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List of Symbols and Abbreviations 
A 

Ae3 

Temperature independent constant. 
The `upper critical' temperature marking the upper limit of the a+y two-phase 
region under equilibrium conditions as shown on phase diagrams. 

Ara - The 'upper critical' temperature marking the start of the austenite (y) to ferrite 
((x) phase transformation of a steel under non-equilibrium cooling conditions. 

AIN - Aluminium Nitride. 

DIF - Deformation induced ferrite. 

DRX - Dynamic recrystallisation. 
GBS - Grain boundary sliding. 
L- Gauge length. 

MnS - Manganese Sulphide. 

N- Temperature independent constant. 
Nb(CN) - Niobium carbonitride. 
Q- Activation energy for deformation, J moI''. 
R- Universal molar gas constant, 8.314 510(70) J K"' mol 1. 

r- Radius of curvature of the slab ('R'-bending radius). 
R of A- Reduction of area. 
SFE - Stacking fault energy. 
t- Slab thickness. 
T- Absolute temperature, Kelvin (K). 

Tm - Melting point temperature, K. 
TiN - Titanium Nitride. 
V- Casting speed, typically 0.9 m min''. 
VN - Vanadium nitride. 

a- Ferrite. Body centred cubic form of iron and solid solutions based on it; it is 
stable up to 1183 K. 

a- Temperature independent constant. 
6- Delta ferrite. Body centred cubic form of iron similar to a; it is stable between 

1673 K and the melting point, 1808 K. 

6- Skin thickness of the solidifying slab. 

A- Distance from a tangent point to the first bending rolls. 
y- Austenite. Face centred cubic form of iron and solid solutions based on it; it is 

stable between 1183 K and 1766 K. 
s- The overall bending strain rate in the slab during straightening. 

ss - The bending strain at the slab surface during straightening. 

Cr - Stress (either peak or steady state). 
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Abstract 
The influence of the Ara on the hot ductility of steels was examined. Tensile samples 

were heated to 1603K, cooled at 60Kmin" and tested in the temperature range 1323-873K at 

a strain rate of 3x10-3S-1 . The Ara was altered by variations in C, (0.1 to 0.15%C), Mn, (0.6 to 

1.4%Mn), Si (0.1 to 0.5%Si) and P, (0.001 to 0.025%P). Elements that raise the Ara e. g. Si 

and P were found to lead to recovery in ductility at slightly higher temperatures at the low 

temperature end of the trough. However, reducing C levels to <0.1C had the most 

pronounced influence on hot ductility since ductility was then observed to recover just below 

the Ae3 and the trough was very narrow. The lower C level allowed large amounts of 

deformation-induced ferrite (equilibrium amounts) to form, ferrite having excellent ductility. 

The influence of both S in solution and elongated sulphides on hot ductility was also 

examined. Although elongated sulphides encouraged ferrite formation, this was a relatively 

minor improvement. In these steels, low C levels (<0.1%) i. e. high Ae3 temperatures, 

ensured ductility recovered rapidly just below the Ae3 obscuring the effect of S. Similar 

behaviour was noted with as-cast steel, increasing the S level from 0.004 to 0.019% had little 

influence on the hot ductility. Increasing the cooling rate after solidification, from conventional 

continuous casting to that pertaining to thin slab casting, results in worse ductility. This can 

be ascribed to finer precipitation and/or a finer inclusion distribution at the y grain boundaries. 

A model was devised for predicting the hot ductility curve for simple plain C-Mn 

steels. However, this model has limited application and further development is needed to 

take into account the influence of grain boundary sliding on the reduction of area values. 

Columnar grains were found to be very detrimental to hot ductility and to avoid 

transverse cracking, it is suggested magnetic stirring be used in the mould to break up the 

columnar structure. 

A Cu addition was found not to influence hot ductility at a cooling rate of 25Kmin', but 

ductility was worse at 200Kmin''. Oxidising conditions are required to properly show the 

effect of residuals; unfortunately time was not available for undertaking this. 
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1. Introduction 

The discovery and development of new materials and processes to manufacture 

them has always been a crucial factor in the prosperity and technical development of the 

world's nations. Steels have been an essential part of this development since the Industrial 

Revolution of the late 1800's. Production of iron and steel accounted for around ninety 

percent of all metals consumed during the decade 1980-90, where annual production had 

risen to around 750 million tonnes. A range of published forecasts during this period 

predicted world steel production would exceed 1000 million tonnes by the year 2000. This 

level of annual production consumes about three billion tonnes of raw materials and 

accounts for approximately six percent of the world's total primary energy use'. The 

dominance of steels is due to their versatility in production and processing; the wide 

spectrum of applications in which their properties can be exploited; their ease of fabrication 

and with environmental issues becoming ever more important, ease of recycling. However, 

steel now faces strong competition from other materials such as aluminium, polymers, 

ceramics and composites. Therefore, its properties need to be continually improved, 

production costs reduced and innovative new applications sought. 

The hot ductility of steels has become a subject of great importance ever since 

continuous casting was introduced commercially, around 1960, and transverse cracking was 

found to occur particularly in the niobium grades of steels for oil platform and line pipe. In 

the continuous casting operation, molten steel is poured from a ladle via a tundish into an 

oscillating, water-cooled mould, which is often curved. Crack propagation occurs when the 

cast strand is straightened which puts the top surface and edges into tension. Such cracks 

are found to be intergranular, meandering along the austenite boundaries and their ability to 

B. Wilshire, D. Homer and N. L. Cooke: Technological and Economic Trends in the Steel Industries, Pineridge Press, 
1983, ISBN 0-906674-21-4. 
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form is highly dependent on composition as this controls precipitation, which is known to 

exacerbate the problem. Nb as a micro-alloying element has been found to be particularly 

deleterious as it precipitates dynamically during straining as Nb(CN) both within the matrix 

and at the austenite boundaries. 

The straightening operation is carried out in the temperature range from around 

1273 down to 973K, and coincides with the interval in which steel exhibits a ductility 

minimum in laboratory hot tensile tests. This apparently clear correlation between transverse 

cracking and tensile hot ductility has led to extensive laboratory studies during the last 25 

years. Considerable work has been carried out into reducing the deleterious influence of the 

micro-alloying additions, and it is common to restrict additions to the minimum required to 

give the required properties in the finished product and to adjust cooling conditions so that 

the temperature at the straightener is as high as possible so as to reduce precipitation. 

However, even when these precautions are taken it is common to have to scarf the surface 

and roll wide and trim off the cracked edges leading to considerable scrap losses. As supply 

of suitable grades of iron ore are becoming scarce, scrap is increasingly being used, 

resulting in increased residual levels. This has led to a deterioration in the surface quality of 

slabs. Furthermore, scrap will have high levels of copper and sulphur, which are known to 

reduce ductility. 

City University has been developing the hot ductility test over a number of years to 

make it more and more useful as a simulative test to both help understand and, more 

important commercially, predict the likelihood of transverse cracking occurring. Cooling 

rates to the test temperature and strain rate are chosen to correspond with those undergone 

during the straightening operation and tensile samples can be cast in-situ prior to testing. 

The work that has been done 2,3,4,5,6 in examining the influence of composition (Nb, V, S, Ti 

2 B. Mintz, S. Yue and J. J. Jonas: Int Materials Reviews 1991, Vol. 36, No. 5, pp. 187-217. 
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and Ca) on hot ductility has been of great benefit to the steel industry in controlling 

transverse cracking. It has also very much increased our fundamental understanding of the 

microstructural factors which influence hot ductility. The present programme is aimed at 

continuing this work in both developing our understanding of the ductility trough as well as 

furthering our knowledge on the relationship of the hot tensile test to the problem of 

transverse cracking. 

The work will also concentrate on thin slab casting, as this is likely to revolutionise 

steel production in the next decade. As a thinner strand would result in a much larger 

throughput requirement for the reheating furnace, direct rolling immediately after 

straightening is a necessity. As the strand is not reheated, considerable savings will be 

made and a thinner slab requires less rolling reduction. A defect free surface is then vital for 

the economic production of slabs. Whereas problems have been overcome for the thin slab 

casting of strip, this is not the case for plate. Presently, it has not been possible to thin slab 

cast steels in the peritectic carbon range 0.1 to 0.16%, which virtually precludes a large slice 

of the plate market. 

3 

4 

5 

6 

B. Mintz and R. Abushosha: Ironmaking and Steelmaking, 1993,20,6, pp. 445-452. 

R. Abushosha, R. Vipond and B Mintz: Materials Science and Technology, 1991,7, pp. 1101-1107. 

B. Mintz, Z. Mohamed and R. Abushosha: Materials Science and Technology, 1989,5, pp. 682-688. 

R. Abushosha, R. Vipond and B. Mintz: Materials Science and Technology, 1991,7, pp. 613-621 
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2. Literature Review 

The hot ductility of steels has been the subject of many investigations since the 

continuous casting of steel was introduced commercially and cracking was observed during 

the straightening operation. Considerable progress has been made over the past 25 years 

towards understanding this phenomenon. More recent work at City University 7-8-9,10 has 

gone far into interpreting the hot ductility curve and it has been possible to separate the 

contributions of deformation induced ferrite, grain boundary sliding and dynamic 

recrystallisation to hot ductility. 

There have been two major reviews 2'11 on this subject and this work will be 

summarised in this chapter; it is important to discuss the relevance of the hot ductility tensile 

test to the problem of transverse cracking. This test is used to simulate the conditions 

experienced during the straightening operation, where temperatures range from 1273K 

down to 973K and strain rates are in the range 10"3 to 10-4s 1. Information obtained using 

these conditions has been found very useful in assessing the probability that a steel will 

suffer from transverse cracking at the straightener, 12 but great care has to be taken in 

interpreting the results so that they can be used to improve commercial practice. The 

reduction of area values (R of A) is taken as a measure of the ductility and the value 

required to prevent transverse cracking occurring is dependent on the exact test conditions. 

7 

8 

9 

10 
11 

12 

B. Mintz and J. J. Jonas: Mat. Sci. and Technol., 1994, Vol. 10, pp. 721-727. 

G. S. I. L. Cardoso, S. Yue and B. Mintz: submitted to Mat. Sci. and Technol., 1995. 

B. Mintz: Mat. Sci. and Technol., 1996,12, pp. 132-138. 

B. Mintz, R. Abushosha and M. Shaker. Mat. Sci. and Technol., 1989,5, pp. 682-688. 

B. Mintz: ISIJ Int., 1999,39, No. 9, pp. 833-855. 

B. Mintz and J. M. Arrowsmith: Met. Technol., 1979,6, pp. 24-32. 
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2.1 The Continuous Casting Process 

Continuous casting was introduced commercially in the 1960's and is a very efficient 

way to produce steel, offering great advantages over other methods of steel production. As 

well as the economic benefits and improved yield, continuous casting processes were 

developed to overcome a number of the traditional ingot-related difficulties, such as piping, 

entrapped slag and structure variation throughout the length of the solidified product. 

Continuous casting virtually eliminates these problems and in addition, steels produced by 

this route generally have an improved surface quality, fewer oxide inclusions and a more 

uniform chemical composition. From the production point of view, not having to pour into 

moulds, then strip, handle and reheat the ingots before rolling allows enormous cost savings 

to be made. Although there are many different methods of the continuous casting process in 

use commercially, they can be broadly grouped into the categories shown in Figure 2.1. 

Holding 
furnace 

. Submerged Entry Nozzle 

TrvN. 

oWwf '. ý% W-, - c... ý� --;! 1... ý: - NOIfR 
ýýf Support r0A Cufof f 
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Steel 
ý 

Secondary S. 
Cooling 

Horizontal 

Figure 2.1: Schematic illustration of continuous casting methods in use. 13 

The vast majority of continuously cast steel is produced using the curved method 

employing a curved mould so that the strand only needs to be straightened once solidified. 

The vertical continuous caster is generally only used to cast aluminium and a few other 

13 B. G. Thomas: Introduction to Continuous Slab Casting, Continuous Casting Consortium, 2003, 
http: //bgtsunsparc. me. uiuc. edu/introduction/overview. html. 
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metals; it is not commonly used to cast steel since the machine/building height limits the 

maximum length of strip that can be cast. The horizontal method is used occasionally for 

steel and other non-ferrous alloys. 

Depending on the application of the final product, steel sections can be continuously 

cast in many different shapes and sizes. Figure 2.2 (a) shows the types of section available 

and their sizes, whilst Figure 2.2 (b) shows examples of final products available from the 

Corus large structural mill at Teeside. Direct strip casting is now being pioneered at many 

sites worldwide and steel is being produced with thicknesses around 1.5 to 5mm. 
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ý 

(b) 

Figure 2.2: (a) Continuously cast sections, sizes are in millimetres (adapted from ref. 14) 

and (b) the range of products available from the Corus large structural mill at Teeside. 15 

Molten steel is poured from a ladle into the tundish using a bottom pouring process, 

Figure 2.3 (a). This prevents slag and floating matter from transferring in to the subsequent 

castings and results in a cleaner product being obtained. From the tundish, the molten steel 

enters a water-cooled curved copper mould through a submerged entry nozzle; this method 

of pouring avoids possible splashing and oxidation. The mould oscillates at between 60 and 

120Hz 2 to prevent sticking; mould fluxes, or lubricants such as rapeseed oil, are also used 

14 B. Kozak and J. Dzierzawski: AISI Learning Centre, 2002, http: //www. steel. org/learning/howmade/concast. htm. 
15 

M. Pettifor: 49th Hatfield Lecture, Technology: driving steel forward, Steel World, 2002, Vol. 7, pp. 11-19. 
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to further prevent the solidifying steel from sticking to the mould wall. However, the 

oscillation causes transverse ripples (or oscillation marks) to be formed on the surface of the 

strand, 16 Figure 2.3 (b). Solidification of the steel below the mould is accelerated by direct 

water sprays, but up to ten metres may have to emerge before the steel becomes solid to 

the core, this is known as the metallurgical length, see Figure 2.3 (a). 

Tundish 

Submerged Entry Nozzle 

Meniscus 

Support roll 

(a) (b) 

Figure 2.3: Schematic diagrams of (a) a continuous caster with a straight mould and (b) slab casting 
phenomenon (longitudinal section). 13 

When the strand is sufficiently solidified, and no breakout of the molten steel at the 

centre of the strand is likely to occur, the strand is straightened. This operation is usually 

carried out in the temperature range of 1273K down to 973K, which coincides with the low 

ductility region observed when the steels are tensile tested in the laboratory (discussed in 

section 2.2.1). The strain rates experienced at the top surface of the strand are normally in 

the range 10-4 to 10-3s-1. Slabs are constantly cut from the end of the strand using gas 

cutters, ready for further processing into sheets, rod and other sections. 

16 E. T. Turkdogan: AIME Steelmaking Conf. Proc., 1987,70, p. 399 
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2.1.1 Transverse Cracking 

During the process of straightening the vertically cast curved strand, the top surface 

is put into tension and transverse and edge cracking can occur. The cracks are generally 

fine and difficult to see and can be 0.2mm wide and from 1 to 15mm in depth. " As shown in 

Figure 2.4, the transverse and edge cracks can be readily observed when the slab is 

scarfed, a commercial practice normally used to remove the cracks prior to further 

processing such as rolling. In some cases, the slab may need to be scarfed to a depth in 

excess of 10mm to completely remove the transverse cracks and the edges trimmed to 

remove the edge cracks. The material removed in this manner is lost to scrap, increasing 

the production costs of the steel. 

(a) (b) 

Figure 2.4: (a) Cold machine scarfed slab showing transverse cracking 
and (b) a partially rolled slab showing severe edge cracking. 18 

The base of the oscillation marks formed in the mould are thought to act as stress 

concentrators which promote crack formation and growth during the straightening process. 19 

The cracks have been shown to be intergranular in nature and meander along the prior 

austenite grain boundaries, with coarse grained regions being particularly susceptible to 

17 

18 

19 

J. K. Brimacombe and K. Sorimachi: Metall. Trans., 1977,8B, p. 489. 

D. N. Crowther: The Hot Ductility of Steels, PhD Thesis, 1986, City University London, UK. 

L. Scmidt and A. Josefsson: 1974, Scan. J. Met., 3, p. 193. 
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cracking. 19 Precipitates of AIN, 20 MnS and Nb(CN) and various oxides21 have been shown to 

be present on the crack surfaces. Niobium grades for oil platform and line pipe have been 

found to be particularly susceptible to transverse cracking due to Nb(CN) precipitating 

dynamically during straining, both within the matrix and at the austenite (y) boundaries. 22 

2.1.2 Mechanics of the Slab Straightening Process 

Transverse cracking always occurs on the top surface of the strand which is put into 

tension during straightening, not the underside which is put into compression. Generally, 

transverse cracking will occur if the stress on the top surface during straightening exceeds 

the fracture strength of the solidifying, or solidified, strand. The amount of strain that the top 

surface of the strand is subjected to depends on factors relating to the continuous caster in 

question. These factors include the geometry of the mould (e. g. radius of curvature), casting 

speed, rate of cooling and strand temperature at the straightener. These factors have been 

explained in detail by Lankford 23 and some will be covered briefly in section 2.4 of this 

review, where their effect on hot ductility will be discussed. 

Stresses on the strand during casting may come from a number of sources such as 

the weight of the strand, misalignment in the caster, non-uniform cooling in the mould, and 

the straightening operation. However, the surface strain and strain rate experienced at the 

straightener may be the largest the slab is subjected to in the continuous casting process. 

The bending strain at the slab surface, e5, is given approximately by the following equation: 

t 
sS 2R 

20 

21 

22 

23 

(2.1) 

H. Mori: Tetsu To Hagane, 60,784. 

R. C. Cochrane: 1982, unpublished work referenced by D. N. Crowther. 16 

B. Mintz: 1995, EPSRC Research proposal GR/K61692, Hot Ductility and its Relationship to Transverse Cracking during 
continuous casting. 

W. T. Lankford: 1972, Metall. Trans., 3, p. 1331. 
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Where t is the slab thickness and R is the radius of curvature of the strand before 

straightening (dictated by the mould curvature). A surface strain of 1.15% is expected for 

typical process values of t=0.23m and R= 10m. Lankford proposed three values for the 

gauge length (L) involved when bending a slab; the distance from a tangent point to the first 

bending rolls (A), the skin thickness (8) and the slab thickness (t); this gives rise to 

uncertainties in the value of the gauge length. The surface strain and overall strain rate 

experienced by the slab during bending are shown in Figure 2.5. The strain rate (s) can be 

calculated using the following equation: 

V 
c =Ss- 

L 
(2.2) 

Where V is the casting speed and L is the gauge length. Bernard et a/ 24 obtained 

similar results to Lankford; for a typical casting speed of 0.9 m/min and L between 6 and 

10m, the strain rate at the surface of the strand was found to be in the range 1.7x10"3 to 

2.9x10"3 s'. Unfortunately, these results are only approximate and apply to the slab as a 

whole; locally, i. e. the base of the oscillation marks, the values of e, and s may be 

markedly different. In commercial continuous casters the strain rates experienced at the 

straightener are between 3x10-3 and 3x104 s. 

is Skin 
£- E2r 

Thickness �Q Tan, to Roll ]t E= OIL 
L. 

E= Surface Strain 
E= Strain Rate 

t, ý, $ =L (Gauge Length) 

Figure 2.5: Surface strain and overall strain rate resulting from bending. 23 

24 
G. Bernard, J. P. Birat, B. Conseil and J. C. Humbert: Rev. Metall., 1978,75, p. 467. 
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2.2 Hot Ductility 

As previously mentioned, 1273 to 973K is the temperature range in which the 

straightening operation is carried out in continuous casting and the serious commercial 

problem of transverse cracking can occur. Much study has been undertaken over the past 

25 years to increase the understanding of the factors that influence hot ductility of steel in 

this temperature range. One of the ways in which this poor hot ductility can be measured is 

by reduction of area (R of A) values obtained from hot tensile testing. The trough observed 

in the hot ductility curve using reduction of area values is shown in Figure 2.6; this shows 

the hot ductility curve (solid lines) to be made up of three distinct regions, two having high 

ductility separated by a region of low ductility or embrittlement. 

100-1 

80 

60 
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20 

0i 
850 950 1050 1150 1250 

Temperature, K 

Figure 2.6: A schematic diagram of a typical hot ductility curve. 

Although these three regions are of the most interest in this study due to the 

temperature at the straightener, another region of reduced ductility of concern in continuous 

casting exists at temperatures approaching the melting point and found within the mould. 

Low ductility observed within about 50K of the solidus is related to the solidification process 

of the steel, see Figure 2.7. This region of reduced ductility is known as hot tearing. 
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Figure 2.7: Schematic diagram of reduced ductility in the high temperature, low ductility region. 25 

It is easiest to explain why the change in hot ductility occurs in Figure 2.6 by taking 

each of the three regions in turn, these being: 

" The trough or region of embrittlement. 

"A high ductility, high temperature region (HDHT). 

"A high ductility, low temperature region (HDLT). 

2.2.1 The Ductility Trough 

The poor ductility that is encountered in this region is always related to intergranular 

failure at the y grain boundaries, the fracture facets are either smooth or covered in fine 

dimples, 2 see Figure 2.8. This indicates that there are two distinct failure mechanisms acting 

in the ductility trough observed at test temperatures from as low as 973K to as high as 

1473K. As mentioned earlier, the temperature at which the strand is straightened in 

commercial practice falls within this range, with transverse cracks often being observed at 

strain rates between 10-4 and 10"3s"1. Understanding what influences the hot ductility in this 

region is vital if solutions are to be found to reduce the occurrence of this cracking. 

25 H. G. Suzuki et al: In "100`h ISIJ Meeting", October 1980. 
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Figure 2.8: (a) C-Mn-Al steel showing flat facets on fracture surface; (b) enlarged view of a showing lack of 
voiding around MnS inclusions; 2 (c) intergranular microvoid coalescence type fracture in C-Mn-Al steel 26 

and 
(d) ductile dimples showing voiding around inclusions within the thin film of ferrite. 27 

The intergranular failures with dimpled fracture facets can be due to one of two 

microstructural features being present at the austenite grain boundaries and leading to 

excessive strain concentrations; these are thin ferrite films and precipitate free zones. 

2.2.2 Thin Ferrite Films 

Thin ferrite films form around the austenite grain during the austenite to ferrite 

transformation and intergranular failure can occur when the thin films are around 5 to 20µm 

in thickness. 2 The a phase in iron-based alloys is softer than the y at a given temperature. 28 

This is due to ferrite having a higher stacking fault energy than austenite, and therefore 

26 

27 

28 

A. Cowley, R. Abushosha and B. Mintz: Mat. Sci. and Technol., 1998,14, pp. 1145-1153. 

R. Abushosha, S. Ayyad and B. Mintz: Mat. Sci. and Technol., 1998,14, pp. 346-351. 

P. J. Wray: Met. Technol., 1981,12, p. 466. 
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more rapid recovery . 
29 As the ferrite film is generally much softer and more ductile than the 

austenite grains, the strain will tend to concentrate within the ferrite; ductile voiding occurs, 

generally around MnS inclusions formed at the austenite grain boundaries 2,30,31 see Figure 

2.9. In an unstrained sample, the thin films of ferrite would only start to form when the 

temperature had dropped to the Ar3; this being the temperature at which ferrite begins to 

form in unstrained austenitic steel, cooled at a given rate. 

. 
Decreasingl'emperaturc 

/ 
(a)... ,. (b) 

Figure 2.9: (a) schematic diagram showing mechanism for transformation induced 
intergranular failure; 2 (b) ferrite films at the boundaries of y grains in a C-Mn-Al steel 

tested at 1023K with Ae3=1085K and Ara=973K and cooling rate of 60Kmin_1.26 

ý---\4nS 

Previous work 32,33,34 has shown that the rate of the y to a transformation significantly 

increases if strain is applied at temperatures between the Ae3 and Ar3; the presence of this 

deformation causing ferrite to form at times and temperatures that would not otherwise be 

the case. Often the thickness of the strain induced ferrite films do not increase substantially 

until the Ar3 is reached. Lowering the test temperature further, before the tensile test, results 

in ferrite forming normally and in large amounts. The ductility can be seen to recover fully 

when there is around 50 percent ferrite present; this can be seen in Figure 2.10. 

29 
J. Lewis, J. J. Jonas and B. Mintz: ISIJ Int. 1998,38,3, pp. 300-309. 

30 

31 

32 

33 

34 

B. Mintz, R. Abushosha and M. Shaker: Mat. Sci. Technol., 1993,9, p. 907. 

G. I. S. L. Cardoso and S. Yue: 315` Mechanical Working and Steel Processing Conf., ISS of AIME, Chicago, 1989, p. 585. 

A. Sandberg and W. Roberts: Thermomechanical Processing of Microalloyed Austenite, ed. By A. J. DeArdo, G. A. Ratz 
and P. J. Wray, TMS-AIME, Warrendale, PA, USA, 1982, p. 405. 

R. K. Amin and F. B. Pickering: Thermomechanical Processing of Microalloyed Austenite, ed. By A. J. DeArdo, G. A. Ratz 
and P. J. Wray, TMS-AIME, Warrendale, PA, USA, 1982, p. 377. 

M. Umemoto, H. Ohtsuka, H. Kato and I. Tamura: Proc. Int. Conf. On Structure and Properties of HSLA Steels, 
Wollongong, Australia, 1984. 
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Figure 2.10: Effect of percentage ferrite phase present on hot ductility. 8 
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As explained in ref 2, various suggestions have been put forward to account for the 

accelerating effect of deformation on the nucleation of ferrite: 

1. The deformation results in local grain boundary migration which form bulges at the 

austenite grain boundaries, which then act as nuclei. 32 

2. Sub-grains are formed near the boundaries, raising the locally stored energy. 33 

3. The increased dislocation density in deformed austenite increases the strain energy, 
thus favouring ferrite nucleation. 35 

Many investigations 31,36,37,38 have shown that the thin films of ferrite observed are 

deformation induced; although much of the work that has been done shows deformation 

induced ferrite (DIF) to form readily in fine grained material, there is limited positive 

confirmation of its formation in coarse grained material at low strains (-2%) such as 

35 

36 

37 

38 

M. Umemoto and I. Tamura: in ref 28, personal communication, Kyoto University, Japan, 1985. 

T. Maki, T. Nagamichi, N. Be and I. Tamura: Tetsu To Hagane, 1985,71, p. 1367. 

D. N. Crowther and B. Mintz: Mat. Sci. and Technol., 1986,2, p. 671-676. 

D. P. Rizio, R. B. Oldland and B. W. Borland: in 'Physical Metallurgy of Thermomechanical Processing and other Metals, 
Thermec 88', p. 178; 1988, Tokyo, ISIJ. 
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experienced in the straightening operation. Essadiqi and Jonas 39 have shown that 

deformation induced ferrite can be produced in fine grained (25µm) low C, Mo steel under 

strain and strain rate conditions similar to those in the straightening operation. Similarly, 

Mintz et al 40 have shown that DIF can be produced in large quantities, close to equilibrium 

volume fractions, in a C-Mn-AI steel after strains as little as 0.15 at low strain rates (3x10-3 to 

3x10-4). 

