample) for the parameters recovered with the ESE 

method for the Eurodollar contracts, and 770 observations (12.6% of the sample) for 

the parameters recovered with the MLN method. For the WTI contracts the filtering 

process resulted in removing 294 observations (10.5% of the sample) for the para- 

meters recovered with the ESE method for the July options, and 287 observations 

(10.3% of the sample) for the parameters recovered with the MLN method. The 

respective numbers of observations removed from the December contracts were 296 

(9.9% of the sample) and 351 (11.7% of the sample). The fact that in general a larger 

number of outliers was removed from the estimates produced with the MLN method, 

indicates a relatively high dispersion in the sample of the estimates. 
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The robustness of the ESE and the MLN estimation techniques was then as- 

sessed in tenns of the: 

Stability of the convergence to the original solution 

This refers to the ability of the model to estimate, on average PDFs whose 

summary statistics converge to the respective statistics, calculated from the original 

data. To quantify this, the Absolute Percentage Deviation (APD hereafter) measure 

was constructed, which is given by the following equation: 

APDz, t = 
Zunperturbed, t - 

Yperturbed, 
t (6.11) Zunperturbed, 

t 

Equation (6.11) expresses the discrepancy between the summary statistic Z, at date tI 

as computed from the implied PDF of the unperturbed data, and the trimmed mean of 

the respective statistic taken over the 100 observations resulting from the perturbed 

option prices also at date t, as a percentage ofZperturbed, t. This measure is less sensi- 

tive to the presence of outliers, as 0.5% on each side of the distributionOf Zperturbed, 
t 

is excluded. 

Since the objective is to measure the magnitude of this deviation, the absolute 

operator was considered. 

Stability at the solution 

The objective is to examine the stability of the estimates themselves, by exam- 

ining the dispersion of a particular statistic within a daily series. Typical measures 
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of dispersion (i. e. the standard deviation), are expressed in terms of units of the vari- 

ate, thus, making it difficult to compare dispersions in different populations. To 

overcome this deficit, the Karl Pearson's coefficient of variation, defined by 

CV 
= 

where & is the standard deviation of the population and pi is the first centralized 

moment, was used. To account for potential biases due to outliers in the sample, & 

was replaced with a less sensitive dispersion measure, namely the Pearson and Tukey 

(1965) robust measure of dispersion, defined by 

X95 
- 

X05 

Q Orl 
U. 'r-ju 

and yl with the trimmed meanZperturbed, t 

The RCV (Robust Coefficient of Variation) is consequently defined by: 

RCVz, t = 
O'PT7 

f 

Zperturbed, 
t 

(6.12) 

The quantities apT_,,, and7perturbed, t now refer to the distribution of the summary 

statistics alone (100 observations per day). The RCV measures the dispersion of the 

estimated statistic and is free of any possible biases associated with the magnitude 

of the statistic under exarnination. By construction the lower the RCV, the less 

dispersed the calculated summary statistics are. The absolute is taken for reasons 

mentioned earlier in the text. 
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The measures defined by Equations (6.11) and (6.12) are expressed in percent- 

age terms and are free of any measurement unit. This provides great flexibility to 

the present analysis for two reasons: firstly, it allows to assess the perfonnance of the 

models, regardless of how close the summary statistics of the implied distributions 

are with the summary statistics of the 'market' distribution or, in other words, of how 

p well the assumed RND approximates the true 'IsM43 ; and secondly it makes it pos- 

sible to compare the summary statistics amongst themselves and identify those upon 

which we can place more confidence. 

It should be noted, however, that since there are no existing benchmarks for 

the above mentioned measures it is not possible to identify the methodology that 

performs well in absolute terms, or draw any conclusions on the significance of the 

impacts of possible model imperfections. The present analysis is mainly qualitative 

and aims to discover whether the ESE model performs better than the MLN model 

- which is a well acknowledged model in the RNDs literature - in terms of stability, 

and how confident, in general, we can be when using summary statistics calculated 

from these specific forms of implied PDFs- 

43 The investigation also included the calculation of the Sum of Squares as given by Equation (6.10) 
which yielded very similar errors. As the goodness of fit is not an issue examined in this chapter for 
economy of space these results are not reported. 
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6.4 Results and Discussion 

Tables 6.1,6.2 and 6.3 report average RCVs and average APDs for the sununary 

statistics &, Sk, Kurt and Xns of the implied distributions recovered from the July 

WTI, December WTI and the Eurodollar contracts, respectively. The general conclu- 

sion that can be drawn is that across the summary statistics the ESE method appears 

more stable than the MLN method, consistently leading to lower average APDs and 

lower average RCVs. Not only does the ESE method appear to 'recover' distrib- 

utions that are not greatly affected by the presence of measurement errors, leading 

to 'average' distributions close to the ones recovered with the original data but also 

distributions which, despite the presence of such errors, are very close to each other. 

The only exception is the A parameter for both WTI contracts which calculates sim- 

ilar - slightly worse - average RCVs and average APDs. The fact that two different 

data sets are used, suggests that the latter can be attributed to the properties of the 

model rather than to features of the data set used. On the other hand, respective sta- 

tistics appear with average APDs and RCVs of the same magnitude which, further, 

supports the former argument. 

To proceed with the analysis the results are divided in two subsets: one sub- 

set consists of the &, Sk, Kurt and the other of the X,, s. The reasoning behind 

this is that average APDs and RCVs for the first subset are, in general, of higher 

magnitude compared to those for the percentiles. 
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APD RCV 
M M 

Desciiptive ESE MLN ESE MLN 
Statistic 

& 0.300 0.463 0.33 0.71 
Sk 5.933 4.353 8.98 9.49 

Kurt 1.694 4.835 1.72 7.50 
X005 0.740 0.647 0.45 1.06 

A 
X01 

0.896 0.500 0.56 0.77 
X05 0.122 0.136 0.12 0.24 
X10 0.109 0.046 0.09 0.12 
X25 0.054 0.090 0.05 0.16 
X50 0.010 0.027 0.03 0.06 
X75 0.035 0.080 0.04 0.15 
X90 0.022 0.087 0.03 0.15 
X95 0.034 0.062 0.06 0.18 
X99 0.130 0.390 0.15 0.60 
X995 0.156 0.574 0.17 0.87 

No Obs. 2,506 2,513 

Table 6.1: Average APDs and RCVs of July WTI futures options implied PDFs 
summary statistics 

The skewness coefficient Sk proves to be by far the worst descriptive statistic 

in terms of stability. The ESE computed average APDs are 5.933%, 12.019%, and 

0.892% for the July WTI, the December WTI and the Eurodollar contracts. These 

figures are approximately 3.5,90 and 3 times higher when compared to the respec- 

tive figures calculated for the kurtosis coefficient. The MLN model computes the 

respective numbers as 4.353%, 9.529% and 14.505%, being approximately about the 

same magnitude as Kurt for the first two and about 6 times higher for the third. The 

dispersion of Sk is also disappointing as both models produce quite high RCVs for 

both data sets. 
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APD RCV 
M- (%) 

