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Abstract

A procedure for computing the dimensions of the moduli spaces of reducible, holo-

morphic vector bundles on elliptically fibered Calabi-Yau threefolds X is presented.

This procedure is applied to poly-stable rank n + m bundles of the form V ⊕ π∗M ,

where V is a stable vector bundle with structure group SU(n) on X and M is a stable

vector bundle with structure group SU(m) on the base surface B of X. Such bundles

arise from small instanton transitions involving five-branes wrapped on fibers of the

elliptic fibration. The structure and physical meaning of these transitions are discussed.
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1 Introduction

When Hořava-Witten theory [1] is compactified on a smooth Calabi-Yau threefold one ob-

tains, at intermediate energy scales, a five-dimensional theory called heterotic M-theory [2, 3].

Heterotic M-theory is characterized by a five-dimensional bulk space-time bounded on ei-

ther side of the fifth-dimension by four-dimensional “end-of-the-world” orbifold fixed planes.

These boundary three-branes descend from Hořava-Witten theory as the uncompactified

part of nine-branes partially wrapped on the Calabi-Yau threefold.

Before compactification, each nine-brane carries anN = 1 supersymmetric E8 Yang-Mills

supermultiplet on its worldvolume. Upon compactification, however, a G-instanton, that is,

a static solution of the hermitian Yang-Mills equations with structure group G ⊆ E8, may be

present on the Calabi-Yau threefold. In this case, the associated three-brane carries a reduced

gauge group H , which is the commutant of G in E8. In addition, its worldvolume theory is

N = 1 supersymmetric and contains chiral fermions transforming in several representations

of H . Therefore, the boundary three-branes in heterotic M-theory can potentially carry a

realistic theory of particle physics on their worldvolumes.

To analyze this possibility, one must be able to explicitly construct these worldvolume

theories. It is clear that their structure is almost entirely determined by the properties of the

G-instanton on the Calabi-Yau threefold. Here, one confronts a seemingly insurmountable

problem, namely that there are no known solutions of the hermitian Yang-Mills equations

on these manifolds. This is due, in part, to the fact that explicit metrics on Calabi-Yau

threefolds also have never been constructed. However, a way around this problem was found

by Uhlenbeck and Yau [4] and Donaldson [5]. These authors showed that stable, holomorphic

vector bundles with structure group G on a Calabi-Yau threefold always admit a unique

connection that must satisfy the hermitian Yang-Mills equations. They also proved the

converse. Therefore, finding a solution of the hermitian Yang-Mills equations is equivalent

to constructing the appropriate vector bundles. Happily, it is relatively easy to find stable,

holomorphic vector bundles with arbitrary structure group G on Calabi-Yau threefolds.

A major step was taken in that direction by Freedman, Morgan, Witten [6, 7, 8] and

Donagi [9], who gave a concrete procedure for constructing such bundles on elliptically fibered

Calabi-Yau threefolds. This work was used, and extended, in a number of papers [10, 11],

where it was shown that bundles of this type could indeed produce phenomenologically

relevant particle physics theories on a threefold. Specifically, these papers showed that

viable grand unified theories with gauge groups E6, SO(10) and SU(5), for example, can
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be so constructed. The results of [10, 11] were limited to Calabi-Yau threefolds with trivial

homotopy. In [12, 13, 14, 15] and more recently [16, 17, 18], methods were introduced

for constructing stable, holomorphic vector bundles on torus fibered Calabi-Yau threefolds

with non-trivial homotopy. These results allow one to add flat bundles, Wilson lines, to

the G-instanton. With this extended capability, standard-like models with gauge group

SU(3)C×SU(2)L×U(1)Y [12, 13, 14, 15] and SU(3)C×SU(2)L×U(1)Y ×U(1)B−L [16, 17, 18]

have now been constructed.

There is another interesting generalization of the theory of holomorphic vector bundles on

elliptically fibered Calabi-Yau threefolds which has been less studied. All of the above results

constructed stable vector bundles with simple structure groups G. However, one can show

that so-called poly-stable bundles, that is, those with semi-simple structure groups such as

G = SU(n)×SU(m), also admit connections satisfying the hermitian Yang-Mills equations.

These poly-stable bundles were introduced in this context in [10]. Such vector bundles,

having different structure groups, produce a different pattern of E8 symmetry breaking and,

therefore, different low energy gauge groups H . Some breaking patterns in this context were

presented in [10].

Significantly, it was shown in [10, 19] that poly-stable holomorphic vector bundles must

always arise in small instanton transitions involving a five-brane wrapped on a vertical fiber

in the elliptically fibered Calabi-Yau threefold. For example, if prior to a small instan-

ton transition a three-brane has a stable bundle with structure group SU(n), then after a

transition involving k vertical fibers the bundle becomes poly-stable with structure group

SU(n) × SU(m), where 1 < m ≤ k. The SU(m) factor of the vector bundle, the part

contributed by the k fibers wrapped by five-branes coalescing with the initial three-brane,

has a very specific structure. It is the pull-back to the full elliptically fibered Calabi-Yau

threefold of a bundle constructed from k points on the base surface. Since phase transitions

of this type may arise in a physical context, such as in the Ekpyrotic theory of Big Bang

cosmology [20], poly-stable holomorphic vector bundles are of potential interest.

In this paper, we will examine a fundamental property of poly-stable holomorphic vector

bundles with structure group G = SU(n)× SU(m) on elliptically fibered Calabi-Yau three-

folds, namely, the dimension of their moduli spaces. The structure and dimension of the

moduli spaces of stable vector bundles on these manifolds, such as the pure SU(n) part of

our poly-stable bundle, is known [21]. In this paper, we will extend these results to compute

the dimension of the moduli spaces of stable, holomorphic bundles with structure group

SU(m) on a surface. We will show that this is identical to the number of moduli of the
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pull-back of the bundle constructed from k points on the base of the Calabi-Yau space. This

is the pure SU(m) part of our poly-stable vector bundle. However, there can be, and there

are, moduli associated with the relationship of the SU(n) and SU(m) bundles to each other.

These moduli are much harder to compute. Be that as it may, we explicitly perform that

calculation in this paper, restricting our base surface to be dP9 for concreteness. Putting

everything together, we present a general formula for the dimension of the moduli space of

generic poly-stable holomorphic vector bundles on elliptically fibered Calabi-Yau threefolds

with base dP9. This result is easily generalized to all other base surfaces.

Specifically, in this paper we do the following. In Section 2, we remind the reader of

the structure of holomorphic vector bundles on elliptically fibered Calabi-Yau threefolds

over dP9. We also establish our notation and preparatory formulas which will be used in the

computation. Next, in Section 3, we present the physical motivation of why we are interested

in poly-stable vector bundles and their relation to small instanton transitions in heterotic

M-theory. Section 4 contains the details of the calculation of the dimension of the moduli

space of these poly-stable holomorphic vector bundles. Finally, in Section 5, we present our

result, together with a sample calculation. As a check on the validity of key steps in our

computations, alternative proofs in a restricted context are carried out. These are given in

Appendices A and B. While this paper was in preparation, [22] appeared. There is some

overlap between the topics discussed in [22] and the results presented here.

2 Reducible Bundles on Elliptically Fibered Calabi-

Yau Threefolds

In this section, we briefly review the basic ingredients used in our calculation and establish

the nomenclature. In particular, in Sub-section 2.1, we concern ourselves with Calabi-Yau

threefolds X that are elliptically fibered over dP9 surfaces. We then review some of the

rudiments of the spectral cover construction of stable holomorphic vector bundles V on X

in Sub-section 2.2. Finally, in Sub-section 2.3, we define and discuss the construction of a

specific class of poly-stable vector bundles V̂ on X.

