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Abstract: We consider N = 1 supersymmetric U(N) field theories in four dimensions with adjoint

chiral matter and a multi-trace tree-level superpotential. We show that the computation of the

effective action as a function of the glueball superfield localizes to computing matrix integrals.

Unlike the single-trace case, holomorphy and symmetries do not forbid non-planar contributions.

Nevertheless, only a special subset of the planar diagrams contributes to the exact result. Some of

the data of this subset can be computed from the large-N limit of an associated multi-trace Matrix

model. However, the prescription differs in important respects from that of Dijkgraaf and Vafa

for single-trace superpotentials in that the field theory effective action is not the derivative of a

multi-trace matrix model free energy. The basic subtlety involves the correct identification of the

field theory glueball as a variable in the Matrix model, as we show via an auxiliary construction

involving a single-trace matrix model with additional singlet fields which are integrated out to

compute the multi-trace results. Along the way we also describe a general technique for computing

the large-N limits of multi-trace Matrix models and raise the challenge of finding the field theories

whose effective actions they may compute. Since our models can be treated as N = 1 deformations

of pure N = 2 gauge theory, we show that the effective superpotential that we compute also follows

from the N = 2 Seiberg-Witten solution. Finally, we observe an interesting connection between

multi-trace local theories and non-local field theory.
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1. Introduction

Dijkgraaf and Vafa have recently made the remarkable proposal that the superpotential and other

holomorphic data of N = 1 supersymmetric gauge theories in four dimensions can be computed

from an auxiliary Matrix model [1, 2, 3]. While the original proposal arose from consideration
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of stringy dualities arising in context of geometrically engineered field theories, two recent papers

have suggested direct field theory proofs of the proposal [4, 5]. These works considered U(N)

gauge theories with an adjoint chiral matter multiplet Φ and a tree-level superpotential W (Φ) =
∑

k gk Tr(Φk). Using somewhat different techniques ([4] uses properties of superspace perturbation

theory while [5] relies on factorization of chiral correlation functions, symmetries, and the Konishi

anomaly) these papers conclude that:

1. The computation of the effective superpotential as a function of the glueball superfield reduces

to computing matrix integrals.

2. Because of holomorphy and symmetries (or properties of superspace perturbation theory),

only planar Feynman diagrams contribute.

3. These diagrams can be summed up by the large-N limit of an auxiliary Matrix model. The

field theory effective action is obtained as a derivative of the Matrix model free energy.

Various generalizations and extensions of these ideas (e.g., N = 1∗ theories [6, 7], fundamental

matter [8, 9], quantum moduli spaces [10], non-supersymmetric cases [11], other gauge groups

[12, 13, 14, 15], baryonic matter [16, 17], gravitational corrections [18, 19], and Seiberg Duality

[20, 21]) have been considered in the recent literature.

A stringent and simple test of the Dijkgraaf-Vafa proposal and of the proofs presented in [4, 5]

is to consider superpotentials containing multi-trace terms such as

W (Φ) = g2Tr(Φ2) + g4Tr(Φ4) + g̃2(Tr(Φ2))2. (1.1)

We will show that for such multi-trace theories:

1. The computation of the effective superpotential as a function of the glueball superfield still

reduces to computing matrix integrals.

2. Holomorphy and symmetries do not forbid non-planar contributions; nevertheless only a

certain subset of the planar diagrams contributes to the effective superpotential.

3. This subclass of planar graphs also contributes to the large-N limit of an associated multi-

trace Matrix model. However, because of differences in combinatorial factors, the field theory

effective superpotential cannot be obtained simply as a derivative of the multi-trace Matrix

model free energy as in [3].

4. Multi-trace theories can be linearized in traces by the addition of auxiliary singlet fields Ai.

The superpotentials for these theories as a function of both the Ai and the glueball can be

computed from an associated Matrix model. This shows that the basic subtlety involves the

correct identification of the field theory glueball as a variable in a related Matrix model.

The plan of this paper is as follows. In Sec. 2 we carefully analyze the methods of [4] and

generalize them so that they apply to an N = 1 U(N) gauge theory in four dimensions with a tree-

level superpotential of the form (1.1). Along the way we introduce some new techniques that deepen
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our understanding of the selection rules determining which perturbative field theory diagrams

contribute to the effective superpotential of an N = 1 field theory. Using this understanding we

demonstrate how the conclusions (1) and (2) above arise and show that contributing diagrams are

tree-like graphs in which single-trace diagrams are pasted together by double-trace vertices through

which no momentum flows. We illustrate our results by explicitly computing the superpotential to

the first few orders in perturbation theory. Finally, we observe an intriguing connection between

multi-trace local theories and non-local field theory.

Since the field content of pure N = 2 supersymmetric U(N) gauge theory in four dimensions

consists in N = 1 language of a vector multiplet Wα and an adjoint chiral multiplet Φ, the

superpotential (1.1) can be treated as a deformation of an N = 2 theory to an N = 1 theory.

Hence, we can use global symmetries, holomorphy, regularity conditions, and the Seiberg-Witten

solution of N = 2 gauge theory to compute the exact superpotential. We carry out this procedure in

Sec. 3, using the fact that the vacuum expectation value of the product of chiral operators 〈Tr(Φ2)2〉
factorizes as 〈Tr(Φ2)〉2. We show that the result exactly captures the subset of the planar diagrams

that contribute to the exact field theory superpotential. The assumption of factorization in the

Seiberg-Witten analysis is equivalent to the vanishing of a certain subset of planar diagrams in our

perturbative computations.

In Sec. 4 we demonstrate a general technique for solving U(M) matrix models (or general

complex matrix models) with multi-trace potentials. The essential observation, following Das,

Dhar, Sengupta, and Wadia [22], is that in the large-M limit, mean field methods can be used

to solve for the effect on a single matrix eigenvalue of the rest of the matrix. We explain the

general method and solve two examples in detail. The first example has a potential V (Φ) =

M(g2Tr(Φ2) + g4Tr(Φ4) + g̃2

M Tr(Φ2)2) for φ ∈ U(M). By expanding the exact large-M result in

powers of the couplings we demonstrate how this limit computes the data relevant for a certain

subset of the planar contributions to the effective action of the field theory with the tree-level

superpotential in (1.1). In the proposal of Dijkgraaf and Vafa [3] and the subsequent generalizations

(e.g., [6] to [21]), the field theory effective action was related simply to the free energies of auxiliary

matrix models and their derivatives. We demonstrate the absence of such a relation between multi-

trace field theories and multi-trace Matrix models. As a further illustration of the mean field

technique for computing large-M limits, we study a matrix model with a general quartic potential.

Multi-trace field theories can be linearized in traces by the introduction of new singlet fields

which can be integrated out to produce the multi-trace theory. In Sec. 5 we show how this procedure

is carried out and relate the resulting linearized superpotential to a Matrix model following the

techniques of [4]. In the Matrix model integrating out the singlets at the level of the free energy

reproduces the multi-trace results that do not agree with the field theory. However, integrating out

after computing the linearized field theory superpotential leads to agreement. This shows that the

basic subtlety here involves the correct identification of the field theory glueball as a variable in an

associated Matrix moedl.

It is worth mentioning several further reasons why multi-trace superpotentials are interesting.

First of all, the general deformation of a pure N = 2 field theory to an N = 1 theory with ad-
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joint matter involves multi-trace superpotentials, and therefore these deformations are important

to understand. What is more, multi-trace superpotentials cannot be geometrically engineered [23]

in the usual manner for a simple reason: in geometric engineering of gauge theories the tree-level

superpotential arises from a disc diagram for open strings on a D-brane and these, having only one

boundary, produce single-trace terms. In this context, even if multi-trace terms could be produced

by quantum corrections, their coefficients would be determined by the tree-level couplings and

would not be freely tunable. Hence comparison of the low-energy physics arising from multi-trace

superpotentials with the corresponding Matrix model calculations is a useful probe of the extent

to which the Dijkgraaf-Vafa proposal is tied to its geometric and D-brane origins. In addition to

these motivations, it is worth recalling that the double scaling limit of the U(N) matrix model

with a double-trace potential is related to a theory of two-dimensional gravity with a cosmological

constant. This matrix model also displays phase transitions between smooth, branched polymer

and intermediate phases [22]. It would be interesting to understand whether and how these phe-

nomena manifest themselves as effects in a four dimensional field theory. The results of our paper

suggest that these phase transitions and the physics of two-dimensional cosmological constants are

embedded within four-dimensional field theory. It would be interesting to explore this. Finally,

multi-trace deformations of field theories have recently made an appearance in the contexts of the

AdS/CFT correspondence and a proposed definition of string theories with a nonlocal worldsheet

theory [24].

2. Multi-Trace Superpotentials from Perturbation Theory

In this section we begin by reviewing the field theoretic proof that when treated as a function

of the glueball superfield, the effective superpotential of an N = 1 supersymmetric gauge theory

with single-trace tree-level interactions is computed by planar matrix diagrams [4, 5]. We will

then describe how these arguments are modified by the presence of multi-trace terms in the tree-

level action. Finally, we will explicitly illustrate our reasoning by perturbatively computing the

diagrams that contribute to the effective superpotential of a multi-trace theory up to third order

in the couplings. We will always work around a vacuum with unbroken U(N) symmetry.