- Descriptive ESE MLN ESE MLN 
Statistic 

1 0.041 0.652 0.27 1.13 
Sk 12.019 9.529 30.98 19.99 

Kurt 0.131 8.841 1.22 10.51 
X005 0.042 1.244 0.30 1.66 
X01 0.047 0.913 0.36 1.30 
X05 0.013 0.168 0.11 0.35 

A 
X10 

0.009 0.083 0.07 0.14 
X25 0.006 0.137 0.04 0.24 
X50 0.004 0.042 0.03 0.17 
X75 0.004 10.209 0.03 6.91 
X90 0.005 0.138 0.03 0.22 
X95 0.008 0.089 0.06 0.18 

A 

X99 0.014 0.827 0.13 0.80 
X995 0.016 0.909 0.14 1.15 

No Obs. 2,704 2,649 

Table 6.2: Average APDs and RCVs of December WTI futures options implied 
PDFs summary statistics 

The kurtosis coefficient Kurt is the second worst descriptive statistic, as it 

proves to be fairly sensitive to measurement errors. The ESE computed average 

APDs of 1.694%, 0.131% and 0.310% for the July WTI, December WTI and Eu- 

rodollar contracts respectively. These values are approximately 2,3 and 2 times 

higher, when compared to the third worst statistics, the X01 for the WTI contracts 

and the & for the Eurdollar contracts respectively. The MLN model computes the 

respective numbers as 4.835%, 8.841% and 2.601% being approximately 7,7 and 4 

times higher than the third worst statistic, the koo5. The dispersion of KAýu-r-t also 
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APD RCV 
(%) M 

Descriptive ESE MLN -- ESE MLN 
Statistic 

0.133 0.272 0.35 0.70 
A 0.892 14.505 6.16 41.91 

Kurt 0.310 2.601 0.84 4.29 
X005 0.047 0.585 0.11 0.49 
X01 0.055 0.338 0.10 0.48 
X05 0.070 0.116 0.18 0.37 
X10 0.020 0.076 0.06 0.15 

A 

X25 0.005 0.049 0.02 0.10 
X50 0.003 0.024 0.01 0.06 
X75 0.006 0.035 0.02 0.08 
X90 0.009 0.043 0.02 0.07 
X95 0.012 0.054 0.04 0.12 
X99 0.037 0.136 0.12 0.28 
X995 0.049 0.192 0.15 0.38 

No Obs. 5,511 5,330 
- 

Table 6.3: Average APDs and RCVs of Eurodollar futures options implied PDFs 
summary statistics 

seems to be high for both models and data sets: the average RCVs are 1.72%, 1.22% 

and 0.84% for the ESE, and 7.50%, 10.51% and 4.29% for the MLN model, for the 

July WTI, December WTI and Eurodollar data sets respectively. In any case the 

ESE model produces implied PDFs which lead to stable Kurt compared to the MLN 

model, but little confidence can be placed in comparison to the statistics included in 

the complementary subset. 

The standard deviation & of the implied PDFs provided somehow mixed re- 

sults. While the APD and the RCV for the o, calculated with the ESE model for the 

July WTI and the December WTI contracts are quite low and comparable to those 



142 

computed for what are considered as relatively stable descriptive statistics (0.300%, 

0.041% and 0.33%, 0.27% respectively compared to 0.896%, 0.047% and 0.56%, 

0.36% for ý01), the case is not the same when the Eurodollar contracts are exam- 

ined. The respective APD and RCV are higher, 0.133% and 0.35%, and much 

higher than for any other statistic except for the A and the Kurt. The picture is 

not as mixed in the case of the MLN model which consistently computes APDs and 

RCVs that compare favourablytO X005 and Xo, and also the A and the Kurt co- 

efficients (except for one case). The average APDs and RCVs, however, for the o- 

of implied PDFs estimated with the ESE model are clearly lower than the respective 

ones of implied PDFs, estimated with the MLN model. 

The second subset of results examined includes the percentilesf(005 to ý(995 
Of 

the implied PDFs. Examination of the percentiles of the implied PDFs recovered 

with the ESE model suggests that they offer a reliable means for implied PDFs inter- 

pretation; the obtained APDs and RCVs for the two data sets are very sin-fflar for 

'ý95 and quite similar for percentiles outside this range, the range defined by ýk005 
to I 

thus, make convincing the argument that the results are not specific to the data set 

used. For the percentiles of the implied PDFs estimated with the MLN model, it 

also appears that the majority of them offer a greater degree of stability compared to 

the the other statistics examined, the two exceptions being the tail percentilesX005 

to X0, which seem to perform worse than the 93; the whole set of percentiles though 

offer far greater stability than the skewness and the kurtosis coefficients. The sta- 
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bility of the percentiles of the PDFs estimated with ESE model in general appears to 

be superior to that of the MLN model, the only exception being the APD calculated 

for X10 for the July WTI options. As far as the RCVs are concerned, there is no 

exception to object the superiofity of the ESE model. 

Overall, the analysis confinns existing evidence, presented in Cooper (1999) 

and Bliss and Panigirtzoglou (2000), that the skewness and the kurtosis summary 

statistics of a two log-normal distribution are strongly influenced by small distur- 

bances to option prices". Even though the influence is not that strong in the case 

of the ESE method, one should be very reluctant to use these summary statistics to 

study the behaviour of the implied PDFs. On the other hand, the percentiles seem 

to be a much safer means for implied PDFs' analysis and interpretation. Not only 

is there a great degree of stability of the convergence to the original solution, as ex- 

pressed by a low mean APD present, but also the dispersions around the means of the 

statistics' distributions are very low, irrespective of the model assumed. This com- 

plements existing evidence, reported in Campa, Chang and Reider (1998), Coutant, 

Jondeau and Rockinger (2001) and Melick (1999), that for certain regions repre- 

senting a large percentage of total probability (for example between X10 and X90) 

implied PDFs are relatively free of mathematical priors imposed by a specific eco- 

nomic model or structure, and highlight the fact that the stability of these regions is 

44 Cooper (1999), attributes the instability of the mixture-of-two log-normal distributions of options 
with less than three months to mature (as those examined in the current study), mainly to the existence 
of 'spikes' in the distribution. The 'spiked' distributions are recovered when the estimated variance 
of one of the two log-normal distributions falls to a very low level. 



144 

also relatively irrespective of the model used. The percentiles --YO05 
to k05 

and also 

X95 to X995 appear with higher average APDs and RCVs, still the ESE model pro- 

viding the lower ones. This also supports the argument of Melick (1999) that the tail 

percentiles are sensitive to the choice of the estimation technique (see for example in 

Tables 6.1,6.2 and 6.3 the rise in the APDs and the RCVs of both methodologies 

as we move further in the tails). 

6.5 Conclusions 

This chapter investigated the issue of the robustness of implied PDFs estimated with 

the ESE model developed in Chapter 4. An MLN probability model is used for 

comparative purposes following its dominance among parametric models and, also, 

due to the attention it has received in similar studies. 

Errors that may distort the implied RNDs and consequently affect the robust- 

ness of the estimation techniques were replicated with small random perturbations in 

observed option prices. Implied RNI)s were then re-estimated and their properties 

were summarised in a number of statistics. 