2.1 Elliptically Fibered Calabi-Yau Threefolds X over dP9

We will consider Calabi–Yau threefolds X which are elliptic curves fibered over a base surface

B. In other words, there is a mapping π : X → B such that π−1(b) is a smooth torus, Eb,
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for each generic point b ∈ B. Moreover, this torus fibered threefold has a zero section. That

is, there exists an analytic map σ : B → X that assigns to every element b of B an element

σ(b) ∈ Eb. The point σ(b) acts as the zero element for an Abelian group and turns Eb

into an elliptic curve and X into an elliptic fibration. Throughout this paper, we will, for

concreteness, focus on the case where the base B is a rationally ruled elliptic surface, also

called a dP9 surface. That is,

B = dP9 . (1)

Such a surface is itself an elliptic fibration over a base P
1 with projection map πB : dP9 → P

1

and zero section σB : P
1 → dP9. Its structure is that of a P

2 blown-up at nine generic points.

In summary, our Calabi-Yau threefold X has the structure of a double elliptic fibration

X
π
−→ B

πB−→ P
1 , (2)

with zero sections σ and σB respectively. We denote the fiber classes of π in X and of πB in

B as F and f respectively.

Many properties of dP9 are described, for example, in [16]. Those properties which we will

need in this paper are the following. First, the second homology group, H2(B, Z), is spanned

by ℓ, the hyperplane class of the P
2, as well as the nine exceptional divisors Ei, i = 1, . . . , 9

of the blow-up. These classes are effective and have the following intersection numbers

Ei ·Ej = −δij , Ei · ℓ = 0, ℓ · ℓ = 1 . (3)

Second, the first Chern class of the tangent bundle TB is

c1(TB) = −c1(KB) = 3ℓ−
9
∑

i=1

Ei , (4)

where KB is the canonical bundle [16]. In fact, the first Chern class of the anti-canonical

bundle K∗
B is precisely the fiber class f of this fibration over P

1. That is,

− c1(KB) = f . (5)

It then follows from (4) that

f = 3ℓ−
9
∑

i=1

Ei . (6)

Recall that a line bundle OB(D) associated with a divisor D in any surface B is ample,

or positive, if

D ·D > 0, D · c > 0 (7)
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for every effective irreducible curve c in B. An effective class in homology simply means that

it is an actual geometric object. For example, an effective class in H2(B, Z) is a curve. One

also called D satisfying (7) an ample divisor. A surface B is called ample if its anti-canonical

bundle K∗
B is. We will often refer to these conditions of ampleness and effectiveness. Now

note, using (3) and (4), that

c1(KB)2 = 0 . (8)

Therefore, it follows from (7) that K∗
B and, hence, dP9, is not ample. This is why a dP9

surface is sometimes called a half-K3. See, for example, [23]. Next, let us consider c2(TB),

the highest Chern class on dP9. This is nothing but the topological Euler characteristic,

χ(dP9) = 12. See, for example, [16]. Therefore,

c2(TB) = 12 . (9)

We will also need the following intersection numbers,

σB · σB = −1, σB · f = 1, f · f = 0 . (10)

The first intersection follows simply from the adjunction formula and (5). The second equal-

ity follows because we are intersecting the fiber with a section, and the last because we are

intersecting a fiber with itself.

Third, we need to know the effective curves in B. The irreducible effective curves in dP9

are spanned by [24] f = 3ℓ−
∑9

i=1 Ei and the curves

y = βℓ +

9
∑

i=1

αiEi (11)

with

αi ∈ Z, β ∈ Z≥0 , (12)

satisfying the constraints

y2 = −1, y · f = 1 . (13)

These constraints imply that

− β2 +
9
∑

i=1

α2
i = 1, 3β +

9
∑

i=1

αi = 1 . (14)

Finally, the Chern classes for the elliptically fibered Calabi-Yau threefold X were pre-

sented in [11]. We will make use of them later. Note that

c1(TX) = 0 , (15)
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since X is a Calabi-Yau manifold. The second Chern class is given by

c2(TX) = 12σ · π∗(c1(TB)) + π∗(c2(TB) + 11c2
1(TB)) . (16)

In our case, B = dP9. Then, it follows from (4), (5) and (9) that

c2(TX) = 12σ · π∗(f) + 12F . (17)

2.2 Spectral Cover Construction of Stable SU(n) Bundles over X

One ingredient we need in this paper is stable, holomorphic SU(n) vector bundles over the

Calabi–Yau threefold X. We will construct such bundles using the so-called spectral cover

method [6, 7, 8, 9]. We adhere to the notation and presentation in [10]. Stable, holomorphic

SU(n) vector bundles V over X can be explicitly constructed from two objects, a divisor CX

of X, called the spectral cover, and a line bundle NX on CX . The pair (CX ,NX) is called

the spectral data for V .

The spectral cover, CX , is a surface in X that is an n-fold cover of the base B. Its general

form is

CX = nσ + π∗η , (18)

where σ is the zero section and η is a curve in B. If CX is an effective, irreducible surface, then

the associated vector bundle is stable. We will always impose this restriction. In addition

to CX , we must also specify a line bundle NX . For SU(n) vector bundles, this must satisfy

c1(NX) = n(
1

2
+ λ)σ + (

1

2
− λ)π∗η + (

1

2
+ nλ)π∗c1(TB) , (19)

where λ is a rational number such that

λ = p + 1
2
, n odd

λ = p, n even
(20)

and p ∈ Z.

Finally, the stable SU(n) vector bundle V on X is constructed from the spectral data

(CX ,NX) as V = π1∗(π
∗
2NX ⊗ P), where π1 and π2 are the projections of the fiber product

X×BCX onto the two factors X and CX respectively and P is the associated Poincaré bundle.

We refer the reader to [6, 11] for a detailed discussion. This is essentially the Fourier-Mukai

transform, which works in reverse as well. In other words, there is a 1-1 correspondence

between V and the spectral data

(CX ,NX)
Fourier-Mukai

←→ V . (21)
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For SU(n) bundles,

c1(V ) = 0 . (22)

The remaining Chern classes were computed in [6, 11] and found to be

c2(V ) = σ·π∗(η)−
1

24
c1(TB)2(n3−n)+

1

2
(λ2−

1

4
)n η·(η−nc1(TB))F, c3(V ) = 2λη·(η−nc1(TB)) .

(23)

For B = dP9, these simplify by virtue of (5) and (10). We find that

c2(V ) = σ · π∗(η) +
1

2
(λ2 −

1

4
)nη · (η − nf)F, c3(V ) = 2λη · (η − nf) . (24)

Let us consider the structure of the spectral cover CX for a dP9 base surface. As stated

previously, CX must be both effective and irreducible. These requirements put constraints

on the curve η which, in the dP9 context, are complicated to solve. Happily, we need not

do this in general. As we will see in Section 4, it is expedient to restrict CX to be an ample

divisor in X. CX being ample immediately implies that it is effective and simplifies the proof

that it is irreducible. As we will now show, the conditions for CX to be ample and irreducible

are relatively straightforward.