2.1 A Schematic Review of the Field Theory Superpotential Computation

Below we give a schematic description of the methods of [4] for the computation of the effective

superpotential of an N = 1 field theory. While [4] discussed theories with single-trace Lagrangians,

we will find that most of their arguments will generalize easily to multi-trace theories.

1. The Action: The matter action for an N = 1 U(N) gauge theory with a vector multiplet V ,

a massive chiral superfield Φ, and superpotential W (Φ), is given in superspace by

S(Φ, Φ̄) =

∫
d4x d4θ Φ̄eV Φ +

∫
d4x d2θ W (Φ) + h.c. (2.1)
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2. The Goal: We seek to compute the effective superpotential as a function of the glueball

superfield

S =
1

32π2
Tr(WαWα), (2.2)

where

Wα = iD
2
e−V DαeV (2.3)

is the gauge field strength of V , with Dα = ∂/∂θα and Dα̇ = ∂/∂θ̄α̇ + iθα∂αα̇ the superspace

covariant derivatives, and D2 = 1
2DαDα and D

2
= 1

2D
α̇
Dα̇. The gluino condensate S is a

commuting field constructed out of a pair of fermionic operators Wα.

3. The Power of Holomorphy: We are interested in expressing the effective superpotential in

terms of the chiral glueball superfield S. Holomorphy tells us that it will be independent

of the parameters of the anti-holomorphic part of the tree-level superpotential. Therefore,

without loss of generality, we can choose a particularly simple form for W (Φ̄):

W (Φ̄) =
1

2
mΦ̄2. (2.4)

Integrating out the anti-holomorphic fields and performing standard superspace manipula-

tions as discussed in Sec. 2 of [4], gives

S =

∫
d4xd2θ

(
− 1

2m
Φ (� − iWαDα)Φ + Wtree(Φ)

)
(2.5)

as the part of the action that is relevant for computing the effective potential as a function

of S. Here, � = 1
2∂αα̇∂αα̇ is the d’Alembertian, and Wtree is the tree-level superpotential,

expanded as 1
2mΦ2 + interactions. (The reader may consult Sec. 2 of [4] for a discussion of

various subtleties such as why the � can be taken as the ordinary d’Alembertian as opposed

to a gauge covariantized �cov).

4. The Propagator: After reduction into the form (2.5), the quadratic part gives the propaga-

tor. We write the covariant derivative in terms of Grassmann momentum variables

Dα = ∂/∂θα := −iπα, (2.6)

and it has been shown in [4] that by rescaling the momenta we can put m = 1 since all

m dependence cancels out. Then the momentum space representation of the propagator is

simply ∫ ∞

0
dsi exp

(
−si(p

2
i + Wαπiα + m)

)
, (2.7)

where si is the Schwinger time parameter of i-th Feynman propagator. Here the precise form

of the Wαπα depends on the representation of the gauge group that is carried by the field

propagating in the loop.
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5. Calculation of Feynman Diagrams: The effective superpotential as a function of the glue-

ball S is a sum of vacuum Feynman diagrams computed in the background of a fixed constant

Wα leading to insertions of this field along propagators. In general there will be ℓ momentum

loops, and the corresponding momenta must be integrated over yielding the contribution

I =



∫ ∏

a,i

d4pa dsi e
−sip2

i


 ·



∫ ∏

a,i

d2πa dsi e
−siW

απiα


 ·

(∫ ∏

i

dsie
−sim

)

= Iboson · Ifermion · 1

mP
(2.8)

to the overall amplitude. Here a labels momentum loops, while i = 1, . . . , P labels propaga-

tors. The momenta in the propagators are linear combinations of the loop momenta because

of momentum conservation.

6. Bosonic Momentum Integrations: The bosonic contribution can be expressed as

Iboson =

∫ ℓ∏

a=1

d4pa

(2π)4
exp


−

∑

a,b

paMab(s)pb


 =

1

(4π)2ℓ

1

(det M(s))2
, (2.9)

where we have defined the momentum of the i-th propagator in terms of the independent

loop momenta pa

pi =
∑

a

Liapa (2.10)

via the matrix elements Lia ∈ {0,±1} and

Mab(s) =
∑

i

siLiaLib. (2.11)

7. Which Diagrams Contribute: Since each momentum loop comes with two fermionic πα

integrations (2.8) a non-zero amplitude will require the insertion of 2ℓ παs. From (2.7) we

see that that πα insertions arise from the power series expansion of the fermionic part of the

propagator and that each πα is accompanied by a Wα. So in total we expect an amplitude

containing 2ℓ factors of Wα. Furthermore, since we wish to compute the superpotential as a

function of S ∼ Tr(WαWα) each index loop can only have zero or two Wα insertions. These

considerations together imply that if a diagram contributes to the effective superpotential as

function of the S, then number of index loops h must be greater than or equal to the number

of momentum loops ℓ, i.e.,

h ≥ ℓ. (2.12)

8. Planarity: The above considerations are completely general. Now let us specialize to U(N)

theories with single-trace operators. A diagram with ℓ momentum loops has

h = ℓ + 1 − 2g (2.13)

index loops, where g is the genus of the surface generated by ’t Hooft double line notation.

Combining this with (2.12) tell us that g = 0, i.e., only planar diagrams contribute.
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9. Doing The Fermionic Integrations: First let us discuss the combinatorial factors that

arise from the fermionic integrations. Since the number of momentum loops is one less than

the number of index loops, we must choose which of the latter to leave free of Wα insertions.

This gives a combinatorial factor of h, and the empty index loop gives a factor of N from the

sum over color. For each loop with two Wα insertions we get a factor of 1
2WαWα = 16π2S.

Since we are dealing with adjoint matter, the action of Wα is through a commutator

exp (−si[Wα
i ,−]πiα) (2.14)

in the Schwinger term. (See the appendix of [12] for a nice explanation of this notation as it

appears in [4]. In Sec. 2.2 we will give an alternative discussion of the fermionic integrations

that clarifies various points.) As in the bosonic integrals above, it is convenient to express

the fermionic propagator momenta as sums of the independent loop momenta:

πiα =
∑

a

Liaπaα, (2.15)

where the Lia are the same matrix elements as introduced above. The authors of [4] also find

it convenient to introduce auxiliary fermionic variables via the equation

Wα
i =

∑

a

LiaWα
a . (2.16)

Here, the Lia = ±1 denotes the left- or right-action of the commutator. In terms of the Wα
a ,

the fermionic contribution to the amplitude can be written as

Ifermion = Nh(16π2S)ℓ
∫ ∏

a

d2πa d2Wa exp


−

∑

a,b

Wα
a Mab(s)πbα




= (4π)2ℓNhSℓ(det M(s))2. (2.17)

10. Localization: The Schwinger parameter dependence in the bosonic and fermionic momen-

tum integrations cancel exactly

Iboson · Ifermion = NhSℓ, (2.18)

implying that the computation of the effective superpotential as a function of the S localizes

to summing matrix integrals. All the four-dimensional spacetime dependence has washed

out. The full effective superpotential Weff (S) is thus a sum over planar matrix graphs with

the addition of the Veneziano-Yankielowicz term for the pure Yang-Mills theory [25]. The

terms in the effective action proportional to Sℓ arise exclusively from planar graphs with ℓ

momentum loops giving a perturbative computation of the exact superpotential.

11. The Matrix Model: The localization of the field theory computation to a set of planar

matrix diagrams suggests that the sum of diagrams can be computed exactly by the large-M
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limit of a bosonic Matrix model. (We distinguish between M , the rank of the matrices in the

Matrix model and N , the rank of the gauge group.) The prescription of Dijkgraaf and Vafa

does exactly this for single-trace superpotentials. Since the number of momentum loops is

one less than the number of index loops in a planar diagram, the net result of the bosonic

and fermionic integrations in (2.18) can be written as

Iboson · Ifermion = N
∂Sh

∂S
. (2.19)

Because of this, the perturbative part of the effective superpotential, namely the sum over

planar diagrams in the field theory, can be written in terms of the genus zero free energy

F0(S) of the corresponding matrix model:

Wpert(S) = N
∂

∂S
F0(S), (2.20)

F0(S) =
∑

h

F0,h Sh. (2.21)

This free energy is conveniently isolated by taking the large-M limit of the zero-dimensional

one-matrix model with M × M matrices1 Φ and potential W (Φ) whose partition function is

given by

Z = exp(M2F0) =
1

Vol(U(M))

∫
[DΦ] exp

(
− 1

gs
Tr W (Φ)

)
. (2.22)

In this matrix model every index loop gives a power of M just as in the field theory compu-

tation, and all but one index loop gives a power of S. Because of this simple fact the powers

of the gluino condensate in the field theory superpotential can be conveniently counted by

identifying it with the ’t Hooft coupling S ≡ Mgs, and then differentiating the matrix model

free energy as in (2.20). Rather surprisingly the Veneziano-Yankielowicz term in Weff (S)

arises from the volume factor in the integration over matrices in (2.22).

One important unanswered question is why the low-energy dynamics simplifies so much when

written in terms of the gluino condensates.

