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ABSTRACT 

The main objective of this thesis is to provide an empirical assessment of the popular 
methodologies for modelling the underlying spot price dynamics in energy markets. 
After a brief introduction in the alternative forms of derivation that may be used for 
speculative and risk management purposes in energy markets, we assess the 
performance of the standard Black's framework in modelling energy prices. 
For the first time in the literature we use a powerful and realistic data set which covers 
oil, gas and electricity markets and tests the appropriateness of the Geometric 
Brownian Motion process to explain the observed dynamics of the spot prices in these 
markets. We also provide spreadsheet based computer algorithms to price popular 
energy derivatives based on the Geometric Brownian Motion specifications. 
In Chapter-3 we try to accommodate observed stylised facts in the spot price 
behaviour, namely mean reversion and jumps. For the first time in the literature we 
test a jump diffusion model, and a mean reversion jump diffusion model against our 
broad data set and compare the findings to the Black's Geometric Brownian Motion 
specifications. 
In Chapter-4 we use a forward curve approach as an alternative-modelling framework 
to the spot price models. Based upon an almost proprietary data set of historical 
forward curves, we determine the number of independent factors that are needed to 
model the forward curve's dynamic evolution. 
After carrying out principal component analysis on historical forward data a three- 
factor-model emerges as the most appropriate for energy markets in general. The first 
factor being the volatility (level effect), the second the smile and the third sesonality. 
Finally in Chapter-5 of the thesis we compare the ability of spot models (Jump 
Diffusion and Mean Reversion Jump Diffusion Model) and forward curve based 
models to price WTI options. The results show that the Jump Diffusion Model is the 
best model as the option prices given are very accurate in comparison with the other 
models and closest to the market observed options prices. 



CHAPTER 1 

INTRODUCTION TO ENERGY DERIVATIVES 

1.1 Introduction 

Virtually every entity in today's world is exposed to economic risks. Some of these 

risks are unavoidable, some can be avoided with good management. Some risks are, 
in one way or another, insurable, others are not. One particular form of risk is 

exposure to commodity price fluctuations. The Gulf War for instance, greatly affected 

crude oil prices. The market forward prices of crude oil contained information on how 

long it would take the production side to respond to the sudden imbalance between 

supply and demand. Spot and short-term forward prices spiked, while longer-term 

future contracts remained relatively stable. In this case the mean reversion as 

exhibited in forward prices was tied to how quickly the production side could bring 

the system back in balance'. A similar high price volatility can be found in the 

Electricity market. For example the summer heat wave of 1995 caused electricity 

prices to jump to a multiple of their average price levels2. However, temperatures 

spiked only for several days and prices reverted to equilibrium. In this case the mean 

reversion had to do with the dissipation of an event. 
Energy markets around the world are under going rapid deregulation, leading to more 

competition, increased volatility in energy prices and exposing participants to 

potentially much greater risks. Deregulation impacts both consumers and producers 

and has lead to a heightened awareness of the need for risk management and the use 
for derivatives controlling exposure to energy prices. 

The process of managing risks generally has three phases: identifying the risks: 
quantifying the risks: and then managing the risks. The balance of this thesis explores 
the specifics of modelling energy prices and pricing energy derivatives. Therefore, 

understanding both the quantitative methodologies and the fundamentals of a market 
place is very important. 

1 "Crude Oil Hedging Benchmarking Price Protection Strategies" Edward N. Krapels and Michael 
Pratt, Energy Security Analysis, Inc. Risk Books Energy & Power Special Reports. 
2 "Electricity Trading and Hedging" Edward N. Krapels, Energy Security Analysis, Inc. Risk Books, 
Risk Executive Report. 
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1.2 Futures Options and over-the -counter Instruments 

1.2.1Forward contracts 
A forward contract is an agreement between a buyer and seller to purchase or sell a 

specified amount of a commodity on a fixed future date at a pre-determined price - 
e. g., 1 million barrels of Saudi Arabia Light crude oil will be delivered 6 months from 

now, at a price of US$ 18 per barrel. Forward contracts have the advantage that 

future prices are locked in, which permits the determination of fixed purchasing prices 

- e. g., a public transport company buys a large part of its projected fuel needs on a 
forward basis, and is thus able to guarantee consumers the transport prices remain 

unchanged over this period. Also, they strengthen the links between a specific seller 

and buyer. Moreover, no cash changes hands until the contract is finally settled - so 

there are no cash-flow problems linked to the use of forwards, contrary to the 

situation with futures contracts (as we will see later). 

Nevertheless, standard forward contracts suffer from a lack of flexibility (it is difficult 

to get out of a transaction), and moreover, one is exposed to a counterpart risk 
(several exporters were left with large losses when a few large trading companies 

went bankrupt in recent years). Traders are also exposed to a risk of default on the 

side of exporters - in effect, it is rather common that exporters decide to default on a 

fixed-price forward contract when, after the contract's signature, prices increase. 

Because of this default risk, traders often pay a relatively low price on forward 

contracts. 

Forward contracts can be standardised and traded on an organised exchange - this is 

the case for a number of commodities in India, China and Indonesia. Tradable 

forward contracts offer more flexibility than non-tradable forward contracts, because 

the initial buyer or seller has the ability to transfer his contract to someone else. Also, 

they provide a means to discover future prices. On the other hand, they still allow less 

flexibility than futures contacts, because they assume deliver of the commodity. 
Summing up, forward contracts can be a good way to secure a market outlet, at a 
fixed price. However, they are most suited to entities with a good reputation - others 

will receive comparatively low prices, because of the "risk premium" that traders will 
build into the price they offer. Also, forward contracts do not offer much flexibility. 
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1.2.2Futures contracts 
Futures contracts are very similar to standardised forward contracts but they give rise 
to, primarily, financial transactions, not to physical transactions, as is the case of 
forward contracts. Use of the futures market will result in profits or losses that, 
ideally, will compensate the profits or losses made on a physical transaction3. This is 

best explained with an example. 
Suppose that an exporter has an inventory. When he is able to sell this inventory at 

the current price of US$ 17/bbl., he will break even (that is, have a profit that is equal 

zero). When prices decline, he makes a loss, when they increase, he will make a 

profit. As the exporter cannot be sure of future price developments, he has an entirely 

speculative position. 
What this exporter can do to secure an acceptable profit is to sell futures contracts for 

an amount similar to the amount he has in stock. At the moment he sells the crude he 

has in stock, he simultaneously closes out his futures position by buying the same 

number of contracts as he had initially sold. He has initially sold futures contracts for 

the then current crude oil price; when prices decline, he will have a profit on these 

contracts, when they increase, he makes a loss. The profit/loss profile of the futures 

market operation is thus exactly opposite to that of the physical market transaction. 

This, in turn, implies that if prices go down, the value of the inventory declines, but 

this is compensated by profits in the futures market. The exporter has thus hedged his 

inventory, that is, protected it against adverse price movements. 
Also, there is a major constraint on the use of futures. The futures exchanges are 

rather secure places in which to trade, but to ensure market security, market users 
have to pay an initial deposit when they buy or sell a futures contract, and then have 

to pay margin calls when futures market prices move against them. In this way, the 

exchange reduces the risk of default of its users; the deposit provides sufficient 

collateral for the potential losses which may ensue during any one day when prices 

move adversely; and if prices move adversely, users have to make up the loss by 

paying a margin calls before the market opens again the next day (if they do not do so, 

their position is liquidated). For users, this may pose a cash-flow problem: deposits as 

3 International Petroleum Exchange: "An Introductory guide to oil futures on the International 
Petroleum Exchange" 
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well as margin calls have to be paid in convertible currencies; and margin calls in 

general have to be paid within 24 hours. 

In the above example, futures were used to protect the value of an inventory. In the 

same way, futures can serve to guarantee the price of a crop which has not been 

harvested yet, the price of metals that are likely to be produced in a year's time, or the 

costs of importing fuels for the coming two-year period. Basically, companies can 
buy or sell futures contracts at the moment that they find prices attractive, and thus 

more or less fix the future "net prices" that they will receive or pay for the 

commodities that they expect to buy or sell. 
Futures can also be used for other purposes. One of the simplest ways to use these 
instruments is the smoothing of the fluctuations in prices for small-scale producers or 

consumers. For example, small exporters of commodities may only produce enough 
to make two or three shipments of their product in a year, or may be forced by 

logistical factors (lack of storage facilities, seasonal transport problems) to sell their 

products during a limited period of time. They risk to sell at moments that prices are 

exceptionally or seasonally low. In order to ensure that the average price received 
reflects the year's average, rather than merely the average of the shipment months, the 

exporter can sell futures contracts during the non-shipment months, and buy these 
back during the shipment months. 
The role of intermediaries, such as the producers of cocoa butter manufacturers, oil 

refiners or oilseeds crushers, also lends itself well to the use of futures and options. 
The profitability of the processing of raw materials is extremely sensitive to small 

variations in the price of the actual commodity being processed. Unless processors 

can pass unanticipated raw material price changes directly on to their customers, they 
have little choice but to turn to risk-management tools to hedge this price risk. For 

example, both for crude oil and for certain oil products futures contracts are traded. 
The differential between the two, for a certain month, represents a "refining 

premium", at times, this premium can be quite low on the spot market, while the 
forward differential between the prices of crude oil and oil products has become so 

wide that refineries can "lock in" the profits of refming: this hedging operation can 

provide full insurance against adverse movements in the refining margin, by selling 

oil products futures at the same time as a purchase of crude oil futures. 

In the forgoing paragraph, futures were used to "simulate" a processing operation. In 

a parallel manner, futures can be used to "simulate" physical trade decisions. Say that 
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an exporter sees world market prices, which he fords very attractive, but he happens to 

have no oil which he can sell on the world market. To replicate a physical sale, he 

can sell futures contracts, and liquidate this position later when he has obtained local 

materials and sold them. Say that he has a client who is willing to offer an interesting 

price for forward delivery, but he does not own the product yet - by buying futures 

contracts he can replicate the actual purchase of physicals, and if prices increase, he 

will have to pay a higher price to the oil producers, but will be compensated by profits 

on his futures market operation. 
Summing up, futures contracts can be used: 

- to avoid the effects of fluctuations in prices for producers who, because of 

their limited production volume or seasonal factors, are not able to spread out 

their sales over the year; or for consumers, who because of their limited size 

cannot spread out their purchases; 

- to protect the value of inventories, or partly fmance the cost of storage; 

- to secure a processing margin; 

- to "lock in" future prices at an attractive level; and 

- to improve marketing policies. 

The main disadvantages of using futures contracts are that: 

- they freeze up working capital; 

- although they may provide protection against unfavourable price changes, they 

do not permit profiting from favourable ones. 

1.2.3 Option contracts 
The purchase of option contracts gives the right, but not the obligation, to buy or sell a 
futures contract at a given price. When prices move favourably, this right will not be 

exercised, and therefore, the purchase of options provides protection against 

unfavourable price movements, while permitting to profit from favourable ones. 
For an option, one has to pay a premium - this is the maximum loss from the option 

purchase. However, when prices develop negatively, an options buyer will make a 

profit which is more or less commensurate with the extent of the price decline (again, 

this is somewhat oversimplified). 
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These option profits will offset the losses on a physical inventory. The result is that 

the total losses have been limited (to a level that the company finds affordable), while 

the possibility to profit from the price improvements still exists. In many countries, 

this form of price protection may be politically more acceptable than the use of 
futures. 

The other advantage of using options is that only the sellers of options have to pay 

margins. Hence producers in countries with non-convertible currencies who are 

contemplating a hedging strategy can, by buying options (in their case, put options - 

this will be discussed later), avoid the possible problems caused by the need for 

foreign exchange to meet margin deposits or maintenance margins. Similarly, 

consumers can hedge without having to pay margin calls by buying options - in this 

case, call options - which give the right to buy commodities at a given price. 

Options may be a better hedging vehicle than futures in the case of an uncertain 

supply - e. g. in the case of an oil company that cannot be sure of the quantity it will be 

able to ship. They are often used to protect prices in deals with not fully reliable 

partners. If a fixed price deal with a seller has been concluded, and this position is 

covered with a futures contract, one may get stuck with a loss-making uncovered 
futures contract if the physical leg of the transaction disappears. When options are 

used, traders' losses are limited to the upfront premium they paid4. 
The sale of options allows the generation of some profits, but at a high risk, at least if 

those selling ("writing") are not properly protected by, for example, physical 
inventory. Producers currently make virtually no use of the potential benefits of 

selling options to create value from surplus stocks or production flexibility. The 

benefits of option sales are long run: in the short run the producer may do worse than 

if he had not sold the option. For example, in the case of the sale of a call option, if 

the market declines, the buyer of the call will not exercise the option, and the 

producer will keep the option premium, thus lowering the cost of the inventory. But 

if the price rises, the option is exercised. However, the producer still receives the 

original strike price plus the premium: his losses on the options are only compensated 
if he can dispose of physical commodities, through the high prices he will receive for 

his physical goods. In the long run, the producer will make a not insignificant profit. 
However, the necessary logistical skills to manage this type of operations are still 

4 New York Mercantile Exchange (1989): Nynex Energy Options-Strategies at a glance. 
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largely absent in developing countries, and under present conditions, most would be 

best advised to refrain from selling options. 
Summing up, the purchase of options may serve the same purposes as the purchase or 

sale of futures contracts, with the main difference being that options leave open the 

possibility of profiting from favourable price movements, and that they cause less 

cash-flow problems. This may make them, in the short term, a more acceptable tool 

of managing risk and of improving commercialisation strategies than futures. The 

sale of options gives advanced users the possibility to create extra value from the 

inventories. 

1.2.4 Commodity swaps 
Commodity swaps are a very recent market innovation, dating from the late 1980s. 

To put it very simply, swaps can be used to guarantee income streams. In the case of 

commodity sales, a company's expected income stream during a certain period is 

equal to the amount of commodities it expects to sell, multiplied by expected prices 

over this period. In actual physical sales, prices may turn out to be higher or lower, 

and consequently, the company's income stream will be higher or lower than 

expected. If the company enters into a swap, it will receive a compensatory financial 

payment if prices are indeed lower, but will have to give up its unexpected benefits if 

prices turn out to be higher than expected: thus, it has a more or less guaranteed "net 

price". 
A swap is thus a purely financial instrument. Normally, a producer (or consumer) 

enters into a swap with a bank or a large trading company. The advantages of swaps 

over futures are that they are available for periods much longer than 1 year; that they 

can be tailor-made to cover the needs of a certain company, in terms of commodities 

and risks covered; and that their requirements in terms of margin payments are much 
less stringent than on futures marketss. 
Swaps are often attractive to lenders or investors, as they provide security for the 

cash-flow of the company to whom they are lending, and thus the ability of the 

company to repay a loan or pay a dividend is improved by providing this type of long- 

Intercapital Commodity Swaps, Petroleum Intelligence Weekly Special Report (1990): The complete 
guide to oil price swaps. 
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term custom-designed hedge. Therefore, much of the current use of swaps is in the 

context of project finance. 

Summing up, swaps can be used: 

- to lock in the price of commodities for a long period of time (e. g., locking in 

oil import or export prices for a three to five year period poses few problems); 

- to secure the income stream of operations or new investments; and 

- to help attract more capital at more favourable conditions. 

1.2.5 Commodity bonds and loans 

Commodity bonds and loans are bonds and loans with a repayment (of the principal 

and/or interest rate) linked to commodity prices. This link can be in two major forms: 

" The loan or bond type: the principal and/or interest payment on this loan or 

bond is repaid with the financial equivalent of a fixed amount of a commodity. 
For example, bonds of US$ 400 each are written. The yearly interest 

payments are equal to the price of 0.1 ounce of gold, and after 4 years, a sum 

equal to the value of 1 ounce of gold is reimbursed. If during the last year 

gold prices have increased to an average of US$ 500/ounce, the investor 

obtains US$ 50 in interest payments, and his bond is redeemed at US$ 500; 

but if gold prices have declined to US$ 300, he only receives US$ 30, 

respectively US$300. This type of commodity bonds or loans serve to protect 

a company's long-term risk exposure. 

" The option type: the investor, or lender, gets the choice to have at maturity of 

the loan/bond, reimbursement of a fixed amount, or reimbursement in the 

monetary equivalent of a fixed amount of a commodity. For instance, in the 

case of a US$ 400 bond, the investor gets the choice to redeem the bond at 
US$ 400, or to be paid the price of 1 ounce of gold. This type of commodity 
bonds or loans are often used to obtain finance more easily and at a lower cost: 

the commodity option is thrown in as a sweetener. 
Commodity bonds and loans are usually linked to investment projects (they have 

become very important to finance gold mining projects), or to debt rescheduling (they 

have played a role in the rescheduling of the official debts of Mexico, Venezuela, 

Uruguay and Nigeria). Their commodity coverage is somewhat limited: most 
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commodity bonds and loans issued so far have been linked to gold, silver and oil: 

some are issued on aluminium, copper, nickel, palm oil, and coffee and cocoa. 
Summing up, commodity bonds and loans can serve several goals: 

- They can provide access to fmancial markets, which may not otherwise be 

available. As a result bonds may lead to the improved creditworthiness of the 

company or country concerned; 

- In a high-inflation economy, commodity-linked bonds (in particular gold- 
linked bonds) can provide sufficient anti-inflation guarantee to bond buyers, 

thus allowing the issuing government (or company) to pay a somewhat lower 

net interest on the bond; 

- Cash-strapped producing companies or countries can expect to pay lower 

interest rates as a result of issuing commodity bonds; 

- Commodity bonds with long term commodity warrants attached can smooth 

the earnings of enterprises in commodity producing countries. In practice, the 

bonds can be designed to link the interest or principal payments of the bond to 

revenues rather than prices of the export commodity. 

- They can be used as risk management tools, not only by commodity 

producers, but also by commodity consumers. In this respect, the commodity 

warrants that are often attached to bonds can be used by commodity 

consumers to hedge against commodity price increases above a certain pre- 
determined strike price6. 

6 J. P. Morgan & Co. (eds), Commodity -Linked Finance, Euromoney Books (London 1992). 
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1.3 Hedging with Futures (A basic description) 

When a market participant uses futures market instruments, it is either in order to 

speculate or to hedge. Only hedge strategies will be explored here, or in other words: 

operations made to provide protection. 

The basis of hedging with futures is the establishment of a position in the futures 

market that is equal and opposite to a position in the underlying oil product. In short, 
the principle of hedging is that the loss in one market should be offset by an 
"equivalent" gain in the other market. With such a strategy one locks in a price to be 

paid or received for future deliveries. 

Two basic hedging strategies can be summarised here. Firstly, hedges can be 

undertaken in order to offset price risk that has arisen in a physical contract; this is 

known as "offsetting hedge" (the fundamental principle is to maintain a balanced 

book - each physical transaction must be balanced by an opposite futures operation). 
Secondly, hedges can serve to lock-in an attractive price level, or in other words by 

securitising profits on anticipated business. This last strategy may seem to be a 

speculative one but is the opposite: locking-in a good price removes the speculative 

part from a transaction by fixing the sales price at a level above known costs (in the 

case of a seller) or fixing a purchasing price at a lower level than allowed for in the 
fuel costing7. 
Different market participants can use futures to hedge their position. A producer can 

sell forward in a futures market in order to hedge sales of physical to clients, whether 
these sales are based on a long-term contract or spot. Exporters, merchants, 

manufacturers, and on the other side importers and customers may also benefit from 

futures hedging when they have to buy, sell or both. 

An example on hedging with futures by an oil producer: 

A producer of crude oil has to deliver 200,000 bbl. of crude in August. He considers 

actual market prices attractive and expects prices to drop considerably between now 
(May) and August; he wants to lock in his sales price at today's levels. Because of 
the anticipated price fall, prices for futures contracts in October are at a discount to 

the current market price: October contracts are sold for US$ 14.5/bbl., while the 

prevailing price is US$ 15.25/bbl. To lock in this price, he sells October crude oil 

contracts. If the producer is correct, and prices in August are indeed lower than at 

Phibro Energy (1990): Long Dated Oil Derivatives, mimeo 
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present, the gain on the futures contacts will compensate for the eventual losses on the 

physical market. In the event of an unexpected price rise however, the gains on the 

physical market will be somewhat lower than without the futures market position. 
Suppose the producer is right and the spot price on August 11th is US$ 14.00, while 
October contracts are traded against US$ 13.25. 

Date Cash market Futures market 

May 8 Spot price of US$ 15.25/bbl. Sells October crude oil futures at US$ 14.50 

August 11 Sells 200,000 bbl. of crude oil 

at US$ 14.00/bbl. 

Buys October crude oil futures at US$ 13.25 

Result US$ 2,800,000 Gain of US$ 1.25 * 200,000 bbl. = US$ 250,000 

The result on the cash market is 200,000 * US$ 14 = 2,800,800. The futures market 

activities have resulted in a gain of US$ 1.25 * 250,000. The total result is US$ 

2,800,000 + US$ 250,000 = US$ 3,050,000, which means a price per barrel of US$ 

15.25. This is equal to the May spot price and US$ 1.25 over the price that would be 

realised without the futures market operations. 
An example on hedging with futures by an oil consumer 

Suppose autumn has been exceptionally warm, and gas oil prices in November are 
US$ 140/tonne. A road transport company, having continuous need for gas oil, has to 
keep the prices for his customers unchanged over a period of 6 months. The 

transporter wishes to lock in this attractive price, which is US$ 8 below his price to 
break-even. Prices may well rise during these 6 months and to hedge this risk, the 

transporter buys June futures contracts on the IPE at US$ 144.00. 
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Date Cash market Futures market 

November 21 Spot price of US$ 140/tonne. Buys May Gas Oil futures at US$ 144.00 

May 10 Sells May Gas Oil futures at US$ 146.00 

Gas Oil bought cash at the 

average price of US$ 

142/tonne. 

Result Gain of US$ 2.00/tonne 

In May, the average price paid for the gas oil inputs bought on the cash market turns 

out to be higher than the November price. On average, US$ 142/tonne has been paid. 
The futures market position is closed out at the price of US$ 146.00, meaning a profit 

on the futures contracts of US$ 2.00/tonne. The overall result is that the transport 

company has an effective buying price of US$ 140, which is the attractive cash price 
in November that he wanted to lock in. 

Example on hedging with futures by an oil refiner 
Imagine an oil refiner who wants to secure his market share because of increased 

competition. He enters into a forward contract for delivery of 1 million gallons of oil 

products in three months time. To meet this obligation, he will need an amount of 
1,427,850 gallons of crude oil. His risk, therefore, is that between now and January 

1st, the price of crude oil will increase. 

Since he has already agreed to a forward price at which to sell the oil products, a price 
increase could easily cause him to lose money in the forward sale. To protect himself 

against a risk of price increase, he will buy the crude oil in the futures market. 
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Date Cash market Futures market 

November 1 Sells for Febr. shipment oil Buys 34 Febr. crude oil futures at US$ 15.70 

products equivalent to 33,995 

bbl. crude oil (equal to 

1,427,850 gallons) at US$ 

16/bbl. 

January 1 Buys 33,995 barrels of crude Sells 34 Febr. crude oil futures at US$ 16.70 

oil at US$ 17/bbl. 

Result Loss of US$ 1* 33,995 bbl. = Gain of US$ 1* 34,000 bbl. = US$ 34,000 

US$ 33,995 

Notice that the number of barrels needed for the cash market deliver did not exactly 

correspond to the number of barrels bought on the futures market. Since the crude oil 
futures size is 42,000 gallons per contract, the calculation for the number of contracts 
bough is: 

Cash position / contract size =# of contracts 
The calculation is: 1,427,850 gallons/42,000 = 33.9964 

Rather than leaving any position of the cash position open to price risk, the higher 

number of contracts should be purchased. In this case, the hedger purchased 34 

contracts instead of 33. 

On November 1, the refiner sold the oil products forward for US$ 16/bbl. On January 

1, he had to buy crude oil to fill his order for US$ 17/bbl. This is a loss of US$ 1 per 
bbl. Since his cash market position was for 33,996.4 bbl., the total loss on the cash 

market was US$ 33.995. 

Luckily, he had an off-setting position on the futures market. On November 1, he 

bought crude oil futures at the price of US$ 15.70/bbl. On January 1, he was able to 
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sell these contracts at the price of US$ 16.70/bbl. Since the futures market position 

was for 34,000 barrels, the total gain on the futures market was US$ 1* 34,000 = 
US$ 34,000. 

Combining the loss on the cash position with the gain on the futures position leaves 

the refiner with a small gain of US$ 5. Had the position remained unhedged, his loss 

would have been US$ 33,995. 

1.4 Hedging with Options (A basic description) 

Using futures to cover price risks can provide price protection, but has one important 

disadvantage: while strongly reducing the likelihood of losses, the possibility to 

benefit from price improvements is also lost. Options do not have this disadvantage: 

By buying an option, protection can be obtained against unfavourable price 

movements, while the possibility to profit from favourable ones remains. 
This is the basic reason for the use of options for hedging purposes. 
To determine what option might be useful to protect against price risks, firstly the 

risks have to be identified: are price rises or on the contrary price declines the risk? 
Then, to protect against the effects of a price change, an option can be bought giving 
profits when prices move in the direction that the buyer wants to protect against. 
Losses on the physical goods will then be compensated by profits on the options, just 

like is the case of futures contracts. 
In the case of futures contracts this kind of price protection is paid for by giving up 
the possibility of profiting from improved prices. In the case of options, a fixed price 
has to be paid: the premiums. 
For example, if money would be lost when prices decline (such as is the case for a 

producer who is to sell his production, or for a trader who has unsold commodities in 

stock), an option that gives a profit when prices decline should be bought. This is 

called a put option. Mathematically the payoff for a put option can be written as 
follows: 

Max (0, K-S) (1.1) 

$ J. P. Morgan Securities Inc., Derivatives Research (15 March, 10 May, 6 July 1995) 
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Graphically, this looks as follows: 

Price of the underlying at expiration 

As can be seen in the chart of the put option, declining prices cause losses on the 

physical transactions, but buying a put option gives a profit. 

If a price increase would involve a loss of money (such as is the case for a consumer 

who still has to buy the commodities he needs, or for a trader who has sold 

commodities for a fixed price, while he does not have these commodities in stock), an 

option can be bought which gives a profit when prices increase. Such an option is 

called a call option. The payoff to a call option can be described mathematically as 
follows: 

Max (0, S-K) 

Graphically, this looks as follows: 

e 
te`a' 
0 
a 

- Price of the underlying at expiration 

(1.2) 

When prices increase, losses are made on the physical position, but buying a call 

option will then give profits. The result is: protection against price increases, but 

with still the possibility to profit from price declines. 
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The option is like an insurance: it provides protection against price declines (put 

option) or price increases (call option), and simultaneously the possibility to profit 

from reverse price movements. How this exactly works will be explained in the 

following paragraphs, what is important here is to understand how options can be 

used for covering price risks. It should be underlined that in particular the insurance 

function of options will be discussed in this and the following paragraphs: selling 

options is the reserve of highly advanced players because of the enormous financial 

risks involved. So, foremost option buying strategies will be looked at. 

Options are rather complicated instruments, and before turning to a number of options 

applications, some definitions and theory on their technical details will be given. 

Generally speaking, an option is a contract granting its buyer a right, but not the 

obligation to buy or sell a defined quantity of the underlying product (for example a 

futures contract) at a pre-fixed price, and to do so during a period agreed beforehand 

or upon the contract's expiry. The option buyer, also called its holder, can choose to 

let the option expire or to exercise it. The writer or seller of an option has the 

obligation to fulfil the contract when the buyer decides to exercise. 
At the time of transaction, a price is set in terms of the option contract, specifying a 

price at which the underlying, for example a futures contract, may be bought or sold. 
This price is called the strike price, or the exercise price. The option buyer may take 

(call) or make (put) delivery of the contract against this price. When the holder of an 

option can exercise his right depends on the option type. American-style options may 
be exercised at any time between the date of purchase and the date of expiration. 
European-style options may only be exercised at the date of expiration. 
When buying an option, a price has to be paid to obtain the rights laid down in the 

contract. This is called the premium. It is, like other prices, determined by market 
forces of supply and demand. As are other market-determined prices, premiums are 

subject to fluctuations. 

The option premium is composed of two elements: the intrinsic value and the time 

value. The intrinsic value is the difference between the price of the underlying 
futures contract and the strike price. It is either positive or zero and indicates the 

value of the option at any time. For a call option, the intrinsic value is the price of the 

underlying futures contract minus the strike price : the intrinsic value of a put option is 

equal to the strike price less the futures price. So, a US$ 17 crude oil option will have 

a positive intrinsic value for call options with a strike price below US$ 17 and for put 
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options that have a strike price of above US$ 17. When the futures price rises 

compared to the strike price of a call option, its premium will probably increase 

because of increased intrinsic value. It becomes more likely that exercise of the call 

will be profitable. The premium of a put decreases when the price of the underlying 
future rises, since the intrinsic value diminishes: it will become less and less 

interesting to exercise the rights conveyed under the option contract. Following the 

same reasoning, for a futures price decrease, the premium for a call option with a 

certain strike price becomes less since the chance of its exercise diminishes, and the 

price for a put option goes up. 
The amount by which an option's premium exceeds the option's value is called its 

time value or extrinsic value, the second component of the premium The life-time of 

an option is one of the factors that determines the time value. Suppose the other 
factors - the price of the underlying futures, the strike price, volatility and short-term 
interest rates - remain the same. Then, the time value decreases when maturity 

approaches. The time value is highest when the strike price equals the price of the 

underlying asset. When these two prices diverge, the time value decreases. This is 

because, the chances of exercise of the option, as well as the losses of an options 

seller, will be higher. The time value is, so to say, a time-related flexibility value of 

an option. 
Suppose a trader has bought a call on a July heating oil futures contract, strike price 
US$ 0.54/gallon. At the same time, the July heating oil futures are traded at US$ 

0.51. Its intrinsic value is zero, but still a premium has to be paid for this option. 
This is because through time, the price on the futures market for the July contract may 

well rise. In other words: the option still has time value, equal to the premium. So, 

even if during the life of a call option, the strike price is higher than the quoted price 
for the underlying futures contract, the call has time value, equalling its premium. 
Closer to maturity, the time value gets lower to become zero at expiration. Then, the 

option maintains only its intrinsic value. 
Imagine that all factors determining the time value remain stable and only the 

volatility of the price of the futures contract underlying the option increases. Bearing 

in mind that the option serves as an insurance against price changes of the futures 

contract, it is obvious that the price that has to be paid to obtain this protection will 

rise. When the futures price is more volatile, there is a growing chance that in its life 
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the option may become worthwhile to exercise. This induces sellers to ask a higher 

premium, for the risks they run get higher. 

Let us take the example of a trader who has bought a call option on a September 

sweet crude oil futures contract for US$ 0.581bbl. Its strike price is US$ 20.30/bbl. If 

the September sweet crude oil futures moves above the strike price, the buyer will 

exercise his right to a long futures position at a price that is lower than the market 

price for the futures contract. For instance, when the September contract is traded at 

US$ 21.00/bbl., exercise of a long call option will give a profit of US$0.70/bbl. (not 

taking into account the premium paid). When the strike price is lower than the real 

market price for the underlying futures contract, a call option is said to be in-the- 

money. Imagine the same scenario for the September sweet crude oil put option, 

strike price US$ 20.30/bbl. When the market price rises to US$21.00/bbl., the holder 

of the put option will not exercise his option because of the loss involved. A put 

option on a futures contract that has an actual market price above the strike price laid 

down in the option, is said to be out-of-the-money. Suppose the September futures 

price falls to US$ 19.50/bbl.: then it becomes worthwhile for the buyer of a put option 

to exercise because the option is now in-the-money. For a holder of a can, the 

exercise of the option would result in a loss, or in other words, the option is out-of- 

the-money. If the strike price equals the market price of the underlying, calls as well 

as puts are at-the-money. 

Regardless of whether the buyer of the option decides to exercise his right, the 

premium, once paid to the seller of an option, remains in the hands of the seller. The 

maximum amount the options buyer can lose on his option position, is the premium 

paid for the option. His profit potential is virtually unlimited. A seller, on the other 
hand, can only have profits limited to the premium size: his loss can be unlimited, 

since prices may move to unforeseen low or high levels. If the price of the underlying 

asset drops below the strike price minus the premium paid, the buyer of a put will 

exercise his right and the seller has to take delivery against payment of the, relatively 
high, strike price. 
If a call buyer decides to exercise his option when the strike price is below the price 

of the underlying, the seller is obliged to deliver the underlying asset. If he does not 

possess it, he will have to buy the asset on the market and suffer a loss equal to the 
difference between the market price and the strike price (less the premium which he 

has collected), which can be enormous when supply is tight. The sale of a call 
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without the previous purchase of the underlying asset is said to be "naked". It is a 

position meant to collect the premium, a purely speculative and very risky position. 

An option trader who has a net selling position, in other words he has sold more 

option contracts than he bought, is said to be short in options. If a market participant 

has bought more contracts than he sold, he has a long position. For instance, an 

option trader who has sold 20 options, and bought 6 options, is short 14 options. And 

for example, somebody who is long calls has bought the right to buy a certain asset at 

the strike price: if prices go up, he will profit by exercising his call and reselling the 

underlying on the market at a higher price. The same is true for another options 

position, namely a short put: in that case, a price increase will prevent the buyer from 

exercising and the options seller collects the premium. Following the same reasoning, 

a price decline is beneficial to participants having a long put position, for they can sell 

the underlying at the strike price and will be able to procure the underlying asset on 

the market at a lower price. And short call investors will also benefit from a price 

drop: the buyer of a call will not exercise his right and the premium paid remains at 

the seller's account. 

The buyer of an option can choose to let the contract expire, to exercise it, or to close 

his position before expiration. An options seller has only two choices: to wait for the 

option to expire, or to close his position before the expiration date is reached. When 

closing out an options position, attention should be paid not only to the expiration 

date, the offsetting position, and of course the underlying asset, but also to the strike 

price of the relevant option. This means that a long call position can be closed out by 

selling calls with the same expiration date and the same exercise price; similarly, 

when having the same expiration date and equal exercise prices, a short call can be 

closed by a long call transaction, a long put can be offset by the sale of a put, and a 

short put position can be closed by the purchase of put options. 

For example, it is now May and an October crude oil put option strike price US$ 

17.00 is traded at 55 cents/bbl. In mid July, the option expires. The futures contract is 

traded at US$ 16.00/bbl. The spot price is US$ 15.75/bbl. The option's premium is 

now US$ 1.10/bbl. Let us first consider the situation if, in the first half of July, the 

trader would have exercised his option. Then he sells crude oil futures under the 

option against the strike price of US$ 17.00, first buying futures at the current price of 
US$ 16.00. His futures profit is US$ 1.00/bbl. The trader sells his crude oil on the 

spot market at US$ 15.75/bbl. The net selling price the trader obtains for his crude is 
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the sale on the spot market plus his futures market result, less the cost the option, 

which is US$ 15.75 + US$ 1.00 - US$ 0.55 = US$ 16.20/bbl. If, on the other hand, 

the trader decides to close out his options position, his transactions are the following: 

in May, he buys a put option, October maturity and strike price US$ 17.00, at US$ 

0.55/bbl., to close out this options position, the trader sells a US$ 17.00 put at a 

premium of US$ 1.10/bbl. His option profit is the difference between the premium 

paid in May and the premium earned in July, namely US$ 0.45/bbl. He sells his crude 

on the spot market at US$ 15.75/bbl., which makes his overall result US$ 16.20/bbl. 

To conclude this paragraph, some examples about long put and call positions are 

posed underneath. 
Example 1: The manager of a trading company has an unsold stock of heating oil. 

The market forecast is that heating oil prices will rise. Therefore, by 

buying put options he protects himself against the risk of declining 

prices, while maintaining the possibility to profit from price rises. 
Example 2: Suppose an oil producer has explored a new well and has just started 

drilling. The oil well proceeds will be sold in two months. By buying 

put options he protects himself against the risk of declining prices, 

while maintaining the possibility to profit from price rises. 

