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Abstract 

While gambling on sports fixtures is a popular activity, for the majority of gamblers 
it is not a profitable one. In order to make a consistent profit through gambling, one of 
the requirements is the ability to assess accurate probabilities for the outcomes of the 
events upon which one wishes to place bets. Through experience of betting, familiarity 
with certain sports and a natural aptitude for estimating probabilities, a small number 
of gamblers are able to do this. This thesis also attempts to achieve this but through 
purely scientific means. There are three main areas covered in this thesis. These are 
the market for red and yellow cards in Premier League soccer, the market for scores 
in American football (NFL) and the market for scores in US Basketball (NBA). 

There are several issues that must be considered when attempting to fit a statistical 
model to any of these betting markets. These are introduced in the early stages of 
this thesis along with some previously suggested solutions. Among these, for example, 
is the importance of obtaining estimates of team characteristics that reflect the belief 
that these characteristics adjust over time. It is also important to devise measures of 
evaluating the success of any model and to be able to compare the predictive abilities 
of different models for the same market. 

A general method is described which is suitable for modelling the sporting markets 
that are featured in this thesis. This method is adapted from a previous study on UK 
soccer results and involves the maximisation of a likelihood function. In order to make 
predictions that have any chance of competing with the odds supplied by professional 
bookmakers, this modelling process must be expanded to reflect the idiosyncrasies of 
each sport. 

With the market for red and yellow cards in Premier League soccer matches, in 
addition to considering the characteristics of the two teams in the match, one must 
also consider the effect of the referee. It is also discovered that the average booking 
rate for Premier League soccer matches varies significantly throughout the course of a 
season. 

The unusual scoring system used in the NFL means that a histogram of the final 
scores for match results does not resemble any standard statistical distribution. There 
is also a wealth of data available for every NFL match besides the final score. It is 
worth investigating whether by exploiting this additional past data, more accurate 
predictions for future matches can be obtained. 

The analysis of basketball considers the busier schedule of games that NBA teams 
face, compared to NFL or Premier League soccer teams. The result of one match may 
plausibly be affected by the number of games that the team has had to play in the 
days immediately before the match. Furthermore, data is available giving the scores of 
the game at various stages throughout the match. By using this data, one can assess 
to what extent, and in which situations, the scoring rate varies during a match. 

These issues, among many others, are addressed during this thesis. In each case a 
model is devised and a betting strategy is simulated by comparing model predictions 
with odds that were supplied by professional bookmakers prior to fixtures. The limita- 
tions of each model are discussed and possible extensions of the analysis are suggested 
throughout. 



Chapter 1 

Introduction 

Among the many applications of probability and statistics, gambling is maybe one 

of the more widely known and appreciated by the general public. There are many 

popular forms of gambling in society today, such as state lotteries, casino games and 

sports betting, which is the focus of this thesis. 

The aim of this study is to incorporate many of the ideas that are considered by 

professional bookmakers and successful gamblers within a formal statistical framework. 

By employing well-known and well-understood statistical procedures, the intention is 

to combine these ideas in such a way as to optimise the ability to predict future results. 
Ideally the probabilities produced will be more accurate than the bookmaker's oddsi. 

In Section 1.1 of this introductory chapter some differences, in terms of specification 

of a probability model, between sports betting and various other types of gambling 

are considered. The strengths and weaknesses of both the statistical approach and the 

intuitive approach favoured by bookmakers and the majority of gamblers are discussed 

in Section 1.2. In Section 1.3 a brief explanation of the betting opportunities available 
today is given. Some details concerning the scope of this study are outlined in Section 

1.4, since restrictions are placed on the type of sports analysed. In Section 1.5 the 

structure of the thesis is outlined. 

1.1 Some key features of sports betting 

One way in which sports betting is different from many other types of betting, from 

a statistical point of view, is that the probabilities cannot be fully specified. For 

'Superior predictions are not in fact essential in order to win money against the bookmakers, as 
will be shown in Section 5.6.1. 
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many casino games, such as Roulette, the probabilities are entirely known by both the 

gambler and the bookmaker. As a result there is no way the gambler can make a profit 

on a long-term basis due to the small bias in the Casino's favour, assuming the roulette 

wheel to be fair2. Meanwhile, for some card games, such as Poker, the entire probability 
distribution for future events conditional on the information currently available to 

the player is theoretically possible to calculate but in practice it is impossible for a 

poker player to process the full set of calculations while the game is taking place. 
Nevertheless, with experience, the player can approximate the odds of various outcomes 
in order to assess which decisions should be made. Also, on balance, every player has 

access to an equal amount of information (although the importance of this information 

will vary from hand to hand). For sporting events however, the number of factors 

that determine the probabilities are far more numerous, and their importance towards 

forming the probabilities of various occurrences in the fixtures is generally impossible 

to quantify. Furthermore, not all gamblers/bookmakers have equal access to relevant 
information. 

1.2 A statistical approach to gambling versus an intuitive 

approach 

Despite the large number of sports that are popular with gamblers, and the large 

number of markets within these sports, a relatively small amount of formal literature 

concerning odds for sporting events has been published. In fact, the vast majority of 
odds that are available for sporting events are not derived through advanced statistical 
techniques. In general they are determined through the practical experience of those 

setting the odds combined with selective use of basic figures such as team/player 

averages, or in many cases it is the beliefs and behaviour of the market that determines 

the odds. 
Most successful gamblers apply a thorough knowledge of the sport on which they 

are betting combined with a need-to-know knowledge of mathematics and probability 
in order to choose the most attractive bets. To some extent this thesis takes the op- 

polite approach. Some of the advantages and disadvantages of either perspective are 

obvious. In particular, most prospective gamblers find the process of accumulating 
2There have been instances of players keeping totals of the frequency of each roulette number's 

occurrence and discovering numbers on certain areas of the wheel to occur more frequently, due to 
small inclines on the surface on which the roulette table is placed. 
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knowledge about a sport more inviting than the process of acquiring the statistical 

techniques required to produce accurate sports models as well as the computing ex- 

perience necessary to implement these models. On the other hand, while the initial 

process of producing a statistical model is labour intensive and frequently frustrating, 

should a successful model eventually be created, far less effort is involved in generating 

further predictions. Furthermore, by not using any quantitative methods it is hard 

for a gambler to combine their experience and knowledge in an optimal way. For ex- 

ample, Forrest and Simmons (2000a) studied the predictions of English and Scottish 

soccer results made by professional advisers working for various British newspapers. 

It was investigated whether widely available information, such as recent form of the 

teams or the difference in league positions between the two soccer teams participating 
in a match, were used by the advisers. It was concluded that some of the informa- 

tion seemed to correlate strongly with the forecasts made by the advisers. However 

excessive weight was attached to some parts of it while other parts were not exploited 

by the forecasters even though they were important predictors of soccer results. Fur- 

thermore, while a statistical model's effectiveness can be quantified by using projected 

profit curves or confidence intervals on projected returns, for example, the success of 

an intuitive approach is not easily measured and attempts to do so are frequently 

inaccurate, optimistic or both3. 

The statistical approach meanwhile is heavily dependent on assumptions and is 

thus inflexible to certain important factors. In horse or greyhound racing, for example, 
the odds change very quickly in the hours leading up to a race to accommodate new 
information such as paddock gossip, results of previous races that day or weather 

changes. Obtaining this information in a convenient format for computers, such as a 

spreadsheet, for past fixtures and attempting to fit a reliable model in order to update 

predictions hour-by-hour is impractical. Therefore, before choosing to take a statistical 

approach towards modelling a sport, with regard to producing a prediction system that 

is on average superior to the intuitive approach, one must decide carefully which sports 

are suitable. 
3 "In betting on races, there are two elements that are never lacking: hope as hope and an incomplete 

recollection of the past" E. V. Lucas, New York Times, 7 October 1951. 
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1.3 Betting opportunities 

While the importance of producing accurate probabilities for sporting events is evident, 

it is also necessary to maximise the potential profits of any betting strategy using these 

probabilities by selecting the most attractive bets available. There are many different 

mediums through which bets can be made and many different types of bets are available 

for most fixtures. 

Until the mid 1990s in the UK, visiting a high street bookmaker such as Ladbrokes 

or Coral was the most popular method of placing a bet. More recently, many find 

it more convenient to place bets with an online bookmaker, of which there are now 

many such as Sportingbet or Premierbet. Another recent opportunity for gamblers is 

the use of betting exchange websites such as Betfair where betting odds and maximum 

stakes are offered by gamblers to other gamblers, thus removing the bookmaker's role 

of specifying odds. For most websites of this type, a small proportion of the profits 
from winning bets goes to the website administrators. 

The types of bets available for most sports fall into two basic categories. The more 

traditional format is fixed odds, which is the system used by high-street bookmakers 

as well as many online bookmakers. A more recent format that has become popular 

within the last decade is spread betting (otherwise known as index or range betting). 

1.3.1 Fixed odds 

For European sports, a fixed odds system generally offers odds on each outcome of an 

event. For example, these odds were available from Sportingbet for a Premier League 

soccer match between Liverpool and Middlesbrough on 8 February 2002: 

Liverpool victory: 8: 15 

Draw: 12: 5 

Middlesbrough victory: 5: 1 

If £K is staked on an outcome with offered odds 01: 02, then £(01/02+1)*K is 

returned to the gambler, yielding a profit of £K*01/02. If an outcome has odds 

01: 02, then this corresponds to a probability of 02/(01+02) of it occurring. Hence 

the probabilities suggested by the bookmaker for the match above of the outcomes 

(Home Win, Draw, Away Win) are (0.65,0.29,0.17). Note that the sum of these 
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probabilities is 1.11 rather than 1. The surplus of 0.11 is known as the bookmaker's 

take or overround. By scaling down all probabilities by 111 ' implied probabilities of 
(0.59,0.26,0.15) are obtained. For every £1 that is placed, the bookmaker makes a 

profit of £0.11 assuming equal money is placed on all three outcomes. If money is 

not placed equally on all three outcomes, the bookmaker's expected profit increases 

as more money is staked on the outcomes with lower odds (so higher probability). 

The size of the bookmaker's overround varies across different sports and fixtures. In 

general, the more popular fixtures are frequently bet on by less discerning gamblers 

who do not seek the most favourable odds, which allows the bookmaker to offer less 

competitive odds yet still attract custom. 
Fixed odds for many American sports differ slightly from those of European sports 

in that handicap bets are more common4. With these, one of the sides starts the game 

with a points handicap (known as a line) specified by the bookmaker, and the gambler 

may place bets on which side will win the match, after the scores are adjusted to in- 

clude the handicap. The payouts for either bet are equal (this is known as even odds). 
For example, this line from Sportingbet. com's website allows two bets: 

Tennessee Titans: -7.0 -1.10 
Pittsburgh Steelers: +7.0 -1.10 

The gambler should back Tennessee Titans if they believe it is likely that the Titans 

will beat Pittsburgh Steelers by more than seven points in the match. Conversely, if 

they believe that Pittsburgh Steelers are likely either to win, or to lose by six points 

or fewer, they should back them. Should either bet be successful, on a £1 stake, the 

gambler will be returned C1 + £1 * (1/1.10) = £1.91. Should the bookmaker have 

equal amounts of money staked on either team, its overround is 1-=0.091. 
Another type of fixed odds bet is an asian handicap bet which combines the two 

types of bet listed above. A handicap is offered but the odds are not always even. 
Also, in the event of the match ending in a draw, once the handicap is included, all 

stakes are returned (this is known as a draw no bet arrangement). 
'Often referred to as point spreads in the US, not to be confused with UK spread betting. 
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1.3.2 Spread betting 

Spread betting is a stock-market style of betting where sporting outcomes are traded 

like commodities. As an illustrative example, in the Arsenal - Manchester United 

match played on 22 August 1999, prior to kickoff one spread betting firm displayed a 

spread for the total number of bookings points for the match as 30 - 34. The spread 

reflects the firm's expectation of the number of bookings points (10 points for every 

yellow card and 25 for every red card) given during the match (if a player receives two 

yellow cards in the match, resulting in a red card, then overall 35 points are included 

in the final total for this player). 

The number of yellow and red cards that will be scored are being treated as a 

commodity and gamblers can buy this commodity at 34 or sell at 30. A typical bet on 

this match might be to SELL at 30 for £1 per point. If the final total is 

"4 yellows and 0 reds = 4* 10+0=40 points then the return is (30 - 40) x1= -£10 

"0 yellows and 1 red (10*0+25*1)=25 points then the return is (30 - 25) x1= 

+L5. 

A BUY at 34 of bookings points works in a similar way, with returns of +6 and -9 

respectively. In addition, the spreads often fluctuate up and down in the lead-up to 

kick-off to reflect the betting behaviour of gamblers, for the same reasons and in the 

same way as stock market prices move. 
One key advantage spread betting has over fixed odds betting is that when a spread 

bet is made, the profit or loss can adjust right up to the conclusion of the fixture. If a 

fixed odds bet is made, this is not always the case. For example, if one bets that the 

score of a soccer match will be 0-0, the bet (and possibly interest in the fixture) is lost 

as soon as a goal is scored. On the other hand, some gamblers are deterred from spread 

betting since the maximum loss is uncertain prior to a fixture. For example, if in the 

example above the number of bookings is sold, the maximum return is +30 times the 

selected stake whereas the maximum loss could be as high as around 130 times the 

stake. Some spread betting firms offer stop loss accounts, where the maximum gain or 

loss on each market is set to some agreed limit. 

For the bookmaker the preferred situation is to have equal amounts of money staked 

on either side of the offered spreads. Assuming, for simplicity, that £K has been both 

bought and sold on a constant 36-40 spread for a fixture, this will result in a risk-free 

profit of £4K for the bookmaker. Analogously, in the case of fixed odds betting such 
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as an NFL handicap bet as described above, the bookmakers will ideally have equal 

amounts of money staked on both outcomes of the match. Thus, contrary to popular 

belief, the points handicap is not specified with the aim of estimating the most likely 

difference in score in the match but with the aim of attracting an equal volume of 

bets on each outcome. As a result it seems feasible that the probabilities inferred from 

the odds available from bookmakers are not always unbiased. Besides the obvious 

difficulties in evaluating unbiased probabilities for each outcome of any sporting event 

it is sometimes in the interests of the bookmaker to offer inaccurate probabilities in 

order to minimise their financial exposure. 
This can lead to market inefficiencies - that is, there may be opportunities for 

gamblers to have an expected gain by placing bets on some outcomes. There have 

been several academic studies into the market efficiency of various sporting markets. 
Gandar et at (2000) investigate the market efficiency of the betting markets for Major 

League Baseball (MLB) and NBA. The accuracy with which handicaps accommodate 

the effect of a side playing at their home ground is examined. It is concluded for both 

sports that win rates of sides playing at home do not differ significantly from the rates 

inferred by the odds. Vergin (2001) simulated a set of betting strategies designed to 

investigate the theory that handicaps reflected a tendency of the public to overestimate 

the ability of a team with recent good results and to underestimate the ability of a 

team with recent bad results. The theory appeared to be true in the case of a side with 

recent good results. Furthermore, Simmons, Forrest and Curran (2003) investigate the 

efficiency of the handicap and spread betting markets of Rugby League fixtures. It is 

concluded that the handicap market does not fully incorporate the home advantage 
but does correctly evaluate the relative strengths of the two competing teams (thus 

has no favourite - underdog bias). The spread betting market is unbiased in these two 

respects however. It is speculated that the handicap betting market may comprise 

gamblers who select bets largely on an emotional basis whereas due to the higher risks 

and higher returns associated with the spread betting market, any spread bet placed 

must seem financially sound to the gambler. In a study of NFL betting lines, Vergin 

(2001) supports this theory by reporting that "Line-makers report that bets from the 

unsophisticated general public far outweigh bets of expert handicappers. Therefore 

they give primary weight to the biases of the uninformed general public". 

Note that bias in the probabilities inferred from a set of odds does not imply market 
inefficiency, which, as stated above, only arises if an expected gain is available by 
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placing a bet on at least one outcome. There may not be such a bet if the bookmaker's 

overround prevents the gambler from exploiting the inaccuracy in the probabilities in 

order to realise an expected gain. 

1.4 Choosing appropriate sports for modelling 

As mentioned in Section 1.2 some sports are more amenable to statistical analysis than 

others. There are several considerations in this respect: 

" Are there significant betting opportunities for the sport? Ideally it would be 

possible to have a successful model for predictions of the results for a sport and 

to use these in order to develop a profit-making strategy by placing bets with 

bookmakers. The scope for a model to be profit-making is increased with a 

greater number of events to bet on, and with a larger selection of different bets 

available. 

" Are there adequate data resources available? There are detailed match reports 

available on the internet for all fixtures since 1995 for all of the four major 

American sports (NFL, NFL, MLB and the National Hockey League). Some 

European websites have reasonably detailed and consistently formatted statistics 

available for UK soccer matches since 1996. More recently, detailed web pages 
for cricket and rugby matches have become available. 

There are of course other criteria besides those mentioned above, not least the ease 

with which the sport can be modelled statistically. Certain sports, such as cricket and 

golf, do not have scoring systems which can be easily approximated by the well-known 
distributions, while another problem is that the covariates required in establishing a 

model for some markets, such as the number of corners in a soccer match, are not 

always clear. 
Although quantitative analysis may be of interest for many sports, in the interests 

of achieving a reasonable level of depth to the analysis of the sports it studies, this 

thesis restricts itself to specific types of sports, so that various routine procedures can 

easily be reproduced for different applications. In particular this study is restricted to 

sports where 

" individual matches take place between two opponents, which could be individual 

players or teams. This excludes horse racing, golf and motor racing for example. 
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" the outcome is described by an accumulated total, rather than a time or an event. 

This excludes sports such as boxing or athletics. 

Among the sports which do fulfill the necessary criteria are UK soccer, NFL, and 
NBA. In addition, this thesis only considers the statistical methods required in order 

to predict final results of matches and does not attempt to model various other aspects 

of sports fixtures, such as the time until the first goal or the winner of a league. Also, 

since the final result is the variable of ultimate interest, within-game modelling is not 

generally considered. For a detailed analysis of within-game models for soccer data, 

the reader is referred to Hirotsu and Wright (2002). 

1.5 Outline of thesis 

So far some of the issues involved in producing a profit-making gambling strategy 

through the production of an accurate set of probabilities have been discussed at a 

very general level. The remainder of this thesis is structured as follows. In Chapter 

2 the main issues that need to be addressed when modelling sporting events of the 

type listed in Section 1.4 are specified. Possible solutions are discussed by means of 

a literature review. Chapter 3 gives a detailed explanation of one of the stages of the 

modelling process, namely the estimation of the parameters of a specified statistical 

model. Three individual sports markets are treated in depth in Chapters 4,5 and 6 

using the procedure outlined in Chapter 3. These are respectively the markets for red 

and yellow cards for Premier League soccer matches, NFL scores and NBA scores. An 

alternative estimation procedure to that explained in Chapter 3 is implemented and 

evaluated in Chapter 7. Chapter 8 concludes. 

23 



Chapter 2 

Overview of sports modelling 
techniques 

As stated in Chapter 1, the motivation for this thesis is to produce statistical models for 

outcomes of certain sports events. Ideally these will be able to generate probabilities 

which are competitive with the odds provided by professional bookmakers. In order to 

approach this task, some of the techniques already applied to modelling sports will now 

be discussed via a literature review, with the aim of outlining some of the problems 

encountered, and attempts at solutions. 

2.1 Sports modelling - the main issues 

On consideration of the sports of interest, as detailed in Section 1.4, the general task 

is to produce the most accurate possible prediction for the final result of a fixture 

between two teams. This can be expressed as result (X, Y) between teams (ti, t2). 

Note that (X, Y) does not have to denote a final score, and could express the total 

number of red cards or the number of shots on goal for example. The following issues 

must all be considered: 

2.1.1 Selecting a suitable distribution for responses 

The scale, variance and range of X and Y vary from sport to sport. Some thought must 

be given as to which of the common statistical distributions are most suitable, or if a 

combination of these distributions is more appropriate, or indeed if a non-parametric 
distribution is required. For many betting markets X+Y or X-Y is frequently of 

interest, as highlighted in Section 1.3. 
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2.1.2 Accommodating dependency between the home and away scores 

It is plausible for many sports that information about the value of X may affect one's 

belief about the density of Y. Hence the joint distribution of (X, Y) may need to 

accommodate the possible dependency between X and Y. The difficulty of fitting 

such a joint distribution depends on both the response distribution chosen and the 

characteristics of the relationship between X and Y. The Normal distribution has 

a well known bivariate form whereas the Poisson distribution, for example, has a 

considerably more complicated, and thus less flexible, bivariate form. In addition, 

the relationship between X and Y may be of such an intricate form that no existing 

probability distribution adequately represents the joint distribution (X, Y). 

2.1.3 Representing the team abilities 

The ability of sporting teams, in terms of their impact on X and Y, frequently is 

not adequately expressed by a single parameter. For example, if the expected value 

of X-Y is large and positive, this could arise because ti has a tendency to play in 

such a way that high values of X are expected. Alternatively their style of play may 

generally prevent high values of Y arising. These situations are analogous to a team 

respectively being predominantly attacking or defensive if X and Y are soccer scores. 

In addition to studying the mean values of the team parameters, their variance may 

also be of interest, since some teams may be less consistent than others. 

2.1.4 Including covariates other than the abilities of the teams 

For several sports, totals for in-game statistics such as attempted shots, fouls commit- 

ted and time spent in possession of the ball are available. In addition to these, factors 

such as the effect of playing at home, the length of time since the previous fixture, the 

key injured players and many other relevant factors could be included to improve the 

accuracy of predictions. 

2.1.5 Allowing parameters to adjust over time 

It seems reasonable that the values of the parameters of ti and t2 should vary over 

time. However, the way in which past information, such as results of previous fixtures, 

should be used in order to determine these parameters is a complicated issue. How 

much importance should be attached to a result from a fixture that occurred one year 
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ago compared to the result of a fixture that took place the previous week? 

2.1.6 Finding techniques in order to obtain estimates of the param- 

eter values 

While exploration of the data based on one's knowledge of the sport can lead to the 

specification of a model, the process of obtaining estimated values of the parameters 

employed in the model can be a considerable task. An overly ambitious model may 

even make the process mathematically intractable. In some cases compromises with 

regard to the model specification may be necessary. 

2.1.7 Validating the model and assessing predictive capability 

The task of producing statistical models for sports results differs from the task of 

producing statistical models for some other applications in the sense that it is the 

prediction of future events, as opposed to the interpretation of existing data, that is 

of interest (although these processes are of course linked). In particular, the danger 

of over-fitting must be considered. For example consider the situation that in the 

first five matches of the data set where a team played on the birthday of the wife of 

the team's manager, the team won. If the objective is to interpret existing data a 

common step would be to obtain the optimal fitted values for the data. To achieve 

this, an indicator vector signalling matches when teams played on the manager's wife's 
birthday should be included. Assuming that these results are entirely coincidental, 

as seems likely, the predictive power of the model will be greatly harmed by doing 

so. Hence standard measures for determining the accuracy of a fitted model, such as 
R2 or C,, are only considered provided the conclusions drawn from their use are also 

reflected by an improvement in the predictive capability. Methods of measuring this 

will be devised. 

2.1.8 Comparing predictions obtained through a statistically-based 
procedure with bookmakers' odds 

The stated ambition in Chapter 1 was to produce predictions that are superior to those 

of professional bookmakers. A variety of criteria are necessary in order to determine 

if this has been achieved. 
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2.1.9 Considering betting strategies based on model predictions 

The development of a betting strategy once predictions have been obtained from a 

model is potentially an extremely involved task. A relatively small amount of at- 

tention is placed on the subject in this thesis and some of the more straightforward 

approaches are considered. 

Note that in order to consider issues 1 to 4 in particular, some knowledge of the 

sports being modelled is required. In addition, much of the treatment of issues 1 to 

4 is specific to each sport. For example, finding the optimal statistical distribution 

to represent NBA scores does not necessarily ease the task of finding the optimal 

statistical distribution for other sports results. As a result, discussion of issues 1 to 4 

with reference to previous literature is deferred to the relevant sections of Chapters 4, 

5 and 6, which include detailed explanations of the sports markets they cover. Issues 

5 to 9 generally require less detailed knowledge of specific sports and their treatment 

mainly involves statistical methods that can be generalised to many other applications, 
including many sports markets. Hence these issues are discussed in the remainder of 

this chapter. 

This chapter contains mainly technical material which is included in order to sug- 

gest some techniques that could be considered for the treatment of tasks that arise 
later in this thesis, and to introduce the reader to some of the thinking behind existing 

attempts to model sports. A thorough understanding of this material is not essential 
in order to follow the development in later chapters so if the reader is more interested 

in the techniques applied specifically in this thesis, the remainder of this chapter does 

not need to be read immediately and can be referred to, where directed by the text, if 

necessary at later stages of reading. 

2.2 A simple example of a sports model 

In order to link the ideas outlined very generally above with the formal analysis sum- 

marised in the remainder of this chapter, it is helpful to provide an example of a model 

specification that could be employed in any general attempt to model sports of the 

type that this thesis considers. 
It is assumed the data set includes N matches. For each match k, kE [1,... 

, 
N], 

the home and away scores, Xk and Yk respectively, are available as are the identities 
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of the home team and away team, denoted by i(k) and j(k) respectively. The term 

`score' is used here for convenience, however, as mentioned at the start of Section 2.1 

Xk and Yk could also represent match totals of figures other than the final score, such 

as shots on goal or the number of fouls. 

For this example it is assumed that each team's ability (to affect Xk and Yk) can 

best be described by two parameters. These parameters are assumed to alter over 

time hence the two ability parameters of team i(k) at time t are denoted by aI(k), t and 

A(k), t. If Xk and Yk represent the final match scores of a fixture then the a and ß 

terms represent the attacking and defensive abilities of the team respectively. 

Two further parameters are included in this example model. The effect of playing 

at home is described by a single parameter 6 and it is assumed this effect is the same 

for all teams. Finally, since it is desired that the a and ß terms have a mean of zero 

to aid their interpretation, a term to represent the global mean is included, denoted 

by ry. Note that the inclusion of ö means that ry is effectively the mean for all away 

fixtures. 

With these terms defined it is now possible to specify a model.. The expected 

scoring rates of both sides for match k, which takes place at time t is as follows: 

E[Xk] = exp(7 + ai(k), t + ßj(k), t + b) 

E[Yk] = exp(7 + ai(k), t +ß (k), t) 

Some previous studies which employ model specifications similar to this one sub- 

tract the ß terms in the right hand sides of the above equations. The above formulation 

is entirely equivalent, although the interpretation of the ß parameter estimates has to 

be inverted. The right hand sides of the above equations are exponentiated since for 

almost all sporting markets (including those studied in this thesis) match totals are 

always greater than or equal to zero. This implies that their means must be strictly 

positive, hence the use of the exponential function. 

Not all previous academic sports studies use the match scores as the outcome vari- 

able. For example Forrest and Simmons (2000b) when studying English and Scottish 

League soccer results represent outcomes using a vector that can take on three values, 
in order to represent the three outcomes of home win, draw and away win. 
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2.3 Allowing parameters to adjust over time 

In most applications to sports the a and ß parameters need to adjust over time. Gener- 

ally their abilities change for many different reasons and the parameters need to reflect 

teams drifting in to and out of form, losing players or changing coach, for example. 

Large sections of the previous relevant literature are devoted towards modelling this 

process, and some of the ideas are summarised in this section. 

The approach employed by Dixon and Coles (1997) when modelling English League 

and Cup soccer scores is to taper the log-likelihood, so at time-point t the following 

psuedo-loglikelihood is maximised: 

Mt 

L, lo9(L(Xk, Yk let)) * exp(-c(t - tk)) (2.3.1) 
k=1 

where Mt is the number of matches played prior to time t, and 6t is the set of parameter 

values at time t. In this framework the same values of a; and ß; are employed for 

every match in which team i plays. However the importance of matches towards 

obtaining optimal estimates for a; and ß; decreases the longer ago the match is, via 

the exponential term. Since the quantity in Equation 2.3.1 is maximised at many time- 

points throughout the data set, the estimates of the a and ,B terms evolve through time 

even though for each individual maximisation the same team parameter value is used 
for each match in which the team plays. S is selected in order to maximise the predictive 

capability of the model. Due to the non-standard nature of the predictive likelihood, 

this can only be achieved by inspection through testing a range of values of c and 

monitoring the resulting value of predictive likelihood. 

Another logical approach is to define a distribution explicitly for as as a function 

of time for which there are several methods available. The starting point is to as- 

sume as follows a random walk, as implemented by Fahrmeir and Tutz (1994) in the 

development of a paired comparisons system, so that 

CYj, t + Ui, t+i (2.3.2) 

where 

ui, t+i ^' N(O, ai) 

Note that this formulation allows team-specific movements, defined by Q;. Glickman 
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and Stern (1998) modified this concept slightly for a model of NFL scores, so that 

ai, t+i = lc(at, t - ii t) + ui, t+i (2.3.3) 

where u;, t is as in Equation 2.3.2, (but in fact was not set to be team specific), sc 

represents a shrinkage/expansion factor, to accommodate the possibility that there is 

a trend where the overall disparity between the ability of teams increases, or decreases, 

over time. Glickman and Stern obtained a posterior value of 0.99 for k, suggesting that 

no such trend necessarily exists. 

Knorr-Held (2000) argued that one possibly undesirable property of the Glickman 

and Stern formulation is that if team i does not play at time t+l, but other teams do, 

then 
N 

E[ai, t+l] = as, t -n aj, t 
j=1 

(where the rc term included in Equation 2.3.3 is assumed to be 1). Hence team i's 

parameter adjusts even though they didn't actually play, since the model has not been 

designed with the property that 

1N 
- aj, t = 
n j=1 

In certain situations, there is some sense behind this phenomenon. For example, sup- 

pose Liverpool beat Southampton 3-0 on day t and on day t+1, Manchester United 

beat Southampton 7-0. Liverpool's 3-0 result looks a little less impressive after time 

t+1, so it seems appropriate that Liverpool's attacking parameter could drop. 

Crowder et al (2000), who included two parameters for each team in the production 

of an English League soccer results prediction system, applied a modified extension of 

the Glickman and Stern setup, by employing an AR[1] process: 

(st+1 
- ai, p 

_ ) 
-. 

(Paa ( Paß ) as, t - CYi, O () + 
ui, t+l ( 

ßi, t+1 - ßi, 0 Pßa Pßß ýi, t - ßi, 0 vi, t-I-1 

where 

Ui, t+l 
, ý, JV2(0) E) 

vi, t+l 

independently. 

This structure allows dependence between a team's attacking and defensive param- 

30 



eters, firstly from the constant (with respect both to time and teams) autoregressive 

component, via paß and pßa, and also the time-specific, team-specific variations u;, t, v:, t 

can be mutually dependent. 

Another solution is to allow the amount of change in ability to be proportional to 

the time since the previous estimation. Note that the treatments above have indexed 

time, hence either assume that all points of estimation are equally far apart, or that a 

team's ability varies equally between each time-point when a game is played regardless 

of the time differences between these time-points. However, Rue and Salvesen (1997) 

use Brownian motion to model the evolution of parameters, so the attacking parameter 

at time t+s is modelled thus: 

«i, tia = ai, t + Baut 
T 

s) 
- Bai 

7t 
(2.3.4) 

where B(t) is standard Brownian motion starting at level 0 and r is the non-team- 

specific inverse loss of memory rate for the a parameter. The defensive parameters are 

similarly defined. 

Harville's (1980) treatment of NFL models the team abilities as a random effect, 

within a mixed linear model framework, where team abilities are assumed to vary from 

season-to-season, but not from game-to-game within a season. Hence the score differ- 

ence Sk for match k between sides h(k) and a(k) during season m can be represented 

as 

Sk = Th(k), m - Ta(k), m +H+ Rk 

where Th(k),,,,, and Ta(k),,,, represent the abilities of team h(k) and a(k) relative to the 

average ability during season m, H is the home effect and Rk is match k's random 

residual effect. 
Finally, it is necessary to make suitable adjustments for season breaks, particularly 

when one considers Equation 2.3.4. The English League soccer season typically breaks 

for around 3 months over summer, while the NBA season has a six month breaks, and 

the NFL season breaks for 8 months. It seems unsatisfactory to treat these breaks as 

any other and one might expect team abilities to vary at a different rate during season 
breaks compared to the gaps between fixtures during the regular season. Glickman and 
Stern (1998) acknowledge this effect when specifying an NFL model and incorporate 

two further parameters into their model so that, if time t+1 is the time of the first 
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match of a new season, 

a+, t+i = K3(ai, t - U. -, t) + ui, t+1 

where 

u=, t - N(0, a3). 

K, is a season-to-season shrinkage/expansion regression parameter and aj is the between- 

season evolution standard error. The posterior value for r., obtained was 0.82, with 

95% posterior interval (0.52,1.26), based on six season's worth of data. The fact 

that rc, <1 is plausible since the post-season drafting system is designed so that the 

most promising American football players from US colleges are allocated to the worst 

performing teams from the previous season, in an attempt to prevent the hierarchy 

becoming too ingrained. In English League soccer, with no such system in place, it is 

plausible that a similar study may conclude that x, > 1. 

2.4 Finding techniques in order to obtain estimates of the 

parameter values 

Dixon and Coles (1997) employ Newton-Raphson maximisation routines in order to 

find the MLEs of the parameters. With a modern computer this can be accomplished 

in a matter of seconds and has to be repeated for each time-point, or for however 

many estimations are required for the desired level of accuracy. However, as outlined 

in Section 2.3 the Dixon and Coles formulation does not feature `true' dynamic team 

abilities since in every match in which a team participates, the same parameters are 

employed for that team. Furthermore, while it is possible to obtain both MLEs and 

their standard errors (by taking the diagonal elements of the inverse of the observed 

information matrix of the likelihood), the full posterior distribution of the parame- 

ters is not available. This makes it difficult to verify the validity of the parameter 
distributional assumptions, for example. 

On the other hand, now consider the likelihood functions that apply to a true 

dynamic model. In general, if Gt denotes the set of results observed at time t, and Ot 

denotes the set of all parameter values at time t, then the relevant likelihood function, 
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conditional on initial value Bo is 

Lt(e) = P(Gi,..., GtlOo) 

=I P(Gi,..., Gt, B1I9o)dOi 

=f... P(Gi,..., Gt, 01,..., 9t lOo)d91.... dOt (2.4.1) 
t 

fl 

For a model of NBA scores, using Brownian motion for the drift of team ability as 

demonstrated in Equation 2.3.4, the parameters required include attack and defensive 

parameters for each team at each time-point, plus constant parameters for the global 

mean, home effect, memory loss, and between-season expansion/shrinkage. This gives 

a total of t* 29 *2+4 parameters at time t. This is the dimension of the integral 

in 2.4.1, which means Newton-Raphson is not appropriate. Both Glickman and Stern 

(1998) and Rue and Salvesen (1997) apply a Markov Chain Monte Carlo (MCMC) tech- 

nique, although doing so requires considerable thought in order to divide the complete 

posterior distribution into more convenient and computationally efficient conditional 

posterior distributions. Also, some inspection is required in order to find suitable prior 

distributions. MCMC will be considered in more detail in Chapter 7. 

Crowder et al (2000) devised a fairly intricate approximation to the likelihood 

for their English League soccer model, which avoided the used of MCMC and was 

computationally more efficient. However, it is not readily adaptable to alternative, 

more complicated model formulations. This approximation is not considered in this 

thesis. 

One other technique that has been considered in order to obtain time-dependent 

estimates is application of a Kalman Filter. In general, one considers applying a 

Kalman filter when one wants to represent a stochastic process x governed by the 

following linear stochastic differential equation: 

Xk = AXk-1 + Wk-1 

via a measurement z such that 

zk=Hxk+Vk 

Random variables wk and vk respectively represent the process and measurement 

error. The Kalman filter approach produces predictions for x via a set of prediction 
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equations, which predict values for x and the error covariance matrix, and a set of 

measurement update equations, which act as feedback to the prediction process. The 

update equations are designed in order to improve future predictions. The extended 

Kalman filter relaxes the assumption that the process must be linear. 