The results are highly supportive of the superior performance of the ESE model. 

The ESE model is found to be more stable than MLN; it is found more capable to 

estimate on average PDFs whose sunu-nary statistics converge to the original solu- 

tion; and also capable to estimate statistics with relatively low dispersion. It can, 

therefore, be said that the MLN method is more likely to be affected by errors in 
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recording and reporting the data, as well as by errors arising from quoting, trading 

and reporting prices in discrete increments, rounded to the nearest tick, than the ESE 

model. 

This chapter sheds also some light with regard to implied RNDs in general. 

Firstly, the analysis suggests that the skewness and kurtosis summary statistics of the 

implied PDFs should be used very moderately, if at all, as they are subject to large 

measurement errors. Secondly, the results provide strong evidence for the stability 

of alternative summary statistics such as the percentiles. Both models were found 

to perform reasonably well between the 10% and the 90% percentiles, much better 

compared to statistics refer-ring to the higher moments of the implied PDFs. The 

MLN failed to produce robust estimates outside this region, which implies that the 

model is more sensitive to the estimation of the tails of the PDFs than the ESE one. 

As a conclusion, the results suggest that one could generally rely on implied 

PDFs, but has to be very cautious with the statistics used to interpret the information 

embedded in option prices. 
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Chapter 7 
Inferring Investors' Risk Preferences by 

Means of Implied RNI)s 

The present study has thus far employed a number of tests to validate the use of 

the ESE model for the estimation of RNDs. The model has proved to be consistent 

with the market commentary and able to reflect the market conditions. It has also 

proved to be a superior model in terms of stability over the widely acknowledged 

MLN model. A natural step forward would, therefore, be to explore the uses of the 

ESE model. 

Implied RNI)s are used in financial practice to price illiquid, exotic or over- 

the-counter options consistently with exchange traded, vanilla options. On the other 

hand implied distributions are used extensively by traders and policy makers to quali- 

tatively assess market beliefs on future movements of various securities. This chapter 

illustrates an application where the information content of option prices, rather than 

qualitatively be assessed, is explicitly quantified. 

A fundamental principal of economic theory is employed: in the absence of 

arbitrage, all asset prices can be expressed as the expected value of the product of 

the pricing kernel (a preference function) and the asset payoff. It follows then that 

the pricing kernel, coupled with a probability model for the future states, gives a 

complete description of asset prices, expected returns and risk preferences. 



147 

This chapter solves the inverse of the equilibrium asset pricing problem to iden- 

tify preference parameters - given asset prices and a probability model for futures 

states what can be inferred about investors' risk preferences? 

Standard empirical approaches in this area are classified in two main categories: 

the studies that estimate consumption-based pricing kernels using a known paramet- 

ric form data on aggregate consumption; and the studies that use a proxy for con- 

sumption e. g. a stock market index, and estimate mainly a non-parametric return- 

based pricing kernel. A significant problem with the former approaches stems from 

the poor fit that consumption-based pricing kernels provide to financial market data 

(the 'asset pricing puzzle') at economically plausible preference parameters, Rosen- 

berg (2000). The latter approaches, on the contrary, avoid the use of aggregate con- 

sumption data or a parametric pricing kernel specification, thus allowing for more 

flexibility in the model's specification and consequently resulting in a rather better 

rationalisation of observed asset prices. 

The present study falls within the second class. Pricing kernels are derived as 

the state-price-per-unit probabilities; and risk preferences parameters are estimated 

on days with certain market conditions. 

The chapter is organised as follows: Section 7.1 demonstrates the theoretical 

framework and derives measures for investors' risk preferences. Section 7.2 reviews 

the existing literature. Section 7.3 is divided in Section 7.3.1 which describes the 

data set, and Sections 7.3.2 and 7.3.3 which present the methodologies used for the 
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estimation of the risk-neutral and the statistical densities respectively 

discusses the empirical results and Section 7.5 concludes. 

7.1 Theoretical Framework - Risk Aversion and 
Investors' Risk Preferences 

Risk Aversion 

Section 7.4 

The fundamental investment-selection problem for an individual is to determine the 

optimal allocation of his wealth among the available investment opportunities. Un- 

der the expected utility hypothesis each individual's consumption and investment de- 

cision is characterised as if he determines the probabilities of possible asset pay-offs, 

assigns an index to each possible consumption outcome, and chooses the consump- 

tion and investment policy to maximise the expected value of the index. 

To formally express this consider an economy with complete markets. This 

allows the existence of a 'composite' consumer who wishes to maximise a utility 

function of aggregate consumption [Constantinides (1982)]. The 'composite' con- 

sumer is endowed with wealth of I unit and has an investment horizon of T. The 

optimality of the competitive equilibrium leads to the formulation of the 'compos- 

ite' consumer's utility maximisation problem which is expressed by the following, 

Leland (1980): 

Maximise U (WT) p (W7, ) dWT 0,3 f +o0 
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subject to the budget constraint 

+ r)7 
oo 

+"o WT f (WT) dWT =I (7.2) 

where 

WT end-of -period wealth 

a von Neurnann-Morgenstern utility function 

pricing function at the initial time period for I unit of wealth delivered 

at the terminal time period, contingent on the value WT (known also as 

the State Price Density) 

investor's probability density function over terminal portfolio values 

risk-free interest rate 

T time until the end of the investment horizon 

The model defined by Equations (7.1) and (7.2) simply seeks the allocation 

schedule of the 'composite' consumer's wealth that maximises his expected utility 

subject to the budget constrained. 

The solution to (7.1) is straightforward. For every level of end-of-period 

wealth WT: 

U, (WT) 
=Af 

(WT) 
(7.3) 

(I +p (WT) 

where A is the Lagrange multiplier for the budget constraint (7.2)". 

45 The ratio f (WT) is equivalent to the pricing kernel variable Mt+l in Equation (8-1.3) Campbell et P(WT) 
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Consider now an investor with the above mentioned characteristics who wishes 

to allocate his wealth among a risky asset (the market portfolio) and a riskless secu- 

rity. Merton (1990) suggests that the equilibrium expected return on the risky asset 

exceeds the return on the riskless security; the best investment strategy would there- 

fore be to invest all of the investor's wealth in the risky asset. Thus, if S is the risky 

asset the following relation has to hold in equilibrium: 

U, (ST) Af (ST) 

+ r)t p (ST) (7.4) 

For the purpose of the present study a measure to quantify investors' risk aver- 

sion is sought. A possible candidate would be to calculate the rate of change of 

U'(ST), i. e., U"(ST). Arrow (1970) discussed the disadvantages of this measure 

and proposed two measures based on U" (ST) which he modified to remain invariant 

under positive linear transformations of the utility function. Arrow's measures" for 

risk aversion are given by the following equations: 

Uli (ST) 
R, 4 = -. Ul(ST) absolute risk aversion (7.5) 

and 

RR = -ST 
u 11(ST) 

U, (ST) relative risk aversion (7.6) 

al. (1997), p. 294, also reffered to as the stochastic discountfactor. 
46 Also developed independently by Pratt (1964). The measures are usually reffered to as Arrow- 
Pratt's risk aversion measures. 
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Differentiating (7.4), 

U// (ST) AfI (ST) P (ST) 
- P/ (ST) f (ST) 

+ r)T ý (ST)II 

Equations (7.5) and (7.6) can be rewritten as: 

RA P, (ST) f, (ST) 

(7.7) 
P (ST) f (ST) 

and 

RR ST P, (ST) f, (ST) 
(7.8) 

(P 

(ST) f (ST) 

) 

which express the risk aversion parameters as functions of the state-price or risk- 

neutral density f (-) and the statistical density p (. ). 