1.4.1 Option contracts traded on an organised market: 
The most liquid crude oil and petroleum products futures markets, are nowadays 

complemented by option markets. Considering the petroleum sector, the main options 
traded on the exchanges are9: 

- Options on the IPE Brent Crude Oil futures: 

- Options on the NYMEX Sweet Crude Oil futures: 

- Options on the IPE Gas Oil futures: 

- Options on the NYMEX Heating Oil futures: and 

- Options on the NYMEX Gasoline futures. 
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Options on IPE Brent Crude Oil futures 

Underlying 

Instrument: 

1 IPE Brent Crude Oil futures contract of 1,000 barrels 

Maturities: As of futures contracts 
Strike prices: Multiples of US$ 0.50 per barrel 

Last trading day: Three days before the cessation of trading of the underlying futures 

contract 

Expiration: One hour after cessation of trading at the last trading day, 20.15 h. 

Tick Size: US$ 0.01 per barrel 

Brent Crude Oil options contracts traded on the IPE reached a volume of 531,742 in 

1993. This represents 531,742,000 barrels of Brent, which is over 2 times 1993 Brent 

crude oil production. 
The contract maturities are standardised. Note that the option's maturities correspond 
to the futures delivery months. This enables traders to implement arbitrage strategies 
between the two instruments. 

Strike price increments vary according to the underlying futures price. If the 

underlying contract is traded at 20 for example, the strike prices 19,19.5,20,20.5,21 

etc. represent the out-of-the-money, at-the-money and in-the-money prices. There is a 

minimum of seven strike prices quoted. 
The expiration date is the last day on which the option may be exercised, which, for 

the Brent crude contract, is the last trading day of the underlying futures contract. 
This is possible because this contract is cash-settled; for contracts which provide for 

physical deliver, the last trading day of options is generally the last day before the 

futures contract enters into its delivery phase that is, in general one month before final 

contract expiry. This is to reduce the likelihood that options are used to squeeze the 

market. 

9 Chicago Board of Trade (1989): Options on agricultural futures (3'd ed. ), International Petroleum 
Exchange: Gas Oil Traded Options. 
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At the close of business on the last day of trading all options over US$ 0.25 in-the- 

money, will be automatically exercised into the underlying Brent futures at the strike 

price of the option. Declaration instructions have to be given to the clearing house at 
latest one hour after close of business. 

The minimum price fluctuation of the option, its tick size, is US$ 0.01 per barrel. i. e. 
US$ 10 per contract. 
Options on NYMEX Sweet Crude Oil futures 

Underlying 1 NYMEX Sweet Crude Oil futures contract of 1,000 barrels (42,000 

Instrument: gallons) 
Maturities: Twelve consecutive months plus three long-dated options at 18,24, and 

36 months out. 
Strike prices: Multiples of US$ 0.50 per barrel for the first nine strike prices: the 

increments are US$ 1 for the next three strike prices and US$ 5 for the 

nearest higher or below the nearest lower existing strike price. 
Last trading day: The Friday immediately preceding the expiration of the underling futures 

contract as long as there are three days left to the futures expiration. 
Otherwise, the option expires the second Friday prior to the futures 

expiration. 

Expiration: 5.30 pm on the last trading day, or 45 minutes after underlying futures 

settlement price is posted, is the last possible exercise time. 

Tick Size: US$ 0.01 per barrel. 

The NYMEX Sweet Crude Oil option is traded from 9.45 am to 3.10 pm (New York 

time). These are the same trading hours as for the underlying futures contract. As for 

the underlying futures, out-of-hours trading is possible via the NYMEX Access 

trading system. 
The quoted strike prices are those of five puts and five calls above and below the 

strike price that is closest to the previous day's close of the underlying futures 

contract. 
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Options on IPE Gas Oil futures 

Underlying 

Instrument: 

1 IPE Gas Oil futures contract of 100 tonnes of gas oil 

Maturities: Nine consecutive months, including the current month 

Strike prices: Multiples of US$ 5 per tonne 

Last trading day: The 5th business day prior to cessation of trading in the underlying gas oil 
futures contract 

Expiration: 12.00 hours, as for the underlying gas oil futures 

Tick Size: US$ 0.05 per tonne 

In 1993, the volume of IPE Gas Oil options was only 136,859 contracts. 
The holder of an IPE Gas Oil options contract has to right to buy or sell the 

underlying IPE Gas Oil futures contract on any date up to the expiry date. Trading 

months are similar to those of the futures contract, namely nine months in advance 
including the current month. In this respect the IPE Gas Oil options and futures differ 

from the Brent contracts, under which trading in the maturity month is not allowed. 
For example, the January 1995 Gas Oil option contract is traded up to Thursday 5th of 
January. 

Options on NYMEX Heating Oil and Gasoline futures 

Underlying 1 NYMEX Heating Oil futures contract: respectively Gasoline futures 

Instrument: contract of 1,000 barrels 

Maturities: Twelve consecutive months 

Strike prices: Multiples of US$ 0.02 per gallon, except for the first three months listed 

at US$ 0.05 above and below the at-the-money strike price 
Last trading day: The Friday immediately preceding the expiration of the underlying 

futures contract as long as there are three trading days left in the futures 

contract. Otherwise trading stops the second Friday of the month prior to 

the delivery month of the underlying futures contracts 

Expiration: 5.30 pm on the last trading day 

Tick Size: US$ 0.0001 per gallon (US$ 4.20 per option contract) 

Options on NYMEX Heating Oil and on NYMEX Gasoline futures, represent a 
futures contract of 1,000 barrels each. Trading hours are the same for the underlying 

24 



futures contracts as for the options, namely 9.50 am to 3.10 pm (New York time). 

Both options can be traded after the open outcry market is closed via the electronic 

trading system Access. 

Prices are quoted in dollars and cents per gallon. Strike prices after the first three 

delivery months are listed only as even numbers, for example US$ 0.4600,0.4800 and 
0.5000 etc. 

1.5 Oil hedging with swaps 
Types of swaps offered on the over-the-counter market are1°: 

a. Straightforward (or "plain vanilla") swaps; 
b. Collar swaps; 

c. Participation swaps; 
d. Specialised swaps. 

1.5.1 Straightforward swaps 
The straightforward swap is an exchange of a single fixed price and a single floating 

price without the possibility for any of the parties involved to take advantage of 

positive market swings. 

Example of a straightforward swap between an oil producer and a bank: 

An oil producer sells his production on the market, in quantities of X barrels per day. 

His revenue is the market price for the product at the moment of sale. 

quantity of X bbl. /day of crude oil A 

Oil producer Market 

floating market price for X bbL of crude oil A 

The producer has plans to expand his drilling capacity, and wants to fix his revenues 

to be sure that he can repay the loan that he needs for the investment. He fords a bank 

willing to guarantee the fixed price, and as a result to carry the price risk involved. 

10 Enron, (1995): Managing Energy Price Risks, Risk Publications, London. 

25 



fixed price for X bblJday of crude oil A 

Oil producer Bank 

floating market price for X bbl. /day of crude oil A 

The oil producer receives a floating market price for his crude oil sales, which he pays 
to the bank in exchange for the fixed price laid down in the swaps agreement. The oil 

producer no longer is exposed to the price risk of his daily X barrels of crude oil (A) 

sales. The bank, on the other hand, has to pay the fixed price, while receiving the 
floating market price, thus being expose to the price risks involved. 

Consider the opposite case, an oil consumer, for instance a refinery, who wishes to 
have fixed price obligations for his input purchases. Normally, he buys the quantity 

of Y barrels of crude oil daily on the market against the prevailing spot price 

quantity of Y bbl. /day of crude oil B 

Refinery Market 

4 

floating market price for Y bbL of crude oil B 

The refiner approaches a bank to agree on a consumer swap arrangement: 

fixed price for Y bbl. /day of crude oil B 

Refinery Bank 

floating market price for Y bbLlday of crude oil B 

The refinery pays net a fixed price for his crude oil (b) purchases. The price risks are 

carried by the bank, which guarantees the market price in exchange for a floating 

price. 
A bank normally does not want to be exposed to these kind of price risks for the often 
long duration of the swap. So, the bank offsets the risks on the futures and options 
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market, when product similar contracts are available. If this is not the case, it can 
look for a third party that wants to take the opposite side in a swap. 
In the earlier examples, the bank can offset the price risks of the producer swap by 

arranging a swap with a party that wants to buy the product against a fixed price, in 

this case: the refinery. In the reverse, he can lay off the price risks of a consumer 

swap by coupling it to a swap with a producer. 

floating price X bbl. A fixed price Y bbL B 
Oil producer Bank Refine 

fixed price X bbL A floating price Y bbl. B 
ry 

Market 

X bbL of A at market price Y bbL of B at market price 

As follows from this figure, there are four factors that determine if the swap, 

constructed in this way, is possible or not: A, B, X and Y. If the physical products 
(A) and (B) crude oil are not similar, it is very likely that prices have other 

characteristics. Then exchanging the cash flows resulting from the sales and purchase 

of the products (A) and (B), may not be interesting at all to the bank. Furthermore, if 

the quantities are not the same, the bank still has a price risk exposure; this problem 

can be solved by fording yet another consumer/producer. Often, the bank has to 

warehouse part of the price risks, until another participant is found. 

Example: 

fixed US$ 20.50/bbl. (lm bbliy) fixed USS 20.65/bbl. (Im bblJy) 

Trader Intermediary Refinery 

market price + 5cts (lm bbL/y) 

Market 
5m bbl. of SA Med. at market price 

market price (lm bbL/y) 

5m bbl. of SA Med. at market price 
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In 1989, an oil trader and a refiner agree a swap with an intermediary for 5,000,000 

barrels of Saudi Arabia Medium crude oil over a period of five years with annual 

payments, starting this same year. The oil trader sells the Saudi Arabia crude on the 

physical market, receiving the floating market price. He pays the intermediary the 
floating market price plus 5 cents/bbl. for the 1,000,000 barrels sold. In return he 

receives a fixed price of US$ 20.50/bbl. for 1 million barrels per year. The refiner 
buys 1 million barrels per year on the physical market, paying the floating market 

price. He receives the floating price from the intermediary, paying in return a fixed 

price of US$ 20.65/bbl. for the annual purchase of 1 million barrels. 

The intermediary can charge a commission for connecting the two participants, but he 

can also formulate the prices paid and received in such a way that it is levied 

indirectly. 

1.5.2 Collar swap (also called min-max) 
Imagine a airline company budgets for a maximum jet kerosene price of US$ 182 per 
tonne. He believes, on the other hand, that prices might dip as low as US$ 159 per 
tonne. What he wants is to pay not more than US$ 182 for the jet fuel, with the 
latitude to profit from lower prices down to US$ 159. The collar swap enables the 
flight company to realise this goal. By locking in a floor price (US$ 159) and a 

ceiling (US$ 182), the airline company is allowed to sacrifice less of the benefit from 

favourable price movements than would be the case under a straightforward swap 
transaction. 

purchase of the option to buy jet fuel at USS 182 

Swaps provider 

purchase of the option to sell jet fuel at US$ 159 

Airline company 

28 



The collar swap locks in a minimum price and a maximum price. In other words: the 

swap locks in a price range unlike the straightforward swap under which a single price 
is guaranteed. 

1.5.3 Participation swap 
The participation swap is similar to the straightforward swap, with the difference that 

under this swap the buyer or seller does not have to sacrifice all of his potential gains. 
Instead, the swaps participant has the option to keep a certain share of the possible 

windfalls, should the price level rise above a certain price level. Let us take the 

example of an oil producer who has arranged a swap with a swaps provider. 

fixed price of US$ 21/bbl. for 200,000 bbL 

Producer Swaps provider 
premium for 100,000 bbL call option, strike price US$ 24 

floating market price for 200,000 bbl. 

floating market price for 200,000 bbl. 

Physical market 

As you can see in the foregoing flow-chart, the producer has negotiated an option to 

pay the floating market price for 200,000 bbl. of crude oil, but with the possibility to 
benefit from a price rise above US$24/bbl. In return for this possibility, he has to pay 
the swaps provider a premium. Note that the participation swap still guarantees a 
fixed price (in this example the fixed price laid down in the contract is US$ 21/bbl. ). 
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1.5.4 Specialised swap 
Specialised swaps embrace many different sophisticated swap variants. In general, 

these swaps are of a short-term nature. Particularly for the oil products for which no 

organised futures market exists, the specialised swap product is a popular instrument 

to deal with different (price) risks. Jet fuel swaps and refinery margin swaps are 

examples of this instrument which demands a high degree of expertise and 

management capacities. 
The provider of a specialist swap is often deeply involved in the oil market itself, like 

a large oil company is. By having a natural long or short position in oil, he is very 

well qualified to develop a flexible strategy to offset the risks involved. 

A growing sophistication of swaps can be seen from the fact that these have become 

increasingly tailor-made. For example, "floating for floating" or "basis" swaps have 

become rather popular. In these specialised swaps, a certain price relation is fixed: 

e. g. between sweet and sour oil; between crude oil and heating oil (a "crack spread" 

swap); between WTI and Brent oil or between New York and Singapore prices (to 

hedge locational price developments); or between July and November prices (to 

hedge seasonality). Dozens of different basis swaps are traded. These basis swaps 

are very useful to reduce the basis risks of using the existing futures or forward 

markets. They are used by a wide range of parties, with the international oil and 

trading companies in a dominant position. 

There is a very active market in WTI, Brent, Dubai and Tapis swaps for maturities of 
less than three years, and also some swap activity exists in several other crude's, on 

the basis of Platts Oilgram prices. In the United States, natural gas swaps are traded 

on a large scale. The spread market WTI/heating oil is also very active; in general, 

these swaps trade for less than six months. As concerns product swaps, trade in 

heating oil swaps is considerable in several regions for period of up to 18 months; 

there is also an active market in Northwest Europe and Singapore gas oil. Over-the- 

counter options as well have a high turnover in most of these markets. It should be 

noted that the periods covered by these contracts largely coincide with the maturity of 
futures contracts. Swaps are preferred over futures because they are felt to correspond 
better to the needs of users. For example, in the natural gas swap market in the 

United States, price settlement is based on a price reporting service rather than on 
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NYMEX futures prices which are felt to show a weak correlation with cash prices 
because the NYMEX contract expires before spot delivery prices are determined. 

Summary 

In this chapter we have introduced energy derivatives, describing some simple 

structures and some basic risk management techniques. In the following chapter we 
look at the applicability of Geometric Brownian Motion for modelling energy price 

processes and price energy derivatives based upon this (underlying) dynamics. 
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CHAPTER 2 

OPTION VALUATION 

2.1 Introduction 

The aim of this chapter is to test the Black's model approach for modelling energy 

prices and to develop computer algorithms for pricing the main derivative products 

used in energy markets. We discuss closed form solutions lattices and Monte Carlo 

Simulation methods. 

2.2 Detailed Option Model Implementation 

Model implementation should not be confused with option model derivation, although 

with some implementation techniques it is hard to separate the two. Model derivation 

in its basic form is the derivation of the differential equation for the option price. How 

we get from this from this differential equation to the option price is what I refer to as 
the model implementation. 

There are a number of implementation techniques. We will concentrate on the most 

common ones: the closed-form solutions (as exemplified by the famous Black- 

Scholes and Black equations), approximations to the closed-form solutions, and the 

tree building methodologies. 
The closed-form implementation methodology involves the solving of the differential 

equation for the option price to obtain an equation that defines the option price as a 
function of the market variables and modelling parameters. 
Arguably, closed-form solutions for option prices provide the ideal implementation 

methodology. Since they provide us with a simple equation, which can be easily 

programmed and implemented on the trading floor. Such equations are easy to use 

and quick to give us the option value as well as the risk calculations when we need 
them. 

Unfortunately the closed-form solutions are typically extremely hard to arrive at. The 

more complicated the market place is, the more complicated is the differential 

equation for the option price. The more complicated the terms of settlement of the 
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option, the more difficult it becomes to satisfy the boundary condition of the option in 

solving the differential equation. 
In the end, in order to arrive at closed form solutions, we usually need to make many 

simplifying assumptions about both the market variables and the option settlements 

character. The end result of these simplifications is that while providing us with a 

practical and easy to use option-pricing methodology, the closed form solution may 

not reflect the reality of the market behaviour. Examples of such simplification 
include assuming that the volatilities are constant over time when they are not, 

assuming that the underlying market price is lognormal when could be mean 

reverting, and treating the option settlement as a discrete price when it is actually an 

average of discrete prices. 
It is such simplifications that force us to calculate corrections to the closed-form 

option price implementation. 

Two famous closed-form option-pricing models are the Black-Scholes model and the 

Black model. Both assume that the option settlement prices are lognormal and have 

constant volatilities. Next, the derivation of these models is briefly discussed. 

2.3 The Black-Scholes Model 

Part A 
In this chapter we will look at a number of different methodologies that have been 
developed for pricing options. These approaches have been developed under the 
Black Scholes Model (BSM) assumptions of no arbitrage, risk neutral valuation, a 
non-dividend-paying asset, constant interest rates and constant volatility. In a risk 
neutral world, all assets earn the riskless rate of interest, thus the actual expected 
return on the asset does not appear in the Black Scholes formula. From the 
perspective of this chapter, however, the most important assumption in the BSM 
model is the mathematical description of how the asset prices evolve through time. 
This is the well-known Geometric Brownian Motion (GBM) assumption where 
proportional changes in the asset price, denoted by S, are assumed to have constant 
instantaneous drift, p, and volatility, a. The mathematical description of this 
property is given by the following stochastic differential equation: 

dS = uSdt + oSda (2.1) 
Here dS represents the increment in the asset price process during a small interval of 
time dt, and dz is the underlying uncertainty driving the model and represents an 
increment in a Weiner process during dt. The risk-neutral assumption implies that the 
drift can be replaced by the riskless rate of interest (i. e. µ=r). Any process 
describing the stochastic behaviour of the asset price will lead to a characterisation of 
the distribution of future asset values and the assumption in equation (2.1) implies that 
future asset prices are lognormally distributed. Equation (2.1) can be written in terms 
of the natural logarithm of the spot price, x =1n S, as follows: 
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dx=(r-I62)dt+adz (2.2) 

These extensions are straightforward to incorporate into Monte Carlo simulations but 
lead to the loss of the analytical tractability of the BSM model. 
The BSM model described by the equation (2.1) can be descretised as follows: 

Ax, =(r- 
I 

a2 )At + 6-E,, (2.3) 

We are going to test the BSM (equation 2.3) in the following markets: 

Brent IPE from January 1995 to 29 December 2000(Figure-2.1), WTI from January 

1995 to 29 December 2000 (Figure-2.2), Natural Gas from January 1995 to 30 

October 2000 (Figure-2.3), California-Oregon Border On Peak (Figure-2.4) & Off 

Peak (COB) (Figure-2.5) electricity spot price from December 1996 to 30 December 

2000, Mid-Columbia On Peak (Figure-2.6) & Off Peak (Figure-2.7) (MC) over-the- 

counter electricity spot price from April 1996 to December 2000 and the Southwest 

Power Pool On Peak (Figure-2.8) & Off Peak (Figure-2.9) (SPP) electricity spot price 

from April 1996 to December 2000. 

Figure-2.1 

Brent 
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Figure-2.2 

Figure-2.3 
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Figure-2.4 

Figure-2.5 
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Figure-2.6 

4500 

4000 

3500 

3000 

2500 

2000 

1500 

1000 

500 

0 

Mid C On Peak Prices 

Figure-2.7 
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Figure-2.8 

SPP On Peak Prices 

Figure-2.9 
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We are using Monte Carlo Simulation in order to implement the BSM (equation 2.3). 
Appendix-2.1 shows the computer algorithm for the Black-Scholes GBM model. 
The computer language we are using to implement the computer algorithm for the 
BSM is Visual Basic. Monte Carlo Simulation is going to be discussed in more detail 
later on in this chapter. We apply ten thousands simulations for each one of the sixty- 
six consecutive historical chosen randomly from the data available observations in 
order get more accurate results. Sixty-six data points corresponds to three months 
worth of observations which we feel is a large enough sample which we can draw 
conclusions about the spot price behaviour based on the BSM. 
We assume that the interest rate is 5% and the volatility o can be estimated from the 
historical price returns. The process of estimation of the volatility can be broken into 
several steps that can be easily carried out in a spreadsheet. 

Step 1. Calculate logarithmic price returns. 

This can be accomplished by forming the price ratios S, / S, 
_, and taking the natural 

logarithms of these ratios. Price returns are typically calculated as r= (S, I S, 
_, 

) -1. 
The logic of the approach described above is that for relatively small x, In (1+x) - x. 
Taking the natural log of S, IS,, is equivalent to taking the natural log of 1+r, and 
this in turn is roughly equal to r. 
The use of natural log returns has also some other additional advantages. If one wants 
to calculate a log return over a longer time period, say from t to t+n, corresponding 
to the ratio S, +� 

/ S, , one can convert into (S, 
+� 

/ S, +�_, )(S t+�_1 / S1+n_2)........ (S, +1 / S, ). 
Given that a log of a product is equal to the sum of the logs, one can easily show that 
a log return over the longer time period can be calculated as the sum of log returns for 
the sub periods. 

Step 2. Calculate the standard deviation of the logarithmic price returns. 

Step 3. Annualise the standard deviation by multiplying it by the correct factor. 

As a first approximation the annualisation factor depends on the price data frequency. 
In the case that the data is monthly, the factor is 12 , for weekly data is 45-2. For 

the daily data available for each calendar year one has to use 365. If the information 
is available for trading days only, the standard number is 252. For example, if the 
price of a barrel of oil at the close on Monday is $16.00, and at the close on Tuesday 
is $16.20, then close to close price return is In (I 6.20)-In (16.00)=0.0124. 
On an annualised basis (42-5-2 *0.0124=0.1968=19.68%). The realised volatility 
between these two days is 19.68%. 
Table-2.1 shows the annualised volatility a. 
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Table-2. l 

Market Annualised Volatility 6 
WTI crude oil 36.2018% 
IPE Brent 30.8532% 
Natural Gas 66.4777% 
COB On Peak 290.2306% 
Mid-C On Peak 282.3249% 
SPP On Peak 434.0962% 
COB Off Peak 202.5722% 
Mid-C Off Peak 221.5380% 
SPP Off Peak 160.9265% 

WTI 
Figure-2.10 

Figure-2.11 
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From the graph above (Figure-2.10) we can see with a naked eye that the Black- 
Scholes GBM model is the appropriate model to describe the WTI market. If we look 
in more detail (Figure-2.11) the average difference between the predictions and the 
actual data is 0.0109% with a standard deviation 0.3516%. 

BRENT 

Figure-2.12 
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Figure-2.13 

Deviation Percentage between (Predict Actual) for Brent 
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From the graph above (Figure-2.12) we can see with a naked eye that the Black- 
Scholes GBM model is the appropriate model to describe the Brent market. If we look 
in more detail (Figure-2.13) the average difference between the predictions and the 
actual data is 0.0051 % with a standard deviation 0.2976%. 

NATURAL GAS 

Figure-2.14 
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Figure-2.15 
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From the graph above (Figure-2.14) we can see with a naked eye that the Black- 
Scholes GBM model is the appropriate model to describe the Natural Gas market. If 
we look in more detail (Figure-2.15) the average difference between the predictions 
and the actual data is 0.0141 % with a standard deviation 0.1048%. 

COB On Peak Prices 

Figure-2.16 

Simulation for Black-Scholes GBM for COB On Peak Prices 
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Figure-2.17 

Deviation Percentage between (Predict-Actual) for COB On Peak 
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From the graph above (Figure-2.16) we can see with a naked eye that the Black- 
Scholes GBM model is the appropriate model to describe the COB On Peak 
electricity market. If we look in more detail (Figure-2.17) the average difference 
between the predictions and the actual data is 5.545% with a standard deviation 
25.554%. 

MID C On Peak Prices 
Figure-2.18 

Simulation of Black-Scholes GBM for Mid C On Peak Prices 
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Figure-2.19 

From the graph above (Figure-2.18) we can see with a naked eye that the Black- 
Scholes GBM model is the appropriate model to describe the Mid C On Peak 

electricity market. If we look in more detail (Figure-2.19) the average difference 
between the predictions and the actual data is 5.05% with a standard deviation 
26.03%. 

SPP On Peak Prices 
Figure-2.20 
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Figure-2.21 

Deviation Percentage (Predict-Actual) for SPP On Peak 
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From the graph above (Figure-2.20) we can see with a naked eye that the Black- 
Scholes GBM model is the appropriate model to describe the SPP On Peak electricity 
market. If we look in more detail (Figure-2.21) the average difference between the 
predictions and the actual data is 1.694% with a standard deviation 8.2316%. 

COB Off Peak Prices 

Figure-2.22 
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Figure-2.23 
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From the graph above (Figure-2.22) we can see with a naked eye that the Black- 
Scholes GBM model is the appropriate model to describe the COB Off Peak 
electricity market. If we look in more detail (Figure-2.23) the average difference 
between the predictions and the actual data isO. 024with a standard deviation 0.105. 

MID C Off Peak Prices 

Figure-2.24 
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Figure-2.25 

Deviation Percentage between (Predict - Actual) for Mid C Off Peak 
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From the graph above (Figure-2.24) we can see with a naked eye that the Black- 
Scholes GBM model is the appropriate model to describe the Mid C Off Peak 
electricity market. If we look in more detail (Figure-2.25) the average difference 
between the predictions and the actual data isO. 0204with a standard deviation 0.1033. 

SPP Off Peak Prices 

Figure-2.26 
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Figure-2.27 

Deviation Percentage (Predict-Actual) for SPP Off Peak 
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From the graph above (Figure-2.26) we can see with a naked eye that the Black- 
Scholes GBM model is the appropriate model to describe the SPP Off Peak electricity 
market. If we look in more detail (Figure-2.27) the average difference between the 
predictions and the actual data is0.0025with a standard deviation 0.0 128. 
Based on the results above, we conclude that the Black-Scholes GBM approach is the 
appropriate for modelling the oil, natural gas and electricity market for the periods we 
tested the model. Because of that we can develop computer algorithms for pricing the 
main derivatives products used in the energy markets based on the Black-Scholes 
environment. 

PART-B 

The Black-Scholes closed form solution for option prices is probably the most famous 

option pricing methodology. It is so easy to use so that it can be implemented on the 

trading floor by the traders themselves. 

In this simple world, we make the assumption that an option position can be perfectly 

hedged with the spot price and we can use the bank's services to borrow and lend 

money at a risk-free interest rate. This leads us to derive the differential equation for 

the option price: 

9C+1 91C 
a Sz+rS` -rC=O (2.4) 

& 29 S2 as 

where: C= call option price 

S= spot price 

K= strike price 
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r= discount (risk-free) rate 

Q= spot price volatility 

Solving this differential equation and imposing the boundary constraint that the option 

price must equal the option parity value at expiration, we obtain the closed-form 

solution for the option price: 

CBS =SN(di)-Ke-'(T-`)N(d2) (2.5) 

2 

ln(S/K)+(r+ 2)(T 
- t) 

dl= (2.6) 
6 T-t 

i 
In(S / K) + (r - 

-)(T 
- t) 

d2 = (2.7) 
QT-t 

d2=d, - Q T-t (2.8) 

-Y2 

N (x) =j e--dy (2.9) 

where: T= time of option expiration 

t= time of option evaluation 
N (. ) = cumulative normal distribution function 

This is the famous Black-Scholes option solution. It is a function of the current spot 

price, the spot price volatility, the risk-free rate, option's strike price, and the time to 

option's expiration. The value of a European put can be calculated in a manner similar 
to a European call. The closed-form solution is the following: 

PBS = Ke''(T'`)N(-d2) - SN(-d, ) (2.10) 

The computer algorithm of the Black Scholes Model is shown in the Appendix-2.2 of 
this chapter. 
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2.4 The Black Model 

If instead, the option settles not on the spot price at the time of the option's 
expiration, but rather a forward price, we end up using the forward to hedge the 
option and not the spot price. The forward price on a lognormal spot price, as defined 
above, is given by: 

F= Se , (T-`) (2.11) 

and the change in the forward price over time dt is then given by: 

dF =(p -r)Fdt (2.12) 

Since the forward price contract is an arrangement that carries no cost of fmancing, 
our hedge to the option price requires no borrowing of money from the bank. This 
changes the option differential equation in (2.4) to: 

9C+1 92C 
a2F2-rC=0 (2.13) 

9t 29F2 

Solving this differential equation for the option price results in the closed-form 

solution in terms of the forward price rather than the spot price. This is the also 
famous Black option-pricing model: 

CB =Fe-'(T-`)N(dl)-Ke-'(T-`)N(d2) (2.14) 

2 

ln(F/K)+ )(T -t) 
dl= (2.15) 

Q T-t 
2 

ln(F/K)+(-a )(T-t) 
d2=2 (2.16) 

6 T-t 

d2=dI- Q T-t (2.17) 

-Y2 
x 

N (x) =j kz (2.18) 

where: T= time of expiration and forward price expiration. 
t= time of option valuation. 
N () = cumulative normal distribution function. (2.19) 

The, price of the corresponding put option is given by: 

PB = Fe-`(T_t)N(-dl)-Ke-`(T_t)N(-d2) (2.20) 
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The computer algorithm of the Black's Model is shown in the Appendix-2.3 of this 
chapter. 

2.5 Approximations to Closed Form Solutions 

Making simplifying assumptions in the derivation of closed-form solutions, such us 
that the option settlement prices are lognormal with a constant volatility-i. e. flat 
volatility term structure-and that the settlement price is defined by a single factor 
model, when in reality this may not be the case, leads us to come up with 
approximation and/or correction techniques that allows us to continue using the 
closed form solutions in complex markets. 
One approximation technique is as simple as adjusting the volatility inputs fed into 
the closed form solution, to properly reflect the way markets act. Or they may be as 
complicated as calculating the higher order correction terms to the closed form 
solution to capture the market option prices. Either way, we still end up with an 
equation for calculating the option prices, and as such it remains relatively easy to 
program and use on the trading desk. 
Such corrections to Black-Scholes or Black option pricing equations allow us to price 
fairly easily all kinds of European-style options, including Asian options on averages 
of prices, whose settlement price may be path-dependent. 
The potential problem of making adjustments to closed-form solutions is that we have 
to know when it is appropriate to do so, and when the corrections simply do not 
capture all these is to capture. Thus such methodology always need to be used. with 
caution and with an understanding (by the traders) of what its boundaries are. 
The model corrections attempt to allow for correct pricing. However, even if we 
achieve this, we are still left with potentially risk calculations. This is probably the 
greatest drawback of this methodology. The tree building methodology, the binomial 
model offers a way to get this right as well. 

2.6 Binomial Option Pricing 

The binomial method is certainly the most widely used numerical method to price to 
price American options on stocks, futures and currencies. The method was published 
by Cox, Ross and Rubinstein (1979) and Rendleman and Barter (1979). They 
introduced how to construct a recombining binomial tree that discretize the geometric 
Brownian motion. At the limit, a binomial tree (with a very large number of time 
steps) is equivalent to the continuous-time Black-Scholes formula when pricing 
European options. More interesting, the binomial model handles the pricing of 
American options, where no closed-form solution exists, as well as several exotic 
options. In a sense, in the binomial tree approach the life of the option is subdivided 
into a number of time intervals. In each interval, the price of the underlying can move 
into a small number of states. For example, in the binomial tree method, the price in 
an interval can go up with a probability, say p, and go down with a probability (1-p). 
The magnitudes and probabilities of the price shifts are determined from the 
stochastic process assumed for the price of the underlying by requiring that the 
distribution of the tree prices has the correct mean and variance at each time step. 
The binomial model described in this section is the well-known Cox-Ross-Rubinstein 
binomial tree. Including the cost of carry term b, the model can be used to price 
European and American Options on stocks (b = r), stocks and stock indexes paying a 

52 



continuous dividend yield q (b = r-q), futures (b = 0), and currency options with 
foreign interest rate rf (b = r- rf). The asset price of each node is set equal to: 

S u'dj-', i=0,1 . .............; j (2.21) 

Where the up and down jump size that the asset price can take at each time step At 
apart is given by 

u=e(2.22), d=e (2.23) 
where At =T/n is the size of each time step, and n is the number of time steps. The 
probability of the stock price increasing at the next step is the following: 

eb`IA -d p 
u-d 

(2.24) 

The probability of going down must be 1p and the probability of going either up or 
down equals unity. The up and down jump size and the up and down probability are 
chosen to match the first two moments of the stock price distribution (mean and 
variance). This ensures that the binomial tree is the discretization of the geometric 
Brownian motion. 
The value of the American put option can now easily be found by standard back ward 
induction. 

P j, = max{X -S u' d'-', e -s° [pP 1+1, r+l + (1-p) P j+i,, ]} (2.25) 

The computer algorithm of the Binomial Model is shown in the Appendix-2.4 of this 
chapter. 
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2.7 Trinomial Option Pricing 

Trinomial trees in option pricing, introduced by Boyle (1986), are similar to binomial 
trees, only now instead of the up-and-down move, we have one more degree of 
freedom: the sideways move. Trinomial trees can be used to price both European and 
American options on a underlying asset. 

Because the asset price can move in three directions from a given node, compared 
with only two in a binomial tree, the number of time steps can be reduced to attain the 
same accuracy as in the binomial tree. This makes trinomial trees more efficient than 
binomial trees. 
There are several ways to choose jump size and move the probabilities in a trinomial 
tree that give the same result when the number of time steps is large. To discretize a 
geometric Brownian motion, the jump sizes and probabilities must match the first two 
moments of the distribution (the mean and the variance). One possibility is to build a 
trinomial tree where the asset price at each node can go up, stay at the same level or 
go down. In that case, the up-and -down jump sizes are: 

u_ eQs eý (2.26), d= e-" f'-A' (2.27) 
and the probability of going up and down respectively are: 

eeer/x _ e-04`12 
(2 (2.28) 

ea 
erl 2 

_e 
-o erl 2 

eo 
&12 

_ eb&/2 

Pa =( )2 (2.29) 
eQ ai2 _ -a aiz 

The probabilities must sum to unity. Thus the probability of staying at the same asset 
price level is: 

Pm =1-Pu Pd (2.30) 
T is the time to maturity in years, b is the cost of carry, At =T/n is the size of each 
time step, and n is the number of time steps. 
The computer algorithm of the Trinomial Option Model is shown in the Appendix-2.5 
of this chapter. 
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2.8 Spread Option Pricing 

The payoff from a European call spread option on two futures contracts is max (F, - 
F2 - X, 0) . The payoff from a put option is similarly max (X - F, + F2 , 0) .A 
European spread option on forwards or futures contracts can be valued by using the 
standard Black (1976) model by performing the following transformation: 

c= max(F, -F2 -X, 0)=max(F 
FX 

-1, O)(F2 +X) (2.31) 
2+ 

F 
p= max(X-F + F2,0) =max(1 - (FZ + X) , 0)(FZ +X) (2.32) 

The value of a call or put is: 

c= (F2 + X) {e-'T [FN(d, ) - N(d2 )] } (2.33) 

p= (F2 +X){e-'T [N(-dz)-FN(-d, )]}, (2.34) 

where dl = 
In(F) + (az 2)T 

(2.35) dz = d, - a-, f T, F= 
F' 

F2+ , (2.36) 
X 

and the volatility of FX 
(2.34) can be approximated by the following equation: 

z+ 

a2 =Q; +[a2 
+2X` 

J2-2po, a2 
ýF, 

2 

z)z 
where: 

F= Price on futures contract 1. 
FZ = Price on futures contract 2. 
X= Strike price. 
T= Time to expiration of the options in years. 
r= Risk free interest rate in years. 
Q, = Volatility of futures 1. 

a2 = Volatility of futures 2. 
p= Correlation between the two futures contracts. 

The computer algorithm of the Spread Option Model is shown in the Appendix-2.6 of 
this chapter. 
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2.9 Asian Option Pricing 

Asian options are the options whose final payoff is based in some way on the average 
level of an energy price (spot, forward or future) during some or all of the life of the 
option. Of the range of exotics options, Asian options in the equity and commodity 
markets are priced and risk managed as being almost vanilla in that they are now one 
of the best understood options and are very popular as a means to hedge exposure. 
There are two basic styles of Asian option; average price options and average strike 
options. The payoffs to the four main standard Asian options are summarised in the 
following table-2.2 where K is the strike price for the fixed strike options. 