Fahrmeier and Tutz (1994) apply an extended Kalman filter to the set of param- 

eters, which include response thresholds (since their response vector is categorical), 

team abilities and, optionally, parameters for any other covariates. The estimation 

of parameters is achieved via posterior modes, and the likelihood is considered as a 

combination of filters and smoothers. The filters are the loglikelihood of the data given 

parameter estimates at the latest time point and the smoothers are the loglikelihood 

of the transitions of the parameter values from one time-point to another. At each 

time-point it is assumed that 

fit - N(Ttßc-i, Qt-i) 

where ßt is the set of parameters described above, TT is the transition matrix at time 

t and Qt is the error process. 
Some other studies do not explicitly include team abilities as parameters which need 

to be estimated by the model. Forrest and Simmons (2000a), for example, approximate 

team abilities with a range of measures such as recent form, league positions and total 

scored/conceded goals in the current season. The match result is then regressed against 

this set of measures and the coefficients of this regression are the parameters to be 

estimated. As mentioned in Section 2.2, Forrest and Simmons classify a match result 

as either a home win, a draw or an away win. An ordered logit model is used to obtain 

parameter estimates and this could in principal be extended to a model which estimates 

team parameters. While many popular statistical packages supply routines for ordered 
logit analysis, ideally the estimation would be adapted to allow team abilities to vary 

over time. This could be an onerous task given the large computational requirements 

of a conventional ordered logit likelihood maximisation. 
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2.5 Validating the model and assessing predictive capa- 

bility 

2.5.1 Discrepancy measures 

One suitable technique to see how closely the specified model mimics the observed data 

is to compare the predictive distribution to the data. This can be done by simulating 

a suitable number of samples from the predictive distribution and comparing these 

samples to the observed data. There are usually various aspects of the data that 

can be checked and it is therefore useful to devise one or more test quantities. If a 

model is being developed within a classical framework, this is a scalar summary of the 

data. If the problem is being considered within a Bayesian framework, this is a scalar 

summary of both the data and the parameters. This test quantity T (y) is known 

as a test statistic, in the classical case, and as a discrepancy measure T (y, 0) in the 

Bayesian case (Gelman et at 1995). Using these test quantities, tail area probabilities 

to quantify the scale of disagreement between model and data can be approximated. 

In the classical case, suppose there are n observed values y= (yi,... , y�). K 

copies of replicated data, y,... , yK given the model and the estimated value of 0 

can be generated. Hence yi is a vector of simulated values (y; l, ... ,y;, 
). Then set 

T (yi) = min(yl,... , y,, ), for example. Then the tail area probability could be defined 

as the length of the vector 

{i :T (y, *) >T (y), iE [1, K]} 

divided by K. For large enough K, this is an approximation to P(T(y*) > T(y)IO). If 

this tail area is close to zero or one, it suggests a possible discrepancy. 

The Bayesian method differs, since a posterior distribution of the parameters is 

considered, rather than their point estimates. As such, sample values 01*,..., BK are 

generated from the posterior distribution of 0, then for each generated value, a single 

yi 19' is generated. Tail areas can be computed as above, to approximate P(T (y', 0) > 

T(y, O) Iy) 

Glickman and Stern (1998) apply this technique to their NFL model, which is 

defined from a Bayesian perspective. One assumption which they test is that the 

variance of the score difference, conditional on its mean, is equal for all games. Two 

discrepancy measures, which are sensitive to this assumption, that they use to test 
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this axe 

" the difference between the largest annual average squared score-prediction resid- 

ual, and the smallest (Glickman and Stern have six years of data available) 

" the difference between the largest and smallest average squared score-prediction 

residual for each team. 

In fact, Glickman and Stern do not obtain any significant evidence to suggest that 

the variance of a match score is a function of its mean. They also conclude using 
discrepancy measure techniques that it is necessary to include team-specific home 

effects, a feature not present in most other studies. 

2.5.2 Predictive ability summary statistics 

Predictive ability summary statistics can be used either to test the effect of model 

enhancements, such as adding new covariates into the mean function, or in order to 

find optimal values for parameters with respect to predictive ability. 
Knorr-Held's (2000) paper proposes four measures that could be suitable for eval- 

uating the predictive ability of a sports model. Noting that the only outcomes in 

Knorr-Held's model are win/draw/lose, then given a total of N matches, and R pos- 

sible outcomes (R=3 in this case), let pk denote the estimated probability that the 

result of match k will be r, where rE (1, 
... , R) and kE (1, 

... , N). Note that pk is 

calculated only using data available prior to match k. Also, let the observed result be 

denoted by s for each match, hence pk is the probability of each observed result, as 

estimated by the model prior to match k. 

The four measures are defined as: 

1. the number of correctly predicted results, where the predicted result is the out- 

come with the highest estimated probability. 

2. N Ek=1 Io9(i'k) 

3. -N Lk 1((1 -Pk )2 + Er#a(Pk)2) 

4" 
171 

Lk=1 Pk 

Measure 2 is similar to a measure employed by Dixon and Coles (1997) and Crowder 

et at (2000) and will be referred to as the predictive likelihood. Generalising it to be able 
to calculate the predictive abilities of models which provide probabilities for the entire 
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set of scores rather than just win/draw/lose, it can be defined as follows. If t denotes 

the time at which match k takes place and ©t represents the parameter estimates based 

on all data available up to, but not including, time t then the predictive likelihood is 

defined as N 
E lo9(P(Xk, YkIOt(k))) 
k=m 

where Xk, Yk are the observed home and away scores and m is the first match for which 

predictions are made'. It must be used with some caution, however. Firstly, it is sen- 

sitive to outliers, although this is less of a problem if it is used only to compare nested 

models. Secondly, it is not robust to mis-specification of the response distribution. 

Measure 1 is only suitable where the number of possible outcomes is small, although 

a similar measure to compare two models could be to count the number of occasions 

one set of predictions is closer to the observed score, and to verify if the proportion is 

significantly different from 0.5. This can be done via a straightforward binomial signs 

test. A consequence of using such a measure is that the magnitude of error is not 

considered. As a result, this measure may not pick up model deficiencies particularly 

well. 

Measure 3 is a quadratic loss, while measure 4 is similar to measure 2. However, 

measure 4 has the disadvantage that if a result occurs to which the model had assigned 

an extremely low, or even zero, probability, the measure isn't greatly penalized. 

2.6 Comparing predictions obtained through a statistically- 
based procedure with the bookmaker's odds 

Some of the previous studies considered here attempt to compare the accuracy of the 

model predictions with the accuracy of the probabilities inferred from the bookmaker's 

odds. In order to do this, a suitable definition of `accuracy' is needed. Stefani (1980) 

uses the absolute average difference between the predicted score and the observed score 
for both College Football and NFL games. Harville (1980) also uses this statistic in 

order to compare the accuracy of predictions from an NFL scores model with a book- 

maker's line. Another measure considered is the squared difference between predicted 

and observed score, which penalises larger discrepancies more severely. Another mea- 

sure used by Harville is the proportion of occasions the prediction system correctly 
1Many models require a `burn-in' period so that predictions are only evaluated once sufficient data 

has been observed to make reasonable estimates of parameter values. 
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predicts the winner of a fixture. 

Stefani conducted a year-by-year comparison between the statistical model and 
the bookmaker's line and concluded that the bookmaker's line was consistently more 

accurate each year. The general conclusion to Harville's comparisons was that the 

bookmaker's predictions were more accurate at the start and end of an NFL season, 

while the model performed better during the middle of the season. It is suggested 

that at the start of the season the bookmaker takes account of factors such as roster 

changes, injuries and pre-season exhibition game results, while at the end of the season 

the importance of late-season matches differs from team to team (this is discussed in 

more detail in Chapter 5). The model implemented by Harville is based solely on match 

scores (excluding exhibition games) hence does not accommodate such information. 

Glickman and Stern (1998) comment that their NFL predictions' Mean Square 

Error was smaller than that of the bookmakers, and also claim that for 65 out of the 

110 validation matches the model predictions would have produced winning bets. They 

also comment that `for this small sample, the model fit outperforms the point spread, 

though the difference is not large enough to generalise'. 

2.7 Betting strategies based on model predictions 

Harville (1980) suggests that bets could be made if the following ratio exceeds 0.5 by 

a sufficient amount: 
P(Sk > Bk) 

P(Sk > Bk) + P(Sk < Bk) 

where Sk represents the score predicted by the model and Bk represents the book- 

maker's line. The paper states that `the proposed betting scheme would generally 

have shown a profit during the 1971-77 period', however it is not stated whether the 

bookmaker's overround (as explained in Section 1.3) is included. 

Dixon and Coles (1997) use a betting strategy similar to Harville's although they 

also adjust for the bookmaker's overround. Hence, repeating the notation used to 
describe the four measures suggested by Knorr-Held in Section 2.5.2, if they estimate 

the probability of outcome r in match k to be pk while the bookmaker's probability 
(converted from the `odds' format described in Section 1.3.1) is bk, then the expected 

gain by placing a unit stake on outcome r in this match is 

Pk k 
T rk 

(2.7.1) 
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(note that ET_R bk >1 for any bookmaker, which reflects their overround). So bets 

should be placed provided the value in Equation 2.7.1 exceeds some cut-off value 

Using predictions generated by a statistical model, Dixon and Coles simulate such a 

strategy for different values of ý during the 1995/96 English League soccer season and 

discover that overall profit can be made for C>0.15. There is considerable variance 

in this profit and the 90% bootstrap confidence intervals of the realised profit when 

e>0.15 generally include 0, and indeed also the loss that one would realise on average 

were bets placed randomly. Nevertheless there is some indication that their predictions, 

from a relatively simple model, can form the basis of a profit-making betting strategy. 

Rue and Salvesen (1997) suggest that a betting strategy could take account not 

just the expected profit from making a bet but also the variance of that profit. Hence 

bets should be placed with regard both to maximising profit but also restricting the 

probability of ruin. Defining P as the profit on a bet, p* and a* as the expected profit 

and standard deviation for betting a unit amount on outcome r on match k, ßk to 

be the proportion of capital to be staked on outcome r of match k and B to be the 

set of matches which can be bet on, then the optimal values of ßr can be found by 

maximising 
E(P) - Var(P) _r . 

(14k - ßr (ar )2) 
jEB 

The solution to this is ßf = max(0,2 ýk 
). By simulating betting throughout the 

95/96 and 96/97 Premier League soccer season, profits of 47% and 22% were returned 

on original capital. 

More complex strategies than this can be considered. In particular, one could take 

into account the amount of capital available and the utility of money. In addition, many 

recommended betting strategies assume `correct' probabilities are available, whereas 

ideally, the distribution of the estimates of the parameters which form the estimated 

probabilities should be considered. 

This chapter has discussed some important issues concerning the modelling process 

from a statistical perspective. There are other criteria to consider besides these. It is 

important that a method does not require excessive computational resources in order to 

be used. In practice, development of a model is generally performed in stages, where 
flaws in the model assumptions or methodological errors become apparent through 

trial and error. Thus the computation time required to implement any stage of the 

modelling process has to be short enough for the model development to take place on 
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a practical timescale. 

An additional issue is the availability and cost of data required by a process. There 

may be situations where an alternative method is attractive from a statistical per- 

spective in that it may, for example, produce estimates of quantities that have lower 

variance, or have lower expected bias, than an existing method. However, these im- 

provements may only be observable given a suitably large amount of data. Considera- 

tion must be given towards how much data is likely to be necessary and whether such 

a quantity of data can be obtained at an affordable cost, in terms of money or time, 

before deciding to implement an alternative method in a situation such as this. 
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Chapter 3 

A general method for 

parameter estimates 

obtaining 

In the previous chapter some of the key issues involved in the modelling of sports 

results were described and a selection of previous treatments were summarised. Some 

of this material is helpful to raise awareness of the potential problems that arise, while 

some is of more direct importance since it can be applied, with minor modifications, 

to the sports markets that are to be modelled in this thesis. 

To clarify the objective of this chapter, in terms of how it ties in with the other ma- 

terial in this thesis, it is helpful to outline the general procedure involved in modelling 

a sport. It can be considered as a three stage process: 

1. Specification of a model for the sport, on consideration of issues listed in Sections 

2.1.1 to 2.1.4. This is generally done using both one's existing knowledge about 

a sport, and by exploring the available data. This stage concludes with the 

specification of a statistical model which relates the parts of data that are deemed 

to be important to each other via a set of parameters (such as team abilities). 

2. A procedure is implemented in order to estimate the values of the parameters 
included in the model specified in stage 1. 

3. Using the estimates obtained in stage 2, the validity of the specified model is 

evaluated. If the model is considered to be satisfactory, the estimates have a 

number of possible uses. They may be informative in themselves since the ranking 

of teams by ability, or the average effect of a covariate on the outcome of fixtures 

may be of interest to the statistician. The estimates can also be used to generate 
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predictions for future sporting fixtures and these predictions can form the basis 

of a betting strategy. 

Chapters 4,5 and 6 mainly cover stages 1 and 3 of this process. Stage 2 is covered 
in this chapter. The material in this chapter is quite technical although an exhaustive 

understanding of it all is not necessary in order to follow the developments in the in 

sections of this thesis, which, in Chapters 4,5 and 6, is the construction and application 

of sports specific models. This chapter can be read in its entirety if the reader is 

interested in the technical aspects of the parameter estimation process, otherwise the 

reader may find it more useful for occasional reference, where indicated in the text, 

while reading Chapters 4,5 and 6. 

The procedure outlined in this chapter is based on a procedure employed by Dixon 

and Coles (1997). The original application was the modelling of UK soccer scores and 

the procedure they used can be extended quite easily to model other sports. It is by no 

means the only technique that has been applied in studies of sports modelling but it is 

used by all models in Chapters 4,5 and 6. Some other parameter estimation procedures 

are mentioned in Section 2.4, one of which (the Markov Chain Monte Carlo approach) 

is applied to a model for NFL scores in Chapter 7. For the models elsewhere in this 

thesis, the procedure outlined in this chapter is considered to be more suitable. The 

strengths and weaknesses of it compared to the Markov Chain Monte Carlo approach 

are discussed in Chapter 7. 

3.1 The Dixon-Coles MLE procedure - an introduction 

In this section the procedure employed by Dixon and Coles (1997) to obtain estimates of 

model parameters of English soccer teams in summarised. From here on this procedure 

is referred to as the MLE method Initially the model specification that Dixon and 

Coles chose is described. It is assumed that home and away goals follow independent 

Poisson distributions. Given N matches in total, then for match k between teams i(k) 

and j (k), the probability associated with each match score is 

e-ar ýxh e µk vr. 
Lk = P(Xk = Oki Yk = Ilk) 

Xkl 
)( 

Yk! 
k) (3.1.1) 

where 

" Xk and Yk are the number of home and away goals, 
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" Ak = e°i(ý)+ý3(w)+a and p= eaj(k)+O, (r) 

" af(k), aj(k) represent the home and away sides' attacking capabilities, 

" 191(k) , ßJ(k) represent the home and away sides' defensive capabilities, 

"b represents the effect of playing at home. 

In this way, probabilities Ll,..., LN for each match are obtained. Standard like- 
lihood maximisation procedure suggests maximising the sum of the logs of these N 

probabilities with respect to the (a, ß, ö) parameters in order to obtain maximum like- 

lihood estimates (ä, ß, Ö). However, to do so in this case assumes that all parameters, 

including team abilities, are fixed over time which in practice is not believed to be the 

case. Various treatments of this problem for other modelling frameworks are outlined 

in Section 2.3. The MLE method uses a `weighting' factor, Tk, for each match. Hence 

the pseudo-loglikelihood to be maximised is 

N 
E log(LK)T k 
k=1 

(3.1.2) 

The parameter Tk should be larger the more recently the match took place. The 

form for Tk chosen by Dixon and Coles is 

TA; = exp(-c(t - tk)) 

where t is the current time, tk is the time match k took place and c< oo is a coeffi- 

cient chosen in order to maximise the predictive ability of the model, rather than the 

loglikelihood specified in Equation 3.1.1. Note that in the interests of readability, this 

pseudo-loglikelihood is referred to as the `likelihood' throughout this thesis. 

From here on, Tk is referred to as an external parameter, while the team, global 

mean and home effect parameters, which are maximised at each time-point as part of 
the likelihood, are referred to as internal parameters. There is no algebraic solution 
to finding the maximum likelihood estimates of the internal parameters but Newton 

Raphson maximisation techniques can be used without major difficulty. 

In order to assess the predictive ability of the model, a scalar quantity referred to as 
the predictive likelihood (PL) can be used. It is defined as the sum of the loglikelihoods 

of the observed scores given the predicted scores based only on data available up until 
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the time of the match. Hence 

N 

PL =E 109(P(Xk)Yk)I19t(k)) (3.1.3) 
k=m 

where m denotes the first match after which sufficient data has been observed in order 

to be able to make reliable estimates of the parameters, t(k) is the time at which match 

k takes place and 9t is the set of (a, #, b) estimates based on all matches up to but 

not including time t. This sum must be computed for a range of values of c until an 

approximate maximum value of PL has been found. 

Before the likelihood can be maximised based on the model suggested, one remain- 
ing problem is that the a, ß parameters are unconstrained. Thus there is no unique 

solution to the likelihood maximisation, since a constant can be added to all the a's 

and subtracted from all the ß's without affecting any of the score predictions. Dixon 

and Coles introduced the constraint that E,! '=11 a= =0 to achieve a unique maximum 
likelihood. The effect of this along with some alternative solutions, are now discussed. 

3.2 Modifications and extensions 

3.2.1 Constraints on team ability parameters 

In order to generalise the MLE method described in the previous section so that pa- 

rameter estimates for other sports can be obtained, some modifications are required. 

For example, Dixon and Coles have all English soccer results from all divisions, plus 

results from cup games, in their database and so it is fairly rare that a new team enters 

into their likelihood. In certain other situations, such as the yellow cards application 

in Chapter 4 where only Premier League data is employed, teams frequently enter and 
leave the data set. As a result, the sum-to-zero, constraint applied to the teams' pa- 

rameters to ensure a unique solution to the maximum likelihood could be problematic. 
The following simplified version of a league system illustrates this. 

Suppose that data from two seasons of a league system is to be modelled. The 

league contains teams A, B, C in the first season and teams A, B, C and D in the second 

season. Each team's ability is constant throughout time and can be summarised by 

a single parameter. These abilities relative to team A's are (0,0.3, -0.5, -1.0). The 

interpretation of these parameters is that team B on average beats team A by 0.3 

goals, for example and similarly for teams C and D. Furthermore, an intercept term ry 
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is required so that if team A were to play a team of equal ability, on average a total of 

3.0 goals would be scored. The score of a match is not affected by whether the match 

is played at the home ground of either side in the match. 

The model specification can be expressed as follows: if X, Y respectively represent 

the scores of teams i and j in a match then 

E[X + Y] = ry -}- a= -I- aj 

E[X - Y] = a= - aj 

The simultaneous equations to be solved in order to convert the listed team abilities 

so that they satisfy a sum-to-zero constraint are, in matrix form: 

1 1 1 0 3.3 

1 1 0 1 2.5 

1 0 1 1 2.8 
aA 

0 1 -1 0 = -0.3 aB 
0 1 0 -1 0.5 

ac 0 0 1 -1 0.8 

0 1 1 1 0.0 

The solution to this is 

(7, aA, 0B, ac) = (2-87,0.067,0.37, -0.43) 

However, with the addition of team D to the data set, the simultaneous equations 

to be solved in order to satisfy a sum-to-zero constraint are: 
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1 1 1 0 0 3.3 

1 1 0 1 0 2.5 

1 1 0 0 1 2.0 

1 0 1 1 0 2.8 

1 0 1 0 1 ry 2.3 

1 0 0 1 1 aA 1.5 

0 1 -1 0 0 aB = -0.3 
0 1 0 -1 0 ac 0.5 

0 1 0 0 -1 aD 1.0 

0 0 1 -1 0 0.8 

0 0 1 0 -1 1.3 

0 0 0 1 -1 0.5 

0 1 1 1 1 0.0 

to which the solution is 

(7, aA, aB, aC, aD) = (2.4,0.3,0.6, -0.2, -0.7) 

The problem here is that while the abilities of teams A, B and C have not changed, 

aA, aB and ac have changed in order to satisfy the sum-to-zero constraint. The 

predictions of match results are still valid but the parameter estimates become less 

interpretable. One could choose the alternative constraint that the ability of team A is 

always set to be zero but this means that the abilities of teams B, C and D can only be 

expressed with respect to the ability of team A which, for real life applications, would 

be likely to change over time. 

Another approach is to include a prior on the team abilities when the likelihood 

is maximised. Referring back to the example described by Equation 3.1.1, the most 

natural prior assumption to place on the team abilities is to assume they are Normally 

distributed with mean zero. In addition, the overall mean scoring rate can be accom- 

modated by the inclusion of a global mean parameter y. Hence the optimal estimates 

of a, ß, 'y and 3 maximise 

MNN 
11 P(Xk, Ykja'i(k)l Ctj(k) l 

fli(k)l pj(k), ''l &) f[ ir(ai) 
[J 

ir(Qi) 
k=1 i=1 i=1 
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where 

7r ̂' r(O, TAO) 

Taß is an external parameter, hence the optimal value of Ta, fi, like c, must be found by 

inspection of the predictive likelihood defined in Equation 3.1.3. 

It should be clarified at this stage that the prior distribution referred to here does 

not serve the purpose conventionally served by a prior term in the context of Bayesian 

statistics. The Bayesian interpretation of the prior term used here would be that 

before any data has been observed, it is believed that all teams have equal a's and ß's 

and that this belief is modified upon observing data. This is not the reason for the 

inclusion of the prior term in this case. The prior term here serves an entirely different 

purpose, which is to act as a constraint on the estimates of the parameters so that the 

likelihood can be maximised. 

3.2.2 Application of prior values to other parameters 

One problem caused by the MLE method for parameter estimation is that by down- 

weighting matches that took place less recently in the likelihood, information about 

all parameters (rather than just the team abilities) is down weighted. Thus when the 

parameters for the global mean, 7, and the effect of playing at home, S, are estimated 

recent matches are given greater weight. Since these parameters are considered in 

practice to be constant throughout time, this is not desirable. This same issue applies 

to the estimation of the score standard deviation term if a Normal distribution is 

employed for the scores, for example, and the correlation coefficient if a bivariate 

Normal distribution is used. Hence, at the start of a season in particular, the estimates 

of these parameters are based largely on recent results. While in some cases it may be 

desirable that the global mean and other terms vary with time to some extent, there 

is a danger of excessive variation occurring. This problem can also be addressed by 

including more prior terms in the likelihood. This treatment fits more naturally into 

the Bayesian modelling philosophy. Hence, for example, by specifying that 

(Xk, Yk) ^' JV2(7 + a$(k) + Qß(k) + 6, 'Y + aj(k) + ßß(k), Cx, QY, P) 
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then a suitable likelihood function could be 

M 

L(X, Yl a, ß, 7, b, Qx, ay, p) = 
fl P(Xk, Yk l a'i(k), as(k), Pi(k), ßj(k), Y, 6, ax, aY, P) 

k=1 
N 

* ir('Y)ir(b)ir(crx)ir(ay)ir(P) 
jlir(ai)ir(Qi) (3.2.1) 

i=1 

where the ir(. ) terms are such that 

0 'y ^', Al(, Y0, T7) 

08N , 11r(bo n) 

9 ax N N(axo, Tex ) 

" ay ^, Ar(ayo, r0. 

"pr# fsI (p0, 
p) 

It is then necessary to choose appropriate mean 7o, 8o, Qxo, ayo, Po and variance 

T, y, Tb, TAX17".. Tp values for the priors described above. 

Selecting prior mean values 

The prior values for yo and 8o at time t could respectively be Yk1(t(k) < t) and 

(Xk -Yk) I (t(k) < t). It is more difficult to select suitable initial values for the axo, oyo 

and po terms. For example, ax and ay are conditional standard deviations, conditional 

on covariates including team parameters and the effect of playing at home. Thus in 

order to produce a reliable estimate of (ax I a, ß, 'y, b), suitable estimates for the a, ß 

terms, for example, are necessary. Estimates for these parameters can only be obtained 

by maximising the quantity in Equation 3.2.1. Yet it is for this process that suitable 

values of oxo and ayo are required. Similarly, p is a conditional correlation, so a similar 

argument applies. There are still various possible estimates for axo, ayo and po that 

can be considered. For example, non-time-dependent estimates of the team parameters 

can be obtained using a more straightforward parameter estimation process such as 

fitting a generalized linear model (if the probability distribution chosen for scores is 

not Normal) or least squares regression (if Normally distributed scores are assumed). 

Estimates of the standard errors and correlation conditional on these estimates could 

then be calculated. It is rather time consuming to repeat this process on every occasion 

that the model parameters need to be estimated and so setting axo, oyo and po to 
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be the unconditional standard deviation of home scores, the unconditional standard 

deviation of away scores and the unconditional (home score, away score) correlation 

is a straightforward alternative. This will normally give inflated estimates for the ax 

and ay terms, since team abilities account for some of the variance in almost all of 

the situations which are investigated in this thesis. Techniques to scale down these 

figures could be considered, although these would be chosen in order to maximise the 

predictive ability of the model, along with the other external parameters. 

Selecting prior variance values 

Suitable variance quantities T. y, 7'a, Tax, Toy v Tp for the priors are also required. A quan- 

tity that allows sufficient movement from the initial estimate of the parameter, without 

allowing excessive fluctuation of the estimate (which could bias predictions of future 

results) is desirable. One obvious candidate is the standard error of the initial value 

described in the above paragraph. This can be obtained either through formulae if 

possible (see below), or alternatively a simple model with no team effects can be max- 

imised. Standard errors of the terms of interest can be obtained by taking the diagonal 

terms of the inverse of the information matrix. 

Hence it is natural to define 

Var(Yk'(t(k) < t)) Ty -N 

Var(Xk -Yk)I (t(k) < t) 
Ta N 

As previously discussed in this section, selecting appropriate values for Qxo, aYo 

and po is problematic thus r, r0. , and ip may need to be selected to create suitably 

weak priors. 

3.2.3 Including additional covariates 

The only covariates in the models specified so far in this chapter are two ability pa- 

rameters for each team and the effect of playing at home. However, as discussed in 

Section 2.1.4, there are often additional covariates that may improve the accuracy of 

predictions. The starting point is to assume a linear, or loglinear, relationship between 

the covariate and the response. One straightforward model for soccer scores (Xk, Yk) 

could involve using the attempted goals, or shots, (HSk, ASk) as covariates, with two 
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extra parameters r. l and ist: 

E[XkIHSk, ASk] = exp(ry + ai(k)+ ßj(k)+ S+ Kl * HSk + K2 * ASk) 

E[YkI HSk, ASk] = exp(ry + aj(k) + ßi(k) + rcl * ASk + 1c2 * HSk) (3.2.2) 

A model for the prediction of (HSk, ASk) could be developed and combined with that 

described in Equation 3.2.2 to obtain a joint distribution for (Xk, Yk, HSk, ASk), which 

may give more accurate marginal distributions for (Xk, Yk) 

The problem that affects the estimation of global parameters such as ry and 8, 

which is described in Section 3.2.2, also affects the estimation of the rci and k2 terms 

in Equation 3.2.2. The true values of these parameters are not considered in practice to 

vary over time but the parameter estimation procedure, as described thus far, places 

greater emphasis on recent results when nl and n2 are estimated. The problem is 

compounded if the covariate is an indicator variable representing a rare or seasonal 

event. An example of this could occur in soccer where a variable Zk could be defined 

so that 

1 if both teams in match k are threatened by relegation from the league should 
Zý = the match be lost 

0 otherwise 

After the first match of a season where Zk = 1, the estimate of its coefficient is 

heavily affected by the result of this match, rather than averaged out over that match 

and all others in previous seasons as desired. While this is also true for parameters 

such as the global intercept ry or home effect 8, it is less critical since the presence of 

ry and b in the specification of the conditional mean of every match ensures that their 

estimates are based on reasonably large quantities of data. 

There is no ̀ clean' way of solving this problem within the MLE method framework, 

but the following correction technique can be employed. Let 

"A represent all time-dependent team ability parameters 

"T represent all non-time-dependent covariate parameters such as rsl and' 2, and 

global parameters such as ry and 6. 

" (X, Y) represent all data 
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Next, the following functions are defined: 

" 11(TIA*) =fko P(xk, ykIA = A*, T) 

" 12(AIT*) = IIk 0 P(xk, vkIA, T= T*)exp(-c(t - tk)) 

Initially A* is a vector of zeroes of length 2N, hence all offensive and defensive 

parameters are set to zero. Next, ll(TIA*) is maximised in order to obtain non-time- 

dependent estimates T*. Then, using this value, 12(AIT*) is maximised to obtain 

A**. Hence T* is obtained by giving equal weight to all matches, but assuming that 

all teams are of equal ability, while A** is obtained by giving more importance to 

recent matches. Team abilities are estimated subject to a restricted value of T*. 

One could next consider maximising ll(TIA**) to obtain T** and repeating the 

process described above until some desired number of iterations has been implemented 

but this would be time-consuming and would also require a good understanding of the 

behaviour of both il and 12, which is rather difficult given their large dimensionality. 

For this reason only one implementation has been used. In certain situations it is more 

appropriate to maximise 12 before maximising 11. Where implemented in subsequent 

chapters in this thesis, the process described above has been modified so that the 

global parameters such as ry, ö and ox have been re-evaluated along with A, and a 

prior term for them has been included as outlined in Section 3.2.2. The justification 

is that their ubiquity in the likelihood function means they are less sensitive to the 

loss of information brought about by the inclusion of a down-weighting term in the 

likelihood maximisation process. 

3.2.4 Season breaks 

One further issue that arises as a result of the down-weighting system employed by 

the MLE method, although it also applies to any analysis which attempts to allow 

estimates of teams' abilities to adjust over time, is the need to accommodate the break 

that occurs between the seasons of most sports. The MLE method as outlined so 
far assumes that team abilities adjust at the same rate over the season break as they 

do during the season. This seems like an unrealistic assumption and so the solution 

used in this thesis is to add, for every season before the current one, a between- 

season-truncation adjustment w on to the time-points of matches when the likelihood 

is maximised. Hence the time-points of the matches during the season prior to the 

current one have w added to them while the time-points of the matches during the 
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season prior to that one have 2w added etc. This quantity is an external parameter 

and this also has to be deduced by inspection. 

3.3 Effect of the extensions on the maximisation of the 

predictive likelihood 

The external parameters, i. e. offensive and defensive tightnesses ,, time down- 

weighting parameter c and between-season-truncation adjustment w, all have to be 

chosen in order to maximise the predictive likelihood. Since the functional form of 

the predictive likelihood is too complicated to analyse algebraically, the only way to 

find the optimal values is by using the rather crude technique of trying out many 

sets of values, recording the predictive likelihood each time and choosing the set which 

corresponds to the highest value of predictive likelihood. This technique is only valid if 

the surface of the predictive likelihood is reasonably well-behaved, in particular it helps 

if it is unimodal. It should be noted that by using such a procedure, valid comparisons 

between predictions obtained and those offered by bookmakers can only be made if 

the optimal values for the external parameters are found using data which occurred 

prior to the sample which is to be compared to bookmakers' predictions. Hence, in 

order to have genuine comparisons between model and bookmaker predictions, one 

must divide the data set into two sections. The earlier section is used in order to find 

optimal values for Tap, c and w. Then the updating of all non-external parameters is 

performed at each time-point on the latter section of the data using the optimal values 

of the external parameters. Predictions are then made using the most recent parameter 

estimates and these predictions can be compared with the bookmaker's. If sufficient 

time and computing resources are available, re-evaluation of the external parameters 

could be performed at every time point, and summary statistics on the comparison 

between bookmaker and model predictions could be computed at every stage. 

3.4 Model comparison techniques 

The most frequently used statistic in this thesis in order to assess the validity of models 
is the predictive likelihood, as defined by Equation 3.1.3. Strictly speaking it is a device 

used in stage 3 of the modelling process outlined in the introduction to this chapter, 

which deals with model evaluation. This chapter focuses on stage 2 of this process, 
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however, given the frequent use of the predictive likelihood throughout the next three 

chapters, it seems appropriate to include a short discussion of it here. 

The statistic must be used with some caution as the following, rather extreme, 

example illustrates. Suppose the following scores are observed, 

(1,0,8,2,2,1,2,1,1,3) 

and prior to each match it was believed that each score had an expected value of 

p=2.1. In this case a predictive likelihood of -19.895 is obtained, assuming the scores 

follow a Poisson distribution. Alternatively, suppose it was believed that each score 

had an expected value of µ=2.01. Here the predictive likelihood becomes -19.915. 
Hence a superior predictive likelihood is obtained assuming p=2.1 whereas if it is 

assumed that p=2.01, closer predictions for eight of the ten scores are obtained. 

For spread betting, one should asymptotically make more profit using p=2.1 as the 

prediction, since returns are proportional to the closeness of the predictions. For fixed 

odds betting one would lose rather a lot of money by assuming p=2.1. In fact, by 

looking at the logs of the observed probabilities of the scores given µ=2.1 and Poisson 

distributed responses: 

(-1.358; 2.100; 6.769; 1.309; 1.309; 1.358; 1.309; 1.358; 1.358; 1.666), 

it can be seen that the third score is atypical (which one cannot always see by looking 

at the raw data of more complicated data sets than in this example). This suggests 

that either the third score is an outlier, an extreme event, or that an extra covari- 

ate to describe a characteristic feature of the third match is required. Some general 

understanding of the sport being modelled may be important in order to decide this. 

The material covered in this chapter has been selected with the aim of describing 

methods that are common to all three markets that are covered in the next three chap- 
ters. It also suggests a suitable method for other studies of similar sporting markets. 
Each study must extend or modify these general methods in order to accommodate 
the specific features of the market. The next three chapters illustrate this. 
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Chapter 4 

Harsh referees and dirty teams: 

estimating booking rates in 

soccer 

This chapter investigates the rate of bookings in Premier League soccer. Motivated by 

the rapidly growing and financially lucrative sports spread betting markets, the aim 

is to estimate the distribution of the numbers of cautions and dismissals (yellow and 

red cards) given by the referee in a particular future match. This is achieved using a 

detailed statistical model to account for the characteristics of the two teams playing, 

the referee and several other factors. The aim is to obtain predictions that could be 

used as the basis for a profit making strategy on UK sports spread betting markets. 

This chapter presents the first application of the likelihood maximising procedure 

outlined in Chapter 3 in order to obtain estimates of parameter values. This application 

is introduced in Section 4.1. The basis of the model development is past data in the 

form of numbers of home and away yellow and red cards observed in Premier League 

soccer from 1994-2001, which is explored in Section 4.2. In Section 4.3 the adjustments 

required to model the bookings process and fit the model to the data are discussed. 

In Section 4.4 the results are reviewed and the utility is examined of the model using 

approximately 1150 booking spread prices. In Section 4.5 some possible improvements 

to the model are suggested and Section 4.6 gives the conclusions to this chapter. 
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4.1 Bookings in soccer - an overview 

Soccer, or Association Football, has been played with the same basic rules for over 100 

years. The main change over this period has been the increase in its popularity and 

the financial consequences for good or bad performance. As soccer and its participants 

have become more professional, and success has become more important, players must 

play close to the boundaries of the rules, and inevitably sometimes break them. To 

avoid unfair advantages to rule-breakers, and to ensure the safety to participants, 

match officials (referees) are given the power to penalise a player who commits a 

serious breach of the rules, or who continually commits minor offenses. Penalties can 

range from a free-kick through to cautioning and ultimately dismissing (sending off) a 

player. Every caution or dismissal by a referee is indicated to the offending and other 

players by clearly displaying a yellow card (for a booking or caution) or a red card 

(for a dismissal). The likely number of red and yellow cards to be shown in the match 

differs from game to game depending on various factors: some players are more prone 

to committing punishable offenses, while some referees tend to caution and dismiss 

more readily than others. Estimating the distribution of the number of red and yellow 

cards in a given match and investigating the influence of such factors are the subjects 

of the chapter. 

There have been a number of studies of both the statistics and the psychology 

of the bookings process, with a variety of motivations. For example, Ridder et al 

(1994) examine the effect of a red card on the outcome of the match, and even suggest 

situations in which it might be advantageous to commit deliberate (unethical) fouls. 

