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Abstract 

This dissertation studies the patterns of term-structure of implied volatility and examines the 
performance of different specifications of time-series and options-based volatility forecasting models 
under the influence of the observed market biases. Our research is based primarily upon the use of 
S&P 500 data for the period 1982-2002. There are three self-contained but seemingly related projects 
in this dissertation. The objectives of this research are: 1) to characterise the term-structure of implied 
volatility; 2) to compare the performance of asymmetric power ARCH and EGARCH models; 3) to 
evaluate the forecasting performance of time-series and options-based variance swap valuation 
models. 
The observed market anomalies in the term-structure of implied volatility of S&P 500 futures options 
are investigated between 1983 and 1998. Term-structure evidence indicates that short-term options are 
most severely mispriced by the Black-Scholes formula. We find evidence that option prices are not 
consistent with the rational expectations under a mean-reverting volatility process. In addition, 
skewness premiums results show that the degrees of anomalies in the S&P 500 options market have 
been gradually worsening since around 1987. As correlation may be responsible for skewness, our 
diagnostics suggest that leverage and jump-diffusion models are more appropriate for capturing the 
observed biases in the S&P 500 futures options market. 
Sixteen years of daily S&P 500 futures series are employed to examine the performance of the 
APARCH models that use asymmetric parameterisation and power transformation on conditional 
volatility and its absolute residual to account for the slow decay in returns autocorrelations. No 
evidence can be found supporting the relatively complex APARCH models. Log-likelihood ratio tests 
confirm that power transformation and asymmetric parameterisation are not effective in characterising 
the returns dynamics within the context of APARCH specifications. Furthermore, results of a 3-state 
regime-switching model support the notion that the performance of conditional volatility models is 
prone to the state of volatility of the returns series. In addition, AIC statistics stipulate that EGARCH 
is best in "noisy" periods whilst GARCH is the top performer in "quiet" periods. Overall, aggregated 
rankings for the AIC metric show that the EGARCH model is best. Options-based volatility trading 
exercises also reveal that EGARCH and GARCH can generate statistically significant ex-ante profit in 
one out of four sample periods after transactions costs. When considering a stochastic volatility 
model, there seems to be little incentive to look beyond a simple model which allows for volatility 
clustering and a leverage effect. 
The volatility forecasting performance of different specifications of time-series and options-based 
variance swap valuation models on the S&P 500 index is evaluated from three months before to after 
the 9/11 attacks. By far, the option-based Demeterfi et al. (1999) variance swap valuation framework is 
the most popular tool to price variance swaps. This framework stipulates that pricing a variance swap 
can be viewed as an exercise in computing the weighted average of the implied volatility of the options 
required even under the influence of volatility skew. Our research design offers a comprehensive 
empirical study of the relative merits of competing option pricing models. Based on results from six 
carefully chosen contract days, we illustrate that implied models may overpredict future variance and 
underperform time-series models. The reasons could be: 1) the implied strategy was originally 
developed for hedging; 2) implied volatility is predominantly a monotonically decreasing function of 
maturity and therefore options-based strategy cannot produce enough variance term-structure patterns; 
3) distributional dynamics implied by option parameters is not consistent with its time-series data as 
stipulated by the maximum likelihood estimation of the square-root process. Future research needs to 
use a larger sample set in order to establish a more statistically significant result to justify our findings. 

ance Until then we have a strong reservation about the use of Demeterfi et al. methodology for vari 
forecasting. 

xxii 



To My Parents 



Chapter 1: Introduction to the Study 

CHAPTER I Introduction to the Study 

"Learning without thought is labour lost; thought without learning is perilous. " 

- Confucius 

1.1 Introduction 

This dissertation is a quantitative study whose primary objective is to investigate the 

performance of different specifications of time-series and options-based volatility forecasting 

models under the influence of the observed market biases in the S&P 500 markets. Our 

research work is based primarily upon the use of futures, futures on options and index options 

data for the period 1982-2002. This first chapter of the dissertation introduces the background 

of the study, specifies the problems of the study and describes its significance. The chapter 

concludes by outlining the structure of the dissertation. 

1.2 Background of the Study 

Volatility of the underlying asset price is the primary determinant of option prices and many 

related derivatives instruments. An option pricing model that does not properly capture the 

evolution of volatility processes can give rise to option prices that do not agree well with 

prices observed in the market and can also reduce investor's ability to hedge risk. The Black- 

Scholes option pricing model is commonly used to price a wide range of options contract. 

However, its erratic empirical behaviour is well documented, a phenomenon known as 

"volatility smile" (e. g. MacBeth et al., 1979; Rubinstein, 1985; Bollerslev et al., 1992). 

Contrary to the basic assumptions of the Black-Scholes formula, implied volatility exhibits 

both smile effects and term-structure patterns. Many market factors such as the leverage 

effect, taxing, industrial cycles, serial correlated news arrival, market psychology etc have 

played very crucial roles in causing these observed biases in the marketplace. As a result, 

normal distribution is not adequate to specify the returns dynamics and researchers have yet to 

deal with fat-tails and excess kurtosis which form the basis of smile effects. Below we will 
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briefly discuss the three areas of interest in this dissertation, namely, the term-structure of 

volatility, modelling of volatility and volatility derivatives. 

1.2.1 Term-Structure of Volatility 

The modelling of the term-structure of implied volatility has been discussed by many 

researchers, e. g. Rubinstein (1985), Stein (1989), Diz and Finucane (1993), Heynen, Kemna, 

and Vorst (1994) and Xu and Taylor (1994). Rubinstein (1985) documented that implied 

volatility of exchange traded call options between August 1976 and August 1978 exhibited a 

systematic pattern with respect to different maturities and exercise prices. Rubinstein's most 

intriguing result was that the direction of bias changed signs between sub-periods, implying 

that skewness of the risk-neutral density changed over time. Subsequently, numerous efforts 

have been made to investigate the mean-reverting process and term-structure of implied 

volatility. Stein (1989) pioneered the examination of the term-structure of the average at-the- 

money options' implied volatility using two maturities on S&P 100 index options. By using a 

mean-reverting volatility model, evidence suggested that long-maturity options tended to 

"overreact" to changes in the implied volatility of short-maturity options because investors 

had a systematic tendency to overemphasise recent data at the expense of other information 

when making projections. This result was disputed by Diz and Finucane (1993) following 

their analysis of similar S&P 100 index data. The term-structure of implied volatility has also 

been discussed by Heynen, Kemna and Vorst (1994). Basing their results upon Duan (1995), 

Heynen et al. derived the term-structures of implied volatility for EGARCH, GARCH and a 

mean-reverting stochastic model in a similar way to Stein (1989). Only two values of time-to- 

maturity were investigated and Heynen et al. concluded that EGARCH gave the best 

description of asset prices of the term-structure of implied volatility. Xu and Taylor (1994) 

also studied at-the-money currency options and used a mean-reverting volatility model to 

establish relationships between long- and short-term expectations of implied volatility for any 

number of maturity T. Xu et al. 's model could explain the time-varying crossovers of implied 

volatility at different maturities but it did not emphasise the effects of volatility smile. 

Surprisingly little research has been done on the properties and evolution of implied volatility. 

Past research has mainly focused on "fitting" a theoretical option model to the observed biases 

in a particular options market from an arbitrarily short span of data for at-the-money contracts. 

Since the term-structure of implied volatility reflects the time-varying market expectations of 
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asset volatility over different time horizons, it is imperative to focus on a single market and 

gain a thorough understanding of its behaviour. 

1.2.2 Modelling of Volatility 

Since the late 1980's many researchers have developed alternative option-pricing models in 

order to cope with the observed term-structure biases in the equity market. The latest one- 

factor implied models such as Derman and Kani (1994), Rubinstein (1994) and Dupire (1994) 

have created specifications that can implicitly model volatility as a deterministic function of 

time. However the major setback for "implied" methods is that they all require substantial 

"engineering" efforts to calibrate their lattice structures. These complex models are usually 

reserved for the valuation of exotic options and are seldom used for volatility forecasts. On 

the other hand, a more structural approach to improving the forecasting performance is to 

model volatility as a time-varying stochastic variable. Whilst stochastic models such as Hull 

and White (1987), Johnson and Shanno (1987), Scott (1987) and Stein and Stein (1991) 

provide another means to capture smile effects, many problems limit the use of these 

stochastic volatility models. The main problem associated with stochastic volatility models is 

that volatility is not a traded asset and is therefore unobservable. Besides, estimations of 

continuous-time models' parameters are problematic as real-world data are recorded at 

discrete intervals. 

Following the path-breaking paper by Engle (1982), an alternative literature has focused on 

discrete-time autoregressive conditional heteroskedasticity (ARCH) models. The 

development of ARCH models is driven by three regularities of equity returns: 1) equity 

returns are strongly asymmetric, e. g. negative returns are followed by larger increases in 

volatility than equally large positive returns; 2) equity returns are fat-tailed; 3) equity returns 

are persistent (persistence refers to volatility clustering). This class of discrete-time models 

hypothesises that both smile effects and term-structure patterns can be explained by allowing 

the underlying asset's volatility to obey a stochastic process. There is a voluminous literature 

suggesting that discrete time-varying volatility models are practical and insightful. The 

usefulness of ARCH modelling is such that volatility is predictable and readily implemented, 

ARCH models assume the presence of a serially correlated news arrival process and require 

only the use of past data. As such, ARCH models allow conditional variance to change over 
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time as a function of past conditional variance and error, whilst leaving unconditional 

variance constant. Most of the early research efforts focused on conditional models that 

imposed symmetry on the conditional variance structure. In response to criticisms that the 

symmetric model may not be appropriate for modelling stock returns volatility, more recent 

research has considered other features such as leverage effects, power transformation etc in 

the variance equation. There are, indeed, so many conditional volatility models in the finance 

literature that it is cumbersome to provide a comprehensive survey of them all. 

Recently, the topics of long memory and persistence have attracted considerable attention in 

terms of the second moment of an asset returns process. The development of long-memory 

models is based on the observations of the so-called "stylised facts". For example, Ding et al. 

(1993) invented the APARCH models that used the Box-Cox transformation on conditional 

variance and its absolute residual to account for the slow decay of autocorrelations in the 

returns process. Subsequently, many researchers have also developed different specifications 

for the long-memory process (e. g. Baille, 1996; Bollerslev et al., 1996; Ding et al., 1996). 

Several papers have given the impression that their models are capable of accounting for 

empirical features such as volatility clustering and leptokurtosis in the distribution of returns. 

Despite the huge amount of effort researchers has put into modelling volatility, it is clear that 

empirical issues remain unexplored for many of these more "elaborate" models. 

1.2.3 Volatility Derivatives 

Until now the conventional instruments for implementing a volatility hedge remain rather 

crude. The most widely accepted way of speculating on volatility is usually achieved through 

the purchase of European call and put options. Traditional techniques such as delta hedging 

strategy always focus on the reduction of delta-risk. Once the underlying index moves, 

however, a delta-neutral trade can become long or short delta. Rehedging becomes necessary 

to maintain a delta-neutral position as the market moves. Since transaction and operational 

costs generally prohibit continuous rehedging, residual exposure of the underlying ultimately 

arises from options-based volatility strategies. Despite the fact that there has been an 

increased interest in volatility products since the late 1990's, little research has been directed 

towards to the development of volatility derivatives. The first theoretical paper to value 

volatility derivatives is by Grünbichler et al. (1996). Grünbichler et al. presented a simple but 
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technically complicated framework that used the equilibrium approach within which specific 

closed-form solutions for volatility futures and option prices were derived within a mean- 

reversion framework. Later, Gupta (1997) and Engle et al. (1998) discussed the issues related 

to the hedging of volatility. Subsequently, Andersen and Andreasen (1999), Rolfes and Henn 

(1999), Chriss and Morokoff (1999), Demeterfi et al. (1999), Brenner et al. (2000), Brockhaus 

and Long (2000), Heston and Nandi (2000b), Howison et al. (2001), Little and Pant (2001), 

Carr and Madan (1999,2002), Javaheri et al. (2002) and Theoret et al. (2002) also researched 

volatility derivatives, but the amount of research invested in volatility products still pales in 

comparison with other well-studied exotic derivatives products such as barrier and Asian 

options. Volatility risk has yet to be dealt with so that investors and traders can directly 

express their views on future volatility. 

The arrival of variance swaps offers an opportunity for traders to take synthetic positions in 

volatility and hedge volatility risk. They were first introduced in 1998 in the aftermath of the 

Long Term Capital Management (LTCM) melt down when implied stock index volatility 

levels rose to unprecedented levels. These variance swap contracts are mostly based on equity 

indices and they were originally designed to be a replacement for traditional options-based 

volatility strategies such as straddle or hedged call/put options. Despite its name, a variance 

swap is actually an over-the-counter forward contract whose payoff is based on the realised 

volatility of a stated equity index. Their payoff at expiration is equal to: 

/22 
\ýR - 

Kvd) N 

where N is the notional amount of the swap in some currency units per annualised variance 

point, QR and K,, are the realised stock volatility over the life of the contract (n days) quoted 

n-1 

in annual term, i. e. 
FI S'+' - Sj 

2j, 

and the fixed annualised volatility delivery price, 
n ; to S; 

respectively. F is the appropriate annualisation factor. 

Since a variance swap provides pure exposure on future volatility levels, it is considered a 

cleaner bet on volatility than options-based strategy. It allows counterparties to exchange 

cash-flows - floating variance for fixed variance. Counterparties can use a variance swap to 

speculate the spread between future realised (floating) and implied (fixed) volatility, or to 
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hedge the volatility exposure of other positions or businesses. According to Curnutt (2000), 

some of the possible strategies using variance swaps are: 

i) Speculating a directional view that implied volatility is too high or too low relative to 

anticipated realised volatility because 1) volatility follows a mean-reverting process. 

In this model, high volatility decreases and low volatility increases; 2) there is a 

negative correlation between volatility and stock or index level. The volatility stays 

high after large downward moves in the market; 3) volatility increases with the risk 

and uncertainty; 

ii) Implementing a view that the implied volatility in one equity index is mispriced 

relative to the implied volatility in another equity index; 

iii) Trading volatility on a forward basis by purchasing a variance swap of one expiration 

and a variance swap of another expiration. 

Institutional users such as hedge funds are attracted to own variance swap, especially when 

their portfolios are naturally short vega, as an alternative to using options to take on or hedge 

volatility exposure. By far, the model developed by Demeterfi et al. (1999) is the most 

popular tool to price variance swaps but, surprisingly, no research has ever considered using 

market data to test for its usefulness. This framework stipulates that pricing a variance swap 

can be viewed as an exercise in computing the weighted average of the implied volatility of 

the options required even under the influence of volatility skew. Therefore information 

embedded in option prices is used directly without having to be filtered through the 

underlying time-series. As long as the movement of the underlying asset is continuous, the 

pricing and hedging of variance contracts is completely independent of the choice of the 

volatility process. 

1.3 The Problem Statement 

This dissertation investigates the performance of different specifications of time-series and 

options-based volatility forecasting models under the influence of the observed market biases. 

In order to present the results in a meaningful and manageable manner, three self-contained 

but interrelated projects are included in this dissertation. In this section we will state the 
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objectives for each of the three projects separately. We end the section by noting the 

delimitations of the study. 

1.3.1 Objectives of the First Research Project 

Chapter 3, entitled "A report on the Properties of the Term-Structure of S&P 500 Implied 

Volatility", is a descriptive study. It examines the empirical behaviour of S&P 500 futures 

option's implied volatility using daily data from 1983 through 1998. We consider this 

research work one of the most extensive empirical studies of S&P 500 implied volatility term- 

structure in literature to date. The primary objectives are: 

i) To observe, characterise and analyse the patterns of the term-structure of implied 

volatility in the S&P 500 marketplace; 

ii) To investigate whether option prices are in line with the rational expectations 
hypothesis under a mean-reverting volatility assumption; 

iii) To identify what types of option models would be consistent with the observed 

moneyness biases in the S&P 500 options market. 
Intermediate results obtained in Chapter 3 can also help facilitate our research efforts in 

modelling volatility in Chapters 4 and 5. 

1.3.2 Objectives of the Second Research Project 

Chapter 4, entitled "An Empirical Comparison of APARCH Models", investigates the 

performance of APARCH models (Ding et al., 1993) that can potentially account for the slow 

decay in returns autocorrelations using daily S&P 500 futures series from 1983 through 1998. 

The use of the APARCH framework is convenient to evaluate different model specifications 

because log-likelihood-based statistics can be used to directly test for the robustness of many 

nested models'. Our primary objectives are: 

i) To check whether the unrestricted APARCH model is a good description of the 

process driving volatility by investigating the significance of asymmetric 

parameterisation and power transformation within the context of APARCH 

specifications using log-likelihood ratio tests; 

1 See appendix A. 1 for these nested models. 
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ii) To provide evidence that the in-sample performance of asymmetrical and symmetrical 
conditional volatility models are prone to the state of volatility by using a 3-state 

regime switching volatility conditional model to separate high and low volatility 

states; 

iii) To compare the in-sample performance of EGARCH (Nelson, 1991) with APARCH 

models based on aggregate AIC statistics; 

iv) To illustrate the quality of different conditional volatility forecasts by predicting the 

one-step ahead changes of implied volatility and conducting ex-ante (out-of-sample) 

S&P 500 straddle trading exercises. 

1.3.3 Objectives of the Third Research Project 

The title of Chapter 5 is "Empirical Performance of Alternative Variance Swap Valuation 

Models". The model developed by Demeterfi et al. (1999) is the most popular tool to price 

variance swaps, but surprisingly, no research has ever considered using market data to test for 

its usefulness in forecasting volatility. The pricing of variance swap can be viewed as the market 

consensus of expected future variance. Chapter 5 examines different specifications of time-series 

and options-based variance swap models' volatility forecasting performance on the S&P 500 

index from June 2001 to November 2001. After the terrorist attacks on September 11,2001, 

the longer-termed forward variance has become more volatile than the shorter-termed forward 

variance. Based on six well-selected contract days, we design the three-, six- and nine-month 

variance swap contracts for each contract day and analyse them by evaluating different 

specifications of implied and time-series models at different points in time. Our primary goals 

are: 

i) To present a complete picture of how each generalisation of the benchmark Black- 

Scholes model can really improve the volatility forecasting performance of variance 

swaps and whether each generalisation is consistent between in- and out-of-sample 

results; 

ii) To explore whether there is any systematic difference in volatility forecasting 

performance between time-series and options-based variance swap valuation models. 
It is intended to investigate whether options-based models, which are forward-looking, 

are capable of outperforming discrete-time processes, which use only historical 

information, in predicting future variance. 
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1.3.4 Delimitations of the Study 

Volatility models and their forecasts are of interest to many types of economic agents, e. g. 

options traders require asset volatility to price options whilst portfolio managers need 

volatility forecasts to access risks of their portfolio. Having the ability to estimate volatility 

more accurately than others means that one could have more success from trading activities. 

Given the changing nature of volatility term-structure in the marketplace, it is important for us 

to focus on a single market and gain a thorough understanding of its behaviour. If the term- 

structure of implied volatility shows any specific pattern then some models, such as stochastic 

volatility models or autoregressive heteroskedasticity models, may be used to account for 

these imperfections in the market. In this dissertation, we have opted for the use of S&P500 

market data. The S&P 500 index is capitalisation-weighted, representing the market value of 

all outstanding common shares of the 500 large-capitalisation firms listed in the U. S. A. This 

is of importance to investors because S&P 500 products are one of the most liquid contracts in 

the financial world. Liquidity is the ability of a market to efficiently absorb the execution of 

large purchases and sales. It is a key component to attracting investors and ensuring a 

market's success. In fact, the S&P 500 index has long been the benchmark by which 

professionals measure portfolio performance and its immense size guarantees that S&P 500 

products are ideal as a hedging tool. 

1.4 The Significance of the Study 

We will explain the research significance for each of the self-contained projects individually. 

1.4.1 Significance of the First Research Project 

Chapter 3 studies the observed market anomalies in the S&P 500 futures options market. The 

term-structure of implied volatility reflects the time-varying market expectations of asset 

volatility over different time horizons. Despite the extensive investigation and the evidence 

accumulated thus far on the term-structure of implied volatility, no past study has ever 

considered a large empirical study of the S&P 500 implied volatility term-structure. Prior to 

this research, past papers have always examined the term-structure of implied volatility only 

for particular at-the-money contracts. The purpose of Chapter 3 is to fill this gap in the 
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literature by utilising all available daily S&P 500 futures option prices from the inception of 

S&P 500 futures option in March 1983 to December 1998. Although descriptive in nature, we 

extend previous term-structure work in several ways: 

i) The new aspect of this research is that we define relative implied volatility as implied 

volatility normalised by its corresponding at-the-money implied volatility for each 

maturity group. The use of relative implied volatility allows the measurement of 

relative degrees of anomaly in the implied volatility term-structure across a broad 

moneyness range; 

ii) Our sample period is more extensive, making the results more statistically reliable. 

Our research is of importance to institutional investors because S&P 500 products are one of 

the most liquid contracts in the financial world and their immense size guarantees that they are 

ideal as a hedging tool. If the term-structure of implied volatility shows any specific patterns 

then some models, such as stochastic volatility models or GARCH-type models, may be more 

suitable to make adjustments for market imperfections that cannot be explained by the Black- 

Scholes formula. These adjustments could be important even for small levels of 

predictability, especially for longer maturity options. 

1.4.2 Significance of the Second Research Project 

In Chapter 4 we compare the performance of the asymmetric power ARCH (Ding et al., 1993) 

models with the EGARCH (Nelson, 1991) model. The existing literature favours some rather 

complex volatility specifications but usually their empirical performance is little explored. 

Since the development of long-memory models in the early 1990's, there has been little 

research about the significance of their specifications. In Chapter 4 we investigate the 

importance of power transformation and asymmetric parameterisation within the context of 

APARCH specifications. The consequence of this research is not only significant to discrete- 

time finance but also potentially meaningful for continuous-time stochastic volatility 

literature. Whilst the research on discrete and continuous-time models has evolved 

independently, many continuous-time models can be thought of as the limits of GARCH-type 

processes. For example, Nelson (1991) showed that EGARCH(1,1) converged to the Wiggins 

model (1987) in continuous time limit. Moreover, Duan (1997) also proved that most of the 

existing bivariate diffusion models that had been used to model asset returns volatility could 

be represented as limits of a family of GARCH models. If it can be shown that there is not 
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much to gain from moving beyond a more parsimonious discrete specification such as 
EGARCH or GARCH, there seems to be little incentive to look beyond a simple bivariate 

stochastic model which allows for volatility clustering and a leverage effect such as the Hull- 

White model (1987) or the Heston model (1993). 

1.4.3 Significance of the Third Research Project 

Chapter 5 inspects the pricing performance of options-based and time-series variance swap 

valuation models on the S&P 500 index. Variance swap is an exciting new product that 

immunises traders' exposure into the ups and downs of volatility. It is getting more popular 

because it is one of the very few financial products to allow traders speculate on future 

volatility levels. The Demeterfi et al. (1999) variance swap pricing methodology has been 

widely accepted by practitioners but little tested and scrutinised. Regrettably, no empirical 

studies have ever used any market data to investigate the pricing performance of variance 

swap valuation models. This research presents the first of any known attempts to use market 

data to evaluate the effectiveness of the Demeterfi et al. framework. In particular, it 

represents the first study on variance swaps under alternative time-series and competing 

option pricing models. It is also not known whether and by how much each option model will 

improve variance swap pricing. Since implied volatility can be regarded as the market's 

expectation of future realised volatility, the implication of any poor variance forecasting by 

options-based models is such that practitioners and academicians alike may need to look for a 

way to integrate historical and market information in a composite option pricing model. 

1.5 Organisation of the Dissertation 

The structure of this dissertation is as follows. Chapter 1 is the introduction. Chapter 2 

reviews the literature. The rest of this dissertation is divided into three self-contained but 

interrelated projects and each project is accompanied by an abstract. Chapter 3 characterises 

the term-structure of S&P500 implied volatility and examines empirical issues relating to 

rational and distributional hypotheses in the S&P 500 futures options market. Chapter 4 

compares the in-sample performance of the APARCH with EGARCH models in different 

volatility regimes using sixteen years of daily S&P 500 futures series. It also assesses the 

quality of different statistical criteria and conducts a preference-free approach to select the 
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best out-of-sample model. Chapter 5 adopts a financial engineering approach to evaluate the 

performance of different time-series and options-based variance swap valuation models on the 

S&P500 index under the influence of term-structure biases found in Chapters 3 and 4. 

Chapter 6 summarises and discusses the results and suggests directions for future research. 
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CHAPTER 2 Review of the Literature 

This chapter will review the literature on issues related to option pricing, as a means of 

providing an intellectual background for the present dissertation. It will examine both the 

theoretical and empirical studies in these areas, giving special emphasis in volatility. The 

chapter organises the review by examining the six aspects of finance literature: option pricing 

theories, conditional and stochastic volatility models, implied methodology, market anomalies 

and diagnostic tests. 

2.1 Option Pricing Theories 

2.1.1 No-Arbitrage Approach 

The Black-Scholes option pricing formula (Black & Scholes, 1973) relates the price of an 

option to the underlying asset price, the volatility of the return of the underlying asset, 
dividend yield, interest rate and strike price. The main assumptions that Black-Scholes 

proposed were the following: 

i) Markets are frictionless, efficient and complete; 

ii) Constant interest rate2 and volatility; 

iii) Portfolio rebalanced continuously; 

iv) No-arbitrage and trades are self-financing; 

v) The underlying asset S follows geometric Brownian motion3 (GBM). 

The underlyinng asset dynamics is given by: 

dS =/ Sdt + oSdW 

2 The original Black-Scholes paper assumes a constant interest rate. But this assumption can be relaxed and no- 
arbitrage can still be applied as long as interest rate is deterministic. 
3 Unlike arithmetic Brownian, geometric Brownian motion does not allow the underlying asset to become 

negative, a property that is consistent to limited liability of stock ownership (Samuelson 1965). 

13 



Chapter 2: Review of the Literature 

where the percentage change from t to t+dt is normally distributed with mean , udt and 

variance a2 dt; W is the Wiener process, and u and a are the instantaneous return drift and 

volatility, respectively. 

2.1.1.1 Black-Scholes Formula 

According to the Black-Scholes assumptions, one can apply Ito's lemma4 to show that it is 

possible to create a synthetic hedged portfolio v(S, t) that consists of a long position in stock 

and a short position in option. If rebalanced continuously, this hedged position can be 

achieved independent of stock price movements and its instantaneous return drift. The 

discrete-time version of the diffusion model is given by: 

AS = PSet + aSAW (1) 

The above discrete-time relationship involves a small approximation. It assumes that the drift 

and variance rate of S remain constant in a very short discrete time period. In addition, the 

change in the value of the option is governed by the stochastic differential equation (SDE) that 

satisfies the Ito's lemma: 

AC= CS, uS+Ct+ýCSSQ2S2 At+CSQSOW (2) 

where C, is the first partial derivative of option price with respect to time, and Cs and Css the 

first and second partial derivative of option price with respect to stock price, respectively. In 

a hedged portfolio of Cs shares long and one call option short, the change of value of this 

portfolio in a small discrete time period is: 

Ov(S, t) = CSAS -AC 

Substituting (1) and (2) into (3), one gets: 

A v(S, t) =-CtOt -2 Css Q zS sOt 

4 See Hull (2000) pp. 235-236 for the derivation of Ito's Lemma. 

(3) 

(4) 
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Since the increments of the portfolio are dependent on the same source of underlying 

uncertainty, it is possible to form a risk-free portfolio in discrete time. Under no-arbitrages 

condition, the return earned on it in a short discrete period must equal risk free rate r so that: 

Ov(S, t) = rv(S, t)Ot 

Substituting (5) into (4) one can write the following SDE: 

rC = rCSS + C1 +ý CSSQ2S 2 

If O= 
ac 

,Q= 
ac 

and r= 
azC 

, equation (6) can be rewritten as: T, as as 

rC=rOS+O+ 
1I'Q2S2 
2 

(5) 

(6) 

(7) 

The most striking feature of the Black-Scholes derivation is that equations (6) and (7) are 

independent of instantaneous stock return p; one only needs to know the risk-free rate in 

order to backout the option price C. By transforming (6) into an equivalent heat transfer 

problem in physics, it can be solved analytically subject to boundary conditions. The 

European call formula is expressed as follows6: 

C(S, t) = SN(d, )- Xe-" N(d. ) 

1n(--) -(r-d +12 Q)(T -t) 
a- X2 
f. 41 

Q T-t 

d2=d, -Q T-t 

where N(") is the cumulative distribution function, r the risk-free rate, N(d, ) the hedge 

parameter, o the volatility, d the dividend yield, X the strike price, S the stock price and T the 

maturity. 

In the Black-Scholes options model, prices are always a non-decreasing function of the 

volatility. Furthermore, stock price is distributed log-normally. The distribution of change in 

ln(S) between time 0 and T is given by: 

S The no-arbitrage theorem simply states that two equivalent assets must not be sold for different prices. 
6 Wilmott (1997) give precise details in solving equation (6). 
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d ln(S) _p- 
2 Jdt 

+ QdW 

In 
Sr 

-N 
4)raff] 

So p 
1( 

ln(S,. )-N ln(So )+ 
Ju - 

Q2 I 

2 
CV-[ 

I 

The distributional result implies that the expected continuously compound return for In(S) is 

4u -2 
2per 

year whereas 
AS 

is distributed as N(, utt, Q At) . Under the real probability 

measure, the expected forward price and its instantaneous value at time Tare given by: 

E(ST) = Soe"T 

(PZo2)T+oýe, 

+ 
Er - 

ST - soe N(0,1) 

It is widely noted that option prices are not priced off the real measure but risk-neutral 

measure. According to Merton (1976), option prices rely on put-call parity to enforce the 

internal consistency of option pricing. The put-call parity is a no-arbitrage condition which 

shows that the value of a European call option with a certain exercise price and exercise date 

can be deduced from the value of a European put option with the same exercise price and 

date, and vice versa. For a non-dividend paying stock, this relationship is given by: 

C-P=S-Xe"' 

If put-call parity is violated, arbitrage will arise. Note that put-call parity is true regardless 

whether the asset price distribution is log-normal. It does not, however, hold for American 

options. The Black-Scholes formula can be rearranged such that a stock option at any instant 

can be thought of a weighted portfolio of risky stock and riskless zero-coupon bonds: 

C(S, t) = e- [SN(d, )e" - XN(d Z )] 

N(d2) can be interpreted as the probability that the option will be exercised in a risk-neutral 

world whereas XN(d2) is the strike price times the probability that the strike price will be 

paid. Accordingly, the term SN(di)e" is the expected value of a variable that equals S. if 

Sr >X and zero otherwise in a risk-neutral world. 

i 
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2.1.1.2 Other Variations 

There are many variations of the Black-Scholes model - so many that it is cumbersome to 

provide a comprehensive survey of it. For instance, Merton (1973) derived the Black-Scholes 

formula independently based on a three-asset riskless hedge model. Merton's model had the 

advantage such that interest rate was taken to be deterministic. Merton's paper also developed 

a set of restrictions for the rational pricing of European and American options without making 

any distributional assumption and gave the solutions to perpetual American call and put 

options. Other prominent option pricing models include the jump-diffusion model by Merton 

(1976), the futures option model by Black (1976), the compound option formula by Geske 

(1979), the American option pricing model by Barone-Adesi and Whaley (1986), the 

stochastic volatility model by Hull and White (1987) etc. This list is by no means exhaustive. 

The use of any particular model should be judged on its own merits. 

2.1.1.3 Implied Volatility 

In the Black-Scholes formula all but the volatility parameter a is observable. Historical data 

may be used to estimate a, however, many other techniques could also be employed to 

approximate a (e. g. Brenner & Subrahmanyam, 1988; Bharadia et al., 1995; Corrado & 

Miller, 1996). On ther other hand, one may observe the market price of the option and invert 

the Black-Scholes formula to determine a. This market's assessment of the underlying 

asset's volatility, which reflects the average volatility over the remaining life of the option, is 

known as implied volatility. Its calculation is usually accomplished by using Newton- 

Raphson method, which uses the first derivative of the option price with respect to a, 
C', 

to 

speed up convergence. According to Figlewski (1989a), the implied volatility of an option 

will represent the equilibrium between supply and demand. It is generally believed that prices 

in the market reflect all available information affecting the value of a contract. In principal, 

implied volatility gives a direct reading of the market's future volatility estimate. If implied 

7 This is referred to vega. Calculating vega from the Black-Scholes model may seem strange because Black- 

Scholes equation assumes that volatility is constant. It would be theoretically and conceptually more correct to 

calculate vega from a model where volatility is assumed to be stochastic. 

17 



Chapter 2: Review of the Literature 

volatility is low compared to volatility forecast, a trader will prefer to buy options, and vice 

versa. 

2.1.2 Martingale Approach 

The essence of the Martingale approach is to change the probability measure so as to make the 

discounted stock a Martingale, therefore making its drift zero. The option price can be 

expressed as the discounted value of the expected cash-flow under the risk-neutral measure. 
Furthermore, the Black-Scholes formula can also be obtained from the Martingale approach. 
The following sub-sections discuss the underlying concept of the probabilistic approach and 
illustrate how it can be used to solve for option prices8. 

2.1.2.1 Underlying Concepts 

The Black-Scholes formula can be derived via the probabilistic approach. Mathematicians 

have known for a while that to be random is not necessarily to be without some internal 

structure in non-random ways. The central theme of the probabilistic approach demonstrates 

that the arbitrage justified contingent claim is the expectation of the discounted claim under 

one special measure Q under which the discounted underlying process is also a Martingale. 

Under the Martingale measure Q, derivatives can be valued with the risk-free rate via no- 

arbitrage, where the risk-free rate is readily available in the market. Thus the real measure P 

which the underlying follows is irrelevant. The necessity to have a new measure Q in place 

for asset valuation can best be illustrated in the following example. Suppose an analyst would 

like to calculate the price of an asset. One way to do this is to exploit the relation: 

1 
E`r 

(1 +R) 
SM = Sr 

t 

by calculating the expectation on the LHS. By doing this requires a knowledge of the 

distribution of R, which requires knowing the risk premium U where risk-free rate 

r=R, -. a. Yet it is usually difficult to obtain the risk premium before knowing the asset 

8 The materials used in this section for the probabilistic approach are extracted from Baxter and Rennie (1996) 

and Neftci (1996). 
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price. On the other hand, it might be easier to transform the mean of R, without having to use 

the risk premium. If one can find a new probability measure Q without having to use the risk 

premium such that: 

E`Q [(1ý, 
11 

)5l+l =S, 

where it can be very useful for calculating the asset price. 

The above illustration implies that there is a separation of process and measure and only the 

size and interrelation of its underlying movements affects the prices of derivatives, but the 

probabilities of achieving them does not. For example, the forward contract on stock 

maturing at time T may not be enforceable9, but the fair price of the forward contract is 

S, exp(rT), which does not depend on the expected value of the stock under its real measure. 

2.1.2.2 Discrete-Time Process 

The use of probabilistic approach includes the concepts of Martingale, filtration F,, stock and 

bond processes. A stock process S is a Martingale with respect to an arbitrary measure P and 

a filtration F, if. 

EP (S1 I F, )= Si 

for all i: 5 j. That means the process S has no drift under P, no bias up or down in its value 

under the expectation operator Ep. 

A filtration F, is the history of the stock up until tick-time i; filtration fixes a history of 

choices or paths. The conditional expectation operator EQ (" IF, ) extends the idea of 

expectation to two parameters -a measure Q under a history F,. The measure Q tells us 

which "probabilities" to use in determining path-probability and thus the expectation whilst 

the filtration serves to take expectations from later starting point rather than along the whole 

of a path from time zero. Coupled with the use of binomial representation theorem, a no- 

9 The expected stock price from the Kolmogorov's strong law is: S0 exp(, u + 0.50.2 ) 
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arbitrage, self-financing hedging strategy can be constructed to price contingent claim in a 

binomial environment. Given a binomial tree model with a stock S and bond B, then (O; , gyp; ) 

is a self-financing strategy to construct a contingent claim X if. 

i) Both (0,, (pi) are known by time i-1; 

ii) The change in value V of the portfolio defined by the strategy obeys the difference 

equation: AV, = O; AS, + cp; AB; where AS, and AB, are the changes in S and B from 

time i -Ito i, respectively; 

iii) cTST +DpTBT = X, the final claim. 

Binomial representation theorem assures that Oj+1S, + tp; +1Bj = O; Sl + gyp; B1. Thus at any time i, 

the value of a claim X maturing at date T is B1EQ (BT-'X I F) . It is also noted that both B, -'X 

and B, ̀ S, are Q-Martingales. 

2.1.2.3 Continuous-Time Process 

The discrete models are only a rough approximation to the way that prices actually move. 

The binary choice of a single jump "up" or "down" only becomes more important as the ticks 

get closer and closer. In a continuous process, values can be expressed in arbitrarily fine 

fractions and they cannot make instantaneous jumps. Two special tools are used for 

manipulating stochastic processes: 

i) If dX, = p, dt + a, dW, and f (X, ) is twice differentiable then 

d(f(X, ) = (a, f (X, ))dW, +(, u, f'(X, )+ 1af "(X, ))dt 

ii) If dX, = , U, dt +Q, dW, and dY, = v, dt + p, dW, then 

d(X, Y, ) = X, dY, + Yd Y, + a, p, dt 

i) is referred Ito's formula. Its most immediate use is to generate SDE's from a functional 

expression for a process. ii) is the product rule. It is noted that the final term on the LHS in 

ii) is actually dX, dY, (following from (dW, )2 = dt ), marking the difference between 

Newtonian and stochastic calculus. 

The above equations are a manipulation of differentials of Brownian motion, not a 

manipulation of measure. W, is not strictly a Brownian motion in its own right, but a 
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Brownian motion with respect to some measure P, a P-Brownian motion. One important tool 

for manipulation of measure is the Radon-Nikodym derivative. The Radon-Nikodym 

derivative of Q with respect to P, i. e. 
dQ, 

exists only if two measures P and Q are equivalent 

and operate on the same sample space and agree on what is possible, i. e. 

P(A) >0a Q(A) > 0, where A is any event in the sample space. One can only uniquely 

define 
dQ 

and 
dP 

if P and Q are equivalent and Q could be extracted from P and 
dQ 

, and dP dQ dP 

vice versa. For example, E,, (X) = EQ dQ 
X if dQ 

exists. To price a contingent claim X 
dP dP 

up to time t given Fs where t>s, the procedures are as follows: 

i) S, = EP dQ 1 F. 

ii) EQ (XT) = Ep 
dQ 

X, , for all claims knowable by time T. 

iii) EQ(X, JF, )=Sj'E, (S, X, I F, ), s<_t<_T 

The last condition implies that EQ (X, ) = Ep (S, X, ). i) gives an idea of the amount of change 

of measure 
dQ- 

so far up to time t along the current path whereas S, SS' in iii) represents the 

amount of change of measure from time s to time t. All the measure changes on Brownian 

motion can do is to change the drift. 

If one considers W, a P-Brownian motion and defines dQ 
= ex - yWr -Z y2T for some 

time horizon T, under the results of the moment generating function: 

EQ (exp(BW,. )) = ex - 8}jT +ý6 2T - N(-ýT, T ) 

Therefore the marginal distribution of the Brownian motion under Q is also normal with 

variance T and mean - g. Furthermore, if W, = W, + yt then: 

1 
i) EQ (exp(6 W, )) = ex 2e 

2t 

, W, -- N(0, t) under Q 
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ii) EQ(exp(O(Wf+X-WI))jF)=ex 
202t 

, (Wt+r-W, )-N(O, t) 

In order to make a process Martingale, the drift of a non-Martingale process needs to be 

changed. The Cameron-Martin-Girsanov theorem changes the drift of a process. The 

Cameron-Martin-Girsanov (CMG) theorem states that if W, is a P-Brownian motion and y, is 

T 
aF- previsible process satisfying the boundary condition Ep (exp(2 fo yý dt)) < co , then there 

exists a measure Q such that: 

i) Q is equivalent to P, i. e. PP (dz) >0 if and only if PQ (dz) >0 for some interval dz 

r1r 
ii) 

dQ 

=ex -f oy, 
dW, 

2foy, 
sdt 

iii) W, =W, + fo ysdt 

Condition iii) implies that W, is a drifting Q-Brownian motion with drift -r, at time t. If X, 

is defined to be the exponential Brownian motion with SDE: 

dX, = X, (QdW, + pdt) 

where W, is a P-Brownian motion. Applying the CMG with y, _ , U(7_ v that satisfies the 

boundary condition Ep (exp(- fT yy dt)) < oo , there exists a new measure Q such that 

Wt = W, + 'Ua y is a Q-Brownian motion. This means that the differential of X under Q 

is: 

dX, =Xr(QdWr+vrit) 

which gives X the drift v (usually it is the risk-free rate) but the volatility process remains the 

same. 
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2.1.2.4 Self-Replicating Strategy 

In continuous-time finance, a stochastic process M, is a Martingale with respect to a measure 

P if EP (Mr IF) = M, ,s<t. The Martingale representation theorem states that if M, is a Q- 

Martingale with volatility a, and if N1 is also a Q-Martingale, then there exists an F- 

previsible process ¢ such that f TA 012Q; dt < Co and the process N, can be written as: 
0 

Nr = No + f, 0, dM, 
0 

The above equation implies that dN, = O, dM,, which is driftless; hence E(f O, dM, ) =0 is 
0 

unpredictable. For example, if dN, = Q, NdM, for some F-previsible process or,, then 

exp(2 fT 
o 

Q; ds) J< -#> N, is a Martingale and the solution to this SDE is: 
4 

t N, = No ex 
£ a, dM 

f2f0 Qs ds 

With the help of mathematical tools - Ito, CMG, and the Martingale representation theorem, 

one needs a self-financing property to replicate a contingent claim X which consists of a stock 

and a riskless cash account bond. Suppose there are a riskless bond B and a risky security S 

with volatility Q,, and a claim X on events up to time T. A replicating strategy for X is a self- 

financing portfolio (0, (p) < dV, = 0, dS, +(9, dB, such that 

fTcy; 2cbt2dt<oo, VT =OT `ST i(PT BT 
-X 

This replicating strategy enforces the law of one price and prevents arbitrage from arising in 

the market. Because (0, (p) is self-financing and the portfolio is worth X at time T guaranteed, 

the bought derivative and sold portfolio would safely cancel at time T, and no extra money is 

required between times t and T, i. e. 0, S, + cp, B, _ Ot+1 S, 
+1 + 1p, +1 

B, +1 " 
Under the assumption of 

the Black-Scholes model for a continuously tradable stock and bond, the no-arbitrage price for 

a final claim X at time T is given by: 

=B, EQ(BTºX IF`)=e-. cr-r>EQ(X 1 F, ) 
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where Q is the Martingale measure for the discounted stock B, -'S, and r the risk-free interest 

rate. The following steps summarise the procedures to construct a solution for the Black- 

Scholes model: 

i) B, = exp(rt), S, = exp(, udt + cdW ); r,, u, or are the riskless interest rate, stock drift and 

stock volatility, respectively. If the stock follows geometric Brownian motion, 
S, = exp(pdt + QdW, ), then Y, = log(S, ) follows a simple drifting Brownian motion 
Y, =, udt + cdW,. By applying Ito's lemma one can write down the SDE for 

S, =exp(Y, ) as dS, =oS, dW, +(, u-r+2o2)S, dt 

ii) Invoke CMG and find aQ measure such that the discounted stock process Z, = BT'S, 

is a Q-Martinagle. The SDE's are: 

dZ, =Z, (QdW, +(, u-r+ 
1a 2)dt)adZ, =oZ, dW. The drift is (, u-r+Ia2)la 22 

under W. 

iii) Convert the discounted claim from a random variable into a process by taking the 
conditional expectation under Q, i. e. E, = EQ (BT' XIF, ) . 

iv) If both EE, Z, are Q-Martingales, the Martingale representation theorem states that: 

E, = Eo + Joo, dZ, r= dE, =Od, dZ, where 0, is previsible. In addition, a self- 

financing portfolio can be formed if one holds 0, units of the stock and (p, = E, - OZ, 

units of the bond at time t such that dV, = O, dS, + K, dB, is equivalent to dE, = O, dZ, . 

v) The no-arbitrage price of the claim X at time t is given by: 
V, =B, EQ(BT'X IF, )=e-,, (T')EQ(XIF, )=B, E, 

Because of risk premium, E'(e-"S, I SM, u <t)> a-"SM. It is also noted that the measure Q is 

not the measure which makes the stock a Martingale, but the measure that makes the 

discounted stock a Martingale, and the arbitrage price of the claim is the expectation under Q 

of the discounted claim. This means that under the new measure the drift of the stochastic 

differential d (e-" X) is zero. Therefore, the price for a European call option at time t which 

expires at time T with strike k is C(S,, t) = e-'(T-()EQ (max(S,. - k)) 
, and the solution for the 

Black-Scholes model under the Martingale framework is: 
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C(S1, t) = SIN 
Q T-t 

2.1.2.5 Kolomogorov Equation 

- ke-r(r-t)N 
log(L) +(r-2or2)(T-t) 

Q T-t 
i 

Next suppose that V, =V(S,, t). Since dS, = oS, dW: +rSjdt, then Ito's lemma gives: 

( 
dV, = d(V(S� t)) =+ QSt äS 

z 
St 

as +2 QZSt aS 22 + at 
dt T J+[, ' 

Substituting dV, = 0, dS, +cp, dB,, dB, = rB, dt into the above equation: 

dVj = (oS, sh, )d Wr+ (rSr 0f + rg, Br )dt 

Matching the volatility and drift terms in the above equations, the hedge parameter is found to 

be: 

o` - aS 

where the partial differential equation for V is: 

x 
=0 

ýQ2Sxös 
+rSav-rV+ 

at 

This PDE, coupled with the boundary conditions that V(S, T) must satisfy, gives another way 

of solving the Black-Scholes option pricing model. In addition, the above PDE can be derived 

from the Kolomogorov backward equation. The backward equation describes the way in 

which the conditional probability distribution of the stock price, F(ST, T I S,, t), is altered as a 

function of time, t. The backward equation for the diffusion is given by: 

2Q2SZFss 
+, uSFs +Ft =0 

where F(S,., T I S, t) must satisfy the above equation for all (S,., T). In a risk-neutral world, 

p=r, the risk-free rate. If V(S, 7) can be assumed to be a function of only S, i. e. h(S), such 

ýlog(k`)+(r+2Qý)(T-t)ý 

/ 

25 



Chapter 2: Review of the Literature 

that V(S, T) = e-'(T-`)E(h(Sr) I S, ), the Black-Scholes PDE can again be derived by 

substituting V(S, T) into the Kolomogorov backward equation. The significance of this 

approach is that one can solve the option valuation problem only for those cases where the 

conditional probability distribution of the terminal stock value is known (Cox et al., 1976). 

2.1.2.6 Market Price of Risk 

The sole purpose of the above discussions is to make the discounted process a Martingale. A 

process is tradable if its discounted price is a Martingale under the Martingale measure Q. 

Assume there are two tradable risky securities SI , S2 such that: 

dS; = S, (QdW, +, u, dt), i =1,2 

If they are tradable, the discounted prices of S,, S, need to be Martingales under the same 

measure Q. If B, = exp(rt) , then W, = W. + , ur -r 

ý! 
V for i =1,2 must be a Q-Brownian 

motion. This is true only if 
u' -r= Jut -r=y. y is called the market price of risk and can 

al a2 
be interpreted as the extra return over riskless rate per unit of risk. The intuition is that for 

two processes to be tradable in the same market, they must have the same market price of risk. 

The market price of risk is also the drift change of the underlying P-Brownian motion given 

by CMG. This resulting Q-measure makes one possible to convert asset prices discounted by 

the risk-free rate from sub-Martingales into Martingales. All expected returns equal the 

riskless rate r under Q and all claims become equal to their expected payoffs under Q 

discounted by the risk-free rate. Choosing a particular market price of risk is also referred to 

as defining the probability measure. 

2.1.2.7 Summary of the Martingale Approach 

We have just illustrated that the Martingale approach implies the same PDE's utilised by the 

PDE methodology. The difference is that in the Martingale approach, the PDE is a 

consequence of risk-neutral asset price, whereas in the PDE method, one begins with the 

PDE's to obtain risk-free prices. The Black-Scholes formula can be obtained from either 

approach. 
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2.2 Conditional Heteroskedastic Models 

2.2.1 Underlying Concepts 

We will briefly review the difference between conditional and unconditional moments before 

discussing the conditional heteroskedasticity models. 

2.2.1.1 Random Walk 

Suppose r follow a random walk r, = r, _, + e, , e, - N(O, c2) . This process can be rewritten 

as: 

rr = ra +ýE; 
j=1 

Taking the first and second moment of the above equation, the unconditional mean and 

variance are given by: 

E(r, )= ra 

V(o =tQ2 

Consequently, a random walk has a constant unconditional mean but a time varying 

unconditional variance. Its conditional mean and variance are: 

E(r, I ri-1) = r-t 

V(rr I rr-, )= E(r - E(rr I rr-i ))2 = E(rr-1 + Er - E(rr I rr-i ))2 = Q2 

Whilst the unconditional variance of a random walk model tends to infinite at time increases, 

the conditional variance is constant. 

2.2.1.2 Skewness and Kurtosis 

Suppose the returns r, =1n 
s' 

. The first four moments of returns are given by: 
S, 

_, 

Kl = E(r) 

K2 = E(r-Kl )2 

K3 = E(r-x1)2 

K4 = E(r-Kl )4 -3K22 
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Statistically, skewness and kurtosis are defined as: 

v- 
K3 

Skewness I1 (K2 )312 

Yz = 
K4 

(K2)2 
Kurtosis 

Skewness is the "shape" of a probability distribution". Skewness in returns of financial assets 

can arise from many sources. In particular, It can be induced through asymmetric risk 

preferences in investors. A negative skewness in returns can be viewed as the phenomenon 

where, after returns have been standardised by subtracting the mean, a negative returns of a 

given magnitude have a higher probability than a positive returns of the same magnitude, and 

vice versa. On the other hand, kurtosis describes the "tallness" of a probability distribution. 

Probability density functions with values of kurtosis less than 3 are called platkurtic (short- 

tailed), and those with values greater than 3 are called leptokurtic (long-tailed). If kurtosis 

equal to 3, then it is mesokurtic. Normal-distribution has kurtosis and skewness equal to 3 

and 0, respectively. 

2.2.1.3 Unconditional and Conditional Variances 

Traditionally volatility is estimated using historical time-series. An unbiased estimate of the 

variance rate per day using the most recent m observations is given by: 

m-1; =, 

_1m 

where En-r -(r-r - r), r- -Jr. -, " m ; z, 

The problem associated with the above unconditional variance estimate is that it gives equal 

weight to all (r�_1 - r)2. Given the objective is to monitor the current level of volatility, it is 

not inappropriate to give more weight to more recent data, thus giving rise to the 

exponentially weighted moving average (EWMA) model. The EWMA model is the most 

basic type of conditional heteroskedasticity model. It is given by: 

h2 - Aii +(1-ý, )ýf , 
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This volatility forecast depends on the most recent estimate on volatility as well as 

observations on changes in the variable e, -,. 
The conditional volatility forecast can be 

rewritten as: 

m 
h; 2_ (1_ A! -1+'rh0 2 

/{, ) 
i=1 

For a large m, the second term on the RHS of the equation can be ignored. The weights for 

the residue square decline at rate A. The EWMA approach is designed to track changes in 

volatility. Investment bank J. P. Morgan uses the EWMA model with A=0.94 for updating 

daily volatility estimates in its RiskMetrics database10 

2.2.2 Autoregressive Conditional Heteroskedasticity Models 

2.2.2.1 ARCH Model 

Time-varying variance models can explain nonlinear dependence and leptokurtosis. A very 

substantial econometric literature has focused on discrete time autoregressive conditional 

heteroskedasticity (ARCH) models, following the path-breaking paper by Engle (1982). The 

univariate ARCH models consist of two equations: 1) the conditional mean equation describes 

the observed data as a function of other variables plus an error term; 2) the conditional 

variance equation specifies the evolution of the conditional variance of the error from the 

conditional mean equation. An ARCH(p) process with normal-distribution is modelled as 

follows: 

r, -g (xr-t + a) + Er 

E, = he, e, ~ N(0,1) N(O, h, 2) 
2 

=a 
ýP 2 

h, o+ ra, 
a; Er 

ao > O, a, >_ 0 

ýp 
l ar <_ 1, E(E, II r-, )= E(E, )= 0, h, 2= E(6,2 I1r, )= V(rt II r-, ) 

where a is the parameter vector, h, the conditional volatility, r, the log return of an asset and 

g(x, _l; a) the function that constitutes the conditional mean; xx_1 could be exogenous. 

10 See Hull pp. 372 for details. 
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According to Bollerslev et al. (1992), failure to model the fat-tailed property can lead to 

invalid estimates of standard errors. One important feature of ARCH model is its ability to 

model excess kurtosis. The kurtosis for ARCH(1) is: 

(1- ) 
Yx =3 

a; 
(1- 3a, 2) 

which is greater than 3, the kurtosis coefficient of the normal distribution. Therefore, the 

ARCH(1) process has tails heavier than the normal distribution. A popular alternative to the 

use of normal distribution for modelling shocks/residuals in the context of ARCH is t- 

distribution. The t-distribution is specified as follows: 

E, =h, (v-2/v)t/2Cf7t 
E(m) =0 
V(m, )=(v-2)ly 

where wt - i. i. d. student with v degrees of freedom. 

The t-distribution is a mixture of normal distributions having different variances. It is useful 

for modelling financial series because normal-distribution may not be adequate to fully 

account for the excess kurtosis (fat-tailed) of financial data. As the degree of freedom v goes 

to infinity, it includes the normal distribution as a limiting case. One variation of ARCH 

models is the ARCH-in-Mean (ARCH-M) model. In the ARCH-M model introduced by 

Engle, Lilien and Robins (1987), the conditional mean is an explicit function of the 

conditional volatility: 

r, = g(x, -,; 
hý; a)+Er 

where a is the parameter vector, x, _1 
is exogenous, i. e. lag values of r, . In this model, an 

increase of the conditional variance will increase/decrease the conditional mean, depending on 

the sign of the partial derivative of g(x, _1; 
h,; a). This model is ideally suited to handling 

tradeoff between risk and expected return. The most common functional form of g (x, 
_1; 

h, ; a) 

involves linear or logarithmic functions of lit or ht 2. Finally, it is noted that an ARCH model 

becomes a EWMA model when a, = (1- 2)21.1. 
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2.2.2.1.1 Implications 

The usefulness of ARCH modelling is such that volatility is predictable. In addition, they are 

very simple to implement and able to account for several empirical features like volatility 

clustering and leptokurtosis in the distribution of returns. ARCH models assume the presence 

of a serially correlated news arrival process. Consequently, h, is a random variable that 

depends upon recent information". As such, ARCH models allow the conditional variance to 

change over time as the weighted average of innovation/past errors, whilst leaving 

unconditional variance constant. The order of the lag p determines the length of time for 

which a shock persists in conditioning the variance of subsequent errors. The larger the value 

of p the longer the episodes of volatility will tend to be. The use of information of previous 

period Ir_, should produce volatility forecast more accurately than unconditional variance 

does. Although the shock to the conditional mean a is uncorrelated, it does not imply that 

they are independent, i. e. cov(Ed, ea, ) ý0. It is also noted that the shock to variance, 

e -hr2, is serially uncorrelated innovation and may be considered as variance surprise. 

Finally, the 90% and 95% one-step conditional prediction intervals are ±1.64h, and ±1.96h, 

respectively. 

2.2.2.1.2 Maximum Likelihood Estimation 

Maximum likelihood estimates for ARCH models are generally used to jointly estimate the 

returns and conditional variance processes. The log-likelihood function is given by: 

r, =g (xr-i ; a) + E, 

L(O) _ 
., 

[logf 
I_l 

where 0 is the vector of unknown parameters in the model and the conditional density 

function. The objective of maximum likelihood estimation is to maximise L(O), i. e. the 

probability of having the observed data under a priori a distributional assumption. The 

likelihood function typically assumes that the conditional density is Gaussian, so that the 

" These models assume that second moments are time dependent. 
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logarithmic likelihood of the sample is simply the sum of the individual normal conditional 

densities: 

log f (etl -') = -0.5log(2; r) - 0.5 , 12/h2 

2.2.2.2 GARCH Model 

Engle (1982) found that a large lag p was required in ARCH to model financial series. This 

would necessitate estimating a large number of parameters subject to inequality restrictions. 

As a result, Bollerslev (1986) extended ARCH by allowing the conditional variance of the 

innovation to depend on lagged innovations and its lagged conditional variance. This process 

is called generalised ARCH (GARCH). The GARCH(p, q) model is given by: 

r, =g (x, 
-,; a)+ el 

e, = he, e, - N(0,1) e, 1Ir-i - N(O, h, ) 

h2 --ao +PIa, e, 
2 9 ßjh2 

ý 
ý, 

_-ý 
+ j=ý , -j 

ao >0, a, ? 0, ßj >-0 

/i=lpla, +jj=lýj 

where A is usually between zero and one but may be bigger than or equal to one for higher 

order models. 

2.2.2.2.1 Implications 

GARCH models allow for clustering of periods with high and low volatility. A GARCH(p, q) 

is analogous to an ARMA(p, q) representation. It reverts to a long-run mean and is 

leptokurtic. Both ARCH and GARCH impose restrictions on coefficients to ensure a positive 

variance". If q=0, the process reduces to a ARCH(p) process. In addition, the GARCH(p, q) 

process can be approximated to any degree of accuracy by a stationary ARCHpj) for a 

sufficiently large value of j. Furthermore, both ARCH and GARCH models are symmetric 

models. Compared to ARCH, GARCH allows for a longer memory and a more flexible lag 

structure and may therefore be justified as a more parsimonious description. Finally, the 

12 For ARCH(p) and GARCH(1,1) the Bollerslev inequality constraints (non-negativity of parameters) are 
sufficient. A set of more relaxing constraints was derived by Nelson and Cao (1992), which allows for some 
negative parameters in estimation for higher order GARCH. 

32 



Chapter 2: Review of the Literature 

EWMA model can be viewed as a particular case of 

ao =0, a; =1-2, ß=A. 

GARCH(1,1) where 

The use of GARCH models is widespread. The GARCH(1,1) specification has proven to be 

an adequate representation for most financial time series. In order to understand the nature of 

persistence in variance under the GARCH(1,1) model one can write it as follows: 

hl = ao +aleý , +ßlh? 1 
h2 = ao + ýi. hz 1+ alv? 1 
vt2 l= Ct2 

2 

--l 
- ht 

ý=(al+A) 

where v, is serially uncorrelated with mean zero. The parameters of GARCH are meaningful. 

al can be viewed as a "news" coefficient, with a higher value implying that recent news has a 

greater impact on price changes. Engle and Bollersleve (1986) shows that conditional 

kurtosis of a distribution of multi-step returns depends upon a,. Higher a, implies higher 

conditional kurtosis and the coefficient of kurtosis is K= 6a, (1- ß; - 2a, ß, - 3cri which 

is leptokurtic. 

Just as a, reflects the impact of recent news, ß, can be thought of as reflecting the impact of 

"old news", picking up the impact of news which arrived before yesterday (Antoniou and 
Holmes, 1995). If one believes that "old news" will have less impact on today's price 

changes, then A should fall relative to a,. By repeatingly substituting v, into the 

conditional variance equation and eliminating h? , one can express the unconditional variance 

as: 

h12 =Q2+a, (v12 
_, 

+Avl 
z+Av;, 

+... ) 

_2_ 
a0 

Q= 
1-2 

The above expressions make clear the dependence of the persistence of volatility shocks v, 

on the sum of the GARCH parameters, A. If A --> 1 from below the effects of past shocks on 

current variance become stronger. For A =1, the process is said to be integrated in variance 

or IGARCH (Engle and Bollerslev, 1986). In this case, shocks do not decay over time and 

unconditional variance does not exist. This extreme behaviour of the IGARCH process may 
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reduce its attractiveness for asset pricing because IGARCH assumptions could make the 

pricing for long-term contracts very sensitive to the initial conditions. The GARCH(1,1) 

model can also be written as: 

h2 =(I_ 2)a2 +a, Eý ,+ß, ht 
222222 hf+k -a = al (ý+kt-l -a)+ 

ßl (hr+k-1 -a) 
E(h+k)=a2 +(al +ßl)k(h2 

-a2) 

If (a, +A)< 1, the k-day forecast will be stable as k increases. This variance forecasts 

exhibits mean reversion with a reversion level of its unconditional variance and a reversion 

rate of (1-A). The expected future variance equation shows that when the current volatility 

is above the long-term volatility, tie GARCH(1,1) model estimates a downward-sloping 

volatility term structure. When the current volatility is below the long-term volatility, it 

estimates an upward-sloping volatility term structure. Finally, the estimate of the volatility for 

valuing the N-day option is given by: 

N-1 
222+ ßl )N 

NY 
E(hl+k )=Q+ (hý+1_,, 2)1-(al 

N (1- a1- ß) 

2.2.2.3 EGARCH Model 

The ARCH and GARCH models impose symmetry on the conditional variance structure 

which may not be appropriate for modelling and forecasting stock returns volatility. The 

exponential GARCH (EGARCH) model was invented by Nelson (1991) in response to the 

criticisms that the stock returns were negatively correlated with changes in return volatility. 