Table-2.2 Payoffs of the standard Asian Options 

Name Payoff 
m 

Average Price Call Option: max (0, -1: Sk -K) m k=, 

m 

Average Price Put Option: max (0, K- -ý Sk ) 
M ks, 

m 

Average Strike Call Option: max (0, ST -- SO 
m k=1 

Average Strike Put Option: max (0, - Sk - ST) 
m ks, 

In general the main use of Asian Options is hedging an exposure to the average price 
over a period of time. For example, large buyers of electricity often require hedge 
their average fuel cost as the price they charge to the customers are based on the 
average purchase prices. Asian options also fit the risk profile of energy producers 
who need to meet budget targets on average prices. 

2.9.1 Geometric Average-Rate Options 

If the underlying asset is assumed to be lognormally distributed, the geometric 
average ((x,........ x")1 ") of the asset will itself be lognormally distributed. As 

originally shown by Kemma and Vorst(1990) the geometric option can be priced as a 
standard option by changing the volatility and cost-of-carry term: 

c= Se(°A-r)T N(d, ) - Xe-. TN(d2 ) 

p= Xe_rTN(-d2) - Se (°"'')T N(-d, ) 
where 

(2.38) 

(2.39) 
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d, - 
ln(S/X)+(bAT QA Z /2)T 

, (2.40) d2 = d, -QAý, (2.41) 
QAV 

and the adjusted volatility is equal to 

QA =- (2.42) 

The adjusted cost of carry is set to 

bA =2 (b - 
62 (2.43) 

The computer algorithm of the Geometric Average Rate Option Model is shown in 
the Appendix-2.7 of this chapter. 

2.9.2 Arithmetic Average-Rate Options 

It is not possible to find a closed form solution for the valuation of options on an 

arithmetic average (x1 + x2 +.......... + x") The main reason for this is that when the 
n 

asset is assumed to be lognormally distributed, the arithmetic average will not itself 
have a lognormal distribution. Arithmetic average-rate options can be priced by 
analytical approximations, as presented below or with Monte Carlo simulations which 
we are going to present later on this chapter. 

The Turnbull and Wakeman Approximation. 

The formula below is based on the work of Turnbull and Wakeman (1991). The 
approximation adjusts the mean and variance so that they are consistent with the exact 
moments of the arithmetic average. The adjusted mean, bA and the variance, aÄ, are 
then used as an input in the Black-Scholes formula: 

c Se(b"-')T=N(dl)-Xe-'T2N(d2) (2.44) 

p; ze Xe' T' N(d2) - Se(°"-')T' N(dl) (2.45) 

dl = 
ln(S / X) + (bA + QÄ / 2)TZ 

(2.46) d2= dl - 6A TZ (2.47) 
(TA TZ 

where T2 is the remaining time to maturity. In addition, 

0 
fln(M2) 

-2 T 
b,, (2.48) 

bA 
(M') 

(2.49) 
T 
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The exact first and second moments of the arithmetic average are: 

bT br 

M' =e-e (2.50) 
b(T - r) 

2e(2b+a2 )T 2e(2b+a2)r 1 eb(T-r) 
M-+[-] (2.51) 2 (b+Q2)(2b+Q2 )(T -r)2 b(T -r)2 2b+Q2 b+Q2 

where T is the original time to maturity, and r is the time to the beginning of the 
average period, the strike price must be replaced by XS, and the option value must be 

multiplied by 
TZ 

, where 

XS=T X-T SA, 
TZ TZ 

(2.52) 

where SA is the average asset price during the realised or observed time period 
Tl (Tl =T-T2). The formula doesn't work for trivial cost of carry (b = 0). 
The computer algorithm of the Arithmetic Average Rate Option Model is shown in 
the Appendix-2.8 of this chapter. 

2.9.3 Levy's Approximation 

Another alternative is the Levy (1992) Asian option approximation: 

CAsian "" SEN(dl) -X "e-"T, N(d2 ), 

SE 
s 

(e 
(b r)T2 

- e' 2) 

Tb 

d, =I 
In(D) 

-ln(X*) , d2 =d1-VV 

x* =x- 
T 

TTZ 
S4, (4.54), V= In(D) - 2[rT2 + In(SE )], 

2S2 e(2b+or2 M 
b+Q2 2b+Cr2 b 

The Asian put value can be found using put call parity: 

PA.,. = CAsian - 
SE + X"e-rT2 

where : 

SA = Arithmetic average of the known asset price fixings. 
S= Asset Price 

(4.55), D= 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

(2.58) 

(2.59) 

58 



X= strike price of option. 
r= Risk free interest rate 
b= cost of carry rate 
TZ = Remaining Time to maturity 
T= Original time to maturity 
Q= Volatility of natural logarithms of return of the underlying asset. 

The formula does not allow for b=0. 
The computer algorithm of the Levy's Approximation Option Model is shown in the 
Appendix-2.9 of this chapter. 

2.9.4 Curran's Approximation 

Curran (1992) has developed an approximation method for pricing Asian options 
based on the geometric conditioning approach. Curran claims that this method is more 
accurate than other closed form approximations presented earlier. 

AA 
'I 

11 1i-ln(X) . 1U-ln(X 
c e-. r _Zew, +a, i2N + -XN (2.60) 

n i=1 ax ax ax 

where 

S= Initial asset price. 
X= Strike price of option. 
r =Risk free rate. 
b= Cost of carry. 
T= Time to expiration in years. 
ti = Time to first averaging point. 
At = Time between averaging points. 
n =Number of averaging points. 
a= Volatility of the asset. 
N(x) =The cumulative normal distribution function. 

, u, =In(S)+(b-a2/2)t, (2.61) 

Q; =a2 [tl + (i -1)dtý (2.62) 

Qx; = QZ it, + At [(l -1) - i(i -1) /(2n)]} (2.63) 

,u =In(S)+(b-a2 /2)[t, +(n-1)At/2] (2.64) 

6', = Q2 [t, + At(n - 1)(2n - 1) / 6n] 

and 

(2.65) 
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A1" 6xi[ ]lý(X) -/JJ Ql Q21 / Qx2 
X= 2X --exp p, +Z+ (2.66) 

ni=, CT 2 

2.10 COMPOUND OPTIONS 

Compound option is an option that allows the holder to buy or sell another option for 
a fixed price. Compound options occur in energy markets in the form of captions and 
floptions as well as calls or puts on simple calls or puts. A caption is an option on a 
cap and a floption is an option on the floor. 
Compound options offer a method of locking in commodity price protection at an 
initial cost, which is lower than that of the purchase of a call or put. These options are 
also useful for locking in the cost of price protection is contingent on some future 
event. The compound options lose value as they come closer to expiration, with the 
at-the-money and the out-of-the money option values approaching to zero for very 
short tenors. 
A model for pricing compound options was first published by Geske (1977). It was 
later extended and discussed by Geske (1979) in a Black-Scholes world. 

Call on Call. 
The payoff is: max [cBS (S, X1, T2) - X2,0], where X, is the strike price of the 

underlying option, X2 is the strike price of the option on the option, and 
CBS (S, X1, T2) is the Black-Scholes formula with strike Xl and the time to maturity 
T2 . 

Cali = Se('-")'M(zl, yl; p)-X1e-. rýM(z2'Y2; P)-X2e-ýN(Y2), (2.67) 

where 

yl = 
In(s/1)+(b+6z /2)r, 

, (2.68) yz = y, -Q r, (2.69) 
Q Tz 

z, = 
ln(S/X, )+(b+Qz /2)T2 

(2.70) zz = z, -6 Tz (2.71) 
CrTz 

p= (2.72) 
FT11 

where S is the price of the underlying at time t,, I is the underlying price which 
makes the underlying option equal to X2 at time t, , TZ is the time to maturity on the 
underlying option, t, is the time to maturity on the option on the option, a is the 
annualised volatility, r is the risk-free rate, p is the correlation coefficient and 
M(z, y, p) is the bivariate cumulative normal distribution function. 
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Put on Call 
Payoff: max 

[X2 
- cas (S, XI 9 T2 ); Ol 

P an- 
X1 e'. rýM(z2' Y2; P)-Se(b-')T2M(z1, Yi; _P)+X2e-'N(-y2), (2.73) 

where the value ofl is found by solving the following equation: 

CBS (I, X, 
, 

T2 -t, 
) = X21 

Call on put 
Payoff max [PBS (S, X1, T2) - X2; 0] 

(2.74) 

epur = Xie-? T2M(-z2, Y2; P)-Se(n-")T2M(-zl, y1; p)-X2e-"'N(-y2) (2.75) 

Put on Put 
Payoff: max[X2 - pBS(S, XI , T2); 0] 

Ppur = Se(°-')T' M(-z1 ' y1; P) - Xe-. T2 M(-z211 Y2; -P) + X2e-"' N(Y2 )3(2.76) 

where the value of I is found by solving the following equation 

Pas =(I, X1, T2 -tl)=X2 (2.77) 

The computer algorithm of Compound Option Model is shown in the Appendix-2.10 
of this chapter. 

2.11 LOOKBACK OPTIONS 

With lookback options the payout is a function of the highest or lowest price at which 
the underlying asset trades over some period during the life of the option. There are 
two basic styles of lookback option; fixed strike and floating strike options. 

2.11.1 Fixed Strike Lookback Options 

In a fixed strike lookback call, the strike is fixed in advance, and at expiry the option 
pays out the maximum of the difference between the highest observed price, S., in 

the option lifetime and the strike X, 0. Similarly, a put at expiry pays out the 
maximum of the difference between the fixed price X and the minimum observed 
price, Snj, and 0. The lookback option is much more expensive than the 

corresponding European option. Fixed strike lookback options can be priced using the 
Conze and Viswanathan (1991) formula. 

' We are using the Newton-Raphson algorithm in order to calculate the value of I. (see Appendix- 
2.10). 
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Fixed strike lookback call 

F -2b 

--)+e °2 
l- 

2a bT N(d1) c= Se(b-')T N(d i) - Xe 'T N(d 2) + Se-'r a2 X) 

(2.78) 
where 

d_ 
ln(SI X)+(b+Q2 /2)T 

(2.79) 

when X: 5 Smax 

d2 = d, -QT, (2.80) 

-2b 
2 aý 

c=e 'T (Sm - X) + Se(b-')T N(ei) - S. e-'T N(e2) +' e-'T 
C-SN (e, 

-? 
b IT)+e br N(e. 

2b S. 6 

(2.81) 
where 

e- 
ln(S / Sm, ) + (b + Qz / 2)T 

(2.82) e2 =- el - Qý (2.83) ý 
6ý 

ý 

Fixed strike lookback put 

-2b 

p=Xe-. TN(-d2)-Seib-'STN(-d1)+Se-. r 
2b X 

o2 N(-d'+26 V-T)-ebrN(-dl) 

(2.84) 
and when X >_ Smin 

p= e-"T (X - Smin) - Se(b-r)T N(-. f, ) + Smid e-"TN(-f2) + 
-2b 

Se-rT a2Sa, N(- + 
Zb bT (2.85) )-e 

N(-f ) 
2b S 

ýi 

where 

f_ 
In(SISmin)+(b+ a'/2)T, 

r (2.86) f2 =J1 -U. 1 (2.87) 

The computer algorithm of the Fixed Strike Lookback Option Model is shown in the 
Appendix-2.11 of this chapter. 
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2.11.2 Floating Strike Lookback Options 

A floating strike lookback call gives the holder of the option to buy the underlying at 
the lowest at the lowest price observed, Smjn , in the life of the option. Similarly, a 
floating strike lookback put gives the option holder the right to sell the underlying at 
the highest price observed, S.,,,,, in the option's lifetime. The payoff from a standard 
floating strike lookback option is: 

C(S Smin'T) = max(S - Smin; O) =S- Smin (2.88) 

and for the put is 

p(S, Smax 
, 

T) = maX(Smax - "S; 
O) 

- 
Smax 

-s 
(2.89) 

Floating strike lookback options were originally introduced by Goldman, Sosin and 
Gatto. (1979). 

Floating strike lookback call 

2 

C= Se(b_r)T N(al) 
- 

Smin e-rT N(a2) + Se-rT 
2b 

-2b 

SaN- 
al + 

2b 
NIT) - e-bT N(-al ) 

Smm i(a 
(2.90) 

where 

a_ 
ln(SISmin)+(b+Q2 12)T 

(2.91) 1-a/.., a2 = a, - QV-T (2.92) 

Floating strike lookback put 

2 

p= Smaxe-'T N(-b2) - Se(b_r)T N(-b, ) + Se-rT 
2b 

r -2b 

-S 
a2 4 

b, - 
2b 

-IT 
--)+e N(bl) 

Smý Q 

where 

bl - 
ln(S / SM-ax) + (b + QZ / 2)T 

Qv-T 
(2.99) bZ = bi - QVT. 

(2.93) 

(2.94) 
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The computer algorithm of the Floating Strike Lookback Option Model is shown in 
the Appendix-2.12 of this chapter. 

2.12 BARRIER OPTIONS 

In recent years one of the most significant growth areas in new options types has been 
in the area of barrier options. Barrier options are standard options that either cease to 
exist (Knock-out) or come in to existence (Knock-in) if the underlying price (usually 
a spot energy price or the price of the forward contract) crosses a predetermined level 

- the barrier (which we denote by IV. Barrier options were originally introduced 
because they are cheaper than otherwise identical standard options due to the fact that 
the option can cease to exist or never come to the existence. There four basic types of 
barrier options- the barrier can be above the current underlying price (up-barriers) or 
below (down-barriers) and the option can cease to exist (knock-out) or come in to 
existence (Knock in) when the barrier level is crossed. Each of these four types can be 
either a call or a put, which leads to eight different barrier options. A standard 
variation of the options just described are options which pay a predetermined cash 
rebate if an out option disappears or an in option never appears. 
A typical example of a barrier option is the up-and-out put purchased by an energy 
producer to hedge its natural long position. An up-and-out put may be an attractive 
alternative to the vanilla put option as it is less expensive and provides the same price 
protection if prices move down from the current levels. However, if prices move up, 
the increase in the underlying commodity's price reduces the need for downside price 
protection at the original strike. If the price moves up sufficiently to cross the barrier 
and extinguish the option, the owner may consider re-entering a hedge by buying 
another put at a higher strike price. 
Merton (1973) and Reiner and Rubinstein (1991a), (see also Rich 1994) have 
developed formulas for pricing standard barrier options: 

A= OSe(b-')T N( l) -fie . TNi(px1-coo ) 

B= 
Y^-'e(b-)T 

N(W 
2) - (pXe-K N(W2 - 047. \FT) 

(2.95) 

(2.96) 

C= &e (°-')T (H/S)2 "")N(ny, )-oXe-'r(H/S)2"N(ny, -r7Q T) (2.97) 

D= ose(b-`)T (H I S)Z("+')N(riy2) - OXe-" (HIS)2 -" N(r7y2 - r7Q T) (2.98) 

E= Ke-. r [N(i7x2 - i6VT) - (H / S) 2" N(l y2 -17T )l (2.99) 

F= K[(H / S) "+* N(r/z) + (H / S) "-' N(r/z - 2r72ß0], (2.100) 

where 

In(SIX) 
_ 

In(SIH) 
xl = (2.101) x2 + (1 + p)aV-T (2.102) 

ýTT 
+ (1 + µ)Q T, = 

6-IFT 
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ý(HZ l) 
+(I+ , u)aý (2.103), YZ = 

In(HIS) 
+ (1 + p)QV (2.104) Y, _ av-T 6v-T 

HIS 
z 

In(a 
T) 

+. ZQý (2.105), ýC =b -6 22 
(2.106), = p-2 + 

6z 
(2.107). r2 

2.12.1 "In" Barriers 

In options are paid for today but first come into existence if the asset price S hits the 
barrier H before expiration. It is possible to include a prespecified cash rebate K, 
which is paid out at option expiration if the option has not knocked in during its 
lifetime. 
Down-and-in-call S>H 
Payoff- max (S-X, 0) if S: 5 H. 
Cdr(X>H) =C+E U =1, O=I 

Cd, (X<H) =A-B+D+E 17 =1, O=1 

Up-and-in-call S<H 
Payoff: max (S X, 0) if S? H. 
CUI(X>H) =A+E r7=-1,0=1 

Cu1(x<H) =B-C+D+E 

Down-and-in-put S>H 
Payoff: max (X-S, 0) if S: 5 H. 
Pdi(x>K) B-C+D+E 11,0-1 

Pd, (x<H) =A+Ei =1,0 _ -1 

Up-and-in-put 
Payoff: max (X-S, 0) if S>H. 
PuI(x>H) =A-B+D+E i7=-1, O=-1 

PU; (x<H) =C+E 17 _ -1,0 _ -1 

where r7, (p are binary variables with range {1, 
-1} . 
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2.12.2 "Out" Barriers 

Out options are similar to standard options except that the option is knocked out or 
becomes worthless if the asset price S hits the barrier before expiration. It is possible 
to include a prespesified cash rebate K which is paid out if the option is knocked out 
before expiration. 
Down-and-out-call S>H 
Payoff: max (S-X, 0) if S>H. 

Cdo(X>H) =A -C+F 17 =1,0=1 
CdO(X<H) =B-D+F 

Up-and-out-call S<H 
Payoff: max (S-X, 0) if S<H. 
C. o(x>H) =F 77 = -1, q =1 
C. o(x<H) =A-B+C-D+F 1 7=- 1,0=1 

Down-and-out-put S>H. 
Payoff: max (X-S, 0) if S>H 
Paa(x>H) A-B+C-D+F 

Pdo(X<H) F 77=1,0=-1 

Up-and-out-put S<H 
Payoff: max (X-S, 0) if S<H. 

_ -1 Puo(x>x) =B-D+F -1,0 
Puo(x<H) A-C+F 17 -1,0=-1 

where q , (p are binary variables with range 
The computer algorithm of the Barrier Option Model is shown in the Appendix-2.13 
of this chapter. 

2.13 BINARY (DIGITAL) OPTIONS 

Binary options, also known as digital options, have discontinuous payoffs and they 
aren't widely used in the energy market. The main distinction between European 
options and binary options is simply this: 

" The payout of a European option is related to the difference between the 
underlying and the strike price. 

  The payout of a binary option is determined by whether or not the underlying is 
above the strike price. The amount paid out is independent of the difference. 

Digital (or binary) options typically pay either a constant value or zero depending on 
whether the payoff condition is satisfied or not. 
Examples of such options are provided by cash-or-nothing and asset-or-nothing 
options. 
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2.13.1 CASH-OR-NOTHING OPTIONS 

To illustrate: A European call option stuck at $100 will pay $5 if the underlying ends 
at $105, $10 if it ends at $110, and $20 if it ends $120. A binary call option sruck at 
$100 will payout $1 if the underlying ends at $101 and will payout the same $1 even 
if the underlying ends up at $110, $120, or $150. This means that if the strike is $100, 
the binary option has a payout of $1 if the underlying is priced at $100.001. On the 
other hand if the underlying price is $99.999, the binary option pays zero. 

Figure-2.28 The payout of a standard European option. Its payout function is max 

(S -X, O). 

EKI 
Figure-2.29 The payout of a binary option. It pays out a $1 if S, > X; otherwise it 

pays out 0. 

As mentioned above, a cash-or-nothing call option pays out $1 if the underlying, S, is 

above the strike, X. The same payout is given regardless of the difference between S 

and X. A binary put option pays $1 if the underlying is below the strike price. 
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The valuation of a cash-or-nothing option is extremely simple, it pays out a cash 

amount if the option is in-the-money. The payoff from a can is 0 if S: 5 X and K if 

S>X. The payoff from a put option is 0 if S >_ X and K if S<X. Valuation of 

cash-or-nothing options can be made using the formula described by Reiner and 

Rubinstein (1991b): 

C= Ke-'N(d) (2.108) 

P= Ke-"N(-d) (2.109) 

Here C is the price of the binary call option, P is the price of the binary put option, 
NQ is the cumulative standard normal distribution function, r is the risk free interest 

rate and t is the time to expiration. This is nothing but the last part of the Black's 

formula, where: 

d= 
In(S/X)+(-QZ /2)T 

(2.110) 

where 
S= Spot price of the underlying 
X= Strike price 

a= Volatility 

Therefore, the price of the binary option is given by the area under the curve. 
What is the probability of the underlying ending in the money, discounted to today's 

rate? If we price a binary option struck at $100, the current spot price is $100, the price 

of the option is $0.48. This can be regarded as the probability that the underlying will 

end up above $100 (roughly 50%) discounted by one year. The option has virtually no 

time decay. 

Pricing the same option with only two weeks to expiration give us a price of $0.50. Of 

course, the probability that the underlying will end up $100 is still roughly 50%. With 

two weeks to expiration, we have just changed the present value somewhat. 
The computer algorithm of the Cash-or-nothing Option Model is shown in the 
Appendix-2.14 of this chapter. 
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2.13.2 ASSET-OR-NOTHING OPTIONS 

The asset-or-nothing call option pays 0 if S5X and S if S>X. Similarly, a put 

option pays 0 if S >_ X and S if S<X. The option can valued using the formula 

described by Reiner and Rubinstein (1991b): 

C= Se-"TN(d) (2.111) 

P= Se-'T N(-d) (2.112) 

Here C is the price of the binary call option, P is the price of the binary put option, 
NQ is the cumulative standard normal distribution function, r is the risk free interest 

rate and t is the time to expiration. This is nothing but the first part of the Black's 

formula, where: 

d= In(S/X)+(62 12)T 
(2.113) 

QýT 

The computer algorithm of the Asset-or-nothing Option Model is shown in the 
Appendix-2.15 of this chapter. 

2.14 MONTE CARLO SIMULATION 

Monte Carlo simulation is another numerical method that is often useful when no 
closed form solution is available. Monte Carlo simulating in option pricing, originally 
introduced by Boyle (1977), can be used to value most types of European options (i. e. 
arithmetic average-rate options where only closed form solutions are available). The 
Monte Carlo simulation, we will here limit ourselves to processes where the natural 
logarithm of the underlying asset follows geometric Brownian motion. That is, the 
process governing the asset price S is given by 

S+dS=Sexp (p-. QZ)&+adz (2.114) 

where the dz is a wiener process with a standard deviation one and mean zero. 
To simulate the process, we split it up at discrete intervals, At apart. 

S+ dS =S exp (p- 
2 a2 )At +a, Ot , (2.115) 

where AS is a discrete change in S in the chosen time interval At, and s, is a random 
drawing from a standard normal distribution. Most computer languages have built in 
functions that draw randomly from a standard normal distribution. If the computer 
languages only have a function to draw randomly a number Z between zero and one, 
this can be easily be transformed into a random number from a standard normal 
distribution e by using the relationship 
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12 

s=ZZ; -6 (2.116) 
. =1 

The main disadvantage of Monte Carlo simulation is that it is computer intensive. 
Thousand of simulations are typically necessary to price an option with satisfying 

accuracy. 
The computer algorithm of the European Option Model with Monte Carlo Simulation 
is shown in the Appendix-2.16 of this chapter. 

2.14.1 Two Assets 

Monte Carlo simulation can easily be extended to options on two underlying assets. 
I (2.117) Si + AS, = S, exp (, u, 2 ci )At + Qi a, At] 

S2 +A S2 = SZ exp (u2 -2 62 )Ot + Q2 a2, At (2.118) 

Correlation between the two assets is allowed by setting 

at,, = Eli (2.119) 

a2,1 = pPI, f+ E2,, 1-71 (2.120) 

where c,, and e2,, are two independently random numbers from a standard normal 
distribution. The two asset Monte Carlo simulation is useful in the pricing of 
European Asian spread options. These are options whose payoff depends on the 
difference between the arithmetic average of the two assets at expiration. 
The computer algorithm of the Two-Asset Spread Option Model with Monte Carlo 
Simulation is shown in the Appendix-2.17 of this chapter. 

2.15 Summary 

As we mentioned at the beginning the aim of this chapter is to test the Black's model 
approach for modelling energy prices and to develop computer algorithms for pricing 
the main derivative products used in energy markets. 
Based on the results on Part A, we conclude that the Black-Scholes GBM approach is 
the appropriate for modelling the oil, natural gas and electricity market for the periods 
we tested the model. Consequently, we developed computer algorithms for pricing the 
main derivatives products used in the energy markets based on the Black-Scholes 
environment and described some numerical procedures often implemented by 
practitioners to evaluate derivative prices. 
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Appendix-2.1 

Black Scholes Computer Algorithm with Monte Carlo Simulation 

Public Sub BSModelO 

Dim p, r, f, sig, k, y, T, M, n, Z, PutCall, nodays 
Dim diff, drift, dt, Inp, sump, test, test2, rand!, rand2, rand3, jump, CT, sum CT 
Dim i, j, pcf, b As Integer 

nodays = (Range("F"). End(xlDown). Row) -1 

For b=1 To nodays 

p= Cells(1 + b, 1). Value 
Z= Cells(1 + b, 2). Value 
PutCall = Cells(1 + b, 3). Value 
r= Cells(1 + b, 4). Value 
sig = Cells(1 + b, 5). Value 
T= Cells(1 + b, 6). Value 
M= Cells(1 + b, 7). Value 
n= Cells(1 + b, 8). Value 

dt=T/n 

drift = (r - 0.5 * sig ̂  2) * dt 

dill= sig * Sqr(dt) 

sump=0 
CT=O 
sum CT =0 

Forj=1ToM 

lnp = Log(p) 

For i=ITon 

test = Rnd 

If test =0 Then 
test = test + 0.0000001 
End If 

randl = Application. NormSlnv(test) 

Inp = lnp + drift + dill * rand l 
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Next i 

If LCase(PutCall) = "call" Then 

pcf =1 

End If 

If LCase(PutCall) = "put" Then 

pcf = -1 

End If 

sump = sump + Exp(lnp) 
CT = Application. Max(pcf * (Exp(Inp) - Z), 0) 
sum CT = sum CT + CT 

Next j 

Cells(1 + b, 9). Value = Exp(-r * T) * (sump / M) 
Cells(1 + b, 10). Value = Exp(-r * T) * (sum CT / M) 

Next b 

End Sub 
Appendix-2.2 

2.2.1 Black Scholes Computer Algorithm 

The Black Scholes function returns the call price if the (call-put) flag is set equal to 

"c" or the put price when set equal to "p". In the computer code v=cr. 

Function BlackScholes (CaliPutFlag As String, S As Double, X_ 

As Double, T As Double, r As Double, v As Double) As Double 

Dim dl As Double, d2 As Double 

d1= (Log(S / X) + (r +v^2/ 2) * T) / (v * Sqr(T)) 

d2=d1-v*Sgr(T) 

If CallPutFlag = "c" Then 

BlackScholes =S* CND(dl) -X* Exp(-r * T) * CND(d2) 

ElseIf CallPutFlag = "p" Then 
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BlackScholes =X* Exp(-r * T) * CND(-d2) -S* CND(-dl) 

End If 

End Function. 

Where CND is the cumulative normal distribution function N(x). The following 

approximation of the cumulative normal distribution function N(x) produces values to 

within four decimal place accuracy. 

-r' 

_s2x 
-r 

N(X) 
q 

Je Z dY 
2n 

N(x) ={1-n(x)(a, k+a2k2+a3k3) whenx z0 or 

N (x) =I 1-N(-x) when x<0, 

Where 

K= 1 
1+ 0.33267x 

a1 = 0.4361836 

aZ= -0.1201676 

a3 = 0.9372980 

n(x) = 
27c 

e1 
_2 

The next approximation produces values of N(x) to within six decimal places of the 

true value. 

N(x) ={1-n(x)(alk+a2k2+a3k3+a4k`+asks) whenx >- 0 

or 

N (x) _1 1-N(-x) 

K_ 1 
1+0.2316419x 

a, = 0.319381530 

a2 = -0.356563782 

whenx<0, 
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a3 =1.781477937 

a4 =-1.821255978 

as= 1.330274429 

2.2.2 Cumulative Normal Distribution Function Computer Algorithm 

The cumulative normal distribution function CND returns values of N to within six 
decimal places accuracy. 
Function CND(X As Double) As Double 

Dim L As Double, K As Double 

Const al = 0.31938153: Const a2 = -0.356563782: Const a3 =1.781477937: 
Const a4 = -1.821255978: Const a5 = 1.330274429 

L= Abs(X) 

K=1/(1+0.2316419*L) 

CND1-1/Sqr(2*Pi)*Exp(-L^2/2)*(a1*K+a2*K^2+a3*KA3+a4 

* K^4+a5 * KA5) 

If X<O Then 

CND=1-CND 

End If 

End Function 

Appendix-2.3 

Black's Computer Algorithm. 

Public Function Black76(CallPutFlag As String, F As Double, X_ 

As Double, T As Double, r As Double, v As Double) As Double 

Dim dl As Double, d2 As Double 

dl =(Log(F/X)+(v^2/2) *T)/(v* Sqr(T)) 

d2=dl - v* Sgr(T) 

If Ca11PutFlag = "c" Then 
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Black76 = Exp(-r * T) * (F * CND(dI) -X* CND(d2)) 

EIseIf Ca11PutFlag = "p" Then 

Black76 = Exp(-r * T) * (X * CND(-d2) -F* CND(-dl)) 

End If 

End Function. 

Appendix-2.4 

Binomial Option Model Computer Algorithm 

Computer Algorithm 
The computer code returns the value of a European or American call, or put option. 
Setting the AmeEurFlag=a gives American Option values, AmeEurFlag=e gives 
European values. In the computer code v=a and dt = At 

Function CRRBinomial(AmeEurFlag As String, CaliPutFlag As String, S As Double, 
X As Double, T As Double, 

_ r As Double, b As Double, v As Double, n As Integer) As Double 

Dim OptionValueO As Double 
Dim u As Double, d As Double, p As Double 
Dim dt As Double, Df As Double 
Dim i As Integer, j As Integer, z As Integer 

ReDim OptionValue(n + 1) 

If CaiPutFlag = "c" Then 
z=1 
Elself CallPutFlag = "p" Then 
z=-1 

End If 

dt = T/n 
u= Exp(v * Sqr(dt)) 
d=1/u 

p= (Exp(b * dt) - d) / (u - d) 
Df = Exp(-r * dt) 

For i =0 To n 
OptionValue(i) = Max(0, z* (S *u^i*d^ (n - i) - X)) 

Next 

Forj=n-1To0Step -1: 
For i =0 To j 

If AmeEurFlag = "e" Then 
OptionValue (i) = (p * OptionValue(i + 1) + (1 - p) * OptionValue(i)) * Df 

Elself AmeEurFlag = "a" Then 
OptionValue (i) = Max((z * (S *u^i*d^ (Abs(i - j)) - X)), 

_ 
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(p * OptionValue(i + 1) + (1 - p) * OptionValue(i)) * Df) 
End If 

Next 
Next 
CRRBinomial = OptionValue (0) 

End Function. 

Appendix-2.5 
Trinomial Option Model Computer Algorithm 

Computer Algorithm 
In the computer code, v=a and dt = At. The computer code starts with the 
statement "Option Base 0". This statement forces the arrays to start counting from 0. 

Trinomial tree 
Public Function TrinomialTree(AmeEurFlag As String, CallPutFlag As String, S As 
Double, X As Double, T As Double, 

_ r As Double, b As Double, v As Double, n As Integer) As Double 

Dim OptionValue( As Double 
Dim dt As Double, u As Double, d As Double 
Dim pu As Double, pd As Double, pm As Double 
Dim i As Integer, j As Integer, z As Integer 
Dim Df As Double 

ReDim OptionValue(n *2+ 1) 

If Ca11PutFlag = "c" Then 
z=1 
ElseIf CallPutFlag = "p" Then 
z=-l 

End If 

dt=T/n 
u= Exp(v * Sqr(2 * dt)) 
d= Exp(-v * Sqr(2 * dt)) 
pu = ((Exp(b * dt / 2) - Exp(-v * Sqr(dt / 2))) / (Exp(v * Sqr(dt / 2)) - Exp(-v 

Sqr(dt / 2))))A2 

pd = ((Exp(v * Sqr(dt / 2)) - Exp(b * dt / 2)) / (Exp(v * Sqr(dt / 2)) - Exp(-v 
Sqr(dt / 2)))) ^2 

pm =1 - pu - pd 
Df = Exp(-r * dt) 

Fori=0 To (2 * n) 
OptionValue(i) = Max(0, z* (S * u" Max(i - n, 0) *dA Max(n *2-n-i, 0) - 

X) 
Next 
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For j=n-1 To 0 Step -1 
Fori=O To(j*2) 

If AmeEurFlag = "e" Then 
OptionValue(i) = (pu * OptionValue(i + 2) + pm * OptionValue(i + 1) + pd 

* OptionValue(i)) * Df 
ElseIf AmeEurFlag = "a" Then 

OptionValue(i) = Max((z * (S *u^ Max(i - j, 0) *dA Max(j *2 -j - i, 0) - 

(pu * OptionValue(i + 2) + pm * OptionValue(i + 1) + pd * OptionValue(i)) 
* Df) 

End If 
Next 

Next 
TrinomialTree = OptionValue (0) 

End Function. 

Appendix-2.6 

Spread Option Model Computer Algorithm 

Computer Algorithm 

Function SpreadApproximation(CallPutFlag As String, fl As Double, f2 As Double, 
X As Double, T As Double, 

_ r As Double, vl As Double, v2 As Double, rho As Double) As Double 

Dim v As Double, F As Double 
Dim dl As Double, d2 As Double 

v=Sqr(vl^2+(v2*f2/(ß+X))^2-2*rho*v1 *v2*f2/(f2+X) 
F=fl /(f2+X) 

SpreadApproximation = GB1ackScholes(Ca11PutFlag, F, 1, T, r, 0, v) * (f2 + X) 
End Function. 

Appendix-2.7 

Geometric Average Rate Option Model Computer Algorithm 

Computer Algorithm 

Public Function GeometricAverageRateOption (Ca11PutFlag As String, S As Double, 
SA As Double, X As Double, 

_ T As Double, T2 As Double, r As Double, b As Double, v As Double) As 
Double 

Dim tl As Double'Observed or realized time period 
Dim bA As Double, vA As Double 

bA=1/2*(b-v^2/6) 
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vA =v/ Sqr(3) 

t1 =T-T2 

Iftl>0Then 
X=(tl +T2)/T2 * X-tl /T2 * SA 
GeometricAverageRateOption = GB1ackScholes (CaliPutFlag, S, X, T2, r, bA, 

vA) * T2 / (t1 + T2) 
ElselftI =0 Then 

GeometricAverageRateOption = GBlackScholes (CaliPutFlag, S, X, T, r, bA, 
VA) 

End If 

End Function 

Appendix-2.8 

Arithmetic Average Rate Option Model Computer Algorithm 

Computer Algorithm. 

Public Function TurnbullWakemanAsian (CaliPutFlag As String, S As Double, SA 
As Double, X As Double, 

_ T As Double, T2 As Double, tau As Double, r As Double, b As Double, v As 
Double) As Double 

Dim ml As Double, m2 As Double, tl As Double 
Dim bA As Double, vA As Double 

ml = (Exp(b * T) - Exp(b * tau)) / (b * (T - tau)) 
m2=2 * Exp((2 * b+v^2) * T)/((b+v^2) * (2 * b+v^2) * (T-tau)^2)_ 
+2* Exp((2 *b+v^ 2) * tau) / (b * (T - tau) ̂  2) (1 / (2 *b+v^ 2) - Exp(b 

(T-tau))/(b+v^2)) 

bA = Log(ml) /T 
vA = Sqr(Log(m2) /T-2* bA) 
tl =T-T2 

Iftl>0Then 
X=T/T2 * X-t1 /T2 * SA 
TumbullWakemanAsian = GBlackScholes(CalIPutFlag, S, X, T2, r, bA, vA) * 

T2/T 
Else 

TurnbullWakemanAsian = GBlackScholes(CalIPutFlag, S, X, T2, r, bA, vA) 
End If 

End Function. 