Wedge shaped cracks are often present at the interface between the prior austenite 

grain boundaries and the thin films of ferrite, 37 see Figure 2.11. These are assumed to form 

by displacement of the austenite grains along the softer ferrite films rather than by 

2 conventional grain boundary sliding. 

(a) 
'rý f. 

. tFý. 
F---'^--j (b) 

Figure 2.11: (a) A typical wedge type crack formed in a Nb containing steel 41 

and (b) enlarged view showing microvoid nucleation at inclusions. 2 

2.2.3 Precipitate Free Zones 

In Niobium containing steels that have been solution treated before cooling, 

precipitation takes place during deformation in the austenite. The formation of weaker 

precipitate free zones can occur on the edges of the grain boundaries, see Figure 2.12. 

39 

40 

41 

E. Essadiqi and J. J. Jonas: Metall. Trans., 1988,19A, p. 417. 

B. Mintz, J. Lewis and J. J. Jonas: Mat. Sci. and Technol., 1997,13, pp. 379-388. 

Z. Mohammed: Hot Ductility of Steels, PhD Thesis, 1988, City University London, UK. 
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Figure 2.12: Precipitate free zone around the grain boundary in a Nb-containing steel, fractured at 950K. 
42 The grain boundary contains fine precipitates of Nb(CN) and coarse MnS inclusions. 

These precipitate free zones are formed by diffusion and can be 500nm wide. 42 Fine 

precipitation can be seen to take place within the matrix, causing strengthening, and 

microvoid coalescence can then take place around in the relatively weak PFZs. This void 

formation occurs at the Nb(C, N) or AIN precipitates again contributing to the lack of ductility. 

This fracture process is illustrated schematically in Figure 2.13.43 
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Figure 2.13: Schematic illustrations showing intergranular microvoid coalescence of Nb-bearing steels by 
43 deformation in (a)-(c) the low temperature region and (d)-(f) the duplex phase region. 

42 B. Mintz, J. R. Wilcox and ON. Crowther: Mat. Sci. and Technol., 1986,2, p. 589. 

43 Y. Maehara and Y. Ohmori: Mat. Sci. Eng., 1984,62, p. 109. 
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The size and shape of the ductility trough can be influenced by the composition and 

the microstructure of the steels. The two most important microstructural elements that effect 

ductility are the grain size and the occurrence of precipitates. Extensive creep studies have 

shown that the high temperature ductility increases as the grain size decreases. This 

increase in ductility is due to the following factors: 

4. The increase in specific grain boundary area (for a given volume fraction of 

precipitate) reduces the precipitate density along the grain boundaries. 

5. The increased occurrence of grain boundary migration due to the increased number 

of grain boundary nucleation sites. 

6. The discouragement of crack propagation by the decrease in the crack aspect ratio 
(this controls the stress concentrations at the crack tip). 

The refined grain size leads to reductions in both the depth and width of the trough. 

The effect that precipitates have on the hot ductility depends on their size, distribution and 

location; as in austenite, fine precipitation allows cracks to join up by pinning the grain 

boundaries, which prevents grain boundary movement. Precipitates and inclusions also 

encourage microvoid coalescence, which in turn lead to crack propagation. 

Most steel companies, including Corus, operate their straighteners at the high 

temperature end of the trough. However, with hindsight, it is now felt that the lower 

temperature end of the trough should have been chosen (as in fact it was by several 

Japanese firms) and this project is involved in examining this end. 

2.2.4 High Ductility High Temperature Region (HDHT) 

In the HDHT region, the higher temperatures mean that the thin ferrite film is now 

entirely absent and the structure is entirely austenitic. This drastically reduces the strain 

concentration at the grain boundaries, which occurs when the ferrite film is present. Higher 
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temperatures also mean that less precipitation will occur and will also lead to lower flow 

stresses via increased dynamic recovery. 

The main increase in ductility that is observed in laboratory tests in this region is 

usually associated with dynamic recrystallisation (DRX) which leads to an increase in the 

driving force for grain boundary migration; this improvement in hot ductility is illustrated in 

Figure 2.14. DRX does not normally occur in commercial continuous casting due to the 

small strains (-2%) involved at the straightener. This is still the case even with thin slab 

casting when pre-deformation is used and the grain size will be slightly finer. Results 

obtained experimentally for this side of the trough should therefore be used with caution 

when trying to predict the likelihood of transverse cracking occurring during the straightening 

operation. The effect of DRX on hot ductility will be discussed more fully in section 2.3.2. 

Test temperature ('C) 

Figure 2.14: Schematic illustration showing the ductility levels that can be achieved with 
and without dynamic recrystallisation at the high temperature end of the trough 9 

As a result of the grain boundary migration, cracks that have initiated are isolated 

from the prior y grain boundaries and are not readily able to coalesce; crack growth is more 

difficult away from the grain boundaries. Generally the grain boundary migration is only 

possible when there is no film of ferrite present; this occurs at temperatures above the Ae3 

and thus good ductility often corresponds to the attainment of the Ae3 temperature. This 
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high ductility is due to the cracks becoming isolated, and then growing into large elongated 

voids. The final failure occurs due to necking between these cavities and is a characteristic 

of the fracture surfaces obtained when testing in the HDHT region, see Figure 2.15. These 

massive cavities have been shown not to be due to second phase particles present within 

44 the matrix. 45 

Figure 2.15: Typical high temperature ductile rupture failure observed in the HDHT region. 45 

Many studies have shown that the HDHT region corresponds to the onset of 

DIRK 24,46,47 However, in other studies 44,47,48 DRX has been seen to occur throughout all or 

part of the ductility trough, suggesting that on occasions DRX needs to be more advanced 

than just the early stages in order to prevent intergranular failures. To fully understand the 

HDHT region, it is first necessary to understand what controls the Ara temperature. If the Ara 

temperature can be raised so that it approaches the Ae3 temperature then, not only will the 

width of the trough be reduced, but large amounts of ferrite can form at the higher 

temperature thus improving ductility. The factors controlling the Ae3 and Ara temperatures, 

and hence production of DRX, form part of this current study. 

44 

45 

46 

47 

48 

P. J. Wray: Metall. Trans., 1975,6A, p. 1379. 

D. N. Crowther and B. Mintz: Mat. Sci. and Technol., 1986,2, p. 1099. 

J. R. Wilcox and R. W. K. Honeycombe: Met. Technol., 1984,11, p. 217. 

D. N. Crowther, Z. Mohamed and B. Mintz: Trans. ISIJ, 1987,27, p. 366. 

B. Mintz, S. Yue and J. J. Jonas: in Proc. Int. Conf. on'Recrystallisation in metallic materials', Wollongong, NSW, p. 553; 
1990, Warrendale, PA, Met. Soc. of AIME. 
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2.2.5 High Ductility Low Temperature Region (HDLT) 

The HDLT region starts when there is a relatively high volume fraction of ferrite 

surrounding the y grains; these ferrite films are now thicker and more uniformly distributed. 

The strength differential between the austenite and ferrite phases diminishes with 

decreasing temperature; therefore, the strain no longer concentrates in the ferrite films. 28 In 

this region, low temperature ductile rupture occurs; voids that are nucleated at second 

phase particles within the grains grow and coalesce resulting in fracture. 

A softening process known as dynamic recovery (discussed later in section 2.3.1) 

operates at all strains in the ferrite, due to a having a higher stacking fault energy; 49 this 

delays the onset of void nucleation and coalescence leading to good ductility. 50 Dynamic 

recovery occurs much more easily in ferrite which has 48 slip planes compared to austenite 

which only has 12. More deformation can thus be accommodated by the a phase such that 

grain boundary sliding is minimised resulting in high ductility. 

2.2.6 Measurement of Hot Ductility 

The closest simulation of the straightening operation in commercial continuous 

casting would be a hot bending test; due to complexity of the test apparatus required and 

difficulty in interpreting the results, it is not commonly used. 23.5' Other methods such as a 

flange test 52 and torsion testing 53 have been used, but the results are again difficult to 

interpret. The simple hot ductility test is by far the most commonly used laboratory test; this 

49 

50 

51 

52 

53 

D. M. Keene, C. M. Sellars and W. J. McG. Tegart: in 'Deformation under hot working conditions', Iron and Steel Institute, 
London, 1968,21. 

R. E. Smallman: Modern Physical Metallurgy, 1985, Butterworths and Co., ISBN 0750606290. 

N. W. Blake: "Hot ductility of simulation castings", Rep. MRUAMP/87/5, July 1987, BHP, Melbourne. 

J. Y. Fu, C. I. Garcia, S. Pytel and A. J. DeArdo: in "Processing, Microstructure and Properties of HSLA Steels", 1988,27, 
Warrendale, PA, Met. Soc. of AIME. 

L. E. Cepeda, J. M. Rodriguez-(babe, J. J. Urcola and M. Fuentes: Mater. Sci. and Technol., 1989,5, p. 1191. 
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is mostly due to the ease by which it can be carried out, producing results that can be 

readily interpreted, and the fact that conventional tensile test machines (e. g. Zwick, Instron 

and Hounsfield) available in most research laboratories can be easily converted to 

accommodate this test. There are a number of types of hot tensile test, each with different 

degrees of complexity and varying suitability and success for predicting the likelihood of 

transverse cracking occurring at the straightener. Examples of the different types of hot 

tensile test are shown in Figure 2.16. 

11 
ARGON INDUCTION COIL 

THERMOCOUPLE 

/00 \ ASBESTOS PAPER SILICA TUBE 

(a) 

(a) mitial device 

(c) solidification 

T 
TO CROSSHEAD 

I 

(c) 

SAMPLE - 

-42 
If ARGON 

Figure 2.16: (a) Experimental arrangement for measuring hot ductility in the as-cast condition, 54 

(b) Hot tensile test using as-cast notched specimen, 55 (c) hot tensile test employing resistance 
heating for solution treatment of specimen 56 

and (d) using radiant heating for solution treatment. 18 

54 

55 

56 

(b) 

(a) 

B. Mintz and Z. Mohamed: "Hot Ductility of Directly Cast Microalloyed Steels", in Int. Symp.. On Physical Simulation of 
Welding, Hot-Forming and Continuous Casting, CANMET, Canada, 1988. 

P. Deprez, J. P. Bricout and J. Oudin: Mat. Sci. and Eng., 1993, A168, pp. 17-32. 

S. Sladik and M. Longauerova: Metallic Materials, 1992,30, No. 4, pp. 210-214. 
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In the apparatus shown in Figure 2.16 (a), a converted Hounsfield tensometer has 

been fitted with induction heating rig used to melt the sample; the molten steel is retained in 

the silica tube and then cast in situ and cooled to the test temperature. Some of the 

problems encountered using this method have been found to include temperature gradients 

along the specimen, and fractures occurring outside the melt zone at lower temperatures. 

Figure 2.16 (b) shows a similar induction method, but this time using a notched 

specimen formed by fusing two blanks together. A calibrated conical shaped crucible 

ensures that the shrinkage cavity that can form is well away from the gauge length. This 

apparatus is therefore more involved and hence a more costly method than using that 

shown in Figure 2.16 (a). However, due to the notch failure always occurring in the melted 

zone and the gauge length in this case is definite; it has also been found to be of great 

interest as the test can produce the columnar grains present in commercially cast slabs, 

whereas without the notch, laboratory samples will only give equiaxed grains. Oudin et al 57 

state that the notched test favours decohesion at the grain boundaries and related defects. 

Simple casting in-situ will simulate continuous casting more closely for segregation, grain 

size and dissolution of precipitates such as TiN and MnS, but not the grain morphology. 

Figures 2.16 (c) and (d) show methods where samples are not cast in-situ, but are 

instead solution treated at temperatures high enough to allow the microalloying precipitates 

to dissolve. It has been shown 58 that solution treatment is the preferred route for hot tensile 

testing of microalloyed steels over casting in situ. Direct casting is only normally necessary 

when solution treatment is proved difficult, as is the case when studying steels with Ti 

precipitates, where a high temperature is required to take them into solution. The work that 

is undertaken in the Department of Mechanical Engineering at City University, and therefore 

that in the current study, uses apparatus similar to that shown in Figures 2.16 (a) and (d). 

57 

58 

J. Oudin, Y. Ravalard, J. C. Gelin, G. Lacombe and T. Labarthe-Vacquier: Mater. Tech., 1988,39, pp. 11-12. 

B. Mintz and R. Abushosha: Mat. Sci. and Technol., 1992,8, No. 2, pp. 171-177. 
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2.3 High Temperature Cracking and Softening Processes 

Hot strength is strongly influenced by the temperature and strain rate; this is 

particularly the case when large strains (s) are applied to materials at high strain rates at 

temperatures (T) in excess of 0.7 T,,,, where Tm is the melting point in Kelvin. During hot 

deformation, the strength and also the hot ductility of a steel will depend upon the balance 

between work hardening, dynamic softening (recovery and recrystallisation) processes, the 

composition and the test conditions (including temperature, s and E ). Whether dynamic 

recovery or recrystallisation occurs is largely governed by the steel's composition and the 

deformation conditions, this is summarised in Table 2.1. 

Group Example Dynamic Static 

Al, a-Fe, Recovery (all Recovery 

A ferritic alloys strains) followed by 

recrystallisation 

Cu, Ni, y-Fe, Recovery (small Very limited 

austenitic strains) recovery, 
B 

alloys followed by 
Recrystallisation recrystallisation (large strains 

Table 2.1: Possible softening processes occurring on hot deformation. 59 

If work hardening predominates, the strength will be high but the ductility will be low. 

This situation is reversed if softening processes predominate, therefore resulting in high 

ductility. Various attempts have been made to discover a relationship between strength (a), 

T and s; the most successful of the early investigations would seem to be that of Sellers et 

al. 60 who proposed the following arrhenius type of rate equation: 

Q 
s= A(sinhaQ)" e Rr (2.3) 

59 C. M. Sellars and W. J. McG. Tegart: Int. Met. Rev., 1972,17,1 

60 C. M. Sellars and W. J. McG. Tegart: Mem. Sci. Rev. Met., 1966,63, p. 731. 
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Where A, a and n are temperature independent constants, a is the stress (either 

peak or applied), T is the absolute temperature, R is the Universal Gas Constant and Q is 

the activation energy. 

The activation energy, Q, can remain unchanged over a wide range of strain rates, 

but different values may be obtained for creep and hot working conditions. 61 For plain 

carbon steels deformed in the ferrite, Q can be taken as the activation energy for self 

diffusion (289kJ mor1 in a-iron), indicating that the softening process is dynamic recovery; in 

this case, the value can remain constant over a wide range of strain rates. For austenitic 

steels, the value of Q is higher and is believed to be due to the operation of dynamic 

recrystallisation during hot working. For example, Perkins et al. 62 estimated the value of Q 

for a 316L stainless steel, over a narrow range (1273-1523K and 0.001-0.1s 1), to be about 

600kJmol"; this value is higher than the activation energy for self diffusion of 28OkJ mol-1. 

Equation 2.3 may also be expressed in terms of the Zener-Holloman parameter, Z, 

where: 

Z=s e` T/ 

Therefore, substituting for s, equation 2.2 can be rewritten as: 

Z= A(sinha6)" 

(2.4) 

(2.5) 

Previous studies have shown that this relationship can be successfully applied for a 

number of alloys, including plain carbon steels 63 and micro-alloyed steels in the austenitic 

state. 64 It is generally found that materials having a high stacking fault energy favour 

61 

62 

63 

64 

J. J. Jonas, C. M. Sellars and W. J. McG. Tegart: In "Deformation under Hot Working Conditions", Special Report No. 108, 
London ISI, 1968, p. 21. 

R. A. Perkins, R. A. Padgett Jr. and N. K. Tunali: Metall. Trans., 1973,4A, pp. 2535-2540. 

W. J. McG. Tegart: In "Ductility", Metals Park, Ohio, 1968, p. 133. 

J. Sanker, ON. Hawkins and H. J. McQueen: Met. Technol., 1979,6, p. 325. 
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recovery as thermally activated cross-slip is easy, these are Group A materials, see 

Table 2.1. Conversely, Group B materials have low stacking fault energy and allow 

dislocations to build up within the matrix and thus favour dynamic recrystallisation. These 

two processes will be discussed briefly in the following sections, but it should be noted that 

ferrite favours recovery, whereas austenite favours dynamic recrystallisation. 

2.3.1 Dynamic Recovery 

The microstructural evidence for dynamic recovery has been reviewed by Jonas 

et al. 62, in which it is noted that the original grain structure becomes elongated in the 

direction of the applied strain and the boundaries appear fibrous. This boundary distortion is 

accompanied by sub-grain formation which results in the final structure containing narrow 

and well defined sub-grains. During straining, the dislocation density between the sub- 

boundaries remain constant and a situation is reached where dislocation generation and 

annihilation reaches an equilibrium; the strain hardening rate is reduced to zero and a 

steady flow is established. 

In general, solid solution alloying additions make dynamic recovery more difficult as 

they increase the stacking fault energy and as a result increase the flow stress. Metals that 

contain stable second phase particle develop substructure more readily than equivalent 

particle free alloys. These particles stabilise the substructure and the sub-grain diameter is 

reduced to the order of the interparticle spacing. Particle coarsening is able to occur if the 

second phase particles are less stable; and is accelerated by hot deformation as the sub- 

boundaries allow diffusion to occur at a higher rate than within the lattice. This results in a 

decrease in the flow stress during hot deformation. Generally, ductility recovers when 

around 50% ferrite is present in the microstructure on the low temperature side of the 

ductility trough, see Figure 2.10. 
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2.3.2 Dynamic Recrystallisation (DRS 

At the high temperature end of the trough, ductility dramatically improves with the 

onset of DRX. Cracks that have formed at the original grain boundaries become isolated as 

the grain boundary moves away from the crack and new grains are formed; crack growth is 

then halted. It should be noted that DRX is not possible during conventional continuous 

casting since the strain involved in straightening (2%) is too small and the grain size is too 

coarse. Prasad et a!. 65 consider DRX to be the single most important mechanism for bulk 

metal working and Jonas 66 emphasises its importance in the hot rolling of steel. However, it 

should be noted that the occurrence of DRX very much depends on processing conditions, 

e. g. strain rate and total strain. Although strain rates used in the hot ductility test are chosen 

to simulate the straightening operation, samples are strained to failure, whereas the total 

strains during straightening are much smaller (2%). DRX is not commonplace during slow 

rolling in plate, but is of vital importance during the rapid rolling of rods. 

DRX is a very beneficial process during hot working, apart from improving workability 

by simultaneous softening, it 'breaks down' as-cast columnar grains to produce a wrought 

microstructure of acicular grains. DRX is traditionally associated with the hot working of low 

SFE metals like Cu and Ni, which exhibit flow softening after reaching a critical strain; 65 and 

normally occurs in the temperature range 0.7 - 0.8 T,, with intermediate strain rates of 0.1 - 

1.0s-1 for materials with low SFE; whereas it occurs at much lower strain rates, 0.001s-1, for 

high SFE materials (e. g. f. c. c. metals typified by steel, Al and some of its alloys). 65 

Stacking faults are planar imperfections in the normal stacking of planes within the 

lattice structure of a material; they increase the rate of work hardening by impeding the flow 

65 

66 

Y. V. Prasad, S. Sasidhara, R. Ravi and S. Yellapregada: Indian Institute of Science, 2003, 
http: //www. processingmaps. com/Graphics/content/Theory/Programs. htm. 

J. J. Jonas: Mater. Sci and Eng., 1994, A184, pp. 155-165. 
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of dislocations. 67 Stacking faults have an energy associated with them as atoms either side 

of the fault are not in the positions they would be in a perfect lattice; this energy is generally 

small, but quantifiable, when compared with that of a normal grain boundary. Work by 

Prasad et a!. 65 indicates that SFE is a very important parameter that can influence DRX 

characteristics. The higher the SFE, the closer are the partial dislocations to each other and 

the easier it becomes for cross slip to occur. This makes recovery more likely at higher 

temperatures than dynamic recrystallisation which requires a marked build up in dislocation 

density to set the process off. 

Since DRX is not often possible during conventional continuous casting, the use of 

the high temperature end of the trough in predicting the likelihood of cracking has therefore 

to be treated with caution. Increasing the temperature at the straightener can nevertheless 

improve ductility as the particles will coarsen or the amount of precipitates formed in the 

boundary regions will decrease. Due to the difficulty in studying what is actually happening 

commercially during the straightening operation, it is assumed that this improvement is small 

as shown by the dashed curve in Figure 2.14. 

However, in the present work the main focus has been on interpreting the hot 

ductility curve and hence the role of dynamic recrystallisation is important. The temperature 

at which DRX first occurs, To, can be found from when the curve of critical strain for DRX, 

c, intersects the approximate horizontal line representing the ductility when no DRX is 

possible, Ff, see Figure 2.17 (a). cc can be taken as the strain to the peak stress in the 

stress/strain curve, ep, which can be calculated. This model can be used to show how the 

curves are influenced by the increase in strain rate and refinement in grain size, Figures 

2.17 (b) and (c) respectively. 

67 D. T. Llewellyn: Steels: Metallurgy and Applications, 2nd ed., 1994, Butterworth-Heinemann Ltd, ISBN 0-7506-2086-2. 
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0 

Test Temperature, °C Test Temperature, °C Test Temperature, °C 

Figure 2.17: Schematic diagram showing (a) how the width of the ductility trough could be controlled by the 
dynamic recrystallisation (DRX); (b) how increasing the strain rate reduces the depth and width of the trough, ecl, 
ef, and TDB refer to the lower strain rate and cc2, ca and TD2 refer to the higher strain rate and (c) how refining the 
grain size reduces the depth and width of the trough, cc,, cf, and TD, refer to the coarser grain size and cc2, cf2 

se and TD2 refer to the finer grain size 

The nucleation of DRX takes place at existing boundaries at low strain rates. Poorly 

developed sub-boundaries pin sections of the original boundaries which bulge out and 

migrate relatively rapidly, this is because of the strain energy difference across the 

boundary. Refining the grain size increases the number of grain boundary nucleation sites 

thus making it easier for DRX and reducing the critical strain for DRX, ec. However, it should 

be noted that increasing c, by increasing the strain energy of the uncrecrystallised grains, 

results in more strain energy having to be pumped into the bulged region of the grain 

boundary to cause DRX. Hence the critical strain for DRX is increased. 

Using this model, it can be explained how increasing the strain rate both increases 

the critical strain for DRX and also improves the hot ductility, see Figure 2.17 (b). Whereas 

increasing the strain rate improves the hot ductility, s f, to r f2 , due to a reduction in the grain 

boundary sliding, the critical strain for DRX, e, , is also increased, Ecl to Cc2 ; hence TD occurs 

at a lower temperature as shown in Figure 2.17 (b). The change in TD is dependant on the 

relative movements of cf and sc , and their sensitivity to s and grain size. 

68 B. Mintz, R. Abushosha and J. J. Jonas: ISIJ Int., 1992,32, p. 241. 
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The temperature for the onset of DRX can often be determined from the load- 

elongation curves and is characterised either by a sudden drop or oscillations in the flow 

stress. This effect of DRX on the load-elongation curve can be seen in Figure 2.18, below. 

100 11 

10 20 30 40 50 
Elongation, % 

Figure 2.18: Stress-elongation curves for a C-Mn-Al-Nb steel, solution treated and 
69 tested in air, the arrow indicates that dynamic recrystallisation is occurring. 

2.4 Influence of Processing Conditions and Composition 

Processing conditions at the continuous caster and the composition of the steel 

being produced can be used to control the likelihood that transverse cracking will occur. 

Although production parameters and composition can be varied dramatically when studying 

hot ductility in the laboratory, it should be noted that these can not always be altered so 

greatly in commercial practice. 

2.4.1 Influence of Process Variables on Hot Ductility 

There are four test variables which can affect the hot ductility of steels; strain rate, 

thermal treatment, cooling rate and holding time. Since the effect of the these variables 

have been discussed at length elsewhere, 2'23 they will only be discussed briefly in the 

following sections. 

69 
B. Mintz, R. Abushosha and D. N. Crowther: Mat. Sci. and Technol., 1995,11, pp. 474-481. 
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Strain rate 

The strain rate normally associated with the continuous casting straightening 

operation for 220mm thick strand is believed to be between 10"3 and 104x'; for thin slabs, 

-50mm thick, this strain rate increases to 10-2s''. These values can be calculated using 

Equation 2.2 given in section 2.1.2. The general effect of increasing the strain rate is to 

improve hot ductility. Increasing strain rate by an order of magnitude often increases R of A 

values by -20%. Thus, in this respect thin slab casting should lead to better ductility. 

However, as will be seen from the section on cooling rate, the higher cooling rate associated 

with the cooling of thin slabs counteracts any benefit. 26 Higher strain rates improve hot 

ductility for a number of reasons; a) there can be insufficient time for strain induced 

precipitation, b) the amount of grain boundary sliding is reduced, c) the amount of time for 

diffusion controlled growth of voids at the boundaries is reduced, d) recent work 39 suggests 

that increasing the strain rate may favour the growth of deformation induced ferrite and so 

increase the volume fraction of ferrite to that required to give good ductility. 

Thermal treatment 

Thermal treatment has a major influence on the hot ductility and hence it is very 

important to make the experimental conditions as close to commercial practice as possible. 

A typical cooling cycle during continuous casting is shown in Figure 2.19. It can be seen that 

initially the cooling rate is very rapid as the water sprays hit the strand surface. The surface 

than heats up and a series of small temperature oscillations occur by the alternate 

impingement of water sprays and guide rolls on the slab surface. 
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Figure 2.19: A typical temperature profile observed at a Scunthorpe continuous caster. 

This undercooling has been found to deteriorate ductility due to enhanced 

precipitation and this occurs both for C-Mn-Nb and C-Mn-AI steels. 3470 Generally, there is 

limited scope for altering the cooling conditions during continuous casting. Ideally, coarse 

precipitation is favoured and this can be achieved by slow cooling rates, holding at high 

temperatures and possibly pre-deformation whilst the core is still liquid. 