The aim here is rather different and is motivated by the opportunity of spread betting, 

which is described using an example from this particular market in Section 1.3.2. 

The volumes of bets on bookings markets can be huge: in fact for some firms it 

is the most popular form of betting, so as a consequence there are strong financial 

incentives to both bookmakers and gamblers for models that can accurately estimate 

the probabilities of various outcomes of bookings markets and this is the underlying 

motivation for this study. 

Although spreads are quoted for hundreds of markets and for many sports, what 

makes the study of bookings markets appealing is the apparent difficulty in estimating 

the mean number in a given match. This difficulty is reflected in the prices offered 
by different spread betting companies who offer spreads independently of each other. 
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Although prices are generally driven by gambler behaviour, the opening, or initial 

spreads are quoted based on the spread companies' subjective probability of the mean 

bookings points for the match. While for most sports markets the opening spreads 

across bookmakers generally agree, for the booking markets, the opening prices are 

usually very different. In the Arsenal versus Manchester United example detailed in 

Section 1.3.2, the opening spread offered by one bookmaker was 30-34 but other firms 

opened at 20-24 and 36-40. This level of discrepancy in opening prices is not atypical. 

By developing a detailed statistical model, the aim is to estimate the distribution 

of the numbers of yellow and red cards in a given match, and in addition to gain an 

understanding of the bookings process. The fact that there is no existing literature 

on the development of such a model that the writer is aware of is likely to be due to 

lack of motivation: before the spread markets became popular, there was little desire 

to know such probabilities. 

4.2 UK Bookings data 

The data available include Premier League soccer matches since the start of the 

1994/1995 season. The available data vary in detail: for later matches the referee 

name is available, whereas for the early matches only the home and away red/yellow 

card numbers are recorded. The data is split into three parts. 

" Aug 1994- May 1997. Home/away red/yellow card numbers. (1222 matches) 

" Aug 1997-May 1999. Home/away red/yellow card numbers with referee names 
(760 matches). 

" Aug 1999-May 2002. Home/away red/yellow card numbers with referee names, 
and most spread betting prices (1140 matches). Table 4.1 gives the first five 

matches in this data set. 

Table 4.1: Five lines of the dataset 

referee date home 
team 

away 
team 

home 
score 

away 
score 

hm. 
yell. 

aw. 
yels. 

hm. 
reds 

aw. 
reds 

spread 

DGallagher 20010421 Arsenal Everton 4 1 0 2 0 1 37 
NBarry 20010421 Bradford Derby 2 0 0 2 0 1 41 
MDean 20010421 Chelsea Charlton 0 1 3 0 0 0 37 
GBarber 20010421 Ipswich Coventry 2 0 1 4 0 0 35 
GPoI 20010421 West Ham Leeds 0 2 5 2 0 1 48 
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The raw data for the second and third part of the data set are displayed in Figure 

4.1 which displays histograms of numbers of yellow and red cards. Figure 4.1 suggests 
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Figure 4.1: Histograms of yellow and red cards, with Poisson distribution lines overlaid. 

sides tend to collect more bookings when playing away from home. 

With the number of yellow cards being discrete and generally quite low, the Poisson 

distribution appears to be the most natural probability distribution to employ here. 

The overlaid lines on the plots in Figure 4.1 represent Poisson probabilities whose 

parameters are the overall means of the displayed data. While the overlaid lines do 

appear to depart slightly from the histogram, note that each match has a different 

expected number of yellows, so an exact fit of a Poisson model to the collated data 

over matches is not expected, even if the distribution of yellows in each match has a 

Poisson form. Hence it is assumed that yellow cards follow a Poisson distribution from 

now on. 

Concentrating initially on the second section of the data set, there is information 

on 29 teams and 34 referees, with most referees officiating a match approximately once 

every fortnight. Based on some initial thought, and simple exploration of the data, 

the following factors are worth consideration in any given match: 

" Fl the two teams' propensities to pick up bookings (hereafter termed the teams' 

dirtinesses) 
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" FZ the two teams' propensities to provoke the opposition into getting booked 

(hereafter termed the teams' provocations) 

" F3 the referee's propensity to give out cards (hereafter termed the referee's harsh- 

ness) 

9 F4 the score of the match 

" F5 the current climate. The expected booking rate for an average match will 

change through time, either abruptly or gradually, due to factors such as referees' 

guidelines, rule changes and state of the season. 

" F6 individual matches assume greater significance on some occasions, e. g. an 

important end-of-season relegation battle or local rivalries. 

" Other factors There are numerous other features that could also be important. 

For example, dependence between home yellows and away yellows, in that if one 

side collects many yellows, the general match temperature will rise and may pro- 

voke fouls from the opposing side. Also the weather, longer-term consequences of 

a large number of bookings (player suspensions) on individual players, individ- 

ual player rivalries or friction between certain individuals, crowd intimidation on 

players and referees, may, among other factors, all be influential on the bookings 

rate. 

In Sections 4.2.1-4.2.4, what are considered to be the main effects, namely factors 

F1-F6, are explored using empirical summaries of the data. 

4.2.1 F1-F3: team dirtiness, team provocation, and referee harshness 

During Premier League soccer seasons 1997/98 until 2001/02, Derby collected an aver- 

age of 2.242 bookings over 190 matches, with a bootstrap confidence interval of (2.050, 

2.434). Manchester United collected an average of 1.432 (1.244,1.620) in the same 

time period. It is well acknowledged that some teams have players who are more 

likely to collect bookings. What may be more surprising is that, for example, Leeds 

provoked on average 2.453 (2.222,2.684) bookings from their opponents, while dur- 

ing the same period, Southampton provoked only 1.489 (1.295,1.683) bookings. As 

for referees, G Barber booked on average 4.269 (3.881,4.657) players in each match, 

whereas the equivalent statistic for P Durkin is 2.832 (2.383,3.281). This suggests 

definite team and referee specific effects for factors F1-F3. It is interesting to note 
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that the dirty teams are not necessarily the most provocative as one might expect. For 

example, only two teams collected more bookings than Nottingham Forest during the 

1998/99 season, yet only one team attracted fewer bookings. In fact, for every booking 

Nottingham Forest provoked, they collected 1.79 themselves. Figure 4.2, which plots 

the average number of bookings sides attracted against those they provoked in the 

1998/1999 season, emphasises this lack of association. 
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Figure 4.2: Cards collected versus cards provoked, season 1998/1999 

4.2.2 F4: the score of the match 

Table 4.2: Average cards collected in all matches versus goal difference 

2.4 

goaa wnerence -a -4 -s -i -1 01234>5 
cards collected 1.5652 1.987 1.9074 1.9974 1.9725 1.8522 1.6419 1.3714 1.2222 1.1688 0.913 

Table 4.2 displays the average number of red or yellow cards collected by a side, 

compared to the difference in score of the match. There is little doubt that the worse 
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the result of the match is for a team, the more likely they are to collect bookings. 

4.2.3 F5: the climate 
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Figure 4.3: Moving average of number of yellow cards awarded in each match. The vertical 
green lines denote season breaks 

Figure 4.3 displays the moving average (block size 50) of the total number of cards 

given out for all matches since August 1994. It suggests the bookings market has 

underlying non-stationarity. Particularly noticeable is the trough in the global booking 

rate that occurred just before week 300. In fact, at around that time (January 2000) 

the FA issued instructions to all Premier League referees advising them to exercise 

more caution when issuing yellow and red cards. However, looking at the entire graph, 

it appears that the awarding of bookings is more `fashionable' at certain times than 

others. 

4.2.4 F6: match-specific factors 

Table 4.3: Bookings data for matches between known rivals 

team 1 team 2 number of average yellows average reds team 1 team 2 
times played against against average cards average cards 
each other each other each other in all matches in all matches 

Sunderland Middlesbrough 6 5.33 0.67 1.93 1.88 
Coventry Aston Villa 8 4.38 0.12 1.8 1.46 
Leicester Derby 10 5 0.2 1.45 2.18 
Tottenham Arsenal 10 4.9 0.3 1.66 1.73 
Liverpool Everton 10 4.2 0.5 1.44 1.94 

Table 4.3 displays information concerning the numbers of bookings awarded during 

matches between various pairs of teams who are recognised as being strong rivals. 
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Although the information is based on quite a small number of matches, and there are 

other factors which determine the bookings rate in a match, it does appear that there 

may be a genuine effect from these rivalries. 
On a similar theme, it could be considered whether there is any effect from the 

various pressures that some teams are under towards the end of a season. These 

pressures could include the possibility of winning the Premier League, qualifying for 

one of the European tournaments (UEFA Cup or Champions League), or avoiding 

relegation. 

4.3 Construction of a model for yellow and red cards 

In Section 3.1 a simple sports model was specified, which uses only the two teams 

involved and a home effect as relevant predictors. This model is the template upon 

which the model for yellow and red cards will be developed. For this application, 

the attacking and defensive capabilities can be substituted by teams' dirtiness and 

provocation levels to model booking rates. However, as discussed in Section 4.2, now 
there are other first-order effects that need to be included. 

4.3.1 Basic Extensions 

The referees can be treated in the same way that the teams' dirtiness and provocation 
factors are. So a harshness parameter is associated with each referee and the individual 

referee harshness coefficients are added to the parameter space. For this study referee 
data is only available since the start of the 1997/1998 season, hence likelihood max- 
imisation, and prediction of scores, will only be performed over matches which have 

taken place since then. However, data from seasons 1994-1997 is included elsewhere in 

the modelling process. 
Note that there are four, not two as in Equation 3.1.1, data points for each match k, 

those being home and away yellows (HYk, AYk) and home and away reds (HRk, ARk). 

Of ultimate interest in this study is the joint distribution of (HYk, AYk, HRk, ARk). 

However, it will be assumed that the home and away bookings rates are independent, 

so the task reduces to finding the joint distributions (HYk, HRk) = (HRkI HYk) (HYk) 

and (AYk, ARk) = (ARkIAYk)(AYk). This will be attempted in Section 4.3.7. For 

Sections 4.3.2 to 4.3.6 it is the expected number of yellow cards that is examined 

unless otherwise indicated. The validity of the assumption of independent home and 
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away booking rates will be discussed in Section 4.5.2. 

4.3.2 Accounting for the result of the match 

The obvious problem with trying to include the result of a match in the model is that 

the result of the match is not known at the time the prediction needs to be made. 

An attempt can be made however to predict which matches are more likely to result 

in a larger difference in score. This can be achieved quite easily by using the model 

specified by Equation 3.1.1 and implementing the MLE procedure described in Chapter 

3 in order to obtain parameter estimates for teams' goal-scoring abilities. This is in fact 

the original application for which Dixon and Coles developed this procedure. Table 4.4 

gives both the attacking and defensive parameters for all teams just after the matches 

played on 11/05/2002. Table 4.5 provides predictions for the matches which took place 

on 11/05/2002. No adjustments are made for home/away score dependence or match 

incentives, since only approximate estimates of abilities are required. 

Table 4.4: Goal-scoring offensive (ä) and defensive (ß) team ability estimates, May 
2002 

Team & rank rank 
Arsenal 0.2875 2 -0.2853 1 
Aston Villa -0.0602 12 -0.1023 6 
Barnsley -0.1061 14 0.2382 26 
Blackburn -0.0058 7 0.0121 9 
Bolton -0.0804 13 0.1574 22 
Bradford -0.3022 29 0.2959 28 
Charlton -0.1424 18 0.1003 19 
Chelsea 0.2058 4 -0.2225 3 
Coventry -0.1467 19 0.0742 16 
Crystal Palace -0.1081 15 0.1734 23 
Derby -0.1897 25 0.1029 20 
Everton -0.0587 11 0.0673 14 
Fulham -0.2336 26 -0.0465 7 
Ipswich -0.0483 10 0.0771 17 
Leeds 0.1412 5 -0.1659 5 
Leicester -0.161 21 0.0653 13 
Liverpool 0.2087 3 -0.2606 2 
Man City -0.1806 24 0.23 25 
Man United 0.4852 1 -0.1888 4 
Middlesbrough -0.1629 22 -0.0019 8 
Newcastle 0.1104 6 0.0202 10 
Nottm Forest -0.2342 27 0.2486 27 
Sheffield Weds -0.1108 16 0.1329 21 
Southampton -0.1177 17 0.0874 18 
Sunderland -0.167 23 0.022 11 
Tottenham -0.0066 8 0.04 12 
Watford -0.2482 28 0.3398 29 
West Ham -0.013 9 0.0733 15 
Wimbledon -0.1469 20 0.1832 24 
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Table 4.5: Score predictions for 11/5/2002 
Home 
team 

Away 
team 

Home 
predicted 
goals 

Away 
predicted 
goals 

Arsenal Everton 2.1375 0.7793 
Blackburn Fulham 1.4241 0.874 
Chelsea Aston Villa 1.6644 0.822 
Leeds Middlesbrough 1.7251 0.7851 
Leicester Tottenham 1.3297 1.1566 
Liverpool Ipswich 1.9971 0.801 
Man United Charlton 2.6952 0.7832 
Southampton Newcastle 1.3614 1.3293 
Sunderland Derby 1.4077 0.9223 
West Ham Bolton 1.7288 1.0973 

The next step is to include the score predictions generated in this way in the 

predictions for yellow cards. Figure 4.4 plots a moving average of predicted score 

difference versus collected yellow cards, for both the home side and the away side. 

It appears that for the home side at least, if a side is expected to win, then their 

average number of yellow cards decreases. For the away side, the situation is less clear. 

The approach taken is to include separate home and away parameters to reflect the 

likelihood of a team experiencing a bad result in a match. 

Home side Away side 
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Figure 4.4: Predicted score advantage versus yellows collected 

4.3.3 Modelling the climate 

By examining Figure 4.3 it appears that generally yellow cards are awarded most 
frequently at the start of a season, then tail off gradually until the end of the season. 

It is important to acknowledge this non-stationarity. For example, if a side collects a 
large number of yellow cards in a match shortly after the start of the second season, the 
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model should acknowledge the generally high booking rate during that period when 

evaluating the parameters for that team in order to avoid unnecessary bias. 

There are two issues which need to be resolved here: 

" How is the climate estimated for matches which have taken place already, in 

order to minimise bias in the maximum likelihood estimation of the other model 

parameters? 

" How is an estimate provided for the climate of a future match for which a pre- 

diction of the number of yellow cards is required? 

To resolve the first issue a smooth curve is fitted which reflects the trends observed 

in Figure 4.3. To do this, Epanechnikov's kernel is used, with smoothing parameter 

set to 5 weeks (see Section 4.7.2 in the additional comments section for an explanation 

of this technique and the definition of Epanechnikov's kernel). 

Figure 4.5 displays the curve obtained in this way at the final time-point in the 

data set, plotted over the moving average of observed yellow cards. Note that the 

procedure is modified directly after the trough in bookings rates around week 120, 

as explained in Section 4.2.3. In this case, kernel smoothing is applied only to data 

observed after the time-point when the trough took place. 
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Figure 4.5: Moving average of observed yellows (_) and estimated climate Vertical 
lines denote the start of a football season. 

Issue 2 is resolved as follows: in normal circumstances the previous match's esti- 

mated climate appears to be a sensible prediction of the next fixture's climate. The 

exception to this is at the start of the season when, on inspection of Figure 4.5, a 

rise in the climate is likely to occur. The reasons for this are not entirely understood 
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to the writer (possibly new guidelines for certain offenses are issued at the start of 

most seasons). However, to accommodate this effect, the following simple procedure 

is employed: 

Let S be the number of seasons in the data set. Let ICI, ..., ICs be the initial 

climate of each season and FC1i..., FCS be the final climate of each season, as displayed 

in Figure 4.5. If a prediction E[ICC] of the climate at the start of season i is required 

=i-l(IC - FC ) 
E[IC, ] = FC; 

-1 + 
ýj=2 

-1 i-2 

So the expected climate at the start of a season is the climate at the end of the previous 

season, plus the mean change in climate from the end of one season to the start of the 

next, for all seasons observed until then. This value is carried through the first ten 

time-points in each season, to remove the instability that arises from having only a 

small number of matches over which to apply kernel smoothing. 

Figure 4.6 plots the predicted climate, with the start-of-season adjustment de- 

scribed above. It incorrectly predicts a jump in the climate at the start of the fourth 

season, but generally seems to predict the climate adequately. Note that seasons 94-02 

are employed to obtain the data for the season-jump, but only the climate for seasons 

97-02 is plotted. 

Predicted climate for yellow cards 

e 

N 

0 30 100 150 200 250 300 

wnk numb. r 

Figure 4.6: Plot of moving average of observed yellows (-) along with predicted climate 
(-) 

Finally, the discussion above is concerned with the climate of yellow cards. It is also 

necessary to repeat the methodology in order to obtain an estimate for the climate of 

red cards, since the awarding of red cards is also subject to various external pressures. 
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Figure 4.7 displays the moving average, fitted climate and predicted climate for red 

cards. Again a bandwidth of 5 weeks appears to provide a satisfactory fit of the curve 

to the observed data. 

0 

ý 
ý, 

ö 

Predicted climate for red cards 

0 50 100 150 200 250 300 

week number 

Figure 4.7: Plot of moving average of observed red cards (-) along with smoothed climate 
(-) and predicted climate (-) 

4.3.4 Modelling rivalries and incentives 

The final first order effects considered are those of team-to-team rivalries and specific 

match incentives. Once the levels of rivalry and incentives have been determined, their 

inclusion as factors in the model is straightforward, although it must be done at a 

later stage of the modelling process, for reasons which will be discussed shortly. In this 

case, the level of rivalries that exist between specific teams is determined empirically 

following consultation with Tony Bloom, who has researched thoroughly the soccer 

clubs' official magazines produced for supporters, collected prior to the first matches 

of the data set, in order to determine the traditional rivalries. Table 4.6 displays some 

of the levels of rivalry employed. Note that rivalries are not entirely symmetric: for 

example, Leeds are a strong rival of Bradford, but not vice versa. This reflects the fact 

that it is believed that a Leeds - Bradford game is of greater significance to Bradford 

than Leeds. 

Meanwhile, a match is deemed to have a specific incentive attached to it if the 

result of the match may have an abnormally significant effect on the future of the club. 
Specifically, a team has an incentive if the match result may affect to a large extent the 

probability that the team wins the Premier League or is relegated from the Premier 

League. In order to calculate the probabilities of these two events, predictions for the 
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Table 4.6: Level of rivalry between teams 
Team Strong rivalries Mild rivalries 
Coventry Aston Villa Leicester, Derby 
Everton Liverpool None 
Leicester None Coventry, Aston Villa, Derby 
Leeds Man United Barnsley, Chelsea, Bradford 
Bradford Leeds None 
Man City Man United None 

numbers of goals in the remaining matches are necessary. The team goal-scoring and 

goal-conceding parameter estimates obtained from the modelling process described in 

Section 4.3.2 are used for this. With these estimates, outcomes are simulated of the 

final league table. The probability that a team is relegated is calculated to be the 

proportion of these simulated seasons that result in the team's relegation. The prob- 

ability that a team wins the Premier League is similarly defined. Table 4.7 lists the 

final matches of the 2001/2002 season along with these probabilities before the matches 

take place. The probabilities of qualifying for two lucrative soccer tournaments, the 

UEFA Cup and the Champions League, are not considered due to the rather compli- 

cated rules which determine the chance of either event taking place, although this is a 

possible topic for further research. 

Table 4.7: Title and relegation probabilities at end of 2001/2002 season. The proba- 
bilities apply before the listed match takes place. 

date home P(win) P(releg. ) away P(win) P(releg. ) score 
20020427 Aston Villa 0 0 Southampton 0 0.002 2-1 
20020427 Charlton 0 0.002 Sunderland 0 0.456 2-2 
20020427 Derby 0 1 Leeds 0 0 0-1 
20020427 Fulham 0 0 Leicester 0 1 0-0 
20020427 Ipswich 0 0.395 Man United 0.124 0 0-1 
20020427 Middlesbrough 0 0 Chelsea 0 0 0-2 
20020427 Newcastle 0 0 West Ham 0 0 3-1 
20020427 Tottenham 0 0 Liverpool 0.071 0 1-0 
20020428 Everton 0 0 Blackburn 0 0 1-2 
20020429 Bolton 0 0 Arsenal 0.776 0 0-2 
20020508 Liverpool 0 0 Blackburn 0 0 4-3 
20020508 Man United 0.122 0 Arsenal 0.878 0 0-1 
20020511 Arsenal 1 0 Everton 0 0 4-3 
20020511 Blackburn 0 0 Fulham 0 0 3-0 
20020511 Chelsea 0 0 Aston Villa 0 0 1-3 
20020511 Leeds 0 0 Middlesbrough 0 0 1-0 
20020511 Leicester 0 1 Tottenham 0 0 2-1 
20020511 Liverpool 0 0 Ipswich 0 0.937 5-0 
20020511 Man United 0 0 Charlton 0 0 0-0 
20020511 Southampton 0 0 Newcastle 0 0 3-1 
20020511 Sunderland 0 0.063 Derby 0 1 1-1 
20020511 West Ham 0 0 Bolton 0 0 2-1 
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In order to assess the effects of incentives and rivalries as accurately as possible, 

some realistic match home and away yellow card predictions are needed. This is 

because in order to detect if these factors affect booking rates, it is necessary to compare 

a set of predictions for yellow cards which take account of these factors with a set of 

reasonably reliable predictions that do not. To obtain a set of predictions of the second 

type, a model incorporating factors F1-F5 as outlined in Section 4.2 is fitted. 

4.3.5 Model construction from factors F1-F5 

By adapting the model specified in Section 3.1, at time t, the expected number of 
home and away yellow cards (HYk and AYk) for match k between teams i(k) and j(k), 

refereed by official r(k) are: 

E[HYk] = CYk *3* exp(µh + ai(k) + ßß(k) +7r(k) + sh *A k) 

E[AYk] = CYk * (1 - ö) * exp(pa + as(k) + ßi(k) +7r(k) + sa * (-, 6k)) (4.3.1) 

where 

" CYk represents the estimated yellow cards climate at the time match k takes 

place, as displayed in Figure 4.5. 

"0<6<1 represents the proportion of total yellow cards that are collected by 
home sides 

" as(k), as(k) are team i(k) and j(k)'s dirtiness parameters 

" ß; (k), ßß(k) are team i(k) and j(k)'s provocation parameters 

" 7r(k) is referee r(k)'s harshness parameter 

"Ak= E[HSCk] - E[ASCk] where E[HSCk], E[ASCk] are the home and away 

predicted scores (estimated using the estimates from Section 4.3.2) 

" sh and sa are the home and away coefficients for the effect of home and away 

predicted superiority. 

"Ih and p are intercepts. 

Note that CYk is not a parameter to be estimated in the likelihood maximisation, 

since it has been separately determined in Section 4.3.3. It should also be noted 
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that the time down-weighting, prior tightness and seasonal truncation parameters, as 

defined in Sections 3.1,3.2.1 and 3.2.4 and referred to as external parameters, are as 

yet undetermined. To determine these, several sets of their values are fixed and for 

each set, the entire set of internal parameters (the parameters included in Equation 

4.3.1) are estimated at each time-point. They are then used to find predictions for 

the numbers of yellow cards given and the resulting predictive likelihood statistic is 

monitored. Table 4.8 displays the predictive likelihoods obtained in this way. The 

optimal value is highlighted in red and it appears that (0.02,0.2,20) is close to the 

optimal values for the time down-weighting, prior tightness and seasonal truncation 

parameters respectively. 

Table 4.8: Predictive likelihood of yellow cards model obtained for different choices of 
external parameters 

Truncation w= 5 weeks: 
Prior variance raß of offensive and defensive estimates 
0.05 0.1 0.2 0.5 

0.001 -5908.616 -5866.486 -5858.54 -5894.354 
0.005 -5911.713 -5864.679 -5852.256 -5887.95 

Weight; 0.01 -5916.128 -5864.963 -5846.599 -5882.129 
0.02 -5924.553 -5871.035 -5841.957 -5877.462 
0.05 -5941.492 -5896.95 -5852.989 -5891.999 

Truncation w= 10 weeks: 
Prior variance rß, ß of offensive and defensive estimates 
0.05 0.1 0.2 0.5 

0.001 -5908.656 -5866.419 -5858.394 -5894.212 
0.005 -5911.986 -5864.538 -5851.674 -5887.377 

Weight S 0.01 -5916.717 -5865.076 -5845.814 -5881.361 
0.02 -5925.566 -5872.059 -5841.579 -5877.161 
0.05 -5942.824 -5899.437 -5854.699 -5894.17 

Thuncation w= 20 weeks: 
Prior variance r. 0 of offensive and defensive estimates 
0.05 0.1 0.2 0.5 

0.001 -5908.761 -5866.232 -5857.992 -5893.817 
0.005 -5912.715 -5864.196 -5850.117 -5885.842 

Weight c 0.01 -5918.25 -5865.535 -5843.871 -5879.461 
0.02 -5928.067 -5874.945 -5841.084 -5876.981 
0.05 -5946.164 -5905.606 -5860.328 -5902.203 

? huncation w= 30 weeks: 
Prior variance raß of offensive and defensive estimates 
0.05 0.1 0.2 0.5 

0.001 -5908.725 -5866.309 -5858.153 -5893.975 
0.005 -5912.449 -5864.339 -5850.736 -5886.456 

Weight t 0.01 -5917.691 -5865.367 -5844.635 -5880.213 
0.02 -5927.174 -5873.874 -5841.271 -5877.038 0.05 -5944.897 -5903.322 -5858.008 -5898.61 
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4.3.6 Modelling Incentives 

By obtaining MLEs for the parameters in the model specified by Equation 4.3.1 (sub- 

ject to near-optimal values for the time down-weighting, prior tightness and seasonal 

truncation parameters), predictions can be generated that are necessary for the final 

stage of the modelling process. This is to test the effect of specific match incentives 

and rivalries on the bookings rate. The effect of the incentives and rivalries is examined 

by fitting several generalised linear models. 

Before constructing these models, the following variables are defined: 

a1 
if match k is between two teams who are strong rivals 

rk = 
0 otherwise 

m1 
if match k is between two teams who are mild rivals 

rk = 
0 otherwise 

irh _1 
if home side of match k is in danger of relegation 

0 otherwise 

iwh 
1 if the home side of match k can win Premier League 

k 
0 otherwise 

(ika, ik a) are defined similarly for the away side, while 

ikf 
1 if both sides of match k are in danger of relegation 

= 
0 otherwise 

w1 
if in match k both sides can win Premier League 

/C 

10 

otherwise 

Incidentally, a team is deemed to be facing relegation if their probability of being 

relegated lies between 0.05 and 0.95, to ensure that teams whose predicament is efec- 

tively sealed are not classified as having an incentive. The same principal is applied to 

the teams who can win the Premier League. Also, in situations when rivals are also, 

for example, both fighting against relegation, then the rivalry indicator is set to zero, 

since it is assumed that the threat of relegation is the more dominant effect in the 

match, and that the effects of these two factors are not additive (data are too sparse 

to test this belief). Table 4.9 displays the relevant results. 
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Table 4.9: Investigating effect of derbies and incentives. hk and c% represent the 
predictions for home and away yellow cards from the model constructed from factors 
1-4 

Hw - hw N rw +rk ra,: (0.2,0.02) rk : (0.23,0.01) 
HA, -1, rl, +rk +ik" rw: (0.2,0.02) rw : (0.23,0.01) ikh : (0,0.97) 
Hy - hk rk +rk +iw h rk: (0.2,0.02) rw : (0.23,0.01) iw ý: (-0.01,0.88) 
HA, - hr r,, +r' +i', rw: (0.2,0.02) r' : (0.23,0.01) iw: (-0.01,0.87) 
H,, - hk rw +rk +iti rw: (0.21,0.01) r'h: (0.24,0.01) iw : (0.2,0.03) 
Aa, - äh - rk +rm rk: (0.25,0) rw : (0.05,0.52) 
A,, - äi, - rk +i, " rA,: (0.25,0) ik": (0.01,0.84) 
A, y - dw - r, b . 1-iw ° rw: (0.25,0) iw °: (0.02,0.67) 
Aa, - äk N rw +ik rk: (0.25,0) i,: (-0.01,0.82) 
At, - äk N r', +ik rk: (0.26,0) i': (0.16,0.04) 

Some of the results in Table 4.9 are a little surprising. For example, it appears 

that the threat of relegation has no effect on booking rates, even if both teams in the 

match are relegation rivals. Similarly the booking rate for a match involving a side 

in contention for winning the Premier League only rises if both sides participating are 

title contenders. The effect of inter-team rivalries is generally as expected, although it 

is interesting that the mild rivalries affect home, but not away, booking rates. It is for 

this reason that the term for the mild relegation indicator is not included in the final 

four models tested in table 4.9. Thus the only alterations needed in the model are the 

additions of parameters that allow the expected number of yellow cards to increase 

in matches between sides who are both in contention to win the Premier League and 

matches where the two sides are traditional rivals. If this rivalry is mild, only the home 

side's expected number of yellow cards is adjusted. 

Having displayed the necessary extensions of the Dixon-Coles model in Sections 

4.3.1 to 4.3.4 it is now possible to state the specification of the final model for the 

mean yellow card rates. For match k between home team i(k), away team j(k) and 

refereed by official r(k) the expected number of home and away yellow cards are: 

E[HYk] = CYk *&* exp(ph + a, (k) + ßj(k) +Yr(k) 

+sh*Ak+rk*Jed+rk *Am+ik *v) 

E[AYk] = CYk * (1 - b) * exp(Pa + aj(k) + ß1(k) +'Yr(k) 

+3a * (-tk) + rk * as + ik * v) (4.3.2) 

where, in addition to the parameters described in Section 4.3.5 
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" A, is the parameter for the effect of playing against a strong rival 

" \�a is the parameter for the effect of playing against a mild rival 

"v is the parameter for the effect of both teams being rivals for overall victory in 

the Premier League 

4.3.7 Model for red cards 

Finally, a model for red cards conditional on the number of yellow cards is required. 

Denoting the number of home and away red cards by HRk and ARk and the fitted cli- 

mate for red cards displayed in Figure 4.7 by CRk, a straightforward model, assuming 

a Poisson distribution in the likelihood, is: 

E[HRklHYk = hyk] = CRk * b,. * exp(µh + eh * hyk) 

E[ARkI AYk = ayk] = CRk * (1 - b,. ) * exp(Ma + Qa * ayk) (4.3.3) 

where home effect, intercept and slope parameters (Jr, µh, µä, Qh, ea) are to be esti- 

mated. 

Note that the parameters included in Equation 4.3.2 are not all estimated within 

a single likelihood maximisation. This is due to a feature of the parameter estimation 

process that is described in detail in Section 3.2.3. Essentially, it is desirable that 

A� A�j and v are treated as parameters that are constant throughout time. However, 

the parameter estimation procedure for allowing team parameters to be based on more 

recent results also bases its estimates of the and v parameters on more recent 

matches unless modifications to the parameter estimation process are made. So in 

practice parameter estimates are obtained using a procedure similar to that outlined 

in Section 3.2.3. Applying it to this example the procedure is as follows: 

1. Find maximum likelihood estimates of the parameters contained in Equation 

4.3.1. 

2. Fit the generalised linear model described by Equation 4.3.2 via Poisson regres- 

sion, with the a, ß, ry parameters treated as constants. 
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3. Again perform maximum likelihood estimation of the model described in Equa- 

tion 4.3.2 but where the µh, µß, ö, sh, 8a, a� Am and v parameters are treated as 

constants, and the a, #,, y parameters are re-evaluated. 

4. Perform maximum likelihood estimation of the red cards model described in 

Equation 4.3.3. 

By repeating this procedure at each time-point, estimates for each parameter are 

obtained. 

4.4 Results from the models 

4.4.1 Parameter estimates 

Tables 4.10 and 4.11 display the estimates for team and referee parameters, obtained 

at time-point 256 (by which time 124 weeks have elapsed in the data set) and at time- 

point 512 (when 249 weeks have elapsed), the final time-point in the data set at the 

time of writing. Note that Ipswich, Manchester City and Fulham had not played in 

the Premier League by time-point 256, hence do not have any estimates here. Figure 

4.8 plots the team and referee estimates for selected teams and referees over time. The 

period where Blackburn's estimate is almost flat corresponds to the two year period 

when Blackburn were not playing in the Premier League due to being relegated at the 

end of the 1998/99 soccer season. The curve is not totally flat though, because although 

Blackburn do not participate in any matches during this period, their opponents and 

referees do. As a result, the parameter estimates for Blackburn are slightly re-evaluated 

based on data about opponents and referees that the parameter estimation procedure 

subsequently incorporates. 

4.4.2 Model evaluation 

The predictive ability of the model can be assessed via its predictive likelihood statistic 

as defined in Section 3.1. Table 4.12 displays this statistic, plus predictive likelihood 

statistics for some simpler models, in order to gain a clearer picture of the model's 

accuracy. Note that the joint likelihood of the number of (home yellow, away yel- 
low, home red, away red) cards is calculated rather than the points make-up, which 
has a rather less tractable distribution. Model 1 predicts that total bookings in any 

match will be the mean total bookings observed in all matches prior to the game, in 
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Table 4.10: Team dirtiness (ä) and provocation (ý) parameter estimates, with ranking 
displayed in brackets 

Team ä, t=256 d, t=512 ß, t=256 ß, t=512 
Arsenal 0.056 (11) 0.124 (7) 0.175 (3 0.145 (4) 
Aston Villa -0.008 (16) -0.078 (22) -0.025 (16) 0.021 (13) 
Barnsley 0.039 (12) 0.016 (16) 0.005 (15) 0.001 (17) 
Blackburn 0.099 (6) 0.029 (14) 0.065 (10) 0.086 (8) 
Bolton 0.031 (13) -0.012 (18) 0.048 (13) -0.077 (23) 
Bradford -0.15 (23) -0.084 (23) -0.071 (22) -0.119 (26) 
Charlton -0.093 (20) -0.046 (20) 0.087 (8) 0.063 (11) 
Chelsea 0.192 (2) 0.162 (4) 0.073 (9) -0.056 (22) 
Coventry -0.001 (15) 0.075 (8) -0.026 (17) 0.007 (15) 
Crystal Palace -0.034 (19) -0.008 (17) 0.052 (11) 0.02 (14) 
Derby 0.197 (1) 0.229 (2) -0.049 (18) -0.043 (20) 
Everton 0.12 (5) 0.134 (6) 0.175 (4) 0.09 (6) 
Fulham - -0.028 (19) - 0.233 (2) 
Ipswich - -0.286 (29) - -0.091 (25) 
Leeds 0.121 (4) 0.236 (1) 0.22 (1) 0.298 (1) 
Leicester -0.254 (25) 0.02 (15) 0.05 (12) 0.092 (5) 
Liverpool -0.013 (18) -0.093 (24) -0.062 (20) -0.027 (19) 
Man City - 0.04 (12) - 0.06 (12) 
Man United -0.144 (22) -0.072 (21) -0.155 (24) -0.164 (27) 
Middlesbrough 0.08 (9) 0.055 (10) 0.098 (7) 0.082 (9) 
Newcastle -0.131 (21) -0.178 (28) 0.119 (6) 0.068 (10) 
Nottm Forest 0.093 (7) 0.071 (9) -0.147 (23) -0.078 (24) 
Sheffield Weds -0.205 (24) -0.17 (27) -0.26 (25) -0.205 (28) 
Southampton 0.01 (14) -0.157 (26) 0.008 (14) -0.045 (21) 
Sunderland 0.185 (3) 0.163 (3) 0.123 (5) 0.162 (3) 
Tottenham 0.084 (8) 0.034 (13) 0.207 (2) 0.006 (16) 
Watford -0.01 (17) 0.046 (11) -0.052 (19) -0.026 (18) 
West Ham 0.078 (10) 0.142 (5) -0.063 (21) 0.088 (7) 
Wimbledon -0.261 (26) -0.134 (25) -0.515 (26) -0.36 (29) 

other words that the booking rate in a match is not dependent on the referee, the 

teams playing or the climate and can best be predicted by the overall mean number 

of bookings for all matches. Model 2 is more sophisticated, where for each match 

the home prediction is a combination of the mean number of yellows the home team 

has collected, the mean number of yellows the away team has provoked and the mean 

number of cards the referee has awarded in previous matches (all weighted according 

to how recently these matches occurred). The away prediction is calculated similarly. 