EGARCH considers asymmetry in the variance equation. The EGARCH(1,1) specification 

can be modelled as follows: 

rr =g (x, 
-,; a) + Er 

er = h, er er .. ' N(O, 1) Er 11 
r-1 "' N(U, hr ) 

loghr2 =CV+. t1zr_1 +A2(1 zr_1 1-(2/ir)os)+ßloghr_1s 

where zl = 
Lis the normalised residual. 

h, 
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2.2.2.3.1 Implications 

This model accommodates the asymmetric relation between stock returns and volatility 

changes. A negative ?1 implies that a negative shock increases the conditional variance; it 

measures the sign effect. An estimated positive X2 indicates that a shock greater than (2/7v)os 

also increases the conditional variance; it measures the size effect. The degree of asymmetry 

or skewness can be measured by the absolute value of the ratio S= 
1++ . 

In other words, 

it can be said that a negative standardised innovation (bad news) increases volatility S times 

more than a positive standardised innovation of an equal magnitude. The use of logarithms 

also means that parameters can be negative without the variance becoming negative. Thus it 

is not necessary to restrict parameter values to avoid negative variances as in the ARCH and 

GARCH models. The estimate of the volatility for valuing the N-day option is given by 

Heynen and Kat (1994): 

N-1 
Z 1, E(h, 
+k 

)= 
Nk-O 

Q2 N 
2ßý'' # 

NC 
+ýh, +ý exP 

where 

QZ = exp 

1-ß 

ý- ýZ 
9l +1* 

(Xt +x2) 

1-ß 2*(1-ßZ) 

- 0'5(4 + A22 ), 62(k-1) 
exp 

1-ß2 
*Ck(ßIA1IA2) 

*C(ß, 21,22) 

C(ß, /L,, 
22) 

= 11m: oýFin(Y, 
ý1, ý2)'ý 

, 
A2)] 

F�(ß1"11 , 
ý2) = N[ß"'(ý, +ý2)l*exp(ß2ni 

C. =1, Ct -IIM: 0 
As an alternative to using t- or normal distribution, Nelson (1991) employed a generalised 

error distribution (GED) with the EGARCH model: 
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f(FII_1= 
vexp(-2 1 I°) 

� %. --t I -r-1.1 92(1+v I. (V 1 
/Iý ) 

where I'(") is the gamma function, A= [2-(2'") I'(11v) /(3/ v)]°'s and v is the degree of freedom. 

The GED encompasses distributions with tails both thicker and thinner than the normal and 

includes the normal as a special case. If v=2 this produces a normal density, whilst v> (<)2 

is more thin- (fat-) tailed than a normal. Generally it is believed that EGARCH is better than 

ARCH/GARCH in volatility modelling because EGARCH incorporates leverage effects in its 

model. 

2.2.3 Long Memory and Asymmetric Models 

2.2.3.1 Underlying Concepts 

Recently, the topics of long memory and persistence have attracted considerable attention in 

terms of the second moment of a process. The presence of long memory can formally be 

defined as the persistence of observed autocorrelations. If the quantity: 

pj ý 
/=-n 

is non-finite then the process possesses long memory. Consequently, the autocorrelations 

exhibit persistence that are neither consistent with an I(1) process nor an 1(0) process. 

2.3.3.1.1 Stylised Facts 

The development of long-memory is based on the observations of the so-called "stylised 

facts". Ding, Granger and Engle (1993) investigated the long memory property of daily S&P 

500 returns from 1928 to 1991 and established a few "stylised facts" which held for a large 

number of financial series. They found that: 1) significant and positive sample 

autocorrelations for squared returns and the power transformation of the absolute return IrId 13 

at up to 2,500 lags with a series of 17,054 observations. Their rate of decay was slower than 

exponential, i. e. the autocorrelation function decreased fast at the beginning and then 

13 d is a positive real number. 
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decreased very slowly and remained significantly positive so that 

Coro r, III r_k 1) > corr(r2'r,? k) ; 2) it was possible that returns were serially uncorrelated but 

was dependent; 3) the long memory property could be mainly attributed to the pre-war period 

and the market had retained long memory of extraordinary events like the great depression in 

1929. This property was most pronounced when d=1 for stock returns. This is termed as 

`Taylor effects'. Ding and Granger (1996) latter found that the long memory property was 

strongest when d= 1/4 for foreign exchange rate returns. 

2.3.3.1.2 Inadequacy of GARCH-type Models for Long-Run Effects 

Ding and Granger also studied the autocorrelation functions for the IGARCH(1,1) process. 
They consider following set of equations: 

GARCH(1,1) h, 2= ao +a, E; +ß, h? 

If al + A= I= IGARCH (1,1) 

GARCH (1,1) Autocorrelation : pl = al +3 /31, pk = (a1 +3 , ß1)(a1 +91)x'' 

IGARCH(1,1)Autocorrelation: pt =3(1+2a, )(1+2a, 2)-k/2 
fora, #0 

The autocorrelations for GARCH(1,1) decreases exponentially. Interestingly, the 

autocorrelation function for IGARCH(1,1) is also exponentially decreasing. Thus the 

IGARCH(1,1) is not persistent in volatility at all in the sense that the autocorrelation function 

2 dies out exponentially. These results are very counterintuitive. The explanation of for el 

these findings is that a shock may permanently affect the "expectation" of a future conditional 

variance process, but it does not permanently affect the "true" conditional variance itself. A 

simple example below will illustrate this situation: 

E, = erh,, e, - N(0,1), h, 2 = E?, 

Eý(vý k)=Et(hý k)=C2 
h, 2,. 

k-* 0ask-ýý 

In this case, the real impact of a shock will converge to zero whilst the expectation of the 

conditional variance depends on past shocks. Therefore GARCH-type model are inadequate 
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to account for the long memory property. In fact, they are more appropriate to use for 

modelling of short-run effects. 

2.2.3.2 ARFIMA Model 

According to Baillie (1996), the extent of shock persistence in financial data such as index is 

consistent with a stationary process, but where the autocorrelations take far longer to decay 

than the exponential rate associated with the ARMA class. An important class of discrete- 

time long memory process is the Autoregressive Fractionally Integrated Moving Average 

(ARFIMA(p, d, q)) model: 

O(L)(1- L)d (r, -, u) = 0(L)e, 

where d denotes the fractional differencing parameter and L is the lag operator. 

When d =1 it is an ARMA process. All the roots of tp(L) and 0(L) lie outside the unit 

circle and 8, is the white noise. The r process for d#0 is said to be I(d). For 

- 0.5 <d<0.5, this process is covariance stationary, whilst d>0 the process is long 

memory. For 0.5: 5 d<1, the process is no longer stationary but retains its mean-reverting 

characteristics. For d=1, the process becomes a standard unit root process, which implies 

complete persistence. The long-run characteristic is captured by the fractional differencing 

parameter d. For high lag k, the autocorrelations of the ARFIMA process is given by: 

ck 
2d-1 

Pk 

where c>0 and the autocorrelations exhibit a hyperbolic decay. The ARFIMA process can 

be used for prediction: 
M 

r, = 
E9L'ir_, + et 
J=1 

where ;r= (1- L)° cp(L)O(L)-`. Since the ARFIMA process is not compatible with any finite- 

dimensional state space representation, there is no readily available solution to the truncation 

problem associated with using this autoregressive representation for prediction. In addition, 

the identifiability of high order ARFIMA models is often problematic. Li (2002) managed to 

apply the ARFIMA model for forecasting of currency volatility and the only parameter to be 

estimated was d. Coupled with the use of 5-minute data and over-the-counter options, Li 
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found that historical volatility provided better prediction about future realised volatility than 

implied volatility at horizons ranging from one month to six months. 

There are other more complex long-memory models, e. g. N-component GARCH by Ding et 

al. (1996), fractionally-integrated GARCH (FIGARCH) by Baillie et al. (1996) and 

fractionally-integrated EGARCH (FIEGARCH) by Bollerslev et at. (1996). Those models are 

largely theoretical and require the use of beta and gamma distributions to estimate the 

autoregressive parameters. Although Bollerslev et al. were able to demonstrate some 

application of fractionally-integrated EGARCH on pricing S&P 500 call options, laborious 

estimation procedures have essentially made them undesirable for practical applications. 

2.2.3.3 News Impact Curve 

In the 1993 study by Engle and Ng, Engle and Ng considered the mapping between h, and 

terming this the "news impact curve". This curve is very useful in describing asymmetry 

in the e, _, t-: > h, space. In this paper, Engle et at. pointed out that two broad decisions needed 

to be made: about the "shift/position" and "rotation/shape" of such a curve. The mapping 

framework is given by: 

E, = e, h, 

.f 
(er-i ) -I e, 

-, -bI -c(e, -, - 
b) 

h, = ao + a, h, 
-, 

{Ie, 
-, -b I-c(e, 

-, - 
b) }+ ß, h, 

where -oo<b<co and -1-<c<-1. 

The parameter b controls the magnitude and direction of a shift in the e, _1 a h, space whilst c 

rotates the curve and produces the "rotations". If one draws the mapping of the above 

example in the e, _1 af (e, ) space, the following is observed: 

i) c=0. If b>0 the news impact curve is shifted to the left and one will obtain 

asymmetry that matches the stylised facts of stock return volatility: for negative 

shocks, volatility rises more than for equally large positive shocks. This effect is most 

pronounced for small shocks. For extreme large shocks, the asymmetric effect 
becomes negligible; 

ii) b=0. If c>0 the news impact curve rotates clockwise by changing the slopes of the 

curve on either side of the origin: negative shocks create more volatility. If c<0 the 
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curve moves counter-clockwise and positive shocks create more volatility. The size of 
asymmetric effect relative to the total response is constant; 

iii) b :;, -O, c *0. In this case, c will not just cause a pure rotation of the curve. The slopes 

are different on either side of the curve around the origin b. 

The "news impact curve" classification has allowed researchers to understand more about the 

impact of individual parameters on volatility shocks. It is noted that ARCH and GARCH 

processes have impact curves that are symmetric around zero, whereas EGARCH is 

asymmetric around zero. 

2.2.3.4 APARCH Models 

The imposition of a quadratic mapping between the history of C, and h, may be too 

restrictive. Ding, Granger and Engle (1993) invented the Asymmetric Power ARCH 

(APARCH) model, which nests many popular conditional variance models as special cases" 

The APARCH models impose a Box-Cox power transformation on the conditional standard 

deviation process and its absolute residuals. The APARCH(p, q) model is given by: 

E, = e, h, 

hb = ao +Ear(I cr-q I ̀ Yt+ lß; hs 
ý_ý ; _ý 

where S? 0 and the parameters a, and y, control the responses of ha to (I e, -; l 
I -y, e, -; 

)a 

By inspecting the autocorrelation function, one can understand why APARCH models are 

used for modelling of long memory effects. If E[I e, 16 ] =1, E[I e, X28 and y, =0 and that 

E[I e, 1a] exists, it follows that: 

P. = corr(I 6,1a. i -11a) 

=a+ß--1(1-a-ß)(1+a+ß)-1 
-ý 

ß 
1-( a2+ß2+2aß) 

where the autocorrelation function of El for the APARCH(1,1) process is: 

14 These models are shown in appendix A. 1. 
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k-1 
Pk = P. (a, + ß, ) 

If E[l e, 1a 1 is unbounded and if a+ß<1 and ßa2 + P2+ 2aß >1 the autocorrelation can be 

approximated by: 

Pk = al + 1- ý ßl (al + ßl )k-t 

When a+ /3 =1 and a>0, it becomes a IGARCH(1,1) in I Er 1s and the autocorrelation 

function is: 

1)a[1+(ý_1)a2]-k/2 

In any cases, autocorrelations of APARCH decreases exponentially, not hyperbolically. Ding 

et al. results showed that the estimated power S was 1.43 and its asymmetric parameter y 

equal to -0.373, which suggested significant long memory and leverage effect did exist in 

S&P 500 returns. 

2.2.3.5 Hentschel Framework 

In the 1995 study by Hentschel, Hentchel developed a framework that could nest most of the 

existing family of GARCH models, including the models in the APARCH family. The 

nesting of these models was accomplished by properly choosing the "degree" of 

transformation. This framework can be written as: 

Er - er hr 

fr (er ) =1 e, - br I -c(er - br ) 
aPaa h`-' -1 h, -1 

_ao+ý+a, ltarfry(er-r)+l 
g ; _, _º j=1 

where -1: 5c: 51 and v>0.8 controls the shape of the transformation and S >- 0. If 8>1, 

the transformation of S is convex; otherwise it is concave. The parameter v serves to 

transform f(-). If v>1, this transformation is convex; if 0<v<1, the transformation is 

concave. In addition, the APARCH model is the special case of v=S, b = 0,1 c 1: 5 1. Figure 1 

classifies all of the nested models within Hentschel's framework. 
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Figure 1: Hentschel's Framework 

S v b c Models 

0 1 0 Free EGARCH 

1 1 Free jcj<1 TS-GARCH 

2 2 0 0 GARCH 

2 2 Free 0 Nonlinear-Asymmetric GARCH 

2 2 0 Free GJR GARCH 

Free S 0 0 Nonlinear ARCH 

Free S 0 Ic151 APARCH 

Using the S&P 500 returns data, Hentschel found that: 1) 8 =1.5 when v=8; 2) 8 =1.1 

when 8, v were free; 3) c was neither statistically nor economically significant; 4) 8=v and 

it was between one and two; 5) small shocks made more contributions to volatility, but not 

large shocks. Furthermore, the "shifting" of news impact curve was the dominating factor in 

modelling asymmetry. As a result, the presence of b was more significant than c; 6) GARCH 

produced higher volatility than the EGARCH or the freely estimated models. 

2.2.3.6 Other Asymmetric Models 

There are many other asymmetric volatility models in the finance literature - so many that it 

is cumbersome to provide a comprehensive survey of it. Most of them try to mimic the 

"shift" and "rotation" effects in volatility. Some of the more well-known models are 

discussed below: 

i) TS-GARCH: 8=v1, yj =c=0. Taylor modelled the conditional standard deviation 

as a linear combination of past conditional variances in 1986 and Schwert (1989) 

modelled the conditional standard deviation as a linear function of lagged absolute 

residuals. The TS-GARCH model combines both of Taylor's and Schwert's models 

that use the lagged conditional variances and absolute residuals. The TS-GARCH is 

given by h, = ao + 
±a, 

(l Er-, j { -yjer-j) + 
±, 

6, h, 
_, .A related model is the QGARCH 

j=1 j=1 

model of Sentana (1991): h, 2= ao + aj (Er_j 
- yj)2 + ß1hz j. Strictly speaking 

i=l j=1 

this model produces a symmetric curve around y, but with no rotations. 
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ii) GJR: 8=v=2, c=0. The model proposed in Glosten, Jagannathan and Runkle 

(1993) is an extension of the GARCH model that takes account of asymmetric effect 

on volatility. This model can be expressed as follows: 

h? = ao +Ja, 2+ ßih?, +J21 5=, e, _, 
2 where Sý_, =1 if <0, S=0 

i=t f=t i=t 

otherwise. ` This model can also be written into the following form's: 

ht2 = ao + 
jal(I 

1-4 -Yiº-r) 2+J, 6jht- 

j=1 
r 

iii) TARCH: 8=v =l, ßf =c=0. Zakian (1990) suggested a conditional standard 
PP 

deviation of the form h, = ao + a; e, + -aje, _f where e, = max(e, , 0) , 

e, = min(e,, 0), Zakian referred to this formulation as a 
threshold ARCH (TARCH) model because the coefficient of e, changed when it 

crossed the threshold of zero. When E, _, > 0, the conditional standard deviation is 

linear in e, _, with slope a, and when e, _, <0, the conditional standard deviation is 

linear in c, _, with slope -a;. This model can also be written as: 

h, = ao +±a, (I E, 
_, 4 j -Y, e, _, 

) where ao >- O, a, > O. 

iv) NARCH: 8=v, y, = ßf = 0. Higgins and Bera (1992) proposed a nonlinear ARCH 

(NARCH) model, which still requires non-negativity restrictions, but includes linear 

ARCH as a special case and log ARCH as a limiting case. The NARCH model is 

written as ha = as + a, (e, 
_; 

) ö where a, >- 0,8 >- 0. The NARCH model can be 

regarded as a Box-Cox power transformation applied to e, -,. 
When 8=2, it is an 

ARCH(p). As 8 --* 0 it becomes the log ARCH model: 

log(h, )= ao + a, log(e, 
_, 

)2 
i=1 

2.2.4 GARCH Option Models 

The use of GARCH is not just limited to volatility forecasting and modelling. Recently, there 

has been a lot of attention on using GACH models to price options. Because early GARCH 

models did not allow for option pricing along the lines of Black and Scholes, i. e. 
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incompleteness due to discrete trading, researchers had mainly focused on Monte-Carlo 

simulation or approximation of GARCH option models. For example, Myers and Hanson 

(1993) studied option prices of soybean futures from CBOE from 1988 through 1990. Myers 

et al. compared performance of different models based on Monte-Carlo simulation and closed- 

form approximation of GARCH models16. They reported that the GARCH option pricing 

approach clearly estimated option prices better than the standard Black's model did with 

historical volatility in terms of root-mean-square-error. Myers et al. suggested that it was the 

constant variance assumption, rather the normality assumption, which represented the biggest 

deficiency in Black's model of pricing commodity options. In the study of Kansas City wheat 

futures, Kang and Brorsen (1995) also conducted a Monte-Carlo study and compared 

performance between the asymmetric GARCH-t model that had incorporated the day-of-the- 

week and time-to-maturity effects in the conditional variance equation with the Black's 

formula. In out-of-sample prediction, the GARCH-t model predicted actual option premiums 

more accurately than Black's model for deep in-the-money call and put options and deep out- 

of-the-money put options in terms of root-mean-square-error. The Monte-Carlo simulation 

results confirmed Hull and White's findings (1987) that differences between Black's model 

and the GARCH-t model increased as time to maturity increased and the Black's model 

overpriced close-to-the-money options. 

Since the mid-90's, many researchers have began their efforts in reconciling the differences 

between discrete-time and continuous-time models. Duan (1995,1997) was first to derive the 

GARCH option pricing model and its corresponding delta formula based on equilibrium-type 

arguments concerning the utility function of a representative agent. The advantage of this 

model is that European options can be evaluated by the risk-neutral valuation method. This 

model uses the locally risk-neutral valuation relationship (LRNVR) to price options which can 

implicitly account for volatility smile. This GARCH option model is a function of the risk 

premium embedded in the underlying asset. Thus the locally risk-neutral valuation 

relationship does not "eliminate" risk. This contrasts with the standard preference-free option 

pricing model. With the new pricing measure Q, the GARCH option model is specified as: 

15 See Ding and Granger (1993) for its derivation. 
16 The closed-form model is approximation and assumes that distribution of price change is approximately 
normal. 
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In =r- i 2hl+ýr, br10r-i- N(0, hr) I-, 
-, 

z 

, 

h, = ao + a, (ý, 
-i -Ah, -, 

)z+ ßi h, 
-j i=l f=i 

This model introduces correlation between lagged asset and conditional variance. Under this 

measure, the underlying asset is leptokurtic. Thus the GARCH option pricing model is 

capable of reflecting the changes in the conditional volatility of the underlying asset in a 

parsimonious manner and may be able to explain some systematic biases associated with the 

Black-Scholes model. After "locally neutralised", the discounted asset price becomes 

Martingale. In addition, formulae for terminal asset price and the option delta are available. 

This implies that the GARCH options can be evaluated by the risk-neutral valuation method, 

i. e. C(S, t) = e-(T-t)rEQ [max(ST - K, 0) ( 0t 1, because the expected rate of return under the 

new measure Q is no longer equal to e(r"J). But it is known that this model still fails to 

capture volatility smiles for short-dated options, which is perhaps better explained by jump- 

type models for the stock price process. 

Kallsen and Taqqu (1998) bridged the GARCH discrete-time setting to a no-arbitrage 

continuous-time setting and demonstrated that the completeness of the market holds for a 
broad class of GARCH-type models. The basic idea of this continuous time extension of 

GARCH-type models was to maintain a constant volatility during an interval formed by two 

integer dates. Kallsen et al. derived the same GARCH pricing formula as Duan but they did 

not agree on the hedging formula. Later, Garcia and Renault (1998) proposed a stochastic 

volatility model which also ensured the validity of Duan's results. Garcia et al. concluded that 

stochastic volatility models and GARCH-type option pricing models were not as far apart as 

originally believed. 

Heston and Nandi (1998) presented the necessary mappings to approximate the parameters of 

the continuous-time option pricing model on the basis of the parameters of the discrete-time 

GARCH model. A parameter that related to the expected risk premium of the asset did appear 

in this option formula, however, option prices were not at all sensitive to the risk premium 

parameter. The advantage of this model is that option prices can be easily computed by 

closed-form solutions using the formula of Heston but its disadvantage is such that the same 

Wiener process drives both asset returns and variance under the risk-neutral measure. 
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Heston and Nandi (2000a) presented a closed-form solution for options and hedge ratios when 

variance of the spot asset followed a GARCH(p, q) process and was correlated with asset 

returns. This discrete-time GARCH model with a single lag converged to Heston's (1993) 

continuous-time stochastic volatility model as the observation interval shrank but its variance 

was driven by two perfectly correlated Wiener processes. Empirical results showed that this 

GARCH option pricing model was superior to the ad hoc Black-Scholes model of Dumas et 

al. (1998) that used a separate implied volatility for each option to fit the smile on S&P 500 

index options. 

2.2.5 Other Developments 

The conditional volatility approach is a popular tool in modem risk management, partly 

because of its vast literature and also its simplicity in implementation. Since Engle (1982) 

developed the autoregressive conditional heteroskedasticity (ARCH) model, numerous models 

have emerged in literature. We will discuss a few important research papers to illustrate the 

developments in this section. 

Engle and Lee (1993) invented a component GARCH model for stock market volatility which 

could be decomposed into a permanent and a transitory component. Engel et al. found that 

leverage effect in the stock market was mainly a temporary behaviour of the volatility process. 

This component model could be written as a GARCH(2,2) process so a regular GARCH(1,1) 

was only a single dynamic component of this conditional variance model. Engle et al. found 

that this component model was successful in describing the effect of the "October 1987 

Crash" on stock volatility changes. 

Duan (1997) proposed an augment GARCH process which encompassed many popular 

GARCH specifications as special cases. In the diffusion limit the augment GARCH process 

was shown to contain many existing bivariate diffusion models such as Hull and White 

(1987), Wiggins (1987), Scott (1987), Stein and Stein (1991) and Heston (1993a). The 

augmented GARCH process is widely used as a direct approximation to the stochastic 

volatility models in option pricing. 
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2.3 Stochastic Volatility Models 

2.3.1 Underlying Concepts 

Financial researchers have modelled volatility as if it were behaving in a random way, 

building models of stochastic volatility. Stochastic volatility models allow volatility to be 

driven by a separate random process. They can possibly fit in the gap for the inadequacy of 

the ARCH/GARCH models by allowing the following features in their models: 

i) Volatility term-structure patterns 

ii) Mean-Reversion 

iii) Correlation between volatility and asset returns 

2.3.1.1 Wiener Process 

The W, :t? 0 is a P-Wiener process if and only if: 

i) W, is continuous and Wo = 0. 

ii) WW - N(0, t) 

iii) W, +, -W, - N(0, t) and is independent of Fs, the history of the process up to time s. 

It is important to note that W, is continuous everywhere but it is differentiable nowhere. 

2.3.1.2 Stochastic Process 

A stochastic process S is a continuous process (S1 :t >_ 0) such that S, can be written as: 

' pads Sr = So + fo asdW, +f 

where or, p are random F- previsible processes such that f(a +I ks J)ds is finite for all 

times t with probability I. The differential form of the above stochastic process can also be 

written as: 

dS, = Q, dW, + p, dt 
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The behaviour of St fluctuates around a straight line with slope U,. The size of or, 

determines the extent of the fluctuations around this line. In particular, these fluctuations do 

not become larger as time passes. Given Q,,, u, and S,,, the process S is unique. 

2.3.1.3 Stochastic Differential Equation 

In the special case when o and ,u depend on W only through S,, such as a, =Q(S, t), the 

stochastic differential equation (SDE) for S is given by: 

dS, =Q(S,, t)dW, +, u(S,, t)dt 

Regrettably, there are few soluble SDE's. One of them is geometric Brownian motion. The 

SDE for geometric Brownian motion is dS1 = S, (QdW, +, udt). This setup gives asset prices 

that fluctuate randomly around an exponential trend. Its solution is: 

S, = So exp((, u- 
2Q2)t+QWý) 

2.3.1.4 Ornstein- Uhlenbeck Process 

The stochastic process a, is random and not observable. One of the most studied and 

celebrated continuous-time stochastic volatility models is the Ornstein-Uhlenbeck process: 

dS, / S, = adt + QdW, 
d(Ina) =A(ý-1nQ)dt+W2 
dW, dW2 = &It 

where 8 is the correlation for the Wiener processes W, and W2 ,ý the long-term mean and A 

the speed of the mean-reverting process. 

The continuous models are intrinsic in understanding theoretical finance. This model 

introduces a correlation in the formulation of volatility process. In practical world, however, 

stocks or commodities are traded discretely. The discrete-time models are approximations of 

their continuous counterparts. The discrete-time model of the corresponding continuous 

process is: 
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ln(S, )= ln(S, 
_, 

)+p+a, 
-, 

U, 
ln(Q, )= a+ O[ln(Q, 

_, 
)- a)] + 9? 7, 

where U, and 17, are bivariate normal with correlation 8. According to Taylor (1994), the 

lagged volatility q, -, 
in the mean equation of the discrete-time process is the Euler 

approximation of its continuous time counterpart. However, it can be argued that a more 

natural simplification would be: 

ln(S, ) = ln(S, 
_, 

) +, u + a, U, 

Therefore, the main difference between the ARCH model and discrete-time model is that the 

ARCH models' innovations depend on the past information set I,, whilst in the case of 

discrete-time stochastic volatility models, they are independent of the returns history I, 
-,. 

The ARCH models tell that past information can be used to predict the future but the discrete- 

time stochastic volatility models imply that this information is irrelevant for future volatility. 

2.3.2 Hull-White Model 

Continuous time stochastic volatility models endogenise the volatility patterns and may be 

used directly in valuation and hedging. They are largely theoretical and usually their 

applications are computational intensive. A well-known stochastic volatility model is the 

Hull-White model (1987). This model is based upon the following continuous-time process: 

dS = SßSdt + aSdW, 
da2 =, u(x-Q2)dt+ýQ2dWZ 

where W,, W. are Wiener processes and 0, U, K, ý are constant. 

This model stipulates that the variance rate has a drift to pull it back to a level K at rate u. 

is the volatility of the volatility and it is possible to estimate ý by examining the changes in 

volatility implied by option prices. Since volatility is not a traded asset, it is not possible to 

form a hedge portfolio that eliminates all the risk. If W, and W. are not correlated so that 

volatility is not correlated with stock price and the volatility is uncorrelated with aggregate 

consumption (zero systematic risk, no risk preferences, i. e. constant risk premia), then the 
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Hull-White price is the mean Black-Scholes price, evaluated over the conditional distribution 

of average variance: 

C=ýc(V)g(V)dV 

where V is the average value of the variance rate, c is the Black-Scholes price and g is the 

probability distribution of V in a risk-neutral world. Furthermore, Hull and White derived an 

analytic solution for European-style option based on Taylor-series expansion. In this case, the 

Hull-White model can be written as a combination of Black-Scholes solution with adjustment 

terms. Their main empirical result was that different "asymmetric" patterns could be 

generated by changing the/. [, ý and the sign of correlation parameters. Hull and White 

concluded that longer-term near-the-money European call options had lower implied than did 

shorter-term options. Finally, it is noted that the GARCH(1,1) model can be written as a 

discrete-time approximation to the diffusion process of the Hull-White model. 

Hull and White attempted to use their model to explain Rubinstein's (1985) findings on the 

term-structure of implied volatility. But Rubinstein's results from comparing implied 

volatility were not consistent across different times to maturity. It was necessary to posit in 

the Hull-White model that, from one year to the next, the correlation between stock prices and 

the associated volatility reversed sign. No reason could be found to justify such a change of 

sign. 

2.3.3 Johnson-Shanno Model 

Johnson and Shanno (1987) applied an equilibrium approach to derive an option pricing 

model and attempted to explain that changing the sign of correlation between volatility and 

return processes was responsible for the switch in exercise biases in Rubinstein's 1985 results. 

The Johnson-Shannon model model is given by: 

dS = Sdt + aS °dZ (a > 0) 

d0' =, uPQdt +QPo'ßdZP (ß ? 0) 

Johnson and Shannon assumed there existed a traded asset J that had the same random term as 

the variance of the stock: 
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di =, u, Jdt+Q, J6dZP 

Thus a risk-free hedge could be formed by longing one share of J and shorting 
(ap)C 

of 

option. Johnson et al. used Monte-Carlo simulation to solve for a numerical solution and 

found that their model could account for some term-structure of the implied volatility for the 

out-of-the-money call options. Johnson and Shannon concluded that: 1) they could not assert 

that the switch in bias in Rubinstein's paper was caused by an upward shift in correlation; 2) 

they could not point to any macroeconomic event that would indicate a change of correlation 

in Rubinstein's study period of 1976-1978. 

2.3.4 Stein-Stein Model 

Stein and Stein (1991) derived a closed-form option-pricing solution via inverse Fourier 

transformation. Stein and Stein (1991) formulated the evolution of stochastic volatility based 

on the Ornstein-Uhlenbeck process: 

dS, = aS, dt + QS, dW, 

dQ=-8(Q--x)dt+&IW2 

where dW,, dW2 are uncorrelated. 

The Stein-Stein model is more general than that of the Hull-White because it does not rely on 

Taylor-series expansion to solve explicitly for the option price. Simulations suggest that this 

model exhibits a U-shape as the strike price was varied. However, this model has the 

disadvantage that it cannot capture skewness effects that arise from returns-volatility 

correlation. Nevertheless, the way Stein et al. derived the solution via Fourier transformation 

opened a new way for researchers to look for more complex stochastic volatility models. 

2.3.5 Heston Model 

Heston (1993a) derived a closed-form solution for the price of a European-style option on an 

asset with its variance followed the Ornstein-Uhlenbeck process. This is the first stochastic 

volatility model with closed-form solution that can account for correlation between volatility 

and asset returns. The Heston model is given by: 
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dS = OSdt + aSdWl 
du2 = K[8-Q2]dt+ýQdW2 

where x is the speed which Q2 reverts to its long-term mean 0. As opposed to the Hull-White 

model where risk premium was zero, Heston specified a volatility risk premium that was 

proportional to the variance: 2(S, Q2, t) = 2a2. Using Ito's lemma and standard arbitrage 

arguments, Heston (1993a, 1993b) showed that the price of a European call was given by: 

c(S, a, t) = Sp, - KB(t, T)p2 

where p,, p2 and B(t, T) are the conditional probabilities that can be calculated from 

formulas, and the price of a pure discount bond at time t with maturity of T, respectively". 

Heston's model has the advantage that it allows arbitrary correlation between volatility and 

asset returns. It can link any type of bias to the dynamics of the spot price and the distribution 

of spot returns. Heston suggested that this model might be able to explain some option biases 

that changed through time by Rubinstein (1985). In addition, the Heston model can possibly 
incorporate stochastic interest rates in pricing formula. Heston found that: 1) correlation 
between volatility and the spot price was necessary for explaining skewness and strike price 
biases; a positive correlation results in high variance when the spot asset rises and this spreads 
the right tail of the probability density relative to the left tail, and vice versa; 2) skewness in 

the distribution of spot returns affected the pricing of in-the-money options relative to out-of- 

the-money options. Without this correlation, it is generally known that stochastic volatility 

only changes the kurtosis through J. 

2.3.6 Merton Model 

Apart from the Wiener process, researchers have also tried other processes to model risks. 

One of the pioneer works was by Merton (1976). Merton suggested a model where the asset 

price had jumps superimposed upon a geometric Brownian motion. In this seminal paper, 

Merton used two different sources to represent risks: 1) Wiener process to model daily news 

and risks that come randomly from the market and are diversifiable; 2) Poison process to 

17 The details can be found in the Heston's (1993a) appendix. 
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describe jumps/shocks that capture the arrival of important news and are non-diversifiable. 

This model can be described by the following SDE: 

dS = (a - Ak)Sdt + QSdW + Adq 

where the parameter a is the instantaneous expected return on the stock, Cr the instantaneous 

volatility of the returns, A the rate of arrival, dW the Wiener process and dq the Poisson 

process. 

It is important to note that the size of Poisson outcomes does not depend on the infinitesimal 

interval dt. Instead, the probabilities associated with the outcomes are only a function of dt. 

The size of Brownian motion gets smaller as dt approaches zero. The Black-Scholes model 

can be written as a special case of the Merton model when A= 0. Due to the non- 
diversifiable risks presented in this model, no-arbitrage argument cannot be invoked to price 

options. The jump-diffusion model can give rise to fatter left and right tail than the Black- 

Scholes model and is consistent with the implied volatility patterns observed for currency 

options. In a study of stochastic volatility and jump-diffusion models, Bakshi et al. (1997) 

showed that some new stochastic models had improved pricing performance relative to the 

Black-Scholes formula, but there was also evidence to suggest that the benefits derived from 

these mathematical parameterisations used for option pricing were not in proportion with the 

complexity of the models. Nevertheless, the Merton model has successfully inspired many 

researchers to seek for alternative stochastic processes to price options. 

2.3.7 Other Developments 

Since Rubinstein (1985) documented the observed implied volatility patterns in relation to 

moneyness, many researchers had tried to use the two-dimension diffusion models to account 
for these biases. We have selected a few of them for discussions. 

In a study of stohcastic volatility option pricing model, Scott (1987) assumed that volatility 

risk could be diversified away and changes in volatility were uncorrelated with the stock 

return. This study used the equilibrium asset pricing model to derive solutions for the 

continuous time diffusion process. Scott'solution was similiar to those of Hull-White model 

that the solution was integral of the Black-Scholes formula and the distribution function for 

the variance of the stock price. Scott computed option prices via Monte-Carlo simulations 
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and found that the model was marginally better than the Black-Scholes model at explaining 

actual option prices. 

Lo and Wang (1995) investigated the effect of predictability of asset return on option prices 

under the Ornstein-Uhlenbeck process. Even though predictability was typically induced by 

the drift, which did not enter the option pricing formula under the no-arbitrage framework, Lo 

et al. showed that predictability was linked to the parameters that did enter the Black-Scholes 

option pricing formula. In addition, Lo et al. constructed an adjustment for predictability to 

the Black-Scholes formula and demonstrated that this adjustment could be important even for 

small levels of predictability, especially for longer maturity options. 

Gesser and Poncet (1997) compared the performance of the Hull-White model and the Heston 

model using twenty days of at-the-money dollar-mark forward option data. Gesser et al. 

found that the Heston model was superior to the Hull-White model because 1) correlation was 

allowed between volatility and asset returns; 2) the market price of volatility risk was not 

constant but proportional to the variance in the Heston's model. Gesser et al. also pointed out 

that the Hull-White model's poor performance was possibly caused by the low-order Taylor- 

series approximation that Hull and White used in the derivation process. Despite its success 

in accurately reproducing term-structure of volatility and minimising volatility fitting errors, 

the Heston model still failed to reproduce smile convexities as observed in foreign exchange 

market. 

Nandi (1998) studied how the incorporation of a non-zero correlation between asset returns 

and volatility impacted pricing and hedging in the Heston model. The data that Nandi used 

were 126 days of S&P 500 index in 1992. The unobservable instantaneous volatilities were 

estimated jointly with other time invariant parameters using generalised method of moment to 

avoid any potential inconsistency in the estimation process. Nandi found that the Black- 

Scholes model outperformed the zero correlation version of the Heston model in terms of 

pricing. However, the non-zero correlation version of the Heston model outperformed the 

Black-Scholes model, both in terms of out-of-sample pricing and hedging. Nandi 

acknowledged that future research could be directed towards developing simpler stochastic 

models that were easier to estimate. 

Corrado and Su (1998) used the Hull-White model to study the stochastic process implied by 

the S&P 500 index options. Corrado and Su's paper provided evidence that observed option 
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prices on the S&P 500 index corresponded to a mean-reverting stochastic volatility process, 

where return volatility was strongly negatively correlated with changes in stock index levels. 

Corrado et al. also showed that a stochastic volatility option pricing model provided a 

significant improvement over the Black-Scholes model in out-of-sample assessment. 

Madan et al. (1998) used the variance gamma process to price European options that allowed 

for skewness and excess kurtosis in a risk-neutral framework. In contrast to traditional 

Brownian motion, the variance-gamma process is a pure jump process with an infinite arrival 

rate of jumps. This process has finite variation and a random time change that can be written 

as the difference of two increasing processes each giving separately the market up and down 

moves. Closed-form solutions for European options were derived and the new option 

valuation formula nested the Black-Scholes model as a special case. Maden et al. 

demonstrated that the Black-Scholes model could be rejected in favour of the variance-gamma 

model. 

Das and Sundaram (1999) derived closed-form solutions for the conditional and unconditional 

skewness and kurtosis of two classes of important models: stochastic volatility with mean- 

reversion and Poisson jump-diffusion processes. Das et al. found that each model exhibited 

some term-structure patterns that were fundamentally inconsistent with those observed in the 

market and neither class of models constituted an adequate explanation of the empirical 

evidence. Furthermore, this study showed that jump-diffusions could only generate realistic 

and sharp implied volatility smile at short maturities but not at long maturities. In contrast, 

stochastic volatility models were not capable of generating high levels of skewness and 

kurtosis at short maturities under "reasonable" parameterisations but the smile did not flatten 

out appreciably as maturity increased. Das et al. found that a variety of implied volatility 

patterns were possible for at-the-money options under stochastic volatility models and they 

concluded that stochastic volatility models were better than jump-diffusion models. 

Overall, stochastic models take into account some of the characters of volatility. This allows 

in part the explanation of the "volatility smile". But many problems limit the use of stochastic 

volatility models. First, volatility is not a traded asset. No traded asset is instantaneously 

perfectly correlated with volatility so it is not possible to build a hedge portfolio to eliminate 

volatility risk. Thus it is impossible to price options by no-arbitrage techniques without 

introducing as an exogenous parameter the market price of volatility risk. Second, estimations 
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of several non-observable parameters using maximum likelihood method are not valid in 

cases discussed above because stock returns are dependent over time and joint distribution for 

a sample of observations would be very difficult to derive. Third, one usually has to make 

questionable assumption that asset returns and volatility is uncorrelated`$. Fourth, closed- 

form solution usually does not exist for solving of these two-dimensional partial differential 

equations and requires the use of Monte-Carlo simulation as well as advanced econometric 

and numerical techniques, which are computationally demanding. Last, there is no systematic 

way to determine the changing sign and magnitude of correlation, which is important in 

generating smile convexities. The factors mentioned above make it very challenging to 

evaluate more complex products. 

2.4 Implied Methodology 

2.4.1 Underlying Concepts 

Implied methodology refers to the methods to exploit information about the distribution of the 

future asset from the options market. The major innovation that implied models offer is the 

direct gain of market information embedded in traded option prices without having to be 

filtered through the underlying asset's properties. Many studies have shown that options 

contain information not found in the underlying time-series that is useful for predicting future 

volatility (e. g. Chiracs and Manster, 1978; Day and Lewis, 1992; Lamoureux and Lastrapes, 

1993). There are two major approaches in extracting market information in the implied 

framework: 1) the direct approach makes assumptions about the distribution of the risk- 

neutral distribution; 2) the indirect or implied approach does not make any distributional 

assumptions and accepts observed options are priced consistently but not necessary correctly. 

Neither approach makes any assumptions about the stochastic process of the underlying asset 

price but implied methods are proven to be more general because any given risk-neutral 

distribution is consistent with many different stochastic processes. 

The primary reason for using market information is the existence of the observed options' 

biases. The volatility smile curve indicates that market participants make more complex 

assumptions than geometric Brownian motion about the path of the underlying asset price. 

18 Some assume that the volatility risk is not priced. 

56 



Chapter 2: Review of the Literature 

Consequently, market participants attach different probabilities to terminal values of the 

underlying asset price than those that are consistent with a log-normal distribution. The extent 

of the convexity of the smile curve indicates the degree to which the market risk-neutral 

distribution function differs from the Black-Scholes' constant volatility assumption. Any 

variations in the shape of the smile curve are mirrored by corresponding changes in the slope 

and convexity of the call pricing function19. In particular, the more convex the smile curve, 

the greater the probability the market attaches to extreme outcomes for the asset price. This 

causes the market risk-neutral distribution function to have "fatter tails" than with a log- 

normal density function. Moreover, the sign of the slope in the volatility smile curve also 

reflects the skew of the market risk-neutral distribution: a positively (negatively) sloped 

implied volatility smile curve results in a risk-neutral distribution that is more (less) positively 

skewed than the log-normal risk-neutral distribution that would result from a flat smile curve. 

2.4.2 Direct Approach 

The direct approach corresponds to the way market information is explicitly extracted from 

options market. The risk-neutral distribution functions are usually assigned a priori according 

to the "beliefs" of the researcher. Since risk-neutral and true distributions will be equal only if 

investors are truly risk-neutral, or if risk in the underlying security is not priced, the risk- 

neutral distribution embedded in option prices is usually different from that of the actual 

distribution. From the pricing perspective, risk-neutral distribution are sufficient statistics in 

an economic sense - they summarise all relevant information about preferences and business 

conditions for purposes of pricing financial securities. 

2.4.2.1 Breeden-Litzenberger Method 

Breeden and Litzenberger (1978) were first to show that the second partial derivative of the 

call pricing function with respect to the exercise price is directly proportional to the risk- 

neutral distribution function. The slope and convexity of the smile curve could be translated 

into probability space to reveal the market's implied risk-neutral distribution function for the 

asset price. Since observed option prices are only available at discretely spaced intervals 

19 See Bahra (1997) for a more detailed discussion on these issues. 
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rather than being continuous, some approximation for the second derivative is necessary and 

more than one implied distribution could be implied, depending on the approximation chosen. 

Shimko (1993) derived an analytic expression for the probability density functions under the 

parabolic implied volatility assumption by fitting a quadratic relationship between implied 

volatility and exercise price. The Black-Scholes formula was then used to invert the 

smoothed volatility into option prices, thus allowing the application of Breeden et al. 's results 

straightforwardly. However, Shimko's extrapolation procedure, which grafted log-normal 

tails onto the observable part of the implied risk-neutral distribution function, was that it 

arbitrarily assigned a constant volatility structure to the smile outside of the traded strike 

range. Therefore it was not always possible to ensure a smooth transition for the observable 

part of the distribution to the tails. In addition, nothing in the Shimko's approach could 

prevent negative probabilities. 

Malz (1997) used the volatility function technique to access the risk-neutral distribution of 

exchange rates. The estimate of the volatility smile was parameterised by the traded straddle, 

strangle and risk-reversal option prices so it did not require the construction of a cubic spline 

function or regression on implied volatilities. Unlike Shimko, Malz did not make special 

allowances for the tails and allowed the fitted curve to cover the entire range of delta, hence 

the entire support for the probability density function. Malz concluded that this method 

leaded to smoother estimates of the risk-neutral distribution and more accurate volatility 

estimates for wing options. 

2.4.2.2 Multi-Log-Normality Method 

The use of log-normal density function has also received a great deal of attention. Using the 

framework of Ritchey (1990), Melick and Thomas (1997) constructed implied distributions 

using the multi-log-normal method. Melick et al. applied this framework to options on crude 

oil futures with three log-normal functions. Bahra (1997) reviewed various techniques for 

estimating the risk-neutral distribution function of an underlying asset price from the prices of 

options and derived the two-log-normal framework for estimating the risk-neutral distribution 

using observed market data. Subsequently, Dinenis et al. (1998) and Gemill et al. (1999) also 

used this two-log-normal framework to study the "usefulness" of events embedded in 

currency options. 
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In similar spirits to Bahra (1997), Dinenis et al. (1998) investigated the implied risk-neutral 

distribution around the exit of Sterling in 1992 and Gemill et al. (1999) studied the FTSE 100 

index options over the 1987-1997 period. Dinenis et al. suggested that the two-log-normal 

framework was able to provide critical information in regard to the exit of Sterling whilst 

Gemill et al. found that although the two-log-normal model fitted the data significantly better 

than the Black-Scholes model, the out-of-sample performance was only marginally better. 

Gemill et al. also tested the "usefulness" of their model during elections and a number of 

market crashes. Despite options are forward-looking instruments, Gemill et al. concluded that 

implied distributions did not anticipate various market crashes under study and suggested that 

risk-neutral distribution could only help in telling a "market story" during elections. 

Later, Campa et al. (1998) studied implied exchange rate distributions of European Monetary 

System cross-rates using three smoothing methods: implied binomial, two-log-normal and 

cubic spline approaches. Campa et al. found that risk-neutral distributions fluctuated widely 

from week to week without apparent reason. They stipulated that the two-log-normal 

distribution might impose too rigid a structure on the resultant risk-neutral distribution and 

argued that the two-log-normal approach made little economic sense. 

2.4.2.3 Approximating the Risk-Neutral Density Distribution 

Another vital development in recovering risk-neutral distribution is specialized to the problem 

of option valuation where the underlying security distribution, if not log-normal, can be 

approximated by a log-normally distributed random variable. Jarrow and Rudd (1982) were 

first to derive a theoretical framework to include the influence of skewness and kurtosis in 

pricing option. Their idea was motivated from the fact that a large class of valuation problems 

where the underlying distribution was itself a convolution of other distributions. In such 

situations, partial information concerning the underlying distribution may be known (e. g. its 

moments may be tabulated) but the distribution function itself may be so complex as to 

prevent direct integration. Jarrow et al. adjusted the Black-Scholes formula by approximating 

the true distribution with log-normal distribution and the resulting option pricing equation 

could be viewed as a linear combination of the Black-Scholes solution plus some adjustment 

terms that accounted for the discrepancies between skewness and kurtosis of the log-normal 

distribution and the true distribution. Later, Corrado and Su (1997) used Jarrow et al. 's 

method to investigate the S&P 500 index option market and found that the volatility smile 
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was effectively flattened. Corrado et al. concluded that skewness and kurtosis added to the 

Black-Scholes formula significantly improved accuracy and consistency for pricing deep in- 

the-money and out-of-the-money options. Following Jarrow et al. 's footstep, Rubinstein 

(1998) applied Edgeworth expansion directly to discretise risk-neutral distribution and valued 

options in conjunction with the method of implied binomial tree. Investor's opinions about 

skewness and kurtosis could be introduced to the risk-neutral distribution and this model 

could also be used to value American as well as exotic options. 

2.4.3 Indirect Approach 

Indirect/implied approach employs the no-arbitrage condition to price options. The use of 

implied approach is motivated by the "beliefs" that both exotic and vanilla instruments should 

be priced based on the same set of information and therefore they are expected to deviate 

consistently from the theoretically correct prices by a similar amount. Consequently, traded 

European call and put options can be used to hedge the more complicated over-the-counter 

instruments even if the products included in the hedge may not be correctly priced. Since 

Breeden and Litzenberger (1978) demonstrated that risk-neutral distributions could be 

recovered from options by pricing butterfly spreads and expressed as the second derivative of 

the call option price with respect to the exercise price, recent developments have considered 

implied tree models that incorporate observed volatility structures into the option pricing 

process20. Methods of incorporating the volatility smile into tree-based models have been 

suggested by Longstaff (1990), Rubinstein (1994), Derman and Kani (1994) and Dupire 

(1994) for European options. The following sections discusses different types of implied tree 

models. 

2.4.3.1 Implied Tree Assumptions 

The basic assumption for implied tree model is that risk-neutral distribution assumes a 

specific functional form and the stochastic process followed by the stock price S in a risk- 

neutral world is governed by: 

dS = rSdt + SQ(S, t)dz 

20 Jackworth (1999) and Flamouris (2001) provide a good review for the development of implied models. 
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The above diffusion equation is closely related to the original Black-Scholes model except 

that local volatility a(S, t) is no longer constant but depends on stock price and time. It is 

important to note that no functional form is prescribed for local volatility in the implied tree 

technique. Instead, special rules are developed for deducing the risk-neutral path 

probabilities, Arrow-Debreu prices21 , and transition probabilities for stock price movements 

in the tree from one time level to the next in such a way that the market prices of options can 

be reproduced with the tree used in a no-arbitrage fashion. Thus, given N different states, the 

time t price of a contingent claim expiring at time T is given by: 

N 

II(t) _ V(s)p(s) 

_N V(s)e-r(T-t) 
-(S) er(T-t) t=1 

_ 
EV(s)e-r(T-t), r(S) 

$=1 

where V is the payoff function, p the Arrow-Debreu price and 'r(s) sums to one. 2r(s) can 

be viewed as the risk-neutral probability. When the state space is continuous, the price of a 

contingent claim is derived by integrating the payoff over the risk-neutral density function of 

the underlying asset and then discounting at the risk-free rate: 

H(t) = e''<r-r) 
('°'V (s) f (s)ds 

where f is the risk-neutral density function. 

2.4.3.2 Rubinstein Model 

Given a set of option prices at maturity, Longstaff (1990) assumed a uniform probabiltiy 

distribution between strike prices at end nodes and used them to price options. Subsequent 

research by Rubinstein (1994) found that Longstaff's method could frequently produce 

negative probabilities. Rubinstein started with a priori distribution and built a binomial tree 

backward from options at a single expiration. Final probabilities were extracted by a 

21 The Arrow-Debreu price is the discounted expected price of a security at a particular state that pays one unit of 

currency assuming other states pay nothing. The disadvantage of adapting this methodology is that only 
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nonlinear minimisation routine and a set of terminal risk neutral probabilities was assigned to 

the logarithmically equidistantly spaced final nodes. Stock prices were extracted by backward 

induction until the origin coincided with the spot price. Rubinstein demonstrated that the 

recovered terminal risk-neutral distribution exhibited a very bumpy behaviour. The 

disadvantages of this approach were that: 1) it depended on the assumption of binomial path 

independence and 2) the end risk-neutral distribution assumed no functional form22 although 

local volatility could be easily determined by using the above backwards recursive solution 

procedure. 

In the 1996 study by Jackerth and Rubinstein, Jackerth et al. smoothed the risk-neutral 

distribution by considering alternative optimisation specifications and found that crash was 

more likely than it was under the assumption of log-normality. Since Rubinstein's implied 

tree required only one period of option prices at expiration for European option evaluation, 

investor's biases could easily be introduced to change the terminal distribution of stock 

returns to enhance pricing flexibility. Later, Rubinstein (1995) demonstrated another implied 

tree that could be used to back out risk-neutral probabilities with dividend payout. Parameters 

could be solved by working backwards recursively from the end of the tree and this tree could 

be used for American options. 

2.4.3.3 Dupire Model Model 

Dupire (1994) used the forward Fokker-Planck equation to derive a continuous time solution 

that relates option prices and local volatility: 

qC + 
aC 

+ (r _ q)K 
ac 

a2(K, T) = 
al 

a2C 

aK 

-K2 2 aK2 

where T is maturity, q the dividend yield, r the risk-free rate, C the call price and K the strike 

price. 

European options can be priced because an call or a put option can be expressed as a linear combination of the 

constituent payoffs at each terminal state. 
22 It is thus difficult to use it for hedging because it does not describe the underlying asset's dynamics. 
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Implied volatility varies with time to expiration and strike. In contrast, local volatility implies 

a variation with future index level and time and behaves much like the instantaneous 

volatility. Dupire's idea was to extract implied distribution and to construct the whole 

diffusion process that was consistent with the market prices. The above relationship, 

however, is not so universal since it holds only because it will satisfy a specific set of strike 

prices and maturities. In addition, Dupire's method was limited to call options; put option 

prices can only be extracted from put-call parity but these are not market prices. In order to 

back out the local volatility function, the above formula requires the use of the first and 

second derivatives. Zou and Derman (1996) applied the Edgeworth expansion method to 

approximate the second derivative. The first derivative 
ac 

could be obtained by 

interpolating the volatility term-structure. It turned out that the second derivative was a 

probability density function and could be obtained by suitable approximations of which the 

errors had well-defined meaning. 

2.4.3.4 Derman-Kani Model 

Derman and Kani (1994) improved and extended Rubinstein's model by exploiting all market 

information in traded European options. Unlike Rubinstein's approach, Derman et al. 's tree 

did not assume any a priori distribution. Their objective was to construct a tree that was 

consistent with the observed option prices at all maturities so that Q(S, t) could be deduced 

numerically and exotic options priced consistently under no-arbitrage conditions. Since there 

were not enough traded maturities and strikes at each node, option prices were frequently 

interpolated or extrapolated of the existing options' set. This tree was rather sensitive to the 

interpolation and extrapolation method and required adjustments to avoid arbitrage violation. 

Later, Chriss (1996b) improved Derman et al. 's methodology and presented an iterative 

procedure to solve the problem of extracting implied information from American options. 

The Derman-Kani and Dupire implied methodologies are conceptually similar. Derman et al. 

used both call and put options of all striking prices and maturities available on a given 

underlying asset whilst Dupire used only call options. Dupire assumed a trinomial tree and 

set risk-free rate equal to zero whilst Derman et al. fitted a binomial tree. Both trees were 

built in forward fashion and the nodes at each time step were determined by option prices 

expiring at that time step. Furthermore, no binomial path-independence (BPI) assumption 
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was required, thus eliminating the need of equal path probabilities for all paths leading to the 

same ending node. They were both able to capture not only the smile, but also its term 

structure, which was crucial for accurate pricing of American and path-dependent derivatives. 

Usually over-the-counter or exotic products such as lookback and barrier options are priced 

via the Derman-Kani methodology. 

2.4.4 Other Developments 

In the following sub-sections, we will discuss the latest research developments for the implied 

methodogy. 

2.4.4.1 Direct Approach 

There are other approaches that make direct assumptions about the distribution of risk-neutral 

distribution, for example, Malz (1996) assumed a specific jump-diffusion model in order to 

extract the risk-neutral distribution for the realignment probabilities of the pound sterling in 

European Monetary System. On the other hand, non-parametric methods are preferred when 

one has no idea about what type of probability density function or process should be used. 

Alt-Sahallia and Lo (1998) proposed an arbitrage-free, semi-parametrical kernel regression 

model that required no need for choosing any a prior distribution for the risk-neutral 

distribution and no parametric restrictions on the underlying asset's price dynamics.. Unlike 

the implied binomial tree, which is an attempt to obtain the risk-neutral distribution that 

comes closest to correctly pricing the existing options at a single point in time, the kernel 

model is an attempt to estimate the risk-neutral distribution as a function of certain economic 

variables and use many cross sections of option prices. This method requires few assumptions 

other than smoothness of the function to be estimated and regularity of the data used to 

estimate it. Besides being able to capture skewness and kurtosis, it is shown to be robust to 

the potential misspecification of any given parametric pricing formula. However, Aft-Sahallia 

et al. 's approach is very data intensive, generally requiring several thousand data points for a 

reasonable level of accuracy. 
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2.4.4.2 Indirect Approach 

Der-man, Kani and Chriss (1996) presented a trinomial tree which claimed to have fitted the 

observed prices better than the Derman-Kani binomial model with two more degrees of 

freedom. Later, Derman, Kani and Zou (1996) illustrated the way to apply the market's 

consensus for local volatility deduced from the spectrum of available Black-Scholes implied 

volatility. Three "rules of thumb" were derived to describe the correct hedge ratio 0 and the 

relationship between local and implied volatility according to strike prices and index levels. 

In a study of pricing options using the lattice model, Jackwerth (1997) generalised 

Rubinstein's model23 through the introduction of a simple arbitrary weight function. In 

choosing a piecewise linear weight function, each kink in the weight function allowed one to 

match the market price of one option and the connecting segments to give structure to the 

remaining tree. The tree was constructed in a backward fashion and governed by this weight 

function and had advantages over Rubinstein's that it was guaranteed to have nodal 

probabilities everywhere positive and below one. In addition, it was able to accommodate any 

kind of options, e. g. European, American or exotic, with different times to expiration. 

2.5 Factors Influencing Option Pricing 

If the Black-Scholes model were correct, options that are only differ by strike prices would all 

have exactly the same implied volatility. In actual markets, however, option prices are 

affected by supply and demand, taxes, transaction costs, price discreteness, constraints on 

margin purchases and short sales of the stock etc and they are not necessarily priced according 

to the Black-Scholes formula. Furthermore, stock returns may not be continuous and 

discontinuous process like jump-diffusion process may be able to account for the abnormal 

events that actually observed in the underlying market. Consequently, the assumption that the 

underlying process is log-normal, as assumed by Black-Scholes formula, will no longer be 

valid. Altogether, these factors give rise to huge discrepancies for options of same maturity 

but different strike prices, a phenomenon known as volatility smile'. 

23 Rubinstein's model is a special case of Jackwerth's with a linear weight function. 
24 If the options are written on a stock or a stock index, then for data after 1987 crash, it has been found that 
implied volatility tend to be higher for out-of-the-money puts (in-the-money calls) and lower for in-the-money 

puts (out-of-the-money calls), than the Black-Scholes model would predict. 
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2.5.1 Underlying Concepts 

2.5.1.1 Observed Biases 

MacBeth and Merville (1979) studied options of six common stocks traded on CBOE between 

December 1975 and December 1976. MacBeth et al. observed that the implied volatility on 

equity options tended to decline as the exercise price was higher and that in-the-money 

options with a short time to expiration had implied volatility greater than those with a longer 

time to expiration. MacBeth et al. also documented that out-of-the-money options with 

shorter maturities to have implied volatility somewhat lower than longer-maturity out-of-the- 

money options. MacBeth et al. concluded that the Black-Scholes formula over-priced out-of- 

the-money options and under-priced in-the-money options. The extent to which Black- 

Scholes model under-priced (over-priced) an in-the-money (out-of-the-money) option 

increased with the extent to which the option was in-the-money (out-of-the-money), and 

decreased as the time to expiration decreased. 

Of the many studies that documented the shortcomings of Black-Scholes formula, perhaps the 

most systematic and complete was that of Rubinstein (1985). Rubinstein examined matched 

pairs of call option transactions from the Berkeley Options Database to conduct non- 

parametric tests of the Black-Scholes null hypothesis that implied volatility exhibited no 

systematic differences across strike prices or time to maturity for otherwise identical options. 

If deviations from the Black-Scholes model were white noise, the option with the lower strike 

price would have a higher implied volatility for about half the observations. Rubinstein found 

that implied volatility tended to be higher for out-of-the-money puts (in-the-money calls) and 

lower for in-the-money puts (out-of-the-money calls) than the Black-Scholes model would 

predict. In addition, results were statistically significant but changed across sub-sample 

periods, indicating systematic deviations from the Black-Scholes model existed but the pattern 

of deviations varied over time. Rubinstein did not attempt to model these observed biases but 

suggested that a composite model was necessary to capture these abnormalities. 

2.5.1.2 Historical Volatility versus Implied Volatility 

Some studies questioned whether volatility forecasts should be based on historical data, 

implied volatility or some combination of two. The early literature found implied volatility 

was better at forecasting volatility than estimators based on historical data. In a study of 
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information content in options, Canina and Figlewski (1993) investigated the ability of 

implied volatility of S&P 100 index options to forecast actual volatility. Canina et al. found 

that implied volatility had no explanatory power but that estimates of historical volatility 

could explain some of the realised volatility and concluded that the implied volatility poorly 

forecasted actual volatility. Later, Jorion (1995) found that implied volatility outperforming 

historical time-series in a foreign exchange study. Subsequent research has generally 

supported that implied volatility is the better predictor, but results have been mixed. The 

debate is still open and no general conclusion can be drawn. Various weighted-average 

techniques for calculating implied volatility have also been suggested recently, but empirical 

evidence suggests that the near-the-money option is as good as a weighted average at 

predicting volatility (Mayhew 1995). 

There also appears to have a term-structure of volatility in the options market. For example, 

when historical volatility is above its mean, there is a great likelihood that it will decline and 

when historical volatility is below its mean, there is a great likelihood that it will increase. 

This is called the mean-reverting property. Moreover, the longer the maturity the greater the 

likelihood that the volatility of the underlying contract will return to its mean. Consequently, 

there is a tendency for the implied volatility of long-term options to remain closer to the mean 

volatility of an underlying contract than the implied volatility of short-term options. Thus 

over long periods of time, historical volatility of the underlying contract will be the dominant 

force affecting implied volatility. Over short periods of time, however, many other factors 

can play a role. If the market foresees events which could cause the underlying asset to 

become more volatile, anticipation of these events might cause implied volatility to change in 

ways that are not necessarily consistent with historical volatility. In summary, any future 

event which could have unexpected consequences can have a profound effect on implied 

volatility. What is certain, however, is that the Black-Scholes assumption of constant 

volatility is an invalid one. 