If CX is ample, then so is η. Unfortunately, the converse is not true. However, we can

prove a partial converse. Let η′ be any ample curve in dP9 and consider

η = η′ + (n + 1)f . (25)

Clearly, η is also an ample curve. Note, however, that not every ample curve in dP9 is of the

form (25). We can show that for every ample curve of the form (25), CX is both ample and

irreducible, as required. For η′ to be ample in dP9, it must satisfy

η′ · η′ > 0 (26)

and its intersection with all effective curves must be positive. That is,

η′ · f > 0, η′ · y > 0 . (27)

Expanding η′ in the basis of H2(B, Z) as

η′ = b′ℓ +
9
∑

i=1

a′
iEi , a′

i, b
′ ∈ Z , (28)

and using

η′ · η′ = b′2 −
9
∑

i=1

a′2
i , η′ · f = 3b′ +

9
∑

i=1

a′
i , (29)
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we see that (26) and (27) translate into three constraints on the coefficients a′
i and b′. These

are

b′2 −
9
∑

i=1

a′2
i > 0, 3b′ +

9
∑

i=1

a′
i > 0, b′β −

9
∑

i=1

a′
iαi > 0 (30)

for all αi ∈ Z and β ∈ Z≥0 satisfying (14). If we also expand η into the basis of H2(B, Z) as

η = bℓ +
9
∑

i=1

aiEi , ai, b ∈ Z , (31)

then it follows from (25) that

ai = a′
i − (n + 1), b = b′ + 3(n + 1) . (32)

To conclude this section, we present some useful intersection formulas which we will use

frequently throughout this paper [10]. First, we have

η · η = −
9
∑

i=1

a2
i + b2, η · c1(TB) = η · f = 3b +

9
∑

i=1

ai . (33)

Next, we have

σ · σ = −(π∗(c1(TB))) · σ = −π∗(f) · σ . (34)

Furthermore, note, using (4), that the triple intersection,

σ3 = (−π∗(c1(TB)) · σ) · σ = (−π∗(c1(TB)) · (−π∗(c1(TB))) · σ

= π∗(c1(TB) · c1(TB)) · σ = 0 . (35)

Finally, since we can always choose a representative F of the fiber of X which will not

intersect the pull-back of the curve η, we have

F · π∗(η) = 0 . (36)

Also, it is obvious, since σ is a section, that

F · σ = 1 . (37)

2.3 Reducible Vector Bundles on X

The previous sub-section reviewed the spectral cover construction of stable, holomorphic

SU(n) vector bundles V over elliptically fibered Calabi-Yau threefolds X with base B = dP9.

Our main concern in this paper will be reducible, poly-stable rank n+m holomorphic vector
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bundles over the same space X. In other words, we want to construct bundles with structure

group SU(n) × SU(m). For physical reasons to be discussed in the next section, we will

restrict the bundles associated with the factor group SU(m) to be the pull-back to X of

stable rank m holomorphic vector bundles on the dP9 base surface. This construction was

carried out in Section 6 of [10].

2.3.1 dP9 Bundles and Their Pull-back to X

We want to construct stable, holomorphic SU(m) vector bundles M with m ≥ 2 over the

base B with the Chern classes given by

c1(M) = 0, c2(M) = k ∈ Z, c3(M) = 0 . (38)

In this paper, the base is dP9 with a zero section σB. Hence, we can use the spectral cover

construction with spectral data (CB,NB). Here, CB is a curve in B which is an m-fold cover

of the base P
1. Generically, it is given by

CB = mσB + kf . (39)

Recall that CB must be both effective and irreducible in order for M to be stable. CB will

be effective if we choose

k ≥ 0 . (40)

To ensure that the spectral cover is irreducible, we must impose [10] the constraint that

1 < m ≤ k . (41)

NB is the spectral line bundle over CB. In order for the vector bundle M corresponding to

(CB,NB) to have Chern classes (38), we need to require that [10]

c1(NB) =
1

2
m(2k − 1−m) . (42)

One can now use (39) and (42) to construct the requisite vector bundles via the Fourier-Mukai

transformation Schematically, we have the structure

(CB,NB)
Fourier-Mukai

←→ M . (43)

Having constructed the bundles M on dP9, we can easily lift them to the Calabi–Yau

threefold X. The pull–back π∗M of M to X is a stable holomorphic SU(m) vector bundle

with m ≥ 2 over X. Its Chern classes are

c1(π
∗M) = 0, c2(π

∗M) = kF, c3(π
∗M) = 0 . (44)
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2.3.2 Reducible SU(n)× SU(m) Bundles over X

Equipped with two stable holomorphic vector bundles over X, namely the SU(n) bundle V

in (21) and the SU(m) bundle π∗M , which is a pull-back of the bundle M in (43) on dP9,

our preparatory work is done. We can now construct reducible, poly–stable, rank n + m

holomorphic vector bundles with structure group SU(n)× SU(m) over X, which we denote

by V̂ , simply as the direct sum

V̂ = V ⊕ π∗M . (45)

The Chern classes of this reducible bundle are easily computed to be

c1(V̂ ) = 0, c2(V̂ ) = c2(V ) + kF, c3(V̂ ) = c3(V ) , (46)

where c2(V ) and c3(V ) were given in (24). Schematically, the relation between the Calabi-

Yau threefold X, the base B = dP9, and the bundles is

V ⊕ π∗M M

↓ ↓

π : X −→ B

(47)

3 Small Instanton Transitions

Having constructed reducible SU(n)×SU(m) vector bundles on X, we now recall why such

objects are of interest to us. The Hořava-Witten vacuum [1] of M-theory is an S1/Z2 interval

with an 11-dimensional bulk space and two “end-of-the-world” 10-dimensional fixed planes,

each carrying an N = 1 E8 Yang-Mills supermultiplet. This theory has chiral fermions on

the orbifold planes. This vacuum can be further compactified on a Calabi-Yau threefold,

leading to a five-dimensional “brane-world” scenario wherein one fixed plane, or three-brane,

is our “observable” 4-dimensional world and the other is a “hidden” brane. This compactified

theory is called heterotic M-theory [10].

A wrapped BPS five–brane in the bulk space of heterotic M-theory has a modulus cor-

responding to the translation of the five–brane in the orbifold direction. The following

question was addressed in [10]. What happens to a wrapped bulk five–brane in heterotic

M–theory when it is translated across the bulk space and comes into direct contact with

one of the boundary three–branes? It was shown that in collisions of a bulk five–brane

with the observable boundary three–brane, the wrapped five–brane disappears and its data

is “absorbed” into a singular bundle, called a torsion free sheaf. This sheaf is localized on
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the Calabi–Yau threefold associated with the observable three–brane and is referred to as a

“small instanton”[19]. This small instanton can then be “smoothed out” to a non-singular

holomorphic vector bundle by moving in its moduli space. The physical picture is that the

bulk five–brane disappears after the collision, but at the cost of altering the topology of the

instanton vacuum on the boundary three–brane.

There are two different phase transitions associated with the above-mentioned collisions.

First, there is a “chirality-changing” transition, where the number of lepton-quark families

changes and second, there is a “gauge-changing” transition, where the gauge group on the

boundary three-brane is altered. Let us briefly remind ourselves of the two transitions.

Recall from [10] that for an elliptically fibered Calabi-Yau threefold with zero section σ and

fiber class F , the bulk five–brane wraps a class

W = WBσ + aF F , (48)

where WB is the lift of a curve in the base and the fiber coefficient aF is a non-negative

integer. The chirality-changing transitions have the property that they absorb all, or part,

of the base component, WB, into the holomorphic vector bundle. Such transitions do not

affect the fiber component, aF F , of the five–brane curve, which is identical on either side of

the small instanton transition. On the other hand, in gauge-changing transitions, all, or a

portion, of aF F is absorbed via the small instanton phase transition into the vector bundle

on the observable brane. In these transitions, it is the base component WB of the five-brane

curve that is left undisturbed. It was shown in [10] that these two processes lead to a different

kind of holomorphic vector bundle after the small instanton transition. Let us assume that

initially, prior to the collision, the observable brane has a stable holomorphic SU(n) vector

bundle V associated with the spectral data (CX ,NX). After the transition, the vector bundle

becomes V ′ with spectral data (C′X ,N ′
X). As demonstrated in [10], in chirality-changing

transitions the holomorphic vector bundle V ′ is stable with structure group SU(n), exactly

as for V . However, its spectral cover is altered by absorbing WB in such a way as to induce a

change in the third Chern class and, hence, in the number of lepton-quark families. On the

other hand, gauge-changing transitions preserve the third Chern class. However, absorbing

kF , where k ≤ aF , makes V ′ a reducible bundle with structure group SU(n) × SU(m).