7.1.2 Risk Preferences 

The majority of the studies reviewed in Section 7.2 share a methodological assump- 

tion which is rather arbitrary, thus, exposing the interpretation of the empirical find- 

ings to potential criticism. Motivated by the work of Breeden and Litzenberger 

(1978) - who first showed that given a set of options on aggregate consumption dense 

in the set of possible strike prices, a state-price density could be calculated - existing 

studies assume that a security index adequately proxies for aggregate consumption 

and they use options on a stock market index to derive the state-price density and con- 

sequently risk aversion functions. The S&P 500, used in all but one of the studies, 

represents roughly the 50% of public US equity capital and may raise objections as 

to whether it serves as a suitable proxy. In a sense, deriving risk aversion parameters 
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in this fashion and interpreting them as representative for the 'composite' investor 

is somewhat similar to, for example, deriving implied distributions from S&P 500 

options and using them to price options written on any other traded security. 

None of the existing studies has discussed this issue. Developing however a 

theoretical framework within which the above matter is fully resolved is far beyond 

the scope of this study. We, therefore, decided to draw my attention on the interpreta- 

tion of the risk aversion functions and tried to improve our insight on the parameters 

calculated by Equations (7.7) and (7.8). 

The methodology used in this article derives a state-price density from asset re- 

turns and options written on that asset which obviously do not represent the space of 

all traded securities but a subset defined by the asset under examination - Eurodollar 

and WTI futures in the present study. As a consequence the state-price density essen- 

tially corresponds to an empirical projection of the general state-price density onto 

the space defined by the assets' pay-offs. This simply means that the state-price den- 

sity estimated from Eurodollar and WTI futures options - or options on stock market 

indices - is particular to that market and should not be used to price all securities but a 

subset of securities with pay-offs contingent on the value of the Eurodollar and WTI 

futures contracts respectively. Equivalently, the estimated risk aversion should not 

be viewed as the individual's risk aversion related to the preferences over aggregate 

consumption. 



153 

This chapter, therefore, estimates an empirical projection of the general risk 

aversion onto the space defined by the Eurodollar and WTI futures pay-offs. While 

investors' preferences over aggregate general consumption are not estimated, mea- 

sures or indicators of investors' preferences over the aggregate consumption of the 

good under discussion are. With these theoretical considerations, Equations (7.7) 

and (7.8) are redefined as: 

RAI'It P, (ST) f, (ST) 

absolute risk preferences (7.9) 
P (ST) f (ST) 

and 

RRPR 
-`ý 

ST P, (ST) fI (ST) 

relative risk preferences (7.10) 
(P 

(ST) f (ST) 

) 

7.2 Literature Review 

Several approaches have so far been proposed for the estimation of Equations (7.9) 

and (7.10). The standard setting assumes a parametric or a non-parametric form 

for f (. ) and estimates are produced using options cross-sections. Alternatively a 

stochastic process is assumed and its parameters are estimated using contemporane- 

ous option prices. To derive p () similar procedures are usually employed and the 

parameters of the distribution assumed or the parameters of the stochastic process 

considered are estimated using historical asset returns data. 

To the authors' knowledge Jackwerth (2000) was the first author who derived 

risk aversion functions from options prices and realised asset returns. He used a 
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modified version of the method developed in Jackwerth and Rubinstein (1996) to 

derive the risk neutral probability distribution and a Gaussian kernel density to cal- 

culate the subjective probability distribution of the S&P 500. Using a methodology 

similar to the one presented in Section 7.1.1 he calculated the average absolute risk 

aversion functions across wealth pre- and post- '87 crash. The findings of the study 

post-crash were not consistent with the assumptions of the model used. Several rea- 

sons that could have caused this inconsistency were examined and mostly ruled out. 

The inconsistency was attributed to mispricing of options in the market and that hy- 

pothesis was also confirmed on empirical grounds. 

Ait-Sahaha and Lo (2000) also studied empirical risk aversion functions within 

a similar framework. They estimated the implied density non-parametric ally. The 

statistical density was also estimated non-parametric ally and risk aversion functions 

were calculated for the study period, in a fashion similar to Jackwerth (2000). Even 

though the implied risk aversion was found positive across wealth levels, Jackwerth 

(2000) replicated the study and claimed that the results were very sensitive to the 

model's assumptions, i. e. the bandwidth in the kernel estimation and the use of over- 

lapping vs. non-overlapping returns in the estimation of the statistical density. 

Rosenberg and Engle (2000) rather than estimating average risk aversion func- 

tions allowed for time variance to account for the cases when risk aversion could 

deviate from its average. This seems a more rational approach and can be substan- 

tiated with many arguments the main one being the expected variation of investors I 
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risk attitude under different states of economy: an individual is not expected to de- 

mand the same amount of compensation for a certain type of risk under economy 

expansions and recessions. The study used a stochastic volatility model - an asym- 

metric GARCH specification - to estimate the parameters of a pricing kernel that 

rationalised a cross-section of contemporaneous option prices. Two pricing kernel 

specifications were considered: a power function pricing kernel and a kernel defined 

by the exponential of an orthogonal polynomial expansion. Jackwerth (2000) ar- 

gued that the shapes of the implied distributions were very close to a log-normal 

specification and the methodology as a whole bore the risk of not matching options I 

cross-sections very well. 

Finally, Coutant (2000), estimated time-varying risk aversion functions using 

a semi-parametric form for the implied density and a GARCH specification - which 

accounted for asymmetric effects - for the estimation of the statistical density. The 

model was applied with data on the CAC 40 and risk aversion functions were esti- 

mated. None of the patterns found in Jackwerth (2000) and Rosenberg and Engle 

(2000) were present in Coutant. (2000). What also raises some questions in the study 

is the inconsistency between the specifications of the implied density - which was 

assumed to be of a semi-parametric form - and the statistical density which was as- 

surned to be the 'result' of a stochastic volatility process (see discussion in Section 

7.3.3). 
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7.3 Data and Estimation 

7.3.1 Data 

The analysis is carried out on a subset of the data set described in Chapter 4. Addi- 

tional data were collected for the underlying Eurodollar futures and the WTI futures 

contracts. 

The Eurodollar futures complementary data consist of daily observations of 

the Eurodollar futures settlement pfice for the period September 1,1994 through to 

November 30,1998 for the December 1998 contract. Additional data for the WTI 

futures were also collected for the period September 16,1994 to November 16,1998 

daily for the near month and the 2nd near month forward contract. In both cases the 

data were obtained from Datastream. 