2.5.1.3 Time-series Properties 

After the 1987 market crash, the Black-Scholes model has been proven to have many 

deficiencies and its accuracy depends on the statistical behaviour up to the first four moments 

of the underlying asset returns. Particularly, the stock returns distributions seem to exhibit 

fatter tails towards the left side of the distribution than the symmetric normal distribution 
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does, giving more weight to the probability of future downwards underlying movements. 

Since the market crash in 1987, many researchers have realised the importance of being able 

to correctly model skewness, which is a function of the second and third moments of a time- 

series and kurtosis. Skewness describes the "shape" whilst kurtosis is the "tallness/flatness" 

of a probability distribution and it can be viewed as the clustering of volatility. Because 

Black-Scholes formula assumes that volatility is uncorrelated with asset returns, it cannot 

capture important skeweness effects that arise from such correlation. As a result, the out-of- 

money options have typically higher implied volatility than at-the-money and in-the-money 

options. 

2.5.2 Overreaction Hypothesis 

Since implied volatility provides vital market information about asset pricing, researchers 

have become more interested in the consistency of implied volatility with historical data. De 

Bondt and Thaler (1985) tested whether the "overreaction" hypothesis was predictive on 

NYSE stocks from 1926 through 1982. De Bondt et al. found that the "overreaction" effects 

were asymmetric and suggested that most individuals tended to overweight recent information 

and underweight prior data, i. e. investors seemed to attach disproportionate importance to 

short-run economic developments. Later, Stein (1989) pioneered the examination of the term- 

structure of the average at-the-money options' implied volatility using two maturities on S&P 

100 index options. Evidence suggested that long-maturity options tended to "overreact" to 

changes in the implied volatility of short-maturity options because investors had a systematic 

tendency to overemphasise recent data at the expense of other information when making 

projections. This result was disputed by Diz and Finucane (1993) following their analysis of 

similar S&P 100 index data. The term-structures of implied volatility had also been discussed 

by Heynen, Kemna and Vorst (1994). Basing their results upon Duan (1995), Heynen et al. 

constructed GARCH-type-pricing models for the relation between short- and long-term 

implied volatility with three different assumptions of stock return volatility behavior, i. e., 

mean-reverting, GARCH and EGARCH models. This paper concluded that EGARCH(1,1) 

was best to describe asset prices and the term-structure of options' implied volatility. In 

addition, Heynen et al. showed that longer-term implied volatility was consistent with 

forecasts of average volatility in their model, thus rejecting Stein's results that traders 

overreacted with the arrival of new data. Xu and Taylor (1994) also investigated the term- 
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structure of implied volatility implied by the nearest-the-money options on four Philadelphia 

Stock Exchange currency options using data from 1985 to 1989. Any number of maturities 

could be studied in this study but Xu et al. 's simple model could only permit three shapes for 

a graph of volatility expectations, i. e. constant, monotonic increasing or decreasing as a 

function of maturity. Xu et al. found that the implied volatility term-structure was significant, 

and there were frequent crossovers between 15-day and long-term expectations. 

Consequently, the slope of the term-structure often changed. Xu et al. concluded that 

volatility shocks were transitory and therefore the currency options market did not overreact. 

2.5.3 Information Content 

2.5.3.1 Evidence Supporting the Significance of Implied Volatility 

Many researchers have studied asymmetry of stock market volatility in the past (e. g. 

Fama, 1965; Officer, 1973; French, 1980). Beginning in the mid 1970's, a number of studies 

had investigated the information content of observed option prices. They include Latane and 

Rendleman (1976), Galai (1977), Chiras and Manaster (1978), Schmalensee and Trippi (1978) 

- in addition to many others. Latane and Rendleman (1976) examined options of 24 

companies on CBOE and reported that the weighted average implied volatility was a better 

predictor of future volatility than historical estimates. Latane et al. concluded that the 

weighted implied volatility could be used to identify under- and over-priced options. Later, 

Galai (1977) studied volatility estimates of 32 stocks traded on CBOE from April 1973 to 

October 1974. Results of ex-post and ex-ante trading experiments indicated that the market 

did not seem perfectly efficient to market makers and Galai also showed that the Black- 

Scholes formula was able to differentiate between over- and under-priced options. In a study 

of 23 company stocks traded on CBOE between June 1873 and April 1975, Chiras and 

Manaster (1978) reported that implied volatility inferred from option prices had been better 

predictors of standard deviations of future stock returns than historical estimates. 

Schmalensee and Trippi (1978) also found implied volatility to be better predictor of future 

stock price variability than past variability of the underlying security. 
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2.5.3.2 Evidence Against the Significance of Implied Volatility 

Some studies found that implied volatility did not content any useful information. Gemill 

(1986) compared a wide range of weighting schemes using data from the London Traded 

Options Market. Gemill found that implied volatility forecasts were only marginally better 

than the historic-based forecast and better ex-ante forecasts could be obtained by linearly 

adjusting implied volatility and historic estimates based upon past observations. Randolph et 

al. (1990) addressed several questions concerning S&P 500 futures volatility based on two 

December futures contracts. Randolph et al. found that implied volatility did not appear to be 

a useful predictor of upcoming changes in volatility when observed on a daily basis. Kumar 

and Shastri (1990) tested the information content of non-dividend paying call options implied 

in option premia. Kumar et al. reported that no abnormal profits could be made from this 

information. Therefore, the option market's assessment of the stock prices contained no extra 

information in regard to stock market prices. 

2.5.3.3 Other Developments 

Other results are mixed. Baroni-Adesi and Morck (1991) tested whether monthly observed 

option prices predicted ex-post calculated option prices efficiently on S&P 100. Baroni-Adesi 

et al. reported that implied volatility consistently over-estimated ex-post observed index 

variability. Baroni-Adesi et al. also found that observed option prices appeared to incorporate 

good predictions of index variability over the remaining life of the option before the 1987 

crash but its predictive power was less impressive after the crash. Day and Lewis (1992) used 

weekly prices of call options on the S&P 100 index to study the relative forecasting power of 

implied volatility versus historical data by adding implied volatility as an explanatory variable 

in GARCH and EGARCH models. Day et al. found that for the OEX options, both implied 

volatility and historical data contained incremental information about future volatility. 

However, Day et al. could not make any statement concerning the relative information content 

of GARCH forecasts and implied volatility. Lamoureux and Lastrapes (1993) also performed 

an analysis2S similar to Day and Lewis with daily data on individual at-the-money stock 

options. Their hypothesis was that if markets were informationally efficient, then information 

25 The authors examined a class of stochastic volatility option pricing models represented by Hull and White 
(1987) in which volatility risk is unpriced. 
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available at the time market prices were set could not be used to predict actual return variance 
better than the variance forecast embedded in the option price, which represented the 

subjective expectation of the market. Lamoureux et al. 's findings showed that implied 

volatility tended to underpredict realised volatility whilst forecasts of variance from past 

returns contained relevant information not contained in the forecast constructed from implied 

volatility. 

Other important studies on the subject of information content include Beckers (1981) and 

Jorioin (1995). Beckers (1981) studied CBOE and NYSE call options and proposed a simple 

ad hoc procedure to adjust the implied volatility calculations for dividend payments. By using 

a simple regression model, Beckers concluded that most of the relevant information was 

reflected in at-the-money options. Jorion (1995) conducted an excellent study on the 

information content and one-day predictability of implied volatility derived from CMIE 

currency futures and options from 1985 to 1992. Jorion found that implied volatility had 

some useful information for next-day volatility. Although implied volatility was an estimate, 

results indicated that options provided informative forecasts of future volatility that were 

superior to those of time-series models such as GARCH(1,1) and MA(20). 

2.5.4 Negative Relationship Between Returns and Volatility 

2.5.4.1 Evidence Supporting Leverage Effect as Sole Explanation for Asymmetries 

Black (1976) was first to observe the "leverage effect" for individual stocks. Black 

hypothesised that large declines in equity would raise the debt-to-equity ratio so a negative 

shock to stock returns would generate more volatility than a positive shock of equal 

magnitude, and vice versa. This argument suggested that one could expect the volatility of 

equity to be a decreasing function of price. Later, Cox and Ross (1976) proposed the constant 

elasticity of variance model. In this model, the stock price volatility was proportional to 

sa ,ýc as j, LOX el aI. ii6611I1IGU ulat 1 lxcu cvs1J nau to ne met regaraiess or me rirm 5 

operating performance and it had the effect of increasing volatility when the stock price 

declined, and vice versa. This model was consistent with the pattern of implied volatility 

observed for equity options. In a study of weekly implied volatility of six low dividend-yields 

71 



Chapter 2: Review of the Literature 

common stocks traded on CBOE from April 1974 to May 1975, Schmalensee and Trippi 

(1977) found evidence against the hypothesis that implied volatility was unforecastable. 

Schmalensee et al. concluded that implied volatility was very sensitive to the direction of 

movement of the stock price, generally rising when the stock price fell. Gesky (1979) viewed 

the equity in a levered firm as a call option on the value of the firm, V, with its strike price 

equal to the face value of outstanding debt, A. Thus an option on stock of the firm that 

expired earlier than the debt maturity could be regarded as an option on an option on V. 

Gesky model posited that if the volatility of V and that the amount of debt A were constant, 

the volatility of the stock would be negatively correlated with V. This pattern was broadly 

consistent with the implied volatility observed for equity options. In the 1986 study by 

Chance, Chance used both transaction prices and bid-ask prices of the first four months of 

S&P 100 call options in 1984 to examine the behaviour of implied volatility across exercise 

prices and expirations. Chance found that implied volatility tended to decline with higher 

exercise prices. 

2.5.4.2 Evidence Against Leverage Effect as Sole Explanation for Asymmetries 

Some studies stated that leverage effects could not be the sole explanation for the negative 

relation between returns and volatility. French et al. (1987) examined the relation between 

excess monthly returns on common stocks and predictable volatility of S&P 500 from January 

1928 through December 1984. French et al. constructed monthly variance estimates by 

averaging the squared daily returns. Results showed that the expected market risk premium 

was positively related to the predictable volatility of stock returns. In addition, French et al. 

found evidence that unexpected stock market returns were negatively related to the 

unexpected change in the volatility of stock returns. However, French et al. concluded that 

leverage was probably not the sole explanation for the negative relation between stock returns 

and volatility. Another explanation of "leverage effect" concerns what Rubinstein (1994) 

called "crashophobia". This study stated that traders were concerned about another crash 

similar to that experienced in October 1987 so traders priced options accordingly. There also 

appeared that the option-implied probability distribution for a stock price had fatter left tail 

than the probability distribution calculated from empirical data on stock market returns. 

Market dynamics might also be responsible for the observed asymmetries in the market. 

Antoniou et al. (1998) used the Glosten et al. (1993) conditional volatility model to examine 
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the impact of futures trading of six countries on stock index volatility. Antoniou et al. 's 

results suggested that the onset of futures trading had had a major effect on the dynamics of 

the stock market. This evidence was inconsistent with the leverage effect being the sole 

explanation for asymmetries. Antoniou et al. suggested that market dynamics was a much 

better explanation than leverage alone. 

2.5.5 Persistency of Volatility Shocks 

2.5.5.1 Evidence Against Persistency of Volatility Shocks 

Poterba and Summers (1986) evaluated the changing risk premium hypothesis and examined 

the influence of changing stock market volatility on the level of stock prices when both 

volatility and risk premia followed an AR(1) process. Basing their results upon impulse 

response analysis, Poterba et al reported that shocks to volatility decayed rapidly and therefore 

could affect required returns for only very short intervals. They concluded that shocks in 

volatility through their influence on investors' risk premia were not persistent and would not 

have any substantial effect on stock market values. Later, Schwert (1990) analysed the 

behaviour of stock return volatility using S&P 500 daily data from 1885 through 1988. 

Schwert used a 22-order autoregression model to remove autoregressive and seasonal effects 

from daily data and found that stock volatility rose and fell faster around October 19,1987 

than historical evidence would imply. Most importantly, Schwert found that implied volatility 

was lower than those from predictions of the regression model. The lower levels of implied 

volatility were an indication that volatility was not persistent and traders could expect 

volatility to return to lower levels soon. 

2.5.5.2 Structural Change as Explanation of Persistency 

A common finding when the GARCH model is applied to high frequency asset price data is 

that shocks to variance are strongly persistent. In an examination of 30 randomly selected 

common stock daily return data from January 1,1963 through Novemeber 13,1979, 

Lamoureux and Lastrapes (1990) found that it might be misleading to take full account of 

strong persistence, i. e. IGARCH behaviour, in GARCH literature. The high persistence in 

variance in daily stock returns data was due to time-varying GARCH parameters. The time- 
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varying GARCH parameters were the results of time-varying unconditional mean. 

Lamoureux et al. allowed for deterministic or structural shifts in the unconditional variance of 

the stochastic process and argued that such shifts, if unaccounted for, might bias upward 

GARCH estimates of persistence in variance. The GARCH process was also used by Engle 

and Mustafa (1992) to study S&P 500 options and their implied conditional volatility. The 

GARCH(1,1) model indicated very strong persistence of the conditional variances from the 

observed option prices, and the degrees of persistence of volatility shocks implied by options 

on the S&P500 closing prices was found to be similar to that estimated from historical data on 

the index itself. However, the GARCH model exhibited weak persistence of conditional 

volatility and a low half-life of volatility following the October 1987 crash. This evidence 

suggested that the option market participants favoured a model which implied structural 

change of conditional variance. In a 1997 study by Pericli and Koutmos, Pericli et al. 

examined the impact of introduction of futures on both the conditional mean and the 

conditional variance by including structural dummy variables in the EGARCH model. Pericli 

et al. 's findings suggested that there had been significant structural changes in the distribution 

of returns in the S&P 500 the period following the flexible exchange rate regime. In contrast 

to the results of Antoniou and Holmes (1995) for the U. K. market, Pericli et al. concluded that 

the introduction of index futures and options had produced no structural changes on volatility. 

2.5.5.3 Identifying Structural Breaks 

According to Lamoureux et al. (1990), the longer the sample period the higher the probability 

that structural shifts will be present. Ignoring simple structural shifts in unconditional 

volatility can lead to the spurious appearance of extremely strong persistence in variance. An 

explanation of high persistence, i. e. the sum of AR and MA parameters of GARCH model is 

close to one, might also be due to instability of unconditional variance in the samples. 

Including dummy variables to account for regime changes diminishes the degree of 

ARCH/GARCH persistence. The difficulty associated with inclusion of dummy variables is 

that it is extremely easy to falsely use inappropriately timed dummy variables. 

Hamilton's (1988,1989) method of estimating non-stationary time series may prove to be 

productive to develop means of identifying the timing of structural shifts. The motivation for 

using this model comes from the high degree of estimated persistence in volatility observed 

after fitting the ARCH-type models. The regime-switching models seek to capture discrete 
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shifts in the behaviour of financial variables by allowing the parameters of the underlying 

data-generating process to take on different values in different time periods. Later, Hamilton 

(1990) studied a regime-switching model with constant moments in each regime and 

estimated parameters based on the maximum log-likelihood function of the probability of 

switching regimes. Hamilton (1994) simplified the estimation procedures by reformulating 

the problem in terms of the probability of being in a particular regime, conditional on 

observable information. Hamilton and Susmel (1994) and Cai (1994) considered switching 

ARCH (SWARCH) models in which the conditional variance was selected from a number of 

possible ARCH processes which depended upon the state that eventuated. Such SWARCH 

models have been applied to stock returns by Hamilton and Suamel (1994) and to U. S. 

Treasury bill yields by Cai (1994). These Markov models were able to identify multiple 

documented "structural breaks" without using inappropriately timed dummy variables. 

2.5.6 Market Efficiency 

The usual way to measure the performance of a volatility prediction model is to assess its 

ability to predict future volatility. As volatility is unobservable, however, there is no natural 

metric for measuring the accuracy of any particular model. Realised rates of return, though, 

allow us to test the efficacy of variance-driven option prices and provide a test for market 

efficiency with respect to volatility forecasts. 

2.5.6.1 Volatility Trading 

Black and Scholes (1972) first tested market efficiency of CBOT options market from 1966 to 

1969. Using daily data, Black et al. found that profit opportunities vanished after taking 

account of transactions costs. Later, Galai (1977) examined horizontal delta-neutral spreads 

and hedges, Bhattacharya (1983) also looked at vertical delta-neutral spreads, and Chiras and 

Manaster (1978) reported on both types. All three studies used a Black-Scholes call model on 

data from the mid 1970's and found profits that seemed to be abnormal, yet these authors 

were reluctant to claim that riskless arbitrage profits existed. Bhattacharya revised the hedge 

ratio every two weeks for a variable holding period of the spread position. Note that neither 

Galai nor Chiras et al. revised their hedge ratios over time. This was more problematic for the 

latter, as their holding period was one month compared to Galai's single day. 
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At a later stage, researchers have started using volatility forecasting models to access market 

efficency. Harvey and Whaley (1992) analysed S&P 100 index option-market efficiency 

using an implied volatility measure as a proxy for conditional volatility. Basing their results 

upon a regression model, Harvey et al. provided evidence that S&P 500 index's call and put 

implied volatility changes were predictable in a statistical sense in both in- and out-of-sample 

analyses. However, Harvey et al. found that, after transaction costs, a trading strategy based 

upon out-of-sample volatility changes did not generate economic profits and maintained that 

S&P 100 index option market was allocationally efficient. In a study of trading one-day 

hypothetical NYSE European straddles, Engle, Hong, Kan and Noh (1993) proposed an 

elegant trading framework to assess profits from options trading for competing volatility 

forecasting algorithms and compared them in a simulated market. Since straddle was delta- 

neutral, there was no need to hedge them. Furthermore, straddle prices were relatively 

insensitive to dividend payouts. Engle et al. found that abnormal profits earned by the 

GARCH forecast model were economically significant and dominated those earned by other 

time-series volatility forecast models such as AR(1), ARMA(1,1) and moving average of 

squared daily returns. Noh, Engle and Kane (1994) also compared the forecasting ability of 

implied volatility of S&P 500 European options with that of a GARCH model by trading 

straddles of maturity longer than 15 days and nearest to the money each day. Noh et al. found 

that the GARCH forecast method returned a greater profit than the rule based on implied 

volatility regression model. Welch et al. (1995) devised a comprehensive spreading strategy 

to arbitrage over- and under-valued calls on the CBOE. Welch et al. used a variable revision 

procedure and a variable holding period to reduce risk in delta-neutral spreads and discovered 

that trading of vertical spreads were most profitable. These spreads were profitable after 

commissions except for public traders after the crash of October 1987; they were more 

profitable and more numerous before the crash in October 1987. 

2.6 Common Diagnostic Tests 

The objective of this section is to introduce the basic diagnostic tests used in this dissertation. 

A thorough examination of the econometrics is beyond the scope of this dissertation. We 

recommend Hamilton (1994) for a proper treatment of time-series issues. Mills (1993), 

Enders (1994) and Gujarati (1996) have also an excellent discussion in applied econometric. 
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2.6.1 Test for Stationarity 

Non-stationarity of a financial series is a common phenomenon and it is natural for 

researchers to investigate whether there is a unit root associated with the log prices of a 

financial asset, i. e., whether such a series, defined as r,, is I(1) or not. The standard method 

of testing for a unit root is the Dickey-Fuller (DF) test. Consider the following AR(1) 

equation: 

r =Q'+, 6r-i+ut 

We may test HQ :ß =1 vs. H, :ß<1 using the t-ratio from the regression of Art on r-1. The 

critical values follow the statistics derived by Dickey and Fuller. Augmented Dickey-Fuller 

test, which includes the lags of Ar, in the regression, is another popular choice. Note that care 

must be taken when applying the augmented DF test because different critical values are used 

for different assumptions of a series, i. e. a=0 or a#0 (with or without trend). 

2.6.2 Test for Independence 

It is sometimes important to know whether a series is independent or not. A time series model 

is considered as adequate if the residuals are distributed as i. i. d. series. A series cannot be 

independent if the coefficients of its autocorrelation function (ACF) are non-zero. Instead of 

testing on the coefficients of the ACF, many sophisticated tests for independence have been 

developed. The BDS statistic proposed by Brock, Dechert and Scheinkman (1996) is used to 

test for independence by focusing upon estimated marginal and joint densities. Consider two 

random variables X and Z. They are independent if: 

fx(X)ff(Z) = f. (X, Z) 

where f (. ) 's are the density functions of the random variables. Next define: 

v, =E(fs(X, )f: (Z, )-fý(X,, Z, 

The BDS test can be regarded as testing if the sample mean of v, is zero. It is still possible 

that E(vr) =0 but that the random variables are not independent. In the BDS test of 

independence of a random variable X, Z is simply the lagged value of X. The densities need to 

be estimated with kernel estimation. BDS showed that if a time-series is i. i. d. then its BDS 
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statistic is asymptotically standard normal-distributed. According to Pagan (1996), the BDS 

test is likely to be robust to heteroskedasticity, but not to serial correlation. 

2.6.3 Test for Normality 

In theory, returns are assumed to be normal but that many studies have shown that financial 

time-series exhibit densities which have tails that are fatter than the normal and have much 

higher peaks than the normal around zero, e. g. Homaifar and Helms (1990). Most tests of 

normality focus upon higher order moments of r: 

EQ3 )=0 

E(r, ° )= 3[E(rrz )]z 

The above statistics check whether there is skewness or excess kurtosis in the data. 

other hand, the most widely used tests are: 

T 

V/1 =T-'ý1/ 6ä6 
t=1 

V2 = ý(1/ 24ä$ )(S, 4-3ä2S? ) 
t=1 

where Q2 is the estimate of variance and q, = r, - rr . 

On the 

In applying the above test statistics, one may need to adjust these statistics by accounting for 

dependence in r,. Rather than focusing upon the higher order moments of returns, it is 

sometimes more useful to obtain a plot of the density for r1 by using non-parametric 

estimation methods and to concentrate on certain of the characteristics that stand out from 

such a visual inspection. An easy way to estimate the density non-parametrically is to use a 

kernel based estimator: 

-r 
f(r) _ (1/77t)j K( r, 

r=ý h 

where K is a kernel and h is the window width for a Gaussian kernel, h=0.90^rxT-Vs . 

One popular normality test is the Kolmogorov-Smirnov test. The Kolmogorov-Smimov 

statistic is defined as: 
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KS = 
ý-0,01+ D� 

n yn 
rr A 

D� = suPll F� (x) - F(x) 

where 

n= total number of data points 
A 

F(x) = the normal distribution 

F. (x) = 
Ni 

n 
Ni = the number of X, ' less than x 

The critical values of the Kolmogorov-Smirnov test have been tabulated using Monte-Carlo 

simulation. When the value of the test statistics is greater than the critical value, then the null 

hypothesis of normality should be rejected. 

2.6.4 Hypothesis Tests for Dependence 

Standard likelihood-ratio (LR) procedures may be used to test the hypothesis that no ARCH 

effects are present in a time-series: 

HO: a, =a2... =aq =0 

But the numerical estimation required under the ARCH alternative makes that a rather tedious 

approach (needs both restricted and unrestricted models). Instead, the Lagrange-Multiplier 

(LM) approach, which requires estimation only under the null, is preferable. Engle (1982) 

proposed a simple LM test for ARCH under the assumption of conditional normality that 

involved only a least-squares regression of squared residuals on an intercept and lagged 

squared residuals. Under the null of no ARCH effects, T* R2 from that regression is 

asymptotically distributed as X2 (q) where q is the number of lagged squared residuals in the 

regression, T is the number of observations and R2 is the coefficient of determination from the 

regression. But the underlying assumption of conditional normality for the LM test is too 

restrictive. Thus, less formal diagnostics are often used, such as the sample autocorrelation 

function of squared residuals. 
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McLeod and Li (1983) developed the Q2-statistic for nonlinear serial dependence, following 

the suggestion that the autocorrelation function of the squares of a time series can be useful 

for identifying the bilinear type nonlinear time-series. For the time-series er , its Q2-statistic 

is given by: 

m2 

Q2 (M) = T(T + 2)E- 
T=i 

T-z 

r-k 

p(k) (el 2 
_U2 )(et+k - u2)/j (E2 

- u2)2 

ý_< <-ý 
T 

u2 EE2/T 
t=1 

where p(r) is the sample autocorrelation function of et'. 

Another similar test is the Box-Pierce test, which is formulated as: 

m 

Q*(m)=TEP(z)Z 
s=l 

where p(Z) is the sample autocorrelation function of e. 

Under the null hypothesis of no autocorrelation in the squared values of the time-series up to 

lag m, the asymptotic distribution of the Q2 and Q* statistics are asymptotically distributed as 

z 2(M). If the null for Q2 is rejected, then nonlinear dependence, such as GARCH, may be 

present. Note that in the Q2 test E2 are used instead of C. This is based on the belief that 

investigation of the autocorrelations of the power transformation of the residuals reveals more 

information about higher independence of residuals. If the null for Q' statistic is rejected, 

then linear dependence may be present. A variant of Box-Pierce test statistic is the Ljung-Box 

statistic. Ljung-Box statistic has the exact formula of the Q2-statistic except the time series 

being investigated is e, and it is likely to perform better than the Box-Pierce in small 

samples. 

After determining the parameters for a ARCH-type model, it is often of interest to test the null 

hypothesis that the standardised residuals, El = 
h° ( I, 

_1, are conditional homoskedastic. The 
r 
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idea is that a model can be judged by how well it removes autocorrelation from E1 . 
Therefore, if the model is correctly specified, e, should behave as white noise. The various 

diagnostic checks that are commonly used include testing the normality of E, and considering 

the sample autocorrelations of F, Z. In the large sample Guassian white-noise case, 

A 

. 
d. 

p(z)i. 
r.,, 

N 0, 
T 

, z=1,2,... 

1A Q(m) =T(T +2)ý (T z) 
p(Z)2 - x2(m) 

r=l 

where p(r) denotes the sample autocorrelation at lag r. 

2.7 Summary 

In this literature review we have covered many issues relating to conditional 

heteroskedasticity models, stochastic models and deterministic implied models. Whilst 

deterministic volatility models produce term-structure effects, stochastic volatility can 

simultaneously explain these patterns as well as skewness and kurtosis effects. As far as 

term-structure patterns are concerned, it seems appropriate to use mainly at-the-money 

volatility to derive empirical estimates of the diffusion parameter of the volatility process. 

Research in implied option pricing is expanding fast. All of the theories that were initially 

used exploited information from the underlying asset's time-series. The implied models, 

however, suggest that information embedded in option prices should be used directly without 

having to be filtered through the underlying asset's properties. The criteria for the goodness 

of a distribution more often are the fit it provides to the observed option prices and less 

frequently its ability to forecast the statistical properties of future data. 

Despite extensive research, there still remains no general agreement as to how to condition 

such stochastic and implied models for the asymmetric nature of stock return volatility. 

Conditional heteroskedasticity volatility models seem to be more mature and robust for 

researchers to forecast volatility. 

81 



Chapter 3: A Report on the Properties of the Term-Structure of S&P 500 Implied volatility 

CHAPTER 3A Report on the Properties of the Term-Structure 
of S&P 500 Implied Volatility 

Abstract 

This chapter examines the observed market anomalies in the term-structure of implied volatility of 
S&P 500 futures options between 1983 and 1998. Rigorous filtering procedures are applied to remove 
uninformative options records and we analyse in excess of 250,000 option prices in a span of sixteen 
years. Prior to this research, past papers have always examined the term-structure of implied volatility 
only for particular at-the-money contracts. The new aspect of this research is that we define relative 
implied volatility as implied volatility normalised by its corresponding at-the-money implied volatility 
for each maturity group. Consequently, each option group's relative implied volatility depends on the 
level of the at-the-money implied volatility and therefore implied volatility term-structure can be 
investigated. Contrary to the basic assumptions of the Black-Scholes formula, implied volatility 
exhibits both smile effects and term-structure patterns. Term-structure evidence reveals that smile 
effects are strongest for short-term options, indicating that short-term options are most severely 
mispriced by the Black-Scholes formula. Furthermore, at-the-money implied volatility is fitted to a 
harmonic model. Specific properties of time-series behaviour of implied volatility for different 

maturity groups are characterised. In addition, we find evidence that option prices are not consistent 
with the rational expectations under a mean-reverting volatility process. Finally, observed option 
prices are used to judge whether moneyness biases are consistent with the skewness of the risk-neutral 
distribution derived from any specific distributional hypothesis. Skewness premiums results agree 
with the term-structure analysis that the degrees of anomalies in the S&P 500 options market have 
been gradually worsening since around 1987. As correlation may be responsible for skewness, our 
diagnostics suggest that leverage and jump-diffusion models are more appropriate for capturing the 
observed biases in the S&P 500 futures options market. The intermediate results obtained in this 
chapter are complementary to Chapters 4 and 5 which apply different modelling techniques to account 
for the observed term-structure biases in the S&P 500 options market. 

3.1 Introduction 

3.1.1 Background of the Study 

Accurate valuation of options or related derivatives requires the understanding of the 

dynamics of implied volatility. Surprisingly, little research has been conducted into the 

properties and evolution of implied volatility. The modelling of the term-structure of implied 

volatility has been discussed by many researchers, e. g. Rubinstein (1985), Stein (1989), Diz 

and Finucane (1993), Heynen, Kemna, and Vorst (1994) and Xu and Taylor (1994). 

Rubinstein (1985) documented that implied volatility of exchange traded call options between 

August 1976 and August 1978 exhibited a systematic pattern with respect to different 

maturities and exercise prices. Rubinstein's most intriguing result was that the direction of 
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bias changed signs between sub-periods, implying that skewness of the risk-neutral density 

changed over time. Subsequently, numerous efforts have been made to investigate the mean- 

reverting process and term-structure of implied volatility. Stein (1989) pioneered the 

examination of the term-structure of the average at-the-money options' implied volatility 

using two maturities on S&P 100 index options. By using a mean-reverting volatility model, 

evidence suggested that long-maturity options tended to "overreact" to changes in the implied 

volatility of short-maturity options because investors had a systematic tendency to 

overemphasise recent data at the expense of other information when making projections. This 

result was disputed by Diz and Finucane (1993) following their analysis of similar S&P 100 

index data. The term-structure of implied volatility has also been discussed by Heynen, 

Kemna and Vorst (1994). Basing their results upon Duan (1995), Heynen et al. derived the 

term-structures of implied volatility for EGARCH, GARCH and a mean-reverting stochastic 

model in a similar way to Stein (1989). Only two values of time-to-maturity were 

investigated and Heynen et al. concluded that EGARCH gave the best description of asset 

prices of the term-structure of implied volatility. Xu and Taylor (1994) also studied at-the- 

money currency options and used a mean-reverting volatility model to establish relationships 

between long- and short-term expectations of implied volatility for any number of maturity T. 

Xu et al. 's model could explain the time-varying crossovers of implied volatility at different 

maturities but it did not emphasise the effects of volatility smile. Insofar past research has 

mainly focused on "fitting" a theoretical option model to the observed biases in a particular 

options market from an arbitrarily short span of data for at-the-money contracts. Since the 

term-structure of implied volatility reflects the time-varying market expectations of asset 

volatility over different time horizons, it is imperative to focus on a single market and gain a 

thorough understanding of its behaviour. 

3.1.2 The Problem Statement 

This chapter examines the empirical behaviour of S&P 500 futures option's implied volatility 

using daily data from 1983 through 1998. We consider this research work one of the most 

comprehensive empirical studies of S&P 500 implied volatility term-strucutre in literature to 

date. Our primary objective is to observe, characterise and analyse the patterns of the term- 

structure of implied volatility in the S&P 500 marketplace. Particularly, we focus our study 

on at-the-money implied volatility and identify specific properties for its term-structure. The 
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second objective is to investigate whether option prices are in line with the rational 

expectations hypothesis under a mean-reverting volatility assumption. The final objective in 

this research is to identify what types of option models would be consistent with the observed 

moneyness biases in the S&P 500 options market. Intermediate results obtained in Chapter 3 

can also help facilitate our research efforts in modelling volatility in Chapters 4 and 5. 

3.1.3 The Significance of the Study 

The term-structure of implied volatility reflects the time-varying market expectations of asset 

volatility over different time horizons. Despite the extensive investigation and the evidence 

accumulated thus far on the term-structure of implied volatility, no past study has ever 

considered a large empirical study of the S&P 500 implied volatility term-structure. Prior to 

this research, past papers have always examined the term-structure of implied volatility only 

for particular at-the-money contracts. The purpose of this chapter is to fill this gap in the 

literature by utilising all available daily S&P 500 futures option prices from the inception of 

S&P 500 futures option in March 1983 to December 1998. Although descriptive in nature, we 

extend previous term-structure work in several ways: 

i) The new aspect of this research is that we define relative implied volatility as implied 

volatility normalised by its corresponding at-the-money implied volatility for each 

maturity group. The use of relative implied volatility allows the measurement of 

relative degrees of anomaly in the implied volatility term-structure across a broad 

moneyness range; 

ii) Our sample period is more extensive, making the results more statistically reliable. 

Our research is of importance to institutional investors because S&P 500 products are one of 

the most liquid contracts in the financial world and their immense size guarantees that they are 

ideal as a hedging too126. If the term-structure of implied volatility shows any specific patterns 

then some models, such as stochastic volatility models or GARCH-type models, may be more 

suitable to make adjustments for market imperfections that cannot be explained by the Black- 

Scholes formula. These adjustments could be important even for small levels of 

predictability, especially for longer maturity options. 

26 It is the second most liquid options traded on CME after currency options. 
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3.1.4 Organisation 

The remainder of this chapter is organised as follows. Section 3.2 describes how to construct 

the term-structure of implied volatility. Section 3.3 introduces the dataset. Section 3.4 

examines the properties of the S&P 500 implied volatility term-structure. Section 3.5 

summarises the results. 

3.2 Methodology 

This study is descriptive and uses a number of empirical techniques to characterise the term- 

structure of implied volatility of the S&P 500 options market. The major contribution that 

permits us to study the term-structure of implied volatility is that we use relative implied 

volatility to organise the implied volatility term-structure data. This section gives special 

emphasis to the construction of relative implied volatility. In addition, we explain the reasons 

for using S&P 500 futures options in this study as opposed to S&P 500 spot options. Finally, 

we discuss the methods and strategies used in our term-structure analysis. 

3.2.1 Relative Implied Volatility 

This study examines the observed market anomalies in the term-structure of implied volatility 

of S&P 500 futures options between 1983 and 1998. Since the term-structure of volatility is 

time-varying, one of the challenges in studying S&P 500 futures options is to find a consistent 

and meaningful way to compare implied volatility for different maturity and moneyness 

groups. There are many ways to define options' moneyness. It is a common practice for 

researchers to use either F-X or F/X to represent moneyness. F-X is the intrinsic 

value of a call. It is an absolute measure of deviation of an option price from a particular 

strike. Thus the value F-X does not manifest itself as a common measure to compare 

options with different underlying and strikes, i. e. options on the S&P 500 futures index of 

different maturity months and strikes. Conversely, the F/X ratio is a more flexible measure 

of moneyness. This ratio readily allows options of different strikes under the same underlying 

to be compared but it only deals contracts with the same maturity, i. e. options on the S&P 500 

futures index of different strikes. Recently, Figleski (2002) classified options in a relative 

way by moneyness as a function of how many standard deviations, in terms of Q4F, that the 

strike price was away from the current asset price, where o was the Black-Scholes implied 
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volatility and T was time to maturity for the option. This formulation has the advantage that 

the probability an option in a given category that will end up in the money at expiration is 

largely independent of volatility or option maturity. This moneyness definition, however, is 

not appropriate for the investigation of the term-structure of S&P 500 futures options' implied 

volatility because it implies that long-maturity options will cover a much larger moneyness 

range than short-maturity options even when the term-structure of volatility is flat. 

In order to compare implied volatility of different strikes and maturities, we partition the data 

into 30 sub-groups, i. e. six moneyness and five maturity groups. Contracts are aggregated 

over maturity ranges and moneyness groups. For each group, the overall implied volatility is 

then calculated in terms of its average implied volatility. The moneyness ratio ranges from 

0.75 to 1.25+ with increment of 0.1. This discretisation of moneyness groups allows allow a 

thorough examination of smile effects. Table 1 shows the time-to-maturity and moneyness 

partitioning in this study. For example, group 1 consists of all call/put contracts traded in the 

market with 0.75: 5 F/X<0.85 and 21: 5 T: 5 70. Next each moneyness group within a 

particular maturity group is normalised by its corresponding at-the-money maturity group to 

adjust for maturity effects. Hence, the relative at-the-money implied volatilities for the groups 

in the highlighted cells in table 2 are normalised to one. This approach is indeed similar in 

spirit to Rosenberg (1999), which formulated the deterministic implied volatility function 

through an explicit specification of the at-the-money implied volatility. 

Table 1: Time-to-Maturity and Moneyness Groups 

Maturity 70 21 71-120 121 170 171 220 221 
(FIX); - - - + 

0.75-0.85 1 2 3 4 5 

0.85-0.95 6 7 8 9 10 

0.95-1.05 11 12 13 14 15 

1.05-1.15 16 17 18 19 20 

1.15.1.25 21 22 23 24 25 

1.25+ 26 27 28 29 30 
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Table 2: Normalised Data Groups 

Maturity 
7 20 2 

Groups 
21-70 1-1 1 1-170 171-220 220+ 

I 1 2 3 4 5 

II 6 7 8 9 10 

III 11 12 13 Yll"T 1S 

IV 16 17 18 19 20 

V 21 22 23 24 25 

VI 26 27 28 29 30 

3.2.2 Futures Options versus Spot Index Options 

This study investigates the term-structure of S&P 500 implied volatility by employing all 

available daily option prices from the inception of S&P 500 futures option in 1983 to 1998. 

From a theoretical viewpoint, implied volatilities of S&P 500 futures options and S&P 500 

spot index options are not identical. However, there are several advantages in using the S&P 

500 futures options versus S&P 500 spot index options. First, since both futures contracts and 

futures options are traded on the same CME trading floor, the daily futures options database 

contains settlement prices which reflects market conditions at the close of trading for each 

contract. The underlying futures contract is often closed out prior to delivery so that the 

exercise of the futures option does not usually lead to delivery of the underlying asset. Thus 

index futures tend to entail lower transactions costs than spot index, leading to a more 

efficient and liquid market that can more accurately reflect the consensus of investors. 

Second, in theory S&P 500 index and its futures display very similar characters because 

arbitrage conditions force the S&P 500 futures to mimic the spot index. Therefore, it is 

reasonable to expect the volatility of futures prices to be similar to the volatility of spot prices. 

Third, according to Ramaswamy et al. (1985) and Natenberg (1995), there is very little early 

exercise premium in S&P 500 futures options. Consequently, S&P 500 futures options and 

S&P 500 index options are almost identical. Last, the use of options on futures contracts 

avoids the complication of incorporating dividend information into the option pricing model 

because futures prices already contain the market's assessment of dividend payout over the 

life of the futures contract. Therefore, providing that futures contracts and options expire at 
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the same time, implied volatilities on S&P 500 futures options and S&P 500 index options are 

almost identical. 

3.2.3 Strategies 

As a descriptive study, the research reported here examines the observed market anomalies in 

the term-structure of implied volatility of S&P 500 futures options between 1983 and 1998. 

Prior to this research, past papers have always examined the term-structure of implied 

volatility only for particular at-the-money contracts. The data are examined using several 

strategies. First, exclusionary restrictions are applied to remove uninformative options 

records from the S&P 500 futures options database. Rigorous filtering procedures are applied 

to filter our options records and they are described in full detail in section 3.3.4. Second, the 

Black-Scholes implied volatilities are calculated by employing the quadratic approximation 

approach developed by Barone-Adesi and Whaley (1987). The term-structure of relative 

implied volatility is then constructed following the procedures outlined in sections 3.2.1 and 

3.3.4 for the period 1983-1998 for the five maturity groups. The evolution of the S&P 500 

term-structure of relative implied volatility for each maturity group is then graphically 

inspected and its general patterns and properties are deduced. Third, we focus our study on 

at-the-money implied volatility, giving special emphasis to the analysis of the shortest- 

maturity at-the-money option groups. Two-sample t-statistics are used to investigate the 

variability of the at-the-money implied volatility term-structure. Furthermore, a simple 

harmonic model is employed to study the movements between different at-the-money 

maturity groups, and specific properties of time-series behaviour of implied volatility for 

different maturity groups are observed. Fourth, we consider whether the implied volatility 

term-structure of the S&P 500 options market is consistent with the rational expectations 

hypothesis under a mean-reverting volatility model developed by Stein (1989). Fifth, we 

apply the skewness premiums technique developed by Bates (1991,1997) to judge whether 

moneyness biases are consistent with the skewness of the risk-neutral distribution derived 

from any specific distributional hypothesis. Since options exist only for specific exercise 

prices, we construct skewness premiums by interpolating implied volatility for desired 

exercise prices from a cubic spline fitted through the shortest-maturity implied volatility of 

call and put options from 1983 to 1998. 
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3.2.4 Summary of the Methodology 

Sections 3.2.1-3 have illustrated the methods and techniques used for the analysis of the S&P 

500 implied volatility term-structure. It should be emphasised that this descriptive study 

requires the use of many numerical techniques. The next section describes the S&P 500 data 

used in this report. 

3.3 Data Description 

3.3.1 S&P 500 Futures and Futures Options 

The option data used in this study are American options on S&P 500 index futures. S&P 500 

futures began trading on March 21,1982, and options on S&P500 futures commenced the 

following year on January 23,1983. The options and futures data are obtained from the 

Futures Industry Institute covering all reported daily trades and quotes of CME from January 

28,1983 through December 31,1998. S&P 500 futures options are based on the price of S&P 

500 futures but not the underlying S&P 500 index. Upon exercise, a call (put) futures option 

holder merely acquires a long (short) futures position with a futures price equal to the exercise 

price of the option and the option holder's account shows an unrealised gain based on the 

strike and settlement price of the futures contract. The settlement price is calculated as the 

average of the highest and lowest transaction prices in the last 30 seconds of trading, which 

reflects market conditions at the close of trading for each contract. Since this research focuses 

on the volatility of returns resulting from underlying economic factors rather than from the 

market's microstructure, therefore, price information is restricted to settlement returns27. 

3.3.2 Contract Specifications 

CME futures and options trade side-by-side in the same market. They are also open and close 

at the same time. Because of the low cost of transacting between the two markets, options and 

27 For instance, Randolph et al. (1990) used daily settlement prices on two S&P 500 futures contracts for their 

study; Bahra (1997) argued that the bias due to asynchronous data could be reduced significantly by using 

exchange settlement prices rather than infra-day quotes; Rosenberg (1999) used settlement prices on S&P 500 

futures and options; Ederington and Guan (2002) used settlement prices to calculate the implied volatility of 
S&P 500 futures options. 
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futures prices are likely to be highly synchronised, which alleviates the problem of non- 

synchronous quotes afflicting markets such as S&P 100 index options. S&P 500 futures have 

a cash settlement at expiration in December, March, June, and September. Trading of S&P 

500 index futures and its options opens at 8: 30 a. m. and closes at 3: 15 p. m. U. S. Central 

Time. S&P 500 index futures contracts are extremely liquid and are frequently used by 

investors for portfolio hedging. The size of one futures contract is $250 multiplied by the 

index level, where each index point (10 ticks or 100 basis points) is worth $250. The 

minimum move in the futures price is 0.1 point and this is worth $25. 

S&P 500 index futures options expire on the same day as the underlying futures contracts28. 

Since 1987, intra-quarterly options have been introduced to offer at least six shorter-term call 

and put options for traders. Serial month options only exercise into the next nearest futures 

contract month, for instance, January and February options exercise into March futures 

contract, April and May options exercise into June futures contract. Thus on the third Friday 

of the serial month at 3: 15 p. m., options will settle based on the prices of the quarterly futures 

contracts. In addition, a one-point change in the S&P 500 futures option premium represents 

the same dollar value of a one-point change in the S&P 500 futures. Furthermore, the set of 

options contracts available for a given maturity depends upon the past price movements of the 

stock market during the history of that maturity of option. Strike price increments are 

generally integers divisible by 25, although strikes that are integers divisible by 5 and 10 may 

be added. 

3.3.3 Approximating Implied Volatility for American Options 

Option on index futures is analogous to a stock providing a continuous dividend yield where 

the dividend yield is equal to the domestic risk-free rate. Because S&P 500 futures option is 

American and its risk-free rate always positive, there is some chance that it will be optimal to 

exercise an option early. Thus American futures options are worth more than their European 

counterparts and put-call parity does not hold. Since there is not any analytic solution 

available for evaluating American futures options, this study employs the quadratic 

approximation approach developed by Barone-Adesi et al. (1987) to calculate implied 

28 They usually expire on the third Friday of the delivery month. 
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volatility29. This technique uses interval subdivision method to backout the implied volatility, 

which can guarantee convergence to a unique solution and is considered more accurate and 

computationally efficient than finite-difference or binomial method. Although quadratic 

approximation may not be very accurate for long-maturity options, it is still found to be an 

efficient and reliable method for short- and moderate-maturity options. A thorough 

examination of numerical method for the American option problem is beyond the scope of 

this dissertation. We recommend Ju et al. (1999) for a detailed discussion of efficacy of 

different approximation techniques for American options. 

3.3.4 Filtering 

The use of high quality options data is important to the integrity of any credible research. 
Following Rubinstein (1985), several exclusionary restrictions are applied to remove 

uninformative options records from our database: 

i) Time to maturity fewer than 21 calendar days; 

ii) Implied volatility < 4% and > 90%; 

iii) Options with F/X ratio less than 0.75; 

iv) C<F-X and P<X -F; 

v) Options with premia 5 0.01 index point; 

vi) Non-Traded options. 

Criterion i) is used to eliminate options with extreme short maturities as their implied 

volatilities behave erratically. Criterion ii) excludes those unreasonable options records with 

extreme implied volatilities resulted from our approximations. Criterion iii) removes extreme 

deep in-the-money put options and deep out-of-the-money call options that may introduce 

biases to our calculations, as they are very sensitive to a small change in the option prices. 

Criterion iv) states that American options cannot be less than their intrinsic values, otherwise 

a riskless arbitrage could arise. Criterion v) is used to exclude options for which the 

necessarily discrete market prices are likely to distort calculations of implied volatility. 

Criterion vi) eliminates artificial trading behaviour by floor traders to influence their margin 

requirements. Before filtering, there were 305,260 call and 354,173 put records with 254 and 

29 We sincerely thank Giovanni Barone-Adesi for making the quadratic approximation program available. 
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249 strikes for call and put options, respectively. After applying the above filter rules, there 

are 99,494 call and 149,442 put options with 247 and 234 strikes in our database. 

3.4 Results and Analysis 

3.4.1 Financial and Political Events for 1983-1998 

This study utilises the full history of S&P 500 futures option prices traded on CME for the 

construction of the relative term-structure of implied volatility. We begin this study by 

inspecting figure 2, which plots the S&P 500 futures series and its log-returns for the period 

1983-1998. A preliminary investigation of figure 2 reveals that the entire return series could 

be divided into different states of volatility. For instance, the stock market crashed in October 

19,1987, the "Gulf War" in January 1990; the Asian Financial Crisis and default of the 

Russian Debt Market in 1997 and 1998 all leaded to the increase in the returns volatility. 

Causal inspection of figure 2 finds that there is considerable volatility clustering as soon as 

returns volatility jumps. Consequently, it is plausible that returns volatilities are predictable. 

Figure 2: S&P500 Futures & Returns: 1983-1998 
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3.4.2 Properties of Implied Term-Structure 

The term-structure of relative implied volatility is constructed following the procedures 

outlined in sections 3.2.1 and 3.3.4. As a proxy for the risk-free interest rate, we use daily 

middle rates on U. S. Treasury bills from Datastream matching maturity closest to the 
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expiration date of the options. There are certain improvements that distinguish our research 

from previous studies: 

i) The sample period is more extensive than previous studies. For example, Rubinstein's 

study used intra-day option records of merely 30 stocks traded on CBOE from August 

23 through August3l, 1978 whilst we employ sixteen years of options data here; 

ii) Call and put options are investigated here whilst most studies used only call options; 

iii) The moneyness range is larger. For example, Stein (1989), Diz and Finucane (1993), 

Heynen, Kemma, and Vorst (1994), and Xu and Taylor (1994) only investigated the 

term-structure of the at-the-money contracts. 

Figures 3 to 12 chronicle the evolution of the term-structure of relative implied volatility for 

call and put options arranged in five maturity groups over 1983-1998. For ease of 

comparison, all figures are displayed using the same scaling factor. On inspection of 

graphical evidence we observe several properties for the implied volatility term-structure of 

S&P 500 futures options: 

i) Moneyness bias. For a given maturity group, the further away is moneyness from the 

at-the-money region, the more pronounced is the bias, i. e. the lowest implied volatility 
always occurs near at-the-money regions and the magnitude of bias is generally higher 
in low strike prices than in high strike prices. This finding is termed "volatility skew" 
and is commonly found in equity option market; 

ii) Time-to-maturity bias. For a given year, "volatility skew" becomes more pronounced 

when maturity is shortened, i. e. the convexity of the curve increases as option maturity 
decreases; 

iii) Calendar-time bias. For options in the same maturity group, the relative magnitude of 
"volatility skew" increases as calendar time evolves, i. e. the U-shape tends to be more 

pronounced as it approaches 1998; 

iv) Symmetry. Similar results (i-iii above) are obtained for call and put options. 

3.4.2 Interpretation of the Implied Term-Structure Results 

Results i) and ii) in section 3.4.2 are in line with general literature30 concerning moneyness 

and maturity biases. Observed irregularities in relative implied volatility constitute strong 

30 See Rubinstein (1985) and Canina et al. (1993). 
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evidence against the hypothesis that the Black-Scholes' implied volatility is the market's fully 

rational volatility forecast. The U-shape can be the result of: 1) illiquid market; 2) non- 

normality returns distribution. Bid-ask spread in illiquid market is typically huge for out-of- 

the money options and this can artificially introduce high volatility to out-of-the-money 

options, forming the basis for "volatility skew". But perhaps the more credible reason 

responsible for the observed U shape is non-normality in the returns data. The "volatility 

skew" could also be a result of active use of portfolio insurance policies to protect investors' 

portfolios, thus creating a surging demand for out-of-the money put options and driving up 

their prices and volatility. Our term-structure evidence also shows that the convexity of 

relative implied volatility of longer-term options is relatively insensitive to evolution of 

calendar time. Thus smile effects are strongest for short-term options, indicating that short- 

term options are the most severely mispriced by the Black-Scholes formula and present 

perhaps the greatest challenge to any alternative option pricing models. 

Result iii) provides an important description of the evolution of "smile effects" in the term- 

structure of the S&P 500 market. Strong evidence supports the notion that implied volatility 

has been getting more skewed as calendar time evolves. Moreover, the relative degrees of 

anomalies decrease as term-to-maturity lengthens. Once again this evidence suggests that the 

Black-Scholes formula severely misprices short-term options. On the other hand, result iv) 

reveals that implied volatility of call options in a given in-the-money (out-of-the-money) 

category is quite similar to implied volatility of put options in the opposing out-of-the-money 

(in-the-money) category, which is generally true regardless of sample period or term-to- 

maturity. Such similarities in pricing structure exist between call and put options mainly due 

to the working of the put-call parity. 

3.4.3 Characters of At-the-Money Implied Volatility Term-Structure 

Having inferred the general properties of the relative implied volatility term-structure of S&P 

500 futures options in section 3.4.2, this section focuses on characterising at-the-money 

implied volatility. The reasons for studying at-the-money options are: 1) at-the-money 

options are more liquid; 2) at-the-money options are less contaminated by microstructure data 

problems. Consequently, it is generally believed that the Black-Scholes implied volatility is 

empirically indistinguishable from most stochastic and conditional volatility models when the 
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options are at-the-money and have short times to expiration. For the above reasons, we 

investigate three important features of the at-the-money implied volatility term-structure: 1) 

variability; 2) mean-reverting property; 3) term-structure consistency. 

3.4.3.1 Variability of Implied Volatility 

The Black-Scholes formula assumes there is a constant implied volatility term-structure. The 

two-sample t-test is employed to investigate the variability of at-the-money implied volatility 

term-structure for the period 1983-1998. Tables 3 and 4 give the two-sample t-statistics for 

equal means but unequal variances for the average implied volatility of the at-the-money call 

and put options, i. e. 0.95<F/X<1.05. The two-sample test is defined as follows: 

Ho 90: 
H, ý ý, #A 

t= 
X, - X2 

lNz s; IN, +S2 

where N,, N2, X,, X2, s;, s2 are the sample sizes, sample means and variances for sample 

groups 1 and 2, respectively. 

When this test is performed in the highlighted areas in tables 3 and 4, we reject the null 

hypothesis that the two sample means are equal at 95% confidence interval where sample 1 is 

the 21-70 at-the-money call (put) option group. It is also evident in tables 3 and 4 that the 

term-structure of at-the-money implied volatility is more variable in the 1990's than the 

1980's. Statistically speaking, the systematic divergences of the term-structure can be traced 

back to 1987 since when the magnitudes of t-values have become significantly and 

systematically higher. This high variability could be a result of frequent crossovers of implied 

volatility at different maturities such that a longer-maturity's implied volatility and a shorter- 

term option' implied volatility move in opposite direction. 

95 



Chapter 3: A Report on the Properties of the Term-Structure of S&P 500 Implied volatility 

Table 3: t-statistics for equal means but unequal variances for at-the-money calls 

Sample 1: 21-70 Call Options 

Year 
Time-to- 

maturity 

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 

71-120 -0.9 -0.9 -0.7 
0 IL 

r141,1 -1.4 

121-170 1.7 1.6 0.7 M i ! in m M am W M 10 is us 

171-220 -0.2 0.3 -0.5 1.2 15,4 1.3 mm 3: 2 1? $ ^!. 
b 24,6 '. -8,5 0.9 jzý5 

220+ -0.7 
ý 1.4 ý 0.8 -1.3 -1.8 1 -5.4 'x24 , 30 ; 27A, , 20.5 ;I 3: 6 -4.7 

Table 4: t-statistics for equal means but unequal variances for at-the-money puts 

Sample 1: 21-70 Put Options 

Year 

Time-to- 
maturity 

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 

71-120 1.6 ® 0.4 4.7 ý 0.8 , 7.0 -9.8 -18 . 5.9 -1.4 0.8 

121-170 0 0.9 0.5 -2i li, 0. $ ''-13.0 -10.0 7.9 -24 -0.1 

171-220 0.9 ý 0.5 0.3 ý 
-1.8 0.0 -14, $ -8,5 Jýä=1 -2.8 

220+ --- 
ý 1.0 ý 1.5 1.2 1.9 

1 1 ý z18. $ Xý51 1.5 1.7 

3.4.3.2 Mean-Reversion of Implied Volatility 

The mean-reversion property is perhaps the most popular and uncontested assumption of 

modelling volatility. Many researchers have modelled volatility as a mean-reverting process, 

e. g. Hull and White (1987), Nelson (1991), Stein and Stein (1991), Heston (1993) and Bakshi 

et al. (1997). Figures 13 and 14 plot the least squares fit through the average call and put 

implied volatility of the nearest maturity group, 21-70, for a sixth-order polynomial and a line. 

The fitted curves clearly illustrate that implied volatility has a linear and a harmonic 

components. The flattened linear components for both call and put options are consistent with 

the mean-reverting property of stationary volatility processes, i. e. volatility will always tend 

towards the long-term unconditional mean volatility. In order to characterise the patterns of 

the at-the-money implied volatility term-structure, we employ a simple harmonic model to 

analyse the movements between different at-the-money maturity groups: 

a+ß*sin(c) *t+B) 
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where a is the intercept and can be interpreted as the long-term expectation of mean 

implied/unconditional volatility, ß is the amplitude or intensity of fluctuation, CO is the 

angular frequency and 0 is the phase shift in radians which is used to adjust the time lag. 

Figures 15 and 16 display the least squares fit through the average implied volatilities of the 

21-70 call and put option groups for the harmonic model. Graphical inspection of figures 15 

and 16 again shows that the divergence of at-the-money implied volatilities between different 

maturity groups starts in 1987 and becomes more pronounced in the 1990's. Furthermore, it 

is evident in figures 15 and 16 that the term-structure of S&P 500 implied volatility frequently 

inverts so the slope of the term-structure often changes. 

Curve-fitting results for call and put implied volatilities are presented in tables 5 and 6. 

Several observations can be drawn in regard to the results from tables 5 and 6: 

i) Observations from a indicate that put options have a higher long-term expectation of 
implied volatility than call options; 

ii) Observations from ß imply that put options have a larger magnitude of fluctuation 

than call options. Furthermore, the shorter the maturity, the larger the ß; 

iii) Put options have a slightly higher angular frequency CO and a more negative phases 
than call options in each maturity; 

iv) Longer maturity options appear to have a faster rate of change of implied volatility (0. 

Result i) provides evidence that put options command a higher premium than call options in 

each maturity group, which is consistent with Black's leverage effect. A possible explanation 

for these results is that purchase of S&P 500 futures is a convenient and inexpensive form of 

portfolio insurance. Thus excess buying pressure of front-month put options may cause prices 

to increase, resulting in higher puts' implied volatilities. Furthermore, average call and put 

implied volatilities mean-revert to their long-term mean of 16% and 16.8%, respectively. 

That is to say that when implied volatility is above its long-term mean level, the implied 

volatility of an option should be decreasing in the time to expiration, and vice versa. Result ii) 

demonstrates that shorter maturity options are more variable than longer maturity options. In 

addition, the variation of put options' implied volatility is higher than call options. The 

amplitude parameter 8 can be interpreted as the volatility of implied volatility. 

Consequently, the 21-70 put option group can be viewed as the most volatile option group. 
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Result iii) indicates that put options have a higher frequency w and a more negative phase 

parameter 6 than call options in each maturity. Therefore, put options are perceived to be 

leading call options. It can be viewed as evidence that put options are more "responsive" to 

the arrival of new information. Result iv) states that longer-term options have a faster rate of 

change of implied volatility because w tends to be a monotonically increasing function of 

maturity31, suggesting that longer-term options probably react too "rapidly" to the arrival of 

new information relative to shorter-term options. 

Table 5: Curve-fitting estimations for Average Call Implied Volatility from 1983-1998 

Maturity 0 120 71 121 170 21-7 - - 171-220 220+ All Calls 

a 0.15761 0.15739 0.16087 0.15976 0.16207 0.15971 

Q 0.04503 0.04012 0.03846 0.03618 0.03938 0.03908 

co 0.57206 0.59379 0.61965 0.62885 0.65104 0.61659 

g -1.30832 -1.54263 -1.92601 -1.8948 -2.28744 -1.82570 

Table 6: Curve-fitting estimations for Average Put Implied Volatility from 1983-1998 

Maturity 70 21 120 71 121 170 - - - 171-220 220+ All Puts 

a 0.16779 0.16558 0.16782 0.16527 0.17252 0.16804 

!j 0.04790 0.04213 0.0418 0.04043 0.03566 0.04061 

co 0.60780 0.63181 0.65038 0.64877 0.7142 0.64912 

6 -1.6960 -1.9531 -2.2889 -2.1746 -2.9762 -2.1957 

3.4.3.3 Consistency of Implied Volatility Tem-Structure 

In section 3.4.3.2, the result shows that longer-term options possibly react too "rapidly" to the 

arrival of new information relative to shorter-term options. This section considers whether the 

term-structure of implied volatility of the S&P 500 options market is consistent with rational 

expectations hypothesis under a mean-reverting volatility process. 

31 An exception is the the 171-220 puts which is slightly slower the 121-170 puts. 
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Basing the results upon a continuous-time mean-reverting volatility process, Stein (1989) 

derived the following theoretical relationship between the implied volatilities on options of 

two maturities: 

du, = -a(Q, - Q)dt + ßa, dW 

pj (Q, - Q) 

- Q) (Q+ pI (Q, - Q))dj = Q+ T In p 
(a 

(i° -ý) = 
T(Pk -1) =ß(K, T, P) 
K( PT U; - ý) -1) 

where 0<p= e-a <1 is the weekly mean-reversion parameter, or the long-term mean level 

of instantaneous volatility, i, (T) the nearby implied volatility with time to expiration T and 

id (K) the distant implied volatility with time to expiration K>T. 

Under Stein's continuous-time AR(1) setup, implied volatility is mean-reverting. This 

structure also hypothesises that the implied volatility of a longer-term option should move by 

less than one percent in response to a one-percent move in the implied volatility of a shorter- 

term option. Consequently B(K, T, p) can be thought of as an elasticity relationship - given a 

movement in nearby implied volatility i, ", there should be a smaller movement in distant 

implied volatility i°. The boundary condition for this elasticity requirement is as follows: 

0<P(K, T, p)<1, for0<p<1,0<T <K 

This condition imposes a stringent constraint on how the term-structure of implied volatility 

can change. Using two daily S&P 100 implied volatility series from December 1983 to 

September 1987, Stein found that elasticity turned out to be larger than suggested by the 

AR(1) structure, indicating that long maturity options might have attached disproportionate 

importance or risk premiums to changes in short-maturity options. 