2.2 Computation of a Multi-Trace Superpotential

We have reviewed above how the field theory calculation of the effective superpotential for a single-

trace theory localizes to a matrix model computation. In this subsection we show how the argument

is modified when the tree-level superpotential includes multi-trace terms. We consider an N = 1

theory with the tree-level superpotential

Wtree =
1

2
Tr(Φ2) + g4Tr(Φ4) + g̃2(Tr(Φ2))2 . (2.23)

1The original papers of Dijkgraaf and Vafa [1, 2] consider M ×M Hermitian matrices (i.e. matrices with real

eigenvalues λi). In fact, we should think of the matrices as belonging to GL(M, C) with eigenvalues distributed

along contours in the complex plane rather than along domains on the real axis. The prior results do not depend

crucially on this point. Indeed, they carry through exactly by analytic continuation. We thank David Berenstein for

emphasizing this to us.
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To set the stage for our perturbative computation of the effective superpotential we begin by

analyzing the structure of the new diagrams introduced by the double-trace term. If g̃2 = 0, the

connected diagrams we get are the familiar single-trace ones; we will call these primitive diagrams.

When g̃2 6= 0 propagators in primitive diagrams can be spliced together by new double-trace

vertices. It is useful to do an explicit example to see how this splicing occurs. As an example, let

xx

Tr Φ ΦTr Φ ΦTr Φ ΦTr Φ Φ

(a) (b)

(c)

Figure 1: Two ways in which the double-trace operator: Tr(Φ2)Tr(Φ2) can be contracted using the vertex

shown in (c).

us study the expectation value of the double-trace operator: 〈Tr(Φ2)Tr(Φ2)〉. To lowest order in

couplings, the two ways to contract Φs give rise to the two diagrams in Figure 1. When we draw

these diagrams in double line notation, we find that Figure 1a corresponding to Tr(ΦΦ)Tr(ΦΦ) has

four index loops, while Figure 1b corresponding to Tr(Φ Φ)Tr(Φ Φ) has only two index loops. Both

these graphs have two momentum loops. For our purposes both of these Feynman diagrams can also

be generated by a simple pictorial algorithm: we splice together propagators of primitive diagrams

using the vertex in Figure 1c, as displayed in Figure 2a and b. All graphs of the double-trace theory

can be generated from primitive diagrams by this simple algorithm. Note that the number of index

loops never changes when primitive diagrams are spliced by this pictorial algorithm.

If a splicing of diagrams does not create a new momentum loop we say that the diagrams have

been pasted together. This happens when the diagrams being spliced are originally disconnected

as, for example, in Figure 2a. In fact because of momentum conservation, no momentum at all

flows between pasted diagrams. If a new momentum loop is created we say that that the diagrams

have been pinched. This happens when two propagators within an already connected diagram

are spliced together as, for example, in Figure 2b. In this example one momentum loop becomes

two because momentum can flow through the double-trace vertex. Further examples of pinched

diagrams are given in Figure 3 where the new loop arises from momentum flowing between the

primitive diagrams via double-trace vertices.
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(a) Paste (b) Pinch

x x

Figure 2: With the inclusion of the double-trace term we need new types of vertices. These can be

obtained from the “primitive” diagrams associated with the pure single-trace superpotential by (a) pasting

or (b) pinching. The vertices have been marked with a cross.

x

x x
x

x x

Figure 3: More examples of “pinched” diagrams.

To make the above statement more clear, let us provide some calculations. First, according to

our operation, the number of double index loops never increases whether under pasting or pinching.

Second, we can calculate the total number of independent momentum loops ℓ by ℓ = P − V + 1

where P is the number of propagators and V , the number of vertices. If we connect two separate

diagrams by pasting, we will have Ptot = (P1 − 1) + (P2 − 1) + 4, Vtot = V1 + V2 + 1 and

ℓtot = Ptot − Vtot + 1 = ℓ1 + ℓ2, (2.24)

which means that the total number of momentum loops is just the sum of the individual ones. If

we insert the double-trace vertex in a single connected diagram by pinching, we will have Ptot =

P − 2 + 4, Vtot = V + 1, and

ℓtot = Ptot − Vtot + 1 = ℓ + 1, (2.25)

which indicates the creation of one new momentum loop.
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Having understood the structure of double-trace diagrams in this way, we can adapt the tech-

niques of [4] to our case. The steps 1-6 as described in Sec. 2.1 go through without modification

since they are independent of the details of the tree-level superpotential. However the steps 7-11

are modified in various ways. First of all naive counting of powers of fermionic momenta as in step

7 leads to the selection rule

h ≥ ℓ, (2.26)

where h is the total number of index loops and ℓ is the total number of momentum loops. (The

holomorphy and symmetry based arguments of [5] would lead to the same conclusion.) Since no

momentum flows between pasted primitive diagrams it is clear that this selection rule would permit

some of the primitive components to be non-planar. Likewise, both planar and some non-planar

pinching diagrams are admitted. An example of a planar pinching diagram that can contribute

according to this rule is Figure 2b. However, we will show in the next subsection that more careful

consideration of the structure of perturbative diagrams shows that only diagrams built by pasting

planar primitive graphs give non-zero contributions to the effective superpotential.

2.3 Which Diagrams Contribute: Selection Rules

In order to explain which diagrams give non-zero contributions to the multi-trace superpotential

it is useful to first give another perspective on the fermionic momentum integrations described in

steps 7–9 above. A key step in the argument of [4] was to split the glueball insertions up in terms of

auxiliary fermionic variables associated with each of the momentum loops as in (2.16). We will take

a somewhat different approach. In the end we want to attach zero or two fields Wα
(p) to each index

loop, where p labels the index loop, and the total number of such fields must bring down enough

fermionic momenta to soak up the corresponding integrations. On each oriented propagator, with

momentum πiα, we have a left index line which we label pL and a right index line which we label

pR. Because of the commutator in (2.14), the contribution of this propagator will be

exp(−si(πiα(Wα
(pL) −Wα

(pR))). (2.27)

Notice that we are omitting U(N) indices, which are simply replaced by the different index loop

labels. In a standard planar diagram for a single-trace theory, we have one more index loop than

momentum loop. So even in this case the choice of auxiliary variables in (2.27) is not quite the

same as in (2.16), since the number of Wαs is twice the number of index loops in (2.27) while the

number of auxiliary variables is twice the number of momentum loops in (2.16).

Now in order to soak up the fermionic π integrations in (2.8), we must expand (2.27) in powers

and extract terms of the form

W2
(p1)

W2
(p2)

. . .W2
(pl)

, (2.28)

where ℓ is the number of momentum loops and all the pi are distinct. The range of p is over 1, . . . , h,

with h the number of index loops. In the integral over the anticommuting momenta, we have all h

W(p) appearing. However, one linear combination, which is the ‘center of mass’ of the W(p), does

not appear. This can be seen from (2.27): if we add a constant to all W(p) simultaneously, the
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propagators do not change. Thus, without loss of generality, one can set the W(p) corresponding

to the outer loop in a planar diagram equal to zero. Let us assume this variable is W(h) and later

reinstate it. All W(p) corresponding to inner index loops remain, leaving as many of these as there

are momentum loops in a planar diagram. It is then straightforward to demonstrate that the W
appearing in (2.16) in linear combinations reproduce the relations between propagator momenta

and loop momenta. In other words, in this “gauge” where the W corresponding to the outer loop is

zero, we recover the decomposition of Wα in terms of auxiliary fermions associated to momentum

loops that was used in [4] and reviewed in (2.16) above.

We can now reproduce the overall factors arising from the fermionic integrations in the planar

diagrams contributing to (2.17). The result from the π integrations is some constant times

ℓ∏

p=1

W2
(p). (2.29)

Reinstating W(h) by undoing the gauge choice, namely by shifting

W(p) → W(p) + W(h) (2.30)

for p = 1, . . . , h − 1, (2.29) becomes

ℓ∏

p=1

(W(p) + W(h))
2. (2.31)

The terms on which each index loop there has either zero or two W insertions are easily extracted:

h∑

k=1



∏

p 6=k

W2
(p)


 . (2.32)

In this final result we should replace each of the W2
(p) by S, and therefore the final result is of the

form

hSh−1, (2.33)

as derived in [4] and reproduced in (2.17).

Having reproduced the result for single-trace theories we can easily show that all non-planar

and pinched contributions to the multi-trace effective superpotential vanish. Consider any diagram

with ℓ momentum loops and h index loops. By the same arguments as above, we attach some W(p)

to each index loop as in (2.27), and again, the ‘center of mass’ decouples due to the commutator

nature of the propagator. Therefore, in the momentum integrals, only h − 1 inequivalent W(p)

appear. By doing ℓ momentum integrals, we generate a polynomial of order 2ℓ in the h − 1

inequivalent Wα
(p). This polynomial can by Fermi statistics only be non-zero if ℓ ≤ h − 1: W3

(p) is

zero for all p. Therefore, we reach the important conclusion that the total number of index loops

must be larger than the number of momentum loops

h > ℓ (2.34)
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while the naive selection rule (2.26) says that it could be larger or equal.

Consider pasting and pinching k primitive diagrams together, each with hi index loops and ℓi

momentum loops. According to the rules set out in the previous subsection, the total number of

index loops and the total number of momentum loops are given by:

h =
∑

i

hi ; ℓ ≥
∑

i

ℓi (2.35)

with equality only when all the primitive diagrams are pasted together without additional momen-

tum loops. Now the total number of independent Ws that appear in full diagram is
∑

i(hi − 1)

since in each primitive diagram the “center of mass” W will not appear. So the full diagram is

non-vanishing only when

ℓ ≤
∑

i

(hi − 1). (2.36)

This inequality is already saturated by the momenta appearing in the primitive diagrams if they

are planar. So we can conclude two things. First, only planar primitive diagrams appear in the

full diagram. Second, only pasted diagrams are non-vanishing, since pinching introduces additional

momentum loops which would violate this inequality.