Also, the prevailing climate for bookings is accommodated. The exact method used 

is outlined in Section 4.7.1 of the additional comments. This model has been devised 

since it does not employ any advanced statistical methods, and might well be an ap- 

proach a non-statistician, with access to the relevant data, would use. Model 3 is 

the model incorporating factors F1 to F5 described in Section 4.3, hence does not 

consider rivalries or incentives. Model 4 is similar to Model 3 but with rivalries and 

incentives included, hence is the most advanced model constructed in this chapter and 
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Table 4.11: Referee parameter estimates at timepoints 256 and 512. The number in 
brackets is their ranking out of all the referees who had officiated at that time-point 

Referee 1t=256 5', t=512 
P. Alcock -0.063 (20) -0.037 (25) 
G. Ashby 0.007 (13) 0.006 (19) 
G. Barber 0.148 (2) 0.089 (9) 
N. Barry 0.037 (9) 0.003 (20) 
S. Bennett 0.092 (6) 0.057 (12) 
M. Bodenham 0.004 (14) 0.001 (21) 
K. Burge -0.217 (25) -0.095 (29) 
M. Dean - 0.096 (8) 
P. Dowd - 0.106 (4) 
S. Dunn -0.022 (17) -0.05 (26) 
P. Durkin -0.197 (24) -0.254 (34) 
A. Durso 0.031 (10) 0.049 (13) 
D. Elleray -0.122 (22) -0.148 (32) 
C. Foy - 0.128 (3) 
D. Gallagher -0.176 (23) -0.008 (23) 
M. Halsey -0.024 (18) -0.174 (33) 
R. Harris 0.119 (4) 0.078 (10) 
P. Jones -0.054 (19) 0.001 (22) 
B. Knight 0.116 (5) 0.105 (5) 
S. Lodge 0.031 (11) 0.01 (18) 
M. Messias - 0.015 (17) 
G. Poll 0.086 (7) -0.069 (27) 
D. Pugh - 0.022 (16) 
M. Reed 0.151 (1) 0.101 (7) 
U. Rennie 0.048 (8) -0.126 (31) 
M. Riley 0.004 (15) 0.166 (1) 
R. Styles - 0.139 (2) 
P. Taylor - -0.015 (24) 
A. Wiley -0.021 (16) -0.075 (28) 
C. Wilkes - 0.103 (6) 
A. Wilkie 0.024 (12) 0.027 (15) 
G. Willard 0.143 (3) 0.065 (11) 
J. Winter -0.064 (21) -0.124 (30) 
E. Wolstenholme - 0.048 (14) 

Table 4.12: Predictive likelihood for different models 
Model Likelihood 

statistic 
1 -5888.927 
2 -5720.314 
3 -5680.083 
4 -5670.205 

is described by Equation 4.3.2. 

Since a higher predictive likelihood statistic is desirable, it is reassuring to note that 

the most advanced model is the one with overall the most accurate predictions. It is un- 
fortunately not possible to produce equivalent figures for the bookmaker's predictions, 

since they provide only a prediction for the total number of points accumulated in the 

match, where 10 points are awarded for each yellow card and 25 points are awarded 
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Figure 4.8: Plots of team dirtiness and provocation estimates over time, for Blackburn (_), 
Newcastle (_) and Man United (_). Also plots of referee harshness estimate for D. Elleray 
(_), P. Durkin (. ) and G. Barber (_) 

for each red card (as outlined in Section 1.3.2). These values cannot be converted into 

Poisson-distributed predictions for home and away yellow and red cards. 

4.4.3 Betting strategy and success 

Using the predictions produced from the most advanced model it is of interest to for- 

mulate a betting strategy and observe the returns it would generate. Bets should be 

placed when a discrepancy arises between the model predictions and the spread pro- 

vided by a bookmaker. The model predictions for individual yellow and red cards can 

easily be converted into predictions for points make-ups by summing the probabilities 

of all the permutations of cards which result in each possible make-up. Figure 4.9 plots 

the quoted spread prices against the model predictions of points make-ups. While there 

is broad agreement, it is the points away from the diagonal which represent matches 

on which we should be most inclined to bet. 
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Figure 4.9: Plot of boolanaker predictions versus model predictions 

Let (MBI, ..., 
MBN) be the predictions of points make-ups (as defined in Section 

1.3.2) generated by the model for matches (1, ..., N), and (äB1, ..., SBN) be the quoted 

spreads for the same matches. Define K to be a cut-off value where if, for match i, 

MB; > SB; +K+2 

then a bet is placed on high bookings and if 

MBi <SB; -K-2 

then a bet is placed on low bookings. The 2 point addition or subtraction appears 

because the bookmaker offers 4-point spread intervals, rather than a single number, 

in order to make its profit. The profit or loss made by following this betting strategy, 

for different values of K, is considered. Figure 4.10 plots annual returns, in points, for 

various values of K, for the 99/00,00/01 and 01/02 seasons. 
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Figure 4.10: Plot of annual profit against increasing values of cut-off. The dotted lines 
represent 95% bootstrap confidence intervals 
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The observed return curves axe somewhat bizarre, since it seems that even by 

betting on matches with a negative cut-off, hence negative expected return, one still 

makes a profit in all seasons. The 99/00 return curve must be regarded with some 

skepticism since it was during the middle of this season that the dramatic drop in 

booking rates highlighted in Section 4.2.3 occurred. In reality there was considerable 

uncertainty concerning the behaviour of referees for many weeks subsequent to this 

drop. Therefore many of the winning bets theoretically placed during the 99/00 season 

and included in the 99/00 return curve could not have been placed with any confidence. 

Note that the returns generated when the expected return is negative do not corre- 

spond to "random betting", since this strategy still excludes what the model considers 

to be especially unattractive bets even if the cut-off value K<0. A random betting 

strategy does not do this. Interestingly, the sum of the spread sell points for the 00/01 

and 01/02 seasons was 33844, while the total points make-ups for the same matches 

was 33320, meaning one would have achieved a profit of 524 points by selling every 

match. 
The strategy employed in Figure 4.10 is rather naive since bets with equal expected 

return but different variances are treated equally whereas the bets with lower variance 

are more attractive to many gamblers. For example, consider the two matches detailed 

in Table 4.13. According to the model predictions, the bookings total should be sold 
in both matches and both matches have similar expected return. The difference in the 

variance of the return according to the model is displayed in Figure 4.11. 

Table 4.13: Data for two matches in data set with equal moan returns 
Date Home Away Spread Model Expected Variance 

team team prediction return of return 
20000514 Sheffield Weds Leicester 22-26 17.88 4.12 236.54 
20000826 Everton Derby 52-56 47.92 4.08 639.66 

" For the first match, the maximum possible win is 22 points and there is a 19% 

chance of this occurring. The probability of losing 50 points or more is 0.5%. 

. For the second match, there is a 32% chance of winning 22 points or more and 

a 1% chance of winning a maximum of 52 points. The probability of losing 50 

points or more is 3%. 

Many gamblers would consider minimising the probability of financial ruin to be a 
key criteria when selecting a staking plan so would place more of their assets on the 
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Figure 4.11: Density functions of returns on two bets with equal expected return but different 

variances 

first match. 
There is another more subtle consideration concerning the variance of the expected 

profit of each bet. So far, the variance of the parameter estimates has been used 

only in Section 4.3.6 in order to evaluate the significance of extra covariates (including 

indicator variables concerning the effect of historical rivalries or match incentives), 

with regard to assessing if they are worthwhile inclusions in a model. However, if a 

betting strategy should consider the total variance of the expected make-up, then in 

addition to the variance of the data given the conditional mean specified by the model, 

it may be worth considering the model within a Bayesian context and including also 

the variance of the parameter estimates that are present in the conditional mean for 

a given match. For example, the parameters employed in the prediction for a match 

involving a newly promoted team or a new referee are subject to more uncertainty than 

the parameters for a match involving teams and a referee that have been observed in 

many matches. Calculating the total variance of estimates of all parameters involved 

in the prediction of a match score is computationally awkward, but may be useful for 

more sophisticated betting strategies. 

4.5 Possible improvements to the model 

4.5.1 Hierarchical modelling using foul rates 

One match statistic to which the bookings rate might well be related is the fouling 

rate. In particular, it is plausible that if the number of fouls in a particular match 
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was known, the prediction of the number of bookings would be influenced. Define 

HFk, AFk to be the number of fouls by the home and away sides in match k and 

HYk, AYk to be the number of yellow cards. A multivariate model can be formulated 

that suggests a distribution for the number of fouls and from that a distribution for 

the number of yellows can be deduced. 

One possible model could be 

HFkI®h N Pois(9i(e h)) gi : R: -+ t+ 

AFkI6 'N Pois(gl(9 4)) 

HYkI ® h, hfk - Bin(hff, 92(4 , 
)) 92 : R: -+ 2+ 

AYkI ® ä, afk N Bin(afk, g2(6 ä)) 

where 0F represents a set of parameters which may determine the foul rate, such as the 

teams involved, and ®'l' represents a set of parameters which determine the proportion 

of fouls which convert to yellow cards. These may also be team-specific. An approach 

similar to this is carried out on NFL match scores in the next chapter. 

4.5.2 Dependence of home and away bookings 

The assumption made throughout this chapter that the booking rates of the home 

and away sides are independent of each other simplifies the model but it does seem 

dubious. For example, if a side collects five bookings against a side which collects none, 

that appears to be a `dirtier' performance than if the opposition had also collected five 

bookings, since in the latter case, the high bookings rate can be put down to the 

generally high match `temperature'. Table 4.14 displays 

,f 
(i, j) 

JH(i)JA(j) 

for each joint home and away bookings rate (i, j) i=O,..., 9 and i=O,..., 8, where 

f, 1H, JA are the joint and marginal empirical probability functions for home and away 

bookings. 

A pattern to Table 4.14 is observed. Entries on or close to the (home bookings=away 

bookings) diagonal generally occur more frequently, and entries away from the diago- 

nal occur less frequently than would be expected under an independence assumption. 

Hence ideally a bivariate distribution which can model the surface of Table 4.14 would 

be found. 
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Table 4.14: Frequency of observed joint scores divided by expected frequency given 
independence assumption 

Away bookings 
0 1 2 3 4 5 6 7 8 

0 1.76 1.28 0.85 0.66 0.61 0.4 0.3 0 0 
1 0.93 1.01 1.09 0.89 1.11 1.08 0.76 0.45 0 
2 0.77 0.97 0.95 1.23 0.85 1.27 1.47 1.96 1.53 
3 0.44 0.8 1.11 1.24 1.34 1.48 0.96 1.15 2.67 

Home bookings 4 0.15 0.42 1.02 1.52 1.91 1.79 3.1 5.54 3.23 
5 0.44 0.22 1.06 1.97 1.94 0 2.24 0 9.31 
6 0 0.53 2.85 0 0 0 10.86 0 0 
7 0 0 0 5.15 0 0 0 0 0 
8 - - - - - - - - - 
9 0 0 0 5.15 0 0 0 0 0 

4.6 Conclusion 

Overall, the results obtained from the model implemented are quite encouraging since 

consistent profits are made for each year that a relatively naive betting strategy is sim- 

ulated. In fact, the profit curves displayed in Figure 4.10 are likely to be conservative 

estimates since it is the average spread available from four bookmakers rather than 

the most favourable price offered that has been used to calculate hypothetical profit 

curves. Therefore many of the winning bets in practice would have resulted in slightly 

greater wins than recorded here and many of the losing bets would have resulted in 

slightly smaller losses. Also, more bets would have been placed if a larger range of 

spreads were available for each match. It seems reasonable to assume that these would 

also overall have been profitable. 

One problem with betting on this market in practice is that the intrinsic high 

variability of booking rates in soccer means that all bets are relatively high risk. While 

it is true that with any gambling system stakes must be decided in such a way that 

the probability of financial ruin is kept to an acceptably small level, the non-negligible 

probability of very large make-ups (2.0% of matches result in a total points make- 

up of 100 or more) in booking rates means that any Sell bet is potentially risky. 

Approximately 65% of bets are Sells if a cut-off value of 4 is used when placing bets. 

In order to make large amounts of money by betting on this market one must be able to 

sustain occasional large losses. The next two chapters, which concentrate on modelling 
NFL and NBA scores for fixed odds betting (for which the maximum possible loss on 

any bet is restricted by the gambler), attempt to realise similarly profitable strategies 

but with a more stable return curve. 
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4.7 Additional comments and information 

4.7.1 Generating model 2 predictions 

Model 2, as employed in Section 4.4.2, creates predictions for yellow and red cards 

without recourse to formal statistical modelling. The prediction for the home number 

of yellows in a match is calculated as follows. First, the climate is estimated by 

calculating the mean of the total number of yellows collected in the fifty matches prior 

to the time when the match of interest takes place. The likely increase in booking 

rates at the start of the season is estimated by a similar method to that described in 

Section 4.3.3, by using the mean jump in the climate at the start of previous seasons. 

This number is added to the climate at the end of the previous season to obtain 

the climate for the first fifty matches of any season. Also, after the sudden drop in 

bookings observed in January 1999 (week number 127), the mean number of yellows in 

all matches since week number 127 is used, until week number 134 (which corresponds 

to approximately 50 matches). Figure 4.12 plots this climate. 
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Figure 4.12: Predicted climate curve. The solid green lines denote the start of a new season, 
the dotted line denotes the time-point where referees were advised to be more cautious with 
regards to issuing cards 

Next, estimates for teams' attacking and provoking parameters and the referees' 

harshnesses are needed. This is done using a weighted mean, weighted according 

to time. Let HYk and AYk represent the number of home and away yellows ob- 

served in match k between sides i and j. Suppose team i has played at home in 
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matches iH (1), 
... , iH (N; H) and away from home in matches i, 4 (1), 

... , iA (N; A) prior 

to match k. The yellow yards they have collected in these matches are therefore 

HYX(1), ... , HY, "H(N; H) and AYA(1),... , AYiA(i 
4). 

Also, let t(k) be the time match k 

takes place. 

Then when team i plays in match k the estimate of their attacking rate is defined 

as follows: 

, HYiH(m) * exp(-w * (t(k - 1) - t(iH(m)))) Emý 
attrk = k-1 HY ým' 

*º3 

+EmI1 
AY,, (m) * exp(-w * (t(k - 1) - t(iA(m)))) (4.7.1) 

E-1 AY rrt=1 m 

The rate defined by Equation 4.7.1 is a time-weighted mean of all of team i's home 

and away yellows, divided by the mean home and away yellows in all matches before 

match k. Equation 4.7.1 is equal to 1 if team i has an average booking rate, compared 

to all teams. The weighting factor to is set to be the same value (0.02) as that selected 

in Section 4.3.5, where the values for the external parameters for the yellow cards 

model were determined. 

The provocation rate pro and referee harshness harshk are defined on a similar 

principle. The estimate for the number of home yellows in match k is 

Ek_1 
E[HYk] 

HY 
_ ý, ý HY,,, 

-}- AY�ý climatek * attrk * prow * harsh' 
M=l 

and the estimate of the away yellows is 

E[AYk] =k 
Ek-I 

"` 1 AYm 
climatek * attrk * provk * harshk 

ým=1HYYm+AYm 

The expected number of red cards is defined as the average proportion of red cards 

to yellow cards for the entire data set, multiplied by the number of expected yellow 

cards for that match: 

E[HRk] =H+A* E[HYk] 
Em=1HYm+AYm 

_ 
Em HR-m + Al?,,, 

E[ARk] = k-1 * E[AYk] 
ým=1 HYm + AYm 

Finally, in the event of a new team or referee entering, the values obtained through 

equations of the type observed in Equation 4.7.1 are replaced by the home/away climate 
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until the team or referee has participated in five matches. 

4.7.2 Kernel Regression 

Kernel regression is a non-parametric regression technique. In general, non-parametric 

regression is attractive when there is no obvious appropriate structure (e. g. linear, 

trigonometric, polynomial) for the curve that best fits the relevant data. One non- 

parametric regression technique, which has its roots in density estimation, is the kernel 

regression technique. There are several possible implementations of kernel regression 
(see Silverman (1986) for examples). 

Given i. i. d. data (X1, Y1), """, (XN, YN), a suitable form that represent Y as a func- 

tion of the X; is required. A kernel function K(t) can be thought of as a generalisation 

of a weight function, which satisfies the condition that f! 0. K(t)dt = 1. There are 

various estimators that make use of kernel functions, one of the more popular choices 

being the Nadayara-Watson estimator, as outlined in Wand and Jones (1995): 

ýrýý) _ 
ýk Kh(Z - 2k)Yk'Wk 

1: k=i Kh(x - xk)Wk 

where wk is the square root of the number of observations with value xk and Kh is the 

kernel function with bandwidth h. The next decision is the choice of kernel function. 

There are several, which have different properties. Most are conceived with the aim of 

minimising the mean integrated square error (MISE), defined by 

Efi (t) -f (t)2dt =J EI(t) -f (t)2dt +f var f (t)dt (4.7.2) 

where f (t) is the function to be estimated with I (t), which in this case is the Nadayar- 

Watson estimator. Equation 4.7.2 gives the MISE as the sum of the integrated square 
bias and the integrated variance. Silverman (1986) details various methods that can 

be employed to find kernel functions which result in small values of MISE. One of these 
is the Epanechnikov kernel which is given by 

Kh(x) _ 
4(1- h)/(hß/5) for IxI < hß/5 

0 otherwise 

and it is this kernel that has been applied in this chapter. It also requires relatively 
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little computational effort, which is another important criterion. 

It is also necessary to choose a suitable bandwidth h. There are various ways of 

doing this, although it is to a large extent dependent on the intended application of 

the regression. In some cases it may be necessary to have an automated process that 

chooses h by some objective process. In this case, since suitably powerful software 

is available, it is possible to try out various values, look at the resulting curves, and 

make a decision based on existing knowledge of the climate. Figure 4.13 displays curves 

resulting from various choices of bandwidth. The curve arising from bandwidth set to 
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Figure 4.13: Kernel regression estimates for different choices of bandwidth. The solid black 
line represents observed moving average, the red line represents estimated climate using that 
bandwidth 
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be 5 seems to provide the best fit. 
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Chapter 5 

Estimating NFL scores: the 

threes and sevens distribution 

NFL has traditionally been one of the most popular sports in the United States, among 

gamblers and the general public alike. Betting on NFL is extremely popular and there 

are numerous casinos that offer bets on the sport, usually in the form of a fixed odds 

handicap bet (discussed in Section 1.3.1). 

In this chapter firstly a brief overview of NFL is given, explaining the structure of 

the season and the game regulations. Section 5.2 describes the data available while in 

Section 5.3 a basic model, assuming two independent Normal distributions for the home 

and away scores, is specified and fitted. Section 5.4 attempts to find an alternative to 

the Normal distribution in order to represent the home and away scores. More match 

data is incorporated into a large multivariate structure in Section 5.5 in an attempt to 

find more accurate score predictions while Section 5.6 presents a more straightforward 

use of this extra data. Section 5.7 presents the conclusions to the chapter. 

5.1 NFL -a brief summary 

5.1.1 NFL season structure 

The NFL season is divided into two stages: 

" the regular season This involves six leagues containing five or six teams eachl. 

Normally half of the matches take place between teams within the same league, 

'This is true for the data set being analysed which contains matches until January 28 2001. At the 
start of the 2002/2003 season teams were reallocated into eight divisions each containing four teams 
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with the remaining matches being against selected teams from other leagues. 

Opponents for matches outside a team's league are selected by the NFL admin- 

istration so that successful teams from the previous season play other successful 

teams, similarly for unsuccessful teams, in an attempt to handicap the better 

teams. - Approximately 30 teams play 16 games each season, hence approximately 

240 games are played during each regular season. 

" the play-offs The twelve most successful teams from the regular season filter into 

a knockout tournament. The final match of this tournament is the Superbowl 

and is one of the most popular sporting events worldwide. 

5.1.2 NFL game structure 

The matches consist of four fifteen minute periods. Each team consists of two separate 

squads of players, one being the offensive squad, one being the defensive squad. Each 

squad contains 11 players. At the start of the first quarter one side is designated to 

be in possession of the ball and this side fields its offensive squad while the side not 

in possession of the ball fields its defensive squad. Upon a change of possession of the 

ball, which can take place in several ways, the offensive players of the side that has just 

lost possession are substituted by the defensive players in their side, while the side that 

has won possession replaces its defensive squad with its offensive players. A detailed 

explanation of many details of the match regulations and the important aspects of 

NFL matches, such as the ways in which possession of the ball can be lost, is deferred 

to Section 5.5.1 (in order to understand the intervening sections of this chapter, a 

thorough knowledge of such details is not required). Points are scored either through 

9 Field Goals: these are scored when a team kicks the ball through a set of raised 

posts at the opponent's end of the field and are worth 3 points. 

" Touch Downs: these are scored when a team places the ball over a line at the 

opposing team's end of the pitch and are worth 6 points. 

" 1-Point Conversions: after a Touch Down is scored, a team is given one extra 

play. Should they successfully kick the ball between the raised set of posts at the 

opposing end of the field using this play, they score one extra point. 

" 2-Point Conversions: if, after a Touch Down, the team succeeds in placing 
the ball over the line at the opponent's end of the field with the extra play, they 
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score two extra points. 

. Defensive Conversions: these occur when a team scores a Touch Down at their 

own end of the field. Their opponents score 2 points in this situation. Teams 

would only do this if their opponents are likely to score a'Ibuch Down otherwise. 

Table 5.1 displays the frequency of the events listed above. 

Table 5.1: Average frequency of scoring opportunities in each match 
home away 

Field Goals 1.524 1.405 
Touch Downs 2.539 2.132 
1-Point Conversion 2.333 1.893 
2-Point Conversions 0.069 0.089 
Defensive Conversions 0.042 0.029 

If the two teams have an equal number of points after the four periods, an extra 

period, known as overtime, is played. This period ends as soon as one side scores either 

a Touch Down or Field Goal, with this side being declared the winner2. 

5.2 NFL data 

Two data sets are available for this analysis and they are described below. 

1. NFL final scores for the home and away side for seasons 1983/84 - 2000/01, along 

with a bookmaker's line for score differences. 

2. For seasons 1997/98 - 2000/01 the following figures are available for both the 

home and away side, 

" the final match score 

" the points scored in each quarter of the match, including any overtime 

periods 

" the number of Touch Downs, Field Goals, 1-Point Conversions, 2-Point 

Conversions and Defensive Conversions scored in each match 

9 the match totals for yards passed, yards rushed, number of attempted 

passes, number of completed passes, number of rushes, number of inter- 

2Strictly speaking this period would also end if one side scored a defensive conversion and thus 
yielded two points to the opposing side. This would be a bizarre tactic however, since it would result 
in the side immediately losing the match. 
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Figure 5.1: NFL score histograms 1983-2001 

ceptions and time in possession of the ball (these terms are explained when 

used in Section 5.5) 

"a bookmaker's line for score differences and total scores 

Sections 5.3 and 5.4 uses the first data set, while Section 5.5 uses the second. 

5.3 A basic model for NFL scores 

Figure 5.1 displays histograms for home scores (HSC), away scores (ASC), score differ- 

ences and score totals. The home mean, away mean, home standard deviation, away 

standard deviation and home and away correlation for scores are 22.15,19.02,10.41, 

9.97 and -0.03 respectively. Two independent univariate Normal distributions seems 

to be the most obvious distribution to employ in order to model the home and away 

scores and this was the distribution chosen in several previous studies of NFL, includ- 

ing Stern (1991), Harville (1980) and Glickman and Stern (1998). Stern conducts a 

Kolmogorov-Smirnov test which rejects Normality at the 5% significance level. Harville 

comments that `approximations to the posterior probabilities may be somewhat crude, 

however it is not clear how to improve on them by other than ad hoc procedures'. Due 

to the way in which points are scored in NFL, scores which are combinations of 3s and 
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7s are more likely to occur. Furthermore, by applying the Normal distribution one 

may assign non-zero probabilities to negative scores. By assuming that 

HSC, - N(22.15,10.41) 

ASC N N(19.02,9.97) 

it follows that 

P(HSC < 0) 0.015 

P(ASC < 0) 0.025 (5.3.1) 

In practice NFL scores cannot be negative, thus the non zero probabilities in Equa- 

tion 5.3.1 are a source of concern. The Normal distribution will be employed in the 

first model attempt but concerns about its suitability, along with some alternative 

approaches, are discussed in Section 5.3.1. 

The small correlation coefficient between the home and away scores suggests that 

the dependence between them is not straightforward enough to be modelled by a 

bivariate Normal distribution. However, this does not suggest that the home and 

away scores are independent. In NFL, possession is crucial and any possession of the 

ball by one side implies lack of ball possession by the other, which restricts their scoring 

opportunities. The linear models summarised in Table 5.2 reveal some curious trends. 

Table 5.2: Coefficients and significance levels, modelling NFL Home Score (HSC) 
against Away Score (ASC), Home Rushed Yards (HRY) and Away Rushed Yards 
(ARY) 

Model Coefficients and n-values 
HSC-ASC C: (0.00211,0.94798) 
HSCNASC+HRY ASC: (0.10526,0.00056), HRY: (0.08326,0) 
HSCNASC+HRY+ARY ASC: (0.18828,0), HRY: (0.07449,0), ARY: 

While there is clearly enormous dependence between the play of the two teams, 

the structure of this dependence is not immediately obvious. 
For now a straightforward model is specified which can later be modified where 

necessary. For match k that takes place between team i (k) and team j (k), at team 

i(k)'s ground, 
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HSCk N JV (pk, a) 

ASCk N N(Ak, C) 

where 

0 

Pk = If + "i(k) + Pi(k) +Ö 

(5.3.2) 

Ak =y+ lx2(k) + ßi(k) (5.3.3) 

9Q is the standard deviation for home and away scores 

" is the global mean 

" a; (k), aj(k) are offensive parameters for respectively the home and away teams 

" A(k), ßJ(k) are defensive parameters for respectively the home and away teams 

96 is the home effect 

This model will be referred to as the basic model. 

In order to obtain MLEs for the parameters included in the model specified by 

Equation 5.3.2, values for the external parameters, as defined in Chapter 3, must be 

fixed. The process used in Section 4.3.5 concerning the analysis of bookings rates is 

repeated here, by trying a range of values for these parameters and monitoring the 

predictive likelihood. Table 5.3 displays the predictive likelihood for different sets of 

values of the external parameters, and it appears that the near-optimal (time-down- 

weighting (c), offensive/defensive prior tightnesses (ra8), seasonal truncation (w)) val- 

ues are (0.05,5,20), which are highlighted in red. Table 5.4 displays the estimates of 

the team parameters for this model at the final time-point in the data set. In contrast 

to the estimates presented for Premier League soccer team abilities in Chapter 4, it is 

rare that NFL teams have both a strong offense and a strong defense. The drafting 

system used by the NFL that is described in section 2.3 puts a ceiling on the number 

of highly rated players that any squad can contain. As a result teams are forced to 

make compromises concerning the quality of some sections of their squad. In the case 
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Table 5.3: Predictive likelihood obtained for different choices of external parameters 
for final scores 

Truncation w= 5 weeks: 
Prior variance rrg of offensive and defensive estimates 
2 5 10 20 

0.005 -5696.8346 -5693.0002 -5698.3407 -5701.1115 
0.01 -5694.2798 -5687.5982 -5693.1642 -5696.1395 

Weight c 0.02 -5692.254 -5678.6826 -5684.7334 -5688.226 
0.05 -5696.3219 -5665.0395 -5673.7137 -5680.1769 
0.1 -5708.4818 -5663.6557 -5680.9272 -5698.2981 

ýuncation of w= 10 weeks: 
Prior variance rag of offensive and defensive estimates 
2 5 10 20 

0.005 -5696.4878 -5691.8315 -5697.2038 -5700.0071 
0.01 -5693.5382 -5685.5082 -5691.1315 -5694.1826 

Weight c 0.02 -5691.844 -5675.5469 -5681.7373 -5685.4487 
0.05 -5697.8174 -5662.9761 -5672.9169 -5680.8305 
0.1 -5710.4193 -5665.455 -5687.4899 -5710.9848 

Truncation of w= 20 weeks: 
Prior variance raß of offensive and defensive estimates 
2 5 10 20 

0.005 -5695.9376 -5689.5608 -5694.9919 -5697.8628 
0.01 -5692.3865 -5681.6207 -5687.3551 -5690.5718 

Weight c 0.02 -5691.7564 -5670.4412 -5677.0025 -5681.249 
0.05 -5700.7032 -5662.4368 -5676.0887 -5687.9537 
0.1 -5712.6495 -5670.3222 -5703.2531 -5741.8719 

Truncation of w= 30 weeks: 
Prior variance r�# of offensive and defensive estimates 
2 5 10 20 

0.005 -5695.6078 -5686.8531 -5692.3737 -5695.3268 
0.01 -5690.8531 -5677.4607 -5683.3596 -5686.7768 Weight t 0.02 -5691.3705 -5665.9569 -5673.183 -5678.1523 
0.05 -5706.0655 -5667.5716 -5687.5513 -5705.6403 
0.1 -5719.4015 -5679.3656 -5727.9586 -5789.005 

of St Louis and Miami in particular, it is clear which aspect of the game they have 

chosen to specialise in. 

Figure 5.2 plots a. moving average of predicted scores versus observed scores, for 

the home scores, away scores, scores differences and total scores. It reveals that the 

predictions appear to be broadly accurate. Some instability is observed towards the 

left hand and right hand edges of the plots. This is due to the number of observations 

upon which the values are calculated decreasing in these areas. 

Note that while Figure 5.2 suggests that the model in general makes sensible pre- 
dictions it does not prove that there are no systematic biases within the model. For 

example if a team plays a fixture without one or more of their most highly valued play- 

ers, their expected score supremacy is usually lower. Since on average teams benefit 
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Figure 5.2: Plot of moving average of predicted scores versus moving average of observed 
scores 

from injuries to their opponents as often as they suffer from their own injuries, the 

net effect of injuries for both sides across all matches is approximately zero. However, 

there are biases in the predictions for matches where one, or both, of the squads is 

significantly weaker than usual. 

Not all previous attempts to model NFL have involved two parameters to represent 

team abilities, with many employing only a single parameter. However, Section 5.8.2 

in the additional comments section of this chapter outlines and implements a technique 

which compares the predictive power of models using differing numbers of parameters 

to represent team abilities. The results suggest that using two parameters seems 

suitable. 

Only one parameter, b, is used to represent the effect of playing at home although 

Glickman and Stern (1998) employed a separate home effect parameter for each team. 

The method they used to test the need for such a specification is outlined briefly in 

Section 2.5.1. It is plausible that with games being played in such a variety of climates, 
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Table 5.4: Rankings of all NFL teams after January 28,2001 
Team Attack parameter rank Defense parameter rank Overall ability rank 
Baltimore 0.048 9 -0.391 1 0.439 1 
Oakland 0.22 2 -0.095 9 0.315 2 
Tennessee 0.048 8 -0.224 2 0.271 3 
Indianapolis 0.176 4 -0.006 14 0.182 4 
Denver 0.184 3 0.012 20 0.172 5 
Tampa Bay 0.011 13 -0.138 4 0.149 6 

Jacksonville 0.138 5 -0.004 16 0.141 7 
St Louis 0.325 1 0.188 29 0.137 8 
Pittsburgh 0.024 10 -0.102 7 0.126 9 
NY Giants -0.003 15 -0.126 5 0.123 10 
Philadelphia -0.025 18 -0.121 6 0.096 11 
Miami -0.069 24 -0.139 3 0.07 12 
Green Bay 0.062 7 -0.004 15 0.066 13 
Washington -0.051 20 -0.099 8 0.048 14 
NY Jets -0.018 17 -0.054 10 0.036 15 
Kansas City 0.019 11 0.004 18 0.015 16 
Minnesota 0.128 6 0.119 27 0.008 17 
Buffalo -0.005 16 0.007 19 -0.012 18 
Detroit -0.065 23 -0.047 11 -0.018 19 
Carolina -0.053 21 -0.027 12 -0.026 20 
New Orleans -0.033 19 0.024 22 -0.057 21 
Seattle -0.001 14 0.069 23 -0.07 22 
Dallas -0.056 22 0.019 21 -0.075 23 
New England -0.112 25 -0.018 13 -0.094 24 
San Francisco 0.017 12 0.155 28 -0.137 25 
Chicago -0.223 29 -0.003 17 -0.22 26 
San Diego -0.13 26 0.112 26 -0.242 27 
Atlanta -0.151 27 0.093 25 -0.244 28 
Cincinnati -0.208 28 0.075 24 -0.283 29 
Arizona -0.233 30 0.205 31 -0.438 30 
Cleveland -0.281 31 0.197 30 -0.478 31 

and with journeys to some games being particularly long, the disadvantage of playing 

at other grounds is not homogeneous. In all the models employed in this chapter 

only one parameter is used to represent the effect of playing at home although further 

research may cast doubt on the validity of this assumption. 

5.3.1 Discussion: suitability of Normal distribution 

Figure 5.3 displays the histogram of actual scores, versus the density of scores predicted 

using the basic model, given three different predicted score intervals. It can be seen 

that scores are not Normally distributed and indeed they do not follow any standard 

statistical distribution. To understand the distributions observed in Figure 5.3 the way 

points are collected in NFL needs to be considered. 

Referring to Table 5.1, it is noted that almost all points are obtained via Field 

Goals (3 points), Touch Downs (6 points) and subsequent 1-Point Conversions after 

scoring a Touch Down. Figure 5.4 displays the histogram for the entire set of final 
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Figure 5.3: Plots of observed histograms of score frequencies (_) along with theoretical 
frequencies obtained assuming normal distribution applies (_) given three different match 
means 

scores, and peaks are observed at all numbers which are combinations of a low number 

of 7s or 3s. 

It is important to have a reasonably accurately specified distribution function for 

scores when betting. As discussed in Section 1.3 one of the most widely available 

betting markets for NFL is handicap betting. To illustrate the problem that arises 

by using the Normal distribution to predict scores, two possible betting situations are 

considered. For the purposes of these examples, the term `score difference' is used to 

signify the home score minus the away score of a match. It is frequently of interest 

to know if P(score difference > handicap). Suppose the basic model gives a predicted 

score difference, E(X - Y), of 2.5 points, while the handicap offered by the bookmaker 

is -2.5 points (i. e. it believes the median score supremacy of the home team over 

the away team is 2.5 points). A bet on the home side is won providing X-Y>3. 

According to the basic model and applying a continuity correction, the probability of 
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Figure 5.4: Histogram of all scores, either side, 1983-2000 

so3 winning the bet is P(X -Y>2.5) = 0.5 where X-Y- /(2.5, * 9.14) it 

does not appear to be worth making such a bet. However, of the matches where the 

basic model predicts a score difference between 1.5 and 3.5,54.9% have a final score 

difference > 3. Hence the basic model estimates this bet to be less attractive than it 

is. 

Meanwhile, suppose for another match that the basic model predicts that E(X - 
Y) =4 and the bookmaker offers a handicap of -3. In this case it is tempting to 

back the home team and such a bet is won providing X-Y>4. According the 

basic model, the probability of winning this bet is P(X -Y>3.5) = 0.515, where 

X-Y ~ N(4, * 9.14). Of the matches where the basic model predicts a score 

difference between 3 and 5, only 49.8% have a final score difference > 4. In this case, 

the basic model thinks this bet is more attractive than it is, since it is unaware that 

only a small number of matches (134) have a final score difference of 4 but many 

3the MLE obtained for o, with the basic model is 9.14 
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more matches (340) have a score difference of 3. A similar trend is observed for other 
handicaps that are aligned near the more frequent score differences. 

This suggests that the Normal distribution may not be adequate and it would be 

desirable to find a more accurate distribution for the difference in scores and total 

scores. There are two approaches which will be covered here. 

1. Attempting to find a distribution which matches that observed in Figure 5.3. 

2. Modelling the total number of Touch Downs, Field Goals etc, instead of total 

score. 

Approach 1 is discussed in Section 5.4 and approach 2 is discussed in Section 5.5. 

5.4 Determining a specific distribution for NFL 

Ultimately a distribution that reflects P(X = x1µ) with a reasonable degree of accuracy 
is sought, where z represents the score for a team and p is the expected score. There 

is no standard distribution that closely resembles that observed in Figure 5.4 so it is 

necessary to develop a nonparametric density of some kind. 