Influence of cooling rate 

Previous work 27,71 on C-Mn-Al and C-Mn-Nb-Al steels has shown that increasing the 

cooling rate always results in decreased ductility, although sometimes the differences were 

very small. Generally, increasing the cooling rate results in a finer precipitate and inclusion 

size and dispersion (and also worse ductility) as shown in Figure 2.20 (a) and (b). The effect 

70 B. Mintz, J. M. Stewart and D. N. Crowther: Trans. ISIJ, 1987,27, p. 959. 
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of an increased cooling rate is very important in thin slab casting, Figure 2.20 (c) illustrates 

the deterioration in hot ductility observed in a Ti containing steel on increasing the cooling 

rate. The higher cooling rate produces finer precipitates and inclusion distributions, both of 

which encourage crack propagation along the austenite grain boundaries. 
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Figure 2.20: Fracture surfaces of a low Al steel tested at 1073K showing refinement of dimples and particles as 
cooling rate increases from (a) 25 Kmin-' to (b)2 , 100 Kmin-1. With the increase in cooling rate there is a 
corresponding drop in R of A from 52% to 24%. The influence of cooling rate on hot ductility for a C-Mn-Al 
steel with Ti addition and Ti: N ratio of 3.4: 1 is shown in (c), data taken from ref. 72. 

71 
R. Abushosha, S. Ayyad and B. Mintz: Mat. Sci. and Technol., 1998,14, pp. 227-235. 

72 R. Abushosha, 0. Cominelli and B. Mintz: Mat. Sci. and Technol., 1999,15, pp. 278-286. 
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Holding Time 

The hot ductility of a 0.054% Nb steel has been studied by Ouchi et al., 73 where it 

was found that holding time can have a varied effect depending on the test temperature. 

Increasing the holding time in the temperature range 1073 to 1173K resulted in reduced 

ductility after reheating to 1273K. This was attributed to increased Nb(CN) precipitation at 

the y grain boundaries. The ductility was found to improve with long holding times at 1023K; 

this was found to be due to the increased volume fraction of ferrite refining the y grain 

structure after reheating to 1273K. This reduced the tendency for intergranular fracture 

along the y grain boundaries. It was also shown that increasing the holding time directly 

before straining had little influence on the hot ductility at temperatures below 1273K. The 

effect of holding time on hot ductility will not be examined in this work. 

2.4.2 Influence of Microstructure on Hot Ductility 

The austenite grain size, volume fraction and morphology of the ferrite and the 

volume fraction, size and distribution of particles all have an important influence on ductility. 

Grain Size 

Finer y grain size always leads to better ductility; the main reason for this being the 

decrease in the crack aspect ratio, which controls stress concentration at the crack tip. The 

effect of increasing grain size on hot ductility is illustrated in Figure 2.21. The benefit to 

ductility from refining the grain size is similar to case where the structure is either fully 

" austenitic or contains the thin bands of ferrite surrounding the austenite grains. 

73 

74 

C. Ouchi and K. Matsumoto: Trans ISIJ, 1982,22, p. 181. 

D. N. Crowther and B. Mintz: Mat. Sci. and Technol., 1986,2, p. 951-955. 
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Figure 2.21: Effect of grain size on %R of A. 75 

Form of Ferrite 

The distribution of ferrite giving the worst ductility is when it forms thin bands 

surrounding the austenite grains which seems to be favoured by a coarse austenite grain 

size. Generally, since ferrite is softer than austenite, most of the strain concentrates there 

and, even though the local ductility is good, the overall ductility is low. Most importantly, this 

thin band of ferrite is encouraged to form on deformation and can form well above the Ara, 

often to temperatures as high as the Ae3; hence troughs can be very wide, >100K. 

Below the Ara, the amount of ferrite present increases rapidly and the band widens 

and the strain is then taken by a larger volume fraction of the material. There will always be 

a trough in steels, but the width of the trough will depend on how easy it is to thicken the 

ferrite film. Nevertheless in some steels, notably low C and Mn, the deformation induced 

ferrite has been found to form in large quantities just below the Ae3; there is an indication 

that because deformation induced ferrite is diffusion controlled, higher Ae3 temperatures will 

favour its production. " 

75 B. Mintz and Z. Mohamed: Mat. Sci. and Technol., 1989,5, pp. 1212-1219. 
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Precipitation 

Unless the volume fraction of precipitates is very low and/or the size is sufficiently 

coarse, ductility is impaired. In the case of grain boundary sliding in the y, fine precipitation 

pins the boundaries and it becomes much easier for cracks to join up; fine precipitation at 

the boundaries has the most detrimental effect on hot ductility. Nevertheless, fine 

precipitation in the matrix, as in Nb containing steels, by strengthening the matrix, increases 

the shear stress on the grain boundaries and also encourages sliding and crack 

propagation. Again precipitation is encouraged by deformation, the dislocation sites 

producing favourable nucleation sites for precipitation; both Nb(CN) and VN precipitate 

rapidly during the hot ductility test. The temperatures giving maximum rates of precipitation 

for Nb(CN), VN and AIN precipitation are 1223,76.77 115878 and 1088K, 79 respectively. 

Nb(CN) is particularly detrimental, precipitating within the matrix and at the y grain 

boundaries in a fine form, and the boundaries are often associated with precipitate free 

zones. VN is less deleterious, as precipitation is coarser, in the V containing steels as a 

result of the higher solubility of V in the y compared to Nb. 

AIN precipitates very sluggishly and in normal solution treated hot tensile tests only 

precipitates out in high Mn steels (1.4% Mn) when the product of [sol. Al]x[N] approaches 

2x10 (e. g. 0.04% Al and 0.005 %N). 80 However, when temperature oscillations are 

introduced, AIN precipitates out at as low a product as 1x10. Similar behaviour is noted for 

as-cast C-Mn-Al steels given a conventional cooling programme with no temperature cycling 

76 

77 

78 

79 

80 

A. leBon, J. Rofes-Vernis and C. Rossard: Met. Sci. J., 1975,9, p. 36. 

1. Weiss and J. J. Jonas: Metall. Trans., 1979,10A, p. 831. 

M. G. Abken, I. Weiss and J. J Jonas: Acta Metall., 1981,29, p. 111. 

W. C. Leslie, R. L. Rickett, C. L. Dotson and C. S. Walton: Trans. ASM, 1954,46, p. 1470. 

D. N. Crowther, Z. Mohamed and B. Mintz: Metall. Trans., 1987,18A, p. 1929. 
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due to the marked segregation of Al to the boundaries when solidification occurs (The 

concentration of Al at the boundaries can be increased by a factor of 6). Al additions have 

also been found to have a detrimental influence on the ductility of Nb containing steels by 

producing a finer precipitation of Nb(CN) rather than through AIN precipitation. 12 

The influence of TiN is complex; commercially Ti has been found to be a good 

element to add to reduce transverse cracking and improve surface quality. In the laboratory 

work, Ti additions have always been found to be detrimental to ductility due to the formation 

of very fine Ti rich particles. However commercially, coarse TiN precipitates are normally 

observed indicating possibly that the segregation to the grain boundaries is much more 

intense in commercial casts than in the as-cast small tensile samples. 

2.4.3 Influence of Chemical Composition on Hot Ductility 

The properties of steel can be massively altered by the addition of one or more 

different alloying elements. The first alloy steel was a high-manganese produced by Hadfield 

in 1882, the first high-speed steel by Taylor and White (USA) in 1900 and the first stainless 

steel by Brearley in 1913.81 Although many steels have large additions of the alloying 

element i. e. stainless steel, some elements only need to be present in tiny amounts to have 

a profound effect on the final properties of the steel and these steels are known as micro- 

alloyed. The following sections will discuss the effect on hot ductility of the elements which 

are importance in the present study. 

Effect of Aluminium (Al) 

Aluminium and, to a lesser extent, vanadium, niobium and titanium are used to 

control the austenitic grain size. Aluminium can also be added to remove dissolved oxygen 

from the melt. In the case of hot ductility, as already noted, AIN is detrimental to ductility. 

81 R. A. Higgins: Properties of Engineering Materials, 2nd Rev. Ed, 1994, Publ. Edward Arnold, ISBN 0-340-60033-0. 
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Generally it is found commercially, that provided the soluble Al level does not exceed 0.04% 

in a steel with 0.005% N, there are no transverse cracking problems. 

Effect of Boron (B) 

Boron is a very powerful hardenability agent, and is 250 to 750 times as effective as 

nickel, 75 to 125 times as effective as molybdenum, and around 100 times as powerful as 

chromium. In order to obtain the desired effect in low-carbon steels, additions of only a few 

thousandths of a percent is required; however, the benefits are rapidly diminished with 

increasing carbon content. As no carbide formation or ferrite strengthening is produced, 

improved machinability and cold-forming capability often result from the use of boron in 

place of other hardenability additions. 82 The influence of B on hot ductility is not clear. 

Effect of Carbon (C) 

For simple C-Mn-AI steels, the trough spans the temperature range from the Ae3 to 

the Ara. Thus in raising the C level, the trough is moved to the left in accord with the lower y- 

a transformation. It should be noted that for very low C levels (0.04% C) the trough may be 

virtually eliminated as the high Ae3 temperature ensures production of a large volume 

fraction of deformation induced ferrite just below the Ae3.83 Steels with C levels above 0.25% 

give rise to very wide troughs due possibly to the prevention of DRX and increased grain 

boundary sliding. In Nb containing steels, C has little influence on the position of the trough 

due to the overriding influence of Nb(CN) precipitation in the austenite. 

Steels with carbon in the peritectic range (0.1 - 0.15%) are particularly susceptible to 

transverse cracking. This is because coarse columnar grains are produced. The growth of 

such y grains are impeded by having second phase particles, either to the left (the delta 

82 

83 

E. P. DeGarmo, J. Temple Black and R. A. Kohser: Materials and Processes in Manufacturing, 70 ed, 1990, Macmillan 
Publ. Co., ISBN 0-02-946140-5. 

Private communication, B. Mintz, 2003. 
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phase, S) or right (liquid phase) of the peritectic. A further reason for poor ductility is that 

during the peritectic transformation, from 8-ferrite to austenite, there is an accompanying 

contraction. This produces a gap between the shell and the mould wall resulting in a 

reduction of heat extraction by the mould. The thinner parts of the unevenly solidified shell 

are then more susceptible to breakage. 2 

(b) medium C steel 

Figure 2.22: Schematic illustration showing austenite structure in the solidified shell. 84 

Effect of Calcium (Ca) 

Zirconium, caesium, and calcium control the shape of inclusions and thus promote 

toughness. By adding Ca, the S level is reduced so that the volume fraction of sulphide 

inclusions is decreased thus improving ductility. 5 

Effect of Copper (Cu) 

Copper has been known to resist atmospheric corrosion for centuries, but has only 

recently been used as an addition to steel (in amounts from 0.10% to 0.50%) to provide this 

property. Low-carbon sheet steel and structural steels often contain a copper addition to 

enhance corrosion resistance, but this can result in deterioration in surface quality and hot- 

working behaviour. 82 

84 
Y. Maehara, K. Yasumoto, Y. Sugitani and K. Gunji: Trans. ISIJ, 1985,25, p. 1045. 
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As a residual, Cu has been shown to be detrimental to ductility, 69 due to fine copper 

sulphide (or oxysulphide) particles at the boundaries, which had formed on cooling as a 

result of oxidation and the presence of Cu according to the reaction: 

2MnS+02+4Cu=2Cu2S+2MnO (2.6) 

Nickel in contrast, in combination with Cu improves ductility. By increasing the 

solubility of Cu in iron, Ni additions might be responsible for a reduced driving force for Cu 

precipitation; a Ni: Cu ratio of 2: 1 is recommended. Sulphur levels are also advised to be 

kept low. 

Effect of Chromium (Cr) 

Although large percentages of chromium can impart corrosion resistance and heat 

resistance, in the amounts used in low-alloy steels these effects are minor. In these alloys, 

chromium serves primarily to increase hardenability and to increase strength, and an 

addition of less than 2% is generally employed. In many alloys, chromium and nickel are 

used together in a ratio of about one part chromium to two parts nickel. Combined with 

carbon, chromium carbides provide superior wear resistance. 

There is again little information on the influence of small additions of Cr on the hot 

ductility of steel. Russian analysis 85 of works data suggests that a Cr level of 0.3% gives 

good ductility, but no explanation is given for this behaviour. High additions of Cr (>_11%) 

result in the formation of ferritic or austenitic stainless steels, and information on these 

steels forms one of the chapters in this present thesis. 

85 S. D. Razumov, V. V. Zabilski, V. I. Umanets, V. I. Lebedev and V. A. Oburhov: Steel in the USSR, 1986,16, pp. 225-228. 
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Effect of Molybdenum (Mo) 

Molybdenum is used in alloy steels in amounts less than 0.3% to improve 

hardenability and increase strength properties, particularly at dynamic and high temperature 

conditions. Resistance to temper embrittlement is also attributed to the presence of 

molybdenum. Molybdenum carbides are extremely stable at elevated temperatures and are 

used in alloys to retain fine grain size and to provide strength and creep resistance at 

elevated temperature. Molybdenum carbides are also used in hot-work tool steels, such as 

those used in forging dies, to impart hardness that will persist at red heat. 

There is little information as to the effect of Mo on the hot ductility of steels, but a 

normal Mo addition (0.2%) 86 has been found to result in improved ductility in an Nb 

containing steel. This may again be related, as with P, to segregation taking up vacant sites 

which Nb(CN) might otherwise have occupied. 

Effect of Nitrogen (N) 

Nitrogen is very detrimental to hot ductility as it forms fine nitrides with Al and many 

of the micro-alloying additions, although in itself it has little influence on hot ductility of high 

Mn steels (1.4% Mn). 87 It should therefore always be kept as low as possible. V containing 

steels generally give better hot ductility than Nb based steels; the product of M[N] had to be 

as high as 1.2x10"3 (corresponding to 0.1 %V and 0.012% N) to approach the low values of 

R of A exhibited by a 0.03% Nb, 0005% N steel. Although V containing steels may show 

reduced tendency to exhibit transverse cracks compared, where -0.005% N is present, the 

effect of N per se may be more serious in these steels as the detrimental precipitate is 

entirely N2 based, i. e. VN, whereas for Nb it is generally a mixed carbonitride, Nb(CN), with 

carbon being the major constituent. 

86 R. E. Mercer and N. A. McPherson: AIME Steelmaking Conf. Proc., 1979,62, p. 215. 

87 N. E. Hannerz: Trans. ISIJ, 1985,25, p. 149. 
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However, the role of N in Nb steels may be more important than indicated from the 

foregoing paragraph. It should be noted that at constant Nb level (0.015%), it has been 

found that an increase in the N concentration from 0.002 to 0.006% markedly reduces the 

plasticity. 73 Low N levels promote the formation of NbC0.85 particles, whereas high N 

concentration lead to the precipitation of NbCo. 6No. 25. The higher ductility associated with 

NbC has been ascribed to its lower rate of precipitation in the austenite. 

Effect of Niobium (Nb) 

Niobium can be used for ferrite grain-size control as well as precipitation 

strengthening; its deleterious effect on hot ductility has been discussed previously in section 

2.4.2 in relation to precipitation. 

Effect of Nickel (Ni) 

Nickel is commonly added to increase toughness and impact resistance primarily at 

low temperature. It is generally used in amounts from 2% to 5%, often in combination with 

other alloying elements. Alloys with 12% to 20% nickel and low amounts of carbon possess 

outstanding corrosion resistance. An iron and 36% nickel alloy, commonly known as Invar 

has a near-zero thermal expansion coefficient and is used for sensitive measuring devices. 

As previously mentioned, nickel in combination with copper can improve ductility in 

solution treated and as-cast C-Mn-Al-Nb and C-Mn-Al specimens when an oxidising 

atmosphere is present. Burden et al. 88 have shown that very severe residual enrichment and 

grain boundary embrittlement can occur rapidly during commercial continuous casting due 

to the enhanced oxidation that is experienced. This can be caused by the water cooling 

sprays and reheating that occurs when the strand passes through the rolls. Therefore, 

laboratory testing may underestimate the influence of copper on hot ductility. 

88 M. H. Burden, G. D. Funnell, A. G. Whitaker and J. M. Young: in 'Solidification and casting of metals', pp. 229-236; 1979, 
London, The Metals Society. 

PhD in Mechanical Engineering, City University, London - Andrew Cowley, 2004 



2-40 

The beneficial effect of a Ni addition can be used to exactly balance the detrimental 

effect of Cu. Mintz et a/. 69 found that Ni additions sufficient to maintain a Cu/Ni ratio of 1: 1 

were effective in improving ductility; this work recommended that when Cu is added to 

continuously cast steel, Ni should be added in at least an equal quantity. 

Effect of Phosphorus (P) 

Phosphorus has been found to be detrimental to the hot ductility of steel if marked 

segregation occurs. 89 This leads to the formation of the low melting point Fe(Mn) phosphide 

phase which produces liquid films at the boundaries giving very low ductility. However, for P 

to cause problems the strain rate has to be higher than used in conventional continuous 

casting to prevent back diffusion of P from the grain boundaries to the matrix; the carbon 

level also needs to be greater than 0.25% to have sufficient segregation. Previous work by 

Mintz et al. 12 has found levels of up to 0.02% P to be beneficial for C-Mn-Nb-Al steels, and 

although P is normally considered to be detrimental, it is suggested that P takes up vacant 

sites at the boundaries where the more detrimental fine Nb(CN) precipitation would 

otherwise occur. Work by a number of other authors have also found P to be similarly 

beneficial to hot ductility. 87'90 91'92 

At normal levels of P (50.025%) and C levels <0.25%, the greater the P level up to 

0.025%, the better the ductility and provided segregation is not too marked, the less 

susceptible the continuously cast slabs are to transverse cracking during straightening. " 

89 

90 

91 

92 

S. Harada, S. Tanaka, H. Misumi, S. Mizoguchi and H. Horiguchi: ISIJ Int., 1990,30, p. 310. 

H. G. Suzuki, S. Nishimura, J. Imanura and Y. Nakumura: Trans. ISIJ, 1984,24, pp. 169-177. 

E. P. George, R. L. Kennedy and D. P. Pope: Phys. Status Solids (a), 1998,167, pp. 313-333. 

K. Abico: Phys. Status Solids (a), 1997,160, pp. 285-296. 
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Effect of Sulphur (S), Manganese (Mn) and the Mn: S Ratio 

Analysis of works data by Hannerz87 showed that raising the S level invariably leads 

to reduced ductility and therefore an increase in transverse cracking. Reducing the S level in 

as-cast steel improves ductility and as previously mentioned the addition of Ca has also 

been found to be particularly beneficial. 5,3593,94 These findings are as expected, as 

intergranular failure is favoured by sulphides present at the boundaries and, when there are 

microalloying precipitates present, wide and deep hot ductility troughs are common. " 

Although reducing the S level will generally improve ductility, there is evidence to 

indicate that with Nb containing steels too low aS level (0.001 %) may also cause cracking. 95 

Thus, a Calcium addition may not always reduce the incidence of cracking. This may be 

because particles are required for nucleation of Nb(CN) at high temperatures so that there is 

less Nb available for precipitation in a fine form, which is detrimental to hot ductility, during 

straightening. The hot ductility of as-cast Nb containing steels is often much better than after 

solution treatment as a large percentage of Nb has been removed as the coarse eutectic. 

Whereas, after solution treating all the Nb is in solution and available for precipitating out in 

a fine detrimental form during deformation. " 

Manganese is added to most plain-carbon steels to combine with sulphur and 

produce soft manganese sulphides. This addition prevents formation of the low melting point 

iron sulphide, which coats grain boundaries and imparts brittleness to the metal. In alloy 

steels, manganese increases hardenability, slightly strengthens ferrite and lowers the 

martensite transformation temperatures; it is often added in amounts greater than 1.0%. In 

HSLA steels, 1.4% Mn results in the optimum strength and toughness. More than 1.4% Mn 

causes martensite to form and consequently the toughness deteriorates. When manganese 

93 

94 

95 

T. Revaux, J. P. Bricout and J. Oudin: J. Mat. Eng. And Performance, 1996,5, pp. 260-268. 

L. P. Karjailen, H. Kinnunen and D. Porter: Microalloying in Steels. Ed. By J. M. Rodriguez-(babe, 1. Gutierrez and B. 
Lopez, Trans. Tech. Publ., Switzerland, 1998, pp. 477-483. 

Private communication to B. Mintz, V. Ludlow, Corus, Teeside Technology Centre, 1998. 
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is added in large percentages (11 % to 14%), an austenitic alloy is produced; high hardness, 

good ductility, high strain-hardening capacity, and excellent wear resistance make it ideal for 

impact-resisting tools and similar applications. 82 

As previously mentioned, sulphur is usually not desired in steel because of the 

embrittling effect of the low melting point iron sulphide. In the form of manganese sulphide, 

however, sulphur is not harmful, provided that the sulphides are not large in quantity and are 

well dispersed. If manganese sulphide is present in large quantities and in the proper form, 

it can impart desirable machining properties. If there is a sufficiently high volume fraction of 

MnS present in an elongated form, a return to good ductility at the low temperature end of 

the trough has been observed in laboratory tests; " although this is not an answer to the 

commercial problem of transverse cracking during the straightening operation. Studies of 

the effect of S and Mn: S ratio have been carried out by Wilber et. a/. 98 Some free-machining 

steels have 0.08% to 0.1507 sulphur in combination with an increased manganese content. 

There is some doubt as to whether S reduces ductility by segregation to the boundaries on 

solidification or by the formation of small sulphides. Certainly fine sulphides are associated 

with poor ductility and these are produced on faster cooling. " 

Effect of Silicon (Si) 

In small percentages, silicon has an effect similar to that of nickel, increasing the 

strength properties with little companion loss of ductility. It is an important alloying element 

in certain high-yield-strength structural steels. It is also used in spring steels (in amounts of 

about 2%) and promotes the desirable large grain size in steels used for magnetic 

applications. Recent work 97 has shown that increasing the Si level by 1% moves the hot 

ductility curve by -50K to higher temperatures in accordance with the increase in the Ae3 

temperature. However, for normal Si levels (0.2 - 3.0% Si) the effect is likely to be small. 

96 

97 

G. A. Wilber, R. Batra, W. F. Savage and W. J. Childs: Metall. Trans., 1975,6A, p. 1727. 

Private communication, B. Mintz, 2003. 
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3. Experimental Method 

Many different methods have been used to determine the ductility of steels under hot 

working conditions, particularly the susceptibility to transverse cracking during the 

straightening operation. The only tests capable of providing quantitative data on the fracture 

behaviour are the tensile, torsion, and impact tests. The latter two testing methods have 

larger strains and strain rates than are experienced during the straightening operation and 

are therefore more suited to simulating the hot rolling processing. 

The results obtained from the hot tensile test, using reduction of area values as a 

measure of ductility, have been found to correlate remarkably well with production 

experience at the straightener, where strain rates are in the range 10"3 to 104s''. In the 

present study, only the hot tensile test using constant crosshead speeds are used. Two 

different methods of measuring the hot ductility were employed, and are described in 

sections 3.1.2 and 3.1.3. 

3.1 Measurement of Hot Ductility 

The ductility of samples tested using the hot tensile test can be measured from a) 

the amount of uniform elongation, b) the total elongation at fracture or c) the reduction of 

area at the point of fracture. In case a), this measurement is only useful if little or no necking 

has occurred, as sometimes happens with brittle intergranular fractures. This parameter is 

not suitable for use in the present study, as the ductility is known to vary widely over the test 

temperatures chosen. In case b), the total elongation is a measure of both the uniform 

elongation and the elongation due to necking at the point of fracture. The values of these 

two components are a complex function of test temperature, strain rate, composition and 

microstructure. 18 Therefore, it is possible to obtain identical total elongation measurements 

from samples that have been tested at different temperatures and having very different 
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fracture geometries. Since a significant proportion of the plastic deformation will be 

concentrated in the necked region around the fracture, the percentage elongation between 

Z and Y will be greater than that between X and Y, as shown in Figure 3.1. 

-xz -t ý, f--- t. o-ý; 
ý 
ý- Lu 

Elongation %= 
(L. LO) 

X100 L0 

I 

Figure 3.1: Illustration of difficulty measuring total uniform elongation when necking occurs 81 

Consequently, a quantitative measurement of the fracture strain at the point of failure 

is required; the Reduction of Area (R of A) measurement does not suffer from this difficulty 

and is unaffected by the actual fracture geometries. It has proven to be a very useful 

measure of the hot ductility, and has been used extensively. The reduction of area 

measurement is suitable for comparing the hot-ductility over a wide range of temperatures 

and is the parameter and that will be used in this study. The relationship between the 

fracture strain and the reduction in area at the fracture tip can be written as: 

Ef =1nf o 
`º 

(3.1) 

Where, Ef is the fracture strain, AO the initial cross-sectional area, and A, the final 

cross-sectional area. 
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3.1.1 Measurement of Reduction of Area (R of A) 

The R of A values were obtained from the fractured samples using a Vickers 

shadowgraph machine at a magnification of 12.5. The R of A was calculated for each 

fractured sample using measurements of the initial (D) and final diameters (Df). The initial 

diameter, D;, was measured using an accurate micrometer, as the machined sample is 

cylindrical. As the fracture surface was irregular, Df was measured using the shadowgraph 

machine, and taking the average measurement of four diameters at 45° intervals of rotation 

for each half of the broken tensile. The final diameter, Df, was therefore the average of eight 

measurements. The reduction of area (R of A) can then be calculated by using the following 

formula: 

n_! A ix Uf H= 
Dz -D, z (3.2) 

Where, Dt is the diameter of the hole drilled along the central axis to the midpoint of 

the induction samples for inserting a thermocouple; in this study, this diameter is 2mm and 

Dt2 therefore equals 4mm2. As the Instron samples have an external thermocouple attached 

to them, Dt2 in this case is equal to zero. 

After the R of A had been measured, one half of each sample was mounted in hot 

cured polymer resin, polished to one micron and then etched using 2% Nital for optical 

analysis. Carbon extraction replicas were made by deposition of C in a vacuum chamber. 