Summary: The only diagrams that contribute to the effective multi-trace superpotential are

pastings of planar primitive diagrams. These are tree-like diagrams which string together double-

trace vertices with “propagators” and “external legs” which are themselves primitive diagrams of

the single-trace theory. Below we will explicitly evaluate such diagrams and raise the question of

whether there is a generating functional for them.

2.4 Summing Pasted Diagrams

In the previous section we generalized steps 7 and 8 of the the single trace case in Sec. 2.1 to the

double-trace theory, and found that the surviving diagrams consist of planar connected primitive

vacuum graphs pasted together with double-trace vertices. Because of momentum conservation, no

momentum can flow through the double-trace vertices in such graphs. Consequently the fermionic

integrations and the proof of localization can be carried out separately for each primitive grapg,

and the entire diagram evaluates to a product of the the primitive components times a suitable

power of g̃2, the double-trace coupling.

Let Gi, i = 1, . . . , k be the planar primitive graphs that have been pasted together, each with

hi index loops and ℓi = hi − 1 momentum loops to make a double-trace diagram G. Then, using

the result (2.18) for the single-trace case, the Schwinger parameters in the bosonic and fermionic

momentum integrations cancel giving a factor

Iboson · Ifermion =
∏

i

(NhiS
ℓ
i ) = NkS

∑
i
(hi−1)

∏

i

hi, (2.37)

where the last factor arises from the number of ways in which the glueballs S can be inserted into

the propagators of each primitive diagram. Defining C(G) =
∏

i hi as the glueball symmetry factor,
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k(G) as the number of primitive components, h(G) =
∑

i hi as the total number of index loops and

ℓ(G) =
∑

i ℓi = h(G) − k(G) as the total number of momentum loops, we get

Iboson · Ifermion =
∏

i

(NhiS
ℓ
i ) = Nh(G)−ℓ(G)Sl(G)C(G). (2.38)

We can assemble this with the Veneziano-Yankielowicz contribution contribution for pure gauge

theory [25] to write the complete glueball effective action as

Weff = −NS(log(S/Λ2) − 1) +
∑

G

C(G)F(G)Nh(G)−ℓ(G)Sℓ(G), (2.39)

where F(G) is the combinatorial factor for generating the graph G from the Feynman diagrams

of the double-trace theory. Notice that in our discussion, we have set g2 = m = 1, so Λ2 in this

equation is in fact mΛ2 which matches the dimension of S. We can define a free energy related to

above diagrams as

F0 =
∑

G

F(G)Sh(G). (2.40)

F0 is a generating function for the diagrams that contribute to the effective superpotential, but

does not include the combinatorial factors arising from the glueball insertions. In the single-trace

case that combinatorial factor was simply Nh(G) and so we could write Weff = N(∂F0/∂S). Here

C(G) =
∏

hi is a product rather than a sum h(G) =
∑

hi, and so the effective superpotential

cannot be written as a derivative of the free energy.

Notice that if we rescale g̃2 to g̃2/N , there will be a N−(k(G)−1) factor from k(G)− 1 insertions

of the double-trace vertex. This factor will change the Nh(G)−l(G) dependence in (2.39) to just N

for every diagram. This implies that the matrix diagrams contributing to the superpotential are

exactly those that survive the large M limit of a bosonic U(M) Matrix model with a potential

V (Φ) = g2Tr(Φ2) + g4Tr(Φ4) +
g̃2

M
Tr(Φ2)Tr(Φ2). (2.41)

In Sec. 4 we will compute the large M limit of a such a Matrix model and compute the free energy

F0 in this way.

Below we will compute this effective action (2.39) to the first few orders. In Sec. 3 we will show

that it is reproduced by an analysis based on the Seiberg-Witten solution of N = 2 gauge theories.

In the single-trace case Dijkgraaf and Vafa argued that the large-N limit of an associated Matrix

model carries out the sum in (2.39), or equivalently, that the matrix model free energy provides a

generating function for the perturbative series of matrix diagrams contributing to the exact field

theory superpotential. In Sec. 4 we will show that the well known double-trace Matrix models that

have large-N limits do sum up the same “planar pasted diagrams” that we described above and

give the free energy defined by (2.40). However, unlike the single-trace case, the Matrix model will

not reproduce the the combinatorial factors C(G) appearing in (2.39).
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2.5 Perturbative Calculation

Thus equipped, let us begin our explicit perturbation calculations. We shall tabulate all combi-

natoric data of the pasting diagrams up to third order. Here C(G) =
∏

i hi and F(G) is obtained

by counting the contractions of Φs. For pure single-trace diagrams the values of F(G) have been

computed in Table 1 in [26], so we can utilize their results.

2.5.1 First Order

To first order in coupling constants, all primitive (diagram (b)) and pasting diagrams (diagram (a))

are presented in Figure 4. Let us illustrate by showing the computations for (a). There is a total of

four index loops and hence h = 4 for this diagram. Moreover, since it is composed of the pasting of

two primitive diagrams each of which has h = 2; thus, we have C(G) = 2 × 2 = 4. Finally, F = g̃2

because there is only one contraction possible, viz, Tr(ΦΦ)Tr(ΦΦ).

~g 2
g 4(a)x (b)x

Figure 4: All two-loop primitive and pasting diagrams. The vertices have been marked with a cross.

In summary we have:

diagram (a) (b)

h 4 3

C(G) 4 3

F(G) g̃2 2g4

(2.42)

2.5.2 Second Order

To second order in the coupling all primitive ((c) and (d)) and pasting diagrams ((a) and (b))

are drawn in Figure 5 and the combinatorics are summarized in table (2.43). Again, let us do

an illustrative example. Take diagram (b), there are five index loops, so h = 5; more precisely it

is composed of pasting a left primitive diagram with h = 3 and a right primitive with h = 2, so

C(G) = 2 × 3 = 6. Now for F(G), we need contractions of the form Tr(ΦΦ Φ Φ)Tr(Φ Φ)Tr(ΦΦ);

there are 4× 2× 2 = 16 ways of doing so. Furthermore, for this even overall power in the coupling,

we have a minus sign when expanding out the exponent. Therefore F(G) = −16g̃2g4 for this

diagram.

In summary, we have:

diagram (a) (b) (c) (d)

h 6 5 4 4

C(G) 8 6 4 4

F(G) −4g̃2
2 −16g̃2g4 −2g2

4 −16g2
4

(2.43)
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~g 2

g 4
~g 2

g 4(c)
2

g 4(d)
2

(a)

(b)

2
x x

x x

x x

x x

Figure 5: All three-loop primitive and pasting diagrams. The vertices have been marked with a cross.

2.5.3 Third Order

Finally, the third order diagrams are drawn in Figure 6. The combinatorics are tabulated in (2.44).

Here the demonstrative example is diagram (b), which is composed of pasting four diagrams, each

with h = 2, thus h(G) = 4 × 2 = 8 and C(G) = 24 = 16. For F(G), first we have a factor 1
3! from

the exponential. Next we have contractions of the form Tr(ΦΦ)3Tr(Φ Φ)Tr(Φ Φ)Tr(Φ Φ); there are

23 × 4 × 2 ways of doing this. Thus altogether we have F(G) = 32
3 g̃3

2 for this diagram.

In summary:

diagram (a) (b) (c) (d) (e) (f) (g)

h 8 8 7 7 7 6 6

C(G) 16 16 12 12 12 8 8

F(G) 16g̃3
2

32
3 g̃3

2 64g̃2
2g4 32g̃2

2g4 64g̃2
2g4 128g̃2g

2
4 128g̃2g

2
4

diagram (h) (i) (j) (k) (l) (m)

h 6 6 5 5 5 5

C(G) 8 9 5 5 5 5

F(G) 32g̃2g
2
4 64g̃2g

2
4 128g3

4
32
3 g3

4 64g3
4

256
3 g3

4

(2.44)

2.5.4 Obtaining the Effective Action

Now to the highlight of our calculation. From tables (2.42), (2.43), and (2.44) we can readily

compute the effective glueball superpotential and free energy. We do so by summing the factors,

with the appropriate powers for S, in accordance with (2.39,2.40).

We obtain, up to four-loop order,

F0 =
∑

G=all diagrams

F(G)Sh(G)

= (2g4 + g̃2S)S3 − 2(9g2
4 + 8g4g̃2S + 2g̃2

2S
2)S4

+
16

3
(54g3

4 + 66g2
4 g̃2S + 30g4g̃

2
2S

2 + 5g̃3
2S3)S5 + · · · , (2.45)

and subsequently,

Weff = −NS(log(S/Λ2) − 1) +
∑

G=all diagrams

C(G)F(G)Nh(G)−l(G)Sl(G)
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~g 2

3
(a)

~g 2

3
(b)

g 4
~g 2x x x (d)

2

g 4
~g 2

x

x
x

(e)
2

g 4
~g 2x x

x 2
(f)

g 4
~g 2

x

x x
2

(g)

g 4
~g 2x x x

(c)
2

g 4
~g 2

x

x x 2
(h)

g 4
~g 2

x x x 2
(i)

g 4x x x (j)
3

g 4

x

x x

(k)
3

g 4

x

x x (m)
3

g 4

x

x

x (l)
3

x x x

x

x x

Figure 6: All four-loop primitive and pasting diagrams. The vertices have been marked with a cross.

