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Abstract 

Achieving an adequate income in the old age to maintain the standard level of living after 

retirement has been a challenge to pension schemes for a long time. In fact, approaching 

this goal has led to a global pension crisis considering all the economic and demographic 

changes and the conflicting interests of employers and employees over time. This 

research aims to deriving different deterministic and stochastic dynamic pension funding 

models for defined benefit schemes within the mathematical framework of optimal 

control theory and dynamic programming. The practical implementation of these 

dynamic models into one of the largest Egyptian defined, benefit occupational pension 

schemes - as a case study - is a tool to examine how they act in the reality, and provide 

the management of the pension fund with a dynamic plan instead of the static ones that 

have been used in such a volatile market. Taking into consideration the optimal 

contribution rate of the mutual interests of both the employer and the employees by 

including a mixed middle term in the dynamic pension funding models. This represents 

both the contribution rate risk and the solvency risk and could provide a solution for one 

of the pension schemes problems. 
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Chapter Two 
Background of Social Security System in Egypt 

2.1 Introduction 
The development of the Egyptian social security system has been affected by 

considerable political, social and economic changes since its inception. Certain laws have 

been issued while many others have been adjusted or even amended for the following 

reasons: 

" extending the coverage to more sectors in the society; 

" increasing the benefits for the insured persons; 

" regulating or reorganizing the system for achieving more effectiveness and 

efficiency. 
The current Egyptian social security system can be subdivided into: 

" State Social Insurance System; 

" Contracted-Out Schemes; 

" Occupational Pension Schemes or Private Pension Funds as they are called in 

Egypt; 

" Personal insurance policies. 

This chapter will be a brief review of the four above mentioned systems, which represent 

the entire current social protection provisions in Egypt. In some parts, we refer to other 

countries experience to understand some similarities and differences between the 

Egyptian system and other developed countries systems such as: UK. Private Pension 

Funds will be used throughout the thesis to refer to the Egyptian occupational pension 

schemes, either defined benefit or defined contribution pension schemes. 

2.2 State Social Insurance System (SSIS) 

The State Social Insurance System is considered the main social security pension system 

in Egypt. It is a compulsory, funded scheme through two separate funds: one for the 
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government sector and the other for the public and private sectors, while pay-as-you-go 
(PAYG) for the casual workers who are covered by the law no. 112 of 1980, and defined 

benefit system which according to the present law, extends to all working people. 

In the following sub-sections, we will briefly look at the historical background and the 

modifications of the laws applied with their effect on the benefits and contributions 

specified in the Egyptian national system, and the different aspects of SSIS. 

2.2.1 Historical Background 

The historical background of SSIS can be traced through three different stages, each stage 

represents a period of time where main changes had been made to affect the laws of the 

social insurance system (El-Sayyad, 1999), they are: 

" First stage: Before 23rd of July 1952 Revolution 

The inception of the Egyptian social insurance system dates back to the mid-nineteenth 

century and precisely on 26`x' December, 1854 when the first law was issued to provide 

pensions for old age, death and invalidity, but that was only for a selected group of 

government employees. At that time they were not obliged to pay any contributions as 

these pensions were funded by the Public Treasury. 

Due to the increase of Egyptian debts because of the Suez Canal inauguration, a law was 

issued on 16th October 1870 to enforce payment of 3.5% of the employees' salaries as 

contributions for the first time. In 1882 and 1884, laws were issued to cover more sectors 

of the government employees. The contribution rate was raised to 5% as a result of 

increasing the benefits offered to them. 

Both the System and benefits were adjusted by law no. 5 of 1909 to extend the coverage 

of the social protection provision, and later in 1929, law no. 27 was issued to increase the 

employees' contributions to 7.5%, but thereafter abolished in 1935. 
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In 1942, the first law covering the employees against work injuries was issued, and was 

followed by law no. 117 of 1950 to cover occupational diseases as well. 

" Second stage: the period following 1952 Revolution 

During the period from1935 to 1952 (the Revolution year), a large sector of government 

employees and workers were not covered by any pension scheme. Encouraging and 

providing security for the working people was one of the main objectives of the 

Revolution, so that a number of laws that dealt with organizing the state pension scheme 

for the working people in all sectors, such as: laws 1952,1956 and 1963 for employees in 

the government sector, and others 1955,1959,1961 and 1964 for the public and private 

sectors, were issued during the period after the revolution to cover the members against 

old age, disability, death, health insurance, work injuries and unemployment. 

9 Third stage: the contemporary stage and recent developments - the period 

from 1975 till now - 
In the mid-1970's and the beginning of the 80s, a number of basic laws have been issued 

to cover all the working people inside and outside Egypt: 

- Law no. 79 of 1975 (General Social Insurance System) for employees in government, 

public and private sectors. 

- Law no. 108 of 1976 for employers and the self employed. 

- Law no. 50 of 1978 to regulate the voluntary social insurance system for Egyptians 

working abroad. 

- Law no. 112 of 1980 (Comprehensive Social Insurance System) for all Egyptian 

working people who are not covered by any of the previous laws. 

These laws are considered the four columns of SSIS and regulate the current coverage of 

social security system in Egypt. There are two authorities responsible for the application 

of these four laws under the supervision of the Ministry of Insurance and Social Affairs 

(MISA), they are: 

- National Authority for Insurance and Pensions (NAIP). 

- National Authority for Social Insurance (NASI). 
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The NASI is in charge of the General Social Insurance System, i. e. Law no 79 of 1975 by 

managing two separate funds, the first is: Government Sector Fund which deals with the 

government employees, the second is: Public and Private Fund for the employees who 

work for the public and private units. 

2.2.2 Coverage 

The social security systems around the world aim to cover the whole working people 

against the potential risks of losing their income. In 2001, the SSIS covered 38.9% of the 

total population, 92.8% of the active population (working people from age (15 -65)) with 

total contributors 71.5% and total beneficiaries 28.5%. 

The number of insured persons covered by SSIS under the four different laws during the 

period from 1993 to 2003 is shown in Table 2.1. 

Table 2.1 

The number of the insured persons under the four main 
social insurance laws from 1993/94 to 2002/03 

(in thousands persons) 
Year Law 

79/ 1975 
Law 

108/1976 
Law 

50/1978 
Law 

112/1980 
Total 

1993/94 8976 1502 56 5355 15889 
1994/95 8702 1576 68 5537 15883 
1995/96 9072 1650 20* 5707 16449 
1996/97 9232 1716 21 5834 16803 
1997/98 9335 1756 22 5837 16950 
1998/99 9692 1820 23 5918 17453 
1999/00 9757 1837 16 5920 17530 
2000/01 10044 1876 18 5922 17860 
2001/02 10422 1924 15 5942 18303 
2002/03 10604 1966 16 5966 18552 

Source: MISA, 1998/ 99 and 2002/03. 

* This number is an adjusted number starting from 1995/ 96, which represents only the 

insured persons under this law who are paying contributions regularly. 
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Table 2.1 indicates that the majority of the contributors during this period were under the 

coverage of law no. 79 of 1975, the casual workers under law no. 112 of 1980 were in the 

second rank, then followed by the number of employers and self-employed. Egyptians 

working abroad constituted the smallest number under the law no. 50 of 1978, this could 

refer to the voluntary feature of the membership with the possibility that they might get 

the social insurance coverage they need in the country in which they live. It is also 

notable that the number of Egyptians working abroad has a decreasing trend compared 

with other categories. This is due to cancellation of the membership of the insured 

persons if there is a delay in payment of their contributions for more than 6 months 

according to the law. 

Law no. 79 of 1975 not only covers the majority of the Egyptian employees in 

government, public and private sectors as previously mentioned, but also extends to cover 

the members of their families or "the dependants". These include: widow, divorcee, 

spouse, sons, daughters, parents, brothers and sisters under certain requirements. 
The following Table 2.2 shows the total number of pensioners and dependants and the 

amounts of benefits paid to both of them from 1993/94 to 2002/03. 

Table 2.2 
The number of pensioners and their dependants and 

the amount of benefits paid from 1993/94 to 2002/03 

Year 
Pensioners 
(in thousands) 

Dependants 
(in thousands) 

Total 
beneficiaries 

Benefits 
(in million LE) 

1993/ 94 1436 4409 5845 5415.1 
1994/ 95 1482 4505 5987 6357.3 
1995/96 1545 4548 6093 7291.4 
1996/ 97 1601 4695 6296 8548.6 
1997/98 1726 4808 6534 9781 
1998/99 1834 5012 6846 11264 
1999/00 1952 4954 6906 12848 
2000/01 2062 5060 7122 14602 
2001/02 2138 5173 7311 17124 
2002/03 2199 5183 7382 18967 

Source: MISA, 1998/99 and 2002/03. 
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In 2002/2003, the number of pensioners were 2.199 millions and the number of the 

dependants were about 5.183 millions. This indicates that 70% of the beneficiaries are 

"dependants" under this law. During the period from 1993/94 to 2002/03, the average 

number of the dependants represents 73% of the total beneficiaries, i. e. only 27% of the 

benefits go to the pensioners who are basically responsible of paying the contributions. 

All the four laws of SSIS cover the beneficiaries against the old age, disability and death, 

however, law no 79 of 1975 provide more benefits like: 

- Work injuries insurance. 

- Health insurance. 

- Unemployment insurance. 

- Social patronage insurance for pensioners (which include: establishing homes 

for elderly people, concessions or reduction in fares for transportation, flight 

and theatre tickets, ... etc). 

The old age, disability and death benefits are similar under laws no. 79,108 and 50 of 

1975,1976 and 1978, the coverage under law no 12 of 1980 is different as it is mainly for 

the casual workers. Thus, a reference to the contributions and the benefits of the old-age, 
disability and death covered in the General Social Insurance System would, at this point, 

be of relevance to our study about pension schemes. In the following subsections the 

contribution rates, benefits and eligibility of old age, disability and death are illustrated. 

2.2.3 Contributions 

The contribution rate is a fixed percentage of the pensionable salary which is paid by the 

employer, employee and the government. The pensionable salary that is used for the 

calculations of contribution rates and benefits is based on: 
(i) The basic salary: which an employee receives and that is determined according 

specific labour list or work contracts. 

(ii) The variable salary: that can be defined as: all payments the insured person gets 

from his original job apart from basic salaries. These include: 

- incentives; 
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- commissions and gratuities; 

- allowances; 

- bonuses, shares of the firm's profit; 

- social increases such as: the high cost of living increases; 

- overtime wages. 

Since 1992,100% of the variable salaries have been taken into account in calculating the 

benefits. The total contribution rate for old-age, disability and death is 26% of the 

pensionable salary. It is divided as follows: 

9 15% paid by the employer; 

" 10% paid by the employee; 

" 1% paid by Public Treasury. 

2.2.4 Benefits 

The pension is considered the main income provided by SSIS to the insured persons at 

normal retirement age (NRA), disability or death. Since the calculation of the 

contributions is based on both the basic and the variable salary, the pension is also 

calculated accordingly, i. e. the total pension consists of basic salary pension and the 

variable salary pension, as follows: 

TP = BSP + VSP 

BSP= 1/45. N. ABS 

VSP =1 /45 . N. (1.02) AVS 

where 
TP: total pension 

BSP: basic salary pension 

VSP: variable salary pension 

1/ 45: is the accrual rate which is usually 1/ 60 in the UK. 

N: no of contribution years. 

ABS: average basic salary during the last two years of contribution. 

(2/1) 

(2/2) 

(2/3) 
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AVS: average variable salary during the contribution period since April 1984, or the 

contribution period if less. 

The variable salary pension was introduced to the system in addition to the basic one due 

to the increase in salaries, represented in the variable salaries, in response to the rise in 

the inflation rate in 1984 (Mohamed, 1997). The pensioners were badly affected as the 

pensions had not been indexed to inflation, so that, the variable salary had been included 

in the definition of the pensionable salary, and the variable salary pension has been 

calculated since July 1992 (Maait, 2003). 

In addition to the pensions offered, the beneficiaries are entitled to other benefits under 

certain requirements', such as: lump sum, end of service remuneration, additional 

indemnity, death grant, funeral expenses and marriage grant. 

2.2.5 Eligibility 

The insured person will be entitled to a pension under the following main requirements: 

(a) In the case of retirement 

" Reaching the normal retirement age (60) for both men and women. 

"A minimum contribution period of 120 months. 

" For early retirement, the contribution period must not be less than 240 months, 

with a possibility of having a full pension from the age of 55 and a reduced 

pension from the age of 40. 

(b) In the case of disability or death 

" Termination of service because of (total or partial) disability or death whatever 

the contribution period of the insured person. 

" Death or total disability during one year after retirement provided the insured 

person is not over sixty and has not been paid the lump sum indemnity, whatever 

'The requirements of these other benefits are not mentioned in detail in section 2.2.5, as 

this could be covered in further research which considers studying the SSIS. 

16 



the period of contribution (but not less than three consecutive months or six 

intermittent months). 

0 Death or total disability after one year of retirement (60 or less) provided that the 

minimum period of contribution is 120 months and the lump sum has not been 

paid. 

It should be noted that the pension in the last two cases is calculated in the same way as 

for the retirement pension except that the monthly earnings average is calculated 

according to the last year of the contribution period, or the whole contribution period if 

less than one year. 

To protect the value of benefits of the insured persons in the case of transfer from a job in 

one sector to another, the law no 79 of 1975 stated that all the years of contribution must 

be taken into account as one period when calculating the benefits; each fund would be 

responsible for the years which the insured person spent working for the sector and 

should transfer its share in benefits to the other fund. 

2.2.6 Taxation 
According to the law, contributions of both employer and employee, all investment 

operations, pensions and all other benefits are exempted from taxes, duties and other fees 

imposed by the government. Furthermore, the cases held by authorities or insured persons 

or beneficiaries are exempted from court fees. 

Taxation of social security contributions and benefits is different in other countries, for 

example, in the UK and the US, the employer contributions are tax-deductible and the 

employees contributions are not in the social security systems and other compulsory 

plans . Moreover, the taxation of social security benefits is dependent on the benefits 

received, for example: retirement pensions, widows pensions/allowances are taxable as 

earnings in the UK. The social security benefits are currently taxable in the US for 

persons whose income and social security benefits exceed a specified base amount 

(Watson Wyatt, 2000 and 2004). 
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2.2.7 Investment 

SSIS plays an important role in the economy of the country as the Government relies 

heavily on its funds, which reach billions of Egyptian Pounds, to finance the social and 

economic projects of the Government. 

Table 2.3 shows the total assets of SSIS and the amounts invested from 30/6/94 to 

30/6/2003 - as the fiscal year ends on the 30th of June each year-. 

Table 2.3 

Total assets of SSIS and amounts of 
investments from 1993/ 94 to 2002/03 

(in millinn t El 

Year 
Total 
assets 

Total 
investments 

1993/94 56955.1 53750.6 
1994/ 95 67783.3 63687.5 
1995/ 96 80348.6 74906.7 
1996/ 97 95131.4 87246.5 
1997/98 111859.6 100352 
1998/99 130212.7 114018.8 
1999/00 150217 129951 
2000/01 171564 147851 
2001/02 195849 167615 
2002/03 222287 189776 

Source: MISA, 1998/ 99 and 2002/03. 

The total assets shown in Table 2.3 represents the total reserves that appears in the 

government, public and private sectors funds statements, and is held in the scheme to 

cover its liabilities (including expenditures). Table 2.3 indicates that an average of 89% 

of these assets is invested in order to guarantee a desired return that helps with the 

contributions paid by the employers and employees to cover the benefits offered by the 

schemes. 
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However, most of the investments (90% or more) are deposited in the National 

Investment Bank (NIB) in two separate funds: one for the government sector and the 

other for the public and private sectors. Approximately 5% or less of this amount is 

invested in other types of investment such as: 

- Bonds; 

- equities; 

- deposits in Banks. 

Table 2.4 shows the relative importance of different types of investment in both 

government, public and private sectors funds which represent SSIS in 2002/03. 

Table 2.4 
The relative importance of the investments in 

government, public and private funds in 2002/03 

Type of 
Investment 

Government 
sector 

Public and 
private sector 

NIB 90.9 93.7 
Government 
bonds 

1.0 1.3 

Total 91.9 95.0 
Equities 0.8 0.9 
Deposits 7.1 4.0 
Loans* 0.2 0.1 
Total 100 100 
Source: MISA, 2002/2003. 

* Loans: are those guaranteed loans that are given to the members upon their entitlement 

to pensions. 

The investments of both the government, public and private sectors funds show a prudent 

investment strategy of the funds management. This is clearly seen in Table 2.4 with a 

percentage from 92-95% of the assets invested in NIB and the government bonds in 

2002/03. Deposits had a percentage from 4% to 7% and the equities were around 1% only 

in both funds. Although this reflects a low risk investment policy, it may not be the 
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optimal strategy when inflation is increasing and the need to achieve extra income to 

cover any deficit that may arise. 

Here, it is worth to mention that the annual rate of return provided by National 

Investment Bank on the deposits has generally been lower than the market rates. It had 

actually increased from 6% tol3% during the period from 1989 to1992 - according to the 

Government Actuary's recommendations -. Thus, a higher return on investments had 

been achieved in order to cover the deficit of the two funds that had arisen in the actuarial 

valuations reports from 1959 to 1978 (Sabra, 1998). This rate has been reduced to 11% 

since 1997 according to the decision of the board of directors of NIB no. 99 of the year 

1997. 

Nowadays, the experience of other countries around the world shows that the 

management of the pension funds tends to adopt different investment strategies and have 

a portfolio of assets with different risk-return characteristics to respond to the volatility of 

the economic, demographic and political factors in both domestic and international 

environments. For example: the pension funds in the UK had 66% of total fund assets 

invested in domestic and overseas equities in 1989 (Blake, 1992), this percentage 

increased to an average of 70 % in 2000 (Blake, 2003). 

2.2.8 Main problems of State Social Insurance System 

Although the Egyptian social insurance system offers a good coverage to the pensioners 

and a wide range of benefits to their dependants, there are some problems that need to be 

tackled for a better performance of the main social security scheme, they are: 

" Maintaining the real value of pensions, taking into consideration the economic 
factors such as: inflation rates and salary growth rates (Salem, 2000). 

" Keeping the balance between the inputs and outputs, i. e. the income and the 

expenditures of the system to prevent the occurrence of deficits. 

" Evaluating the investment policy of the management of the funds to cope with the 

economic and demographic changes in the market, and at the same time to learn 

from the international experience of managing pension funds in other countries, 
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and the way that they reach their desired portfolio of assets without putting a 

burden on the promised benefits or levels of contributions. 

" The need for a reform in order to increasing the efficiency of the system as it 

serves all working people in Egypt. Considering the poverty problem in Egypt, 

the social security system needs to be more efficient and reformed for better 

allocation of the resources of the scheme and the redistribution of the benefits 

among the population to serve the poor people in facing their social risks more 

than the better off (Loewe, 2000). 

2.3 Contracted- Out Schemes 

Contracted-Out schemes are those schemes which have the opportunity to opt out of SSIS 

and to offer their members with at least the benefits provided by the State. The 

establishment and abolishing of such schemes in Egypt with their different aspects will 

be discussed in the following sub-sections. 

2.3.1 Historical background 

In late seventies, the Egyptian Government moved towards a capitalist system by 

adopting the "open door" policy, in which there was a trend towards the privatization of 

the public units along with encouragement of international investments in Egypt. The 

idea of providing better benefits to the working people along with achieving a better 

performance of SSIS was a subject of discussion for the privatization of the social 

security system. Thus, in 1980 law no. 64 was issued to organize the regulations and 

legislation of contracting- out schemes, the Egyptian Government gave approval to 

companies to contract- out of SSIS provided that better benefits are offered to their 

employees, under these two conditions: 

(1) The number of employees in the company should not be less than 1000. 

(2) The capital of the company should not be less than LE10 million. 

Up till now, only seven banks and a marine transportation company have made use of this 

law. The reason for this limited number is that Law no. 230 of 1989 was issued to amend 
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the former law and cease underwriting such schemes. At that time, they have been 

considered a direct threat to SSIS, this threat was explained by the interest of the state to 

have an overall control of the management of the pension scheme and the investment of 
its total funds. On the other hand, the inequality of benefits, offered to the members of 

these schemes compared with the State's members, would force the Government to raise 

its benefits offered by SSIS (Maait, 2003). 

The experience in the UK shows that the reasons for introducing Contracted-Out schemes 

were: the desire to introduce an earnings-related system without duplication of the 

provision; since the occupational pension schemes have already existed, it was also to 

avoid reducing the funded occupational pension provision by employers; and finally to 

keep down the social security costs (Daykin, 2001). 

Currently in the UK, employees can opt out of the State Second Pension (S2P)and its 

processor the State Earnings-Related Pension Scheme (SERPS) if they are members of a 

contracted-out occupational pension scheme or an approved personal pension plan, and in 

return they pay a reducing rate of National Insurance Contributions (NICs) ' called the 

contracting -out rebate (Sullivan, 2004). This is also applied in Japan where there is a 

reduction in the contributions as a further incentive to contract-out of Employee Pension 

Insurance (Rein and Turner, 2004). 

Although a lot of detailed changes have taken place in the British pension schemes over 

the years, Contracted-Out Salary Related Schemes (COSRS) and Contracted-Out Money 

Purchase Schemes (COMPS) are still among the choices of the pension provisions to the 

working people. All the public sector schemes and about 23.8% of the private sector 

schemes are contracted-out schemes (Occupational Pension Schemes 2004,2005). In 

2001, there was a report carried out by the Government Actuary, and presented to the UK 

Parliament on the reductions and rebates for both types of contracted-out schemes 

covering the period from 6th of April 2002 to 5t' of April 2007 (GAD and SSSS, 2001). 

However, the recent movements towards the money-purchase schemes and the 
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suggestion of abolishing the SERPS and its successor the State Second Pension (S2P) 

(Ward, 2004), raise a big question about the continuity of these contracted-out schemes. 

2.3.2 Characteristics 

Egyptian Contracted-Out schemes are registered, supervised and controlled by the 

Ministry of Insurance and Social Affairs (MISA). This is to ensure the strength of the 

scheme's financial status and its ability to cover the liabilities to protect the members' 

rights. In return the schemes are obliged to pay 1% of their funds as a supervision fee to 

MISA. 

Every scheme is an independent entity with a board of directors that regulates all of its 

activities and determines the types of benefits offered to the members and the eligibility 

to them. However, they are obliged to offer at least the same benefits offered by the State, 

and have to amend their benefits to respond to any enhancements of the benefits made by 

the State. 

These schemes are well-established, financially strong and have a good capability to 
invest their funds more effectively, and this helps them to offer similar types of benefits 

as the state but with higher values, while the contribution rate of the employees remains 

equal to the same percentage determined by SSIS, i. e. 10 % of the pensionable salary. 

In contracted- out schemes, the contributions and all other resources of the fund except 

the return of investment are tax exempted as well as all the benefits that paid to the 

members including: pensions, indemnities, grants and cash payments. 

Finally, the insured person can transfer from contracted-out scheme to another according 

to the rules of each scheme's status as mentioned earlier. The member can also transfer to 

the State scheme and vice versa according to the rules issued by the Prime Minister. 
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2.3.3 Investment 

In 1999, the total funds of the eight contracted- out schemes were LE 620 million plus 

US$ 30.2 million held by the Arab African International Bank (AAIB). There was an 

increase of LE 72.2 million (13%) and US$ 6.3 million (26%) compared with the 

previous year. It is notable that the funds of these schemes are still limited compared with 

those held in both SSIS and the Private Pension Funds, this is actually due to the small 

fixed number of the Contracted-Out schemes. 

According to the law, all Contracted-Out Schemes must invest at least 50% of their funds 

in the National Investment Bank. In 1999, the total amounts invested in NIB reached 

LE 311.1 million. The invested amounts ranged from 51.9 % to 100 % of the total funds 

according to the investment strategy of each scheme. It should be noted that the amounts 

in US Dollars are not invested in NIB, instead they are directed to other types of 

investment determined by the investment managers of AAIB. 

Table 2.5 indicates the asset allocation of the Contracted-out schemes in 1999 which was 

equal to LE 658.3 million, this amount was a sum of LE 620 million and a converted 

amount of US$ equals to LE 38.3 million. Apart from the amount invested in NIB - 

which is 50.2% of the total Egyptian funds held in the schemes - there was more than 

50% of the amounts invested in deposits where as 23.6 % were invested in equities and 

11.7% in shares, the bonds and loans represented only 9.4% and 3.3% of the investments 

respectively. 

The investment strategies of Contracted-Out schemes showed more diversification of the 

portfolio of assets held by the schemes compared with the investments of SSIS. This is 

clearly seen in Table 2.5 as the percentage of the amounts invested in NIB and deposits 

was approximately 75%, and the amounts invested in equities and shares were 18.7% 

compared with only 1% in SSIS. 
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Table 2.5 
The asset allocation of the funds of Contracted-Out Schemes in 1999 

Investments 
Invested amounts 

(millions LE) 
Relative importance 

% 
NIB 311.1 47.3 
Total (1) 311.1 47.3 
Deposits and accounts in 
banks 180.1 27.4 
Equities for exchange 82.2 12.5 
Shares in companies 40.7 6.2 
Government bonds 32.8 4.9 
Guaranteed loans 11.4 1.7 
Total (2) 347.2 52.7 
Total (1) + (2) 658.3 100 

Source: MISA, 1999 

2.3.4 Actuarial Valuation 

The actuarial valuation must be carried out by a qualified actuary2 at the time of 

registration and regularly once every 5 years, unless MISA asks for an earlier valuation in 

the case of any difficulty facing the financial status of the scheme, or an adjustment is 

made to the statute of the scheme. 

2.4 Private Pension Funds 

The need for a supplementary system to the state social insurance systems arises in many 

countries for many reasons including: 

" The increase in benefits costs, due to the changes in the social, demographic and 

economic factors, which set a challenge for the state social insurance systems to 

provide the working people with the promised benefits, that secure their standard 

of living after retirement or in the case of any contingency; 

"a new movement for rewarding the faithful employees; 

2A qualified actuary according to the Egyptian Law is the one who registered and 

qualified by EISA upon having the Fellowship of the Institute of Actuaries in the UK or 

an equivalent degree from the US. 
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9 the increasing needs of the working people to get more benefits than those 

provided by the state schemes. 

Occupational pension schemes started as supplementary voluntary systems in companies 

and unions long time ago. These types of schemes have developed rapidly, and then 

spread in many countries around the world. At the present time, Private Pension Funds in 

Egypt are considered the main. complementary pension schemes that provide the insured 

persons with a coverage above the maximum level offered by SSIS. As these schemes are 

of a main concern of this thesis, they will be studied in more detail in the following 

subsections. 

2.4.1 Historical background 

The development of Private Pension Funds in Egypt could be traced through four stages, 

they are: 

9 First stage: Before 1950 

Friendly societies were the common type of these schemes at that time, they were mainly 

financed by the contributions of their members to cover them in the case of death. 

Thereafter, the coverage was expanded to offer benefits in the case of retirement, loss of 

income and marriage. The contributions were very limited and they ranged from 5p3 to 

25p, accordingly, the benefits were also limited and ranged from LE 3 to LE 50. 