Following the suggestion of Jackwerth (2000) the analysis was focused on the 

centre of the distributions. Therefore options with moneyness (strike price / index 

asset level) between 0.84 and 1.12 - where relative errors are expected to be lower - 

were considered. This is also justified by the findings of Chapter 6. For certain re- 

gions representing a large percentage of total probability (for example between the 

10th and the 90th percentile), implied RNDs are relatively free of mathematical pri- 

ors imposed by a specific economic model or structure, and highlight the fact that 

the stability of the implied densities in these regions is also relatively irrespective 

of the model used. Thus, any differences in the shape of the risk preferences mea- 
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sures among alternative model specifications should not be attributed to the different 

specifications of the models. 

7.3.2 Estimation of the Risk-Neutral Density 

The implied RNDs are derived with an ESE model. The derivation of implied RNDs 

with the ESE model is thoroughly described in Chapter 4. For ease of reference, 

however, a number of key points are demonstrated below. 

The ESE specification assumes the following analytic representation for the 

RND: 

(ST) = a(ST) - 
(K3(F) - 1<ý3(A» d3 a(ST) 

+ 
(K4 (F) 

- N4(A» d4 a(ST) 
d S73,4! d S74, 

In Equation (7.11) a (ST) is the log-nonnal density defined by 

a (ST) exp 
I (log ST_, 1)2 

STa V2ý2-71F 2 Or VT'T 

with mean 

A= log St _ U2 12-r 

and variance 

cr2 = 

where St is the current price of the underlying futures (time t), ST is the price of 

the underlying futures upon maturity of the option, r (= T- t) is the time between 

now and the expiry date of the option, and a the expected volatility of the returns of 

underlying futures contract. 
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Following the argument of Ross (1976) and Cox and Ross (1976) the value of 

an option in a market that offers no arbitrage possibilities can be expressed with the 

following: 
00 

Vj g(ST)f (ST) dST 

-00 
where g(ST) is the pay-off function of the option and f (ST) the distribution of asset 

prices at the end of any interval between t and T. 

The above framework results in the following option pricing formulae 

CF(K) :: -- CA(K) - e-" 
(r�3 (F) - K3(A» da (K) 1 

3! dK 

(N4(F)- 
1ý*. 4(A)) d'a(K) 

4! dK2 
.1 

(7.12) 

PF (K) ý PA (K) - e-" 
(r1,3(F)- K3(A» da (K) 1 

3! dK 

(64(F)- 
N, 4(A)) d'a(K) 

4! dK2 
.1 

(7.13) 

In Equations (7.12) and (7.13) 

CA(K) = e-" [StN(di) - KN(d2)] 

PA(K) = e-rT [KN(-d2)- StN(-di)] 

log 
(S t+0,2 

di -K-2 
d2 = di - avýT 

17N/T 

and 

cumulative standard normal 
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Recalling the analysis in Chapter 4 (pp. 69-73) an American style option can be 

expressed as a weighted sum of the following bounds: 

C (K) Et [max f 0, ST- Kj] 

C(K) = max f Et [ST] - K, e-"Et [max f 0, ST - Kj] I 

where ýý(K) and C(K) are the upper and lower bounds for a call option and 

P(K) Et [max f 0, K- STI] 

P(K) = max fK- Et [ST], e-"Et [max 10, K- STI] I 

and T(K) and P(K) are the upper and lower bounds for a put option. The expecta- 

tions in the above are taken with respect to the distribution the terminal asset price is 

assumed to be drawn from. 

Weighting the upper and lower bounds the values of call and put options are 

expressed as 

C (K) wit (K; i) + (I - wit) C (K; ý)+ 6C(K) 

P (K) wit 75 (K; + (I - wit) (K; ý)+ ý6P(K) 

where 
i if IcaH and K<St 

put and K> St 

2 otherwise 
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Implied RNI)s are then recovered by minimising the sum squared errors 

min 
EI [COBS (Ki) - C(Ki)] 2+ [POBS(Ki) 

_ p(K i 
Ki 

subject to 

Et [ST] =- St 

and 

f(ST) >0 \V ST7 STE [0700) 

1f (ST) =1 

where St is the current price of the underlying futures contract. 

7.3.3 Estimation of the Statistical Density 

In order to estimate the investor's probability density function over terminal portfo- 

lio values historical time series of the underlying securities are used. To maintain 

consistency with the considerations of existing studies a 4-year frame is selected as 

in Jackwerth (2000). 

One approach to density estimation is non-parametric" which allows the es- 

timated density to accommodate rather flexible shapes. Alternatively parametric 

estimation techniques can be used in which the terminal asset price is assumed to be 

drawn from one of a known parametric family of distributions e. g. the log-normal 

family. The present study employs a technique which falls somewhere in the mid- 

11 See Silverman (1986) for a review of non-parametric density estimation techniques. 
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dle. The terminal statistical distribution p(. ) is assumed to be well approximated by 

an ESE specification similar to the one described by (7.11), thus, allowing for flexible 

distributional patterns. The functional forin of p(. ) under the same considerations of 

Section 7.3.2 and Chapter 4, Section 4.2.1, is given by: 

AST) 
= g(ST) 

(P) - t'ý3 (G)) d 3g (ST) (1ý*, 
4(P) - K, 4(G)) d4g (ST) 

(7.17) 
3! dST3 4! dST4 

where g (-) is a log-normal distribution with mean p and variance U2 . The density 

is then estimated by finding estimates of the parameters of Equation (7.17) from 

the underlying futures returns time series. 

The methodology used to derive estimates for the parameters of Equation (7.17) 

is similar to the one presented in Jarrow and Rudd (1983). The methodology exploits 

two properties inherent in the model specification defined in (7.17): 

e the cumulants of the approximating log-normal distribution g(-) are simple 

functions of the instantaneous standard deviation of the underlying asset 

retums time senes 

9 the cumulants of the true distribution p(. ) are simple functions of its empirical 

moments 

To fully specify the parametric form of the statistical density we proceed in the 

following way. 
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Firstly, the instantaneous standard deviation, a, of the underlying asset returns 

is estimated. a is estimated as the sample standard deviation of the previous forty- 

five days of logaiithmic returns. The standard deviation of these returns is the instan- 

taneous standard deviation, a, of the underlying security which is used in the BSM 

formula. This is essentially the standard deviation of the log-normal distribution 

around which the expansion is taken. 

The cumulants of the log-normal distribution are then obtained as simple func- 

tions of the instantaneous standard deviation [see Jarrow and Rudd (1982)]. 

The cumulants of the underlying asset need then be calculated. These, as 

already mentioned being functions of the moments of order 3 and 4 of the actual 

retums distribution, are calculated from the skewness and the kurtosis coefficients of 

the actual distribution of the logarithmic retums. 

Having specified the parameters of Equation 7.17 it is possible to calculate 

the statistical density. Jackwerth (2000), measures the actual distribution with a 

historical mean and assumes a risk premium of 8% to make it comparable to the risk 

neutral probability distribution. The present study does not directly assume a risk 

premium. To account for the fact, however, that the mean of the statistical density 

can be rather different from the mean of the future period associated with the RND, 

the current futures price is used as the mean of the statistical density. Although this 

choice may seem somewhat arbitrary, Jackwerth (2000) suggests that a risk premium 



163 

in the interval where most economists would expect it to lie over the long run (5-10% 

per year) is not expected to differentiate the results qualitatively. 