= −NS(log(S/Λ2) − 1) + (6g4 + 4g̃2N)NS2 − (72g2
4 + 96g4g̃2N + 32g̃2

2N2)NS3

+
20

3
(6g4 + 4g̃2N)3NS4 + · · · . (2.46)

We will later see how this result may be reproduced from independent considerations, i.e., the

effective action from the factorization of Seiberg-Witten curve and free energy from the correspond-

ing matrix model.
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2.6 Multiple Traces, Pasted Diagrams and Nonlocality

Above we found that the only diagrams that contribute to the effective superpotential have zero

momentum flowing though the double-trace vertex. Now observe that the double-trace term in the

tree-level action can be written in momentum space as:

V =

∫
d4xTr(Φ2(x))Tr(Φ2(x))

=

∫
d4p1 d4p2 d4p3 d4p4 Tr(Φ(p1)Φ(p2))Tr(Φ(p3)Φ(p4)) δ(p1 + p2 + p3 + p4). (2.47)

Since no momentum flows through the double-trace vertices contributing to the superpotential, the

delta function momentum constraint factorizes in our pasted diagrams as

δ(p1 + p2 + p3 + p4) ∼ δ(p1 + p2)δ(p3 + p4). (2.48)

Therefore for the purposes of computing the superpotential we might as well replace the double-

trace term in the action by

Ṽ =

∫
d4p1d

4p2d
4p3d

4p4Tr(Φ(p1)Φ(p2))Tr(Φ(p3)Φ(p4)) δ(p1 + p2) δ(p3 + p4)

=

∫
d4x d4y Tr(Φ2(x))Tr(Φ2(y)). (2.49)

The Feynman diagrams of this nonlocal theory include the ones that compute the superpotential

in the double-trace, local theory.

This fact suggests that correlation functions of chiral operators are position independent, as

described in [5]. Along with cluster decomposition, this position independence leads to the state-

ment that correlators of operators in the chiral ring of an N = 1 theory factorize, which we use

in the next section to write 〈Tr(Φ2)2〉 = 〈Tr(Φ2)〉2. However it is subtle to establish the precise

equivalence between factorization of chiral operators and the vanishing that we demonstrated of

all except the pasted diagrams, which leads in turn to the nonlocal action in (2.49). We leave this

potential connection for exploration in future work.

3. The Field Theory Analysis

In this section, we will show that in the confining vacuum the effective superpotential of the field

theory discussed in the previous section is

Weff = NΛ2 + (6Ng4 + 4N2g̃2)Λ
4. (3.1)

After integrating in the glueball superfield and expanding the superpotential in a power series in

S, (3.1) can be written

Weff = −NS(log(S/Λ2)−1)+(6g4+4g̃2N)NS2−2(6g4+4g̃2N)2NS3+
20

3
(6g4 +4g̃2N)3NS4+ · · · .

(3.2)
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We shall compare this expression for the low-energy gauge dynamics to the perturbative field theory

computations in Sec. 2. The two results, of course, are in concert.

We begin by considering an N = 1 U(N) gauge theory with a single adjoint superfield Φ

deformed from N = 2 by the tree-level superpotential (n < N)

Wtree =

n+1∑

r=1

grur + 4g̃2u
2
2, (3.3)

where

uk :=
1

k
Tr(Φk). (3.4)

The tree-level superpotential in (3.3) is more general than the one used in (2.23). Here, we allow

single-trace terms at arbitrary powers of Φ. We shall specialize to the previous example at the end

of our discussion.

3.1 The Classical Vacua

To find the classical vacua, we have to solve the D-term and F-term conditions. The D-term is

proportional to Tr[Φ, Φ̄]2 which is zero if Φ is diagonal. Let the diagonal entries be xi, i = 1, . . . , N .

We still need to solve the F-term condition. In terms of the xi, the tree-level superpotential is

W =

n+1∑

r=1

gr

r

N∑

i=1

xr
i + g̃2

(
N∑

i=1

x2
i

)2

. (3.5)

From this, the F-flatness condition reads:

0 =
∂W

∂xk
=

n+1∑

r=1

grx
r−1
k + 4g̃2xk

(
N∑

i=1

x2
i

)
, k = 1, ..., N. (3.6)

This is certainly different from the case without the double-trace term, where the F-term equations

for different xks decouple. Here, the eigenvalues interact with each other even at the classical level.

To solve the (3.6), which may be recast as

1

xk

n+1∑

r=1

grx
r−1
k = −4g̃2

(
N∑

i=1

x2
i

)
, (3.7)

we take the RHS of (3.7)

C := 4g̃2

(
N∑

i=1

x2
i

)
, (3.8)

as an unknown constant for all N F-terms. This gives

n+1∑

r=1

grx
r−1
k + Cxk = 0 ∀ k. (3.9)

Now the F-terms are decoupled. We can solve this system just as we solve for the vacua of a field

theory with only single-trace interactions [28] simply by taking g2 7→ g2 + C.
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As the F-terms are order n polynomials in x, we should generically expect n solutions for each

eigenvalue xk. The eigenvalues are the roots of the polynomial

0 =
n+1∑

r=1

grx
r−1
k ≡ gn+1

n∏

i=1

(x − ai). (3.10)

If Ni of the eigenvalues are located at ai, where
∑

i Ni = N , the unbroken gauge symmetry is

U(N) →
n∏

i=1

U(Ni). (3.11)

As ais are a function of C, we need to impose the additional consistency condition that

4g̃2

n∑

j=1

N2
i a2

i = C. (3.12)

To simplify the discussion, we henceforth focus on the special case where all of the xis have

the same value. The SU(N) part of the gauge group is unbroken, and will confine in the infrared.

3.2 The Exact Superpotential in the Confining Vacuum

We now proceed to find the exact superpotential in this confining vacuum [27]. Let us recall the

general philosophy of the method (see e.g., [29], whose notations we adopt, for a recent discussion).

A generic point in the moduli space of the U(N) N = 2 theory will be lifted by the addition of

the the general superpotential (3.3). The points which are not lifted are precisely where at least

N − n mutually local monopoles become massless. This can be seen from the following argument.

The gauge group in the N = 1 theory is broken down to
∏n

i=1 U(Ni), and the SU(Ni) factors each

confine. We expect condensation of Ni − 1 magnetic monopoles in each of these SU(Ni) factors

and a total of N − n condensed magnetic monopoles. These monopoles condense at the points

on the N = 2 moduli space where N − n mutually local monopoles become massless. These are

precisely the points which are not lifted by addition of the superpotential. These considerations are

equivalent to the requirement that the corresponding Seiberg-Witten curve has the factorization

PN (x, u)2 − 4Λ2N = HN−n(x)2F2n(x), (3.13)

where PN (x, u) is an order N polynomial in x with coefficients determined by the (vevs of) the uk,

Λ is an ultraviolet cut-off, and H and F are, respectively, order N − n and 2n polynomials in x.

The N−n double roots place N−n conditions on the original variables uk. We can parametrize

all the 〈uk〉 by n independent variables αj . In other words, the αjs then correspond to massless

fields in the low-energy effective theory. If we know the exact effective action for these fields, to

find the vacua, we simply minimize Seff . Furthermore, substituting 〈uk〉 back into the effective

action gives the action for the vacua.

Holomorphy and regularity of the superpotential as the couplings go to zero requires that there

are no perturbative corrections to the tree-level superpotential. In addition, we assume that all
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non-perturbative effects are captured in the Seiberg-Witten curve analysis discussed above. Then,

we need to minimize

Wexact =
n+1∑

r=1

gr〈ur〉 + 4g̃2〈u2
2〉. (3.14)

In general the factorization problem is hard to solve [30], but for the confining vacuum where all

N − 1 monopoles have condensed, there is a general solution given by Chebyshev polynomials.2 In

our case, we have the solution

up =
N

p

[p/2]∑

q=0

C2q
p Cq

2qΛ
2qzp−2q, (3.15)

z =
u1

N
, Cp

n :=

(
n

p

)
=

n!

p!(n − p)!
. (3.16)

Notice that in (3.15), there is one free parameter z which is the field left upon condensation. Now

we put it into the superpotential

W =
n+1∑

r=1

grur(z,Λ) + 4g̃2u2(z,Λ)2, (3.17)

solve and back-substitute z from ∂W/∂z = 0 to obtain the effective superpotential Weff . Notice

that in the above result, we have used

〈u2
2〉 = 〈u2〉2. (3.18)

This is true because u2 is a chiral field, and cluster decomposition in the field theory lets us factor

the correlation functions of operators in the chiral ring [5].

Although the above procedure finds Weff , it is not the best form to compare with our previous

results because there is no gluino condensate S. To make the comparison, we need to “integrate

in” [31] the glueball superfield as in [29].

The integrating in procedure is as follows (here we use the single-trace superpotential as an

illustrative example of the technique).

• We set ∆ := Λ2, and use the equation

NS = ∆
∂W

∂∆
= N

n+1∑

r=2

gr

[p/2]∑

q=1

q

p
C2q

p Cq
2qz

p−2q∆q (3.19)

to solve for ∆ in terms of S.