It may seem attractive to use the values of score frequencies plotted in Figure 5.3 

as the probabilities. So, for example, P(X = Olp = 20.5) = 20/925, since of the 925 

matches where either team's mean scoring rate was between 20 and 21,20 resulted in 

a score of zero. However, the problem with this solution is seen by considering Figure 

5.5. 

Here the proportion of occasions in which the score was 21, given differing values 

of the predicted score, is plotted. The predicted scores are obtained using the model 
described in 5.3. To adjust for the continuity of the predicted score, P(X = 211µ) is 

defined as the proportion of matches for which pE (p - c, p+ c), for some chosen value 

of e (0.1 in this case). A smoother version of Figure 5.5 is preferable, and by obtaining 

smooth versions for all scores, a full density for P(X = xI p) for all values of x and all 

values of p is obtained. To clarify this process, consider Table 5.5. 

For example, 0.05714 of the matches where µE (25.65,25.75) resulted in a score of 
21. The NAs signify that no match actually had that predicted mean in the dataset. 

The rows in Table 5.5 sum to 1. The accuracy of the probabilities in the rows of 
Table 5.5, which represent the density of interest, is improved by smoothing down the 

columns. Kernel regression (described in Section 4.7.2) is applied in order to achieve 
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Table 5.5: Observed nronortions of scores. for given means 
scores frequency given p 

0 1 2 ... 21 22 23 98 99 100 
0.0 NA NA NA NA NA NA NA NA NA 
0.1 NA NA NA NA NA NA NA NA NA 
0.2 NA NA NA NA NA NA NA NA NA 

µ 25.7 0 0 0 0.05714 0.02857 0.14286 0 0 0 
25.8 0.04545 0 0 0.04545 0 0.04545 0 0 0 
25.9 0 0 0 0 0 0 0 0 0 

39.8 NA NA NA NA NA NA NA NA NA 
39.9 NA NA NA NA NA NA NA NA NA 
40.0 NA NA NA NA NA NA NA NA NA 

this. In effect smooth versions for function f (µ) = P(X = x1µ) are obtained for all 

observed values of X. 

This density will be referred to as the NFL distribution. Figure 5.6 contrasts the 

density obtained for the scores 0,7 and 21, once smoothing has been applied. 
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Figure 5.6: Plot of f (µ) = P(X = x1µ) (_) with kernel-smoothed curve overlaid (_), for 
x= (0,7,21) 
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Figure 5.7: Plot of Egg oxP(xjp), for each value of µ, where the probabilities are those of 
the NFL distribution. 

One possible concern by applying this technique is that, after the smoothing is 

applied to P(X = zip) for fixed values of x, there may be values of p for which 

EO xP(X = zip) # p. This may arise since the kernel smoothing is applied with 

the aim of providing smooth curves to replace the more uneven curves of the type 

displayed in Figure 5.5. A consequence of this is that the values in Table 5.5 are 

adjusted by a small amount and it is conceivable that this could cause the calculated 

expected value for each row in Table 5.5 to differ from the expected value specified by 

p. However, Figure 5.7 suggests this problem is noticeable only for the values towards 

the edge of the distribution, which in practice occur very rarely. It should be noted 

that, for any given value of p, of the matches whose expected mean estimated using the 

basic model was close to p, the observed average score differs slightly from M. This can 

be observed by recalling Figure 5.2. It follows that before smoothing is applied to the 

columns in Table 5.5, the rows do not have the property that Ex'=0 xP(X = x1p) µ. 

Figure 5.8 displays the same plots as Figure 5.3, for three different mean scoring 

rates, with the NFL distribution probabilities overlaid in green. The probabilities from 

the NFL distribution bear a closer resemblance to the observed histograms than the 

probabilities derived assuming a Normal distribution. 

5.4.1 Implementation of the NFL distribution 

Although a correctly specified distribution is necessary in order to optimise the accu- 

racy of predicted probabilities for future matches, it is not necessary in order to obtain 

consistent estimates for the parameters. In this case these are the teams' offensive 
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Figure 5.8: Plots of observed histograms of score frequencies (_), theoretical frequencies 
obtained assuming normal distribution applies (_), and also the computed NFL distribution 
(_), for three sets of means 

and defensive abilities, as well as the global mean, home effect and score variance. 

In general, if the form specified for the density is incorrect but the conditional mean 

of the data generating process is specified correctly (that is, the functional form and 

explanatory variables are the same as those of the true data generating process), in 

certain situations it is possible to obtain asymptotically consistent estimates. In par- 

ticular this is true if the assumed density is a member of the exponential family, which 

the Normal distribution is. However, the fact that asymptotically consistent estimates 

can be obtained only guarantees that as the amount of data available becomes infinite, 

the estimates of the parameters converge to the `true' values. However, the rate at 

which they converge to them increases the closer the assumed density is to the true 

underlying data generating process. 

Hence ideally MLEs for the parameters would be obtained using the NFL distribu- 

tion. Unfortunately the numerical routines such as Newton-Raphson that are employed 
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in order to maximise the likelihoods specified in this thesis cannot be applied easily 

to a likelihood function that incorporates the probabilities from the NFL distribution. 

This is because the probabilities of scores defined by the NFL distribution are avail- 

able only by reference to a look-up table, for a finite number of means. The values 

defined by it are not available as a continuous, well-specified equation. As a result, 

the likelihood of the scores is not a function with continuous first derivatives, which 

is an essential criterion in order to use the numerical maximisation routines employed 

throughout this thesis. For this reason the MLEs estimated from the basic model are 

used in the remainder of this section. The NFL distribution is employed in order to 

predict the probabilities of match outcomes. 

While having the conditional mean correctly specified leads to asymptotically con- 

sistent estimates (despite an incorrectly specified probability density for the data), 

the fact that the variance is mis-specified means that the standard errors obtained 
for MLEs are invalid. As a result, valid t-statistics or confidence intervals for the 

parameters cannot be obtained using the basic model. That would be a problem if 

a selection of different models using a range of different factors were being fitted and 

the significance level of these factors were being investigated. In this application, the 

parameter estimates are used only to produce an expected mean as in Equation 5.3.3. 

Therefore, for this application the standard errors for the parameters are not required. 
A more detailed discussion on this topic can be found in Cameron and Ttivedi (1998) 

pp27-31. 

5.4.2 Model evaluation 

It is of interest to see how the two models above perform relative to the bookmaker's 

line. One betting strategy is to place a bet on a match provided that, according to the 

model, the probability of winning is greater than a cut-off value k, for example 0.55. 

The success rate of such a strategy, for varying values of k, is displayed in Figure 5.9 

for both the basic model and the NFL distribution model. Also included is a y=x line, 

which represents the curve that would be realised with a theoretically optimal model, 

where bets are placed knowing the true probability that the bet is successful. Overall, 

the plot is not conclusive, but it appears that for the majority of sensible candidate 

values for k, the bets made using the NFL distribution slightly out-perform those made 

using the basic model. Both models seem to perform quite respectably compared to 

the bookmaker's line. Note that only the proportion of bets won, rather than profit, 
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Figure 5.9: Proportions of bets won, where a bet is made provided P (Win) >cut-off, according 
to both the basic model (_) and the NFL distribution (_) 

is plotted in Figure 5.9, hence the bookmaker's overround is not considered. 

Generally most bookmakers return 111 times the original stake on a winning bet of 

the type described above, as explained in Section 1.3.1. So the expected profit for the 

gambler by betting a unit stake on a result with outcome q is 

- (1 - 4) 1.1 
(5.4.1) 

This is positive if q>0.524, although the rate at which profit is made is too slow 

for most gamblers unless the success rate is considerably higher than this. The profit 

curve of Figure 5.9 appears to win approximately 55% of the time if the estimated 

probability of success is above 60%. 

5.5 Inclusion of more covariates 

As mentioned in Section 5.2, the second data set available includes only four years of 

data, but there is more data available for each match. While ultimately it is only the 

distribution of the home and away score that is of primary interest, it is conceivable 

that the marginal distribution for the home and away score, derived from a joint 

distribution of many match variables, may be more accurate than the basic model 

which includes no information beyond the score of the match. 

While none of the previous studies of NFL scoring rates that the writer is aware 

of include any information besides the scores and identities of the teams in the model 

specification, several papers suggest that some benefit may be derived by including 
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other match statistics. Glickman and Stern (1998) state that `use of covariate infor- 

mation, such as game statistics like rushing yards gained or allowed, might improve 

precision of the model fit [for score differences]', while Fahrmeir and Tutz's (1994) 

NFL model is formulated in such a way that covariates besides team abilities can 

be included. Harville, whose approach involves the use of mixed linear models, sug- 

gests establishing a model for statistics such as total yards rushed, and monitoring the 

correlation between the random effects of this model and the scores model. 

The following statistics are available for each match: 

" the number of Touch Downs (HTD, ATD), Field Goals (HFG, AFG), 1-Point 

Conversions (H1C, A2C), 2-Point Conversions (H2C, A2C) and Defensive Con- 

versions (HDC, ADC) scored in each match by the home and away side. 

. Yards rushed (HRYD, ARYD) and yards passed (HPYD, APYD). It is crucial 

that a team moves the ball towards the opponent's end, firstly in order to increase 

their chances of scoring points, and secondly because they are forced by the 

regulations to surrender possession of the ball if they do not advance the ball 

more than 10 yards every 4 plays (this is explained in more detail in Section 

5.5.1). The ball can be advanced towards the opponent's goal either by running 

with the ball or by successfully passing to another player. 

9 The number of rushes (HR, AR), the number of attempted passes (HPA, APA) 

and the number of completed passes (HPC, APC). 

9 The number of pass interceptions (HPINT, APINT). Should a player from a 
defensive team catch the ball while the offensive team is in possession of the ball, 

his side assumes possession of the ball. 

The mean values of these figures are displayed in Table 5.6 in order to demonstrate 

the approximate scale of each figure. 

Table 5.6: Mean values for figures in data set, 1997-2001 
Home Away 

Rush Pass Attempts 61.13 60.21 
Rushes 28.51 27.07 
Yards Rushed 114.58 106.66 
Pass Attempts 32.62 33.14 
Completed Passes 18.76 18.66 
Yards Passed 209.68 202.91 
Had Intercepted 1 1.14 
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To create a joint distribution involving the covariates listed above, a set of marginal 

and conditional distributions of the covariates must be established. There are a large 

number of configurations for this, but the approach taken here reflects the approximate 

pattern by which NFL play proceeds. 

5.5.1 NFL pattern of play 

Play effectively starts with a scrimmage, which is similar to the scrum in rugby and 

involves a set of players from either side forming two lines standing opposite each 

other. In NFL it is the offensive team that always begins with possession of the ball, 

and the ball is almost always passed by the offensive players in the scrimmage to the 

quarterback, who stands behind the scrimmage, protected from the opposing team's 

defensive players by his own offensive players. The quarterback most often attempts 

to pass the ball on to another player. This action is counted as a Pass Attempt. If this 

pass is successful, the player receiving the ball either tries to run with the ball, which 

is recorded as a Rush, or very occasionally pass it once more to another player (only 

backwards passes are permitted in this case), which is recorded as a Pass Attempt. 

This initial activity, which represents the start of any attack, is summarised in the 

data set by the number of Rushes or Pass Attempts. 

The first dependent variable is the decision the team makes concerning whether 
to Rush or make a Pass Attempt. Now the procedure that follows a Rush or Pass 

Attempt is considered. 
A Rush almost always concludes with the player with the ball being impeded by 

the opposition either by being thrown to the ground, or forced to run out of the field of 

play. The action in the game stops and another scrimmage takes place from the place 

where the rushing player was halted, provided play from the last four scrimmages have 

resulted in the offensive team advancing at least ten yards towards the opponent's end 

of the field. If this is not the case, the offensive team loses possession of the ball to the 
defensive team, and all players on the field are substituted appropriately, as explained 
in Section 5.1.2. In the case of a Pass Attempt, three things can occur. Firstly, 

the player may catch the ball and continue to attack. Hence the number of Passes 

Completed as a proportion of the number of Passes Attempted is the next dependent 

variable. The other two situations occur if the Pass is unsuccessful. Normally the 

ball is not caught completely by either side in which case a scrimmage takes place 
from the point where the Pass Attempt was started, again provided that play from the 
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previous four scrimmage has resulted in a gain of at least ten yards by the offensive 

team. However occasionally (average 1.00 by the home side and 1.14 times by the away 

side in each match) a player from the defensive side catches the ball. In this case this 

player's side gains possession of the ball and becomes the offensive side. The number 

of Pass Interceptions is therefore the next dependent variable. 

The next two variables incorporate two of the previous variables, namely the num- 

ber of Yards Rushed as a result of the number of Rushes made, and the number of 

Yards Passed as a result of the number of Passes Completed. 

Finally, the total number of Touch Downs and Field Goals that result from all the 

action described above is modelled. 
Figure 5.5.1 is a diagrammatic representation of the conditional structure out- 

lined above. The conditioning progresses from left to right then from top to bottom. 

Hence the maximal model for Away Rush/Pass Attempts (ARPA) can only have Home 

Rush/Pass Attempts (HRPA) as a covariate, while the model for Away Field Goals 

(AFG) features potentially all of the other variables. 
Finally points can also be scored through 1- or 2-Point Conversions following 

a Touch Down, and through Defensive Conversions. The rates at which these are 

achieved are approximately equal for all teams in all matches so, unlike the distribu- 

tions described above, do not require extensive treatment. The procedure adopted for 

these variables is discussed later. 

5.5.2 . 
Response distributions 

The individual probability distributions involved are now discussed. 

Combined Rush and Pass attempts 

Histograms of home and away rush and pass attempts are displayed in Figure 5.11. 

They appear to be Normally distributed and their (home, away) correlation coefficient 
is -0.527. The bivariate Normal distribution seems to be an appropriate distribution. 

Pass Attempts and Completed Passes 

The most obvious way to model these is using binary logistic regression, using re- 

spectively HRPA, ARPA, HPA and APA as the group size, and the covariates being 

selected in accordance with Figure 5.5.1. 
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Figure 5.10: The conditional structure of a multivariate NFL model, with conditioning 
proceeding from left to right, then top to bottom 
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Total Passed Yards and Rushed Yards 

Figure 5.11 displays histograms for the home and away total passed and rushed yards. 

While the passed yards seem to follow Normal distributions, the rushed yards are 

significantly positively skewed. The most obvious alternative distribution is the gamma 

distribution. Unfortunately attempting to maximise the likelihood of data that is 

assumed to be gamma distributed is very time consuming, However, as stated in Section 

5.4, asymptotically consistent estimates of parameters can be obtained, provided that 

the conditional mean of a data generating process is correctly specified, by maximising 

the likelihood where it is assumed the responses follow any member of the exponential 

family. The gamma distribution is a member of the exponential family but there are 

other members of the exponential family that simplify the task of maximising the 

likelihood. Since the correlation coefficient is 0.147 for Home/Away Passed Yards and 

-0.290 for Home/Away Rushed Yards, the bivariate Normal distribution is used for 

the parameter estimation process for both (HRYD, ARYD) and (HPYD, APYD). For 

simulation or prediction of (HRYD, ARYD), two independent gamma distributions are 

employed. 

Pass Interceptions 

The unconditional home/away mean and variance are 1.00/1.14 and 1.152/1.120 re- 

spectively so the Poisson distribution seems most suitable. 

Touch Downs and Field Goals 

An unusual problem is encountered when looking at the number of Field Goals and 
Touch Downs. Table 5.7 displays the unconditional mean and variances of these vari- 

ables, which suggests that the assumption of equality of the mean and variance required 

when using the Poisson distribution is violated. Note that the Poisson condition is that 

the mean is equal to the conditional variance, conditional on any relevant covariates. 
Thus the under-dispersion of these variables is more severe than recorded in Table 5.7 

since the conditional variance, given the team parameters and the other covariates, 
is less than or equal to the unconditional variance. For the ultimate application of 
this problem, it is necessary to calculate probabilities such as P(HSC > k). Since 

HSC =3* HFG +6* HTD (suppressing 1- and 2-Point Conversions and Defensive 

Conversions for now), if the Poisson distribution is employed to model Touch Downs 

and Field Goals, scores further from the mean have their probability of occurrence 
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Table 5.7: Touch Down and Field G oals mea ns and variances 1997-2001 
Touch Field 
Downs Goals 

Home mean 2.539 1.524 
Home variance 2.184 1.365 
Away mean 2.132 1.405 
Away variance 1.942 1.35 

over-estimated, and scores closer to the mean have their probability underestimated. 

While none of the well-known statistical distributions is suitable for modelling under- 

dispersed count data such as this4, Efron's Double Poisson distribution (1986) can be 

used in this situation. 
Efron's Double Poisson distribution arises as an exponential combination of two 

Poisson distributions, Pois(p) and Pois(y), hence 

f (yý ýý ý) = K(µ, 0)Pais(p)$Pois(y)l-0 

where 0 represents a dispersion parameter and K(µ, 0) is a normalising constant. The 

expansion of this expression is: 

f (bý F'ý ý) = K(µß ý)ý1ýZe ýµ-y 
71 (v )OV (5.5.1) 

where 
1 

T(14,0) - 1+1-0(1 
12¢lß + ý14) 

The mean and variance of the distribution are approximately p and ý. Although orig- 

inally proposed as a means of modelling over-dispersed count data, it is also suitable 

for under-dispersed data. The normalising constant is approximately 1, and can be 

suppressed for maximum likelihood estimation. Since the first order maximisation con- 

ditions are the same as those for maximum likelihood estimation of Poisson distributed 

data, the MLEs obtained using either approach are the same. However, the standard 

errors decrease, in the case of under-dispersed data, which has two effects on the appli- 

cation in question. Firstly, inferences obtained via p-values are affected and secondly, 

the variances of the parameters change which, if the parameters are considered from a 
Bayesian point of view, affects the variance of the predictive distributions. 

In figure 5.12, the density of 3*HFG+6*HTD is plotted in blue assuming a Poisson 
4the negative binomial distribution is suitable for modelling overdispersed count data 

112 



ö 

0 
ö 

ö 
d 

ö 
ö 

0 10 20 30 40 50 

Figure 5.12: Density of 3*FG+6*TD, assuming FG and TD are Poisson Distributed (_) 

and Efron distributed () 

distribution for both HFG and HTD with the rate parameters set respectively to be 

the overall means of the home Field Goals and Touch Downs. In red, the density is 

plotted assuming Efron's Double Poisson distribution, with rate parameters as before, 

but with dispersion parameter defined as the respective mean/variance ratios. It can 

be observed that the probability of many low scores is far lower assuming Efron's 

Double Poisson distribution. 

Since the MLEs obtained by using Efron's Double Poisson distribution to model 

the response variable are the same as those obtained using a standard Poisson distri- 

bution, for parameter estimation purposes it is more convenient to employ the Poisson 

distribution in the likelihood function. To generate predictions or to simulate out- 

comes, Efron's Double Poisson distribution is employed using the parameter estimates 

obtained with the Poisson distribution. In order to do this, an estimate for the disper- 

sion parameter 0 is required and the ratio of the mean to the conditional variance of 

the variable is a suitable choice. After the final time-point, this was found to be 1.280 

for Touch Downs and 1.185 for Field Goals5. 

Tb summarise, the following distributions are employed: 

5Note that when employing the Double Poisson distribution, a value for the dispersion parameter 
lower than 1 corresponds to over-dispersion, a value greater than 1 corresponds to under-dispersion. 
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0 

(HRPA, ARPA) ' N2 (IIHRPA, µARPA, QHRPA, (7ARPA, PRPA) (5.5.2) 

0 

HPA N Bin(HRPA, OHPA) 

APA N Bin(ARPA, OAPA) (5.5.3) 

0 

HPC N Bin(HPA, 9HPC) 

APC N Bin(APA, OAPs) (5.5.4) 

0 

(HPYD, APYD) ' Na (14HPYD, 1 APYD, QHPYD, OAPYD, PPYD) (5.5.5) 

0 

(HRYD, ARYD) N NZ(PHRYD, LARYD, QHRYD, QARYD, PRYD) (5.5.6) 

For prediction, 

HRYD N Gamma(aHRYD, AHRYD) 

ARYD N Gamma(aARYD, AARYD) 

0 

HPINT ' Pais(AHPINT) 

APINT Pois(AAPINT) (5.5.7) 

0 

HTD POis(AHTD) 

ATD POi3(AATD) (5.5.8) 
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For prediction, 

HTD _ POi82(AHTD, cHTD) 

ATD N POt82(AATDeOATD) 

where Poise denotes Efron's Double Poisson distribution, 

0 

HFG N Pais(AHFQ) 

AFG N POi3(AAFQ) (5.5.9) 

For prediction, 

HFG P0182(AHFG, OHFG) 

AFG POi92(AAFG, 'AFO) 

The form of the mean terms such as AHFG or I ARPA has not yet been specified. 

This is the topic of the next section. 

5.5.3 Selection of covariates for specific models 

Ideally, by studying the past relationships between the covariates, a reliable framework 

which produces predictions for future events could be obtained. With the large number 

of covariates, there is a danger of over-fitting. That is, having a set of variables that 

explain past data very precisely, but by modelling the random error rather than the 

underlying relationships. Hence the predictive power may well be disappointing. This 

problem is illustrated in Tables 5.8 and 5.9. 

Table 5.8 displays the results of fitting a model for the number of Home Yards 

Rushed using various covariates, however the model is fit separately for each season 

of the data. The coefficient for the number of Home Rush/Pass Attempts (HRPA) 

is highly significant for seasons 2 and 3, but the size of the coefficient, and hence 

statistical significance is far lower in seasons 1 and 4. The coefficients for Away Home 

Rush/Pass Attempts (ARPA) and Away Pass Interceptions (APINT) display a similar 

problem for different seasons. Table 5.9 displays the results of performing binary 

logistic regression on the proportion of Home Pass Attempts (HPA) that result in 
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Table 5.8: Coefficients and values for Home Rushed Yards model, using various covari- 
ates, regressed over each season individually 

Covariate Season 
(coef, p-value) 128 .4 
HR (5.511,0) (5.852,0) (5.189,0) 5.533,0 

AR (-0.615,0.18) (-0.272,0.505) (-0.059,0.873) (0.345,0.38) 

HRPA (0.406,0.185) (1.408,0) (0.846,0.009) (0.551,0.112) 

ARPA (-0.979,0.004) (-0.22,0.484) (0.071,0.826) (-0.226,0.527) 

HPINT (4.434,0.07) (1.226,0.588) (1.863,0.351) (0.954,0.691) 

APINT (-6.802,0.002) (-8.789,0) (-3.387,0.087) (-3.875,0.096) 

Table 5.9: Coefficients and values for Home Pass Conversion ratio model, using various 
covariates, regressed over each season individually 

Season 

ARPA (-0.02,0) (-0.023,0) (-0.028,0) (. 0.027,0) 

HPA (0.002,0.735) (-0.002,0.649) (0.009,0.033) (0.012,0.005) 

APA (0.006,0.169) (0.017,0) (0.022,0) 

HPINT ("0.068,0.005) (-0.022,0.318) (-0.074,0) 

(0.019,0) 
(-0.085,0) 

APINT (-0.006,0.814) (-0.051,0.018) (-0.003,0.903) (-0.039,0.084) 

a Completed Home Pass (HPC) using a number of covariates, where the regression 

is again performed separately for each season of the data. As in Table 5.8, some 

of the covariates' significance varies drastically from season to season. One possible 

cause is the correlation between some of the covariates. Techniques such as Principal 

Component Analysis could be considered in this situation. The approach taken here is 

to select only the most essential set of covariates for each model, although with further 

research, more suitable models may be discovered. 

A procedure to discover the essential covariates 

To choose the most appropriate set of covariates for each model, the following procedure 
is used: 

1. For each of the models specified by Equations 5.5.3 to 5.5.9, obtain team pa- 

rameter estimates for the models, with no covariates involved in the conditional 
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mean. For example, the conditional mean for the models specified by Equations 

5.5.3 and 5.5.4 are defined to be, for match k between sides i(k) and j(k), 

logit(E[Xk]) = 14 + ai(k) + ßß(k) +3 

(5.5.10) logit(E[Yk]) =µ+a (k) +A (k) 

where 

" Xk and Yk are set to be the home and away response variables in Equations 

5.5.3 to 5.5.9. The distributions for Xk and Yk are as stated in Equations 

5.5.3 to 5.5.9. 

" the a and ß parameters are the teams' offensive and defensive capabilities 

with respect to the relevant response variable. 

"p and 6 are the global mean and effect of playing at home, with respect to 

the response variable. 

Note that for the other models, the specification of the conditional means such 

as those listed in Equation 5.5.10 need to modified appropriately depending on 

whether the data is considered to binomially distributed, Normally distributed 

or Poisson distributed in Equations 5.5.3 to 5.5.9. 

The loglikelihoods are maximised using the MLE procedure that has been applied 

to other models of this type in this thesis and is explained in Chapter 3. Note 

that it is appropriate to exponentiate the right hand side of the means when 
Equations 5.5.3,5.5.4,5.5.7,5.5.8 and 5.5.9 are being fitted. This is because the 

proportion parameter in the binomial distribution, and the rate parameter in the 

Poisson distribution, are necessarily greater than zero. 

2. Using the results of step 1, create team effects for each of the models featured 

in Equations 5.5.3 to 5.5.9. For each match this is ä; (k)+ßj(k) for the model for 

the home response and äj(k) + &k) for the model for the away response. 

3. For each of the models specified by Equations 5.5.3 to 5.5.9, fit a generalised linear 

model including, in the conditional mean, both the team effects from stage 2 and 
the available covariates (obtained by reference to Figure 5.5.1). These models are 

all fitted separately for the data of each season. The consistency of the estimates 

from one season to the next is examined. Upon consideration of the results of 
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this, the covariates are chosen with the aim of including all necessary information 

while minimising the risk of over-fitting by modelling random error. 

The logic behind this procedure is that it is conceivable that the problems involved 

in selecting which covariates are important that is observed in Tables 5.8 and 5.9 may 

be reduced by modelling more of the variance where possible. This can be achieved by 

including team parameters, in addition to the covariates, in the specifications of the 

means of the models listed in Equations 5.5.3 to 5.5.9. 

When a variable is significant for some seasons but not others, the decision whether 

to include it is a subjective one based on various factors. Firstly, how close it is to 

statistical significance in each season is considered. If it is the model for a home 

response about which there is uncertainty, then the corresponding model for the away 

response is examined (and vice versa). 

Results of covariate selection procedure 

Based on this analysis, Table 5.10 displays which covariates have been selected for the 

final models. 

" There is a general symmetry between the home and away categories, which is 

logical, although the partly subjective selection of covariates was made using this 

as a criterion. Total symmetry is not expected since NFL teams, as in many other 

sports, vary tactics according to whether the match is being played at home or 

away. 

9 The sufficiency of Completed Passes towards predicting Passed Yards, and the 

the sufficiency of Rushes towards predicting Rushed Yards, is unsurprising. 

" The importance of information concerning Touch Downs towards the prediction 

of Field Goals is logical, since usually when a team is faced with a potential 

scoring opportunity, it has to decide between trying to obtain a Touch Down for 

6 points or settling for a Field Goal for 3 points. Thus a larger number of Touch 

Downs than expected is likely to lead to a smaller number of Field Goals than 

expected and vice versa. 

9 One parameter to represent both the effect of a home covariate, such as HRPA 

or HPA, on the home result and the effect of an away covariate, such as ARPA 

or APA, on the away result is generally considered appropriate. 
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Table 5.10: Final model for each covariate 

rush and pass attempts 

HRPAk N 7+d+a, (k) +ßj(r) 
ARPAk N -y +a j(k) + {9: (w) + Au HRPAk 

proportion of rush and pass attempts that result in a rush 

HPAr p+ A21HRPAw + A22ARPAw 
4P N7+aJ(h)+ß; (k)+A21ARPAh+A22HRPA,, +\23aHPAh 

pass interceptions 

HPINT,, N7+b+a; (k) + ßß(k) + A31HPA,, + A32APA,, + asskHRPA, 
APINT. N .y+ a1(w) + ß, (,, ) + A31APAw + A32HPA, 

pass completion ratio 

A- PCI, 
_ -y +b+a; + ßß (r) + A41 ARPAA, + A42 APA, + A43h HRPA, 

APÖ; 
() 

ý"" 7+ as (k) + ß, (a, ) + A41 HRPA,, + A42HPA1, + A4saAPINTi, 

total yards passed 

HPYD, N7+6+ ai(k) +ßj(k) + A51HPCk 
APYD,. Nry+aj(A, )+ß; (t, )+J aiAPCt 

total yards rushed 

HRYD,. 7+6+a, (k) + ß; (w) + A61HRw 
ARYD. ry + a3(r, ) + ß, (, %) + AsiAR, 

touch downs 

HTD,, N7+6+a, (, )+ßß(k)+AriHRYD, +A72APYD, +A73HPA, +AT4APAI, 
ATD, -7+ aj(k) + ß, (. ) + AnARYD,, + A72HPYD, ti + A73APA,, + AT4HPAw + A7rs4HPC, + J\? OGHTDI 

field goals 

HFGi N7+6+a; (k) + 19j(w) + aai HPINTw + as2APINT,, + assHTD,, + asaHPYD, y 
AFG h ̂ ý 7+ al(k) + ß; (w) + as1APINT, + A82HPINT, + . \ssATDI + A84APYD,, + J\a5QHPAh 

Model fitting concerns and estimated coefficients 

Having specified a model for each covariate, it is important to recall a key problem 

associated with the MLE method of obtaining parameter estimates of models that 

feature covariates beside team abilities. By placing less weight on the information 

from matches that took place longer ago, teams' more recent performances contribute 

more to the estimates of their parameters. As a result, the information from less 

recent matches which is helpful towards estimating the effect of factors besides team 

parameters is also down weighted. These effects are not considered time dependent 
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so all information concerning these factors is of interest, hence this is not a desirable 

property, as explained in more detail in Section 3.2.3. Hence the procedure outlined 
in that section is employed, namely 

. obtain estimates for the non-time-dependent covariates assuming no team effects, 

" treating these estimated values as constants, estimate the team effects using the 

MLE procedure outlined in Chapter 3. 

Table 5.11 displays results from the first stage of this process. The coefficients for 

the covariates obtained at a time-point halfway through the data set, and at the final 

time-point are displayed. 

Table 5.11: Final model coefficients at final time-point 

Away Rush and Pass Attempts coefficients 
HRPA: -0.626 
Home Decision to Attempt Pass coefficients 
HRPA: 0.009 ARPA: 0.021 
Away Decision to Attempt Pass coefficients 
ARPA: 0.039 HRPA: 0.016 HPA: -0.034 
Home Pass Interceptions coefficients 
HPA: 0.04 APA: -0.014 HRPA: -0.02 
Away Pass Interceptions coefficients 
APA: 0.04 HPA: -0.014 
Home Pass Completion Ratio coefficients 
ARPA: -0.006 HRPA: -0.02 APA: 0.012 
Away Pass Completion Ratio coefficients 
HRPA: -0.02 HPA: 0.012 APINT: -0.086 
Home Yards Passed coefficients 
HPC: 10.072 
Away Yards Passed coefficients 
APC: 10.072 
Home Yards Rushed coefficients 
HR: 4.838 
Away Yards Rushed coefficients 
AR: 4.838 
Home Touch Downs coefficients 
HRUSITYD: 0.004 HPASSYD: 0.005 HPA: -0.022 APA: 0.017 
Away Touch Downs coefficients 
ARUSITYD: 0.004 APASSYD: 0.005 APA: -0.022 HPA: 0.017 HPC: -0.003 HTD: 0.069 
Home Field Goals coefficients 
HPINT: -0.182 APINT: 0.151 HTD: -0.19 HPASSYD: 0.003 
Away Field Goals coefficients 
APINT: -0.182 HPINT: 0.151 ATD: -0.19 APASSYD: 0.003 HPA: 0.007 

For the second stage, it is necessary to repeat the process of finding the values for 

the down weighting, team prior tightness and seasonal truncation which maximise the 

predictive power of the model. Table 5.12 displays the optimal values for the external 

parameters for each model. 
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Table 5.12: Optimized values of external parameters for each model involved in creation 
of joint distribution for NFL final scores 

sw Tc $ C. 
DPA 0.1 0.1 5 
PINT 0.01 0.1 10 
PCR 0.05 0.1 5 
PASSYD 0.01 20 2 
RUSHYD 0.01 20 2 
TD 0.05 0.2 5 
FG 0.05 0.2 10 

Now that team parameters and the coefficients are available, predictions for each 

of the variables being modelled can be generated. The next stage is to examine how 

closely the joint distribution implied by the predictions obtained throughout the mod- 

elling process resembles the joint distribution of the observed data. 

5.5.4 Posterior analysis of the modelling process 

In Section 2.5.1 several possible techniques in order to evaluate the suitability of a 

model are suggested. One of these, the discrepancy measure technique, is used here. 

To summarise the technique, samples are generated using the specified distribution and 

the parameter estimates. A scalar summary statistic of the data is calculated for the 

observed data set and for each of the simulated samples. The value of these statistics 

for the simulated samples is compared to the value of the statistic for the observed 

data. Recall from Section 2.5.1 that the discrepancy measure technique can be applied 

within either a Bayesian framework or a classical framework. The Bayesian framework 

is more appropriate if the entire distribution of the model parameters is of interest. In 

this application, the maximum likelihood estimates of each parameter are employed in 

order to produce predictions for the covariates in the conditional mean of each model, 

but the distribution of these parameters is not considered. It is the distribution of the 

data that is of primary interest, hence the classical form of discrepancy measure test 

is employed. The discrepancy measures used in order to diagnose any problems with 

the predictive distribution of the statistics are the mean and variance of each of the 

variables featured in the model. 

Table 5.13 displays the observed values of the measures, along with the (2.5%, 

97.5%) quantiles obtained through 1000 simulations of the same statistics using the 

final models obtained in Section 5.5.3. Only data from the 1999/00 and 2000/01 

seasons, which constitutes the second half of the data set, is included so that sufficient 
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data has been observed in order to make valid predictions. If the observed value for 

any of the statisticsis not contained in the (2.5%, 97.5%) quartiles of the simulated 

data, that suggests a model deficiency. The results are now considered. 

Table 5.13: Statistics for observed values of NFL variables, with confidence intervals 

of simulated values in bra ckets 
Variable Mean Variance 
H. PA- 60.82 60.39,61.89 73.76 69.79,88.74 
ARPA 60.06 (59.42,60.99) 84.41 (74.16,95.4) 
HPA 32.96 (31.88,32.94) 65.89 (38.92,49.26) 
APA 33.34 (33.23,34.32) 72.59 (41.59,52.61) 
HR 27.86 (28.22,29.29) 71.17 (39.04,49.34) 
AR 26.71 (25.91,26.98) 72.2 (39.86,50.59) 
HPC 19.07 (18.3,19.06) 29.62 (19.21,24.61) 
APC 19.04 (18.69,19.54) 31.24 (22.48,28.91) 
HPINT 1.07 (0.86,1.03) 1.23 (0.84,1.15) 
APINT 1.14 (1.06,1.26) 1.22 (1.08,1.49) 
HPYD 213.44 (202.46,213.35) 5600.37 (4050.25,5190.09) 
APYD 203.74 (202.23,213.75) 6014.05 (4538.7,5745.8) 
HRYD 111.59 (111.03,118.93) 2778.79 (1972.28,2467.92) 
ARYD 105.3 (100.24,109.98) 2541.86 (1760.42,2230.69) 
HTD 2.5 (2.39,2.65) 2.31 (2.17,2.9) 
ATD 2.12 (2.03,2.27) 2.01 (1.85,2.48) 
HFG 1.54 (1.5,1.74) 1.43 (1.74,2.58) 
AFG 1.4 (1.38,1.61) 1.35 (1.54,2.17) 

The variance of the simulated HPA is far lower than that of the observed data. 
HPA 

VR-pq within a binary logistic regression Recall that HPA is modelled by estimating 

framework, which assumes a binomial distribution where the group size is HRPA. 