The fracture surface of the other half of the sample was studied using the scanning electron 

microscope (SEM). In order to assess the consistency of this method, repeated tests and 

sample measurements were carried out; the R of A results obtained were found to vary by 

no more than ±3% for the solution treated samples and ±5% for the as-cast samples. 
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3.1.2 The Induction test 

In this study, two sets of test apparatus were used to measure hot ductility; the first 

of these is the induction set-up. The samples were tested in a converted Hounsfield 

tensometer, to which an induction coil had been fitted to melt the samples. The melting zone 

was approximately 22mm in length, situated at the mid-length position of the sample. The 

tensile samples were machined parallel to the rolling or forging direction and a 2mm 

diameter hole was drilled up to the middle of the sample so that the thermocouple could be 

inserted. The sample was fitted between the two grips with a silica tube having an initial 

0.2mm clearance surrounding the mid-section to retain the steel when molten; it was 

protected from oxidation by surrounding it and the grips with 'T'-shaped silica tube through 

which argon was passed. The sample specifications are shown in Figure 3.2. 

Ground Finish 
Thread: 5116 B. S. F. 
All Dimensions In mm 

---------- --------- -------- 

M 
t 

55 

20 
a, 
r- 20 C47 

Figure 3.2: Schematic drawing of induction test specimen. 

Prior to this study, the configuration of the Induction setup was of a more simple 

nature; the induction controller only allowed manual control of the temperature, which was 

measured using a platinum/platinum-13% rhodium thermocouple connected to a digital 

multimeter. The voltage measured with this multimeter then needed converting into 

temperature using a conversion chart and adjusting the values for the room temperature 

(generally taken as 293K). Work was undertaken by the author to upgrade this system to 

the current configuration as shown in Figure 3.3. 

ý 
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Figure 3.3: Schematic drawing of the induction hot-tensile apparatus. 

A Eurotherm 2408 programmable controller was purchased to control a new 

induction unit, which allowed a remote device to control its output. The thermocouple was 

connected to the Eurotherm controller to provide the necessary feedback on temperature. 

The loading system was also upgraded to a 0.55kW A/C motor with digital controller linked 

to the Eurotherm controller for accurate control of its operation and therefore crosshead 

speed. The crosshead speed (mm s'') was calibrated against motor supply frequency (Hz), 

so that a specified strain rate could be applied to the sample, see Figure 3.4; i. e. a strain 

rate of 3x10"3 s'' is obtained at 5.3Hz, using the gear ratio of 4: 1 with a 22mm gauge length. 
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Calibration chart developed to select motor frequency required to give specified strain rate. 
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A software package supplied by Eurotherm was installed on a computer connected 

to the controller; this could control both the induction unit and the motor, download and 

upload heating/cooling cycles and also log the temperature measured during each test. 

Using these pre-recorded heating/cooling schedules, the control computer could melt, cool 

to test temperature and strain the samples to failure. 

The temperature gradient along the central axis of the test specimen was examined 

by withdrawing the thermocouple from the centre in steps of 5mm and allowing the 

temperature to settle; a chart showing these results at different temperatures is shown in 

Figure 3.5. It can be seen that the temperature is relatively constant up to 5mm from the 

centre point and then starts to fall away more rapidly. On the basis of these tests, although 

the melted region of the sample is 22mm, the gauge length could be considered to be half 

this value. Therefore, only samples which failed within 5 to 6mm from the centre of the melt 

region were taken as being acceptable. 

Due to the difficulty in knowing exactly where the strain is taken up in relation to the 

melt-zone, 22mm was taken as an arbitrary choice for use in strain rate calculations as R of 

A is not overly susceptible to this change; furthermore, consistency was maintained with 

previous work undertaken by the research group. Some tests, particularly those at the lower 

temperatures, needed repeating as fracture occurred outside this region. A solution to this 

problem would be to widen the induction coil, increasing the distance from the centre that 

the temperature remains near to the required test temperature. 
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Figure 3.5: Temperature gradient along the central axis of sample 
heated to a constant temperature within the induction coil. 

The samples were melted and held at 1815K for five minutes, cooled at either 200, 

60 or 25Kmin-1 to the required test temperature in the range 1273 - 973K, where they were 

held for a further five minutes before straining to failure. A nominal strain rate of 3x10-3s 1 

was used, which was calculated by dividing the crosshead speed by the gauge length of 

22mm. During tensile testing, the chart recorder was used to produce a 'load versus 

elongation graph, which could also be used to identify whether dynamic recrystallisation had 

occurred. After failure, the microstructure of the fractured samples was "frozen in" by rapidly 

cooling by increasing the flow rate of Argon. 

3.1.3 The Instron Test 

This apparatus consisted of a Model 1026 Instron machine to which a purpose built 

furnace, designed and manufactured by Isotherm Ltd, was fitted as shown in Figure 3.6 (a)- 

(c). The furnace was designed having the ability to cool at rates of up to 200 Kmin' so that 

cooling conditions in both thin slab and conventional continuous casting could be simulated. 

In order to achieve this cooling rate, heat must be removed rapidly from the heating 

elements and surfaces inside the furnace chamber. This is achieved by the use of a thin 

layer of very lightweight insulation; a water cooling jacket around the furnace shell; and the 
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facility of rapidly blowing compressed air through the furnace chamber and increasing the 

argon flow through the quartz tube containing the sample. A schematic diagram of the 

furnace chamber can be seen in Figure 3.6 (d). 

/ 

ýý 

(a) 

(d) 

(b) (c) 

Figure 3.6: Photographs of the Instron test apparatus, with (a) the furnace chamber closed and (b) open, (c) the 
furnace control unit and (d) a schematic diagram showing the construction of the Isoheat 'Rapid Cool' furnace 
attached to the Instron machine. 
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The samples used in the Instron test were electroplated with a 0.1 mm thickness of 

nickel, using a Nickel Chloride and Boric Acid solution. Before inserting the samples into the 

grips of the Instron machine, they were also coated with aluminium oxide power mixed with 

ethanol to ensure they would be free to drop into the water for quenching immediately after 

failure. To further prevent oxidation during testing, the samples were heated within an inert 

environment maintained inside the fused silica tube. The Eurotherm 912S controller varies 

the rate of argon flowing through the furnace chamber during the test cycle. The minimum 

flow rate necessary to keep a positive pressure within the tube and to meet the required 

cooling was used during testing, but was increased to the maximum rate immediately after 

the sample had failed. The samples used in this test were prepared to the specification 

shown in Figure 3.7 by Corus: 

6.3 

Rad 0.8 
As sharp as possible 

i05.040.02 

-b 
25.4 

48.3 

Fine machine finish 
All dimensions in mm 

ý 

12.6 

Al 

Figure 3.7: Instron Sample Dimensions. 

Once in the apparatus, the samples were heated uniformly to 1603K where they 

were held for 12.5 minutes in order to dissolve as many precipitates as possible and 

produce a coarse grain size reminiscent of the as-cast grain size in continuously cast slab. 

They were then cooled at 60Kmin 1 to the test temperatures in the range of 873 to 1273K. 

Once the test temperature was attained the samples were held at this point for 5 minutes 

and then strained in tension to failure at a rate of 3x1 0-3S-1. Immediately following failure, the 

bottom half of the sample drops through the lower grip and is quenched to retain the 

structure present at failure. An example of a heating programme used in this study is shown 

in Table 3.1, below: 
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Segment 
Number 

Type Segment Details 

1 Ramp 40 Kmin" --* 1373 K 
2 Dwell 5 minutes 
3 Ramp 20 Kmin" -ý 1603 K 
4 Dwell 2.5 minutes 
5 Dwell 10 minutes 
6 Ramp 60 Kmin' -* 1293 K 
7 Ramp 30 Kmin" -* 1273 K 
8 Dwell 5 minutes 
9 Indefinite Dwell Start Tensile Test 

Table 3.1: An example Isoheat Furnace heating programme. 

The quartz tube is highly efficient in allowing heat to transfer from the heating 

elements to the sample and is able to withstand the high cooling rates required. The 

temperature within the furnace is accurately controlled using the Eurotherm programme 

controller. This controller has the ability to select either of two thermocouples, work through 

complex heating/cooling programs, control both heating and cooling simultaneously, and to 

switch on auxiliary cooling if required during rapid cooling segments of the program. 

As the fused silica tube is not entirely efficient in the transfer of heat to the sample, 

the control unit switches between two thermocouples during the heating cycle; one is 

positioned as close to the sample as possible, the other is outside of the fused silica tube. 

While the furnace is being heated to the solution temperature, 1603 K, the control unit relies 

on input from thermocouple outside the tube so as not to overheat itself causing damage. 

The thermocouple situated next to the sample is used, from segment 5 onwards, for the 

soaking and cooling sections of the heating program. This enables close control of the heat 

input and avoids overheating once the solid solution temperature is reached and avoids 

under cooling when the tensile temperature is reached. 

The reliability of the temperature within the furnace was tested by placing two 

additional thermocouples in close proximity at the top and bottom of the gauge length of the 

sample. These not only allowed independent verification of the temperatures inside the silica 

tube, but also the temperature gradients from the top to bottom of the sample. The results of 
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this investigation are as shown in Figure 3.8. It can be seen that during the first heating 

segment, that the temperature lags behind that of the programme running on the 

temperature controller. This is due to the outer thermocouple being used by the furnace 

during heating, the heat transfer of the silica tube not being totally efficient and the relative 

difficulty in accurately controlling the heating of the furnace at lower temperatures. During 

the dwell cycles, e. g. sample straining, the temperature gradient settled to less than 5K. 

1673 

1473 4 ----------------------------- 
* 
---------------; ---------- 

1273 --------------- 
: 

d 1073 --------------=-------------- .. ý .. ý 

I- d 
Q. 9 873 4 --------------- - ar i 
H 

Figure 3.8: A chart showing how temperatures recorded at the top and bottom of the sample compared 
to the programme running on the Eurotherm measured using the inner and outer thermocouples. 

3.2 Microscope Examination 

Following the hot ductility testing, the Instron and Induction samples were examined 

using TEM, SEM and optical microscopy. Ara temperatures were measured using 

dilatometry carried out by Corus; Ae3 temperatures were calculated using the Thermocalc 

program. The methods of microscope examination used were as follows: 

PhD in Mechanical Engineering, City University, London - Andrew Cowley, 2004 



3-12 

i. Optical Microscopy 

The microscope used was a Nikon Optiphot connected to either a 35 mm black and 

white film camera or JVC TK-1280E Colour CCD video camera. The video camera was in 

turn connected to a film printer and also computer with a Picport colour video capture card 

installed. The quenched section of the Instron test specimens were used for optical and 

TEM measurements, the other portion being used for SEM examination. Specimens were 

taken near to the fracture surface in the longitudinal direction and mounted in a clear 

polymer resin using a Metaserv automatic mounting press. The clear polymer resin allowed 

an identification tag to be permanently fixed to the mounted samples. 

ii. Scanning Electron Microscopy 

The fracture mechanisms involved in the failure of the sample were studied using a 

Jeol T-200 SEM, operating at 25 kV. The fracture surface not used in optical microscopy 

was removed from the remainder of the test specimen and mounted in a holder using grub 

screws. 

iii. Transmission Electron Microscopy 

Some samples were prepared for TEM study from approximately 1 mm behind the 

fracture surface. The techniques used for the preparation and examination of these samples 

were similar to those used by Crowther. 18 

3.3 Grain Size and Type Measurements 
The average grain sizes of the failed specimens were measured using the mean 

linear intercept method. Five sets of measurements were taken close the point of fracture 

which each included 100 point measurements. The prior austenite grain size was measured 

by counting the number of thin films of ferrite traversed in a test-line length. The percentage 

ferrite in these samples was measured in a similar manner, using a point counter to 

measure whether a grain under the cross hair at each position was ferrite or austenite. 
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4. Low Temperature Straightening 

Most steel companies, including Corus, operate their straightener at the high 

temperature end of the trough, but it is thought that the lower temperature end probably 

should have been chosen. Since dynamic recrystallisation, which does not occur during 

straightening, dominates the high temperature end, recovery at the low temperature end is 

due to formation of around 40% ferrite. There is currently therefore much interest in 

examining this lower temperature end of the trough and this requires an understanding of 

what controls both the Ara temperature and the production of deformation induced ferrite. If 

the Ara temperature can be raised so that it approaches the Ae3, the width of the trough will 

be reduced allowing large amounts of ferrite to form at higher temperatures and this forms 

the basis of the following chapter. The work on this part of the programme has already been 

published 26 and was awarded the Williams prize by the Institute of Materials, Metals and 

Minerals in 1998. 

4.1 Introduction 

Recent work 7,8,9,30 has gone far into interpreting the hot ductility curve and it has 

been possible to separate the contributions of deformation induced ferrite, grain boundary 

sliding and dynamic recrystallisation to hot ductility. In C-Mn and C-Mn-AI steels with low Al 

and N levels, the trough extends from the Ae3 to the Ara and is due to thin films of the softer 

deformation induced ferrite phase forming around the y grains. Strain concentration occurs 

in these films causing ductile voiding to occur at the MnS inclusions at the boundaries and 

these cavities link up to give low ductility intergranular failure. As noted, the thin films of 

ferrite have been identified as being strain induced. 

It has been shown 7,30 at the high temperature end of the trough in C-Mn-Al steels, in 

which no AIN precipitation has occurred, that full recovery in ductility corresponds to the 

onset of dynamic recrystallisation, this being able to isolate cracks formed at boundaries 
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and prevent them from growing. Without dynamic recrystallisation, removal of the thin films 

of ferrite above the Ae3 does not lead to any marked improvement in ductility as grain 

boundary sliding in the y occurs and this is just as detrimental. However, dynamic 

recrystallisation does not occur in the straightening operation during continuous casting as 

the grains are too coarse (> 500 pm) and the strain is too low (2%). Under these conditions 

improvements in ductility at high temperatures are small even when precipitation is present, 

as in Nb containing steels or C-Mn-Al steels having high Al and N levels. In contrast at the 

low temperature side of the trough, ductility improves dramatically when 30-40% ferrite is 

present in the structure. This involves working at temperatures 20 to 30K below the Ara 

undeformed. 

If the Ara temperature can be raised so that it approaches the Ae3, large amounts of 

ferrite can then form at higher temperatures thus improving ductility as well as reducing the 

width of the trough. This requires an understanding of what controls the Ara temperature and 

what controls the production of deformation induced ferrite. The Ara can be raised by 

achieving slower cooling rates, refinement of grain size and raising the Ae3 (i. e. lower C and 

Mn levels and higher Si and P levels). Recent work 8 has shown that refining the grain size 

has a remarkable affect in raising the Ara under deformation conditions and this also needs 

to be explained. 

Deformation has also been shown to be effective in raising the Ara and for good 

ductility; and it is immaterial as to whether the ferrite is present prior to deformation or forms 

during deformation. A strain of -5% has been shown to be adequate to form DIF. $ When 

ferrite first forms in coarse grained steel, it forms at the austenite grain boundaries, and it is 

likely at this early stage that there will be little difference in structure between pro-eutectoid 

ferrite and DIF. The major difference as far as ductility is concerned is that whereas a thin 

film of DIF can be present over a wide range of temperature resulting in poor ductility; the 

film rapidly thickens up as the temperature is decreased for pro-eutectoid ferrite. 
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4.2 Experimental Details 

In this first part of the programme, four steels were chosen to give a wide range of 

Ae3 and Ara temperatures. The compositions of these four steels examined are shown in 

Table 4.1 and the Ae3, Ara and Ar, temperatures are shown in Table 4.2. The Ae3 

temperatures were calculated using the 'Thermocalc' program98 and the Ara and Ar, 

temperatures measured using dilatometry. The steels were either 0.08% C, 0.6% Mn or 

0.15% C, 1.4% Mn. Two of the steels were Nb free and the other two had an addition of 

0.03% Nb. As well as these variations, Si was varied between 0.1 and 0.5% and P from 

0.007 to 0.027%. Both of these two elements are known to have a powerful influence in 

increasing the Ae3 and hence the Ara temperature. 

1 0.082 0.61 0.005 0.025 0.50 - 0.030 0.005 
2 0.150 1.41 0.007 0.007 0.09 - 0.021 0.005 
3 0.089 0.60 0.005 0.023 0.49 0.031 0.029 0.005 
4 0.140 1.40 0.006 0.026 0.10 0.031 0.022 0.005 

Table 4.1: Analysis of steels studied in this section, wt. %. 

1154 1073 903 
21 1085 973 775 
3I 1156 1010 823 
41 1090 943 743 

Table 4.2: Transformation temperatures of steels examined, K (at 60Kmin-1). 

The steels were heated to 1603K using the equipment shown in Figure 3.6 to 

produce the same coarse grain size held for 5 minutes, cooled at 6OKmin-' to test 

temperatures in the range 1273 to 873K, held for a further 5 minutes at the test temperature 

and strained in tension to failure at 3x10.35. '. Samples were quenched immediately after 

failure. Ara temperatures were determined by dilatometry, following the above heating 

programme as closely as possible but without a hold at the test temperature; optical, TEM 

and SEM examinations were also carried out on the samples. 

98 
B. Sundman, B. Jannson and J. -O. Anderson: Calphad, 1985,9, p. 153-190. 
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4.3 Results and Discussion 

As would be expected, the higher C and Mn steels had the lowest Ae3 temperatures, 

see Table 4.2. It is also interesting to note from Table 4.2 that although Nb has little 

influence on the Ae3 it has a powerful effect in reducing the Ara temperature. 

The curves for the four steels are shown in Figure 4.1 and can be seen to be 

enormously different. Although the depth of the troughs are very similar, with minimum 

ductilities in the range 35 to 45% R of A, their width and position changes greatly. 
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Figure 4.1: Hot ductility curves for steels I to 4, showing Ae3, Ara and To temperatures. 

Steel 1 (low C, low Mn) can be seen from Figure 4.1 to have the narrowest trough of 

approximately 30K; ductility starts to fall below the Ae3 (1154K) and by the time the 

temperature has fallen to the Ara (1073K), ductility has fully recovered. This indicates that 

the ferrite is deformation induced and, as will be seen from the discussion, can form in large 

quantities. 

f1- low C, low Mn 
f2 - high C, high Mn 
03- Nb, low C, low Mn 
04 - Nb, high C, high Mn 
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Steel 2 (high C, high Mn), which has a lower Ae3 temperature (1085K) than steel 1, 

has a wider trough. Again ductility starts to fall at the Ae3, but this time only fully recovers 

below the Ara (the Ara is 973K and full recovery occurs at -940K) suggesting that a thin 

band of ferrite forms and is not able to progress into the matrix until the normal 

transformation ferrite forms. 

Adding Nb to steels 1 and 2 (giving steels 3 and 4) results in a widening of the 

trough on the high temperature side and ductility starts to fall well above the Ae3 (1156K and 

1090K respectively). In the case of steel 3 (low C, low Mn), ductility again fully recovers at 

the low temperature side only when the Ara temperature (1010K) is reached. The widest 

trough, -250K, is given by steel 4 (Nb + high C, high Mn); here the trough extends both at 

the high and low temperature ends. 

Examination by TEM 

Only steel 4, having high C, high Mn and containing Nb, was examined using TEM. A 

sparse matrix precipitation of Nb(CN) was found at test temperatures in the range 1073K to 

1298K, as can be seen in Figure 4.2 (a), compared with what is normally found in Nb 

containing steels, Figure 4.2 (b). 

ý, ý, (b) 

Figure 4.2: TEM Micrographs of (a) high Mn high C steel tested at 1173K, showing sparse precipitation of 
Nb(CN) and (b) typical Nb(CN) precipitation in a steel similar to (a) but containing 0.011% P, this steel has been 
cast and cooled to the test temperature of 1173K at 100Kmin-1.99 

99 
R. Abushosha: Unpublished work, 1997. 
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Examination by SEM 

Studying the four steels using the scanning electron microscope (SEM), it was seen 

that failures occurring in the trough and just below the Ae3 temperature were of the 

microvoid coalescence type, see Figure 4.3 (a). Whereas, above the Ae3, low ductility 

intergranular failure characterised by fractures having smooth flat facets occurs; this is 

typical of when grain boundary sliding in the austenite is responsible for the intergranular 

failure, 2 Figure 4.3 (c). Figures 4.3 (b) and (d) show optical micrographs of these two failure 

modes of microvoid coalescence and grain boundary sliding, respectively. 

, -ý .a _" r�t^, -r. ., (a) (b) 

(c) 

Figure 4.3: Micrographs of (a) steel 1 tested at 1148K, showing evidence of intergranular ductile failure by 
microvoid coalescence (SEM), (b) steel 3 tested at 1098K, showing mechanism of intergranular failure by 
microvoid coalescence within the softer ferrite film (x60), (c) a Nb containing steel tested at 1198K, showing flat 
facets indicating intergranular failure by grain boundary sliding and (d) steel 3 tested at 1198K, showing grain 
boundary sliding as the failure mechanism (x60). 
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4.3.1 Low Temperature End of the Trough 

To investigate this part of the trough, samples which had been quenched after 

fracture were examined metallographically. It can be seen from Figure 4.4 (a), that at the 

minimum ductility temperature (1148K) for steel 1, the steel giving the narrowest trough, a 

thin band of ferrite surrounds the austenite grains; there is approximately 10% ferrite 

present and the R of A is 36%. 

Decreasing the temperature to 1123K and then further to 1098K, Figures 4.4 (b) and 

(c) respectively, results in the formation of more and more ferrite; as these temperatures are 

above the Ara, of 1073K, the ferrite must be deformation induced. The heavy substructure 

that can be seen in the ferrite, Figures 4.4 (c) and (d) also confirms that this ferrite is 

deformation induced. 

(a) iº. ý: ''. 'ý*ý 17,. '"ý_"'ý ý"r/ý.. ýý Ib) 
ýqr 

(c) 

Figure 4.4: Micrographs of steel 1 (mag. x60) tested at (a) 1148K, thin films of ferrite surround austenite grain 
boundaries, 10% ferrite, 36% R of A, (b) 1123K, films have now developed, 27% ferrite, 48% R of A, (c) 1098K, 
marked substructure is apparent in ferrite, -50% ferrite, 63% R of A and (d) 1073K, mostly ferrite with heavy 
substructure, 74% ferrite, 88% R of A. 
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In contrast in steel 2, a very thin band of ferrite is present as shown in Figures 4.5 (a) 

and (b). This gradually thickens as the temperature is decreased from 1073K to the Ara 

temperature of 973K, Figures 4.5 (a), (b) and (c). However, the volume fraction of ferrite 

remains low so that strain concentration occurs and ductility is poor. Only when the 

temperature is reduced below the Ara, 923K, are large amounts of ferrite produced, and now 

it is nucleated within the matrix, probably at inclusions and sub-grain boundaries as well as 

at the boundaries, see Figures 4.5 (c) and (d). 
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Figure 4.5: Micrographs of steel 2 (mag. x60) tested at (a) 1073K, showing very thin ferrite films at boundaries 
(Ae3 = 1085K), (b) 1023K, showing growth of ferrite film, (c) 973K, the Ara temperature, showing ferrite within the 
matrix and (d) 923K, showing much ferrite within the matrix. 

For the low C, Low Mn, Nb containing steel (steel 3), like steel 1, ferrite first starts to 

form at 1123K in a very thin layer, <0.5% ferrite, very much above its Ara of 1010K and so is 

strain induced, Figure 4.6 (a). Decreasing the test temperature results in more and more 

deformation induced ferrite being produced, see Figures 4.6 (a), (b) and (c), and at 1048K 

75% ferrite has been formed, see Figure 4.6 (d). 
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(b) 

(d) 

Figure 4.6: Micrographs of steel 3 (mag. x60) tested at (a) 1123K, showing ferrite in very thin film at 

temperatures of minimum ductility, <0.5% ferrite, 43% R of A (b) 1098K, showing growth of ferrite film, 24% 

ferrite, 47% R of A (c) 1073K, 45% ferrite, 72% R of A and (d) 1048K, 75% ferrite, 77% R of A. 

The higher C, Mn, Nb containing steel (steel 4) in contrast to steel 3, again shows 

similar behaviour to steel 2 in that only a thin band of ferrite forms, but although it thickens 

up as the temperature is reduced, a high volume fraction of ferrite is not attained until the 

temperature has gone below the Ara when normal transformation induced ferrite can form. 

The very big effect Nb has in reducing the Ara means the trough is very wide on the low 

temperature side; this may be a major reason for Nb being such a deleterious element to 

have as it encourages crack formation over a very wide temperature range. 

The curves of calculated percentage ferrite against test temperature for the four 

steels are given below in Figure 4.7. 
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Figure 4.7: Calculated percentage ferrite present in the four steels. 

It can be seen from Figure 4.7 that the low Mn steels (steels 1 and 3) always give 

more ferrite for a given temperature than the higher Mn steels. There is little difference in 

the percentage ferrite present with or without Nb. Figure 4.8 compares the calculated 

equilibrium ferrite values (solid line curves) to the observed (dashed line curves) and also 

gives the R of A hot ductility curves. It can be seen that although deformation induced ferrite 

at almost equilibrium values are achieved with steels 1 and 3 (lower Mn, lower C), Figure 4.8 

(a), large amounts of ferrite are not formed in steels 2 and 4, the higher Mn and C 

containing steels, Figure 4.8(b) until the temperature is decreased below the Ara. 
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Figure 4.8: Influence of test temperature on observed and calculated % ferrite for (a) low Mn, low C steels 1 and 
3 and (b) high Mn, high C steels 2 and 4. The relevant sections of the hot ductility curves are also included: 
EF - equilibrium ferrite, OF - observed ferrite. 
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4.3.2 High Temperature End of the Trough 

Recovery at the high temperature end of the trough in these steels is always related 

to when dynamic recrystallisation is possible. In the case of plain C-Mn steels, it has been 

shown that dynamic recrystallisation only takes place when the thin film of deformation 

induced ferrite is no longer present, i. e. just above the Ae3. 

In the case of Nb containing steels, the presence of Nb(CN) precipitation prevents 

dynamic recrystallisation until the temperature is sufficiently high to prevent pinning of the 

grain boundaries. In all cases, the temperature at which DRX occurs, To, can be obtained 

from the flow stress curves, when the stress reaches a peak and then dips and continues. 

The stress strain curves for the four steels studied can be found at the end of this section, 

Figures 4.10 - 4.13; the values of TD for each of the steels can be found using these curves 

and are given in Table 4.3. A method of analysing these flow curves to more easily identify 

the temperature of the onset of DRX is presented in Chapter 5, Section 5.3.1. 

1 1173 1173 
2 1173 1173 
3 1273 1223 
4 1273 1273 

Table 4.3: Temperatures for onset of dynamic recrystallisation, T0. 