In our analysis the elasticity relationship is directly testable by substituting i,, id and a into 

The nearby implied volatility i, is calculated using the shortest at-the-money Q- 

ýir - Q) 
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group. The distant implied volatility it' is calculated using one of the longer-dated option 

groups, i. e. 71-120,121-170,171-220 or 220+. In addition, we use the averaged expectations 

of implied volatility for all call and put options in tables 5 and 6 as a proxy for the long-run 

mean level of instantaneous volatility or. Whilst using annual data is not the most technically 

rigorous way to investigate the elasticity relationship, nevertheless it should still shed some 

light on the consistency of the implied volatility term-structure because of the extensive span 

of our dataset. Our estimated or is 16.39% whilst a similar average historical volatility 

estimated from S&P 500 index daily returns by Zhang and Shu (1999) is 15.87%. Results in 

tables 7 and 8 show that there are times when the empirically estimated ß(K, T, p) can depart 

significantly from the theoretical elasticity requirements. The highlighted areas in tables 7 

and 8 identify a number of maturity groups that are not bounded within a reasonable range 

over the period 1983-1998. This empirical evidence demonstrates that /3(K, T, p) is very 

variable and the boundary restriction is frequently violated. Notably, these violations are most 

pronounced for the longest maturity group, 220+. In addition to Stein (1989), Bates (1996) 

and Bakshi et al. (1997) questioned whether the volatility process implied by traded options 

was consistent with the properties implied in its time-series. Whilst not mathematically 

rigorous, estimated ß's provide evidence that option prices are inconsistent with the rational 

expectations under a mean-reverting volatility process. 

Table 7: 8(K, T, p) for Calls 

Nearby Options: 21-70 Call Options 

Year 

Distant Groups 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 

71-120 0.71 0.84 0.96 ý 0.92 0.87 0.92 0.87 0.98 0.80 1.03 0.87 

121-170 0.27 0.90 0.45 = 0.52 0.81 0.04 0.63 0.80 0.75 0.90 1,22 0.83 1,24 

171-220 0.92 0 0.99 0.80 0.45 0.90 0.79 0.69 0.62 0.77 0.64 0.90 0.73 0.96 ý'. * 

220+ 0.62 0 Is ý 0.09 m 0.69 0.84 ROM 0.37 0.65 0.55 0.78 0.91 0.85 ý. 24 
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Table 8: 8(K, T, p) for Puts 

Nearby Options: 21-70 Put Options 

Year 

Distant Groups 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 

71-120 J. 02 1. % 0.71 0.84 0.96 0.92 0.87 0.92 0.87 0.98 0.80 
. 
1. Q3 0.87 

121-170 0.27 m 0.90 0.45 0.52 0.81 0.04 0.63 0.80 0.75 0.90 1.22 0.83 

171-220 0.92 0.99 0.80 0.45 0.90 0.79 0.69 1,44 0.62 0.77 0.64 0.90 0.73 0.96 1.41 

220+ 0.62 0.09 0.69 0.84 0.37 0.65 0.55 0.78 0.91 0.85 1.23 

3.4.4 Option Pricing Under Asymmetric Processes 

Having examined many important features of the term-structure of implied volatility in 

sections 3.4.2 and 3.4.3, our goal in this section is to investigate what types of models would 

be consistent with the observed biases in the S&P 500 futures options market. We apply the 

skewness premiums technique developed by Bates (1991,1997) to inspect S&P 500 futures 

options' pricing irregularities during 1983-1998. 

3.4.4.1 Skewness Premiums 

3.4.4.1.1 Underlying Concepts 

Bates (1991,1997) demonstrated that asymmetries of the risk-neutral distribution embedded 

in an American options could be examined by using relative prices of out-of-the-money call 

and put options, and thereby judged the merits of alternative distributional hypotheses. This 

technique hypothesises that if the underlying asset price follows geometric Brownian motion 

as in the case of the Black-Scholes formula, the x% out-of-the-money call options should be 

approximately x% more expensive than the x% out-of-the-money European put options. With 

market asymmetry, however, skewed distributions create systematic divergences. 

Consequently, one could use the observed prices of call and put options to judge whether the 

x% rules are consistent with the skewness of the risk-neutral distribution derived from any 

specific distributional hypothesis - an exercise roughly comparable to looking at moneyness 

biases. For example, a perceived market crash will lead to out-of-the-money put options on 

S&P 500 futures being priced higher than out-of-the-money call options, indicating that it is 
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more likely for put options to finish in the money than call options. The x% skewness is 

defined as the percentage deviation of x% out-of-the-money call prices from x% put prices: 

SK(x) = c(F, T; Xc)/p(F, T; XP)- I 

where Xa= [F/(1 + x)] <F<X, = [F(1 + x)], x>0, and F is the underlying forward price for 

American futures options. 

For American options on futures, the skewness premium has the following properties for the 

distributions regardless of the maturity of the options if at-the-money skewness premiums are 

approximately equal to zero: 

i) 0%: 5 SK(x)5 x% for 

1) Arithmetic and geometric Brownian motion; 

2) Standard constant elasticity volatility processes; 

3) Benchmark stochastic volatility and jump-diffusion processes; 

ii) SK(x) < 0% only if 

1) Volatility of returns increases as the market falls, or 

2) Negative jumps are expected under the risk-neutral distribution; 

iii) SK(x) > x% if and only if 

1) Volatility of returns increases as the market rises, or 

2) Positive jumps are expected under the risk-neutral distribution. 

3.4.4.1.2 Data Construction 

CME's settlement records are again used for the skewness premiums analysis. The sample 

period begins from the inception of S&P 500 futures option in March 1983 to December 

1998. Three exclusionary restrictions are applied to the data: 

i) Only contracts of a single maturity are considered for any day, namely, contracts with 

maturities between 21-70 days. Longer maturities are too thinly traded and shorter 

maturities are too near maturity to contain useful information; 

ii) Exclude non-traded options to eliminate artificial trading behaviour; 
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iii) At least five strikes for call options and five strikes for put options are required 

everyday to enhance the quality of interpolations. 

Since options exist only for specific exercise prices, skewness premiums cannot be 

implemented directly. In contrast to the methodology employed by Bates32, we interpolate 

implied volatility for desired exercise prices from a cubic spline fitted through the implied 

volatility of call (put) options. As a proxy for the risk-free interest rate, we use daily middle 

rates on U. S. Treasury bills from Datastream matching maturity closest to the expiration date 

of the options. Option prices with the desired strikes are obtained by inserting the interpolated 

volatility into the Baroni-Adesi et al. 's (1987) American option pricing model. The filtering 

restrictions result in the data from 1,600 days being used out of a total of 3,789 records. 

3.4.4.2.2 Results of Distributional Hypothesis 

Skewness premiums from March 1983 to December 1998 for x= 0% and x= 4% are given in 

figures 17 and 18, respectively. Theoretically, at-the-money call and put options should be 

priced identically, yielding a skewness premium value of 0%, which is in fact largely 

observed except at the inception of S&P 500 options in 1983-1984. Over 1983-1984, the 0% 

skewness premium fluctuates randomly in the range of ± 8%. From 1985-1998,0% 

skewness premium remains around zero. The 4% skewness premium plot, however, implies 

that volatility of returns is largely negatively correlated to the futures price and out-of-the- 

money put options are priced consistently higher than out-of-the-money call options. The 

4% skewness premium shown in figure 18 indicates gradual downward shifts over time in 

skewness. In 1983, the premium is typically negative and in excess of the 4% benchmark. 

Between 1984 and 1985, the premium is largely positive and less than 4%, suggesting that the 

observed prices are consistent with the Black-Scholes formula. Starting from the late 1986, 

strong assessments of downside risk begin emerging and growing more negatively until the 

middle of 1994 and then slowly returning to a less negative level and stabilising around 1998. 

Skewness premiums show that the S&P 500 market has been systemically pricing away the 

Black-Scholes formula since 1986. These biases are substantial and persistent even during the 

early years and are accompanied by an increasingly negative premiums since around 1987. 

32 Options prices were interpolated from a cubic spline fitted through the ratio of options prices to futures prices 
in Bates' study. 
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The fluctuations in the sign and magnitude of skewness premium in figure 18 imply that one 

needs models of time-varying skewness to complement the log-normal distribution. The 

skewness premium technique cannot identify which process would best fit the observed 

options but negative skewness premiums suggest that stochastic volatility processes with a 

large negative correlation between volatility and market shocks or jump-diffusion processes 

could best fit the observed option prices. Whilst more broad-reaching in this analysis, our 

investigation accords with and does not contradict Bates' (1997) investigation of the S&P 500 

market. 

3.5 Summary 

This study is descriptive research and we have employed many models and techniques to 

investigate the S&P 500 implied volatility term-structure. Since we have anaylsed in excess 

of 250,000 option prices over a 16-year period, inferences drawn from this research must not 

be viewed as tentative. Contrary to the basic assumption of the Black-Scholes formula, 

implied volatility exhibits both smile effects and term-structure patterns. We have 

demonstrated that the term-structure of S&P 500 implied volatility follows some patterns: 

i) Implied volatility tends towards a long-term mean of about 16%; 

ii) Put options have higher premiums and a larger range of fluctuation than call options; 

iii) Short-maturity options are more volatile than long-maturity options. 

Smile effects are found to be strongest for short-term options, indicating that short-term 

options are the most severely mispriced by the Black-Scholes formula and therefore present 

the greatest challenge to any alternative option pricing models. Basing our results upon a 

harmonic model, we find the rate of change of put implied volatility is faster than call's, thus 

providing a basis to argue that put options are more "responsive" to a change of market 

sentiment. Furthermore, we report there is evidence that options prices are not consistent with 

the rational expectations under a mean-reverting volatility assumption. Finally, skewness 

premiums agree with the term-structure results in section 3.4.3.1 that S&P 500 moneyness 

biases have been progressively worsening since around 1987. Results of the negative 4% 

skewness premiums demonstrate that volatility of returns increases as the market falls. As 

correlation may be responsible for skewness, our diagnostics agree with Bates (1997) and 

suggest that leverage (stohcastic volatility processes with a large negative correlation between 
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volatility and market shocks) and jump-diffusion models with negative-mean jumps are more 

recommended for capturing the observed biases in S&P 500 futures options market 
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Figure 3: Call Maturity = 21 - 70 Days 
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Figure 5: Call Maturity = 121 - 170 Days 
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Figure 6: Call Maturity = 171 - 220 Days 
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Figure 7: Call Maturity = 221+ Days 
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Figure 8: Put Maturity = 21 - 70 Days 
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Figure 9: Put Maturity = 71 - 120 Days 
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Figure 10: Put Maturity = 121 - 170 Days 
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Figure 11: Put Maturity = 171 - 220 Days 
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Figure 12: Put Maturity = 221+ Days 
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Figure 13: 21-70 Calls with Sixth-Order Polynomial and Linear Trend 
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Figure 14: 21-70 Puts with Sixth-Order Polynomial and Linear Trend 
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Figure 15: Mean Implied Volatilities and Least Squares Fit for 21 - 70 Calls 
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Figure 16: Mean Implied Volatilities and Least Square Fit for 21- 70 Puts 
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Figure 17: 0% Skewness Premium 
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Figure 18: 4% Skewness Premium 
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CHAPTER 4 An Empirical Comparison of APARCH Models 

Abstract 

Modelling asset return dynamics using GARCH-type models is an integral part of empirical finance. 
The existing literature favours some rather complex volatility specifications but usually their empirical 
performance is little explored. This chapter compares a group of prominent and well-theorised models 
that can potentially account for the term-structure biases observed in the S&P 500 futures options 
market. Sixteen years of daily S&P 500 futures series are used to examine the performance of the 
APARCH models that use asymmetric parameterisation and power transformation on conditional 
volatility and its absolute residual to account for the slow decay in returns autocorrelations. No 

evidence can be found supporting the relatively complex APARCH models, and log-likelihood ratio 
tests confirm that power transformation and asymmetric parameterisation are not effective in 

characterising the S&P 500 returns dynamics within the context of APARCH specifications. A 3-state 

volatility regime-switching model is estimated in order to identify the "quiet" and "noisy" periods and 
results support the notion that the performance of conditional volatility models is prone to the state of 
volatility of the returns series. In addition, AIC statistics stipulate that EGARCH is best in "noisy" 

periods whilst GARCH is the top performer in "quiet" periods. Overall, aggregated rankings for the 
AIC metric show that the EGARCH model is the best. Finally, options-based volatility trading 
exercises reveal that EGARCH and GARCH can generate statistically significant ex-ante profit in one 
out of four sample periods after transactions costs, however, it also exposes the insufficiency of a 
delta-neutral hedge in the event of large market moves. The consequence of this research is not only 
significant to discrete-time finance but also potentially meaningful for continuous-time stochastic 
volatility literature since EGARCH and GARCH converge to the Wiggins (1987) and the Hull-White 
(1987) models in diffusion limit. When considering a stochastic volatility model, there seems to be 
little incentive to look beyond a simple model which allows for volatility clustering and a leverage 

effect such as Heston (1993). 

4.1 Introduction 

4.1.1 Background of the Study 

The poor empirical performance of the Black-Scholes option formula is well documented (e. g. 

MacBeth et al., 1979; Rubinstein, 1985; Bollerslev et al., 1992). Contrary to the basic 

assumptions of the Black-Scholes formula, Chapter 3 has shown evidence that implied 

volatility exhibits both smile effects and term-structure patterns. Many market factors such as 

the leverage effect, taxing, industrial cycles, serial correlated news arrival, market psychology 

etc have played very crucial roles in causing these observed biases in the marketplace. As a 

result, normal distribution is not adequate to specify the returns dynamics and researchers 

have yet to deal with fat-tails and excess kurtosis which form the basis of smile effects. 
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Following the path-breaking paper by Engle (1982), an alternative literature has focused on 

discrete-time autoregressive conditional heteroskedasticity (ARCH) models. The 

development of ARCH models is driven by three regularities of equity returns: 1) equity 

returns are strongly asymmetric, e. g. negative returns are followed by larger increases in 

volatility than equally large positive returns; 2) equity returns are fat-tailed; 3) equity returns 

are persistent; persistence refers to the volatility clustering. This class of discrete-time models 

hypothesises that both smile effects and term-structure patterns, as evidenced in Chapter 3, 

can be explained by allowing the underlying asset's volatility to obey a stochastic process. 

There is a voluminous literature suggesting that discrete time-varying volatility models are 

practical and insightful. The usefulness of ARCH modelling is such that volatility is 

predictable and readily implemented. ARCH models assume the presence of a serially 

correlated news arrival process and require only the use of past data. As such, ARCH models 

allow conditional variance to change over time as a function of past conditional variance and 

error, whilst leaving unconditional variance constant. 

Most of the early research efforts focused on conditional models that imposed symmetry on 

the conditional variance structure. In response to criticisms that symmetric model may not be 

appropriate for modelling stock returns volatility, more recent research has considered other 

features such as leverage effects, power transformation etc in the variance equation. There 

are, indeed, so many conditional volatility models in the finance literature that it is 

cumbersome to provide a comprehensive survey of them all. 

Recently, the topics of long memory and persistence have attracted considerable attention in 

terms of the second moment of an asset returns process. The development of long-memory 

models is based on the observations of the so-called "stylised facts"33. For example, Ding et 

al. (1993) invented the APARCH models that used the Box-Cox transformation on 

conditional variance and its absolute residual to account for the slow decay of autocorrelations 

in the returns process. Subsequently, many researchers have also developed different 

specifications for the long-memory process (e. g. Baille, 1996; Bollerslev et al., 1996; Ding et 

al., 1996). Several papers have given the impression that their models are capable of 

accounting for empirical features such as volatility clustering and leptokurtosis in the, 

33 See section 2.2.3 for discussion of the long-memory process. 
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distribution of returns. Despite the huge amount of effort researchers have put into modelling 

volatility, it is clear that empirical issues remain unexplored for many of these more 

"elaborate" models. 

4.1.2 The Problem Statement and Hypotheses 

This chapter investigates the in-sample performance of APARCH models (Ding et al., 1993) 

that can potentially account for the slow decay in returns autocorrelations using daily S&P 

500 futures series from 1983 through 1998. The use of the APARCH framework is 

convenient to evaluate different model specifications because log-likelihood-based statistics 

can be used to directly test for the robustness of many nested models (see appendix A. 1). The 

main hypotheses used in this project are that: 

i) If the APARCH specification is a good description of the process driving volatility, 

then hypothesis tests can be applied to reject the nested models in favour of the less 

restricted models: 

Ho : restricted A PARCH mod els 
H, : less restricted APARCH model 

ii) If structural change of volatility can have an influence on the performance of 

conditional heteroskedastic models, then asymmetric models should have better 

performance than symmetric models in high volatility state, and vice versa. 

In this chapter our goals are: 

iii) To investigate the effectiveness of asymmetric parameterisation and power 
transformation within the context of APARCH specifications using log-likelihood 

ratio tests; 

iv) To provide evidence that the in-sample performance of asymmetrical and symmetrical 

conditional volatility models are prone to the state of volatility by using a 3-state 

regime switching volatility conditional model to separate high and low volatility 

states; 

v) To compare the in-sample performance of EGARCH (Nelson, 1991) with APARCH 

models based on aggregate AIC statistics; 

vi) To illustrate the quality of different conditional volatility forecasts by predicting the 

one-step ahead changes of implied volatility and conducting ex-ante (out-of-sample) 

S&P 500 straddle trading exercises. 
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4.1.3 The Significance of the Study 

The existing literature favours some rather complex volatility specifications but usually their 

empirical performance is little explored. Since the development of long-memory models in 

the early 1990's, there has been little research about the significance of their specifications. In 

this chapter we investigate the importance of power transformation and asymmetric 

parameterisation within the context of APARCH specifications. The consequence of this 

research is not only significant to discrete-time finance but also potentially meaningful for 

continuous-time stochastic volatility literature. Since there is a direct linkage between 

discrete GARCH-type models and bivariate diffusion models, if it can be shown that there is 

not much to gain from moving beyond a more parsimonious discrete specification such as 

EGARCH or GARCH, there seems to be little incentive to look beyond a simple stochastic 

model which allows for volatility clustering and a leverage effect such as the Hull-White 

model (1987) or the Heston model (1993). 

4.1.4 Organisation 

The remainder of this chapter is organised as follows. We discuss the in- and out-of-sample 

performance criteria, introduce the APARCH models and explain our experiment design in 

section 4.2. Section 4.3 describes the S&P 500 dataset. Section 4.4 presents estimation 

results and evaluates the in- and out-of-sample performance of different conditional volatility 

models under different statistical and economic metrics. Section 4.5 summaries the results. 

4.2 Methodology 

This study uses several econometric methods to evaluate the in-sample performance of a 

group of well-theorised conditional volatility models in the S&P 500 market. The data used 

for estimations are drawn from the S&P 500 futures and its options markets from the period 

1983-1998. In this section we first review the criteria and methods that are used in comparing 

conditional volatility models in this project. We will then discuss strategies that are used in 

analysing our results. Finally, we will explain the models used in carrying out the study, 

giving special emphasis to the APARCH models. 
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4.2.1 Performance Criteria 

A few performance metrics are used in this project to measure the in- and out-of-sample 

performance of different conditional volatility models: 

i) Log-likelihood tests, which are based on the maximum likelihood estimation numbers, 
are employed to test for the effectiveness of APARCH features; 

ii) AIC metric, which penalises the use of less parsimonious models, is used to select the 
best in-sample model in each sub-period; 

iii) The best overall in-sample model is chosen by the use of aggregate AIC ranking, 
which is defined as sum of the rank for each model in each sub-period. The lower, the 
better; 

iv) The only criterion used for evaluation of out-of-sample performance of conditional 
volatility models is profit and loss. The performance of volatility predictors is 

evaluated based on their ability to predict volatility changes and generate ex-ante 
profits from trading nearest-the-money S&P 500 straddles in four non-overlapping 
out-of-sample periods. The higher is the rate of returns per trade, the better is the 

model. 

4.2.2 Analytical Procedures 

This chapter uses many numerical and econometrical techniques to measure in- and out-of- 

sample performance of different time-series volatility models. They are carried out using the 

following procedures: 

i) Construct the S&P 500 futures series by rolling over sixty-eight S&P 500 futures 

contracts for the period 1983-1998. The issues relating to the rollovers of futures 

contracts are described in full detail in section 4.3.1; 

ii) Partition the constructed time-series into four non-overlapping segments. The 

partitioning of the data is motivated by the observation that the series do not exhibit 
homogeneous behaviour over the entire 16-year period; 

iii) Estimate the parameters of APARCH models and apply likelihood-based statistics to 

assess the relative performance of different models in each sub-period. The APARCH 

framework provides a general specification of the volatility dynamics that nests many 

well-known models, and log-likelihood ratio tests can be used to directly test for the 

robustness of different model specifications. Consequently, the effectiveness of 
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asymmetric parameterisation and power transformation can be examined within the 

context of APARCH specifications; 

iv) Study how structural change of volatility can have an influence on the performance of 

asymmetrical and symmetrical conditional volatility models. To support the 

hypothesis that performance of asymmetric and symmetric models are prone to the 

state of the samples, a three-state regime-switching model developed by Hamilton and 
Susmel (1994) is employed to identify any structural breaks in volatility of the S&P 

500 futures series from 1983 through 1998. This regime-switching model stipulates 

that conditional variance is selected from a number of possible ARCH processes 

which depends upon the state that eventuates; 

v) Repeat the above analysis with the inclusion of EGARCH. In addition to the log- 

likelihood inferences, we explore the ability of additional statistical error functions 

that allow for asymmetry in the loss functions of investors to track the in-sample 

forecasting performance of conditional volatility models. The statistical error 
functions used in this study are listed in appendix B. 2; 

vi) Conduct out-of-sample straddle trading exercises to illustrate the quality of various 

conditional volatility forecasts. 

4.2.3 Conditional Volatility Models 

4.2.3.1 APARCH Specification 

The APARCH (Ding et al., 1993) family is an ideal specification to study the long-memory 

process and conditional volatility in general since it can nest many popular models in a 

common framework. Adopting these specifications therefore allows one to investigate the 

performance of a number of existing specifications whilst keeping the empirical analysis 

manageable. Seven models are included as special cases: APARCH, ARCH, GARCH, 

TSGARCH-I, TSGARCH-II, GJR and TARCH. Appendix A. 1 shows the functional forms of 

these nested APARCH models. A more general framework which can also nest a number of 

GARCH-type models, including the models in the APARCH family, is given by Hentschel 

(1995)34: 

34 See section 2.2.3.5 for details. 
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E, = e1 ht 

f; (e, ) =1 e1 - b; I -c(e, - bi) 

hs -1 °sYg ha, -1 =ao+arhr-;. fr (e, )+ý 
S i=1 /=1 

where -1<_c51, v>0 and S>0. 

According to Engle and Ng (1993)35, the b parameter controls the magnitude and direction of 

a shift in the et_1 ý#> It, space whilst c produces the "rotations". S controls the shape of the 

transformation and if S>1 the transformation is convex; otherwise it is concave. The 

APARCH model is a special case of v=S, b = 0,1 c<_ 1: 

s, = eh, 
pq 

ha = ao +I a, (I E, _, ý -c; s, _J)S +1ß, hrd-J 
J=1 /=1 

Using S&P 500 returns data, some of Hentschel's important results are: 1) 8 =1.5 when 

v=S; 2) the c parameter was neither statistically nor economically significant in the model; 

3) small shocks made more contributions to volatility, but not large shocks. The "shifting" of 

news impact curve was the dominating factor in modelling asymmetry. As a result, the 

presence of b was more significant than c. The autocorrelation function for APARCH(1,1) 

was derived by Ding and Granger (1996): 

ý=Eýe1 i5 
pi a1 + 

ßý 
-ý-1 

ý(1-a, -Q, )(l+al +ßý) 
-1 

-ý 

+/312 +2a, /3) 
k-1 

Pk = Pl(al +/3, ) 

It is noted that autocorrelations of APARCH models decrease exponentially, not 

hyperbolically. Ding et al. 's results showed that the estimated power S was 1.43 and its 

asymmetric parameter c equal to -0.373, which suggested significant long memory and 

leverage effects did exist in S&P 500 returns. 

35 The reader is referred to section 2.2.3.3 for details of Engle and Ng (1993). 
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4.2.3.2 Lag Structure of APARCH Models 

A substantial simplification in comparing models can be made if one imposes a fixed lag 

structure by restricting the nested models to the order of p=q =136. Moreover, Pagan and 

Schwert (1990) showed that low-order GARCH models could fit stock return volatility 

extremely well. Therefore, the benefit of including additional parameters beyond p+q=2 is 

very small. In most applications, the special case that p=q =1 is found to be suffice (e. g. 

Akgiray, 1989; Bollerslev et at., 1992; Lamoureux and Lastrapes, 1990; Poon and Taylor, 

1992; Engle, 1993; Taylor, 1994; Kang and Brorsen, 1995; Antoniou and Holmes, 1995; 

Jorion, 1995; Antoniou et al., 1998; Duan and Wei, 1999). Throughout this study, 

APARCH(1,1) is the unrestricted model. In addition to APARCH(1,1), we will present 

estimates for a well-known but non-nested asymmetric models, EGARCH (Nelson, 1991)37 to 

complement our analysis. 

4.2.3.3 EGARCH 

The exponential GARCH (EGARCH) model was invented by Nelson (1991) in response to 

the criticisms that the stock returns were negatively correlated with changes in return 

volatility. EGARCH considers asymmetry in the variance equation. The EGARCH(1,1) 

specification can be modelled as follows: 

r, =g(x, _,; a)+E, 

= h, e, e, - N(0,1) e, 11, 
_, - 

N(0, h, ) 

= V+A. iz, _, 
+22(1z, 

_, 
1-(2/7l)os)+, ßlogh, 

_, 
x log h0 

where z, =h is the normalised residual. 

A negative X1 implies that a negative shock increases the conditional variance; it measures the 

sign effect. An estimated positive X2 indicates that a shock greater than (2/t)°'S also 

increases the conditional variance; it measures the size effect. This model accommodates the 

asymmetric relation between stock returns and volatility changes. The degree of asymmetry 

36 With the exception of ARCH and TARCH in which p=1, q=0. 
37 Since EGARCH is not nested within APARCH, they cannot be compared with the log-likelihood test. 
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or skewness can be measured by the absolute value of the ratio S=I++. In other words, 

it can be said that a negative standardised innovation (bad news) increases volatility S times 

more than a positive standardised innovation of an equal magnitude. The use of logarithms 

also means that parameters can be negative without the variance becoming negative. 

Therefore, it is not necessary to restrict parameter values to avoid negative variances as in the 

ARCH and GARCH models. 

4.2.4 Summary of the Methodology 

Sections 4.2.1-3 have reviewed the performance criteria, models and strategies used for the 

comparison of performance of EGARCH and APARCH models. It should be noted that the 

purpose of this study is to: 1) investigate the effectiveness of asymmetric parameterisation and 

power transformation; 2) study the impact of structural change of volatility on the 

performance of asymmetrical and symmetrical models. We assess the performance of our 

models both in- and out-of-sample. The use of out-of-sample trading is primarily intended to 

illustrate the usefulness of our conditional volatility forecasts. The next section discusses the 

construction and partitioning of the S&P 500 returns series in this study. 

4.3 Data Description 

The dataset comprises of daily settlement prices of S&P 500 futures and its options for the 

period from 1983 through 1998. We use the same options data described in Chapter 3 and 

apply several filters to the options data that are identical to those outlined in section 3.3.4. We 

refer the reader to Chapter 3 for the contract specifications of S&P 500 futures and its options. 

4.3.1 Rollover of S&P 500 Futures Contracts 

In order to investigate volatility forecastability, a futures series is required. Sixty-eight futures 

contracts are studied between January 1983 through December 1998. Because the maximum 

life span of S&P 500 futures contract is two years, a continuous series of nearby daily futures 

prices needs to be constructed. It is well-known that the rollovers of futures contracts can 

generate significant biases in the various time-series properties of the artificial price series, 
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depending upon the rollover method chosen. The necessary decisions involved in rolling over 

contracts include: 

i) The point in time at which the current contract is rolled to the next; 

ii) The adjustment of price level of the contract upon rollover. 

According to Ma et al. (1992), it appears that different conclusions can be drawn from the 

empirical results estimated from time-series generated from different contract rollover 

methods. Moreover, most of the differences in results cannot be predicted. While adjusting 

the differential price levels at rollover dates reduces volatility, some artificial but drastic 

measurement errors are created if returns are computed using the adjusted price series. The 

magnitude of the measurement error can get so large that the direction and size of the biases 

from the different rollover methods is lost. Two subtle problems arise when the price levels 

are differenced multiple times over different ranges of the time series: 

i) The level-adjust procedure effectively replaces the large positive/negative daily price 

changes at the rollover dates with zero price changes. Consequently, the variance and 

serial correlation estimates may be biased; 

ii) Negative price syndrome. Futures prices can become negative if they are differenced 

multiple times. 

There is no "best" method to rollover contracts. Despite the fact that rollover methods are 

potentially problematic, a long time-series has to be constructed to provide enough degrees of 

freedom for any meaningful statistical inference. We avoid rolling over at the delivery date 

since it almost always generates excessive volatility. During the maturity months, the nearby 

futures prices are rolled over by the daily prices of first deferred contract. The rollover is 

occurred on the first trading day of the maturity month. Following this method, the futures 

dataset contains 4,046 observations. 

4.3.2 Partitioning and Descriptive Statistics for Time-Series 

The S&P 500 futures time-series constructed in section 4.3.1 are divided into four non- 

overlapping periods: 1983-1986,1987-1990,1991-1994 and 1995-1998. The partitioning of 

the data is motivated by the observation that the series do not exhibit homogeneous behaviour 

over the entire 16-year period. The S&P 500 futures series is I(1) in each of these periods. 

First differences in logs of S&P 500 futures levels are employed to calculate returns. Each 
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period contains about 1,000 observations. Tables 9-11 show the descriptive statistics for r, r2 

and Ir1. The Dickey-Fuller test rejects the null hypothesis that there is a unit root in the full 

sample and each of the sub-periods. The Jarque-Bera statistic also rejects the null hypothesis 

that r, r2 or IrI is normal in the full sample and all of its sub-periods. 

The standard deviation of 1987-1990's return is 0.017467, which is highest among all sub- 

periods. Skewness is negative in all periods except in 1991-1994, which is slightly positive. 

Therefore, it is more likely to have negative than positive returns. Excess kurtosis is 179 for 

the entire series. Excess kurtosis in sub-periods 1983-1986,1987-1990,1991-1994 and 1995- 

1998 are 2.5,148.8,3.1 and 8.2, respectively. The 1987-1990 return series has the most 

negative skewness and most positive excess kurtosis. Our preliminary statistics posit that 

futures returns are fat-tailed and not normal. Figures 19-33 are the sample autocorrelation 

1.96 
plots for r, r2 and IrI with their 95% confidence intervals +/- . Figures 19,25 and 31 

show that there are some small negative low-order return autocorrelations in 1983-1998, 

1987-1990 and 1995-1998. In addition, Ljung-Box statistics for r in table 9 are significant in 

1983-1998,1987-1990 and 1995-1998, which also suggest that is are serial correlated. An 

inspection of their corresponding autocorrelation plots, however, show that is are not related 

to many lags - an indication of short memory. This suggests that volatility in the distant 

future is insensitive to current information in sub-periods. 

Ljung-Box statistics for r2 in table 10 are significant in all periods except in 1983-1986. 

Figures 20,23,26,29 and 32 are correlograms for r2. It is evident from figures 23 and 29 

that r2 in 1983-1986 and 1991-1994 do not contain many lags of memory. Table 11 shows 

the descriptive statistics for Ir1. Although returns themselves contain little serial correlation, 

there is substantially more correlation in absolute returns. Ljung-Box statistics for IrI are 

significant in all periods except in 1983-1986. On inspection of figures 21,27 and 33, we 

observe that IrI can have autocorrelations as high as 70 lags; they decay slowly and remain 

significant until around 70,15 and 75 lags in 1983-1998,1987-1990 and 1995-1998, 

respectively - an evidence of long memory. Figures 20,26, and 32 also display significant 

and large positive peaks for r2 in the first few lags of autocorrelations in 1983-1998,1987- 
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1990 and 1995-1998. However, they decay very rapidly and disappear completely within 10 

lags. 

4.3.2.1 Summary of Descriptive Statistics 

A number of observations can be drawn from the descriptive analysis in this section: 

i) Returns are not independent, although they are likely to be uncorrelated; 

ii) Transformation of returns, i. e. I rI and r2 are more predictable. These two series 

have "longer memory" than returns; 

iii) 1983-1998,1987-1990,1995-1998 are statistically more "noisy" and correlated; 

iv) 1983-1986 and 1991-1994 are statistically more "quiet" and less correlated. 

4.4 Results & Analysis 

This section discusses our empirical results for the in-sample and out-of-sample tests. First, 

we present the results from maximum likelihood estimation of the parameters for APARCH 

models. Second, we investigate how structural change of volatility can have an influence on 

the performance of asymmetrical and symmetrical conditional volatility models. Third, we 

extend the in-sample analysis by introducing more loss functions and an additional 

asymmetrical conditional volatility model. Fourth, we evaluate the performance of different 

conditional volatility models by conducting option trading experiments in a number of out-of- 

sample periods. 

4.4.1 Rationale forAR(1) Return Process 

According to Koutmos and Tucker (1996), the serial correlation displayed in the S&P 500 

futures 'series could be a result from thin trading of some stocks, non-synchronous 

measurement of the component stock prices of the index or rollover of futures contracts. To 

remove the autocorrelations in the daily S&P 500 series, an AR(1) process is used to 

formulate the conditional mean returns. This AR(1) return process is given by: 

r= ao + 
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where E, = v, h,, v, - i. i. d. student-t and h, is the conditional volatility. 

The AR(1) process simply states that returns are first order autocorrelated. Among others, 

Akgiray (1989), Hamilton (1989,1994), Heynen and Kat (1994) and Bracker et al. (1999) also 

suggested the use of AR(1) in modelling the conditional mean equation. In practice, it is not 

uncommon to model returns using MA(1) (e. g. Poon and Taylor, 1992; Ding et al., 1993). 

MA(1) was fit to the S&P 500 series but AR(1) is proven to be more suitable across all 

periods. Since the primary objective is to select a consistent conditional volatility model 

rather than studying the market microstructure of the S&P 500 index, other specifications for 

conditional mean are not considered here38. 

Empirical evidence frequently shows that normal distribution is not sufficient to remove fat 

tails from the empirical distribution of asset returns. Since non-normal distributions usually 

achieve better results than the normal density, all models are estimated with t-distribution. 

The Berndt, Hall, Hall and Hausman (1974) algorithm is used to obtain parameter estimates 

and maximises the log-likelihood function in GAUSS program. In addition, the gradient is 

calculated numerically. Our parameter estimates are insensitive to various initial conditions 

for our sample, making it likely that global maxima are achieved. 

4.4.2 In-Sample Analysis: Maximum Likelihood Estimations of APARCH 

Parameters 

Section 4.4.2 has two goals: 1) to apply log-likelihood ratio tests to test for the "effectiveness" 

of APARCH features, i. e. power transformation and asymmetric parameterisation; 2) to 

investigate the in-sample performance of different APARCH models based on log-likelihood 

statistics. Summary for maximum likelihood estimations is presented in section 4.4.2.3. 

The parameter estimates for the seven nested APARCH models in appendix A. 1 are obtained 

by maximisation of the log-likelihood function. The general APARCH framework is given 

by: 

38 For example, intraweek effects, such as Monday effect, are not to be studied. Mixon (2002) also argued that 
80-90% of the variation in implied volatilities in short-dated S&P 500 options could be explained by 

contemporaneous return. 
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rr = ao +a, r, -, 
+e 

ha =ao+a, (ýE, 
_, 

Tables 12-16 present the estimates of APARCH models and their Akaike Information 

Criterion (hereafter AIC)39 and log-likelihood (hereafter LL) statistics for 1983-1998,1983- 

1986,1987-1990,1991-1994 and 1995-1998, respectively. The 12th order Ljung-Box 
2 

statistics for -' 
and 

EZ 
are shown in table 17. Table 18 shows the model rankings for the 

h, h2 

AIC metric in each of the periods. 

4.4.2.1 In-Sample Results from Maximum Likelihood Estimations 

A number of observations can be drawn from tables 12-18. They are reported as follows: 

i) The intercept parameter ao in the conditional mean equation is positive but it is 

significant only in 1983-1998,1987-1990 and 1995-1998. The estimated AR(1) term, 

a,, is negative and significant only in 1983-1998, suggesting returns are likely to be 

first order correlated in the long run. These results also suggest that the returns 

process is a white noise process in 1983-1986 and 1995-1998; 

ii) An observed trend for ARCH and TARCH in tables 12-16 is that they have the lowest 

AIC and LL statistics in all sample periods. In addition, the 12`h order Lung-Box 
z 

statistics for £ 
and 

e2 in table 17 show that ARCH and TARCH are extremely poor 
ht h1 

in capturing the first order and ARCH effects. AIC and LL statistics confirm that 

ARCH and TARCH are inferior models compared to other members of the APARCH 

family in every sub-sample. Because of this poor performance, one can safely 
disregard the significance of ARCH and TARCH models; 

iii) APARCH(1,1) has the highest LL statistics in the full sample and its sub-periods. 

This is not a surprising result since APARCH(1,1) is the least parsimonious model 

within the APARCH framework; 

iv) The power parameter S for APARCH(1,1) is estimated to be 0.9981 for the entire 16- 

year period, which is not significantly different from one. This result is in line with 

the "Taylor effect" property. The sub-periods' results are mixed. The power 

39 AIC=LLR p where p is the number of parameters. 
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parameter 8 is significant and close to one in 1987-1990 and 1995-1998 but it is close 
to two in 1983-1986 and insignificant in 1991-1994; 

v) The asymmetric parameter y, is positive and significant for APARCH in 1983-1998, 

1987-1990 and 1995-199840 but it is insignificant in 1983-1986 and 1991-1994; 

vi) Model rankings for the AIC metric in table 18 indicate that the asymmetrical 
APARCH and TSGARCH-II models are the top performers in 1983-1998,1987-1990 

and 1995-1998; 

vii) Symmetrical GARCH ranks first for the AIC metric in 1983-1986 and 1991-1994, 

respectively. However, GARCH is only ranked fifth by the AIC metric in 1987-1990 

and 1995-1998. 

4.4.2.2 Are APARCH Specifications Effective? 

Estimation results obtained in section 4.4.2.1 lead us to cast doubt on the performance of 

APARCH specifications in sub-periods because GARCH is found to have outperformed other 

more complex models in 1983-1986 and 1991-1994. In addition, estimated S and y, of 

APARCH(1,1) are often insignificant in sub-periods. In this section we use log-likelihood 

ratio tests4' (hereafter LLR) to examine the effectiveness of the power and asymmetric 

parameters within the context of APARCH in sub-periods. 

4.4.2.2.1 LLR Test: Is Power Transformation Effective? 

The Box-Cox power transformation is one of the most distinguishing features of APARCH 

specifications. The power parameter S is believed to be responsible for the long decay in the 

autocorrelation function but is it effective in improving in-sample fit? This question is 

answered by conducting the following hypothesis tests: 

Ho : GJR vs HI: APARCH 

Hp : TSGARCH - II vs HI: APARCH 
ý 

y2 (1) 

-ýx42(1) 

40 These results are consistent with Black's observation that negative shocks are weighed more heavily than 

positive shocks in modelling volatility. 
41 The idea behind the LLR test is that if the a priori restrictions are valid, the restricted and unrestricted log- 
likelihood values should not be different. Formally if model A, having n parameters, is nested within model B, 
having m parameters, and the true parameters are within the parameter space defined by model A, then 2[ln(LB)- 

ln(LA)] approximately follows a ;, '2 distribution with (m-n ) degrees of freedom. 
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The following results are obtained for the hypothesis tests: 

i) LLR tests can only reject GJR against APARCH(1,1)42 at the 5% level in the entire 
sample, but not in any sub-periods; 

ii) LLR tests cannot reject TSGARCH-II (when S= 1) at the 5% level against APARCH 

in either the full sample or any sub-periods. 
Hence, it suggests that the incorporation of a free power parameter is less significant in sub- 

periods. The fact that LLR test cannot reject TSGARCH-II in favour of APARCH also 

signifies that the usefulness of power transformation in long sample is questionable. 

4.4.2.2.2 LLR Test: Is Asymmetric Parameterisation Effective? 

Another fixture of APARCH specifications is what Engle and Ng (1993) term as "rotation" 

when studying the "news impact curve"', in which y, is responsible for this "rotation" effect 

within the APARCH framework. The use of the asymmetric parameter y, is supposed to help 

capture leverage effects in the underlying asset but is this asymmetric parameterisation 

effective? The following hypothesis tests are conducted to test for the usefulness of 

asymmetric parameterisation: 

Ho : GARCH vs H,: GJR 

Ho : TSGARCH -I vs H,: TSGARCH - II 

Ho : GARCH vs H,: APARCH 

-x=(1) 
_ x2 (1) 

- iL2(2) 

The results are: 

i) LLR tests can only reject GARCH against GJR44 in full sample at the 5% level, but 

not in other sub-periods except in 1995-1998. 

ii) LLR tests can only reject TSGARCH-I (y, = 0) against TSGARCH-II in full sample 

at the 5% level, but not in other sub-periods except in 1995-1998; 

iii) LLR tests cannot reject GARCH against APARCH45 at 5% level in 1983-1986,1987- 

1990 and 1991-1994. 

42 APARCH(1,1) becomes GJR(1,1) when its power parameter S =2. 
43 See sections 2.2.3.3 and 4.2.1 for details of Engle and Ng (1993). 

as GJR(1,1) becomes GARCH(1,1) when its asymmetric parameter y=0. 

45 ApARCH(1,1) becomes GARCH(1,1) when 8=2 and Y, = 0. 
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Based on the above hypothesis tests, we conclude that the effectiveness of asymmetric 

parameterisation in sub-periods is questionable within the APARCH framework. These 

results are in agreement with Hentschel's (1995) findings that y, (rotation effect) is neither 

statistically nor economically significant. 

4.4.2.3 Discussions for APARCH In-Sample Results 

Due to the complexity of our experiment design, it is necessary to restate the results of 

sections 4.4.2.1-2: 

i) Asymmetrical models such as TSGARCH-II and APARCH exhibit superior 

performance in the full period, 1987-1990 and 1995-1998 in terms of AIC and LLR 

statistics. The estimated power parameter, 8, is close to one. Therefore, it is not 

surprising that the performance of TSGARCH-II is as robust as APARCH; 

ii) Symmetrical GARCH outperforms other APARCH models during 1983-1986 and 
1991-1994 in terms of the AIC metric; 

iii) Results from LLR tests question the usefulness of the power transformation in 

modelling conditional volatility within the context of APARCH in both short and long 

samples; 

iv) Results from LLR tests cast doubt on the effectiveness of incorporating the leverage 

effect within the context of APARCH in sub-periods; 

v) ARCH and TARCH models, which do not incorporate any lag conditional volatility, 

underperform every model all the times. 

In addition, table 18 also shows that the rankings across models are mixed in different sample 

periods. Our results indicate that asymmetrical models such as TSGARCH-II and APARCH 

tend to provide better fit in 1983-1998,1987-1990 and 1995-1998 whilst symmetrical 

GARCH is favoured in 1983-1986 and 1991-1994. There is no evidence to confirm that there 

is a single model that will remain robust in every sub-period. 

4.4.3 Are Conditional Volatility Models Prone to the State of Volatility? 

In this section we investigate whether structural change of volatility can have an influence on 

the performance of asymmetrical and symmetrical conditional volatility models. 
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4.4.3.1 Student-t SWARCH(3,2)-L Model 

As mentioned earlier, the partitioning of the data is motivated by the observation that the 

futures series do not exhibit homogeneous behaviour over the entire 16-year period. To 

support the hypothesis that performance of asymmetric and symmetric models are prone to the 

state of the samples, a 3-state student-t Markov-switching ARCH-L(2) developed by 

Hamilton and Susmel (1994) is employed to model the S&P 500 futures series from 1/1/1983 

to 31/12/1998 and identify any structural breaks in volatility. 

The specification of a leveraged student-t 3-state, second order-ARCH Markov-switching 

model is given by: 

r, =a+Or, _, +u, 

uý- Ss, 'uý 
ül=h1"vl 

h2 = Ao +. ýü12, + /ý, 2u122 + dl-I ' ü12l 

where vt -i. i. d. student-t with unit variance and v degrees of freedom, st = 1,2,3, g1=1 when 

st =1, g2 =k when s, =2, and g3 =1 when st =3, Z>k>0, dt_1=1 if ü, 
_, : 

50, dt_1= 0 if 

ü, 
_t >0 and -1<ý<1. 

This switching model postulates the existence of an unobserved state variable, denoted s, , 

that takes on the value of one, two or three. This variable characterises the "state" or 

"regime" that the process r is in at date t. When s, =1, the observed r is presumed to have 

been drawn from a low volatility state, when s, =2r is presumed to have been drawn from a 

mid volatility state, whereas when s, =3r is presumed to have been drawn from a high 

volatility state. The transition probabilities for the Markov chain for evolution of the 

unobserved state variable is written as: 

P= 

Pll P21 P31 

P12 P22 P32 
P13 P23 P33 

where i=j=1,2,3, p;, j =Prob(s, = jIs, 
_, = i), the transition probability from state i at time 

t-1 to state j at time t. The process for s, is presumed to depend on past realisations of return 
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r and state s only through s, -,. 
The inference about the particular state the process is in at 

date t using the full sample of observations T can be used to construct the "smoothed 

probability", AS, I rT, rr-,,..., r3). 

4.4.3.2 Detecting Structural Breaks in S&P 500 Futures Series 

The methods developed in Hamilton (1989) are used to estimate parameters for S&P 500 

futures from 28/4/1982 to 31/12/1998 and make inferences about the unobserved regimes'. 

The estimated student-t SWARCH-L(3,2) specification with its standard errors are given by: 

r, =0.06551+0.03369r,, +u, 
(0.01203) (0.01587) 

g, =1, g2 = 2.51152, g3 = 9.74334 
(0.18513) (1.34630) 

h, ' = 0.40248 + 6.68390 . 10-4 ü,, + 0.025455ü, 2 
2 + 0.078354d, 

_, " 
ü,?, 

(0.029049) (0.01105) (0.01755) (0.03246) 

v=4.91416 
(0.40128) 

0.99242 0.00251 0.01594 

P=0.00373 0.99493 0.01600 

0.00375 0.00255 0.96801 

4.4.3.2.1 Interpretations of Estimated SWARCH(3,2)-L Parameters 

All coefficients, except ýi and '12, are significant. In addition, returns exhibit significant 

serial correlation. Although the t-ratio of 1.4507 for 22 is insignificant at the 5% level, its t- 

value is not completely out of line. The degree of freedom is 4.9142, which is far apart from 

being normal. The conditional variance in states 2 and 3 are estimated to be 2.512 and 9.743 

times as large as in state 1, implying a subtle break of volatility in regimes 2 and 3. e is 

positive and significant at the 5% level, suggesting that leverage effects do play an important 

role in our data. 

46 We use GAUSS program downloaded from Hamilton's website at UCSD to estimate this model. We are 
thankful to Jame Hamilton's generosity. 
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The high transition probabilities (diagonal of P) indicate that if the system is in either state 1, 

2 or 3, it is likely to remain in that state. Figure 34 plots the daily S&P 500 returns and 

smoothed probabilities for state 3, the ultra high volatility regions. States 1 and 2 are 

combined to display the milder volatility regions in figure 35. A 50% horizontal line is drawn 

in order to determine a switch of volatility state. Five short periods of high-volatility episodes 

can be identified characterising 4/1982-12/1982,3/1987-4/1987,10/1987-1/1988,8/1990- 

11/1990 and the twin-peak region between 10/1997-11/1997 and 7/1998-10/1998. At the 

inception of S&P 500 futures market in 1982, the market is extremely volatile. The October 

1987 crash is likely to be responsible for the observed high volatility in 10/1987-1/1988. The 

market is judged to have been in the high-volatility state in the second half of 1990 because of 

the Gulf War. The surges of volatility in 10/1997-11/1997 and 7/1998-10/1998 coincide with 

the timing of the Asian Financial Crisis and Russian Debt Moratorium, respectively. The 

origin of the 3/1987-4/1987 cannot be identified with any documented macroeconomic event. 

4.4.3.3 Implications of Results from SWARCH(3,2)-L Model 

The student-t SWARCH-L(3,2) results confirm that: 

i) 1987-1990 and 1995-1998 are in the high-volatility state; 

ii) 1983-1986 and 1995-1998 are in a more "subdued" state; 

iii) Student-t SWARCH-L(3,2) is able to capture a number of economically important 

features of the data which may not otherwise be captured by standard conditional 

volatility models; 
The student-t SWARCH-L(3,2) result has not only validated our assumption that asymmetric 

models such as TSGARCH-II and APARCH are more appropriate for volatile samples 

(symmetric models such as GARCH are more appropriate for less volatile periods), but also 

lent credibility to our finding in sections 3.4.3 and 3.4.4 that the S&P 500 market has started 

behaving more volatile and asymmetrically since 1987. Finally, the multiple volatility 

breakpoints in S&P 500 futures series support the contention that perhaps there is no single 

APARCH model is rich enough to allow thorough assessment of asymmetry and structural 

effect at the same time. 
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4.4.4 Additional In-Sample Analysis: EGARCH and Statistical Loss Functions 

Evidence in sections 4.4.2 and 4.4.3 demonstrates that: 1) asymmetrical (symmetrical) models 

are superior to symmetrical (asymmetrical) models in more (less) volatile sample periods; 2) it 

is ineffective to incorporate power transformation and asymmetric parameterisation within the 

context of APARCH specifications; 3) notably, multiple structural breaks in the S&P 500 

futures series imply that no single APARCH model is rich enough to model volatility in the 

presence of asymmetry and structural change at the same time. 

In this section we extend our analysis by including a popular asymmetrical EGARCH 

(Nelson, 1991) model. In addition to the likelihood-based inferences, we also explore the 

ability of eight additional statistical error functions that allow for symmetry/asymmetry in the 

loss functions of investors to track the in-sample performance of the conditional models. 

4.4.4.1 Inclusion of EGARCH 

The EGARCH specification is not nested within the APARCH framework but it is important 

to study the performance of EGARCH with APARCH models because EGARCH is a more 

parsimonious specification which converges to the Wiggins model in diffusion limit. A 

EGARCH(1,1) can be written as: 

6, = hy, 

log h, 
2 

= as + a, z1-, + Y, (I z, -, 
1-(217r)")+ß, log hr-, 2 

=hý, v, -i. i. d. where z, student-t with unit variance and v degrees of freedom. 
h, 

Estimates of the EGARCH model are displayed with APARCH models in tables 12-16. The 

following are observed: 

i) All a, of EGARCH are negative, indicating that a negative shock increases the 

conditional volatility; 

ii) All estimates of y, for EGARCH are positive and significant, suggesting that a shock 

greater than (2/; r)'-'also increases the conditional volatility; 

iii) Negative a, and positive v, are consistent with Black's leverage effect in equity 

returns; 

iv) All j ß, I< 1, meaning that the EGARCH process is stationary in each sub-period; 
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v) IA is significantly smaller during 1991-1994 and 1995-1998, which suggests that 

the persistence of volatility clustering is relatively limited in the second half of the 

samples. 

4.4.4.1.1 In-Sample Results for EGARCH 

Due to excess kurtosis and negative skewness in the S&P 500 futures returns series, the prior 

expectation is that asymmetrical models provide a better fit to the "noisy" periods as opposed 

to symmetrical models, and vice versa. Model ranking for AIC in table 19 shows that: 

i) EGARCH is the best model in terms of AIC in 1983-1998 and the pre-defined "noisy" 

sub-periods in 1987-1990 and 1995-1998; 

ii) GARCH remains best model in terms of AIC in the pre-defined "quiet" sub-periods in 
1983-1986 and 1991-1994; 

iii) EGARCH is only ranked fifth and fourth in the pre-defined "quiet" sub-periods in 

1983-1986 and 1991-1994. 

iv) Overall EGARCH is best in terms of aggregate AIC score, followed by TSGARCH-II 

and GJR whilst GARCH and APARCH are tied in fourth. 

Apparently our prior expectation that asymmetrical (symmetrical) models provide a better fit 

to the noisy (quiet) periods is upheld. In addition, these results demonstrate that EGARCH is 

a more consistent and capable than APARCH models to capture asymmetries in the S&P 500 

market. 

4.4.4.1.2 Discussion for In-Sample Results based on AIC 

Our results indicate that the APARCH model performs poorly in the S&P 500 market. On the 

basis of the AIC metric, we find that EGARCH and GARCH provide the best in-sample fit for 

the S&P500 data in different sub-periods. The results obtained from the in-sample analysis 

are not unanticipated since the EGARCH model measures both sign and size effects: a 

negative al implies that a negative shock increases the conditional variance (sign effect); an 

estimated positive Al indicates that a shock greater than (2/i)°'S also increases the 

conditional variance (the size effect). Thus the EGARCH model is able to accommodate a 

more complex asymmetric relation between stock returns and volatility changes. 
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4.4.4.1.3 Plausible Explanation for the Poor Performance of APARCH 

The APARCH model was originally designed to model the long memory property inherited in 

the power transformation of absolute returns. There is, indeed, little evidence for long- 

memory in sub-periods as evidenced in the autocorrelations plots in figures 23,24,26,27,29, 

30,32 and 33 for r2 and Ir1. Therefore, it is not surprising that the APARCH model is not 

able to outperform EGARCH and GARCH even in a large sample. 

4.4.4.2 Inclusion of Alternative Statistical Loss Functions 

In the previous analysis models are selected using the likelihood-based inferences such as the 

AIC metric and LLR test. AIC and LLR statistics use information inferred from maximisation 

of log-likelihood functions to give an indication of goodness-of-fit of the model estimated, 

which may deviate from the results of other more meaningful loss functions. The log- 

likelihood statistic selects the most appropriate model by maximising the probability of 

having the observed data given that the functional form of the probability density function is 

pre-determined. The AIC criterion, in turn, chooses the most parsimonious model by using 

information from the log-likelihood function plus a penalty adjustment involving the number 

of estimated parameters. These criteria are subject to distributional assumption. Therefore, it 

is also very important to examine the ability of other distributional-free loss functions to track 

the in-sample performance of conditional volatility models. 

4.4.4.2.1 Procedures for Calculating In-Sample Statistical Errors 

In order to make complete our analysis, eight additional statistical loss functions are included 

in the in-sample study and their functional forms are shown in appendix A. 2. They are: 

i) Mean-square error (MSE); 

ii) Mean absolute error (MSE); 

iii) Mean-absolute percent error (MAPE); 

iv) Mean-mixed error which penalises under-predictions (MMEU); 

v) Mean-mixed error which penalises over-predictions (MMEO); 

vi) Logarithmic loss function (LL); 

vii) Heteroskedasticity-adjusted mean-square error (HMSE); 
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viii) Guassian quasi-maximum likelihood function (GMLE). 

MSE, MAE and MAPE are symmetrical loss functions whereas MMEO, MMEU, LL, HMSE 

and GMLE are asymmetrical loss functions. Asymmetrical loss functions are included here 

because investors do not necessarily attribute equal importance to both over- and under- 

predictions of volatility of similar magnitude. The Performance of a conditional volatility 

prediction model judged by its ability to predict future ex post volatility. Following Bracker 

and Smith (1999), the procedures in measuring the alternative in-sample statistical errors are: 

i) Estimate the structural parameters for the whole sample and each sub-period in our 
sample, i. e. 1983-1998,1983-1986,1987-1990,1991-1993 and 1995-1998; 

ii) Use e, as a volatitliy proxy esimated from the structural mean equation at day t: 

rr =ao +a, r, _, 
+E, 

iii) Calculate the statistical error statistics according to table A. 2 where T is the number of 
observations per period and h, is the ex-post predicted conditional volatility at day t. 

4.4.4.2.2 Results for Alternative Statistical Loss Functions 

Table 21 exhibits the in-sample model rankings for MMEO and MMEU. Table 22 shows the 

in-sample rankings of models under HMSE, GMLE and LL statistics. Table 23 displays the 

in-sample rankings for MSE, MAE and MAPE. Table 24 is the aggregated rankings for all 

statistical loss functions. Results from tables 21-23 reveal that: 

i) Alternative model rankings are highly sensitive to the statistics used to assess the 

accuracy of the forecasts; In the case of EGARCH, it is ranked first by MAE but is the 

worst model according to MSE and MAPE statistics; 

ii) It is interesting to realise the exceptional performance of models ranked by some 

statistical loss functions that are previously identified as poor models in the AIC 

analysis. For example, the ARCH and TARCH models are ranked last by log- 

likelihood inference statistics such as AIC, LL and GMLE but they are the best models 

according to the MMEU statistic. 

4.4.4.2.3 Comments on Results for In-Sample Statistical Loss Functions 

Our results show that no single model is clearly superior under alternative statistical criteria. 

Consequently, it is not sensible to evaluate forecasting performance with only a single 

statistical loss function. As suggested by Li (2002), these confusing results could be 
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introduced by the way volatility proxy was constructed using squared returns. Furthermore, 

the forecasting performance of different conditional volatility models may as well depend on 

the specific asset class under consideration. The question remains what criteria should one 

use to judge the superiority of any volatility forecast. 

4.4.5 Out-of-Sample Analysis: Trading S&P 500 Straddles 

4.4.5.1 Background 

Whilst in-sample investigations provide useful insights into volatility forecasting 

performance, models are selected only on the basis of ex-post information. For practical 

forecasting purposes, the predictive ability of these models needs to be examined out-of- 

sample. Given the conflicting results of the competing statistical loss functions in section 

4.4.4.2, it is recommended that the choice of error measure should depend on the ultimate 

usage of the forecasting procedure, i. e. the utility function of the user of the forecast. The 

AIC metric might be more appropriate for selecting models when there is a given 

distributional assumption. In the context of option trading, however, a call option buyer being 

concerned with over-predictions, would prefer the MMEO statistic47. 

4.4.5.2 Volatility Forecasting Models 

The purpose of this section is to use an out-of-sample preference-free approach to illustrate 

the quality of different forecasting models by predicting the one-step ahead changes of 

implied volatility and conducting ex-ante S&P 500 straddle trading. The models under 

investigation in this section are: 

i) EGARCH(1,1) 

ii) GARCH(1,1) 

iii) ARCH(1) 

iv) A two-stage predictor of conditional volatility. 

47 See Brailsford and Faff (1996) for details. 
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The forecasting models employed in our trading experiments are selected primarily based 

upon the results obtained in section 4.4.4. They range from naive models to the moderately 

complex class of ARCH models. Unlike other ARCH-type models that simultaneously 

estimate parameters from both the conditional mean and variance equations, a two-stage 

regression model updates them independently. A two-stage predictor models conditional 

volatility by first calculating the proxy for conditional volatility and then fitting a standard 
AR(1) model for this proxy. It is given by: 

r =ao+Sr 
ý Sý 1= ao + al ý Sr-1 ý 

where e, = v, h,, v, - i. i. d. normal and h, is the conditional volatility. is a proxy for 

expected future volatility. 

4.4.5.3 Trading Methodology 

As volatility is unobservable, there is no natural metric for measuring the accuracy of any 

particular model. Realised returns, however, allow one to test the performance of volatility- 

driven option trades and provide a test for market efficiency with respect to volatility 

forecasts. Many studies have used realised profits as a yardstick to assess the forecasting 

performance of conditional volatility models, e. g. Engle et al. (1993) and Noh et al. (1994)48. 

This section evaluates the performance of different volatility forecasting models by assessing 

whether profits can be generated from trading nearest-the-money49 straddles on S&P 500 

futures with shortest remaining times to maturitySO. 

4.4.5.3.1 Why Trading Delta-Neutral Straddles? 

According to Becker et al. (1991), the advantages of the use of nearest-the-money options are: 

i) It reduces the non-synchronous data problem because they have the greatest liquidity 

and represent accurate measures of ex-ante market volatility; 

48 See section 2.5.6.1 for review of volatility trading. 
49 In the real world with limited supply of options we are more likely to trade nearest-the-money straddles. 
50 It corresponds to region 11 in our database. They are nearest-the-money options with maturities between 21 

and 70 days. 
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ii) The purchase (sell) of a straddle is a simple strategy established as a volatility trade 

when a trader has a bullish (bearish) outlook on the volatility of the underlying futures; 

iii) Nearest-the-money call and put options have deltas close to 0.5 and -0.5, respectively, 
giving straddle a combined position of nearly zeros'. A near-zero delta would mean 
that a small change of the underlying futures in either direction would have little or no 
impact on the option price, thus making straddle essentially a volatility trade. 