Furthermore, the bundles associated with the factor group SU(m) are always a pull-back to

X of stable rank m holomorphic vector bundles on the base. These bundles are constructed

from k points, the projection onto the base B of the fibers kF , and satisfy 1 < m ≤ k. Both

kinds of phase transitions alter the second Chern class of the holomorphic bundle in such a
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way as to preserve the over-all anomaly freedom. The structure of the spectral data, both

before and after a small instanton transition, is listed in Table 3.

Before After

SU(n), V ↔ (CX ,NX)
Chirality Changing SU(n), V ′ ↔ (CX ∪WB,NX)

Gauge Changing SU(n)× SU(m), V ′ ↔ (CX ∪mσ,NX ⊕ σ∗M)

Table 1: Vector bundles and the associated spectral data before and after the collision of

the bulk five-brane.

In this paper, we will focus on gauge changing phase transitions, that is, the absorption

via a small instanton phase transition of all, or a portion, of aFF by the vector bundle on

the observable brane. This creates an SU(n) × SU(m) vector bundle that is reducible and

poly-stable. This SU(n) × SU(m) bundle is precisely V̂ = V ⊕ π∗M introduced in [10]

and reviewed earlier in (47) . The above discussions explains the physical relevance of these

poly-stable bundles. We now proceed to compute their moduli.

4 Computing the Moduli of the Reducible Bundle

In this section, we compute the moduli for any reducible vector bundle V̂ = V ⊕π∗M , specif-

ically, the dimension its space of deformations. The space of deformations of an arbitrary

vector bundle U on a complex manifold X is given by [26]

H1(X, End(U)) , (49)

where

End(U) = U ⊗ U∗ (50)

is the sheaf of endomorphisms of U . Therefore, in this paper, we wish to calculate

h1(X, EndV̂ ) , (51)

with V̂ = V ⊕ π∗M . We can readily express H1(X, End(V )) as four terms

H1(X, EndV̂ ) = H1(X, V̂ ⊗ V̂ ∗) = I ⊕ II ⊕ III ⊕ IV . (52)

Terms I and IV are the moduli spaces for the bundles V and π∗M respectively, and are

defined as

I = H1(X, V ⊗ V ∗), IV = H1(X, π∗M ⊗ (π∗M)∗) . (53)
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On the other hand, terms II and III are given by

II = H1(X, V ⊗ (π∗M)∗), III = H1(X, π∗M ⊗ V ∗) (54)

and contain the moduli associated with the cross terms between V and π∗M . We proceed,

then, to calculate the dimensions of the four terms I, II, III and IV.

4.1 Term I: Moduli From V

We are familiar with the first term I = H1(X, V ⊗ V ∗). It contains the moduli associated

with the stable holomorphic SU(n) vector bundle V . This case was addressed in Section 4

of [21]. It was shown that with respect to the spectral data (CX ,NX),

dim(I) = h0(X,OX(CX))− 1 . (55)

Let us assume that OX(CX) is positive, as in [21]. This condition means that CX is ample

which, as discussed earlier, can be implemented by imposing the positivity constraints (30)

and (32). We can now easily evaluate (55) using the methods introduced in Section 4 of

[21]. With the positivity assumption, all of the higher cohomology classes are zero by the

Kodaira-Serre vanishing theorem and we have

h0(X,OX(CX)) = χ(X,OX(CX))

=

∫

X

ch(OX(CX)) ∧ td(TX)

=
1

6

∫

X

c3
1(OX(CX)) +

1

12

∫

X

c1(OX(CX)) ∧ c2(TX)

=
1

6

∫

X

C3
X +

1

12

∫

X

CX ∧ (12σ · π∗(f) + 12F ) . (56)

In evaluating this expression, we have used the fact that c1(OX(CX)) = CX , the Atiyah-Singer

index theorem and the result for c2(TX) given in (17).

Finally, recalling that the pull-back of a point b ∈ B gives the fiber class F , that is,

π∗(b) = F and using (31), (35), (36) and (37), we can immediately finish the computation

of (56). We find that

h0(X,OX(CX)) = (1−
1

2
n2)

9
∑

i=1

ai −
1

2
n

9
∑

i=1

a2
i + (3−

3

2
n2)b +

1

2
nb2 + n . (57)

It follows that

dim(I) = (1−
1

2
n2)

9
∑

i=1

ai −
1

2
n

9
∑

i=1

a2
i + (3−

3

2
n2)b +

1

2
nb2 + n− 1 , (58)

where ai and b satisfy the conditions given in (30) and (32).
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4.2 Term IV: Moduli from π∗M

Next, we consider the term IV = H1(X, π∗M ⊗ (π∗M)∗). This corresponds to the moduli

associated with the stable SU(m) vector bundle M on the base pulled back to X. We will

show that this term essentially reduces to the deformations of M over the base B.

We evoke a Leray spectral sequence in this context [26]. This states that for π : X → B

and any vector bundle U on X, we have the exact sequence

0→ H1(B, π∗(U ⊗ U∗))→ H1(X, U ⊗ U∗)→ H0(B, R1π∗(U ⊗ U∗))→ . . . (59)

where Riπ∗ is the i-th right derived functor for the push-forward map π∗. See, for example,

[27]. In our case, taking U to be π∗M , we have the sequence

0→ H1(B, π∗(π
∗M ⊗ (π∗M)∗)→ IV → H0(B, R1π∗(π

∗M ⊗ (π∗M)∗))→ . . . (60)

We first use the projection formula [27] to simplify this expression. This formula states that

for a morphism f : X → Y , F an OX-module and E a locally free OY -module of finite rank,

we have

Rif∗(F ⊗ f ∗E) ≃ Rif∗(F )⊗ E . (61)

Using this and the fact that (π∗M)∗ = π∗M∗, we can write

R1π∗(π
∗M ⊗ (π∗M)∗) = R1π∗(π

∗M)⊗M∗

= R1π∗(OX ⊗ π∗M)⊗M∗ , (62)

where we have tensored with the trivial sheaf OX . We can use the projection formula again

to further reduce this to

R1π∗(π
∗M ⊗ (π∗M)∗) = R1π∗OX ⊗M ⊗M∗ . (63)

Similarly,

π∗(π
∗M ⊗ (π∗M)∗) = M ⊗M∗ (64)

and the spectral sequence (60) becomes

0→ H1(B, M ⊗M∗)→ IV → H0(B, R1π∗OX ⊗M ⊗M∗)→ . . . (65)

We proceed to compute term IV by first focusing on the third term in (65) and showing

that it is, in fact, zero. To do this, we evoke relative duality [28]. This states that for

π : X → B and any sheaf S on X, we have

(R1π∗S)∗ ≃ R0π∗(S ⊗KX ⊗ π∗K∗
B) . (66)
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Taking S to be OX , and recalling that KX is trivial since X is a Calabi-Yau manifold, we

find

(R1π∗OX)∗ = R0π∗(OX ⊗OX ⊗ π∗K∗
B)

= π∗(π
∗K∗

B)

= K∗
B . (67)

Therefore, the third term in (65) becomes

H0(B, KB ⊗M ⊗M∗) , (68)

which are the global sections of the bundle KB ⊗ M ⊗ M∗. They correspond to global

holomorphic maps from OB → KB ⊗M ⊗M∗, or, equivalently, to maps

K∗
B →M ⊗M∗ . (69)

Now M and, hence, M∗ are stable bundles of slope zero. Thus, their tensor product is poly-

stable [29]. Now for the surface dP9, K∗
B is effective1. If there were any non-trivial maps (69)

we would have a positive sub-bundle of M ⊗M∗, thus violating poly-stability. Therefore, we

conclude that (68), that is, the third term in the sequence (65), vanishes. It follows that all

moduli contributions to IV arise only from the base. Indeed, the sequence (65) now gives us

the isomorphism

IV ≃ H1(B, M ⊗M∗) . (70)

We have, therefore, reduced the computation of term IV to that of the moduli of a stable

rank m vector bundle over the base B.