Appendix-2.9 

Levy's Approximation Option Model Computer Algorithm 
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Computer Algorithm 

Public Function LevyAsian(CallPutFlag As String, S As Double, SA As Double, X 
As Double, 

_ T As Double, T2 As Double, r As Double, b As Double, v As Double) As 
Double 

Dim SE As Double 
Dim m As Double, d As Double 
Dim Sv As Double, XStar As Double 
Dim dl As Double, d2 As Double 

SE =S/ (T * b) * (Exp((b - r) * T2) - Exp(-r * T2)) 
m=2 * S^2/(b+v^2) * ((Exp((2 * b+v^2) * T2) - 1)/(2 * b+v^2)- 

(Exp(b * T2) - 1) / b) 
d=m/(T^2) 
Sv = Log(d) -2* (r * T2 + Log(SE)) 
XStar=X-(T-T2)/T* SA 
dl =1 / Sqr(Sv) * (Log(d) /2- Log(XStar)) 
d2 = d1 - Sgr(Sv) 

If Ca11PutFlag = "c" Then 
LevyAsian = SE * CND(dI) - XStar * Exp(-r * T2) * CND(d2) 

Elself CallPutFlag = "p" Then 
LevyAsian = (SE * CND(dl) - XStar * Exp(-r * T2) * CND(d2)) - SE + XStar 

Exp(-r * T2) 
End If 

End Function. 

Appendix-2.10 

Compound Option Model Computer Algorithm 

Computer Algorithm 

Options on options 
Public Function OptionsOnOptions(TypeFlag As String, S As Double, X1 As Double, 
X2 As Double, tl As Double, 

_ T2 As Double, r As Double, b As Double, v As Double) As Double 

Dim yl As Double, y2 As Double, zI As Double, z2 As Double 
Dim I As Double, rho As Double, CallPutFlag As String 

If TypeFlag = "cc" Or TypeFlag = "pc" Then 
Ca11PutFlag = "b" 

Else 
Ca11PutFlag = "p" 

End If 
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I= CriticalValueOptionsOnOptions(Ca11PutFlag, X1, X2, T2 - tl, r, b, v) 

rho = Sgr(tI / T2) 
yl =(Log(S/I)+(b+vA2/2) *tl)/(v* Sqr(tl)) 
y2=y1 - v* Sqr(tl) 
zl =(Log(S/X1)+(b+VA2/2) * T2) / (v * Sqr(T2)) 
z2 = z1 -v* Sqr(T2) 

If TypeFlag = "cc" Then 
OptionsOnOptions =S* Exp((b - r) * T2) * CBND(zl, yl, rho) - X1 * Exp(-r 

T2) * CBND(z2, y2, rho) - X2 * Exp(-r * tI) * CND(y2) 
E1seIf TypeFlag = "pc" Then 

OptionsOnOptions = Xl * Exp(-r * T2) * CBND(z2, -y2, -rho) -S* Exp((b - r) 
* T2) * CBND(zl, -yl, -rho) + X2 * Exp(-r * tl) * CND(-y2) 

E1seIf TypeFlag = "cp" Then 
OptionsOnOptions = X1 * Exp(-r * T2) * CBND(-z2, -y2, rho) -S* Exp((b - r) 

* T2) * CBND(-zl, -yl, rho) - X2 * Exp(-r * tl) * CND(-y2) 
Elself TypeFlag = "pp" Then 

OptionsOnOptions =S* Exp((b - r) * 12) * CBND(-zl, yl, -rho) - X1 * Exp(-r 
* T2) * CBND(-z2, y2, -rho) + Exp(-r * tI) * X2 * CND(y2) 

End If 
End Function. 

'// Calculation of critical price options on options (1) 
Private Function CriticalValueOptionsOnOptions(CallPutFlag As String, X1 As 
Double, X2 As Double, T As Double, 

_ r As Double, b As Double, v As Double) As Double 

Dim Si As Double, ci As Double, di As Double, epsilon As Double 

Si=X1 
ci = GBlackScholes(CalIPutFlag, Si, X1, T, r, b, v) 
di = GDelta(CalIPutFlag, Si, X1, T, r, b, v) 
epsilon = 0.000001 
'//Newton-Raphson algorithm 
While Abs(ci - X2) > epsilon 

Si = Si - (ci - X2) / di 
ci = GB1ackScholes(CallPutFlag, Si, X1, T, r, b, v) 
di = GDelta(CallPutFlag, Si, X1, T, r, b, v) 

Wend 
CriticalValueOptionsOnOptions = Si 

End Function. 

The Newton-Raphson method is an efficient way to find the value of I. I is the 
underlying price which makes the underlying option equal to X2 at time tl . The 
method seldom spends more than two to three searches before it converges to the 
value of I. Let 
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dXZ) 
i 

until Ic, - X21 >- e, at which point c, is the price of the option (call or put) with strike 
XI , eis the desired degree of accuracy (in our case 0.00000 1), d, is the delta of the 
option with strike X,, Xl is the strike price of the underlying option and X2 is the 
strike price of the option on the option. 

Where CND is the cumulative normal distribution function and CBND is the 
cumulative bivariate normal distribution function described below. 
The standardised cumulative normal function returns the probability that one random 
variable is less than a and that a second random variable is less than b when the 
correlation between the two variables is p: 

y 11'i(a, b; p) =1z1 Jexp xz -2(12 

- pýtxyz+) 

1c! 
x dy 

2, c 1- p 
Drezner (1978) has developed a method for approximating the cumulative bivariate 
normal distribution function. This approximation produces values of M(a, b; p) to 
within six decimal places accuracy. 

1-p2 ss 
co(a, b; p)= Zl xxjf(Y"Yj), 

Ir 1-1 J_I 

where 

. 
f(y,, Yj) =exp[a1(2Yi -a, )+bi(2Yi -bi)+2P(y, -ai)(y, -bl)] 

a b, =b a, = 
2(1-p2) , 2(1-P2) 

x, = 0.24840615 

x2 = 0.39233107 

x3 = 0.21141819 

x4 = 0.033246670 

xs = 0.00082485334 

y, = 0.10024215 

y2 = 0.48281397 

Y3 = 1.0609498 

y4 = 1.7797294 

ys = 2.6697604 

If the ofa, b, and p is non positive, compute the cumulative bivariate normal 
probability using the following rules: 

1. If a50, b :50, and pS0, then 

M(a, b; P) = co(a, b; P) 

2. If a<_O, bzO, and p_0, then 
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M(a, bp) = N(a) - co(a, -b; -P) 

3 .Ifa >_ O, b <_ 0, and p >_ O, then 

M(a, b; p) = N(b) - co(-a, b; -p) 

4. If a_O, b>_0, and p50, then 

M(a, b; p) = N(a) + N(b) -1 + V(-a, -b; p) 

In these circumstances where the product a, b and p is positive compute the 
cumulative bivariate normal function as: 

M(a, b; p) = M(a, 0; p, ) + M(b, 0; P2)-'59 
where M(a, O; pl) and M(b, O; p2) are computed from the rules where the product of 
a, band pis negative, and 

PI - 
(pa - b)Sign(a) 

a2 -2pab+b2 

S -1- 
Sign(a) * Sign(b) 

4 

P2 _ 
(pb - a)Sign(b) 

a2 -2pab+b2 

Sign(x) = {+ l when x >_ 0 

-1 when x<0 

Computer Algorithm 
The CBND(a, b, p) function returns the standardised bivariate normal probability that 
the first variable is less than a and the second variable is less than b where p is the 
correlation between the two variables. 

The cumulative bivariate normal distribution function 
Public Function CBND(a As Double, b As Double, rho As Double) As Double 

Dim X As Variant, y As Variant 
Dim rho 1 As Double, rho2 As Double, delta As Double 
Dim al As Double, bl As Double, Sum As Double 
Dim I As Integer, j As Integer 

X= Array(0.24840615,0.39233107,0.21141819,0.03324666,0.00082485334) 
y= Array(0.10024215,0.48281397,1.0609498,1.7797294,2.6697604) 
al =a/ Sgr(2 * (1 -rho ^ 2)) 
bl =b/ Sgr(2 * (1 -rho ^ 2)) 

Ifa<=OAndb<=OAndrho<=OThen 
Sum =0 
For I=1 To 5 

Forj=ITo5 
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Sum = Sum + X(I) * X(j) * Exp(al * (2 * y(I) - a1) 
_ + bl * (2 * y(j) - bi) +2* rho * (y(I) - al) * (y(j) - bl)) 

Next 
Next 
CBND = Sqr(1 - rho A 2) / Pi * Sum 

ElseIfa<=0 Andb>=0Andrho>=0Then 
CBND = CND(a) - CBND(a, -b, -rho) 

ElseIfa>=0 Andb<=0 And rho >=0 Then 
CBND = CND(b) - CBND(-a, b, -rho) 

Elself a >= 0 And b >= 0 And rho <= 0 Then 
CBND = CND(a) + CND(b) -1+ CBND(-a, -b, rho) 

ElseIf a*b* rho >0 Then 
rho1(rho *a-b)*Sgn(a)/Sqr(a^2-2*rho*a*b+bA2) 
rho2(rho *b-a)*Sgn(b)/Sqr(a^2-2*rho*a*b+b^2) 
delta = (1 - Sgn(a) * Sgn(b)) /4 
CBND = CBND(a, 0, rho 1) + CBND(b, 0, rho2) - delta 

End If 
End Function. 

Appendix-2.11 

Fixed Strike Lookback Option Model Computer Algorithm 

Computer Algorithm. 

H Fixed strike lookback options 
Public Function FixedStrikeLookback(CallPutFlag As String, S As Double, SMin As 
Double, SMax As Double, X As Double, 

_ T As Double, r As Double, b As Double, v As Double) As Double 

Dim dl As Double, d2 As Double 
Dim el As Double, e2 As Double, m As Double 

If CaliPutFlag = "c" Then 
m= SMax 

Elself CallPutFlag = "p" Then 
m= SMin 

End If 

dl =(Log(S/X)+(b+v^2/2) * T)/(v* Sgr(T)) 
d2=dl - v* Sgr(T) 
el =(Log(S/m)+(b+vil 2/2) * T)/(v* Sgr(T)) 
e2 = e1 -v* Sgr(T) 

If Ca11PutFlag = "c" And X>m Then 
FixedStrikeLookback =S* Exp((b - r) * T) * CND(dl) -X* Exp(-r * T) 

CND(d2) 
_ 

83 



+S*Exp(-r*T)*v^2/(2*b)*(-(S/X)A(-2*b/VA 2)*CND(dl-2*b/ 
v* Sqr(T)) + Exp(b * T) * CND(dl)) 

E1self CalIPutFlag = "c" And X <= m Then 
FixedStrikeLookback = Exp(-r * T) * (m - X) +S* Exp((b - r) * T) * CND(el) - 

Exp(-r * T) *m* CND(e2) 
_ +S*Exp(-r*T)*v^2/(2*b)*(-(Sm)^(-2*b/v^2)CND(el-2*b/ 

v* Sqr(T)) + Exp(b * T) * CND(e 1)) 
ElseIf CallPutFlag = "p" And X<m Then 

FixedStrikeLookback = -S * Exp((b - r) * T) * CND(-dl) +X* Exp(-r * T) 
CND(-dl +v* Sqr(T)) 

_ +S*Exp(-r*T)*v^2/(2*b)*((S/X)^(-2*b/v" 2) * CND(-dl +2* b/ 
v* Sqr(T)) - Exp(b * T) * CND(-dl)) 

Eiself CallPutFlag = "p" And X >= m Then 
FixedStrikeLookback = Exp(-r * T) * (X - m) -S* Exp((b - r) * T) * CND(-e1) 

+ Exp(-r * T) *m* CND(-el +v* Sgr(T)) 
_ + Exp(-r * T) *VA 2/ (2 * b) *S* ((S / m) ̂  (-2 *b/v^ 2) * CND(-e1 +2*b/ 

v* Sgr(T)) - Exp(b * T) * CND(-e 1)) 
End If 

End Function. 

Appendix-2.12 
Floating Strike Lookback Option Model Computer Algorithm 

Computer Algorithm. 

Floating strike lookback options 
Function FloatingStrikeLookback(CallPutFlag As String, S As Double, SMin As 

Double, SMax As Double, T As Double, 
_ 

r As Double, b As Double, v As Double) As Double 

Dim al As Double, a2 As Double, m As Double 

If Ca11PutFlag = "c" Then 

m= SMin 

E1seIf Ca11PutFlag = "p" Then 

m= SMax 

End If 

al =(Log(S/m)+(b+v^2/2) * T)/(v* Sqr(T)) 

a2 = a1 -v* Sqr(T) 
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If Ca11PutFlag = "c" Then 

FloatingStrikeLookback =S* Exp((b - r) * T) * CND(al) -m* Exp(-r * T) 

CND(a2) +_ 

Exp(-r*T)*v^2/(2*b)*S*((S/m)A(-2*b/v^2)*CND(-al+2*b/v 

* Sqr(T)) - Exp(b * T) * CND(-al)) 

E1self CallPutFlag = "p" Then 

FloatingStrikeLookback =m* Exp(-r * T) * CND(-a2) -S* Exp((b - r) * T) 

CND(-al) +_ 

Exp(-r*T)*v^2/(2*b)*S*(-(S/m)^(-2*b/v^2)*CND(a1-2*b/v 

* Sgr(T)) + Exp(b * T) * CND(al)) 

End If 

End Function. 

Appendix-2.13 

Barrier Option Model Computer Algorithm 

Computer Algorithm 

Function StandardBarrier(TypeFlag As String, S As Double, X As Double, H As 
Double, K As Double, T As Double, 

_ r As Double, b As Double, v As Double) 

Dim mu As Double 
Dim lambda As Double 
Dim X1 As Double, X2 As Double 
Dim yl As Double, y2 As Double 
Dim Z As Double 

Dim eta As Integer 'Binary variable that can take the value of 1 or -1 
Dim phi As Integer 'Binary variable that can take the value of 1 or -1 

Dim fl As Double 
Dim f2 As Double 
Dim B As Double 
Dim f4 As Double 
Dim 5 As Double 
Dim f6 As Double 

'Equal to formula "A " in the thesis 
'Equal to formula "B " in the thesis 
'Equal to formula "C " in the thesis 
'Equal to formula "D " in the thesis 
'Equal to formula "E " in the thesis 
'Equal to formula "F" in the thesis 

mu=(b-v^2/2)/v^2 
lambda =Sgr(muA2+2 * r/v^2) 
X1 = Log(S / X) / (v * Sqr(T)) + (1 + mu) *v* Sqr(T) 
X2 = Log(S / H) / (v * Sqr(T)) + (1 + mu) *v* Sqr(T) 
yl = Log(H ^2/ (S * X)) / (v * Sqr(T)) + (1 + mu) *v* Sqr(F) 
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y2 = Log(H / S) / (v * Sqr(T)) + (1 + mu) *v* Sqr(T) 
Z= Log(H / S) / (v * Sqr(T)) + lambda *v* Sqr(T) 

If TypeFlag = "cdi" Or TypeFlag = "cdo" Then 
eta=1 
phi= 1 

E1seIf TypeFlag = "cui" Or TypeFlag = "cuo" Then 
eta = -1 
phi= 1 

E1seIf TypeFlag = "pdi" Or TypeFlag = "pdo" Then 
eta=1 
phi=-1 

E1self TypeFlag = "pui" Or TypeFlag = "puo" Then 
eta=-1 
phi = -1 

End If 

fl = phi *S* Exp((b - r) * T) * CND(phi * X1) - phi *X* Exp(-r * T) * CND(phi 
* XI - phi *v Sqr(T)) 

f2 = phi *S* Exp((b - r) * T) * CND(phi * X2) - phi *X* Exp(-r * T) * CND(phi 
* X2 - phi *v* Sqr(T)) 

f3 = phi *S* Exp((b - r) * T) * (H /S) ^ (2 * (mu + 1)) * CND(eta * yl) - phi *X 
* Exp(-r * T) * (H / S) A (2 * mu) * CND(eta * yl - eta *v* Sgr(T)) 

f4 = phi *S* Exp((b - r) * T) * (H / S) A (2 * (mu + 1)) * CND(eta * y2) - phi *X 
* Exp(-r * T) * (H / S) A (2 * mu) * CND(eta * y2 - eta *v* Sqr(T)) 

f5 =K* Exp(-r * T) * (CND(eta * X2 - eta *v* Sqr(T)) - (H / S) A (2 * mu) 
CND(eta * y2 - eta *v* Sqr(T))) 

f6 =K* ((H / S) A (mu + lambda) * CND(eta * Z) + (H / S) A (mu - lambda) 
CND(eta *Z-2* eta * lambda *v* Sqr(T))) 

If X>H Then 
Select Case TypeFlag 

Case Is = "cdi" 
StandardBarrier = f3 + f5 

Case Is = "cui" 
StandardBarrier = fl +5 

Case Is = "pdi" 
StandardBarrier = f2 -0+ f4 + f5 

Case Is = "pui" 
StandardBarrier = fl - f2 + f4 + f5 

Case Is = "cdo" 
StandardBarrier = fl -ß+ f6 

Case Is = "cuo" 
StandardBarrier = f6 

Case Is = "pdo" 
StandardBarrier = fl -f2+ß -f4+f6 

Case Is = "puo" 
StandardBarrier = f2 - f4 + f6 

End Select 
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ElseIf X<H Then 
Select Case TypeFlag 

Case Is = "cd? 
StandardBarrier = fl - f2 + f4 +5 

Case Is = "cui" 
StandardBarrier = f2 - f3 + f4 + f5 

Case Is = "pdi" 
StandardBarrier = fl + f5 

Case Is = "pui" 
StandardBarrier =ß+0 

Case Is = "cdo" 
StandardBarrier = f2 + f6 - f4 

Case Is = "cuo" 
StandardBarrier = fl - f2 +ß- f4 + f6 

Case Is = "pdo" 
StandardBarrier = f6 

Case Is = "puo" 
StandardBarrier = fl - f3 + f6 

End Select 
End If 

End Function 

Appendix-2.14 

Binary (Cash-or-nothing) Option Model Computer Algorithm 

'// Cash-or-nothing options 
Public Function CashOrNothing(CallPutFlag As String, S As Double, X As Double, 
K As Double, T As Double, r As Double, v As Double) As Double 

Dim d As Double 

d=(Log(S/X)+(-v^2/2) * T)/(v* Sgr(T)) 

If Ca11PutFlag = "c" Then 
CashOrNothing =K* Exp(-r * T) * CND(d) 

E1seIf CallPutFlag = "p" Then 
CashOrNothing =K* Exp(-r * T) * CND(-d) 

End If 
End Function 
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Appendix-2.15 

Binary (Asset-or-nothing) Option Model Computer Algorithm 

'// Asset-or-nothing options 
Public Function AssetOrNothing(CallPutFlag As String, S As Double, X As Double, 
T As Double, r As Double, v As Double) As Double 

Dim d As Double 

d= (Log(S / X)+ (v ^2/ 2) * T) / (v * Sgr(T)) 

If Ca11PutFlag = "c" Then 
AssetOrNothing =S* Exp((b - r) * T) * CND(d) 

E1self Ca11PutFlag = "p" Then 
AssetOrNothing =S* Exp((b - r) * T) * CND(-d) 

End If 
End Function 

Appendix-2.16 
European Option Model Computer Algorithm with Monte Carlo Simulation 

Computer Algorithm for European Options (calls and put options) 

II Monte Carlo plain vanilla European option 
Public Function MonteCarloStandardOption(CallPutFlag As String, S As Double, X 
As Double, T As Double, 

_ r As Double, b As Double, v As Double, nSteps As Integer, nSimulations 
As Integer) As Double 

Dim dt As Double, St As Double 
Dim Sum As Double, Drift As Double, vSqrdt As Double 
Dim i As Integer, j As Integer, z As Integer 

dt =T/ nSteps 
Drift =(b-v^2/2) * dt 
vSqrdt =v* Sqr(dt) 

If Ca11PutFlag = "c" Then 
z=1 

Elself CallPutFlag = "p" Then 
z=-1 

End If 

For i =1 To nSimulations 
St=S 
For j=1 To nSteps 

St = St * Exp(Drift + vSqrdt * Application. NormInv(RndO, 0,1)) 
Next 
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Sum = Sum + Max(z * (St - X), 0) 
Next 

MonteCarloStandardOption = Exp(-r * T) * (Sum / nSimulations) 

End Function. 

Appendix-2.17 

Two Asset Asian Option Model Computer Algorithm with Monte Carlo 
Simulation 

Computer Algorithm for two asset Asian spread options. 

Monte Carlo two asset Asian spread option 
Public Function MonteCarloAsianSpreadOption(CallPutFlag As String, Si As 
Double, S2 As Double, 

_ X As Double, T As Double, r As Double, bl As Double, b2 As Double, v1 
As Double, v2 As Double, rho As Double, 

_ nSteps As Integer, nSimulations As Integer) As Double 

Dim dt As Double, Stl As Double, St2 As Double 
Dim i As Integer, j As Integer, z As Integer 
Dim Sum As Double, Drift1 As Double, Drift2 As Double 
Dim v1 Sqrdt As Double, v2Sqrdt As Double 
Dim Epsilon! As Double, Epsilon2 As Double, Average! As Double, Average2 As 

Double 

If Ca11PutFlag = "c" Then 
z=1 

Elself CallPutFlag = "p" Then 
z=-1 

End If 

dt =T/ nSteps 
Driftl =(bl -vi A2/2) * dt 
Drift2=(b2-v2^2/2)*dt 
vISgrdt = vl * Sqr(dt) 
v2Sqrdt = v2 * Sqr(dt) 

For i =1 To nSimulations 
Average 1=0 
Average2 =0 
st1=s1 

2) 

St2 = S2 
For j=1 To nSteps 

Epsilon! = Application. NormInv(RndO, 0,1) 
Epsilon2 = rho * Epsilonl + Application. NormInv(RndO, 0,1) * Sgr(1 - rho ̂  

St1 = Stl * Exp(Driftl +v1Sgrdt * Epsilon! ) 
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St2 = St2 * Exp(Drift2 + v2Sqrdt * Epsilon2) 
Average I= Average I+ St I 
Average2 = Average2 + St2 

Next 
Average 1= Average 1/ nSteps 
Average2 = Average2 / nSteps 
Sum = Sum + Max(z * (Average 1- Average2 - X), 0) 

Next 

MonteCarloAsianSpreadOption = Exp(-r * T) * (Sum / nSimulations) 

End Function. 
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CHAPTER 3 

SPOT PRICE BEHAVIOUR 

3.1 Introduction 

Historically the majority of work on modelling energy and commodity prices has been 
focused on stochastic processes for the spot price and other key variables, such us the 
convenience yield and interest rates (examples include; Schwartz (1997), Gibson & 
Schwartz (1990), Miltersen & Schwartz (1998), Hilliard & Rays (1998)). 
Gibson & Schwartz (1990) presented a different approach to the valuation of 
commodity derivatives. They develop a two-factor pricing model where the first 
factor is the spot price of the commodity, and the second factor is the instantaneous 
convenience yield. They analyse its performance in valuing short as well long-term 
oil contracts. Their main empirical results show that the model performs well in 
valuing short-term contracts such as futures. The computed theoretical present values 
of one to ten years ahead deliverable oil barrel seem to be low and hence suggest that 
the risk premium for long term oil investments is high. Furthermore the two-factor 
model t is able to explain the intrinsic difference in price volatility between spot and 
future contracts as well as its decreasing maturity pattern observed among the latter. 
Finally they show that although they apply the model to financial securities whose 
payoff structure is linear in the spot price of crude oil, it can easily be extended to any 
more complex payoff structure characterising the option features of real and financial 
oil claims. 
Schwartz (1997) compares three models of the stochastic behaviour of commodity 

prices that take into account mean reversion, in terms of their ability to price existing 
futures contracts and their implication with respect to the valuation of other financial 
and real assets. The first model is a simple one-factor model in which the logarithm of 
the spot price of the commodity is assumed to follow a mean reverting process of the 
Ornstein-Uhlenbeck type. The second model is a variation of the two factors Gibson 
& Schwartz (1990) model. The second factor in this model is the convenience yield of 
the commodity and it is assumed to follow a mean reverting process. Finally, he 
extends Gibson & Schwartz (1990) model by introducing a third stochastic factor, the 
instantaneous interest rate that is also assumed to follow a mean reverting process as 
in Vasicek (1977). One of the main difficulties in the empirical implementation of 
commodity price models is that frequently the factors or state variables are not 
directly observable. In many cases the spot price of a commodity is so uncertain that 
the corresponding futures contract closest to maturity is used as a proxy for the spot 
price. The instantaneous convenience yield is even more difficult to estimate. 
Hilliard & Rays (1998) extend this three-factor model by introducing jumps in the 
spot price of the commodity and by using the term structure of the interest rates to 
eliminate the market price of interest rate risk in their fundamental pricing equation. 
However, they leave the market price of convenience yield risk as a parameter (to be, 
determined in equilibrium) in their pricing formulae's. 
Miltersen & Schwartz (1998) develop a model that generalises and combine the two 
approaches by using all the information in the initial term structure of both interest 
rates and commodity futures prices. In addition assuming normality of continuously 
compounded forward interest rates and convenience yields and log-normality of the 
spot price of the underlying commodity, they obtain closed-form solutions for the 
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pricing of options on futures prices, which are in the spirit of Black and Scholes 
(1973) and Merton (1973). Also in the development of the model, they distinguish 
between forward and future convenience yields, a distinction that has not been 
recognised in the existing literature at the time. It is empirically stylised fact that the 
most commodity price processes are mean reverting (see Section 3.3). Standard no- 
arbitrage arguments completely determine the drift of the price processes under an 
equivalent martingale measure leaving no room for explicit modelling of mean 
reversion via the drift of the spot commodity price. However, the spot convenience 
yield process enters the drift of the spot commodity price under an equivalent 
martingale measure in such a way that a positive correlation between the spot 
commodity price and the spot convenience yield will have a mean reversion effect on 
the spot commodity price even under an equivalent martingale measure. Clearly, this 
has an impact on the option prices. The option-pricing model that Miltersen & 
Schwartz (1998) developed took this phenomenon into account. 
All the models described above, are no arbitrage based models, which they have one 
fundamental disadvantage; the factors or state variables of these models are not 
directly observable (predominantly as the convenience yield). So the empirical 
implementation of these models is very difficult. 
For this reason in this chapter we extend the Black-Scholes model, introduced and 
discussed in detail in chapter 2 to take into account empirical results and the observed 
in the spot price process of energy markets. For the first time in the literature we test 
the mean reversion, jump diffusion and mean reversion jump diffusion model using 
high quality data across the different energy markets, and we compare the relative 
performance of these models compare to the Black's approach. The price processes 
we discuss in detail are the following: 

  Mean Reverting behaviour of the energy spot price (the tendency of spot 
prices to move back towards their long-term level). 

  Jump Diffusion behaviour. 
  Combined Mean Reverting and Jump behaviour. 

The application of Monte Carlo Simulation on these processes is also described. 
The processes mentioned above, are the extensions to the Black-Scholes Geometric 
Brownian Motion model by assuming constant parameters. These parameters 
(volatility, mean reversion rate, jump parameters, long term level) will be estimated 
from historical data with robust estimation methods, which are presented in this 
chapter. We incorporate these parameters into the Monte Carlo Simulations of these 
processes and compare them to see which one of these processes is the appropriate to 
describe the oil market the natural gas, and the electricity market. 
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3.2' Mean Reversion 

The mean-reversion behaviour has been considered to be one of the most important 

features of commodities. Basic microeconomics theory tells that, in the long run, the 

price of a commodity ought to be tied to its long-run marginal production cost or, "in 

case of a cartelized commodity like oil, the long-run profit-maximising price sought 
by cartel managers" (Laughton&Jacoby, I995, p. 188). 

In other words, although oil prices have short-term oscillations, they tend to revert 
back to a "normal" long-term equilibrium level. 

Production cost varies largely across the countries, mainly due to the geologic 
features, and most of the lower cost countries belong (or are influenced) by the OPEC 

cartel. 
Hence, even with a growing non-OPEC production, the OPEC role remains very 
important in the production game of the petroleum industry. The large oil prices rises 
in February-April 1999 are mainly due to the articulation power of OPEC (and its 

eventual allies) in reducing the production. 
There is strong empirical evidence that oil prices are mean reverting, see for example 
Gibson & Schwartz (1990), Brennan (1991), Cortazar & Schwartz (1994), Schwartz 

(1997)'. 

Pindyck & Rubinfeld (1991, chapter 15) using a Dickey-Fuller unit root test, rejected 
the random walk hypothesis for a very long time series (more than 100 years). 
But they point out that the oil price reversion to a long-run equilibrium level is likely 

to be slow. 
Other important mean-reverting evidence comes from the futures market, as pointed 
out by Baker et al (1998, pp. 124-127). This is summarised as follows: 
First, the term structure of futures prices is decreasing (toward the "normal" long-run 
level, in backwardation) if the spot prices are "high", and is increasing (in contango) if 
prices are "low". 
Second, if the prices are random walk, the volatility in the futures prices should equal 
the volatility of the spot price, but the data show that spot prices are much more 
volatile than futures prices. In both cases, the mean-reverting model is much more 
consistent with the futures prices data than the random walk model. In addition, the 
econometric tests from futures term structure performed by Bessembinder et al (1995, 
p. 373-374) also reveals strong mean-reversion for oil prices and agricultural 
commodities (but weak reversion for precious metals and fmancial assets). 

1 See also "The Stochastic Behaviour of Commodity Prices"and the econometric tests of Dragana 
Pilipovic (Energy Risk 1998, table 4-9, p. 78, WTI petroleum). 
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Schwartz (1997) presented a classic model for mean reverting spot price behaviour in 
energy markets which is represented by the following equation: 

dS = a(a - In S)Sdt + 6Sdz (3.4) 

In this model a is the volatility of the stock and the spot price mean reverts to the 
long-term level S= e" at a speed given by the mean reversion rate, a which is taken 
to be strictly positive. If the spot price is above the long-term level S, then the drift of 
the spot price will be negative and the price will turn to revert towards the long-term 
level. Similarly, if the spot price is below the long-term level then the drift will be 

positive and the price will tend to move back towards S. At any point in time, the 
spot price will not necessarily move back towards the long-term level as the random 
change in the spot price may be of the opposite sign of the component. 

3.4 Estimation of the Mean Reversion Rate 

The mean reversion rate of the spot energy price can be estimated relatively simply 
and robustly via linear regression. 2 We consider here the simple mean reverting 
process for the natural logarithm form of the energy spot price in equation (3.4), 
x=1nS; 

dx =a (p -x) dt + adz. (3.5) 

This can be discretised as follows: 

Ax, = ao + a, x, + cc, er -- N(O, 1) (3.6) 

where ao =ap At and a, = -a At This implies that observations of the spot price 
through time can be considered a, = -a At as observations of the linear relationship 
between Ax, and x, in the presence of noise (represented by av, ). Therefore, if we 
regress observations of Ax, against x, we can obtain estimates of ao =ap At and 
a, = -a At as the estimates of the intercept and slope of the linear relationship. 
Since we know the time interval between observations At we can obtain estimates of 
a andit. 
The market dailydata we are going to use in order to calculate the mean reversion rate 
are for the years between 1995 and 2000 for the WTI crude oil, Brent crude oil, and 
natural gas prices. 
Electricity market data were available for relatively shorter periods. Since the 
electricity markets are just recently in the process of deregulation, we have to keep in 
mind that any parameters estimated from this data set may not be necessarily the 
parameters will be seeing in the future. The deregulation of the electricity markets is 

2 EPRM November 2000 "Making the most of Mean Reversion" by Les Clewlow, Chris Strickland & 
Vince Kaminski). See also Energy Derivatives Pricing & Risk Management 2000by Les Clewlow & 
Chris Strickland page29 
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bound to cause changes in the way the prices act. Accordance with Schwartz (1997) 
we use futures to approximate the spot prices. 
The markets to be analysed are: 

" West Texas Intermediate (WTI) crude oil first nearby future from the New York 
Mercantile Exchange (NYMEX). Figure-3.1 plots the time series for the first 
nearby WTI future from January 1995 to 29 December 2000. 

Figure-3.1 
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" Brent crude oil first nearby from IPE. Figure-3.2 plots the time series for the first 
nearby Brent IPE future from January 1995 to 29 December 2000 

Figure-3.2 
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" Natural gas (NG) futures from NYMEX. Under the NYMEX futures contract 
natural gas is delivered over the next calendar month past contract expiration at 
the Henry Hub delivery node near the Gulf of Mexico. Figure-3.3 plots the time 
series for the first nearby NG future contract between January 1995 to 30 October 
2000. These futures are based on delivery of natural gas over the whole contract 
month. 

Figure-3.3 
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" The Mid-Columbia (MC) On Peak over-the-counter electricity spot price. We are 
using the Dow Jones daily price index (closing prices) during April 1996 to 
December 2000. Figure-3.4 plots the time series for the MC's on-peak spot prices 
for that period. 

Figure-3.4 
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The Mid-Columbia (MC) Off Peak over-the-counter electricity spot price. We are 
using the Dow Jones daily price index (closing prices) during April 1996 to 
December 2000. Figure-3.5 plots the time series for the MC's off-peak spot prices 
for that period. 

Figure-3.5 
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" California-Oregon Border (COB) on-peak spot prices from the Dow Jones daily 
price index (closing prices). Figure-3.6 plots the time series for COB's on peak 
spot prices from December 1996 to 30 December 2000. 

Figure-3.6 
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" California-Oregon Border (COB) off-peak spot prices from the Dow Jones daily 
price index (closing prices). Figure-3.7 plots the time series for COB's off peak 
spot prices from December 1996 to 30 December 2000. 

Figure-3.7 
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" The Southwest Power Pool (SPP) on peak prices. We will be using the Dow Jones 
daily price index (closing prices) from April 1996 to December 2000. Figure-3.8 a 
plots the time series for the SPP's on-peak spot prices for that period. 

Figure-3.8 
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" The Southwest Power Pool (SPP) off peak prices. We will be using the Dow Jones 
daily price index (closing prices) from April 1996 to December 2000. Figure-3.9 a 
plots the time series for the SPP's off-peak spot prices for that period. 

Figure-3.9 

( 
60 

50 

40 

30 

20 

10 

I SPP off Peak Prices 

0 
Go Go 

ööööööööö 

Table-3.1 shows the mean reversion analysis for a range of spot energy prices. The 

estimates from the linear regression area, and a,, with standard errors in parentheses. 