" Second stage: law no. 156 of 1950 

Law no. 156 of 1950 was issued to organize the friendly societies after their numbers had 

increased. It stated that the organizations with a minimum contributions equal to LE300 

annually should be registered and supervised by the Insurance Supervisory Authority 

while the schemes with less amount of contributions should be under the supervision of 

the Social Affairs Authority. 

3p= piasters, where LE1 = 100 piasters. 
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After applying this law, there was not a significant change in the amounts of both the 

contributions and benefits that had been used before 1950, although employers started to 

contribute to such schemes. Since then employers' contributions become one of the major 

sources of funds for these schemes. 

" Third Stage: Law no. 54 of 1975 

By issuing law no. 54 of 1975, a clear definition of Private Pension Funds was stated as 

well as all the regulations needed to set up, manage, organize and control these schemes. 

At that time, there were 145 schemes registered at EISA under this law, the number of the 

total members were 555,000 and the total funds were LE 15 million (Galoul, 1992). 

During the period from 1980 to 1983 these schemes were highly spread and their number 

reached 234 in 1983 with an increase rate of 75% compared with 1980. 

" Fourth stage: period from 1983 to 2000 

On the 6th of July 1983, the Political and Economic Affairs Committee held and decided 

to cease the registration of these schemes for the reason of setting up a unified 

complementary system. This unified system would be a second system to the main State 

scheme, but actually, it could not be as flexible as the private pension funds in 

determining the benefits and contributions, according to the preference of the employers 

and employees. Therefore, a debate about this unified system arose concerning the 

importance of these schemes to the employees, the difficulties that may be faced in 

managing this unified scheme as well as the differences in the needs of both the 

employers and members and their ability to pay. 

As a result of the complaints of employees and labour unions, on 24`h of May 1986 the 

Committee decided to allow for the registration of new schemes once again. Thus, since 

1986 the number of the private pension funds have increased from 234 schemes to 617 in 

2003, this indicates a considerable increase in the number of the schemes over 17 years. 

The total assets held in these schemes reached LE 14.198 million in 2003 and total 

members was over 3 million (EISA, 2003/2004). 
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2.4.2 Characteristics 

Article 1 in law no. 54 of 1975 defines the private pension fund as "Every scheme in any 

society, union, authority or individuals who are in the same work or in one profession, or 
have any other social relationship (with no capital), held for offering its members and 

beneficiaries: compensations, cash payments, and pensions according to its statutes 

(regulating system) in any of the following cases: 

" Marriage of the member, or his offspring, or reaching a certain age, or death of 
the member or any of his dependants. 

" Retirement or loss of income. 

" Inability to work due to sickness or accidents. 

" Any other purposes approved by EISA, such as: end of service remuneration, 
funeral expenses, ... etc. 

Here, it is worth mentioning that the main reason for using the term of private pension 
fund in Egypt is that it is considered a wider definition than occupational pension 

schemes. This can be seen from the legal definition, where it includes all those schemes 

that can be established under any social relationship other than profession or work such 

as the friendly societies. 

According to the same law, all these schemes should be registered in the Egyptian 

Insurance Supervisory Authority (EISA) in order to start any of their activities. 

Thus, in most countries the general characteristics of occupational pension schemes can 

be summarized in the following: 

" They are usually the main supplementary schemes to the State systems. Hence, 

they provide an extra coverage to the insured persons against the loss of income 

due to different contingencies. 

" The funds of these schemes are considered an important tool for investments in 

different projects that achieve some social and economic objectives, so that they 

help in the growth of the country's economy. 
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9 The possibility to enhance the benefits or reduce the contributions according to 

the surplus or deficit achieved in the schemes in response to the market volatility. 

9 An incentive to keep the highly qualified employees and experts and to 

remunerate them at the end of their service, and a compensation to the early 

leavers in the case of withdrawal or redundancy (usually conditioned with a 

certain length of service). 

"A tax incentive as the benefits are tax exempted. 

The specific characteristics of the Egyptian Private Pension Funds and the differences 

with SSIS and Contracted-Out Schemes (COS) - bearing in mind that the COS have a 

- very similar system to the SSIS - are highlighted below: 

9 Private Pension Funds offer different benefits to the members which are usually in 

the form of a lump sum in addition to those provided by the State and COS, which 

usually provide pensions to the beneficiaries. 

" The majority of the schemes are defined benefit schemes like the SSIS and COS. 

In other countries like UK, the majority of the occupational pension schemes used 

to be defined benefit, before they recently have had a strong trend towards the 

defined contribution schemes. 

" They are voluntary schemes for both employees and employers under the 

supervision of EISA, while the State Social Insurance System is a compulsory 

system under the supervision of MISA for all working people under coverage. 
In the Contracted-Out Schemes, they are compulsory schemes under the 

supervision of MISA, as they are representative of the SSIS. 

Although the voluntary feature of setting up a single-employer pension scheme is 

applied in many countries like: UK, Germany, Switzerland, Finland and Norway, 

it is mainly for the employers, where they make a commitment as part of the 

terms of employment to provide different benefits to their employees (Federation 

des Experts Comptables Europeens, 1995). 
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9 All the financial and legislation aspects of the schemes are stated in the 

"Regulatory system" or "statutes" (which are similar to the trust deed in UK) 

whereas all the aspects of SSIS and consequently COS are governed by laws. 

" Each scheme is considered a separate legal entity managed by a board of directors 

representing the members and probably the employer, so that it is responsible for 

all the decisions made in the scheme including the investment strategy. The 

Contracted-Out Schemes are also considered separate legal entities under 

supervision of MISA, their activities are managed by the board of directors which 

is also responsible to decide about the different types of investments of 50% of 

the total assets. 

On the other hand, there are two authorities responsible for the activities of SSIS, 

and most of their funds are invested in NIB as mentioned earlier. 

The occupational pension schemes in the UK and Ireland are separate legal 

entities (Trust) managed solely by the sponsoring employer (a sole trustee) or 

with other trustees appointed by the employer and in some cases the employees 

(Federation des Experts Comptables Europeens, 1995). 

2.4.3 Contributions 

Unlike the State Social Insurance System, contribution rates in Private Pension Funds are 

not governed by law, instead they are stated precisely in each statute of each scheme, and 

are advised by the actuary. They differ from one scheme to another according to: 

- The needs of its members. 

- The ability of both the employers and the employees to pay. 

- The types of benefits required to be provided-in the case of the defined 

benefit schemes. 

- The demographic and economic factors relevant to the scheme. 

Therefore, both the contribution rates and the pensionable salary are stated clearly in the 

statute. All the contributions are tax exempted for a maximum amount per member equals 

to LE1000 in public and private non- state schemes. The contributions that are paid by 
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the employees and the employers can take different forms, the most common of which 

are: 

(a) Employees' contributions 

The employees are considered the essential resource of financing the Private Pension 

Funds, their contributions can be: 

"A fixed percentage of salaries 
This percentage is determined by the actuary and stated in the statute of each scheme as a 
fixed percentage of the salaries of all members. The advantage of this method is that the 

contributions are deducted directly and regularly from the salaries and so could be 

properly collected and invested. 

"A fixed percentage of incentives 

This percentage is directly deducted from the members' incentives or shares of profits, 

which is a part of the variable salary. The disadvantage of this method is that the amount 

of contributions as well as the time of payments could be irregular. 

"A fixed percentage of salaries and a fixed percentage of profits or incentives 

The contributions in this case comprise two parts: one is a fixed percentage of the salaries 

and the second part is deducted from the incentives or the shares of the profits. This 

method actually has got the advantages of both methods mentioned above, and thus, it is 

widely used particularly in the profitable large financial units in Egypt. 

(b) Employers' contributions 

The employers' contributions like the employees' contributions are determined for each 

scheme by the actuary according to its statute, they can take one of the following forms: 

" An initial sum at the time of setting up the scheme 

The employer may only pay an amount of money at the time of setting up the scheme. 

The disadvantage of this method is that there is no regular contributions paid to the 

scheme by the employer. So that, at the time of establishing the scheme, the members 
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who are approaching the retirement age will probably benefit from this rather than the 

younger or new members. 

9A fixed contribution 

This fixed contribution is paid regularly to the fund in one of the following types: 

-A fixed percentage of salaries: which depends on the definition of the 

pensionable salary. 

-A fixed sum per year: which is deducted either from the achieved profits or 

the incentives of the employees. 

-A fixed percentage of salaries and a fixed sum per year. 

" An initial sum and a regular contribution 
According to what is stated in the statutes of each scheme and agreed by the members, 

this kind bf contribution could take the following forms: 

- An initial sum and a fixed percentage of salaries: which is the most common 
type applied in the schemes. 

- An initial sum and an annual fixed sum paid regularly in the beginning or at 

the end of every year. The disadvantage of this method is that the 
increasing number of members in the scheme will lead to the decrease of the 

average share paid to each member. Also, this is largely affected by the 

financial status of the companies and their achievements over the year, i. e 

this form is more suitable for the large profitable companies which can 

assure the payment of the annual contribution. 

2.4.4 Benefits 

Since most of the Private Pension Funds are defined benefit schemes, the benefits should 
be precisely determined in advance with the eligibility for both members and the 

dependants (if any) by the management of the fund. In some schemes, the eligibility 

specified in SSIS may be used as a guide for application, but in any case this should 

stated clearly in the statute of each scheme. This is followed by specification of the 

contribution rates that cover the promised benefits by the actuary as mentioned earlier. 
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Most of these schemes pay the benefits in the form of the lump sum in case of retirement, 

death and disability which are considered the main coverage offered to the members. 

In 1999 there were only 40 schemes offered pension to their members. The UK 

experience shows that the occupational pension schemes usually offer pensions to their 

members at the end of their service. Although the lump sum on retirement does not 

provide longevity insurance and may be invested or spent imprudently (Khorasanee, 

2001/2002), it is still the common form of the benefits offered by the Private Pension 

Funds. 

Lastly, it is important to mention that all types of benefits are tax exempted, and the 

member should have a minimum period of contribution in order to be entitled to the 

benefits as mentioned earlier. So that, he/she has no right to transfer his accrued rights to 

another fund, i. e. the member has to leave the current fund and settle his/her accrued 

rights before starting a new membership in a new fund. 

In the following subsections, the major benefits offered by these schemes will be studied 
in more detail. 

(a) Normal Retirement Age (NRA) 

For calculating the benefit paid on retirement age which is 60 years for both men and 

women, the statutes of the schemes must state the following: 

- The maximum period previous of setting up the scheme which is allowable 

for members to include in their membership of the scheme. 

-A clear definition of the pensionable salary that will be used in calculating the 

benefit as previously mentioned. 

- The accrual rate in case of offering pensions to the beneficiaries and/or the 

number of months that the lump sum will depend upon. 

Thus, the lump sum on retirement is calculated depending on both the number of months 
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for the years of service prior to setting up the scheme and the number of months of every 

year of membership after setting up the scheme. 

(b) Death 

The lump sum is calculated in the same way as the retirement benefit, i. e. the lump sum is 

calculated upon the number of months defined in the statute of the scheme to be entitled 

to the benefit, taking into consideration the years of membership until the death occurs. 

(c) Disability 

Disability must be defined in the statute of each scheme as well as the type of disability 

which is covered by the scheme. Permanent total disability that leads to the termination 

of service is usually covered by the majority of the schemes. The lump sum is calculated 

in the same way as death and retirement taking into consideration the period till the 

disability occurs. Permanent partial disability is covered in some of the schemes, the 

lump sum given in this case is calculated as a part of the total disability according to the 

percentage of disability as clarified in the tables attached to the statute. 

(d) Early retirement 
In this case, the member is entitled to a remuneration or part of it, only if he/she has got 

the minimum duration of membership required or he/she reaches a certain age defined in 

the statute of each scheme. Otherwise the contributions will be refunded to the members. 

For example, this could be stated according to the age of the member as follows: 

Less than 45 contributions refund 

45 - 50 50% of remuneration 

50 - 55 75 % of remuneration 

55 less than 60 90% of remuneration 

Although this helps the companies to keep the qualified employees for longer periods, the 

recent trend of privatization of public sector may lead to change these percentages in the 

case of withdrawal or redundancy. In fact, redundancy has affected some of the Private 

Pension Schemes in Egypt and caused serious problems in their funds. This led to 
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winding-up the schemes in some cases, where they couldn't pay the promised benefits to 

the members. 

(e) Other benefits 

Some schemes may offer cash payments in cases of marriage, death of spouse or parents, 

giving birth and medical care, they are usually equal to two months salaries in each case. 

In 2002, the statistics implied that NRA, disability and death benefits got the highest 

shares with 45%, 22.5% and 18.1% respectively, followed by pension, others4 and refund 

of contributions with small shares around 4%, other benefits such as: medical care, death 

of relative and having children got very small shares as well as the marriage benefit 

which got the smallest share. This can be seen in Table 2.6 which illustrates the relative 

importance of the types of benefits offered to the beneficiaries in 2002. 

2.4.5 Management of the fund 

According to law no 54 of 1975, a board of directors should be elected from the members 

at the time of setting up the scheme to manage the fund until the first assembly is held. 

Thereafter, the board of directors is elected for 3 years from the members and the 

representatives of the company (in the case of employers' contributions). 

Each scheme should held the records needed to carry out their operations efficiently, such 

as: the membership record, the total assets and the investments, the revenues and 

expenses records including the amounts of the contributions and benefits. 

These records are checked and approved by EISA to ascertain the accuracy of the 

activities carried out by the management of the fund and to secure the members from any 

theft, fraud, misappropriate of the management, this is similar to the role that the trustees 

play in the pension funds in the UK. In return, there is a supervision fee equals to 1% of 

the total contributions paid to EISA. 

4 Other benefits that are offered in some schemes include: funeral fees, marriage of sons 

or daughters or any other benefits stated in the scheme and are approved by EISA. 
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Table 2.6 
The relative importance of the types of the benefits offered to the 

beneficiaries in 2002 

Types of Benefits The benefits 

( thousands LE) 

Relative importance 

% 

NRA 635383 45.0 

Death 255205 18.1 

Disability 317240 22.5 

Pension 63082 4.47 

Refund 45998 3.26 

Marriage 179 0.013 

Children 6423 0.455 

Death of relative 824 0.058 

Medical care 29529 2.09 

Others 57043 4.04 

Total 1410906 100 

Source: EISA, 2003/2004 

2.4.6 Investment 

Investment strategies of Private Pension Schemes play an important role in achieving a 

satisfactory level of return on assets held by the scheme, which considers another vital 

resource to the scheme. In fact, Private Pension Funds has got a better chance of 

investing their assets compared with both SSIS and Contracted - Out Schemes, regarding 

the restrictions by laws which control their investment strategy and enforce them to 

invest about 90% and 50% of the funds respectively in National Investment Bank. 

The allocation of assets and the restrictions applied to the investments with the return on 

different types of assets are important to cover in more detail below. 

(a) Allocation of assets 

The types of assets which the pension schemes normally invest in are: 

. Government bonds; 
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" bank deposits; 

" equities; 

" commercial bonds; 

" properties; 

" cash; 

" loans (to members or commercial organization); 

" overseas investment 

The Private Pension Funds invest in all the previous types of assets except overseas 

investment. However, they adopt the same prudent investment strategy as SSIS and the 

Contracted-Out Schemes. From Table 2.7 we can see that the investments in Government 

bonds and bank deposits reached 92.9% in 2002 where as equities represented only 3.4% 

of the investments. Properties, loans and other investments were around 1% for each of 

them. Although there are fewer restrictions on asset allocations of the Private Pension 

Funds compared with SSIS and the Contracted-Out Schemes (mentioned below in sub 

subsection (b)), the management of the funds prefer to invest their funds in low risk 

assets. 

Table 2.7 

The relative importance of the investments of the Private 
Pension Funds in 2002 

Investments Invested amounts 
(millions LE) 

Relative importance 
% 

Government bonds 6955 63.8 
Equities 376 3.4 
Bank deposits 3169 29.1 
Properties 165 1.5 
Loans 125 1.1 
Others 111 1.0 
Total 10901 100 
Source: EISA, 2003/2004 
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The fact that the stock market is emerging in Egypt, at the present time, can provide a 

good explanation of why most of the funds are invested in Government bonds and bank 

deposits rather than equities. Therefore, the development of the stock market could have 

a big influence in achieving a high return on investment in equities and dealing with the 

inflation problems. At the same time, the issuing of index-linked bonds by the 

Government could be a good solution in providing assets that could be used to match the 

liabilities. Overseas investment of the schemes' funds has not yet permitted by EISA in 

Egypt, although there is an opinion that a limited share of investment in equities in 

overseas territories should be allowed (GAD, 1997). 

(b) Restrictions on allocation of assets 

The Private Pension Funds have the opportunity to choose the types of assets that they 

would like to invest in, taking into account the percentages determined in Article 14 in 

law no. 54 of 1975 for securing the members, these percentages are: 

" 25% at least in Government bonds. 

"A maximum of 15% in bonds, with a maximum of 5% in bonds from one 

company or 20% of the capital of this company. 

"A maximum of 25% in equities with the same condition applied in bonds. 

"A maximum of 10% in property. 

"A maximum of 25% in loans to the members with no more than 75% of his/her 

accrued liabilities. 

" Bank deposits with a maximum of 10% in one bank. 

" 10% in other investments approved by EISA. 

These percentages allowed by law provide the management of the funds some flexibility 

in choosing a diversified portfolio of assets that achieve the desired gains. This 

emphasizes that the investment strategies of the funds are not directed to high risky 

assets, as the investments in equities reached 3.4% while the maximum legal percentage 

is 25%. On the other hand, the investment in Government bonds was about 64% while 

the minimum legal percentage is 25%. 
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The restrictions on investment of pension funds are common in many countries, for 

example: in the UK these restrictions are set out in the Trustee Investment Act 1961, and 

the self-investment is maximum 5% of the assets of the scheme. In Switzerland: there are 

restrictions for all financial units to have a maximum of 50% of the funds invested in 

shares (Federation des Experts Comptables Europeens, 1995). 

2.4.7 Actuarial valuation 
The actuarial valuation should be made at least once every 5 years by a qualified actuary 

like the Contracted-Out schemes. However, EISA may ask for another valuation or even 

an annual one in the case of deficit or any serious problems facing the scheme. The 

specification of the minimum frequency for actuarial valuation is common, e. g. in UK, an 

actuarial report is required at least every three years 

2.4.8 Main problems of Private Pension Funds 

The main problems facing the Egyptian occupational pension schemes are: 

" The occurrence of deficit in some of the schemes that could lead to wind-up the 

scheme and threaten the rights of the members. The number of funds in deficit 

were in total 37 in 1998 (MISA Report, 1998) classified according to the causes 

of deficit as follows: 

- Insolvency problems (22 funds), this insolvency mainly arose as a result of 
the privatization of the public sector and the redundancy of workers, as there 

are 170 funds in these Public units, the Ministry of Public Employment 

issued a decision to cover any deficit in the funds caused by the redundancy 

of workers. 

- Debts in the financial statements of the fund (6 funds), which should be 

scheduled and paid on the due dates. 

- An actuarial deficit (4 funds) resulting mainly from the difference between 

the experience and the actuarial assumptions that used in the actuarial 

valuation. 

- Insufficient resources resulting from facing problems in collecting the 

contributions from the members or the employers, or not achieving 
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the expected return on investments (5 funds). 

" Theft, fraud and misappropriate management of the funds: although there are 

restrictions under law on the authorities given to the board of directors, and this is 

supervised by EISA, there is still a problem dealing with that and resolve the 

board of directors and appoint another one. 

" Funds are not legally registered in EISA, there were a total number of fourteen 

unregistered schemes in 1998: three universities, eight labor unions and three 

ministries(MISA Report, 1998). Since they have not been under the supervision 

of either MISA or EISA, there is no adequate information about them. Thus, it is 

recommended that these schemes should be registered in EISA whatever its type 

in order to protect the members' rights and ensure the accuracy of the procedures 

and their activities. 

2.5 Personal insurance policies 
Considering the religious and cultural factors in Egypt, the market of life insurance for 

either the individual policies or the group policies is limited, it only represents about 18% 

of the total insurance premiums (EISA, 1999/2000), while in EU countries the share of 

life premiums to total premiums is 43.5% and in some countries like: the UK, it may 

exceed 60% (European Business, 2002). Other factors that are relevant include: the 

repressive regulatory environment, the lack of competition and product innovation, as 

there are only 8 national insurance companies that underwrite life insurance policies, and 

finally the prevailing mistrust between insurance companies and their clients (Vittas, 

1998). 

In fact, focusing on the annuity and life insurance market could be one of the solutions to 

the reform of the social protection programs in Egypt (Loewe, 2000). This can be 

achieved by tackling the Egyptian market problems through: 

- rising the awareness of the Egyptians about the ways that they can deal with 

the social risks. 

- creating a competitive market by increasing the number of both the national 

and multinational insurance companies. There are currently five multinational 
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life insurance companies in the Egyptian market. This could be useful for a 

potential annuity market, where more products and better services are offered, 

and hence, helps to reduce the mistrust between the insurance companies and 

the clients. 

Summary 

This chapter reviewed briefly the whole social security system in Egypt. It explained the 

State Social Insurance System coverage with the contributions paid and benefits provided 

in Old -age, death and disability contingencies only. The other risks covered by SSIS are 

not of the relevance of our research so they are not mentioned at this stage. 

Contracted- Out Schemes were briefly studied as they are the only schemes that opt out 

of the state social insurance system. Also the individual plans represented in the personal 

insurance policies were mentioned with the problem of the limited annuity market. 

Private Pension Funds (or occupational pension schemes), which are the main 

supplementary system to the State Social Insurance System, were studied in more detail 

as they are of a main concern in our research. A brief description of the Private Pension 

Funds and its types were mentioned to understand the background of these schemes. This 

could be helpful in the application of dynamic pension funding plans on a defined benefit 

private pension fund later in Chapter 6. Different aspects have been considered such as: 

the common types of contributions and benefits in these schemes, the actuarial valuation 

and investment strategies issues were discussed with the problems that face the three 

main pillars, i. e. the State Social Insurance System, Contracted-Out Schemes and Private 

Pension Funds. 
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Chapter Three 
Presentation of mathematical model 

3.1 Introduction 
A key consideration when establishing a pension scheme is how it will be financed. 

Different types of pension schemes: state pension schemes or occupational pension 

schemes, group or single schemes, defined benefit or defined contribution schemes, have 

their own financing strategies which determine the income and outgo of cash flows of the 

scheme. 

In chapter 2, an overall study about the pension schemes was provided to understand how 

they operate with a particular focus on the Egyptian pension system. In this chapter, we 

will concentrate on studying the different ways of financing pension schemes. Therefore, 

the general concepts of the pension funding process will be explained. This is to provide 

the basic ground for deriving the dynamic pension funding models for a defined benefit 

pension scheme using the mathematical tool of dynamic programming and control theory. 

3.2 Financing pension schemes 
Financing pension schemes refers to the way the pension benefits are financed over time 

to be paid to the beneficiaries in the future, which is normally after the retirement age. 

This includes the amount and timing of the payment of the contributions to meet the 

accrued benefits. The methods of financing the pension schemes fall into two main 

categories: funded schemes and its alternative unfunded schemes or pay-as-you-go 

(PAYG), both of them will be described in the following subsections. 

3.2.1 Funded schemes 

The term of pension funding is related to the funded schemes, which are those schemes 

where the contributions are paid and invested in different types of assets, in order to 

accumulate in a fund or a reserve over years that will be used to pay the promised 
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benefits in the future. In that sense, the Egyptian General Social Insurance System (i. e. 

Law no 79 of 1975) is a funded scheme through two funds: one for the government 

employees and the other for the public and private employees. Also Law no 108 of 1976 

for the employers and Law no 50 of 1978 for the Egyptian working abroad are funded 

schemes. Moreover, the majority of the private pension funds in Egypt and the 

occupational pension schemes in UK (Blake, 2003) are funded schemes. 

In funded schemes, the investment strategy is crucial as it determines the allocation of 

assets, thus, the amounts accumulated in the fund from investing in these earning assets 

in the future. It is clear by definition that the defined contribution schemes are funded 

schemes whereas defined benefit pension schemes could be funded or unfunded schemes. 

The pension schemes can also be partially funded as previously mentioned in section 

1.2.3. 

Furthermore, Blake (2003) classified various types of the pension funds in UK as: 

" provident and pooled funds according to the type of the fund where the assets are 
held, either it is an individual account for each member in the former case, or a 

pooled fund for all members in the latter case; 

" internal and external funds: the amount of funds can be invested internally, i. e. in 

the employer company assets such as: the book reserves in Germany, or 

externally in other companies; 

9 insured and self insured funds: the insured funds are the small schemes that 

usually depend on life insurance companies to arrange their business, while the 

large schemes undertake the responsibilities of running their own scheme and 

investing its funds. 

According to the characteristics of the Private Pension Schemes in Egypt, we can say that 

most of the schemes are pooled funds as they are group pension schemes, where all the 

contributions are pooled and invested as one sum. Further, they are restricted by law to 

self-investment with a maximum of 10% of total assets as shares in one company. 
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Also, the majority of the Private Pension Funds are self-insured schemes, where the 

management of the fund runs the scheme and invest the assets, for example: one of the 

largest scheme (that we shall study later in chapter 6 as a case study) is responsible for 

managing 34 small schemes because of its well-known experience. In addition, it 

manages a group insurance policy for its members instead of the life insurance company. 

On the other hand, the small schemes also act as self-insured schemes, unless they have 

group insurance policies for their members which are managed by life insurance 

companies. 

3.2.2 Pay-as-you-go (PAYG) 

PAYG or unfunded schemes are the other extreme way of financing the pension schemes, 

i. e there is no accumulated fund to pay for the pensions in the future, rather, the income 

of the scheme, which comprises of the collected contributions plus any other revenues, 

should be used to cover the pensions of the beneficiaries on a yearly basis. Therefore, the 

investment strategy does not play any role in these schemes. We should note that the 

overall cost of PAYG schemes is generally lower than the funded schemes. This cost 

includes: the initial set up costs, the costs of running the scheme and the administrative 

costs (Blake, 2003). 

Although cost can be regarded as an advantage of these schemes, the absence of 

accumulated invested assets can increase the costs of these schemes in the long term 

compared with the funded scheme. This has been explained by Khorasanee (1999) as a 

disadvantage of PAYG schemes. For example: in an unfunded schemes providing salary- 

related benefits, the rate of pensionable payroll should grow at a faster rate than the 

investment return that could be achieved in a funded scheme. Also, in the case of 

termination, there could be no fund available to cover the accrued liabilities. 

The state social systems are usually unfunded scheme, for example: in UK, central 

government civil servants is funded by the Exchequer. In Egypt, Law no 112 of 1980 for 

casual workers is also considered PAYG scheme. 
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3.3 Actuarial valuation 
The actuarial valuation is an investigation of the current and future income and outgo of 

the scheme, in other words, it includes an analysis of future income, represented in the 

contributions paid by the employer and employees and the investment of the assets, and a 

projection of the expenditures streams, represented in the benefits offered to the current 

and future beneficiaries, according to specific assumptions. 