• Next, we find z by solving

0 =
∂W

∂z
=

n+1∑

r=1

gr

[p/2]∑

q=0

p − 2q

p
C2q

p Cq
2qz

p−2q−1∆q. (3.20)

2This was worked out first by Douglas and Shenker [32], but here we use the results and nomenclature of Ferrari

[29].
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• Now the effective action for the glueball superfield S can be written as

WS(S, g,Λ) = −S log

(
∆

Λ2

)N

+ Wtree(S, g,Λ), (3.21)

which will reproduce the result

∂

∂S
WS(S,Λ2, g) = − ln(∆/Λ2)N . (3.22)

3.3 An Explicit Example

Let us work out the double-trace example that we are interested in solving. The superpotential is

W = g2u2 + 4g4u4 + 4g̃2u
2
2, (3.23)

(later, we can set g2 = m = 1). Using

u2 =
N

2
[z2 + 2Λ2], (3.24)

u4 =
N

4
[z4 + 12Λ2z2 + 6Λ4], (3.25)

from (3.15), we obtain

W = Nz2[
g2

2
+ g4z

2 + 12g4Λ
2 + 4Ng̃2Λ

2 + Ng̃2z
2] (3.26)

+NΛ2[g2 + 6g4Λ
2 + 4Ng̃2Λ

2].

From this we have following equations by setting Λ2 = ∆:

S = ∆[g2 + (12g4 + 4Ng̃2)z
2 + (12g4 + 8Ng̃2)∆], (3.27)

0 =
∂W

∂z
= z[g2 + z2(4g4 + 4Ng̃2) + 2∆(12g4 + 4Ng̃2)]. (3.28)

We solve z = 0:

∆ =
−g2 +

√
g2
2 + 4S(12g4 + 8Ng̃2)

2(12g4 + 8Ng̃2)
. (3.29)

The effective action with S integrated in is3

Weff = S log

(
Λ2

∆

)N

+ N∆[g2 + ∆(6g4 + 4Ng̃2)], (3.30)

which will be the one used in comparison to our previous results. After minimizing this action, we

find

Wz=0 = NΛ2[g2 + 6g4Λ
2 + 4Ng̃2Λ

2], (3.31)

3Notice that in both formula (3.29) and (3.30), g4 and g̃2 combine together as g4 + 2N

3
g̃2. So if we shift g4 to

g4 + 2N

3
g̃2, the single-trace result will reproduce the double-trace result, and the effective action for the double-trace

can be naively calculated from the DV prescription by partial differentiation of the glueball field S.
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which is the promised result of (3.1). Setting g2 = 1, expanding (3.29) in powers of S, and

substituting into (3.30), we get the second formula (3.2) from the beginning of this section:

Weff = −NS(log(S/Λ2)−1)+(6g4+4g̃2N)NS2−2(6g4+4g̃2N)2NS3+
20

3
(6g4 +4g̃2N)3NS4+ · · · .

(3.32)

Crucial in matching the result of this calculation with the perturbative analysis in the previous

section is the assumption of factorization 〈u2
2〉 = 〈u2〉2. This is equivalent to the vanishing the

pinching diagrams in the perturbative analysis.

4. The Matrix Model

In Sec. 2 we demonstrated that the explicit field theory computation of the effective superpotential

localizes to a certain sum of matrix diagrams. All of these diagrams are constructed by pasting

planar single-trace diagrams together with double-trace vertices in such a way that no additional

momentum loops are created. By examining the scaling of these diagrams with N in (2.39) we also

observed that these are precisely the diagrams that would survive the large-M limit of a U(M)

bosonic Matrix model with a potential

V (Φ) = g2 Tr(Φ2) + g4Tr(Φ4) +
g̃2

M
Tr(Φ2)Tr(Φ2). (4.1)

The extra factor of 1/M multiplying g̃2, in comparison with the field theory tree-level superpotential

(1.1) is necessary for a well-defined ’t Hooft large-M limit. This is because each trace, being a sum

of eigenvalues, will give a term proportional to M . So to prevent the double-trace term from

completely dominating the large-M limit we must divide by an extra factor of M . Fortunately,

this a well known model and was solved more than a decade ago [22, 33]. Below we will review

this solution, compare its results to our field theory calculations, and then generalize to other

multi-trace deformations.

4.1 The Mean-Field Method

The basic observation, following [22], that allows us to solve the double-trace matrix model (4.1),

is that in the large-M limit the effects on a given matrix eigenvalue of all the other eigenvalues can

be treated in a mean field approximation. Accordingly we compute the matrix model free energy

F as

exp(−M2F) =

∫
dM2

(Φ) exp{−M(
1

2
Tr(Φ2) + g4Tr(Φ4) + g̃2

(Tr(Φ2))2

M
)}. (4.2)

=

∫ ∏

i

dλi exp{M(−1

2

∑

i

λ2
i −

g4

M

∑

i

λ4
i −

g̃2

M2
(
∑

i

λi)2) +
∑

i6=j

log |λi − λj |}

Here λ are the M eigenvalues of Φ and F is the free energy, which can be evaluated by saddle

point approximation at the planar limit. The log term comes from the standard Vandermonde

determinant. This matrix model is Hermitian with rank M in the notation of [35] (of course
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as mentioned earlier, we should really consider GL(M, C) matrices though the techniques hold

equally). We have introduced an extra factor of M in the exponent on the right hand side of (4.2)

by rescaling the fields and couplings in (4.1) in accordance with the conventions of [22].

The density of eigenvalues

ρ(λ) :=
1

M

M∑

i=1

δ(λ − λi) (4.3)

becomes continuous in an interval (−2a, 2a) when M goes to infinity in the planar limit for some

a ∈ R
+. Here the interval is symmetric around zero since our model is an even function. The

normalization condition for eigenvalue density is

∫ 2a

−2a
dλρ(λ) = 1 . (4.4)

We can rewrite (4.2) in terms of the eigenvalue density in the continuum limit as

exp(−M2F) =

∫ M∏

i=1

dλi exp{−M2(

∫ 2a

−2a
dλρ(λ)(

1

2
λ2 + g4λ

4) (4.5)

+ g̃2(

∫ 2a

−2a
dλρ(λ)λ2)2 −

∫ 2a

−2a

∫ 2a

−2a
dλdµρ(λ)ρ(µ) ln |λ − µ|)} .

Then the saddle point equation is

1

2
λ + 2g4λ

3 + 2g̃2cλ = P

∫ 2a

−2a
dµ

ρ(µ)

λ − µ
, (4.6)

where c is the second moment

c :=

∫ 2a

−2a
dλρ(λ)λ2 (4.7)

and P means principal value integration.

The effect of the double-trace is to modify the coefficient of λ in the saddle point equation. We

can determine the number c self-consistently by (4.7). The solution of ρ(λ) to (4.6) can be obtained

by standard matrix model techniques by introducing a resolvent. The answer is

ρ(λ) =
1

π

(
1

2
+ 2g̃2c + 4g4a

2 + 2g4λ
2

)√
4a2 − λ. (4.8)

Plugging the solution into (4.4) and (4.7) we obtain two equations that determine the parameters

a and c:

a2(1 + 4g̃2c) = 1 − 12g4a
4, (4.9)

16g4g̃2a
8 + (12g4 + 4g̃2)a

4 + a2 − 1 = 0. (4.10)

Substituting these expressions into (4.5) gives us the free energy in the planar limit M → ∞
as:

F =

∫ 2a

−2a
dλρ(λ)(

1

2
λ2 + g4λ

4) + g̃2c
2 −

∫ ∫ 2a

−2a
dλdµρ(λ)ρ(µ) ln |λ − µ|.

(4.11)
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One obtains

F(g4, g̃2) −F(0, 0) =
1

4
(a2 − 1) + (6g4a

4 + a2 − 2)g4a
4 − 1

2
log(a2) . (4.12)

Equation (4.12) together with (4.10) give the planar free energy. We can also expand the free

energy in powers of the couplings, by using (4.10) to solve for a2 perturbatively

a2 = 1 − (12g4 + 4g̃2) + (288g2
4 + 176g4g̃2 + 32g̃2

2) (4.13)

−(8640g3
4 + 7488g2

4 g̃2 + 2496g4 g̃
2
2 + 320g̃3

2) + · · · .

Plugging this back into (4.12) we find the free energy as a perturbative series

F0 = F(g4, g̃2)−F(0, 0) = 2g4 + g̃2−2(9g2
4 +8g4g̃2 +2g̃2

2)+
16

3
(54g3

4 +66g2
4 g̃2 +30g4g̃

2
2 +5g̃3

2)+ · · · .
(4.14)

Comparing with (2.45) we see that F reproduces the explicit computation of the generating

function of “planar pasted” field theory diagrams in Sec. 2.5. In matching the two we have to restore

the proper powers of the glueball S into (4.14). First recall that to keep the relevant diagrams in

the matrix model, we have inserted 1
M to the double-trace term in (4.1). Therefore to compare

with (2.45), we need to rescale g̃2 in (4.14) to g̃2M ≡ g̃2S where we have effectively identified the

glueball S in the field theory with M in the matrix model. In addition, we should re-insert powers

of M into (4.14) by loop counting. The first two terms in (4.14) have three index loops so we need

to multiply them by M3 ≡ S3. The third term has four index loops and fourth term, five and

hence we respectively need factors of S4 and S5. With these factors correctly placed into (4.14),

we recover (2.45) completely.