4.4.5.3.2 Trading Assumptions 

A few assumptions are needed in order to rationalise our trading strategy. They are as 

follows: 

i) Conditional volatility is a reasonable proxy for at-the-money implied volatility. This 

is not unreasonable since many studies have found that the Black-Scholes implied 

volatility is empirically indistinguishable from most stochastic and conditional 

volatility option pricing models when options are at-the-money and have short times to 

expiration; 

ii) The changes in implied volatility is predictable in a statistical sense (e. g. Harvey et al., 
1991,1992; Noh et al., 1994; Fleming et al., 1995; Bilson, 2002) but not the level of 
implied volatility, and profits depend on correct forecasts of the directional change of 
the underlying futures' volatility; 

iii) Within this study, it is noted that the forecasting horizon matches the investment 
horizon, but not the remaining maturity of the straddles. The use of shortest-maturity 
straddles should mitigate the impact of the maturity mismatch problem; 

iv) The forecasts made on week t for week t+1 are weekly instantaneous volatility that 
tends towards the short-term weekly mean volatility. An anticipated gain results from 

the expected tendency of options to increase or decrease in volatility. 

4.4.5.3.3 Trading Strategy 

The following procedures explain how we conduct our trading exercises of S&P 500 straddles 

in this study: 

st Alternatively, a long call and a short futures contracts with an appropriate hedge ratio can achieve a delta-zero 

position too. However, the hedge ratio is not necessary to be integer and we cannot trade fractional contracts of 
futures, making the delta-neutral position more difficult to obtain. Moreover, it requires a bigger investment in 

margins than a pure option hedge (Wood et at. 1987). 
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i) S&P 500 futures time-series constructed in section 4.3.1 are divided into four 

successive non-overlapping sub-periods of four years, i. e. 1983-1986,1987-1990, 
1991-1994 and 1995-1998; 

ii) The last two years in each of the sub-periods, i. e. 1985-1986,1989-1990,1993-1994, 
1997-1998, are reserved for out-of-sample evaluation purposes; 

iii) Each volatility predictor forms a trading opinion by estimating a one-step ahead 
forecast on each week during out-of-sample periods; 

iv) For each Wednesday of an out-of-sample period, we select the shortest-maturity 
straddle whose exercise price is closest to the current futures level; 

v) At the end of Wednesday's trading on each week t, conditional volatility estimates are 
obtained from processing the most recent returns data up to and including week t -1; 

vi) The coefficient estimates are then applied to the information available on week t to 
form forecasts of the volatility change for week t+1; 

vii) If volatility is predicted to increase (decrease) from week t to week t+1, a straddle is 

purchased (sold); 

viii) Once a straddle position is obtained at week t, the trade will be reversed at week t+1; 

ix) We assume that options can be sold and purchased at daily settlement prices, and 
actual settlement prices on CME's futures options are used to compute the profit and 
loss; 

x) Sample size is increased by one as most recent data become available and each 

model's parameters are re-estimated on every successive Wednesday over the 

remaining of the out-of-sample periods, therefore successive weekly estimates of 

volatility on week t can be calculated recursively using only returns information before 

week t. 
In addition, we assume that there is no margining requirement and agents are free to sell short. 

Each agent invests $100 and trades the nearest-to-the-money contract. When a straddle is 

sold, the agent is allowed to invest the proceeds plus $100 in a risk-free asset. Two general 

cases are considered: 1) without transactions costs; 2) with transactions costs; we assume that 

a straddle trade costs of 25 basis point ($250*0.25=$62.5) for both legs in commissions. The 

rate of return on buying straddles is computed as follows: 

RR, = 
100 (C, +P, -C, _, -P, -, 

)+100*I*rf- 100 
* TC 

(Ct-1 + pt-1) (C, 
-l - 

P, 
-1) 
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where C, and P, are call and put prices at time t, respectively. I is either 0 when the trade is 

a buy or equal to 1 when the trade is a sell to allow agents accumulate interest in their 

accounts. TC is the transactions costs that can take on either 0 (no transactions costs) or 0.25 

point (with transactions costs); rf is the risk-free rate. This method of calculating the rate of 

returns is indeed identical to the one used by Noh et al. (1994). 

4.4.5.3.4 Why Not Other Trading Strategy? 

Whilst it may be argued that one can buy/sell straddle if forecasted volatility is above/below 

implied volatility, we must point out that this trading strategy assumes implicitly that implied 

volatility is forecastable. However, our main trading assumption in this study is less stringent 

and only requires the forecastability of the directional change of implied volatility, but not the 

level. In addition, multi-period ahead forecast must be formed to match the maturity of the 

straddle in order to make the aforementioned trading strategy workable. Among others, Noh, 

Engle and Kane (1994) used this approach to trade straddle and found that the GARCH model 

was able to return profits. Whilst this trading strategy is definitely rational, trading for the 

directional change of volatility is a more flexible strategy and we feel that that there is no 

unique way to devise trading signals. 

4.4.5.4 Trading Database 

The dataset comprises of weekly settlement prices of S&P 500 futures options for the period 

from 1983 through 1998. The same options and futures databases constructed in Chapters 3 

and 4 are used for the out-of-sample trading experiment. We refer the reader to sections 3.3 

and 4.3 for their contract specifications. 

4.4.5.4.1 Weekly Straddles 

S&P 500 index futures options are American and expire on the same day as the underlying 

futures contracts. The futures and option price data are Wednesday'sS2 settlement prices from 

CME. When a holiday occurs on Wednesday, Tuesday's observation is used in its place. The 

size of one futures contract is $250 multiplied by the index level and each index point is worth 

$250. The minimum move in the futures price is 0.1 point or $25. A one-point change in 
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S&P 500 futures option premium represents the same dollar value of a one-point change in the 

S&P 500 futures. As a proxy for the risk-free interest rate, we use daily middle rates on U. S. 

Treasury bills from Datastream matching maturity closest to the expiration date of the options. 

4.4.5.4.2 Weekly Time-Series Statistics 

The S&P 500 futures time-series constructed in section 4.3.1 are divided into four successive 

non-overlapping sub-periods of four years, i. e. 1983-1986,1987-1990,1991-1994 and 1995- 

1998. Results from the Dickey-Fuller test rejects the null hypothesis that there is a unit root in 

each of the four sub-periods. Skewness is negative for all sub-periods53, suggesting that 

weekly return is more likely to be negative. Excess kurtosis for 1983-1986,1987-1990,1991- 

1994 and 1995-1998 are 0.850,7.919,1.411 and 2.081, respectively. Ljung-Box statistics for 

r up to 10 lags are insignificant for all sub-periods, meaning that returns are not 

autocorrelated. In addition, correlograms for r also confirm that serial correlation is 

insignificant in any sub-periods. 

These preliminary statistics posit that weekly returns are less leptokurtic and autocorrelated 

(closer to normally distributed) than daily returns amid weekly returns are more negatively 

skewed. This finding is consistent with the consensus that the longer the interval over which 

returns are calculated, the lesser is the autocorrelation. Consequently, it is not necessary to 

remove any first-order autocorrelation from the return series. 

4.4.5.5 Results of Trading At-the-Money Straddles 

4.4.5.5.1 Preliminary Statistics for Directional Trading Signals 

This section aims to demonstrate that our four predictors produce very different buy/sell 

signals at times. 

Table 25 shows the correlations for the out-of-sample directional trading signals54 generated 
from different volatility prediction models in each sub-period. Table 26 also exhibits some 

basic statistics for the forecasts of volatility changes. The mix of low values of positive and 

52 Wednesdays are chosen because few holidays fall on Wednesdays. 
53 They are -0.242, -1.627, -0.019 and -0.842 for 1983-1986,1987-1990,1991-1994 and 1995-1998, 

respectively. 

143 



Chapter 4: An Empirical Comparison of APARCH Models 

negative correlations coefficients on out-of-sample buy and sell signals in 1985-1986 

confirms that at the inception of the S&P 500 options market volatility predictors produce 

very mixed opinions on their one-step ahead forecasts. 

After 1985-1986, however, all correlations coefficients are large and positive, indicating that 

our predictors have become more likely to agree with each other on issuing the same buy or 

sell signal. One plausible explanation for this dramatic change of forecasting behaviour is that 

it is caused by the increase of returns autocorrelations after the 1987 crash. It suggests that 

our conditional models are capable of picking up "volatility clustering" or "memory", thus 

making different volatility predictors to produce similar forecasts. Table 26 also shows that 

standard deviations of volatility changes have become significantly larger since 1987. The 

min/max statistics indicate that the ARCH model is more likely to produce high estimates and 

therefore over-predict volatility changes. In contrary, the GARCH model is likely to have 

smaller estimates and under-predict volatility. 

Tables 27-30 present the before-transactions-costs statistics for each volatility predictor for all 

sub-periods. The average maturity of straddles in 1985-1986 is 0.198 year (ten weeks). Since 

the introduction of serial contracts in 1987, it has been reduced to around 0.12 year (six 

weeks) in 1997-1998. Although strike price increments are generally integers divisible by 

five, futures level raises from 139 to 1245.15 during the entire sample period. Therefore, 

straddles are closer to delta-neutral towards the end of the sample period and standard 

deviations of their delta also have decreased steadily from 0.107 in 1985-1986 to 0.021 in 

1997-1998. In addition, the descriptive statistics show that call prices have increased from 

5.403 in 1985-1986 to 27.349 points in 1997-1998. Correspondingly, put prices have also 

raised from 5.502 to 27.267 points. Furthermore, results show that the ARCH model is very 

keen to produce buy signals, issuing the highest number of buys in three of out four sub- 

periods. 

In contrast, both the EGARCH and GARCH models prefer selling than buying but GARCH 

can be perceived as even more willing to short, issuing 99 sells versus 5 buys in 1985-1986. 

Finally, our descriptive statistics show that the two-stage regression model is as likely to buy 

54 The signal is 1 when it is a buy and -1 when it is a sell. 
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as to sell in all sub-periods. Our analysis suggests that the four predictors under study are 

indeed quite different at times. 

4.4.5.5.2 Profit and Loss: Trading At-the-Money Straddles 

Before Transaction Costs and No Delta Filter 

Without transactions costs, the EGARCH model has the highest rates of return per trade in 

1985-1986 and 1989-1990, respectively. In 1993-1994, the EGARCH model ranks second 

after the GARCH model. The EGARCH model is second to the ARCH model in 1997-1998. 

Before transactions costs, profits can be made in 1985-1986 and 1993-1994, although only 

EGARCH and GARCH models can produce statistically significant returns at t-ratios of 1.66 

and 2.48 in 1993-199455, respectively. Trading results also indicate that no predictor can 

make any profit in 1989-1990, and ARCH is the only model that is successful in earning 

profit in 1997-1998. 

Before Transactions Costs and 3% Delta Filter 

In the results discussed thus far, data are unfiltered. A more rational trading approach is to 

exercise our strategy only when nearest-the-money straddles are close to delta-neutral. 

Consequently, a filtering rule is applied to remove trades that do not satisfy put-call-futures 

parityS6 by trading straddles with absolute delta less than or equal to 3%. Tables 31-34 report 

the before-transactions-costs statistics with a± 3% delta filter for each volatility predictor in 

1985-1986,1989-1990,1993-1994 and 1997-1998, respectively. Under this filter, the number 

of transactions in 1985-1986,1989-1990,1993-1994 and 1997-1998 are traded in only 16.3%, 

30.1%, 19.4% and 54.4%, respectively. Tables 31-34 also show that standard deviations of 

straddles' delta have been reduced dramatically. After applying this filter, the EGARCH 

model has the highest rates of return per trade in three out of four out-of-sample periods, i. e. 

1985-1986,1989-1990 and 1993-1994. Although all predictors succeed in making profits in 

1993-1994, only the EGARCH and GARCH models can produce statistically significant 

returns at t-ratios of 2.22 and 2.16. It is also noted that GARCH fails to make any profits in 

all sub-periods except in 1993-1994. Finally, both the ARCH and two-stage regression 

ss Since the t-ratio of return from trading straddle are assumed to be independent, the t-ratio is computed as a 

ratio of mean to standard deviation divided by the square root of the number of observations. 
56 From practical point of view it means the European put-call-futures parity. See Fung and Fung (1997). 
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models make losses in three out of four out-of-sample periods, i. e. 1985-1986,1989-1990 and 
1997-1998 although ARCH still remains first in 1997-1998. 

Before Transaction Costs and 3% Delta Filter (excluding one spurious point) 

Curiously, the performance of the EGARCH model is second to a simple ARCH model in 

1997-1998. A careful scrutiny of our options data from 1997-1998 reveals that a "spurious" 

trade made between 22/10/1997 and 29/10/1997 is indeed very erratic. The price of this 

straddle has increased from 40.3 to 59.85 points within a week. During the same time period, 

its delta has decreased from 0.0097 to -0.6535. The timings of this "spurious" trade coincide 

with the surge of volatility at height of the Asian Financial Crisis identified in section 4.4.3.2. 

During 20-23 of October 1997, the Hong Kong stock market suffers its heaviest losses ever, 

shedding nearly a quarter of its value in four days. A week later on 27 October of 1997, Asian 

jitters spill over on to world stock markets. The Dow Jones index plunges 554 points, its 

largest single-day point loss ever57. Therefore, it is not unreasonable to assume that a prudent 

trader would exercise extreme caution in such a chaotic trading environment. After removing 

this questionable data point, we find that the EGARCH model is first in terms of rate of 

returns in 1997-1998. Table 35 exhibits the before-transactions-costs statistics for 1997-1998 

with the ±3% delta filter after the removal of this questionable data point. These results also 

show that the EGARCH model is the only profitable predictor in 1997-1998. 

After Transaction Costs and 3% Delta Filter (excluding one spurious point) 

None of the profits reported in our trading strategies thus far have attempted to account for the 

effects of transaction costs. With transactions costs of 25 basis points for both legs, the profits 

are dramatically reduced although rankings between predictors remain in the same orders. 

The summary statistics for after-transactions-costs with a± 3% delta filter are given in tables 

36-39 for each volatility predictor for the periods 1985-1986,1989-1990,1993-1994 and 

1997-1998, respectively. No predictors can earn any profits in 1985-1986,1989-1990 and 

1997-1998. In addition, EGARCH and GARCH have the first and second highest rate of 

returns per trade in each sub-period, respectively. After transactions costs, all predictors from 

1993-1994 have positive rates of return but only EGARCH and GARCH can generate returns 

that significantly exceed transactions costs at t-ratios of 1.49 and 1.45, respectively. This 

57 Source from Tudor, G. (2000) 
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Chapter 4: An Empirical Comparison ofAPARCH Models 

argument is supported by figure 36, which shows the cumulative rate of return from straddle 

trading of agents using EGARCH, GARCH, ARCH and a two-stage regression model with 

transactions costs and a± 3% delta filter in 1993-1994. 

4.4.5.5.3 Trading Summary 

We report that EGARCH produces the highest rate of returns per trade in every sub-period. In 

addition, EGARCH and GARCH can generate statistical significant ex-ante profit after 

transactions costs. Therefore, we cannot deny that there are certain degrees of inefficiency 

and predictability in the S&P 500 market. Finally, our trading experiments also reveal the 

presumption of using delta-neutral trade to create a risk-free portfolio is not practical in the 

event of large index movements. A new derivatives instrument is needed to allow traders and 

investors speculate on volatility more directly and efficiently. 

4.5 Summary 

This chapter compares the performance of a group of well-theorised conditional volatility 

models that can potentially account for the term-structure biases observed in the S&P 500 

futures options market. Sixteen years of daily S&P 500 futures series are used to examine the 

performance of the APARCH models that use asymmetric parameterisation and power 

transformation on conditional volatility and its absolute residual to account for the slow decay 

in returns autocorrelations. Our results are: 

i) No evidence can be found supporting the relatively complex APARCH models. Log- 

likelihood tests confirm that asymmetric parametersiation and power transformation 

are not effective in characterising the S&P 500 returns dynamics within the context of 
APARCH specifications; 

ii) Results from the 3-state volatility regime-switching model supported the notion that 

the performance of conditional volatility models is prone to the state of volatility of 
the returns series. Furthermore, log-likelihood based statistics stipulate that the 
EGARCH model is best in "noisy" periods whilst GARCH is the top performer in 

"quiet" periods; 

iii) Overall, aggregate rankings for the AIC criterion show that the EGARCH model is the 
best performer; 
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Chapter 4: An Empirical Comparison of APARCH Models 

iv) In-sample results show that it is not sensible to evaluate forecasting performance with 
only a single statistical loss function; 

v) Out-of-sample results demonstrate that the EGARCH model outperforms GARCH, 

and both of them can generate statistically significant ex-ante returns in one out of four 

sample periods; 

vi) Trading experiments also reveal that the presumption of using delta-neutral trade to 

create a risk-free portfolio is not practical in the event of large index movements. 
Our findings are not only significant to discrete-time finance but also potentially meaningful 

for continuous-time stochastic volatility literature because continuous-time stochastic 

volatility models can be thought of as the limits of ARCH-type process. Nelson (1991), for 

instance, showed that EGARCH(1,1) converged to a specific bivarate diffusion model in 

continuous time limit. Moreover, Duan (1997) also proved that most of the existing bivariate 

diffusion models that had been used to model asset returns volatility could be represented as 

limits of a family of GARCH models. When considering a stochastic volatility model, there 

seems to be little incentive to look beyond a simple model which allows for volatility 

clustering and a leverage effect such as Heston (1993). 
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Table 9: Descriptive Statistics for r 

1983-1998 1983-1986 1987-1990 1991-1994 1995-1998 

DF stat. -65.65442 
[. 000] 

-32.64347 
[0.000] 

-32.16886 
[. 000] 

-32.61263 
[. 000] 

-34.76218 
[. 000] 

Maximum 0.177493 0.037518 0.177493 0.042612 0.056547 

Minimum -0.337004 -0.056886 -0.337004 -0.036987 -0.077621 
Mean 0.000573 0.000530 0.000308 0.000329 0.000981 

Std. Dev. 0.011845 0.009347 0.017467 0.007111 0.010881 

Skewness -5.279559 -0.077911 -0.6452279 0.211765 -0.532956 
Kurtosis-3 179.218 2.470201 148.7873 3.068323 8.15034 

Q(10) 
79.085 

1.0001 

10.925 
[0.363] 

59.226 

[. 000] 
8.9945 

[. 532] 
19.038 
[. 040] 

Jarque-Bera 
stat. 

5432196 

[. 000] 

257.5546 

[. 000] 
939563.7 

[. 000] 
404.9461 

[. 000] 
2848.995 

[. 000] 

#. Obs. 4045 1009 1011 1013 1012 

Table 10: Descriptive Statistics for r2 

1983-1998 1983-1986 1987-1990 1991-1994 1995-1998 

DF stat. 
-58.38758 

[. 000] 
-31.20798 

[. 000] 
-29.287 

[. 000] 
-31.23613 

[. 000] 
-23.41297 

[. 000] 

Maximum 0.113572 0.003236 0.113572 0.001816 0.006025 

Minimum 0.000000 0.000000 0.000000 0.000000 0.000000 

Mean 0.000141 8.76E-05 0.000305 5.06E-05 0.000119 

Std. Dev. 0.001883 0.000185 0.003739 0.000114 0.000374 

Skewness 55.24303 7.173269 28.14637 7.123234 10.05873 

Kurtosis-3 3269.947 92.15109 836.6669 80.24314 132.6307 

Q(10) 
342.93 

[. 0001 

7.7053 

[. 720] 
83.672 

[. 000] 
26.486 

[0.003] 

225.80 

[. 000] 

Jarque-Bera 
stat. 

1.80E+09 
[. 000] 

365663.5 
[. 000] 

29621473 
[. 000] 

280344.5 
[. 000] 

758814.9 
[. 000] 

#. Obs. 4045 1009 1011 1013 1012 
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Table 11: Descriptive Statistics for Irl 
1983-1998 1983-1986 1987-1990 1991-1994 1995-1998 

DF scat -49.4674 
[. 000] 

-32.33748 
[. 000] 

-23.33977 
[. 000] 

-30.55499 
[. 000] 

-25.51959 
[. 000] 

Maximum 0.337004 0.056886 0.337004 0.042612 0.077621 
Minimum 0.000000 0.000000 0.000000 0.000000 0.000000 
Mean 0.007115 0.006877 0.009016 0.005122 0.007449 
Std. Dev. 0.009484 0.006349 0.01496 0.004940 0.007988 
Skewness 13.43799 1.903316 12.66372 2.074516 3.159958 
Kurtosis-3 394.0034 6.027266 245.3357 7.04718 17.11600 

Q(10) 
1332.2 
[. 000] 

6.5947 
[. 763] 

425.59 
[. 000] 

42.258 

[. 000] 
319.56 

[. 000] 
Jarque-Bera 
stat. 

26285933 
[. 000] 

2136.489 

[. 000] 
2562509 

[. 000] 
2822.777 

[. 000] 
14037.23 

[. 000] 

#. Obs. 4045 1009 1011 1013 1012 
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Chapter 4: An Empirical Comparison of APARCH Models 

L2 
Table 17: 12th order Ljung-Box statistics for and `2 

t 

1983-1998 1983-1986 1987-1990 1991-1994 1995-1998 

APARCH 14.2359 10.3005 8.6629 16.9122 12.6628 
Q12 0.2859 0.5896 0.7314 0.1529 0.394 

Q12 Qý 
2 

12.8218 5.0733 3.3533 7.7935 6.3095 
0.3821 0.9555 0.9925 0.801 0.8997 

ARCH 29.2377 13.9869 29.1073 14.987 17.3921 
Q12 0.0036 0.3015 0.0038 0.2421 0.1354 

Qý 418.1956 9.864 99.3827 23.9331 85.17 
0.000 0.6279 0.000 0.0208 0.000 

GARCH 16.4104 9.8438 10.973 19.0669 15.2964 

Qiz 0.1732 0.6297 0.5312 0.0869 0.2256 

z Q 8.3566 5.3111 2.6837 8.0623 7.6012 
iz 0.7567 0.9468 0.9974 0.7802 0.8155 

TSGARCH-I 15.9829 10.1537 10.3789 18.3103 14.704 
Ql2 0.192 0.6025 0.5828 0.1066 0.258 

Q 22.3838 5.4356 4.4615 9.3794 11.1127 
lz 0.0334 0.9418 0.9736 0.6702 0.5193N 

TSGARCH-1I 14.2362 10.1624 8.864 16.9914 12.6711 

Qlz 0.2859 0.6017 0.7145 0.1499 0.3934 

z Q 12.7818 5.4226 3.9355 7.4777 6.1887 
12 0.3851 0.9424 0.9846 0.8245 0.9063 

GJR 15.549 10.2391 9.6854 18.6708 12.9384 
Qiz 0.2128X 0.595 0.6435 0.0968 0.3735 

Q 2 Q 5.7647 5.066 3.1856 7.0684 7.0385 
1 'z 0.9275 0.9557 0.9941 0.8531 0.8551 

TARCH 28.1106 13.5663 34.7099 14.6532 18.0688 
Qlz 0.0053 0.3293 0.0005 0.261 0.1136 

Q 550.9643 9.675 140.4172 24.0214 83.6644 
12 0.000 0.6444 0.000 0.0202 0.000 

EGARCH 14.2566 10.1609 8.8706 17.226 12.5406 

Qlz 0.2846 0.6018 0.7139 0.1413 0.4033 

Q 2 Q 8.2834 5.4073 2.7761 7.1652 5.7963 
1 12 0.7626 0.943 0.9969 0.8465 0.926 

The p-values are reported in italic. 
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Table 18: Model Rankings for the AIC Metric (Excluding EGARCH) 

1983-1998 1983-1986 1987-1990 1991-1994 1995-1998 

AIC AIC AIC AIC AIC 

APARCH 1 4 1 4 2 

ARCH 6 6 6 7 7 

GARCH 5 1 5 1 5 

TSGARCH-I 3 3 4 5 4 

TSGARCH-H 1 5 2 2 1 

GJR 4 2 3 3 3 

TARCH 7 7 7 6 6 

Table 19: Model Rankings for AIC Statistics (Including EGARCH) 

1983-1998 1983-1986 1987-1990 1991-1994 1995-1998 
AIC AIC AIC AIC AIC 

APARCH 2 4 2 5 3 

ARCH 7 7 7 8 8 

GARCH 6 1 6 1 6 

TSGARCH-I 4 3 5 6 5 

TSGARCH-II 2 6 3 2 2 

GJR 5 2 4 3 4 

TARCH 8 8 8 7 7 

EGARCH 1 5 1 4 1 
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Table 20: Aggregated Rankings for AIC Statistics (Including EGARCH) 

Score Rank 

APARCH 14 4 

ARCH 30 7 

GARCH 14 4 

TSGARCH-I 19 6 

TSGARCH-II 13 2 

GJR 13 2 

TARCH 30 7 

EGARCH 11 1 

Note: Score is the sum of the rank for each model in each sub-period. 

Table 21: Model Rankings for MMEU and MMEO Criteria 

1983-1998 1983-1986 1987-1990 1991-1994 1995-1998 

MMEU MMEO MMEU MMEO MMEU MMEO MMEU MMEO MMEU MMEO 

APARCH 8 2 3 6 7 2 8 1 6 3 

ARCH 2 8 1 8 2 7 2 7 1 8 

GARCH 4 5 4 4 3 6 3 6 3 6 

TSGARCH-I 5 6 7 1 4 4 4 5 5 5 

TSGARCH-II 7 3 8 2 8 1 7 2 8 1 

GJR 3 4 5 5 5 5 5 4 4 4 

TARCH 1 7 2 7 1 8 1 8 2 7 

EGARCH 6 1 6 3 6 3 6 3 7 2 
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Chapter 4: An Empirical Comparison ofAPARCH Models 

Table 24: Aggregated Rankings for Statistical Loss Functions 

MSE MAE MAPE MMEU MMEO LL HMSE GMLE 

Rank Rank Rank Rank Rank Rank Rank Rank 

(Score) (Score) (Score) (Score) (Score) (Score) (Score) (Score) 
3 3 3 6 3 4 6 1 

APARCH (12) (14) (11) (24) (12) (15) (21) (7) 
7 8 5 1 7 7 1 7 

ARCH (29) (31) (21) (6) (30) (30) (11) (29) 
4 6 2 3 6 3 8 5 

GARCH (14) (21) (10) (13) (22) (14) (27) (21) 
5 4 5 5 4 6 5 6 

TSGARCH-I (18) (15) (21) (20) (15) (19) (19) (22) 
1 2 4 8 1 1 2 2 

TSGARCH-II (7) (13) (15) (31) (6) (6) (13) (10) 
2 5 1 4 5 5 7 3 

GJR (11) (19) (7) (19) (18) (17) (23) (13) 

6 7 7 1 7 7 2 7 
TARCH (22) (27) (27) (6) (30) (30) (13) (29) 

8 1 8 7 2 2 4 3 
EGARCH (31) (4) (32) (25) (11) (13) (17) (13) 

Note: Score is the sum of the rank for each model in each sub-period. 
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Chapter 4: An Empirical Comparison of APARCH Models 

Table 25: Correlations Between Out-of-Sample Buy and Sell Signals 

1985-1986 1989-1990 

EGARCH GARCH ARCH 2-STAGE EGARCH GARCH ARCH 2-STAGE 

EGARCH 1.000 . 167 -. 070 
. 064 1.000 . 406 . 304 . 264 

GARCH 1.000 -. 058 -. 054 1.000 . 758 . 7578 

ARCH 1.000 . 017 1.000 . 84453 

2-STAGE 1.000 1.000 

1993-1994 1997-1998 

EGARCH GARCH ARCH 2-STAGE EGARCH GARCH ARCH 2-STAGE 

EGARCH 1.000 . 595 . 468 . 480 1.000 . 622 . 154 . 394 

GARCH 1.000 . 702 . 677 1.000 . 151 . 490 

ARCH 1.000 . 942 1.000 . 454 

2-STAGE 1.000 1.000 

Table 26: Statistics for Forecasts of Volatility Changes 

1985-1986 1989-1990 

EGARCH GARCH ARCH 2-STAGE EGARCH GARCH ARCH 2-STAGE 

#. samples 104 104 104 104 103 103 103 103 

Max 31.643 3.862 25.187 8.521 87.7453 60.325 112.367 209.584 

Min -29.058 -1.675 -. 455 -7.213 -30.678 -17.235 -48.265 -61.292 

Mean . 806 -. 008 . 353 -. 098 2.263 1.058 2.044 9.551 

Std. dev . 579 3.228 9.275 . 1274 21.747 13.126 20.898 48.297 

1993-1994 1997-1998 

EGARCH GARCH ARCH 2-STAGE EGARCH GARCH ARCH 2-STAGE 

#. samples 103 103 103 103 103 103 103 103 

Max 107.833 81.722 166.999 125.45 80.161 64.820 62.662 34.029 

Min -8.565 -26.559 -60.505 -50.472 -17.288 -7.476 -24.824 -23.583 

Mean 1.079 1.258 2.524 2.160 1.269 1.020 . 192 . 286 
FStd. 

dev 14.265 12.685 24.325 21.268 14.799 10.430 10.158 9.933 
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Table 27: Before-transactions-costs Statistics for 1985-1986 without Filter 

EGARCH GARCH ARCH 2-STAGE 

Rate of Returns 0.606881 -0.85174 0.497811 -1.30702 

Std. R. of Returns 13.32615 13.3071 13.51409 13.26873 

#. of Trades 104 104 101 104 

Ave. Delta 0.013777 0.013777 0.01441 0.013777 

Std. Delta 0.10788 0.10788 0.108375 0.10788 

Ave. Maturity 0.198419 0.198419 0.199023 0.198419 

Ave. Call Price 5.402885 5.402885 5.442574 5.402885 

Std. Calls 2.309928 2.309928 2.331023 2.309928 

Ave. Put Price 5.501923 5.501923 5.527228 5.501923 

Std. Puts 2.149022 2.149022 2.163903 2.149022 

# of Buys 45 5 52 54 

# of Sells 59 99 49 50 

Table 28: Before-transactions-costs Statistics for 1989-1990 without Filter 

EGARCH GARCH ARCH 2-STAGE 

Rate of Returns -0.12772 -2.45341 -2.5796 -3.34284 

Std. R. of Returns 14.71959 14.49996 14.47757 14.31479 

#. of Trades 103 103 103 103 

Ave. Delta 0.025737 0.025737 0.025737 0.025737 

Std. Delta 0.077366 0.077366 0.077366 0.077366 

Ave. Maturity 0.11443 0.11443 0.11443 0.11443 

Ave. Call Price 7.540777 7.540777 7.540777 7.540777 

Std. Calls 2.016813 2.016813 2.016813 2.016813 

Ave. Put Price 7.399515 7.399515 7.399515 7.399515 

Std. Puts 1.937485 1.937485 1.937485 1.937485 

# of Buys 38 41 50 50 

# of Sells 65 62 53 53 
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Table 29: Before-transactions-costs Statistics for 1993-1994 without Filter 

EGARCH GARCH ARCH 2-STAGE 

Rate of Returns 2.279404 3.350164 1.714102 2.004451 

Std. R. of Returns 13.94236 13.72455 14.0219 13.98359 

#. of Trades 103 103 103 103 

Ave. Delta 0.011027 0.011027 0.011027 0.011027 

Std. Delta 0.075565 0.075565 0.075565 0.075565 

Ave. Maturity 0.11443 0.11443 0.11443 0.11443 

Ave. Call Price 6.85 6.85 6.85 6.85 

Std. Calls 1.560276 1.560276 1.560276 1.560276 

Ave. Put Price 6.892233 6.892233 6.892233 6.892233 

Std. Puts 1.337941 1.337941 1.337941 1.337941 

# of Buys 31 38 53 52 

# of Sells 72 L 65 50 51 

Table 30: Before-transactions-costs Statistics for 1997-1998 without Filter 

EGARCH GARCH ARCH 2-STAGE 

Rate of Returns -0.02342 -1.03321 0.753204 -0.96787 

Std. R. of Returns 11.60207 11.55187 11.58106 11.55768 

of Trades 103 103 103 103 

Ave. Delta 0.026539 0.026539 0.026539 0.026539 

Std. Delta 0.021121 0.021121 0.021121 0.021121 

Ave. Maturity 0.121851 0.121851 0.121851 0.121851 

Ave. Call Price 27.27524 27.27524 27.27524 27.27524 

Std. Calls 7.941751 7.941751 7.941751 7.941751 

Ave. Put Price 27.53689 27.53689 27.53689 27.53689 

Std. Puts 8.314578 8.314578 8.314578 8.314578 

# of Buys 39 31 48 48 

# of Sells 64 72 55 55 
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Table 31: Before-transactions-costs Statistics for 1985-1986 with ± 3% Delta Filter 

EGARCH GARCH ARCH 2-STAGE 

Rate of Returns 0.342188 -0.32483 -2.41412 -4.01786 

Std. R. of Returns 13.90462 13.90696 13.67675 13.26126 

#. of Trades 17 17 17 17 

Ave. Delta 0.0012 0.0012 0.0012 0.0012 

Std. Delta 0.016493 0.016493 0.016493 0.016493 

Ave. Maturity 0.227881 0.227881 0.227881 0.227881 

Ave. Call Price 6.123529 6.123529 6.123529 6.123529 

Std. Calls 1.947283 1.947283 1.947283 1.947283 

Ave. Put Price 6.732353 6.732353 6.732353 6.732353 

Std. Puts 2.304136 2.304136 2.304136 2.304136 

# of Buys 10 1 11 7 

# of Sells 7 16 6 10 

Table 32: Before-transactions-costs Statistics for 1989-1990 with ± 3% Delta Filter 

EGARCH GARCH ARCH 2-STAGE 

Rate of Returns 1.170446 -0.62096 -2.03609 -2.21947 

Std. R. of Returns 13.79986 13.82599 13.6767 13.64618 

#. of Trades 31 31 31 31 

Ave. Delta -0.0042 -0.0042 -0.0042 -0.0042 

Std. Delta 0.016332 0.016332 0.016332 0.016332 

Ave. Maturity 0.11445 0.11445 0.11445 0.11445 

Ave. Call Price 7.320968 7.320968 7.320968 7.320968 

Std. Calls 1.778987 1.778987 1.778987 1.778987 

Ave. Put Price 8.006452 8.006452 8.006452 8.006452 

Std. Puts 2.087851 2.087851 2.087851 2.087851 

# of Buys 17 16 19 20 

# of Sells 14 15 12 11 
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Table 33: Before-transactions-costs Statistics for 1993-1994 with ± 3% Delta Filter 

EGARCH GARCH ARCH 2-STAGE 

Rate of Returns 5.28826 5.189391 3.114228 3.825862 

Std. R. of Returns 10.68355 10.73501 11.54099 11.31548 

#. of Trades 20 20 20 20 

Ave. Delta -0.00638 -0.00638 -0.00638 -0.00638 

Std. Delta 0.018011 0.018011 0.018011 0.018011 

Ave. Maturity 0.123425 0.123425 0.123425 0.123425 

Ave. Call Price 7.05 7.05 7.05 7.05 

Std. Calls 1.208087 1.208087 1.208087 1.208087 

Ave. Put Price 7.5975 7.5975 7.5975 7.5975 

Std. Puts 1.462377 1.462377 1.462377 1.462377 

# of Buys 6 6 9 8 

# of Sells 14 14 11 12 

Table 34: Before-transactions-costs Statistics for 1997-1998 with ± 3% Delta Filter 

EGARCH GARCH ARCH 2-STAGE 

Rate of Returns 0.061182 -1.07436 0.483998 -1.72362 

Std. R. of Returns 12.42948 12.3787 12.42263 12.30109 

#. of Trades 56 56 56 56 

Ave. Delta 0.012262 0.012262 0.012262 0.012262 

Std. Delta 0.01277 0.01277 0.01277 0.01277 

Ave. Maturity 0.122945 0.122945 0.122945 0.122945 

Ave. Call Price 26.02054 26.02054 26.02054 26.02054 

Std. Calls 6.334112 6.334112 6.334112 6.334112 

Ave. Put Price 27.26696 27.26696 27.26696 27.26696 

Std. Puts 6.569587 6.569587 6.569587 6.569587 

# of Buys 19 16 30 24 

# of Sells 37 40 26 32 
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Table 35: Before-transactions-costs Statistics for 1997-1998 with ± 3% Delta Filter 

(Excluding One Data Point) 

EGARCH GARCH ARCH 2-STAGE 

Rate of Returns 0.942586 -0.2136 -0.38922 -0.87467 

Std. R. of Returns 10.63213 10.66822 10.66245 10.63067 

#. of Trades 55 55 55 55 

Ave. Delta 0.012309 0.012309 0.012309 0.012309 

Std. Delta 0.012883 0.012883 0.012883 0.012883 

Ave. Maturity 0.123686 0.123686 0.123686 0.123686 

Ave. Call Price 26.13364 26.13364 26.13364 26.13364 

Std. Calls 6.335168 6.335168 6.335168 6.335168 

Ave. Put Price 27.39 27.39 27.39 27.39 

Std. Puts 6.564702 6.564702 6.564702 6.564702 

# of Buys 19 16 29 24 

# of Sells 36 39 26 31 

Table 36: After-transactions-costs Statistics for 1985-1986 with ± 3% Delta Filter 

EGARCH GARCH ARCH 2-STAGE 

Rate of Returns -1.91925 -2.58628 -4.67556 -6.2793 

Std. R. of Returns 13.95439 13.69692 13.72358 13.20722 

#. of Trades 17 17 17 17 

Ave. Delta 0.0012 0.0012 0.0012 0.0012 

Std. Delta 0.016493 0.016493 0.016493 0.016493 

Ave. Maturity 0.227881 0.227881 0.227881 0.227881 

Ave. Call Price 6.123529 6.123529 6.123529 6.123529 

Std. Calls 1.947283 1.947283 1.947283 1.947283 

Ave. Put Price 6.732353 6.732353 6.732353 6.732353 

Std. Puts 2.304136 2.304136 2.304136 2.304136 

# of Buys 10 1 11 7 

# of Sells 7 16 6 10 
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Table 37: After-transactions-costs Statistics for 1989-1990 with ± 3% Delta Filter 

EGARCH GARCH ARCH 2-STAGE 

Rate of Returns -0.57337 -2.36478 -3.7799 -3.96328 

Std. R. of Returns 13.7521 13.9163 13.75325 13.72006 

#. of Trades 31 31 31 31 

Ave. Delta -0.0042 -0.0042 -0.0042 -0.0042 

Std. Delta 0.016332 0.016332 0.016332 0.016332 

Ave. Maturity 0.11445 0.11445 0.11445 0.11445 

Ave. Call Price 7.320968 7.320968 7.320968 7.320968 

Std. Calls 1.778987 1.778987 1.778987 1.778987 

Ave. Put Price 8.006452 8.006452 8.006452 8.006452 

Std. Puts 2.087851 2.087851 2.087851 2.087851 

# of Buys 17 16 19 20 

# of Sells 14 15 12 11 

Table 38: After-transactions-costs Statistics for 1993-1994 with ± 3% Delta Filter 

EGARCH GARCH ARCH 2-STAGE 

Rate of Returns 3.530293 3.431423 1.35626 2.067894 

Std. R. of Returns 10.60153 10.69246 11.54567 11.30632 

#. of Trades 20 20 20 20 

Ave. Delta -0.00638 -0.00638 -0.00638 -0.00638 

Std. Delta 0.018011 0.018011 0.018011 0.018011 

Ave. Maturity 0.123425 0.123425 0.123425 0.123425 

Ave. Call Price 7.05 7.05 7.05 7.05 

Std. Calls 1.208087 1.208087 1.208087 1.208087 

Ave. Put Price 7.5975 7.5975 7.5975 7.5975 

Std. Puts 1.462377 1.462377 1.462377 1.462377 

# of Buys 6 6 9 8 

# of Sells 14 14 11 12 
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Table 39: After-transactions-costs Statistics for 1997-1998 with ±3% Delta Filter 

(Excluding One Data Point) 

EGARCH GARCH ARCH 2-STAGE 

Rate of Returns 0.447472 -0.70872 -0.88434 -1.36978 

Std. R. of Returns 10.63932 10.65304 10.66224 10.63684 

#. of Trades 55 55 55 55 

Ave. Delta 0.012309 0.012309 0.012309 0.012309 

Std. Delta 0.012883 0.012883 0.012883 0.012883 

Ave. Maturity 0.123686 0.123686 0.123686 0.123686 

Ave. Call Price 26.13364 26.13364 26.13364 26.13364 

Std. Calls 6.335168 6.335168 6.335168 6.335168 

Ave. Put Price 27.39 27.39 27.39 27.39 

Std. Puts 6.564702 6.564702 6.564702 6.564702 

# of Buys 19 16 29 24 

# of Sells 36 39 26 31 
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Figure 19: Autocorrelations for r (1983-1998) 
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Figure 20: Autocorretations for T (1983-1998) 
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Figure 21: Autocorrelations for Irl (1983-1998) 
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Figure 22: Autocorrelations for r (1983-1986) 
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Figure 23: Autocorrelations for r-2 (1983-1986) 
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Figure 24: Autocorrelations for Irl (1983-1986) 
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Figure 25: Autocorrelations for r (1987-1990) 
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Figure 26: Autocorrelations for r2 (1987-1990) 

0.40 

0.30 ý 

301 351 401 

0.20 - 

0.10 

0.00 

-0.10 

-0.20 
1 51 101 151 201 251 301 351 401 

Figure 27: Autocorrelations for Irl (1987-1990) 
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Figure 28: Autocorrelations for r (1991-1994) 
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Figure 29: Autocorrelations for rz (1991-1994) 
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Figure 30: Autocorrelations for Irk (1991-1994) 
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Figure 31: Autocorrelations for r (1995-1998) 
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Figure 32: Autocorrelations for - (1995-1998) 
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Figure 33: Autocorrelations for Irl (1995-1998) 
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Figure 34: 3-State SWARCH-L(3,2): High Volatility Regions 
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Figure 35: 3-State SWARCH-L(3,2): Low Volatility Regions 
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Chapter 4: An Empirical Comparison ofAPARCH Models 

Figure 36: Cumulative Rate of Return From Straddles Trading (1993-1994) With 25 

bps Transactions Costs and ± 3% Delta Filter 
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CHAPTER 5 Empirical Performance of Alternative Variance 
Swap Valuation Models 

Abstract 

As a continuation of our study of modelling volatility, this chapter adopts a financial engineering 
approach to evaluate the volatility forecasting performance of different specifications of time-series 
and options-based variance swap valuation models on the S&P 500 index. Pricing a variance swap can 
be viewed as an exercise in computing the weighted average of the implied volatility of the options 
required even under the influence of volatility skew. It can also be interpreted as the market consensus 
of expected future variance. The Demeterfi et al. (1999) variance swap valuation methodology has 
been widely accepted by practitioners but little tested and scrutinised. After the terrorist attacks on 
September 11,2001, the longer-termed forward variance has become more volatile than the shorter- 
termed forward variance. This research presents the first of any known attempts to use market data to 
evaluate the effectiveness of the Demeterfi et al. framework. It contributes to this nascent literature by 

analysing the three-, six- and nine-month variance swap contracts from June 2001 to November 2001 

using different specifications of implied and time-series models. Our research design is rich enough to 

admit a number of prominent models including: 1) ad hoc Black-Scholes model; 2) stochastic 
volatility model; 3) jump-diffusion model; 4) local volatility model; 5) EGARCH; 6) GARCH 

variance swap model. We aim to find out whether using more complex option pricing models to 

accommodate observed market anomalies is an effective strategy to improve variance forecastability. 
Based on results from six well-selected contract days, we illustrate that the options-based framework, 

although more capable of incorporating many stylised facts, may be a poor forecaster of future 

variance. Just as forward interest rates are not necessarily good predictors of futures rates, the 

arbitrage-free based Demeterfi et al. framework is not necessarily an effective predictor of future 

variance. Results from our data show that implied models tend to overpredict future variance and 
underperform time-series models. The reasons could be: 1) implied strategy was originally developed 
for hedging; 2) implied volatility is predominantly a monotonically decreasing function of maturity 
and therefore options-based strategy cannot produce enough variance term-structure patterns; 3) 

distributional dynamics implied by option parameters is not consistent with its time-series data as 

stipulated by the maximum likelihood estimation of the square-root process. Future research need to 

use a larger sample set in order to establish a more statistically significant result to clarify our findings. 
Until then we have a strong reservation about the use of Demeterfi et al. methodology for variance 
forecasting. 

5.1 Introduction 

5.1.1 Background of the Study 

Despite the fact that there has been an increased interest in volatility products since the late 

1990's, little research has been directed towards to the development of volatility derivatives. 

The first theoretical paper to value volatility derivatives is by Grünbichler et al. (1996). 

Grünbichler et al. presented a simple but technically complicated framework that used the 
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equilibrium approach within which specific closed-form solutions for volatility futures and 

option prices were derived within a mean-reversion framework. Later, Gupta (1997) and 

Engle et al. (1998) discussed the issues related to the hedging of volatility. Subsequently, 

Andersen and Andreasen (1999), Rolfes and Henn (1999), Chriss and Morokoff (1999), 

Demeterfi et al. (1999), Brenner et al. (2000), Brockhaus and Long (2000), Heston and Nandi 

(2000b), Howison et al. (2001), Little and Pant (2001), Carr and Madan (1999,2002), 

Javaheri et al. (2002) and Theoret et al. (2002) also researched volatility derivatives, but the 

amount of research invested in volatility products still pales in comparison with other well- 

studied exotic derivatives products such as barrier and Asian options. 

Until now the conventional instruments for implementing a volatility hedge remain rather 

crude. The most widely accepted way of speculating on volatility is usually achieved through 

the purchase of European call and put options. Traditional techniques such as delta hedging 

strategy always focus on the reduction of delta-risk. In Chapter 4 we have demonstrated the 

insufficiency of a delta-neutral hedge in the event of large market moves. Once the 

underlying index moves, however, a delta-neutral trade can become long or short delta. 

Rehedging becomes necessary to maintain a delta-neutral position as the market moves. 

Since transaction and operational costs generally prohibit continuous rehedging, residual 

exposure of the underlying ultimately arises from options-based volatility strategies. It is 

clear that even though options have the effect of adjusting the volatility profile of a portfolio, 

it also induces additional exposure to the underlying and other market factors. Thus volatility 

risk has yet to be dealt with so that investors and traders can directly express their views on 

future volatility. 

5.1.1.1 New Way of Trading: Variance Swap 

The arrival of variance swaps offers an opportunity for traders to take synthetic positions in 

volatility and hedge volatility risk. They were first introduced in 1998 in the aftermath of the 

Long Term Capital Management (LTCM) melt down when implied stock index volatility 

levels rose to unprecedented levels. These variance swap contracts are mostly based on equity 

indices and they were originally designed to be a replacement for traditional options-based 

volatility strategies such as straddle or hedged call/put options. Over the past few years, 
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variance swaps have grown into a sizeable market". Despite its name, a variance swap is 

actually an over-the-counter forward contract whose payoff is based on the realised volatility 

of a stated equity index. Their payoff at expiration is equal to: 

(Q2 2 ýk 
R- 

Kvol )N 

where N is the notional amount of the swap in some currency units per annualised variance 

point, o and K, are the realised stock volatility over the life of the contract (n days) quoted 

n-1 
4 

in annual term, i. e. 
F S'+' - S' 

and the fixed annualised volatility delivery price, 
n rýo Sr 

respectively. F is the appropriate annualisation factor. 

5.1.1.2 Usage of Variance Swap 

Since a variance swap provides pure exposure on future volatility levels, it is considered a 

cleaner bet on volatility than an options-based strategy. It allows counterparties to exchange 

cash-flows - floating variance for fixed variance. Counterparties can use variance swap to 

speculate the spread between future realised (floating) and implied (fixed) volatility, or to 

hedge the volatility exposure of other positions or businesses. According to Curnutt (2000), 

some of the possible strategies using variance swaps are: 

i) Speculating a directional view that implied volatility is too high or too low relative to 

anticipated realised volatility because 1) volatility follows a mean-reverting process. 

In this model, high volatility decreases and low volatility increases; 2) there is a 

negative correlation between volatility and stock or index level. The volatility stays 

high after large downward moves in the market; 3) volatility increases with the risk 

and uncertainty; 

ii) Implementing a view that the implied volatility in one equity index is mispriced 

relative to the implied volatility in another equity index; 

iii) Trading volatility on a forward basis by purchasing a variance swap of one expiration 

and a variance swap of another expiration. 

58 Capital Markets News, Federal Bank of Chicago, March 2001. 

2 
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5.1.1.3 Variance Swap Example 

The following example illustrates to the reader how variance swap really works: using the 

S&P 500 as the underlying index, a volatility level of Kv01 = 23% is fixed for one year. This 

corresponds to a nominal variance of 5.29%. Counterparty B agrees to pay Counterparty Aa 

notional amount of US$5,000,000 for each percentage point of realised variance point above 

5.29% and Counterpary A agrees to pay Counterparty B US$5,000,000 per variance point 

below this value. In this case, the notional value of the contract, or fixed leg payment, is 

US$26,450,000. Suppose realised volatility (variance) of S&P 500 during this time period 

turned out to be 43% (18.49%). The payoff to the party that receives variance is 

US$5,000,000 x (18.49% - 5.29%), or US$660,000. If realised volatility were 3%, the payoff 

to the party that pays volatility would be US$5,000,000 x (0.09% - 5.29%), or a loss of only 

US$260,000. Figure 37 illustrates the payoff of a long variance swap under different levels of 

realised volatility. Its payoff is nonlinear in volatility. This means, for instance, that a one 

percent deviation of realised volatility above the price has a different (larger) payoff than a 

one percent deviation of volatility below the delivery price. 

Figure 37: Volatility vs. Variance Swap Payoffs - Long 
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$4,000,000 

$3,000,000 

$2,000,000 

$1,000,000 

0 
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The maturity of variance swap contracts can run from three months to five or even seven 

years, although most trades occupy around the one- year spectrumS9. The primary cost 

associated with variance swaps is the bid/ask spread, which is approximately double the 

spread in the straddle market. Their bid/ask spreads on a S&P 500 variance swap range from 

one variance point for a one-year contract to two variance points for a longer-maturity 

59 See Mehta (1999) for further details. 
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contract. Institutional users such as hedge funds are attracted to own variance swap, 

especially when their portfolios are naturally short vega, as an alternative to using options to 

take on or hedge volatility exposure. 

5.1.2 The Problem Statement and Hypotheses 

The model developed by Demeterfi et al. (1999) is the most popular tool to price variance 

swaps, but surprisingly, no research has ever considered using market data to test for its 

usefulness. This chapter examines different variance swap models' performance on the S&P 

500 index from June 2001 to November 2001. After the terrorist attacks on September 11, 

2001, the longer-termed forward variance has become more volatile than the shorter-termed 

forward variance. We analyse the three-, six- and nine-month variance swap contracts by 

evaluating different specifications of implied and time-series models at different points in 

time. The underlying hypotheses of this project are that if options-based Demeterfi et al. 

(1999) framework is mathematically correct then: 

i) Each generalisation of the benchmark Black-Scholes model should be able to improve 

the volatility forecastability of the options-based pricing model; 

ii) If option prices are indeed representative of their underlying time-series and forward- 
looking then the forecastability of options-based variance swap models should be 

superior to their time-series counterparts. 

In this study our goals are: 

i) To present a complete picture of how each generalisation of the benchmark Black- 

Scholes model can really improve the variance forecastability of variance swaps and 

whether each generalisation is consistent between in- and out-of-sample results; 

ii) To investigate whether there may be any systematic difference in variance forecasting 

performance between time-series and options-based variance swap valuation models. 
It is intended to explore whether options-based models, which are forward-looking, are 

capable of outperforming discrete-time processes, which use only historical 

information, in predicting future variance. 
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5.1.3 The Significance of the Study 

The Demeterfi et al. (1999) variance swap pricing methodology has been widely accepted by 

practitioners but little tested and scrutinised. Regrettably, no empirical studies have ever used 

any market data to investigate the pricing performance of variance swap valuation models. 

This research presents the first of any known attempts to use market data to shed light on the 

variance forecastability of variance swap valuation models under alternative time-series and 

competing option pricing models. Since implied volatility can be regarded as the market's 

expectation of future realised volatility, the implication of any poor variance forecastability by 

options-based models is such that practitioners and academicians alike may need to look for a 

way to integrate historical and market information in a composite option pricing model. 

5.1.4 Organisation 

The remainder of this chapter is organised as follows. In section 5.2 we review the 

methodology and models. Section 5.3 introduces the dataset. Section 5.4 discusses the 

calibration procedures/results and analyses the empirical findings. Section 5.5 summaries the 

results. 

5.2 Methodology 

This section discusses the approaches and models used for volatility forecasting. We first 

review the criteria used in judging the variance forecastability of different time-series and 

options-based variance swap models. We then outline the implied framework for variance 

swap developed by Demeterfi et al. (1999). This methodology exclusively uses traded options 

to forecast variance. Subsequently, we discuss different option pricing models that can 

account for observed market anomalies in the S&P 500 options market. Finally we illustrate 

the time-series approach in forecasting variance. 

5.2.1 Performance Criteria 

The variance forecastability of different variance swap models are evaluated in the following 

ways: 
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i) In-sample analysis. In view of option-pricing, it refers to the ability of each 
generalisation of Black-Scholes option model to fit the call option data and produce 
the least pricing error. Sum of price square error (SPSE) is used to judge whether one 
option model is better than the other on each contract day; 

ii) Out-of-sample analysis. It compares the variance forecastability of all six time-series 

and options-based models. The criteria used in selecting the best model is mean 
square error (MSE), and aggregate MSE ranking60 is applied to evaluate the overall 
performance of each time-series and options-based variance swap model for each of 
the three maturity months, i. e. three-, six- and nine-month contracts; 

iii) Consistency of options-implied distributional dynamics and time-series properties. 
Maximum likelihood estimation of a square-root process is used in order to identify 

potential inconsistency between options-implied dynamics and time-series data by 
looking into the estimated structural parameters. 

It should be noted that our results are based on the use of eighteen well-designed variance 

contracts between June 2001 and December 2001. Although our sample is small and sample 

periods are overlapping, we point out that the price fitting and variance forecastability of the 

options-based models are insensitive to the choice of sample periods because options are 

supposed to be forward-looking and do not use historical data. 

5.2.2 The Options-based Variance Swap Framework 

The original Black-Scholes model assumes that volatility is constant or deterministic, but 

recently many researchers have developed option pricing models that recognise the stochastic 

nature of volatility, e. g. Hull and White (1987), Heston (1993a). New financial engineering 

techniques have also made it possible to explore volatility trading in a more sophisticated 

manner. The idea behind these innovations is that volatility can be hedged without having to 

worry about its future volatility level. Whaley (1993) was among first to advocate the use of 

volatility futures and its options on CBOE. Consequently, the VIX, which indicates the level 

of the at-the-money implied volatility on S&P 100, was created in 1993 for CBOE61. Whaley 

60 Aggregate rank is defined as the sum of the rank for each model in each sub-period. 
61 The MONEP created the VX1 and VX6 indexes in October 1997. On January 19,1998, the Deutsche 

Terminborse (DTB) became the first exchange in the world to list volatility futures based on an underlying 
equity index of implied volatility when it launched the VOLAX futures. Readers are referred to Werner and 
Roth (1998) for details on VOLAX contracts. 
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pointed out that such products were free of price risk and could be used to hedge volatility. 

Trading volumes in these contracts, however, have been low. According to Neuberger (1994), 

volatility futures was potentially subject to manipulation. As a result, Neuberger addressed 

this concern by designing the log-contract to provide an accurate and flexible volatility hedge. 

Since then log-contract has become an indispensable component for volatility research. 

5.2.2.1 Log-Contract 

Neuberger (1994) demonstrated that by dynamically hedging the log-contract against a static 

futures position it was possible to engineer the future profit or loss as an exact linear function 

of the realised quadratic variation. This result is not dependent on any assumption that returns 

are generated by a Brownian diffusion process, or that volatility is constant. The "fair price" 

of the log-contract at any time can be shown as: 

Lý =1og(F, )- 
2Q; (T - t) 

where F, is the futures price at time t, Q, the constant future realised volatility and T the 

maturity. The value of the contract at time T is 4= log(FT). 

The "fair price" is the direct result of dynamically hedging the log-contract with appropriate 

amounts of futures contracts until maturity. The delta for log-contract is equal to 1/F, and 

independent of volatility. If traders' view on volatility is Kv01 # QR , the value of log-contract 

will not be the "fair price". In this case, the present value of the profit and loss of this hedging 

strategy over the life of the contract can be shown as: 

Iz2* 
2iK"°ý-Qx) T 

where QR is the realised volatility over the life of the contract and KY01 the volatility implied 

in the price of the log-contract at time 0. 

By dynamically hedging the log-contract, it is clear that one can replicate the cash-flows of 

variance swap and gamble on volatility. But even though log-contract is a powerful 

mathematical tool to hedge volatility, it is only a hypothetical tool. In addition to the 

availability of log-contract, Neubeger's results are also conditional on the feasibility of 

forming discrete and dynamical hedges. Nevertheless, Neuberger's work has greatly 
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facilitated the introduction of volatility derivatives, such as volatility futures, options and 

swaps. 

In order to understand the mechanics of log-contract, one can take a Taylor-series expansion 

of the logarithm of the price up to second-order derivatives which gives: 

log Si., - log S, = 
S, +1 - 

Si 
-1 

S, +1 - Si 
Si 2 Si 

Summing both sides of the above equation over the total number of days n in the contract and 

rearranging terms, one obtains: 

r ^-' S. +i -Sr 
z- 

21ogS° +2ý 
SM -s 

r=o St S" &0 S. 

The LHS is the floating leg of variance swap, which can be replicated by holding a derivative 

with payoff equal to the first term of the RHS -a log-contract, and a forward position - the 

second term of the RHS. Thus the sole concern in setting the delivery price of variance swap 

is to engineer the cash-flows on the RHS, in particular the log payoff. 

5.2.2.2 Demeterfi et al. Framework 

Since log-contract is non-traded and requires dynamic hedging in order to replicate the cash- 

flows of variance swap, it is not a "direct" bet on variance/volatility. In order to provide a 

direct and forward exposure on volatility, Demeterfi et al. (1999) developed a formal and 

rigorous theoretical framework for the pricing of variance swaps. This study showed that the 

future level of volatility could be inferred from the prices of traded options of the underlying 

asset and thereby derivatives on volatility be valued. Demeterfi et al. initially focused on the 

replication of the delivery price under the Black-Scholes framework with deterministic 

volatility. Since variance swap is a forward contract on variance, the delivery price must 

make the swap of zero value initially. Under the assumptions of zero interest rates and 

dividend yields, Demeterfi et al. proved that a constant vega, v, could be obtained by owning 

a portfolio of infinite call and put options weighted inversely by their square of strikes, K2 . 

Figures 38-41 show how the BS v's vary with stock price S for portfolios consisting of 

different number of call options weighted inversely by K2. 
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Figure 38: Vega of Individual Strikes: 80,100,120 
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Figure 39: Sum of the Vega contributions of Individual Strikes: 80,100,120 
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Figure 40: Vega of Individual Strikes: 60 to 140 spaced 10 apart 
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Figure 41: Sum of the Vega contributions of Individual Strikes: 60 to 140 spaced 10 apart 
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5.2.2.2.1 Derivation of Demterfi et at. Framework 

To obtain an initial exposure of a unit of currency per volatility point squared, this portfolio at 

time 0 can be constructed as follows: 

So - Sý o IIo =T S, -log(sS .) +Q, 

where S* is usually the at-the-money forward stock or spot level and o is the view or 

estimate of future realised variance from traders. 

The hedging of the above portfolio is similar to that of log-contract: if the realised variance 

turns out to have been QR the net payoff on the dynamically hedged position until expiration 

will be equal to (o - C2). The terms inside the squared parenthesis are values of the "fair" 

price of variance swaps. The first term inside the brackets is - forward contract with 

delivery price S" , which can be statically replicated. The second term describes a short log 

position with reference to So . It is clear that only the log term needs to be rehedged 

dynamically. 

Demeterfi et al. also relaxed some Black-Scholes assumptions and derived the diffusive 

solutions for the delivery price conditional on no jump. The asset price evolution is given by: 

d5, 
_ , u(t, ")dt+Q(t, ")dWt st 

where W, is Brownian motion, p(t,... ) and C(t,... ) are arbitrary functions of time and other 

variables, respectively. The theoretical delivery price for this general stochastic process is 

given by: 
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where 

V_TfToQz 

K= E[V] ý 

K4_ý E[ fT Q2(t.... )dt] 
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C(K)dK 
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C(K) and P(K) denote the current fair value of a European call and a European put of 

strike struck at K that mature at time T with risk-free interest rate r and some arbitrary 

boundary S' separating actively traded out-of-the money call and put options. On the basis 

of a piecewise linear approximation to this payoff for a finite set of call and put strikes, Ki, c 

and K,, P, respectively, the appropriate option portfolio weights are given by: 

2S 
g(Sr) =TS. -logS; 

g(K; +,. c)-g(K;. c) ; -ý 
w(K,, c )=-I w(Kj, c ) for calls K, 

+i. c - K;. c J=O 
g(K; +i. r)-g(K;, p) r-t 

w(K,, P )_- w(Kj, P ) for puts K;. P - K; +t. P j=o 

where the order of the strikes is: 

Kr-I. P < ... < K3, P < K2. P < KI. P < S* = Ko < Kl. c < K2, c < K3, c < ... < Kr-i, c 
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Appendix B. 7 summarises the procedures to calculate the "fair" delivery price. The above 
"adjusted" weights guarantee that option payoffs will always exceed or match the value of 
log-contract. Clearly the essence of this derivation is that log payoff can be decomposed into 

a portfolio consisting of a forward contract and out-of-the-money call and put options62. This 

approach to the fair value of future variance is the most rigorous from a theoretical point of 

view and makes fewer assumptions than the initial intuitive treatment. From a hedging 

perspective, it makes precise the intuitive notion that implied volatility can be regarded as the 

market's expectation of future realised volatility. Most importantly, it provides a direct 

connection between the market cost of options and the strategy for capturing future realised 

volatility, even when there is an implied volatility skew and the simple Black-Scholes formula 

is invalid. From a practical perspective, traders may express views on volatility using 

variance swaps without having to delta hedge. 