Pension schemes are obliged by law to carry out the actuarial valuation periodically, 

where this period can vary from one scheme to another within a maximum limit 

determined by law, for example: the actuarial valuation should be conducted at least 

every five years in Egypt, while in UK it is at least every three years. However, it is 

common for large schemes in both countries to carry out the actuarial valuation annually 

with the financial statements. 

The purpose of the actuarial valuation and the key points for carrying out the actuarial 

valuation are crucial to the pension funding process, hence, they are illustrated below 

with focusing on the defined benefit schemes. 

3.3.1 Purpose 

The purpose of actuarial valuation has been discussed in several researches. From our 

point of view, the purpose of the actuarial valuation can be seen from a short term and 

long term perspectives as follows: 

9 In the short term 

- Examining the financial position of the scheme and ensuring that there is 

no discontinuance problems facing the scheme. 

- Providing information to the main interested parties, such as: the 

management of the fund, the employer, the members and the regulatory 

and supervisory authorities, other financial or accounting parties, or any 

other entity (or authorised entity as the actuarial valuation reports are not 
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necessarily published) that might be interested in the scheme and its 

activities. 

0 In the long term 

- Projecting the cash flows of the scheme under specific actuarial 

assumptions - which will be explained in subsection 3.3.2 - to make sure 

that the resources are sufficient to cover the expenditures of the scheme, 

hence, the contributions paid by the employers and the employees with the 

return on investment should be sufficient to pay the current and future 

benefits within the framework of the trust deeds and the rules of the 

scheme. 

- Providing recommendations to the management of the fund to make 

adjustments to the contribution rates or the benefits provided according 

to the surplus/deficit resulted from the scheme's transactions over time. 

3.3.2 Elements of actuarial valuation 
The actuarial valuation is carried out by the actuary who is, according to the Actuarial 

Profession (2000), either a Fellow of the Faculty of Actuaries (FFA) or the Institute 

of Actuaries (FIA) in UK. The actuary should be well qualified to advice on pension 

scheme issues, especially about the potential benefit payments, scheme liabilities and 

how to balance the interests of the various parties involved, and an expert in assessing 

and communicating the likely financial impact of uncertain future events. 

In Egypt, the actuary is appointed by the board of directors according to the Law no 

54 of 1975. In UK, the Pensions Act 1995 requires the trustees to appoint a named 

individual actuary (the Scheme Actuary) for the defined benefit schemes, 

nevertheless, they can appoint other actuaries as advisors. Hence, the appointed 

actuary carries out the actuarial valuation regularly as explained earlier, and has to 

report it to the supervisory authorities (EISA in Egypt or the Pensions Regulator - 

which took over from OPRA on 6`' April 2005 - in UK). 
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Ultimately, four main tasks are required to enable the actuary to conduct the actuarial 

valuation, and reach his conclusions about the financial position of the scheme and 
the recommended contribution rate, they are: 

" Preparing the available relevant data of the scheme and its members; 

" setting up the actuarial assumptions which will be essential for the pension 

funding plan; 

" choosing the pension funding method in which the standard contribution rate 

and the actuarial liability are calculated; 

" choosing the asset valuation methods that are approved by the management of 

the fund in accordance with the rules of the scheme. 

In order to understand the steps of setting up a pension funding plan, each of these tasks 

will be discussed in more detail below. 

(a) Appropriate data 

The preparation of required data for each scheme is an essential process for starting the 

actuarial valuation. Thus, the data provided by the scheme should be complete, accurate 

and consistent. Hence, this enables the actuary to reach the accurate output about the 

recommended contribution rate and the accrued liabilities of the scheme. 

In UK, according to paragraph 2.2.5 of GN9 "the actuary must take reasonable steps to 

satisfy himself or herself that the data provided is of adequate quality for the purpose of 

the valuation. " 

The importance of the required data was explained by King at the beginning of last 

century, he suggested that each member's data is recorded in cards, each card would 

include: the date of birth of the member, the date of entry into the scheme, the date of 

exit, the mode of exit and any past contributions to the scheme. This data with the salary 

scale would be used to construct a service table for the scheme's members 
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(Ngwira, 2004). At present time, advanced software packages (eg: Applaud-Pension TM 

software) are used to help the actuaries in preparing their data. 

According to Lee (1986) the following data are needed for the actuarial valuation: 

(i) An up-to-date copy of the trust deed and rules of the scheme, further, any 

significant changes in the scheme's assets or liabilities made by the trustees. 

(ii) A copy of the accounts and the balance sheet for each year since the previous 

valuation. This is considered the financial data of the scheme. 

(iii) Details of each employee member, ex-member with preserved pension rights 

and current pensioner of the scheme and any other person who is entitled to 

the benefits at the date of the valuation. Age, length of membership, 

pensionable salary are among the most important data that should be available 
for each member. This is referred to the membership data of the scheme. 

We can add to that, the national economic and demographic statistics published by the 

government and international bodies about the population of the country and the 

economic trends. 

(b) Actuarial assumptions 

The actuarial assumptions refer to the economic and demographic assumptions that are 

estimated by the actuary to be used in calculating the contribution rate and the actuarial 

liability of the scheme. The estimation of these assumptions are affected by the economic 

environment and demographic trends prevalent in each country. 

The fact that these assumptions are estimated to be used in projections of cash flows of 

the pension plans in the future, as one of the purposes of the actuarial valuation, involves 

uncertainty about the real values that these assumptions might take in the future in the 

volatile environments. Consequently, the difference between the actual experience and 

the assumptions affects the income and outgo of the scheme, and may lead to a surplus or 

deficit in the pension fund. 
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The estimation of the actuarial assumptions has been considered by Thornton and Wilson 

(1992) who used the projections to reach the best estimates of these assumptions. 

However, Fujiki (1994) used the averaging of the past experience to adjust the 

assumptions. In fact, researchers consider a range of future projections of the economic 

and demographic trends as a basis for choosing the assumptions. Thus, Frees et al (2004) 

use different stochastic approaches to project the four economic assumptions for the 

Social Security fund: inflation rate, investment returns, wage rate and unemployment 

rate. Further, studying and forecasting of mortality trends as a major demographic 

assumption has been a subject of series of studies by Haberman and Renshaw (1997, 

1999,2000,2003 and 2005). 

For the purpose of our study, the main economic and demographic assumptions are 

explained, in turn, below. 

(i) Economic assumptions 

The economic assumptions are the factors that affect the amounts of income and outgo of 

the pension scheme, these include: 

" Salary increases: The increases in salaries could be a general salary escalation 

and/or a promotional salary increase. The former refers to the average pay 

increases experienced by working population as a whole. The latter refers to the 

career advancement of particular individuals due to 'age or seniority or 

performance (Maait, 2003). Both types of increase affect the pensionable salary 

(basic salaries and/or variable salaries in Egypt). Since the increase in salaries 

earned from year to year by the members affects both the contributions paid and 

the benefits received from the scheme, the formulae of determining the 

contribution rate and the actuarial liability should be indexed to such increases 

(AAA, 2004). 

Inflation rate: Barro (1997) defines the inflation rate as "the percentage change in 

a price index between two periods of time", this price index could be based either 
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on the Gross Domestic Product (GDP) or the Consumer Price Index (CPI) 

(Blanchard, 1997). 

In many schemes especially in UK and US, the benefits are usually adjusted for 

inflation, by the cost-of-living adjustments (COLA) which is based on the 

changes of the (CPI). In countries with high inflation, if the pensions are not 

indexed with inflation, the retirees may receive a markedly inadequate income 

compared with their earnings pre-retirement. Consequently, the retirees may face 

severe problems or literally suffer from poverty after few years of retirement. This 

has been the case in Russia since the early 1990s (Blanchard, 1997), and also in 

Egypt, where the inflation rate had reached 27% at the end of the eighties before it 

was brought under control and declined to 5% from 1997-1999 (Maait, 2003). 

" Rate of return on investment: is one of the important economic factors to the 

pension schemes. The rates of the investment returns have a vital effect on the 

income of the scheme. According to The Faculty and Institute of Actuaries (SA4, 

2005), two interest rates are required to be used: the first one is the discount rate, 

which is used in calculating the past service liabilities, it should vary to reflect 

volatility in the market. The second one is the long term return on assets, which 

reflects the average rate of future earnings expected on the fund allowing for the 

reinvestment of future income, this would be expected to be relatively stable from 

year to year. Thus, the latter interest rate may affect the income to the fund from 

different investments, hence, influence the financial status of the scheme. The 

effect of the rates of investment returns on the contribution rates and fund levels 

in defined benefit schemes are examined by Haberman (1994) and Haberman et al 

(1997). Regarding the rapid changes in the financial markets, at the present, the 

rates of investment returns in the actuarial valuation should be carefully estimated 

in order to avoid highly unexpected gains or losses on the schemes funds. 
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(ii) Demographic assumptions 
The demographic assumptions are the demographic factors that deal with the population 

of the schemes, thus, these assumptions constitute the multiple decrement model (or the 

service table) of the scheme. These include: 

" Mortality rate: this rate affects the number of the beneficiaries (males and 

females) who are expected to live and receive the benefits, on the other hand, the 

number of the active members who are expected to die before reaching the 

retirement age. Mortality rates can vary across the different occupational pension 

schemes. Significant differences in mortality rates have been detected in UK 

across the large occupational pension schemes (Gardner, 2005). Besides the 

difference in wealth of pension members - which explains a part of these 

differences according to Gardner (2005) - the membership structure of the 

scheme, i. e. the number of young contributors and older ones, the gender of the 

active members and pensioners, their marital status are among the factors that 

affect the mortality rates of the occupational pension schemes. 

At present, studying the future trends in mortality rates is an important issue in the 

developed countries because of the impact of increasing life expectancy and 

ageing population. Vaupel et al (2005) explain that mortality at older ages has 

declined dramatically since 1950 in developed countries, for example: while there 

were 265 centenarians in England and Wales in 1950, they increased to 6680 in 

2000. Progress in economic developments, social improvements and advances in 

medicine are among the reasons for the increasing trend in life expectancy in the 

industrialised countries over the last 160 years. The problem of ageing 

populations creates challenges for all retirement benefit systems in needing to pay 

the promised benefits for longer periods. 

Although this situation is serious in many developed countries (like UK, US, 

Japan and western Europe), it is not yet important in Egypt, where there is no 
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ageing population problem, since the proportion of the working people to the 

elderly is high. 

" Ill-health retirement: is another factor that can affect the number of the active 

members of the scheme. The member is usually entitled for the pension if he/she 

stops working due to illness. For defined benefit pension plans, the types of 

disability (either partially or fully) and the rules of eligibility to pension, 

according to the severity of illness, are usually specified in the rules of the 

scheme. Further, the reduction factors of the ill health retirement that are used to 

calculate the accrued pension should also be stated in the rules of the scheme or 

the trust deed. Often, there is no minimum age for ill-health retirement, for 

example: in Egypt and UK (Booth et al, 2005). 

" Withdrawal or early retirement: affects the number of active members of the 

schemes. This contingency usually puts a financial burden on the scheme, 

particularly if the number of early leavers is high due to political or economic 

decisions. In Egypt, the percentage of early retirement pensioners to the total 

pensioners reached 12.43% in 1998 compared with 4.04% in 1979. The analysis 

of pensioners, in the same year, reveals that the early retirement pensioners are 

from the public sectors ( because of the privatization of many units in this sector 

in 1990s as mentioned in chapter 2) more than other sectors, and from females 

more than males (Maait, 2003). 

Other factors that might be taken into consideration when studying the demographic 

characteristics of the population generally - not specifically for defined benefit 

occupational pension schemes - include: 

" Rate of Fertility: refers to the average number of children born to a woman during 

her life time. It is usually applied to the national population, and mainly to 

determine whether the work force will be sufficient to cover the benefits paid to 

the retirees. A fertility rate of 2.1 children per woman is required for the 

population to replace itself (Booth et al, 2005). This means that a higher fertility 
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rates would result in an increasing population, and hence, an improved financial 

position for the scheme as the number of workers increases. 

The total fertility rate (average number of children) was 3.51 in 2000 in Egypt and 

was expected to be 3.29 in 2005. This is obviously higher than the rates obtained 

in the developed countries like UK, Germany and Italy, which are equal to 1.70, 

1.34 and 1.21 respectively in 2000 (UN, 2000). The expectation that these rates 

will decline further below the replacement rate, highlights the existence of the 

pension crisis facing these countries. 

" Immigration rate: could be among the demographic factors that should be taken 

into consideration, especially in some countries like: US and Canada, where the 

immigration rate is high and the economy depends on the young immigrants. 

On the other hand, accept more immigration could provide a solution for the 

pension crisis in countries that face demographic problems such as: ageing 

population and low birth rates like UK, Germany and Italy (Blake and Mayhew, 

2004). Increasing the number of working people, by allowing a large number of 

immigrants to the labour market compared with the number of the pensioners, 

will definitely affect the dependency ratio' in the country both in the short term 

and long term. Accordingly, this affects the number of the new members joining 

the occupational pension schemes. This rate can be considered in the DB schemes 

as it affects the number of the new entrants joining the scheme. Colombo (2005) 

studies and develops the population plan theory, in which the population of the 

DB scheme grows, because of the new entrants in the scheme (rather than birth), 

assuming a randomly evolving population. 

(c) General Pension Funding Plan 

According to Sung (1997), the general pension funding plan is the combination of the 

primary pension funding methods and supplementary funding methods, based on going- 

the number of people above retirement age Dependency ratio = the number of working people 
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on valuation basis (i. e. the scheme does not have problems of discontinuance) to reach 

the recommended contribution rate. Thus, the recommended contribution rate consists of 

two parts: the first part is the standard contribution rate (SCR) or the normal cost 

calculated using the primary funding methods. The second part is the adjustment to the 

SCR, which is calculated using the supplementary methods. The primary pension funding 

methods and the supplementary pension funding methods are explained, in turn, below. 

(i) Primary pension funding methods 

There is no unique pension funding method that must be used in the pension schemes 

according to specific circumstances. The pension funding methods can vary from one 

scheme to another according to the choice of the scheme's actuary, which should comply 

with the trust deeds, the rules of the scheme and the objectives of the management of the 

fund. 

Therefore, the most common primary pension funding methods are four methods 

specified by the Institute of Actuaries in order to calculate the actuarial liability (AL) and 

the standard contribution rate, they are: 

- Attained Age method 

- Entry Age method 

- Projected Unit method 

- Current Unit method 

According to the actuary's perspective of the main objective of the pension funding plan, 

i. e. whether it is mainly about the stability of the contribution rate or the security of the 

accrued benefits of the members, these methods can fall into two categories: 

" Prospective methods: which target a stable contribution rate (e. g. Attained Age 

and Entry Age); 

" Accrued benefit methods: which target the actuarial liability (e. g. Current unit 

and Projected unit). 
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Although this classification is commonly used in UK, Haberman (1994) mentioned 

another categorisation based on the mathematical structure of the fundamental equations, 

where the funding methods classified into: individual funding methods (e. g. Entry Age, 

Projected Unit and Current Age); and Aggregate funding methods (e. g. Attained Age and 

Aggregate). 

A brief description of these funding methods, following the former classification, and the 

basic formulae used to calculate SCR and AL are given below (AEC, 2001), assuming 

that: the pension scheme is a final salary pension scheme, where the benefits at retirement 

is related to the member's salary at retirement and accrue by reference to the service in 

the scheme; and the rate of return is (i) which is used as a discount rate of interest 

1 
in calculating the present values of benefits and earnings. 

1+1 

" Prospective methods 
Attained Age method versus Entry Age method 

Under the Attained Age method, SCR is determined as a stable rate paid by the members 

over the expected future membership of all members, in order to accumulate (with 

investment returns) to the value of benefits that are expected to accrue over that future 

membership period. Hence, the SCR is calculated as follows: 

SCR = PVF / PVPE (3.1) 

where: 

PVF: the expected present value of all future benefits to present members after the 

valuation date, by reference to projected earnings. 

PVPE: the expected present value of total projected earnings for all members throughout 

their expected future membership. 

On the other hand, the SCR under the Entry Age method is calculated in a similar way to 

the Attained Age method, except that the contributions and the benefits are equated over 

the full expected period of the membership, including any past service accrued at the 
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valuation date. This full expected period of membership will be based on a single 

assumed entry age for all of the members. The assumed entry age may be chosen as one 

of the actuarial assumptions, or it may be derived from inspection of the actual entry ages 

of the members, hence the formula for calculating SCR is: 

SCR = (PVF)X / (PVPE)x (3.2) 

where: 

(PVF)X: the expected present value of future benefits for a member joining the scheme at 

the assumed entry age (x), by reference to projected earnings. 

(PVPE),,: the expected present value of projected earnings for the member throughout 

his/her expected future membership. 

The actuarial liability under both methods is similar, although its value will be different 

according to the value of SCR., thus, the formula for the actuarial liability for both 

methods is: 

AL = PVTB - (SCR . PVPE) (3.3) 

where: 

PVTB: the expected present value of total benefits accrued at the valuation date (from 

accrued or past service, owed to pensioners and owed to deferred pensioners) based on 

projected final earnings for members in service. 

" Accrued benefit methods 

Projected Unit Method versus Current Unit Method 

Since the target is the actuarial liability in these methods, we are concerned primarily to 

calculate the AL. Thus, under the Projected Unit method, the actuarial liability is the 

discounted value of the benefits that have accrued over the past period of membership of 

the beneficiaries. In determining this value, allowance is made for any future expected 

inflationary growth of the on-going benefits up to retirement age. Similarly, the SCR is 

based on one year time period as follows: 

AL = PVTB 

SCR = PV1 I PVI E (3.4) 
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where: 
PV 1: the expected present value of all benefits that will accrue in the year following the 

valuation date, by reference to projected earnings. 
PV 1E: the expected present value of all members' earnings in that year. 

For the Current Unit method, the actuarial liability is determined in the same way but 

without making an allowance for any inflationary growth (earnings growth). The SCR is 

calculated based on one year time period and the percentage of earnings increase to 

determine the amounts needed to cover the liabilities over this year. The formulae of 

Current Age method for AL and SCR are: 

AL = PVTBc 

where: 

PVTBc: the expected present value of total benefits accrued at the valuation date, based 

on current earnings for members in service. 

SCR = (PV1 + (PVTBc. e)) /PV1E (3.5) 

where: 

e: the rate of earning increase over the next year. 

Finally, a fifth funding method can be included to the four common funding methods 

mentioned above, it is called the Aggregate method. Unlike the four funding method 

mentioned above, the Aggregate method does not define a normal cost or actuarial 

liability, instead, it is considerably regarded as a type of the adjustments of the 

contributions (Haberman, 1997), thus RCR is determined each year at time t by this 

formula: 

RCR =[ (PVBt - Ft) / PVSSJ . St (3.6) 

where 
PVBt : is the expected present value of benefits (for all members including pensioners at 

time t. 

PVSt : the expected present value of future salaries(of active members) at time t. 
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St: is the total salaries of active members at time t. 

(ii) Supplementary pension funding methods 

The supplementary funding methods are used to adjust the standard contribution rate 

according to the surplus or deficit emerges as a result of the difference between the 

experience and the actuarial assumptions, as these assumptions are unlikely to held 

exactly in real practice. Thus, the recommended contribution rate at time t is: 

(RCR)1= (SCR)1 ±(Adj)t (3.7) 

Clearly, the adjustment will have a positive sign if the scheme is in deficit or it is 

deducted from SCR if the scheme is in surplus. 

The most widely used methods by actuaries for adjusting the contributions are: Spread 

method and amortisation of loss method. In addition, Owadally (1998) has pointed out 

other ways of adjusting the contributions, such as: 

- contribution holidays: which are taken by the employers in the case of 

large surpluses, particularly if there is a maximum surplus that is allowed 

to be held in the scheme (as in the UK); 

- immediate cash injections: in the case where the surplus or deficit 

required to be removed immediately rather than gradually; 

- ignoring gains and losses if they are within a given corridor: this is the 

case when the surplus or deficit is small and it is expected that they will be 

cancelled out if the actuarial assumptions are "on average" correct; 

- establishing a reserve, particularly, in the schemes where the book value of 

assets are used. 

In UK, the 1986 Finance Act required that pension-fund surpluses to be reduced to no 

more than 5% within five years (Blake, 2003). A plan should be presented to the Inland 

Revenue setting out the action to reduce the overfunding, which could be: employer 

contribution holiday; employee contribution holiday; increases to benefits or a refund to 

employer (SA4,2005). Unlike the British experience, the Egyptian Law of Private 
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Pension Funds does not determine either a maximum limit of surplus or a spread period, 

rather, it is known that these funds are not established for the purpose of profit, and 

hence, the surplus is usually directed to enhance the benefits received by the members. 

The two common supplementary pension funding methods used by the actuaries are 

explained below. 

" Spread method 

The concept of this method is to spread the unfunded liability (UL) which occurs at time t 

over an agreed period of time "spread period" in the future. This is defined by Dufresne. 

(1986) as "the amount of adjustment of the SCR is equal to the unfunded liability divided 

by the present value of an annuity for a fixed term" where the unfunded liability is equal 

to the difference between the actuarial liability and the fund held in the scheme at time t: 

UL1= AL1- FF 

AL4 - F: (3.8) Adjr = ä m-i 

where 

ULt : the unfunded liability at time t; 

Alt: the actuarial liability at time t; 

Ft: the fund at time t. 

a ml : the expected present value of an annuity for a fixed term m, calculated at the rate of 

discount being used in the valuation. 

This method of spreading the whole surplus or deficit at periodic intervals is favoured in 

UK. Dufresne (1986) has examined the effect of varying the rates of return in a form of 

white noise process on the contributions and fund levels under the spread method, 

further, Haberman (1994) has studied this effect, assuming that the rate of return is 

represented by an autoregressive model for the corresponding force of interest, to 

consider the optimal range of values of "m", i. e. the spread period. This is followed by 

Haberman (1997), where the variability of the rate of return on the contribution rates and 
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fund levels in defined benefit schemes with considering the possible choices of the spread 

period is studied. 

" Amortization of loss method 

This method is widely used in US and Canada, it is based on the actuarial gain and loss 

experienced at each valuation date, the actuarial loss during this intervaluation period 

(t-1, t) will be amortized over a fixed term in the future. Dufresne (1986,1989) has 

examined how the contributions and fund levels are affected by the variation of rate of 

return in a form of iid (identically independent distributed) considering amortizing the 

intervaluation gains or losses over a fixed number of years (e. g 5 or 15). In 1988, he 

presents a stochastic approach for determining optimal values of these number of years. 

This can be described mathematically as follows: 

Lt = UL, - (value of UL, had all actuarial assumptions been realized during the period 

(t-1, r)) 
ý-d 

Adj, `E 

s=0 
a m-' 

where 

(3.9) 

1,: the actuarial loss during time (t-1, t), in which each L is liquidated by m payments of 

amount L /ä m-, made at valuation dates s, s+1,...., s+m -1. 

According to the US Employee Retirement Income Security Act of 1974 (ERISA), the 

actuarial gains or losses should be amortized over a period from 5 to 15 years. Further, 

Owadally (1998) has concluded that there is an optimal amortization period range [1, m*) 

which is larger than the optimal spread period range. Also, the amortization of gains and 

losses over a fixed term yields greater fund security than when surpluses and deficits are 

spread over a moving term of equal length. However, the spreading surpluses and deficits 

may be regarded as more efficient than the amortization method as the latter method 

involves the feedback of delayed information into the pension funding process. More 

investigations about the efficient amortization of actuarial gains/losses and optimal 
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funding in pension plans have been carried out by Owadally and Haberman (1999,2000 

and 2004). 

(d) Asset valuation methods 

The asset valuation is another main part of the scheme actuary's responsibilities. The aim 

of this valuation is to assess the level of assets held in the scheme, in order to ensure that 

the future cash flows of the assets can be used to meet the accrued benefits. Hence, the 

actuary should choose the appropriate method of asset valuation which satisfies the 

objectives of the management of the fund, among them are: consistency, realism, 

smoothness and dynamics {Owadally, (1998), Owadally and Haberman (2004)1. Besides, 

the actuary should be aware of the different characteristics and uses of each asset class in 

choosing the appropriate method of valuation, i. e the value of assets and their return 

differ according to the different characteristics mentioned by Blake (2003), which are: 

degree of liquidity, degree of capital-value certainty, degree of income certainty, inflation 

risk, default risk and the currency risk, and their uses in a volatile or stable market. 

Since the chosen asset valuation method determines the value of the asset at the valuation 

date that can minimize the fluctuations of the asset values, consequently, the surplus and 

deficiencies that might arise in the future, the asset valuation affects the adjustments of 

the contributions due to the gains or losses experienced in the scheme. 

In this part, we will briefly mention the different asset valuation methods as a part of the 

actuarial valuation for defined benefit pension plans, as the investment strategies and 

asset allocation modeling are not considered in our models at this stage. Thus, the most 

common asset valuation methods are defined below: 

" Market Value method: it values the assets at market prices on the valuation date. 

This method could achieve the objective of realism, as the assets are valued 

according to the current prices prevalent in the market, or as an average of the 

current and past values (a smoothed value). However, it may not provide a good 

estimate of the value of the assets in the future, especially if a large percentage of 

the assets held in the portfolio have a degree of capital-value uncertainty. This 
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method is commonly used in UK and US [Owadally and Haberman, (2001), The 

Society of Actuaries' committee on Retirement Systems Research, (2001)]. 

" Discounted cash flow method: it discounts the future income of asset to the 

valuation date. It has been commonly used in the UK until recently but it is rarely 

used in US and Canada. Under this method, the consistency between the asset and 

the liabilities values can be clearly observed, as the assets are discounted using 

closely related assumptions to the ones that are used for calculating the present 

values of the pension liabilities Owadally (1998). Nevertheless, the valuation of 

any variable income assets is based on the assumptions made for the discount rate, 

leading to fluctuations of gains and losses if the assumptions were not borne out. 

" Book value method: it values the assets at the original purchase prices, this 

method is no longer widely used, as it is neither realistic nor consistent. Keeping 

the assets at the original prices does not show either the decreasing value of 

assets, because of inflation or depreciation, or the increasing value as a result of 

the gains obtained on assets. 

" Smoothed market value as discussed by the Society of Actuaries' Committee on 

Retirement Systems Research (2001) 2: this method reflects the market value with 

incorporating a specific algorithm for smoothing market fluctuations. It is 

classified into: average of cost and market values, write up (which is the most 

frequently used in US among the four methods in this category), deferred 

recognition (which is the most frequently used in this category in Canada) and 

average market value. Owadally (1998) suggested two reasons for smoothing 

asset values, they are: 

- generating a stable and smooth pattern of contribution rates; 

2 For further discussion about the smoothed value market method, see Owadally and 
Haberman (2004). 
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- generating an asset value that is more consistent with the long term 

assumptions used when valuing liabilities. 

3.4 Dynamic Pension Funding Plan 

Having studied the main concepts of pension funding and how to set up a general pension 

funding plan, we now consider establishing a dynamic relationship between the 

contribution rates and the fund levels in the scheme, i. e. how the contribution rate affects 

the level of fund needed in the scheme to meet its liabilities at certain time. Therefore, in 

this section, pension funding control systems will be explained in order to derive four 

dynamic pension funding models. Dynamic programming, as a mathematical tool, and 

control theory are used to reach the optimal contribution rate and optimal fund level in a 
finite time horizon. 