The computation proceeds similarly to the one in Section 4 of [21]. Recalling the structure

of the bundle M from (43), it is clear that the moduli of M arise from both the spectral

curve CB and the spectral line bundle NB. The number of such moduli was shown to be

dim(IV ) = [h0(B,OB(CB))− 1] + h1(CB,OCB
) (71)

in [21], where the term in the square brackets describes moduli coming from CB while the

last term describes those coming from NB. The first term is in analogy with (55). Here,

however, the spectral line bundle NB also contributes moduli. Thus, we need to compute

the two terms, h0(B,OB(CB)) and h1(CB,OCB
).

1For all other del Pezzo surfaces, K∗

B
is ample and a similar argument holds [23].
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4.2.1 Spectral Curve Moduli

Let us first compute h0(B,OB(CB)), the number of spectral curve moduli. Although we

found it expedient to assume that OX(CX) was ample in our computation of term I, we need

not make this assumption for OB(CB). However, we must require that CB be irreducible

which, by Bertini’s Theorem, requires the constraint (41). For general OB(CB), the following

calculation is somewhat technical. However, the special case where OB(CB) is ample can be

readily computed along the same lines as in [21]. We present the computation for this simple

and illustrative case in Appendix A. At the end of this sub-section, when we find the result

for the general case, we will compare it with the expression given in Appendix A and see

that they agree. Now

H0(B,OB(CB)) = H0(P1, πB∗OB(CB)) , (72)

where we have pushed down to the base P
1. Recalling from (39) that CB = mσB + kf , it

follows that

OB(CB) = OB(mσB)⊗OB(kf)

= OB(mσB)⊗ π∗OP1(k) . (73)

Using the projection formula again, we obtain

πB∗OB(CB) = πB∗OB(mσB)⊗OP1(k) . (74)

Let us focus on the first term πB∗OB(mσB). The second term is the familar line bundle on

P
1. We can proceed inductively. First, we note that we have the exact sequence

0→ OB → OB(σ)→ Oσ(σ)→ 0 . (75)

Applying the functor πB∗, we find

0→ πB∗OB → πB∗OB(σ)→ πB∗Oσ(σ)→ R1πB∗OB → R1πB∗OB(σ)→ . . . (76)

This will be the starting point of a calculation by induction. We note that

πB∗OB = OP1 (77)

on the base P
1. Also, we have

R1πB∗OB(σ) = 0 . (78)
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This follows from the Kodaira vanishing theorem since OB(σ) is of positive degree. In fact,

we have

R1πB∗OB(nσ) = 0, n ∈ Z>0 . (79)

Furthermore, it follows from relative duality [28] that

R1πB∗OB = OP1(−1) . (80)

Also, note that

πB∗Oσ(σ) = OP1(−1) . (81)

In general, we find that

πB∗Oσ(nσ) = OP1(−n), n ∈ Z>0 . (82)

Using (79), (80) and (81), the sequence (76) becomes

0→ OP1 → πB∗OB(σ)→ OP1(−1)→ OP1(−1)→ 0 , (83)

which implies that

πB∗OB(σ) = OP1 . (84)

We now proceed to the next short exact sequence in our induction. It is

0→ OB(σ)→ OB(2σ)→ Oσ(2σ)→ 0 , (85)

from which we have the long exact sequence

0→ πB∗OB(σ)→ πB∗OB(2σ)→ πB∗Oσ(2σ)→ R1πB∗OB(σ)→ R1πB∗OB(2σ) . . . (86)

By virtue of (79), (82) and (84), this sequence then reads

0→ OP1 → πB∗OB(2σ)→ OP1(−2)→ 0 , (87)

which implies that

πB∗OB(2σ) = OP1 ⊕OP1(−2) . (88)

The pattern of induction is now clear. Continuing onwards we find, in general, that

πB∗OB(mσ) = OP1 ⊕OP1(−2)⊕ . . .⊕OP1(−m) (89)

for any positive integer m. Therefore, we see from (74) and (89) that

πB∗OB(CB) =

(

OP1 ⊕
m
⊕

j=2

OP1(−j)

)

⊗OP1(k) . (90)
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It then follows from expression (72) that

h0(B,OB(CB)) = h0(P1,

(

OP1 ⊕
m
⊕

j=2

OP1(−j)

)

⊗OP1(k))

= h0(P1,OP1(k)⊕
m
⊕

j=2

OP1(−j + k))

= (k + 1) +
1

2
(2k −m)(−1 + m)

= 1−
1

2
m2 + km +

1

2
m . (91)

In the above calculation, we have used the fact that

h0(P1,OP1(n)) = n + 1 for n ≥ 0 . (92)

Note, from equation (41), that k ≥ m. Therefore, expression (91) is always non-negative, as

it must be. Let us compare (91) with the special case where OB(CB) is ample. This result

is given in equation (186) in Appendix A. We see that they agree. This is a very re-assuring

consistency check.

4.2.2 Spectral Line Bundle Moduli

Next, we must compute h1(CB,OCB
), the number of spectral line bundle moduli. This is

none other than the genus g of the curve CB, that is,

h1(CB,OCB
) = g . (93)

To find the genus, we use the adjunction formula [27]

2g − 2 = CB · (CB + KB) . (94)

We will henceforth use KB and c1(KB) in adjunction formulas interchangeably without

ambiguity. Recalling from (5) that KB = OB(−f), we can use (10) and (39) to compute

(94) and obtain

2g − 2 = −m2 + 2km−m . (95)

Hence

h1(CB,OCB
) = 1−

1

2
m2 + km−

1

2
m . (96)

Having computed both h0(B,OB(CB)) and h1(CB,OCB
), we can now determine dim(IV ).

Inserting (91) and (96) into (71), we find that

dim(IV ) = 1−m2 + 2km . (97)
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Note that we actually know more than just the dimension of the moduli space. Using the

spectral data, we see that the structure of the moduli space is actually

H1(X, π∗M ⊗ (π∗M)∗) = H1(B, M ⊗M∗) . (98)

Equation (71) then tells us that this moduli space is a direct product of a projective space

with a torus.

The above results were computed directly within the context of B = dP9. However, if

one wishes to know only the dimension of the moduli space, then one can give a more general

computation using the Atiyah-Singer index theorem that is applicable to any base surface

B. We present this computation in Appendix B. Happily, we see that the result obtained

using the index theorem and given in (192) agrees with the expression (97). Again, this is a

very re-assuring consistency check.