TD can also be obtained from metallographic examination of samples quenched after 

fracture, as illustrated in Figure 4.9. For these coarse grained steels, DRX always produces 

a fine grain structure in steels, Figure 4.9 (a). Generally, metallographic examinations are 

more accurate and give To temperatures either the same or 50K lower than from the flow 

stress curves. This is because the flow stress curves are measuring the overall sample and 

metallography looks at the localised region near to the fracture tip. 
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(a) "V ý ', (b) 

Figure 4.9: Austenitic grain structures (mag. x60) seen in (a) steel 2 (high Mn, high C, Al), showing dynamically 
recrystallised grains, tested at 1173K and (b) steel 3 (low Mn, low C, Nb), showing the original un-recrystallised 
austenitic structure and evidence of wedge cracking, also tested at 1173K. 

4.3.3 Depth of the Trough 

The depth of the trough is probably the most difficult part of the hot ductility curve to 

estimate. For simple C-Mn-Al steels, some attempt has been made to calculate the R of A 

values knowing the thickness or volume fraction of the ferrite band at the minimum ductility 

temperature. The minimum ductility can then be calculated using a model by Yamanaka et 

a/, 100 assuming all the deformation takes place in the ferrite film. The equation for fracture is 

then given by Equation 4.1 below: 

-V 
k(1- f) 

ýf (4.1) 

Where of = fracture strain, Vn = volume fraction of ferrite and f is the inclusion volume 

fraction in the film and k is a constant taken as 0.000099. The value of f is believed to be 

related to the amount of sulphur in solution, at the solution temperature, which is available 

for precipitating out at the austenite grain boundaries on cooling to the test temperature. 

However, there are other factors that influence the depth of the trough such as grain size, 

strain rate and coarse precipitation. The size of the inclusions is also important as fast 

cooling produces finer inclusions and worse ductility. " 

100 K. Yamanaka, F. Terasaki, H. Ohtani, M. Oda and M. Yoshihara: Trans. ISIJ, 1980,20, p. 810. 
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Refining the grain size and/or increasing the strain rate will both reduce the depth, 

whereas, increasing the precipitate volume fraction, or refinement, will increase the depth. 

All of these terms would need to be incorporated in Equation 4.1 to fully account for the 

R of A value. However as a first approximation, this equation can be used for C-Mn-AI 

steels. The influence of MnS precipitation and sulphur in solution can be accounted for by 

using the solubility product, given by Turkdogan 101 for Mn and S, as follows: 

logKs=2.929-9ý0 

where T is temperature in Kelvin and KS is: 

Ks 
- 

rr 
LSioial -'Scombined J 

Mntotal 
- 

atomicwt. Mn 

atomic wt. Sx 
Sconibined 

(4.2) 

(4.3) 

Using equations 4.1 and 4.2 for a temperature of 1603K, the amount of S in solution 

for steels 1 and 2 would be calculated to be 0.0035 and 0.0016 %, respectively. Thus on the 

basis solely of sulphide inclusions in the ferrite band, one would expect steel 1 to have the 

lower R of A. However, as can be seen on comparison of Figures 4.4 (a) and 4.5 (a), the 

band of ferrite is much thicker in steel 1 than in steel 2 at the minimum ductility temperatures 

and hence a greater strain can be accommodated in the ferrite band in steel 1; this 

counteracts the detrimental influence of more sulphides. 

The percentage ferrite for steels 1 and 2 at the minimum ductility temperature is 10% 

and 3%, respectively. Using Equation 4.1, the R of A values for steel 1 and 2 are 38% and 

29% respectively which compares favourably with the theoretical values of 37% and 36%. 

Table 4.4 lists the values of the percentage S in solution at 1603K, the grain size, minimum 

ductility temperature, percentage of ferrite and the R of A values both observed and 

calculated using equation 4.1. 

101 E. T. Turkdogan, S. Ignatowicz and J. Pearson: J. Iron Steel Inst., 1955,180, p. 349. 
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1 0.61 0.0035 10 875 290 37 38 
2 1.41 0.0016 3 750 620 36 29 
3 0.60 0.0035 23 825 450 42 - 
4 1.40 0.0016 2 800 530 42 - 

Table 4.4: Calculated and observed R of A values for the four steels. 

C-Mn-Al-Nb Steels 

The addition of Nb to C-Mn-Al steels generally results in both wider and deeper 

troughs. Dynamic precipitation of Nb(CN) is very marked in Nb containing steels after 

solution treatment; and their poor ductility can be attributed to the combination of extensive 

matrix and y grain boundary precipitation and the tendency to form precipitate free zones 

which lead to strain concentration at the boundaries. 

Previous work 102 indicates that at 1223K, the temperature for the maximum rate of 

dynamic precipitation of Nb(CN), precipitation is very rapid and, with the strain rate in use, is 

often complete within the time of the test, so that equilibrium conditions for precipitation can 

be assumed. Thus, in addition to the sulphides and ferrite volume fraction, precipitation is 

important and one would expect deeper curves. However, as can be seen from Figure 4.1 

and Table 4.4, the addition of Nb appears to have little influence on the depth of the trough. 

This is most likely due to the relative insensitivity of Nb additions to ductility at the high level 

of P used in these steels (0.025% P), see Table 4.1. 

0 
Previous work 12103 has noted that a high P content improves the ductility of Nb 

containing steels. It has been suggested that P segregates to the boundaries and occupies 

deformation sites there in preference to Nb(CN) so that the P reduces the amount of 

102 
B. Mintz and Z. Mohamed: in Proc. 7th Int. Conf. on Fracture, Houston, TX, 'Advances in fracture research', ed. K. 
Salama et al., Oxford, Pergamon, 1989,4, pp. 2545-2553. 

103 B. Mintz and J. M. Arrowsmith: Sheffield Int. Conf. on 'Hot working and forming processes', ed. C. M. Sellars and G. J. 
Davies, 1979, London, The Metals Society, pp. 99-103. 

PhD in Mechanical Engineering, City University, London - Andrew Cowley, 2004 



4-15 

Nb(CN) precipitation. Certainly, the Nb(CN) precipitation found in steel 4 (Nb + high C, high 

Mn), the only steel to be examined with the TEM, was very much less than has been noted 

previously 100 in similar steels having P levels more in accord with modern steel making 

practice; compare Figures 4.2 (a) and (b). Analysis of commercial data, 12,85 relating the 

composition to the incidence of transverse cracking, has also found that high P levels 

reduce the problem. No attempt has been made to modify Equation 4.1 to take account of 

the Nb(CN) precipitation and therefore, no calculations have been made for the Nb 

containing steels. 

-i-1273K 
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1098K 

-A--1073K 
-ý`r- 973K 

0 10 20 30 40 50 
Strain, % 

60 70 80 

Figure 4.10: Stress strain curves for steel 1, showing onset of dynamic recrystallisation. 

90 
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Figure 4.11: Stress strain curves for steel 2, showing onset of dynamic recrystallisation. 
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Figure 4.12: Stress strain curves for steel 3, showing no evidence of dynamic recrystallisation. 
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Figure 4.13: Stress strain curves for steel 4, showing evidence of dynamic recrystallisation. 

4.4 Conclusions 

In the four steels examined, the depth of the troughs were found to be similar, 

independent of the presence or absence of Nb. This insensitivity to the presence of Nb is 

believed to be due to the high P level in these steels reducing the amount of Nb(CN) 

precipitation in the grain boundary region. 

Steel 4 (high C and Mn, C-Mn-Al-Nb) had the widest trough which extended for over 

200K. In this steel, the trough below the Ae3 temperature is due to the presence of a thin 

layer of DIF surrounding the y grains. Since a is softer than y, all the strain concentrates in 

these films; this causes voiding around the MnS inclusions resulting in low ductility 

intergranular ductile failures. The deformation induced ferrite at the y boundaries is not able 

to develop into the matrix as the temperature is reduced and ductility only improves when 

the temperature has fallen below the Ara (undeformed) and the normal transformation 
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induced ferrite forms in large quantities. Strain is then taken up more homogeneously in the 

structure and ductility therefore improves. Above the Ae3, the trough is extended to higher 

temperatures by grain boundary sliding in the y and ductility improves gradually owing to 

coarsening of the Nb(CN) precipitates and the onset of DRX. 

The narrowest trough was given by steel 1 (low C and Mn, C-Mn-Al); in this steel 

ductility recovered very rapidly on either side of the Ae3 temperature. Above the Ae3, with 

the absence of Nb(CN) precipitation, DRX occurred easily. Below the Ae3, ductility improved 

rapidly owing to the formation of large amounts of DIF close to equilibrium volume fractions. 

Steel 2 (high C and Mn, C-Mn-Al) had a trough which was extended at the low 

temperature end, below the Ae3 in the same way as steel 4 (high C and Mn, C-Mn-Al-Nb). 

DIF only formed as thin films resulting in poor ductility. Above the Ae3, ductility again started 

to recover due to DRX, but this recovery was slower than for steel 1 (low C and Mn, C-Mn- 

Al), possibly because the Ae3 temperature is lower reducing the driving force for DRX. 

Steel 3 (low C and Mn, C-Mn-Al-Nb) gave a similar curve to steel 4 (high C and Mn, 

C-Mn-Al-Nb) at the high temperature end of the trough above the Ae3, owing to Nb(CN) 

delaying the onset of DRX. At the low temperature end, ductility still remained poor below 

the Ae3 for about 30K, but further reduction in temperature caused ductility to improve and 

the curve then followed that for steel 1 (low C and Mn, C-Mn-Al) as large amounts of DIF 

were formed. 

It is not entirely clear what is responsible for producing the large amounts of DIF in 

steels 1 and 3 (low C and Mn) which results in a narrowing of the trough. It is possible that a 

high transformation temperature may encourage the formation of DIF. This in itself may be 

enough and the presence of a high Si content in these steels will further raise the 

transformation temperature. However, another possible explanation is that the high Si 
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content could strengthen the ferrite sufficiently to encourage more of the y to transform to a 

under deformation. However, further work is required to clarify these explanations. 

When straightening at the low temperature side of the trough, compositional 

changes which raise the Ara will always enable the straightening operation to be carried out 

at higher temperatures without risk of cracking. However, it is unclear at the present time 

whether the necessary requirement of having -50% ferrite present can be achieved by very 

low deformation (2 - 4%) or whether much lower temperatures are needed to ensure that 

the ferrite is present before the straightening operation. Much lower temperatures would 

require either slower casting speeds, faster heat removal from the strand or a larger 

distance between the mould and the straightener. These process changes could result in 

productivity losses, higher thermal stresses on the solidifying strand or expensive machinery 

alterations. 
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5. Influence of Cooling Rate and 
Sulphides on Hot Ductility 

5.1 Introduction 
With the move to thin slab casters, it is important to assess the influence of faster 

cooling rates. In particular, faster cooling rates are likely to accentuate the fine strain 

induced precipitation of Nb(CN) making ductility worse and for plain C-Mn steels produce a 

finer distribution of sulphides which will also adversely affect the ductility. This section gave 

an opportunity to assess the importance of sulphides in influencing the hot ductility trough, 

as well as the influence of cooling rate on the Ara. 

Ductility troughs are commonly seen in steels tested in the temperature range 973K - 

1273K with low strain rates of s10-3s 1 and are accompanied by low ductility intergranular 

fractures. 12,24,48,74,104 These intergranular fractures have been shown to occur normally either 

by strain concentration in the ferrite films forming around the y grains, 38 or by precipitation at 

the y grain boundaries; this precipitation prevents the movement of the boundaries and 

allows cracks formed by grain boundary sliding to link up. 12,24,74,104,105 Nevertheless, hot 

ductility troughs have on occasions been observed in the y phase, at low strain rates, 

without fine precipitates being present. 75 The failures that are observed have flat facets and 

show little evidence of voiding around the MnS inclusions, indicating that grain boundary 

sliding is the operative failure mechanism. 38 

The trough in plain C-Mn steels is due to the formation of ferrite which occurs on 

transformation from the y phase and is formed at the y grain boundaries. In coarse grained 

material, the ferrite forms as a thin band around the y grains and because it is generally 

softer than the y, on deformation most of the strain concentrates within this film. On 

104 H. G. Suzuki, S. Nishimura, J. Imamura and Y. Nakumura: Trans. ISIJ, 1982,22, p. 48. 
105 G. D. Funnell and R. J. Davies: Met. Technol., 1978,5, p. 150. 
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deformation, voiding occurs around the MnS inclusions and the cavities produced gradually 

link up to give intergranular failure. Thus, as with ductile fracture, one would expect the 

volume fraction, size and shape of the inclusions to influence the R of A values. 

As well as the depth of the trough being influenced by the MnS, the width has also 

been shown to be influenced by these Mn sulphides. ' At the low temperature end of the 

trough, elongated coarse MnS inclusions can encourage the formation of ferrite and hence 

cause ductility to improve more readily. At the high temperature side, the finer sulphides that 

can precipitate out at the y boundaries on cooling to the test temperature can delay the 

onset of dynamic recrystallisation and hence widen the trough at this end. 

This experiment was intended to obtain the relative importance of the form and 

distribution of sulphides at the boundaries, and to investigate the effect they have on the 

width and depth of the hot ductility curve or whether it is only micro-alloying additions that 

widen and deepen the trough. It was also hoped to gain useful information as to how the 

higher cooling rates, that thin slab casters are exposed to, influence cracking. 

5.2 Experimental Details 
C-Mn-Al steels were chosen for examination at two levels of Mn, 0.3 and 1.4% and 

two levels of S, 0.004 and 0.01 to 0.02% sulphur. The casts were supplied as 15mm hot 

rolled plate. Tensile samples (taken along the rolling direction) were solution treated at 

1603K to allow varying amounts of sulphur to go back into solution, held for 5 minutes at this 

temperature and then cooled to test temperatures in the range 1273 - 973K. After holding 

for a further 5 minutes at the test temperature, the specimens were strained to failure at a 

strain rate of 3x10.35 1. Samples were quenched immediately after failure. 

In addition, tensile samples from selected steels were cast at 1813K, held 5 minutes 

and cooled at 60Kmin 1 to the same test temperature range. After holding these induction 

samples a further 5 minutes at test temperature, they were strained to failure at a strain rate 

of 3x1 0"3s'1 based on an average gauge length of 22mm, i. e. length of molten sample within 

the induction coil. The compositions for these four steels are shown in Table 5.1. 
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5 P7H45 0.1 0.33 0.31 0.009 0.019 0.025 0.0049 
6 P7H47 0.1 0.33 0.31 0.004 0.017 0.029 0.0046 
7 P7H48 0.1 1.47 0.30 0.004 0.018 0.025 0.0041 
8 P7H46 0.1 1.36 0.30 0.020 0.020 0.025 0.0047 

Table 5.1: Analysis of steels studied in this section, wt. %. 

These steels had Mn and S levels such that at 1603K either a) most of the S is in 

solution and available for precipitating out in the ferrite bands as spherical particles or b) the 

S will remain mainly as elongated MnS. It was expected that for the low Mn steels, all of the 

S will be in solution at 1603K for the lower S steel (0.004%) and most of the S, (0.006%) for 

the higher sulphur steel. For high Mn steels, little S will be in solution at 1603K, but will 

instead be mainly in the form of elongated MnS. The transformation temperatures of the 

four steels are shown in Table 5.2. Dilatometry followed the sample heating programme as 

closely as possible; however, the maximum temperature was limited to 1653K and the 

samples were not held for 5 minutes at the test temperature. 

5 1147 988 1071 
6 1147 988 1083 
7 1105 942 999 
8 1109 946 999 

Table 5.2: Transformation temperatures of steels examined, K (at 60Kmin-1), The A. temperatures 
were calculated using the Thermocalc program and the Ar temperatures by dilatometry. 

5.3 Results and Discussion 

Table 5.3 shows the amount of S in solution at 1603K and wt. percent of MnS that 

can be produced on cooling, assuming all S is re-precipitated out (relative atomic mass 

[Mn+S]/S multiplied by %S in solution = 2.714 x %S). It can be seen that most, or all, of the 

S is taken into solution for the low Mn steels 5 and 6, but only -0.0016% for the high Mn 

steels - independent of whether the total S content is 0.004 or 0.020%. The calculated 

equilibrium curve of %S in solution against temperature is shown in Figure 5.1. 
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;1 
4i. a. nis . ybr C 

. : 1... "r . >na}. )+ zl... i- 

5 0.33 0.009 0.0062 0.017 
6 0.33 0.004 0.0040 0.011 
7 

-- -- 
1.40 0.004 0.0015 0.004 

8 1.36 0.020 0.0017 0.005 

Table 5.3: Amount of S in solution at 1603K and the quantity of 
MnS able to precipitate out on cooling to the test temperature. 

0.035 

C 
O_ 

Ö 
N 
C_ 

ý 

1073 1173 1273 1373 1473 1573 
Temperature, K 

1673 1773 1873 

Figure 5.1: Calculated equilibrium %S in solution versus temperature for the two Mn levels. 

The hot ductility curves for the four steels studied are shown in Figure 5.2, and can 

be seen to divide themselves into two groups, one for the low Mn steels, in which the trough 

occurs in the narrow temperature range - 1098K to 1148K, and the other for the high Mn 

steels in an equally narrow lower temperature range - 1033K to 1093K. The sulphur content 

can be seen to have only a small influence on the hot ductility behaviour. The equilibrium 

amounts of ferrite present (dashed curves) and the Ae3 and Ara temperatures, calculated 

using the Thermocalc program and measured from dilatometry respectively, are also shown 

on this figure. 
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Figure 5.2: Hot ductility curves for steels 5 to 8 (solution treated). 

For all four steels, it can be seen that the ductility started to fall at the high 

temperature end of the trough at the Ae3 temperature (-1143K for the low Mn steels and 

1103K for the high Mn steels). As seen in the previous chapter and previous work, 72 the 

troughs were caused by a thin band of ferrite which rapidly increased in thickness as the 

temperature fell below the minimum ductility temperature, see Figures 5.3 - 5.6. For 

example for steel 5, Figure 5.3, the thin film of ferrite forms at 1123K, Figure 5.3(b), and this 

rapidly increases in thickness, (c) and (d), as the temperature decreases to 1073 when 

ductility fully recovers, Figure 5.2. Behaviour is similar for the other steels, Figures 5.4 - 5.6. 

The Ara temperatures were always well below the Ae3 temperatures, see Table 5.2, 

indicating that all the ferrite associated with the trough was deformation induced. 
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-ý w,,,. 
(C) 

(d) 
Figure 5.3: Digital micrographs (mag. x60) of steel 5 at (a) 1148K, fully austenitic (b) 1123K, thin ferrite film (c) 

1098K, thickened films + ferrite in matrix, and (d) 1073K, structure nearly fully ferriticr. 

Figure 5.4: Digital micrographs (mag. x60) of steel 6 at a) 1173K, fully austenitic b) 1 123K, thin ferrite film c) 
1098K, thickened films + ferrite in matrix, and d) 1073K, structure nearly fully ferritic. 
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(a) 

(c) 

(b) 

f 1., ': w7 

ý .4 ý}'*, 
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, .. (d) 

Figure 5.5: Digital micrographs of steel 7 (mag. x60) at (a) 1073K, fully austenitic (b) 1048K, thin ferrite films, (c) 
1023K, thickened films + ferrite in matrix, and (d) 973K, nearly fully ferritic. 

Figure 5.6: Digital micrographs (mag. x60) of steel 8 at (a) 1123K, fully austenitic (b) 1073K, thin ferrite film (c) 

1023K, thickened films + ferrite in matrix, and (d) 998K, structure nearly fully ferritic. 
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The flow curves for the steels examined are given in Figures 5.7 - 5.10. However, it 

is not easy to identify the temperature for the start of dynamic recrystallisation from these 

flow curves by load fluctuations, this is because similarly shaped curves are produced for 

the onset of DRX and for when DIF first forms; in both cases, there is a drop in stress 

followed by an extensive elongation prior to fracture. This can be seen from Figure 5.7, for 

example, where the curves at 1073 and 1173K have similar shapes; the 1073K curve being 

where DIF forms and the 1173K curve when DRX is possible. More information can be 

obtained by drawing the curves of strain to the peak stress and the peak stress against 

temperature, Figures 5.11 and 5.12 respectively. Figure 5.12 shows that it is more difficult to 

form DIF in high Mn steels; this is because of the lower transformation temperature and 

slower diffusion rates. 

------------ 

----------------- ----------- 

----- ------------ -------------- 

------- --- 
10 

0 10 20 30 

--------------------------- ------------------------- 

DRX at 1173K 

-- -------- ------------- -------- 

40 
Strain, 

-------------- 

50 60 

-E-1 173K 

--f-1148K 
k 1123K 

-1-1098K 
E3 1073K 

--0 - 973K 

70 

Figure 5.7: Stress strain curves for steel 5, showing onset of dynamic recrystallisation. 
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Figure 5.8: Stress strain curves for steel 6, showing onset of dynamic recrystallisation. 
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Figure 5.9: Stress strain curves for steel 7, showing no evidence of dynamic recrystallisation. 
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Figure 5.10: Stress strain curves for steel 8, showing evidence of dynamic recrystallisation. 
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Figure 5.11: Curves of the strain to the peak stress against temperature for steels 5 to 8. 
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Figure 5.12: Curves of peak stress against temperature for steels 5 to 8. 

5.3.1 Analysis of Flow Curves 

a) Flow curves in present chapter 5 

For the low Mn steels, steels 5 and 6, it can be seen from Figure 5.11 that there is a 

peak strain for the production of deformation induced ferrite of about 15% throughout the 

temperature range 973K to 1098K (It should be noted that as for dynamic recrystallisation, 

the critical strain for deformation induced ferrite is likely to be significantly less than the 

strain to the peak stress). The maximum stress throughout this temperature range 

decreases with increase in temperature, Figure 5.12. 

On raising the temperature above -1113K for the high S steel, steel 5, and 1143K 

for the low S steel, steel 6, both the peak strain and peak stress increase, Figures 5.11 and 

5.12 respectively. This is a clear indication that the softening process has changed from the 

production of deformation induced ferrite to the onset of dynamic recrystallisation. Thus, at 

PhD in Mechanical Engineering, City University, London - Andrew Cowley, 2004 
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the low Mn level, dynamic recrystallisation requires both higher strains and stresses. 

Increasing the temperature once dynamic recrystallisation can occur leads to the normal 

reduction in peak stresses and strains. 

For the high Mn steels, steels 7 and 8, greater stress and strain is required for the 

formation of deformation induced ferrite than with the low Mn steels, Figures 5.11 and 5.12. 

It can be seen that it is far more difficult to produce deformation induced ferrite in the high 

Mn steels. The maximum stress progressively decreases with temperature, independent of 

whether deformation induced ferrite or dynamic recrystallisation is the operative mechanism. 

In the present work, it has been shown that sulphur/sulphides do not generally have 

a major influence on the hot ductility of solution treated C-Mn-AI steels, Figure 5.2. This is 

because, for the steels examined, the temperature range in which a thin band of ferrite 

surrounds the y grain boundaries is very limited. As such, the trough is governed mainly by 

the Ae3 and Ara temperatures, which are little influenced by the sulphur levels. 

b) Analysis of flow stress curves in previous chapter 4 

The same approach can also be used for the steels with narrow troughs that were 

examined in the previous chapter, chapter 4, steels 1 and 3. The curves of strain to the peak 

stress against temperature and peak stress against temperature are given in Figure 5.13a 

and 5.13(b) respectively. Again, the temperature for the onset of dynamic recrystallisation, 

TD, can be readily determined from Figure 5.13(a). For the Nb containing steel, steel 3, the 

curve of peak stress v temperature does not show a peak at TD, Figure 5.13(b), but this may 

be because insufficient testing was carried out to establish the peak. It can be seen that 

once dynamic recrystallisation is established, that both the strain to the peak stress and 

peak stress for a given temperature are higher for the Nb containing steel 3. 
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For the steels having the wide troughs, 2 and 4, the situation is more complex, see 

Figures 5.14(a) and 5.14(b). Two salient points can be noted in Figure 5.14(a), the first 

relates to the Ara temperature, below which large amounts of ferrite are formed prior to 

deformation. This leads to a reduced strain to the peak stress as the temperature is reduced 

- this being normal work hardening behaviour for ferrite. Above the Ar3, only a very small 

amount of ferrite forms under deformation and for the plain C-Mn steel, the strain is 

approximately constant throughout this range from 973 to 1173K. The next salient point is 

when dynamic recrystallisation can take place, and the strain to peak stress gradually falls 

with temperature. One would estimate this for the plain C-Mn steel to be between 1173 and 

1273K. 

In the case of the Nb containing steel, steel 4, the Ara temperature can be clearly 

identified in Figure 5.14(a) as 953K, but above this temperature, the strain first decreases 

and then increases again, through the temperature range 953 to 1193K. Again, only a small 

amount of ferrite forms between the Ara and Ae3,953 and 1090K and above this 

temperature it would appear that deformation is solely in the austenite without DRX 

occurring. Recrystallisation probably occurs at a temperature between 1193 and 1273K, 

when the strain starts to decrease with the increase in temperature. 

PhD in Mechanical Engineering. City University, London - Andrew Cowley, 2004 



5-14 

36 

32 -- -------------- 

34 - 

28 --------------------- 
: 

30 -------------- 

16 10 

18 -----------ý 

26 ----------------- ----------------------- 

24 ---------------------: -------------------- 

22 -------------------- ; --------------------- 

20 -------------------------------------------- 

... __. __. __r.. 1 ------------------ +--------------------- 

i/i 

------------------------------------------ i 

------------ ------------------------------------------- i. i 

  
.tý 

--------------I---------------------"-------------------- ------------------- ýý +ý N 
r 

____________L_. ____. _. __. _ _.. _I_______.... ____ 

Tb(3) Tn(1) 
.. ------------------ " ---------------1-------------------------------------------- --------------- 

(a) 

10 -4-- 
973 

130 

1173 

-U- Steel 1 

-0 - Steel 3 

(b) 

100 1- 

1023 

ý 

  Steel 1 
f Steel 3 

1223 

901 -------------- ---------------------------- ----- - ----------------------------------------- 

--------------- ------- --- ----- - -- ------- 80 ---------- ---------------------------- ----------- 

1073 1123 
Temperature, K 

ý, 

70 1 --------------------- 60 - ----------------- --------------- 

30 

L 

973 

40 

1023 1073 1123 
Temperature, K 

i... i 

1173 1223 

1273 

1273 

Figure 5.13: Curves of a) strain to the peak stress and b) peak stress against temperature for steels 1 and 3. 
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Figure 5.14: Curves of a) strain to the peak stress and b) peak stress against temperature for steels 2 and 4. 
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5.3.2 Conditions required for obtaining a narrow trough 

For the steels examined in this chapter, steels 5 to 8, ductility recovery at the low 

temperature end of the trough is due to the formation of large amounts of deformation 

induced ferrite (DIF) just below the Ae3 giving relatively narrow troughs. Deformation 

induced ferrite formed very readily in these steels in almost equilibrium amounts even in the 

high Mn steels, as can be seen from Figure 5.15 which plots the equilibrium and observed 

amounts of ferrite against temperature. When this happens there is no defined depth to the 

trough and it is not possible to accurately determine the depth. Thus, although the amount 

of S in solution varied considerably both in solution at 1603K and in the volume fraction of 

sulphides present, the actual "depth" of the trough changed little, see Table 5.4 and 

Figure 5.2. 