The binomial distribution only has one parameter and may not be flexible enough to 

represent the process by which the data is generated in practice. One distribution 

that may be more suitable is the beta-binomial distribution, which has two shape 

parameters. Its density is: 

N r(a + b)r(a + x)r(b +N- x) P(x = xýN' a' b) - 
x r(a)r(b)r(a +b+ N) 

The beta-binomial distribution is often used to model count data for which the variance 
is greater than the mean (and is thus overdispersed). By employing the beta-binomial 

density, both parameters a and b could be estimated in such a way that both the mean 

and variance of the simulated samples match that of the observed data more closely. 
The complicated nature of its density suggests that maximisation of the likelihood of 

such a model, including time-downweighted team effects, would be complicated and 

could be considered as an extension to this work. 
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These comments also apply to the number of Away Pass Attempts and the number 

of Home and Away Passes Completed, which were assumed to be binomially distributed 

with the number of Home and Away Pass Attempts as the group sizes respectively. 
According to Table 5.13, the predictions for Pass Interceptions seem satisfactory 

for away teams, but not for home teams. The simulated values of these statistics are 

however computed using the previously simulated values of the number of Pass/Rush 

Attempts and Pass Attempts, which are known to be inaccurate. An adjustment to 

the simulation procedure that may test more accurately the reliability of the Pass In- 

terceptions model is to reproduce the adjustment applied to the process of simulating 

values of Pass Attempts. That is, to generate 1000 simulations based upon the ob- 

served, rather than simulated, values of Pass Attempts and Rush/Pass Attempts. This 

update is repeated for the remaining variables in the distribution. Table 5.14 displays 

the results. 

Table 5.14: Observed statistics for variables along with simulated values in brackets. 
Values are simulated using observed values of explanatory variables 

Variable Mean Variance 
HPINT 1.07 (0.94,1.06) 1.23 (1.04,1.31) 
APINT 1.14 (1.08,1.22) 1.21 (1.18,1.62) 
HPYD 213.48 (207.86,215.88) 5576.57 (5042.6,6033.64) 
APYD 204.48 (203.5,211.35) 6077.13 (5234.15,6377.64) 
HRYD 111.73 (108.1,113.91) 2772.12 (2610,3162.87) 
ARYD 105.14 (106.75,112.27) 2543.75 (2311.98,2776.07) 
HTD 2.5 (2.47,2.67) 2.3 (2.13,2.77) 
ATD 2.12 (2.1,2.28) 2.01 (1.68,2.24) 
HFG 1.54 (1.45,1.64) 1.42 (1.22,1.63) 
HFG 1.4 (1.38,1.56) 1.34 (1.17,1.55) 

The majority of the observed values are within the confidence intervals obtained 

using simulated values of the relevant quantities. A small number of the observed 

statistics lie outside the the confidence intervals, however this is not unexpected given 
the large number of comparisons made. Overall the discrepancy measures applied here 

have not identified any clear deficiencies in the models for these variables. However 

it is possible that alternative summary measures would discover some discrepancies 

between the observed data and the simulated samples. 

Ideally, to conclude this section of analysis, simulated values of home and away 

scores would be generated by using the simulated values of Touch Downs and Field 

Goals. Unfortunately, due to the unsatisfactory variance of simulated samples of some 

of the covariates involved in this modelling process it is clear that the variance of 
these simulated scores would not be accurate. Even if the variances of the simulated 
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quantities were closer to that of the observed data it would still be necessary to compare 

the covariance structure of the simulated samples of data with that of the observed 

data. In this case there is little interest in doing so since it has already been established 

that some of the response distributions applied are not suitable. Therefore a more 

straightforward approach than the one described in this section is now considered. 

5.6 A quasi-multivariate model 

In order to exploit some of the data from the in-match totals available, a less ambitious 

version of the model attempted in Section 5.5 can be considered. The following models 

are fitted: 

E[HTDk] _ 'Ytd + atd + aiýd td 
(k) + ßj(k) 

E[ATDk] _ 'Ytd + a(k) +ß (k) + AhtdlatdHTDk (5.6.1) 

E[HFGk] = *7f9 +ö f9 +a (k) +t (k) + Ahf91 htdHTDk + AhfglatdATDk 

E[AFGk] _ 'Yf9 + aj() +ß if(k) + Aafgl htdHTDk + Aafgl ntdATDi 

+ Aaf91 hf9HFGk 

where 

49 'Ytd, 'Yfg are intercepts for the Touch Down and Field Goal scoring rates, 

(5.6.2) 

(5.6.3) 

0 atd, öf9 axe parameters representing the effect of playing at home on the Touch 

Down and Field Coal scoring rates, 

" the atd, arg parameters are teams' abilities to score Touch Downs and Field 

Goals, 

" the ßtd, p! .q parameters are the teams' abilities to prevent opponents from scoring 
Touch Downs or Field Goals, 

. the A are the effect of observed Touch Downs or Field Goals in a match on scoring 

rates. 

The A terms, which are coefficients of the HTD, ATD and AFG terms, in all the above 

models are all highly significant. This formulation is simple to implement and also 
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generates predictions for Touch Downs and Field Goals, which can then be combined 

to generate a probability distribution that resembles the distribution for NFL scores 

that was observed in Figure 5.4. Unlike the methods used in Section 5.4 there is no 

need to use computer-intensive techniques such as kernel smoothing. 

It is necessary to select an appropriate probability distribution to model the re- 

sponses in Equations 5.6.3. The approach described in Section 5.5.2 to model Touch 

Downs and Field Goals in the more complex multivariate model is also used here. To 

recap, the Poisson distribution is implemented when the likelihood is maximised and 

asymptotically consistent estimates are produced. However, the Touch Downs data 

is under-dispersed, meaning the variance of the data is lower than the mean. The 

same is true of the Field Goals data. As a result, a distribution that can simulate this 

feature of the data, such as Efron's Double Poisson (defined by Equation 5.5.1) is im- 

plemented in order to provide probabilities for future events or to simulate outcomes. 

The estimates of teams' abilities to score and prevent Touch Downs and Field Goals 

after the final time-point is displayed in Table 5.15. The lack of similarity between the 

rankings of teams across the four categories further supports the suggestion that the 

better teams do not consist of players of equal calibre throughout the squad. 

Once probability distributions for HTD, ATD, HFG and AFG are obtained in this 

way, in order to obtain a distribution for final scores it is also necessary to consider 

the distribution of 1-Point, 2-Point and Defensive Conversions (discussed in Section 

5.1.2). The most obvious formulation is 

(H1Ck + H2Ck) N Binom(HTDk, 91) 

(A1Ck + A2Ck) N Binam(ATDk, Bi) 

H1Ck - Binom(H1Ck + H2Ck, 02) 

A1Ck N Binom, (A1Ck + A2Ck, 02) 

HDCk N Pois(03) 

ADCk ' Pois(03) 

where 01 represents the average proportion of Touch Downs which result in either a 1- 

or 2-Point Conversion, 02 represents the average proportion of 1- or 2-Point conversions 

that result in a 1-Point Conversion and 03 represents the average number of Defensive 
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Table 5.15: Offensive and defensive ability estimates of NFL teams in terms of Touch 
Down and Field Goal conceding rates after 28 January, 2001 

Team Touch Down 
offensive 
estimate 

rank Touch Down 
defensive 
estimate 

rank Field Goal 
offensive 
estimate 

rank Field Goal 
defensive 
estimate 

rank 

Arizona -0.0926 28 0.0093 18 -0.337 29 0.3156 31 

Atlanta -0.0198 19 -0.0277 11 -0.2865 28 0.0771 22 
Baltimore 0.0389 11 -0.0987 1 0.0436 12 -0.6111 1 
Buffalo 0.0487 8 0.0541 26 6e-04 16 -0.0311 13 
Carolina 0.0256 14 -0.0214 13 -0.1472 24 -0.014 14 
Chicago -0.0698 26 -0.0341 9 -0.3615 30 0.0757 21 
Cincinnati -0.1393 30 0.0432 22 -0.2717 27 0.1273 25 
Cleveland -0.156 31 0.0828 30 -0.4617 31 0.2446 29 
Dallas 0.0375 12 -0.0178 14 -0.1356 23 0.0097 16 
Denver 0.0616 6 -0.0873 2 0.2409 3 0.0572 20 
Detroit 0.0394 10 0.0309 21 -0.0893 21 -0.0814 11 
Green Bay 0.1009 2 0.0063 16 0.0126 15 0.037 19 
Indianapolis 0.1534 1 0.0714 28 0.2242 4 -0.032 12 
Jacksonville 0.1007 3 -0.0536 7 0.1606 6 0.0219 17 
Kansas City -0.0225 20 -0.0717 5 0.0951 8 0.0258 18 
Miami 0.0644 4 4e-04 15 -0.1279 22 -0.225 4 
Minnesota 0.0526 7 0.0517 25 0.1713 5 0.1421 27 
New England 0.0464 9 -0.0311 10 -0.2006 26 -0.0035 15 
New Orleans -0.0304 22 -0.0365 8 -0.0292 19 0.0927 24 
NY Giants -0.041 23 -0.0788 4 0.0703 9 -0.1162 9 
NY Jets 0.0204 16 -0.0221 12 0.0313 13 -0.1017 10 
Oakland -0.062 25 0.0759 29 0.2962 2 -0.1853 8 
Philadelphia -0.0759 27 0.059 27 -0.0492 20 -0.264 3 
Pittsburgh -0.0107 18 0.0435 23 0.0619 11 -0.1935 6 

San Diego 0.021 15 0.0281 20 -0.1847 25 0.1404 26 
San Francisco -0.0263 21 0.0081 17 0.0695 10 0.1896 28 
Seattle 0.026 13 0.0882 31 0.0185 14 0.0819 23 
St. Louis 0.0053 17 0.0499 24 0.4339 1 0.2466 30 
Tampa Bay -0.0618 24 -0.0633 6 -0.0172 17 -0.204 5 
Tennessee 0.0624 5 -0.0859 3 0.1036 7 -0.324 2 
Washington -0.1093 29 0.0151 19 -0.0229 18 -0.1866 7 

Conversions by either team in a match. 

All three of these distributions use a single parameter to determine the proba- 

bilities of the outcomes in all games, for both home and away teams. Almost 95% 

of 'Ibuch Down Conversions result in either a 1- or 2-Point Conversion and of these 

approximately 96% are 1-Point Conversions, while on average only 0.04 Defensive Con- 

versions are scored in each match. Hence there is very little variance in the data to 

verify if any more flexible specification is appropriate. 

Once all the parameters from the models described in this section have been esti- 

mated it is possible to produce probability densities for the scores of the games. Firstly 

it is necessary to simulate, for example, 10000 samples of each of the distributions de- 

fined above. So for each match k, values HTDks, ATD*I, HFG*I, AFG*', H1Ck', 

A1Ck`, H2Ck', A2Ck', HDCC', ADCC', iE (1,10000) are obtained. Then for each 
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Figure 5.13: Probability density obtained from quasi-multivariate model for New York Giants' 
final score, SuperBowl 2000/01 

match, 10000 simulated values of the home and away scores can be obtained via 

HSCC` = 6*HTDk'+3*HFGk'+H1Ck'+2*H2Ck'+2*HDCC' 

ASCC' = 6*ATDk'+3*AFGk'+A1Ck'+2*A2Ck'+2*ADCki 

5.6.1 Model evaluation and betting success with quasi-multivariate 

model 

Figure 5.13 plots the density of scores for New York Giants' score in the final match in 

the data set, which was the 2000/01 SuperBowl. This density is obtained by simulating 

10000 outcomes using the distributions obtained in Section 5.6. The uneven density 

that was treated in Section 5.4 is mimicked. Figure 5.14 displays a moving average plot 

of predictions against observed values, which reveals that the predictions are broadly 

reliable. 

In Figure 5.15 the betting strategy attempted in Section 5.4.2 is repeated, where 
bets are placed on the difference in scores and the total score of matches. The results are 

interesting in that the bets on differences in scores generally win just about frequently 

enough to ensure a positive expected gain (as discussed in Section 5.4.2, this requires a 

win rate greater than 52.4%), provided bets are placed when the probability of success 

is estimated to be greater than around 57%. Nevertheless the profit curve is not close 

to the red line which represents the proportion of winning bets one would realise if the 

model probabilities were the `true' probabilities. The return curve for bets on total 

scores is very disappointing, even though the lower graph in Figure 5.14 suggests that 
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Figure 5.14: Moving average plots of predicted score difference versus observed score differ- 
ence, and predicted total score versus observed total score for quasi-multivariate model 
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Figure 5.15: Proportions of bets won, where bet is made provided P(Win)> cut-off, according 
to the quasimultivariate model. 

in general the total score predictions are reasonable. Note that direct comparisons 

between the return curves in Figures 5.9 and 5.15 are not possible since the return 

curve in Figure 5.9 is based upon data observed since 1983-2001, while that of Figure 

5.15 only includes data from 1997-2001. 

A revealing comparison of the accuracy of the two model predictions against the 

bookmaker's line is observed by fitting two linear models. Denoting the model means 

for score differences and totals by EDm and ET7, and the bookmaker's equivalents by 

EDb and ETb, 

E(HSC - ASC) ~ ad + ßdmEDm + ßd6EDb 

E(HSC + ASC) N at + ßtmETm + fltbETb 
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the coefficients and confidence intervals of interest are 

Pd,,, : 0.23 (-0.08,0.55) 

ßdb : 0.84 (0.53,1.15) 

ßtm : 0.08 (-0.26,0.41) 

ßtb : 0.94 (0.55,1.33) 

It is clear that these linear models place more emphasis on the bookmaker's line. 

This suggests that the bookmaker's line generally predicts the final results more accu- 

rately than the model developed in Section 5.6 does. As an aside, in order to make a 

profit by betting on fixed odds events in this way, it is not necessary to have superior 

predictions. This is demonstrated in Section 5.8.1. 

5.7 Conclusion and possible model improvements 

A major problem when trying to model NFL scores is the non-standard nature of 

the distribution of final scores. Two approaches have been considered in tackling 

this problem. The first approach, covered in Section 5.4 constructs a non-parametric 

density using kernel smoothing techniques. While a distribution that reflects that 

of actual NFL scores is obtained and is used in order to calculate probabilities of 

winning bets with the bookmaker, the distribution cannot easily be used in order to 

obtain MLEs of parameters via standard maximisation routines. The main problem 

with such a model is its impracticality, in that probabilities can only be obtained by 

constant reference to a large look-up table, rather than by straightforward calculations. 

Hence simple tests which make use of this model's predictions and probabilities require 

continual use of uninviting and error-prone matrix manipulation. 

The second approach, developed in Section 5.5, involves forming a model that pre- 
dicts the events that form the scores, rather than the final score itself. Hence the 

number of Touch Downs and Field Goals are modelled. Initially, this is attempted by 

using many other statistics available for each match. Unfortunately the excessively 

complicated relationship between these variables, and the fact that the statistical dis- 

tributions of these variables are frequently quite complicated, prevents an accurate 

marginal distribution for scores from being obtained. A simpler version of this model 
is implemented in Section 5.6 and while reasonable predictions for scores are obtained, 
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the predictions inferred from the bookmaker's line are superior. 

The focus of this chapter has been more on general statistical methods and little 

consideration has been given to the nature of NFL itself. This is in contrast to Chapter 

4 on yellow and red cards, where the effect of the prevailing climate, inter-team rivalries 

and the pressure of matches are all taken into account in the model building process. 

There is plenty of scope for improving the models outlined here in a similar way. 

In particular, data is available which identifies which players actually participated 

in each NFL match and the extent of their participation. Certain players, such as 

the quarterback, are central to the passage of play and many teams do not have two 

quarterbacks of a similar level of quality or experience. Thus an injury to the first- 

choice quarterback or other key players, which are not uncommon, are likely to impact 

upon the expected final score. 

Another feature of NFL games is that teams adjust their tactics frequently through- 

out a match depending on the score of the game. This is true of all sports, where teams 

frequently become more defensive if they are ahead on goals. In NFL this tactic is 

used far more regularly, since the stop-start nature of the game permits constant re- 

organisation and re-evaluation of game strategy. However, all models in this chapter 

assume a constant scoring rate throughout the match. An alternative is to use quar- 

terly scores for each match (an approach used in Chapter 6 for NBA scores) or even 

using the time of goals and analysing matches by treating the scoring rates as birth 

processes. 

5.8 Additional comments and information 

5.8.1 How a gambler can make a profit off a bookmaker with equally 

accurate probabilities 

With equally accurate probabilities, a gambler can make a profit by betting with a 
bookmaker which offers odds for all events. To illustrate this, Table 5.16 displays a set 

of bets on events which each have two possible outcomes and each (unknown to both 

bookmaker and gambler) has a 50% probability of occurring. While the bookmaker 

and the gambler disagree on the probability of many outcomes, they are overall equally 

accurate. While Table 5.16 presents a simple example, the corollary of it can never- 
theless be generalised to any situation where bookmakers and gamblers have differing 

but equally accurate predictions. 
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Table 5.16: A gambler's decisions and expected returns if a gambler has equally good 
predictions to bookmaker 

Bookmaker's Inferred Gambler's Gambler's Expected 
odds bookmaker's probability decision return 

probability to bet (Y/N) for gambler 
11: 9 0.45 0.55 Y 9u, 12 -z=p 
9: 11 0.55 0.45 N 0 
9: 11 0.55 0.6 Y lip-z=-I 4: 6 0.6 0.55 N 0 
6: 4 0.4 0.45 Y z-2= 
11: 9 0.45 0.4 N 0 

Hence the only occasion when the gambler has an expected loss is when both the 

bookmaker and the gambler overestimate the probability of a certain outcome but 

the gambler overestimates it by more. However this expected loss is more than offset 

by the expected gain on the occasions when both the gambler and the bookmaker 

underestimate the probability of this outcome but the bookmaker underestimates it 

more drastically. Both of these situations should occur equally often in the long run 

since the model and bookmaker are assumed to be equally accurate overall. This leaves 

the occasions when one of the gambler or bookmaker overestimates the probability of 

the outcome but the other underestimates it. These correspond to the first two rows 

of Table 5.16. The gambler either does not bet, or has a positive expected gain. 
However the situations when the gambler's estimate of the probability of an outcome 

is higher than that of the bookmaker do not occur frequently, since the bookmaker's 

probabilities are always inflated to include their own overround. Hence although the 

gambler makes a long term profit it may accumulate rather slowly. 

5.8.2 Procedure to determine the level of parameterisation of team 

abilities 

As mentioned in Section 2.1, there is considerable debate as to what level of detail is 

required to represent the ability of each team in any given sport. There are various 
levels of parameterisation that could be considered, such as 

" allowing attack and defense parameters for both sides, and a single home effect 

parameter that applies for all teams 

9 allowing attack and defense parameters for both sides, and separate home ad- 

vantage parameter for each side 

9 allowing home attack, home defense, away attack and away defense parameters 
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for each side. The team specific home effect is subsumed by this parameterisa- 

tion. 

Table 5.17 lists the different specifications that could be considered. 

Table 5.17: List of models with different levels of parameterisation 
Level Model 

E[xi]=E[Yk]=ry 

E[Xk]=ry+b 
E[Yk] =7 

3a E[Xk] +5+a; (w) 
E[Yk] +Q! (k) 

3b E[Xk]-y+6+pj(h) 
E[Yk] =7+ßº(k) 

4 E[Xk] =7+6+a, (,, ) + ßt(k) 
E[Yk] =7+Qj(k) +ß. (r) 

5a E[Xk] =, y +6+a; (k) + ßj(k) + Ai(k) 
E[1] =7+aj(k)+ß(k) 

5b E[Xk] = ry +b+ ai(k) + ßi(k) 
E[Yk] =7+Q f(k) + ßi(k) + Pi(k) 

6 E[Xk] =1'+6+a, (h) +ßj(k) +A; (k) 
E[Yk] ='Y+af(k) +ßi(r) +µ. (w) 
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" In model 1 all teams are assumed to be of equal ability regardless of whether 

they play at their home ground. 

" In model 2 all teams are assumed to be of equal ability except there is an effect 

from playing at the home ground. 

. In model 3a the identity of the opponent is irrelevant when predicting the the 

score of either side. 

" In model 3b, in order to predict the score of either side, the identity of that side is 

irrelevant and the predicted score is determined by the identity of the opponent. 

9 Model 4 has the level of parameterisation used in each model so far in this 

chapter. 

" In model 5a, the expected goals scored by the home side, relative to the number 

they would be expected to score against the same opponents at the opponent's 

ground or on a neutral ground, varies for each team. 

. Model 5b is similar to model 5a except the number of goals the home side con- 

cedes, rather than the number of goals they score, is modelled. 

" In model 6, both the effect on scoring and conceding rates for the home side of 

playing a match on their home ground, relative to a match played away from 

their home ground, varies for each team. 

Ideally, one would implement the likelihood maximisation process described in 

Chapter 3 for each level of parameterisation for every time-point in the whole data 

set and compare predictive likelihood statistics. However, a less labour and computer 

intensive method to gain a rough idea as to how many parameters need to be included, 

the following procedure can be implemented for each level of parameterisation 

1. fit a separate generalised linear model as specified in the `Model' column of Table 

5.17 for each season of data available. In this way, a separate vector of estimates 
for team parameters is obtained for each season. Thus team abilities are assumed 
to remain constant throughout each season. 

2. monitor how well the estimates for a set of team parameters for one season can 
be predicted from the previous season's. 
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The models have been fitted for NFL scores and before stage 2 of the procedure is 

implemented, it is checked that improvements in fit are observed with the addition of 

the extra team parameters. In general, if the probability distribution used to model 

data is a member of the exponential family, then if n extra parameters are included in a 

model which do not improve predictions significantly, the difference in the loglikelihood 

between the two models, multiplied by two, is asymptotically X2n_1 distributed. This 

was a procedure employed by Maher (1982) to determine how many parameters are 

required to represent soccer teams' abilities. The results of this check are displayed in 

Table 5.18. The best fit can be obtained with the maximal level of parameterisation. 

Table 5.18: Decrease, and significance of decrease, of deviance when additional team 
parameters are added into NFL model, season 1997/98 to 2000/01. 

Model Parameters Comparison Year 
number in model model 

Deviance reduction 
(df, p-value) 

2 ry, b 1 97/98 1038.41 (1,0) 
98/99 1700.75 (1,0) 
99/00 1424.48 (1,0) 
00/01 1177.53 (1,0) 

3a 7,6,0; 2 97/98 4861.07 (29,0) 
98/99 12686.35 (29,0) 
99/00 8890.41 (30,0) 
00/01 12151.14 (30,0) 

97/98 5206.37 (29,0) 
98/99 3959.65 (29,0) 
99/00 7035.53 (30,0) 
00/01 11418.87 (30,0) 

4 7,6, a;, ß; 3a, 3b 97/98 5132.11 (29,0) , 4786.81 29,0 
98/99 4021.2 (29,0) 912747.9 (29,0) 
99/00 6382.31 (30,0) , 8237.19 (30,0) 
00/01 9130.24 (30,0) , 9862.5 (30,0) 

5a ry, b, a;, ß;, A; 4 97/98 1490.51 (29,0) 
98/99 1619.7 (29,0) 
99/00 1636.04 (30,0) 
00/01 2284.35 (30,0) 

5b 7,6, a;, ß;, µ; 4 97/98 3102.28 (29,0) 
98/99 2835.03 (29,0) 
99/00 3684.95 (30,0) 
00/01 2191.31 (30,0) 

6 7,6, ai, ß;, A;, p1 5a, 5b 97/98 3042.22 (29,0) 
, 1430.46 (29,0 

98/99 2556.85 (29,0) 
, 1341.53 (29,0) 

99/00 3550.3 (30,0) 
, 1501.39 (30,0) 

00/01 2211.74 (30,0) 
, 2304.78 (30,0) 
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While closer fitted values to past observations can be obtained by increasing the 

number of team parameters, this does not guarantee that superior predictions can be 

made. One possible reason could be that the improvements in fit observed by increasing 

the number of team parameters are caused by modelling the correlations within the 

random error of the data. Some measures of goodness of fit penalise the addition of 

extra parameters into a model in an attempt to prevent this. The method used here 

to detect if extra predictive power can be obtained by using more team parameters 

is by checking to see if the team ability estimates evaluated one year are informative 

about the team's ability the next season by applying the following simple least squares 

regression 
Wa^'TO+Ti*Wa-1 

where Wd is a vector of team coefficients (al, 
... , a�) or ß) during season s. 

Examination of the Ti term suggests whether Wa_1 can be used to predict W,. Coef- 

ficients and p-values of the Tl terms for each season, for each level of parameterisation 

are listed in Table 5.19. 

Table 5.19: Coefficients and p-values obtained using previous year's parameters to 
predict next year's, for NFL, 1997/98 to 1000/01 

Parameters Regression Coefficient and p-value of previous year's parameter 
in model applied at 61 
716'a; 2-1 0.86,0 

3-2 0.39,0.06 
4-3 0.9,0 

ry, b, P; 2-1 0.98,0 
3, -2 0.38,0.01 
4-3 0.62,0 

7,6, a;, ß; 2-1 0.89,0 0.42,0.03 
3-2 0.4,0.06 0.4,0.08 
4N3 0.85,0 0.34,0.09 

2'. 1 0.88,0 0.42,0.04 -0.08,0.66 
3-2 0.42,0.04 0.34,0.15 -0.28,0.13 
4-3 0.76,0 0.3,0.09 0.1,0.71 

2-1 0.88,0 0.34,0.06 0.95,0.13 
3-2 0.37,0.07 0.34,0.1 -0.08,0.82 4-3 0.86,0 0.16,0.41 0.76,0.23 

2-1 0.88,0 0.38,0.05 0,0.99 0.22,0.33 
3-2 0.39,0.05 0.28,0.18 -0.46,0.03 0.28,0.08 
4-3 0.79,0 0.2,0.28 -0.17,0.46 0.47,0 
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It appears that overall there is a benefit in terms of predictive capability only up 

to parameterisation level 4. So including two team ability parameters appears to be 

the most suitable specification. 
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Chapter 6 

Estimating NBA scoring rates: a 

question of quarters 

Basketball is a sport with worldwide appeal and has been popular since the 1950s. 

This is particularly the case in the United States and since 1949 has been governed by 

the NBA. The NBA league forms the focus of the research carried out in this chapter. 

Initially a model is constructed for NBA scores similar to the model specified by 

Equation 3.1.1, with parameters being estimated using the MLE procedure described 

in Chapter 3. As part of the process of building a more advanced model, techniques 

applied in Chapters 4 and 5 will be considered. Recall from Chapter 4 that details of 

specific Premier League soccer matches beyond the abilities of the two teams playing 

were examined, such as the importance of the match result or any particular rivalry 

between the two soccer teams. Similarly, in Chapter 5, match statistics besides the final 

scores of the two teams were considered, such as the number of yards either NFL side 

gained in the match. Approaches similar to these are taken in this chapter along with 

some new methods such as studying whether the scoring rate adjusts during the course 

of an NBA match. The data set for NBA is larger than that available for the studies 

in Chapters 4 and 5. This enables greater statistical significance to be observed when 

examining various aspects of the data, thus aiding the model enhancement process. 

The structure of this chapter is as follows: initially the rules of NBA are sum- 

marised. In Section 6.2 the available data is introduced and a basic model for NBA 

scores is created in Section 6.3. The limitations of this model are discussed via an 

exploration of the data in Section 6.4. The information gained here is used to specify 

a more advanced model in Section 6.5, the accuracy of which is compared to both the 

138 



basic model and the lines offered by a professional bookmaker in Section 6.6. Section 

6.7 concludes the chapter. 

6.1 A brief introduction to the NBA League 

The model construction process in this chapter considers both the rules of an individ- 

ual NBA game as well as the regulations that govern the league structure so a brief 

summary of both is now presented. 

6.1.1 League structure 

The structure of the NBA league is as follows. 29 teams participate and they are 

grouped into four different divisions. These are the Atlantic and Central Divisions, 

which combine to form the Eastern League, and the MidWest and Pacific Divisions, 

which form the Western League. The NBA season is divided into a regular season and 

a post-season. During each regular season, each side plays 82 games between November 

and April. This means that teams play a fixture almost every two days throughout 

this period. Roughly two thirds of these regular season games are played against teams 

within a team's own league. The 16 teams who perform best in these divisions are 

allowed to participate in the subsequent post-season tournament. The post-season 

comprises a knock-out competition known as the play-offs. The 16 participating teams 

are grouped into eight pairs and in the first round, the teams in these pairs play against 

each other until one side has beaten the other three times. The eight victorious teams 

progress to another knockout stage where they are again placed into pairs and the 

victorious team from each pair is the first team to beat the other team in the pairing 

four times. This leaves four teams progressing to the subsequent round where a similar 

procedure is followed so that only two teams remain. These two teams qualify for the 

final round, which takes place in June. Again, the two teams play each other until 

one side has beaten the other four times. The team that achieves this is the League 

Champion. 

6.1.2 Game regulations 

While the rules of NBA are themselves quite complicated, an exhaustive knowledge of 

all of them is not necessary in order to understand the proceeding analysis. Typically 

each NBA side has a roster of around fifteen players. Only 12 are allowed to participate 
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in each game, with only five allowed to play on the court at any one time. Each game 

is split into four quarters, each lasting 12 minutes of playing time. Points are scored 

by placing the basketball into the net at the opposing team's end of the playing court. 

If a successful shot is taken within 25 meters of the net, 2 points are scored. If the 

shot is taken outside 25 meters, 3 points are awarded. If an infringement is committed 

against a player while they are in the act of shooting, that player's team is awarded 

one or two shots (known as free-throws) at a distance of four meters from the net. The 

opponents are not allowed to defend these shots. For each free-throw scored, one point 

is awarded. Should the scores be level at the end of the fourth quarter, the game then 

goes into overtime, where another 12 minutes of play are undertaken in order to decide 

the match winner. If the scores are still level at the end of this quarter, another period 

of overtime is played, and so on until a winner can be declared. 

The divisional rankings, which at the conclusion of the regular season determine 

which teams qualify for the play-offs tournament, are decided according to the per- 

centage of games the teams have won. Should this percentage be equal for two or more 

teams, a rather complicated set of rules determine the order in which these teams are 

ranked, such as individual results between these teams, or the percentage of games 

won against other teams in the league. It is only whether a team wins or loses that 

is recorded when teams are ranked in their division and the margin of victory in any 

games is not relevant at any stage. So, whether a team wins a match by 1 point 

or 25 points, their league position remains unchanged. This could be an important 

consideration when an attempt to predict the scoring rates is made. 

Given its status as one of the premier US sports, it is not surprising that there is a 

great deal of interest in betting on NBA. While spread betting is possible, the majority 

of bets offered are fixed odds handicaps bets, which are described in Section 1.3.1. 

6.2 NBA data 

The data set over which the models of this chapter are developed includes all regular 

and post-season matches from the 1997/98 season until the 2000/01 season. The 

1997/98,1999/2000 and 2000/01 regular seasons all consist of 1189 matches while 
the respective post-seasons each consist of approximately 70 matches'. There was a 

'Since the post-seasons are a set of mini-tournaments, with each being won by whichever team 
wins for the third time, in the case of the first round, and the fourth time in subsequent rounds, these 
mini-tournaments can consist of a variable number of matches. So the total number of post-season 
matches changes from year to year. 
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players' strike in the 1998/99 season so the regular season of that year only contained 

725 matches, which took place between February and May of 1999. The total number 

of matches in the data set is 4568. This compares to 1020 matches in the main NFL 

data set used in Chapter 5 and the 1900 Premier League soccer matches used to predict 

booking rates in Chapter 4. The data available for each match includes, for both the 

home and away sides: 

9 the date of the match 

9 the final scores (including points scored in overtime periods) 

" the number of points scored in each quarter 

9 the bookmaker's line for both the difference in score and the match total. The 

purpose of these lines is described in Section 1.3.1. They can be considered as a 

prediction of the median difference in score and total score of the match. 

" the number of attempted and successful 2-point shots 

" the number of attempted and successful 3-point shots 

" the number of attempted and successful free throws 

In order to provide an idea of the scale of these figures, Table 6.1 displays this 

information for the first five matches in the data set. 

Table 6.1: First five matches in data set. The figures for the home team are listed 
above the figures for the away team 

Date Teams Score Total 
Attempts 

2-Point 
Attempts 

8-Point 
Attempts 

Free Throw 
Attempts 

Bookmaker's 
Line 

19971031 Boston 92 105 72 18 15 -9 
Chicago 85 108 71 8 29 

19971031 Vancouver 88 109 76 13 20 2 
Dallas 90 106 63 11 32 

19971031 Miami 114 110 62 25 23 7 
Toronto 101 124 83 9 32 

19971031 Charlotte 85 114 57 13 44 2 
New York 97 103 59 10 34 

19971031 LA Lakers 104 115 49 29 37 2.5 
Utah 87 117 77 7 33 

6.3 A basic NBA scores model 

For the proceeding analysis total scores at the end of the fourth quarter are studied. 
While extra information is available by using the final score (that includes points scored 
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in overtime periods), in order to make valid comparisons between the points scored in 

each game it is necessary to compare points scored in equal periods of time. It is also 

important that scores at the conclusion of the fourth quarter are used rather than the 

final score including overtime periods, because if points scored in overtime are included 

in the final score, the score variance estimate is inflated. So for this chapter, the term 

`score' is defined as the score at the end of the fourth quarter rather than the final 

score of the match including overtime periods, unless otherwise indicated. 

The (home mean, away mean, home standard deviation, away standard deviation, 

home and away correlation) for scores are respectively (95.88,92.69,11.83,11.02,0.37). 

Figure 6.1 displays a histogram of combined home and away scores for this data set. 

Its symmetry, combined with the relatively high correlation coefficient considering the 

number of observations (4568 matches) suggests that a bivariate Normal distribution 

seems suitable for the scores. Thus, the formulation is: 

Histogram of NBA home and sway scores 1997-2001 

9 

9 

§ 

O 

scores 

Figure 6.1: Histogram of NBA scores, 1997-2001 
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HSCk ' .W 
(/1k, Ch) 

N/1 - P2 ) (6.3.1) ASCk1HSCk =xN N(Ak + p(x - µk) h, Oa 

and 

Pk =7+as(k) +ßj(k)+b 

Ak ='r+CYj(k)'ý'ßi(k) 

where 

" HSCk, ASCk are the home and away scores in match k 

" ai(k), aj(k) are offensive parameters for respectively the home and away teams 

" ßi(k), ßJ(k) are defensive parameters for respectively the home and away teams 

" ry is the global mean 

"8 is the home effect. 

" oh, Qa are the home and away score standard deviations 

"p is the (home score, away score) correlation coefficient 

In order to obtain parameter estimates for the parameters in the model specified by 

Equation 6.3.1 it is necessary to have near-optimal values for the external parameters, 

as described in Chapter 3. The procedure for obtaining them is applied in Sections 

4.3.5, to obtain parameter estimates for a yellow card model, and 5.3 to obtain pa- 

rameter estimates for a model of NFL scores and is repeated at this stage. Table 

6.2 displays the predictive likelihood obtained for a range of values of the external 

parameters, suggesting that (0.1,5,20) are close to the optimal values of respectively 

the time down-weighting (c), offensive/defensive prior tightnesses (Taß) and between- 

season truncation gap (w)2. Notice the difference between the time down-weighting 

'Note that the predictive likelihood diverges for certain values of the external parameters. The 
reason for this is that at the start of one season, the high down-weighting factor combined with the 
large seasonal truncation values means that only data since the start of the season is 'remembered' by 
the likelihood function. Hence the number of available parameters is greater than the number of data 
points and the weak prior on the team parameters allows the MLE of the correlation coefficient to be 
almost 1. As a result, many subsequent observations are calculated to have probability of 0, hence the 
sum of the logs of these probabilities is -oo. 
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parameter between the NFL model and the NBA model. For NFL the near-optimal 

value of c is 0.05 whereas here it is 0.1. In the NBA application, a 10% weight is 

placed on a match 23 weeks ago when the likelihood is maximised, whereas for the 

NFL model, a match 46 weeks ago has a 10% weight. NBA teams play approximately 

three times a week for up to seven months of the year, whereas NFL teams play once 

a week for up to five months . It follows that the likelihood maximisation procedure for 

NFL scores includes a larger number of less recent matches in order to increase the 

number of observations with which parameters are estimated. 