This verifies our claim that the diagrams surviving the large-M limit of the matrix model (4.1)

are precisely the graphs that contribute to effective action of the field theory with the tree-level

superpotential (1.1). Nevertheless, as we have already discussed in Sec. 2.4 we cannot compute the

effective superpotential of the field theory Weff (S) by taking a derivative ∂F0/∂S, because the

combinatorial factors will not agree. In this way the double-trace theories differ in a significant

way from the single-trace models discussed by Dijkgraaf and Vafa [3]. We can pose the challenge

of finding the field theories who effective superpotential is computed by the Matrix model (4.12).

4.2 Generalized Multi-Trace Deformations

In fact the mean field techniques of the previous subsection can be generalized to solve the general

multi-trace model. Below we illustrate this by solving the general quartic Matrix model; as discussed

above, it is an interesting challenge to find a find a field theory whose effective superpotential these

models compute.

Specifically, let us consider the Lagrangian

L = g2Tr(Φ)2 + µ(Tr(Φ))2 + ν1(TrΦ)2(Tr(Φ2)) + ν2(TrΦ)4 + 2ν3(TrΦ)(Tr(Φ3)), (4.15)

which exhausts all quartic interactions.
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The one-matrix model partition function

ZM =

∫
[Dλ] exp

{
−M2

(
L −

∫ 1

0
dx

∫ 1

0
dy log |λ(x) − λ(y)|

)}
, (4.16)

gives the saddle point equation

4g4λ
3 +6ν3c1λ

2 +2(g2 +2g̃2c2 +ν1c
2
1)λ+2(µc1 +ν1c1c2 +2ν2c

3
1 +ν3c3) = 2P

∫ 2b

−2a
dτ

u(τ)

λ − τ
, (4.17)

where the moments ck are defined as

ck =

∫ 2b

−2a
dτ u(τ)τk,

c0 =

∫ 2b

−2a
dτ u(τ) = 1. (4.18)

Note that we have introduced the separate upper and lower cut parameters a and b as opposed to

the standard symmetric treatment because u(λ) is not of explicit parity (such asymmetric examples

have also been considered in [26]). When a = b one can recast (4.17) into a Fredholm integral

equation of the first kind and Cauchy type, which affords a general solution as follows [36]

P
1

π

∫ a

−a

u(t)dt

t − x
= −v(x) ⇒ u(x) =

1

π

∫ a

−a

(√
a2 − t2

a2 − x2

)
v(t)dt

t − x
+

C√
a2 − x2

(4.19)

for some constant C. When a 6= b we can use the ansatz:

u(λ) =
1

π
(Aλ2 + Bλ + C)

√
(2a + λ)(2b − λ) (4.20)

with the constants matching the coefficients in the LHS of (4.17) as

2A = 2g4, (4.21)

2aA − 2Ab + 2B = 3ν3c1,

−a2 A − 2 aA b − Ab2 + 2 aB − 2 bB + 2C = g2 + 2g̃2c2 + ν1c
2
1,

a3 A + a2 Ab − aA b2 − Ab3 − a2 B − 2 a bB − b2 B + 2 aC − 2 bC = µc1 + ν1c1c2 + 2ν2c
3
1 + ν3c3.

We see a well-behaved u(λ) which is zero at the end-points and vanishes outside the support

(−2a, 2b).

We now need to check the consistency of our mean-field method. This simply means the follow-

ing. Considering the definition of ci in (4.18), the definitions (4.21) actually constitute a system of

equations for A,B,C, a, b because each ci on the RHS, through (4.18), depend on A,B,C, a, b. To

(4.21) we must append one more normalization condition, that c0 =
∫ 2b
−2a u(λ)dλ = 1. Therefore we

have five equations in five variables which will fix our parameters in terms of the seven couplings.

Our mean-field method is therefore self-consistent. It would be interesting to find a role for such

exactly solvable models in the physics of four-dimensional field theories.
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5. Linearizing Traces: How To Identify the Glueball?

In previous sections we showed that the field theory computation of the effective superpotential of

a double-trace theory as a function of the glueball S localized to summing Matrix diagrams. In

the end, the only the “pasted” diagrams that contributed, namely certain tree-like graphs obtained

by pasting together planar single-trace graphs with double-trace vertices in such a way that no

momentum flows through the latter. After verifying the result via the N = 2 Seiberg-Witten

solution, we demonstrated that the sum of these diagrams given as a series in (2.39) is not computed

by the large M limit of a U(M) Matrix as one would have naturally hoped. Nevertheless, we may

wonder if there is some Matrix model that sums the series of pasted diagrams. In this section we

take up the challenge of finding such a Matrix model.

Since the authors [4] and [5] have proven that the superpotential of a single-trace gauge theory

can be computed from an associated Matrix model, we seek to construct our double-trace theory

from another single-trace model. Recall that we are considering the tree-level superpotential

Wtree =
1

2
g2Tr(Φ2) + g4Tr(Φ4) + g̃2(Tr(Φ2))2. (5.1)

Now consider another theory with an additional gauge singlet field A

Wtree =
1

2
(g2 + 4g̃2A)Tr(Φ2) + g4Tr(Φ4) − g̃2A

2. (5.2)

It is easy to see that integrating out A in (5.2), which amounts to solving ∂Wtree

∂A = 0 and back-

substituting, produces the double-trace theory (5.1).

The advantage of (5.2) is that it consists purely of single-trace operators. The first two terms

will generate an effective potential Wsingle(A,S), as a function of A and the glueball superfield S

(the subscript “single” refers to the fact that this is the superpotential for the model without the

double-trace term and with an A dependent mass term). Then

Weff(A,S) = Wsingle(A,S) − g̃2A
2. (5.3)

The exact superpotential for the glueball superfield S for the double-trace theory then follows by

integrating A out, i.e. solving
∂Wsingle

∂A − 2g̃2A = 0 for A and substituting in (5.3). Since single-

trace theories are directly related to Matrix model we might hope to use this construction with an

added auxiliary field A to find an auxiliary Matrix model that sums the pasted diagrams of the

double-trace theory.

5.1 Field Theory Computation of Wsingle(A,S) and Pasted Matrix Diagrams

In this section4 we will discuss how the superpotential for the double-trace theory can be computed

in field theory from the linearized model (5.2). First, observe that the superpotential for an adjoint

theory with an additional gauge singlet (5.2) localizes to summing matrix integrals, since the

arguments of [4] that are reviewed in Sec. 2 go through essentially unchanged. To compute the

4We thank Cumrun Vafa and Ken Intriligator for communications concerning the material in this section.
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effective potential as a function of both A and the glueball S, we need to sum superspace Feynman

diagrams with insertions of both A and Wα, with both of these treated as background fields. Since

we are only interested in contributions to the superpotential, we can restrict ourselves to constant

background A. Then it is easy to verify that the entire analysis in Sec. 2 goes through for the

theory (5.2), with the double-trace coupling g̃2 set to zero and a shift in the mass of the field

Φ, viz g2 → g2 + 4g̃2. In particular, the computation of the effective superpotential Wsingle(A,S)

localizes to summing matrix diagrams and there is some free energy Fsingle in terms of which

Wsingle = N∂Fsingle(S,A)/∂S.

Let us verify that this procedure will yield the correct double-trace result when we integrate A

out. Making the g2 → g2 + 4g̃2 with g̃2 = 0 in the known single-trace result (3.30) and (3.29), we

find the effective superpotential

Wsingle(A,S) = NS log(
Λ2

∆
) + N∆((g2 + 4g̃2A) + 6g4∆), (5.4)

where ∆ is determined by the quadratic equation

12g4∆
2 + (g2 + 4g̃2A)∆ = S. (5.5)

Now we can integrate A out and obtain the superpotential for the glueball superfield S. We solve

∂Weff/∂A = ∂Wsingle/∂A − 2g̃2A = 0 for A. This is a simple calculation from (5.4), (5.5):

∂

∂A
Wsingle(∆(S,A), S,A) =

∂Wsingle

∂A
+

∂∆

∂A

∂Wsingle

∂∆
(5.6)

= (g2 + 4g̃2A + 12g4∆ − S

∆
)N

∂∆

∂A
+ 4g̃2N∆

= 4g̃22N∆,

where in last step we have used (5.5). So the solution to ∂Wsingle/∂A − 2g̃2A = 0 is

A = 2N∆. (5.7)

Plugging A = 2N∆ into (5.4), (5.5) and (5.3), we find the effective glueball superpotential to be

Weff = NS log(
Λ2

∆
) + N∆(g2 + 4g̃2N∆ + 6g4∆), (5.8)

with ∆ determined by the quadratic equation

(12g4 + 8g̃2N)∆2 + g2∆ = S. (5.9)

Equations (5.8) and (5.9) are of course the double-trace effective glueball superpotential we com-

puted previously in (3.29) and (3.30).

Why does this procedure reproduce precisely the sum of pasted diagrams that contribute to

the double-trace superpotential in (2.39)? From the point of view of perturbation theory, we are

doing the following. If we treat A as a constant, we should simply sum the planar diagrams in the

– 28 –



theory with a quartic superpotential, and after doing so, we obtain the superpotential
∫

d4xd2θ W

with

W = Wconnected planar(S, g2 + 4g̃2A, g4) − g̃2A
2. (5.10)

Next, we should integrate out A. To do so, we write A = A0 + Ã, where A0 solves ∂W/∂A = 0.