100 

--l -Steel 5 

--A- Steel 6 
Steel 7 

-Steel 8 

1023 1073 

Temperature, K 

1123 

Figure 5.15: Curves of equilibrium (dashed) and observed (solid) percentage ferrite for steels 5 to 8. 
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£'. elongated S in solution Volume fraction spherical 
Steel Wt. %S Wt. %Mn 

MnS after . rolling 603K, wt. % xIO precipitating after solution 

5 

6 

7 

8 

0.009 

0.004 

0.004 

0.020 

0.330 

0.330 

1.470 

1.360 

0.048 

0.021 

0.021 
0.107 

6.249 
4.000 

1.546 
1.678 

0.033 
0.033 

0.008 
0.009 

Table 5.4: Percentage S in solution at 1603K and the volume fraction of 
MnS present in the steels after both hot rolling and solution treatment. 

It can be seen from Figure 5.2, which plots equilibrium volume fraction of ferrite 

against temperature, that as in the previous chapter, there is a good relationship between 

this and the R of A values. The previous chapter had suggested that narrow troughs could 

only be formed at high Ae3 temperatures of -1153K, i. e. since DIF is diffusion controlled, the 

higher temperatures should encourage its formation. 

However, in the present instance, the narrow troughs are being produced at much 

lower temperatures of -1103K. It may be that the present work has just covered the Ae3 

temperature range in which the changeover from a wide to a narrow trough occurs. In the 

previous chapter, the Ae3 temperatures for the wide troughs were 1085K to 1090K, whereas 

in this chapter the lowest Ae3 temperature is 1105K and this gives a narrow trough. It may 

necessitate having a temperature greater than 1100K to obtain this narrow trough. Thus, 

one method of narrowing the trough is to have lower C levels. When the C level is 0.15- 

0.2% in a 1.4% Mn steel, a very wide trough occurs, since only a thin film of ferrite forms 

around the Y boundaries and the temperature has to go below the Ara to produce large 

volume fractions of ferrite. Often this deep trough can exist over 150K from the Ae3 to 30K 

below the Ara. However, when the C level is reduced to <0.1%, DIF forms very readily just 

below the Ae3 leading to a narrow trough and improved ductility. Commercially, it has been 

found that reducing the C level in a 1.4% Mn, Nb containing steel from 0.12 to 0.08% can 

lead to much reduced cracking and this could possibly be the reason. 106 

106 B. Mintz: Private communication, 1998 
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5.3.3 Influence of S and Sulphides 

Surprisingly, there is little obvious influence of the sulphur level in the hot ductility 

curves for these narrow troughed steels. For the low Mn steels, the curves were very similar 

even though there were big differences in the amount of dissolved sulphur at 1603K. Indeed 

the higher S containing steels gave slightly better ductility. For the high Mn steels, again the 

curves were very similar for the two sulphur levels, but the steel with the higher total S 

containing steel gave slightly better ductility. 

For these steels, the formation of ferrite is the main factor controlling the trough and 

the higher S levels, by providing more MnS particles, will encourage ferrite formation and 

may give better ductility. This is confirmed for steel 8, the steel with the greatest volume 

fraction of elongated MnS inclusions, in which ductility at the low temperature side of the 

trough is observed to recover more quickly than for the lower sulphur containing steel 7, 

Figure 5.2. At 1098K, it can be seen that the elongated sulphides act as nucleation sites for 

ferrite formation so enhancing its production, Figure 5.16. Although the ferrite here is 

surrounding the MnS inclusions within the grains, recovery in ductility at the low temperature 

end of the trough is likely to be mainly dependant upon the volume fraction of ferrite 

independent of where it is situated. 

Figure 5.16: Elongated MnS inclusions encouraging the formation 

of DIF in steel 8. Steel tested at 1098K (mag x800). 
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This observation is in accord with previous work, 4 which shows that increasing the 

volume fraction of elongated MnS inclusions encourages ferrite formation, but the present 

work indicates this is a relatively small effect compared with that of reducing the C content. 

Any influence of sulphur on hot ductility may only become important with wide troughs and 

the sulphides can then have an important influence on ductility as there is then only a thin 

band of ferrite at the austenite grain boundary. The exercise needs to be repeated on higher 

C (0.15%) and 1.4% Mn steels, which should result in a wide trough being observed. 

5.3.4 Influence of Cooling Rate 

The typical influence of cooling rate on hot ductility is shown in Figure 5.17 for a steel 

previously examined by the research group at City University and having a similar 

composition to that of steel 6. The work clearly shows that increasing the cooling rate from 

conventional rates (25-60Kmin"'), to that appropriate for thin slab casting (200Kmin''), leads 

to worse ductility and, as has been noted in other recent work, 4"' is due to finer precipitation 

and finer inclusion distributions. Ductility as a result is worse, presumably because the finer 

the precipitation the more closely spaced are the particles along the boundary and the 

easier it is for cracks to interlink. Thus, transverse cracking might be expected to be more of 

a problem in thin slab casting particularly as there is no opportunity for surface inspection. 

Only limited testing at cooling rates other than 60Kmin' using the steels in the current 

programme was able to be carried out; however, the initial findings were in agreement with 

the results shown in Figure 5.17. 
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Figure 5.17: Hot ductility curves for a typical as-cast C-Mn-Nb-Al 

steel, given different cooling rates to the test temperature-107 

Increasing the cooling rate would be expected to lower the Ara and for steels 

showing the wider troughs, extend the troughs even more. However, in the present case, 

increasing the cooling rate from 25 to 200 Kmin-' can be seen from Table 5.5 to give very 

variable results, from very little influence to a marked decrease in the Ara and Ar, 

temperatures. 

sssc: f 

5 P7H45 1071 
6 P7H47 -- - ---- - 1083 
7 P7H48 - 999 999 
8 P7H46 989 999 932 

Table 5.5: Ara transformation temperatures for steels 5 to 8 at cooling rates of 25,60 and 200 Kmin'. 

The average effect, as one would expect, was to decrease these temperatures. In 

this respect, increasing the cooling rate might be expected to move the hot ductility curves 

to lower temperatures. In fact, the ductility curves move to higher temperatures on 

increasing the cooling rate, i. e. worse ductility, indicating that the detrimental influence of 

precipitation is even worse than that given in Figure 5.18 

107 B. Mintz, R. Abushosha, S. Y. Ayyad and GISL Cardoso: HSLA '95, Proc. Of the Conf. on HSLA steels, China Science and 
Technology Press, China, (1995), pp. 342-345. 
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Figure 5.18: Schematic diagram showing the effect of cooling rate on hot ductility (based on 
Figure 2.2175 showing grain size having a similar effect on the hot ductility curve). 

5.3.5 As-Cast Samples 

Again the influence of raising the S level from 0.004 to 0.019% only had a very small 

affect on the hot ductility, Figure 5.19. However, for as-cast steels, because all the sulphur 

is in solution on solidification, a large amount of sulphides are able to precipitate out at the 

austenite grain boundaries. The presence of a larger volume fraction of sulphides in the 

higher sulphur steel led to dynamic recrystallisation being delayed so that ductility at the 

high temperature end did not start to recover until slightly higher temperatures. Similar 

behaviour has been noted previously on similar steels. 4 However, sulphur may have a more 

pronounced influence at higher C levels, when wide troughs are possible. It should be noted 

that the ductility trough is deeper for as-cast samples than for the solution treated samples; 

this is due to more sulphur being available for precipitating out at the interdendritic and 

austenite grain boundaries. 
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Figure 5.19: Hot ductility curves for as-cast steels, showing little change with percentage sulphur present. 

5.4 Conclusions 
1. The ductility troughs obtained for the four steels in this chapter can be seen to be 

grouped as the low Mn (steels 5 and 6) and high Mn (steels 7 and 8) containing steels; 

the low Mn and high Mn steels giving narrow ductility troughs of approximately 60K 

centred at -1135K and -1 060K respectively. There is also a similar displacement in the 

positions of the observed and calculated curves of percentage ferrite against 

temperature. This is in agreement with the reduction of transformation temperatures as 

Mn levels increase; the higher Mn steels have Ae temperatures approximately 40K lower 

than the lower Mn steels, whereas the Ara temperatures were much lower (-100K). 

Dilatometry and metallography show that the ductility troughs are caused by the 

presence of a thin film of deformation induced ferrite. 
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2. In the present work it has been shown that sulphur and sulphides do not generally have 

a major influence on the hot ductility of solution treated C-Mn-Al steels for the 

compositions examined. This is because for these steels, the temperature range in 

which a thin band of ferrite forms around the y grains is very limited. Deformation 

induced ferrite readily forms in large amounts at temperatures close to the Ae3. As such, 

the trough is governed mainly by the Ae3 and Ara temperatures, which are little 

influenced by sulphur levels. 

There is some indication that a high volume fraction of elongated MnS inclusions allow 

recovery in ductility to occur more rapidly on the low temperature side of the trough as 

has been noted in previous examinations. However, this again is only a small effect. 

Wider troughs, in which the presence of a thin band of ferrite occurs over a wide range 

of temperature, as with the Nb containing steels or higher C or Mn containing plain C-Mn 

steels might be expected to be more influenced by the level of sulphur, particularly with 

regards to the depth and this requires further investigation. 

In the as-cast steels, large amounts of sulphides are able to precipitate out at the 

austenite grain boundaries because all the sulphur is in solution. This makes it more 

difficult for dynamic recrystallisation to occur, thus extending the trough to higher 

temperatures. 

3. Increasing the cooling rate results in worse ductility, previous work showing this to be 

due to finer sulphides and precipitation. For the range of cooling rates investigated, 25 to 

200 K min'', the decrease in Ara temperatures as the cooling rate increases is relatively 

small. 

4. This work has also clearly shown that the width of the trough can be narrowed by 

reducing the carbon and manganese levels, and to produce a trough <60K the Ara 

temperature should be greater than 1103K. Recovery in the ductility at the high 

temperature end in these hot-rolled and solution treated steels generally corresponds to 
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the onset of dynamic recrystallisation. However, the strains that are required are much 

greater and the grain sizes too coarse to allow dynamic recrystallisation to occur in the 

commercial straightening operation during continuous casting. 

At the low temperature side of the trough, recovery in ductility corresponds to the 

formation of a large amount of ferrite (-40%) and therefore any changes in composition 

that could raise the Ara would be beneficial, e. g. lower C or Mn levels. These changes to 

the composition would be expected to reduce the width of the trough, thus reducing the 

risk of transverse cracking. 
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6. Mathematical Modelling 
The work in this chapter followed on from previously published work by Mintz et a!. 930 

and has been published in two papers. 108.109 This exercise was intended to attain a better 

understanding of what controls the width of the trough and to develop a model which can be 

applied to a wide selection of steels. The role of strain rate, grain size and particles in 

controlling the width and depth of the trough were examined. 

6.1 Introduction 
Steels generally exhibit poor ductility when tested at a low strain rate in the 

temperature range 1273 to 973K. The poor ductility on the high temperature side of the 

trough can be due to either grain boundary sliding in the y, which is exacerbated by the 

presence of particles at the boundaries, or to the phase transformation when a thin film of 

the softer ferrite forms around the y grains allowing strain concentration to occur. 2 Recent 

work has shown that in coarse grained steel, the major improvement in hot ductility that 

occurs at the high temperature end of the trough is due to the onset of dynamic 

recrystallisation (DRX). 2,3048 Cracks that form prior to recrystallisation then become isolated 

and further development is prevented. 2 

Without DRX, intergranular failure occurs, which at lower temperatures is due to the 

presence of deformation induced ferrite, and at higher temperatures is due to boundary 

sliding. Both failure modes give rise to similar R of A values, so that the transition from one 

failure mode to the other as the temperature is raised is not always recognised when it 

occurs. Without DRX, the fracture strain remains fairly constant with increasing temperature, 

as although raising the temperature reduces the flow stress, the beneficial influence this has 

108 B. Mintz, R. Abushosha, A. Cowley: Mat. Sci. and Technol., 1998,14(3), pp. 222-226. 

109 B. Mintz, A. Cowley, R. Abushosha and D. N. Crowther. Mat. Sci. and Technol., 1999,15(10), pp. 1179-1185 
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on the hot ductility is balanced by an increase in the rate of grain boundary sliding. The 

strain to the peak stress, ep , can be calculated from the following equation. 

sp =A 0d 
0. sZ0. i5 (s, 1) 

where A is a constant, do is the y grain diameter in µm, and Z is the Zener-Holloman 

parameter (Z=s exp(Q/RT)), where s is strain rate, Q is activation energy, R is the gas 

constant and T is absolute temperature. The constant A has been shown for simple C-Mn 

and C-Mn-Al steels to be 6.3x10-4 for grain sizes in excess of 200 pm and Q has been taken 

as 290 kJ mol"1.48,68 

The critical strain for dynamic recrystallisation, £,,, is always less than Ep, a typical 

value being 0.831 . 
10 A model has recently been proposed in which the temperature at 

which the onset of DRX occurs in a tensile test, Td, can be obtained from where the curve of 

cc (critical strain for DRX) v temperature and e, v temperature "curve" intersect as shown in 

Figure 6.1. In this model, changes of a with strain rate, grain size and precipitation are 

considered much more marked than that undergone by r,,. Lowering the strain rate, 

coarsening the grain size and increasing precipitation all lower cf. The relative movement of 

the curves with changes in these variables has been shown in Figure 2.17, and illustrates 

that whereas grain coarsening and precipitation will lead to a rise in Td (extends trough), 

increasing the strain rate lowers Td (narrows trough). 

öe 
d 
"' 0 
ix 

Unrecrystallised I 

Gj 
(minimum ductility) 

fi 

, 
1E- Recrystelliced 

, Td 
Temperature, K 

Figure 6.1: Schematic diagram showing how depth of the trough controls the temperature for onset of DRX, Td. 

110 C. Rossard: in 'Microstructure and Design of Alloys, 1973, London, The Institute of Metals, 2, p. 175. 
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The experimental work in this chapter was divided into two sections; one section was 

aimed at predicting the hot ductility curves in plain C-Mn steels and the other extended this 

work by looking more closely at the influence of the critical strain for DRX using an 

austenitic stainless steel in which no phase change could take place. The work on simple 

plain C-Mn steels was intended to show how the ductility curves can be predicted and how 

they could be used in relation to the problem of transverse cracking during continuous 

casting. The trough in these simple steels has been shown to be due to strain concentration 

causing voiding to occur around MnS inclusions in the softer ferrite films that form around 

the y grains. In this case, DRX is often prevented by the presence of a film of strain induced 

ferrite at the boundaries and only when the temperature is above the Ae3 can DRX occur, 

improving ductility. Because of the importance of the phase transformation in influencing the 

hot ductility behaviour, it is important to investigate whether the model investigated can be 

used equally successfully when grain boundary sliding alone is responsible for the 

intergranular failure. Therefore, an austenitic stainless steel was also examined in which no 

phase transformation was possible. 

6.2 Experimental Details 
As previously mentioned the work in this chapter was split into two sections, one 

using two simple plain C-Mn steels and the other an austenitic stainless steel; the 

compositions are given in Table 6.1. The plain C-Mn steels were provided by Corus, 

Swinden Technology Centre and the testing was carried out within the research group at 

City University. The stainless steel was provided by TWI and compression tests were 

carried out by Professor B. Mintz while on sabbatical at McGill University, Montreal using an 

MTS machine provided by Professor J. J. Jonas. 

9 0 095 0.31 0.28 0.032 0.010 0.032 0 004 
10 0.110 0.32 0.32 0.003 0.010 0.037 0.003 ----- 
11 0.014 1.70 0.40 0.006 0.013 - 0.130 25.5 2.16 22.4 0.11 0.002 

Table 6.1: Analysis of steels studied in this section, wt. %. 
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As the focus of this chapter is on modelling of the ductility curve, the experimental 

results obtained from testing these steels formed the required input data. However, brief 

accounts of the experimental details are given below. 

The plain C-Mn steels were 50 kg laboratory made vacuum melts which were rolled 

to 12 mm thick plate. Induction tensile specimens with dimensions as shown in Figure 3.2 

were machined from these plates with their axes parallel to the rolling direction. These 

specimens were placed in the induction unit so that approximately 22 mm at the mid-length 

position could be heated to the desired temperature. The specimens were heated to 1703 K 

(in 15 min), held for 10 min and cooled at a rate of 100 Kmin' to test temperatures in the 

range 1073 - 1373 K. They were then held for 5 minutes at this temperature and strained to 

failure at a strain rate of 5x 10-4s''. More information about the experimental details of this 

work can be found in reference 111, but is not regarded as being necessary for the purpose 

of this chapter which deals only with the modelling of the ductility curves. 

The austenitic steel studied was supplied as 15mm thick hot rolled plate and 

compression samples 11.4 mm long and 7.6 mm in diameter were machined from the plate 

with their axis parallel to the rolling direction. The experimental details for the tensile12 and 

compressiont09 testing for this steel have been detailed elsewhere, so again will only be 

discussed briefly. For the tensile samples, grain sizes of 40 and 325 p. m were examined and 

were obtained by heating the samples to 1273 and 1603 K respectively. After being held at 

these temperatures for 5 minutes, the samples were cooled at 60 Kmin'' to test 

temperatures in the range 1273 to 973 K; they were then tested to failure at four different 

strain rates, 3x10'1,3x10-2,3x10-3 and 3x10 s'', and quenched immediately after fracture. 

111 

112 

B. Mintz, R. Abushosha, O. G. Cominelli and MA. Loyola de Oliviera: In Proc. Conf. Thermec 97' Wollongong, Australia, 

July 1997, Dept. Materials Engineering, University of Wollongong. 

B. Mintz, M. Shaker and D. N. Crowther: Mat. Sci. and Technol., 1997,13(3), pp. 243-249. 
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Due to the difficulty in identifying whether DRX had occurred from the tensile flow 

curves, as necking takes place, compression testing needed to be employed as well as the 

more conventional tensile test. As much of the information available on the values of the 

activation energy for DRX, Q, and the constant, A, used in equation 6.1, is only available for 

the commonly used stainless steels, not the complex austenitic stainless steel used in these 

experiments, these were therefore determined experimentally from the compression test 

results. The furnace attached to the MTS compression machine had a maximum 

temperature of 1448 K (i. e. a lower temperature than used for the tensile samples) and 

therefore the compression samples were held at this temperature for a longer time of 15 

minutes to compensate. However the grain size for these samples was found to be 240 µm, 

which is finer than the 325 µm obtained in the tensile tests. 

6.3 Results and Discussion 

6.3.1 Simple C-Mn Steels 

The hot ductility curves for steels 9 and 10, high and low sulphur respectively, are 

shown in Figure 6.2. The Ar3, Ae3 and Td temperatures for the two steels are also shown in 

order to aid discussion. The Ae3 temperatures were calculated using Andrews formula' 13 

and found to be equal for the two steels, the Ara was established from dilatometry and Td, 

the temperature for the onset of DRX, obtained from the load-elongation curves. The 

minimum ductilities of -20 and -38% R of A for steels 9 and 10 respectively have been 

projected across, and the point of intersection with the curves of c against temperature 

indicates where ductility will improve due to DRX. The minimum ductilities can be converted 

to true strain using the following relationship, where c, is the strain to fracture. 

sf =1n[100/(100- R of A)] (6.2) 

113 K. W. Andrews: J. Iron Steel Inst., 1965,203, p. 721. 
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Figure 6.2: Hot ductility curves and cc against temperature for the C-Mn-AI steels 9 and 10, having 
high and low sulphur respectively. Arrows indicate the point at which the projected base of the tough 
intersects the curve of er, against temperature and therefore when ductility will start to improve. 

Depth of the Ductility Trough 

Intergranular failure within the ductility trough has been shown to occur by one of two 

mechanisms; microvoid coalescence taking place at inclusions below the Ae3 and grain 

boundary sliding in the austenite at higher temperatures. 2 The depth of the ductility trough is 

similar for these two mechanisms and it is rare to see significant changes in R of A values 

either side of the Ae3 temperature. In the absence of DRX, the ductility has been shown to 

remain essentially parallel to the temperature axis. 2,30 The depth of the trough is known to 

depend on k, grain size and the inclusion or precipitate distribution at the boundaries and 

within the matrix. 2 

The depth of the trough reduces with increasing strain rate as there is less time for 

voids to grow and join when failure is of the microvoid coalescence type and limits the 

amount of grain boundary sliding when failure is in the austenite. 2 Refining the grain size 

normally results in improved ductility as it becomes more difficult for cracks to propagate 

and the shorter crack length results in less stress concentration. The austenite grain sizes 

for the low and high S steels were 950 and 650 gm respectively, and this would have been 

expected to result in better ductility for the high S steel. However, when the grain size 
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exceeds 200-400 µm, the effect of grain size on ductility becomes very small, 58 and would 

explain the results seen in the present work. 

The particle volume fraction and distribution also plays a significant part in controlling 

the ductility and when the failure in the trough is intergranular, it is these particles at the y 

grain boundaries that control the ductility. Furthermore, if there are no microalloying 

additions and the soluble Al and N levels are too low to form AIN precipitates, 2 as in these 

two steels, then it is the inclusions that are responsible for the trough. 

Recent work on C-Mn steels indicates that the ductility is controlled by sulphides at 

the boundaries" and not grain boundary segregation of sulphur locally weakening the 

bonding. 114 These sulphides form when the elongated MnS inclusions, as were shown in 

Figure 5.16, partially dissolve at 1703K and are re-precipitated in a fine spherical form in the 

boundary region on cooling to the test temperature. 7 1 These sulphides can be readily 

identified in sections that are taken parallel to the rolling direction, Figure 6.3. Using the 

solubility data of Turkdogan et al., 101 0.0137 and 0.003%S dissolves in the high and low 

sulphur steels respectively at a temperature of 1703K. When a larger volume fraction of 

MnS precipitation forms at the boundaries, the closer is the inter-particle spacing and the 

greater the ease for voids forming around the precipitates to link up resulting in failure. It is 

therefore to be expected that the high sulphur steel has the deeper ductility trough. 

Figure 6.3: Spherical MnS precipitates found in C-Mn steel with a high S level. Tested at 
1123K, 3x10 s-' with a cooling rate of 10 Kmin-' and giving R of A=55%. (mag x1150) 

114 
H. Kobashi: Trans. ISIJ, 1991,31, p. 268. 
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The work on these two C-Mn steels has used the model of Yamanaka et a! 100 to 

calculate the minimum ductility and assumes that all the deformation takes place in the 

ferrite film. Gurland and Plateau15 have derived the following relationship for the fracture 

strain, sf. . 

sfu k lf 
(6.3) 

where k is a constant and f is the volume fraction of inclusions. Using the law of 

mixtures, Yamanaka et a!. 100 have developed this equation further to account for the 

situation where both ferrite and austenite are present. 

sf =(V,, +RVr)k 
1f 

(6.4) 

where Va and V, are the volume fractions of a and y respectively, R=s/e where r, 

and are the strains in the a and y respectively. It is believed that when failure occurs in the 

trough, virtually all the strain is taken up in the softer ferrite films surrounding the austenite 

grains. Therefore, to a first approximation, the equation for fracture strain, i, then simplifies 

to: 

sf =Vak 
1. 

f 
(6.5) 

The calculated values of ef converted to R of A together with the experimentally 

observed R of A values for steels 9 and 10 are given in Table 6.2. Also shown in this table 

are recent values obtained experimentally and calculated from other low C (-0.1 %) steels in 

which the volume fraction of sulphides can be calculated and the ferrite volume fractions 

have been estimated . 
71.116.117.1 8 The value of k has been taken as 0.0008 to give the best fit 

to the data and the calculated values are plotted against the observed values in Figure 6.4. 

115 

116 

117 

118 

J. Gurland and J. Plateau: ASM Trans., 1963,56, p. 442. 

G. I. S. L. Cardoso: PhD Thesis, 1986, City University London, UK. 

G. S. I. L. Cardoso, B. Mintz and S. Yue: Ironmaking and Steelmaking, 1995,22, p. 365. 

A. Cowley: Unpublished work, City University, London, UK, 1997. 
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,3 

1 f a n 

Ref. 18 1.40 0.0016 60 7 750 10 37 46 
Ref. 16 1.39 0.0016 60 3 800 10 35 25 
Ref. 18 0.61 0.0035 60 12 875 3x10 35 40 
Ref. 11 0.58 0.0036 60 8 850 3x10 44 28 
Ref. 16 0.39 0.0053 60 6.5 850 10 16 26 
Steel 10 0.32 0.0137 100 14 900 5x10 22 14 
Steel9 0.31 0.003 100 14 850 5x10 40 50 

Table 6.2: Calculated and observed R of A values for a selection of C-Mn-Al steels. 
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Figure 6.4: Calculated R of A values from Table 6.2 plotted against those observed experimentally. 

The thickness of the ferrite films around the y grains, i. e. the percentage ferrite 

present, cannot be calculated at present and has to be experimentally determined. There is 

a trend from Table 6.2 for the higher Mn steels to exhibit thinner ferrite films. The present 

work also does not make allowances for inclusion size which are dependant on the cooling 

rate; the faster the cooling rate, the finer the inclusions. Therefore, some re-adaptation may 

be required to account for the influence of inclusions and precipitation on the strain to 

fracture, cf. The effect of precipitation is generally taken account of by the higher Q values in 

the Zener-Holloman parameter, Z. Recent work" has shown that, for a given volume 

fraction of inclusions, ductility decreases with decreasing inclusion size. This may be related 

to finer distributions of inclusions at the grain boundaries providing easier paths for cracks to 

join together. The effect of inclusion distribution is likely to be relatively small compared to 

that of the volume fraction of inclusions. 
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Increasing the strain rate should also improve ductility, but the current work has only 

studied a narrow range of strain rates. For a complete analysis of the ductility curve, it would 

require the incorporation of terms for both b and the cooling rate, which controls the size of 

the sulphides, into Equation 6.1. 