5.2.2.2.2 Implementation Issues with Demeterfi et al. Framework 

Few issues merit our attention in pricing variance swap using Demeterfi et al. framework. 

First, since log() payoffs are not traded in the marketplace, one will have to approximate them 

with traded European options in a limited strike range. Because these strikes cannot exactly 

duplicate such cash-flows, they will capture less than the true realised variance. According to 

Little and Pant (2001), this reduction is greater for the longer-maturity swaps. Second, the 

asset price may fail to remain diffusive. When asset price displays jumps, the impact of 

jumps on the pricing and hedging of volatility derivatives is significant and it can cause the 

strategy to capture a quantity that is not the true realised variance. To fully implement a 

replication strategy for variance swaps, one needs price continuity and a consistent stochastic 

volatility model for options. Finally the above analysis is based upon approximating the 

discretely sampled variance used in the contract terms of most variance swaps by a 

continuously sampled variance. Whilst this approximation can be expected to provide very 

reasonable estimates for short-dated variance swaps when the sampling is frequent, they may 

not perform well with less frequent sampling for longer periods. We refer the reader to Chriss 

and Morokoff (1999) for practical risk management issues in regard to variance swaps. 

62 See Carr and Madan (2002) for its derivation. 
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Despite Demeterfi et al. framework is not perfect, it remains an essential component for the 

variance swap valuation exercises in this research. 

5.2.3 Option Models for Variance Swaps 

In a study of finding an arbitrage-free framework for pricing of volatility derivatives, Carr et 

al. (2002) found that as long as the movement of the underlying asset is continuous63, the 

pricing and hedging of variance contracts is completely independent of the choice of the 

volatility process. Carr et al. showed that model-independent prices of variance swaps could 

be inferred from the market prices of European-style vanilla options. Therefore, pricing a 

variance swap can be viewed as an exercise in computing the weighted average of the implied 

volatility of the options required to replicate the swap even under the influence of volatility 

skew. That is, the delivery price is set so as to reflect the aggregate cost in terms of the 

implied volatility of the hedge portfolio. 

However, results in Chapters 3 and 4 demonstrate that the term-structure of implied volatility 

is pronounced in the S&P 500 marketplace. In addition to many studies, Rubinstein (1985, 

1994) also documented evidence that implied volatility tended to rise for deep in-the-money 

and out-of-the-money options. The presence of skews, smiles and, to a lesser degree, term- 

structures violates the most basic assumptions of the Black-Scholes model and makes it 

necessary to revisit the concept of pricing and hedging of vanilla options. In order to 

accommodate market reality, it is necessary to extend the Black-Scholes model in a 

meaningful fashion. In particular, one needs to generate lepotokurtic distributions via a 

stochastic process for the spot and possible some additional hidden variables. The main 

difficulty is that there are many models and processes that can be used for this purpose and 

their relative merits and drawbacks partly depend on a specific problem at hand. 

The 1990's witnessed several important developments in order to describe smile effects. For 

instance, Dupire (1994), Derman & Kani (1994) and Rubinstein (1994) developed the 

deterministic smile models. An alternative approach would be to consider the volatility as 

another stochastic variable, and there is growing evidence to support this hypothesis. Merton 

(1973) derived the first European option pricing solution for the jump-diffusion model; 

63 There is not an equivalent framework for asset that follows a jump-diffusion process. 
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subsequently, Ball and Torous (1985) and Bates (1991) confirmed that jump component could 

explain some of the empirically observed mispricing in options market. Bates (1996), Bakshi 

et al. (1997), Anderson & Andreassen (1999) and many others also invented stochastic jump- 

diffusion models. More general stochastic volatility models were developed by Hull and 

White (1987), Johnson and Shanno (1987), Scott (1987), Wiggins (1987), Stein et al. (1991), 

Ball and Roma (1994) and Schöbel and Zhu (1999). This list is by no means exhaustive. 

The models developed by most of the above research papers require either the use of Monte- 

Carlo simulation or numerical solution of a two-dimensional parabolic partial differential 

equation, which is computationally intensive to implement. Too often, option models are 

chosen ad hoc, for instance, on the grounds of their tractability and solvability. Finding a 

meaningful theoretical framework and implementing it in practice remains a major challenge 

to practitioners and academicians alike. In the following sub-sections we will explain what 

types of option pricing models are selected for the pricing of variance swaps. 

5.2.3.1 Stochastic Volatility Models 

5.2.3.1.1 Justification for the Stochastic Volatility Approach 

Diffusion models assume that volatility is, like the underlying asset, a continuous random 

variable. This is so-called the time-state-dependent approach. There are many reasons why 

we should model volatility as a diffusive process. For example, it could simply represent 

estimation uncertainty, or it could arise as a friction from transaction costs, or it could 

simulate non-Gaussian (heavy-tailed) returns distributions, or it could simulate leverage effect 

and capture volatility as a stationary, mean-reverting process. Bakshi et al. (2000) suggested 

that one-dimensional diffusion models were inadequate to explain pricing inconsistency 

observed in S&P 500 options. After controlling for time-decay and market microstructure 

factors, Bakshi et al. stipulated that if one had to introduce another state variable that affected 

option prices, this second stochastic process would be volatility. Zhang and Shu (2002) also 

provided evidence that stochastic volatility models outperformed the Black-Scholes model 

significantly in almost all moneyness-maturity groups. In other words, stochastic volatility is 

a far-reaching extension of the Black-Scholes' log-normal model, describing a much more 

complex market. 
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However, parameter estimation and stability of the estimates in time presents the major 

mathematical and practical challenge in using the stochastic volatility model. Without a 

formula for option prices under a particular stochastic volatility model, estimating the risk- 

neutral parameters is computationally intensive. Many questionable models are often chosen 

so that there is a closed-form solution, and this usually means taking the volatility to be 

independent of the Brownian motion driving the underlying asset price, whereas common 

experience suggests that a negative correlation exists, for instance, between stock index and 

volatility. Furthermore, the relatively poor performance of some of these models in capturing 

the observed implied volatility surface (see Das and Sundaram, 1999), as well as their difficult 

calibrations and inherent market incompleteness, make them unattractive to both 

academicians and practitioners. Consequently, pricing of options in the presence of stochastic 

volatility is difficult and seldom can be done analytically. 

5.2.3.1.2 Heston Model 

Recent research has shown that allowing for correlation as a free parameter can explain many 

observed market anomalies. Rubinstein (1994) discovered that the local volatility of stock 

index was negatively correlated with the level of the index. In a pure diffusive model, this 

negative skewness can only be achieved through a negative correlation between returns and 

volatility. In addition, Nandi (1998) found that accounting for correlation between returns and 

volatility in the stochastic volatility model substantially improved the mispricing of out-of- 

the-money options when compared to both the zero correlation version of the stochastic 

volatility model and the widely used Black-Scholes model. Since Heston (1993a) invented 

the Fourier approach to option pricing under stochastic volatility, the study of stochastic 

volatility models has become much easier. This approach permits a closed-form solution for 

European options and at the same time allows a non-zero risk premium for volatility as well 

as an arbitrary correlation between asset returns and volatility. One can also use the 

information contained in a long time-series or the options market to calibrate model 

parameters in an in-sample context and thereafter compute out-of-sample option prices. 

The most important feature of Heston model is that it can account for correlation between 

volatility and asset returns. Correlation between volatility and asset returns is necessary to 

generate skewness and skewness in the distribution of asset returns and it affects the pricing of 

in-the-money options relative to out-of-the-money options. Without this correlation, 
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increasing the volatility of volatility of stochastic volatility only increases the kurtosis of asset 

returns, which in turn only affects the pricing of near-the-money versus far from-the-money 

options. Since options are usually traded near-the-money and the Black-Scholes formula 

produces option prices virtually identical to the stochastic volatility models for at-the-money 

options, this explains some of the empirical support for the use of stochastic volatility model. 

The stochastic volatility model used in our variance swap pricing exercises is Heston's 

stochastic volatility option pricing model, in which volatility is correlated with the underlying 

asset. The variance process is modelled as a square-root process with mean-reversion. The 

Heston model is nested within Bakshi et al. (1997) framework. It is given as follows: 

dS(t) = rdt + V, dW, 

dV, = (6, - x, V, )dt + Q, V, dW. 

where r is the constant spot interest rate; V, is the diffusion component of returns variance 

conditional on no jump occurring; Ws and Wv are each a standard Brownian motion with 

correlation Cov[dW3 , dWy) = pdt ; K, 9, / ky and a, are respectively the speed of adjustment, 

long-run mean, and variation coefficient of the diffusion process V,. 

The solution for the above set of formulas is based on the idea that whilst the probability that 

the underlying asset price is greater (less) than the strike price cannot be expressed 

analytically, the corresponding characteristic function can indeed be described analytically. 

For a European call option written on the stock with strike price K and maturity T, its time t 

price is given by: 

C(t, T)=S, *1I, (t, T; S, r, Vt)-K*B(t, T)IIz(t, T; S, r, V, ) 

where B1 (t, T) is the zero-coupon bond that pays a unit of currency in T-t periods. The price 

of a European put can be obtained from the put-call parity. Since Ramaswamy and 

Sundaresan (1985), Scott (1993) and Bakshi et al. (1997) found that the stochastic interest rate 

model did not significantly improve the performance of the Black-Scholes model, we will not 

consider the stochastic interest rate model in this study. Therefore, B, (t, T) is reduced to 

e-'(T-') . 
Given the characteristic functions fj"'s, the conditional probability density 
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functions Ii, and II2 can be recovered from inverting the respective characteristic functions 

as in Heston (1993), Bates (1996) and Pan (2002): 

11 e-t4m(K) f" (t, T, Sf, r, V,; ý) 
IIj(t, T; S,, r, V)=2+ý0Re 

io 

for j=1,2. The characteristic functions are given in appendix C. 1. 

5.2.3.2 Jump-Diffusion Models 

5.2.3.2.1 Justification for the Jump-Diffusion Approach 

vo 

The explanation that volatility smile is the sole consequence of time-state-dependent or 

diffusive local volatility is far from common intuition, and it has become increasingly clear 

that the assumptions underlying the pure diffusive approach are not particularly realistic. It is 

a well-known fact that the pure diffusion model overprices long-term options and cannot take 

account of the strong smile effects exhibited by short-term options. In addition, many studies 

have showed that modelling jump component can improve option pricing performance. For 

example, Jorion (1988) discovered that there was evidence of jump component in equities and 

foreign exchange even explicit allowance was made for possible conditional 

heteroskedasticity. The importance of introducing a jump component in modelling stock price 

dynamics had also been noted in Bates (1996,2000) and Bakshi et al. (1997) who stated that 

pure diffusion-based models had difficulties in explaining smile effects, particularly in short- 

term option prices. Bakshi et al. concluded that the Poisson-type jump components in jump- 

diffusion models could be used to address these concerns. In addition, Madan et al. (1998) 

introduced a pure jump process with a random time change for European options and found 

that the Black-Scholes model could be rejected in favour of the variance-gamma model. 

Furthermore, empirical investigations of time-series conducted by Carr et al. (2000) indicated 

that stock index dynamics was essentially devoid of a diffusion component. Carr et al. stated 

that risk-neutral processes for indices and stocks tended to be pure jump processes of infinite 

activity and finite variation. Moreover, Lipton (2001) advocated the use of models that took 

into account local jumps and stochastic features of the volatility dynamics for pricing and risk 

management of foreign exchange options. Finally, using Bates's (2000) model with time- 

varying jump-risk premia, Pan (2002) found that the stochastic jump model dominated pure 
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diffusion models. Pan concluded that introducing volatility-risk premia in addition to jump- 

risk premia would not result in any significant improvement in the goodness of fit. 

Qualitatively, jump-diffusion models produce distributions of returns that are mixtures of 

normal distributions and do have attractive leptokurtic features, at least for short maturities. 

The jump model can capture some types of crash phenomena, e. g. stock market crashes, 9/11- 

type events, currency devaluation etc. The jump-diffusion asset dynamics can be modelled as 

the resultant of two components: 

i) The continuous part which is a reflection of new information that has a marginal 
impact on the underlying asset; 

ii) The jump part which is a reflection of important news that has an instantaneous, non- 

marginal impact on the underlying asset. 

The jump parameter allows better tracking of volatility by accounting for sudden changes in 

volatility that accompanies upward or downward movements in the asset. It gives the model 

an extra dimension of flexibility in valuing options across different strikes. Such models also 

imply an inverse relationship between option maturity and the magnitude of skewness, with 

little skewness for long-maturity options. 

However, the use of Demeterfi et al. framework is based on the approximation of 1o 
Sr 
So 

payoff when stock prices do not jumps. When stock prices do jump, log-contract can no 

longer capture realised volatility. This is because to 
ST 

can be replicated by an infinite 
0 

number of weighted market call and put options only when the sample path of the underlying 

process is continuous. Given the shortcomings of pure diffusion models, the extension to 

include jumps in pricing options is well motivated. Although the use of Demeterfi et al. 

framework requires the underlying process to be pure diffusive, it would be pedantic to 

completely ignore its validity simply because its sample path may not be strictly continuous. 

To highlight the "impact" of non-continuous asset dynamics on variance swap pricing, we 

will apply the jump-diffusion model to the Demeterfi et al. framework whilst maintaining all 

other assumptions made by the original analysis. We emphasise that even though this strategy 
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is not perfectly consistent on a scientific basis, it may demonstrate any possible pricing 
improvements over the classic time-state-dependent approach. 

5.2.3.2.2 Bakshi et al. Model 

We adopt the closed-form jump-diffusion option model developed by Bakshi et al. (1997) for 

the jump-analysis. Following Baskshi et al., this risk-neutral jump-diffusion setup is rich 

enough to admit many known variations6S of the Black-Scholes model as special cases 

including: 1) Black-Scholes model: A=0 and 0v = KY = 6y = 0; 2) Heston model: A=0. 

The jump-diffusion model is given by: 

dS(t) = (r - A, u j )dt + V, dW, + J, dg, 

dV, = (8v -- KvV, )dt + Qv V, dWv 

where r is the constant spot interest rate, A is the frequency of jumps per year; V, is the 

diffusion component of return variance conditional on no jump occurring; W, and W, are 

each a standard Brownian motion with correlation Cov[dW,, dWv I= pdt ; J, is the percentage 

jump size conditional on a jump occurring that is log-normally, identically, and independently 

distributed over time with unconditional mean u.,. The standard deviation of ln(1 + J, ) is 

a., ; q, is a Poisson jump counter with intensity A so that P(dq, =1) = Adt and 

P(dq, = 0) =1- Adt ; Kv, 9y 1 kv and u, are respectively the speed of adjustment, long-run 

mean, and variation coefficient of the diffusion, V, . 

The advantage of modelling volatility as a square-root process is that volatility never becomes 

negative. For a European call option written on the stock with strike price K and maturity T, 

its time t price is given by: 

C(t, T)=S, *II, (t, T; S, r, V, )-K*B(t, T)II2(t, T; S, r, V, ) 

64 See Demeterfi et al. (1999) for details. 

65 Note that we simplify the Bakshi et al. model by eliminating the stochastic interest part. 
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Given the characteristic functions fj-''s, conditional probability density functions fI, and 

I12 can be recovered from inverting the respective characteristic functions as in Heston 

(1993), Bates (1996) and Pan (2002): 

'o) 
IIj (t 

1 
+1- 

e-'4'n(") fjýJ(t, T, S rVt, 
, T, Sr, r, V) __f Re ý, 

2z io 
vo 

for j=1,2, with the characteristic functions 17'. The characteristic functions are given in 

appendix C. 2. The price of a European put can be obtained from the put-call parity. The total 

return variance can be decomposed into two components: 

dt 
1 Var 

SSý 
= Vý 

t 

where Vi., _t VarI (J, dq, ) = 2(, uß + (e' -1)(1 +, uý) Z) is the instantaneous variance of the 

jump component. 

5.2.3.3 Local Volatility Models 

5.2.3.3.1 Justification for the Local Volatility Approach 

The local volatility model, also known as deterministic volatility function, is the most natural 

extension to the Black-Scholes model in which the volatility term can be formulated as a 

function of asset level and time. The local volatility model assumes that asset level and time 

are the dominant contribution to smile effects. In theory, the constant Black-Scholes implied 

volatility for an option maturing at time t can be formulated as weighted average of local 

volatility Q(S, t) before time t. Consequently, one can extract the market's consensus for 

future local volatility from a spectrum of available market options as quoted by the implied 

Black-Scholes volatility. 

Dupire (1994) was first to show how to uniquely derive the local volatility function given 

market option prices with all strikes and maturities are available. Dupire's continuous-time 

result has been supplemented by a number of discrete-time numerical methods. For example, 

Longstaff (1990), Rubinstein (1994), Denman and Kani (1994), Derman, Kani and Chriss 

(1996) and Chriss (1996a) fit the volatility smiles through careful manipulation of the local 
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branching probabilities in implied binomial or trinomial tree framework. These "implied" 

methods assume the existence of a complete spanning set of European call option prices, 

which, in practice, requires the use of extrapolation and interpolation of the available market 

option prices. They offer a relatively straightforward approach fitting the volatility smile, but 

suffers from a number of setbacks: 1) tree methodology needs extensive "engineering" 

treatment to infer probabilities because negative transition probabilities are not allowed; 2) 

trees such as Derman-Kani use options at each time interval. Bad probabilities occur 

frequently and lead to extremely erratic convergence behaviour. The reader is referred to 

section 2.4 for a detailed survey of the "implied" methodology. 

Whereas the implied-tree is primarily based on a discretisation of the asset price process, the 

finite-difference approach focuses on developing a discrete-time model by discretising the 

fundamental no-arbitrage partial differential equation. The application of finite-difference 

scheme to the volatility smile problem has been studied by many authors, e. g. Lagnado and 

Osher (1997), Andersen and Brotherton-Ratcliffe (1998), Coleman et al. (1999), 

Chryssanthakopoulos (2001) and Little and Pant (2001). Whilst somewhat more complicated 

to evaluate and calibrate, however, finite-difference scheme is shown to exhibit much better 

stability and convergence properties than implied-trees because finite-difference method does 

not involve explicit adjustments of branching probabilities and allows for independent 

prescription of the stock- and time-partitioning. The explicit finite-difference scheme can also 

be shown to be similar to a trinomial tree, however, it is commonly acknowledged that 

implicit or Crank-Nicolson schemes is unconditionally stable whilst explicit schemes are 

not 66 
. 

5.2.3.3.2 One-Factor Model 

The inspiring research by Breeden et al. (1978) stated that the risk-neutral probability 

distributions could be recovered from European-style options by pricing butterfly spreads, and 

therefore expressed as the second derivative of the call option price with respect to the 

exercise price. Based upon the Breeden et al's results, Dupire (1994) showed how one could 

relate the partial derivatives of standard European options to local volatility function. The 

idea behind Dupire's method is to extract implied distribution and construct the whole 

66 Zvan et at. (1998) deal with the necessary conditions to avoid spurious oscillations. 
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diffusion process that is consistent with the market observed prices. In the risk-neutral world, 
Dupire's local volatility model is assumed to evolve according to the following one-factor 

continuous-time diffusion model: 

dS = ((r(t) - q(t))dt + Q(s, t)dW 
s 

where r(t) is the risk-neutral drift, q(t) is the dividend yield, and dW is a Wiener process. 

Given a continuum of traded European calls with different strikes and maturities, Breeden et 

al. found that: 

pcS, t, K, T>=e"/r 
a2Cxr 

ax 

where p(S, t; K, T) is the conditional probability density function and C. is the current 

market value of an option with strike price K and maturity T at asset level S and time t; rf is 

the constant risk-free rate. In the continuous-time limit when risk-free rate and dividend are 
a2cý. 

constant, and a2K2 
* 0, Q(K, t) is completely determined from the volatility smile. At 

time t and strike K, Dupire relates option prices to a(K, t) as follows67: 

( öCT 
+ gK 

acr-P T+ (rr - g)Ck7 1 
Q(K, T)=ý v[ 11 1 

K2 a2cKr 
; )V2 ; )V2 

The major advantage of the above one-factor continuous model, as compared to the jump- 

diffusion or stochastic model, is that no non-traded source of risk such as the jump or 

stochastic volatility is introduced. In addition, the first derivative of the European call or put 

option price with respect to the strike price is proportional to the relevant risk-neutral tail 

probability whilst its second derivative is proportional to the conditional probability density. 

Given there are enough strike prices, the patterns of implied volatility across different strike 

prices can uniquely identify the shape of the risk-neutral density and distribution. 

Consequently, the completeness of this one-factor diffusion model allows for arbitrage pricing 

and hedging. 
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5.2.3.3.3 Coleman et al. Approach 

Dupire's continuous-time results have been supplemented by a number of finite-difference 

methods. For example, Zou and Derman (1997) applied the "pseudo-analytical" method to 

extract local volatility surface by approximating the derivatives of options prices with respect 

to the strike levels and maturity using Edgeworth expansion for the pricing of lookback 

options. Andersen et al. (1998) illustrated how to construct the stable finite-difference lattice 

to extract local volatility consistent with the equity option volatility smile and term-structure 

of interest rate using implicit and Crank-Nicholson lattices68; Andersen et al. also 

demonstrated its application by pricing down-and-out knock-out options. In addition, 

Coleman et al. (1999) developed a Crank-Nicholson scheme to "optimise" local volatility 

surface by introducing "smoothness" in the Black-Scholes PDE discretisation process. 

In this study we adopt the spline functional approach of Coleman et al. (1999) to directly 

construct the local volatility surface and price variance swap via finite-difference method. In 

additional to Coleman et al., Little et al. (2001) also approximated a variance swap by using 

the Crank-Nicholson method in an extended Black-Scholes framework that was based on a 

cleverly decomposition of a two-dimensional problem into the solving of a set of one- 
dimensional Black-Scholes partial differential equations. At a glance, Little et al. 's method 

seems to be attractive because this finite-difference model directly prices a variance swap 

based on a discretely sampled variance and allows for the incorporation of local volatility. 

Besides computationally intensive, the major deficiencies of Little et al. 's setup are: 1) one 

has to make an assumption of the underlying asset process; 2) local volatility is assumed to be 

exogenous and therefore requiring the use of a separate method to extract and incorporate 

volatility smile. This is in contrast to the assumption-free Demeterfi et al. model that only 

requires the implied volatilities for different maturities in order to value a variance swap, and 

therefore, we will not consider the Little et al. 's methodology here. 

Coleman et al. 's method solves for the local volatility function by directly discretising the no- 

arbitrage partial differential equation using the finite-difference method. Given Si,, i,, r, q and 

cr(S, t) and under the no-arbitrage condition, the option value must satisfy the Black-Scholes 

67 See also pp. 8-10 of Andersen and Brotherton-Ratcliffe (1998) for a detailed derivation of this formula. 
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partial differential equation for every price of the asset level and for every time from starting 

time to the expiry given by Merton (1973): 

ac 
+(r _ q)S 

ac 
+l Q(S, t) ZSZ asC= 

rC 
at as 2 aZs 
lim 

aCäS, t) 
=e-ecT-t> tE [0, T] 

! -/i- 

C(O, t) = 0, tE [0, T] 
C(S, T) = max(ST - K, 0) 

where C(S, t) denotes the option value of an underlying asset with an arbitrary strike at K and 

expiry at T, tE [O, T]. The boundary conditions for the upper (u) and lower (1) spatial 

boundaries are: 

a2c a2c 
as 2I S=O as 2I S-1 =0 

Before applying finite-difference method to calculate option prices, Q(S, t) needs to be 

approximated. Due to lack of market option price data, i. e. non-continuum of strikes, this can 

be regarded as a well-known but ill-posed function approximation problem from a finite 

dataset with a nonlinear observation functional. Therefore, there are an infinite number of 

solutions to the problem given a set of the market option price data. To tackle this problem, 

the Coleman et al. model introduces "smoothness" to facilitate accurate approximation of the 

local volatility function from a finite set of data. The Coleman et al. model assumes that the 

underlying asset follows a one-factor diffusion model and incorporates bicubic spline in the 

choice of parameterisation. After choosing the number of spline knots and their placement, 

a(S, t) can be represented by an interpolating spline with a fixed end condition. The spline 

knots uniquely construct Q(S, t) and the knots are determined by solving a constrained 

nonlinear optimisation problem to match the market option prices, therefore effectively 

turning it into an inverse spline minimisation problem with respect to local volatility at the 

spline knots. The local volatility calibration procedures are summarised as follows: 

i) Assume there are m observed option closing prices Ci j =1,..., m 

68 Andersen et al. (1998) found that explicit finite difference method was not well-behaved in the fitting of the 
volatility smile. 
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ii) Choose p spine knots { s; , tr }? 1 with corresponding local volatility a: = 0(s1 , t; ) 

iii) Define an interpolating spline c(s;, t j) = Q; i =1,... p 

iv) Let Cj (c(S, t; Q' )) = C(c(S, t; a* ), Kj , Tj ), j =1,..., m 

v) Given p spline knots, (s,, tl).... (sp, tp), solve for the p-vector cf by minimising the 

objective function: 

1mw 
MIN f(o)=-ý(Cj(c(S, t; a*))_Cj)2 subject to l <Q* <u 

d2 j=i 

In contrast to Dupire (1994), Coleman et al. do not emphasise on the matching of the market 

option price data. The objective is to reconstruct as smooth as possible the local volatility 

function Qf (S, t) . This way, the local volatility surface possesses certain properties a priori, 

namely, smoothness and better chance of convergence. The approximation of o in the 
A 

above minimisation process requires the evaluation of European options C. This inverse 

minimisation problem can only be computed numerically via a tree method or a finite- 

difference approach. 

Several issues merit our attention in this inverse minimsation problem. First, to construct a 

spline efficiently via finite-difference method, the spline knots should be placed in a 

rectangular mesh covering the asset-time space D69. Second, the number of spline knots is to 

be no greater than the number of option prices (p S m) in order not to allow too many 

degrees of freedom in approximating cr(S, t) . Under mild assumptions, the Coleman et al. 

approach corresponds to a monotonically decreasing sequence of objective function values 

and guarantees convergence, i. e. o -> a, k =1,..., c*. 1, u are the lower and upper bounds 

that can be imposed on the local volatility at the knots. In addition, both traded European 

call/put options may be used to calibrate the spline approximation to the local volatility 

function or* (S, t). A thorough examination of finite-difference method is beyond the scope of 

this dissertation. We recommend Andersen et al. (1998) for a proper treatment of the implicit 

infinite difference approach to extract local volatility surface consistent with smile effects. 

Wilmott et al. (1993), Tsiveriotis and Chriss (1998) and Little and Pant (2001) have also a 

69 In general, we have no a priori knowledge of D within which the volatility values are significant for pricing 

available options. 
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good discussion in pricing options under the one-dimensional Black-Scholes PDE 

environment. 

5.2.3.4 Ad hoc Black-Scholes Model 

In light of the Black-Scholes model's moneyness and maturity biases, researchers and 

especially practitioners have always tried to find ways to "live with the smile". One of the 

proposed ways, whilst arguably ad hoc, is to estimate and use an "implied volatility matrix". 

This formulation is also termed as "practitioner Black-Scholes". We adopt Dumas et al. 

(1998) methodology and construct an ad hoc Black-Scholes model in which each option has 

its own implied volatility depending on the strike price K and time-to-maturity T. Dumas et 

al. observed that the Black-Scholes implied volatility for S&P 500 options tended to have a 

parabolic shape and argued that quadratic forms for volatility function were suffice to 

parameterise implied volatility. Specifically we use the functional form: 

QN(K, z) =ao +a, K+a2K2 +a3z+a4z2 +asKz 

where cr. is implied volatility using the Black-Scholes formula for an option of strike K and 

time-to-maturity 'r. 

This formulation is not only internally inconsistent with the Black-Scholes assumptions but 

also generates option prices which are not subject to demand and supply forces and violates 

local no-arbitrage conditions, and therefore potentially erroneous. But Dumas et al. did show 

that the implied binomial tree or the deterministic volatility models of Derman and Kani 

(1994), Dupire (1994) and Rubinstein (1994) underperformed the ad hoc Black-Scholes 

model in terms of out-of-sample options valuation errors in the S&P 500 index option market. 

Furthermore, the ad hoc Black-Scholes model is very different from the local volatility 

approach. The local volatility approach models the smile effects with the spots and strikes 

whereas the ad hoc Black-Scholes prices depend on moneyness alone. This regression-based 

ad hoc strategy, although naive, is definitely more challenging and flexible than using the 

local volatility model for pricing variance swaps. Comparing the ad hoc Black-Scholes 

strategy to the local volatility and stochastic volatility with/without jump strategies should 

therefore yield insights on their relative efficacies in terms of forecasting volatility and 

valuing options. 
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5.2.4 Time-Series Models for Forecasting Variance 

The models discussed so far for pricing variance swaps includes only the implied models - 
stochastic volatility with/without jump models and local volatility model under the Demeterfi 

et al. assumption-free framework. Although interesting, these approaches do largely depend 

on a very limited number of option strikes to infer the prices of an entire continuum of options 

of every strike and maturity on the underlying asset. 

5.2.4.1 Justification for the Conditional Volatility Approach 

On the other hand, time-series models can be used to directly approximate the delivery price 
for a variance swap. Indeed discrete-time GARCH-type processes can be linked to bivariate 

diffusion models, and vice versa. For example, Nelson (1991) showed that EGARCH 

processes converged weekly to a specific stochastic volatility bivariate diffusion model. More 

recently, Duan (1997) generalised these results and brought the largely separate GARCH and 

bivariate diffusion literatures together. Duan showed that most of the existing bivariate 

diffusion models that had been used to model asset returns and volatility could be represented 

as limits of a family of GARCH models. Despite the fact that the time-series approach 

ignores the direct modelling of volatility smile effect and uses only historical information, 

there may still be some advantages in implementing heteroskedastic models using the vast 

literatures on numerical procedures for GARCH-type models. 

5.2.4.2 GARCH-Variance Swap 

An alternative way for pricing variance swaps is to use stochastic volatility models that are in 

good agreement with historical time series, such as the GARCH-variance swap (GARCH-VS) 

model invented by Javaheri et al. (2002). The GARCH-VS model uses the Ornstein- 

Uhlenbeck process to model for its variance in continuous time: 

dv = k(9 - v)dt + yvdW 

where k is the speed of mean reversion, 0 is the long-term mean reversion level, y is the 

volatility of the volatility and dW is Brownian motion. 

Javaheri et al. originally used a partial differential equation approach to determine the first 

two moments of realised variance and approximate the expected realised volatility. Expected 
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realised variance is evaluated by determining the first moment of realised variance in a 
discrete and continuous context. It uses the discrete time process GARCH(1,1) to calculate 

expected realised variance EI=Tfo v(t)dt . The structural parameters estimated from the 

GARCH(1,1) environment were derived by Engle and Mezrich (1995) and Javaheri et al. 

(2002) as follows: 

E, = hu,, u, - i. i. d. 

r, =e, et - N(O, ht ) 

h; =ao+a, e,, 2, +ß, h;, 

0=v 
dt 
1-a, -A 

dt 

where a,, ß, are the autoregressive parameters of GARCH(1,1), V= a° is the 
(1-a, -ßl) 

unconditional variance, h, is the conditional volatility, T is time to maturity and v is the 

instantaneous variance to the last observation in the GARCH(1,1) model. The expected 

delivery price of a variance swap can be written as: 

k''T 

E -fIJoTv(t)dt = 
[O*(Týe_1)+! 

(l -e'k4T)*v IT 
k 

Since the GARCH-VS model has a closed-form solution for variance swap valuation, one can 

easily use the time-series information in the history of asset prices to estimate model 

parameters as in Theoret (2002). 

5.2.4.3 EGARCH Simulations 

In Chapter 4 we have shown evidence that EGARCH is the best model and outperforms 

GARCH in both in- and out-of-sample tests. In addition to the GARCH-VS model, we 

include the EGARCH model (Nelson, 1991) and analyse its performance by directly 

calculating the delivery prices of variance swaps from its simulated sample paths. The 

EGARCH(1,1) is given by: 
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e, = h, v, 

r, = E, 

log h, ' =ao +a, z, -, 
+Y, (I zr-, 1'(2/9t)os)+ßl log h1_12 

where z, = 
h' 

, v, -i. i. d. student-t with unit variance and v is the degrees of freedom. Given 
, 

a set of structural parameter (ao, a, , y, ,/ 1) , we simulate the N-step return data with 100,000 

replications in order to calculate the delivery prices for variance swaps, where N is number of 

trading days. 

5.2.5 Summary of the Methodology 

Sections 5.2.1-4 have explained the performance criteria, methods, models and underlying 

hypotheses used in this study for variance swap valuation. It should be emphasised that our 

study uses both time-series and options-based variance swap models to investigate the S&P 

500 index market. Our research is designed to include the results from the best models shown 

in Chapters 3 and 4 including: 1) ad hoc Black-Scholes model; 2) stochastic volatility model; 

3) jump-diffusion model; 4) local volatility model; 5) EGARCH; 6) GARCH variance swap 

model. The next section presents the S&P 500 data used in this study. 

5.3 Data Description 

5.3.1 Specifications and Filtering 

The dataset comprises of the daily closing prices of the S&P 500 index for the period from 

June 1999 through December 2001. The option prices used in this study are S&P 500 call 

options70 traded on CBOE. We obtain the closing bid/ask option prices traded on CBOE for 

the third Friday's from the three months before to after September 11,2001. These options 

are European and settled for a cash amount equal to 100 times the difference between index 

level and strike price. Similar option data were formerly used by Rubinstein (1985), Bakshi et 

al. (1997) and Nandi (1998). 

70 The S&P 500 index is a value-weighed index. S&P 500 index options are traded on CBOE whilst S&P 500 

index futures options used in Chapters 3 and 4 are traded on CME. 
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S&P 500 index options expire on Saturday immediately following the third Friday of the 

expiration month. There are three near-term expiration months followed by three additional 

months from the March-quarterly cycle, i. e. March, June, September and December. Our 

option database is supplied by an option specialist". Following the lead of Bakshi et al. 
(1997), several exclusion filters are applied to remove uninformative options records from our 

database: 

i) Options with less than six days to expiration may induce liquidity-related biases and 

they are excluded from the sample; 

ii) Price quotes lower than $0.375 are eliminated to mitigate the impact of price 

discretenesss on option valuation; 

iii) Quotes not satisfying the arbitrage restriction: C(t, T) >- max(O, S-D-K* e-'ýT -`> ) 

are taken out of the sample; 

iv) Options with no open interest are not included because of liquidity problem. 

5.3.1.1 Dividends 

S&P 500 index options are chosen because these are the second most active index options 

market in the U. S. and, in terms of open interest in options, they are the largest. In contrast to 

S&P100 index options, there are no wild card features that can complicate the valuation 

process. It is also easier to hedge S&P 500 index options because there is a very active 

market for S&P 500 futures. In fact, it is one of the best markets for testing a European option 

valuation model72. As many of the stocks in the S&P 500 index pay dividends, there is a need 

to obtain the ex-dividend spot index level. We collect daily cash dividends for the S&P 500 

index from Bloomberg from June 2001 to December 200273. We arrive at the present value of 

the dividends and subtract it from the current index level in order to obtain the dividend- 

exclusive S&P 500 index that is used as input into the option models. The ex-dividend spot 

index level is: 

71 Option data are provided by ivolatility. com in New York. 
72 Refer to Rubinstein (1994) for more details. 

73 The calculation of ex-dividend spot level requires the use of up to 18 months of future dividends to make 
adjustments on its index level. 
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T-t 

`S 
i*r 

es-dividend(t) - 
Sclose (t)- e-ý Dt+l 

i=1 

where D1+r is the actual dividend in the future, SciOSe is the closing index price, r, is the 

continuously constant risk-free compounded rate corresponding to i periods to expiration from 

day t calculated from interpolated U. S. Treasury yields provided by the U. S. Treasury 

Department. Implied volatility is computed by applying the Newton-Raphson method to the 

Black-Scholes call option formula: 

C(t, T) = Sex-eevraend (t)N(d, )- Xe-rcr-t) N(d2 ) 

ln[Sex-divJdene (t) /X]+ (r + 0.5Q2 )(T - t) dl 
QT -t 

d2 =d, -Q T-t 

5.3.1.2 Calibration Using Call Options 

Few issues merit our attention when using the call options database for option models' 

calibration. First, we have demonstrated in section 3.4.3 that the implied volatility of call 

options in a given in-the-money (out-of-the-money) category are quite similar to the implied 

volatility of put options in the opposing out-of-the-money (in-the-money) category regardless 

of sample period or term-to-expiration. For a fixed term-to-expiration, call and put options 

imply the same U-shaped volatility pattern across strike prices. Such similarities in pricing 

structure existing between call and put options mainly due to the working of the put-call 

parity, and it is this link that makes call and put options of the same strike price and the same 

expiration exhibit similar levels of mispricing. Second, Bakshi et al. (1997) used S&P 500 

put options to estimate the parameters of some stochastic models and found that results were 

qualitatively similar. Because of these two reasons, only call options are used to calibrate the 

ad hoc Black-Scholes, stochastic volatility with/without jump and local volatility models. We 

argue that basing our calibrations to follow solely on results obtained from S&P 500 call 

options should not present a biased picture of the candidate models. After applying the 

exclusionary criteria to the data, the average number of options available on each day is 100. 
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5.3.2 Financial and Political Events 

The decision to value the June-November 2001 variance swap contracts is neither incidental 

nor arbitrary. Many significant global macroeconomic and political events occurred during 

the 2001-2002 period. For example, the September 11 terrorist attacks in New York, U. S. led 

war in Afghanistan, weak global economic growth, corporate scandals such as Tyco, U. S. 

investment banks' scandals, the collusion between Enron and its auditor Arthur & Andersen, 

bankruptcies, e. g. United Airlines, US Airways and WorldCom, worldwide bursting of 

technology, media and telecoms bubble, E. U. enlargement, circulation of Euros, surging oil 

price, possible war against Iraq and the Israel-Palestine conflicts in the Middle East have all 

conspired to spook markets. 

On the equity side, the global market was extremely volatile and depressing during the 2000- 

2002 period. In the U. S. there were more than 186 bankruptcies recorded with $368 billion in 

assets collapsed in 2002. Tokyo finished 2002 with a 19 percent decline in the Nikki 225 

average. The market sank to a 19-year low in November 2002 and suffered losses over nine 

consecutive trading days in December 2002, its longest losing streak for 11 years. In 2002 the 

European bourses suffered their worst year since 1974 with a fall of 22.1 percent in the MSCI 

Europe index. Germany had also lost almost 35 percent as hopes for a recovery were 

frustrated in 2002. On Wall Street the Dow Jones index had plummeted 17 percent during 

2002, its worst performance for 28 years. The technology weighted NASDAQ composite had 

done even worse with a fall of 32 percent. London's FTSE 100 plunged 25 percent in 2002. 

In December 2002 the FTSE 100 index extended a losing streak into eight consecutive 

sessions, its longest sequence of falls since its inception in 1984. Cumulative losses for the 

FTSE World index since the start of 2000, after the bursting of the technology, media and 

telecoms bubble, totalled 43 percent. The 2000-2002 period was the worst three-year 

performance since 1929-1931 when world markets fell 58.8 percent. By comparison, world 

markets lost 39 percent in 1973 and 1974 at the height of the world oil shock. Investors had 

indeed endured a turbulent ride over 2000-2002. 

5.3.3 Descriptive Statistics for Call Options and S&P 500 Index in 1999-2002 

Basic statistics for S&P 500 index option data are shown in table 40. Table 40 reveals that 

average implied volatility is notably higher in post-September 11 period. It is also evident 
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from figure 42 that returns cluster in time. Appendices B. 1-B. 6 exhibit the specifications and 

various option input parameters for our daily option contracts. Causal inspection of 

appendices B1-B6 reveals that: 1) lower strikes have a higher implied volatility; 2) volatility 

smile is more pronounced for near-term options. These results agree with the "stylised" fact 

presented in Chapter 3. 

Table 40: Basic Statistics for S&P 500 Index Options 

6/15/2001 7/20/2001 8/17/2001 9/21/2001 10/19/2001 11/16/2001 

#. of 131 89 78 117 83 106 
Options 
Mean Call 72.457 58.135 68.471 28.852 53.868 89.913 
Price (87.751) (62.02) (81.118) (42.526) (66.467) (98.478) 
Strike 800- 1025- 800- 800- 800- 700- 
Range 1900 1900 1900 1900 1700 1700 

#. of 40 33 35 41 32 50 
strikes 
Mean 0.61 0.5531 0.6085 0.4983 0.5633 0.4444 
Maturity (0.4389) (0.4466) (0.4455) (0.4056) (0.386) (0.3597) 
Mean Imp. 0.2094 0.1853 0.1981 0.2856 0.2287 0.2363 
Vol. (0.0481) (0.0213) (0.051) (0.06707) (0.04624) (0.08588) 

Table 41: Descriptive Statistics for r 

Full Period Pre-9/11 Post 9/11 
16/06/1999- 15/06/1999- 17/09/2001- 
31/1212002 10/09/2001 31/12/2002 

-29.85260 -23.5922p -17.82220 DF stat. [. 000) [. 000] [. 000] 

Maximum . 055732 . 048884 . 055732 

Minimum -. 060052 -. 060052 -. 050468 
Mean -0.0004325 -0.000299 -0.00066424 
Std. Dev. . 014137 . 013112 

. 015778 

Skewness . 16579 0.073602 
. 26741 

Kurtosis-3 1.22370 1.40510 0.83187 
5.42500 10.18850 5.93000 

Q(10) [. 861) [. 424) [. 821) 
59.74210 47.06940 13.28510 

Jarque-Gera stat. [. 0001 [. 000] [. 0013] 

#. Obs. 892 505 326 

210 



Chapter 5: Empirical Performance of Alternative Variance Swap Valuation Models 

Figure 42: S&P 500 index and Returns: 1999-2002 
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Since variance swaps are not traded on organised markets, contract terms such as maturity, 

annualisation factor etc are negotiable. Investment banks quote daily delivery prices for their 

counterparties for various maturities running from three months to two year. Figure 43 plots 

the future realised74 three-, six- and nine-month variance75 from September 1999 to March 

2002. During these periods, average returns are close to zero. Table 41 shows that Ljung- 

Box statistics up to the 10`h order are not significant, which suggest that returns are not serial 

correlated. Both skewness and excess kurtosis are slightly positive, but Jarque-Bera test 

statistics reject the null hypothesis that returns are normal in all intervals. 

Descriptive statistics in table 41 indicate that returns in the pre- and post-9/11 periods are 

statistically similar. But a close inspection of realised forward variance in figure 43 reveals 

that S&P 500 index's variance process displays a mean-reverting property. In addition, the 

realised forward variance spread between the 3- and 9-month contracts has been widening 

since the 9/11 attacks. It is also evident in figure 43 that realised forward variances have 

inverted at different maturities after September 11,2001, i. e. the longer-termed forward 

74 Readers should not be confused it with the smoothing average approach. Our results represent what the 

variances that would have been obtained if we had entered the variance swap trades on a particular day. 
75 Variances are calculated by summing the arithmetic returns and the mean of returns is assumed to be zero. 
Annualisation factor is 252 and observation frequency is daily. 
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variance has become more volatile than the shorter-termed forward variance. September 11, 

2001 has indeed served as a reflection point where investors have clearly changed their risk 

appetites at different investment horizons. 

5.3.4.1 Design of Variance Swap Contracts 

Evidence in figure 43 clearly shows that the June-November 2001 period is an interesting 

time to value variance swaps. An accurate variance swap valuation model should be able to 

price into the inverted volatility term-structure relationship correctly during this period. In 

order to assess how different variance swap models can predict the changing term-structure of 

variance, we have included three-, six- and nine-month variance swap contracts which are 

compatible with the International Money Market (IMM) rulebook76. The specifications for 

the three-, six- and nine-month variance swap contracts are shown in table 42. It is noted that 

our variance swap contracts always begin on the third Fridays and end on the Thursdays prior 

to the third Fridays of the maturity month. For example, the start and end dates for the three- 

month June 2001 variance swap contract correspond to the inception of the June 2002 S&P 

500 futures contract and the last trading day of the September 2001 S&P 500 futures contract 

on CBOE, respectively. 

Figure 43: Realised Forward Variances 
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Table 42: Contract Specifications for Variance Swaps 

Pre-9/11 June 2001 July 2001 August 2001 

Maturity Start End Start End Start End 

3-Month 15/06/01 20/09/01 20/7/01 18/10/01 17/08/01 15111101 

6-Month 15/06/01 20/12101 20/7/01 17/01/02 17/08/01 14/02/02 

9-Month 15/06/01 14/03/02 20/7/01 18/04/02 17/08/01 16/05/02 

Post-9/1 1 September 2001 October 2001 November 2001 

Maturity Start End Start End Start End 

3-Month 21/09/01 20/12/01 19/10/01 17/01/02 16/11/01 14/02/02 

6-Month 21/09/01 14/03/02 19/10/01 18/04/02 16/11/01 16/05/02 

9-Month 21/09/01 20/06/02 19/10/01 18/07/02 16/11/01 15/08/02 

5.4 Results & Analysis 

Six variance swap models are investigated to determine the quality of variance forecastability 

the models deliver. In this section we carry out the following analytic procedures to compare 

the variance forecasting performance of various time-series and options-based variance swap 

models: 

i) Out-of-Sample Analysis. The out-of-sample error criterion is judged by MSE tests. 

Each model's performance is based on the aggregate ranking for each of the three 

contract months, i. e. 3M, 6M and 9M; 

ii) In-Sample Analysis. In-sample test, which relies on the sum of price square error 
(SPSE), is used to evaluate how good an option model can fit a given set of call option 
data for each contract day. In-sample analysis is primarily used to investigate whether 

option pricing models are misspecified and overfit options data; 

iii) Calibrations. All models must be calibrated in order to calculate the expected future 

variance. Options-based models are calibrated by call option data whilst time-series 

models rely on historical data to estimate their structural parameters. Calibration 

results are shared by both in- and out-of-sample analysis; 

iv) Maximum Likelihood Estimation of the square-root process. We apply this procedure 

to illustrate that the underlying dynamics implied by options are not consistent with 

time-series data. 

76 We thank Philipp Jokisch for contributing to this idea. 
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We explain our calibration procedures in section 5.4.1. In- and out-of-sample results are 

reported and analysed in sections 5.4.2.2, and maximum likelihood estimation of the square- 

root process is conducted in section 5.4.2.3. 

5.4.1 Calibration Procedures 

Sections 5.4.1.1-4 discuss the econometric and numerical methods that are used for 

calibrations of the ad hoc Black-Scholes, stochastic volatility (Heston, 1993), stochastic 

volatility with jump (Bakshi et al., 1997), local volatility (Coleman et al., 1999), EGARCH 

(Nelson, 1991) and GARCH-VS (Javaheri et al., 2002) models. 

5.4.1.1 Calibrations for Stochastic Volatility withlwithout jump 

Estimation of stochastic processes on discrete-time data is difficult. Since volatility is not 

directly observable, many parameter estimation methods have relied either on time-series 

analysis of volatility proxies such as conditional volatility or on cumbersome econometric 

techniques such as Scott (1987) and Wiggins (1987) using moment matching procedures". 

Instead of estimating parameters from the underlying asset return data, we imply out the 

parameters of the stochastic models from the cross-section of observed option prices using all 

actively traded call option prices as in Bakshi et al. (1997). A major disadvantage with the 

"implied" methodology is that it is lack of a formal statistical theory. This approach is to 

assume that the market uses a wide range of data and information to determine the structural 

parameters of the risk-neutral underlying asset and variance processes. The primary 

advantage of using market option prices for parameter estimations, however, is that it 

"gauges" the sentiments of the marketplace by using the information inferred from the cross- 

section of the market option prices, information that essentially is forward looking. 

Consequently, volatility smiles translate into unique values for the volatility of volatility and 

asset-volatility correlation in a stochastic volatility model, and into unique jump distribution 

parameters in a jump-diffusion model. 

Since closed-form solutions are available for our selected stochastic models, a natural 

candidate for the estimation of the risk-neutral parameters, which enter the pricing and 

77 Both Scott and Wiggins found that the parameter estimates were sensitive to the moments which they fitted. 
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hedging formula, is a non-linear least squares (NLS) procedure involving minimisation of the 

sum of squared errors between the models and market prices. For the full stochastic 

volatility/jump-diffusion model, (D is the set of stochastic volatility and jump parameters: 

4) ={p, Kv ,O, Qv , 
A�u j, o. }. The first four are the parameters of the stochastic volatility 

model whilst the remaining three are jump parameters. The following steps summarise our 

calibration procedures: 

i) Collect N call options on the S&P 500 index on the same day, for N greater than or 

equal to one plus the number of parameters to be estimated. For n=1,..., N and 
A 

let C,, (t, T,,, K,, ) be observed price and C,, (t, T,, K,, ) its 

model price. For each n, define: 

A 

8�(Vt, (D) = Cn(t, TT, K,, )-C. (t, T,,, Kn) 

ii) Choose « and instantaneous volatility V, to minimise the following objective 

function: 

N 

SSE(t) = MIN ý Eý (VI, (P) 
n=1 

An alternative objective function, the percentage error, which can be obtained by dividing 

dollar errors by the underlying index price, may be used to estimate implied parameters. This 

is a sensible metric because option prices are theoretically non-stationary but option-asset 

price ratios are stationary under most hypothesised processes. However, this metric would 

lead to a more favourable treatment of cheaper options, e. g. out-of-the-money options at the 

expense of in-the-money and long-term options. Based on the above considerations, we have 

chosen to adopt the SSE approach. The computer program MATLAB is employed to 

implement the option pricing formulas and minimisation routines. Among others, Bates 

(1995,1996) and Bakshi et al. (1997) have also applied this technique for similar purposes. 
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5.4.1.2 Calibrations for Local Volatility Model 

We apply finite-difference method in MATLAB using a trust-region optimisation algorithm 

(Coleman et al., 1999) with a partial differential equation (PDE) approach's to directly solve 

for local volatility Q(S, t). The Black-Scholes partial differential equation is discretised 

along the S-dimension with log-spacing. Crank-Nicholson finite-difference method is used 

for solving the Black-Scholes partial differential equation because it improves the stability 

and convergence of the finite-difference algorithm. Given any a*, the bicubic spline 

c(s, t; c') with the variational end condition79 is computed and evaluated using the functions 

in the MATLAB SPLINE TOOLBOX. We use a uniformly spaced mesh with NxM grid 

points in the pre-determined rectangular region [0, f*S; 
n; t 

]x [0, z] , where r is the maximum 

maturity in the market option data and f is the range parameter for which the local volatility is 

significant for pricing. The discretisation scheme is given by: 

S, = (11 f) * Smit +i* AS, i=0,..., M -1 
z 

tt = jM-1, j0,..., N-1 

AS =[f *S; tt -(1/f)*S;,, u]l(M-1) 

We use backwards difference to approximate 
ät 

and central difference to approximate 

a2C ac 
. The resulting system is tridiagonal and can be solved by MATLAB at each time 

as2 ' as 
step using row reduction rather than matrix inversion, i. e. the LU decomposition method. 

Starting from j=M -1 for which time the terminal condition is known and progressing 

backwards through time, we successively solve for the j -1 option values until j=1, which 

gives time-zero option values along the S-dimension. In addition, the boundary conditions 

a zC Is-u =az 21 S=L= 0 are incorporated into the finite difference scheme by setting their 
as as 

central difference approximation to zero. Further descriptions of finite-difference method go 

78 We sincerely thank Demetri Chryssanthakopoulos for making printed copies of his codes available. 
79 This is a MATLAB option to ensure that second derivatives are zero. 
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beyond the scope of this study but the reader is referred to Chapter 2 of Press et at. (1992) and 

Andersen et al. (1998) for a more thorough investigation of the implementation issues. 

5.4.1.2.1 Trust-Region Reflective Quasi-Newton Method 

Bicubic spline is the most important element in the implementation of finite-difference 

method. Its parameterisation is determined by solving a constrained non-linear optimisation 

problem to match the market option prices as closely as possible. Andersen et al. (1998) 

suggested that bicubic splines might suffer from the drawback that smoothness was only 

guaranteed in the S-direction. The reader is referred to Dierckx (1995) for discussions of 

more sophisticated spline interpolation schemes that are smooth in both T- and S-directions. 

The "csape" and "fnval" functions available within the MATLAB Spline Toolbox are used for 

the construction of natural bicubic splines to ensure that a(K, T) and its partial derivatives 

au au a2Q 
are well behaved. 

aT' aK' a2K 

The built-in MATLAB Optimisation Toolbox function for non-linear least squares 

minimisation is "lsgnonlin". Through the MATLAB Optimisation Toolbox function 

"optimset" we select the options: Large Scale Algorithm ON, Jacobian OFF, and Function 

Tolerance lx 10-3. Pre-conditioned Conjugate Gradient is left to the default value of zero. 

These settings refer to, respectively, the "trust-region reflective quasi-Newton" method 

proposed by Coleman et al. (1999). 

5.4.1.2.2 Calibrations for Absolute Diffusion Process 

In order to demonstrate the effectiveness of the Coleman et al. method in reconstructing the 

local volatility surface, we consider the case where volatility is inversely proportional to index 

price. In this example, the underlying is assumed to follow an absolute diffusion process: 

SS, 
=, u(S,, t)dt+-` dWW 

t 

Analytic formula for European options of the absolute diffusion process is available (see Cox 

and Ross, 1976). Since the local volatility surface is known a priori, we have chosen to set the 

market European option call prices equal to values provided by the finite-difference routines. 

We set a= 25 and let the initial stock index be S;,,,, = 100, risk-free interest rate r= 4% and 
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dividend rate q =1 %. We consider twenty-four European call options on the underlying 

following the above absolute diffusion process. Call options are equally spaced with strike 

prices K=[75: 10: 125] and maturities T=[0.2: 0.2: 0.8]. The discretisation parameters for asset 

steps and time steps are set as M=200 and N=50, respectively. The lower and upper bounds 

for the local volatility at the KxT knots are 1. = -1 and u; =1 for i=1,2,3... 24. We let the 

number of spline knots p equal to the number of options m= 24 and calibrate the spline knots 

equidistantly on the grid 
f: 

S*f where the range parameter f=2. 

The initial volatility values at the spline knots are specified as 0.2. The optimisation method 

requires five iterations and the computed optimal objective function is 7.877 x 10 --6 . 
With an 

average pricing error of 2.712 x l0-' index point, the Crank-Nicholson method excellently 

reproduces actual call option pricing across the full range of strikes. Figure 44 demonstrates 

the accuracy of this local volatility reconstruction. The local volatility reconstruction is 

excellent. Indeed our methodology can reliably reconstruct the local volatility surface in the 

region [75,125] x [0.2,0.8]. 

Figure 44: Calibrated Local Volatility Surfaces for Absolute Diffusion Process 
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5.4.1.2.3.. Finite-Difference Settings 

Having verified that our algorithm accurately reproduces the volatility smile, we now turn to 

the pricing of variance swaps. We choose the number of knots p<m, where p= 72 < m. 

The spline knots are placed uniformly between the endpoints of these intervals, with twelve 

knots along the S-dimension and six knots along the T-dimension. Cubic splines are fit to all 

T columns of the (S - 7)-space and then a second cubic spline is fit along the S direction. The 

local volatility surface has been calibrated over a set R: [(1 / f) * Si,,,,, f*S; 
�;, 

]x [0, r] of the (S 

- 7) space, where r is the maximum maturity. We choose M= 200 asset steps and N= 50 

time steps for the PDE discretisation and the range parameter f is set to 2 in order to 

accommodate the maximum level of strikes. The constant dividend yield is set to equal to 

1.46%, which is the average yield over 2001-2002 obtained from Bloomberg80. We have 

proxied the constant interest rate to be 2.31% using average one-year U. S. Treasury yields 

during the period studied. A summary of the parameters and settings for the problem is 

provided in appendix D. 1 

5.4.1.3 Calibrations for Ad Hoc Black-Scholes Model 

Following Dumas et al. (1998) and Heston and Nandi (2000), we estimate the volatility 

function Q(X, r) in section 5.2.3.4 by fitting the deterministic volatility function to the 

reported Black-Scholes implied volatility at time z. The coefficients of the ad hoc model are 

estimated via ordinary least squares in each of the variance swap contracts by minimising the 

sum of squared errors between the Black-Scholes implied volatility across different strikes 

and maturities and the model's functional form of implied volatility. 

5.4.1.4 Calibrations for Time-Series Models 

The parameters of EGARCH and GARCH-VS presented in section 5.2.4 are estimated by 

using volatility filtered from the history of S&P 500 spot levels. First differences in logs of 

S&P 500 index levels are employed to calculate returns. At each time, we use the time-series 

of returns from the previous two years (504 trading days) to filter the variance for the 

EGARCH(1,1) and GARCH(1,1) models. We have also experimented with longer filtered 
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intervals such as three or four years for estimations. The results, however, are similar, 

perhaps due to the strong mean reversion in variance. Given a set of structural parameter 

we simulate the N-step return data using the EGARCH model. The Monte- 

Carlo values reported are based on simulating 100,000 paths with a time step of At = 252 . 

The diffusion parameters k, V, 8 and the expected delivery price of the GARCH-VS are 

calculated based on the formulas described in section 5.2.4.1. 

5.4 .2 Empirical Results 

Figure 45 confirms the changing nature of the term-structure of realised variances in the 

variance swap contracts on the S&P 500 index: long-term realised variance have gone up 

significantly after September 11,2001 whilst realised variances for shorter swaps have tended 

to decline. A convenient way to examine the deviation between the Black-Scholes model 

price and market price is to plot the Black-Scholes implied volatility as a function of the 

exercise price. Figure 46 validates the usual findings in numerous studies that implied 

volatility tends to vary across exercise prices, with implied volatility higher for in-the-money 

options and flattens out monotonically as maturity increases. The substantially smaller 

magnitudes of the pre-9/11 smiles relative to the post-9/11 smiles is also evident in figure 46. 

In view of forecasting variance, an accurate variance swap forecasting model should not only 

take account of the smile effects but also the changing term-structure of variance correctly. 

Figure 45: Future Realised Variances for 3M, 6M & 9M Variance Swap 
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Figure 46: Term-Structure of Implied Volatility 
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5.4.2.1 Calibration Results for Options-based Models 
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Calibrated parameters of the stochastic volatility and jump-diffusion models are shown in 

tables 43-44. Regressed ad hoc Black-Scholes parameters are summarised in table 45. 

Estimated structural parameters of the EGARCH and GARCH-VS models are given in tables 

46 and 47, respectively. The bracketed values are standard errors. 

5.4.2.1.1 Calibration Results for Stochastic Volatility Models with/without Jumps 

The implied structural parameters are generally different across the stochastic volatility 

with/without jump models. The stochastic volatility model controls skewness and kurtosis 

levels by p and cr whereas the diffusion jump model is supposed to be able to internalise 
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more negative skewness and higher kurtosis. A number of observations can be drawn from 

tables 43-44: 

i) V,, V. and A are larger in the second half of the sample, reflecting the more volatile 

market conditions immediate after the 9/11 attacks; 

ii) K is higher for the jump-diffusion model; 

iii) Qv and the long-term variance Ov I xv are significantly lower for the jump-diffusion 

model; 

iv) The magnitude of p is lower for the jump-diffusion model; 

v) The jump-diffusion model appears to be able to explain negative skewness and excess 
kurtosis via the jump parameters 2, 

, u, and a. without making other parameters 

"unreasonable". 

In addition, the average jump frequency A is 0.69 time per year; the average jump size 6l, 

and its standard deviation cr, are -14.35 and 6.23 percent, respectively. The above results 

are in full agreement with Bakshi et al. (1997). 