Table 6.2: Predictive likelihood obtained for different choices of external parameters 
for final scores 

Truncation w= 5 weeks: 
Prior variaa 

2 
0.01 -31596.3077 
0.05 -31521.145 

Weight t 0.1 -31580.2486 
0.2 -31678.2108 

ice rap of offer 
5 
-31580.6296 
-31420.2025 
-31366.7204 
-31364.5173 

live and defensive estimates 
10 20 
-31590.3172 -31593.8397 
-31428.6001 -31433.8074 
-31370.8393 -31380.7614 
-31365.1443 -31394.373 

Truncation w= 10 weeks: 
Prior variance rpp of offensive and defensive estimates 

25 10 20 
0.01 -31589.7093 -31567.5079 -31577.0747 -31580.5907 
0.05 -31514.5357 -31398.5752 -31406.7237 -31412.4433 Weight c 0.1 -31591.1065 -31359.3255 -31360.6186 -31371.5109 
0.2 -31664.3299 -31361.3923 -31372.5807 -31412.9664 

Truncation w= 20 weeks: 
Prior variance rap of offensive and defensive estimates 

25 10 20 
0.01 -31598.5711 -31544.7656 -31554.0958 -31557.6064 
0.05 -31510.5953 -31370.856 -31378.1846 -31454.8696 

Weight c 0.1 -31588.9692 -31349.4321 -31352.4165 -31367.8302 
0.2 -31653.1635 -31897.5825 -Inf -Inf 

71-uncation w= 80 weeks: 
Prior variance raß of offensive and defensive estimates 

25 10 20 
0.01 -31601.3265 -31553.884 -31563.7258 -31566.3006 
0.05 -31519.1974 -31381.4687 -31389.139 -31464.7527 

Weight c 0.1 -31596.4297 -31353.7981 -31357.4613 -31378.109 
0.2 -31667.769 -31913.4894 -Inf -Inf 

Using the estimates obtained by maximising the likelihood at each time-point, 

predictions for each match can be made. Each team's offensive and defensive parameter 

estimate after the final match in the data set on 3 June 2001 is displayed in Zähle 6.3. 

The frequent large differences in the values of the offensive and defensive parameters of 

a team that was observed in the NFL study is also seen here. Like the NFL, the NBA 

also includes a ̀ draft' system whereby the least successful teams each season have first 
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choice of the graduating college Basketball players for the next season. These players 

are obliged to play for the team for a minimum of five years. This limits the number 

of `star' players that play for any team and it follows that it is difficult for a team 

to be one of the best both offensively and defensively. Furthermore within a match 

a team's ability to score points is to some extent proportional to how willing they 

are to risk conceding points to their opponent. As a result each team's individual 

underlying strategy throughout a season is a trade-off between attacking and defensive 

play. This second consideration applies far less to NFL since the the offensive players 

and defensive players do not play at the same time in the match. Thus the defensive 

players are not normally expected to switch to an attacking mode of play and similarly 

for offensive players. 

Table 6.3: Offensive (ä) and defensive (4) NBA team ability estimates according to 
basic model, June 2001 

team ä rank ß rank 
Portland 0.896 12 -1.4147 9 
Boston 1.4723 9 2.3218 20 
Vancouver -3.4054 25 2.4879 22 
Miami -6.9943 29 -5.0345 4 
Charlotte 0.5661 13 -4.3919 5 
LA Lakers 8.8196 1 -3.0014 7 
Orlando 3.3811 5 3.1527 25 
New Jersey -1.2154 19 4.8569 26 
Denver 0.2832 14 2.7809 24 
Detroit -0.1271 17 -0.6943 13 
Houston 2.8479 6 0.1362 15 
Philadelphia -2.5215 24 -5.6697 3 
Phoenix -1.7862 23 -2.9609 8 
Minnesota 1.3942 10 0.5105 16 
Milwaukee 5.2354 4 -1.0619 12 
Chicago -4.6988 26 2.0572 19 
LA Clippers 0.1763 16 -0.2841 14 
Atlanta 0.233 15 6.9112 27 
Utah -1.2823 20 -3.0231 6 
Indianapolis -1.535 22 -1.1342 11 
Seattle 1.5205 8 -1.1994 10 
San Antonio -1.2118 18 -7.0554 1 
Washington 1.0371 11 8.6027 29 
Sacre: nento 7.537 2 1.5947 18 
New York -5.9292 28 -6.7165 2 
Cleveland -1.4035 21 2.4694 21 
Dallas 5.249 3 2.5838 23 
Toronto 1.8681 7 1.5085 17 
Golden State -4.7234 27 7.3505 28 

The moving average prediction of difference in score is compared to the moving av- 

erage observed difference in score in Figure 6.2. Figure 6.3 plots the model predictions 

against the line offered by the bookmaker. From Figure 6.2 the predictions appear to 
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be generally sensible so it is not surprising that in Figure 6.3 a broad similarity be- 

tween the two sets of predictions is observed. The matches furthest from the diagonal 

represent the matches where the bookmaker and the model disagree most strongly and 

these matches are examined in Section 6.4.6. 

O 

-20 -10 0 10 20 

predicted score difference 

Figure 6.2: Moving average of expected (home-away) scores plotted against moving average 
of observed (home-away) scores 

6.4 Possible improvements to the basic model 

While the basic model can be used to produce sensible predictions for matches there 

are several restrictions implicit within this model that could be relaxed. Among the 

issues to be considered are that 

" it is assumed that scoring rates are constant throughout a match, regardless of 

the size of the difference in score at any point. In practice the tactics of teams 

alter during the course of a match, depending on the score of the match, the 

condition of the players, the tactics being used by opposing teams and other 
factors. 

" NBA teams play a large number of games within a short time-period, as described 

in Section 6.1. Players may become tired but the basic model does not adjust 

the scoring rates to reflect this. 

" the basic model allows teams' abilities to adjust over time at a single rate, via the 
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Figure 6.3: Plot of expected difference in scores according to model against bookmaker's line 

parameter (c). While the underlying ability of the players and management may 

adjust in the long term, it is conceivable that the standard of their performances 

fluctuate in the short term due to factors which vary more quickly, such as 

confidence or team morale. 

" match scores are the only data values included in the model. Extra accuracy 

may be achieved using some of the match totals available for other aspects of the 

game, as listed in Section 6.2. 

" two parameters are used to express the abilities of teams whereas other param- 

eterisations might be more appropriate. 

" the identity of the players participating in a match is likely to affect the scoring 

rates whereas the basic model does not consider the squad details of any fixtures. 

Throughout the rest of this section, each of these restrictions will be evaluated by 

examining the available data. 
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6.4.1 Truncation of winning margins 

As mentioned in Section 6.1 the margin of victory does not affect the team's ranking 

within their division. If the team has a comfortable lead at the conclusion of the third 

quarter of play, in certain situations the team may continue to try to increase the score 

difference. With the large amount of attention devoted to statistics in NBA coverage 

in the US sports media, teams and players may attempt to make their own individual 

statistics as impressive as possible. In other situations, such as if the team wants to 

rest its best players due to an important future fixture, or if it senses that one of its 

players is at risk of being injured, the team may withdraw their first choice players, or 

its players may play at a less energetic pace. Thus the margin of victory in a fixture 

does not always reflect the true disparity in level of performance during the course of 

the match. As a result, it may be that if team A beats team B by x points on average, 

and team B beats team C by y points on average (x, y> 0), team A is expected to 

beat team C by fewer than x+y points. 

There have been attempts in some of the previous studies of sports modelling to 

accommodate this effect, which occurs in other sports besides NBA. Rue and Salvesen 

(1997) included an additional parameter in their Premier League soccer scores model 

that reflects their belief that a soccer team tends to underestimate its opponent if the 

opponent is weaker. Hence, defining X as the score of the home team, p and A as the 

abilities of the home and away teams respectively 

E[X]=exp(p--f(p-A)) 

where 'y is a term to allow E[X] to vary according to the difference in ability between 

the two sides. If this effect is indeed present as Rue and Salvesen surmise, ry should be 

small and positive. 
Stefani (1980) uses a similar idea to reflect this effect in a study of both NFL scores 

and College Football scores. The equation for a predicted winning margin wk in match 
k between sides i(k) and j(k) is 

E[wk] = hk + a(r(i(k)) - r(j(k))) 

where hk represents the home advantage assuming match k is played on team i(k)'s 

field) and r(i(k)) and r(j(k)) are the ratings of team i(k) and j(k). r(i(k)) and 
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r(j(k)) can be considered as the average number of points advantage a team has over 

a reference team. The A term is included to prevent over-predicting the margin of 

victory as the difference in team abilities increases. The estimated values for A were 

0.75 for College Football and 0.67 for NFL. 

One strategy that can be readily attempted which exploits the available data is to 

develop a model for home and away scores at the end of the 3rd quarter, then model the 

4th quarter scores conditional on the scores at the end of the 3rd quarter. Combining 

these models may obtain more accurate marginal distributions for the scores at the 

end of the 4th quarter than the basic model. 

Figure 6.4 shows that there is, if anything, a negative correlation between the score 

difference at the start of the fourth quarter and the difference in points scored by 

the two teams in the final quarter. This suggests that teams' level of performance is 

not constant throughout an entire game and that the earlier stages of a match are 

frequently used to establish a score supremacy over opponents. The later stages of a 

match can be used to rest players while preventing opponents from scoring sufficient 

points to overturn the team's score advantage. 

a 

ä 
0 

-40 -20 0 20 40 

score difference after 3rd quarter 

Figure 6.4: Plot of 4th quarter score differences against score difference at the end of the 3rd 
quarter for basketball, seasons 1997-2001 

The line of best fit that is included in Figure 6.4 is obtained by regressing the dif- 

ference in points scored in the final quarter between the two sides against the difference 

in score at the end of the third quarter. The coefficient and 95% confidence interval is 

-0.098 (-0.115, -0.081), leaving little doubt that this is an essential feature to be added 
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to the model. 

6.4.2 Effect of schedule 

With each NBA team playing 82 games within approximately seven months, teams are 

often required to play several matches in a short space of time, and their performance 

in some matches may be affected in some way due to this. Furthermore, the necessity 

to travel a long distance shortly before a match may be detrimental to the team's 

performance. 

To study the suggestion that a team that is tired due to playing a busy schedule 

will perform less well, the level of tiredness needs to be quantified in some way. A 

measure of tiredness should be found that is specific enough to distinguish between 

enough situations, and general enough to include sufficient data to obtain significant 

results where appropriate. Tables 6.4 and 6.5 display counts concerning schedules of 

the teams in the two days prior to a match: 

Table 6.4: Home team schedules 
Two days before: rest rest rest home away home away home away 
One dau before: rest home away rest rest away home home away 
frequency 1242 95 589 1591 1018 22 407 

'Able 6.5: Away team schedules 
two days before: rest rest rest home away home away home away 
one day before: rest home away rest rest away home home away 
Frequency 957 696 768 979 1136 967 10 

Three `candidate' measures are devised, in the form of indicator variables. These 

are: 

Mlk 
f1 if the side in match k has played on two of the previous three days 

0 otherwise 

1 if the side has had to travel in the last 24 hours to match k 
M2k _ 

0 otherwise 

M3k 
1 if the side in match k has played a match anywhere on the previous day 

= 
0 otherwise 
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These vectors are constructed for the home and away sides in each match. To 

verify if any of the measures listed above signify that a team is tired to the point 

where the match score may be affected, the observed average scores are compared to 

the predictions obtained using the basic model via simple linear regression. Tables 6.6 

and 6.7 display the results for the home and away scores. 

Table 6.6: For home teams, effect of schedule on average score difference 
Ml,,: Played 2 of 
8 previous games 

M2,,: Travelled to 
current fixture 

M3,,: Played 
previous day 

Number 
of games 

Mean score difference 
minus prediction 

1 Y Y Y 345 -1.364 (-2.557, -0.172) 
2 Y Y N 0 - 
3 Y N Y 68 -0.369 (-2.658,1.92) 
4 N Y Y 208 -1.552 (-2.906, -0.197) 
5 Y N N 665 -0.285 (-1.114,0.544) 
6 N Y N 0 - 
7 N N Y 23 -0.989 (-5.259,3.281) 
8 N N N 2763 0.39 (0.006,0.774) 

By comparing rows 1 and 5 of Table 6.6, it seems that teams are tired by having 

to play the day previous to a fixture, while playing two games on successive days then 

having a rest before a match does not appear to tire teams. A comparison of row 1 

with rows 3 and 7 would ideally clarify whether it is playing the previous day, or the 

travelling over the last 24 hours, that tires teams, but unfortunately rows 3 and 7 do 

not contain enough observations to draw any conclusions with confidence. Hence the 

overall message from Table 6.6, by comparing rows 1,3,4 and 7 with row 8, seems to 

be that playing the previous day on average reduces the score difference by between 

1.5 and 2 points. 

Table 6.7: For away teams, effect of schedule on average score difference 
M1,,: Played 2 of 
3 previous games 

M2k: Travelled to 
current fixture 

M3,,: Played 
previous day 

Number 
of games 

Mean score difference 
minus prediction 

1 Y Y Y 946 -0.796 (-1.536, -0.055) 
2 Y Y N 0 - 
3 Y N Y 0 - 
4 N Y Y 368 -0.262 (-1.35,0.825) 
5 Y N N 574 -0.25 (-1.11,0.609) 
6 N Y N 0 - 
7 N N Y 0 - 8 N N N 2184 0.433 (-0.029,0.895) 

Concerning teams who played away from home, it seems from row 5 of Table 6.7 

that again, provided a team has rested the previous day, their score is not affected on 

average, even if they did play games on the two previous days. However, comparison 

of rows 1 and 4 suggests that playing two games in the last three days, one of which 
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took place the previous day, is more tiring than only playing a fixture the day before. 

However, the confidence intervals in rows 4 and 5 suggest that more observations are 

required to draw any strong conclusions with respect to this. Also, further discoveries 

may be made if the distance teams had to travel to a fixture is calculated and included 

within the framework above. 

Overall, there is little doubt that a team's schedule affects their average result and 

measure M3k defined above seems to be the most appropriate one to include in the 

model. By comparing the parameter estimates for the following two linear models 

it appears that the specification by which the variables are included is quite crucial. 

Denoting the expected home and away score means from the basic model by Pk and 

Ak, 

E[HSCk - Pk] _ ßo + ßi * HTIREDk + ß2 * ATIREDk (6.4.1) 

E[ASCk - , \k] _ ßo + ßi * ATIREDk + ß2 * HTIREDk (6.4.2) 

For the first model, the coefficients and confidence of interval for ßl and #2 are 

-0.791 (0.159, -1.741) and 1.071 (1.767,0.375), while for the second model they are 

-0.089 (0.566, -0.744) and 1.119 (2.013,0.225). It appears that teams concede more 

points as a result of playing the day before, but their own scoring rate is not significantly 

affected. 

6.4.3 Short-term form 

The underlying ability of a team rarely changes drastically within a short period of 

time, since it is largely determined by the abilities of the players in the squad. These 

do not change on a regular basis. But while the team's ability may change slowly, 

its short-term form might fluctuate. For example a set of recent bad results may 

affect the team's confidence briefly. To detect this short-term form effect, a method to 

determine if the team is in a spell of particularly good or bad form is needed. Hence a 

form measure is needed for each team entering each match. Several methods are tried 

here. 
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Using recent results for prediction 

It may be worth incorporating a team's most recent results, as well as their long term 

ability, in order to predict their scores. Two methods to measure a team's recent form 

are attempted. 

Method 1 averages out the team's margin of victory or defeat in the previous k 

matches to create a form vector. The difference between the observed and predicted 

difference in score from the basic model is regressed against this form vector. The 

significance of the form vector is monitored. Thus if a team has performed badly 

compared to their opponents in many recent matches it is possible that their confidence 

or team morale has dropped to a point where their expected score in a future match 

is affected. The basic model may not adequately adjust sufficiently for the team's bad 

results since teams' abilities are assumed to adjust only over a longer period of time. 

A similar argument can be applied to suggest that the score of a team with recent 

good results may be significantly different to that predicted by the basic model. 

Method 2 is similar to Method 1, but the difference between the margin of victory 

or defeat and the bookmaker's line for the previous k matches is calculated to create a 

form vector. So, instead of observed performance, it is the extent to which they have 

exceeded expectation that is considered. This may more accurately measure their 

confidence entering the next match. 

As an illustrative example, the model fitted for Method 1, k=1 for the score differ- 

ence in match m is 

E[(HSCm - ASCm) - (Pm - Am)] = ßo + ßi(HSC� - ASCn) (6.4.3) 

where match n is the previous match in which the home side of match m participated, 

pm and A,, are the expected home and away scores implied by the basic model and 00 

and ß1 are the coefficients to be obtained. A large significant value of ßi would suggest 

that a team's performance relative to its opponent, compared to that predicted by the 

basic model, is significantly improved given a good result in a previous match. 

The model fitted for Method 2, k=1 for the score difference in match m is 

E[(HSCm - ASCm) - (µm - Am)] = ßo + 01(HSCn - ASCn - Bn) (6.4.4) 

where the µ,., A�z, ßo and ßl terms are defined similarly and B. denotes the book- 
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maker's line for the home side's previous match. The bookmaker's line is used as an 

alternative to the prediction made by the basic model, p, a - a,,, since the the depen. 

dency between p, a - A,,, and µ�a could produce misleading results if a model were 

fitted containing both of these terms. 

Both methods are implemented on both home scores and away scores. The methods 

are tested for values of k between 1 and 10 and Table 6.8 displays the estimated 

coefficients for the ßi values. 

Table 6.8: Coefficients and significance levels for different values of k 
k method 1 method 1 method 2 method 2 

at home away at home away 
(coef, p-vai) coef, p-val) (coef, p-val) (coef, p-val) 

1 (0.004,0.738 (-0.01,0.38) (-0.015,0.298) (-0.015,0.263) 
2 (0.004,0.827) (-0.016,0.301) (-0.023,0.274) (-0.026,0.187) 
3 (0.019,0.338) (-0.006,0.759) (-0.012,0.643) (-0.03,0.233) 
4 (0.016,0.464) (-0.017,0.418) (-0.015,0.621) (-0.061,0.035) 
5 (0.014,0.549) (-0.019,0.384) (-0.026,0.461) (-0.066,0.049) 
6 (0.012,0.619) (-0.031,0.183) (-0.063,0.099) (-0.103,0.006) 
7 (0.002,0.924) (-0.027,0.265) (-0.069,0.101) (-0.109,0.008) 
8 (0.015,0.589) (-0.03,0.235) (-0.047,0.302) (-0.119,0.006 ) 
9 (0.016,0.553) (-0.023,0.364) (-0.045,0.365) (-0.102,0.027) 
10 (0.01,0.735) (-0.021,0.428) (-0.059,0.253) (-0.12,0.015) 

The value of 0.004 obtained when Method 1 is applied to home team's score differ- 

ences, for k=1, means that for every point by which the home side beat their opponent 

in their previous match, in the current match they beat their opponent by average 

0.004 points more than the basic model predicts. The only significant results obtained 

for the models fitted are for Method 2, away games, values of k>3 but in fact it 

seems that on average teams do worse playing away from home if their form prior to 

the game was good! 

Additionally, it is of interest to see if the bookmaker's line is sensitive to recent 

runs of form by the teams involved. If this is so, then consideration of the results from 

Table 6.8 suggests that this reaction would be misplaced, thus presenting an area of 

the betting market to exploit. The first graph in Figure 6.5 plots, in blue, the average 

observed difference in score for each difference in form level between the two teams in 

a match, where form is defined by Method 1 above. Plotted over this, in black, is the 

average of the bookmaker's line for each match and, in red, the average predictions 

obtained from the basic model. The lower graph in Figure 6.5 is similar to the upper 

graph except form is defined by Method 2. 

Note that the number of observations decreases towards both the right and left 
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Figure 6.5: Plotting scores (_), model predictions (-) and bookmakers spreads (_) 

against recent runs of form 

hand edges of the plots if Figure 6.5. This explains the large variance in these areas 

of the plots. If the bookmaker's line is sensitive to recent runs of forms, the black 

lines should increase above the blue ones on the right hand side, representing an over- 

reaction to good form by a team, and decrease below the blue line on the left hand 

side, representing an over-reaction to a bad run of form. In fact, the bookmaker's line 

ties in closely with the average observed scores regardless of the run of form suggesting 

that market over-reaction is not taking place. 

Construction of a confidence score 

Quantifying a team's level of confidence at any one time objectively is difficult. How- 

ever, an attempt is made here via intuition to construct a vector which approximately 

represents each team's confidence entering the match. 
Suppose that the confidence of a team can assume one of five levels, ranging from 

maximum confidence to minimum confidence. Table 6.9 displays how teams are al- 
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located into each class and Zhble 6.10 displays the number of occasions teams are 

classified in each class. 

2 Won previous two, one by 10 points more than bookmaker's line 
Won previous two, including one win by >15 points 

1 Won previous two, but was the favourite for both matches 
u Won one, lost one of previous two 
.1 

Lost previous two, one by more than 15 points 
-2 Lost previous two, one by 10 points more than the bookmaker's line 

Lost previous three matches 

Table 6.10: Number of observations in each confidence class 
Confidence class -2 -1 012 
Number of observations 1939 819 3348 801 1283 

Define HCONFk and ACONFK to be the confidence, as calculated above, in 

match k of the home team and away team and ILk, Ak to be the expected home and 

away score according to the basic model. The following linear model is fit. 

E[HSCk - lAk] = at, +7h * HCONFk 

E[ASCk - Ak] = as +, y. * ACONFk 

For the coefficient 7h, the estimate and confidence interval are -0.036 (-0.287,0.215) 

and for rya they are -0.296 (-0.531, -0.061). Recent good results do not affect the home 

side at all, while again it seems the away side may, if anything, be at a disadvantage 

as their confidence increases. 

Winning streaks 

one frequently quoted statistic in media coverage of NBA in the build-up to a fixture 

is the length of winning streaks of the teams as they enter a fixture, a streak being 

defined as the number of consecutive victories immediately prior to the fixture. Again, 

it is conceivable that the market over-reacts to the importance of this short term run of 
form. To examine this, the length of winning streaks prior to every match in the data 

set is recorded, and model predictions are compared to the bookmaker's line. Figure 
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6.6 contains the relevant plot. 
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O 
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Figure 6.6: Plot of average observed score difference (_) plus confidence intervals (... ), 
model predictions (-) and bookmaker's line (-) against length of winning streak prior to 
match 

In fact, for streak lengths up to around 7, the bookmaker's line is very similar to the 

predictions from the basic model, which do not explicitly adjust for winning streaks. 
The differences observed for streak lengths above 7 are based on a small number of 

matches thus no firm conclusions can be made (only 103 matches from the sample 

of 4244 matches included in Figure 6.6 featured a side that was on a streak of 8 or 

more prior to the fixture). This suggests again that the bookmaker's line does not 

over-emphasise the significance of recent team form. 

Short term form: conclusions 

Two messages emerge from the investigation of teams' recent form. First, team abilities 

can be summarised by their long-term ability estimate obtained via the basic model. 
Factors such as confidence and motivation acquired through very recent runs of form on 

average do not significantly affect a team's results. There is mild evidence suggesting 

that a team's results are on average worse when playing away from home given recent 

good results. However, no adjustments are made to the model to accommodate short- 
term form. 

Secondly the bookmaker's line does not appear to over-estimate the importance 

of recent good or bad results. The bookmaker's line is largely determined by the 
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behaviour of the betting market. However, despite the large emphasis that is placed 

on recent results in media reporting, it seems that gamblers are not susceptible to such 

publicity and that they correctly consider long-term form of greater importance. 

6.4.4 Use of additional covariates 

Recall that Section 6.2 described the data available for each match in addition to 

either team's score. There are many ways these numbers could be used. One method, 

employed in Section 5.5 to model NFL scores, is to select the sections of this data 

that may be relevant. Then a joint distribution is formulated which includes the final 

match scores, that ideally produces a more accurate marginal probability distribution 

for the final match scores than the basic model. 
For the next development some abbreviations are introduced. In match k, for the 

home and away side respectively, 

" HAk, AAk are the total shot attempts of any sort, 

" HFTAk, AFTAk are the number of free throw attempts, 

" HFTMk, AFTMk are the number of successful free throw attempts, 

9 HF2Ak, AF2Ak are the number of 2-point attempts, 

" HF2Mk, AF2Mk are the number of successful 2-point attempts, 

" HF3Ak, AF3Ak are the number of 3-point attempts, 

" HF3Mk, AF3Mk are the number of successful 3-point attempts. 

For each match k, the following procedure could be implemented. 

1. Predict the number of shots, or attempts, of any kind that the home team and 
away team have, to obtain the distribution of (HAk, AAk). 

2. Conditional on (HAk, AAk), predict how the attempts filter into 3-point at- 
tempts, 2-point attempts and free throw attempts. Hence the following two 
distributions are obtained: 

(HFTAk, AFTAk I HAk, AAk) (6.4.5) 

(HF2Ak, AF2Ak IHAk, AAk) (6.4.6) 
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from which this is inferred: 

(HF3Ak, AF3Ak IHAk, AAk) (6.4.7) 

Sine 

HAk = HF2Ak + HF3Ak + HFTAk 

AAk = AF2Ak + AF3Ak + AFTAk 

3. Conditional on the distributions listed in Equations 6.4.5,6.4.6 and 6.4.7 a dis- 

tribution for the number of each type of shot that is converted or made is sought. 

(HFTMk, AFTMkI HFTAk, AFTAk, HAk, AAk) 

(HF2Mk, AF2Mk I HF2Ak, AF2Ak, HAk, AAk) 

(HF3Mk, AF3Mk I HF2Ak, AF2Ak, HAk, AAk) 

Using the results of stage 3, the distribution of the final score for each team in 

match k can be obtained via the identities 

HSCk =2* HF2Mk +3* HF3Mk + HFTMk 

ASCk =2* AF2Mk +3* AF3Mk + AFTMk 

An approach like this was applied to the NFL data in Section 5.5, although the 

multivariate distribution obtained did not match the observed distribution to a satis- 

factory extent. One reason for this was the unsuitability of the binomial distribution 

in the situations where a proportion was modelled. In stages 2 and 3 mentioned above, 

the most obvious way to model teams' decisions concerning which type of shot they 

have, or their shot conversion rates, is to employ the binomial distribution to model 

the proportions involved. However, it is worth checking the suitability of this method 
before implementing any modelling. 

To test whether the HF2M are binomially distributed with group size HF2A, 

samples of simulated values of HF2M are generated assuming a binomial distribution. 

An estimate for the proportion of successful 2-point shots is obtained using a procedure 

explained below. These simulated samples are then compared with the observed data 

and the similarity is compared. To clarify the procedure: 
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1. for each match k between side i(k) and j(k), generate an estimate of the ratio 

E[H] which is the mean of the average 2-point shot conversion rate for team 

i(k) and the average conversion rate that j(k) allow their opponents, during the 

last 500 NBA matches. This accounts for approximately half an NBA season 

and includes approximately 40 data points for each team. 

2. for each match k, kE [1, N] where N is the total number of matches, simulate 

Z values, HF2MM1,... , HF2MMZ of home 2-point made shots, using a binomial 

distribution, given the observed number HF2Ak as group size and the approx- 

imate conversion rate from stage 1 as the probability parameter. This yields Z 

samples of N simulated values of HF2M. 

3. compare quantiles of the variance of samples HFZMi,... , HF2MZ with the 

observed Var(HF2M). 

This same method can be applied to obtain simulated values of AF2M as a proportion 

of AF2A as well as 

" (HF2A + HF3A) as a proportion of HA and (AF2A + AF3A) as a proportion 

of AA, 

" HF2A as a proportion of (HF2A + HF3A) and AF2A as a proportion of 

(AF2A + AF3A), 

" HF3M as a proportion of HF3A and AF3M as a proportion of AF3A, 

" HFTM as a proportion of HFTA and AFTM as a proportion of AFTA. 

Table 6.11 displays the results. 

Table 6.11: Comparison of observed variance for variables, with simulated values as- 
suming binomial distribution 

Variable Observed Simulated Simulated 
Variance 2.5% quantile 97.5% quantile 

HF2A+HF3A 59.376 53.046 55.718 
AF2A+AF3A 58.536 53.739 56.568 
HF2A 70.098 59.055 61.967 
AF2A 72.187 59.695 62.754 
HF2M 28.867 30.563 32.974 
AF2M 25.088 30.878 33.229 
HF3M 6.847 6.343 6.894 
AF3M 6.449 6.261 6.804 
HFTM 42.268 40.838 42.598 
AFTM 38.249 37.666 39.386 
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The observed values of HF2A + HF3A and AF2A + AF3A are over-dispersed 

compared to the samples simulated assuming a binomial response, as are the observed 

values of HF2A and AF2A. Meanwhile the observed values of HF2M and AF2M are 

under-dispersed compared to the simulated samples. The beta-binomial distribution, 

described in Section 5.5.4 may be a more suitable response distribution than the bino- 

mial distribution where the simulations are under-dispersed. Given the computational 

difficulties involved in implementing a likelihood based procedure using a negative bi- 

nomial distribution, this approach has not been considered in this investigation. Hence 

a full multivariate analysis of the type carried out in Section 5.5 for the modelling of 

NFL scores is a topic for possible further research. 

6.4.5 Increasing levels of team parameterisation 

Section 5.8.2 described a simple method that can offer some guidance on the appro- 

priate number of parameters to include for each team in a model of NFL scores. For 

that application it appeared that two parameters was sufficient. Recall that firstly 

it is tested whether a better fit of the past data can be obtained by the inclusion of 

extra parameters to represent the teams' abilities. Secondly, in order to verify that 

extra predictive power can, be gained from the extra team parameters (and that the 

better fit of past data is not obtained by modelling random error) it is investigated 

whether the prediction of team abilities from one season can be made using the fitted 

team abilities of the previous season (which are modelled on an entirely separate data 

set). The results of these tests, applied to NBA data, are displayed in Tables 6.12 and 

6.13. It appears from 6.13 that the generally significant p-values of the most highly 

parameterised model that genuine effects rather than random error are being modelled 

with the extra parameters. Hence extra predictive power may be available by including 

four rather than two parameters for each team in the model. 
Alternatively, as a possible area for further research, rather than modelling team 

abilities by allocating a set number of parameters for each team, other approaches 

could be taken to examine in what circumstances teams' strategies alter for different 

fixtures. One could examine in detail the effect on scoring and conceding rates of a 
big difference in ability between the two teams or the importance of the match, for 

example. It is possible that there are more efficient systems of summarising team 

abilities and how they vary their tactics from match to match than including extra 

parameters for each team. 

161 



Table 6.12: Decrease, and significance of decrease, of deviance when additional team 
parameters are added into NBA model, season 1997/98 to 2000/01. 

Model Parameters Comparison Year Deviance reduction 
number in model model (df, p-value) 
1 ry - 97/98 - 

98/99 - 
99/00 - 
00/01 - 

2 ry, ö 1 97/98 4996.56 (1,0) 
98/99 4197.3 (1,0) 
99/00 7273.88 (1,0) 
00/01 5142.56 (1,0) 

3a 7,6, a; 2 97/98 33592.26 (28,0) 
98/99 19538.1 (28,0) 
99/00 35699.3 (28,0) 
00/01 29867.96 (28,0) 

3b -1,6, ß; 2 97/98 47238.94 (28,0) 
98/99 30955.86 (28,0) 
99/00 40911.45 (28,0) 
00/01 34350.11 (28,0) 

4 7,6, a,, ß, 3a, 3b 97/98 46807.91 (28,0) , 33161.22 (28,0) 
98/99 27311.86 (28,0) , 15894.1 (28,0) 
99/00 42625.87 (28,0) , 37413.72 (28,0) 
00/01 34261.32 (28,0) , 29779.17 (28,0) 

5a ry, 6, a;, ß1, A 4 97/98 3148.84 (28,0) 
98/99 5311.63 (28,0) 
99/00 2908.18 (28,0) 
00/01 3379.12 (28,0) 

5b 7,6, a;, ß;, µ; 4 97/98 4173.95 (28,0) 
98/99 4816.92 (28,0) 
99/00 3333.23 (28,0) 
00/01 4411.47 (28,0) 

5a, 5b 97/98 4010.02 (28,0) , 2984.91 (28,0) 
98/99 4176.44 (28,0) , 4671.14 (28,0) 
99/00 3247.5 (28,0) , 2822.44 (28,0) 
00/01 4155.02 (28,0) 

, 3122.67 (28,0) 

6.4.6 Inclusion of player information 

There is little doubt that the identity of players participating in a match influences the 

performance of the team. Figure 6.3, which plots the model predictions against the 
bookmaker's line, reveals several points where the model and the bookmaker disagree. 

Table 6.14 displays all matches where the model and bookmaker's line for a match 
differ by more than 8 points. 

Many disagreements occur at the start of seasons, for example, at the start of the 
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Table 6.13: Coefficients and p-values obtained using previous year's parameters to 

predict next year's, for NBA, 1997/98 to 2000/01 
Parameters Regression Coefficient and p-value of previous year's parameter 
in model applied a; ß; ry; b; 

ry 2-1 
3-2 
4-3 

'y, ö 2-1 
3-2 
4-3 

ry, ö, a; 2-1 0.9,0 
3-2 1.03,0 
4- 3 0.94,0 

ry, 8, ß; 2-1 1,0 
3-2 1,0 
4-3 0.97,0 

7,6, a;, ß; 2~1 0.9,0 0.53,0 
3-2 1.02,0 0.49,0 
4~3 0.94,0 0.62,0 

716, a1, ß1, A 2~1 0.91,0 0.54,0 0.42,0.02 
3N2 1.02,0 0.44,0.01 0.34,0.01 
4-3 0.96,0 0.66,0 0.37,0.01 

ry, 8, a;, ß;, µ; 2-1 0.91,0 0.42,0 0.24,0.25 
3N2 1.02,0 0.43,0.03 0.05,0.77 
4. s3 0.94,0 0.59,0 0.58,0 

7, b, a;, ß1, A1, µ; 2-1 0.91,0 0.44,0.01 0.31,0.08 0.67,0.01 
3-2 1.02,0 0.35,0.06 0.41,0.01 0.14,0.21 
4-3 0.96,0 0.63,0 0.45,0 0.42,0.04 
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Table 6.14: List of matches with big differences between bookmaker's line and model 
predictions 

Date Home team Away team Model 
prediction 

Bookmaker's 
prediction 

Observed score 
difference 

19980124 Toronto Minnesota -4.29 5 0 
19980215 Sacremento Washington -2.02 6 2 
19980224 Washington Houston 4.52 -5.5 12 
19990205 Utah Chicago 0.02 15 8 
19990206 Charlotte Milwaukee 2.64 -5.5 0 
19990206 Golden State Houston 1.74 -6.5 -2 
19990208 Charlotte Miami 1.49 -8.5 3 
19990209 Chicago Atlanta 4.94 -4.5 -16 
19990210 Charlotte Cleveland 3.85 -5.5 -10 
19990211 Chicago New York 4.8 -6 -5 
19990216 LA Lakers Charlotte 6.46 16 28 
19990218 Indianapolis Philadelphia 1.17 10 4 
19991107 LA Lakers Dallas 3.49 11.5 8 
20000319 Golden State Phoenix -8.95 8 -17 
20001104 Vancouver LA Lakers 1.27 -9 -9 
20001106 Sacremento Portland 6.53 -2.5 4 
20001112 Detroit Seattle 6.57 -2 9 
20001113 New Jersey Portland 2.74 -6.5 -12 
20001116 Sacremento LA Lakers 6.85 -2 0 
20001116 Toronto Portland 5.74 -2.5 -6 
20001127 LA Clippers LA Lakers -3.26 -11.5 -15 
20001205 LA Lakers Philadelphia -0.15 8 11 
20001221 Houston LA Lakers 1.71 -8 -5 

98/99 season (which started 5 February 1999 due to a players' strike), and the 00/01 

season, which started on 31 October 2000. Between seasons clubs buy players, sell 

players, or players retire. Hence the roster of a team can change significantly between 

the end of one season and the start of the next. The bookmaker's lines generally 

consider such information. The procedure used in order to obtain parameter estimates 

for the basic model places more weight on recent results, hence information from 

previous seasons for all clubs is down-weighted. However it does not make adjustments 

for specific changes to a squad such as this. Unfortunately data concerning which 

players have participated in each match was not available during this study. It is a 

possible, and almost certainly worthwhile, area of further research. 