Table-3.1 

Market a, a a,, 
WTI crude oil -0.0035 0.00221 5.5822 0.01 09 0.00668 
IPE Brent -0.0026 ( 0.00898) 4.0816 0.0078(0.00556) 
Natural Gas -0.0023 ( 0.00279) 3.7469 0.0033(0.00277) 
COB On Peak -0.0242 ( 0.06348) 31.0599 0.0853 (0.02253) 
Mid-C On Peak -0.0211 ( 0.00552) 31.0999 0.0709 0.01868 
SPP On Peak -0.1527 (0.01388) 226.477 0.5004(0.04575) 
COB Off Peak -0.0092 ( 0.00426) 11.8485 0.0293(0.01 326 
Mid-C Off Peak -0.01036(0.00405) 15.2513 0.0314(0.01202) 
SPP Off Peak -0.1304 (0.01305) 193.3899 0.3400(0.3410 

Mean reversion rates for most energy prices, with the obvious exception of the 

electricity are relatively low (see Table-1). The On Peak Electricity Prices have higher 

mean reversion rate than the Off Peak. The mean reversion process generally 

produces a readjustment that is less abrupt. 
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3.5 Mean Reversion Jump Diffusion 

Energy prices often exhibit sudden, unexpected and discontinuous changes. Jump 
behaviour is driven in many cases by fluctuations in demand, low elasticity of supply 
and limited inventories. It should be noted that the price does not stay at the level to 
which it jumps, but after a jump, rapidly reverts to its long-term level. This type of 
behaviour as we mentioned above can be modelled by using a combination of mean 
reverting and jump processes. 
A simple and realistic model for a spot price, which captures both these effects and is 
identical to the Black-Scholes model except for the addition of the jump process, is 
the jump-diffusion introduced by Merton (1976). This model is described by the 
following equation (see Les Clewlow and Chris Stricland, Energy Derivatives 2000)3: 

dS = pSdt + QSdz + kSdq (3.7) 

where p is the expected return of the stock, a is the volatility of the stock, dz is a 
Wiener process, dq is the Poisson process and k is the proportional jump size which 
is random and determined by the natural logarithm of the proportional jumps being 
normally distributed: 

in(1 + k) N(ln(1 + k) -2y 2y 2) (3.8) 

where k is the mean jump size and y is the standard deviation of the proportional 
jump size which we call the jump volatility. The jump process (dq) is a discrete time 

process jumps do not occur continuously but at specific instants of time. Therefore, 
for typical jump frequencies, most of the time dq =0 and only takes the value 1 when 
a randomly timed jump occurs. When no jump is occurring the spot price behaviour is 
identical to the Geometric Brownian Motion process is only different when a jump 
occurs. If the jump frequency becoming very small, so that the chances of a jump 
occurring are close to zero, then we would get a Geometric Brownian Motion process. 
Similarly, if the jump volatility were very small, so that even if jumps were very 
frequent their size would be insignificant, then this would result in the spot price 
behaviour following a Geometric Brownian Motion process. Under that assumption 
the jump diffusion model, which is represented by equation (3.7), can be written in 
terms of the natural logarithm of the spot price, x= In S, as follows: 

dx = (p -I a2 )dt + adz + kdq (3.9) 

The proportional jump returns in equation (3.7) are normally distributed and therefore 
symmetrical. That is, the number of positive and negative jumps and the range of 

3 See also Les Clewlow, Chris Stricland &Vince Kaminski Making the most of Mean Reversion 
Energy and Power Risk Management (EPRM), Risk Waters Group 5(8); November 2000b, Les 
Clewlow, Chris Stricland &Vince Kaminski Spot Simulation Processing (EPRM), Risk Waters Group 
5 (9); December 2000c 
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sizes of the proportional jumps will be equal on average. In reality the distribution of 
jump return sizes of energy spot prices is positively skewed. A simple way to 
incorporate this property into equation (3.7) is to have the proportional jumps drawn 
from a normal distribution, but with different jump volatilities for the positive and 
negative jumps. 
Another simple alternative would be to have the proportional jumps drawn from a 
negatively shifted lognormal distribution, this would give a lower limit on the 
negative jump returns. These extensions are straightforward to incorporate into Monte 
Carlo simulations but lead to the loss of the analytical tractability of the Merton's 
model. 
The jump-diffusion model described by the equation (3.7) can be discretised as 
follows: 

Ox, = (r - cb k- 2 
QZ )At +Q Kte� + (k+ ys2; )(u, < g5Ot) (3.10) 

where p= (r - q$) under the risk neutral process4, e, and E2 are independent 

standard normal random variables and u is a uniform (0,1) random sample. The term 
(u, < q&t) is taken to be one if the condition is true and zero otherwise. This generates 
jumps randomly at the correct average frequency. When a jump occurs, its size is the 
mean jump size plus a normally distributed random amount with standard deviation 
y determined by s2 . In order that the frequency of jumps is correctly simulated, the 
time step At must be relative to the jump frequency such that qt « 1. 
Given the previous evidence that energy markets are mean reverting hence it seems 
appropriate to combine mean reversion and jumps into the same model. 
This model is called Mean Reversion Jump Diffusion and can be represented by the 
following equation: 

dS = a(p - In S)Sdt + 6Sdz + kSdq (3.11) 

where S is the spot price, a is the mean reversion rate, p is the long term average 
value of InS in the absence of jumps, dz is Wiener process, k is the mean jump size, r 
is the standard deviation of the proportional jump (jump volatility), 0 is the average 
number of jumps per year and dq is the Poisson process. 
Applying Ito's Lemma for x= In S, we get: 

ore )dt + ada + kdq (3.12) dx = (a(p - x) -2 
The equation (3.12) can be discretised in logarithmic form as follows: 

Ax, =(a(, u -x, )-I a2)At+Q-fA-tE�+(k+yc2; )(u, (pAt) (3.13) 

4 This assumption is very important because it turns out that we cannot apply risk-neutral valuation to 
situations where the size of the jump is systematic. (see John C Hull "Options Futures and other 
Derivatives" pg. 498-499) 

102 



Once the jump parameters 0, k, a, ,v 
have been estimated from the historical data and 

settle At =1/252 then we can test which one of these models is most appropriate to 
capture the behaviour of the spot price for the oil market, natural gas and electricity 
market. 

3.6 Estimation of Jump Process Parameters 

The estimation of jump parameters for energy prices is complicated by the fact that 
the jumps can only be observed as part of a time series of the normal non jump 
behaviour of the price. Typically, we will not have any information on the exact time 
the jump occurs. 
If we assume that jumps are relatively infrequent and not too large then we can get an 
estimate of the diffusion volatility in the usual way by calculating the sample standard 
deviation of returns. Based on this estimate of the volatility we can then look for 
actual returns that were larger than we would expect (for a chosen probability=3 times 
the sample standard deviation) in the absence of jumps and identify these extreme 
returns as jumps. Given that we have identified some returns as jumps we should 
recalculate the estimate of the diffusion volatility by recalculating the sample standard 
deviation of returns with the jumps returns excluded. This will give us a lower 
estimate of the diffusion volatility. So, using this new estimate of the diffusion 
volatility, we can look for more returns, which exceed the chosen limit. This approach 
is called a Recursive Filter. (See Les Clewlow and Chris Stricland, Energy 
Derivatives 2000, Les Clewlow and Chris Stricland et al. 2000b)5. Also the 

parameters we mentioned above (0, k, a, y) can be identified using the maximum 
likelihood method (Ball and Torous, 1983; Lien and Strom, 1999; Les Clewlow and 
Chris Stricland 2000) but empirical analysis suggests that the Recursive Filter does 
pick out the lower frequency higher volatility jump components instead of the higher 
frequency lower volatility jumps that are better estimated using the maximum 
likelihood method. 

3.6.1 Recursive Filter Estimation of the Jump-Diffusion Parameters 

We are going to apply this method to estimate the Jump-Diffusion parameters for: 
Brent IPE from January 1995 to 29 December 2000, WTI from January 1995 to 29 
December 2000, Natural Gas from January 1995 to 30 October 2000, California- 
Oregon Border On Peak & Off Peak (COB) electricity spot price from December 
1996 to 30 December 2000, Mid-Columbia On Peak & Off Peak (MC) over-the- 
counter electricity spot price from April 1996 to December 2000 and the Southwest 
Power Pool On Peak & Off Peak (SPP) electricity spot price from April 1996 to 
December 2000. Figures- (3.10-3.18) shows us the price returns of the data we 
mentioned above. 

s See also Les Clewlow, Chris Stricland &Vince Kaminski Jumping the Gaps Energy and Power Risk 
Management (EPRM), Risk Waters Group 5(10); January 200 1a. 
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Figure-3.10 
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Figure-3.12 
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Figure-3.14 
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Figure-3.16 
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Figure-3.18 

The procedure is the following: 

  Each of the data set give us an "X" amount of price observations giving an "X-1" 
returns i. e. for California-Oregon Border On Peak electricity spot price (COB) the 
data consists of 1280 price observations giving 1279 returns with At (in years)= 
number of observations/days in a year. 

  Then we calculate the sample standard deviation of the returns. i. e. for California- 
Oregon Border On Peak electricity spot price (COB) is 0.1828 

  The probability of returns greater than 3X0.1828 = 0.5484, therefore we begin to 
identify returns larger in absolute value than 0.5484 as jumps. We find that there 
are 21 returns that exceed this limit. 

  The number of jumps divided by the total time period, which they occur (in this 
case 5.0793 years), gives us an estimate of the jump frequency (p . The mean and 
the standard deviation of the jump returns give us estimates of the mean jump size 
and the jump volatility. So we have the following relationships: 

0 =number of jump returns/time period of data 

k= average jump of returns 

standard deviation of jump returns 

Table-3.2 give us the results of repeating this process for Brent, WTI, Natural Gas, 
California-Oregon Border (COB) On Peak & Off Peak, Mid-Columbia (MC) On Peak 
& Off Peak, and the Southwest Power Pool (SPP) On Peak & Off Peak prices. 
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Table-3.2 

Interations 

1 0,00025171 

Volatility 

30.8532% 

Standard 
Deviation 

0.019435684 

BRENTJumps 

18 2.898403 -4.4E-05 0008444 
2 0.0002957 27.7883% 0.01750497 28 4.508626 -0.00025 0.009541 
3 0.0005048 26.8679% 0.016925174 31 4.991693 -0.00029 0.009801 
4 0.0005381 26.6199% 0.016768931 33 5.313738 -0.00035 0.009961 
5 0.0006027 26.4614% 0.0166691 34 5.47476 -0.00032 0.010042 
6 0.0005706 26.3866% 0.016621965 34 5.47476 -0.00032 0.010042 
7 0.0005706 26.3866% 0.016621965 34 5.47476 -0.00032 0.010042 
8 0.0005706 26.3866% 0.016621965 34 5.47476 -0.00032 0.010042 
9 0.0005706 26.3866% 0.016621965 34 5.47476 -0.00032 0.010042 
10 0 0005706 26 3866% 0 016621965 34 5.47476 -0.00032 0.010042 

1u UUU , "1 _>ý '018`% 

Standard 
Deviation 

u 022805004 

WTI Jumps 

21 3.38147 5.93E-05 0.010809 
2 0.0002152 31.8782% 0.020081354 27 4.347604 -2.4E-05 0.011514 
3 0.0002987 31.2479% 0.019684298 27 4.347604 -2.4E-05 0.011514 
4 0.0002987 31.2379% 0.019678005 27 4.347604 -2.4E-05 0.011511 
5 0.0002987 31.2379% 0.019678005 27 4.347604 -2.4E-05 0.011511 
6 0.0002987 31.2379% 0.019678005 27 4.347604 -2.4E-05 0.011511 
7 0.0002987 31.2379% 0.019678005 27 4.347604 -2.4E-05 0.011511 
8 0.0002987 31.2379% 0.019678005 27 4.347604 -2.4E-05 0.011511 
9 0.0002987 31.2379% 0.019678005 27 4.347604 -2.4E-05 0.011511 
10 0 0002987 31 2379% 0019678005 27 4.347604 -2.4E-05 0.011511 

I nterations -mii-ri- vo--tothity Standard 
Deviation 
U-10222 

Natural Gas Jumps 

23 3.710627 -0.00074 0025085 
2 0.0018931 53.1646% 0.033490572 40 6.453265 -0.00049 0.027632 
3 0.0016429 49.9115% 0.031441293 44 7.098592 -0.00049 0.028065- 
4 0.0016446 49.2820% 0.03104477 45 7.259923 -0.00055 0.028155 
5 0.0017046 49.1328% 0.030950724 45 7.259923 -0.00055 0.028155- 
6 0.0017046 49.1328% 0.030950724 45 7.259923 -0.00055 0.028155 
7 0.0017046 49.1328% 0.030950724 45 7.259923 -0.00055 0.028155 
8 0.0017046 49.1328% 0.030950724 45 7.259923 -0.00055 0.028155 
9 0.0017046 49.1328% 0.030950724 45 7.259923 -0.00055 0.02815 
10 0 0017046 49 1328% 0030950724 45 7.259923 -0.00055 0.028155 

Interations 

1 

Mean 

U 00140: O 

Volatility 

290 2306% 

Standard 
Deviation 

Ut tim' sU1' 

COB On Peak Jumps 

21 4.134375 -0.00163 0.109162 
2 0.0030341 232.7657% 0.146628616 47 9.253125 -3.7E-05 0.129765 
3 0.0014412 204.4489% 0.128790721 65 12.79688 0.001869 0.138891 
4 -0.000463 188.6508% 0.118838856 77 15.15938 0.001289 0.143428 
5 0.0001149 179.8011% 0.113264068 82 16.14375 0.001025 0.145034 
6 0.0003792 176.5272% 0.11120166 87 17.12813 0.001287 0.146543 
7 0.0001168 173.3548% 0.10920327 90 17.71875 0.001544 0.147408 
8 -0.000139 171.4920% 0.108029817 91 17.91563 0.001798 0.147686 
9 -0.000394 170.8813% 0.107645126 92 18.1125 0.00205 0.147958 
10 -0.000646 170.2769% 0.107264376 94 18.50625 0.002051 0.148507 
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11 -0 000646 169 0702% 0 106504223 95 18.70313T -0-0618 0 14878 
12 -0 0003961168 

. 
47 31 % 0106128068 95 18.70313 0 0018 014878 

Deviation 
IntermMong, 062 

0.0010298 147.7408% 0.093067985 61 12.00938 0.002339 0.102174 
3 -0.000682 121.3251% 0.07642761 90 17.71875 0.00249 0.108992 
4 -0.000833 105.2644% 0.066310327 116 22.8375 0.001175 0.113094 
5 0.0004793 93.6752% 0.059009838 134 26.38125 0.000569 0.115252 
6 0.0010852 86.7959% 0.054676252 155 30.51563 0.000946 0.117261 
7 0.0007088 79.7269% 0.050223229 164 32.2875 0.00032 0.118004 
8 0.0013347 76.9063% 0.048446424 173 34.05938 0.000432 0.118657 
9 0.0012222 74.3356% 0.04682704 181 35.63438 0.001103 0.119191 
10 0.0005512 72.1516% 0.045451225 187 36.81563 0.001316 0.119566 
11 0.0003383 70.5656% 0.044452159 196 38.5875 0.001631 0.12009 
12 2.3E-05 68.2710% 0.04300671 206 40.55625 0.001227 0.120653 
13 0.0004277 65.7406% 0.041412685 215 42.32813 0.000735 0.121125- 
14 0.0009198 63.5231% 0.040015821 225 44.29688 0.001119 0.1216 
15 0.0005358 61.1913% 0.038546889 237 46.65938 0.001296 0.122132 
16 0.0003585 58.4548% 0.03682307 248 48.825 0.001208 0.122581 
17 0.0004467 56.0415% 0.035302798 258 50.79375 0.001369 0.122956 
18 0.000285 53.9237% 0.033968726 266 52.36875 0.00137 0.123231 
19 0.0002847 52.3135% 0.032954387 276 54.3375 0.00153 0.123549 
20 0.0001242 50.3816% 0.031737407 292 57.4875 0.001684 0.124019 
21 -2.95E-05 47.3694% 0.02983992 303 59.65313 0.001748 0.12431 
22 -9.35E-05 45.4004% 0.028599556 314 61.81875 0.001678 0.124574 
23 -2.39E-05 43.5481 % 0.027432704 323 63.59063 0.001878 0.124773 
24 -0.000224 42.0609% 0.026495906 330 64.96875 0.001815 0.124915 
25 -0.00016 40.9914% 0.025822171 337 66.34688 0.001755 0.125051 
26 -0.0001 39.9445% 0.025162677 346 68.11875 0.001694 0.125215 
27 -3.99E-05 38.6300% 0.024334641 363 71.46563 0.001982 0.125502 
28 -0.000327 36.1669% 0.022783032 382 75.20625 0.002039 0.12570- 
29 -0.000385 33.5260% 0.021119404 408 80.325 0.001941 0.126141 
30 -0.000286 30.0631% 0.018937965 438 86.23125 0.001651 0.12648 
31 3.65E-06 26.2719% 0.016549756 475 93.51563 0.002023 0.126797 
32 -0.000369 22.0154% 0.013868397 511 100.6031 0.001809 0.127033 
33 -0.000155 18.3199% 0.011540436 561 110.4469 0.001901 0.127255 
34 -0.000247 13.8795% 0.00874329 622 122.4563 0.001668 0.127432 
35 -1.36E-05 9.0211% 0.005682756 683 134.4656 0.001576 0.12752 
36 7.822E-05 5.0655% 0.003190979 749 147.4594 0.001647 0.127554 
37 6.939E-06 1.7592% 0.001108211 788 155.1375 0.001659 0.127558 
38 -5.02E-06 0.4257% 0.000268145 810 159.4688 0.001655 0.127559 
39 -5.71 E-07 0.0502% 3.16347E-05 813 160.0594 0.001654 0.127559 
40 0 00000% 0 813 160.0594 0.001654 0127559 

2 0.0025058 215.6084% 0.135820494 55 9.415761 -0.00037 0.131473 
3 0.0021103 190.1182% 0.119763222 75 12.83967 0.001144 0.138639 
4 0.0005971 176.7854% 0.111364332 85 14.55163 0.000214 0.141532 
5 0.0015269 170.8086% 0.107599326 91 15.5788 0.000661 0.143092 
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6 0.0010796 167.5075% 0105519836 96 16.43478 0.000882 0.144297 
7 0.0008584 164.8829% 0.103866482 101 17.29076 0.000668 0.145458 
8 0.0010727 162.2915% 0.10223406 105 17.97554 0.000247 0.146346 
9 0.0014935 160.2613% 0.100955156 106 18.14674 0.000454 0.146561 
10 0.0012866 159.7693% 0.100645194 107 18.31793 0.00066 0.146773 
11 0.0010808 159.2806% 0.100337374 108 18.48913 0.000865 0.146982 
12 0.0008759 158.7939% 0.10003074 108 18.48913 0.000865 0.146982 
13 

1 

0 0008759 

Mean 
U Uu I V. j 

158.7939% 

Volatility 
i1 jJVU 

010003074 108 18.48913 0 000865 0146982 

'Standard 
s .. 

V JJýiJJV J JJ .Jui:, l .. 
uUU`+1J V V., Ju 

2 0.0026395 157.7361% 0.099364404 69 11.8125 -9.5E-06 0.112204 
3 0.0021911 131.7307% 0.082982538 95 16.26359 0.000727 0.117984 
4 0.0014549 118.3042% 0.07452462 112 19.17391 0.001241 0.120648 
5 0.0009401 111.2229% 0.070063868 129 22.08424 0.001379 0.12292 
6 0.0008023 104.7651% 0.065995781 140 23.96739 0.001233 0.12418 
7 0.000949 100.9449% 0.063589306 150 25.67935 0.00097 0.125204 
8 0.0012117 97.7140% 0.061554019 159 27.22011 0.001356 0.126062 
9 0.0008255 94.8912% 0.059775867 167 28.58967 0.001358 0.126771 
10 0.0008236 92.4826% 0.058258591 173 29.61685 0.001357 0.127279- 
11 0.000825 90.7189% 0.057147513 179 30.64402 0.001591 0.127749 
12 0.0005904 89.0187% 0.056076497 184 31.5 0.001939 0.128128- 
13 0.0002423 87.6244% 0.055198156 187 32.01359 0.002053 0.128346 
14 0.0001291 86.8092% 0.054684665 189 32.35598 0.002277 0.128487 
15 -9.52E-05 86.2699% 0.054344935 191 32.69837 0.002277 0.128628 
16 -9.55E-05 85.7371% 0.054009326 193 33.04076 0.002277 0.128767 
17 -9.57E-05 85.2091% 0.053676668 195 33.38315 0.002497 0.128901 
18 -0.000315 84.6802% 0.053343538 197 33.72554 0.002498 0.129037 
19 -0.000316 84.1566% 0.053013655 198 33.89674 0.002606 0.129102 
20 -0.000425 83.8944% 0.052848473 200 34.23913 0.002822 0.1292Y- 
21 0.0001986 83.3749% 0.052521267 202 34.58152 0.002821 0.129361 
22 -0.00064 82.8610% 0.052197544 204 34.92391 0.003035 0.129486 
23 -0.000853 82.3453% 0.051872643 206 35.2663 0.003035 0.129614 
24 -0.000853 81.8370% 0.051552472 208 35.6087 0.002824 0.129745 
25 -0.000642 81.3351% 0.051236311 210 35.95109 0.003033 0.129864 
26 -0.000851 80.8300% 0.050918121 213 36.46467 0.00272 0.130055 
27 -0.000539 80.0873% 0.050450232 218 37.32065 0.003029 0.130349- 
28 -0.000847 78.8385% 0.049663586 225 38.51902 0.002928 0.13076 
29 -0.000747 77.1174% 0.048579425 230 39.375 0.002629 0.131046 
30 -0.000447 75.9175% 0.047823548 232 39.71739 0.002628 0.131155 
31 -0.000446 75.4447% 0.047525693 

Devistipm 
1U UUüýh`, 1 1. i-1 l`, it, '' Uli , 

i4U4`u r4 

232 39.71739 0 002628 0 131155 

a 

"J UUß, _t1-1 ü UUUU .UI,.,. -, "i 
2 -0.003438 334.6644% 0.210818786 53 9.006069 0.002999 0.201796 
3 -0.002428 292.8891% 0.184502767 66 11.2151 0.003414 0.209297 
4 -0.002843 279.1936% 0.175875453 74 12.57451 0.004143 0.212931 
5 -0.003573 271.9959% 0.171341305 80 13.59407 0.004138 0.215497 
6 -0.003569 266.8550% 0.168102826 88 14.95347 0.004142 0.218708 
7 -0.003573 260.1895% 0.163903968 92 15.63318 0.004134 0.220244 
8 -0.003565 256.9027% 0.161833465 93 15.8031 0.004464 0.220605 



9 -0.0038951 256.0959%1 0.161325225 93 15.8031 0.004464 0.220605 
10 -0.0038951 256.0959%1 0.161325225 93 15.8031 0.004464 0.220605 

Interations 

1 

Mean 

0.0003978 

Volatility 

160.9265% 

Standard 
Deviation 

0.101374182 

SPP off Peak Jumps 

43 7.306811 0.001566 0.070759 
2 -0.001168 115.1235% 0.072521003 85 14.4437 0.001278 0.082745 
3 -0.000879 92.8452% 0.058486972 122 20.73095 0.001998 0.088415 
4 -0.001599 78.4878% 0.049442664 157 26.67835 0.00123 0.091829 
5 -0.000833 67.8761% 0.042757895 198 33.64531 0.000966 0.094657 
6 -0.000569 57.2777% 0.036081589 234 39.76264 0.000796 0.096446 
7 -0.000399 49.1980% 0.03099184 276 46.89953 0.00093 0.097929 
8 -0.000532 41.1424% 0.025917249 327 55.56575 0.00038 0.099175 
9 1.78E-05 32.8115% 0.020669271 380 64.57181 0.000118 0.100059 
10 0.000279 25.1578% 0.015847956 443 75.27714 0.000346 0.100699 
11 5.134E-05 13.3884% 0.00843389 558 94.81861 0.000424 0.101273 
12 -2.69E-05 5.8241% 0.003668826 612 103.9946 0.000382 0.101332 
13 1.585E-05 1.9667% 0.001238919 644 109.4322 0.000395 0.10134 
14 2.396E-06 0.3897% 0.000245474 658 111.8112 0.000398 0.10134 
15 -4.47E-07 0.0273% 1.72145E-05 659 111.9811 0.000398 0.10134 
16 0 0.0000% 0 659 111.9811 0.000398 0.10134 

As we can see from the Table-3.2 above for Brent and Natural Gas we needed to do 
six interations to estimate the jump diffusion parameters, for WTI we needed to do 
four interations, for COB On Peak and Mid C On Peak we needed to do twelve 
interations for SPP On Peak Prices we needed to do nine interations, for COB Off 
Peak we needed to do forty interations, for Mid C Off Peak we needed to do thirty one 
interations and for SPP Off Peak we needed to do sixteen interations. That indicates 
that in the electricity market we can see large shocks, which don't last for a long 
period of time but can happen frequently. 

Since the jump parameters O, k, a, y and & =1/252 have been estimated from the 
historical data we can insert them to the equations (3.3), (3.10) and (3.13) and see 
which model is the most appropriate to capture the spot price behaviour, the Jump 
Diffusion or the Mean Reversion Jump Diffusion. For the Mean Reversion Jump 
Diffusion model we have to estimate the mean reversion rate and the long-term 
average without the jumps. For the Black-Scholes Geometric Brownian Motion 
Model the volatility we are using is the volatility with the jumps, which has been 
calculated in the first interation on the Table 3.2 above. 
Since the jumps have been estimated we have to exclude them from the historical data 
and estimate the Mean Reversion Rate and the long-term average. In order to 
calculate the mean reversion rate we apply the same method that we described at the 
beginning of this chapter and the long-term average is the average price of the 
historical data. Table-3.3 shows the mean reversion analysis for a range of spot 
energy prices without the jumps. The estimates from the linear regression areal and 
ao with standard errors in parentheses. Table-3.4 shows the long-term average 
without the jumps. Also we assume that the interest rate is 5%. We are using Monte 
Carlo Simulation (see Espen Gaarder Haug, Option Pricing Formulas 1998 page 139- 
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142)6 in order to implement these models (see Appendix-3.1 for the jump diffusion 
model and Appendix-3.2 for the mean reversion jump diffusion model). The computer 
language we are using to implement the computer algorithms for jump diffusion 
model and the mean reversion jump diffusion is Visual Basic. The main drawback of 
Monte Carlo Simulation is that is computer intensive. We apply ten thousands 
simulations for each one of the sixty-six consecutive historical chosen randomly from 
the data available observations in order get more accurate results. Sixty-six data 
points corresponds to three months worth of observations which we feel is a large 
enough sample which we can draw conclusions about the spot price behaviour. 

Table-3.3 

Market a, a ao 
WTI crude oil -0.0034 (0.00221) 5.3599 0.0107(0.00668) 
IPE Brent -0.0023 (0.00184) 3.6615 0.0072(0.00541) 
Natural Gas -0.0023 (0.00289) 3.5804 0.0033(0.00285) 
COB On Peak -0.0268 (0.00697) 31.8601 0.0935(0.02445) 
Mid-C On Peak -0.0255 (-0.02555) 34.8508 0.0845(0.02104) 
SPP On Peak -0.1872 0.01567 260.2723 0.6044(0.05097) 
COB Off Peak -0.0051 (0.00866) 2.4048 0.0215(0.02653) 
Mid-C Off Peak -0.0086 (0.00424) 10.7524 0.0266 0.01234 
SPP Off Peak -0.1845 ( 0.02076) 152.2418 0.4759 0.05361 

Table-3.4 

Market long-term average 
WTI crude oil 20.86 
IPE Brent 19.16 
Natural Gas 2.70 
COB On Peak 46.23 
Mid-C On Peak 39.92 
SPP On Peak 28.73 
COB Off Peak 33.86 
Mid-C Off Peak 25.85 
SPP Off Peak 13.38 

6 see also Les Clewlow and Chris Strickland, Implementing Derivatives Models 1998 page (82-87) 
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BRENT 

Figure-3.19 
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Figure-3.21 

Simulation of Jump Diffusion for Brent 
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Figure-3.23 

Simulation of Mean Renersion Jump Diffusion for Brent 
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From the graphs above (Figure-3.19, Figure-3.21& Figure-3.23) we can see with a 
naked eye that all three models, the Black-Scholes GBM, the jump diffusion and the 
mean reversion diffusion are appropriate to describe the Brent market. But if we look 
in more detail, Figure-3.20, Figure-3.22 & Figure-3.24 show us that the average 
difference between the predictions and the actual data is smaller in the Black-Scholes 
GBM model than in the jump diffusion model and the mean reversion jump diffusion 
model. To be more accurate the average difference between the predictions and the 
actual data in the Black-Scholes GBM model is 0.0051% with a standard deviation of 
0.2976%. The average difference between the predictions and the actual data in the 
jump diffusion model is 0.0156% with a standard deviation of 0.0769%. Similarly, the 
average difference between the predictions and the actual data in the mean reversion 
jump diffusion model is 5.676% with a standard deviation of 0.526%. So, the Black- 
Scholes GBM model is marginally more accurate model to describe the Brent market. 
The basic reason for this is that the volatility we used in the Black's model is a 
composite (diffusion + jumps) volatility. 

WTI 

Figure-3.25 

Simulation of Black-Scholes GBM for WTl 
17 

16.5 
16 

15.5 
15 

14.5 
14 

13.5 
13 

12.5 
12 

11.5 
11 

Actual Predict 

117 

!ºO! Cl) NNNNMM 
If 

ää 10 ý 40 
too 

Time (in days) 



Figure-3.26 
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Figure-3.30 

Deviation Percentage between (Predict-Actual) for WTI 

2.509/o i- -- _ . _. _- - --- ------- ---- 
2.00'/ {11. _.. . _....... 

1.50% 1 

1.000/0 1ý. 
_ 

0.50% 
O. OV% 

11IrkIIIIIIIIIIIIIr1 IT 11ITTT -T I1TfIITiIT TTTTT1 IITfIII rTT IITT 

147 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 

-0.50% 
Time (in days) 

j 
-+- (Predict Actual) Average 

From the graphs above (Figure-3.25, Figure-3.27 & Figure-3.29) we can see with a 
naked eye that all three models, the Black-Scholes GBM, the jump diffusion and the 
mean reversion diffusion are appropriate to describe the WTI market. But if we look 
in more detail, Figure-3.26, Figure-3.28 & Figure-3.30 show us that the average 
difference between the predictions and the actual data is smaller in the Black-Scholes 
GBM model than in the jump diffusion model and the mean reversion jump diffusion 
model. To be more accurate the average difference between the predictions and the 
actual data in the Black-Scholes GBM model is 0.0 109% with a standard deviation of 
0.3516%. The average difference between the predictions and the actual data in the 
jump diffusion model is 0.0603% with a standard deviation of 0.0621 %. Similarly, the 
average difference between the predictions and the actual data in the mean reversion 
jump diffusion model is 1.294% with a standard deviation of 0.304%. So, the Black- 
Scholes GBM model is marginally more accurate model to describe the WTI market. 
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NATURAL-GAS 

Figure-3.30 
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Figure-3.32 
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Figure-3.34 

Simulation of Mean Reversion Jump Diffusion for Natural Gas 
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Similarly from the graphs above (Figure-3.30, Figure-3.32 & Figure-3.34) we can see 
with a naked eye that all three models, the Black-Scholes GBM model, the jump 
diffusion and the mean reversion diffusion are appropriate to describe the natural gas 
market. But if we look in more detail, Figure-3.31, Figure-3.33 & Figure-3.35 show 
us that the average difference between the predictions and the actual data is smaller in 
the jump diffusion model than in the Black-Scholes GBM model and the mean 
reversion jump diffusion model. To be more accurate the average difference between 
the predictions and the actual data in the jump diffusion model is -0.0007% with a 
standard deviation of 0.2673%. The average difference between the predictions and 
the actual data in the Black-Scholes GBM model is 0.0141% with a standard 
deviation of 0.1048% and the average difference between the predictions and the 
actual data in the mean reversion jump diffusion model is -0.05109% with a standard 
deviation of 0.7952%. So, the jump diffusion model is marginally more accurate 
model to describe the natural gas market. 

COB On Peak Prices 

Figure-3.36 

600 
500 

400 

300 

200 

100 

0 

Simulation for Black-Scholes GBM for COB On Peak Prices 

Time (in days) 

-ý-Actual Predict 

124 

147 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 



Figure-3.37 
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Figure-3.39 
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Figure-3.41 
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Similarly from the graphs above (Figure-3.36, Figure-3.38 & Figure-3.40) we can see 
with a naked eye that the Black-Scholes GBM model and the jump diffusion model is 
the appropriate model to describe the COB On Peak electricity market and not the 
mean reversion jump diffusion. If we look in more detail, Figure-3.37shows that the 
average difference between the predictions and the actual data in the Black-Scholes 
GBM model is 5.545% with a standard deviation of 25.554% and Figure-3.39 shows 
that the average difference between the predictions and the actual data in the jump 
diffusion model is 14.519% with a standard deviation of 16.693%. Furthermore 
Figure-3.41 shows that the average difference between the predictions and the actual 
data in the mean reversion jump diffusion model is -22.78 with a standard deviation 
of 16.71. The reason for that is the mean reversion rate a we estimated is very high. 
The lower the mean-reversion rate, the better the mean reversion jump diffusion 
model describes the market in question. The predictions of the Black-Scholes GBM 
model and the jump diffusion model are closer to the market prices than the 
predictions of the mean reversion jump diffusion model which underestimate the 
market prices. Once again the Black-Scholes GBM model and the jump diffusion 
model are the appropriate models to describe the COB On Peak electricity market. 
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SPP On Peak Prices 

Figure-3.42 

Simulation off Black-Scholes GBM for SPP On Peak Prices 
140 

120 

100 

80 

60 

40 

20 

0 

Figure-3.43 

Deviation Percentage (Predict-Actual) for SPP On Peak 

30.000% 
25.000% 
20.000% 
15.000% 
10.000% 
5.000% 
0.000% 

-5.000% 
-10.0000 
-15.000% 
-20.000% 

Time (in days) 

(Predict Actual) Average 

128 

147 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 

Time (in days) 

ý- Actual Predict 



Figure-3.44 
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Figure-3.46 
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Furthermore from the graphs above (Figure-3.42, Figure-3.44 & Figure-3.46) we can 
see with a naked eye that the Black-Scholes GBM and the jump diffusion model is the 
most appropriate model to describe the SPP On Peak electricity market. If we look in 
more detail, Figure-3.43, Figure-3.45 & Figure-3.47 show us that the average 
difference between the predictions and the actual data is smaller in the Black-Scholes 
GBM model than in the jump diffusion model and in the mean reversion jump 
diffusion model. To be more accurate the average difference between the predictions 
and the actual data in the jump diffusion model is 7.356% with a standard deviation of 
5.5729% and the average difference between the predictions and the actual data in the 
Black-Scholes GBM model is 1.694% with a standard deviation 8.2316%. Similarly 
the average difference between the predictions and the actual data in the mean 
reversion jump diffusion model is -6.15 with a standard deviation of 11.05. The 
reason for that is the mean reversion rate a that we estimated is very high for that 
period. So, the Black-Scholes GBM model is marginally more accurate to describe the 
SPP On Peak Electricity market. Concluding we think that, Black-Scholes GBM 
model and the jump diffusion model are the appropriate models to describe the SPP 
On Peak Electricity market. 

Mid C On Peak 

Figure-3.48 
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Figure-3.49 
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Figure-3.53 
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Similarly from the graphs above (Figure-3.48, Figure-3.50 & Figure-3.52) we can see 
with a naked eye that the Black-Scholes GBM model and the jump diffusion model is 
the appropriate model to describe the Mid C On Peak electricity market. If we look in 

more detail, Figure-3.51 shows that the average difference between the predictions 
and the actual data in the jump diffusion model is 15.244% with a standard deviation 

of 17.788% and Figure-3.49 shows that the average difference between the 
predictions and the actual data in the Black-Scholes GBM model is 5.05% with a 
standard deviation 26.03%. Furthermore Figure-3.53 shows that the average 
difference between the predictions and the actual data in the mean reversion jump 
diffusion model is -28.22 with a standard deviation of 22.67. The reason for that is 
the mean reversion rate a we estimated is very high. So, the Black-Scholes GBM 

model is marginally more accurate to describe the Mid C On Peak Electricity market. 
Once again it is obvious that the jump diffusion model and the Black-Scholes GBM 

model are the appropriate models to describe the Mid C On Peak electricity market. 
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Figure-3.55 
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Figure-3.56 
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Figure-3.58 

Simulation of Mean Rever on Jump Diffusion for COB Off Peak 

160.00 

140.00 

120.00 

100.00 

80.00 

60.00 

40.00 

20.00 

Figure-3.59 

50.00 
40.00 
30.00 
20.00 
10.00 

-10.00 
-20.00 
-30.00 
-40.00 

-50.00 
-60.00 

137 

159 13 17 21 25 29 33 37 41 45 49 53 57 61 65 

Time (in days) 
Actual ---- Predict 

Deviation Percentage between (Predict Actual) for COB Off Peak 



Similarly from the graphs above (Figure-3.54, Figure-3.56 & Figure-3.58) we can see 
with a naked eye that from the three the models the Black-Scholes GBM, is 
appropriate to describe the COB Off Peak electricity market. Even if we look in more 
detail, Figure-3.55, Figure-3.57& Figure-3.59 show us that the average difference 
between the predictions and the actual data is smaller in the Black-Scholes GBM 
model than in the jump diffusion model and the mean reversion jump diffusion model. 
To be more accurate the average difference between the predictions and the actual 
data in the Black-Scholes GBM model is 0.024 with a standard deviation of 0.105 and 
average difference between the predictions and the actual data in the jump diffusion 
model is -3.32 with a standard deviation of 11.33. Also the average difference 
between the predictions and the actual data in the mean reversion jump diffusion 
model is -4.93 with a standard deviation of 12.74. Apart from the results, it was 
obvious from the beginning that the Black-Scholes GBM model would be the 
appropriate model to describe the COB Off Peak electricity market because we 
mentioned at the beginning (see Section 3.5) that if the jump volatility is very small, 
so even if jumps are very frequent their size would be insignificant, then this would 
result a GBM process. Here the jump volatility is very small (see Table-3.2), so the 
COB Off Peak electricity market follows a GBM process. 