Table 43: Calibrated Parameters for Stochastic Volatility Model 

9,, 1'{'v Qv p V, 9v I K, 

June-2001 0.0989 1.9194 0.4219 -0.7011 0.0482 0.0515 

July-2001 0.0757 1.9360 0.3104 -0.6485 0.0378 0.0391 

August-2001 0.0818 2.2232 0.3271 -0.7135 0.0467 0.0368 

September-2001 0.2136 3.3672 1.3677 -0.6388 0.1770 0.0634 

October-2001 0.1547 3.5877 0.5816 -0.6505 0.0845 0.0431 

November-2001 0.1209 3.0570 0.5246 -0.6358 0.0565 0.0396 
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Table 44: Calibrated Parameters for Stochastic Volatility with Jump Model 

Ov Ky Qv p VV 11 m, Q, V, Ov / K� 

June-2001 0.0711 4.2926 0.1812 -0.5333 0.0366 0.4589 -0.1836 0.1439 0.0219 0.0166 

July-2001 0.0684 1.9683 0.2850 -0.7293 0.0347 0.4884 -0.0191 0.0827 0.0034 0.0348 

August-2001 0.0421 5.9795 0.0231 0.5747 0.0354 0.6491 -0.1892 0.0261 0.0235 0.0070 

September-2001 0.1166 3.1058 1.6002 -0.6294 0.1643 0.6808 -0.1578 7.8e-7 0.0170 0.0375 

October-2001 0.0749 5.5933 0.7492 -0.4159 0.0722 1.0116 -0.1438 0.0659 0.0242 0.0134 

November-2001 0.0245 4.5700 0.3216 -0.1037 0.0359 0.8581 -0.1679 0.0553 0.0260 0.0054 

5.4.2.1.2 Calibration Results for ad hoc Black-Scholes Model 

Next we focus on the ad hoc Black-Scholes model. Table 45 shows that the regressed 

parameters of the ad hoc Black-Scholes model are very variable across contracts. This is 

probably due to the changing nature of implied volatility. Average R2 is 0.85, and Durbin- 

Watson's statistics cannot reject the null hypothesis that residuals are not autocorrelated. 

Table 45: Estimated Parameters for Ad Hoc Black-Scholes Model 

ao at a2 a3 a4 as R2 DW Stat 

9.044E-01 -7.775E-04 1.895E-07 -1.948E-01 1.689E-02 1.217E-04 
June-2001 0.7975 p=0.376 

(5.789E-02) (9.343E-05) (3.960E-08) (3.608E-02) (1.1 14E-02) (3.032E-05) 

5.476E-01 -4.099E-04 1.021E-07 -6.174E-02 1.470E-02 2.931E-05 
July-2001 0.9266 p=911 

(3.133E-02) (5.070E-05) (2.080E-08) (1.358E-02) (3.911E-03) (1.138E-05) 

8.026E-01 -6.223E-04 1.206E-07 -3.013E-01 3.178E-02 1.845E-04 
August-2001 0.7404 p=0.85 

(8.163E-02) (1.373E-04) (6.080E-08) (5.197E-02) (2.068E-02) (4.228E-05) 

1.123E+00 -1.113E-03 4.011E-07 -2.619E-01 1.250E-01 -7.369E-07 
September-2001 0.8524 p=0.436 

(6.978E-02) (1.260E-04) (5.880E-08) (4.7145E-02) (2.004E-02) (4.343E-05) 

8.287E-01 -7.017E-04 1.862E-07 -2.553E-01 4.645E-02 1.264E-04 
October-2001 0.9438 p=0.619 

(4.201E-02) (7.327E-05) (3.290E-08) (2.362E-02) (1.119E-02) (2.193E-05) 

1.387E+00 -1.469E-03 4.207E-07 -5.254E-01 4.402E-02 3.471E-04 
November-2001 0.848 p=0.520 

(9.328E-02) (1.670E-04) (7.700E-08) (6.293E-02) (3.703E-02) (5.663E-05) 
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5.4.2.1.3 Calibration Results for EGARCH and GARCH Variance Swap Models 

On the other hand, it appears that the evolutions of the estimated parameters of the EGARCH 

and GARCH-VS models are more stationary as compared to the implied parameters of the 

stochastic models. Based on the statistical results of the estimated parameters in tables 46 and 

47, EGARCH seems to be more capable than GARCH to describe the underlying returns 

dynamics. Negative and significant al's also indicate that EGARCH is able to capture 

asymmetry in returns. 

Table 46: Estimated Parameters for EGARCH 

ao al Y, iß, 

June-2001 -0.4255 -0.1839 0.05622 0.9518 

(0.1901) (0.0358) (0.0381) (0.022) 

July-2001 -0.4562 -0.1734 0.07421 0.9485 

(0.2369) (0.0379) (0.0406) (0.0274) 

August-2001 -0.4499 -0.1789 0.07508 0.9493 

(0.2409) (0.0388) (0.0401) (0.0278) 

September-2001 -0.4397 -0.1823 0.0732 0.9504 

(0.2332) (0.0382) (0.0398) (0.027) 

October-2001 -0.5201 -0.1831 0.0823 0.9412 

(0.2561) (0.0413) (0.0424) (0.0297) 

November-2001 -0.3742 -0.1869 0.0669 0.9583 

(0.2744) (0.0407) (0.0488) (0.0318) 
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Table 47: Estimated Parameters for GARCH-Variance Swap 

ao a, A 

June-2001 1.23e-05 0.0921 0.8411 

(1.68e-05) (0.0681) (0.1480) 

July-2001 1.27e-05 0.0899 0.8415 
(1.85e-05) (0.0705) (0.1594) 

August-2001 1.24e-05 0.0941 0.839 
(1.98e-05) (0.0812) (0.1764) 

September-2001 1.58e-05 0.1175 0.8041 
(1.62e-05) (0.0723) (0.1365) 

October-2001 1.804e-05 0.1234 0.7845 
(1.58e-05) (0.0697) (0.1294) 

November-2001 1.903e-05 0.1277 0.7755 
(1.50e-05) (0.0651) (0.1196) 

5.4.2.1.4 Calibration Results for Local Volatility Model 

Last, we turn our attention to the local volatility model. Figure 47 displays the calibrated 

local volatility surfaces from each of the six sets of option prices. . Notably the variation in 

local volatility is greater than the variation in implied volatility that produced it in figure 46. 

For skewed option markets, this behaviour is consistent with the Zou et al. 's (1997) heuristic 

rule that local volatility varies with the index level about twice as rapidly as implied volatility 

varies with strike. This result leads us to believe that our calibration procedures can reliably 

reconstruct the local volatility surfaces. However, the highly variable shape of the local 

volatility surfaces is potentially problematic because it implies that future local volatility 

smiles will be very different from today's. The typical downward-sloping volatility smile is, 

to a large extent, driven by the fear of rapid downward movements of the underlying index. 

The local volatility approach typically predicts that future volatility will tend to flatten out and 

disappear over time. This prediction, however, is clearly at odds with market reality that the 

volatility smile tends to be quite stationary over time. 
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Figure 47: Calibrated Local Volatility Surfaces 
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5.4.2.2 Variance Swap Forecasting Results 

5.4.2.2.1 Implementation Issues for Options-based Variance Swap Model 

F 5; 
+ý - 

S; 2 
The variance estimator is given by: 

n ; =o Si 

where n is the number of trading days and the annualisation factor, F, is set to 252; S is the 

closing price of the S&P 500 index. Moreover, the sample mean is assumed to be zero. 

One major concern for using the Demeterfi et al. framework is the "wing effect", which refers 

to the implementable low and high strike prices for replicating the hedged portfolio. The 

range of strikes attributable to this strategy can be chosen by focusing on the central region 
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where there is sufficient liquidity. Clearly, judgement is required in determining the range of 

strikes81. Table 48 shows variations of the S&P 500 index during the life-span of the 

corresponding variance swap contracts. It has a range between -29.94% and 21.4% in 

6/2001-8/2002. Consequently, we price variance swap for a 30% variation of the index with 

1,000 discrete strikes. 

Table 48: Variation of S&P 500 Index 

Pre-9/11 June 2001 July 2001 August 2001 

Maturity Min Max Min Max Min Max 

3-Month -18.93% 1.87% -20.24% 0.82% -16.88% 1.98% 

6-Month -20.47% 1.87% -20.24% 0.82% -16.88% 1.98% 

9-Month -20.47% 1.87% -20.24% 0.82% -16.88% 1.98% 

Post-9/1 I September 2001 October 2001 November 2001 

Maturity Min Max Min Max Min Max 

3-Month 0% 21.18% -1.28% 9.23% -5.14% 2.97% 

6-Month 0% 21.4% -1.28% 9.23% -7.83% 2.97% 

9-Month 0% 21.4% -17.88% 9.23% -29.94% 2.97% 

5.4.2.2.2 Out-of-Sample Test: Variance Forecastability 

Estimated delivery prices for the three-, six- and nine-month variance swap contracts for each 

of the six variance swap models are given in table 49; realised future variance are also shown 

in the second column of the same table. Table 50 reports the aggregate mean-square price 

errors (MSPE) for the three-, six- and nine-month contracts; aggregate model rankings for 

three-, six- and nine-month contracts are bracketed and displayed in the same table. 

Based on results from eighteen variance swap contracts, a number of observations can be 

drawn from tables 49 and 50: 

i) Aggregate MSPE ranking of the models from table 50 is robust across maturities; 

ii) Conditional heteroskedastic models outperform options-based models in predicting 

variance with GARCH-VS ranked first in all maturities. More strikingly, we find that 

81 We thank Tom Ley for this invaluable comment. 
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even a naive EGARCH simulation can deliver less forecasting errors than the highly 

sophisticated options-based pricing models; 

iii) The jump-diffusion model is similar to the stochastic volatility model in producing 

variance forecasts. Adding a jump component to a stochastic volatility model serves 

to increase variance in short maturity but does not seem to enhance variance 
forecastability; 

iv) The local volatility model underperforms ad hoc Black-Scholes model in making 

variance forecasts; 

v) All models predominately overpredict variance. On average there is a 81% chance 
that any variance swap model will overprice future variance; 

vi) The amount of overpricing is more manifest in the aftermath of the 9/11 attacks; 

vii) Last and most importantly, we observe that the options-based variance swap pricing 

models cannot produce enough variance term-structure patterns. 

5.4.2.2.3 Comments on Out-of-Sample Results 

Although our sample is small, it is still puzzling to see there is such a large discrepancy 

between options-based and time-series models in terms of variance forecastability. One 

plausible explanation for the disappointing performance of the options-based pricing 

framework concerns with the fact that the Demeterfi et al. methodology was originally 

developed for hedging. The time-series methods use historical information to price variance 

swaps and could be different from the expectations about the future evolution of the asset 

price that are embedded in option prices. Theoretically option prices should summarise all 

relevant information regarding expected future volatility whereas the time-series approach can 

exploit only the subset of that information inferrable from the past history of stock index 

prices. 
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Table 49: Delivery Prices for 3M, 6M and 9M Variance Swap Contracts 

Realised Local Stochastic Jump- 
Contracts Variance EGARCH GARCH-VS Ad Hoc BS Volatility Volatility. Diffusion 

Jun-2001 3M 0.04093 0.05052 0.03573 0.05704 0.07840 0.04860 0.05400 

Jun-2001 6M 0.03939 0.04761 0.04114 0.05269 0.07036 0.04761 0.04937 

Jun-2001 9M 0.03599 0.04671 0.04282 0.04873 0.06616 0.04633 0.04660 

Jul-2001 3M 0.05225 0.04212 0.03532 0.03917 0.05498 0.03802 0.03817 

Jul-20016M 0.03819 0.04224 0.04100 0.03788 0.05604 0.03770 0.03769 

Jul-2001 9M 0.03568 0.04244 0.04289 0.03669 0.05398 0.03701 0.03693 

Aug-2001 3M 0.05583 0.04580 0.03503 0.05344 0.06946 0.04431 0.04857 

Aug-2001 6M 0.04030 0.04419 0.04076 0.04589 0.06019 0.04196 0.04237 

Aug-2001 9M 0.03878 0.04355 0.04274 0.03976 0.05910 0.03985 0.03905 

Sep-2001 3M 0.03702 0.07539 0.04076 0.13005 0.13874 0.12703 0.12880 

Sep-2001 6M 0.03291 0.06063 0.04550 0.10088 0.10017 0.09670 0.09656 

Sep-20019M 0.03432 0.05425 0.04747 0.08109 0.08297 0.07843 0.07761 

Oct-2001 3M 0.02514 0.04324 0.04063 0.07396 0.08366 0.06959 0.07152 

Oct-2001 6M 0.02798 0.04324 0.04501 0.06220 0.06390 0.05914 0.05810 

Oct-2001 9M 0.03743 0.04309 0.04648 0.05340 0.06411 0.05260 0.05131 

Nov-2001 3M 0.02566 0.03114 0.04106 0.06467 0.06323 0.05107 0.05302 

Nov-20016M 0.03089 0.03548 0.04539 0.05182 0.05292 0.04643 0.04612 

Nov-20019M 0.05703 0.03709 0.04680 0.04151 0.05570 0.04308 0.04215 

Table 50: Aggregate Mean-Square Price Errors and Model Rankings for 3M, 6M and 9M 

Variance Swap Contracts 

EGARCH GARCH- Ad Hoc BS Local Stochastic Jump- 
VS Volatility Volatility Diffusion 

MSE 0.00213 0.00124 0.01300 0.01678 0.01112 0.01174 
3M 

Rank (2) (1) (5) (6) (3) (4) 
MSE 0.00112 0.00067 0.00644 0.00797 0.00535 0.00530 

6M 
Rank (2) (1) (5) (6) (4) (3) 

-RS -E 0.00101 0.00047 0.00285 0.00474 0.00248 0.00240 
9M 

Rank (2) (1) (5) (6) (4) (3) 
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5.4.2.2.4 In-Sample Fit for Option Pricing Models 

Given the implied framework is supposed to provide a forward-looking means to "gauge" 

market sentiment, it is important to understand why the options-based Demeterfi et al. 

framework has such a poor variance forecasting performance. Table 51 reports the sum of 

price square error (SPSE) for each of the option models for each contract day. A few 

observations are in order: 

i) The SPSE is successively lower as we extend from the ad hoc Black-Scholes to the 

stochastic volatility models with/without jump and local volatility model; 

ii) The local volatility model has the lowest SPSE in all contract days whilst allowing 
jumps to occur reduces the SPSE further over the stochastic volatility model; 

iii) Overall, modelling for skewed and leptokurtic distributions via the relaxed Black- 

Scholes specifications further enhances the model's ability to fit option prices. But the 
finding that the local volatility model does not improve variance forecastability over 

the ad hoc Black-Scholes model is highly surprising, especially given the local 

volatility model's excellent in-sample pricing performance. 

The above observations suggest that a flexible but theoretically inconsistent model may 

dominate in-sample fit but has much less predictive power for predicting future variance, 

which implies that a misspecified model achieves good in-sample results by overfitting the 

options data. 

Table 51: In-Sample Fit (SPSE) for Option pricing Models 

Ad Hoc BS Local 
Volatility 

Stochastic 
Volatility 

Jump- 
Diffusion 

JUNE-2001 995.3221 35.0748 178.2048 81.7872 

JULY-2001 51.4489 2.2035 25.1238 23.8116 

AUGUST-2001 554.6932 5.9678 120.7058 32.8119 

SEPTEMBER-2001 759.4753 16.7763 170.2324 106.6719 

OCTOBER-2001 197.8162 0.5986 67.0353 13.2934 

NOVEMBER-2001 2079.2547 8.3802 238.1859 42.5544 
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5.4.2.3 Consistency with the Time-series Properties of Volatility 

Based on our limited sample, we have demonstrated that in-sample fit of daily option prices is 

progressively better as we extend from the ad hoc Black-Scholes to the stochastic volatility 

models with/without jump and local volatility model. By far our evidence shows that: 

i) Incorporating stochastic volatility and jumps to the option model does not lead to a 

superior performance to the GARCH-type models in terms of forecasting future 

variance but it does contribute to a better in-sample fitting; 

ii) The mean-square error based ranking of the local volatility model is in sharp contrast 

with the ranking obtained based on the in-sample fit of option prices; hence there may 
be an issue of overfitting. 

A possible interpretation of these results is that the local volatility model does not properly 

relate its volatility surface to the path-dependent dynamics of volatility. Since the sole source 

of variations of options under the local volatility model is the underlying index, option prices, 

regardless of maturity and moneyness, must perfectly co-vary with each other and with the 

underlying asset. This potentially imposes a stringent restriction on option price dynamics. In 

the next section our goal is to investigate whether option prices are consistent with its 

underlying dynamics. 

5.4.2.3.1 CIR Square-Root Process 

Basing the results upon Cox et al's (1985) stochastic interest rate model, Bates (1996) 

developed an econometric method for testing the consistency of the distribution implied in 

option prices with its time-series properties. Bakshi et al. (1997) applied this test to the S&P 

500 index and found that the stochastic volatility with/without jump models were misspecified 

because the volatility of volatility c r, too high. But Bakshi et al. 's study only tested for 

the consistency of its implied structural parameters with the evolution of option prices. Their 

results were potentially problematic because volatility implied by the stochastic option prices 

were used as a surrogate for true volatility. Consequently, little was known whether the 

implausible structural parameters were caused by misspecification of the models, or by 

problems with the estimation procedure. The question remains open whether the distribution 

implied by option prices is the same as that directly observed from market asset price. 

In this section we directly investigate the consistency of implied distributional assumption 

with the evolution of underlying index price. Following Bates (1996), when volatility risk- 
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premium is proportional to the conditional variance Vt , the transition density of y= 2cV 
4,, 

conditional on V, for a square-root process is noncentral , X2 (40, /a 
v , 

2cVe-'r°°t), where 

c-' = 0.50 (1- a-"") / K,, . The transition density of ln(VV,, I V, ) is given by: 

P(ln(V /V 1= e-o. s(e=+n) (eZ)o. sv ý (0.25ezA)J 
a %... 1.11+&. 'l1 

2U. SV 
to r(o. sv + j)j! 

where v= 4G ! Qy , A= 2cV, e-'r"°' and e' = 2cV, 
+,. 

5.4.2.3.2 Results of Maximum Likelihood Estimation 

Maximum likelihood estimates of the parameters 9,,, K, and a, using historical time-series 

are shown in table 52. Average values of the implied structural parameters for the stochastic 

volatility and jump-diffusion models in tables 43 and 44 are also presented in the same table 

for ease of comparison. 

Table 52: Estimated & Implied Structural Parameters 

ev K, Dry P MLE Value 

30-Day Historical 0.12117 1.35228 0.32318 
-0.21600 -602.0167 Volatility (3.22l. e-3) (0.63628) (3.486e-4) 

Weighted 30-Day BS 0.26997 3.22071 0.41141 
-0.76250 -557.5923 Implied Volatility (7.038e-3) (1.53316) (5.715e-4) 

Implied Stochastic 0.12427 2.68185 0.58888 -0.66470 N. A. 
Volatility Model 

Implied Jump- 0.06627 4.25158 0.52672 -0.30615 N. A. 
Diffusion Model 

Estimation procedures for CIR process are: 

i) p is estimated by calculating correlation between volatility changes and index returns; 

ii) We use a weekly 30-day historical volatility series as a proxy for the true volatility 92 ; 

iii) Since Bakshi et al. (1997) reported that implied instantaneous volatility was on 

average less than 0.5 percent apart among the Black-Scholes and the stochastic 

82 The time-series comprises of the weekly observations for the period from June 1999 through December 2001. 
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volatility models, we have also estimated the parameters for a vega-weighted Black- 
Scholes implied volatility series. This series is constructed by averaging the vega- 
weighted Black-Scholes 30-day call and put implied volatility. 

Since options are priced off the risk-neutral process but not the true process, parameters 

estimated from true and risk-neutral distributions can be different. Because of volatility and 

jump risk premiums, only 0, c r, and p are directly comparable in table 5283. Four 

observations are in order: 

i) Option-implied a, 's are significantly higher than its historical estimate, although it is 

not as high a level as it was suggested by Bakshi et al. (1997), who found a 300% 

difference between the "true" and "implied" parameters; 

ii) Estimated historical Kv, which is 1.352, is consistent with Das et al. (1999) assertion 
that plausible values for Kv are in a neighbourhood of unity. Furthermore, higher 

estimates for option-implied K,, confirm that volatility risk-premium is significantly 

positive; 

iii) Estimated correlation between index returns and historical volatility is significantly 
different from the correlations implied by the 30-day Black-Scholes implied volatility 

and the stochastic option models. Based on an EGARCH specification for equity- 

return dynamics, Nelson (1991) gave an estimate of -0.12 for the correlation between 

returns and changes in the true volatility, which is closer to our historical time-series 

estimates; 

iv) The results for 0, 's are mixed and we cannot draw any consistent observation to 

explain our finding. 

Nevertheless, it appears indisputable that the distributional dynamics implied by option prices 

and its underlying index are not consistent. 

5.5 Summary 

This chapter has emphasised the empirical implications of forecasting variance using 

conditional heteroskedastic approaches and an arbitrage-free options-based variance swap 

framework in the period from three months before to after the 9/11 attacks. The exercises are 

83 See Bates (1996) for a detailed explanation of risk-neutral versus true distributions. 
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carried out by employing the latest time-series and option pricing models in finance literature 

to generate skewness and kurtosis in returns distributions. The Demeterfi et al. (1999) 

variance forecasting framework has been examined from a practical perspective and we have 

understood some of its properties and limitations. During the six contract days from three- 

months before to after the 9/11 terrorist attack, we show that the Demterfi et al. framework 

overpredicts future variance and that time-series forecasting models have a smaller MSPE. In 

addition, we illustrate that options-based models cannot predict the directional changes of the 

3M, 6M and 9M future variance. 

Our results are in direct violation to the underlying hypotheses that: 

i) Each generalisation of the benchmark Black-Scholes model should be able to improve 

the volatility forecastability of the options-based pricing model; 

ii) If option prices are indeed representative of their underlying time-series and forward- 

looking then the forecastability of options-based variance swap models should be 

superior to their time-series counterparts. 

In particular, we cast doubt on the usefulness of the local volatility model as a forecasting tool 

because it has the best in-sample fitting result but worst volatility forecastability. We observe 

that using a more flexible and sophisticated option pricing model may improve the in-sample 

fitting of option prices but not necessarily forecastability of future variance. In our view, it is 

important that an accurate variance forecasting model should not only take account of the 

smile effects but also the changing term-structure of variance (crossovers) correctly. 

Therefore we have a strong reservation about the effectiveness of forecasting future variance 

through log-contract replications 

In summary, we provide some evidence in small sample that there is inconsistency in 

volatility forecasting performance between options-based models and time-series models from 

three months before to after the 9/11 terrorist attacks. The reasons could be: 1) the Demeterfi 

et al. framework was originally developed for hedging and its strategy can only guarantee that 

the replicating portfolio will have the same payoff at maturity as the variance swap regardless 

of the actual path taken by the index. Our finding and arguments are consistent with Bakshi 

and Kapadia (2003) that a negative volatility risk premium suggests an equilibrium where 

index options act as a hedge to the downside risk, therefore making investors to pay a higher 

price (implied volatilty) to hold options in their portfolio than its price when volatility is not 
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priced. Rather than predicting future variance, the delivery price probably only reflects the 

costs of replication; 2) implied volatility is largely a monotonically decreasing function of 

maturity and therefore the options-based strategies cannot produce enough variance term- 

structure patterns; 3) distributional dynamics implied by option parameters is not consistent 

with its time-series data as stipulated by the maximum likelihood estimation of the square-root 

process. Results of maximum likelihood estimation of a square-root process also suggest that 

option models may rely on implausible levels of correlation and, to a lesser extent, volatility 

variation to rationalise the observed option prices. In particular, the high magnitude of 

negative correlation in option prices, which generates excessive levels of negative skewness, 

could be the culprit for the observed strike price biases in the equity-index market. 

Finally, although the forecast periods are overlapping, we must point out that this will only 

affect the forecasting performance of time-series models. Options-based variance swap 

models are supposed to be forward-looking and therefore insensitive to the choice of sample 

periods. A larger sample group is indeed required in order to draw a more consistent and 

statistically significant conclusion about the superiority of time-series variance forecasting 

models. Until then we have a strong reservation about the use of Demeterfi et al. 

methodology for volatility forecasting 
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CHAPTER 6 Summary, Discussion and Suggestions for 
Further Research 

6.1 Introduction 

As an aid to the reader, this final chapter of the dissertation restates the research problems in 

this study. The major sections of this chapter summarise and discuss the results. The final 

section makes recommendation for future research. 

6.2 Statement of the Problem 

Throughout the first project (Chapter 3) we examine the empirical behaviour of S&P 500 

futures option's implied volatility using daily data from 1983 through 1998. The primary 

objective is to observe, characterise and analyse the patterns of the term-structure of implied 

volatility in the S&P 500 marketplace. The second objective is to investigate whether option 

prices are in line with the rational expectations hypothesis under a mean-reverting volatility 

assumption. The final objective in this work is to identify what types of option models would 

be consistent with the observed moneyness biases in the S&P 500 options market. 

In the second project (Chapter 4) we investigate the performance of APARCH models that 

can potentially account for the slow decay in returns autocorrelations using daily S&P 500 

futures series from 1983 through 1998. The objectives are: 

i) To investigate the effectiveness of asymmetric parameterisation and power 

ii) 

transformation within the context of APARCH specifications; 

To study the impact of structural change of volatility on the performance of 

asymmetrical and symmetrical conditional volatility models; 

iii) To compare the performance of EGARCH (Nelson, 1991) with APARCH models; 

iv) To explore the ability of different symmetrical and asymmetrical statistical loss 

functions to track the in-sample forecasting performance of conditional volatility 

models; 

v) To assess the quality of different conditional volatility forecasts by conducting ex-ante 

straddle trading exercises. 
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In continuation of our study of modelling volatility, the third project (Chapter 5) evaluates the 

volatility forecasting performance of time-series and options-based variance swap valuation 

models on the S&P 500 index. The primary goal is to present a complete picture of how each 

generalisation of the benchmark Black-Scholes model can really improve the volatility 

forecasting performance of variance swaps and whether each generalisation is consistent 

between in- and out-of-sample results. The second goal is to investigate whether there is any 

systematic difference in performance between time-series and options-based variance swap 

valuation models. It is intended to explore whether options-based models, which are forward- 

looking, are capable of outperforming discrete-time processes, which use only historical 

information, in predicting future variance. 

6.3 Summary of the Results 

In this research we have examined many empirical issues relating to the modelling of 

volatility from both the options market and time-series perspectives. The results are 

summarised in this section. 

The first project (Chapter 3), entitled "A Report on the Properties of the Term-Structure of 

S&P 500 Implied Volatility", analyses the term-structure of implied volatility using S&P 500 

futures and its options data from 1983 to 1998. Contrary to the basic assumption of the 

Black-Scholes formula, implied volatility exhibited both smile effects and term-structure 

patterns. Term-structure analysis revealed that: 1) implied volatility tended towards a long- 

term mean of about 16%; 2) put options had higher premiums and a larger range of fluctuation 

than call options; 3) short-maturity options were more volatile than long-maturity options. 

Results from harmonic analysis showed that put options were more "responsive" to a change 

of market sentiment than call options. In addition, smile effects were found to be strongest for 

short-term options, indicating that short-term options were most severely mispriced by the 

Black-Scholes formula and therefore presented the greatest challenge to any alternative option 

pricing models. Furthermore, evidence suggested that option prices were not consistent with 

the rational expectations under a mean-reverting volatility assumption. We also conducted a 

distributional test to find out whether observed moneyness biases were consistent with the 

skewness of the risk-neutral distribution derived from any specific distributional hypothesis. 

The 4% skewness premiums results agreed with the term-structure analysis that the degrees of 
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anomalies in the S&P 500 options market had been gradually worsening since around 1987. 

As correlation might be responsible for skewness, our diagnostics suggested that leverage and 
jump-diffusion (with negative-mean jumps) models were more appropriate for capturing the 

observed biases in the S&P 500 futures options market. 

Based upon the skewness premiums results in Chapter 3 that a leverage model was suitable to 

model the observed market anomalies, the second project (Chapter 4), entitled "An Empirical 

Comparison of APARCH Models", compares a group of well-theorised conditional volatility 

models that can potentially account for the observed term-structure biases in the S&P 500 

futures options market. Sixteen years of daily S&P 500 futures series were used to examine 

the performance of the APARCH models that used asymmetric parameterisation and power 

transformation on conditional volatility and its absolute residual to account for the slow decay 

in returns autocorrelations. No evidence could be found supporting the relatively complex 

APARCH models. Log-likelihood ratio tests also confirmed that asymmetric parameterisation 

and power transformation were not effective in characterising the S&P 500 returns dynamics 

within the context of APARCH specifications. - In addition, a 3-state volatility regime- 

switching model was used to detect the "quiet" and "noisy" periods and provide evidence that 

the performance of conditional volatility models was prone to the state of volatility of the 

return series. The AIC metric showed that EGARCH was best in "noisy" periods whilst 

GARCH was the top performer in "quiet" periods. In an effort to rate the performance of 

different conditional volatility models, aggregated rankings were used to determine the best 

overall model. Aggregated rankings for the AIC metric showed that EGARCH was the best 

model. We also attempted to apply additional statistical criteria that allowed for 

symmetry/asymmetry in the loss functions of investors to select the best volatility forecasting 

model, but results were mixed. In-sample results showed that no single model was clearly 

superior. Since it was not sensible to evaluate forecasting performance with only a single 

statistical loss function, we evaluated the performance of volatility predictors based on their 

ability to predict volatility changes and generate ex-ante profits from trading nearest-the- 

money S&P 500 straddles in four two-year out-of-sample periods. Out-of-sample results 

demonstrated that the EGARCH model outperformed GARCH and both of them could 

generate statistically significant ex-ante returns in one out of four sample periods. Therefore, 

there were certain degrees of inefficiency in the S&P 500 futures options market. Finally, our 

trading experiments also revealed that the presumption of using delta-neutral trades to create 
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risk-free portfolios was not practical in the event of large index movements. We concluded 

that a new derivatives instrument was needed to allow traders and investors speculate on 

volatility more directly and efficiently. 

Motivated by the findings in Chapter 4 that traditional options-based volatility trading 

strategies were vulnerable to large market moves, the third project (Chapter 5), entitled 

"Empirical Perfonnance of Alternative Variance Swap Valuation Models", evaluated the 

volatility forecasting performance of different specifications of time-series and options-based 

variance swap valuation models on the S&P 500 index in the period from three months before 

to after the 9/11 attacks. Our exercises were carried out by employing the latest time-series 

and option pricing models in finance literature to generate skewness and kurtosis in returns 

distribution. Based on results from six well-chosen contract days from three-months before to 

after the 9/11 terrorist attack, we showed that the Demterfi et al. framework overpredicted 

future variance and that time-series forecasting models have a smaller MSE. In addition, we 

illustrated options-based models could not predict the directional changes of 3M, 6M and 9M 

future variance. We observed that using a more flexible and sophisticated option pricing 

model might improve the in-sample fitting of option prices but not forecastability of future 

variance. Finally, results from maximum likelihood estimation of the square root process 

suggested that the high magnitude of negative correlation in option prices, which generated 

excessive levels of negative skewness, might be responsible for the observed strike price 

biases in the S&P 500 index market. 

6.4 Discussions of the Results 

This dissertation is a quantitative study whose primary objective is to investigate the 

performance of different specifications of time-series and option-based volatility forecasting 

models under the influence of the observed market biases. Our research is based primarily 

upon the use of S&P 500 data for the period 1982-2002. It contains three self-contained but 

seemingly related projects. This section discusses the implications and anticipated (less 

anticipated) findings in this study as well as the relationship of the current research to 

previous research. 
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6.4.1 Term-Strucutre of Implied Volatility 

The study started with a graphical inspection of the term-structure of implied volatility. 

Term-structure analysis revealed that implied volatility systematically followed some 

predictable patterns, which implied that models such as stochastic volatility models and 

conditional heteroskedastic models could be used to account for the inefficiency in the 

market. The anticipated results included the finding of moneyness and maturity biases. 

Observed irregularities in relative implied volatility constituted strong evidence against the 

hypothesis that the Black-Scholes' implied volatility was the market's fully rational volatility 

forecast. The U-shape could be the result of: 1) illiquid market; 2) non-normality returns 

distribution. Bid-ask spread in illiquid markets was typically huge for out-of-the money 

options and this could artificially introduce high volatility to out-of-the-money options, 

forming the basis for "volatility skew". But perhaps the more credible reason responsible for 

the observed U shape was non-normality in the returns data. The "volatility skew" could also 

be a result of active use of portfolio insurance policies to protect investors' portfolios, thus 

creating a surging demand for out-of-the money put options and driving up their prices and 

volatility. Our term-structure evidence also showed that the convexity of relative implied 

volatility of longer-term options was relatively insensitive to evolution of calendar time. Thus 

smile effects were strongest for short-term options, indicating that short-term options were the 

most severely mispriced by the Black-Scholes formula and presented perhaps the greatest 

challenge to any alternative option pricing models, which agreed with the results in Das et al. 

(1999). 

The term-structure evidence also supported the notion that implied volatility had been getting 

more skewed as calendar time evolved, thus stressing the increasing importance of using 

leverage models to characterise skewness properly. Moreover, the relative degrees of 

anomalies decreased as term-to-maturity lengthened. Once again this evidence suggested that 

the Black-Scholes formula severely mispriced short-term options. In addition, evidence also 

revealed that the implied volatility of call options in a given in-the-money (out-of-the-money) 

category was quite similar to implied volatility of put options in the opposing out-of-the- 

money (in-the-money) category, which was generally true regardless of sample period or 

term-to-maturity. Such similarities in pricing structure existed between call and put options 

mainly due to the working of the put-call parity. Other more regular results in Chapter 3 
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included: 1) put options commanded a higher premium than call options in each maturity 

group, which was consistent with Black's leverage effect. A possible explanation of these 

results was that purchase of S&P 500 futures was a convenient and inexpensive form of 

portfolio insurance. Thus excess buying pressure of front-month put options might cause 

prices to increase, resulting in higher puts' implied volatilities. Furthermore, average call and 

put implied volatilities mean-reverted to their long-term mean of 16% and 16.8%, 

respectively. That was to say that when implied volatility was above its long-term mean level, 

the implied volatility of an option would have to be decreasing in the time to expiration, and 

vice versa; 2) implied volatility of shorter maturity options were more variable than longer 

maturity options; 3) variation of put options' implied volatility was higher than call options. 

The latter result could be viewed as evidence that put options were more "responsive" to the 

arrival of new information. Less anticiplated, though, were the findings that option prices 

might not be consistent with the rational expectations hypothesis under an AR(1) process. In 

addition to Stein (1989), Bates (1996) and Bakshi et al. (1997), the results from elasticity 

requirements questioned whether the volatility process implied by traded options was 

consistent with the properties implied in its time-series. Given that the Black-Scholes' 

assumption of constant volatility was so poorly violated, it was not surprising that the 4% 

skewness premiums results recommended the use of a leverage model or a jump-diffusion 

model to capturing the observed market biases. 

6.4.2 Conditional Heteroskedastic Models 

In order to find a time-series model that could take account of the observed term-structure 

biases in Chapter 3, the performance of the APARCH and EGARCH models were compared 

by using different types of in-sample criteria. Likelihood-based statistics questioned the 

rationale of using the more complex APARCH models. In particular, the use of asymmetric 

parameterisation and power transformation were shown to be ineffective within the APARCH 

specifications. According to the AIC metric, EGARCH and GARCH were top models in 

"noisy" and "quiet" periods, respectively. Overall, EGARCH was the best model based on 

aggregated AIC rankings. Since EGARCH and GARCH converged to some specific 

stochastic volatility diffusion models in continuous limit, these results indicated that there was 

little incentive to look beyond a simple stochastic model which allowed for volatility 
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clustering and a leverage effect such as Heston (1993). These findings are in full agreement 

with Christoffersen et al. (2002), which based their analysis upon evaluating the in- and out- 

of-sample MSE on option prices to determine the best model specifications. Christoffersen et 

al. also pointed out that more might be gained from changing the specification of other 

fundamental building blocks of the stochastic models, such as jump. Additional statistical 

criteria, which allowed for symmetry/asymmetry in the loss functions of investors to select the 

best volatility forecasting model, were also used to determine the best model, but results were 

mixed. Given the conflicting ranking results from different statistical loss functions, we 

proceeded to use an economic criterion - trading nearest-the-money straddles, to measure the 

out-of-sample performance of the EGARCH and GARCH models. We evaluated the 

forecasting performance of different volatility forecasting models by assessing whether profits 

can be generated from trading weekly nearest-the-money straddles on S&P 500 futures with 

shortest remaining times to maturity based on out-of-sample forecasts of volatility changes. 

As ex-ante volatility predictions a priori did not take account of future unexpected events, it 

was not anticipated that there would be much difference in the out-of-sample performance of 

different volatility predictors. We found EGARCH and GARCH were able to make ex-ante 

profits in one of four two-year out-of-sample periods. In addition, EGARCH had the highest 

rate of returns per trade in all sub-periods and therefore the best economic value in the S&P 

500 futures options market. Our findings reinforced the idea that volatility changes were 

predictable and GARCH-type models might be able to make adjustments for market 

imperfections that could not be explained by the Black-Scholes formula. Finally, our trading 

experiments also revealed that the presumption of using delta-neutral trades to create risk-free 

portfolios was not practical in the event of large index movements, and large changes needed 

to be correctly predicted at critical dates when there were potential profit available. Many 

studies have demonstrated the problems associated with delta-neutral trading strategies (e. g. 

Boyle et al., 1980; Leland, 1985; Figlewski et al., 1994). In general, the longer it takes to 

reverse a delta-neutral trade, the more exposure it has to volatility fluctuations. But 

dynamically hedging and rebalancing the position once a day until expiration would be so 

prohibitively expensive that it is impractical even for an option market marker (see Figlewisk, 

1989b). Rebalancing less frequently can reduce costs, but risk increases. Therefore, we 

reached the verdict that a new derivatives instrument would be needed to allow traders 

speculate on volatility. 
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6.4.3 Time-series and Options-based Variance Forecasting Models 

The skewness premiums analysis conducted in Chapter 3 indicated that jump-diffusion and 

leverage models were best for capturing observed term-structure biases in the S&P 500 

market. In addition, results in Chapter 4 suggested that EGARCH and GARCH were 

adequate to model time-series behaviour of the S&P 500 market whilst a continuous model 

such as Heston (1993) was ideal for option pricing. Furthermore, volatility trading 

experiments showed that the presumption of delta-neutrality was unrealistic. Motivated by 

these findings, Chapter 5 evaluated the volatility forecasting performance of different 

specifications of time-series and options-based variance swap valuation models on the S&P 

500 index. Our research was designed to include the results from the best models shown in 

Chapters 3 and 4 including: 1) EGARCH; 2) GARCH variance swap model; 3) stochastic 

volatility model; 3) jump-diffusion model; 5) local volatility model; 6) ad hoc Black-Scholes 

model. Based on our limited sample, we showed that the Demterfi et al. framework 

overpredicts future variance and that time-series forecasting models have a smaller MSE. In 

particular, the local volatility model, which was the least parsimonious specification, had the 

best in-sample fitting performance but worst variance forecasting performance. We illustrated 

that the use of more flexible and sophisticated option pricing models within the context of the 

Demeterfi et al. framework might not be able to improve the performance of variance swap 

pricing. These findings had brought two major questions to our attention. First, since 

options-based models overpriced future variance by a huge margin, we asked whether option 

prices were consistent with time-series properties? Maximum likelihood estimation of the 

square-root process confirmed that the distributional dynamics implied by option prices not 

consistent with its underlying index. The implication of this finding was that academicians 

and practitioners alike would have to look for a way to integrate historical and market 

information in a composite option pricing model. The second question was why did local 

volatility perform so poorly in forecasting future variance given its excellent in-sample 

pricing performance? One explanation was that a flexible but theoretically inconsistent model 

might dominate in-sample fit but had much less predictive power for predicting future 

variance, which implied that a misspecified model achieves good in-sample results by 

overfitting the options data. As Bakshi et al. (2002) pointed out, the poor performance of one- 

factor models, such as the local volatility model, could also be a result of the monotonicity 

property and perfect correlation property that imposed a stringent constraint on how option 
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prices could change with the underlying asset price. Therefore extreme caution must be taken 

when using the options for volatility forecasting. 

6.4.4 Final Comment 

Finally, a note has to be made in regard to the use of S&P 500 data in this dissertation. 

Although the S&P 500 market data were employed throughout our analysis, we must stress 

that our findings are not likely to be market specific. It is important for investors to 

understand the S&P 500 market because S&P 500 products are one of the most liquid 

contracts in the financial world. However, we expect results obtained in this dissertation can 

be generalised to other markets as well. 

6.5 Recommendations for Further Research 

This dissertation has provided new insights into modelling volatility but also raised many new 

questions. The following areas are recommended for additional research. 

Firstly, there is an urgent need to establish a consensus on whether option prices, which are 

forward-looking, should be used for forecasting purposes. Recent studies such as Dumas et 

at. (1998) and Gemmill et al. (1999) cast doubt on the usefulness of option prices as 

forecasting tools. As the latter points out, options only react to crucial events but they do not 

predict them. According to Flamouris (2001), the criterion for the goodness of a implied 

distribution more often was the fit it provides to the observed option prices and less frequently 

its ability to forecast the statistical properties of future data. Given the fact that the main 

advantage of using options-based methodologies is the no-arbitrage pricing of exotic and 

vanilla products, perhaps further research should first consider work along the lines of 

hedging performance of options-based variance swap models. 

Secondly, one might want to repeat our variance forecasting experiments using a larger 

sample set. This will allow one to infer a statistically significant result to conclude whether 

time-series models outperform option-based models in forecasting volatility. In addition, 
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forecast periods should be non-overlapping so the sample does not consist of dependent 

observations84. 

Thirdly, it would be of interest to extend the work on the overreaction hypothesis in Chapter 

3. Since we restricted our investigation to testing the rational expectation hypothesis of Stein 

(1989) using aggregated data, further analysis can be performed on daily data using fixed 

maturity series to check whether option prices are really consistent with the AR(1) 

specification. 

Fourthly, an interesting extension of our work on model rankings in Chapter 4 would be to 

compare the options-based results using alternative economic criteria. For instance, Lopez 

(1995) presented the idea of transforming volatility forecasts into probability forecasts. 

However, one should be cautious when using these metrics as it is not clear whose utility 

function they reflect (Orakcioglu, 2000). Alternative trading approaches are also possible, but 

with certain caveats. For example, although it does not seem practicable, one can trade 

options on daily basis. One can also experiment with the size of the data window when 

estimating the structural parameters, or match the forecasting horizon to the remaining 

maturity of the straddle. All these amendments may lead to different results. 

Fifthly, special attention should be given to the incorporation of jumps into the delivery prices 

of variance swap within a theoretically consistent framework. Currently, the dominant 

Demeterfi et al. framework requires price continuity and a consistent stochastic volatility 

model for options to price variance swaps. As maturity gets longer one would expect more 

jumps to occur. Since the evidence in Chapter 5 shows that the replication of log-contracts 

through traded options is not an effective way to forecast future variance, another possible 

extension would be to conduct Monte-Carlo simulations on log-contracts. 

Next, a reasonable improvement in estimating structural parameters of stochastic volatility 

models in Chapter 5 can be achieved by using more advanced econometric techniques such as 

moment matching procedures employed by Scott (1987) and Wiggins (1987). Unlike 

maximum likelihood estimation method used in Bakshi et al. (1997) and this study, moment 

matching procedures do not assume a priori a distribution. Thus it can offer an alternative 

84 We thank Roy Batchelor for pointing out the problems associated with Chapter 5 of this dissertation. 
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view of finding out whether option prices are consistent with the time-series properties of the 

underlying asset. 

Finally, and most importantly, we must change our view that volatility is not a tradable asset. 

For example, the MONEP created the VX1 and VX6 indexes in October 1997; on January 19, 

1998, the Deutsche Terminborse (DTB) became the first exchange in the world to list 

volatility futures based on an underlying equity index of implied volatility when it launched 

the VOLAX futures. Recent advances in financial engineering have also developed a number 

of ways to trade volatility contracts (see Howison et al., 2001). Yet it is difficult to conduct 

research on these volatility contracts because their existence is largely at the development 

stage and there is no liquid market to test any potential models. Therefore, the investigation 

of modelling more complex volatility products such as options must be postponed until more 

OTC data are available. 
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EPILOGUE 

Volatility is a timeliness subject. It is one of the core concepts of financial theory, especially 

in modem portfolio theory, risk management and option pricing. The past two decades have 

witnessed an explosion of volatility models, both in option pricing and forecasting, in order to 

take account of the imperfections displayed in options market and time-series. As part of this 

research, I have implemented, applied and scrutinised many volatility models from a practical 

perspective. I believe that recent studies have attached too much weight to theory and 

financial research is frequently devoid of financial logic and argument. In this dissertation, I 

have tried to strike a balance between practicalities and technicalities whilst not scarifying any 

academic vigour. I believe that more immediate question does not lie in the realm of more 

complex models but in checking out their market performance in terms of forecasting, trading 

and pricing. Finally, I stress that analytical skills are as important as mathematical skills, and 

studying finance is as much an art as a science. 
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APPENDICES 

A. 1 APARCH Models 
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A. 2 In-Sample Model Selection Criteria 
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B. 1 June 15,2001 Call Options 

SX Bid Ask Mid BS Imp. 
Vol. 

1214.35 995 227.4 225.4 226.4 0.4356 
1214.35 1005 217.5 215.5 216.5 0.4198 

1214.35 1075 150 148 149 0.3361 
1214.35 1100 126.5 124.5 125.5 0.3084 
1214.35 1125 103.7 101.7 102.7 0.2833 
1214.35 1150 82 80 81 0.2611 
1214.35 1175 62.2 60.2 61.2 0.2439 
1214.35 1200 44.2 42.2 43.2 0.2257 
1214.35 1225 29.3 27.3 28.3 0.2112 
1214.35 1250 17.3 16.3 16.8 0.1986 
1214.35 1275 9.9 8.9 9.4 0.1927 
1214.35 1280 8.4 7.4 7.9 0.1881 
1214.35 1285 7.6 6.6 7.1 0.1890 
1214.35 1300 5.1 4.4 4.75 0.1874 
1214.35 1325 2.35 1.9 2.125 0.1824 

1214.35 1350 1 0.9 0.95 0.1819 

1214.35 1375 0.7 0.4 0.55 0.1905 
1214.35 1025 202.3 200.3 201.3 0.3217 

1214.35 1175 73.3 71.3 72.3 0.2331 
1214.35 1200 56.3 54.3 55.3 0.2216 
1214.35 1250 29.3 27.3 28.3 0.2024 
1214.35 1275 19.8 18.3 19.05 0.1965 
1214.35 1300 12.8 11.3 12.05 0.1905 
1214.35 1325 7.5 6.8 7.15 0.1851 
1214.35 1350 4.5 3.8 4.15 0.1824 
1214.35 1375 2.7 2 2.35 0.1810 
1214.35 1400 1.5 1.05 1.275 0.1799 
1214.35 1425 0.9 0.45 0.675 0.1794 
1214.35 800 424.2 422.2 423.2 0.4289 
1214.35 1050 186 184 185 0.2777 
1214.35 1100 142.5 1405 141.5 0,2548 
1214.35 1125 122.2 120.2 121.2 0.2454 
1214.35 1150 102.7 100.7 101.7 0.2350 

1214.35 1200 68.7 66.7 67.7 0.2196 
1214.35 1225 54.1 52.1 53.1 0.2119 

1214.35 1240 46.7 44.7 45.7 0.2095 
1214.35 1250 41.5 39.5 40.5 0.2053 
1214.35 1260 37.1 35.1 36.1 0.2031 
1214.35 1275 31.1 29.1 30.1 0.1999 
1214.35 1285 27.3 25.3 26.3 0.1970 
1214.35 1300 22.2 20.2 21.2 0.1928 
1214.35 1325 15.5 14 14.75 0.1887 

1214.35 1350 10.5 9.5 10 0.1857 
1214.35 1375 6.5 6 6.25 0.1804 

1214.35 1400 4.4 3.7 4.05 0.1792 
1214.35 1425 2.85 2.2 2.525 0.1777 

1214.35 1450 1.7 1.25 1.475 0.1753 

1214.35 1475 1.05 0.6 0.825 0.1729 

1214.35 1500 0.9 0.45 0.675 0.1806 

Exp. Maturity Yield Dis. Open 

(%) Div. Interest 
07/21/01 0.0959 3.5200 0.6479 1 
07/21/01 0.0959 3.5200 0.6479 1 
07/21/01 0.0959 3.5200 0.6479 22 
07/21/01 0.0959 3.5200 0.6479 277 
07/21/01 0.0959 3.5200 0.6479 209 
07/21/01 0.0959 3.5200 0.6479 257 
0721/01 0.0959 3.5200 0.6479 29 
07/21/01 0.0959 3.5200 0.6479 1882 
07/21/01 0.0959 3.5200 0.6479 2443 
0721/01 0.0959 3.5200 0.6479 9026 
07/21/01 0.0959 3.5200 0.6479 11371 
07/21/01 0.0959 3.5200 0.6479 618 
0721/01 0.0959 3.5200 0.6479 3283 
07/21/01 0.0959 3.5200 0.6479 6717 
07/21/01 0.0959 3.5200 0.6479 4321 
07/21/01 0.0959 3.5200 0.6479 10642 

07/21/01 0.0959 3.5200 0.6479 4452 

08/18/01 0.1726 3.5200 0.8969 10 

08/18/01 0.1726 3.5200 0.8969 781 

08/18/01 0.1726 3.5200 0.8969 953 

08118/01 0.1726 3.5200 0.8969 3831 
08/18/01 0.1726 3.5200 0.8969 2083 
08/18/01 0.1726 3.5200 0.8969 2993 

08/18/01 0.1726 3.5200 0.8969 614 

08/18/01 0.1726 3.5200 0.8969 1039 

08/18/01 0.1726 3.5200 0.8969 2534 

08/18/01 0.1726 3.5200 0.8969 1719 

08/18/01 0.1726 3.5200 0.8969 164 

0922/01 0.2685 3.5222 0.9658 4715 

09/22/01 0.2685 3.5222 0.9658 267 

0922101 0.2685 3.5222 0.9658 2158 

09/22/01 0.2685 3.5222 0.9658 167 

0922/01 0.2685 3.5222 0.9658 4169 

0922101 0.2685 3.5222 0.9658 9200 

0922/01 0.2685 3.5222 0.9658 3077 

0922/01 0.2685 3.5222 0.9658 434 

09/22/01 0.2685 3.5222 0.9658 17406 

09/22/01 0.2685 3.5222 0.9658 407 

09/22/01 0.2685 3.5222 0.9658 6423 

0922/01 0.2685 3.5222 0.9658 1104 

0922/01 0.2685 3.5222 0.9658 8441 

0922/01 0.2685 3.5222 0.9658 5339 

09/22/01 0.2685 3.5222 0.9658 11196 

0922101 0.2685 3.5222 0.9658 10587 

0922/01 0.2685 3.5222 0.9658 7051 

0922101 0.2685 3.5222 0.9658 4733 

0922101 0.2685 3.5222 0.9658 5744 

09/22/01 0.2685 3.5222 0.9658 4431 
0922/01 0.2685 3.5222 0.9658 2766 
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SX Bid Ask Mid BS Imp. Exp. Maturity Yield Dis. Open 
Vol. M Div. Interest 

1214.35 1525 0.65 0.2 0.425 0.1816 09/22/01 0.2685 3.5222 0.9658 3482 
1214.35 800 430.7 428.7 429.7 0.3021 12/22/01 0.5178 3.5493 1.0005 7 
1214.35 900 336.3 334.3 335.3 0.2849 12/22/01 0.5178 3.5493 1.0005 1663 
1214.35 950 290.6 288.6 289.6 0.2748 12/22/01 0.5178 3.5493 1.0005 2 
1214.35 995 250.7 248.7 249.7 0.2652 12/22/01 0.5178 3.5493 1.0005 1680 
1214.35 1025 224.4 222.4 223.4 0.2558 12/22/01 0.5178 3.5493 1.0005 1462 
1214.35 1050 203.6 201.6 202.6 0.2509 12/22/01 0.5178 3.5493 1.0005 252 
1214.35 1100 163.5 161.5 162.5 0.2388 12/22/01 0.5178 3.5493 1.0005 1264 
1214.35 1150 126.8 124.8 125.8 0.2275 12/22/01 0.5178 3.5493 1.0005 4531 
1214.35 1175 109.8 107.8 108.8 0.2216 12/22/01 0.5178 3.5493 1.0005 1328 
1214.35 1200 94.3 92.3 93.3 0.2169 12/22/01 0.5178 3.5493 1.0005 7006 
1214.35 1225 79.5 77.5 78.5 0.2108 12/22/01 0.5178 3.5493 1.0005 4005 
1214.35 1250 66.7 64.7 65.7 0.2069 12/22/01 0.5178 3.5493 1.0005 7606 
1214.35 1275 54.9 52.9 53.9 0.2022 12/22/01 0.5178 3.5493 1.0005 3996 
1214.35 1300 44.1 42.1 43.1 0.1965 12/22/01 0.5178 3.5493 1.0005 15712 
1214.35 1325 35.2 33.2 34.2 0.1924 12/22/01 0.5178 3.5493 1.0005 8315 
1214.35 1350 27.7 25.7 26.7 0.1887 12/22/01 0.5178 3.5493 1.0005 6407 
1214.35 1375 21.3 19.8 20.55 0.1855 12/22/01 0.5178 3.5493 1.0005 1534 
1214.35 1400 16 14.5 15.25 0.1813 12/22/01 0.5178 3.5493 1.0005 12452 
1214.35 1425 12 10.5 11.25 0.1784 12/22/01 0.5178 3.5493 1.0005 3918 
1214.35 1450 8.8 7.8 8.3 0.1766 12/22/01 0.5178 3.5493 1.0005 9054 
1214.35 1475 6.5 5.5 6 0.1747 12/22/01 0.5178 3.5493 1.0005 83 

1214.35 1500 4.7 4 4.35 0.1736 12/22/01 0.5178 3.5493 1.0005 12551 
1214.35 1525 3.4 2.7 3.05 0.1720 12/22/01 0.5178 3.5493 1.0005 777 
1214.35 1550 2.35 1.9 2.125 0.1707 12/22/01 0.5178 3.5493 1.0005 5363 
1214.35 1575 1.7 1.25 1.475 0.1698 12/22/01 0.5178 3.5493 1.0005 145 
1214.35 1600 1.4 0.95 1.175 0.1728 12/22/01 0.5178 3.5493 1.0005 10306 
1214.35 1650 0.8 0.35 0.575 0.1723 12/22/01 0.5178 3.5493 1.0005 4125 
1214.35 1675 0.6 0.15 0.375 0.1709 12/22/01 0.5178 3.5493 1.0005 525 
1214.35 1025 238.5 236.5 237.5 0.2446 03/16/02 0.7479 3.5401 1.0018 28 
1214.35 1050 218.5 216.5 217.5 0.2406 03/16/02 0.7479 3.5401 1.0018 1433 
1214.35 1100 180.1 178.1 179.1 0.2314 03/16/02 0.7479 3.5401 1.0018 191 
1214.35 1125 162.4 160.4 161.4 0.2281 03/16/02 0.7479 3.5401 1.0018 289 

1214.35 1150 145.2 143.2 144.2 0.2238 03/16/02 0.7479 3.5401 1.0018 748 
1214.35 1175 128.8 126.8 127.8 0.2194 03/16/02 0.7479 3.5401 1.0018 19 
1214.35 1200 113.2 111.2 112.2 0.2146 03/16/02 0.7479 3.5401 1.0018 2384 

1214.35 1225 98.6 96.6 97.6 0.2100 03/16/02 0.7479 3.5401 1.0018 238 

1214.35 1250 85.4 83.4 84.4 0.2062 03/16/02 0.7479 3.5401 1.0018 622 

1214.35 1275 73.3 71.3 72.3 0.2027 03/16/02 0.7479 3.5401 1.0018 3160 

1214.35 1300 62.2 60.2 61.2 0.1989 03/16/02 0.7479 3.5401 1.0018 4015 

1214.35 1325 52.2 50.2 51.2 0.1952 03/16/02 0.7479 3.5401 1.0018 9 

1214.35 1350 43.6 41.6 42.6 0.1923 03/16/02 0.7479 3.5401 1.0018 1001 
1214.35 1375 35.7 33.7 34.7 0.1884 03/16/02 0.7479 3.5401 1.0018 441 

1214.35 1400 28.8 26.8 27.8 0.1846 03/16/02 0.7479 3.5401 1.0018 7239 
1214.35 1425 23.2 21.2 22.2 0.1817 03/16/02 0.7479 3.5401 1.0018 297 
1214.35 1450 18.2 16.7 17.45 0.1788 03/16/02 0.7479 3.5401 1.0018 1703 
1214.35 1475 14.2 12.7 13.45 0.1757 03/16/02 0.7479 3.5401 1.0018 16 
1214.35 1500 11 10 10.5 0.1741 03/16/02 0.7479 3.5401 1.0018 869 
1214.35 1600 3.7 3 3.35 0.1670 03/16/02 0.7479 3.5401 1.0018 365 
1214.35 1050 237.3 234.3 235.8 0.2403 06/22/02 1.0164 3.5379 1.0019 1 
1214.35 1100 200.7 197.7 199.2 0.2331 06/22/02 1.0164 3.5379 1.0019 102 
1214.35 1150 166.9 163.9 165.4 0.2262 06/22/02 1.0164 3.5379 1.0019 1350 
1214.35 1200 136 133 134.5 0.2192 06/22/02 1.0164 3.5379 1.0019 2788 
1214.35 1250 108.2 105.2 106.7 0.2119 06/22/02 1.0164 3.5379 1.0019 1577 
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SX Bid Ask Mid BS Imp. Exp. Maturity Yield Dis. Open 
Vol. (%) Div. Interest 

1214.35 1300 84.2 81.2 82.7 0.2055 06/22/02 1.0164 3.5379 1.0019 4395 
1214.35 1350 64.1 61.1 62.6 0.1999 06/22/02 1.0164 3.5379 1.0019 4656 
1214.35 1400 47.4 44.4 45.9 0.1942 06/22102 1.0164 3.5379 1.0019 6940 
1214.35 1450 33.9 30.9 32.4 0.1883 06/22/02 1.0164 3.5379 1.0019 6897 
1214.35 1500 23.1 20.1 21.6 0.1814 06/22/02 1.0164 3.5379 1.0019 5974 

1214.35 1550 14.7 13.2 13.95 0.1758 06/22/02 1.0164 3.5379 1.0019 851 

1214.35 1600 9.4 8.4 8.9 0.1719 06/22/02 1.0164 3.5379 1.0019 6076 

1214.35 1650 6.1 5.1 5.6 0.1692 06/22/02 1.0164 3.5379 1.0019 2849 

1214.35 1700 3.7 3 3.35 0.1660 06/22/02 1.0164 3.5379 1.0019 5639 
1214.35 1750 2.2 1.75 1.975 0.1636 06/22/02 1.0164 3.5379 1.0019 1120 
1214.35 1800 1.35 0.9 1.125 0.1612 06/22/02 1.0164 3.5379 1.0019 4132 
1214.35 1850 0.85 0.4 0.625 0.1591 06/22/02 1.0164 3.5379 1.0019 1150 
1214.35 1900 0.6 0.15 0.375 0.1589 06/22/02 1.0164 3.5379 1.0019 3644 
1214.35 1100 233.5 230.5 232 0.2290 12/21/02 1.5151 3.7772 1.0019 64 
1214.35 1150 201.1 198.1 199.6 0.2238 12/21/02 1.5151 3.7772 1.0019 1785 
1214.35 1200 171 168 169.5 0.2184 12/21/02 1.5151 3.7772 1.0019 4897 
1214.35 1250 143.2 140.2 141.7 0.2126 12/21/02 1.5151 3.7772 1.0019 4127 
1214.35 1300 118.4 115.4 116.9 0.2073 12/21/02 1.5151 3.7772 1.0019 3116 
1214.35 1350 96.3 93.3 94.8 0.2022 12/21/02 1.5151 3.7772 1.0019 1367 
1214.35 1400 77.5 74.5 76 0.1979 12/21/02 1.5151 3.7772 1.0019 3569 
1214.35 1450 60.6 57.6 59.1 0.1923 12/21/02 1.5151 3.7772 1.0019 3783 
1214.35 1500 46.4 43.4 44.9 0.1868 12/21/02 1.5151 3.7772 1.0019 3740 

1214.35 1550 35.1 32.1 33.6 0.1823 12/21/02 1.5151 3.7772 1.0019 1667 

1214.35 1600 26.3 23.3 24.8 0.1786 12/21/02 1.5151 3.7772 1.0019 4587 
1214.35 1650 18.6 17.1 17.85 0.1748 12/21/02 1.5151 3.7772 1.0019 1060 
1214.35 1700 13.2 11.7 12.45 0.1709 12/21/02 1.5151 3.7772 1.0019 2046 
1214.35 1800 6.4 5.4 5.9 0.1653 12/21/02 1.5151 3.7772 1.0019 1200 
1214.35 1900 3.1 2.4 2.75 0.1621 12/21/02 1.5151 3.7772 1.0019 6500 
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B. 2 July 20,2001 Call Options 

SX Bid Ask Mid BS Imp. Exp. 
Vol. 