The approach described in this section does not make use of any sophisticated 

econometric or statistical algorithm to derive the statistical density, thus being subject 

to potential criticisms for not being accurate enough. Two main reasons, however, 

justify the use of the former estimation procedure. Firstly, the assumption regarding 

the semi-parametric form of the density does not place any structure on the stochastic 

process of the underlying asset - it is well known that a stochastic process is consis- 

tent with one probability distribution whereas a probability distribution is consistent 

with more than one stochastic processes - thus allowing the dynamics of the econ- 

omy to evolve without restrictions. Secondly, the methodology followed serves as 

the exact equivalent to deriving a density from its implied moments - the 'aggre- 

gate' investor described in Section 7.1.1 derives his equilibrium asset prices using an 

ESE distributional assumption, subject to a budget constraint which uses state-price 

densities of the same semi-parametric form. 

7.4 Results and Discussion 

The present study considers an investor with investment horizons of one and two 

months. The dates considered for the Eurodollar market are: October 15,1998 

two months before the expiration of the December Eurodollar futures options, on the 

day of federal funds rate cut by 25 basis points; and November 16,1998 one month 
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before expiration of the options contract, one day prior to the scheduled meeting of 

the FOMC, where the rate was also lowered by 25 basis points. The dates considered 

for the WTI market are: September 16,1998 and October 16,1998 two months 

and one month before the December 1998 options contracts' expiration. Autumn 

'98 was a period of great uncertainty for oil prices. Prices declined, mainly due to 

increasing supplies, since non-OPEC members were not willing to comply with the 

organization pumping limits. In addition, Venezuela, one of the major oil exporting 

countries, announced that the previously decided exploration cuts would cease to 

apply. The International Monetary Fund (IMF) lowered its predictions for oil prices 

for the current - and the following - year and the American Petroleum Institute (API) 

reported a surge in US crude oil stocks. 

Figures 7.1 and 7.2 plot the absolute risk preferences functions given by Equa- 

tion (7.9) 48 for an individual with one and two months investment horizons and relate 

them to the market conditions of the time. For reasons already mentioned a range of 

±2.5 standard deviations around the mean of the implied distributions is plotted. 

Figures 7.1 and 7.2 plot risk preferences function across wealth. Within the 

framework of the present study the terminal wealth is defined as STISt. In this 

setting an expected wealth level >1 is associated with expectations of the value of 

the risky asset ending in equal or higher levels compared to the present level at the 

end of the investment horizon and vice versa for wealth level < 1. 

48 These results are reported for economy of space. It is almost certain results from Equation 7.10 
would have stimulated discussion along the same lines. 
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Figure 7.1: Absolute Risk Preferences functions across wealth for the WTI market 
calculated on September 16 and October 16,1998 

The patterns in Figures 7.1 and 7.2 are very similar to those presented in Jack- 

werth (2000) and also confirmed by Rosenberg and Engle (2000), for a data set on 

the S&P 500 index. 

A region of negative risk aversion is found approximately over the range -10% 

to 3% for the two-months investment horizon which extends in the range between 

-6% to -I% and also from around 6% onwards for the one-month investment horizon 

in the case of the Eurodollar market. The pattern is fairly similar for the WTI market 

but shifted to lower levels of wealth (approximately between -25% and -15% and 
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Figure 7.2: Absolute Risk Preferences functions across wealth for the Eurodollar 
market calculated on October 15 and November 16,1998 

from about 5% onwards) for the one-month investment horizon. For investment 

horizon of two months the graph was shifted to further lower levels of wealth (up to 

roughly -10%). 

In all but one of the cases (the case of two-months investment horizon for the 

Eurodollar market) a globally decreasing relationship between risk preferences and 

wealth is found. This is consistent with economic theory, in contrast to the respective 

findings of Jackwerth (2000). 

The results also relate to the market conditions. 
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For a large region of wealth levels - between approximately 0.98 and 1.1 - for 

the Eurodollar market, the absolute risk preferences for the one-month investment 

horizon are higher than those for the two-months investment horizon. This means 

that for the same level of wealth investors are willing to decrease the amount of risky 

asset held. On the other hand, risk preferences in the negative returns region up 

to roughly -9%, are at a lower level for the one-month investment horizon revealing 

that investors would require less compensation to bet against a market fall. These 

results confirm the findings of Melick (1999) who reported that '... The latter [interest 

rate cut of October 15] came as a great surprise to financial market participants' and 

also relate to the findings of Chapter 5. It seems however that the case was not the 

same for the cut that occurred on November 17 as the degree of risk aversion across 

wealth levels in the same region is shifted higher compared to the one corresponding 

to October 15. 

For the WTI market the picture is somewhat the inverse. Iraq's confrontation 

with the UN arms inspectors in November 98, and the forecast for a cold northern 

winter on the other hand, gave rise to speculation for higher oil prices. This is 

reflected in the risk preference functions plotted in Figure 7.1. For wealth levels 

greater to 1, and for the same levels of wealth, the investor shows lower level of risk 

aversion in the case of 1 -month investment horizon than in the case of 2-months. This 

is interpreted as a willingness to hold the risky asset, an indication that he expects 

the market to rise. The shape of the risk aversion preferences for negative returns 
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Figure 7.3: Absolute Risk Preferences functions across wealth for the WTI market 
calculated on September 9 and October 9,1998 

is almost identical. For the region, however, below -20% returns it seems that an 

investor with a two-month horizon would require less compensation (as he expects 

a market decline) compared to the compensation that an investor with an one-month 

investor horizon would require, the latter expressed as higher risk aversion for the 

same levels of wealth. This probably reflects his expectation for a market rise. 

To examine whether the imputed risk preferences are stable Equation (7.9) is 

calculated for one additional set of dates for each asset. The days considered cor- 

respond to days one week prior to the respective ones plotted in Figures 7.1 and 
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Figure 7.4: Absolute Risk Preferences functions across wealth for the Eurodollar 
market calculated on October 8 and November 9,1998 

7.2. Risk preferences for September 9 and October 9,1998 for the WTI contract are 

shown in Figure 7.3 and for October 8 and November 9,1998 for the Eurodollar con- 

tract are plotted in Figure 7.4. While the shapes of the risk preference functions are 

not identical, similar patterns persist. The shape of the functions are more intense in 

Figures 7.1 and 7.2, a rather expected feature as implied PDFs generally tend to be 

more leptokurtic when the time to maturity decreases (see also Figures 4.3 - 4.6 in 

Chapter 4 for the evolution of the respective PDFs). 
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Although the results presented above are somewhat encouraging and rather 

consistent with the market conditions, there are issues that require further attention. 

The risk preference function calculated by Equation 7.9 is the vertical distance of two 

downward sloping parametric functions - 
"(S') and f'(SI). It follows then that risk AST) f (ST) 

preferences depend, not only on the parametric form assumed for the risk-neutral 

and the statistical densities, but also, on their relative position on the wealth axis. 