3.4.1 Control systems 

According to Hale(1973), control systems can be classified into: 

" Open-Loop system: which is characterised by the input entering directly into the 

control elements unaffected by the output. 

Closed- loop system: in which the input is modified by the desired output before 

entering the controller. The main advantage of this system, which involves the 

introduction of feedback, is monitoring the performance of a system and using the 

measured performance as information for the proper control or manipulation of 

the system. This allows the system to respond to any disturbances that act upon it 

from the environment. 

Therefore, we can consider the pension scheme as a system with the contributions and the 
fund available, which consists of the assets and the investment earnings, are the inputs to 

the system while the output is represented by the benefit outgo. The pension funding 

system can then be controlled by designing the controlling variable to produce a desired 

output (controlled variable) by the scheme's actuary (Voland, 1986). Here, the 
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controlling variable can be the contribution rate and the controlled variable is the fund 

level. 

3.4.2 Pension funding control feedback system 
By definition, closed-loop control systems are more preferable than the open-loop ones 

because of their information feedback characteristic. In that sense, the pension fund 

closed-loop or feedback control system can be designed to obtain an optimal feedback 

control law, which represents the dynamic pension funding plan according to Sung 

(1997). Thus, dynamic pension funding plan is set up on the basis of information fed 

back about the actual output (the fund level) response, the optimal contribution rate is 

then derived within the context of the dynamic programming and control theory. 

Therefore, applying a dynamic pension funding plan could be more effective to the 

funding of the scheme than using a general pension funding plan, in which the 

contribution rate is not determined upon the actual output response. 

In addition, using dynamic pension funding plan allows for the uncertainties in the 

economic and demographic factors, and explains how the various variables composing 

the mechanism of pension funding interact with one another and evolve with time. This 

leads to secure optimally the promised benefits of the members, without undue financial 

burden being placed on the employer or employees (Sung, 1997). 

Further, the dynamic pension funding plan could enable the management of the pension 

fund to forecast the future cash flows and adjust the contribution rates, under various 

scenarios based on specific plan strategies, which could help in decision making process 

(Chang, 1999). 

In the following subsections, we consider the literature review of using the dynamic 

programming and control theory approach, and their applications on the dynamic pension 

funding models before progressing to derive our models. 
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3.4.3 Review of dynamic programming and control theory literature 

Control theory first used in actuarial applications by Benjamin (1984) followed by 

Benjamin (1989) who considers the optimal control of pension funds in discrete time. 

O'Brien (1987) introduces a model based on a continuous time stochastic approach, in 

order to minimize both the risks of the contribution rate and the solvency risk. Here, the 

controlled object (pension funding dynamic system) is linear assuming that: the benefit 

outgo is a linear growth function of time; the growth rate in membership, salary and 

earned rate of return on the fund are mutually independent normal random variables. The 

scheme is assumed to be only for active members. O'Brien uses the following 

performance index which is designated to evaluate the control errors and the cost of 

control excluding the contribution rate target level: 

J(s, X, u) = Es. xfT ept(uZ+ß(y7A-F)2dt (3.10) 

where: 
u(t): the contribution rate at time t 
A(t): the expected present value of future benefits at time t for the active members. 
F(t): the fund level at time t 
il : the fund ratio 

Vanderbroek (1990) develops the O'Brien model and introduces a deterministic model 
based on continuous time where the benefit outgo, total payroll and the actuarial present 

value of future benefits are each exponential functions of time. Her interest is to apply the 

model to the national social security system in Belgium. The performance index contains 

a percentage of the payroll as a contribution target, as follows: 

Min JT e-"{[C(t)-aW(t)]2 +ß[7 A(t)-F(t)]2}dt 
c, 0 

where: 
C(t): the annual contribution rate at time t 
A(t): the present value at time t of future benefits for active and retired members 
F(t): the fund level at time t 
a: a fixed percentage of salary to represent the contribution level 
W(t): total salary rate at time t 

(3.11) 
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il : the fund ratio 

Later, Haberman and Sung (1994) introduce a deterministic and stochastic approach on 

discrete time basis, where the controlled object was linearly formulated, under the 

assumption that the investment returns are independent and identically distributed 

random variables in the stochastic case. Thus, they develop the previous models by 

taking into consideration both the contribution target and the fund target. They 

correspond to the normal cost and actuarial liability respectively in the performance index 

as follows: 

r-i 
Jr: - Min {E[v`(C, -CT)Z+v. ý(3(Ft-FT)Z]} (3.12) 

a�...., cr-l r=o 

T-1 

JT = Min E{l[v`(C, -CT)2+v. ß(F-FT (3.13) 
c....... CT-I 1=0 

where : 
Ct : contribution rate for period (t, t+1) 
CTt : contribution target at time t 
Ft : fund level at time t 
FF : fund target at time t 

a weighting factor to reflect the relative importance of the solvency risk against the 
the contribution rate risk. 

v: the discount rate during the period. 

Among the applications of the dynamic pension funding, Cairns (1997,2000) uses the 

quadratic loss function of Haberman and Sung to set up a stochastic continuous model, it 

optimizes the contribution rate over the range of possible asset-allocation strategies, 

where n risky assets and the risk free asset as well as demographic disturbances are 

considered: 

L(t, c, x)=(c-c, �)2+2p(c-c, �)(x-xp)+(k+p2)(x-xp)2 (3.14) 

where: 
c: contribution rate 
cn, : contribution target 
x: the fund size 
xp : the fund target 

66 



Owadally and Haberman (2004) also consider the efficiency of methods of amortizing 

actuarial gains and losses in defined benefit pension plans. This is explained by the 

optimization of a quadratic objective criterion when the fund is invested in two assets: a 

random risky and a risk-free asset. 

Chang (1999,2000) follows the same approach of Haberman and Sung by setting up a 

model based on discrete time stochastic approach. The performance index is designed 

based on ratios which are used in measuring the discounted quadratic deviation over the 

chosen time horizon: 

r-t 
J(CO........ Cra)=E(ý[v, (1- CI )2+vv+iß+i(1- )Z1) (3.15) 

, --O 
NCB ALS 

where: 
C1: the contribution paid at time t. 
NC,: the normal cost at time t. 
Ft : the fund level at time t. 
ALt : the actuarial liability at time t. 
P: the risk-weighted ratio at time t. 
vt : the discount factor at time t. 
rl : the target funding ratio. 

0 

Chang then applies the model to the Taiwan's Public Employees Retirement System as a 

case study. He reaches the optimal pension funding using the ratio-induced performance 

measure and comparing it with the cost-induced performance measure derived earlier by 

Haberman & Sung. 

Later, Chang et al (2002) continue his earlier work by considering investment strategies 

in the dynamic funding policy of defined benefit pension schemes. The model is also 

applied to the Taiwanese Pension Scheme. Further, Chang et al (2003) develop the ratio 

model by incorporating downside risks, and allowing the weighting factors in the 

performance criterion to belong to a broader parametric family. The rates of investment 

returns are assumed to follow the autoregressive process. 

Thereafter, Haberman and Sung (2002) present a discrete time stochastic approach in the 

case of incomplete-state information. The model is based on ratio-induced performance 
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index. This allows for a one-unit time delay due to the physical inaccessibility of some of 

the economic parameters or inaccuracies in the measurement procedures. Taking into 

consideration both the demographic and economic disturbances, the performance index 

used is shown below. 
T-1 

Min E{16(FR, -fr)2+(1-0)(CRR-cr)2} (3.16) 
(CRi; t=0,1...... T-1) 

1-0 

where : 
FRI : the funding ratio = F1/AL 
CR1: the contribution ratio = CJAI. t 
fr1 : fund target at time t. 
cr1 : contribution target at time t. 
0: weighting risk factor. 

Finally, Haberman and Sung (2005) extend their earlier work and derive a dynamic 

stochastic model in a discrete-time with an infinite time horizon. Both the economic and 

demographic random disturbances are considered. The stochastic inputs are assumed to 

be stationary for deriving a definite funding policy. 

3.4.5 Optimization problems: discrete-time deterministic and stochastic 

dynamic models 
Our objective is to determine an optimal feedback control law by using a performance 

index, which is a quantitative technique measuring the system's performance and 

minimizing it, and taking into consideration the two main risks of funding a defined 

benefit scheme, which are: 

" Contribution rate risk: which refers to the instability of the contributions paid mainly 

by the sponsor of the scheme; 

" solvency risk: this relates to the ability of the scheme to cover its liabilities towards 

the beneficiaries. This applies as long as the scheme operates on an on-going 

valuation. However, the risk of the scheme or the employer being insolvent is 

unpredictable, it means that the market value of the assets on a wind-up valuation 

does not cover the benefits payable (Haberman et al, 2003). Sung (1997) classifies the 

solvency risk into: 
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(1) The investment risk: it is simply referred to the risk associated with the expected 

returns from investments on different types of assets, and the separate holdings within 

each type of them. Thus, it could be divided into asset value risk, asset income risk 

and matched risk (for further detail, see Sung (1997)) . 
(2) The non investment risk: which deals with the liability risk of the scheme, it could 

include the liquidity risk where the funds may not be available at the time of the due 

payments. 

Lee (1986) indicates that the main key characteristics of funding are: stability, security, 

liquidity and durability. Among these characteristics, the sponsoring employer is 

concerned mainly about the stability of the contribution rate, consequently, he is 

interested in minimising the contribution rate risk seeking for the stability. On the other 

hand, the trustees and the members are concerned mainly about the security of the 

promised benefits, which indicates their interest to minimize the solvency risk to secure 

their benefits. Thus, the objective of minimizing the performance index in order to obtain 

the optimal pension funding plan corresponds to minimizing the contribution rate risk 

(which corresponds to the cost of control in the control theory) and the solvency risk 

(which corresponds to the control errors), seeking for the achievement of stability and 

security of the scheme respectively. 

Therefore, our models are an extension to the earlier work of Sung and Chang. We 

introduce four deterministic and stochastic models in discrete-time basis for a finite time 

span (wind-up) valuation. Both cost-induced and ratio-induced performance measures 

are used to derive the optimal contribution rate. 

The reasons of choosing these four models are: 

firstly, the deterministic models are generally used in the actuarial calculations in real 

practice for the purpose of simplicity. Hence, it will be helpful to derive a dynamic 

pension funding plan that matches with the approaches used in practice. However, 

stochastic models are recommended to replace the traditional deterministic approaches, 
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as they are more realistic and correspond in a better way to the uncertainty surrounding 

the environment of the pension schemes. 

Secondly, although the finite time span deals with wind-up situations, it will be more 

appropriate to use the finite time horizon in the application of the dynamic models in our 

research. This is because the cash flows of a particular defined benefit pension scheme 

will be used as time series of past data (eg: 12 years) to compare the actual cash flows 

with the optimal expected contribution rates and fund levels. 

Thirdly, despite of similarity in composition of the cost-induced and the ratio-induced 

performance indexes mathematically, using both approaches enables us to understand the 

differences in their behaviour in practice. 

Furthermore, the intersection between the contribution rate risk and the solvency risk in 

the performance indexes, as represented in the middle term (Ct - CTt) (Fc+t - FTc+i), is 

considered. This intersection term is introduced by Cairns (2000) as an extra term in the 

general quadratic loss function, which is proposed to provide an explicit solution for the 

optimal contribution and asset allocation strategies. 

The explanation of adding this term to the performance index is that the interests of the 

employer and the members are considered simultaneously rather than separately. On 

other words, instead of weighing the conflicting interests between the employer, seeking 

for the stability of the contribution plan from one side, and the trustees and the members, 

seeking for the security of the pension fund from the other side, these interests could be 

viewed as mutual and dependent. Since discontinuance holds the employer responsible to 

compensate his employees and meet their rights, he should be keen to keep his company 

and the scheme solvent, and hence, he seeks for minimizing the solvency risk. On the 

other side, the members should seek the stability of the contribution rate in order to 

guarantee the payments of the required contributions at the specified times. This should 

not disrupt unduly the financial position of their employer, so that, the accrued benefits 

will be paid regularly without delays. Further, the stability of the contribution rate will be 

70 



a main interest for the employees, if they are sponsoring the scheme as well as the 

employer, e. g. the defined benefit Private Pension Funds in Egypt. 

In this subsection, we set up two deterministic and two stochastic performance indexes 

for pension funding of defined benefit scheme based on discrete time finite time horizon. 

Thus, the basic notations are defined, followed by the dynamic programming problems 

and the performance indexes of the four models. 

The basic notations used in our models are: 

T: the finite time span (the control period). 

Ct contribution paid at time t. 

Ft : Fund assets at time t. 

B1 : overall benefit outgo for the period (t, t+l). 
ALS : actuarial liability at the end of the period (t, t+l). 

i1+l : real rate of investment return earned during the period (t, t+1). 
FT,: fund target for the period (t, t+1), which corresponds to AL1(actuarial liability), 

if all actuarial assumptions will be realised exactly during the control period. 
CT1: contribution target for the period (t, t+1), which corresponds to NCt (normal 

cost) for the same condition mentioned above. 

y: a risk measurement weighting factor to reflect the relative importance of the 

contribution rate risk 

a: an integrate risk weighting factor to reflect the relative importance of the 

contribution risk combined with the solvency risk. 
P: a risk measurement weighting factor to reflect the relative importance of the 

solvency risk. 

71 : the fund target ratio. 

Here, it is notable that the fund target refers to the standard fund (actuarial liability), and 

the contribution target refers to the standard contribution rate (normal cost)(Sung, 1994). 
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Therefore, the optimization problem is described as follows: Find the contribution rates 

Ct, Ct+1, "-" "", 
CT-1 For a finite time span, which minimize the quadratic performance 

criterion: 

T-l 

JT =Min {Zy(C, -CT, )2+a(C, -CT)(F, +, -F7; +t)+ß(F, +, -FTr+t)2} (3.17) 
C,...... CT-I t_o 

in the cost-induced deterministic case; 

T"' C: 
J, = Min )ZCc )(1- F: +t )+ß(1- Fr+t 2 (3.18) 

Ci...... Cr-i t-0 
CT, CTt ; 7FTr +1 j7FTr +i 

in the ratio-induced deterministic case; 
T-1 

JT= Min E{EY(C, -CT)2+a(C, -CT)(F, +, -FTr+t)+ß(F, +1-147+, 
)2} (3.19) 

CO CT-1 rj 

in the cost- induced stochastic case, and 

T-1 Cr 2 Cr Fr+i Fr+i 
J= Min E{yy(1- -) +a(1- )(1- )+ß(1- )21 (3.20) 

C.,..... cr-i 1-0 CT CTr 7JFTr +i 17FTt +i 

in the ratio-induced stochastic case2. 

Therefore, our approach is to use the control theory in either deterministic or stochastic 

environment, regarding the following recurrence relations to derive the optimal 

contribution rate: 

F+, =(1+i1+1)(1 +C1-B1) 

AL,,, =(l+i)(AL, +NC, -B) 

under the assumptions that: 

(3.21) 

(3.22) 

" An actuarial valuation is carried out to estimate them annually (at any time t for 

integer values, t =0,1,2,... ) 

" The contribution income and benefit outgo cash flows occur at the start of each 

scheme year. 

2 The letter E in the equations refers to the expectation used for the stochastic problems. 
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3.4.6 Optimisation problems' solutions - deterministic cases - 
(a) Cost-induced performance index 

The optimal contribution rate (Ct*) will be determined sequentially according to the 

principle of optimality (Bellman, 1957) for a chosen time period tc [0, T), thus, the 

C*o, C; 1........, C*T-i will depend on the observed pension fund state variables which is 

the response or the controlled variable of the dynamic pension system Fo, F1, F2,....., Ft, 

and the inputs /controlling variables {CTt, FTt, and Bt } which are all previously given 

for the same time domain where te [0, T) , thus, our performance index in this 

deterministic case is: 

T-1 
jr= {y(Cr-CT, )2+a(C, -C7)(Fs+1-FTs+, )+Q(Fs+1-Fa+, )2) (3.23) 

s=o 

so, it could then be written as it consists of two parts: 

r-t 
jr =ý{y(C, -C7 )2+ a(C, -CT, )(F,,, -ms's+I)+ß(Fs+ý -FT , 

: =o 

T-1 

{Y(C, -CT, )Z+a(C, -CTs)(F 1-FTS+, )+, ß(F5+1-FTs+, )2} (3.24) 
s=t 

Hence, the first part does not depend on C,, Ct+l,....., CT-I, and Co, C1...... Ct_1 have, 
already known at time t, we are concerned about minimizing the second part, to proceed 
by induction: 

T -I 

V(F,, t)= Min {ZY(C5 -CT)2 +a(CS -CT, )(F3+1-ms'l)+ß(FF+1-FT, 
+1)2 

) 
(C,; s=t. r+1...... T-1) 

s=t 

(3.25) 
From the principle of optimality, we obtain : 

}+ V(F,, t)=Min{Y(Ct-CT )Z +a(C, -CT)(Ft+, - r+i)+ß(Fr+i -FT C, 
T-1 

Min { 
, y(C, -C7 )2+a(Ca-CTf)(FS+1-FT, 

+1)+ß(Fs+1-FTs+I)2} (3.26) 

=Min{(Y(C, -CT, )2+a(C, -CT )(Fr+, -FT+, )+Q(Fr+I- 
r+1)2)+V(F+I, t+1)} 

C, 
(3.27) 
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Hence, we can try the solution of the last equation of the form: 

V (FF ,t+ 1) = a, (t) F, 2 +a2 (t)F, + a3 (t) and where al(T)=a2(T) = a3(T) =0 

For a boundary condition V(FT, T) = 0, because there is no loss associated with the 

3 terminal state FT . 
As the pension fund process (Ft+t, t [0, T] }is governed by a difference equation, the 

future states are a function of Ft only. Then, it is sufficient to choose Ct as a function of Ft, 

so we can have the following: 

V(FF, t)=Min{ G(C,, t)} 

Suppose that (1+ i1+1) = rt+l and kt+1= (ß + a( t+1)) 

then, 

G(Ci, t)={y(C, -CTI)2+a((C, -CT, )(r�, (F, +C, -B1)-F7r+1))+ß(, 1(F, +C, 

+al(t+1)(rt+l(Ff +C, -B, ))2 +a2(t+1)(rß+l(F, +C, -B, ))+a3 (t+l)} 
(3.28) 

Hence, an optimal unique value of Ct{ should be derived, as G(Ct, t) is a strictly convex 

function under the above condition, it is sufficient that the coefficient of Ct* is positive for 

all tc [0, T), so that Ct' equals: 

r 
C. 

(2y+ar+, )CT; -(ar+l +2+ßk1+, )(F, -B, )+(a+2ßr, 
+i)FT, +, -r, +la2(t+l)} 

2(y+ar +r2 k 
(3.29) 

Since Ct' involves both ai(t+l) and a2(t+1), by substituting Ct` in equation (3.28), we can 

obtain the following recursive equations which can be used to calculate the Ct* using the 

3 For mathematical simplicity, we could assume that there is no loss associated with the 
terminal state FT, taking into consideration the different time spans that could be used in 

applying the models, i. e T= 30 or 40 and given that pension funds have a life cycle and 
are not expected to carry on their operations to infinity. 
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backward recursive relations: 

al (t) ^ 
r+, (4Yký+1 - a2 ) 

4(y + a7'r+1 + rr+i kr+1) 
(3.30) 

02(t)ý(4rr+ýikr+ý 
-a2rr21)(C7- Br)+ai4 F7+t(a+2rr+ºkr+t)+rr+t (2y+arr+, )(a2(t+1)-2ßF7; 

+t 
2(y+ar, 

+t rr+ 

(3.31) 

(b) Ratio-induced performance index 

The optimal contribution rate of ratio-induced performance index could be derived using 

the principle of optimality (Bellman, 1957) for a chosen time period tc [0, T) following 

the same approach that has been used earlier to determine the optimal contribution rate of 

cost-induced performance index, thus: 

V(F,, t)=Min{y(1-C, ICT, )2+a(1-Ct/CT)(1-F, 
+1I, 1 'r+l)+ß(1-FF+IIii 'i+I)2 +V(F, +l, t+1)} 

C, 
(3.32) 

Consequently, the optimal contribution rate Ct* is: 

(2y+a) m, +1 2 (ar_. '+2_. i) 

_ cr, -(CT, +2rß+ihý+t)(Fr -B1)+ 2 
-rý+ßa2 (t+1) 

C` 
2(( +' +r21hý+1) 

(3.33 
r 

, 
)2 CT, 

where: 
b 

+a (t+1) hýý - (t iFr+l) Z1 

m, +i r t7 FT+i 

and, the recursive equations for both a, (t) and a2(t) are: 
i 4y mu. ý 2 

Tt+i hr+l 
(c7ß )' - (CT, 

a1(t) ym+. z 4((C,., 
)2 

+ C; + rý+l hý+1 

and 

(3.34) 
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2YBr ºi+i (a2-4YQ) 
_c, 

(a+2Q) 2Y mr+ý 22 2Y a- ( fir) Bl +2r1+Ih1+1C/, +LT, 
(CTr)2+ y117; +r(Cf, )2 (>7FI+1)2CT, 

+rl+la2(t+l)((CT, 
)3 

+ 'n, +' 
C7 

) 

a2 (t) 

2( Y mr+t 2 

(cr, )2 + C, +rl+ihl+i) 

(3.35) 

3.4.7 Optimisation problems' solutions - stochastic cases - 

Although we have derived the optimal contribution rate in the deterministic case, where 

the future behaviour of the different variables assumed to be predictable and determined, 

the need for a stochastic approach grows in importance as it corresponds to the rapid 

changes in the market allowing for more accurate and realistic results as previously 

mentioned. 

Therefore, we derive the expected optimal contribution rate for the same control problem 

in the discrete time incorporating only the economic disturbance by assuming that the 

earned real rates of investment return in each interval of time (t, t+ 1) are independent and 

identically distributed as normal random variables with mean 0 and variance 62. Thus, it+t 

is the random rate of investment return for the period (t, t+1), and the observed outputs of 

the measurement process are equal to the fund states {F0, Fl,..., Ft} as in the case of 

complete state information. 

(a) Cost-induced performance index 

The stochastic pension funding control problem is: 
T-1 

JT = Min E{E Y(C, - CT) 2+ a(C, - CTt)(Fº+1- FT«1) + ß(F+1- FTº+1) 2} 
Cf...... C7-i 1_0 

Subject to: 

Fr+i=(1 +ir+, )"(Fi+CrB: ) 

where: 

it+l - III) independent identical distributed as normal variables with mean 0 and variance 

a2 and where Fo and io are given. 
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For minimizing JT, the optimal control sequence E(Ct*) should be determined at time t 

where tc [0, T), and where the fund state variables F0, Fl, F2,..., Ft have been observed 

and the contribution target {CT1, tc [0, T)}, the fund target {FTt+,, tc [0, T)} and the 

benefit outgo {B1, tc [0, T)} are known. 

Therefore, JT can be written as follows: 

r-1 

JT = EY(C, -CT, )2 +a(Cs -CT, )(Fs+, -FTs+I)+ß(F5+1 -FTs+, )2l+ 
s=0 

T-1 

E{, Y(C3 -CT, ) 2+ a(C3 - CT3)(F311- FTs+1) + ß(Fs+, - FTs+, ) 2} (3.36) 
s=t 

The first part does not depend on C,, C, +I, ....., CT-1, then to minimize JT with respect to 

C1 for sc (t, t+l, ...., T-1) is equivalent to minimizing the second part. Without loss of 

generality, assuming that the second part of the performance criterion has a unique 

minimum with respect to CS for all Fs+1, sc (t, t+1, ...., T-1) and using the property of 

conditional expectation (Aström, 1970), then: 

T-1 

V(F,, t)= Min Ey(C, -CT, )2+a(C, -CT, )(Fs+l- 
s+l)+ß(FS+1- s+l)2} (c�a=r. t+1... »T-1) s=t 

(3.37) 
r-i 

= Min EY(C, -CTd)2+a(Cs -CTS)(F5+i -FT s+i)+ß(F3+1-FTs+1)ZI 
H, } 

tc, .1 T-1) 3=r 
(3.38) 

Where Ht consists of the events prior to and inclusive of time t from the measurement 

process(Fo, F1,...., F, }, and since{FF, tc [0, T)}is a Markov process, thus, for all tc [0, T), 

the conditional probability distributions of future states {FF+1,...., FT}given past values 

{Fo, F1,...., FF}are functions of Ft only. It is then sufficient to choose Ct as a function of 

Ft, so that: 
T-1 

V(F,, t)= Min E{Z Y(C3-CTs)Z+a(C3-CTs)(Fs+1-ý': +, 
)+ß(Fs+l-F1s 1)21Fr} (C,; s=t. r+l�.. »T-1) f=; r 

(3.39) 
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Using Aström(1970) and similarly for V(Ft+1, t+l), we obtain the following Bellman 

equation with the boundary condition V(FT, T) = 0, because there is no expected loss 

associated with the terminal state FT: 

V(Fý, t)=MinE{Y(Ct-CT)2+a(C, -CTr)(F(+1-F+1)+ß(F+t- r+1)2+V(Ff+,, t+1)IFt} 
, 

(3.40) 

Referring to the funding constraint: 

F1+1= (1+ it+I)( Ft+ C, - Br) 

and where it+, is IID - normal distribution with mean 0 and variance a2 

thus, the first two moments of i, are: 

E[1+i, +, 
] _ (1+6) 

and 

E[(1+ir+1)2] = [(1+0)2 +a2] 

Therefore, the conditional distribution of Ft+1 given Ft is as follows: 

E[F, +, 
IF, ] = (1+B)(F, +C, -Be) (3.41) 

and 

E[F, +, IF, ]=[(1+0)2+ . 2](F, +C, -Bt)2 (3.42) 

Since Cc is a function of Ft and Bt and it, which are fully informed up to time t, we can try 

the solution of the Bellman Equation in the following form: 

V(F1, t)= ai(t)F, 2+ a2(t)Fr + a3(t) with the boundary condition al(T) = a2(T) = a3(T) =0 
Thus, 

V(F,, t) = Min(G(C,, t)} 

G(C,, t)={y(C, -CT, )2 + a((C, -CTS+1)((1+9)(F, +Ct -B, )-FT,,, ))+ß((d(F, +C, -B, )-FT, +1)2 
+a, (t+1)(d(F, +C, -B, ))2 +a2(t+1)((1+6)(F, +C, -B, )+a3(t+1)} 

(3.43) 
where 
d=[(1+B)2+Q2J and 1=(1+6) 
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In order to have a unique funding controller, it is sufficient that the coefficient of E(Ct*) 

in equation (3.43) is positive for all tc [0, T), Since it is a strictly convex function under 

the above condition for uniqueness, the optimal pension funding controller at time t, tc 

[0, T) is: 

E(C! )- 
(2y +al)C7, -(al+2dk, +, 

)(F, -B, )+(a+2ßl)FT, 
+, -l(a2(t+1) 

2(y+crl+dk, 
+l) 

(3.44) 

The recursive equations then are: 

_ 
4)dk, + - 

(cd)' 
a1 (t) 4(Y+a! +dk, +, ) 

(3.45) 

and 

a2 (t) 2(Y+al+dk, +, ){(4)dkt+l -(a! )2)((7 -B, )+aFT, 
+ (al+2dkt+1)+(2yl)(a2(t+1)-2ßFT+t) 

+a! 2(a2(t+1)-2/ßT+I)} 

(3.46) 

(b) Ratio-induced performance index 

Following the same approach we have used to obtain the optimal contribution rate for the 

cost induced performance measure, we could now derive the Ct* for the ratio-induced 

performance measure in the stochastic case. Thus, we will have the following Bellman 

equation to be solved using the conditional distribution for Ft+1 given Ft: 

V(F,, t)=MinE(y(1-Cr/CT, )2+a(1-C, /C7)(1-F, 
+177 , +t)+/3(1-F+1/tiF+ +V(F, +,, t+1)IF, ) 

C, 
(3.47) 

The optimal contribution rate could then be derived to be: 

E(C )T 
-Zag (t+1)} (z a)_(ZCTý+2dh, 

+, )(F, -Bf)+ýff, ý 

2(, + Za + dh: 
+l) 

(3.48) 

where 
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at 

1%FTr+, 

Consequently, the recursive equations for both al(t) and a2(t) will be: 

4Y zr+t 2 

a 
dh1+i 

(C7)_ - 
(c) 

(3.49) 
1() 4( 2+_'+dh, +1) c2" C7; 

and 

z2 2y+a 2yß, I(a2-4yß 
- 

al=(a+2, B) 2y Zr. 1 {(ý) B, +2dhf+, (ý - _)+ +la2(t+l)( 2+C, )} 
a2 (t) 

_rr 
G7r 4F7, +ICT, (nn'i., ) GTr r 

2(CT12 + C;. +dh, +1) r 

(3.50) 

Summary 

The pension funding is a major process for setting up defined benefit pension schemes. 