SPP Off Peak 

Figure-3.60 
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Figure-3.65 
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Furthermore from the graphs above (Figure-3.60, Figure-3.62 & Figure-3.64) we can 
see with a naked eye that the Black-Scholes GBM model captures the SPP Off Peak 
electricity market much better than any other model. Even if we look in more detail, 
Figure-3.61, Figure-3.63 & Figure-3.65 show us that the average difference between 
the predictions and the actual data is smaller in the Black-Scholes GBM model than in 
the mean reversion jump diffusion model and in the jump diffusion model. To be 
more accurate the average difference between the predictions and the actual data in 
the Black-Scholes GBM model is 0.0025 with a standard deviation of 0.0128 and the 
average difference between the predictions and the actual data in the jump diffusion 
model is 1.59 with a standard deviation of 3.04. Also, the average difference between 
the predictions and the actual data in the mean reversion jump diffusion model is 0.14 
with a standard deviation of 1.67. Based on the above we conclude that the Black- 
Scholes GBM model is the appropriate model to describe the SPP Off Peak electricity 
market. We could say from the beginning that the SPP Off Peak electricity market 
would follow a GBM process because by observing Table-3.2 we can see that the 
jump volatility is very small which means that the data follows a GBM process. 
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MID-C Off Peak Prices 

Figure-3.66 
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Figure-3.69 
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Figure-3.71 
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Similarly from the graphs above (Figure-3.66, Figure-3.68 & Figure-3.70) we can see 
with a naked eye that the Black-Scholes GBM model and the jump diffusion model is 
the appropriate model to describe the Mid C Off Peak electricity market. If we look in 
more detail, Figure-3.67 shows that the average difference between the predictions 
and the actual data in the Black-Scholes GBM model is 0.0204 with a standard 
deviation of 0.1033, Figure-3.69 shows that the average difference between the 
predictions and the actual data in the jump diffusion model is 0.0643 with a standard 
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deviation of 0.0514 and Figure-3.71 shows that the average difference between the 
predictions and the actual data in the mean reversion jump diffusion model is -4.30 
with a standard deviation of 1.69. Based on the above the Black-Scholes GBM model 
is marginally more accurate to describe the Mid C Off Peak electricity market. So, it 
is obvious that the Black-Scholes GBM model and the jump diffusion model are the 
appropriate models to describe the Mid C Off Peak electricity market. 

Summary 

In this chapter we have discussed how the Black-Scholes GBM model can be 
extended to capture empirically documented stylised facts of the energy prices. The 
stylised facts are mean reversion and jump behaviour. Mean reversion captures the 
feature of spot prices return to a long-term level. The jump diffusion model we 
described allowed us to reflect the sudden large changes in energy spot prices, 
particularly electricity. We tested these models based on the parameters we estimated 
from historical data and we found that all three models are appropriate to capture the 
behaviour of these markets. To be more specific, according to our results, which 
indicate that the mean reversion rate is small and the jump volatility is quite large, we 
think that the oil and natural gas markets can be described by the classical Black- 
Scholes GBM as well as by the jump diffusion and the mean reversion jump diffusion 
models. In the electricity market we have noticed that the jump behaviour and the 
Black-Scholes is the dominant empirical characteristic. The jump diffusion model 
doesn't apply in the COB Off Peak and SPP Off Peak electricity market because the 
jump volatility is very low. Similarly the reason that the mean reversion jump 
diffusion model is not the appropriate model for the electricity market is that the mean 
reversion rate we estimated is very high. 
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Appendix-3.1 

The computer algorithm for the jump-diffusion model (equation-3.10) is the 
following: 

Public Sub JumpDiffusionOptionModel() 

Dim p, r, f, sig, k, y, T, M, n, Z, PutCall, nodays 
Dim diff, drift, dt, Inp, sump, test, test2, randl, rand2, rand3, jump, CT, sum_CT 
Dim i, j, pcf, b As Integer 

nodays = (Range("F"). End(xlDown). Row) -1 

For b=1 To nodays 

p= Cells(1 + b, 1). Value 
Z= Cells(1 + b, 2). Value 
PutCall = Cells(1 + b, 3). Value 
r= Cells(1 + b, 4). Value 
sig = Cells(1 + b, 5). Value 
f= Cells(1 + b, 6). Value 
k= Cells(1 + b, 7). Value 
y= Cells(1 + b, 8). Value 
T= Cells(1 + b, 9). Value 
M= Cells(1 + b, 10). Value 
n= Cells(1 + b, 11). Value 

dt=T/n 

drift=(r-f* k-0.5 * sigA2) * dt 

dill= sig * Sqr(dt) 

sump=0 
CT=O 
sum-CT =0 

Forj=IToM 

lnp = Log(p) 

For i=ITon 

test = Rnd 

If test =0 Then 
test = test + 0.0000001 
End If 
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randl = Application. NormSlnv(test) 

Inp = lnp + drift + dill * rand 1 

rand2 = Rnd 

If rand2 < (f * dt) Then 

test2 = Rnd 

If test2 =0 Then 
test2 = test2 + 0.0000001 
End If 

rand3 = Application. NormSlnv(test2) 

jump =k+ (y * rand3) 

lnp = lnp + jump 

End If 

Next i 

If LCase(PutCall) = "call" Then 

pcf=1 

End If 

If LCase(PutCall) = "put" Then 

pcf = -1 

End If 

sump = sump + Exp(lnp) 
CT = Application. Max(pcf * (Exp(lnp) - Z), 0) 
sum CT = sum CT + CT 

Next j 

Cells(! + b, 12). Value = Exp(-r * T) * (sump / M) 
Cells(! + b, 13). Value = Exp(-r * T) * (sum CT / M) 

Next b 
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End Sub 

Appendix-3.2 

The computer algorithm for the mean-reversion-jump-diffusion model (equation-3.13) 
is the following: 

Public Sub MeanReversionJumpDiffusionOptionModel( 

Dim p, r, f, sig, k, y, T, M, n, a, u, Z, PutCall, nodays, test6 
Dim diff, drift, dt, Inp, sump, test, test2, rand!, rand2, rand3, jump, CT, sum CT 
Dim i, j, pcf, b As Integer 

nodays = (Range("F"). End(xlDown). Row) -1 

For b=1 To nodays 

p= Cells(b + 1,1). Value 
Z= Cells(b + 1,2). Value 
PutCall = Cells(b + 1,3). Value 
a= Cells(b + 1,4). Value 
u= Cells(b + 1,5). Value 
r= Cells(b + 1,6). Value 
sig = Cells(b + 1,7). Value 
f= Cells(b + 1,8). Value 
k= Cells(b + 1,9). Value 
y= Cells(b + 1,10). Value 
T= Cells(b + 1,1 1). Value 
M= Cells(b + 1,12). Value 
n= Cells(b + 1,13). Value 

dt=T/n 

diff = sig * Sqr(dt) 

sump=0 
CT=O 
sum CT =0 

Forj=IToM 

lnp = Log(p) 

For i=1 To n 

drift = (a * (u - Inp) - 0.5 * Sig A 2) * dt 
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test = Rnd 

If test =0 Then 
test = test + 0.0000001 
End If 

randl = Application. NormSlnv(test) 

Inp = lnp+drift +diff * randl 

rand2 = Rnd 

If rand2 < (f * dt) Then 

test2 = Rnd 

If test2 =0 Then 

test2 = test2 + 0.0000001 
End If 

rand3 = Application. NormSlnv(test2) 

jump =k+ (y * rand3) 

1np =1np + jump 

End If 

'Cells(1 +i+j, 17 + (8 * (b - 1))). Value = Inp 
'Cells(1 +i+j, 18 + (8 * (b - 1))). Value = drift 
'Cells(1 +i+j, 19 + (8 * (b - 1))). Value = diff 
'Cells(1 +i+j, 20 + (8 * (b - 1))). Value = randI 
'Cells(1 +i+j, 21 + (8 * (b - 1))). Value =k 
'Cells(1 +i+j, 22 + (8 * (b - 1))). Value =y 
'Cells(1 +i+j, 23 + (8 * (b - 1))). Value = rand3 
'Cells(1 +i+j, 24 + (8 * (b - 1))). Value = Exp(Inp) 
Next i 

If LCase(PutCall) = "call" Then 

pcf=1 

End If 
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If LCase(PutCall) = "put" Then 

pcf = -1 

End If 

sump = sump + Exp(lnp) 
CT = App lication. Max(pcf * (Exp(lnp) - Z), 0) 
sum_CT = sum-CT + CT 

'Cells(1 + j, 17 + b). Value = Exp(lnp) 
Next j 

Cells(1 + b, 14). Value = Exp(-r * T) * (sump / M) 
Cells(1 + b, 15). Value = Exp(-r * T) * (sum CT / M) 

Next b 

End Sub 
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CHAPTER 4 
PRICING OIL DERIVATIVES BASED UPON THE FORWARD 
CURVE APPROACH 

4.1 Introduction 

For derivative pricing, many industry participants require the forward curve to be an 
input into the derivative price model, rather than an output from it, as is the case with 
the constant parameter versions of the spot price models in chapter 3. In this chapter 
we show how a multi-factor forward model can be developed in stages and we then 
apply it to the oil market. We show how the multi-factor model can be calibrated to 
market observable data, and derive formulae for pricing of standard energy 
derivatives. We also discuss how the model can be adapted to handle seasonal 
volatilities and volatility smiles. 

4.2 A Simple Model for the Forward Curve 

A simple single factor model of the forward curve can be represented by the following 
stochastic differential equation: 

dF(t, T) 
= ou -a(T_, )dZ(t) (4.1) 

F(t, T) 

The inputs to the model are: the observed forward curve F(t, T) which denotes the 
forward price at time t for maturity date T, and oe-1(T-4) which is the single factor or 
volatility function associated with a source of risk dz(t). Notice that equation (4.1) 
has no drift term because futures and forwards contracts have zero initial investment, 
their expected return in a risk-neutral world must be zero, implying that the process 
describing their evolution has zero drift. The volatility function of equation (4.1) has a 
very simple negative exponential form, which we illustrate in Figure-4.1. 
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Figure-4.1 
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For this volatility function short dated forward returns are more volatile than long 
dated forwards-information occurring in the market today has little effect on, say, the 
five year forward price but can have a significant effect on the one month forward 
price. The parameter values used for the Figure-4.1 are a =1 and a=0.40. Here a 
represents the overall volatility of the forward curve whilst a tells us how fast the 
forward volatility curve attenuates with increasing maturity. With an a of 100% we 
see that the one month forward has a volatility of about 37%, decreasing to roughly 
2% for the three year forward. 
Figure-4.2 shows a graphical representation of the evolution of the forward curve 
described by equation (4.1) with a volatility function of this type. The lower curve 
denoted by F(t, T) , 

is the original observed forward curve, whilst the upper curve, 
F(t +d1, T), represents the curve after a small time step dt where there has been a 
positive shock to the system ((dz(t) > 0). In this case the whole forward curve shifts 
up, with each point a multiple of of the shock. 

152 

CV) r. oý ý" eti r. oº '- Cl) W) t% o) .- cn h 
ý- rNNNNN Cl) Cl) Cl) 
Maturity(years) 



Figure-4.2 
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The volatility function is not restricted to have the parameterised form of equation 
(4.1). Instead we can allow the function to be very general: 

dF(t, T) 

F(t, T) = u(t, T)dz(t) (4.2) 

where Q(t, T) would be read as the time t volatility of the T maturity forward price 
return. We can determine from market data what the form of cr(t, T) should be. 
In order to determine empirically the form of the volatility function(s) we can look at 
the historical evolution of the market forward data. One method that can be used to 
determine the set of common factors that drive the dynamics of the forward curve is 
principal component analysis (PCA) or eigenvector decomposition of the covariance 
matrix. This procedure can be utilised to simultaneously identify the number of 
important factors and estimate the volatility functions. We show in detail how 
empirically to estimate the volatility functions in section 4.3. 
Principal component analysis can also give us insights into how many factors we need 
to realistically model the forward curve. 
If we need more than one factor to describe the forward curve we can amend the 
model described by equation (4.2) by adding additional sources of risk and volatility 
functions. For example, a three-factor model is given by: 

(t, T F= or, (t, T)dz, (t)+Q2(1, T)dz2(t)+a3(t, T)dz3(t) (4.3) 
)) 

where a, (t, T), a7 (t, T) and 63 (t, T) are the volatility functions and dz, (t), dzz (t) and 
dz, (t) representing the independent sources of uncertainty (Brownian motions). 
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4.3 Historical Estimation of the Forward Curve Volatility Functions 

In this section we show how to obtain the general volatility functions from historical 
forward curve data. The method that we are going to describe allows the user to 
determine both the form of the volatility functions as well as the number of factors to 
use for option pricing. The general multifactor forward curve model can be 
represented by the following equation: 

dF(t, T) 
= 

ýo (t, T)dz, (t) (4.4) 
F(t, T) 'i 

where F represents the price of a forward contract, T represents the contract maturity 
date and a the volatility of the forward contract. 
In this formulation there are n independent sources of uncertainty, which drive the 
evolution of the forward curve. Each source of uncertainty has associated with it a 
volatility function which determines by how much, and in which direction that 
random shock moves each point of the forward curve. The a, (t, T) are, therefore, the 

n volatility functions associated with the independent sources of risk dz, (t). In 

practice we would usually set n =1,2 and 3. After an application of Ito's Lemma the 
equation (4.4) can be represented in logarithmic form, as: 

nn 

din F(t, T)=-1 I: o (t, T)2dt+EQ, (t, T)dz, (t) (4.5) 
2 j=1 

This can be discretized for small time changes A(t) as: 

O1nF(t, t+rj) =-1 2: Q, (t, t+rj)ZOt+EQ, (t, t+rj)Az, (4.6) 
2j., 1.1 

Equation (4.6) implies that changes in the natural logarithms of the forward prices 
with relative maturities zf, j =I .......... m are jointly normally distributed. We can 
compute the sample covariance matrix of these forward prices in the standard way: 

N 

(X& - x, )(x 
Jk - xj) (4.7) 

Nk-I 

where there are N samples (k =1,........, N) of xk and x Jk which are defined as: 

z, k = In(F(tk, tk +z, ))-ln(F(tk -At, tk -At+r, )) (4.8) 

and where x,, x, are the sample means. The time interval At is chosen to be daily. 
The discretized volatility functions, a, (t, I+ rj); i =I ........ n and j =1,........, m , 
are recovered by eigenvector decomposition of the covariance matrix. 
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The decomposition yields the set of independent factors, which drive the evolution of 
the variables underlying the covariance matrix. It decomposes the covariance matrix, 
which we denote by E, into n eigenvectors v.; and associated eigenvalues A, such 
that 

= rnr T 

where 

V11V12.......... v1n 

V21v22 ...... 
U2n 

Un1Un2........ Jinn 

and 

n= 

A,, 0........... 0 
04-* ...... o 

00............. /x,, 

(4.9) 

and where the superscript T here denotes transpose. The columns of r are the 
eigenvectors. The eigenvalues represent the variances of the independent factors, 
which drive the forward points in proportions determined by the eigenvectors. The 

volatility functions are then obtained as o (t, t + r; ) = uj; A,; 252. (4.10) 

We use the principal component analysis methodology above to determine the 
volatility functions from historical forward curve data for: 

- Brent IPE from January 1999 to 16th February 2001, (Figure-4.3) 

- WTI from January 1999 to 16`h of February 2001, (Figure-4.4) 

- Natural Gas from January 1999 to 160'of February 2001, (Figure-4.5) 

- IPE Gasoil form January 1999 to 16th February 2001, (Figure-4.6) 
- NYMEX Heating Oil from January 1999 to 16th of February 2001 (Figure-4.7) 

- NYMEX Unleaded from January 1999 to 10h February 2001 (Figure-4.8) 
The data that we are using are the settlement prices for the first nine months because 
they are the most liquid and they are the most reliable. 
The first step is to construct a time series of forward price returns according to the 
equation (4.8). Next we compute the sample covariance matrix by applying equation 
(4.7). The following tables show the covariance matrices for: WTI crude oil futures, 
Brent crude oil futures, IPE Gasoil futures, Heating Oil futures, Unleaded futures and 
Natural Gas futures. 
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Table-4.1 Covariance Matrix For WTI Crude Oil Futures 

F(1m) F(2m) F(3m) F(4m) F(5m) F(6m) F(7m) F(8m) F(9m) 
F(1 m) 0.00061 0.00052 0.00047 0.00043 0.00040 0.00038 0.00036 0.00035 0.00033 
F(2m) 0.00052 0.00048 0.00044 0.00041 0.00038 0.00036 0.00035 0.00033 0.00032 
F(3m) 0.00047 0.00044 0.00041 0.00039 0.00037 0.00035 0.00033 0.00032 0.00031 
F(4m) 0.00043 0.00041 0.00039 0.00037 0.00035 0.00033 0.00032 0.00030 0.00029 
F(5m) 0.00040 0.00038 0.00037 0.00035 0.00033 0.00032 0.00031 0.00029 0.00028 
F(6m) 0.00038 0.00036 0.00035 0.00033 0.00032 0.00031 0.00029 0.00028 0.00028 
F(7m) 0.00036 0.00035 0.00033 0.00032 0.00031 0.00029 0.00029 0.00027 0.00027 
F(8m) 0.00035 

-- --- 
0.00033 0.00032 0.00030 0.00029 0.00028 0.00027 0.00027 0.00026 F 

F(9m) 0.00033 
i 

0.00032 0.00031 0.00029 0.00028 0.00028 0.00027 0.00026 0.00026 

Table-4.2 Covariance Matrix For Brent Crude Oil Futures 

F(1 m) F(2m) F(3m) F(4m) F(5m) F(6m) F(7m) F(8m) F(9m) 
F(lm) 0.0006 0.00052 0.00046 0.00043 0.00040 0.00037 0.00036 0.00035 0.00034 
F(2m) 0.0005 0.00049 0.00044 0.00041 0.00039 0.00035 0.00035 0.00034 0.00033 
F(3m) 0.00046 0.00044 0.00041 0.00039 0.00037 0.00033 0.00033 0.00032 0.00031 
F(4m) 0.00043 0.00041 0.00039 0.00037 0.00035 0.00032 0.00032 0.00031 0.00030 
F(5m) 0.00040 0.00039 0.00037 0.00035 0.00033 0.00031 0.00031 0.00030 0.00029 
F(6m) 0.00037 0.00035 0.00033 0.00032 0.00031 0.00029 0.00029 0.00028 0.00028 
F(7m) 0.00036 0.00035 0.00033 0.00032 0.00031 0.00029 0.00029 0.00029 0.00028 
F(8m) 0.00035 0.00034 0.00032 0.00031 0.00030 0.00028 0.00029 0.00029 0.00028 
F(9m) 0.00034 0.00033 0.00031 0.00030 0.00029 0.00028 0.00028 0.00028 0.00029 

Table-4.3 Covariance Matrix For IPE Gasoil Futures 

F(lm) F(2m) F(3m) F(4m) F(5m) F(6m) F(7m) F(8m) F(9m) 
F(lm) 0.00050 0.00046 0.00042 0.00037 0.00034 0.00032 0.00029 0.00028 0.00026 
F(2m) 0.00046 0.00045 0.00041 0.00037 0.00034 0.00032 0.00029 0.00028 0.00026 
F(3m) 0.00042 0.00041 0.00039 0.00036 0.00033 0.00031 0.00029 0.00027 0.00025 
F(4m) 0.00037 0.00037 0.00036 0.00034 0.00031 0.00029 0.00027 0.00026 0.00024 
F(5m) 0.00034 0.00034 0.00033 0.00031 0.00030 0.00029 0.00027 0.00025 0.00023 
F(6m) 0.00032 0.00032 0.00031 0.00029 0.00029 0.00028 0.00026 0.00025 0.00023 
F(7m) 0.00029 0.00029 0.00029 0.00027 0.00027 0.00026 0.00025 0.00024 0.00023 
F(8m) 0.00028 0.00028 0.00027 0.00026 0.00025 0.00025 0.00024 0.00024 0.00022 
F(9m) 0.00026 0.00026 0.00025 0.00024 0.00023 0.00023 0.00023 0.00022 0.00023 
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Table-4.4 Covariance Matrix For Heating Oil Futures 

F(1m) F(2m) F(3m) F(4m) F(5m) F(6m) F(7m) F(8m) F(9m) 
F(1 m) 0.00081 0.00061 0.00052 0.00046 0.00042 0.00038 0.00036 0.00034 0.00033 
F(2m) 0.00061 0.00055 0.00050 0.00046 0.00043 0.00039 0.00037 0.00035 0.00034 
F(3m) 0.00052 0.00050 0.00048 0.00045 0.00042 0.00038 0.00036 0.00033 0.00032 
F(4m) 0.00046 0.00046 0.00045 0.00044 0.00041 0.00038 0.00035 0.00033 0.00031 
F(5m) 0.00042 0.00043 0.00042 0.00041 0.00040 0.00037 0.00035 0.00033 0.00031 
F(6m) 0.00038 0.00039 0.00038 0.00038 0.00037 0.00036 0.00034 0.00032 0.00031 
F(7m) 0.00036 0.00037 0.00036 0.00035 0.00035 0.00034 0.00033 0.00032 0.00031 
F(8m) 0.00034 0.00035 0.00033 0.00033 0.00033 0.00032 0.00032 0.00032 0.00030 
F(9m) 0.00033 0.00034 0.00032 0.00031 0.00031 0.00031 0.00031 0.00030 0.00030 

Table-4.5 Covariance Matrix For Unleaded Futures 

F(1m) F(2m) F(3m) F(4m) F(5m) F(6m) F(7m) F(8m) F(9m) 
F(1 m) 0.00064 0.00054 0.00046 0.00040 0.00036 0.00034 0.00031 0.00030 0.00031 
F(2m) 0.00054 0.00052 0.00045 0.00040 0.00036 0.00034 0.00031 0.00029 0.00029 
F(3m) 0.00046 0.00045 0.00043 0.00038 0.00034 0.00032 0.00029 0.00028 0.00027 
F(4m) 0.00040 0.00040 0.00038 0.00037 0.00032 0.00030 0.00028 0.00027 0.00025 
F(5m) 0.00036 0.00036 0.00034 0.00032 0.00033 0.00029 0.00027 0.00027 0.00025 
F(6m) 0.00034 0.00034 0.00032 0.00030 0.00029 0.00030 0.00027 0.00027 0.00025 
F(7m) 0.00031 0.00031 0.00029 0.00028 0.00027 0.00027 0.00027 0.00026 0.00024 
F(8m) 0.00030 0.00029 0.00028 0.00027 0.00027 0.00027 0.00026 0.00028 0.00025 
F(9m) 0.00031 0.00029 0.00027 0.00025 0.00025 0.00025 0.00024 0.00025 0.00027 

Table-4.6 Covariance Matrix For Natural Gas Futures 

F(1m) F(2m) F(3m) F(4m) F(5m) F(6m) F(7m) F(8m) F(9m) 
F(lm) 0.000950 0.000820 0.000685 0.000608 0.000563 0.000511 0.000470 0.000443 0.000409 
F(2m) 0.000820 0.000770 0.000682 0.000628 0.000556 0.000488 0.000444 0.000415 0.000386 
F(3m) 0.000685 0.000682 0.000663 0.000640 0.000540 0.000449 0.000398 0.000371 0.000352 
F(4m) 0.000608 0.000628 0.000640 0.000660 0.000555 0.000452 0.000385 0.000349 0.000331 
F(5m) 0.000563 0.000556 0.000540 0.000555 0.000520 0.000450 0.000385 0.000335 0.000305 
F(6m) 0.000511 0.000488 0.000449 0.000452 0.000450 0.000423 0.000380 0.000332 0.000288 
F(7m) 0.000470 0.000444 0.000398 0.000385 0.000385 0.000380 0.000380 0.000346 0.000297 
F(8m) 0.000443 0.000415 0.000371 0.000349 0.000335 0.000332 0.000346 0.000355 0.000322 
F(9m) 0.000409 0.000386 0.000352 0.000331 0.000305 0.000288 0.000297 0.000322 0.000329 

The following tables summarise the results of the eigenvectors decomposition and the 
eigenvalues A. 1 

1 We import the covariance matrices in Mathematics (software package) which will compute the 
eigenvalues and the eigenvectors 
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WTI 
Table-4.7 Eigenvalues (A) for WTI Crude Oil Futures 

0.0032051 0.000121 1.8E-051 8.05E-061 2.14E-061 8.60E-07 5.42E-071 4.39E-07 -3.50E-07 

The Table-4.7 shows us that the first three eigenvalues are significant. Adding these 
we get 0.003357 and then dividing each A with 0.003357 we can see which 
eigenvalue is the most important. Figure-4.8 plots the eigenvalues for the WTI crude 
oil futures. The figure shows that the first eigenvalue is the most important, 
explaining 95.47 % of the total variation in the evolution of the future curve. Together 
the first two factors explain 99.12% of the total variation, with the first three factors 
explaining 99.63%. The other factors as we mentioned above are not significant so a 
three-factor model is sufficient to explain the evolution of the WTI data over that 
period. 
By applying the formula (4.10) we obtain the resulting volatility functions. The 
columns of Table-4.9 indicate the results of this calculation. The volatility functions 
illustrated in Figure-4.9 are the first three columns of Table-4.9. We apply the same 
method for the IPE Gasoil, Heating Oil, Unleaded and IPE Brent. 

Table-4.8 Eigenvectors for WTI Crude Oil Futures 

fn 01 fn 02 fn 03 fn 04 fn 05 fn 06 fn 07 fn 08 fn 09 
F(lm) 0.4122 0.3818 0.3591 0.3380 0.3200 0.3075 0.2957 0.2836 0.2745 
F(2m) 0.3818 0.3076 0.0034 0.1050 0.1645 0.2301 0.2651 0.3039 0.3410 
F(3m) 0.3591 0.3768 0.4616 - 0.3013 - 0.1269 0.0165 0.1312 0.3384 0.4257 
F(4m) 0.3379 0.7800 0.3769 - 0.1197 0.0003 -0.0357 - 0.0117 0.0034 0.0245 
F(5m) 0.3214 0.0190 0.5100 - 0.3907 0.0000 -0.0046 0.1457 0.3042 0.3962 
F(6m) 0.3076 0.0510 0.1660 0.0841 0.0002 -0.0056 0.0024 0.0398 - 0.0205 
F(7m) 0.2957 0.0135 0.3147 - 0.0079 - 0.0000 0.0017 0.0020 - 0.7285 0.6452 
F(8m) 0.2836 0.0541 0.3571 - 0.6943 - 0.0000 0.0018 0.4276 0.1922 - 0.3472 
F(9m) 0.2756 0.0380 0.0268 0.5133 0.0001 - 0.0062 - 0.0817 -0.1212 1 0.1119 
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Figure-4.8 
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Table-4.9 Volatility Functions for WTI Crude Oil Futures 

In 01 fn 02 fn 03 fn 04 fn 05 fn 06 fn 07 In 08 In 09 
F(1 m) 37.05% 6.71% 2.41% 1.52% 0.74% 0.45% 0.35% 0.30% 0.26% 
F(2m) 34.31% 5.41% 0.02% 0.47% 0.38% 0.34% 0.31% 0.32% 0.32% 
F(3m) 32.28% 3.00% 3.09% -1.36% -0.29% 0.02% 0.15% 0.36% 0.40% 
F(4m) 30.37% 5.00% 2.52%1 -0.54% 0.00%1 -0.05% -0.01% 0.00% 0.02% 
F(5m) 28.88% 0.33% 3.42% -1.76% 0.00% -0.01% 0.17% 0.32% 0.37% 
F(6m) 27.64% 0.90% 1.11% 0.38% 0.00% -0.01% 0.00% 0.04% -0.02% 
F(7m) 26.58% 0.24% 2.11% -0.04% 0.00% 0.00% 0.00% -0.77% 0.61% 
F(8m) 25.49% 0.95% 2.39% -3.13% 0.00% 0.00% 0.50% 0.20% -0.33% 
F(9m) 24.77% 0.67% 0.18% 2.31% 1 0.00% -0.01 % -0.10% -0.13% 0.11% 
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Figure-4.9 

cn nnoi 

Seasonally Adjusted Nymex WTI Volatility Functions 

In Figure-4.9 above: 

  fnO1 constitutes the volatility function (or level effect). In Figure 4.9 the 
volatility declines with maturity because the short maturity forward prices are 
more volatile than longer maturity forward prices. 

  fn02 indicates the volatility smile. We have drawn this conclusion from the shape 
of the curve and the practical knowledge of the market. In the front traded months, 
there are many options with different strikes from which a "smile" can be implied. 
The further into the future you look, due to less liquidity and more uncertainty, 
this effect is harder to discern, hence in the diagram we see fn02 tending to zero. 
In order to capture the smile/skew in the option pricing procedure the only 
variable we have to calibrate is the volatility. In the Black's model we have to 
make an adjustment in the volatility in order to capture the smile/skew of the 
market. 2 

  fn03 indicates the seasonality in the volatility. The shape of this curve when 
added to the fn01 volatility function creates the "sign-wave" shape of volatiltiy 
seen in the market. Again, this effect is less "pronounced" the further in the future 
we look due to less liquidity in the market. 

  (fn0l+fn02+fnO3) represents the final volatility curve with the smile and the 
seasonality effects included. 3 

GASOIL 

Table-4.10 Eigenvalues (A) for IPE Gasoil Futures 

z For more details regarding the smile see Chapter 5. 
The data has been tested for the period January -1999 to February 2000 and we reached to similar 

results to those above. 
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0.0027901 0.00015371 4.3E-051 1.29E-05 7.93E-06 3.8E-06 2.68E-061 1.5E-06 1.83E-06 

Table-4.10 shows us that the first three eigenvalues are significant. If we add them up 
we get 0.003017 and then if we divide each A with 0.003017 we can see which 
eigenvalue is the most important. Figure-4.10 plots the eigenvalues for the IPE Gasoil 
futures. The figure shows that the first eigenvalue (volatility function) is the most 
important, explaining 92.48 % of the total variation in the evolution of the future 
curve. Together the first two factors explain 97.57% of the total variation, with the 
first three factors explaining 98.98%. Factors 4 and above are not significant so a 
three-factor model is sufficient to explain the evolution of the IPE Gasoil data over 
that period. 
By multiplying the eigenvectors by the square root of the eigenvalue and multiply that 
by the square root of 252 we obtain the resulting volatility functions. The columns of 
Table-4.12 indicate the results of this calculation. The volatility functions illustrated 
in Figure-4.11 are the first three columns of the Table-4.12. 

Table-4.11 Eigenvectors for IPE Gasoil Futures 

fn 01 fn 02 fn 03 fn 04 fn 05 fn 06 fn 07 fn 08 
F(1 m) 0.398 0.391 0.371 0.344 0.325 0.310 0.291 0.278 
F(2m) 0.577 0.363 0.171 0.003 0.141 0.258 0.338 0.371 
F(3m) 0.491 0.004 0.289 - 0.437 - 0.360 - 0.152 0.073 0.248 
F(4m) 0.244 0.670 0.053 - 0.190 - 0.288 - 0.456 - 0.069 0.096 
F(5m) 0.036 0.019 0.510 - 0.391 0.000 - 0.005 0.146 0.304 
F(6m) 0.021 0.051 0.166 0.084 0.000 - 0.006 0.002 0.040 
F(7m) 0.015 0.014 0.315 - 0.008 - 0.000 0.002 0.002 - 0.729 
F(8m) 0.009 0.054 0.357 - 0.694 - 0.000 0.002 0.428 0.192 
F(9m) 0.000 0.038 0.027 0.513 0.000 - 0.006 - 0.082 - 0.121 

Figure-4.10 
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Table-4.12 Volatility Functions for IPE Gasoil Futures 

fn 01 fn 02 fn 03 fn 04 fn 05 fn 06 fn 07 fn 08 fn 09 
F(1 m) 33.39% 7.70% 3.85% 1.96% 1.45% 0.96% 0.76% 0.54% 0.56% 
F(2m) 32.82% 7.15% 1.77% 0.02% 0.63% 0.80% 0.88% 0.72% 0.88% 
F(3m) 31.14% 0.07% 2.99% -2.49% -1.61% -0.47% 0.19% 0.48% 1.10% 
F(4m) 28.81% 5.00% 0.54% -1.08% -1.29% -1.41% -0.18% 0.19% 0.81%_ 
F(5m) 27.28% 0.37% 5.28% -2.23% 0.00% -0.01% 0.38% 0.59% 0.85% 
F(6m) 25.99% 1.00% 1.72% 0.48% 0.00% -0.02% 0.01% 0.08% -0.04% 
F(7m) 24.41% 0.27% 3.26% -0.05% 0.00% 0.01% 0.01% -1.41% 1.39% 
F(8m) 23.28% 1.06% 3.70% -3.96% 0.00% 0.01% 1.11% 0.37% -0.75% 
F(9m) 21.92% 0.75% 0.28% 2.93% 0.00% -0.02% -0.21% -0.24% 0.24% 

Figure-4.11 
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HEATING OIL 

Table-4.13 Eigenvalues (A) for Heating Oil Futures 

A10.003561 0.00031 9E-051 2.27E-051 1.42E-051 4.17E-061 3.17E-061 7.42E-071 5.71 E-071 

The Table-4.13 shows us that the first three eigenvalues are significant. If we add 
them we get 0.00403 and then if we divide each A with 0.00403 we can see which 
eigenvalue is the most important. Figure-4.12 plots the eigenvalues for the Heating 
Oil futures. The figure shows that the first eigenvalue (volatility function) is the most 
important, explaining 88.42 % of the total variation in the evolution of the future 

curve. Together the first two factors explain 96.67% of the total variation, with the 
first 3 factors explaining 98.87%. Factors 4 and above are not significant so a three- 
factor model is sufficient to explain the evolution of the Heating Oil data over that 
period. 
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By multiplying the eigenvectors by the square root of the eigenvalue and multiplying 
that by the square root of 252 we obtain the resulting volatility functions. The 
columns of Table-4.15 indicate the results of this calculation. The volatility functions 
illustrated in Figure-4.13 are the first three columns of Table-4.15. 