We see that W becomes

W = Wconnected planar(S, g2 + 4g̃2A0, g4) − g̃2A
2
0 + c2Ã

2 + c3Ã
3 + . . . . (5.11)

What is the meaning of integrating over Ã? From the diagrammatic point of view, Ã is the field

that allows momentum to flow through the g̃2 vertices. All diagrams where such momentum flow is

prohibited are taken into account by the background value A0. Thus, picking A0 takes the pasting

process into account, whereas the further integrals over Ã should correspond to pinching diagrams.

We already know that these latter diagrams should vanish from our diagrammatic analysis, and

therefore we should simply drop all terms involving Ã. The final answer for W is thus

W = Wconnected planar(S, g2 + 4g̃2A0, g4) − g̃2A
2
0. (5.12)

One can also see directly that integrating out Ã gives no contribution to the superpotential. In the

diagrams that one can write down, there will be many loops of Ã, but there are no vertices that

can absorb any fermionic momentum, and therefore these diagrams do not yield any contribution

to the superpotential.

It is an interesting exercise to verify explicitly that (5.12) is a generating diagram for pasted

diagrams (which are all tree graphs), made out of building blocks corresponding to Wconnected planar.

5.2 Matrix model perspective

Above we argued that the methods of [4] show that above linearization of the double-trace defor-

mation via introduction of an auxiliary singlet field A leads to a theory whose superpotential be

computed by a matrix model.

First observe that the double-trace matrix model partition function can be linearized in traces

by the introduction of an auxiliary parameter A, over which we integrate:

Z = exp(−M2Fdouble
0 ) =

∫
dM2

(Φ) exp{−M(
1

2
g2Tr(Φ2) + g4Tr(Φ4) + g̃2

(Tr(Φ2))2

M
)} (5.13)

=

∫
dA dM2

(Φ) exp{−M(
1

2
(g2 + 4g̃2A)Tr(Φ2) + g4Tr(Φ4) − Mg̃2A

2)}.

This is is Matrix model analog of the statement that the double-trace field theory can be generated

by integrating out a gauge singlet. In terms of the free energy of the single-trace matrix model,

this can be written as

exp(−M2Fdouble
0 ) =

∫
dA exp(−M2F single

0 + M2g̃2A
2). (5.14)

Hence to obtain the free energy of the double-trace matrix model, we need to solve the equation
∂Fsingle

0 (A,S)
∂A − 2g̃2A = 0 for A and substitute in Fdouble

0 = F single
0 (A,S) − g̃2A

2 where we have
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used the identification from [3] that S ∼ M . The resulting expression for the double-trace matrix

model is, of course, the same as that obtained by mean field methods in section (4.1). However, as

emphasized in the previous sections, the derivative of this free energy with respect to S does not

yield the correct superpotential for the field theory.

Let us now contrast this with a different matrix model construction suggested by the field

theory analysis in the previous subsection. Consider the Matrix partition function

Z̃ = exp(−M2F single
0 ) =

∫
dM2

(Φ) exp{−M(
1

2
(g2 + 4g̃2A)Tr(Φ2) + g4Tr(Φ4)}, (5.15)

where A is now treated as a fixed parameter of the Matrix model in analogy with the constant A

appearing in the field theory superpotential. As we explained above, the arguments of [4] applied

to the linearized model (5.2) show that in terms of F single
0 (A,S) (with S ∼ M as in [3])

Weff(A,S) = −NS(log(S/Λ2) − 1) + N
∂F single

0

∂S

∣∣∣∣∣
constantA

− g̃2A
2, (5.16)

where Weff is the field theory superpotential in (5.3). Note that we have not integrated out A at this

stage. Since the single-trace matrix model has reproduced Weff(A,S), it is manifest that integrating

out A will correctly produce the double-trace superpotential as a function of the glueball, just as

it did in the field theory.

Identifying the glueball: Something remarkable appears to have happened here. If we start

with the single-trace Matrix model (5.13) and integrate out the singlet A, we find the free energy of

the double-trace model as indicated in (5.14), and ∂Fdouble
0 /∂S does not reproduce the field theory

superpotential. However, if we first differentiate with respect to S and then integrate out A we

reproduce the field theory result. Of course, the direct field theory computation described above

indicates to us that this is the right order in which to do things. But notice that the difference

between the two procedures essentially amounts to correctly identifying the glueball. Apparently to

identify S in the Matrix model we must linearize the theory and then use the prescription given in

[3]. Of course, differentiating the single-trace free energy with respect to S at constant A translates

in the double-trace theory into some complicated operation which would in effect identify the field

theory glueball in that Matrix model. But it is challenging to identify what this operation is.

5.3 General Multi-trace Operators

Finally, we show that the procedure of introducing auxiliary parameters to linearize traces in a

double-trace theory can be extended to a general multi-trace model. Consider the term

Tr(Φm1)Tr(Φm2). (5.17)

in the superpotential. We can rewrite this in terms of single trace terms by introducing four gauge

singlet fields Ai, i = 1 · · · 4 as

W2 = 3
(
A2

1 +A2
2 +A1A2 +A1TrΦm1 +A2Tr(Φm2 +

2√
3
A3TrΦm1 −A2

3 +
2√
3
A4TrΦm2 −A2

4

)
. (5.18)
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Integrating out Ai by setting ∂W2/∂Ai = 0, solving for Ai and substituting in (5.18) yields the

double trace superpotential (5.17).

To generate a term of the form

Tr(Φm1)Tr(Φm2)Tr(Φm3) . (5.19)

we iterate the above procedure twice, i.e. we introduce additional gauge singlet fields Bi, i = 1 · · · 4,
and consider the theory with a superpotential

W3 = 3
(
B2

1 + B2
2 + B1B2 + B1TrΦm3 + B2W2 +

2√
3
B3TrΦm3 − B2

3 +
2√
3
B4W2 − B2

4

)
. (5.20)

where W2 is defined in (5.18). Integrating out Ai and Bi for i = 1 · · · 4 yields the term (5.19).

Generalization to terms with more traces is obvious.

6. Conclusion

We have studied an N = 1 U(N) gauge theory with adjoint chiral matter and a double-trace

tree-level superpotential. We found by direct computation that the computation of the effective

superpotential as a function of the glueball superfield localizes to summing a set of matrix integrals.

The associated set of Matrix diagrams have the structure of tree diagrams in which double-trace

vertices are strung together by “propagators” and “external” legs are that themselves connected

single-trace diagrams. We showed that the Seiberg-Witten solution to N = 2 field theories computes

an effective superpotential for the double-trace theory that matches our direct analysis. The use

of factorization in our Seiberg-Witten analysis, namely that 〈Tr(Φ2)2〉 = 〈Tr(Φ2)〉2, was equivalent

in our perturbative computations to the vanishing of any diagrams where extra momentum loops

were introduced by the double-trace vertices. Next, we showed that the large-M limit of the

standard double-trace U(M) Matrix model does sum up the same set of matrix diagrams, but the

combinatorial factors are different from those appearing in the field theory. In particular, the field

theory superpotential is not computed by a derivative of the matrix model free energy as in [3]. Put

another way, a simple manipulation of the free energy of the standard double-trace matrix model

does not give a generating function for the field theory superpotential. Finally we demonstrated

how a multi-trace field theory can be linearized in traces by the introduction of auxiliary singlet

fields. We showed the associated Matrix model, which is linear in traces also, computes the field

theory superpotential as a function of both the glueball and the new singlets. The basic subtlety,

then, lies in the correct identification of the field theory glueball as a variable in a Matrix model.

Our results raise several challenges:

1. We found that while a multi-trace Matrix model did not directly compute the superpotential

of a multi-trace field theory, we could sum the necessary diagrams by introducing auxiliary

singlet fields in an associated single-trace model. The basic subtlety involves correct identifi-

cation of the field theory glueball in the Matrix model. How is this done in general, and what

is the underlying principle driving the identification?

– 31 –



2. Does the large-N limit of the standard double-trace Matrix model compute the superpotential

for some N = 1 field theory?

3. We expect that all our results generalize easily to multi-trace theories — it would be nice to

check this.

4. We have worked in the vacuum with an unbroken gauge group. It would be good to generalize

our arguments to the other vacua with partially broken gauge symmetry.

5. In Sec. 2.6 we pointed out that there is an intriguing connection between the contributions

made by multi-trace vertices to the superpotential of a local theory and certain Feynman

diagrams of an associated nonlocal theory. It would be very interesting to flesh out this

connection.

6. In an U(N) theory with adjoint Φ, the operator Tr(ΦK) with K > N decomposes into a sum

of multi-trace operators. This decomposition can receive quantum corrections as discussed in

[5]. How do our arguments generalize to this case?

7. We can also add baryon-like operators like det(Φ) to the superpotential (for theories with

fundamental matter in the context of matrix models, baryons were studied by [16, 17]). Such

operators also decompose into sums of products of traces, and are very interesting because,

even without fundamental matter, they can give rise to an open string sector in Yang-Mills

theory as opposed to the standard closed string sector that the ’t Hooft expansion leads

us to expect [37, 38]. It would be useful to understand in this case how and whether the

computation of holomorphic data in such a theory localizes to sums of Matrix integrals.

In addition to these directions there are some interesting applications that arise from known

facts about the large-N of the standard double-trace U(N) Matrix model. This theory is related

to two-dimensional gravity with a positive cosmological constant and displays phase transitions

between branched polymer and smooth phases of two-dimensional gravity [22]. Presumably such

phase transitions manifest themselves as interesting phenomena in a four-dimensional field theory.
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