The actuarial valuations are important to be carried out by the actuaries to examine the 

financial position of the schemes. Thereafter, the contribution rate is needed to be 

determined along with the level of the fund assets to cover the promised benefits of the 

beneficiaries. 

Due to the uncertainty about the economic and demographic assumptions - which are 

considered a main part of the actuarial valuation - the dynamic pension funding plans are 

recommended to be used to assist in the decision making process, as they based on the 

feedback control system which allow for the adjustment of the contribution rate 

according to the fund level at certain time. 

In this chapter, we proposed four dynamic pension funding models in both deterministic 

and stochastic based on discrete-time for finite time horizon, two approaches were used: 

the cost-induced performance index and the ratio-induced performance index to reach the 

optimal contribution rate. 
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The properties of these models and how the optimal contribution rates and the optimal 
fund levels behave over time with changing the parameters used in the models worth to 

be explored, thus, the following chapters 4 and 5 will cover the properties of the cost- 
induced performance index (CIPI) and the ratio-induced performance index (RIPI) 

respectively. 
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Chapter Four 
Computational experiments to reveal the underlying properties 
of the model and policy implications I 

4.1 Introduction 
The previous chapter has presented the mathematical derivation of the dynamic pension 

funding models in both deterministic and stochastic cases. This needs to be followed with 

testing of the results, by applying numerical illustrations and carrying out a sensitivity 

analysis, in order to interpret the different results and understand the properties of the 

models. In fact, the recursive nature of the mathematical results in chapter 3 make these 

properties difficult to identify directly, and so, the use of numerical experiments can be 

valuable. 

Therefore, in this chapter, we will start with specifying the different values of the 

parameters of the numerical illustrations that are needed to carry out the sensitivity 

analysis. Second, the results of testing the CIPI model will be analyzed by studying the 

different effect of the different parameters on the optimal fund level and contribution rate. 

4.2 Parameter values 
To explain the patterns of the derived deterministic and stochastic models, numerical 

illustrations are carried out with the following parameter values: 

- The control period is 15 years, i. e. T= 15. 

as we apply our models for a finite time horizon, we have decided that T= 15 is a 

reasonable period to test the models. Increasing its value to 30 or 40 will not have a major 

effect on the behaviour of optimal fund level and contribution rate. 

- The fund target or actuarial liability F Ft= AL t-- 1 for all t. 

- The contribution target or normal cost CTt= NCt = 0.2 for all t. 

It is important to state that the choice of the fund and the contribution targets as 
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(1,0.2) is considered the default scenario of our analysis. This is only one scenario, out of 

five, that will be applied to test the effect of changing the fund and contribution targets on 

both models. The other four scenarios are: (1,0.22), (1,0.18), (1.2,0.2) and (0.8,0.2), 

where in the first and second scenarios, we allow for changing the contribution targets up 

and down around 0.2 and the fund targets are equal to 1. In the last two scenarios, we 

allow for changing the fund targets up to 1.2 and down to 0.8 while the contribution 

targets remain constant equal to 0.2. 

- According to the growth funding equation: 

Fr+i= (1 +it+i) " (Fr + CC - Br) 

The rate of return is represented by it+l and it is equal to 10% in the deterministic case. In 

the stochastic case, it is independent identically distributed as a lognormal variable S with 

a mean 0= 10% and different values of the variance a2, where ß= 1%, 5%, 10%, 15% 

and 20% to represent a range of volatility levels. 

- The value of the benefit outgo will be determined accordingly to achieve an 

approximate balance of the actuarial liability growth equation: 

Al t+l = (1 + i, +1) " 
(AL, + NC, - Br) 

where the benefit outgo Bt will be equal to 0.3 - as a round value - for all scenarios in our 

analysis except in section 4.5, where we allow the value of Bt to be changed in order to 

maintain the equilibrium of the actuarial liability growth equation. For the different 

scenarios, the equilibrium value of Bt - shown in Table 4.1 - is used to examine the effect 

of changing 0, the weighting risk factors of the contribution rate risk and the solvency 

risk when the cross product factor a=0 and a :A0. 

- The initial value of the fund Fo = 1; this value differs when we change the fund target to 

1.2 and 0.8 in the fourth and fifth scenarios. It is mainly used when we apply the growth 

funding equation to calculate the value of Co*. 

- The weighting risk factors are changed as part of applying the sensitivity analysis, in 
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order to test their effect on the models in each scenario we mentioned earlier', the 

parameters are: 

y: represents the weighting factor of the contribution rate risk and it will take the 

following values: 0.1,0.3,0.5,0.7,0.9. 

a: represents the weighting risk factor of the middle mixed term which combines both 

the contribution rate risk and the solvency risk. It will take the following values: 0,0.2, 

0.4,0.6,0.8. 

P: represents the weighting factor of the solvency risk and it will take the following 

values: 0.9,0.7,0.5,0.3,0.1. 

For both stochastic cases, 10,000 simulations are carried out by using the Visual Basic 

Program (Visual Basic 6.0) and VBA (excel 2000), where & is independent identically 

distributed as a lognormal variable with mean 0 and different values of variance ß2 as 

previously stated. Hence, the total number of cases obtained is 1250 (250 cases under 

each scenario). In our sensitivity analysis, we refer to some of these cases 

interchangeably which helps in clarifying the properties of our models. 

4.3 Results of sensitivity analysis - the deterministic case- 
The results of both models CIPI and RIPI, in the deterministic case, are expected to be 

similar to the ones we obtain in the stochastic case, when the same value of the interest 

rate of return - which is 10% as a mean for the distribution of S- and the lowest level of 

volatility when a= 1% are used. Therefore, it is preferable to comment on the results we 

have obtained in the stochastic case when the level of ß is low, bearing in mind that the 

values of the expected optimal fund level and contribution rate should be quite similar to 

the deterministic case. Full details of the results under the deterministic case are available 

but are not included in the thesis. 

1A combination of the three weighting risk factors y, a and ß are used, throughout this 

chapter and the rest of the thesis, in this form (y, a, ß) to refer to the cases we have 

applied and investigated in our analysis, e. g. (0.1,0,0.9) means that y=0.1, 

a=Oand(3=0.9.1 
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4.4 Results of sensitivity analysis - Cost-induced performance index 

model in the stochastic case when Bt = 0.3 - 
4.4.1 Effect of changing 0 

(a) Effect of changing 0 on the benefit outgo Bt 

Changing the mean of the interest rate of return 0 affects the balance of the actuarial 

liability recurrence relation equation: 

ALr+I= ea. (ALr+NC - B, ) (4.1) 

Hence this leads to change the value of the benefit outgo Bt as shown in Table 4.1. 

Table 4.1 

The effect of changing 9 on the benefit outgo Bt 
in the five different scenarios 

FT CTt 6 Bt 
1 0.2 5% 0.25 
1 0.2 10% 0.3 
1 0.2 15% 0.34 
1 0.22 5% 0.27 
1 0.22 10% 0.32 
1 0.22 15% 0.36 
1 0.18 5% 0.23 
1 0.18 10% 0.28 
1 0.18 15% 0.32 

1.2 0.2 5% 0.26 
1.2 0.2 10% 0.31 
1.2 0.2 15% 0.37 
0.8 0.2 5% 0.24 
0.8 0.2 10% 0.28 
0.8 0.2 15% 0.31 

The results in Table 4.1 show that choosing 0 at a lower level equal to 5% and a higher 

level equal to 15% instead of 10%, with keeping the values of both the normal cost and 

actuarial liability as they are in the different scenarios, results in the following: 

The lower level of 0 equal to 5% in the first scenario - where the actuarial liability (AL = 

FT = 1) and the normal cost (NC = CT = 0.2) - results in changing the value of 
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the benefit outgo to be equal to 0.25 instead of 0.3. On the other hand, choosing 0 at a 

higher level is equal to 15% leads to increase this value to 0.34. 

In (1,0.22), if 0= 5% we will have the value of the benefit outgo = 0.27 and if 0 moves 

up to 15% the value will come up to 0.36. 

The third scenario (1,0.18) leads to the same results, where the values of the benefit 

outgo are changed to be 0.23 under 5% and 0.32 under 15%, so that, with increasing 0 the 

benefit outgo increases, and with reducing it, Bt decreases to keep the balance of the 

linear equation. 

Further, the changes of the actuarial liability in the two remaining scenarios have an 

effect on Bt. In (1.2,0.2), the value of the benefit outgo becomes 0.26 under 5%, while 

applying the last scenario (0.8,0.2) results in having a lower value of the benefit outgo 

equal to 0.24. In the case of 0 is equal to 15%, these values become 0.37 and 0.31 

respectively under both scenarios. 

Finally, it is clear that changing 0 has an effect on the equilibrium of the recurrence 

equation. When 0 changes to a lower level, this results in having lower investment 

income which needs to be matched by having lower values of the benefit outgo. On the 

other hand, having a higher value of 0 leads to an increase in the value of the BC to 

maintain the equilibrium of the equation with different levels of normal costs and 

actuarial liabilities. Also, it is notable that the values of the benefit outgo in the second 

and the fourth scenarios are higher than the values in the third and the fifth scenarios due 

to the higher level of the contribution target and the fund target respectively. 

(b) Effect of changing 0 on E(F1*) and E(Ct* 

Here, we test the effect of changing 0 on the expected optimal fund level and 

contribution rate when B1 = 0.3. It is noted that if we keep the value of Bt = 0.3, moving 0 

up to 15% and down to 5% leads to changes in E(F1*) and E(C1*) up and down 

respectively, which depend on the values of the weighting risk factors. 
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Considering the default scenario (1,0.2) when 0= 5% and 15% with the round value of 
Bt = 0.3 leads to the following results: 

In the case of (0.1,0,0.9), the value of E(Ft*) remains close to its target without 

significant changes for both 0= 5% and 15%. On the other hand, the value of E(Ct*) 

moves up to be around 25% when the expected rate of return is decreased to 5%, where 

as it moves down to be around 17% when the expected rate of return is increased to 15%. 

Tables 4.2 and 4.3 show these results below. 

Table 4.2 

The expected optimal fund level under CIPI (1,0.2) 
for different levels of 0 at a= 5% in the case 

of (0.1,0,0.9) when Bt=0.3 

t 0=5% 6=10% 8=15% 
1 100.00% 100.00% 100.00% 
2 99.80% 99.81% 99.78% 
3 99.76% 99.77% 99.74% 
4 99.76% 99.77% 99.74% 
5 99.78% 99.79% 99.76% 
6 99.74% 99.76% 99.74% 
7 99.76% 99.78% 99.75% 
8 99.76% 99.78% 99.75% 
9 99.80% 99.80% 99.77% 

10 99-81% 99.79% 99.75% 
11 99.75% 99.76% 99.73% 
12 99.79% 99.80% 99.77% 
13 99.73% 99.75% 99.72% 
14 99.77% 99.78% 99.75% 
15 99.75% 99.78% 99.78% 

When ß is increased to 20%, the levels of E(Ft*) remain close to each other for the 

different values of 0 but they are further away from the target (relative to the case of 

a= 5%) due to increasing the level of volatility as shown in Table 4.4. For E(Ct*), we 

note that it has a similar behaviour where it increases when 0= 5% and decreases when 0 

= 15%. However, it moves further away from the target compared with the cases when a 

= 5% as seen in Table 4.5. 
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Table 4.3 

The expected optimal contribution rate under CIPI (1,0.2) 
for different levels of 0 at ß=5% in the case 

of (0.1,0,0.9) when Bt = 0.3 

t 0=5% 8=10% A=15% 
1 25.05% 20.73% 16.76% 
2 25.23% 20.90% 16.96% 
3 25.27% 20.94% 17.00% 
4 25.27% 20.94% 17.00% 
5 25.25% 20.92% 16.98% 
6 25.28% 20.95% 17.00% 
7 25.26% 20.93% 16.99% 
8 25.27% 20.93% 16.99% 
9 25.23% 20.91% 16.97% 

10 25.22% 20.92% 16.99% 
11 25.27% 20.95% 17.01% 
12 25.24% 20.91% 16.97% 
13 25.29% 20.96% 17.02% 
14 25.22% 20.93% 17.01% 
15 24.79% 20.86% 17.25% 

Table 4.4 

The expected optimal fund level under CIPI (1,0.2) 
for different levels of 0 at ß= 20% in the case 

of (0.1,0,0.9) when Bt = 0.3 

t 8=5% 8=10% 8=15% 
1 100.00% 100.00% 100.00% 
2 96.45% 96.75% 96.97% 
3 96.06% 96.40% 96.66% 
4 96.00% 96.36% 96.64% 
5 96.07% 96.44% 96.72% 
6 95.96% 96.30% 96.57% 
7 96.05% 96.39% 96.66% 
8 96.07% 96.38% 96.64% 
9 96.35% 96.62% 96.83% 

10 96.51% 96.70% 96.87% 
11 96.37% 96.49% 96.66% 
12 96.22% 96.53% 96.78% 
13 96-01% '96.30% 96.55% 
14 96.18% 96.48% 96.72% 
15 96.33% 96.62% 96.86% 
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Table 4.5 

The expected optimal contribution rate under CIPI (1,0.2) 
for different levels of 0 at 6= 20 % in the case 

of (0.1,0,0.9) when Bt=0.3 

t 8=5% A=10% A=15% 
1 21.91% 17.98% 14.34% 
2 25.17% 21.00% 17.16% 
3 25.54% 21.32% 17.45% 
4 25.59% 21.35% 17.47% 
5 25.53% 21.28% 17.40% 
6 25.62% 21.41% 17.53% 
7 25.54% 21.32% 17.45% 
8 25.52% 21.33% 17.47% 
9 25.27% 21.11% 17.29% 

10 25.12% 21.03% 17.26% 
11 25.25% 21.23% 17.45% 
12 

, 
25.39% 21.19% 17.34% 

13 25.58% 21.41% 17.56% 
14 25.41% 21.25% 17.44% 
15 25.08% 21.26% 17.73% 

The other four scenarios (1,0.22), (1,0.18), (1.2,0.2) and (0.8,0.2) are examined in the 

same case (0.1,0,0.9), and we find that the results of E(Ft*) and E(Ct*) are similar to the 

ones shown above (full details of the results are available but not shown in order to avoid 

repetition). 

4.4.2 Effect of changing a 
The values of 0 =10% and Bt = 0.3 are used in our analysis in this subsection. This is 

applied for all the five different scenarios in order to calculate the expected optimal fund 

level and contribution rate in the stochastic models for both CIPI and RIPI. 

We consider the results of ß= 1%, 5%, 10%, 15% and 20% in order to allow for different 

levels of volatility. We anticipate that the expected values of the fund level and the 

contribution rate will be affected, as we increase the level of volatility of the rate of 

return (representing changes in the financial markets). Therefore, the effect on the 

expected optimal fund level and contribution rate according to the level of 6 will be 

explored for the main five scenarios applied under CIPI below. 
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(a) First scenario: FTt =1 and CTt 0.2 

For the optimal fund level in (1,0.2), we find that E(F1*) tends to decrease over the 

control period for the different combination of parameters. For example, in the case of 

(0.1,0,0.9), it is almost around its target and reaches 99.99% at the end of the control 

period when ß= 1%. When a moves up to 5%, E(FT*) goes down to 99.8%. As the level 

of volatility increases to 10%, 15% and 20%, E(FT) continues to move down to reach 

99.1%, 98.1% and 96.6% respectively as shown in Table 4.6. 

Table 4.6 

The expected optimal fund level under CIPI (1,0.2) for different 
levels of volatility in the case of (0.1,0,0.9) 

t a =0.01 Q =0.05 a =0.1 Q =0.15 v=0.2 
1 100.00% 100.00% 100.00% 100.00% 100.00% 
2 100.00% 99.80% 99.17% 98.14% 96.74% 
3 99.99% 99.76% 99.06% 97.93% 96.39% 
4 99.99% 99.77% 99.06% 97.91% 96.36% 
5 100.00% 99.79% 99.10% 97.97% 96.43% 
6 100.00% 99.76% 99.03% 97.86% 96.29% 
7 100.00% 99.77% 99.07% 97.93% 96.39% 
8 100.00% 99.77% 99.06% 97.92% 96.37% 
9 100.00% 99.80% 99.15% 98.08% 96.62% 
10 99.99% 99.78% 99.15% 98.12% 96.70% 
11 99.99% 99.75% 99.05% 97.95% 96.49% 
12 100.00% 99.80% 99.13% 98.03% 96.53% 
13 99.99% 99.74% 99.01% 97.84% 96.29% 
14 99.99% 99.77% 99.09% 97.98% 96.48% 
15 99.99% 99.78% 99.13% 98.07% 96.62% 

A similar conclusion is reached when we consider the other combinations of parameters 

(y, a, ß), i. e. in the case of (0.3,0,0.7) at a is equal to 1%, E(FT*) reaches 99.99% and 

gradually goes down to 96% at 6 is equal to 20%. For (0.5,0,0.5), E(FT*) decreases 

from 99.8% to 95.3% with increasing the level of volatility from 1% to 20% where as in 

the case of (0.7,0,0.3) it is equal to 99.6% and moves down to 94.1 %. 
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Finally, in the case of (0.9,0,0.1), E(FT*) is equal to 98.7% and gradually decreases to 

98.1%, 96.3%, 93.5% and 89.8% with 6= 1%, 5%, 10%, 15% and 20%. Full details are 
2 shown in Figures 4.1- 4.4. 

igure 4.1 

The expected optimal fund level under CIPI (1,0.2) 
for different levels of volatility in the case of 

(0.3,0,0.7) 
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Figure 4.2 

The expected optimal fund level under CIPI (1,0.2)for 
different levels of volatility in the case of 

(0.5,0,0.5) 
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2 Here, it is important to mention that the scale of the y-axis (representing E(F1*) and 

E(C, *)) varies from one graph to another. Also, we allow the horizontal axis t to cross at a 

different value from 0 to show the small differences in the five trends of the expected 

fund level and contribution rate. 
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ýigure 4.3 

The expected optimal fund level under CIPI (1,0.2) 
for different levels of volatility in the case of 

(0.7,0,0.3) 
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For the optimal contribution rate, we note that E(Ct*) tends to increase slightly over the 

control period responding to the decrease in the fund level. In the case of (0.1,0,0.9), it 

is around 20.9% when Q is equal to 1%. Increasing 6 gradually to 20% leads this value to 

move slightly away from the contribution target as shown in Table 4.7 and Figure 4.5. 

The expected optimal fund level under CIPI 
(1,0.2) for different levels of volatility in the 

case of (0.9,0,0.1) 
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'reble 4.7 

The expected optimal contribution rate under CIPI (1,0.2) 
for different levels of volatility in the case of (0.1,0,0.9) 

t a=0.01 a=0.05 a=0.1 a=0.15 a=0.2 
1 20.91% 20.72% 20.16% 19.24% 17.98% 

2 20.90% 20.90% 20.92% 20.95% 20.99% 
3 20.91% 20.94% 21.02% 21.15% 21.31% 
4 20.91% 20.93% 21.02% 21.16% 21.35% 
5 20.90% 20.91% 20.98% 21.11% 21.28% 
6 20.90% 20.94% 21.05% 21.21% 21.40% 
7 20.90% 20.93% 21.01% 21.15% 21.32% 
8 20.90% 20.93% 21.02% 21.16% 21.33% 
9 20.90% 20.91% 20.94% 21.01% 21.10% 
10 20.91% 20.92% 20.94% 20.97% 21.03% 
11 20.91% 20.95% 21.03% 21.13% 21.23% 
12 20.90% 20.90% 20.96% 21.06% 21.19% 
13 20.91 % 20.96% 21.07% 21.23% Al % 
14 20.90% 20.92% 20.99% 21.10% 21.25% 
15 20.83% 20.86% 20.94% 21.07% 21.26% 

Figure 4.5 

The expected optimal contribution rate under CIPI 
(1,02) for different levels of volatility in the case of 

(0.1,0,0.9) 
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The opposite case of (0.9,0,0.1) also indicates the increasing trend of the optimal 

contribution rate; however, it is closer to the target of 20% due to our giving more 

importance to the contribution rate risk weighting factor y, i. e. the E(CT*) increases from 

20.3% at 6= I% to 21 % at ß= 20%. The results are shown in Table 4.8 and Figure 4.6. 
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Table 4.8 

The expected optimal contribution rate under CIPI (1,0.2) 
for different levels of volatility in the case of (0.9,0,0.1) 

t a= 0.01 a=0.05 a=0.1 a=0.15 a=0.2 
1 21.08% 20.86% 20.19% 19.10% 17.62% 
2 21.00% 20.87% 20.48% 19.85% 19.02% 

3 20.95% 20.89% 20.70% 20.39% 20.00% 

41 20.91% 20.90% 20.85% 20.77% 20.68% 

5 20.88% 20.89% 20.93% 21.00% 21.10% 

6 20.86% 20.90% 21.01% 21.20% 21.45% 
7 20.84% 20.89% 21.05% 21.31% 21.65% 

8 120.81% 20.88% 21.08% 21.41% 21.82% 

9 20.79% 20.85% 21.07% 21.42% 21.87% 
10 20.76% 20.83% 21.05% 21.42% 21.89% 

11 120.71% 20.80% 21.06% 21.46% 21.98% 
12 20.65% 20.73% 21.00% 21.42% 21.97% 
13 20.56% 20.65% 20.93% 21.36% 21.92% 
14 20.43% 20.51% 20.75% 21.13% 21.61% 

15 20.25% 20.30% 20.45% 20.69% 21.00% 

Figure 4.6 

The expected optimal contribution rate under CIPI 
(1,0.2) for different levels of volatility in the case of 

(0.9,0,0.1) 
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The effect of changing ß for different contribution and fund targets is explained below. 

(b) Second scenario: FTt =1 and CTt = 0.22 

Under the second scenario where FTt is equal to 1 and CTt is equal to 0.22, we note that for 

the case of (0.1,0,0.9), with a is equal to 1 %, the value of E(F, *) is around its target during 

the control period. This value decreases gradually until it reaches 96.62% when ß= 20%. 
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In the case of (0.9,0,0.1), E(Ft*) keeps close to the target with the lower levels of volatility, 

e. g. a= 1% and 5%. It decreases over the control period to be equal to 99.06%, 96.19%, 

92.43% as we increase ß to 10%, 15% and 20% respectively. Generally, E(Ft*) follows the 

same behaviour in the other cases. In order to illustrate the effect of increasing the value of ß 

on the expected optimal fund level, Table 4.9 shows the trend of the expected optimal fund 

level for different levels of a in the case of (0.9,0,0.1). 

Under the same scenario (1,0.22) and with Cr is equal to 1%, E(Ct*) is around 21% in both 

cases (0.1,0,0.9) and (0.9,0,0.1). But there is a slight increase (towards the target) in the 

latter case where more importance is given to the weighting factor of the contribution rate 

risk. Allowing Q to increase to 20% results in moving these percentages slightly away from 

the target. Table 4.10 and Figure 4.7 show the results of the expected optimal contribution 

rate for different levels of ß in the case of (0.9,0,0.1). 

Table 4.9 
The expected optimal fund level under CIPI (1,0.22) for 
different levels of volatility in the case of (0.9,0,0.1) 

t Q=0.01 a=0.05 a=0.1 a=0.15 a=0.2 
1 100.00% 100.00% 100.00% 100.00% 100.00% 
2 99.75% 99.52% 98.77% 97.57% 95.93% 
3 99.58% 99.16% 97.89% 95.84% 93.10% 
4 99.46% 98.93% 97.30% 94.67% 91.18% 
5 99.40% 98.81% 96.96% 93.98% 90.02% 
6 99.36% 98.70% 96.66% 93.40% 89.11% 
7 99.36% 98.67% 96.54% 93.14% 88.66% 
8 99.39% 98.68% 96.48% 92.98% 88.40% 
9 99.46% 98.76% 96.58% 93.10% 88.54% 
10 99.55% 98.86% 96.74% 93.35% 88.87% 
11 99.71% 99.00% 96.88% 93.52% 89.12% 
12 99.95% 99.29% 97.24% 93.98% 89.70% 
13 100.28% 99.62% 97-61% 94.44% 90.31% 
14 100.77% 100.14% 98.23% 95.24% 91.32% 
15 101.48% 100.88% 99.06% 96.19% 92.43% 
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Table 4.10 

The expected optimal contribution rate under CIPI (1,0.22) 
for different levels of volatility in case of (0.9,0,0.1) 

t 6=0.01 a=0.05 a=0.1 a=0.15 a=0.2 
1 20.67% 20.46% 19.80% 18.71% 17.24% 
2 20.77% 20.64% 20.26% 19.63% 18.80% 

3 20.84% 20.78% 20.59% 20.29% 19.90% 

4 20.89% 20.87% 20.82% 20.75% 20.66% 
5 20.93% 20.94% 20.97% 21.04% 21.14% 
6 20.96% 20.99% 21.11% 21.29% 21.54% 
7 20.99% 21.04% 21.20% 21.45% 21.79% 
8 21.01% 21.08% 21.28% 21.59% 22.00% 
9 21.05% 21.11% 21.32% 21.66% 22.10% 
10 21.09% 21.16% 21.38% 21.73% 22.20% 
11 21.14% 21.23% 21.48% 21.88% 22.38% 
12 21.22% 21.30% 21.56% 21.97% 22.51% 
13 21.32% 21.42% 21.69% 22.11% 22.66% 
14 21.47% 21.55% 21.79% 22.16% 22.63% 
15 21.69% 21.74% 21.89% 22.12% 22.43% 

Figure 4.7 

The expected optimal contribution rate under CIPI 
(1,0.22) for different levels of volatility Inthe case of 

(0.9,0,0.1) 
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(c) Third scenario: FTt =1 and CTt = 0.18 

Keeping FTt+1 is equal to 1 and decreasing the contribution target CT, to 0.18 (instead of 

0.2) result in decreasing the values of E(Ft*) over the control period for different levels of 

ß. So that, in the case of (0.1,0,0.9), E(FT) reaches 99.99% at the end of the control 

period when ß= I% and 96.6% when ß= 20%. For the other extreme case (0.9,0,0.1), it 
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reaches 95.95% at the lowest level of a and decreases gradually to 95.4%, 93.6%, 90.8% 

and 87.1% for a= 5%, 10%, 15% and 20% respectively. Table 4.11 indicates these 

changes in the case of (0.9,0,0.1). 