1210.85 1050 164 162 163 0.2144 08/18/01 

1210.85 1075 139.9 137.9 138.9 0.2388 08/18/01 

1210.85 1100 116.1 114.1 115.1 0.2341 08/18/01 
1210.85 1125 93.2 91.2 92.2 0.2280 08/18/01 
1210.85 1150 71.4 69.4 70.4 0.2177 08/18/01 
1210.85 1175 51.7 49.7 50.7 0.2090 08/18/01 
1210.85 1200 34.3 32.3 33.3 0.1967 08/18/01 

1210.85 1225 21 19.5 20.25 0.1911 08/18/01 

1210.85 1250 11 10 10.5 0.1812 08/18/01 

1210.85 1275 5.4 4.7 5.05 0.1782 08/18/01 

1210.85 1300 2.7 2 2.35 0.1797 08/18/01 
1210.85 1325 1 0.7 0.85 0.1756 08/18/01 
1210.85 1050 170.3 168.3 169.3 0.2357 09/22/01 
1210.85 1100 124.9 122.9 123.9 0.2233 09/22/01 

1210.85 1125 103.6 101.6 102.6 0.2166 09/22/01 

1210.85 1150 83.8 81.8 82.8 0.2108 09/22/01 

1210.85 1190 55.4 53.4 54.4 0.1990 09/22/01 

1210.85 1200 49.6 47.6 48.6 0.1984 09/22/01 
1210.85 1210 43.6 41.6 42.6 0.1948 09/22/01 
1210.85 1225 35.5 33.5 34.5 0.1903 09/22/01 
1210.85 1240 28.5 26.5 27.5 0.1867 09/22/01 
1210.85 1250 24.7 22.7 23.7 0.1861 0922/01 
1210.85 1275 15.8 14.3 15.05 0.1798 09/22/01 
1210.85 1285 13.3 11.8 12.55 0.1789 09/22/01 
1210.85 1300 9.6 8.6 9.1 0.1755 09/22/01 
1210.85 1325 5.6 4.9 5.25 0.1726 09/22/01 
1210.85 1350 3.3 2.6 2.95 0.1715 09/22/01 
1210.85 1375 1.8 1.35 1.575 0.1705 09/22/01 
1210.85 1400 1.2 0.75 0.975 0.1751 09/22/01 
1210.85 1425 0.7 0.25 0.475 0.1735 09/22/01 

1210.85 1450 0.45 0.3 0.375 0.1838 09/22/01 

1210.85 1025 208.8 206.8 207.8 0.2219 12/22/01 

1210.85 1050 187.3 185.3 186.3 0.2204 12/22/01 

1210.85 1060 178.8 176.8 177.8 0.2190 12/22/01 
1210.85 1100 145.7 143.7 144.7 0.2111 12/22/01 
1210.85 1150 108.6 106.6 107.6 0.2041 12/22/01 
1210.85 1175 91.8 89.8 90.8 0.2001 12/22/01 
1210.85 1200 76.4 74.4 75.4 0.1961 12/22/01 
1210.85 1250 49.6 47.6 48.6 0.1863 12/22/01 
1210.85 1275 38.2 36.2 37.2 0.1801 12/22/01 
1210.85 1300 29.4 27.4 28.4 0.1770 12/22/01 
1210.85 1325 21.5 20 20.75 0.1723 12/22/01 
1210.85 1350 15.9 14.4 15.15 0.1700 12/22/01 
1210.85 1375 11.6 10.1 10.85 0.1681 12/22/01 
1210.85 1400 8.2 7.2 7.7 0.1670 12/22/01 
1210.85 1425 5.3 4.6 4.95 0.1628 12/22/01 

Maturity Yield Dis. Open 
(%) Div. Interest 

0.0767 3.5300 0.8520 362 

0.0767 3.5300 0.8520 3 
0.0767 3.5300 0.8520 660 
0.0767 3.5300 0.8520 326 
0.0767 3.5300 0.8520 1237 
0.0767 3.5300 0.8520 3451 
0.0767 3.5300 0.8520 4437 
0.0767 3.5300 0.8520 14228 
0.0767 3.5300 0.8520 10578 
0.0767 3.5300 0.8520 15186 
0.0767 3.5300 0.8520 15988 
0.0767 3.5300 0.8520 4888 
0.1726 3.5300 1.0870 279 
0.1726 3.5300 1.0870 2150 
0.1726 3.5300 1.0870 644 

0.1726 3.5300 1.0870 4212 

0.1726 3.5300 1.0870 483 

0.1726 3.5300 1.0870 14007 

0.1726 3.5300 1.0870 7358 

0.1726 3.5300 1.0870 27100 
0.1726 3.5300 1.0870 4860 

0.1726 3.5300 1.0870 21295 

0.1726 3.5300 1.0870 6893 

0.1726 3.5300 1.0870 1202 

0.1726 3.5300 1.0870 10994 

0.1726 3.5300 1.0870 10914 

0.1726 3.5300 1.0870 12910 

0.1726 3.5300 1.0870 9773 

0.1726 3.5300 1.0870 6684 

0.1726 3.5300 1.0870 4933 

0.1726 3.5300 1.0870 5829 

0.4219 3.5300 1.2069 1462 

0.4219 3.5300 1.2069 700 

0.4219 3.5300 1.2069 450 

0.4219 3.5300 1.2069 1708 

0.4219 3.5300 1.2069 4545 

0.4219 3.5300 1.2069 1411 

0.4219 3.5300 1.2069 7525 

0.4219 3.5300 1.2069 8715 

0.4219 3.5300 1.2069 4858 

0.4219 3.5300 1.2069 16318 

0.4219 3.5300 1.2069 8751 

0.4219 3.5300 1.2069 6892 

0.4219 3.5300 1.2069 2822 

0.4219 3.5300 1.2069 14456 

0.4219 3.5300 1.2069 4269 
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SX Bid Ask Mid BS Imp. Exp. Maturity Yield Dis. Open 
Vol. (%) Div. Interest 

1210.85 1450 3.6 2.9 3.25 0.1609 12/22/01 0.4219 3.5300 1.2069 9344 
1210.85 1475 2.35 1.9 2.125 0.1598 12/22/01 0.4219 3.5300 1.2069 112 
1210.85 1500 1.75 1.3 1.525 0.1618 12/22/01 0.4219 3.5300 1.2069 13476 
1210.85 1525 1.15 0.7 0.925 0.1597 12/22/01 0.4219 3.5300 1.2069 785 
1210.85 1550 0.85 0.4 0.625 0.1606 12/22/01 0.4219 3.5300 1.2069 5218 
1210.85 1575 0.6 0.15 0.375 0.1593 12/22/01 0.4219 3.5300 1.2069 155 
1210.85 1025 221.6 219.6 220.6 0.2103 03/16/02 0.6521 3.5482 1.2115 28 
1210.85 1050 201 199 200 0.2089 03/16/02 0.6521 3.5482 1.2115 1433 
1210.85 1100 162.1 160.1 161.1 0.2050 03/16/02 0.6521 3.5482 1.2115 202 
1210.85 1125 143.6 141.6 142.6 0.2016 03/16/02 0.6521 3.5482 1.2115 339 
1210.85 1150 126.3 124.3 125.3 0.1988 03/16/02 0.6521 3.5482 1.2115 750 
1210.85 1175 110 108 109 0.1957 03/16/02 0.6521 3.5482 1.2115 19 
1210.85 1200 94.8 92.8 93.8 0.1925 03/16/02 0.6521 3.5482 1.2115 2982 
1210.85 1225 80.2 78.2 79.2 0.1877 03/16/02 0.6521 3.5482 1.2115 757 
1210.85 1250 67.6 65.6 66.6 0.1849 03/16/02 0.6521 3.5482 1.2115 1433 
1210.85 1275 56.2 54.2 55.2 0.1819 03/16/02 0.6521 3.5482 1.2115 3782 
1210.85 1300 46 44 45 0.1786 03/16/02 0.6521 3.5482 1.2115 3889 
1210.85 1325 37.1 35.1 36.1 0.1753 03/16/02 0.6521 3.5482 1.2115 340 
1210.85 1350 29.4 27.4 28.4 0.1719 03/16/02 0.6521 3.5482 1.2115 973 
1210.85 1375 23.2 21.2 22.2 0.1695 03/16/02 0.6521 3.5482 1.2115 444 
1210.85 1400 17.7 16.2 16.95 0.1667 03/16/02 0.6521 3.5482 1.2115 7715 
1210.85 1425 13.5 12 12.75 0.1643 03/16/02 0.6521 3.5482 1.2115 294 
1210.85 1450 10.1 9.1 9.6 0.1628 03/16/02 0.6521 3.5482 1.2115 1965 
1210.85 1475 7.4 6.4 6.9 0.1601 03/16/02 0.6521 3.5482 1.2115 84 
1210.85 1500 5 4.7 4.85 0.1576 03/16/02 0.6521 3.5482 1.2115 788 
1210.85 1600 1.5 1.05 1.275 0.1551 03/16/02 0.6521 3.5482 1.2115 464 
1210.85 1325 54.7 52.7 53.7 0.1786 06/22/02 0.9205 3.5805 1.2117 1010 
1210.85 1425 25.8 23.8 24.8 0.1690 06/22/02 0.9205 3.5805 1.2117 1 
1210.85 1100 212.9 209.9 211.4 0.2031 12/21/02 1.4192 3.7535 1.2117 64 
1210.85 1150 180.4 177.4 178.9 0.2002 12/21/02 1.4192 3.7535 1.2117 1980 
1210.85 1200 150.4 147.4 148.9 0.1963 12/21/02 1.4192 3.7535 1.2117 5218 
1210.85 1250 123.1 120.1 121.6 0.1918 12/21/02 1.4192 3.7535 1.2117 4484 
1210.85 1300 98 95 96.5 0.1857 12/21/02 1.4192 3.7535 1.2117 3846 
1210.85 1350 77.1 74.1 75.6 0.1815 12/21/02 1.4192 3.7535 1.2117 1867 
1210.85 1400 59.1 56.1 57.6 0.1767 12/21/02 1.4192 3.7535 1.2117 4417 
1210.85 1450 44.1 41.1 42.6 0.1718 12/21/02 1.4192 3.7535 1.2117 4930 
1210.85 1500 32.9 29.9 31.4 0.1689 12/21/02 1.4192 3.7535 1.2117 3740 

1210.85 1550 24.3 21.3 22.8 0.1666 12/21/02 1.4192 3.7535 1.2117 1717 

1210.85 1600 16.3 14.8 15.55 0.1623 12/21/02 1.4192 3.7535 1.2117 6711 

1210.85 1650 10.9 9.9 10.4 0.1588 12/21/02 1.4192 3.7535 1.2117 1065 
1210.85 1700 7.2 6.2 6.7 0.1553 12/21/02 1.4192 3.7535 1.2117 2071 
1210.85 1800 3.5 2.8 3.15 0.1546 12/21/02 1.4192 3.7535 1.2117 12350 
1210.85 1900 1.55 1.1 1.325 0.1525 12/21/02 1.4192 3.7535 1.2117 6540 
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B. 3 August 17,2001 Call Options 

SX Bid Ask Mid BS Imp. Exp. 
Vol. 

1161.95 800 365.6 363.6 364.6 0.5364 09/22/01 

1161.95 1025 145.6 143.6 144.6 0.3187 09/22/01 
1161.95 1050 121.8 119.8 120.8 0.2897 09/22/01 
1161.95 1100 78.2 76.2 77.2 0.2563 09/22/01 
1161.95 1125 58.4 56.4 57.4 0.2389 09/22/01 
1161.95 1150 41.1 39.1 40.1 0.2244 09/22/01 

1161.95 1190 18.5 17.5 18 0.1980 09122/01 

1161.95 1200 15 14 14.5 0.1962 09/22/01 

1161.95 1210 12.4 11 11.7 0.1961 09/22/01 
1161.95 1225 8 7.3 7.65 0.1896 09/22/01 
1161.95 1240 5.1 4.6 4.85 0.1852 09/22/01 
1161.95 1250 3.8 3.3 3.55 0.1835 09/22/01 
1161.95 1275 1.95 1.5 1.725 0.1851 09/22/01 

1161.95 1285 1.4 0.95 1.175 0.1829 09/22/01 

1161.95 1300 0.7 0.35 0.525 0.1747 09/22/01 

1161.95 900 275.2 273.2 274.2 0.2664 12/22/01 

1161.95 950 229.4 227.4 228.4 0.2656 12/22/01 

1161.95 995 189.1 187.1 188.1 0.2541 12/22/01 
1161.95 1025 163.4 161.4 162.4 0.2466 12/22/01 
1161.95 1050 142.8 140.8 141.8 0.2400 12/22/01 
1161.95 1060 134.9 132.9 133.9 0.2378 12/22/01 
1161.95 1100 103.1 101.1 102.1 0.2204 12/22/01 
1161.95 1150 70.2 68.2 69.2 0.2092 12/22/01 
1161.95 1175 55.6 53.6 54.6 0.2016 12/22/01 
1161.95 1200 43.3 41.3 42.3 0.1964 12/22/01 
1161.95 1225 32.7 30.7 31.7 0.1907 12/22/01 

1161.95 1250 24 22 23 0.1854 12/22/01 
1161.95 1275 17.1 15.6 16.35 0.1816 12/22/01 
1161.95 1300 12.2 10.7 11.45 0.1792 12/22/01 
1161.95 1325 8.2 7.2 7.7 0.1763 12/22/01 

1161.95 1350 5.5 4.8 5.15 0.1748 12/22/01 

1161.95 1375 3.6 2.9 3.25 0.1722 12/22/01 

1161.95 1400 2.1 1.65 1.875 0.1680 12/22/01 

1161.95 1425 1.4 0.95 1.175 0.1677 12/22/01 
1161.95 1450 0.95 0.5 0.725 0.1674 12/22/01 
1161.95 1475 0.65 0.4 0.525 0.1711 12/22/01 
1161.95 900 283.4 281.4 282.4 0.2293 03/16/02 
1161.95 1025 177.4 175.4 176.4 0.2269 03/16/02 
1161.95 1050 157.7 155.7 156.7 0.2219 03/16/02 
1161.95 1100 120.7 118.7 119.7 0.2111 03/16/02 
1161.95 1125 104.2 102.2 103.2 0.2071 03/16/02 
1161.95 1150 88.6 86.6 87.6 0.2023 03/16/02 
1161.95 1175 74.5 72.5 73.5 0.1980 03/16/02 
1161.95 1200 61.3 59.3 60.3 0.1927 03/16/02 
1161.95 1225 49.8 47.8 48.8 0.1883 03/16/02 
1161.95 1250 40.1 38.1 39.1 0.1849 03/16/02 

Maturity Yield Dis. Open 
(%) Div. Interest 

0.0959 3.4525 0.6392 5774 

0.0959 3.4525 0.6392 15 
0.0959 3.4525 0.6392 284 
0.0959 3.4525 0.6392 2369 
0.0959 3.4525 0.6392 1633 
0.0959 3.4525 0.6392 5930 
0.0959 3.4525 0.6392 9816 
0.0959 3.4525 0.6392 27223 
0.0959 3.4525 0.6392 10767 
0.0959 3.4525 0.6392 30525 
0.0959 3.4525 0.6392 5130 
0.0959 3.4525 0.6392 30757 
0.0959 3.4525 0.6392 9960 
0.0959 3.4525 0.6392 1232 
0.0959 3.4525 0.6392 21666 

0.3452 3.3486 0.9878 1730 

0.3452 3.3486 0.9878 2 

0.3452 3.3486 0.9878 1931 
0.3452 3.3486 0.9878 1468 

0.3452 3.3486 0.9878 700 
0.3452 3.3486 0.9878 450 
0.3452 3.3486 0.9878 2257 

0.3452 3.3486 0.9878 4897 

0.3452 3.3486 0.9878 1757 

0.3452 3.3486 0.9878 9020 

0.3452 3.3486 0.9878 7039 

0.3452 3.3486 0.9878 13786 

0.3452 3.3486 0.9878 7011 

0.3452 3.3486 0.9878 17208 

0.3452 3.3486 0.9878 9602 

0.3452 3.3486 0.9878 8906 

0.3452 3.3486 0.9878 2816 

0.3452 3.3486 0.9878 15650 

0.3452 3.3486 0.9878 4464 

0.3452 3.3486 0.9878 9393 

0.3452 3.3486 0.9878 122 

0.5753 3.3390 1.0046 18 

0.5753 3.3390 1.0046 28 

0.5753 3.3390 1.0046 1433 

0.5753 3.3390 1.0046 209 

0.5753 3.3390 1.0046 339 

0.5753 3.3390 1.0046 750 

0.5753 3.3390 1.0046 24 

0.5753 3.3390 1.0046 4023 

0.5753 3.3390 1.0046 1394 

0.5753 3.3390 1.0046 3302 
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SX Bid Ask Mid BS Imp. Exp. 
Vol. 

1161.95 1275 30.8 28.8 29.8 0.1786 03/16/02 
1161.95 1300 24.3 22.3 23.3 0.1769 03/16/02 
1161.95 1325 18.5 17 17.75 0.1745 03/16/02 
1161.95 1350 13.7 12.2 12.95 0.1707 03/16/02 

1161.95 1375 9.9 8.9 9.4 0.1682 03/16/02 

1161.95 1400 7.1 6.1 6.6 0.1653 03/16/02 

1161.95 1425 4.9 4.2 4.55 0.1627 03/16102 

1161.95 1450 3.4 2.7 3.05 0.1602 03/16/02 

1161.95 1475 2.3 1.85 2.075 0.1589 03/16/02 
1161.95 1500 1.7 1.25 1.475 0.1593 03/16/02 
1161.95 1600 0.45 0.4 0.425 0.1642 03/16/02 
1161.95 850 337.8 335.8 336.8 0.1964 0622/02 
1161.95 1325 32.7 30.7 31.7 0.1777 06/22/02 
1161.95 1425 12.1 10.6 11.35 0.1640 0622/02 

1161.95 900 316.4 313.4 314.9 0.2113 1221/02 
1161.95 950 276.9 273.9 275.4 0.2134 1221/02 
1161.95 1100 170.1 167.1 168.6 0.2035 12/21/02 
1161.95 1150 139.5 136.5 138 0.1981 12J21/02 
1161.95 1200 112.5 109.5 111 0.1934 12/21/02 

1161.95 1225 99.8 96.8 98.3 0.1903 1221/02 

1161.95 1250 87.9 84.9 86.4 0.1871 1221/02 

1161.95 1300 67.7 64.7 66.2 0.1825 12/21/02 

1161.95 1350 50.7 47.7 49.2 0.1776 12/21/02 
1161.95 1400 36.8 33.8 35.3 0.1725 12/21/02 
1161.95 1450 26.2 23.2 24.7 0.1682 1221/02 
1161.95 1500 17.5 16 16.75 0.1642 12/21/02 
1161.95 1550 11.8 10.3 11.05 0.1607 12/21/02 
1161.95 1600 7.5 6.5 7 0.1571 12/21/02 
1161.95 1650 4.9 4.2 4.55 0.1557 12/21/02 

1161.95 1700 3.2 2.5 2.85 0.1538 12/21/02 
1161.95 1800 1.15 0.7 0.925 0.1481 1221/02 
1161.95 1900 0.6 0.15 0.375 0.1487 12/21/02 

Maturity Yield Dis. Open 
(%) Div. Interest 

0.5753 3.3390 1.0046 3032 
0.5753 3.3390 1.0046 3853 
0.5753 3.3390 1.0046 1826 
0.5753 3.3390 1.0046 2874 
0.5753 3.3390 1.0046 459 

0.5753 3.3390 1.0046 8375 

0.5753 3.3390 1.0046 294 

0.5753 3.3390 1.0046 1951 
0.5753 3.3390 1.0046 84 
0.5753 3.3390 1.0046 869 
0.5753 3.3390 1.0046 921 
0.8438 3.3713 1.0054 286 
0.8438 3.3713 1.0054 1010 
0.8438 3.3713 1.0054 1 

1.3425 3.4859 1.0054 552 
1.3425 3.4859 1.0054 1 
1.3425 3.4859 1.0054 64 

1.3425 3.4859 1.0054 2622 
1.3425 3.4859 1.0054 5801 
1.3425 3.4859 1.0054 251 

1.3425 3.4859 1.0054 4534 

1.3425 3.4859 1.0054 4125 

1.3425 3.4859 1.0054 2016 

1.3425 3.4859 1.0054 4418 

1.3425 3.4859 1.0054 5431 
1.3425 3.4859 1.0054 4338 

1.3425 3.4859 1.0054 1577 

1.3425 3.4859 1.0054 6753 

1.3425 3.4859 1.0054 1070 

1.3425 3.4859 1.0054 4214 

1.3425 3.4859 1.0054 12361 

1.3425 3.4859 1.0054 6540 
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B. 4 September 21,2001 Call Options 

SX Bid Ask Mid BS Imp. Exp. Maturity Yield Dis. Open 
Vol. (%) Div. Interest 

965.8 800 179.2 175.2 177.2 0.6323 1020/01 0.0767 2.1200 0.8605 167 
965.8 900 91.6 87.6 89.6 0.4811 10/20/01 0.0767 2.1200 0.8605 177 
965.8 975 40.5 36.5 38.5 0.3980 10/20101 0.0767 2.1200 0.8605 75 
965.8 995 30.5 27 28.75 0.3832 10/20/01 0.0767 2.1200 0.8605 2448 
965.8 1010 24.4 20.4 22.4 0.3714 10/20/01 0.0767 2.1200 0.8605 4085 
965.8 1020 20 17 18.5 0.3617 10/20/01 0.0767 2.1200 0.8605 2322 
965.8 1025 18 15.3 16.65 0.3562 10/20/01 0.0767 2.1200 0.8605 4395 
965.8 1030 16.9 13.9 15.4 0.3563 10/20/01 0.0767 2.1200 0.8605 694 
965.8 1040 12.1 10.2 11.15 0.3324 1020/01 0.0767 2.1200 0.8605 761 
965.8 1050 10.5 9.1 9.8 0.3391 10/20/01 0.0767 2.1200 0.8605 15188 
965.8 1060 9.1 7.1 8.1 0.3382 10/20/01 0.0767 2.1200 0.8605 1174 
965.8 1070 7.7 5.7 6.7 0.3381 10/20/01 0.0767 2.1200 0.8605 566 
965.8 1075 5.9 5.1 5.5 0.3280 1020/01 0.0767 2.1200 0.8605 2050 
965.8 1080 6 4.6 5.3 0.3342 10/20/01 0.0767 2.1200 0.8605 1075 
965.8 1090 5 3.6 4.3 0.3337 10120/01 0.0767 2.1200 0.8605 453 
965.8 1100 3.8 2.8 3.3 0.3293 10/20/01 0.0767 2.1200 0.8605 8756 
965.8 1125 2.15 1.5 1.825 0.3272 10/20/01 0.0767 2.1200 0.8605 5810 
965.8 1150 1.45 0.8 1.125 0.3337 10/20/01 0.0767 2.1200 0.8605 8718 
965.8 1175 0.9 0.25 0.575 0.3309 10/20/01 0.0767 2.1200 0.8605 7376 
965.8 1200 1 0.3 0.65 0.3671 10/20/01 0.0767 2.1200 0.8605 7665 
965.8 850 141.3 137.3 139.3 0.4562 11/17/01 0.1534 2.1747 1.3828 17 
965.8 900 101.9 97.9 99.9 0.4152 11/17/01 0.1534 2.1747 1.3828 2 
965.8 950 67.5 63.5 65.5 0.3772 11/17/01 0.1534 2.1747 1.3828 11 
965.8 995 42.6 38.6 40.6 0.3479 11/17/01 0.1534 2.1747 1.3828 784 
965.8 1025 28.9 24.9 26.9 0.3252 11/17/01 0.1534 2.1747 1.3828 1539 
965.8 1050 20.4 17.4 18.9 0.3153 11/17/01 0.1534 2.1747 1.3828 648 
965.8 1075 14.3 11.3 12.8 0.3066 11/17/01 0.1534 2.1747 1.3828 1043 
965.8 1100 8.5 7.5 8 0.2951 11/17/01 0.1534 2.1747 1.3828 1165 
965.8 1125 6 5.1 5.55 0.2969 11/17/01 0.1534 2.1747 1.3828 2038 
965.8 1150 3.9 2.9 3.4 0.2912 11/17/01 0.1534 2.1747 1.3828 645 
965.8 1175 2.65 1.75 2.2 0.2913 11/17/01 0.1534 2.1747 1.3828 1313 
965.8 1200 2 1.1 1.55 0.2965 11/17/01 0.1534 2.1747 1.3828 3997 
965.8 1225 1.55 0.65 1.1 0.3019 11/17/01 0.1534 2.1747 1.3828 2729 
965.8 1250 1.25 0.35 0.8 0.3081 11/17/01 0.1534 2.1747 1.3828 5140 
965.8 1275 1.05 0.15 0.6 0.3151 11/17/01 0.1534 2.1747 1.3828 99 
965.8 1300 1.2 0.3 0.75 0.3441 11/17/01 0.1534 2.1747 1.3828 1466 
965.8 1325 1.05 0.15 0.6 0.3520 11/17/01 0.1534 2.1747 1.3828 174 
965.8 800 190.6 186.6 188.6 0.4384 12/22/01 0.2493 2.2495 1.6462 1784 
965.8 900 111.2 107.2 109.2 0.3743 12/22/01 0.2493 2.2495 1.6462 2155 
965.8 950 77.9 73.9 75.9 0.3461 12/22/01 0.2493 2.2495 1.6462 9 
965.8 975 63.6 59.6 61.6 0.3340 12/22/01 0.2493 2.2495 1.6462 3 
965.8 1025 38.5 34.5 36.5 0.3045 12/22/01 0.2493 2.2495 1.6462 5877 
965.8 1050 29 25.3 27.15 0.2937 12/22/01 0.2493 2.2495 1.6462 7097 
965.8 1060 26.2 22.2 24.2 0.2914 12/22/01 0.2493 2.2495 1.6462 455 
965.8 1075 21.6 18.6 20.1 0.2873 12/22/01 0.2493 2.2495 1.6462 3926 
965.8 1100 15.8 12.8 14.3 0.2798 12/22/01 0.2493 2.2495 1.6462 4371 
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SX Bid Ask Mid BS Imp. Exp. 
Vol. 

965.8 1150 8 6.7 7.35 0.2746 12/22/01 
965.8 1175 5.5 4.1 4.8 0.2680 12/22/01 
965.8 1200 3.6 2.6 3.1 0.2632 12/22/01 
965.8 1225 2.6 1.7 2.15 0.2636 12/22/01 
965.8 1250 1.95 13 1.625 0.2682 12/22/01 

965.8 1275 1.6 0.7 1.15 0.2698 12/22/01 
965.8 1300 1.5 0.6 1.05 0.2816 1222101 
965.8 1325 1.25 0.35 0.8 0.2855 1222/01 
965.8 1350 1.05 0.15 0.6 0.2886 1222101 
965.8 1400 0.9 0.25 0.575 0.3137 12/22/01 
965.8 900 125.7 121.7 123.7 0.3189 03/16/02 
965.8 950 94 90 92 0.3016 03/16/02 
965.8 995 69.4 65.4 67.4 0.2866 03/16/02 
965.8 1025 55.9 51.9 53.9 0.2794 03/16/02 
965.8 1050 45.8 41.8 43.8 0.2725 03/16/02 
965.8 1075 37.1 33.1 35.1 0.2663 03/16/02 
965.8 1100 28.7 24.7 26.7 0.2560 03/16/02 
965.8 1125 22.2 19.2 20.7 0.2511 03/16/02 
965.8 1150 17.4 14.4 15.9 0.2472 03/16/02 
965.8 1175 13.5 10.5 12 0.2433 03/16/02 
965.8 1200 10 890.2403 03/16/02 

965.8 1225 7.8 5.8 6.8 0.2388 03/16/02 
965.8 1250 5.9 4.5 5.2 0.2385 03/16/02 
965.8 1275 4.4 3 3.7 0.2351 03/16/02 
965.8 1280 3.9 2.9 3.4 0.2338 03/16/02 
965.8 1300 3.3 2.3 2.8 0.2353 03/16/02 
965.8 1325 2.55 1.65 2.1 0.2353 03/16/02 
965.8 1350 2.05 1.15 1.6 0.2361 03/16/02 
965.8 1375 1.7 0.8 1.25 0.2379 03/16102 
965.8 1400 1.3 0.65 0.975 0.2395 03/16/02 
965.8 1425 1.1 0.2 0.65 0.2363 03/16/02 
965.8 1450 0.95 0.05 0.5 0.2376 03/16/02 
965.8 1500 0.9 0.25 0.575 0.2592 03/16/02 
965.8 850 174.1 170.1 172.1 0.3031 06/22/02 
965.8 950 109.5 105.5 107.5 0.2792 06/22/02 
965.8 995 85.2 81.2 83.2 0.2682 06/22/02 
965.8 1050 60.6 56.6 58.6 0.2567 06/22/02 

965.8 1100 42.3 38.3 40.3 0.2453 06/22/02 
965.8 1125 35.3 31.3 33.3 0.2417 06/22/02 
965.8 1150 28.8 24.8 26.8 0.2366 0622102 
965.8 1175 23 20 21.5 0.2326 06/22/02 
965.8 1250 11.6 9.6 10.6 0.2235 0622102 
965.8 1300 7.6 5.6 6.6 0.2208 06/22/02 
965.8 1325 5.8 4.4 5.1 0.2190 0622/02 
965.8 1350 4.7 3.3 4 0.2183 0622/02 
965.8 1400 2.85 1.95 2.4 0.2166 06/22/02 
965.8 1425 2.3 1.4 1.85 0.2160 06/22/02 
965.8 1450 1.9 1 1.45 0.2160 06/22/02 
965.8 1500 1.25 0.35 0.8 0.2133 06/22/02 
965.8 1525 1.05 0.15 0.6 0.2125 06/22/02 
965.8 900 165.1 159.1 162.1 0.2692 12/21/02 
965.8 950 135.1 129.1 132.1 0.2595 12/21/02 

Maturity Yield Dis. Open 
(%) Div. Interest 

0.2493 2.2495 1.6462 8558 
0.2493 2.2495 1.6462 4721 
0.2493 2.2495 1.6462 15940 
0.2493 2.2495 1.6462 7937 
0.2493 2.2495 1.6462 19339 
0.2493 2.2495 1.6462 6948 
0.2493 2.2495 1.6462 21389 
0.2493 2.2495 1.6462 10051 
0.2493 2.2495 1.6462 8999 
0.2493 2.2495 1.6462 15367 
0.4795 2.3326 1.8399 31 
0.4795 2.3326 1.8399 54 
0.4795 2.3326 1.8399 289 
0.4795 2.3326 1.8399 509 
0.4795 2.3326 1.8399 2300 
0.4795 2.3326 1.8399 71 
0.4795 2.3326 1.8399 1225 
0.4795 2.3326 1.8399 1191 
0.4795 2.3326 1.8399 1352 
0.4795 2.3326 1.8399 1291 
0.4795 2.3326 1.8399 6416 

0.4795 2.3326 1.8399 1598 

0.4795 2.3326 1.8399 4369 
0.4795 2.3326 1.8399 3082 
0.4795 2.3326 1.8399 2 
0.4795 2.3326 1.8399 4352 
0.4795 2.3326 1.8399 2003 
0.4795 2.3326 1.8399 3928 
0.4795 2.3326 1.8399 800 
0.4795 2.3326 1.8399 9296 

0.4795 2.3326 1.8399 294 
0.4795 2.3326 1.8399 2006 

0.4795 2.3326 1.8399 1162 
0.7479 2.4342 1.8602 116 

0.7479 2.4342 1.8602 6 

0.7479 2.4342 1.8602 451 

0.7479 2.4342 1.8602 1471 

0.7479 2.4342 1.8602 1796 

0.7479 2.4342 1.8602 105 

0.7479 2.4342 1.8602 4348 

0.7479 2.4342 1.8602 160 

0.7479 2.4342 1.8602 6911 

0.7479 2.4342 1.8602 6893 

0.7479 2.4342 1.8602 1016 

0.7479 2.4342 1.8602 5425 

0.7479 2.4342 1.8602 14585 

0.7479 2.4342 1.8602 325 

0.7479 2.4342 1.8602 9377 
0.7479 2.4342 1.8602 8297 

0.7479 2.4342 1.8602 310 
1.2466 2.6133 1.8624 568 
1.2466 2.6133 1.8624 1 

277 



Appendices 

SX Bid Ask Mid BS Imp. Exp. Maturity Yield Dis. Open 
Vol. (%) Div. Interest 

965.8 995 1113 105.3 108.3 0.2522 1221/02 1.2466 2.6133 1.8624 254 
965.8 1050 87.1 81.1 84.1 0.2464 1221/02 1.2466 2.6133 1.8624 1877 

965.8 1100 67.4 61.4 64.4 0.2386 12/21/02 1.2466 2.6133 1.8624 2217 
965.8 1150 50.5 44.5 47.5 0.2297 12/21/02 1.2466 2.6133 1.8624 2886 

965.8 1200 36.9 30.9 33.9 0.2214 12/21/02 1.2466 2.6133 1.8624 5798 

965.8 1225 31.7 25.7 28.7 0.2187 12/21/02 1.2466 2.6133 1.8624 253 

965.8 1250 26.8 20.8 23.8 0.2151 12/21/02 1.2466 2.6133 1.8624 4593 

965.8 1300 18.5 15.5 17 0.2123 1221/02 1.2466 2.6133 1.8624 4077 

965.8 1350 13.7 10.7 12.2 0.2110 12/21/02 1.2466 2.6133 1.8624 2007 

965.8 1400 9.1 7.1 8.1 0.2066 12/21/02 1.2466 2.6133 1.8624 4870 
965.8 1450 6 4.6 5.3 0.2029 1221/02 1.2466 2.6133 1.8624 5516 
965.8 1500 4.4 3 3.7 0.2027 12/21/02 1.2466 2.6133 1.8624 4738 
965.8 1550 3.7 2.55 3.125 0.2092 1221/02 1.2466 2.6133 1.8624 1577 
965.8 1600 2.6 1.7 2.15 0.2083 12/21/02 1.2466 2.6133 1.8624 6531 

965.8 1650 2.7 1.8 2.25 0.2207 1221/02 1.2466 2.6133 1.8624 1070 
965.8 1700 2.3 1.4 1.85 0.2247 1221/02 1.2466 2.6133 1.8624 4214 
965.8 1800 1.4 0.5 0.95 0.2237 12/21/02 1.2466 2.6133 1.8624 12361 
965.8 1900 1 0.2 0.6 0.2282 1221/02 1.2466 2.6133 1.8624 6545 
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B. 5 October 19,2001 Call Options 

SX Bid Ask Mid BS Imp. Exp. Maturity Yield Dis. Open 
Vol. (%) Div. Interest 

1073.5 900 176.8 174.8 175.8 0.3676 11/17/01 0.0767 2.2900 0.9318 18 
1073.5 950 130.3 128.3 129.3 0.3564 11/17/01 0.0767 2.2900 0.9318 1846 
1073.5 1025 66.7 64.7 65.7 0.3087 11/17/01 0.0767 2.2900 0.9318 3616 
1073.5 1050 48.7 46.7 47.7 0.2913 11/17/01 0.0767 2.2900 0.9318 8617 
1073.5 1075 33.5 31.5 32.5 0.2764 11/17/01 0.0767 2.2900 0.9318 10462 
1073.5 1100 20.7 19.2 19.95 0.2590 11/17/01 0.0767 2.2900 0.9318 16096 
1073.5 1125 12.1 10.6 11.35 0.2481 11/17/01 0.0767 2.2900 0.9318 10061 
1073.5 1150 6.5 5.5 6 0.2415 11/17/01 0.0767 2.2900 0.9318 10757 
1073.5 1175 3.2 2.5 2.85 0.2354 11/17/01 0.0767 2.2900 0.9318 5605 
1073.5 1200 1.3 1.2 1.25 0.2314 11/17/01 0.0767 2.2900 0.9318 9984 
1073.5 1225 0.7 0.4 0.55 0.2315 11/17/01 0.0767 2.2900 0.9318 5318 
1073.5 800 277.4 275.4 276.4 0.3604 1222/01 0.1726 2.2364 1.4118 2902 
1073.5 900 184 182 183 0.3492 1222/01 0.1726 2.2364 1.4118 3092 
1073.5 950 140.1 138.1 139.1 0.3277 1222/01 0.1726 2.2364 1.4118 1361 
1073.5 995 103.7 101.7 102.7 0.3082 1222/01 0.1726 2.2364 1.4118 9588 
1073.5 1025 81 79 80 0.2910 12/22/01 0.1726 2.2364 1.4118 10857 
1073.5 1050 64.1 62.1 63.1 0.2790 12/22/01 0.1726 2.2364 1.4118 16233 
1073.5 1060 57.8 55.8 56.8 0.2740 1222/01 0.1726 2.2364 1.4118 6559 
1073.5 1100 36.2 34.2 35.2 0.2566 1222/01 0.1726 2.2364 1.4118 23692 
1073.5 1150 17.4 15.9 16.65 0.2394 1222/01 0.1726 2.2364 1.4118 17883 
1073.5 1175 11.6 10.1 10.85 0.2338 12/22/01 0.1726 2.2364 1.4118 6475 
1073.5 1300 1.1 0.65 0.875 0.2248 1222/01 0.1726 2.2364 1.4118 21540 
1073.5 1325 0.75 0.3 0.525 0.2263 1222/01 0.1726 2.2364 1.4118 9694 
1073.5 900 195 193 194 0.2859 03/16/02 0.4027 2.1778 1.8128 51 
1073.5 950 154.4 152.4 153.4 0.2755 03/16/02 0.4027 2.1778 1.8128 1079 
1073.5 995 120.5 118.5 119.5 0.2635 03/16/02 0.4027 2.1778 1.8128 1774 
1073.5 1025 100.2 98.2 99.2 0.2569 03/16/02 0.4027 2.1778 1.8128 1639 
1073.5 1050 84.3 82.3 833 0.2499 03/16/02 0.4027 2.1778 1.8128 7888 
1073.5 1075 69.9 67.9 68.9 0.2434 03/16/02 0.4027 2.1778 1.8128 1879 
1073.5 1100 56.4 54.4 55.4 0.2352 03/16/02 0.4027 2.1778 1.8128 12447 
1073.5 1125 45.1 43.1 44.1 0.2296 03/16/02 0.4027 2.1778 1.8128 2128 

1073.5 1150 35.2 33.2 34.2 0.2235 03/16/02 0.4027 2.1778 1.8128 5713 
1073.5 1175 27.1 25.1 26.1 0.2186 03/16/02 0.4027 2.1778 1.8128 2059 
1073.5 1200 20 18.5 19.25 0.2130 03/16/02 0.4027 2.1778 1.8128 12048 
1073.5 1225 14.7 13.2 13.95 0.2085 03/16/02 0.4027 2.1778 1.8128 2792 
1073.5 1250 10.3 9.3 9.8 0.2040 03/16/02 0.4027 2.1778 1.8128 5990 
1073.5 1275 7.3 6.3 6.8 0.2006 03/16/02 0.4027 2.1778 1.8128 3026 
1073.5 1280 766.5 0.2016 03/16/02 0.4027 2.1778 1.8128 3 
1073.5 1300 5 4.3 4.65 0.1980 03/16102 0.4027 2.1778 1.8128 5090 
1073.5 1325 3.5 2.8 3.15 0.1961 03/16/02 0.4027 2.1778 1.8128 2003 
1073.5 1350 2.3 2 2.15 0.1952 03/16/02 0.4027 2.1778 1.8128 4697 
1073.5 1375 1.65 1.2 1.425 0.1940 03/16102 0.4027 2.1778 1.8128 805 
1073.5 1400 1.1 0.65 0.875 0.1912 03/16/02 0.4027 2.1778 1.8128 8865 
1073.5 1425 0.8 0.35 0.575 0.1909 03/16/02 0.4027 2.1778 1.8128 269 
1073.5 1450 0.65 0.2 0.425 0.1936 03/16/02 0.4027 2.1778 1.8128 2006 
1073.5 850 248.1 246.1 247.1 0.2635 06/22/02 0.6712 2.2282 1.8690 121 
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SX Bid Ask Mid BS Imp. Exp. Maturity Yield Dis. Open 
Vol. (%) Div. Interest 

1073.5 950 168.7 166.7 167.7 0.2529 06/22/02 0.6712 2.2282 1.8690 24 
1073.5 995 136.8 134.8 135.8 0.2455 0622/02 0.6712 2.2282 1.8690 2849 
1073.5 1050 101.4 99.4 100.4 0.2341 0622/02 0.6712 2.2282 1.8690 3390 
1073.5 1100 74.1 72.1 73.1 0.2245 06/22/02 0.6712 2.2282 1.8690 1767 
1073.5 1125 62.5 60.5 61.5 0.2206 0622/02 0.6712 2.2282 1.8690 560 

1073.5 1150 51.8 49.8 50.8 0.2158 06/22/02 0.6712 2.2282 1.8690 5458 

1073.5 1200 34.7 32.7 33.7 0.2084 06/22/02 0.6712 2.2282 1.8690 6395 
1073.5 1250 22.1 20.1 21.1 0.2014 06/22/02 0.6712 2.2282 1.8690 8208 
1073.5 1300 13.6 12.1 12.85 0.1970 0622/02 0.6712 2.2282 1.8690 7132 
1073.5 1325 10.3 9.3 9.8 0.1947 0622/02 0.6712 2.2282 1.8690 1118 
1073.5 1350 7.8 6.8 7.3 0.1921 06/22/02 0.6712 2.2282 1.8690 5471 
1073.5 1400 4 3.3 3.65 0.1849 0622/02 0.6712 2.2282 1.8690 12348 
1073.5 1425 2.95 2.25 2.6 0.1829 0622/02 0.6712 2.2282 1.8690 329 
1073.5 1450 2.15 1.7 1.925 0.1826 0622/02 0.6712 2.2282 1.8690 8702 
1073.5 1500 1.2 0.75 0.975 0.1805 0622/02 0.6712 2.2282 1.8690 8287 
1073.5 1525 0.9 0.45 0.675 0.1793 0622/02 0.6712 2.2282 1.8690 320 
1073.5 1550 0.7 0.25 0.475 0.1786 06/22/02 0.6712 2.2282 1.8690 3458 
1073.5 1600 0.65 0.2 0.425 0.1898 0622/02 0.6712 2.2282 1.8690 6212 
1073.5 900 228.6 224.6 226.6 0.2362 12/21/02 1.1699 2.4130 1.8768 568 
1073.5 950 193.1 189.1 191.1 0.2337 12/21/02 1.1699 2.4130 1.8768 152 
1073.5 995 163.4 159.4 161.4 0.2299 1221/02 1.1699 2.4130 1.8768 2801 

1073.5 1050 129.9 125.9 127.9 0.2231 1221/02 1.1699 2.4130 1.8768 2677 
1073.5 1100 103.3 99.3 101.3 0.2173 1221/02 1.1699 2.4130 1.8768 4743 
1073.5 1150 80.4 76.4 78.4 0.2119 1221/02 1.1699 2.4130 1.8768 2692 
1073.5 1200 60.9 56.9 58.9 0.2061 12/21/02 1.1699 2.4130 1.8768 7779 
1073.5 1225 52.4 48.4 50.4 0.2030 12/21/02 1.1699 2.4130 1.8768 253 
1073.5 1250 45.1 41.1 43.1 0.2008 12/21/02 1.1699 2.4130 1.8768 4646 
1073.5 1300 32.4 28.4 30.4 0.1951 12/21/02 1.1699 2.4130 1.8768 4476 
1073.5 1350 " 21.8 19.8 20.8 0.1901 1221/02 1.1699 2.4130 1.8768 2210 
1073.5 1400 15 13 14 0.1863 1221/02 1.1699 2.4130 1.8768 6233 
1073.5 1450 9.5 8.5 9 0.1821 1221/02 1.1699 2.4130 1.8768 5648 
1073.5 1475 7.6 6.6 7.1 0.1800 12/21/02 1.1699 2.4130 1.8768 15 
1073.5 1500 6.1 5.1 5.6 0.1782 1221/02 1.1699 2.4130 1.8768 4782 
1073.5 1550 3.7 2.9 3.3 0.1740 12/21/02 1.1699 2.4130 1.8768 1677 
1073.5 1600 2.3 1.8 2.05 0.1725 12/21/02 1.1699 2.4130 1.8768 6443 
1073.5 1650 1.55 1.05 1.3 0.1721 12/21/02 1.1699 2.4130 1.8768 1070 

1073.5 1700 1 0.5 0.75 0.1700 1221/02 1.1699 2.4130 1.8768 3574 

280 



Appendices 

B. 6 November 16,2001 Call Options 

SX Bid Ask Mid BS Imp. Exp. Maturity Yield Dis. Open 
Vol. (%) Div. Interest 

1138.65 700 440.8 438.8 439.8 0.6922 11/16/01 0.0959 2.0147 0.9460 189 
1138.65 800 341.5 339.5 340.5 0.5605 11/16/01 0.0959 2.0147 0.9460 2832 
1138.65 850 291.9 289.9 290.9 0.4930 11/16/01 0.0959 2.0147 0.9460 1 
1138.65 900 242.6 240.6 241.6 0.4346 11/16/01 0.0959 2.0147 0.9460 3093 
1138.65 910 232.8 230.8 231.8 0.4240 11/16/01 0.0959 2.0147 0.9460 9 
1138.65 950 193.7 191.7 192.7 0.3791 11/16/01 0.0959 2.0147 0.9460 1388 
1138.65 960 184.1 182.1 183.1 0.3709 11/16/01 0.0959 2.0147 0.9460 1068 
1138.65 970 172.5 172.4 172.45 0.3369 11/16/01 0.0959 2.0147 0.9460 2906 
1138.65 980 164.8 162.8 163.8 0.3493 11/16/01 0.0959 2.0147 0.9460 156 
1138.65 990 155.2 153.2 154.2 0.3384 11/16/01 0.0959 2.0147 0.9460 1123 
1138.65 995 150.5 148.5 149.5 0.3345 11/16/01 0.0959 2.0147 0.9460 10175 
1138.65 1010 136.3 134.3 135.3 0.3192 11/16/01 0.0959 2.0147 0.9460 7596 
1138.65 1025 122.4 120.4 121.4 0.3059 11/16/01 0.0959 2.0147 0.9460 12530 
1138.65 1050 99.8 97.8 98.8 0.2842 11/16/01 0.0959 2.0147 0.9460 18344 
1138.65 1060 91 89 90 0.2754 11/16/01 0.0959 2.0147 0.9460 10750 
1138.65 1070 82.3 80.3 81.3 0.2660 11/16/01 0.0959 2.0147 0.9460 6 
1138.65 1080 74.2 72.2 73.2 0.2602 11/16/01 0.0959 2.0147 0.9460 2963 
1138.65 1090 65.9 63.9 64.9 0.2504 11/16/01 0.0959 2.0147 0.9460 6423 
1138.65 1095 62 60 61 0.2468 11/16/01 0.0959 2.0147 0.9460 1338 
1138.65 1100 58.1 56.1 57.1 0.2426 11/16/01 0.0959 2.0147 0.9460 29062 
1138.65 1110 50.7 48.7 49.7 0.2353 11/16/01 0.0959 2.0147 0.9460 512 
1138.65 1115 47.6 45.6 46.6 0.2352 11/16/01 0.0959 2.0147 0.9460 1952 
1138.65 1120 44.1 42.1 43.1 0.2312 11/16/01 0.0959 2.0147 0.9460 3347 
1138.65 1140 31 29 30 0.2137 11/16/01 0.0959 2.0147 0.9460 6608 
1138.65 1150 25.2 23.9 24.55 0.2077 11/16/01 0.0959 2.0147 0.9460 31822 
1138.65 1160 21 19.5 20.25 0.2059 11/16/01 0.0959 2.0147 0.9460 1653 
1138.65 1175 14.8 13.3 14.05 0.1974 11/16/01 0.0959 2.0147 0.9460 9606 
1138.65 1300 0.6 0.25 0.425 0.1980 11/16/01 0.0959 2.0147 0.9460 21895 
1138.65 900 244.8 242.8 243.8 0.3566 11/16/01 0.1726 1.9825 1.3711 2 
1138.65 950 197.3 195.3 196.3 0.3272 11/16/01 0.1726 1.9825 1.3711 122 

1138.65 1050 107.4 105.4 106.4 0.2647 11/16/01 0.1726 1.9825 1.3711 1085 

1138.65 1075 87.4 85.4 86.4 0.2521 11/16/01 0.1726 1.9825 1.3711 3829 

1138.65 1100 68.9 66.9 67.9 0.2400 11/16/01 0.1726 1.9825 1.3711 7780 

1138.65 1125 52.2 50.2 51.2 0.2280 11/16/01 0.1726 1.9825 1.3711 9967 
1138.65 1150 37.4 35.4 36.4 0.2149 11/16/01 0.1726 1.9825 1.3711 7697 
1138.65 1175 25.7 23.7 24.7 0.2054 11/16/01 0.1726 1.9825 1.3711 1981 
1138.65 1200 16.3 14.8 15.55 0.1959 11/16/01 0.1726 1.9825 1.3711 3582 
1138.65 1225 9.8 8.8 9.3 0.1894 11/16/01 0.1726 1.9825 1.3711 1559 
1138.65 1250 5.6 4.9 5.25 0.1846 11/16/01 0.1726 1.9825 1.3711 5556 
1138.65 1300 1.65 1.2 1.425 0.1785 11/16/01 0.1726 1.9825 1.3711 26 
1138.65 1350 0.6 0.15 0.375 0.1789 11/16/01 0.1726 1.9825 1.3711 203 
1138.65 750 393.2 391.2 392.2 0.3154 11/16/01 0.3260 1.9835 1.8099 32 
1138.65 900 249.4 247.4 248.4 0.2936 11/16/01 0.3260 1.9835 1.8099 51 
1138.65 950 203.7 201.7 202.7 0.2779 11/16/01 0.3260 1.9835 1.8099 1078 
1138.65 975 1815 179.5 180.5 0.2690 11/16/01 0.3260 1.9835 1.8099 2 
1138.65 995 164.3 162.3 163.3 0.2627 11/16/01 0.3260 1.9835 1.8099 2113 
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SX Bid Ask Mid BS Imp. Exp. 
Vol. 

1138.65 1025 139.3 137.3 138.3 0.2524 11/16/01 
1138.65 1050 119.7 117.7 118.7 0.2451 11/16/01 
1138.65 1075 100.8 98.8 99.8 0.2359 11/16/01 
1138.65 1100 83.4 81.4 82.4 0.2278 11/16/01 
1138.65 1125 67.1 65.1 66.1 0.2184 11/16/01 

1138.65 1150 53.2 51.2 52.2 0.2120 11/16/01 

1138.65 1175 40.5 38.5 39.5 0.2037 11/16/01 

1138.65 1200 29.7 27.7 28.7 0.1953 11/16/01 
1138.65 1225 21.2 19.7 20.45 0.1897 11/16/01 
1138.65 1250 14.9 13.4 14.15 0.1852 11/16/01 
1138.65 1275 10.3 9.3 9.8 0.1833 11/16/01 
1138.65 1280 9.3 8.3 8.8 0.1811 11/16/01 
1138.65 1300 6.7 5.7 6.2 0.1784 11/16/01 
1138.65 1325 4.2 3.5 3.85 0.1750 11/16/01 
1138.65 1350 2.7 2 2.35 0.1727 11/16/01 
1138.65 1375 1.6 1.15 1.375 0.1704 11/16/01 
1138.65 1400 1.25 0.8 1.025 0.1755 11/16/01 
1138.65 1425 0.9 0.45 0.675 0.1770 11/16/01 
1138.65 1450 0.65 0.2 0.425 0.1776 11/16/01 
1138.65 850 303.6 301.6 302.6 0.2564 11/16/01 
1138.65 950 215.1 213.1 214.1 0.2437 11/16/01 

1138.65 995 178 176 177 0.2350 11/16/01 
1138.65 1050 136.3 134.3 135.3 0.2248 11/16/01 
1138.65 1075 118.7 116.7 117.7 0.2196 11/16/01 
1138.65 1100 102.4 100.4 101.4 0.2150 11/16/01 
1138.65 1125 86.9 84.9 85.9 0.2092 11/16/01 
1138.65 1150 73.2 71.2 72.2 0.2051 11/16/01 
1138.65 1200 48.8 46.8 47.8 0.1942 11/16/01 
1138.65 1250 30.7 28.7 29.7 0.1856 11/16/01 
1138.65 1300 18.4 16.9 17.65 0.1803 11/16/01 
1138.65 1325 14 12.5 13.25 0.1778 11/16/01 
1138.65 1350 10 9 9.5 0.1740 11/16/01 
1138.65 1400 5.1 4.4 4.75 0.1689 11/16/01 
1138.65 1425 3.7 3 3.35 0.1676 11/16/01 
1138.65 1450 2.75 2.05 2.4 0.1672 11/16/01 
1138.65 1500 1.35 0.9 1.125 0.1651 11/16/01 
1138.65 1525 1.1 0.65 0.875 0.1675 11/16101 

1138.65 1550 0.8 0.35 0.575 0.1662 11/16/01 
1138.65 1600 0.6 0.15 0.375 0.1722 11/16/01 
1138.65 800 362.5 359.5 361 0.2031 11/16/01 
1138.65 900 276.8 273.8 275.3 0.2195 11/16/01 
1138.65 950 237.4 234.4 235.9 0.2206 11/16/01 
1138.65 995 203.5 200.5 202 0.2176 11/16/01 
1138.65 1050 164.7 161.7 163.2 0.2118 11/16101 
1138.65 1100 132.5 129.5 131 0.2054 11/16101 
1138.65 1150 104.9 101.9 103.4 0.2011 11/16/01 
1138.65 1200 80.4 77.4 78.9 0.1953 11/16/01 
1138.65 1225 69.5 66.5 68 0.1922 11/16/01 
1138.65 1250 59.6 56.6 58.1 0.1892 11/16/01 
1138.65 1300 42.4 39.4 40.9 0.1824 11/16/01 
1138.65 1350 29.6 26.6 28.1 0.1774 11/16/01 
1138.65 1400 18.9 17.4 18.15 0.1715 11/16/01 

Maturity Yield Dis. Open 
(%) Div. Interest 

0.3260 1.9835 1.8099 1818 
0.3260 1.9835 1.8099 8661 
0.3260 1.9835 1.8099 3924 
0.3260 1.9835 1.8099 13324 
0.3260 1.9835 1.8099 7102 

0.3260 1.9835 1.8099 8548 

0.3260 1.9835 1.8099 3118 

0.3260 1.9835 1.8099 16011 
0.3260 1.9835 1.8099 3922 
0.3260 1.9835 1.8099 11200 
0.3260 1.9835 1.8099 3051 
0.3260 1.9835 1.8099 602 
0.3260 1.9835 1.8099 6105 
0.3260 1.9835 1.8099 2241 
0.3260 1.9835 1.8099 4966 
0.3260 1.9835 1.8099 789 
0.3260 1.9835 1.8099 8718 
0.3260 1.9835 1.8099 269 
0.3260 1.9835 1.8099 1986 
0.5945 2.1262 1.9409 121 
0.5945 2.1262 1.9409 28 

0.5945 2.1262 1.9409 2670 

0.5945 2.1262 1.9409 3398 

0.5945 2.1262 1.9409 1226 
0.5945 2.1262 1.9409 5919 
0.5945 2.1262 1.9409 3837 
0.5945 2.1262 1.9409 5729 
0.5945 2.1262 1.9409 8264 
0.5945 2.1262 1.9409 6669 
0.5945 2.1262 1.9409 7224 

0.5945 2.1262 1.9409 1669 
0.5945 2.1262 1.9409 5481 

0.5945 2.1262 1.9409 12147 
0.5945 2.1262 1.9409 329 

0.5945 2.1262 1.9409 8703 

0.5945 2.1262 1.9409 8537 

0.5945 2.1262 1.9409 320 

0.5945 2.1262 1.9409 3465 

0.5945 2.1262 1.9409 6212 

1.0932 2.4733 1.9580 1 

1.0932 2.4733 1.9580 568 

1.0932 2.4733 1.9580 1700 

1.0932 2.4733 1.9580 4077 

1.0932 2.4733 1.9580 3602 

1.0932 2.4733 1.9580 7891 

1.0932 2.4733 1.9580 3436 

1.0932 2.4733 1.9580 10029 

1.0932 2.4733 1.9580 311 

1.0932 2.4733 1.9580 6659 

1.0932 2.4733 1.9580 5822 

1.0932 2.4733 1.9580 2160 

1.0932 2.4733 1.9580 6950 
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SX Bid Ask Mid BS Imp. Exp. Maturity Yield Dis. Open 
Vol. (%) Div. Interest 

1138.65 1450 12.2 10.7 11.45 0.1672 11/16/01 1.0932 2.4733 1.9580 5670 
1138.65 1475 9.5 8.5 9 0.1654 11/16/01 1.0932 2.4733 1.9580 14 
1138.65 1500 7.9 6.9 7.4 0.1658 11/16/01 1.0932 2.4733 1.9580 4788 
1138.65 1550 4.7 4 4.35 0.1622 11/16/01 1.0932 2.4733 1.9580 1591 
1138.65 1600 2.8 2.1 2.45 0.1588 11/16/01 1.0932 2.4733 1.9580 6376 

1138.65 1650 1.6 1.15 1.375 0.1566 11/16/01 1.0932 2.4733 1.9580 1070 

1138.65 1700 1 0.55 0.775 0.1552 11/16/01 1.0932 2.4733 1.9580 3568 
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B. 7 Theoretical Delivery Price for Demeterfi et al. Variance Swap Model 

The delivery price is given by: 

K= 
2 {rT- s° 

e'T -i')- logs" +e'rýs` 
1 

P(K)dK+e'r 
1 

C(K)dK "°' T S, so o KZ S'Kz 

The appropriate option portfolio weights for a finite set of call and put strikes, K,, c and K,, p 
are given by: 

Sr-S' 
g (Sr )'2T 

S' - log S, 
S' 

g(Kr. j. c)-g(Kr. c) r-i 
w'(Kr c)=, -ý w(Kt, c ) for calls hr+ý. c - Kr. c J-0 

%s{K,. p)= 
S(Kv+,. r) S(Kt. r) _Iw(Kjp) for puts u Kr. 

P - Kr+i. p 1=0 
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C. 1 Characteristic Functions For SV Model 

fisV = exp 

- 
ä2 

21 1- -K,. +(1+ )pQv](1-e-Cs) 

7v 

-z [ý"Y -Kv +(1+iO)pQv]z+iOra+io In [S(t)] 
v 

+ 
iO(iO +1)(1-e-s°s)V(t) 

2ýý -[ýv -K, +(1+io)Pc, I (1-e's. =) 

Q2 
21 1- xy +iýpQ, ](1-e'sýf) 

ý 
ýý 

f S`' =exp - 
e? 

[ý"Y -x'y +iopu� ]z+iorz+io ln[S(t)] 
Qý 

iO(iO -1)(1- e's. f )y(t) 
+2ýv 

-[ý, ' -xy +iOPQ, ](1-e-C"j) 

-(1+i¢)Pav ]2 -iý(io +1)vv I` 

7* = {[Kr -irPQrJ2 -iýqo-1)ory 
ý2 
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C. 2 Characteristic Functions For SVJ Model 

v 

+(1+ý)PQý](1-e'ýs) J_J2'n(' ýz 
- 

Y 

fisv" = expý 

I 

2 ar 

-2 [ý', -Ký, +(1+io)pQv]t+iorz+io ln[S(t)] 
v 

iO(iO +1)(1-e-ý, s)V(t) 
+ 

2; 
y -[ýy -x, +(1+iO)PQv](1-e's. t) 

+ý, (1+ýt, )z[(1+ýC, )'4e('4'zx1+ra)a; -1]-Aioju, Z 

21n1 1- 
[C, -xy +iOpQ,, ](1-e-f't) 

\1 
2ýv 

e" 

+i opQ',, ]z +i orz +io ln[S (t)] 
fsvi = exp 

- 
Q2 2y 

iO(iO -1)(1- e-rr )V (t) 
+ 

2ýý -[ýy -Kv +iopav](1-e-C: f ) 

+As[(1+, uý )i4e(iq, 2>(iq-1)aý 
-1] -Ai, u, z 

ýr 
- 

tKr 
-(1+io)Porr]2 -14y¢+1)Q2 

JY2 

ýý _ 
{[x,, 

-i¢pa,, ]= -i¢(i¢-1)aý 1- 
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D. 1 MATLAB Optimisation Toolbox Settings 

Trust-Region Reflective Quasi-Newton Method 

Asset Range Factor 
, 
F=2 

Local Volatility Knots p<m 
Asset Knots 12 
Time Knots 6 
Lower Volatility Bound u=-1 
Upper Volatility Bound 1=1 
Function Tolerance 1x 10-3 
Asset Levels M=200 
Time Levels N=50 
PCG Bandwidth 0 
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