One immediate question that could, therefore, be posed is what confidence can be 

placed in attributing all of the deviation of the shape of the conditional distribution, 

from the unconditional distribution, to risk preferences. To the extent that both the 

risk neutral and the statistical densities are well approximated with the parametric 

forms presented in Sections 7.3.2 and 7.3.3 respectively the only obvious additional 

component of the risk preferences seem to be some part of the risk premium not 

correctly taken into account in the calculations in Section 7.3.3. It seems however 

that, as in Jackwerth (2000), a reasonably higher or lower risk premium than the 

one indirectly assumed in the study, would not dramatically change the shape of 

the risk preference function, although it would cause small upward or downward 

shifts respectively in Figures 7.1 - 7.4. The most serious concern though arises 

from the fact that the risk preferences plotted in the above figures are not consistent 

with economic theory in the entire wealth domain. If the assumptions with the 

representative investor presented in Section 7.1.1 hold true and more specifically 

if U (. ) is concave - U" (. ) <0- and state-independent, given also that U (. ) is 
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increasing - U' (-) <0- since investors prefer more wealth to less, RA in Equation 

7.5 should not result in negative values under any circumstances. The findings of 

the present study suggest that one or even more of the underlying assumptions are 

violated in practice. Jackwerth (2000) suggests that the most likely explanation for 

similar patterns in his study is mispricing of options in the market but we would 

be very reluctant to accept that the mispricing persisted in the entire period that he 

studied - traders would have exploited any such opportunities. While empirically 

or theoretically examining the causes of the violations is beyond the scope of the 

present study we believe that future work should concentrate on examining whether 

is indeed state-independent, a hypothesis also mentioned in Jackwerth (2000), 

and under what conditions its curvature can change sign. 

7.5 Conclusions 

This chapter illustrates an application where the information content of option prices, 

rather than qualitatively be assessed, is explicitly quantified. 

The inverse of the equilibrium asset pricing problem is solved to identify pref- 

erence parameters - given asset prices and a probability modelforfutures states what 

can be inferred about investors' risk preferences? 

The estimated risk preferences functions were found consistent with existing 

empirical evidence. The risk preferences functions were also examined and found 

consistent with the market conditions of the study period. 
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Even though most of the results were encouraging we are left puzzled with two 

features of the risk preference functions: the inconsistency in the monotony; and the 

negative values in certain regions of wealth levels. While Jackwerth (2000) ruled 

out several reasons that could cause the latter and concluded that the most obvious 

reason was options mispricing, future research should examine this more deeply. 
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Chapter 8 
Thesis Scope, Findings and Contribution, 

Extensions, and General Discussion 

In concluding the thesis a number of general issues should be addressed. This 

final chapter summarizes the finding of the preceding analysis and presents some 

ideas for future research. It also addresses some limitations that may arise in the 

estimation and the interpretation of RNDs in the set-up of the present study and, 

finally, identifies the type of applications for which the use of RNDs is, if not the 

only, the best tool at hand. 

8.1 Thesis Scope and Findings 

The scope of the thesis is: 

e to develop a technique for the estimation of implied RNDs which can 

incorporate the characteristics of modem financial markets 

* to develop realistic and economically sensible tests for the validation of 

implied RNDs and implied RNDs estimation techniques - on qualitative as 

well as quantitative grounds - and perform them with that technique 

* to present an empirical use of implied RNDs and illustrate it with the use of 

that technique 
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Along these lines Chapter 4 develops the general theoretical framework and 

the numerical algorithm for the estimation of implied risk-neutral densities of the 

ESE type from options prices. The ESE type parameterisation provides a method 

for finding a series expansion of a non-Gaussian probability distribution of which 

kind the empirical distribution of asset log-returns has been found to be. The most 

important features of the ESE probability specification that prove extremely useful in 

empirical applications and make it an appealing parameterisation are: 

* the ability to select from a broad range of reference distributions provides 

flexibility in finding one that closely approaches the distribution to be 

approximated. 

e by construction the coefficients in the expansion are simple functions of the 

moments of the given and the approximating distributions. As a result the 

parameters that define the PDF have a physical meaning as opposed to being 

abstract mathematical quantities as in the case of other parametric families 

of distributions i. e. the parameters that define a mixture of k log-normal 

distribution or a Pearson type density. 

The technique is applicable to European options written on a generalized asset 

that pays dividends in continuous time or American futures options. 

Chapters 5 and 6 develop realistic and economically sensible tests for the vali- 

dation of implied RNDs and implied RNDs estimation techniques - on qualitative as 
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well as quantitative grounds - and apply them to assess the performance of the ESE 

model. 

In Chapter 5 the information conveyed by the implied probability distributions, 

recovered by the ESE method is 'compared' with the market conditions at the time 

to ensure that the model is able to capture the general market sentiment and also 

able to incorporate isolated events causing a significant impact on the market. In 

addition, the model's explanatory ability is tested against that of the corresponding 

nested single log-nonnal to check whether it offers a statistically significant better 

fit to observed option prices. Implied RNDs of the ESE type are found to able to 

capture the general market sentiment as well as able to incorporate isolated events 

with a significant impact on the market. In addition the ESE model is found to offer 

a statistically significant better fit to observed option prices and can, therefore, be 

considered a superior means - compared to the log-normal BSM parameterisation - 

of extracting information implied in option prices. 

To examine the 'goodness' of the ESE methodology on a more quantitative ba- 

sis, Chapter 6 addresses the issue of the robustness of implied RNDs in the presence 

of measurement errors. Observed option prices, which are used as inputs in the es- 

timation, are subject to various errors; and, as a consequence, deviations from what 

one would expect to obtain under the models' assumptions, are present. It is natural 

then that the effect of these measurement errors is also examined and the robustness 

of RNDs estimation techniques or the degree of confidence that can be placed on 
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the summary statistics calculated off the implied RNDs is investigated. Errors that 

may distort the implied RNDs and consequently affect the robustness of the estima- 

tion techniques are replicated with small random perturbations in observed option 

prices. Implied RNI)s are then re-estimated and their properties are summarized in a 

number of summary statistics. The results are highly supportive of the superior per- 

formance of the ESE model which is found to be more stable than the mixture of two 

log-normals specification; it is found more capable of estimating on average densi- 

ties whose summary statistics converge to the original solution; and also capable of 

estimating statistics with relatively low dispersion. 

Finally, Chapter 7 illustrates an application where the information content of 

option prices, rather than qualitatively be assessed - by 'reading' implied RNDs' 

graphs, is explicitly quantified. A fundamental principal of economic theory is em- 

ployed: in the absence of arbitrage, all asset prices can be expressed as the expected 

value of the product of the pricing kernel (a preference function) and the asset pay- 

- _rr off. It follows then that, the pricing kernel, coupled with a probability model for the 

future states, gives a complete description of asset prices, expected returns and risk 

preferences. This chapter solves the inverse of the equilibrium asset pricing model 

to identify the preference parameters - given asset prices and a probability modelfor 

futures states what can be inferred about investors' risk preferences? Using the ESE 

probability model this chapter derives risk aversion functions and compares them 

with the market conditions of the study period. The estimated risk aversion func- 
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tions are found consistent with existing empirical evidence and consistent with the 

market conditions of the study period. 