Consequently, the expected optimal contribution rate is affected by decreasing CTt to 

0.18 at different levels of cr. Taking into consideration the same cases as above: in 

(0.1,0,0.9), E(CT*) reaches 20.7% when ß= to 1% and increases to 21.1% when 

ß= 20%. However, in the case of (0.9,0,0.1), E(CT*) reaches 18.8%, indicating that the 

trend of E(Ct*) is getting close to the contribution target under the lowest level of 

volatility. Then, E(CT*) increases gradually to move further away from the target and 

reaches 19.6% when a= 20% as shown in Table 4.12. 

'able 4.11 

The expected optimal fund level under CIPI (1,0.18) for 
different levels of volatility in case of (0.9,0,0.1) 

t ß=0.01 a=0.05 a=0.1 a=0.15 a=0.2 
1 100.00% 100.00% 100.00% 100.00% 100.00% 
2 100.63% 100.39% 99.64% 98.42% 96.76% 
3 101.05% 100.63% 99.34% 97.26% 94.47% 
4 101.33% 100.79% 99.13% 96.46% 92.90% 
5 101.50% 100.90% 99.02% 95.99% 91.95% 
6 101.58% 100-91% 98.83% 95.51% 91.14% 
7 101.59% 100.89% 98.72% 95.25% 90.70% 
8 101.51% 100.79% 98.56% 95.00% 90.35% 
9 101.35% 100.64% 98.44% 94.92% 90.29% 
10 101.07% 100.37% 98.23% 94.81% 90.29% 
11 100.65% 99.94% 97.81% 94.43% 90.01% 
12 100.03% 99.38% 97.33% 94.08% 89.80% 
13 99.13% 98.47% 96.47% 93.33% 89.24% 
14 97.82% 97.20% 95.32% 92.37% 88.52% 
15 95.94% 95.35% 93.57% 90.76% 87.08% 
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'rable 4.12 

The expected optimal contribution rate under CIPI (1,0.18) 
For different levels of volatility in the case of (0.9,0,0.1) 

t a =0.01 a =0.05 a =0.1 a =0.15 a =0.2 
1 21.48% 21.26% 20.59% 19.49% 18.00% 

2 21.23% 21.10% 20.71% 20.07% 19.23% 

3 21.06% 21.00% 20.81% 20.50% 20.10% 
4 20.94% 20.92% 20.87% 20.79% 20.69% 
5 20.84% 20.85% 20.88% 20.95% 21.05% 

6 20.76% 20.80% 20.92% 21.11% 21.36% 
7 20.69% 20.74% 20.91% 21.17% 21.52% 
8 20.62% 20.68% 20.89% 21.22% 21.64% 
9 20.53% 20.60% 20.82% 21.18% 21.64% 
10 20.42% 20.50% 20.73% 21.10% 21.59% 
11 20.28% 20.37% 20.64% 21.05% 21.58% 
12 20.08% 20.17% 20.44% 20.87% 21.43% 
13 19.80% 19.89% 20.18% 20.61% 21.18% 
14 19.39% 19.48% 19.72% 20.09% 20.58% 

15 18.82% 18.87% 19.02% 19.26% 19.57% 

(d) Fourth scenario: FT1=1.2 and CT1= 0.2 and fifth scenario: FTt = 0.8 and 

CTt = 0.2 

Here, we consider the other two scenarios, in which the contribution target is fixed at 

20% while the fund target changes to be 120% and 80% respectively. The expected 

optimal fund level under both scenarios (1.2,0.2) and (0.8,0.2) tends to move further 

away from the target to different levels depending on a. This is indicated in the following 

examples: 

When ß is equal to 1% and in the case of (0.5,0,0.5), E(FT*) is around its 

target value 120% at the end of the control period. The E(FT*) takes lower 

values as we increase a, reaching 1.15 when a= 20%. In comparison with the 

fifth scenario (0.8,0.2), E(FT*) = 79.6% at the lowest level of 6 and reduces 

gradually to be 75.6% with the highest level of a. Figures 4.8 and 4.9 

illustrate these results. 
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Figure 4.8 
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" Regarding the expected optimal contribution rates under these two scenarios 

in the same case (0.5,0,0.5), we find that in the former scenario (1.2,0.2) 

when a= 1%, E(CT*) is equal to 19.4%. It increases gradually with increasing 

the level of volatility to reach 20.5% when a= 20%. In the latter scenario 

(0.8,0.2), it is equal to 21.7% and moves up to 22.5% at the same levels of ß, 

as shown in Figures 4.10 and 4.11. 
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'figure 4.10 

The expected optimal contribution rate under CIPI 
(1.2,0.2) for different levels of volatility in the case of 

(0.5,0,0.5) 
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Conclusion 

The above results under different scenarios imply a general decrease in the expected 

optimal fund level, and simultaneously, an increase in the expected optimal contribution 

rate. This is due to the dynamic relation between the optimal fund level and the optimal 

contribution rate. Changing the levels of volatility affects the expected values of both, 

resulting in their keeping close to their targets at the lowest level of a, and their moving 

further away from their targets as the level of a is increased up to 20%. 
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Although the general trends of the expected optimal fund level and contribution rate have 

the same patterns in the different cases, we note that the values of both change according 

to changes in the contribution and fund targets under the different scenarios. Fixing the 

fund target at 1 and changing the contribution target from 20% to 22% and 18% lead to 

similar results for the expected fund levels at different levels of volatility when more 

importance is given to the solvency weighting risk factor. On the other hand, giving more 

importance to the contribution rate risk leads to our obtaining different levels of the 

expected fund at different levels of volatility. 

Further, the expected optimal fund level increases gradually with increasing the 

contribution target from 18% to 20% and 22% respectively under the three scenarios. 

Simultaneously, the expected optimal contribution rate is affected by changing the 

contribution target and mainly with giving more importance to the contribution rate 

weighting risk factor. This results in having lower values of the contribution rate when 

the contribution target is decreased from 22% to 20% and 18% respectively. 

Clearly, the levels of E(Ft*) are different when the fund target changes up to 120% and 

down to 80% at different levels of volatility. The expected optimal contribution rate 

responds to these changes of the fund target, by having lower values under the fourth 

scenario (1.2,0.2) compared with those under the fifth scenario (0.8,0.2). These results 

are reasonable, since having a higher fund target means more income into the fund, and 

thus, lower contributions need to be paid-and vice-versa in the case of decreasing the 

level of the fund target. 

4.4.3 Effect of changing targets FTt and CTt 

In this subsection, both the fund target F r1 and contribution target CT1 change to higher 

and lower values, in order to explore the effect of these changes in the models. These 

changes in the targets are represented in the five scenarios mentioned in section 4.2. 

Thus, our analysis considers the effect of these five different scenarios on E(Ft*) and 

E(C1') when level of volatility is low 6= 5% and when it is equal to 20%. Here, we note 
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that we can interpret FT, as representing the actuarial liability ALT, and the contribution 

target CT, as representing the normal cost NCB. 

(a) Level of volatility ß= 5% 

Applying the default scenario (1,0.2), the results imply that the expected optimal fund 

level still tends to decrease slightly over the control period as concluded earlier. For 

example; in the case of (0.3,0,0.7), we find that E(Ft*) is around its target value 100%. 

The same trends are obtained under both scenarios (1,0.22) and (1,0.18) where the fund 

target is equal to I with ß equal to 5%. Furthermore, the same feature is applied in the 

same case under the fourth scenario (1.2,0.2) and (0.8,0.2). This can be seen in Figure 

4.12 

Figure 4.12 
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In the other extreme case of (0.7,0,0.3) - where there is less importance given to the 

solvency risk - we find that E(FT) reaches 99.2% under (1,0.2) while it is equal to 100% 

under the second scenario (1,0.22) and 98.4% when FT, =1 and CTt = 0.18. Although 

the fund targets are the same in the three scenarios, these changes in the optimal fund 

level can be traced back to our giving more importance to the contribution rate weighting 

risk factor. For the fourth scenario (1.2,0.2), E(FT) is approximately around its target 

120%. Finally, it reduces to 78.6% under the fifth scenario (0.8,0.2). These results are 

shown in Figure 4.13. 
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figure 4.13 

The expected optimal fund level under CIPI for 
different scenarios in the case of (0.7,0,0.3) when 

sigma = 5% 
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Here, it is important to mention that there is a slight decrease in the expected optimal 
fund levels as we move from Figure 4.12 to 4.13 arising from the reduced weighting 
being given to the solvency risk. 

The expected optimal contribution rate at the final time T, for (1,0.2) in the same case of 
(0.3,0,0.7), is equal to 20.7%. It increases slightly to 21.2% and decreases to 20.3% 

under (1,0.22) and (1,0.18) respectively. These small differences are due to the changes 
in the contribution target. Under the fourth scenario (1.2,0.2), E(CT*) reaches 19.4% and 
22.1% in the last scenario (0.8,0.2). Although the contribution target is the same under 

the fourth and fifth scenarios, this difference in the contribution rates can be referred to 

the extra weight being given to the solvency risk in the case of (0.3,0,0.7). Therefore, 

the value of expected optimal contribution rate decreases when we move to a higher level 

of the fund target and increases when FT, is equal to 80%. Figure 4.14 shows these 

results. 

103 

13579 11 13 15 



Figure 4.14 

The expected optimal contribution rate under 
CIPI for different scenarios in the case of 
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For the same five scenarios in the case of (0.7,0,0.3), the value of E(CT*) is equal to 

20.5%, 21.5%, 19.5%, 19.6% and finally 21.4%. For the first three values of E(CT*), we 

note that the expected contribution rate increases with increasing the contribution target 

to 0.22 while it decreases with CTt = 0.18. It is also noted that the last two values (19.6% 

and 21.4%) are close to each other compared with the corresponding values (19.4% and 

22.1%) in the last case (0.3,0,0.7). This is due to our giving more importance to the 

contribution rate weighting risk factor alongside with the equality of the values of the 

contribution target in the last two scenarios. This can be observed more clearly in the case 

of (0.9,0,0.1) - where 0 has the highest value of 0.9 - which results in the almost equal 

values of E(CT*) equal to 21% in the fourth scenario and 21.6% in the fifth scenario. 

Figure 4.15 shows the results of applying the case of (0.7,0,0.3). 

Although E(Ct*) trends look similar in Figures 4.14 and 4.15, there is a slight increase 

observed in the contribution rates, for the case (0.7,0,0.3), due to increasing the 

weighting risk factor of the contribution rate risk. 
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Figure 4.15 
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(b) Level of volatility a= 20% 

Increasing the level of a to 20% will help us to understand the behaviour of the expected 

optimal fund level and contribution rate, when their targets are changed in a more volatile 

financial environment. In the following analysis, we will use the same cases mentioned 

when a= 5%. For the cases of (0.3,0,0.7) and (0.7,0,0.3), we can summarize the results 

of E(FT*) under the five scenarios in Table 4.13. 

'Fable 4.13 
The value of E(FT*) under the different five scenarios 

for the cases (0.3,0,0.7) and (0.7,0,0.3) 
% 

Cases 1,0.2) 1 1,0.22) 1 1,0.18) 1 1.2,0.2) 1 0.8,0.2) 1 

0.3,0,0.7 96.0 96.1 95.9 115.3 76.6 
0.7,0,0.3 94.1 94.9 93.3 113.7 74.5 

From Table 4.13, it is noted that the expected fund levels are almost the same in the first 

three scenarios in both cases, this is due to our giving more importance to the solvency 

weighting risk factor and the equality of the fund target. However, under the fourth and 

fifth scenarios, E(FT*) has different values because of the different values of the fund 

targets. In addition, the effect of changing the weighting risk factors of 'y and ß 

interchangeably can be seen on the levels of the expected funds in Figures 4.16 and 4.17, 

as they move further away from the target when ß changes from 0.7 to 0.3. 
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Figure 4.16 
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Here, we note that increasing the level of volatility results in the values of the expected 

optimal fund level moving away from the targets markedly compared with those when 

6=5%. 

In the case of (0.3,0,0.7) at the higher level of volatility, the results are: E(CT*) = 21.5%, 

21.9% and 21% under the three first scenarios, while it is equal to 20.2% and 22.7% in 

the fourth and the fifth scenarios respectively. On the other hand, applying the case of 

(0.7,0,0.3) leads these values to be 21.4%, 22.4%, 20.3%, 20.7% and 22.1 %. 
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Here, we note that the values for E(CT*) in the latter case are closer to the contribution 

targets than the values of the former case. This is due to the higher value of P. The 

changes under the first three scenarios refer to the different contribution targets applied, 

which result in higher values of E(CT*) when CT, is increased to 0.22, and lower values 

when CTI is 18%. The values of the expected optimal contribution rate in the last two 

scenarios are considered close for the equality of the contribution target. Figures 4.18 and 

4.19 show the results for the cases of (0.3,0,0.7) and (0.7,0,0.3). 

Figure 4.18 
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Again, we note that the expected optimal contribution rates move further away from the 

targets compared with their corresponding values, as the level of volatility is increased 

from 5% to 20%. 

Conclusion 

The changes of the fund target and the contribution target clearly affect the values of the 

expected optimal fund level and contribution rate. In other words, the expected optimal 

fund levels move around their targets whether the target is equal to 80%, 100% or 120%. 

Similarly, moving the contribution target up to 22% leads the expected optimal 

contribution rate to increase around this target while moving it down to 18% results in 

having lower values of E(Ct*). 

Changing the contribution targets also affects the expected optimal levels of the fund, 

where we have higher values of E(F1*) with higher CTt and lower values of E(F1*) with 

lower CTS. On the other hand, changing the fund targets affects the expected contribution 

rate; moving the fund target up leads the expected optimal contribution rate to move 

down, while moving it down to 80% results in higher values for the optimal contribution 

rates. These changes are due to the dynamic relation between the fund level and the 

contribution rate. This dynamic relation is affected by changing the parameters of the 

weighting risk factors in the model as we will explain in section 4.4.5. 

4.4.4 Effect of changing the initial values of FO 

Here, we proceed in studying the effect of the fund target by considering the changes in 

the initial values of Fo, as we assume that Fo is a given value and it changes according to 

the chosen fund target. It takes the value of 1 in the first, second and third scenarios, 1.2 

in the fourth scenario and 0.8 in the fifth scenario. It is used to calculate E(C*o) by 

applying the optimal contribution rate formula which is obtained by solving the stochastic 

dynamic programming problem of CIPI, using equation 3.44: 

E(Cl )- 
(2y+a1)CT -(al+2dk, +, )(F, -B, )+(a+2ß1)FT+, -1(a2(t+1) 

2(y+al +dkt+l) 
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Thus, E(Co*) changes with the values that the initial fund can take according to the 

different fund targets under all scenarios. We examine the case of (0.1,0,0.9), as an 

example, in order to understand the effect of changing the initial fund on the value of 

E(Co*) as follows: 

When a= 5%, E(Co) has the same value which is equal to 20.9% under the first three 

scenarios (1,0.2), (1,0.22) and (1,0.18). Increasing a to 15% leads this value to decrease 

to 19.2% and then to 18% when a reaches 20%. Under the fourth and the fifth scenarios, 

E(Co*) changes due to the changes in the fund targets and consequently the value of FO as 

shown in Table 4.14. 

Table 4.14 
The values of E(Co*) under different scenarios for the 

case of (0.1,0,0.9) when a=5%, 15 % and 20 % 
%n 

(1,0. (1,0.2 (1,0.1 (1.2,0. (0.8,0.2) 

a= 5% 20.9 20.9 20.9 18.8 22.6 
a= 15% 19.2 19.2 19.2 17.1 21.4 
a =20% 18 18 18 15.6 20.4 

These results indicate the fact that the contribution rates have higher values when the 

fund level is lower than 100%. They decrease gradually with increasing the fund level 

until they reach the minimum values in the range tested when FF = 120%. 

Finally, the values of E(Co*) are used in the fund growth formula to calculate the fund at 

t=1 as follows: 

E(FiIFo) = E(es) " (Fo + E(CoIFo) - Bo) (4.2) 

Therefore, we can conclude that the values of E(Co*) are definitely affected by the values 

specified for given Fo, so that, E(Co*) has the same value when FO =1 in the three first 

scenarios, while it decreases when FO = 1.2 and moves up when FO = 0.8. Further, its 

values are also affected by level of volatility applied. 
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4.4.5 Effect of changing the weighting factors of the contribution rate risk and the 

solvency risk; y and ß (with a= 0) 

The contribution rate risk and the solvency risk are the two main risks involved in our 

models as previously mentioned in subsection 3.4.5. Thus, it is important to examine the 

effect of changing the two main weighting risk factors y and ß associated with these risks 

respectively. In this subsection, we consider the effect on both the expected optimal fund 

level and contribution rate over the control period, regarding the cases where the 

weighting risk factor of the middle term a is equal to 0, in order to understand precisely 

the behaviour of the dynamic models with changing these main risks. 

Under each scenario there are five different cases. In each case, we allow for the 

weighting risk factor of the contribution rate If to increase and the parameter of the 

solvency risk to decrease incrementally whereas a remains equal to 0. These cases appear 
in the order (y, a, ß) and they are: 

The first case is: (0.1,0,0.9); 

the second case is: (0.3,0,0.7); 

the third case is (0.5,0,0.5); 

the fourth case is (0.7,0,0.3); 

the fifth case is (0.9,0,0.1). 

(a) First scenario: FTt = 1, CTt = 0.2 

Under our default scenario and at a low level of volatility when ß= 5%, the expected 

optimal fund level decreases slightly over the control period to reach 99.8% in the case of 

(0.1,0,0.9). Considering the other four cases, E(FF*) decreases gradually with increasing 

the weighting risk factor for the contribution rate. Further, E(Ft*) decreases more at a 

higher level of volatility together with an increased weighting risk factor for the 

contribution rate, e. g. for the above case(0.1,0,0.9), E(FT*) reaches 96.6% when 

0' = 20%. 

Table 4.15 shows that (for (Y = 5%) increasing the weighting risk factor of the 

contribution rate leads the expected optimal fund level to decrease gradually, it reaches 

the lowest level at the value of 98.1% at the end of the control period when y=0.9. 
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Further, this value for y=0.9 declines to 89.8% when a is increased to 20% (details not 

shown). 
'able 4.15 

The expected optimal fund level under CIPI (1,0.2) for 

different combinations of y and (3 when a= 5% 

t 0.1,0,0.9 0.3,0,0.7 0.5,0,0.5 0.7,0 0.3 0.9,0,0.1 
1 100.00% 100.00% 100.00% 100.00% 100.00% 

2 99.80% 99.82% 99.84% 99.87% 99.96% 

3 99.76% 99.75% 99.75% 99.78% 99.90% 

4 99.77% 99.74% 99.73% 99.74% 99.86% 

5 99.79% 99.77% 99.75% 99.75% 99.85% 
6 99.76% 99.74% 99.72% 99.72% 99.81% 
7 99.77% 99.75% 99.73% 99.72% 99.78% 
8 99.77% 99.75% 99.73% 99.72% 99.74% 
9 99.80% 99.77% 99.75% 99.73% 99.70% 
10 99.78% 99.76% 99.75% 99.72% 99.62% 
11 99.75% 99.73% 99.71% 99.68% 99.47% 
12 99.80% 99.77% 99.74% 99.68% 99.33% 

13 99.74% 99.72% 99.68% 99.58% 99.04% 
14 99.77% 99.73% 99.66% 99.47% 98.67% 
15 99.78% 99.70% 99.56% 99.24% 98.12% 

On the other hand, the expected optimal contribution rate becomes closer to the 

contribution target with our giving less importance to the weighting risk factor of the 

solvency risk. We note that the expected optimal contribution rate is around 21% but is 

moving closer to the target with increasing y as shown in Table 4.16. 

When a is increased to 20%, the expected optimal contribution rate becomes more 

volatile. It starts from lower levels around 18% and tends to increase slightly and move 

away from its target due to the decreasing trend of the optimal fund level. Nevertheless, it 

tends to be closer to the contribution target with increasing the value of y at the end of the 

control period as can be seen in Table 4.17. 
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Table 4.16 

The expected optimal contribution rate under CIPI (1,0.2) 

for different combinations of y and ß when a= 5% 

t 0.1,0,0.9 (0.3,0,0. 0.5,0 0.5) (0.7,0,0. (0.9,0,0. 
1 20.72% 20.74% 20.76% 20.78% 20.86% 
2 20.90% 20.88% 20.86% 20.85% 20.87% 
3 20.94% 20.93% 20.92% 20.90% 20.89% 
4 20.93% 20.93% 20.93% 20.92% 20.90% 
5 20.91% 20.92% 20.92% 20.92% 20.89% 
6 20.94% 20.94% 20.94% 20.93% 20.90% 
7 20.93% 20.93% 20.93% 20.93% 20.89% 
8 20.93% 20.93% 20.93% 20.93% 20.88% 
9 20.91% 20.91% 20.92% 20.91% 20.85% 
10 20.92% 20.92% 20.92% 20.91% 20.83% 
11 20.95% 20.94% 20.94% 20.92% 20.80% 
12 20.90% 20.91% 20.90% 20.87% 20.73% 
13 20.96% 20.94% 20.91% 20.85% 20.65% 
14 20.92% 20.89% 20.84% 20.74% 20.51% 
15 20.86% 20.74% 20.63% 20.50% 20.30% 

Table 4.17 

The expected optimal contribution rate under CIPI (1,0.2) 
for different combinations of y and ß when a= 20% 

t 0.1 0,0.9) (0.3,0,0.7) 0.5,0,0.5 (0.7,0,0.3) (0.9,0,0.1) 
1 17.98% 17.94% 17.89% 17.82% 17.62% 
2 20.99% 20.57% 20.16% 19.71% 19.02% 
3 21.31'/>o 21.22% 21.02% 20.68% 20.00% 
4 21.35% 21.37% 21.33% 21.18% 20.68% 
5 21.28% 21.34% 21.38% 21.36% 21.10% 
6 21.40% 21.45% 21.50% 21.54% 21.45% 
7 21.32% 21.39% 21.47% 21.57% 21.65% 
8 21.33% 21.39% 21.48% 21.60% 21.82% 
9 21.10% 21.20% 21.32% 21.51% 21.87% 
10 21.03% 21.11% 21.23% 21.44% 21.89% 
11 21.23% 21.27% 21.36% 21.54% 21.98% 
12 21.19% 21.25% 21.36% 21.58% 21.97% 
13 21.41% 21.45% 21.56% 21.75% 21.92% 
1 21.25% 21.41% 21.58% 21.73% 21.61% 
15 21.26% 21.46% 21.49% 21.37% 21.00% 
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(b) Second scenario: FTt = 1, CTt = 0.22 

Under the second scenario where the fund target is similar to the first one and the 

contribution target is increased to 22%, when a= 5%, we note that the trends of expected 

optimal fund level in the five cases remain close to the target with a very small tendency 

to decrease, even when more importance is given to the weighting risk factor of the 

contribution target. In fact, E(Ft*) tends to increase towards the target by the end of the 

control period as shown in Figure 4.20. 

Over the control period, the five trends of expected optimal contribution rate are close to 

20%. Then, they become closer to the target by the end of the control period particularly 

in the last three years as shown in Figure 4.21. This is more obvious as we increase the 

value of y where the expected optimal contribution rate tends to get closer to 22%. 

When the level of volatility is increased to 20%, we find that the trends of the expected 

optimal fund level decrease more over time. They move away from the target but still 

with higher values obtained with comparison to the ones in the first scenario. This is due 

to the higher level of CTS. 

Figure 4.20 

The expected optimal fund level under CIPI 
(1,0.22) for different cases when sigma = 5% 
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When 6= 20%, the expected optimal contribution rate tends to increase to be around 

21 % over time to respond to the decreasing level of the fund, and they become close to 

113 



the target 22% at the end of the control period. Full results for 6= 20% are available but 

are not shown. 

Figure 4.21 

The expected optimal contribution rate under CIPI 
(1,0.22) for different cases when sigma = 5% 
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(c) Third scenario FTt = 1, CTS = 0.18 

In this scenario, the fund target is still the same where CTt is reduced to 18%. Thus, when 

a= 5%, the trends of expected optimal fund level for the five cases remain close to the 

target 100% over time, with a tendency to decrease by the end of the control period. This 

decrease is more obvious in the last two cases (0.7,0,0.3) and (0.9,0,0.1), where more 

importance is given to the weighting risk factor of the contribution rate as can be seen in 

Figure 4.22. The opposite behaviour of E(F*1) (represented in the tendency to decrease 

over time) compared with the previous scenario (1,0.22) arises from the reduction in the 

value of contribution target to 18% from 22%. Figures 4.20 and 4.22 indicate the 

difference in behaviour of the expected optimal fund level in the two scenarios (1,0.22) 

and (1,0.18). 
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Figure 4.22 

The expected optimal fund level under CIPI 
(1,0.18) for different cases when sigma = 5% 
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In turn, we consider the five trends of E(C1*) when a= 5%, where we find that they are 

around 21% until year 13 when they tend to decrease towards 18%. When y is increased 

to 0.9, the expected optimal contribution rate is forced to move down to be closer to the 

target value of 18%. Figures 4.21 and 4.23 show the differences in the levels of E(C, *) 

between the second and third scenarios. 

Figure 4.23 

The expected optimal contribution rate under aPl 
(1,0.18) for different cases when sigma = 5% 
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Increasing the level of volatility to 20% leads to similar results (as pointed out in 

previous subsections), except that both the expected optimal fund level and the 

contribution rate move further away from the target compared to the lower volatility case. 
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" Fourth scenario FTt = 1.2 and CTt = 0.2 

In this scenario, we increase the fund target to 120% with the contribution target fixed at 

the level of 20%. When a= 5%, we find that the trends of expected optimal fund level 

are around the target 120% with a tendency to increase at the end of the control period. 

This is because of the higher value of FTC. However, when y is increased to 0.7 and 0.9, 

E(Ft*) decreases slightly over time to respond to the lower values of P. 

Further, increasing the value of the fund target to 120% results in having lower levels of 

the expected optimal contribution rate. Thus, E(C1*) is around 19% for the different cases 

over the control period and increases gradually towards the target with decreasing the 

weighting risk factor of the solvency risk. 