High Temperature Ductility Recovery 

The recovery in ductility on the high temperature side of the trough in coarse grained 

steels has been shown to occur when DRX becomes possible 2,30 as illustrated in Figure 6.1. 

As mentioned in the literature review, DRX is beneficial as cracks that have formed at grain 

boundaries become isolated when the grain boundary moves away from the crack and new 

grains are formed; it does not occur during the commercial straightening operation as the 

strains involved are too small. The results for both C-Mn steels are in agreement with 

previous work, 2 and the recovery in ductility coincided with the onset of DRX, which occurs 

when the strain at a given temperature reaches a critical value, cc. As discussed earlier, a 

typical value for ee is 0.83ep, where ep is the strain to the peak stress and is calculated using 

Equation 6.1. Previous work on C-Mn steels4868 has shown that it is better to use EP in 

calculating the strain required for ductility improvement, this is due to recrystallisation in the 

boundary regions needing to be sufficiently advanced to prevent crack from joining together. 

Assuming that there is very little change in . up to the temperature when DRX is 

possible then the point at which the horizontal line, for the un-recrystallised state, intersects 

the curve of ep against temperature is when the ductility will recover, as shown in Figure 6.1. 

It can be seen from Figure 6.2 that this point of intersection is also the temperature where 

ductility measured experimentally can be seen to recover in both the high and low S steels. 

However, it should be noted that for the low S steel this point is very close to the Ae3 

temperature; and because this steel has a coarser grain size, the curve of ep against 

temperature is also higher in comparison to the high S steel. 
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The Ae3 temperature is important in determining the onset of DRX as the thin films of 

ferrite that form around the y grains make it difficult for DRX to occur. 2,30 In steels having a 

'finer' grain size (do=200 µm), this is particularly the case as ec is relatively small; the ductility 

does not recover at the point of intersection of the two curves, as would be expected, 

recovery is delayed until the Ae3 temperature is exceeded and ferrite can no longer form. 

Low Temperature Ductility Recovery 

Ductility recovery at the low temperature side of the trough corresponds to a large 

volume fraction of ferrite being present (>_45%), i. e. the amount of ferrite that can form 

before117 or during deformation at temperatures close to the Ae3.118 The equilibrium 

percentage ferrite present at temperatures below the Ae3 for a typical 0.1C-0.6Mn steel is 

shown in Figure 6.5a, calculated using the 'Thermocalc' program. 98 Figure 6.5(b) shows the 

relationship between R of A values and the percentage ferrite present for similar steels 

studied in previous work. 117 It can be seen from Figure 6.5(b) that 60% R of A can be 

obtained from a steel with 45% ferrite present and this proportion of ferrite would be present 

at 30-40 K below the Ae3 temperature, Figure 6.5(a). In the case of the ductility trough, the 

ferrite controlling ductility is DIF and can form at temperatures as high as the Ae3. 
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Figure 6.5: (a) Equilibrium percentage ferrite a temperatures below the Ae3 for typical 0.1 C-0.6Mn steel 

calculated using the'Thermocalc' program98 and (b) the influence of percentage ferrite on hot ductility. "' 
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It is generally found that ductility will first start to recover at either 20-30 K below the 

Ara (undeformed) temperature or at 20-30 K below the Ae3 temperature; there is little 

evidence to suggest that ductility will start to recover at temperatures between these ranges. 

The poor ductility seen in the trough is due to thin films of DIF forming around the y grains. 2 

Virtually all the strain concentrates in these films as they are relatively soft compared to the 

y grains, and as long as the films do not work harden, ductility remains poor. 

The stress acting in the boundary region appears to dictate whether ductility starts to 

recover below the Ae3 or below the Ara; at higher stresses DIF is more likely may spread into 

the y grains and there may be a critical stress for this to happen. Therefore, at higher strain 

rates and finer grain sizes the Ae3 temperature would be the controlling factor for ductility 

recovery. 7'40 The spread of the ferrite into the y is probably always due to the thin films of 

ferrite work hardening until its strength reaches that of the y and therefore deformation 

becomes homogeneous. When DIF starts to spread, equilibrium amounts of ferrite quickly 

form. 40 

MnS inclusions provide good nucleation sites for transformation ferrite and even 

more so for DIF, " and when coarser elongated MnS inclusions are present, the stress 

concentration at their tips encourages the formation of ferrite even more, Figure 6.6. It is 

therefore interesting to note that ductility recovers just below the Ae3 in the high S steels, 

which have high volume fractions of elongated MnS inclusions. However, the low S steel 

requires temperatures below 1098 K for ductility recovery. If the ferrite volume fraction can 

be increased, then ductility can be improved. In the present work the grain size is coarse 

and the strain rate very low; therefore, recovery readily occurs keeping the ferrite soft and 

resulting in strain concentration within the ferrite films and low ductility intergranular failure. 

For the low S steel, the width of the trough extends from the Ara (undeformed) to the Ae3 

and for recovery to occur ferrite must be present before deformation. For the high S steel, 

the large amounts of DIF forms around, and also within, the y grains encouraged by the high 

MnS volume fraction, and ductility recovers at the low temperature end close to the Ae3. 
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Figure 6.6: Elongated MnS inclusions favouring ferrite nucleation, high S steel tested at 1123 K. (mag x482) 

6.3.2 Grain Boundary Sliding in Austenitic Stainless Steel 

Coarse Grain Size 

As mentioned earlier, an austenitic stainless steel where no phase transformation 

was possible was used to see if the model can be successfully applied when grain boundary 

sliding (GBS) alone is responsible for intergranular failure. The depth of the trough is similar, 

independent as to whether GBS or phase transformation is the operative mechanism for 

intergranular failure. In order to calculate the curves of a against temperature, the grain size 

and the constants Q and A needed to be determined experimentally. The y grain size, 

determined by the linear intercept method, was found to be 240 µm. The value of Q, 450 

kJmol-', was determined from the curve of In Ep against 1/T, and A, 1.45x10-4, by fitting 

Equation 6.1 to give the best agreement with the experimental results. Using these values, 

the curve of Ep against temperature can be calculated and the strain value converted to R of 

A values using Equation 6.2. The calculated curves and the experimentally determined 

values of ep against temperature are shown in Figure 6.7. 
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Figure 6.7: Calculated curves and experimentally determined values of Cp against temperature 
for (a) coarse grain size, 240 µm (after Ref. 108) and (b) fine grain size, 40 µm. 

To predict the Td temperature from the curve c against temperature the depth of the 

ductility trough must be known and there is no theoretical model to calculate this for grain 

boundary sliding. Figure 6.8 shows the hot ductility curves obtained previously12 for these 

steels by tensile testing and the present calculated values for the curve of ep against 

temperature. The values of Td are obtained by projecting the depth of the ductility trough 

across as shown. The hot ductility curves are those taken from the tensile samples having a 

grain size of 325 µm (coarser than the 240 µm compression samples) and strained to failure 

at four strain rates; 3x10"1,3x10"2,3x10"3 and 3x10 s''. 
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Figure 6.8: Hot ductility curves obtained from tensile tests and calculated eP converted to R of A values against 
temperature for the coarse grained samples, Td for each strain rate is marked by an arrow (after Ref. 108). 
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The values of Td for strain rates of 3x10,3x10"3,3x10"2 and 3x10"1 s'', are 1188, 

1213,1248 and 1293 K, respectively. Experimentally, DRX was found to occur at lower 

temperatures than expected, e. g. for 3x10-3 s' recrystallisation was first observed at 1173 K, 

whereas the predicted temperature was 1213 K. Better agreement in this case between the 

experimental and calculated values were found using & rather than ep. However, it was 

found that ductility could improve without DRX if the strain rate was high enough, 3x10'1 s'', 

so that GBS was suppressed. Furthermore, at very low strain rates, cracks developed to 

such a degree by GBS that DRX was too late to prevent failure. In fact, only at a strain rate 

of 3x10"3 s'1, i. e. the strain rate pertinent to the straightening operation in continuous casting, 

was the model found to be satisfactory. 

Fine Grain Size 

Ductility troughs were not seen with the finer grain size and ductility was excellent 

(>90% R of A) for all temperatures examined, Figure 6.9. This indicates that in the fine 

grained condition, 40 µm, DRX would occur at temperatures >973 K. Metallographic 

examination confirmed that DRX did in fact occur throughout the whole temperature range 

examined. The ductility troughs for all strain rates have been completely removed by refining 

the grain size; this is shown in Figure 6.9 where the curves of e, against temperature would 

intersect the ductility curves (100% R of A) below the temperature range studied, i. e. less 

than 973 K. Even at the lower R of A values that were seen in the coarse grained condition, 

DRX would still have occurred before fracture when using the calculated curves of ep against 

temperature for the fine grained condition. 
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Figure 6.9: Hot ductility curves and calculated peak strain, Sp, converted to R of A values against temperature. 

The present work indicates that for coarse grained stainless steel this simple model 

can only used to predict Td for strain rates around 10-3 s"', i. e. the strain rate experienced at 

the straightener. However, DRX does not occur during the commercial straightening 

operation as the strain is too low and the grain size too large. Therefore, information derived 

from this model for the high temperature end of the curve must be used with caution when 

attempting to predict the likelihood of transverse cracking during continuous casting. At 

strain rates above and below 10-3s'1, GBS was dominant in controlling the recovery of 

ductility. Increasing the strain rate reduced both the width and depth and the trough. At 

higher strain rates, the time for cracks to grow is reduced and at lower rates, the cracks 

develop to such a degree that DRX is no longer able to restore ductility. 

ý~ 
._. 
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Metallographic Evidence for Coarse Grained Austenitic Steel 

Low Temperature End of the Trough 

Metallographic examination confirmed the effect of s on GBS since the length of 

cracks at the y boundaries increased as the strain rate decreased, as shown in Figure 6.10. 

At the lowest strain rate of 3x10 s", the minimum ductility was only able to improve a small 

amount with increasing temperature, even at the highest temperature of testing, 1273 K. 

r 

(a) 

.T 
I 
oj"- 

(b) 

Figure 6.10: The influence of 8 on the length of cracks formed by grain boundary sliding, (a) 3x10-' s' and (b) 
30 0-4 s-', both samples being tested at the minimum ductility temperature of 1123 K (mag x120). 

Although GBS can occur in austenite without particles being present at the 

boundaries, it is generally accepted that there must be some particles present for a trough 

to form. Grant et al. 119,120 have shown that crack or cavity formation by GBS in creeping 

alloys occurs more easily in the presence of grain boundary particles. At the low 

temperature end of the trough in this steel, 1123 K, the boundaries become saturated with 

precipitation, Figure 6.11(a), but ductility is able to recover and give high R of A values as 

grain boundary sliding is reduced at lower temperatures. 

119 
N. J. Grant and A. W. Mullendore: 'Deformation and fracture at elevated temperatures', 1965, Cambridge, MA, MIT Press. 

120 I. Servi and N. J. Grant: Trans. AIME, 1951,191, p. 917. 
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High Temperature End of the Trough 

Fewer but coarser precipitates are formed at higher temperatures, 1273 K, as shown 

in Figure 6.11(b). The particles in this stainless steel were found to be chromium carbides "z, 

whereas in simple C-Mn and micro-alloyed steels these would be AIN, Nb(CN) or TiN etc. 

Figure 6.11: Influence of temperature on amount of carbides precipitated at y grain boundaries, (a) 1123 K, 
boundaries saturated with precipitation and (b) 1273 K, considerable reduction in precipitation. (SEM x1200) 

Therefore, higher temperatures would be expected to have improved ductility even 

when DRX is not possible. However, the onset of DRX may also be influenced by grain 

boundary particles and removal of these precipitates may promote recrystallisation. At the 

lowest strain rate, 3x10-4 s', GBS dominates the recovery of ductility, ductility only slightly 

recovering with the onset of DRX, from 53 to 67% R of A as shown in Figure 6.8. 

Metallographic examination of the coarse grained condition at 1123 K revealed serrated 

boundaries, Figure 6.12(a), marking the onset of DRX, but even at 1273 K, Figure 6.12(b), 

when DRX was well advanced there still was not a great improvement in the ductility. 
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Figure 6.12: (a) Irregular serrated boundaries showing the early stages of DRX, 1123 K, 3x 10 ' s'. The 

cracks are sufficiently long enough to cause poor ductility even when DRX is well advanced at higher 

temperatures (b) Substantial DRX present at 1173 K, 3x103 s-'. (mag x120) 
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At the highest strain rate, 3x1O's-1, ductility recovers before DRX can occur and this 

was confirmed by metallographic examination where although ductility had almost fully 

recovered at 1223 K, there was no evidence that DRX had occurred, Figure 6.13. This is in 

accordance with Td being calculated to be between 1248 and 1293 K. The improvement in 

ductility at the higher temperature can therefore arise either from a reduction in the amount 

of GBS or by DRX. DRX seems to be most effective at the lower strain rate of 3x103 s-', but 

at 3x10-4 s-' ductility does not fully recover following the onset of DRX. When DRX is 

responsible for recovery in ductility, the value used for 'ge' is very important in obtaining good 

agreement with the temperature at which ductility recovers and for the coarse grained steel, 

e more closely follows the experimental results than Ep. However, it has been shown268 that 

DRX does not always result in ductility improving and often temperatures much higher than 

Td, around 100 K in fine grained steels2, are required before ductility recovers. 

Figure 6.13: Coarse grained sample with good ductility and no evidence of DRX, 1223 K, 3x10-' s'. (mag x120) 

It is clear from this work that in order to make the theory more universal, the depth of 

the trough needs to be theoretically determined for when grain boundary sliding is the main 

cause of intergranular failure. This will involve developing equations which include the 

effects of temperature, strain rate and precipitation size and distribution on the sliding 

process. 
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6.3.3 Relevance of the Hot Ductility Curve to Transverse Cracking 

The two sections of the hot ductility curve that are relevant to the problem of 

transverse cracking at the straightener, during conventional continuous casting, form the 

curve ABC as shown in Figure 6.14. This is because DRX never occurs during the 

straightening operation, as the strains involved are too small (-2%) and the grain size is too 

coarse, sections CD and C'D' are not relevant. Although thin films of ferrite can form at very 

low strains, there is no evidence that the large amounts of DIF, which can be produced just 

below the Ae3 in a tensile test, can also form at these low strains. Therefore, the depth of 

the tough is most important in predicting the likelihood of transverse cracking as it 

represents the ductility of the un-recrystallised grains. 

3 Ae3 
Temperature, K 

TT 

Figure 6.14: Schematic diagram highlighting the parts of the ductility 
curve that are relevant to the problem of transverse cracking. 
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6.4 Conclusions 

1. This model was found to work reasonably well for very simple plain C-Mn steels, in 

which no microalloying precipitates were present, provided that the strain rate is about 

10-3 to 10-4 s" and the cooling rate is in the range 60 to 100 Kmin''; these are the 

conditions pertaining to conventional continuous casting. The model can be used to 

predict the ductility curve for a simple steel if the Ae3 and Ara (undeformed) temperatures 

are known along with the curves of c and sf against temperature. The latter curve 

requires knowledge of the amount of S able to precipitate out at the 7 boundaries and 

the ferrite volume fraction. 

2. Recovery in ductility at the high temperature end of the trough for the C-Mn steels was 

found to take place at the point when DRX becomes possible. This occurs either when 

the curve of the strain to fracture, of , either intersects the curve of critical strain for 

DRX, e,, or when the Ae3 temperature is exceeded, whichever is the higher. Recovery 

at the low temperature end always occurs when substantial amounts of ferrite forms 

either before or during deformation. 

3. For the austenitic stainless steel with the fine grain size of 40µm, the model predicted 

that ductility would be excellent and DRX would occur throughout the entire temperature 

range; this is in accordance with the experimental and metallographic observations. DRX 

occurred at tensile strains lower than those causing failure in the coarser grained 

material throughout the temperatures range studied. 

4. For the coarse grained austenitic stainless steel, ductility troughs were obtained with the 

minimum ductility values for all the strain rates studied occurring at 1123 K. Extensive 

networks of chromium carbides were found at the y grain boundaries, which prevented 

DRX and instead encouraged cracks formed by grain boundary sliding to grow and 
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interlink. Recovery at the low temperature end was found to be due to a reduction in 

grain boundary sliding even though the carbides were still present. Whereas the 

recovery in ductility at the high temperature end was due to DRX occurring, but only at 

strain rates of 3x10-3s 1 as are found in the straightening operation during conventional 

continuous casting. Increasing the strain rate to 3x10-2s'1 resulted in less grain boundary 

sliding and ductility improved without DRX; whereas at very low strain rates of 3x104s", 

grain boundary was increased sufficiently such that DRX had little influence on the 

ductility. 

5. The model used was found to work reasonably well for very simple plain C-Mn steels in 

which no microalloying precipitates were present. However, for the austenitic stainless 

steel clearly the model needs to take into account grain boundary sliding and a creep 

type model of the form given in reference 11 needs to be incorporated. 
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7. Influence of Columnar Grains 
Transverse cracking during the straightening operation, as has already been 

mentioned, has been a subject much studied due to the cost and quality implications 

involved. Cracks form on the top surface and edges of the continuously cast strand during 

the straightening operation; these cracks can penetrate to a depth of up to 15mm, requiring 

scarfing for removal. An austenitic stainless steel slab having a coarse columnar structure 

emanating from the surface into the interior was chosen to study the effect of the columnar 

grains, as it would be expected to retain its grain structure down to room temperature. The 

work on this part of the programme has already been partly published. 121 

7.1 Introduction 

The influence of grain size on hot ductility has been well established. As can be seen 

from Figure 7.1, R of A values increase as the grain size refines and shallower and narrower 

troughs are also observed. However, it can also be seen that above a grain size of 300µm, 

the change in R of A is relatively small. The curve in Figure 7.1 was established for 

essentially equiaxed grain structures, these being the shape that is invariably produced on 

solution treating. However, even when the small tensile samples have been melted in-situ 

and cooled to the test temperature, the grain size in the as-cast region is still equiaxed. 

However, Mintz et a/. 2 have noted from examination of transverse cracks on the 

surface of slabs, that cracks always propagate from the surface along the long boundary of 

the columnar grains. When columnar grains are not present, such severe cracking is not 

observed. Vodopivec et al. 122 have also suggested that this cracking may be caused by the 

presence of a coarse dendritic structure which is favoured by Al in solution to at least 0.04%. 

121 B. Mintz, A. Cowley and R. Abushosha: Mat. Sci. and Technol., 2000,16, pp. 1-5. 

122 F. Vodopivec, M. Torkar, M. Debelak, M. Kmetic, F. Haller and F. Kaucic: Mat. Sci. and Technol., 1988,25, p. 917. 
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Figure 7.1: Influence of initial undeformed grain size after 
heat treatment, Do, on minimum R of A value. 2 
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The boundary length of the columnar grains can be up to 10mm compared to the 

-1 mm equiaxed grains that can be produced on casting. Such a length of boundary in the 

long direction of a columnar grain oriented normal to the tensile stress, that is produced 

during the straightening operation, might be expected to cause deterioration in ductility. 

There are of course difficulties in examining the influence of columnar grain orientation 

within the tensile specimen on ductility. Investigation was required to ascertain the 

importance of the presence of columnar shaped grains on ductility for HSLA steels. Even if 

columnar grains are present in the as-cast slab, reheating to a temperature of 1603K will 

cause then to recrystallise into equiaxed. 

7.2 Experimental Details 

In order to test these ideas, a continuously cast slab of austenitic stainless steel 

having columnar grains present at room temperature was chosen; the steel will maintain this 

columnar structure at 1603K and the composition is as shown in Table 7.1. 

__ 
:ý I: 

12 0.14 1.63 0.003 0.012 0.27 0.054 25.1 20 0.054 0.05 

Table 7.1: Compositions of the steel studied in this section, wt. %. 
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The continuously cast offcut, which was supplied by Corus' Scunthorpe Works, had 

dimensions 200 x 120 x 40 mm. Tensile samples, having a gauge length of 25mm and 

diameter 5mm, were machined from the following directions in the slab, see Figure 7.2. 

1. Transverse to casting direction, A. 3. Through the thickness of the slab, C. 

2. In the direction of casting, B. 4. Through thickness, 45° to casting direction, D. 

BA 

CD 
Figure 7.2: Sample directions. 

The samples were heated to 1603K, held for 5 minutes and cooled at 60Kmin*' to 

test temperatures in the range 1273K to 973K, held for 5 minutes at temperature and then 

strained to failure at 3x10-3s'. 

7.3 Results and Discussion 

The hot ductility curves for the 4 directions A, B, C and D are given in Figure 7.3. 

Ductility in the through-thickness direction, C, is excellent having >85% R of A throughout 

the whole temperature range. However, it can be seen that ductility deteriorates as the test 

direction changes from C to D then A to B, ductility at test temperatures of 973K dropping to 

a minimum of 55% and at 1273K, a minimum of 35%. Thus, ductility is worse when the 

tensile direction is perpendicular to the long columnar boundary, as it is when the 

straightening operation takes place. 
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Figure 7.3: Hot ductility curves for the four sample directions studied; A- transverse direction, B- casting 
direction, C- through thickness direction and D- through thickness at 450 to casting direction. 

The stress-strain curves for samples from the four directions tested in the 

temperature range of 973 to 1273K are given in Figures 7.4 to 7.7. 
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Figure 7.4: Stress - strain curves for samples taken transverse to the casting direction (A). 

PhD in Mechanical Engineering, City University, London - Andrew Cowley, 2004 



7-5 

0 5 10 15 20 25 
Strain, 

30 40 45 35 

Figure 7.5: Stress - strain curves for samples taken parallel to the cast direction (B). 

-------------- 2- 

---------- 

I ....................... ...... ....... 

0 10 20 

----------------- 

30 

--E-1273K 
-, k -1173K 
t 1073K 

-ý-973K 

----------------------- 

-^ 

40 50 
Strain, % 

60 70 80 

Figure 7.6: Stress - strain curves for samples taken in the through thickness direction (C). 
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Figure 7.7: Stress - strain curves for samples taken through thickness, 45° to the casting direction (D). 

From Figure 7.8(a), it can be seen that the tensile samples for the through-thickness 

direction, C, have excellent ductility; however, in Figure 7.8(b), samples taken parallel to the 

casting direction, B, have cracks present at 45° and at right angles to the tensile axis. 

Cracks at 450 to tensile axis 

(a) 

Figure 7.8: Failed samples (a) in the through thickness direction, C, showing excellent ductility 
and (b) parallel to the casting direction, B, showing poor ductility and numerous cracks. 

(b) 
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7.3.1 Chromium Carbides 

Chromium carbides were found to be situated at the boundaries and are probably 

responsible for the decrease in ductility below 1073K, as found in previous work. ' 12 Two 

replicas were taken from these steels at two temperatures 1273K and 973K. It can be seen 

from Figure 7.9 that whereas at 1273K, the particles are coarse and widely spaced, at 973K 

the particles are fine and closely spaced. The latter distribution always gives worse ductility, 

since it is easier for the cracks to interlink. 

Figure 7.9: Chromium carbides at y grain boundaries at (a) 1273K and (b) 973K (SEM, mag. x300). 

It is interesting to note, that above 1123 K, ductility improves with increase in 

temperature for the through-thickness direction C, but decreases for directions A and B. 

Examination of the grain structures at these higher temperatures indicated the presence of 

serrated boundaries in direction C, but not in direction B, see Figure 7.10. In directions A 

and B and D, straight boundaries were observed and such boundaries would be expected to 

favour grain boundary sliding. 
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ý Axis of tensile specimen 

4 

(b) 

Figure 7.10: Optical micrograph (mag. x60) of (a) serrated boundaries present in through thickness sample, C, 
tested at >1173K, and (b) absence of serrated boundaries in sample parallel to casting direction, B, at 1173K. 

Figure 7.3 shows that ductility decreases at temperatures above 1123K, for sample 

directions A, B and particularly D. The marked drop in ductility for this latter direction can be 

attributed to long columnar boundaries being at 45° to the tensile specimen axis so that the 

sheer stress at the boundaries is a maximum, thus greatly enhancing grain boundary sliding. 

7.3.2 Analysis of flow curves 

The curves of peak stress and the strain to the peak stress are given in Figures 7.11 

and 7.12. For the peak stress versus test temperature curves in the lower temperature 

range 973 to 1173K, the values are similar for directions A and D. Changing the direction of 

testing to B and then to C results in progressively lower peak stresses. The strain to the 

peak stress behaviour, Figure 7.12, is again similar for directions A and D in the lower 

temperature range, but drops significantly for directions B and C. 
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Figure 7.11: Curves showing variation of peak stress with temperature for the four sample directions. 
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Figure 7.12: Curves of the strain to the peak stress against temperature for the four sample directions. 
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The smaller stresses required for deformation in direction C are consistent with its 

good ductility. However, steel B also deforms at low stresses yet has the worst ductility in 

this lower temperature range. Clearly there are other factors which are influencing 

behaviour. The most likely of these factors is texture. It has not been possible to determine 

the texture of the grains, but these are almost certainly highly textured and as such, it would 

be expected that the peak stress behaviour would also be very directional. 

Dynamic Recrystallisation 

It can be seen from Figure 7.12, the curve of strain to the peak stress against 

temperature, that dynamic recrystallisation appears to occur for all directions once a 

temperature of 1173K is reached. Surprisingly, metallographic examination of the tensile 

samples taken in direction C gave little evidence for dynamic recrystallisation at 1173K. It is 

not clear why there is this disparity between the metallographic observations and the flow 

stress behaviour. 

7.3.3 Interpretation of the hot ductility curves 

In order to fully understand how the hot ductility behaviour changes with grain 

orientation relative to the tensile axis, it is necessary to determine the grain shape. The 

average size of a columnar grain was found to be 8x2x1 mm and this shape is shown in 

the schematic diagram in Figure 7.13. 