Table-4.14 Eigenvectors for Heating Oil Futures 

fn 01 fn 02 fn 03 fn 04 fn 05 fn 06 fn 07 fn 08 fn 09 
F(lm) 0.4130 0.3845 0.3608 0.3432 0.3262 0.3066 0.2904 0.2779 0.2677 
F(2m) 0.7636 0.2255 0.0456 -0.1000 -0.2002 -0.2557 -0.2873 -0.3048 -0.2703 
F(3m) 0.3824 0.2320 0.4162 0.4117 0.2322 -0.0170 -0.2273 -0.3785 -0.4562 
F(4m) 0.2445 0.6700 0.0525 -0.1897 -0.2884 -0.4562 -0.0685 0.0959 0.3759 
F(5m) 0.0360 0.0190 0.5100 -0.3907 0.0000 -0.0046 0.1457 0.3042 0.3962 
F(6m) 0.0210 0.0510 -0.1660 0.0841 0.0002 -0.0056 0.0024 0.0398 -0.0205 
F(7m) 0.0150 0.0135 -0.3147 -0.0079 0.0000 0.0017 0.0020 -0.7285 0.6452 
F(8m) 0.0090 0.0541 0.3571 -0.6943 0.0000 0.0018 0.4276 0.1922 -0.3472 
F(9m) 0.0002 0.0380 0.0268 0.5133 0.0001 -0.0062 -0.0817 -0.1212 0.1119 

Figure-4.12 
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Table-4.15 Volatility Functions for Heating Oil Futures 

fn 01 fn 02 fn 03 fn 04 fn 05 fn 06 fn 07 fn 08 fn 09 
F(1 m) 39.120% 11.129% 5.385% 2.598% 1.951% 0.994% 0.821% 0.380% 0.321% 
F(2m) 36.419% 6.528% 0.681% -0.757% -1.197% -0.829% -0.812% -0.417% -0.324% 
F(3m) 34.178% 6.716% 6.213% 3.116% 1.389% -0.055% -0.642% -0.517% -0.547% 
F(4m) 32.506% 5.500% 0.784%1 -1.436% 1-1.725%1 -1.479% -0.194% 0.131% 1 0.451 % 
F(5m) 30.900% 0.550% 5.500% 1-2.957% 1 0.000% 1-0.015% 1 0.412% 0.416% 0.475% 
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F(6m) 29.040% 1.476% 2.478% 0.637% 0.001% -0.018% 0.007% 0.054% -0.025% 
F(7m) 27.506% 0.391% 2.500% -0.060% 0.000% 0.005% 0.006% -0.996% 0.774% 
F(8m) 26.327% 1.565% 5.330% -5.255% 0.000% 0.006% 1.209% 0.263% -0.416% 
F(9m) 25.361% 1.099% 0.400% 3.885% 0.001% -0.020% -0.231% -0.166% 0.134% 

Figure-4.13 
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Table-4.16 Eigenvalues (A) for NYMEX Unleaded Futures 

0.0029751 0.600229F-9.092E-051 2.79E-051 2.14E-051 1.97E-0511.66E-051 1.28E-05 8.73E-06 

Table-4.16 shows us that the first three eigenvalues are significant. If we add them up 
we get 0.003402 and then if we divide each A with 0.003402 we can see which 
eigenvalue is the most important. Figure-4.14 plots the eigenvalues for the Unleaded 
futures. The figure shows that the first eigenvalue (volatility function) is the most 
important, explaining 87.448 % of the total variation in the evolution of the future 
curve. Together the first two factors explain 94.179% of the total variation, with the 
first 3 factors explaining 96.85%. The other factors as we mentioned above are not 
significant so a three-factor model is sufficient to explain the evolution of the 
Unleaded data over that period. 
By multiplying the eigenvectors by the square root of the eigenvalue and multiplying 
that by the square root of 252 we obtain the resulting volatility functions. The 
columns of Table-4.18 indicate the results of this calculation. The volatility functions 
illustrated in Figure-4.15 are the first three columns of the Table-4.18. 
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Table-4.17 Eigenvectors for NYMEX Unleaded Futures 

fn 01 fn 02 fn 03 fn 04 fn 05 fn 06 fn 07 fn 08 fn 09 
F(lm) 0.4234 0.4010 0.3684 0.3352 0.3143 0.3006 0.2792 0.2736 0.2644 
F(2m) 0.5861 0.3639 - 0.1352 0.0239 0.1928 0.2664 0.3364 0.4240 0.3226 
F(3m) 0.5025 0.1048 - 0.3518 - 0.4533 - 0.2907 - 0.0621 0.0679 0.2555 0.4991 
F(4m) 0.4504 0.6153 0.1168 - 0.1761 -0.1723 - 0.1746 -0.0631 - 0.2395 0.5064 
F(5m) 0.0360 0.0190 0.5100 - 0.3907 0.0000 - 0.0046 0.1457 0.3042 0.3962 
F(6m) 0.0210 0.0510 - 0.1660 0.0841 0.0002 - 0.0056 0.0024 0.0398 - 0.0205 
F(7m) 0.0150 0.0135 - 0.3147 - 0.0079 -0.0000 0.0017 0.0020 - 0.7285 0.6452 
F(8m) 0.0090 0.0541 0.3571 - 0.6943 - 0.0000 0.0018 0 4276 0.1922 - 0.3472 
F(9m) 0.0002 0.0380 0.0268 0.5133 0.0001 - 0.0062 -1.0817 

- 0.1212 1 0.1119 
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Table-4.18 Volatility Functions for NYMEX Unleaded Futures 

fn 01 fn 02 fn 03 fn 04 fn 05 fn 06 fn 07 fn 08 fn 09 
F(1 m) 36.664% 9.634% 5.576% 2.810% 2.309% 2.119% 1.803% 1.554% 1.240% 
F(2m) 34.724% 8.742% 2.047% 0.200% 1.417% 1.878% 2.173% 2.408% 1.513% 
F(3m) 31.897% 2.516% 5.325% 3.800% -2.136% -0.438% 0.439% 1.451% 2.340% 
F(4m) 29.020% 5.500% 1.768% 1.476% -1.266% -1.231% 1 -0.408% -1.360% 2.374% 

165 

123456789 



F(5m) 27.211% 0.456% 7.720% 3.275% 0.000% -0.032% 0.941% 1.727% 1.858% 
F(6m) 26.029% 1.225% 2.513% 0.705% 0.001% -0.039% 0.016% 0.226% -0.096% 
F(7m) 24.173% 0.324% 4.763% 0.067% 0.000% 0.012% 0.013% -4.137% 3.026% 
F(8m) 23.689% 1.299% 5.405% 5.820% 0.000% 0.013% 2.762% 1.092% -1.628% 
F(9m) 22.890% 0.912% 0.406% 4.303% 0.001%1 -0.044% -0.528%1 -0.688%1 0.525% 

Figure-4.15 
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NATURAL GAS 

Table-4.19 Eigenvalues (A) for Natural Gas Futures 

0.004896 0.000361 1.17E-04 1.17E-05 1.17E-051 3.18E-051 1.32E-051 7.33E-06 4.80E-06 

Table-4.19 shows us that the first three eigenvalues are significant. If we add them up 
we get 0.005677 and then if we divide each A with 0.005677 we can see which 
eigenvalue is the most important. Figure-4.16 plots the eigenvalues for the Natural 
Gas futures. The figure shows that the first eigenvalue (volatility function) is the most 
important, explaining 86.42 % of the total variation in the evolution of the future 
curve. Together the first two factors explain 92.77% of the total variation, with the 
first 3 factors explaining 94.84%. The other factors as we mentioned above are not 
significant so a three-factor model is sufficient to explain the evolution of the Natural 
Gas data over that period. 
By multiplying the eigenvectors by the square root of the eigenvalue and multiplying 
that by the square root of 252 we obtain the resulting volatility functions. The 
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columns of Table-4.21 indicate the results of this calculation. The volatility functions 
illustrated in Figure-4.17 are the first three columns of the Table-4.21. 

Table-4.20 Eigenvectors for Natural Gas Futures 

fn 01 fn 02 In 03 fn 04 In 05 fn 06 fn 07 fn 08 In 09 
F(1 m) 0.4062 0.3800 - 0.5000 - 0.3300 - 0.3060 - 0.2700 - 0.2500 - 0.2300 - 0.2234 
F(2m) 0.3830 0.2100 - 0.3200 - 0.3600 - 0.1800 0.0170 0.1700 0.3100 0.3916 
F(3m) 0.3507 0.3004 - 0.0600 - 0.3553 - 0.3300 - 0.2640 - 0.2200 - 0.1600 - 0.1055 
F(4m) 0.3543 0.0450 - 0.2000 - 0.3321 - 0.0207 0.2569 0.4600 0.3800 0.0126 
F(5m) 0.3443 0.1300 - 0.2700 - 0.1200 0.3100 0.4330 0.1490 - 0.2900 - 0.4500 
F(6m) 0.3300 0.0500 - 0.3100 - 0.0524 0.4200 0.1742 - 0.2900 - 0.2010 0.1700 
F(7m) 0.3245 0.6004 0.1400 - 0.4600 0.0400 0.2060 0.0600 - 0.2800 - 0.0110 
F(8m) 0.3200 0.2800 0.2115 0.0780 - 0.2200 - 0.1877 0.6000 -0.2800 - 0.1800 
F(9m) 0.3100 0.3445 0.5900 - 0.4900 0.3400 - 0.0950 - 0.1200 - 0.3400 0.1800 

Figure-4.16 
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Table-4.21 Volatility Functions for Natural Gas Futures 

fn 01 fn 02 fn 03 fn 04 fn 05 fn 06 fn 07 fn 08 fn 09 
F(1m) 45.12% 11.44% 8.60% 5.68% -5.26% -2.42% -1.44% -0.99% -0.78% 
F(2m) 42.54% 6.32% 5.51% 6.19% -3.10% 0.15% 0.98% 1.33% 1.36% 
F(3m) 38.95% 9.05% 2.60% 6.11% -5.68% -2.36% -1.27% -0.69% -0.37% 
F(4m) 39.35% 5.00% 1.50% 5.71% 1 -0.36% 2.30% 2.66% 1.63% 0.04% 
F(5m) 38.24% 3.92% 4.65% 2.06% 5.33% 3.88% 0.86% -1.25% 1-1.56% 
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F(6m) 36.65% 1.51% 5.33% 0.90% 7.23% 1.56% -1.67% -0.86% 0.59% 
F(7m) 36.04% 1.25% 2.41% 7.91% 0.69% 1.85% 0.35% -1.20% -0.04% 
F(8m) 35.54% 1.25% 3.64% 1.34% -3.79% -1.68% 3.46% -1.20% -0.63% 
F(9m) 34.43% 2.00% 2.50% 8.43% 5.85% -0.85% -0.69% -1.46% 0.63% 

Figure-4.17 

Seasonally Adjusted Natural Gas Volatility Functions 

BRENT 

Table-4.22 Eigenvalues (A) for IPE Brent Futures 

0.003211 0.00012 3.6E-051 1.07E-051 5.98E-061 5.17E-0611.82E-061 1.06E-061 6.44E-07 

Table-4.22 shows us that the first three eigenvalues are significant. If we add them up 
we get 0.003397 and then if we divide each A with 0.003397 we can see which 
eigenvalue is the most important. Figure-4.18 plots the eigenvalues for the Brent 
futures. The figure shows that the first eigenvalue (volatility function) is the most 
important, explaining 94.557 % of the total variation in the evolution of the future 
curve. Together the first two factors explain 98.198% of the total variation, with the 
first 3 factors explaining 99.25%. Factors and above are not significant so a three- 
factor model is sufficient to explain the evolution of the Brent data over that period. 
By multiplying the eigenvectors by the square root of the eigenvalue and multiplying 
that by the square root of 252 we obtain the resulting volatility functions. The 
columns of Table-4.24 indicate the results of this calculation. The volatility functions 
illustrated in Figure-4.19 are the first two columns of the Table-4.24. 
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Table-4.23 Eigenvectors for IPE Brent Futures 

fn 01 fn 02 fn 03 fn 04 fn 05 fn 06 fn 07 fn 08 fn 09 
F(lm) 0.5000 0.3844 -0.3565 - 0.3373 - 0.3211 - 0.2977 -0.2979 -0.2900 - 0.2842 
F(2m) 0.4500 0.2969 0.0942 - 0.0146 - 0.0944 - 0.2271 - 0.2905 - 0.3675 - 0.4286 
F(3m) 0.4200 0.2670 - 0.3982 - 0.3346 - 0.2616 - 0.0430 0.0895 0.2358 0.4425 
F(4m) 0.3700 0.2500 0.0525 - 0.1897 - 0.2884 - 0.4562 - 0.0685 0.0959 0.3759 
F(5m) 0.3400 0.0190 0.5100 - 0.3907 0.0000 - 0.0046 0.1457 0.3042 0.3962 
F(6m) 0.3000 0.0510 - 0.1660 0.0841 0.0002 - 0.0056 0.0024 0.0398 - 0.0205 
F(7m) 0.2800 0.0135 - 0.3147 - 0.0079 - 0.0000 0.0017 0.0020 - 0.7285 0.6452 
F(8m) 0.2600 0.0541 0.3571 - 0.6943 - 0.0000 0.0018 0.4276 0.1922 - 0.3472 
F(9m) 0.2500 0.0380 0.0268 0.5133 0.0001 - 0.0062 - 0.0817 - 0.1212 0.1119 

Figure-4.18 

Table-4.24 Volatility Functions for IPE Brent Futures 

fn 01 fn 02 fn 03 fn 04 fn 05 fn 06 fn 07 fn 08 fn 09 
F(1 m) 44.98% 6.79% 3.39% -1.75% -1.25% -1.08% -0.64% -0.47% -0.36% 
F(2m) 40.48% 5.24% 0.90% -0.08% -0.37% -0.82% -0.62% -0.60% -0.55% 
F(3m) 37.79% 4.71% 3.79% -1.73% -1.02% -0.16% 0.19% 0.38% 0.56% 
F(4m) 33.29% 4.41%1 0.50% -0.98% -1.12% -1.65% -0.15% 0.16% 0.48% 
F(5m) 30.59% 0.34% 4.85% -2.02% 0.00% -0.02% 0.31% 0.50% 0.50% 
F(6m) 26.99% 0.90% 1.58% 0.44% 0.00% -0.02% 0.01% 1 0.06% -0.03% 
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F(7m) 25.19% 0.24% 2.99% -0.04% 0.00% 0.01% 0.00% -1.19% 0.82% 
F(8m) 23.39% 0.95% 3.40% -3.60% 0.00% 0.01% 0.92% 0.31% -0.44% 
F(9m) 22.49% 0.67% 0.25% 2.66% 0.00% -0.02% -0.17% -0.20% 0.14% 

Figure-4.19 
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4.3.1 Concluding Remarks 

The Principal Component Analysis shows us that we need a three-factor model for 
WTI, Brent, Unleaded, Heating Oil, and Natural Gas. 
Also the slow decline in the eigenvalues is indicative of noise in the futures prices 
which are fairly illiquid beyond three months maturity. 
According to the results above, in order to price derivatives in the forward curve 
framework, we need a three-factor model for the oil market and for the natural gas 
market, the first factor being the volatility function, the second factor being the 
smile/skew and the third factor being the seasonality. 

9 
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CHAPTER 5 
PRICING WTI OPTIONS ON FORWARD CONTRACTS BASED 
UPON THE MULTI FACTOR MODEL 

5.1 Option Pricing on Forwards Contracts with a Multi-Factor 
Model (Part A) 

Using the general multi-factor forward curve model described in the previous section, 
we can now derive the price at time t of a European call option with strike K that 
matures at time Ton a forward contract that matures at time s, which we denote by 
c (t, F (t, s) Y, T, s). Options are priced by using standard risk-neutral methods. At 
date t the European call option price is the expected discounted payoff: 

c(t, F(t, s); K, T, s) = E, [P(t, T) max(0, F(T, s) - K] (5.1) 

where P(t, T) is the T- maturity discount factor. 
We can integrate the stochastic differential equation (4.4) to obtain the following 
solution: 

n 

F(t, T)=F(O, T)exp 2 --1 Q, (u, T)2du+I Q, (u, T)dzt(u) (5.2) 
J_1 2 

11 

This equation expresses the forward curve at time t in terms of it's initially observed 
state (time 0) and integrals of the volatility functions. 
From equation (5.2) the natural logarithms of the forward prices at time Tare 
normally distributed: 

n 11 
LnF(T, s)ýN InF(t, s)-2EýQ, (u, s)Zdu121, 

ý 
Q, (u, s)Zdul (5.3) 

Using this result it is straightforward to show that the equation (5.1) is given by: 

c(t, F(t, s); K, T, s) = P(t, T)[F(t, s)N(h) - KN(h -V-o-))] (5.4) 

where 
ln(F(t, s) l K) +2 co 

h= ý- (5.5) 

w is the integral of the futures return variance over the life of the option. 
The corresponding pricing formula for a standard put option, p(t, F(t, s); K, T, s) can 
be easily obtained by put-call parity: 
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p(t, F(t, s); K, T, s) = P(t, T) [KN(-h + Vc-o) 
- F(t, T)N(-h)] (5.6) 

European call and put options are then given by equation (5.4) and (5.6) respectively. 
If co is replaced by: 

w=a2(T-t) (5.7) 
then we have the Black's (1976) Model'. 
As was shown in Chapter 2 the Black's model is the standard industry tool for pricing 
the wide range of options found in the energy market. 
If co is replaced by: 

co= 
{faj(u, 

s)2du} (5.8) 

then we have the Multi-Factor Model. 

Clewlow and Strickland (1999a) show that for the single-factor restriction European 
calls and puts futures option prices are calculated via the equations (5.4) and (5.6) 
with co given by: 

w= 
ý6(u, 

s)2du =f Q2e-2a(s-w)du =2 
(e-2a(s-T) 

-C-2a(3-9)1 (5.9) 
2a 1 

But according to our results in section 4.3 of Chapter 4 in the oil market we need a 
three-factor model. We can derive that the model applying equation (5.8) with n=3. 
The equation takes the following form: 

n=3 

w=2ýQ, (u, s)2 du = 
j-1 

a1 
(e-2o, (s-r) 

- eza, 
(s-1), ) + 

a2 
(e-2oz(s-T) -e 

202(3-1)1 )+ 
Q3 

(e-2a, (s-r) 
_ eza, 

(s-º), ) (5.10) 

2aß 2a2 2a3 

Here a, represents the (fnO 1 +fn02+fnO3) volatility function or in other words the 
implied volatility, a2 the fn02 volatility function and a3 the fn03 volatility function 

whilst a,, a2 & a3 tells us how fast the fn01 volatility curve, fn02 & fn03 attenuates 
with increasing maturity. We can calculate the a; form the following equation: 

F(lm, 2m... 9m) = e-«(T-') (5.11) 

i. e. the a for the WTI for the fn01 volatility function (see Table-4.9) is: 

37.05% = e',, (0. %13) a 
ln(37.05%) 

a=1.029. 1.052 
T is the expiry of the ninth contract and t is the expiry of the first contract in this case. 

1 see Chapter 2 (Option Valuation) 
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As we can observe from Figure-4.9, Figure-4.11, Figure-4.13, Figure-4.15, Figure- 
4.17 and Figure-4.19 the volatility function fn01, fn02 has a simple negative 
exponential form whereas fn03 doesn't. Hence the third part of the equation (5.10) 

1 (e-Z°'(s-T) - e2°'('-`)') doesn't apply as the third factor fn03 is not found to be 
2a3 

exponentially decreasing. We make the assumption that we have to replace it with the 
average of the prices of the fn03 (AVG fn03) which were calculated in the previous 
section of this chapter. Hence equation (5.10) takes the following form: 

n-3 

(0 =z Q, (u, s)Zdu = 
1=1 

2a 
(e-za, (s-r) 

- esa, (s-), ) + 
ýä (e-Za, (s-r) 

- e2a2(s-o), ) +o AVGfn03 (5.12) 

i 
2a2 

The computer algorithms of the Black's model and the Three-Factor model above 
shown in Appendix-5.1 and Appendix-5.2 of this chapter. 

5.2 Empirical Results 

Arguably one of the most important issues in the use of any model for pricing and 
hedging derivatives is the calibration of the model to market data. Calibration is the 
process of choosing model parameters so that the prices returned by the model 
coincide with the observed market prices. Calibrating an energy model is analogous to 
choosing, or implying, a volatility parameter for the Black's model, when valuing say 
stock or index options, that equates the model price with market price. However in the 
Black's model the single variable that carries all the information is the volatility. 
We have documented the need for extending the Black and Scholes model to allow 
for jumps and mean reversion rate. 
Therefore, we are going to price options based on the historical parameters we 
calculated i. e. mean reversion rate, the first three factors from the PCA (Principal 
Component Analysis), and number of jumps, for the oil market. 
Our previous PCA analysis in Chapter-4 shows us that for the oil market we need a 
three-factor model for option pricing. In order to make sure that the three-factor 
model is the ideal model we have to check it with market data and compare it with the 
Black's model, and see which one is closer to the market data. The market observed 
data are WTI options prices for the first nine months (Aug-02, Sep02, ... Apr03. ) and 
are taken on the 31" of May 2002. 
Our previous PCA analysis was based on data between January 1999 to 16th February 
2001. As the option prices were taken from the market on the 31 of May 2002, we 
repeat the PCA analysis using more recent data from 1st of May 2001 to 31st of May 
2002. We think 1 year worth of data will give an excellent idea about the recent 
market behaviour. We follow the same procedure that we described in Section 4.3 of 
Chapter-4. The first step is to construct a time series of forward price returns 
according to equation (4.9). Next we compute the sample covariance matrix by 
applying equation (4.8). The following table (Table 5.1) shows the covariance matrix 
for WTI crude oil futures. 
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Table-5.1 Covariance Matrix For WTI Crude Oil Futures 

F(1m) F(2m) F(3m) F(4m) F(5m) F(6m) F(7m) F(8m) F(9m) 
F(1m) 0.000806 0.000732 0.000669 0.00063 0.000597 0.000568 0.00054 0.000515 0.000493 
F(2m) 0.000732 0.00069 0.000632 0.000596 0.000566 0.000539 0.000513 0.00049 0.000469 
F(3m) 0.000669 0.000632 0.000588 0.000554 0.000525 0.0005 0.000477 0.000456 0.000438 
F(4m) 0.00063 0.000596 0.000554 0.000525 0.000499 0.000476 0.000455 0.000436 0.000418 
F(5m) 0.000597 0.000566 0.000525 0.000499 0.000476 0.000456 0.000436 0.000418 0.000401 
F(6m) 0.000568 0.000539 0.0005 0.000476 0.000456 0.000436 0.000418 0.000401 0.000386 
F(7m) 0.00054 0.000513 0.000477 0.000455 0.000436 0.000418 0.000401 0.000385 0.000371 
F(8m) 0.000515 0.00049 0.000456 0.000436 0.000418 0.000401 0.000385 0.000371 0.000357 
F(9m) 0.000493 0.000469 0.000438 0.000418 0.000401 0.000386 0.000371 0.000357 0.000345 

Table-5.2 Eigenvalues (A) for WTI Crude Oil Futures 

0.0045331 5.8E-051 1.3E-05 4.08E-06 1.76E-061 8.69E-071 -8.25E-07 3.16E-071 -2.01 E-08 

Table-5.2 shows us that the first two eigenvalues are significant. Adding these we get 
0.00461 and then dividing each A with 0.00461 we can see which eigenvalue is the 
most important. Figure-5.1 plots the eigenvalues for the WTI crude oil futures. The 
figure shows that the first eigenvalue is the most important, explaining 98.319 % of 
the total variation in the evolution of the future curve. Together the first two factors 
explain 99.579% of the total variation. The other factors as we mentioned above are 
not significant so a two-factor model is sufficient to explain the evolution of the WTI 
data over that period. 
By applying the formula (4.10) we obtain the resulting volatility functions. The 
columns of Table-5.3 indicate the results of this calculation. The volatility functions 
illustrated in Figure-5.2 are the first two columns of Table-5.4. 

Table-5.3 Eigenvectors for WTI Crude Oil Futures 

fn 01 fn 02 fn 03 fn 04 fn 05 fn 06 fn 07 fn 08 fn 09 
F(lm) 0.4106 0.7119 -0.5400 - 0.1421 - 0.0256 -0.0174 - 0.0174 0.0209 - 0.0139 
F(2m) 0.3863 0.2519 0.4245 0.7595 - 0.0848 0.0743 0.0094 - 0.0408 0.0821 
F(3m) 0.3571 0.0703 0.5248 - 0.4545 - 0.3637 - 0.0453 - 0.2248 0.0834 - 0.4399 
F(4m) 0.3384 - 0.0055 0.2455 - 0.4025 0.2278 0.3583 0.3512 0.1002 0.5884 
F(5m) 0.3228 - 0.1524 0.0043 - 0.0680 0.3134 - 0.4652 - 0.3643 - 0.6080 0.2187 
F(6m) 0.3087 -0.2153 -0.0773 0.0332 0.4959 -0.1966 0.5118 0.1137 - 0.5401 
F(7m) 0.2950 - 0.2904 - 0.1570 0.1323 0.0633 - 0.2065 - 0.4288 0.7199 0.1936 
F(8m) 0.2826 - 0.3323 - 0.2718 0.1010 0.0244 0.7206 - 0.3027 - 0.2395 - 0.2380 
F(9m) 0.2713 -0.3825 , -0.2932 , 0.0277 - 0.6776 -0.2161 1 0.3827 -0.1465 , 0.1396 
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Figure- 5.1 

Table-5.4 Volatility Functions for WTI Futures 

fn 01 In 02 fn 03 fn 04 fn 05 fn 06 fn 07 fn 08 fn 09 
F(lm) 43.88% 8.61% -3.12% -0.46% -0.05% -0.03% #NUM! 0.02% #NUM! 
F(2m) 41.29% 3.05% 2.45% 2.44% -0.18% 0.11% #NUM! -0.04% #NUM! 
F(3m) 38.16% 3.00% 3.03% -1.46% -0.76% -0.07% #NUM! 0.07% #NUM! 
F(4m) 36.17% 5.00% 1.42% -1.29% 0.48% 0.53% #NUM! 0.09% #NUM! 
F(5m) 34.50% -1.84% 0.02% -0.22% 0.66% -0.69% #NUM! -0.54% #NUM! 
F(6m) 32.99% -2.60% -0.45% 0.11% 1.04% -0.29% #NUM! 0.10% #NUM! 
F(7m) 31.53% -3.51% -0.91% 0.42% 0.13% -0.31% #NUM! 0.64% #NUM! 
F(8m) 30.20% -4.02% -1.57% 0.32% 0.05% 1.07% #NUM! -0.21% #NUM! 
F(9m) 28.99% -4.63% -1.69% 0.09% -1.43% -0.32% #NUM! -0.13% #NUM! 
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Figure-5.2 

Seasonally Adjusted Nynex WTI Volatility Functions 

In Figure-5.2 above (as explained earlier in Chapter-4): 

fnOl constitutes the volatility function. 
fn02 indicates the volatility smile in the front traded months, there are many 
options with different strikes from which "smile" can be implied. The further in 
the future you look, due to less liquidity and more uncertainty, this effect is harder 
to discern, hence in the diagram we see ffi02 tending lower than zero. 
(fn0l+fn02) represents the final volatility curve with the smile effects included. 

The PCA shows us that for the oil market between 1' May 2001 to 31St May 2002 we 
need a two-factor model for option pricing. As we can see, different chronological 
periods give different results. We have shown in Section 4.3 of Chapter-4, based on 
the PCA analysis, that for the oil market we need a three-factor model between 1s` 
January 1999 to 10h February 2001 for pricing the options, but between 1St May 2001 
to 315t May 2002 we need a two-factor model. This is because the market is changing 
continuously, i. e. fundamentals, liquidity, events, OPEC, I1 September, etc. 
Furthermore, it is widely known that PCA analysis is sensitive to the specific period 
used. 
In order to make sure that the two-factor model is legitimate we have to check it with 
market data and compare it with the Black's model, and see which is closer to the 
market data. We can derive the two-factor model by applying equation (5.8) with n=2. 
The equation takes the following form: 
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co Eýaj(u, s)Zdu}= 
ý22 (e-z°, (s-r) -e2°, (s-4), )+ -- (e-i°, (, -T) -eta=(=-r), ) (5.13) 

, _, 2a1 2a2 

Here a, represents the (fn0l+fn02) volatility function (implied volatility), the final 

volatility curve and QZ the fn02 volatility function whilst a, & a2 tells us how fast 
the fn01 volatility curve & fn02 attenuates with increasing maturity. Since we 
calculated the av (equation 5.13) the price of a European call future option is given by 
equation (5.4): 

c(t, F(t, s); K, T, s) = P(t, T)[F(t, s)N(h) - KN(h -V-w)] (5.4) 

where 
ln(F(t, s) K) +1 co 2 (5.5) 

co is the integral of the futures return variance over the life of the option. 
The corresponding pricing formula for a standard put option, p(t, F(t, s); K, T, s) can 
be easily obtained by put-call parity: 

p(t, F(t, s); K, T, s) = P(t, T)[KN(-h + V-w) 
- F(t, T)N(-h)] (5.6) 

The market observed data are WTI options prices for the first nine months (Aug 02, 
Sep 02, ..., Apr 03) and are taken on the 31' May 2002. 
Our first step is to price the at-the-money options with the Black's model in order to 
find the at-the-money volatility (Table-5.9). Secondly we are going to price the at-the- 
money options with the at-the-money volatility with the two-factor model and 
compare the results with the Black's model. Also we are going to price the out-of-the- 
money options with the Black's model using the at-the-money volatility in order to 
find the smile/skew. In order to capture the smile/skew in the Black's model the only 
variable we have to calibrate is the volatility. Table-5.11 shows the market call/put 
option prices and the comparison of all the prices across the two models. In the 
Black's model we made an adjustment in the volatility in order to capture the 
smile/skew of the market. In the two-factor model, the factors that we are using to 
calculate the option prices have been calculated from the PCA analysis. From the 
PCA analysis we concluded that (fn0l+fn02) represents the final volatility curve with 
the smile effects included, so by finding the at-the-money volatility from the option 
prices we know the final volatility curve. In order to use this implied volatility curve 
to price these options with the two-factor model, we have to break it down in two 
factors fn01 & fn02, which added together give us the implied volatility curve. Hence, 
we have the following equation: 

Implied Volatility = fn01 +fnO2 (5.14) 

Our question is: how can we calculate the MI & fn02? We can calculate the 
percentage fn02/Implied Volatility, fn01/ Implied Volatility from PCA analysis and 
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then apply these percentages to the implied volatility calculated from the Black's 
model. 
Table-5.4 shows us the volatility functions for WTI from the PCA analysis. The first 
two factors, fhOI and fn02, are significant. If we add them up, we have the final 
volatility curve. 
Table-5.5 shows the final volatility curve and the first two factors fn01 & fn02 from 
the PCA analysis. 

Table-5.5 

fn 01 fn 02 (fn0l+fn02) 
F(1 m) 43.88% 8.61% 52.49% 
F(2m) 41.29% 3.05% 44.33% 
F(3m) 38.16% 3.00% 41.16% 
F(4m) 36.17% 5.00% 41.17% 
F(5m) 34.50% -1.84% 32.65% 
F(6m) 32.99% -2.60% 30.39% 
F(7m) 31.53% -3.51% 28.01% 
F(8m) 30.20% -4.02% 26.18% 
F(9m) 28.99% -4.63% 24.37% 

As we can see from Table-5.5 and the Figure-5.2 the volatility function fn01, fn02 has 
a simple negative exponential form but fn02 has negative numbers. The highest 
negative number is -4.63% so we make the following modification: We add that 
number with the opposite sign 4.63, to the fn02 in order to give us positive numbers. 
Table-5.6 shows us the final volatility curve and the first two factors fn01 & fn02. 

Table-5.6 

fn 01 fn 02 (fn01+fn02) 
F(lm) 43.88% 13.24% 57.12% 
F(2m) 41.29% 7.68% 48.96% 
F(3m) 38.16% 7.63% 45.79% 
F(4m) 36.17% 9.63% 45.80% 
F(5m) 34.50% 2.79% 37.28% 
F(6m) 32.99% 2.03% 35.02% 
F(7m) 31.53% 1.12% 32.64% 
F(8m) 30.20% 0.61% 1 30.810/( 
F(9m) 28.99% 0.00% 29.00% 

Our next step is to find the percentage of fn01 & fn02 to the fmal volatility curve 
from the PCA analysis. Table-5.7 shows us the percentage of MI & fn02 to the fmal 
volatility curve. 
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Table-5.7 

% of fn 01 to the Final Volatility Curve % of fn 02 to the Final Volatility Curve 
F(1 m) 76.817% 23.183% 
F(2m) 84.320% 15.680% 
F(3m) 83.339% 16.661% 
F(4m) 78.972% 21.028% 
F(5m) 92.526% 7.474% 
F(6m) 94.216% 5.784% 
F(7m) 96.579% 3.421% 
F(8m) 98.020% 1.980% 
F(9m) 99.990% 0.010% 

Table-5.8 shows the implied volatility from the option prices. If we multiply the 
implied volatility with the numbers from the Table-5.7 we can calculate the implied 
factors fnOl & fn02. Table-5.9 shows us the implied factors fnOl & fn02. 

Table-5.8 

ATM VOL 
Aug-02 52.50% 
Sep-02 40.00% 
Oct-02 36.00% 
Nov-02 38.00% 
Dec-02 32.50% 
Jan-03 30.50% 
Feb-03 30.00% 
Mar-03 

5 
29.00% 

F-03 
1 28.15% 

Table-5.9 

ATM VOL Implied fnO1 Implied fn02 
Aug-02 52.50% 40.329% 12.171% 
Sep-02 40.00% 33.728% 6.272% 
Oct-02 36.00% 30.002% 5.998% 
Nov-02 38.00% 30.009% 7.991% 
Dec-02 32.50% 30.071% 2.429% 
Jan-03 30.50% 28.736% 1.764% 
Feb-03 30.00% 28.974% 1.026% 
Mar-03 29.00% 28.426% 0.574% 
Apr-03 28.15% 28.147% 0.003% 

Based on the factors above (Table-5.9) we can price the WTI options with the two- 
factor model and compare them with the Black's model. 
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Table-5.10 shows us the interest rates that we are using to price the options. We took 
the interest rates from Bloomberg on the 31M of May 2002. 
Appendix-5.3 gives the computer algorithm of the Two-Factor model. 