4.3 Terms II and III: The Cross Terms

We now turn to the computation of the two cross terms II = H1(X, V ⊗ (π∗M)∗) and

III = H1(X, π∗M ⊗ V ∗). We find that computing each term individually is very difficult.

However, by relating the two terms, we can arrive at the requisite expressions for dim(II)

and dim(III). In this subsection, we will proceed as follow. We first use the index theorem

to compute the difference dim(II)−dim(III). Next, using Leray spectral sequences, we will

show that dim(II) and dim(III) each counts the number of global holomorphic sections on

some sheaf over a support curve in the base. We will calculate the degrees of these sheafs and

see that they can not both be simultaneously positive. This means that one of the two terms

is always zero. Consequently, from our expression for the difference dim(II)− dim(III), we

can deduce expressions for dim(II) and dim(III), the terms we want.

4.3.1 The Difference Between Terms II and III

First, we find the difference between dim(II) and dim(III). We use the Atiyah-Singer index

theorem for V ⊗ (π∗M)∗ in term II, which implies that

χ(X, V ⊗ (π∗M)∗) =

∫

X

ch(V ⊗ (π∗M)∗) ∧ td(TX) =

3
∑

i=0

(−1)ihi(X, V ⊗ (π∗M)∗) . (99)

Now,

h0(X, V ⊗ (π∗M)∗) = 0 (100)
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since V is stable and, hence, there are no global sections. It then follows that

h3(X, V ⊗ (π∗M)∗) = 0 (101)

by Serre duality. We can also use Serre duality to show that

H2(X, V ⊗ (π∗M)∗) = H1(X, KX ⊗ (V ⊗ (π∗M)∗)∗) = H1(X, π∗M ⊗ V ∗) = III . (102)

We have used the fact that KX is trivial since X is a Calabi-Yau manifold and the definition

of term III given in (54). Therefore, using (99), (100) and (101),

∫

X

ch(V ⊗ (π∗M)∗) ∧ td(TX) = −dim(II) + dim(III) . (103)

Recall that for any vector bundle U ,

ch(U) = rk(U) + ch1(U) + ch2(U) + ch3(U) + . . . , (104)

where

ch1(U) = c1(U), ch2(U) =
1

2
(c1(U)2 − 2c2(U)),

ch3(U) =
1

6
(c1(U)3 − 3c1(U)c2(U) + 3c3(U)) , . . . . (105)

Similarly,

td(U) = 1 + td1(U) + td2(U) + td3(U) + . . . (106)

with

td1(U) =
1

2
c1(U), td2(U) =

1

12
(c2(U) + c1(U)2), td3(U) =

1

24
(c1(U)c2(U)) , . . . . (107)

Using these expressions, the left hand side of (103) becomes

∫

X

(n− c2(V ) +
1

2
c3(V )) ∧ (m− c2(π

∗M)) ∧ (1 +
1

12
c2(TX)) , (108)

which is equal to
1

2
m

∫

X

c3(V ) . (109)

This result and (24) imply that expression (103) becomes

dim(II)− dim(III) = −mλη · (η − nf) . (110)
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4.3.2 Simplification for Term II

Having obtained the difference between the expressions for terms II and III in (110), we pro-

ceed to simplify each term individually. We will see that each counts the global holomorphic

sections of a sheaf on some support curve in the base. We will then determine whether such

sections exist by calculating the degree of this sheaf.

Let us address term II first. As in the calculation of term IV, we can fit term II into a

Leray spectral sequence

0→ H1(B, π∗(V⊗(π∗M)∗))→ II → H0(B, R1π∗(V⊗(π∗M)∗))→ H2(B, π∗(V⊗(π∗M)∗))→ . . .

(111)

which, using the projection theorem

Riπ∗(V ⊗ (π∗M)∗) = Riπ∗V ⊗M∗ for i ≥ 0 , (112)

becomes

0→ H1(B, π∗V ⊗M∗)→ II → H0(B, R1π∗V ⊗M∗)→ H2(B, π∗V ⊗M∗)→ . . . (113)

We will first simplify (113) substantially by arguing that π∗V vanishes. Let us rewrite π∗V

in a more useful form. For some point b in the base B, we denote the sheaf of sections of

π∗V at b by (π∗V )|b. Then, it is straight-forward to see that

(π∗V )|b = V |π−1(b) = V |F = H0(F, V |F ) , (114)

where F is the fiber class on X, which we recall is an elliptic curve, and V |F means the

restriction of V to the fiber. We have used here the sheaf-theoretic interpretation of V which

allows us to conveniently write (π∗V )|b in terms of H0(F, V |F ). Now, the n-fold spectral

cover of V given in (18) intersects F precisely n times. We denote these points by pi, with

i = 1, 2, . . . , n. Moreover, let the zero section σ intersect F once at the point e. Over a

generic point b ∈ B, e is distinct from the n points pi. Therefore, at such a generic point,

we can write,

(π∗V )|b = H0(F, V |F ) =

n
⊕

i=1

H0(F,OF (e− pi)) . (115)

Now, each bundle OF (e−pi) is clearly of degree zero, being the sheaf for the divisor of points

e− pi. It is also holomorphic. However, one can show [26] that a nontrivial bundle of degree

zero over an elliptic curve admits no global sections. Therefore, H0(F,OF (e− pi)) is trivial

for each i and, hence, it follows from (115) that

(π∗V )|b = 0 . (116)
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But V is torsion free, which implies that π∗V is also torision free [27]. Therefore, (π∗V )|b = 0

for generic points b ∈ B means that

π∗V = 0 (117)

everywhere. Thus, our sequence (113) reduces to

0→ II → H0(B, R1π∗V ⊗M∗)→ 0 , (118)

which implies that

II ≃ H0(B, R1π∗V ⊗M∗) . (119)

Therefore,

dim(II) = h0(B, R1π∗V ⊗M∗) . (120)

We would now like to evaluate R1π∗V . By definition III.8 of [27], we have

R1π∗V = H1(F, V |F ) . (121)

Furthermore, one can show that

rkR1π∗V = rkH1(F, V |F ) = 0 . (122)

Using arguments similar to the above, we see that

(R1π∗V )|b = 0 (123)

for the generic points b ∈ B where e is distinct from the n points pi. However, we can

not conclude, as we did for π∗V , that R1π∗V vanishes everywhere. This is because the first

higher direct image functor, R1π∗V , is not necessarily torsion free, even if V is [27]. It follows

that at any point b′ ∈ B over which e is equal to one of the points pi, (R1π∗V )|b′ need not

vanish. The locus of such special points b′ form a co-dimension one object in B, namely, a

curve. This support curve, which we will denote by C, is given by

C = π∗(CX · σ) . (124)

The sequence (118) is clearly trivial everywhere except on this curve. Therefore, any non-

zero contribution to dim(II) arises from restricting the sheaf R1π∗V ⊗M∗ to the curve C.

Note, using (25), that C is smooth. Let us be more specific about the form of C. Recalling

the expression for CX from (18) and using (5) and (34), the curve C defined in (124) becomes

C = π∗(CX · σ) = π∗(π
∗(−nf + η) · σ)

= η − nf . (125)
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When restricted to the support curve C, (120) becomes

dim(II) = h0(C, (R1π∗V ⊗M∗)|C) , (126)

which is the number of the global holomorphic sections of the sheaf (R1π∗V ⊗M∗)|C on C.

To determine the number of global sections, it will suffice to compute the degree,

d = c1

(

(R1π∗V ⊗M∗)|C
)

, (127)

of (R1π∗V⊗M∗)|C. We will later use the fact that if this degree is negative then h0(C, (R1π∗V⊗

M∗)|C) vanishes [26].