Increasing the level of volatility leads to lower levels of the expected optimal fund level 

as they move further down from the target. On the other hand, the levels of the expected 

contribution rate increase gradually to reach a maximum of 21 %. These results assert that 

E(F1*) and E(Ct*) move further away from the target when a is increased to 20%. They 

are shown in Figures 4.24 and 4.26. 

9 Fifth scenario FTt = 0.8 and CTt = 0.2 

When a= 5%, keeping the contribution target at the same level along with reducing the 

fund target to 80% result in a slight decrease in E(Ft*) over the control period. This 

decreasing trend is more clear when the contribution rate weighting risk factor y is 

increased to 0.7 and 0.9, and also when a is increased to 20%. For example, when a= 

20%, the expected optimal fund levels move further down to reach a minimum level of 

69.1% in the case of (0.9,0,0.1) at the end of the control period. Figures 4.24 and 4.25 

show the expected optimal fund levels under (1.2,0.2) and (0.8,0.2) scenarios. 

A lower value of FT1 leads the trends of expected optimal contribution rate to increase to 

approximately 22.7% over time when ß= 5%. This responds to the lower levels of 

E(FF*). Nevertheless, as y increases, the levels of the expected optimal contribution rate 

move downwards in order to be closer to the target by the end of the control period. 
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As ß increases to 20%, the levels of the expected optimal contribution rate tend to 

increase more to be around 23%. After, they start to decrease to become closer to the 

contribution target at the end of the control period. Figures 4.26 and 4.27 show the 

differences between the trends of the expected optimal contribution rate over time in the 

fourth and fifth scenarios. 

Figure 4.24 
The espected optimal fund level under CIPI 
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sigma = 20X 
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Figure 4.26 
The espected optimal contribution rate 
under CIPI (1.2.0.2) For different cases 

when sigma = 20X 
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Figure 4.25 
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Figure 4.27 
The expected optimal contribution rate 
under CIPI (0.8.0.2) for different cases 

when sigma = 20X 
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Conclusion 

Both parameters y and ß affect the expected optimal fund level and the contribution rate. 

Therefore, decreasing the weighting risk factor of the solvency risk ß means giving more 

importance to the contribution rate risk. This results in moving E(F*t) away from its 

target. While increasing the value of y leads the expected optimal contribution rate to 

move towards its target. Small differences are observed among the cases with changing 
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the parameters y and P, so that, it was more reasonable to comment on the trends of E(Ft*) 

and E(Ct*) in the five cases simultaneously. 

Increasing the value of either CTt or FTt (in the second and fourth scenarios) keeps the 

expected fund levels close to its target with a tendency to increase by the end of the 

control period. Meanwhile, decreasing both targets in the third and fifth scenarios results 

in having the fund levels close to its target but with a tendency to decrease by the end of 

the control period. Under both scenarios, a higher value of ß keeps the level of the 

expected fund close to the target. 

For the expected optimal contribution rate, a higher contribution target and fund target 

along with higher levels of y lead E(Ct') to be close to the target with an increasing trend 

by the end of the control period. However, a decreasing trend is observed when the fund 

target and contribution target are decreased to 80% and 18% respectively. Generally, a 
lower level of y results in moving E(Ct*) away from the target. 

4.4.6 Effect of changing the weighting factors of the contribution rate risk and the 

solvency risk; y and ß (with a# 0) 

So far, the results have implied how the different values of the parameters considering the 

solvency risk and the contribution rate risk affect the expected optimal fund level and the 

contribution rate. These results are consistent with the models derived by Haberman and 

Sung (1994). 

Having different values of the weighting risk factor of the cross-product term deals with 

the effect of combining both the contribution rate risk and the solvency risk. This actually 

reflects the effect of the mutual interests of the employers and the employees on the 

expected optimal fund level and contribution rate. In this subsection, we explain this 

effect by assuming ascending values of the mixed term weighting risk parameter a, 

where it is equal to 0.2,0.4,0.6,0.8. These values are applied to the different scenarios 

and for all cases with different levels of volatility. The following analysis considers some 
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of these results as examples to describe the effect on both the expected fund level and the 

contribution rate. 

(a) First scenario FTt =1, CTt = 0.2 

Firstly, under the default scenario, we consider a comparison between the cases - 

mentioned in the previous subsection 4.4.5 - when a=0 and the corresponding cases 

when a00, in order to test the effect of the three weighting risk factors on E(Ft*) and 

E(Ct*). In Tables 4.18 and 4.19, we compare the expected optimal fund level and 

contribution rate for different cases when y and ß change with a specific non-zero value 

of a, i. e. a=0.2. 

Table 4.18 

The expected optimal fund level under CIPI (1,0.2) 

for different cases when a=0.2 and a= 5% 

t (0.1,0.2,0.9) (0.3,0.2,0.7) (0.5,0.2,0.5) (0.7,0.2,0.3) (0.9,0.2,0.1) 
1 100.00% 100.00% 100.00% 100.00% 100.00% 
2 99.74% 99.75% 99.75% 99.76% 99.75% 
3 99.67% 99.65% 99.62% 99.60% 99.53% 
4 99.67% 99.63% 99.58% 99.52% 99.38% 
5 99.69% 99.64% 99.59% 99.50% 99.28% 
6 99.66% 99.62% 99.56% 99.46% 99.16% 
7 99.68% 99.63% 99.56% 99.46% 99.09% 
8' 99.67% 99.63% 99.56% 99.45% 99.01% 
9 99.70% 99.65% 99.58% 99.46% 98.94% 
10 99.69% 99.64% 99.58% 99.45% 98.85% 
11 99.65% 99.61% 99.54% 99.40% 98.70% 
12 99.70% 99.65% 99.57% 99.41% 98.58% 
13 99.64% 99.60% 99.51% 99.31% 98.32% 
14 99.67% 99.61% 99.49% 99.22% 98.03% 
15 99.68% 99.58% J 99.41% 99.03% 97.63% 

Table 4.18 shows that changing y and ß gradually with keeping a=0.2 leads to similar 

results to the ones we get when a=0, i. e. decreasing the value of ß results in moving the 

expected fund level away from its target. For example: E(FT) reaches the minimum 

level = 97.6% when y=0.9. 
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Table 4.19 emphasizes that increasing the weighting risk factor of the contribution rate 

(y) leads the expected contribution rates to be closer to the target CTt over the control 

period. Similar results also occur when a is increased to 20%, but then the levels of E(Ft) 

and E(Ct*) depart from their targets compared to the ones when ß= 5%, as explained in 

the previous sections, i. e. the minimum level of E(Ft#) = 90.9% when y=0.9 while E(Ct*) 

levels increase to approximately 22%. 

Table 4.19 

The expected contribution rate under CIPI (1,0.2) 

for different cases when a=0.2 and a= 5% 

t (0.1,0.2,0.9) (0.3,0.2,0.7) 0.5,0.2,0.5 (0.7,0.2,0.3) (0.9,0.2,0.1) 
1 20.66% 20.67% 20.68% 20.68% 20.67% 
2 20.89% 20.86% 20.83% 20.80% 20.75% 
3 20.95% 20.93% 20.91% 20.88% 20.82% 
4 20.95% 20.95% 20.94% 20.92% 20.87% 
5 20.93% 20.93% 20.94% 20.93% 20.89% 

6 20.95% 20.96% 20.96% 20.95% 20.91% 
7 20.94% 20.95% 20.95% 20.95% 20.92% 
8 20.94% 20.95% 20.95% 20.96% 20.93% 
9 20.92% 20.93% 20.94% 20.94% 20.92% 
10 20.93% 20.94% 20.94% 20.94% 20.90% 
11 20.96% 20.96% 20.96% 20.95% 20.89% 
12 20.92% 20.93% 20.93% 20.91% 20.84% 
13 20.97% 20.96% 20.94% 20.89% 20.80% 
14 20.94% 20.92% 20.87% 20.81 % 20.71 % 

15 20.90% 120.81% 20.73% 20.64% 20.59% 

Secondly, we examine the effect of increasing the value of a on the first, third and fifth 

cases - which represent the two extreme cases and the middle one for the values of y and 

ß- in order to understand the effect of the weighting risk factor of the middle term. 

In the first case, where y is equal to 0.1 and 0 is equal to 0.9, we find that the expected 

optimal fund level decreases slightly with increasing the value of a from 0 to 0.8 when a 

is equal to 5% as shown in Figure 4.28. 
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Figure 4.28 
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Figure 4.28 shows that increasing the weighting risk factor of the middle term results in 

moving the expected optimal fund level further away from its target. In fact, this refers 

mathematically to rewarding the deviation from the target rather than penalizing it by 

considering the squared deviation from the target. 

For the expected optimal contribution rate and the same level of volatility, when ß=0.9, 

E(Ct*) increases over the control period and moves away from the target as a is increased. 

Here, a similar interpretation of rewarding the deviation from the contribution target 

through the cross-product term applies. The results are shown below in Figure 4.29. 

Figure 4.29 

The expcted optimal contribution rate under CIPI 
(1,0.2) for different values of alpha when 
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Increasing the level of volatility when 6 is equal to 20% leads to the same results with 

moving further away from the target. Therefore, the expected optimal fund level 

decreases to be around 96% instead of 99%. On the other hand, the expected contribution 

rate increases to be around 21.5% instead of 21% (when a is equal to 5%). 

In the case where y and ß are equal to 0.5, the expected optimal fund levels decrease 

more compared with the previous case due to the decreases in the weighting risk factor 

for the solvency risk ß as shown in Figure 4.30. 

Figure 4.30 

The expected optimal fund level under CIPI 
(1,0.2) for different values of alpha when 

sigma=5%, gamma = 0.5 and beta = 0.5 
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On the other hand, the expected optimal contribution rate increases slightly and moves 

closer to the target due to the increase in the weighting risk factor 7 to 0.5(in comparison 

with the case when y=0.1). These results are shown in Figure 4.31. 
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Figure 4.31 

The expected optimal contribution rate under 
CIPI (1,0.2) for different values of alpha at 
sigma = 5°/q gamma = 0.5 and beta = 0.5 
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As 6 is increased to 20%, the expected optimal fund level and contribution rate have the 

same trends but with greater departures from their targets. The effects due to increasing a 

are quite small. This can be seen from Figures 4.32 and 4.33. 

Figure 4.32 
The expected optimal fund level under CIPI 

(1.0.2) for different values of alpha when 
sigma = 20X. gamma = 0.5 and beta = 0.5 
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Figure 4.33 
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In the last case, we consider the case where y=0.9 and ß=0.1. When a= 5%, the 

expected optimal fund level decreases to the lowest level compared with the two previous 

cases as a increases to 0.8. For example, in this case (0.9,0.8,0.1), E(FT) is equal to 

95.1% whereas it is equal to 99.4% and 98.95% in the cases of (0.1,0.8,0.9) and 
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(0.5,0.8,0.5) respectively. This is consistent with the fact that giving more importance to 

the middle mixed term along with the weighting risk factor of the contribution rate result 

in a greater deviation from the target for the expected optimal fund level. 

However, the expected optimal contribution rate increases in response to the decrease of 

the expected optimal fund level and moves up further as we increase the weighting risk 

factor of the middle term. Figures 4.34 and 4.35 illustrate these features. 

When a higher level of volatility a= 20% is applied in the case of (0.9,0,0.1), E(Ft*) 

decreases over the control period to lower levels than obtained in the cases of (0.5,0,0.5) 

and (0.1,0,0.9) because of the increase in y. However, increasing the value of a has a 

different effect on the results of E(Ft*) and E(Ct*). Thus, E(F1`) starts to increase gradually 

when the value of a is increased. 

In trying to interpret this change in the trends especially when a=0.6 and 0.8, we have 

examined the distribution of E(FT) at the end of the control period. We find that 

increasing a leads to a wider dispersion of the simulated values of the expected fund. 

Moreover, the high values of both y and a help in more deviation of the calculated 

expected values of the fund. Thus, a positively skewed distribution of the expected fund 

levels at final T is obtained, with the mean of the simulated fund levels lies further to the 

right compared with the mean of E(FT) when a is small, hence, resulting generally in 

increasing the mean of the fund levels when a is high3. Figure 4.36 illustrate the results of 

E(Ft*) with increasing a when y=0.9 and 0=0.1. 

3Appendix 4C shows the histograms and the summary statistics of E(FT) in the cases of 

(0.9,0,0.1) and (0.9,0.8,0.1) 
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Figure 4.34 
The expected optimal fund level under CIPI 

(1.0.2) For different values of alpha when 
sigma = 5x. gamma = 0.9 and beta = 0.1 
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Figure 4.36 
The espected optimal fund level under CIPI 

(1.0.2) for different values of alpha when 
sigma = 20%. gamma = 0.9 and beta = 0.1 
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Figure 4.35 
The expected optimal contribution rate under 
CIPI (1.0.2) For different values of alpha when 
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Figure 4.37 
The expected optimal contribution rate under 
CIPI (1.0.2) for different values of alpha when 

sigma = 20X. gamma = 0.9 and beta = 0.1 
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Consequently, this affects the trends of the optimal contribution rate which increases in 

response to the decrease of the fund level, however, when a is increased to 0.6 and 0.8, 

the expected optimal contribution rate moves closer to the contribution target. Figure 4.37 

shows the results of the expected optimal contribution rate in the extreme case where 7 is 

equal to 0.9,0 is equal to 0.1 and a is increasing to 0.8. 

(b) Second scenario: FTt =1 and CTt = 0.22 

The same three cases - that were studied under the first scenario - will be used for the 
analysis under the second scenario. 
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When 6= 5%, in the first case where -y is equal to 0.1 and ß is equal to 0.9, we find that 

the expected optimal fund levels are around the target 100% over the control period. The 

differences among the cases are very small when a is increased. However, E(Ft*) tends to 

increase around the target when a is increased to 0.6 and 0.8. This is due to the higher 

value of the contribution target under the second scenario. Figure 4.38 shows the 

behaviour of E(Ft*) in the different cases from (0.1,0,0.9) to (0.1,0.8,0.9). Further, 

when CTt is increased to 0.22, E(Ft) increases to higher levels compared with the ones 

obtained under the first scenario when a is high. 

In the case where we give an equal weight to both risks, the expected optimal fund level 

increases and indicates a greater departure from the target as we increase the value of a, 

compared with the cases when ß=0.9. In addition, E(Ft*) moves further up and reaches 

the furthest departure from the target when ß is decreased to 0.1. Clearly, this deviation 

from the target is related to the decrease in the value of P. These results are shown in 

Figures 4.39 and 4.40. 

Figure 4.38 
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Figure 4.39 

The expected optimal fund level under CIPI 
(1,0.22) for different values of alpha awhen 
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Figure 4.40 

The expected optimal fund level under CIPI (1,0.22) 
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We now consider the effect on the expected optimal contribution rates, when the 

contribution target increases to 0.22 and a increases from 0 to 0.8. 

When a= 5%, y=0.1 and l=0.9, we find that the trends of E(Ct*) are around 21%. 

Generally the differences among the cases are small even when the value of a is 

increased to 0.8. Although E(C, *) increases over the control period to get close to the 

target 22% when the value of y is increased from 0.1 to 0.9, the trend of E(Ct*) tends to 

decrease over time and moves away from the target when a=0.6 and 0.8. This is due to 

the increasing trend of the expected optimal fund level. The behaviour of E(Ct*) 

emphasizes the fact that a higher value of a leads to a greater departure from the target as 

can be seen in Figures 4.41,4.42 and 4.43. 
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Figure 4.41 

The expected optimal contribution rate under 
CIPI (1,0.22) for different values of alpha when 

sigma = 5°/4 gamma=0.1 and beta=0.9 
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Figure 4.42 
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Figure 4.43 

The expected optimal contribution rate under CIPI 
(1,0.22) for different values of alpha when 

sigma = 5%, gamma=0.9 and beta=0.1 
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In the three cases: (0.1,0,0.9), (0.5,0,0.5) and (0.9,0,0.1), a higher level of volatility 

when a= 20 % leads E(Ft) to decrease more over the control period. However, we note 

that the levels of E(F1+) increase over time when a is increased from 0 to 0.8. Further, it 

goes above the target level in the case of (0.9,0.8,0.1), which indicates a greater 

departure from the target because of the high value given to CTt. Due to the increase of a, 

the values of E(Ft *) are further away from the target compared with the cases when 

a= 5%. Figures 4.44,4.45 and 4.46 show the expected optimal fund level in the three 

cases (0.1,0,0.9), (0.5,0,0.5) and (0.9,0,0.1) - when a is increased from 0 to 0.8 - 

respectively. 

For the optimal contribution rate, when a= 20%, the levels of expected optimal 

contribution rates are higher compared with the ones when a is equal to 5%. This is due 

to the lower levels of the expected fund obtained when a is equal to 20%. For the first 

case when y=0.1 and ß=0.9, Figure 4.47 shows that E(Ct*) is increased from 18%-19% 

to be around 21% with very small changes among the different cases as a is increased. 

Similarly, Figures 4.48 and 4.49 do not show large differences of the levels of E(Ct*) for 

different cases of a. However, the trends of E(Ct*) generally become closer to the target 

22% when y is increased to 0.9, apart from the case when a=0.8 which shows a 

downwards trend away from the target. 

The analysis of the effect of a on E(Ft) and E(Ct*), under the fourth scenario (1.2,0.2) 

when ß= 5% and 20%, reveals similar results for the cases of (0.1,0,0.9), (0.5,0,0.5) 

and (0.9,0,0.1) when a is increased from 0 to 0.8, bearing in mind the different levels of 

expected funds and contribution rates obtained due to FT1 = 1.2. Thus, the results 

obtained for E(Ft) and E(C1*) under this scenario will be shown in Appendix 4A. 
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Figure 4.44 
The expected optimal fund level under CIPI 

(1.0.22) for different values of alpha 
when sigma = 20%. gamma=0.1 and beta=0.9 
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Figure 4.48 
The expected optimal contribution rate 

under CIPI (1.0.22) for different values of 
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For the optimal contribution rate, when a= 20%, the levels of expected optimal 

contribution rates are higher compared with the ones when a is equal to 5%. This is due 

to the lower levels of the expected fund obtained when a is equal to 20%. For the first 

case when 'y = 0.1 and ß=0.9, Figure 4.47 shows that E(C1') is increased from 18%-19% 

to be around 21% with very small changes among the different cases as a is increased. 

Similarly, Figures 4.48 and 4.49 do not show large differences of the levels of E(Ct') for 

different cases of a. However, the trends of E(Ct*) generally become closer to the target 

22% when y is increased to 0.9, apart from the case when a=0.8 which shows a 

downwards trend away from the target. 

(c) Third scenario FTt =1 and CTt = 0.18 

When the contribution target is decreased to 0.18, it leads to different results from those 

that we have obtained in the previous scenario where the contribution target is equal to 

22%. 

When a= 5%, in the case of (0.1,0,0.9), so that more importance is given to the 

solvency weighting risk factor and the value of a is increased gradually to 0.8, the 

expected optimal fund level decreases slightly over the control period. This leads E(Ft*) 

to move downwards away from 100% due to the low value assigned to the contribution 

target. 

When y is increased to 0.5 and 0.9 respectively, E(Ft*) decreases over time and moves 

further away from the target even as a is increased. For example, in the case of 

(0.9,0.8,0.1), E(Ft*) reaches the lowest level of 83%. Thus, we can conclude that a lower 

value of contribution target along with high values of a lead E(Ft) to move down further 

away from the target. This is clearly seen in Figures 4.50,4.51 and 4.52. 
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Figure 4.50 

The expected optimal fund level under CIPI 
(1,0.18) for different values of alpha when 
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Figure 4.51 

The expected optimal fund level under CIPI 
(1,0.18) for different values of alpha when 

sigma = 5% gamma=0.5 and beta=0.5 
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Figure 4.52 

The expected optimal fund level under CIPI 
(1,0.18) for different values of alpha when 
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For the expected optimal contribution rate, we note that it increases over time and moves 

away from its target as more importance is given to a. In other words, E(Ct*) in the case 

of (0.1,0,0.9) is closer to the target than in the case of (0.1,0.8,0.9) as shown in Figure 

4.53. 

When the value of y is increased to 0.5, the expected optimal contribution rate gets closer 

to the target in the case where a is equal to 0, and moves further away from the target 

when this value increases to 0.8. Similarly, E(Ct*) becomes closer to the target (18%) 

when y is increased to 0.9 in the case of (0.9,0,0.1), while it moves further away to reach 

the maximum level of 23% at the end of the control period when a is increased to 0.8. 

Figures 4.54 and 4.55 show these results. 

Figure 4.53 
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Figure 4.54 
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Figure 4.55 

The expected optimal contribution rate under CIPI 
(1, . 18) for different values of alpha when 
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For a= 20%, when a is increased to 0.8 and (3 is decreased from 0.1 to 0.9, Figures 4.56, 

4.57 and 4.58 show that the trends of E(Ft) decrease to lower levels compared with those 

when ß= 5% shown in Figures 4.50,4.51 and 4.52. 

When 6 increases to 20%, the expected optimal contribution rate increases slightly over 

the control period, but still, it has a similar trend of being closer to the target when a is 

equal to 0 and moves away from the target as a increases to 0.8. Figures 4.59,4.60 and 

4.61 show the slight differences in the optimal contribution rates due to the increase in 

the level of volatility to 20%. 

Finally, it is important to mention that the results of applying the fifth scenario, when FTt 

is decreased to 80%, lead to similar trends of E(Ft*) and E(C(*) to those obtained in the 

third scenario. Although the low and high levels of volatility (Y = 5% and 20% in the 

cases of (0.1,0,0.9), (0.5,0,0.5) and (0.9,0,0.1) are used, the levels of both E(F, *) and 

E(C, *) are obviously different due to the decrease in the fund target to 80%. These results 

can be seen in detail in Appendix 4B. 
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Figure 4.56 
The espected optimal fund level under CIPI 
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Figure 4.57 
The expected optimal fund level under CIPI 
(1.0.18) for different values of alpha when 

sigma = 20X. gamma=0.5 and beta=0.5 
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Figure 4.59 
The expected optimal contribution rate under 

CIPI (1.0.18) for different values of alpha 
when sigma = 20%. gamma=0.1 and beta=0.9 
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Figure 4.60 
The expected optimal contribution rate under 

CIPI (1.0.18) for difFerent values of alpha 
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Figure 4.61 
The expected optimal contribution rate under 
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Conclusion 

In this subsection, we have examined the effect of changing the weighting risk factor of 

the cross product term a when it has a non-zero value, i. e. when it is increased from 0 to 

0.8. Firstly, we have tested the effect of changing y and ß when a=0.2, the expected 

optimal fund level and contribution rate have similar trends to those cases when a=0, i. e. 

E(Ft*) moves further away from the target when more importance is given to y and 

simultaneously E(Ct*) gets closer to the target. 

Changing the values of y and ß while keeping the value of a constant (and non-zero) has 

a similar effect on the excepted fund level and contribution rate. The expected optimal 
fund level is close to its target as we give more importance to (3, and it moves further 

away from it with a high value of the weighting risk factor for the contribution rate y. 

The effect of increasing the value of a is different among the scenarios. Generally, 

increasing a leads to a greater deviation from the targets for both E(FF*) and E(Ct*). 

Under the default scenario (1,0.2), it is notable that increasing a leads to more deviation 

from the targets for both E(F1*) and E(Ct* 

The high values of the contribution target and the fund target under the second and the 

fourth scenarios have similar impact on E(Ft*) and E(Ct*). We note that the expected 

optimal fund level moves up further from the target when the value of a is increased, 

while E(Cc*) decreases more over time. 

On the other hand, when the contribution target and fund target are low under the third 

and fifth scenarios, E(Ft*) moves down further from the target when a is increased. At 

the same time, E(Ct*) increases over time to cover the decreasing trends of E(F1*). 

Finally, the effect of changing a- mentioned in the previous paragraphs - on E(FF*) and 

E(Ct*) is also influenced by the levels of y and P. In other words, E(F1*) gets close to the 

target when more importance is given to ß and vice versa. Further, the high level of 

volatility leads to more deviation from the target as previously stated. 
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4.5 Results of sensitivity analysis - Cost-induced performance index 

model in the stochastic case using the equilibrium value of Bt - 
4.5.1 Effect of changing 0 

The effect of changing 0 on the expected optimal fund level and contribution rate is 

tested in the first scenario (1,0.2) - the same scenario that was considered in section 

4.4.1. Here, we allow the value of 0 to move down to 5% and up to 15% with changes to 

B, according to the values shown in Table 4.1. This leads to the following results: 

- In the case of (0.1,0,0.9), with 6= 5%, the expected fund level decreases slightly when 

0= 5% compared with the values under the same case when 0= 10%. On the other hand, 

E(FF*) increases with increasing 0 to 15% as shown in table 4.20. 

Table 4.20 

The expected optimal fund level under CIPI (1,0.2) 
for different levels of 0 at a= 5% in the case 

of (0.1,0,0.9) 

t 0=5% 0=10% 0=15% 
1 100.00% 100.00% 100.00% 
2 99.77% 99.80% 99.83% 
3 99.73% 99.76% 99.79% 
4 99.73% 99.77% 99.79% 
5 99.75% 99.79% 99.81% 
6 99.71% 99.76% 99.79% 
7 99.73% 99.77% 99.80% 
8 99.73% 99.77% 99.80% 
9 99.77% 99.80% 99.82% 
10 99.77% 99.78% 99.80% 
11 99.72% 99.75% 99.78% 
12 99.76% 99.80% 99.83% 
13 99.70% 99.74% 99.77% 
14 99.74% 99.77% 99.80% 
15 99.76% 99.78% 99.80% 

The expected optimal contribution rate follows a similar behaviour, i. e. it increases with 

increasing 0 to 15%, and decreases with decreasing it to 5%, compared with the values 

obtained when 0 is equal to 10%. These results are shown in Table 4.21. 
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Here, it is noted that the values of E(Ft*) and E(Ct*) when 0= 10% in Tables 4.20 and 
4.21 are similar to the ones shown in Tables 4.2 and 4.3. This is because the equilibrium 

value of Bt is equal to 3 when 0= 10% under the first scenario (1,0.2). 

Table 4.21 
The expected optimal contribution rate under CIPI 
(1,0.2) for different levels of 0 at a= 5% in the case 

of (0.1,0,0.9) 

t 0=5% 0=10% 0=15% 

1 20.02% 20.72% 20.80% 
2 20.23% 20.90% 20.95% 
3 20.27% 20.94% 20.99% 
4 20.26% 20.93% 20.98% 
5 20.24% 20.91 % 20.96% 
6 20.28% 20.94% 20.99% 
7 20.26% 20.93% 20.97% 
8 20.26% 20.93% 20.98% 
9 20.22% 20.91% 20.96% 
10 20.22% 20.92% 20.98% 
11 20.27% 20.95% 21.00% 
12 20.23% 20.90% 20.95% 
13 20.29% 20.96% 21.00% 
14 20.25% 20.92% 20.97% 
15 20.23% 20.86% 20.91 % 

Increasing the level of volatility to 20% provides another example for testing the effect of 

changing the mean of the rate of return on E(Ft*) and E(Ct*). For the same case and 

under the same scenario, both the expected optimal fund level and contribution rate 

increase with increasing the value of 0 to 15%, and decrease when 0 is decreased to 5%, 

this is shown in Tables 4.22 and 4.23 respectively. 