8.2 Extensions 

Throughout the development of the model and the subsequent empirical analysis we 

have identified a few points that may raise some criticisms. We have also identified 

a number of potential extensions which can - to some degree - complement the study 

and consequently shed some light on issues not covered herein 

Chapter 4 

* In the development of the functional form of the RND the generalized ESE 

density given by Equation (4.7) p. 64 is truncated to the term of order 

4 following the suggestions of existing studies. It may be the case that 

convergence of the series is attained - as suggested in Schleher (1977) - by 

including error terms one beyond the highest order matching cumulant which 

in my set-up is the second. On the other hand more terms may be needed in 

certain applications to allow the series to converge. 

* While the consideration of a log-normal reference distribution is standard 

practice the use of other parameterisation i. e. mixture of two log-non-nal 

distributions, gamma distribution etc. may prove more effective. 
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* Imposing the constraints of the approximating density being positive and 

integrating to one in the optimization can make the interpretation of changes in 

RNDs more difficult, depending on whether these constraints become binding. 

This can be seen as a disadvantage. The alternative, though, to imposing 

the constraints would imply that no reliable statistics could be estimated 

off that distribution - when the density becomes negative and/or does not 

integrate to unity. The fact that an implied distribution estimated with the ESE 

methodology can take on negative values or not integrate to unity could be due 

in some circumstances solely to mathematical reasons. While imposing the 

constraints can be an advantageous practice, further investigation of this issue 

open to future research. 

* While visual evidence is presented in Section 4.2.5 to demonstrate the 

importance of imposing the constraints, a statistical test of the importance of 

these constraints is not performed. To our knowledge such a test does not 

exist. Perhaps a formal econometric test can be constructed by comparing for 

example option pricing errors when the constraints are imposed and when they 

are not. 

Chapter 5 

9 Even though the model is found to be able to incorporate changes of the 

market conditions the study does not examine how useful it is to 'predict' 
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future outcomes. A study in the spirit of Gemmill and Saflekos (2000) would 

shed some light in this direction. 

* Although the shapes of the implied densities are found to change in shape 

on certain circumstances available statistical tools do not allow to test for 

the significance of this change. A potential extension would include the 

development of such formal tests 

Chapter 6 

* The present study uses bounds to account for the early exercise premium of 

Amefican options and assumes/hypothesises that, since the same methodology 

is used for the ESE and the MLN parameterization, the remaining instability 

can be solely attributed to the parameterization of the PDFs alone. An 

interesting issue would be to formally test this hypothesis. 

e Another interesting issue would probably be to compare the different 

methodologies used to test the stability of implied PDFs reported in Section 

6.1.1 by constructing standardized metrics similar to the ones presented in 

Section 6.3 and to see whether any of the methods under- or over-states the 

instability. 

o The analysis of the results is done after removing 1% of the outliers which 

may raise some questions since the test aim to investigate what happens in 



ISO 

these extreme situations. To address this properly we recall the steps involved 

in the estimation of the statistics. Firstly, an optimization procedure is 

carried out to recover the parameters of the two models and secondly, further 

numerical techniques are employed to calculate the summary statistics listed 

in Section 6.3. We would like to stress the point that the calculation of the 

11 percentiles( X005 to X995)in particular, rely on the numerical solution of 

an integral equation. The filtering is done only after both steps have been 

terminated. The numerical procedures mentioned above - optimization and 

calculation of summary statistics - require the input of initial values to arrive 

to a solution. The initial values I used, however, were not checked at each 

of the few thousand runs perfonned to ensure they constituted a proper set of 

initial values. We considered the algorithm 'efficient' enough to handle such 

deficiencies. It could, however, be the case that a non-suitable set of initial 

values results in failure of convergence of the numerical procedure. This type 

of failure can not be attributed to measurement errors i. e. data imperfections 

which is what the test is intended to investigate. On the other hand, the test 

is set out to assess the relative stability of the two models. The presence 

of outliers in the summary statistics can significantly distort the values of 

the metrics reported in Tables 6.1,6.2 and 6.3 which can, as a consequence, 

bias any compafison. As the study aims to assess the stability of implied 

distributions which are in a sense economically sensible, we felt that filtering 
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the results - so that 1% is removed - would ensure the latter and, at the same 

time, would account for the above mentioned potential imperfections. Future 

research may investigate to what extent the inclusion of these 'extreme' 

observations affect the findings. 

Chapter 7 

* Despite being mathematically valid the method used for the estimation of 

the statistical density in Section 7.3.3 may raise some questions as to how 

well it approximates the empirical density of asset returns. An alternative 

methodology would include the use of Maximum-Likelihood Estimation 

techniques to calculate the parameters of the density. This would also be an 

interesting exercise. 

9 Even though the method for deriving risk preference functions is 

comprehensively demonstrated and compared to the market conditions of 

the study period other empirical implications such as pricing or hedging 

performance are not examined. Modelling of these functions could probably 

also help to better understand the pattern of risk premia especially during 

unsettled periods (crashes, general elections, etc. ) 

e Examining the linkage of the risk preference functions to general business 

conditions would offer an alternative tool to examining the Farna and French 
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(1989) hypothesis that risk-premia are highest at business cycle troughs and 

lowest at business cycles peaks. 

The above topics are open for future research. 

8.3 Contribution 

The contribution of the present work is mainly synopsised in the following: 

9 It studies, for the first time, the ESE specification in the context of RNI)s 

implied by American futures options. 

* It investigates, also for the first time, the stability of the ESE model. It is also 

the first time that the robustness of a model belonging to the semi-parametric 

family class of models is studied. 

9 The ability of the ESE parameterisation properly reflect/capture investor's risk 

preferences is explored for the first time. It is also the first a semi-parametric 

model is used in such an exercise. 
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8.4 General Discussion 

The present work concludes by trying to identify the individuals or the organiza- 

tions for whom or which the model presented and the findings illustrated are of great 

importance. 

9 One straightforward application includes the pricing of any claim - or 

pay-off - contingent on the terminal value of the asset for which the implied 

RND is estimated and which has the same time to expiration as the set of 

options used in the estimation. These claims can be other options with 

exotic pay-offs, illiquid or OTC options as well as a wide variety of other 

instruments with embedded options such as caps, floors, collars, collateralized 

mortgage obligations etc. which have Banks, Investment Banks, Hedge Funds, 

individual corporations and others on the long or the short positions of the 

contracts. 

e The method helps to reveal market participants' expectations of future changes 

in the underlying asset. This could be useful for the policy stance of monetary 

authorities i. e. the Federal Reserve or regulatory and other bodies i. e. the 

OPEC, that wish to take immediate action in unsettled periods. 

e Implied RNDs can also be used as a check on forecasts developed by other 

measures and allow contrarian investors who disagree with the consensus 
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shape of the distribution to take the consistent with their expectations positions 

in the market. 

For this the type of applications the use of implied RNDs is, if not the only, the 

best tool at hand. 
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