6.5 Construction of more advanced model 

On consideration of Sections 6.4.1,6.4.2 and 6.4.5, the following construction will be 

implemented in order to seek a more effective NBA scores model: 

(HSC3k, ASC3k) N N2(µh3ks {2a3k, 0h3, Qa3, P3) (6.5.1) 
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where 

" HSC3k, ASC3k are the scores at the end of the third quarter 

" µh3k = If +8+a (k) + ßj(k) + AhATIREDk, 

I a3k = 'Y + as(k) +ß (k) + AaHTIREDk 

.7 is the global intercept 

"8 is the home effect 

"a 4k), ß ck) are team i(k)'s offensive and defensive parameters while playing at 

home 

" a7(k)' ßý(k) are team j(k)'s offensive and defensive parameters while playing away 
from home 

" ATIREDk is an indicator variable set to 1 if team j(k) played a fixture the 

previous day, while HTIREDk is similarly defined for team i(k). Ah is the 

coefficient that expresses the average increase in points for the home side if the 

ATIREDk is equal to 1 and as is similarly defined for the away side if the 

HTIREDk is equal to 1 

41 0h3,0a3, p3 are the home standard deviation, away standard deviation and cor- 

relation coefficient of all third quarter final scores. 

Then, the team abilities obtained from the above formulation are incorporated into 

a simple linear model, and treated as constants, to produce a model for final quarter 

scores Q4HSCk and Q4ASCk. 

(Q4HSCk, Q4ASCik) - N2(1-4hg4k, Iag4k, Qhg4, Qag4)Pq4) (6.5.2) 

where 

" Phq4k ='Y4 + 64 + v(a (k) + fgý(k)) + IC(HSC3 - ASC3) 

! ag4k = 74 + v(aj(k) +ß (k)) + rc(ASC3 - HSC3) 

" ry4 is the global intercept for fourth quarter scores 

" E4 is the home effect for fourth quarter scores 
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" ahg4, aag4, Pq4 are the home standard deviation, away standard deviation and 

correlation coefficient of fourth quarter scores 

The following linear model is implemented to verify if the tiredness of the two 

teams affects the difference in score in the final quarter: 

Q4HSC - Q4ASC N ßo + ßi(HSC3 - ASC3) + ß2HTIRED + ß3ATIRED 

where the HSC3 - ASC3 term is considered as a nuisance parameter since it is known 

that it is a strong predictor of Q4HSC - Q4ASC. The estimates and confidence 

intervals for the ß2 and #3 terms are -0.456 (-1.055,0.143) and -0.118 (-0.556,0.319). 

There is no conclusive evidence that if a team plays on the day prior to a match, their 

score in the final quarter is affected, so a tiredness indicator vector is not included in 

the second model. 

Ideally, a four-degree multivariate Normal distribution would be used in order to 

estimate all the parameters from the above models simultaneously since multiple re- 

gression of these four variables on each other reveals a strong dependence between 

them. However, due to the computational complexity involved in doing so, two inde- 

pendent bivariate Normal distributions are used and team parameters are estimated 

only through the first model. The estimates for the four team parameters are displayed 

in Table 6.15. 

The similarity between the estimates for teams' parameters for their home games 

and their away games is not surprising given that it is the same players who participate 
in these games. The tactics may vary according to whether the team plays at home or 

away so an exact agreement is unlikely. The two sets of parameters are plotted both 

for the offensive parameters and the defensive parameters in Figure 6.7. 

The estimated probability for the distribution of final scores can then be calculated 

using these two models. 

6.5.1 Adjustment for overtime periods 

The model development so far has focused on generating probabilities for the events 
P(HSC - ASC) and P(HSC + ASC) where HSC and ASC are the home and away 
score of a match at the conclusion of the fourth quarter of play. For betting purposes, 
it is the final score after possible overtimes that is of interest. Define 

9 DSC4 and TSC4 to be the difference in score and total score at the conclusion 
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Table 6.15: NBA team ability estimates for home offense (ah), away offense (äa), home 
defense (Bh) and away defense (811). June 2001 

team ah rank ä° rank ßh rank ß° rank 
Portland 0.4427 13 0.1952 17 -3.2744 4 -3.5704 6 
Boston 0.2986 16 1.3537 9 1.542 20 2.3514 23 
Vancouver -2.9833 26 -0.333 19 2.1558 24 2.8062 26 
Miami -2.4187 25 -3.3622 26 -3.8497 3 -5.8169 1 
Charlotte -0.6289 21 0.6117 13 -1.8768 6 -1.9093 8 
LA Lakers 5.2324 2 3.2522 3 -0.1579 12 -1.4951 9 
Orlando 2.0383 6 0.673 12 1.0169 15 -0.0434 12 
New Jersey 1.2115 9 0.3824 15 3.0275 27 2.6821 24 
Denver 1.081 10 0.3537 16 2.8064 26 4.6767 29 
Detroit 0.9941 11 2.146 5 1.6314 21 1.6099 18 
Houston 1.4774 8 1.0948 11 1.1891 16 0.1263 13 
Philadelphia -0.5255 19 -1.3798 22 -1.4715 8 -3.8216 5 
Phoenix 0.1989 17 -0.6932 20 -1.5813 7 -2.8021 7 
Minnesota 0.4542 12 1.7545 6 -1.3118 9 0.3479 14 
Milwaukee 2.9362 3 4.161 2 1.1893 17 2.3237 22 
Chicago -6.739 29 -3.4667 27 -0.7823 11 0.758 15 
LA Clippers -3.4005 28 -1.452 23 1.9811 22 2.2405 21 
Atlanta -0.6606 22 -3.6421 28 1.4873 19 -0.0856 10 
Utah 1.4809 7 -1.2072 21 -1.9445 5 -3.9773 4 
Indianapolis 0.3686 14 1.0955 10 -1.0011 10 -0.0698 11 
Seattle 2.6886 4 2.6519 4 0.3365 14 2.2309 20 
San Antonio -0.2353 18 0.4682 14 -6.0048 1 -4.5643 2 
Washington 0.3143 15 -0.1212 18 3.9535 28 2.7331 25 
Sacremento 5.8617 1 4.4384 1 2.194 25 4.1775 27 
New York -3.1018 27 -4.2615 29 -5.0601 2 -4.5078 3 
Cleveland -2.1034 24 -1.8492 24 0.1477 13 1.8894 19 
Dallas 2.1973 5 1.6196 8 2.1116 23 0.8484 16 
Toronto -0.5286 20 1.6933 7 1.298 18 0.8781 17 
Golden State -1.3266 23 -2.0003 25 4.4248 29 4.6099 28 

of the fourth quarter, 

" DSC and TSC to be the difference in score and total score after overtimes are 

completed and 

" OTDSC,,, OTTSC� to be the difference in score and total score in the nth 

overtime period, 
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Figure 6.7: Plot of offensive parameters for home games of NBA teams at final time-point of 
data set against offensive parameters for away games at final time-point 

the following formulae give the distributions for DSC and TSC: 

P(TSC=T)=P(TSC4=TnDSC4#0) 
T-1 

+ P(TSC4 = yl n DSC4 = 0)P(OTSC1 =T- yl n ODSCI 0) 
y1 =0 
T-1 T-yi-1 

+E P(TSC4 = yl n DSC4 = O)P(OTSC1 = Y2 n ODSCI = 0) 
Y1=0 Y2=0 

*P(OTSC2 =T- yl - Y2 n ODSC2 0 0) 
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and 

P(DSC = D) = P(DSC4 =Dn DSC4 rh 0) 

+P(DSC4 = 0)P(ODSC1 =Dn ODSCI 96 0) 

+P(DSC4 = 0)P(ODSC1 = 0)P(ODSC2 =D fl ODSC2 76 0) 

+... 

It is now necessary to derive distributions for ODSC and OTSC. 

For ODSC, by performing the following linear regression 

ODSC N flo + ß1E[DSC] + ß2E[TSC] 

the coefficient and confidence interval for 61 are 0.315 (0.190,0.440) and for ß2 they 

are -0.0478 (-0.155,0.060). Therefore the predicted difference E[DSC] is a significant 

predictor towards the difference in overtime scores, so 

ODCSCk N JV(µo + µi * E[DSCk], 00D) (6.5.3) 

where µo, Ni, 0OD are all evaluated using only data observed prior to match k. For the 

final match, (p0i µl, COD) _ (-0.198,0.268,4.749). 

By implementing the following linear regression: 

OTSC -, 8o +ß1E[DSC] +ß2E[TSC] 

the coefficients and confidence intervals for ßi and #2 are 0.082 (-0.158,0.322) and 

0.188 (-0.0181,0.395). Since neither E[DSC] nor E[TSC] are significant predictors for 

OTSC 

OTCSCk N N(OTSC, 00T) (6.5.4) 

where again only data observed prior to match k are used. For the final match, 

(OTSC, cog') = (21.008,6.995). 

6.6 Comparison of basic model and advanced model 

Figure 6.8 plots the predicted mean of the difference in score from the basic model 

of Section 6.3 against the predicted mean of the difference in score using the more 
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advanced model constructed in Section 6.5 and similarly for the prediction of the total 

scores. While there is a broad agreement between the matches, there are also many 

matches whose predictions have changed greatly. Figure 6.9 displays a plot of moving 

average of predictions against observed values for the predicted values of the difference 

in score and the total score according to both models. It reveals that both model's 

predictions are generally reliable. 
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Figure 6.8: Plot of basic model score predictions against advanced model 

6.6.1 Summary statistics 

Two measures are used in order to compare the predictive ability of the basic model 

with the more advanced model of Section 6.5. The first measure, which uses scores 

at the end of the final quarter, counts the number of times that either model's mean 

prediction is closer to the final score. The second measure calculates the average 

predictive log-likelihood for each match. Table 6.16 displays the results of applying 

these measures. 

Table 6.16: Comparison of basic model and quasimultivariate model via summary 
statistics 

Score difference Score total 
Basic model Advanced model Model 1 Model 2 

Proportion closer 0.526 0.474 0.54 0.46 
Mean loglikelihood -3.923 -3.887 -4.246 -4.308 

The first measure, which does not penalise the magnitude of difference between 

prediction and result, reveals that the basic model is closer to the observed result 

slightly more often. 
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Figure 6.9: Moving average plots of predicted score differences and totals, for basic model 
(_) and advanced model(-) 

The second comparison, which does penalise the magnitude of discrepancy, sug- 

gests the advanced model produces slightly better predictions for score differences but 

slightly inferior predictions for totals. 

It should be noted that the score differences and totals have been modelled as a 

bivariate distribution. However, due to the complex procedure required to obtain pre- 

dictions for final scores described in Section 6.5.1 it is not straightforward to calculate 

the loglikelihood of the joint (DSC, TSC) distribution for the advanced model. Hence 

Table 6.16 displays only marginal loglikelihoods. 

6.6.2 Betting success 

The betting strategy adopted here for NBA matches is similar to that outlined in 

Section 5.4.2 for betting on NFL matches. The probability of winning each bet offered 

by the bookmaker, either on the score difference or total score, is calculated. Then 

various cut-off values are chosen such that bets are only placed provided the probability 
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of winning the bet exceeds this cut-off value. For each cut-off value, the proportion 

of winning bets is recorded and Figure 6.10 displays the results of this strategy. As 

in Figure 5.9, a y=x line is included which represents the return curve that would be 

obtained if bets were placed using the "true" probabilities of match outcomes. 
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Figure 6.10: Proportions of bets won, where bet is made provided P(Win)> cut-off, according 
to both the basic model (_) and the advanced (-). 

It is clear that neither model produces predictions that can win bets against the 

bookmaker on a consistent basis. The horizontal dotted line is the 50% level, which 

represents the proportion of victories one would achieve by betting randomly. The 

advanced model is generally superior to the basic model, however, in order to make 

money by betting with the bookmaker in the long term, it is necessary to have bets that 

win often enough to exceed the bookmaker's overround. As mentioned in Section 5.4.2, 

this requires winning significantly more often than 52.5% of all bets. Unfortunately, 

even the advanced model does not produce predictions that win often enough. 
A similar conclusion is reached by repeating the general linear model test previously 

performed on NFL scores in Section 5.6.1. After fitting the following two models 
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E(DSC) ^+ ad + ßdmEDm + ßdbEDb (6.6.1) 

E(TSC) , at + ßtmETm + ßtbETb (6.6.2) 

where ED,,, and ET. are the model predictions for the score difference and total score 

and EDb and ETb are the bookmaker's equivalents, the coefficients and confidence 

intervals of interest are: 

ßdm : 0.014 (-0.101,0.129) 

Qdb : 0.937 (0.834,1.039) 

fit. : 0.218 (0.127,0.309) 

ßtb : 0.857 (0.784,0.93) 

As seen in the Chapter 5 concerning NFL scores, a simple linear regression model 

puts far more weight on the bookmaker's line than the model prediction suggesting 

once again that the bookmaker's line is overall the more accurate prediction. 

6.7 Conclusion 

A basic model has been presented that produces predictions that are reasonably similar 
to those offered by the bookmaker. * This model makes some assumptions that need 

to be relaxed so a more advanced model is introduced to reflect several effects. These 

include the tiredness teams feel as a result of playing a game on the previous day, the 

tendency for teams to relax should they be leading towards the end of a game and 
teams' different strategies for home and away fixtures. A new model is formulated 

to account for these effects and the success of a theoretical betting procedure based 

on odds offered by a professional bookmaker is evaluated. However, neither model 

produces predictions that are good enough to make a profit on a consistent basis. 
It is likely that some of the assumptions that are still made by the advanced 

model, in particular that the players being fielded for a fixture does not affect the 

average result, are not being made by the bookmaker. While for many matches the 
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advanced model may, for example, correctly identify a 55% probability of winning a 

handicap bet, in other matches where the bookmaker has more accurate odds, then the 

probability of winning a bet drops to approximately 50% since the model is effectively 

placing a random bet. Thus the 55% success of the accurate bets is being averaged 

out with the 50% success rate of the inaccurate ones, putting a ceiling on the success 

rate of the betting strategies that have been considered. 
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Chapter 7 

An alternative estimation 

method - Markov Chain Monte 

Carlo 

While the MLE procedure used throughout this thesis is relatively simple to implement, 

from a statistical point of view it is a little unattractive. In particular, using the same 

team ability parameters for every match in which a team plays when parameters are 

estimated is not ideal even if the importance of older matches is down-weighted. It 

is more desirable to allow the team parameters to adjust over time by specifying 

some dynamic distribution for them. As emphasised by Equation 2.4.1, this does 

complicate the likelihood function considerably. The increase in parameters caused by 

this extension to the modelling procedure means that the numerical routines used in 

order to obtain parameters estimates used so far in this thesis are no longer appropriate. 

There is an alternative method that can be used to obtain estimates of the param- 

eters in a situation such as this. Instead of performing analytical evaluation of the 

likelihood function, inference on the parameters can be made by simulating a large 

number of samples from a posterior distribution of the parameter values given ob- 

served data. In this way, a large number of realisations of the values of parameters 

can be obtained and from these, estimates of the means, modes and variances of the 

parameter in the model can be made. 

The main difficulty associated with this method is that of obtaining the simulated 
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samples. The posterior distribution of a set of parameters 0 given observed data X is 

P(OIX) = 
P(X' 0) 

= 
P(0)P(X (9) 

(7.0.1) 
P(X) fe P(0)P(XIO)d0 

where P(O) is a prior distribution of 0 and P(XIO) is the likelihood of the data given 
0. A likelihood function that includes separate parameters of each team at each time- 

point would be of very large dimension which would make evaluation of the integral in 

Equation 7.0.1 unfeasible. However, although the posterior distribution of the param- 

eters cannot be specified in a closed form, a technique known as Markov Chain Monte 

Carlo (MCMC) can be used in order to simulate from it. A thorough understanding 

of the MCMC technique for simulation is not necessary in order to understand this 

chapter, however a brief summary is given in Section 7.6. There are several imple- 

mentations of the MCMC technique, one of the most popular of which is the Gibbs 

Sampler. A Gibbs Sampling based MCMC program known as WinBUGS is used in 

order to perform the proceeding analysis. 

By employing MCMC, it is possible to obtain parameter estimates for a sports 

model including genuinely dynamic team parameters. The advantages and disadvan- 

tages of this approach are demonstrated by an example. The market that analysed 
is NFL scores for seasons 1997/98 until 2000/01. The model specification is similar 

to that used in the basic model in Chapter 5 concerning NFL, although some modi- 
fications are made on consideration of Glickman and Stern's (1998) NFL model and 
Rue and Salvesen's (1997) soccer model. As outlined by Gilks et at (1995), the task of 

specifying a full probability model can be divided into the three stages: 

1. Specification of model quantities and the dependency structure between them 

2. Specification of the parametric form of direct relationships 

3. Prior specifications 

Each of these steps is now applied. 

7.1 Specification of model quantities and the dependency 

structure between them 

These are the relevant quantities used in the model: 

9 Xk and Yk represent the home and away score in match k. 
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" µk and Ak represent the mean home and away scoring level of match k 

" rc represents the precision of Xk and Yk conditional on µk and Ak 

" ai, t and ßi, t represent the offensive and defensive abilities of team i at time-point 

t 

" ry represents the global mean for all games 

"6 represents the benefit of playing at home 

" The a. and P. terms follow a Brownian motion, with drift precision Tw between 

each time-point during a season and r, between the final time-point of one season 

and the first time-point of the following season. 

The form chosen for µk and Ak for match k between teams i(k) and j(k) taking 

place at time t(k) are: 

µk = 'Y + ai(k), t(k) + ßJ(k), t(k) +d 

Ak = It + aj(k), t(k) + ß, (k), t(k) (7.1.1) 

Figure 7.1 is a cut-down Directed Acyclic Graph (DAG) representing these relay 

tionships, including only the parameters relevant to match k. 

The DAG is a useful method for displaying the specification of Bayesian models, 

where parameters are considered to be random quantities, and are thus specified using 

a probability distribution. A single arrow that points from one quantity to another 

indicates that the probability distribution of the second quantity is some function of 

the first quantity. For example, the distribution for the Ö term in Figure 7.1 depends 

on both bp and r 0. Double arrows are used where several quantities combine to be 

re-expressed in a single quantity, in order to aid the presentation of the model. This is 

the case for the µA and Ak terms, which are defined by Equation 7.1.1. The rectangular 
boxes in the DAG do not define anything with regard to the model specification but 

they are included in order to clarify to the user that the groups of quantities within the 

rectangle are considered to have a similar role in the model. In this case, it is helpful 

to group all team parameters that refer to the same time-point within one rectangle. 
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Figure 7.1: Cut-down Directed Acyclic Graph representing relationship between pa- 
rameters of NFL model 

178 



7.2 Specification of the parametric form of direct rela- 

tionships 

The distribution of each variable and the relationship between each variable in the 

cut-down DAG is explained briefly. 

" The scores Xk and Yk are assumed to be independent and normally distributed 

with precision 's. Note that the precision as an alternative to the variance is used 

throughout this chapter, in order to be consistent with the WinBUGS nomen- 

clature. 

I Xk N114ki k2 

yk ' . 
N'(X k, n2) 

" As mentioned above, standard Brownian motion is used to model the variation of 

a team's offensive ability. If t and t+x are time-points in the same NFL season 

then 

N ai, t+x ^' (ai, t, (x/7-r)Ii1 

If t+x is the time-point of the first fixture of one season and t is the time-point 

of the final fixture of the previous season then 

ai, t-Ex ^' N1ai, t e Te 2 

The teams' defensive abilities are modelled similarly. 

" It is necessary to determine a prior mean and precision for the values of the a 

and 0 terms before any data is observed thus 

a., i r". j («o, Tao ) 

ß., 1 ^' N(, 6o, Tpo ) 

" It is also necessary to determine a distributional form and relevant prior values 
for the other parameters in the model. It is assumed the global mean and home 
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effect parameters are normally distributed so 

'1 "ý r(, yo, T7o ) 

6N N(80, Tao) 

For precision parameters a conjugate prior is a gamma distribution with appropriate 

shape and scale parameters hence 

n, r(Ico, ww) 

Tw - r(7-wo, ww0) 

Td ^' r(T30, w30) 

Note that there is insufficient space in Figure 7.1 to include the r, term. If the 

time difference between t(k) -n+1 and t(k) -n corresponds to a season break then 

r, replaces Tw as the precision quantity that applies to ai(k), t(k)-n+1j aj(k), t(k)-n+1, 

A(k), t(k)-n+1 and ßj(k), t(k)-n+1" Similarly Tao and W, o replace r,,, o and w,,, O. 

7.3 Prior specifications 

Given the ubiquity of the y, J, r. and r,,, terms in the model, weak conjugate priors are 

employed. Since the mean away score during seasons 1997-2000 is 19.14 

ry N(19,0.01) 

The mean (home-away) score during this period is 3.22 so 

S- N(3,0.01) 

The (unconditional) score variance is 106.11 hence the unconditional score precision 
is 0.00942. To have a flat prior on the score precision, a mean of 0.01, variance 10 can 

be used for which the relevant conjugate prior is 

r(l. o * 10-05,1.0 * 10-03) 

While some detailed methods for setting prior values for the a and ß terms could be 

180 



considered, such as using some function of the previous season's scored and conceded 

averages, for simplicity weak conjugate priors are again selected. 

a,, o -. /V(0,0.01) 

ß., o - N(o, 0.01) 

A weekly deviation of 0.25 points in mean scoring or conceding level for a team 

seems plausible, or equivalently a precision of 16. The conjugate prior with mean 16, 

variance 100 is r(2.56,0.16). Therefore 

Tw r(2.56,0.16) 

Given the relatively small amount of data available in relation to r3, a stronger, 

informative prior is used. In order to set a prior distribution, first the mean scoring 

and conceding rate for each team in each year is calculated. Denote these values by 

5; j, Czj, i=1, ... , 4, j =1, ... , 311. Defining S21, ß = S2, ß - S1, ß, it is calculated that 
Var[S21,, ] = 19.55 Var[S32,, ] = 34.83 Var[S43,. ] = 16.50 

Var[C21,, ] = 12.16 Var[C32,. ] = 14.06 Var[C43,. ] = 29.92 
The reciprocals of these are respectively (0.0511,0.0287,0.0606,0.0822,0.0712,0.0334). 

The mean and standard deviation of this vector are 0.05453 and 0.02100, so a reason- 

able conjugate prior is r(6.75,120), which has mean 0.05625 and standard deviation 

0.02165. 

7.4 Model implementation 

Figure 7.2 displays selected portions of the output obtained by running 5 parallel chains 

of 5,000 iterations of the model described above in WinBUGS. The reason parallel 

chains are run is in order to check that convergence has been achieved. Should the 
disparity between the chains be similar to the variance within each chain, this suggests 
that the Markov chain has converged. It is expected that the different variables in 

the model will converge at different rates, hence traces of the parameter estimates 
for the offensive and defensive abilities of one team (the Denver Broncos) as well as 
the global parameters ry and 5 are monitored in the right hand plots of Figure 7.2. 

'Four seasons of data are used and 31 different NFL teams appear in this data set 
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While convergence appears to have been reached by the two global parameters, the 

traces of the chains for the team parameters that have been monitored suggest that 

overall convergence is still some way off. The traces of Denver Bronco's offensive 

and defensive parameter on 31 January 1999 reveal several non-intersecting chains, 

suggesting the stationary distribution has not been achieved. In fact, all these chains 

were started from the same initial values. By starting these chains at different values, 

as recommended in several texts, convergence may well seem even further away. 

A more formal check for convergence, known as the Gelman-Rubin diagnostic test, 

is outlined in Section 7.6. Essentially, it produces a value known as the potential 

scale reduction estimate, with confidence intervals, which approach the value 1 as 

convergence of the Markov chain is achieved. The plots of the potential scale reduction 

estimate are displayed in the plots on the left hand side of Figure 7.2. They confirm 

what the traces suggest, namely that the global parameters have reached convergence 
but the team parameters have not. 

To consider why this is so, note that the distribution of the Denver Bronco's offen- 

sive parameter on 31 Jan 1999 is determined primarily by a single data point, which 

is the Denver Bronco's score in the match that occurred close to 31 Jan 1999, and its 

relationship with the Denver Bronco's offensive parameters in the time-points imme- 

diately before and after 31 Jan 1999. It is also determined less directly through the 

complex dependence structure that exists between all the parameters featured in the 

model, which can partly be observed by recalling the DAG in Figure 7.1. Contrast this 

with the parameters for the global mean and home effect, which are determined using 

every match score, as well as the complex dependence structure. Given that far more 
data directly determines the global mean and home effect, it follows that the Gibbs 

Sampler converges more quickly towards suitable estimated values for them. 

That some parameters have not converged after 5,000 iterations is not surprising 

given that Glickman-Stern's considerably simpler model was run for 18,000 iterations, 

by which stage one parameter had still not completely converged. Rue-Salvesen's 

model, with a similar level of complexity to the one employed in this example was run 
for 25,000 iterations, although certain parameters were not in fact evaluated via the 
MCMC routine. Unfortunately, WinBUGS was only able to perform approximately 
8,000 iterations before encountering memory problems on a 700MhZ Pentium 3 PC 

with 384 MB RAM. Hence this approach shall not be pursued any further due to the 

computational limitations encountered. Incidentally, running the five chains of 5,000 

182 



offest[42,10] chains 1: 5 off est[42,1 0] chains 5: 1 
1.5 -- 15.0 

1.0 10.0 
0.5 =_-5.0 
0.0 0.0 

1 2000 4000 4850 4900 4950 
iteration iteration 

Gelman-Rubin convergence, and iterations 4801-5000 for Denver Broncos offense, 31 
January 1999 

3.0 
2.0 
1.0 

0.0 

1 2000 4000 4850 4900 4950 
iteration iteration 

Gelman-Rubin convergence, and iterations 4801-5000 for Denver Broncos defense, 31 
January 1999 

4.0 
2.0 
0.0 

-2.0 
-4.0 
-6.0 

gmest chains 1: 5 

Gelman-R 

1.5 
1.0 
0.5 
0.0 

2000 4000 
fteration 

gmest chains 5: 1 
21.0 
20.0 
19.0 
18.0 
17.0 

4850 4900 4950 
iteration 

ons 4801 t 

1.5 

1. C 
0.: 
or 

in convey ence and iterati 
hest chains 1: 5 

r ý-ý- -i 
7 2000 4000 4850 4900 4950 

iteration aeration 

Gelman-Rubin convergence and iterations 4801 to 5000 for home effect 

Figure 7.2: Convergence-related output from MCMC treatment of NFL, season 1997/98- 
2000/01 continued 

SUUU tor giobai inte 
hest chains 5: 1 

5.0 
4.0 
3.0 
2.0 
1.0 

183 



iterations took 27 minutes. 

7.5 A comparison of the MLE and MCMC modelling ap- 

proaches 

Consideration of the MLE and MCMC approaches emphasises that there are several 

criteria which have to be considered in order to develop a model-building system, many 

of which are not related to the statistical qualities of the model or the estimation 

process. For example, it is important that the parameter estimation process is quick, 

easy to program and gives readily interpretable results. 

In terms of output, the MLE method returns 2 parameters (representing the attack 

and defense) for each team at each time-point, plus an updated estimate for the global 

mean, home effect and score variance at each time-point. In the NFL data set used for 

this application there are 31 teams and matches take place on 182 different days. That 

leads to a total of (31*2+3)*182=11,830 parameters overall. The MCMC technique, 

on the other hand, returns t*31*2+5 parameter distributions when run at time-point 

t, since each team's offensive and defensive parameter is modelled as a dynamic pro- 

cess. In addition, the global mean, home effect, score variance, weekly precision and 

seasonal precision parameters are re-estimated. Note that these effects are assumed to 

be constant throughout time, unlike the team ability parameters. Hence, if each team 

is allocated two parameters for all 182 days, and the MCMC is run over all 182 days, 

the output to the MCMC simulation features E182 (62t + 5) =1,033,396 distributions 

(as opposed to to point estimates). It may seem excessive to allow teams' abilities to 

be re-evaluated at every day that any match takes place and instead abilities could be 

re-evaluated only after each occasion when the team in question has played a game. 
An approximation to this can be achieved by dividing each of the three seasons into 

21 equally long time intervals (17 regular and 4 play-off, including Superbowl, weeks), 

giving 84 time-points overall. However, that still requires estimation of 221,660 distri- 

butions overall. 

More information can undoubtedly be gained about teams using the MCMC tech- 

nique but as far as applying the information towards a betting strategy is concerned, 
it is only the maximum value of the parameters' estimated distributions at the time- 

point immediately prior to a fixture that are essential for a simple betting strategy. 
The MLE method provides them. In addition, by using the MLE method, parameter 
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estimates for the entire four years can be obtained in approximately 35 minutes. This 

compares favourably to the 27 minutes required to run the 25,000 iterations of the 

earlier MCMC routine for just the final time-point. Crowder et at (2002) report sim- 

ilar findings. While greater efficiency and reliability could be achieved using a more 

customised MCMC sampler than WinBUGS, programming one would be an immense 

task. It is unlikely that it would be fast enough to make investigations into model 

enhancements practicable, especially when one considers that to investigate the effect 

of model adjustments on the predictive ability of a model, it is necessary that the 

process is run at many time-points throughout the data set. The MCMC techniques 

could be pursued further with regard to this application should considerable advances 

be made in computing power and MCMC software. Hence, on balance, while MCMC 

is certainly the more attractive approach from a statistical point of view, from a prac- 

tical point of view, the MLE method is much easier to implement and is also far more 

suitable for the process of model development. Thus the MLE method has been the 

most suitable parameter estimation process to employ throughout this thesis. 

7.6 Additional comments and information - Markov Chain 

Monte Carlo methods: a brief summary 

In statistical analysis it is often necessary to study a data set via a multivariate inter- 

dependent set of variables O. If the analysis is being carried out within a Bayesian 

framework, O is a set of parameters and if the analysis is carried out within a frequen- 

tist framework, ® is a set of observable data values. If there are various characteristics 

of O that are of interest, such as modes, higher posterior densities or quantiles of indi- 

vidual components, or relationships between different components of ©, then algebraic 

manipulation of the joint distribution, 7r®, of O is necessary. This can be a daunting, 

or even impossible, task. 

MCMC techniques, subject to certain assumptions about relationships between 

subsets of members of O, can produce many samples from a Markov chain whose 

stationary distribution is Ire, hence inferences can be drawn about © using relatively 
straightforward analysis of these samples. There are various techniques employed in 

order to produce such a Markov chain. All are explained in more detail by Gilles et al 
(1996). 

The most general specification of the MCMC technique employs the Metropolis- 
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Hastings algorithm. It produces a sequence of generated values E)*,,..., On which, for 

a suitably large value of n, represent a sample from Ire. Firstly a proposal distribution 

q(. 1Ot) is specified along with an initial value O. Next, a `candidate' value Ot is 

generated from q(. IOö). Ot is accepted with probability 

ölot) a(©ö, Ot) = min(1, ß(E))g(o 
7r(Dö)4(8tlOö) 

If Ot is accepted, Oi = Ot otherwise Oi = Oö. In fact q(. 1. ) can be any distribution 

and the stationary distribution of E)*,,..., On is always Ire, however the choice of 

distribution affects how quickly the chain converges. Also, it is necessary to have a 

`burn-in' period of m iterations so that only samples O ;,, ... , On are considered to be 

representative samples from Ire. In this way the samples are not affected by the choice 

of starting value e o*. 
There are various common implementations of this algorithm, in particular there 

are various ways of approaching the task of finding a suitable choice of q(. 1. ). For exam- 

ple, the Metropolis algorithm involves choosing only symmetric forms, hence Equation 

7.6.1 reduces to 

a(E)ö, Ot) = min(1,7re(©) 
ire(O �) 

Another form of this algorithm is known as single-component Metropolis-Hastings and 
involves decomposing O into a set of smaller subsets 01,... , 6r. Then these indi- 

vidual components are updated sequentially during each iteration, subject to an ac- 

ceptance criteria similar to that of Equation 7.6.1. The most common example of 
single-component Metropolis-Hastings, and in fact the most widely used MCMC rou- 
tine at the time of writing, is the Gibbs Sampler. When applying a Gibbs Sampler, 

the proposal distribution for updating the ith component of ©t is the full conditional 
distribution 

aýýi ©tý = ýAýei ýet, 
1, """s 

Ot, i-ls 
et, i}ls """ 

et, K) 

where O is of dimension K. 
One key task when using MCMC methods is monitoring convergence of the chain 

of values to ensure that the chain has settled into the required distribution. One way 
to do this, which the WinBUGS software implements, was outlined by Gelman-Rubin 
(1992). It involves running several chains in parallel and checking that they overlap 
to a satisfactory extent. To do this, define W as a scalar summary figure of all the 
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simulated values of one of the parameters. Then two estimates of var(IF) can be made. 

Defining &j to be the jth realisation of the summary figure of the values from chain 
i, these estimates are 

" the within-chains variance 

where s; =nil E 1(Oij - ý'ý, )2 

m i 

W=EM 

i=l 

"a weighted average of the between-chains variance 

and W, thus 

B- n T. )2 
i_i 

r(I) _ 
n1W+ 1B 

nn 

is a second estimate of var(W) 

r(W) is initially larger than var(WY), while W is initially lower. However they 

both converge towards var(WY) as the number of iterations continues. Hence it makes 

sense to define the following ratio, known as the estimated potential scale reduction, 

= Taw) 

Once R and its confidence intervals (R follows a t-distribution) are suitably near 
1, convergence has been achieved. This technique for analysing variance is known as 

the Gelman-Rubin diagnosis. Values of f? and confidence intervals, choosing various 

parameter realisations as the scalar summary are included in the output provided for 

the application of MCMC in this chapter. 
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Chapter 8 

Conclusion 

As stated in Chapter 1, the aim of this thesis was to develop models for sporting events 

that produced probabilities that were at least as accurate as those inferred from odds 

offered by professional bookmakers. Three attempts have been made to achieve this, 

but only one, concerning the rate at which yellow and red cards are collected by soccer 

teams, appears to be successful. 

It is not clear whether the greater success rate of the bookings model is because 

the model is more accurate, or because the market for bookings bets is less effective 

at forcing the mean towards the "true" probability than the market for NFL and 

NBA scores. It is not possible to produce figures such as the predictive likelihood for 

bookmakers' odds since only their expected mean is provided in the case of spread 

betting and only their expected prediction for the median is provided in the case of 

fixed odds handicap betting. The entire probability density for all outcomes is required 

for most summary statistics of predictive capability. Other commonly used goodness- 

of-fit summary statistics, such as Cp, R2 or reduction in x2 used in regression, can 

only be used to compare nested models on the same data set, and cannot be used to 

compare the accuracy of different predictions for different sports. Hence a comparison 

of the accuracy of the central spreads for bookings with the accuracy of the NFL lines, 

for example, is not possible. 
Nevertheless, it is not entirely surprising that the bookings model produces better 

returns when one considers the amount of match-specific information that is incorpo- 

rated into each model prediction. As well as both teams' individual tendency to attract 

and provoke bookings, the referee, the difference in ability of the two teams, historical 

rivalries and match-specific incentives are accommodated into each prediction. En- 

hancing the NFL and NBA models in this way is necessary and entirely feasible since 
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the data concerning which players are injured, or whether a team has any unusual 

extra incentive entering a match, is available. 

As far as further research is concerned, there are many other possible ways to 

enhance all models covered so far. For example, data is also available concerning the 

time that all points are scored, or bookings are collected. Using these, it is possible to 

improve not only the predictions generated for the match totals before the fixture takes 

place, as has been attempted throughout this thesis, but it is also possible to generate 

predictions while the match is in progress, given information already observed. 

The fact that there are so many obvious options available for model enhancement 
is encouraging. Furthermore, the effect of any attempts to improve models can be 

analysed and developed further if necessary. This does not apply to the intuitive ap- 

proach since once the knowledge concerning the sport has been acquired, and the skills 

in converting this knowledge into probabilities in a reliable way have been developed, 

it is not clear how any further improvements to the system can be made. While not 

all of the models in this thesis have the desired predictive capability, the approaches 

covered have much scope for improvement. 
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