4.3.3 The Degree d Associated to Term II

We now proceed to determine the degree d in (127). To do this, we invoke the Groethendieck-

Riemann-Roch theorem, which states that for any map f : X → B and any sheaf S on X,

we have

td(TB)ch(

2
∑

i=0

(−1)iRif∗S) = f∗(ch(S)td(TX)) . (128)

For the case at hand, S is the vector bundle V . Then, (128) becomes

td(TB)ch(R0π∗V − R1π∗V ) = π∗(ch(V )td(TX)) . (129)

From (117), we know that R0π∗V = π∗V = 0. Therefore, this expression simplifies to

td(TB)ch(−R1π∗V ) = π∗(ch(V )td(TX)) . (130)

Using (105) and (107), we can expand (130) as

(1 + td1(TB) + td2(TB))
(

ch1(−R1π∗V ) + ch2(−R1π∗V )
)

=

π∗ ((n + ch2(V ) + ch3(V )) (1 + td2(TX))) . (131)

In writing (131), we have used the facts that rk(V ) = n, td1(TX) = td3(TX) = 0 since X is

a Calabi-Yau manifold and rk(−R1π∗V ) = 0 by (122). Furthermore, terms on the left hand

side must terminate at order 2 since B is of dimension 2 and terminate at order 3 on the

right hand side since X is of dimension 3. Multiplying out (131), we find that

ch1(−R1π∗V ) + ch2(−R1π∗V ) + ch1(−R1π∗V )td1(TB)

= π∗ (n + ntd2(TX) + ch2(V ) + ch3(V )) . (132)

23



Using (105) and (107), and identifying terms of equal order, (132) implies that

ch1(−R1π∗V ) = π∗ (ch2(V ) + n td2(TX)) , ch2(−R1π∗V ) = π∗ch3(V )−td1(TB)ch1(−R1π∗V ) .

(133)

It then follows from (17), (24), the intersection (10), and using the fact that π∗F vanishes,

that

ch1(−R1π∗V ) = nf − η , ch2(−R1π∗V ) = λη · (η − nf) +
1

2
f · η . (134)

Having obtained these results, recall that we want to compute c1(R
1π∗V ⊗M∗)|C). For

convenience, let us define the sheaf

F = R1π∗V ⊗M∗ . (135)

Next, we recall the multiplicative property of the Chern character, that is, for sheafs A and

B

ch(A⊗ B) = ch(A)ch(B) . (136)

Thus, from (135), we have that

ch(−F) = ch(−R1π∗V )ch(M∗) , (137)

which, using (105) and (107) can be expanded into

rk(−F) + ch1(−F) + ch2(−F)

=
(

rk(−R1π∗V ) + ch1(−R1π∗V ) + ch2(−R1π∗V )
)

(rk(M∗) + ch1(M
∗) + ch2(M

∗)) .

(138)

We can now make use of the facts that rk(−R1π∗V ) = 0 from (122), rk(M∗) = rk(M) = m

and that c1(M) = 0 from (38). Identifying terms of order 1 and 2 respectively, (138) becomes

rk(−F) = 0

ch1(−F) = m ch1(−R1π∗V ) = m(nf − η) (139)

ch2(−F) = m ch2(−R1π∗V ) = m(λη · (η − nf) +
1

2
f · η) ,

where we have used (134). We wish to compute c1(F|C). To do this, let us invoke the

Groethendieck-Riemann-Roch theorem again, this time for the inclusion map

i : C → B (140)
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and the sheaf −F = −R1π∗V ⊗M∗. Then

i∗ (td(TC)ch(−F|C)) = ch(

2
∑

j=0

(−1)jRji∗(−F|C)td(TB) . (141)

However, all the higher image functors Rji∗ for j > 0 vanish because i is an inclusion map.

Moreover, R0i∗(−F|C) = i∗(−F|C) is simply −F . Therefore, (141) becomes

i∗ (td(TC)ch(−F|C)) = ch(−F)td(TB) . (142)

Thus, expanding (142) and using the first expresssion in (139), we have

i∗ ((1 + td1(TC))(ch0(−F|C) + ch1(−F|C)))

= (ch1(−F) + ch2(−F)) (1 + td1(TB) + td2(TB)) . (143)

Upon identifying terms of order 1 and 2 respectively, this implies

rk(−F|C)i∗(1) = ch1(−F) (144)

and

ch1(−F|C) + ch0(−F|C)td1(TC) = ch1(−F)td1(TB) + ch2(−F) . (145)

Noting that

i∗(1) = C , (146)

and using the middle equation in (139), it follows from (144) that

rk(−F|C)C = −m(η − nf) , (147)

This then implies that

rk(−F|C) = −m, C = η − nf . (148)

Both of these expressions are re-assuring. Note that

rk(−F|C) = rk(−R1π∗V )rkC(M∗) = −m (149)

which is consistent with the first equation in (148). Second, the result for C in (148) is

identical to that found in (125). Emboldened, let us proceed to equation (145) which would

give us what we are after. Now, we note that even though F is not a vector bundle, F|C,

being supported on C, is. We recall that for any vector bundle U ,

ci(U
∗) = (−1)ici(U) . (150)
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Therefore, from (145) and (150), we have

c1(F|C) = −c1(−F|C) = −
(

ch1(−F)td1(TB) + ch2(−F) + mtd1(TC)
)

. (151)

Using (139), we find that

c1(F|C) = −mλη · (η − nf)−m td1(TC) . (152)

Also, we know that

td1(TC) =
1

2
c1(TC) =

1

2
χ(C) =

1

2
(2− 2g(C)) , (153)

where g(C) is the genus of the curve C. Recalling from (127) and (135) that d = c1(F|C),

we find from (152) that

d = −mλη · (η − nf)−m(1− g(C)) . (154)

We now need to find the genus of C. Since C is in B, to obtain the genus we again invoke

the adjunction formula (94) in the base B,

g(C) =
1

2
C · (C + KB) + 1 . (155)

From (33) and (125), we have

C · C = (η − nf)2 = −2nη · f + η2 . (156)

Similarly, we have

C ·KB = (η − nf) · (−f) = −η · f . (157)

Therefore, we find that

g(C) =
1

2
(η2 − (2n + 1)η · f) + 1 . (158)

Upon substitution of (158) into (154), we find the degree

d =
m

2
((2λ− 1)η2 + (1 + 2n− 2nλ)η · f) . (159)

It is convenient to recast this expression into one depending on the base curve η′ whose

definition was given in (25). Doing this, (159) becomes

d =
m

2

(

(1− 2λ)η′2 + (1− 2(n + 2)λ)η′ · f
)

. (160)
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4.3.4 The Degree d′ Associated with Term III

Having computed, in (160) the degree d of the sheaf (R1π∗V ⊗M∗)|C arising in term II,

we will now compute the analogous quantity for term III, which we will denote by d′. The

combined knowledge of d and d′ will allow us to determine, in conjunction with the index

theorem result (110), the individual expression for dim(II) and dim(III).

First, we recall that III = H1(X, π∗M ⊗ V ∗). We can fit this into a Leray spectral

sequence in precise analogy to what was done for term II. Indeed, term III will be again

supported on some curve because the properties of V used earlier, namely that π∗V vanishes

and R1π∗V vanishes except on a curve, hold for the dual bundle V ∗ as well. Furthermore,

the spectral cover for V ∗ is identical to that of V [24]. Thus, (124) implies that the support

curve for R1π∗V
∗⊗M remains C given in (124). Therefore, we have the analogue of equation

(126),

dim(III) = h0(C, (R1π∗V
∗ ⊗M)|C) . (161)

This is the number of global holomorphic sections of the sheaf R1π∗V
∗⊗M restricted to C.