The cigar shaped form of the grains can be deduced from Figures 7.14(a)-(c); 

Figure 7.14(a) shows the view along the length of the tensile sample in the through- 

thickness direction, C, Figure 7.14(b) the cross-section of a tensile sample in the through- 

thickness direction, and Figure 7.14(c) a cross-section of the tensile sample taken in the 

casting direction, B. 
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Figure 7.13: Schematic diagram of columnar grain structure in the four sample directions. 
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Figure 7.14: Micrographs of sample sections taken in (a) through thickness direction, C, showing long columnar 
grains (mag. x3), (b) cross-section of through thickness sample, showing cigar shape of columnar grains - the 
dendritic nature of grains can also be discerned (mag. x6) and (c) cross-section of casting direction sample B, 
showing presence of very long columnar grains traversing across the entire gauge diameter (mag. x6). 
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Cracks are likely to be formed initially by grain boundary sliding as in Figures 7.8(b) 

and 7.15. The shear stress will be greatest when the boundary is at 45° to the stress axis, 

as is particularly the case for direction D in Figure 7.13. For samples in directions A, B and 

C, the majority of the grain boundaries will be parallel or perpendicular to the stress axis, so 

grain boundary sliding cannot occur, except where the grains meet, Figures 7.8(b) and 7.15, 

when the boundaries converge so that sliding and crack nucleation can occur. 

(a) (b) 

Figure 7.15: Tensile sample taken in the casting direction, B, and strained to failure at 1273K, showing cracks 
(a) forming at 45° to tensile axis and (b) subsequently being opened by normal stress (scale in b is mm). 

Once a shear crack is formed, the normal stresses will also be important as can be 

seen from Figure 7.15. However, as failure is intergranular, the progression of a crack is 

dependant on how the grain surfaces are oriented to the tensile axis and this will not be 

influenced by texture to any great degree. If the grain surfaces are orientated in the casting 

direction, B in Figure 7.13, then the crack once started can easily propagate through the 

grain diameter, only meeting a few grains, Figures 7.8(b) and 7.15. If the tensile axis is 

parallel to the long axis of the columnar grains, C in Figure 7.13, then although the crack 

may be able to penetrate to -1 mm, it then meets a new grain and the direction of crack 

propagation has to change. 

Although the situation is similar in the transverse direction, direction A in Figure 7.13, 

to that noted for direction B, in that a crack can propagate through the whole of a grain 

diameter in the through thickness direction before meeting another grain, the width of the 

crack is narrower leading to better ductility. 
PhD in Mechanical Engineering, City University, London - Andrew Cowley, 2004 
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The ease of propagation of the cracks is therefore dependant on the average grain 

boundary surface which lies perpendicular to the tensile axis. Assuming the grain shape is 

elliptical (Area of ellipse = nab, where a= 1/2 minor axis and b= 1/2 major axis), then the 

respective areas for the A, B and C directions can be calculated as 6.28,12.5 and 1.57mm2 

in accord with their relative ductilities. 

It is more difficult to calculate this value for direction D, but shearing along the grain 

boundaries which traverse the whole sample diameter is the predominant failure 

mechanism. However, some comment can be made with regard to the area involved. In the 

lower temperature range, the crack would be expected to partly propagate along the long 

boundary of the columnar grain, but would also be able to propagate along the much 

reduced cross-section of the columnar grains. It would therefore be expected to have better 

ductility than the B direction. 

It is not clear why the ductility should be so poor at 1273K for the D direction, but 

because the boundaries are oriented at 45°, it may be at this high temperature that grain 

boundary sliding becomes the dominant method of failure and normal stresses play a lesser 

role. Certainly, examination of the fracture sample for direction D at 1273K, shows a very 

different failure to what was normally found - the fracture being completely shear as can be 

seen from Figure 7.16. 

Figure 7.16: Failed sample taken from direction D, showing very poor ductility resulting from enhanced 
grain boundary sliding due to the long columnar boundaries lying at 45° to the tensile axis. 
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This work clearly shows that the shape of the grains at the surface of a continuously 

cast slab is very important. Columnar grains are particularly detrimental, as the straightening 

stresses are perpendicular to the long axis of the columnar grains and this will encourage 

crack propagation to the depth of the columnar grains below the surface, which can be up to 

15mm. The possibility of magnetic stirring in the mould, in order to break up these columnar 

grains, should be considered. 

7.4 Conclusions 

The following observations were made: 

1. The R of A values observed in all four sample directions improved as the test 

temperature was increased from 1023 to 1123K. This improvement was due to a 

coarsening and reduction in number of Cr carbides situated at the y boundaries. 

2. The R of A values for a given sample direction were found to be related to the amount of 

grain boundary lying perpendicular to the tensile axis; it was found that the smaller this 

apparent grain size, the higher the ductility that would be observed. 

3. The highest ductility was seen in the samples with the columnar grains parallel to the 

tensile axis, i. e. taken from the through thickness direction, C, of the continuously cast 

slab. The propagation of cracks was hindered by the larger number of grain boundaries 

encountered as the crack attempted to develop through the sample. 

4. The worst ductility, at temperatures up to 1173K, was given by samples taken parallel to 

the casting direction, B, as the columnar grains were then perpendicular to the tensile 

axis. When a crack formed, it could easily propagate through the sample and in some 

cases without meeting another grain which would require a change in direction. This is 

the situation that is experienced in the top surface of the continuously cast slab during 

the straightening operation, when columnar grains are present. 
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5. Columnar grains have been shown to contribute to poor ductility and encourage 

transverse cracking. It is therefore recommended, wherever possible, to avoid 

developing a columnar structure in the continuously cast slabs. 

6. The normal stress was found to control the ductility for temperatures up to 1123K, grain 

boundary sliding may initiate the cracks but was not principally responsible for the 

propagation through the sample. 

7. At temperatures above 1123K, only samples taken from the through thickness direction 

of the slab experienced a continued increase in ductility. This continued improvement in 

ductility is probably due to the higher strains possible in this direction allowing dynamic 

recrystallisation to occur more readily, thus preventing grain boundary sliding. The start 

of dynamic recrystallisation being observed as serrated grain boundaries. The 

deterioration in ductility for the other three sample directions is due to grain boundary 

sliding dominating the failure process; this was particularly marked for samples taken at 

45° to the through thickness direction. 
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8. Influence of Residual Copper 

8.1 Introduction 

Only a few investigations have been carried out into the influence of Cu on the hot 

ductility in the temperature range 1373 to 973K. 70,87,123 Of these, Hannerz 87 has examined 

the influence of Cu most extensively. The steel was a 0.07% C, 1.5% Mn plain C-Mn steel 

with Cu additions up to 1%, but no significant influence of Cu on hot ductility at temperatures 

>973K was found, see Figure 8.1. The steels were solution treated at 1623K and cooled at 

60Kmin'1. 
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Figure 8.1: Influence of copper on the hot ductility of C-Mn-Al steels. 87 

123 W. T. Nachtrab and Y. T. Chou: Metal. Trans., 1986,17a, p. 1995. 
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Hannerz noted in his paper that this insensitivity of ductility to Cu contrasts very 

much with commercial experience, in which small amounts of Cu cause poor surface quality 

and cracks. Hannerz suggested that this difference probably arises because of the oxidising 

atmosphere present during commercial casting. He suggested that the tensile tests should 

be carried out in an ordinary atmosphere. 

Previous work at City University 70 has examined the influence of both Cu and Ni on 

the hot ductility of C-Mn-AI and C-Mn-Nb-Al steels; these steels contained Cu or Ni up to 

0.5%. As with Hannerz's work, there was no effect of Cu and Ni on hot ductility when the 

steels were solution treated at 1603K and cooled to the test temperature at 60Kmin'', see 

Figure 8.2. However, even when an oxidising atmosphere was used, no influence of Cu 

could be found, see Figure 8.2. 
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The possibility that increased segregation was required was then examined by 

melting the centre of the tensile samples and cooling directly to the test temperature in an 

argon atmosphere. Again, no influence of Cu on hot ductility could be found, see Figure 8.2. 

Only when the tensile samples were cast directly after melting and tested in an oxidising 

atmosphere was the deleterious influence of Cu obtained. A similar addition of Ni was 

required to prevent Cu deteriorating the ductility. Hot shortness was found not to be the 

explanation. The deterioration was due to fine copper sulphides or any sulphide particles at 

the grain boundaries which had formed on cooling as a result of oxidation and the presence 

of Cu, according to the reaction: 

2MnS + 02 + 4Cu = 2Cu2S + 2MnO (8.1) 

The present work was designed to examine the effect of Cu at higher cooling rates 

pertaining to thin slab casting. Unfortunately, due to lack of time it was not possible to use 

an oxidising atmosphere and only the results for the protective argon atmosphere are given. 

8.2 Experimental Details 

The compositions of the steels examined in this part of the study are given in Table 

8.1, below. Hot ductility results obtained previously at City University 70 for steels 15 and 16 

have been included in this section for comparison. 

13 oll 1.40 0.007 0 013 0 33 0 029 0.030 0 0065 
14 0.10 1.57 0.005 0.012 0.42 0.031 0.030 0.0090 0.5 
15* 0.10 1.51 0.006 0.010 0.40 0.032 0.034 0.0075 - 
16* 0.10 1.57 0.006 0.012 0.42 0.031 0.030 0.0080 0.5 

Table 8.1: Analysis of steels studied in this section, wt. %. 
Studied in previous work using oxidising atmosphere. 70 

Induction tensile samples were used. The tensile specimens were melted at 1813K, 

held for 5 minutes, cooled at 200Kmin-' to test temperatures in the range 1273K to 1073K, 

held a further 5 minutes at the test temperature and then strained to failure using a strain 

rate of 3x 10-3s-'. 
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8.3 Results and Discussion 

It can be seen from the hot ductility curves given in Figure 8.3, that at the faster 

cooling rate pertaining to thin slab casting, i. e. 200Kmin-1, steel 14 which contains 0.5% Cu 

gives the worst ductility. Also included in this figure are curves from previous work 70 on 

similar as-cast steels (i. e. residual and 0.5% Cu containing steels, 15 and 16 respectively), 

but in this case tested in an oxidising atmosphere using a slower cooling rate of 60 Kmin'1. 

Again, the ductility can again be seen to be worse in the 0.5% Cu containing steel. 
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Figure 8.3: Hot ductility curves showing effect of residual copper. 
Steels 10 and 11 were cooled at 200 Kmin 1,12 and 13 at 60 Kmin '. 
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Thus, both increasing the cooling rate and oxidation result in Cu additions impairing 

the ductility. In the present instance, it might be expected that the deleterious influence of 

Cu would be much more marked in the presence of an oxidising atmosphere. Previous work 

had ascribed the deterioration in ductility produced by the Cu to be due to the formation of 

fine CuS particles. 70 Increasing the cooling rate might be expected to produce a finer 

sulphide distribution and possibly a greater supersaturation of Cu at the austenite grain 

boundaries. 
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8.4 Conclusions 

Residual Cu was found to make the hot ductility worse at the faster cooling rate 

pertaining to thin slab casting, as shown in Figure 8.3. This deterioration would be expected 

to be much worse in the presence of an oxidising atmosphere as has been found in previous 

work's at slower cooling rates. Insufficient time was available for examining the cause of this 

deterioration, but previous work has ascribed it to the formation of fine CuS particles. Clearly 

more work is required to examine the cause of this deterioration seen in the present work. 
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9. Summary of Results 

This chapter collects the results previously given separately in chapters 4 to 8, for a 

more detailed presentation, please refer to these chapters. 

9.1 Low Temperature Straightening 

In the four steels examined in chapter 4 (steels 1 to 4), the depth of the troughs were 

found to be similar, independent of the presence or absence of Nb. This insensitivity to the 

presence of Nb is believed to be due to the high P level in these steels reducing the amount 

of Nb(CN) precipitation in the grain boundary region. 

Steel 4 (high C and Mn, C-Mn-Al-Nb) had the widest trough which extended for over 

200K. In this steel, the trough below the Ae3 temperature is due to the presence of a thin 

layer of DIF surrounding the y grains. Since a is softer than y, all the strain concentrates in 

these films; this causes voiding around the MnS inclusions resulting in low ductility 

intergranular ductile failures. The deformation induced ferrite at they boundaries is not able 

to develop into the matrix as the temperature is reduced and ductility only improves when 

the temperature has fallen below the Ara (undeformed) and the normal transformation 

induced ferrite forms in large quantities. Strain is then taken up more homogeneously in the 

structure and ductility therefore improves. Above the Ae3, the trough is extended to higher 

temperatures by grain boundary sliding in the y and ductility improves gradually owing to 

coarsening of the Nb(CN) precipitates and the onset of DRX. 

The narrowest trough was given by steel 1 (low C and Mn, C-Mn-Al); in this steel 

ductility recovered very rapidly on either side of the Ae3 temperature. Above the Ae3, with 

the absence of Nb(CN) precipitation, DRX occurred easily. Below the Ae3, ductility improved 

rapidly owing to the formation of large amounts of DIF close to equilibrium volume fractions. 
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Steel 2 (high C and Mn, C-Mn-Al) had a trough which was extended at the low 

temperature end, below the Ae3 in the same way as steel 4 (high C and Mn, C-Mn-Al-Nb). 

DIF only formed as thin films resulting in poor ductility. Above the Ae3, ductility again started 

to recover due to DRX, but this recovery was slower than for steel 1 (low C and Mn, C-Mn- 

Al), possibly because the Ae3 temperature is lower reducing the driving force for DRX. 

Steel 3 (low C and Mn, C-Mn-Al-Nb) gave a similar curve to steel 4 (high C and Mn, 

C-Mn-Al-Nb) at the high temperature end of the trough above the Ae3, owing to Nb(CN) 

delaying the onset of DRX. At the low temperature end, ductility still remained poor below 

the Ae3 for about 30K, but further reduction in temperature caused ductility to improve and 

the curve then followed that for steel 1 (low C and Mn, C-Mn-Al) as large amounts of DIF 

were formed. 

It is not entirely clear what is responsible for producing the large amounts of DIF in 

steels 1 and 3 (low C and Mn) which results in a narrowing of the trough. It is possible that a 

high transformation temperature may encourage the formation of DIF. This in itself may be 

enough and the presence of a high Si content in these steels will further raise the 

transformation temperature. However, another possible explanation is that the high Si 

content could strengthen the ferrite sufficiently to encourage more of the y to transform to a 

under deformation. However, further work is required to clarify these explanations. 

When straightening at the low temperature side of the trough, compositional 

changes which raise the Ara will always enable the straightening operation to be carried out 

at higher temperatures without risk of cracking. However, it is unclear at the present time 

whether the necessary requirement of having -50% ferrite present can be achieved by very 

low deformation (2 - 4%) or whether much lower temperatures are needed to ensure that 

the ferrite is present before the straightening operation. Much lower temperatures would 

require either slower casting speeds, faster heat removal from the strand or a larger 
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distance between the mould and the straightener. These process changes could result in 

productivity losses, higher thermal stresses on the solidifying strand or expensive machinery 

alterations. 

9.2 Influence of Cooling Rate and Sulphides on Hot Ductility 

The ductility troughs obtained for steels 5 to 8 in chapter 5 can be seen to be 

grouped as the low Mn (steels 5 and 6) and high Mn (steels 7 and 8) containing steels; the 

low Mn and high Mn steels giving narrow ductility troughs of approximately 60K centred at 

-1135K and -1060K respectively. There is also a similar displacement in the positions of 

the observed and calculated curves of percentage ferrite against temperature. This is in 

agreement with the reduction of transformation temperatures as Mn levels increase; the 

higher Mn steels have Ae temperatures approximately 40K lower than the lower Mn steels, 

whereas the Ara temperatures were much lower (-100K). Dilatometry and metallography 

show that the ductility troughs are caused by the presence of a thin film of deformation 

induced ferrite. 

In the present work it has been shown that sulphur and sulphides do not generally 

have a major influence on the hot ductility of solution treated C-Mn-Al steels for the 

compositions examined. This is because for these steels, the temperature range in which a 

thin band of ferrite forms around the y grains is very limited. Deformation induced ferrite 

readily forms in large amounts at temperatures close to the Ae3. As such, the trough is 

governed mainly by the Ae3 and Ara temperatures, which are little influenced by sulphur 

levels. 

There is some indication that a high volume fraction of elongated MnS inclusions 

allow recovery in ductility to occur more rapidly on the low temperature side of the trough as 

has been noted in previous examinations. However, this again is only a small effect. Wider 

troughs, in which the presence of a thin band of ferrite occurs over a wide range of 
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temperature, as with the Nb containing steels or higher C or Mn containing plain C-Mn 

steels might be expected to be more influenced by the level of sulphur, particularly with 

regards to the depth and this requires further investigation. 

In the as-cast steels, large amounts of sulphides are able to precipitate out at the 

austenite grain boundaries because all the sulphur is in solution. This makes it more difficult 

for dynamic recrystallisation to occur, thus extending the trough to higher temperatures. 

Increasing the cooling rate results in worse ductility, previous work showing this to be 

due to finer sulphides and precipitation. For the range of cooling rates investigated, 25 to 

200 K min", the decrease in Ara temperatures as the cooling rate increases is relatively 

small. 

This work has also clearly shown that the width of the trough can be narrowed by 

reducing the carbon and manganese levels, and to produce a trough <60K the Ara 

temperature should be greater than 1103K. Recovery in the ductility at the high temperature 

end in these hot-rolled and solution treated steels generally corresponds to the onset of 

dynamic recrystallisation. However, the strains that are required are much greater and the 

grain sizes too coarse to allow dynamic recrystallisation to occur in the commercial 

straightening operation during continuous casting. 

At the low temperature side of the trough, recovery in ductility corresponds to the 

formation of a large amount of ferrite (-40%) and therefore any changes in composition that 

could raise the Ara would be beneficial, e. g. lower C or Mn levels. These changes to the 

composition would be expected to reduce the width of the trough, thus reducing the risk of 

transverse cracking. 
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9.3 Mathematical Modelling 

The model used in chapter 6 was found to work reasonably well for very simple plain 

C-Mn steels, in which no microalloying precipitates were present, provided that the strain 

rate is about 10"3 to 10-4 s" and the cooling rate is in the range 60 to 100 Kmin''; these are 

the conditions pertaining to conventional continuous casting. The model can be used to 

predict the ductility curve for a simple steel if the Ae3 and Ara (undeformed) temperatures 

are known along with the curves of e, and sf against temperature. The latter curve 

requires knowledge of the amount of S able to precipitate out at the y boundaries and the 

ferrite volume fraction. 

Recovery in ductility at the high temperature end of the trough for the C-Mn steels 

was found to take place at the point when DRX becomes possible. This occurs either when 

the curve of the strain to fracture, --f , either intersects the curve of critical strain for DRX, 

s,, or when the Ae3 temperature is exceeded, whichever is the higher. Recovery at the low 

temperature end always occurs when substantial amounts of ferrite forms either before or 

during deformation. 

For the austenitic stainless steel with the fine grain size of 40µm, the model 

predicted that ductility would be excellent and DRX would occur throughout the entire 

temperature range; this is in accordance with the experimental and metallographic 

observations. DRX occurred at tensile strains lower than those causing failure in the coarser 

grained material throughout the temperatures range studied. For the coarse grained 

austenitic stainless steel, ductility troughs were obtained with the minimum ductility values 

for all the strain rates studied occurring at 1123 K. Extensive networks of chromium carbides 

were found at the y grain boundaries, which prevented DRX and instead encouraged cracks 

formed by grain boundary sliding to grow and interlink. Recovery at the low temperature end 

was found to be due to a reduction in grain boundary sliding even though the carbides were 
PhD in Mechanical Engineering, City University, London - Andrew Cowley, 2004 



9-6 

still present. Whereas the recovery in ductility at the high temperature end was due to DRX 

occurring, but only at strain rates of 3x10-3&1 as are found in the straightening operation 

during conventional continuous casting. Increasing the strain rate to 3x10-2s 1 resulted in 

less grain boundary sliding and ductility improved without DRX; whereas at very low strain 

rates of 3x10-4s'', grain boundary sliding was increased sufficiently such that DRX had little 

influence on the ductility. 

The model used was found to work reasonably well for very simple plain C-Mn steels 

in which no microalloying precipitates were present. However, for the austenitic stainless 

steel clearly the model needs to take into account grain boundary sliding and a creep type 

model of the form given in reference 11 needs to be incorporated. 

9.4 Influence of Columnar Grains 

Chapter 7 studied the effect of sample orientation on the hot ductility using an 

austenitic stainless steel slab (steel 12) which would retain it columnar structure down to 

room temperature. The R of A values observed for all four sample directions improved as 

the test temperature was increased from 1023 to 1123K. This improvement was due to a 

coarsening and reduction in number of Cr carbides situated at the y boundaries. The R of A 

values for a given sample direction were found to be related to the amount of grain 

boundary lying perpendicular to the tensile axis; it was found that the smaller this apparent 

grain size, the higher the ductility that would be observed. The highest ductility was seen in 

the samples with the columnar grains parallel to the tensile axis, i. e. taken from the through 

thickness direction, C, of the continuously cast slab. The propagation of cracks was 

hindered by the larger number of grain boundaries encountered as the crack attempted to 

develop through the sample. 

The worst ductility, at temperatures up to 1173K, was given by samples taken 

parallel to the casting direction, B, as the columnar grains were then perpendicular to the 
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tensile axis. When a crack formed, it could easily propagate through the sample and in 

some cases without meeting another grain which would require a change in direction. This is 

the situation that is experienced in the top surface of the continuously cast slab during the 

straightening operation, when columnar grains are present. Columnar grains have been 

shown to contribute to poor ductility and encourage transverse cracking. It is therefore 

recommended, wherever possible, to avoid developing a columnar structure in the 

continuously cast slabs. 

The normal stress was found to control the ductility for temperatures up to 1123K, 

grain boundary sliding may initiate the cracks but was not principally responsible for the 

propagation through the sample. At temperatures above 1123K, only samples taken from 

the through thickness direction of the slab experienced a continued increase in ductility. This 

continued improvement in ductility is probably due to the higher strains possible in this 

direction allowing dynamic recrystallisation to occur more readily, thus preventing grain 

boundary sliding. The start of dynamic recrystallisation being observed as serrated grain 

boundaries. The deterioration in ductility for the other three sample directions is due to grain 

boundary sliding dominating the failure process; this was particularly marked for samples 

taken at 45° to the through thickness direction. 

9.5 Influence of Residual Copper 

In chapter 8, residual Cu was found to make the hot ductility worse at the faster 

cooling rate pertaining to thin slab casting, as shown in Figure 8.3. This deterioration would 

be expected to be much worse in the presence of an oxidising atmosphere as has been 

found in previous work12 at slower cooling rates. Insufficient time was available for 

examining the cause of this deterioration, but previous work has ascribed it to the formation 

of fine CuS particles. Clearly more work is required to examine the cause of this 

deterioration seen in the present work. 
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10. Future Work 

It is the author's belief that many important findings regarding hot ductility and its 

relationship to transverse cracking are documented in this thesis, some of which have been 

published elsewhere, and some being commercially applicable. However, as with any 

scientific study of this nature, many other questions and avenues for future investigation 

have presented themselves. Some recommendations for future work are suggested below: 

" During this study, new equipment was purchased and many developments were 

made to the equipment in order to improve accuracy of control and also automate as much 

of the process as possible. The results obtained are directly comparable to those obtained 

using other more expensive experimental apparatus. Future improvements could include 

combining the control of the separate pieces of testing, heating, data logging and monitoring 

equipment into one system and also improving the methods of quenching failed samples on 

the two test systems. 

" In Chapter 4, it was not entirely clear what was responsible for producing large 

amounts of DIF in steels 1 and 3, resulting in narrow troughs being formed. It is thought that 

this may be due to the high transformation temperature and also the high Si content, which 

strengthens the ferrite encouraging more transformation of y under deformation. Further 

work on steels having differing Si contents is required to clarify these explanations. 

" It is unclear, from Chapter 4, whether the necessary requirement of having -50% 

ferrite present can be achieved by very low deformation (2 - 4%) or whether much lower 

temperatures are needed to ensure that the ferrite is present before the straightening 

operation. Much lower temperatures would require either slower casting speeds, faster heat 

removal from the strand or a larger distance between the mould and the straightener. 

Repeating the testing, but only straining the samples by 2-4% and varying other test 

parameters may help in identifying what changes could be made in commercial practice. 
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" In Chapter 5, a novel approach suggested by Professor Mintz has been used to 

further study the results obtained from the tensile test. The curves of peak stress and the 

strain to the peak stress have been plotted against temperature using the results from steels 

1 to 8. In some cases, these curves can be seen to highlight where DIF and DRX occur and 

also Td, the temperature for the onset of DRX. This method could be applied to previous and 

future test results to establish how widely applicable it might be. 

" As reported in Chapter 6, improvements could be made to the model used if extra 

parameters, such a one for grain boundary sliding, are built into the equations used. As all 

of the equations and curves have been plotted separately using Microsoft Excel by 

supplying values such as grain size and transformation temperatures, it is the authors belief 

that all of these could be combined into one computer program. Values for all the 

parameters used can be entered in order to calculate the curves, to which logic is then 

applied to find the intersections, and automatically produce a 'ductility curve'. 

" In Chapter 8, residual Cu was found to make the hot ductility worse at the faster 

cooling rate pertaining to thin slab casting. This deterioration would be expected to be much 

worse in the presence of an oxidising atmosphere at slower cooling rates, but insufficient 

time was available for examining the cause of this deterioration. More work is therefore 

required to examine the cause of this deterioration and also to complete the testing in an 

oxidising atmosphere. 
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11. Publications 
A large part of the results presented in this thesis have already been published and 

the author hopes that further sections of the work may also be submitted for publication in 

the near future. The papers previously published are listed below under their relevant 

chapters: 

Chapter 4 

A. Cowley, R. Abushosha and B. Mintz: 'Influence of Ara and Ae3 temperatures on hot 

ductility of steels', Mat. Sci. and Technol., 1998,14(11), pp. 1145-1153. 

Chapter 6 

B. Mintz, R. Abushosha, A. Cowley: 'Preliminary analysis of hot ductility curve in simple C- 

Mn steels', Mat. Sci. and Technol., 1998,14(3), pp. 222-226. 

B. Mintz, A. Cowley, R. Abushosha and D. N. Crowther: 'Hot ductility curve of an austenitic 

stainless steel and importance of dynamic recrystallisation in determining ductility recovery 

at high temperatures', Mat. Sci. and Technol., 1999,15(10), pp. 1179-1185. 

Chapter 7 

B. Mintz, A. Cowley and R. Abushosha: 'Importance of columnar grains in dictating hot 

ductility of steels', Mat. Sci. and Technol., 2000,16(1), pp. 1-5. 
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