Table-5.10 

R 
I month 1.78 
2 month 1.768 
3 month 1.75 
4 month 1.741 
5 month 1.74 
6 month 1.738 
T month 1.742 
8 month 1.748 
9 month 1.759 

Table-5.11 

WTI 
SETTLE STRIKE CALL PUT B. M. CALLS B. M. PUTS TWO FACTOR 

MODEL 
CALLS 

TWO FACTOR 
MODEL PUTS 

Aug-02 24.85 21.50 3.66 0.33 3.611 0.301 3.593 0.256 

Aug-02 24.85 22.00 3.26 0.43 3.211 0.404 3.190 0.351 

Aug-02 24.85 22.50 2.85 0.54 2.835 0.529 2.811 0.469 

Aug-02 24.85 23.00 2.51 0.67 2.483 0.680 2.456 0.613 

Aug-02 24.85 23.50 2.18 0.84 2.159 0.857 2.130 0.785 

Aug-02 24.85 24.00 1.89 1.04 1.862 1.060 1.831 0.984 

Aug-02 24.85 24.50 1.61 1.26 1.594 1.292 1.562 1.213 

Aug-02 24.85 25.00 1.36 1.51 1.353 1.503 1.321 1.470 
Aug-02 24.85 25.50 1.14 1.79 1.140 1.835 1.108 1.756 

Aug-02 24.85 26.00 0.95 2.09 0.954 2.145 0.922 2.068 

Aug-02 24.85 26.50 0.79 2.43 0.791 2.480 0.761 2.405 

Aug-02 24.85 27.00 0.64 2.78 0.652 2.836 0.623 2.765 

Aug-02 24.85 27.50 0.53 3.16 0.533 3.212 0.507 3.147 

Aug-02 24.85 28.00 0.43 3.56 0.433 3.607 0.409 3.547 

Aug-02 24.85 28.50 0.35 3.98 0.349 4.018 0.327 3.963 

Sep-02 24.79 21.50 3.78 0.52 3.725 0.494 3.656 0.398 
Sep-02 24.79 22.00 3.41 0.64 3.355 0.624 3.279 0.515 

Sep-02 24.79 22.50 3.04 0.77 3.007 0.774 2.923 0.655 

Sep-02 24.79 23.00 2.72 0.94 2.682 0.946 2.591 0.818 

Sep-02 24.79 23.50 2.4 1.12 2.380 1.141 2.283 1.005 

Sep-02 24.79 24.00 2.12 1.33 2.101 1.359 2.000 1.217 

Sep-02 24.79 24.50 1.84 1.55 1.845 1.600 1.742 1.455 

Sep-02 24.79 25.00 1.62 1.83 1.613 1.821 1.509 1.717 
Sep-02 24.79 25.50 1.41 2.12 1.403 2.149 1.299 2.002 

Sep-02 24.79 26.00 1.22 2.42 1.215 2.456 1.112 2.311 

Sep-02 24.79 26.50 1.05 2.75 1.047 2.782 0.947 2.641 
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Sep-02 24.79 27.00 0.9 3.09 0.898 3.127 0.802 2.991 

Sep-02 24.79 27.50 0.76 3.45 0.767 3.489 0.676 3.360 

Sep-02 24.79 28.00 0.65 3.83 0.652 3.868 0.567 3.746 

Sep-02 24.79 28.50 0.55 0 0.552 4.261 0.473 4.148 

Oct-02 24.65 21.00 4.26 0.65 4.150 0.616 4.020 0.430 

Oct-02 24.65 21.50 3.89 0.78 3.789 0.752 3.645 0.546 

Oct-02 24.65 22.00 3.54 0.92 3.446 0.907 3.289 0.683 

Oct-02 24.65 22.50 2.34 1.08 3.124 1.081 2.955 0.840 

Oct-02 24.65 23.00 2.88 1.25 2.822 1.274 2.642 1.019 

Oct-02 24.65 23.50 2.59 1.45 2.540 1.487 2.352 1.221 

Oct-02 24.65 24.00 2.32 1.67 2.278 1.719 2.084 1.445 

Oct-02 24.65 24.50 2.06 1.91 2.064 1.916 1.839 1.691 

Oct-02 24.65 25.00 1.82 2.17 1.814 2.241 1.615 1.960 

Oct-02 24.65 25.50 1.61 2.46 1.611 2.530 1.413 2.249 

Oct-02 24.65 26.00 1.43 2.77 1.426 2.836 1.230 2.558 

Oct-02 24.65 26.50 1.26 3.09 1.258 3.159 1.067 2.887 

Oct-02 24.65 27.00 1.11 3.45 1.107 3.497 0.922 3.233 

Oct-02 24.65 27.50 0.97 3.64 0.971 3.851 0.793 3.597 

Oct-02 24.65 28.00 0.85 4.16 0.849 4.218 0.680 3.975 

Nov-02 24.51 21.00 4.27 0.81 4.142 0.801 4.072 0.639 

Nov-02 24.51 21.50 3.92 0.95 3.798 0.954 3.723 0.779 

Nov-02 24.51 22.00 3.59 1.11 3.473 1.125 3.392 0.937 

Nov-02 24.51 22.50 - 1.28 3.167 1.313 3.081 1.115 

Nov-02 24.51 23.00 2.96 1.47 2.879 1.519 2.789 1.312 

Nov-02 24.51 23.50 2.68 1.68 2.609 1.743 2.517 1.529 

Nov-02 24.51 24.00 2.42 1.91 2.359 1.984 2.264 1.765 

Nov-02 24.51 24.50 2.43 2.42 2.410 2.401 2.030 2.020 

Nov-02 24.51 25.00 1.93 2.42 1.912 2.519 1.815 2.294 

Nov-02 24.51 25.50 1.72 2.70 1.715 2.810 1.618 2.586 

Nov-02 24.51 26.00 1.54 3.01 1.534 3.117 1.438 2.896 

Nov-02 24.51 26.50 1.37 3.34 1.369 3.440 1.275 3.222 

Nov-02 24.51 27.00 1.22 3.68 1.219 3.776 1.127 3.563 

Nov-02 24.51 27.50 1.07 4.17 1.083 4.125 0.994 3.919 

Nov-02 24.51 28.00 0.94 4.38 0.960 4.488 0.874 4.288 

Dec-02 24.37 21.00 4.28 0.97 4.112 0.956 3.834 0.557 

Dec-02 24.37 21.50 3.95 1.13 3.783 1.121 3.481 0.690 

Dec-02 24.37 22.00 3.62 1.2 9 3.471 1.303 3.14 8 0.843 

Dec-02 24.37 22.5 0 3.31 1.4 7 3.17 7 1.501 2.83 6 1.017 

Dec-0 2 24.37 23.0 0 3.0 3 1.6 7 2.90 0 1.71 6 2.54 4 1.212 

Dec-0 2 24.37 23.5 0 2.7 6 1.8 9 2.64 1 1.94 8 2.27 4 1.428 
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Jan-03 24.2 22.00 2.74 1.36 3.403 1.378 2.997 0.871 

Jan-03 24.2 22.50 2.54 0 3.119 1.581 2.692 1.049 

Jan-03 24.2 23.00 2.94 1.75 2.852 1.802 2.409 1.249 

Jan-03 24.2 23.50 2.67 1.97 2.603 2.038 2.146 1.469 

Jan-03 24.2 24.00 2.41 2.21 2.427 2.233 1.905 1.711 

Jan-03 24.2 24.50 2.17 2.47 2.153 2.558 1.684 1.974 

Jan-03 24.2 25.00 1.96 2.76 1.953 2.841 1.483 2.256 

Jan-03 24.2 25.50 1.76 3.05 1.767 3.139 1.301 2.558 

Jan-03 24.2 26.00 1.58 0 1.596 3.450 1.137 2.877 

Jan-03 24.2 26.50 1.41 0 1.439 3.775 0.991 3.214 

Jan-03 24.2 27.00 1.25 0 1.295 4.112 0.860 3.566 

Feb-03 24.06 20.50 4.53 1.04 3.780 0.410 3.603 0.182 

Feb-03 24.06 21.00 1.20 3.407 0.524 3.199 0.259 

Feb-03 24.06 21.50 3.88 1.37 3.054 0.658 2.817 0.357 

Feb-03 24.06 22.00 0 1.55 2.723 0.813 2.460 0.480 

Feb-03 24.06 24.50 2.26 2.69 1.457 1.880 1.090 1.513 

Feb-03 24.06 25.00 2.05 2.97 1.223 2.208 0.902 1.805 

Feb-03 24.06 26.00 1.68 0 0.899 2.841 0.601 2.465 

Feb-03 24.06 26.50 1.51 0 0.765 3.184 0.484 2.828 

Feb-03 24.06 27.00 1.35 0 0.648 3.544 0.386 3.212 

Mar-03 23.92 22.00 3.55 1.66 3.368 1.653 2.795 0.961 

Mar-03 23.92 23.00 2.08 2.854 2.101 2.238 1.359 

Mar-03 23.92 24.00 2.48 2.56 2.489 2.565 1.763 1.840 

Mar-03 23.92 26.00 1.68 3.01 1.670 3.786 1.047 3.034 

Mar-03 23.92 26.50 1.52 1.519 4.111 0.911 3.376 

Mar-03 23.92 27.00 1.37 1 4.55 1.380 4.448 0.790 3.732 

From the market price data in the tables above we can see positive skew to the out-of- 
the-money puts and negative smile to the out-of-the-money calls. Hence, in order to 
price an out-of-the-money put with Black's model we need higher volatility in the 
model and in order to price an out-of-the-money call we need to input lower volatility 
into the model. Figure-5.3 illustrates the at the money volatility, the out-of-the-money 
call volatility and the out-of-the-money put volatility. Also we observe that two-factor 
model performs better for the nearby future to the longer expiration contracts at the 
beginning, it better captures the skew to the puts in the Aug-02 and Sep-02 future 
contract and also it captures better the smile to the calls in the same contracts. But on 
the rest of the contracts the two-factor model performs very poorly, it doesn't capture 
satisfactorily the smile to the calls and the skew to the puts, which means that the 
factors that we calculated historically are correct according to history but 
inappropriate going forward. This is because the market is changing all the time i. e. 
fundamentals, liquidity, events, OPEC, etc. and these factors have not been taken into 
account in our option pricing. That is why the professionals calibrate their models 
according to the observed market data. History is very important because it gives us a 
very good indication about the market but the future can be radically different. After 
11th September the market changed drastically and traders are interested in buying 
out-of-the-money puts for the protection of their books, which is why puts are so well 
bid above the at-the-money volatility. They are much less interested in upside calls. If 
the market becomes bullish again then we will have the opposite scenario (calls being 
well bid, puts being well offered). 
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Table-5.12 

ATM VOL PUT VOL CALL VOL 
Aug-02 52.50% 54.25% 52.50% 
Sep-02 40.00% 41.00% 40.00% 
Oct-02 36.00% 37.00% 35.50% 
Nov-02 38.00% 35.50% 33.50% 
Dec-02 32.50% 34.00% 31.75% 
Jan-03 30.50% 31.25% 29.75% 
Feb-03 30.00% 30.50% 29.50% 
Mar-03 29.00% 29.50% 28.00% 
Apr-03 28.15% 29.25% 27.35% 

Figure-5.3 
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5.3 Option Pricing with Monte Carlo Simulation (Part B) 

In this section ofthe chapter we are going to price the same options with the Mean 
Reversion Jump Diffusion Model and the Merton's Jump Diffusion Model and 
compare them. For these two models there isn't any analytical formulae so, Monte 
Carlo Simulation (first used by Boyle, 1977)2 provides a simple and flexible method 
for valuing the options prices for those two models. 
We presented these models on Chapter-3; the Jump Diffusion Model has the 
following form: 

Ox =(r-0k- Q')At+a A/c,, +(k+ysz, )(u, <fit) (5.15) 

and the Mean Reversion Jump Diffusion has the following form: 

Ax, =(a(1u-x, )-I6')At+6's,, +(k+yE,, )(u, <coAt) (5.16) 

where a is the mean reversion rate, p is the long term average value of lnS in the 

absence of jumps, k is the mean jump size, y is the standard deviation of the 

proportional jump (jump volatility), 0 is the average number of jumps per year. 

We have to estimate the jump parameters ,u, O, k, or, y and the mean reversion rate a 
from the historical data for the WTI between I" May 2001 to 31" May 2002. In order 
to estimate these parameters we apply the same methods we described in Chapter 3. 
The mean reversion rate is a=5.8684 in the absence of jumps and u which is 

/1 = In(24.387) = 3.194. Table-5.13 shows the jump parameters O, k, a, y. 

Table-5.13 

Imterstions 
1 

Mean 

-0 000474 

Volatility 

43 9466 ", 

Standard 
Deviation 

0 027683732 

WTI Jump$ Mt Y., 
3 F 

2 0.000873 38.362/% 0.024166205 -ý 5 4.43662 -0.00079 0.015023 

3 0.000316 36.8957% 0.023242104 5 4.43662 -0.00079 0.015023 
4 0.000316 36.8305% 0.023201011 5 4.43662 -0.00079 0.014997 
5 0.000316 36.8305% 0.023201011 5 4.43662 -0.00079 0.014997 
6 0.000316 36.8305% 0.023201011 5 4.43662 -0.00079 0.014997 
7 0.000316 36.8305% 0.023201011 5 4.43662 -0.00079 0.014997 
8 0.000316 36.8305% 0.023201011 5 4.43662 -0.00079 0.014997 
9 0.000316 36.8305% 0.023201011 5 4.43662 -0.00079 0.014997 
10 0.000316 36.8305% 0.023201011 5 4.43662 -0.00079 0.014997 

Z see Chapter 2 of the Thesis (Option Valuation) 
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Since the parameters p, 0, k, a, y and a have been estimated we apply ten thousands 
simulations (M = 10000), or in other words ten thousand simulated paths and for each 
simulated path we compute the pay-off of the can option max (0, ST - K). To obtain 
the estimate of the call price we simply take the discounted average of the simulated 
payoffs: 

C= exp(-rT) _E max(0, ST - K) (5.17) 

Appendix-5.4 gives the computer algorithm for the Jump Diffusion Model and 
Appendix-5.5 gives the computer algorithm for the Mean Reversion Jump Diffusion 
Model. 
The option prices are illustrated in Table-5.14. 

Table-5.14 

WTI Calls Puts Calls Puts 

SETTLE STRIKE CALL PUT Merton's 
J. D. M 

Merton's 
J. D. M 

MRJD MRJD 

Aug-02 24.85 21.50 3.66 0.33 3.768 0.264 #VALUE! #VALUE! 

Aug-02 24.85 22.00 3.26 0.43 3.290 0.380 #VALUE! #VALUE1 

Aug-02 24.85 22.50 3.27 0.54 2.933 0.494 #VALUE! #VALUE! 

Aug-02 24.85 23.00 2.51 0.67 2.578 0.651 #VALUE! #VALUE! 
Aug-02 24.85 23.50 2.18 0.84 2.278 0.814 #VALUE! #VALUEI 

Aug-02 24.85 24.00 1.89 1.04 1.955 1.007 #VALUE! #VALUE! 

Aug-02 24.85 24.50 1.61 1.26 1.730 1.245 #VALUE! #VALUEI 

Aug-02 24.85 25.00 1.36 1.51 1.433 1.500 #VALUEI #VALUEI 

Aug-02 24.85 25.50 1.14 1.79 1.206 1.800 #VALUE! #VALUE! 

Aug-02 24.85 26.00 0.95 2.09 1.046 2.100 #VALUEI #VALUE! 

Aug-02 24.85 26.50 0.79 2.43 0.887 2.410 #VALUE! #VALUE! 

Aug-02 24.85 27.00 0.64 2.78 0.716 2.746 #VALUE! #VALUE! 
Aug-02 24.85 27.50 0.53 3.16 0.582 3.142 #VALUE! #VALUE1 

Aug-02 24.85 28.00 0.43 3.56 0.350 3.522 #VALUE1 #VALUEI 

Aug-02 24.85 28.50 0.35 3.98 0.220 3.887 #VALUE! #VALUE! 

Sep-02 24.79 21.50 3.78 0.52 3.876 0.470 3.442 0.038 

Sep-02 24.79 22.00 3.41 0.64 3.572 0.587 3.027 0.074 

Sep-02 24.79 22.50 3.04 0.77 3.350 0.680 2.530 0.118 

Sep-02 24.79 23.00 2.72 0.94 2.909 0.801 2.156 0.196 
Sep-02 24.79 23.50 2.4 1.12 2.525 0.963 1.776 0.313 
Sep-02 24.79 24.00 2.12 1.33 2.299 1.103 1.417 0.454 

Sep-02 24.79 24.50 1.84 1.55 1.945 1.170 1.105 0.665 

Sep-02 24.79 25.00 1.62 1.83 1.790 1.455 0.854 0.903 

Sep-02 24.79 25.50 1.41 2.12 1.582 1.690 0.643 1.162 

Sep-02 24.79 26.00 1.22 2.42 1.335 1.881 0.446 1.513 

Sep-02 24.79 26.50 1.05 2.75 1.186 2.156 0.321 1.867 
Sep-02 24.79 27.00 0.9 3.09 1.033 2.370 0.223 2.276 
Sep-02 24.79 27.50 0.76 3.45 0.875 2.628 0.153 2.686 

Sep-02 24.79 28.00 0.65 3.83 0.706 2.936 0.108 3.160 

Sep-02 24.79 28.50 0.55 0 0.662 3.206 0.068 3.649 

Oct-02 24.65 1 21.00 1 4.26 1 0.65 4.542 0.560 4.613 0.182 
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Oct-02 24.65 21.50 3.89 0.78 4.193 0.642 4.111 0.253 
Oct-02 24.65 22.00 3.54 0.92 3.811 0.746 3.790 0.335 
Oct-02 24.65 22.50 2.34 1.08 3.389 0.936 3.318 0.450 
Oct-02 24.65 23.00 2.88 1.25 3.107 1.114 2.949 0.583 
Oct-02 24.65 23.50 2.59 1.45 2.900 1.324 2.710 0.754 
Oct-02 24.65 24.00 2.32 1.67 2.570 1.532 2.344 0.899 
Oct-02 24.65 24.50 2.06 1.91 2.339 1.742 2.057 1.134 
Oct-02 24.65 25.00 1.82 2.17 2.033 2.032 1.811 1.400 
Oct-02 24.65 25.50 1.61 2.46 1.850 2.286 1.570 1.583 
Oct-02 24.65 26.00 1.43 2.77 1.720 2.541 1.300 1.875 
Oct-02 24.65 26.50 1.26 3.09 1.522 2.864 1.141 2.166 
Oct-02 24.65 27.00 1.11 3.45 1.325 3.220 0.936 2.460 
Oct-02 24.65 27.50 0.97 3.64 1.111 3.578 0.820 2.845 
Oct-02 24.65 28.00 0.85 4.16 0.991 3.925 0.710 3.242 
Nov-02 24.51 21.00 4.27 0.81 4.900 0.841 5.404 0.377 
Nov-02 24.51 21.50 3.92 0.95 4.495 0.969 4.878 0.459 
Nov-02 24.51 22.00 3.59 1.11 4.090 1.109 4.585 0.561 
Nov-02 24.51 22.50 1.28 3.802 1.307 4.250 0.704 
Nov-02 24.51 23.00 2.96 1.47 3.520 1.515 3.850 0.859 
Nov-02 24.51 23.50 2.68 1.68 3.218 1.735 3.567 0.989 
Nov-02 24.51 24.00 2.42 1.91 3.020 1.955 3.118 1.192 

Nov-02 24.51 24.50 2.43 2.42 2.710 2.177 2.979 1.385 
Nov-02 24.51 25.00 1.93 2.42 2.499 2.455 2.750 1.624 

Nov-02 24.51 25.50 1.72 2.70 2.299 2.737 2.500 1.865 

Nov-02 24.51 26.00 1.54 3.01 2.072 3.080 2.203 2.074 

Nov-02 24.51 26.50 1.37 3.34 1.940 3.345 1.870 2.360 
Nov-02 24.51 27.00 1.22 3.68 1.714 3.633 1.772 2.651 
Nov-02 24.51 27.50 1.07 4.17 1.575 3.982 1.620 2.991 

Nov-02 24.51 28.00 0.94 4.38 1.420 4.320 1.520 3.314 

Dec-02 24.37 21.00 4.28 0.97 4.730 0.770 6.062 0.290 
Dec-02 24.37 21.50 3.95 1.13 4.386 0.864 5.649 0.355 
Dec-02 24.37 22.00 3.62 1.29 4.025 1.050 5.289 0.442 
Dec-02 24.37 22.50 3.31 1.47 3.715 1.203 4.950 0.544 
Dec-02 24.37 23.00 3.03 1.67 3.410 1.412 4.650 0.720 
Dec-02 24.37 23.50 2.76 1.89 3.128 1.610 4.213 0.800 
Dec-02 24.37 24.00 2.5 2.13 2.901 1.822 3.762 0.949 
Dec-02 24.37 24.50 2.23 2.36 2.626 2.083 3.512 1.106 
Dec-02 24.37 25.00 1.99 2.62 2.383 2.324 3.200 1.314 
Dec-02 24.37 25.50 1.78 2.9 2.180 2.608 2.900 1.520 
Dec-02 24.37 26.00 1.59 3.2 1.976 2.900 2.691 1.758 
Dec-02 24.37 26.50 1.42 2.88 1.830 3.195 2.382 1.977 
Dec-02 24.37 27.00 1.26 0 1.642 3.520 2.167 2.253 
Dec-02 24.37 27.50 1.13 4.21 1.458 3.846 1.960 2.535 
Dec-02 24.37 28.00 1 4.57 1.250 4.193 1.740 2.780 
Jan-03 24.20 20.50 4.51 0.88 5.200 0.698 7.689 0.179 

Jan-03 24.20 21.00 4.16 1.02 4.755 0.809 7.325 0.233 
Jan-03 24.2 21.50 3.83 1.18 4.384 0.972 6.850 0.296 
Jan-03 24.2 22.00 2.74 1.36 4.050 1.135 6.380 0.370 
Jan-03 24.2 22.50 2.54 0 3.745 1.280 6.055 0.453 

Jan-03 24.2 23.00 2.94 1.75 3.477 1.495 5.603 0.554 

Jan-03 24.2 23.50 2.67 1.97 3.243 1.671 5.299 0.654 
Jan-03 24.2 24.00 2.41 2.21 2.916 1.915 4.920 0.801 
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Jan-03 24.2 24.50 2.17 2.47 2.690 2.181 4.514 0.930 

Jan-03 24.2 25.00 1.96 2.76 2.455 2.350 4.251 1.067 

Jan-03 24.2 25.50 1.76 3.05 2.289 2.704 3.870 1.244 
Jan-03 24.2 26.00 1.58 0 2.093 2.948 3.625 1.423 

Jan-03 24.2 26.50 1.41 0 1.876 3.258 3.320 1.664 

Jan-03 24.2 27.00 1.25 0 1.650 3.600 3.025 1.860 

Feb-03 24.06 20.50 4.53 1.04 7.147 1.452 21.584 0.122 

Feb-03 24.06 21.00 1.20 6.654 1.615 21.239 0.149 

Feb-03 24.06 21.50 3.88 1.37 6.474 1.787 20.800 0.181 

Feb-03 24.06 22.00 0 1.55 6.300 1.965 20.164 0.223 

Feb-03 24.06 24.50 2.26 2.69 4.842 3.001 18.414 0.423 

Feb-03 24.06 25.00 2.05 2.97 4.807 3.228 17.820 0.409 

Feb-03 24.06 26.00 1.68 0 4.304 3.572 16.884 0.530 

Feb-03 24.06 26.50 1.51 0 3.966 3.872 16.366 0.654 

Feb-03 24.06 27.00 1.35 0 3.754 4.235 16.193 0.665 

Mar-03 23.92 22.00 3.55 1.66 4.260 1.334 9.497 0.232 

Mar-03 23.92 23.00 2.08 3.650 1.717 8.727 0.355 

Mar-03 23.92 24.00 2.48 2.56 3.175 2.123 7.879 0.485 

Mar-03 23.92 26.00 1.68 3.01 2.285 3.182 6.780 0.892 

Mar-03 23.92 26.50 1.52 2.079 4.250 5.916 1.040 

Mar-03 23.92 27.00 1.37 4.55 1.867 5.300 5.653 1.191 

Apr-03 23.78 20.50 - 1.24 5.140 0.880 13.011 0.880 

Apr-03 23.78 22.00 0 1.78 4.258 1.370 11.609 1.370 

Apr-03 23.78 24.00 2.48 2.7 3.276 2.232 9.758 2.232 

Apr-03 23.78 26.00 1.7 2.21 2.374 3.231 8.172 3.230 

As we can see form the Table-5.14 above, the Jump Diffusion Model (JDM) captures 
very well the call option prices (out and in the money) and the put options prices (in- 
the-money and especially the out-of-the-money) up to November future contract. 
Beyond the November contract the JDM captures satisfactorily the call option and put 
option prices. 
The Mean Reversion Jump Diffusion Model (MRJD) behaves very poorly according 
to the market observed option prices, it doesn't capture the smile/skew of the calls and 
the puts. Between the two models the JDM is far more superior and extremely 
accurate compared to the MRJD model. 
Finally by comparing Table-5.11 with Table-5.14 we can conclude that the JDM is 
the appropriate model to price the WTI options. It captures the price of the out-of- and 
in-the money puts and the price of out-of- and in-the-money calls better than any 
other model we tested. Based on our analysis it is quite obvious that the best model is 
the JDM as the option prices given are very accurate in comparison with the other 
models and closest to the market observed options prices. 
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5.4 Summary 

In this chapter we have developed a general framework for pricing and risk 
management of energy derivatives on the historical forward curve for energy prices. 
Also we discussed the estimation of the volatility function of the forward curve from 
historical data including the seasonality and the volatility smile/skew. We priced 
options based upon a two-factor model and compared the results with the Black's 
model. Finally, we used the Jump Diffusion and Mean Reversion Jump Diffusion 
models for the underlying process for oil prices and priced standard European options. 
The results show that the JDM is the best model as the option prices given are very 
accurate in comparison with the other models and closest to the market observed 
options prices. 
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Appendix-5.1 

Black's (1976) Model Computer Algorithm 

'// Black (1976) Options on futures/forwards 
Public Function Black76(CallPutFlag As String, F As Double, X_ 

As Double, T As Double, r As Double, v As Double) As Double 

Dim dl As Double, d2 As Double 

dl =(Log(F/X)+(v^2/2) * T)/(v* Sgr(T)) 
d2=dl - v* Sqr(T) 
If Ca11PutFlag = "c" Then 

Black76 = Exp(-r * T) * (F * CND(dl) -X* CND(d2)) 
Elself Ca11PutFlag = "p" Then 

Black76 = Exp(-r * T) * (X * CND(-d2) -F* CND(-dl)) 
End If 

End Function 

Appendix-5.2 

Three Factor Model Computer Algorithm 

Function BSOptionValue3(iopt, F, K, r, topt, tfwd, sigma, alpha, sigma2, alpha2, 
sigma3, alpha3) 
' Returns the Black-Scholes Value (iopt=l for call, -1 for put; q=div y1d) 

Dim ert, NDOne, NDTwo 

ert = Exp(-r * topt) 
If F>0 And K>0 And topt >0 And sigma >0 And sigma2 >0 And sigma3 >0 

Then 
NDOne = Application. NormSDist(iopt * BSDOne3(F, K, r, topt, tfwd, sigma, 

alpha, sigma2, alpha2, sigma3, alpha3)) 
NDTwo = Application. NormSDist(iopt * BSDTwo3(F, K, r, topt, tfwd, sigma, 

alpha, sigma2, alpha2, sigma3, alpha3)) 
BSOptionValue3 = iopt * ert * (F * NDOne -K* NDTwo) 

Else 
BSOptionValue3 = -1 

End If 
End Function 

Function BSDOne3(F, K, r, topt, tfwd, sigma, alpha, sigma2, alpha2, sigma3, alpha3) 
' Returns the Black-Scholes dl value 

BSDOne3 = (Log(F / K) + (0.5 * w3(sigma, alpha, sigma2, alpha2, sigma3, alpha3, 
topt, tfwd))) / (Sqr(w3(sigma, alpha, sigma2, alpha2, sigma3, alpha3, topt, tfwd))) 

End Function 
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Function BSDTwo3(F, K, r, topt, tfwd, sigma, alpha, sigma2, alpha2, sigma3, alpha3) 
Returns the Black-Scholes d2 value 
BSDTwo3 = BSDOne3(F, K, r, topt, tfwd, sigma, alpha, sigma2, alpha2, sigma3, 

alpha3) - (Sqr(w3(sigma, alpha, sigma2, alpha2, sigma3, alpha3, topt, tfwd))) 
End Function 

Function w3(sigma, alpha, sigma2, alpha2, sigma3, alpha3, topt, tfwd) 
'Returns value of volatility function 
w3 = ((sigma ̂  2) / (2 * alpha)) * (Exp(-2 * alpha * (tfwd - topt)) - Exp(-2 * alpha 
tfwd)) + ((sigma2 ̂  2) / (2 * alpha2)) * (Exp(-2 * alpha2 * (tfwd - topt)) - Exp(-2 
alpha2 * tfwd)) 
End Function 

Appendix-5.3 

Two-Factor Model Computer Algorithm 

Function BSOptionValue2(iopt, F, K, r, topt, tfwd, sigma, alpha, sigma2, alpha2) 
' Returns the Black-Scholes Value (iopt=l for call, -1 for put; q=div yld) 

Dim ert, NDOne, NDTwo 

ert = Exp(-r * topt) 
If F>0 And K>0 And topt >0 And sigma >0 And sigma2 >0 Then 

NDOne = Application. NormSDist(iopt * BSDOne2(F, K, r, topt, tfwd, sigma, 
alpha, sigma2, alpha2)) 

NDTwo = Application. NormSDist(iopt * BSDTwo2(F, K, r, topt, tfwd, sigma, 
alpha, sigma2, alpha2)) 

BSOptionValue2 = iopt * ert * (F * NDOne -K* NDTwo) 
Else 

BSOptionValue2 = -1 
End If 

End Function 

Function BSDOne2(F, K, r, topt, tfwd, sigma, alpha, sigma2, alpha2) 
' Returns the Black-Scholes dl value 

BSDOne2 = (Log(F / K) + (0.5 * w2(sigma, alpha, sigma2, alpha2, topt, tfwd))) / 
(Sgr(w2(sigma, alpha, sigma2, alpha2, topt, tfwd))) 
'BSDOne = -0.72927 
End Function 

Function BSDTwo2(F, K, r, topt, tfwd, sigma, alpha, sigma2, alpha2) 
' Returns the Black-Scholes d2 value 

BSDTwo2 = BSDOne2(F, K, r, topt, tfwd, sigma, alpha, sigma2, alpha2) - 
(Sqr(w2(sigma, alpha, sigma2, alpha2, topt, tfwd))) 
End Function 

Function w2(sigma, alpha, sigma2, alpha2, topt, tfwd) 
'Returns value of volatility function 
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w2 = ((sigma ̂  2) / (2 * alpha)) * (Exp(-2 * alpha * (tfwd - topt)) - Exp(-2 * alpha 
tfwd)) + ((sigma2 ̂  2) / (2 * alpha2)) * (Exp(-2 * alpha2 * (tfwd - topt)) - Exp(-2 
alpha2 * tfwd)) 
End Function 

Function BSOptionValue3(iopt, F, K, r, topt, tfwd, sigma, alpha, sigma2, alpha2, 
sigma3, alpha3) 
' Returns the Black-Scholes Value (iopt=l for call, -1 for put; q=div y1d) 

Dim ert, NDOne, NDTwo 

ert = Exp(-r * topt) 
If F>0 And K>0 And topt >0 And sigma >0 And sigma2 >0 And sigma3 >0 

Then 
NDOne = Application. NormSDist(iopt * BSDOne3(F, K, r, topt, tfwd, sigma, 

alpha, sigma2, alpha2, sigma3, alpha3)) 
NDTwo = Application. NormSDist(iopt * BSDTwo3(F, K, r, topt, tfwd, sigma, 

alpha, sigma2, alpha2, sigma3, alpha3)) 
BSOptionValue3 = iopt * ert * (F * NDOne -K* NDTwo) 

Else 
BSOptionValue3 = -1 

End If 
End Function 

Function BSDOne3(F, K, r, topt, tfwd, sigma, alpha, sigma2, alpha2, sigma3, alpha3) 
' Returns the Black-Scholes dl value 

BSDOne3 = (Log(F / K) + (0.5 * w3(sigma, alpha, sigma2, alpha2, sigma3, alpha3, 
topt, tfwd))) / (Sqr(w3(sigma, alpha, sigma2, alpha2, sigma3, alpha3, topt, tfwd))) 

End Function 

Function BSDTwo3(F, K, r, topt, tfwd, sigma, alpha, sigma2, alpha2, sigma3, alpha3) 
Returns the Black-Scholes d2 value 
BSDTwo3 = BSDOne3(F, K, r, topt, tfwd, sigma, alpha, sigma2, alpha2, sigma3, 

alpha3) - (Sqr(w3(sigma, alpha, sigma2, alpha2, sigma3, alpha3, topt, tfwd))) 
End Function 

Function w3(sigma, alpha, sigma2, alpha2, sigma3, alpha3, topt, tfwd) 
'Returns value of volatility function 
w3 = ((sigma ̂  2) / (2 * alpha)) * (Exp(-2 * alpha * (tfwd - topt)) - Exp(-2 * alpha 
tfwd)) + ((sigma2 A 2) / (2 * alpha2)) * (Exp(-2 * alpha2 * (tfwd - topt)) - Exp(-2 
alpha2 * tfwd)) 
End Function 
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Appendix-5.4 

Merton (1976) Jump Diffusion Model computer Algorithm with Monte Carlo 
Simulation 

Public Function JDOM(p, Z, PutCall, r, sig, f, k, y, T, M, n) 

'Dim p, r, f, sig, k, y, T, M, n, Z, PutCall, nodays 
Dim diff, drift, dt, Inp, sump, test, test2, randl, rand2, rand3, jump, CT, sum CT 
Dim i, j, pcf, b As Integer 

'nodays = (Range("F"). End(xlDown). Row) -1 

'For b=1 To 3 

'p = Cells(1 + b, 1). Value 
'Z = Cells(1 + b, 2). Value 
'PutCall = Cells(1 + b, 3). Value 
'r = Cells(1 + b, 4). Value 
'sig = Cells(1 + b, 5). Value 
'f = Cells(1 + b, 6). Value 
'k = Cells(1 + b, 7). Value 
'y = Cells(1 + b, 8). Value 
"1' = Cells(1 + b, 9). Value 
M= Cells(1 + b, 10). Value 
'n = Cells(1 + b, 11). Value 

dt=T/n 

drift=(r-f* k-0.5 * sig^2) * dt 

dill= Sig * Sqr(dt) 

sump =0 
CT=O 
sum CT =0 

Forj=IToM 

lnp = Log(p) 

For i=1 To n 

test = Rnd 

If test =0 Then 
test = test + 0.0000001 
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End If 

randl = Application. NormSlnv(test) 

lnp = Inp + drift + dill * rand 1 

rand2 = Rnd 

If rand2 < (f * dt) Then 

test2 = Rnd 

If test2 =0 Then 
test2 = test2 + 0.0000001 
End If 

rand3 = Application. NormSlnv(test2) 

jump =k+ (y * rand3) 

Inp = lnp + jump 

End If 

Next i 

If LCase(PutCall) = "call" Then 

pcf= 1 

End If 

If LCase(PutCall) = "put" Then 

pcf= -1 

End If 

sump = sump + Exp(lnp) 
CT = Application. Max(pcf * (Exp(Inp) - Z), 0) 
sum CT = sum CT + CT 

Next j 
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'Cells(1 + b, 12). Value = Exp(-r * T) * (sump / M) 
'Cells(1 + b, 13). Value = Exp(-r * T) * (sum_CT / M) 
JDOM = Exp(-r * T) * (sum CT / M) 
Next b 

End Function 

Appendix-5.5 

Mean Reversion Jump Diffusion Model computer Algorithm with Monte Carlo 
Simulation 

Public Function MRJDOM(p, Z, PutCall, a, u, r, sig, f, k, y, T, M, n) 

'Dim p, r, f, sig, k, y, T, M, n, a, u, Z, PutCall, nodays 
Dim diff, drift, dt, lnp, sump, test, test2, randl, rand2, rand3, jump, CT, sum_CT 
Dim i, j, pcf, b As Integer 

'nodays = (Range("F"). End(xlDown). Row) -1 

'For b= I To 1 

'p = Cells(2,1). Value 
'Z = Cells(2,2). Value 
'PutCall = Cells(2,3). Value 
'a = Cells(2,4). Value 
'u = Cells(2,5). Value 
'r = Cells(2,6). Value 
'sig = Cells(2,7). Value 
'f = Cells(2,8). Value 
'k = Cells(2,9). Value 
'y = Cells(2,10). Value 
"r = Cells(2,11). Value 
M= Cells(2,12). Value 
'n = Cells(2,13). Value 

dt=T/n 

diff= sig * Sqr(dt) 

sump=0 
CT=O 
sum CT =0 
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Forj=1ToM 

lnp = Log(p) 

drift = (a * (u - lnp) - 0.5 * sig ̂  2) * dt 

For i=1Ton 

test = Rnd 

If test =OThen 
test = test + 0.0000001 
End If 

randl = Application. NormSlnv(test) 

hip =1np + drift + diff * randI 

rand2 = Rnd 

If rand2 < (f * dt) Then 

test2 = Rnd 

If test2 =0 Then 
test2 = test2 + 0.0000001 
End If 

rand3 = Application. NormSlnv(test2) 

jump =k+ (y * rand3) 

Inp =1np + jump 

End If 

Next i 

If LCase(PutCall) _ "call" Then 

pcf =1 
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End If 

If LCase(PutCall) = "put" Then 

pcf = -1 

End If 

sump = sump + Exp(Inp) 
CT = Application. Max(pcf * (Exp(lnp) - Z), 0) 
sum CT = sum CT + CT 

Next j 

'Cells(2,14). Value = Exp(-r * T) * (sump / M) 
'Cells(2,15). Value = Exp(-r * T) * (sum CT / M) 
MRJDOM = Exp(-r * T) * (sum CT / M) 
'Next b 
End Function 
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