To find this, we need to determined the degree

d′ = c1

(

(R1π∗V
∗ ⊗M)|C

)

. (162)

We repeat the analysis of the previous subsections, and find that the only change in our

expression (127) is that we now have ch3(V
∗) rather than ch3(V ). Using

ch3(V
∗) = −ch3(V ) , (163)

(162) is found to be

d′ = mλη · (η − nf)−m(1− g(C)) . (164)

In terms of the curve η′ defined in (25), (164) becomes

d′ =
m

2

(

(1 + 2λ)η′2 + (1 + 2(n + 2)λ)η′ · f
)

. (165)

4.3.5 Comparing d and d′

We now compare (160) and (165). First, we note that η′2 and η′ · f are both positive by

our constraints (26) and (27). Therefore, if λ ≥ 1
2
, then d < 0 while d′ > 0. Now, because

there are no global holomorphic section to a sheaf of negative degree, this would imply that

dim(II) vanishes. On the other hand, if λ ≤ −1
2
, then d > 0 while d′ < 0. This would imply

that dim(III) vanishes. This leaves the one single case of λ = 0, for which our arguments
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do not apply. When λ = 0, both d and d′ are positive, meaning that both dim(II) and

dim(III) are non-zero. However, their difference in this case, by (110), is zero. Therefore,

in this special case dim(II) = dim(III). For convenience, let us henceforth assume that

λ 6= 0 . (166)

In summary, then

λ ≥
1

2
, dim(II) = 0

λ ≤ −
1

2
, dim(III) = 0 . (167)

That is, one of the two cross terms always vanishes if λ 6= 0.

4.3.6 Obtaining dim(II) and dim(III)

Combining our discussions in the previous subsections, we at last can obtain explicit expres-

sions for dim(II) and dim(III). Applying (167) with the index theorem result (110), we

find that

dim(II) = 0 , dim(III) = mλη · (η − nf), (168)

for λ ≥ 1
2

and

dim(II) = −mλη · (η − nf) , dim(III) = 0 (169)

for λ ≤ −1
2
. It is re-assuring to see that all cases are non-negative, as they must be. Using

(33), the individual expressions (168) and (169) can be combined to give

dim(II) + dim(III) = m|λ|

(

b2 − 3nb +
9
∑

i=1

(ai − a2
i )

)

(170)

for λ 6= 0.

5 Final Result: The Moduli for V̂ = V ⊕ π∗M

Collecting all four terms from (58), (97), and (170), we have our final result for the dimension

of the moduli space of a reducible rank n + m holomorphic vector bundle of the form V̂ =

V ⊕ π∗M on a Calabi-Yau threefold X elliptically fibered over dP9. If we denote the moduli

space of this bundle byM(V ⊕ π∗M), then

dim (M(V ⊕ π∗M)) = (m|λ|+
1

2
n)b2 + (3−

3

2
n− 3mn|λ|)b + (n + 2km−m2) +

9
∑

i=1

(

(1 + m|λ| −
1

2
n2)ai − (

1

2
n + m|λ|)a2

i

)

, (171)
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where
λ = p + 1

2
, n odd

λ = p, n even
(172)

with p ∈ Z,

λ 6= 0 (173)

and

1 < m ≤ k . (174)

The parameters ai and b are defined by

ai = a′
i − (n + 1), b = b′ + 3(n + 1) , (175)

where a′
i and b′ obey the following constraints

b′2 −
9
∑

i=1

a′2
i > 0, 3b′ +

9
∑

i=1

a′
i > 0, b′β −

9
∑

i=1

a′
iαi > 0 (176)

for all αi ∈ Z and β ∈ Z>0 such that

− β2 +
9
∑

i=1

α2
i = 1, 3β +

9
∑

i=1

αi = 1 . (177)

To illustrate these results, let us present a sample calculation. An obvious solution to

the positivity constraints (176) is

a′
i = −n, i = 1, 2, . . . , 9

b′ = 3n + 1 . (178)

This implies that

ai = −2n− 1, i = 1, 2, . . . , 9

b = 6n + 4 . (179)

Substituting these coefficients into result (171) gives

dim(M(V ⊕π∗M)) = 3+2 k m−2 |λ|m−m2−18 |λ|m n−18 |λ|m n2 +
9 n2

2
+

9 n

2
. (180)
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Appendix A: Ample Case for the Spectral Curve Moduli

of Term IV

In this Appendix, we compute h0(B,OB(CB)) for the simple case where OB(CB) is ample.

We will compare the result with the general case (91) computed in the text of this paper

and find that they agree.

Consider the bundle OB(CB) ⊗ K−1
B and assume that it is ample. Then its positivity

allows us to invoke the Kodaira vanishing theorem [26]

Hq(B, Ωp(OB(CB)⊗K−1
B )) = 0, for p + q > dimB . (181)

Taking p = 2 and using the fact that Ωp(OB(CX)) = Ω2(TB)⊗OB(CB) = KB ⊗OB(CB), we

have, for all q > 0, that

Hq(B,OB(CB)) = Hq(B, Ω2(TB)⊗OB(CB)⊗K−1
B ) = 0 . (182)

Therefore

χ(B,OB(CB)) =

2
∑

i=0

(−1)ihi(B,OB(CB)) = h0(B,OB(CB)) . (183)

Now,

χ(B,OB(CB)) =

∫

B

ch(CB) ∧ td(TB) (184)

by the Groethendieck-Riemann-Roch theorem. For surfaces B, this reduces to

h0(B,OB(CB)) =
1

2
CB · (CB −KB) +

1

12
(K2

B + c2(TB))

=
1

2
CB · CB −

1

2
CB ·KB +

1

12
c2(TB) , (185)

where we have used the fact, from (4), that K2
B = 0 on a dP9. We also recall from (9) that

c2(TB) = 12, from (43) that CB = mσB + kf and from (5) that c1(KB) = −f . Together

with the intersection numbers given in (10), we find that

h0(B,OB(CB)) = 1−
1

2
m2 + km +

1

2
m . (186)

This expression indeed agrees with the result for the general case of OB(CB) computed in

(91).
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Appendix B: dim(IV ) from the Index Theorem

In this Appendix we calculate the dimension of term IV, that is, h1(B, M ⊗ M∗), using

the Atiyah-Singer index theorem. We then compare the result to (97) computed in the dP9

context and find perfect agreement.

First, we note that H0(B, M ⊗M∗) = 1 because M is stable. Then, by Serre duality we

have

H2(B, M ⊗M∗) = H0(B, KB ⊗M∗ ⊗M) , (187)

which vanishes by the arguments following (68). Therefore, the Atiyah-Singer index theorem

χ(B, M ⊗M∗) =

2
∑

i=0

(−1)ihi(B, M ⊗M∗) =

∫

B

ch(M ⊗M∗) ∧ td(TB) , (188)

now reduces to

h1(B, M ⊗M∗) = 1−

∫

B

ch(M ⊗M∗) ∧ td(TB) . (189)

Using (38), (105) and (136), we have

ch(M ⊗M∗) = (m− k pt) ∧ (m− k pt) = m2 − 2km pt , (190)

where we have been careful in including the class pt of points. Similarly, from (4), (9) and

(107), we have

td(TB) = 1 +
1

2
f + 1 pt . (191)

Multiplying (190) with (191), and inserting into (189), we obtain the final result

dim(IV ) = h1(B, M ⊗M∗) = 1−m2 + 2km , (192)

which is in perfect agreement with (97).
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