Although increasing ß from 5% to 20% tends to move the values of the expected optimal 

fund level and the contribution rate away from the targets, we note that E(FF') and E(Ct*) 

still have similar patterns with respect to t, for the different values of 0. 
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Thus, we can conclude that there are generally small differences among the values of the 

expected optimal fund level and contribution rate when 0 is changed. This is due to our 

changing B1 to its equilibrium values of 0.25 (when 0= 5%) and 0.34 

(when 0= 15%), where these values correspond to the lower and higher values of 0 in 

order to maintain the balance in the fund growth equation. 

Table 4.22 
The expected optimal fund level under CIPI (1,0.2) 

for different levels of 0 at a= 20 % in the case 
of (0.1,0,0.9) 

t 0=5% 0=10% 0= 15% 
1 100.00% 100.00% 100.00% 
2 96.42% 96.74% 97.02% 
3 96.03% 96.39% 96.71% 
4 95.97% 96.36% 96.69% 
5 96.04% 96.43% 96.77% 
6 95.93% 96.29% 96.62% 
7 96.02% 96.39% 96.71% 
8 96.04% 96.37% 96.69% 
9 96.32% 96.62% 96.88% 
10 96.48% 96.70% 96.92% 
11 96.34% 96.49% 96.71% 
12 96.19% 96.53% 96.83% 
13 95.98% 96.29% 96.60% 
14 96.15% 96.48% 96.77% 
15 96.34% 96.62% 96.87% 

The results of E(FF*) and E(Ct*) using the equilibrium value of Bt show some differences 

from the results obtained when Bt = 0.3 shown in section 4.4.1(b). Although the 

differences of E(F1) are small with increasing 0 when a= 5% and 20%, it is noted that 

the levels of E(Ct*) show a different behaviour from the one obtained when Bt = 0.3. 

Here, there is also less deviation from the targets between the levels of E(Ct*) compared 

with the results in section 4.4.1(b). This could be due to the direct impact of changing 0 

on the balance of the actuarial growth function leading to better results of E(Ft*) and 

E(Ct*) when using the equilibrium value of B, 
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Table 4.23 
The expected optimal contribution rate under CIPI 
(1,0.2) for different levels of 0 at a= 20 % in the case 

of (0.1,0,0.9) 

t 0=5% 0=10% 0=15% 
1 16.89% 17.98% 18.38% 
2 20.17% 20.99% 21.15% 
3 20.53% 21.31% 21.44% 
4 20.59% 21.35% 21.46% 
5 20.52% 21.28% 21.39% 
6 20.62% 21.40% 21.52% 
7 20.54% 21.32% 21.44% 
8 20.52% 21.33% 21.46% 
9 20.27% 21.10% 21.28% 
10 20.12% 21.03% 21.24% 
11 20.25% 21.23% 21.44% 
12 20.38% 21.19% 21.33% 
13 20.58% 21,41% 21.55% 
14 20.44% 21.25% 21.40% 
15 20.50% 21.26% 21.40% 

4.5.2 Effect of changing the weighting factors of the contribution rate risk and the 

solvency risk; y and ß (with a= 0) 

In the same scenarios where the equilibrium value of Bt is changing as shown in Table 

4.1, the effect on the expected optimal fund level and the contribution rate is examined in 

the following cases: (0.1,0,0.9), (0.5,0,0.5) and (0.9,0,0.1). Under the first scenario (1, 

0.2) when Bt = 0.3, the results are the same as shown in subsection 4.4.5(a). The results 

of the four other scenarios are explained below. 

(a) Second scenario: FTt = 1, CTt = 0.22 

In the second scenario (1,0.22) where Be= 0.32, in the three cases mentioned above when 

ß= 5%, we find that E(F1*) moves further away from the target when more importance is 

given to the contribution rate, i. e. the lowest level of E(Ft*) is reached in the case of (0.9, 

0,0.1) where E(Fr) is equal to 98.12%. At the same time, E(Ct*) becomes close to the 

target in the case of (0.9,0,0.1) compared with the cases of (0.1,0,0.9) and (0.5,0,0.5). 

Figure 4.62 and 4.63 show the expected optimal fund level and the contribution rate when 
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6= 5% for the different cases over the control period. When a is increased to 20%, the 

results of E(Ft) and E(Ct*) show more departure from the targets. 

Figure 4.62 
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Figure 4.63 
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The effect of using the equilibrium value of Bt on E(Ft*) can be observed by comparing 

Figures 4.20 and 4.62 , where E(Ft*) follows the same behaviour with a slightly 

decreasing trend at the end of the control period. The decreasing trend is more obvious 

when more importance is given to y. The expected optimal contribution rate becomes 

closer to the target when y is increased - similar to the results of B, = 0.3 shown in Figure 

4.21-. 
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(b) Third scenario: FTt = 1, CTt = 0.18 

Under the third scenarios (1,0.18), E(Ft) has the same decreasing trend obtained under 

the first and second scenario when 7 is increased. However, E(Ct*) trends to increase 

around 19% with a tendency to get closer to the target of 18% at the end of the control 

period as shown in Figure 4.64 When a is increased to 20%, E(Ft*) and E(Ct*) move 

further away from the targets. 

Figure 4.64 
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It is noted that using the equilibrium value of Bt results in a similar behaviour of E(Ft*) 

under the first, second and third scenarios. This is due to the same value of the fund target 

used in these three scenarios along with changing the value of B. Although E(Ct*) has 

different values due to the different contribution target used in the three scenarios, the 

trends of E(Ct*) have a similar behaviour over the control period of getting closer to the 

target with the high value of y as can be seen in Figures 4.63 and 4.64. 

(c) Fourth scenario: FTt = 1.2, CTt = 0.2 

In the fourth scenario (1.2,0.2), when more importance is given to the weighting risk 

factor of contribution rate y and a is increased, E(Ft*) moves away from the target as 

shown in Figure 4.65. This results in moving E(Ct*) closer to the target particularly when 

a is small. Figure 4.66 shows the trends of E(Ct*) for different values of y and ß when ß 

= 20%. 
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Figure 4.65 
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Figure 4.66 
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Figures 4.65 and 4.66 indicate that the behaviour of E(Ft*) and E(Ct*) over the control 

period is similar when it is compared with the results shown in Figures 4.24 and 4.26. It 

is noted that the differences in the levels of E(Ft) and E(Ct*) for the different cases are 

very small when using the equilibrium value of B, rather than the value Bt = 0.3. 

(d) Fifth scenario: FTt = 0.8, CTt = 0.2 

Under the fifth scenario (0.8,0.2), E(F, *) decreases to reach the minimum level when 
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y=0.9 and a= 20%, where E(FT) = 71.8% as shown in Figure 4.67. On the other hand, 

E(C, *) increases to be around 21% and tends to get closer to the target at the end 'of the 

control period with less importance is given to ß as shown in Figures 4.68. 

The results obtained when using the equilibrium value of B, show that the trends of 

E(Ft) and E(Ct*) have the same behaviour to those when Bt = 0.3 with a tendency to be 

closer to the targets. This can be seen by comparing Figures 4.25 and 4.27 with Figures 

4.67 and 4.68 below. 

Figure 4.67 
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Figure 4.68 
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(e) The variance of FT* and CT* 

Under the different scenarios, for the cases of (0.1,0,0.9), (0.5,0,0.5) and 

(0.9,0,0.1) when ß= 20%, we note that the variance of FT* becomes higher when more 
importance is given to the weighting risk factor of the contribution risk y. Simultaneously, 

the variance of CT* has the smallest value in the case of 

(0.9,0,0.1). 

The results for the different cases show that the variance of FT* and CT* are the same 

under the first, second and the third scenarios. The variance of both the fund level and the 

contribution rate is the highest under the fourth scenario and is the lowest under the fifth 

scenario. Table 4.24 shows the standard deviation of FT* and CT* under the different 

scenarios in the cases mentioned above when a= 20%. 

Table 4.24 

The standard deviation of FT* and CT* for different cases 

under different scenarios when a= 20% 
Sc(1,0.2) Sc(1,0.22) Sc(1,0.18) Sc(1.2,0.2) Sc(0.8,0.2) 

FT* CT* FT* CT* FT* CT* FT* CT* FT* CT* 
Case(0.1,0,0.9) 0.192 0.176 0.192 0.176 0.192 0.176 0.229 0.211 0.153 0.141 

Case(0.5,0,0.5) 0.199 0.111 0.199 0.111 0.199 0.111 0.239 0.133 0.159 0.088 

Case(0.9,0,0.1) 0.288 0.035 0.288 0.035 0.288 0.035 0.348 0.042 0.23 0.028 

Conclusion 

In this subsection, we examined the effect of changing both y and ß when a=0 on the 

expected optimal fund level and the contribution rate using the equilibrium value of Bt 

for the different scenarios. The results reveal the same conclusion as we have reached 

when the fixed value of Bt is used in subsection 4.4.5. The expected optimal fund level 

moves away from the target when more importance is given to y, simultaneously, E(Ct*) 

becomes close to the target. 

4.5.3 Effect of changing the weighting factors of the contribution rate risk and the 

solvency risk; y and ß (with uo 0) 

Here, the effect of the cross- product term risk factor a is examined when the weighting 

risk factors y and ß are changed with focusing on the following cases: 
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(0.1,0.2,0.9); (0.1,0.4,0.9); (0.1,0.8,0.9); (0.9,0.2,0.1); (0.9,0.4,0.1) and 

(0.9,0.8,0.1). The results of the default scenario (1,0.2) is described in section 4.4.6 (a) 

since we have used the equilibrium value of B, = 0.3. The results of the four other 

scenarios are explained in turn below. 

(a) Second scenario: FTt = 1, CTt = 0.22 

In the second scenario (1,0.22), the expected optimal fund levels decrease over the 

control period with small changes when the value of a is increased. The decreasing trend 

is more obvious when more importance is given toy although the trends of E(Ft*) are 

close to each other. These results are shown in Figures 4.69 and 4.70. 

When ß is increased to 20%, E(Fi*) moves further away from the target with small 

differences between the cases when y=0.1 and ß=0.9 and a is increased. When more 

importance is given to y=0.9 and ß=0.1, the trends of E(F, ̀) increase over the control 

period when a is increased to 0.8. 

The distribution of Fr* is studied in these cases in order to understand better the 

behaviour of E(F, ̀) when the values of both a and a are high. We find that the variance of 

FT* is high and increases to reach the maximum value when y=0.9 and 

a=0.8 as will be shown in subsection 4.5.3 (e). 

Figure 4.69 
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Figure 4.70 
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For the expected optimal contribution rate, when a= 5% in the cases of (0.1,0.2,0.9); 

(0.1,0.4,0.9); (0.1,0.8,0.9), the trends increase with small differences between these 

cases, in response to the decreasing trend of E(Ft*) over the control period. It gets closer 

to the target when y=0.9 and a is small. When a is increased along with the level of 

volatility, it is noted that the trends of E(C, *) are much wider in range with a tendency to 

move closer to the target at the end of the control period. These results are shown below. 

Figure 4.71 
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Figure 4.72 
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When a is increased, using the equilibrium value of B, = 0.32 leads to small differences 

between the trends of both E(Ft*) and E(Ct*) when a= 5%. The trends of both E(Ft*) and 

E(C, *) follow the results of the default scenario (1,0.2), where the deviation from the 

targets are more obvious with a higher value of a. 

(b) Third scenario: FTt = 1, CT, = 0.18 

In the third scenario (1,0.18), with different levels of volatility in the cases under study, 

the expected optimal fund level has a similar behaviour to the one obtained under the 

second scenario due to the same value of the fund target and the equilibrium value of the 

Bt used. The results of E(Ft) when a= 5% and 20% are shown below from Figures 4.73 

to 4.76. Here, the similarity of the behaviour of E(Ft) under the second and the third 

scenarios can be seen by comparing Figures 4.73 and 4.75 with Figures 4.69 and 4.70. 

On the other hand, the trends of E(C, *) have a similar behaviour but with different values 

compared with the ones under the second scenario due to the different value of CT,. Thus, 

in the cases when a= 5%, y=0.1, ß=0.9 and a is increased, E(Ct*) increases with small 

differences to be around 19% compared with 23% under the second scenario. When y= 

0.9 and ß=0.1, E(C, f) tends to be close to the target 18%with lower values of a. This can 

be seen in Figures 4.77 and 4.78 shown below. 
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Figure 4.73 
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When the equilibrium value of B1 is used, the trends of both E(F1*) and E(Ct) have a 

similar behaviour to the ones when B1 = 0.3, except in the cases when ß= 20%, 

y=0.9, ß= 0.1 and a is increased. This is because E(Ft*), under the third scenario, follows 

a similar behaviour to the one obtained under the first and second scenarios, due to using 

the same value of the fund target and changing Bt according to the contribution targets. 

Generally, there is more deviation from the targets when a is increased. However, it is 

noted that the trends of E(Ft*) are closer to the targets with using the equilibrium value 

compared with the ones obtained when B, = 0.3. 

(c) Fourth scenario: FTt = 1.2, CTt =0.2 

Under the fourth scenario (1.2,0.2), E(Ft*) decreases with small differences when 

a= 5%, y=0.1,0 = 0.9 and a is increased. When a is increased to 20%, E(Ft*) moves 

further away from the target with small differences between the cases with increasing a 

as shown in Figure 4.79. 

In the cases when y=0.9,0 = 0.1, E(Ft*) decreases over the control period when a is 

small with a tendency to move up when a is increased to 0.8. This increasing trend with 

the higher values of a is more obvious when a= 20%. Figures 4.80 shows the levels of 

E(F, ý) when more importance is given to y and a with a= 20%. 

Figure 4.79 
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Figure 4.80 
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The expected optimal contribution rate is close to the target with small differences in the 

cases of (0.9,0.2,0.1), (0.9,0.4,0.1) and (0.9,0.8,0.1) when a= 5%. The trends of 

E(C, *) are wider in range when a is increased to 20%. The values become very close to 

the target in the last case of (0.9,0.8,0.1) in response to the level of E(F, *) due to the high 

value of the fund target. 

When these results are compared with the ones obtained when Bt = 0.3, we find that 

E(Ft) have similar trends where they move towards the target with increasing a. This 

behaviour is more obvious when both y and ß are high. However, when Bt= 0.31, the 

trends have less deviation from the targets. For example, the trends of E(Ft*) in Figures 

4.79 and 4.80 can be compared with the ones in Figures 4A. 7 and 4A. 9 (in Appendix 4A) 

to show these differences. 

(d) Fifth scenario: FTt = 0.8, CTt = 0.2 

In the fifth scenario (0.8,0.2), E(F, *) decreases over the control period with small 

differences when a= 5%, y=0.1, ß=0.9 and a is increased. The expected optimal fund 

levels reach lower levels with increasing a and when more importance is given to the 

weighting risk factor of the contribution rate y. When a is increased to 20%, in the cases 

when y=0.9, ß=0.1, E(F, *) increases over the control period when a is increased. 

Figures 4.81 and 4.82 show the differences in the behaviour of E(F, ) when the level of 

volatility and the risk factory are high with increasing the value of a. 
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Figure 4.81 

The expected optimal fund level under CIPI 
(0.8,0.2) for different values of alpha when 

sigma = 5°/ gamma=0.9 and beta= 0.1 
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Figure 4.82 

The expected optimal fund level under CIPI 
(0.8,0.2) for different values of alpha when 

sigma = 20%, gamma=0.9 and beta=0.1 
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The expected optimal contribution rate increases over the control period with small 

differences in the cases of (0.1,0.2,0.9), (0.1,0.4,0.9) and (0.1,0.8,0.9) when a= 

5%. It becomes closer to the target when more importance is given to y and with small 

values of a. When a is increased to 20%, E(Ct*) deviates more from the target compared 

with the ones when a= 5%, however, it becomes close to the target when y is high and a 

is small. Figures 4.83 and 4.84 show the expected optimal contribution rate when y=0.9, 

ß= 0.1 and a is increased with a= 5% and 20% 
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Figure 4.83 

The expected optimal contribution rate under 
CIPI (0.8,0.2) for different values of alpha when 

sigma = 5%q gamma=0.9 and beta=0.1 
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Figure 4.84 

The expected optimal contribution rate under 
CIPI (0.8,0.2) for different values of alpha when 

sigma = 20%q gamma=0.9 and beta=0.1 
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Therefore, using the equilibrium value of B1 leads to similar results to those obtained 

under the previous scenarios. There are small differences between the different cases. 

When a= 20%, y=0.9, ß=0.1 and a=0.8, we find that E(F1*) moves up towards the 

target as can be seen from Figure 4.82. This emphasizes the fact that E(Ft) has a similar 

behaviour under the five different scenarios due to using the equilibrium value of B. 

(e) The variance of FT* and CT* 

The variance of the optimal fund level and contribution rate for the final T is examined to 

understand their behaviour when a= 20% and a is changed. For all the scenarios under 

study, we note that in the cases when y=0.1,0 = 0.9, the variance of FT* increases 
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slightly when a is increased. Simultaneously, the variance of CT* decreases slightly. This 

explains the small differences between the cases when a is increased. When less 

importance is given to ß and both y and a are increased, the variance of both FT* and CT* 

increases and this explains the greater departure from the targets when a is increased. 

The differences in the values of variance refer to the different scenarios used. In other 

words, we find that the variance of FT* is the lowest under the fifth scenario compared 

with those under the others. The variance is the same under the first, second and third 

scenarios, and lower than those under the fourth scenario. For CT*, the variance is the 

lowest in the cases under the fifth scenario and the highest in the cases under the fourth 

scenario. 

Conclusion 

The behaviour of E(FF) and E(C1r) is very similar under the different scenarios when 

using the equilibrium value of Bt. Following the default scenario (1,0.2), we can 

conclude that there is more departure from the targets when a is increased and the level 

of volatility is high, except in the cases when more importance is given to y. In these 

cases, E(Ft+) increases over the control period when a is increased. This is due to the 

positively skewed distribution with a high value of the variance obtained. In response to 

the increasing trend of E(Ft*), the expected optimal contribution rate moves closer to the 

target when y and a are high. 

Therefore, the level of E(FF and E(C, *) become the closest to the target under the fourth 

scenario compared with the other scenarios. This results from the highest value of the 

variance of FT* and CT* obtained under the fourth scenario. 

Summary 

The properties of the cost-induced performance index are explored in this chapter, in 

order to understand how the expected optimal fund level and contribution rate are 

affected by changing the parameters in the models. As a numerical illustration, a 

sensitivity analysis has been carried out with 10,000 simulations for the stochastic 

models. The effect of changing 0, ß, FTt, CTt and FO are tested first, then, followed by 
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analysing the effect of the weighting risk factors y, (3 and a. The analysis has been carried 

out using a round value of the benefit outgo Bt = 0.3 for different choices of the 

contribution and fund targets, different levels of volatility and different values of the 

weighting risk factors. We can summarise the main findings below: 

- Increasing the level of volatility leads to more deviation from the target; 

- giving more importance to the weighting risk factor of the solvency risk ß leads 

E(F1*) to become closer to the target, while E(CL*) moves further away from the 

target; 

- increasing a leads to more deviation from the target. 

The equilibrium value of Bt is used to examine the effect of changing 0 and the weighting 

risk factors y, ß and a. Under the different scenarios, the results of E(Ft*) and E(Ct*) 

follow the ones obtained under the default scenario (1,0.2) when the value of Bt = 0.3 is 

used. 

Finally, it is important to have a complete understanding of our models to apply the same 

procedures for the ratio-induced performance index model to order to specify the 

differences between both models, and that will be the issue to cover in chapter 5. 
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Appendix 4A 
Effect of changing the weighting factors of the contribution rate risk and the 

solvency risk; y and ß (with a# 0) 

Figures of Fourth scenario (1.2,0.2), when a= 5% and 20% 

Figure 4A. 1 
The espected optimal fund level under CIPI 
(1.2.0.2) low different values of alpha when 

sigma = 5X. gamma=0.1 and beta=0.9 
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Figure 4A. 2 
The espected optimal fund level under CIPI 
(1.2.0.2) for different levels of alpha when 

sigma = 5X. gamma=0.5 and beta=0.5 
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(1.2.0.2) for different values of alpha When 
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Figure 4A. 4 
The expected optimal contribution rate under 
CIPI (1.2.0.2) for different values of alpha at 

sigma = 5%. gamma=0.1 and beta=0.9 
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Figure 4A. 5 
The expected optimal contribution rate under 
CIPI (1.2.0.2) for different values of alpha at 

sigma 5x. gamma=0.5 and beta=0.5 
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Figure 4A. 6 
The expected optimal contribution rate under 

CIPI (1.2.0.2) for different values of alpha 
when sigma = 5%. gamma=0.9 and beta=0.1 
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Figure 4A. 7 
The expected optimal fund level under CIPI 

(1.2,0.2) for different values of alpha when 
sigma : 20%, gamma=0.1 and beta=0.9 
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Figure 4A. 9 
The expected optimal fund level under CIPI 

(1.2,0.2) for different levels of alpha when 
sigma - 20%, gamma-0.9 and beta=0.1 
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Figure 4A. 12 
The expected optimal contribution rate under CIPI (1.2, 

0.2) for different levels of alpha when 
sigma = 20%, gamma=0.9 and beta=0.1 
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Figure 4A. 10 
The expected optimal contribution rate under 

CIPI (1.2,0.2) for different values of alpha when sigma = 
20%, gamma 0.1 and beta 0.9 
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Appendix 4B 
Effect of changing the weighting factors of the contribution rate risk and the 

solvency risk; y and ß (with a# 0) 

Figures of Fifth scenario (0.8,0.2), when a= 5% and 20% 

Figure 4B. 1 
The espected optimal Fund level under CIPI 

(0.8.0.2) for different values of alpha when 
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Figure 4B_2 
The espected optimal fund level under CIPI 

(0.8.0.2) for different levels of alpha when 
sigma = 5X. gamma = 0.5 and beta = 0.5 
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Figure 4B. 4 
The expected optimal contribution rate under 

CIPI (0.8.0.2) for different values of alpha 
when sigma = 5x. gamma = 0.1 and beta = 0.9 
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Figure 4B. 5 
The expected optimal contribution rate under 

CIPI (0.8.0.2) For different values of alpha 
when sigma = 5X. gamma = 0.5 and beta = 0.5 

3579 11 13 15 

i:.. (e1 

0 case(0.5,0,0.5) --a-- case(0.5,0.2,0.5) 
case(0.5,0.4,0.5) - case(0.5,0.6,0.5) 

-- case(0.5,0.8,0.5) 

Figure 4B. 6 
The expected optimal contribution rate under 

CIPI (0.8.0.2) for different values of alpha 
when sigma = 5x. gamma = 0.9 and beta = 0.1 
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Figure 46.7 
The expected optimal fund level under CIPI 

(0.6.0.2) for different levels of alpha when sigma . 20%, 

gamma : 0.1 and bets = 0.9 
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Figure 48.8 
The expected optimal contribution raft under CtPI (11111, 

0.2) for different values of alpha when sigma : 20%, 
gamma=0.5 and beta=0.5 
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The expected optimal contribution rate under CIPI (0.8,0.2) 
for different values of alpha when sigma = 20%, gamma 
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Figure 48.11 
TM expected optimal contribution rats under CIPI (0.6,0.2) 
for different values of alpha when sigma = 20%, gamma - 
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(0.9,0.2) for different values of alpha when 
sigma = 20%, gamma = 0.9 and beta = 0.1 
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Appendix 4C 

4C. 1 Histograms and statistics analysis for (FT") and (CT) 

In this section, we present the histograms and statistics analysis for the optimal fund 

levels and contribution rates at the end of the control period (T). The distribution of (FT*) 

and (CT) is examined in four different cases under the first scenario (1,0.2) for the CIPI 

model when a= 20%. These cases are: (0.1,0,0.9); (0.1,0.8,0.9); (0.9,0,0.1); and (0.9, 

0.8,0.1). 

The analysis of the behaviour of (FT) and (CT*) is an example of how the optimal fund 

level and contribution rate act at any t. The choice of these cases show our interest to 

interpret the behaviour of E(FT) and E(CT) - as explained in subsection 4.4.6(a)-. Thus, 

we examine (FT) and (CT) when the weighting factor of the mixed middle term is low 

a=0 and when it is high a=0.8. Further, we consider the cases where more importance 

is given to the weighting factor of the solvency risk ß and the contribution rate risk y. 

The results of (FT+) and (CT) are shown, in turn, below. 
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4C. 1.1 The results of (FT) 

Case: CIPI (0.1,0,0.9), a=0.2 

Summary Statistics for data in: (0.1,0,0.9) 

F(T)* 
Min: 0.8718469 

Ist Qu.: 0.8928930 
Mean: 0.9662359 

Median: 0.9175373 
3rd Qu.: 0.9705734 

Max: 8.1691670 
Total N: 10000.0000000 

NA's : 0.0000000 
Std Dev.: 0.1916204 

Figure 4C. 1 
Histogram of (FT) in the case of (0.1,0,0.9) when a= 20% 
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Case: CIPI (0.1,0.8,0.9) sigma = 0.2 

Summary Statistics for data in: (0.1,0.8,0.9) 

F (T) * 

Min: 0.8495855 
1st Qu.: 0.8843292 

Mean: 0.9658564 
Median: 0.9155776 

3rd Qu.: 0.9782698 
Max: 7.9955450 

Total N: 10000.0000000 
NA's : 0.0000000 

Std Dev.: 0.1969735 

Figure 4C. 2 
Histogram of (FT) in the case of (0.1,0.8,0.9) when a= 20% 
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Case: CIPI (0.9,0,0.1) sigma = 0.2 

Summary Statistics for data in: (0.9,0,0.1) 

F (T) * 

Min: 0.6554199 
1st Qu.: 0.7585064 

Mean: 0.8975981 
Median: 0.8253162 

3rd Qu.: 0.9416538 
Max: 11.2304800 

Total N: 10000.0000000 
NA's : 0.0000000 

Std Dev.: 0.2881246 

Figure 4C. 3 
Histogram of (FT) in the case of (0.9,0,0.1) when a= 20% 
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Case: CIPI (0.9,0.8,0.1) sigma = 0.2 

Summary Statistics for data in: (0.9,0.8,0.1) 

F (T) * 

Min: 0.6544825 
1st Qu.: 0.7833344 

Mean: 0.9442336 
Median: 0.8618014 

3rd Qu.: 0.9957414 

Max: 13.1294600 
Total N: 10000.0000000 

NA's : 0.0000000 
Std Dev.: 0.3287367 

Figure 4C. 4 
Histogram of (FT in the case of (0.9,0.8,0.1) when a= 20% 
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4C. 1.2 The results of (CT) 

Case: CIPI (0.1,0,0.9) sigma = 0.2 

Summary Statistics for data in: (0.1,0,0.9) 

C (T) * 
Min: -6.4022960 

Ist Qu.: 0.2086571 
Mean: 0.2126404 

Median: 0.2573637 
3rd Qu.: 0.2799963 

Max: 0.2993243 
Total N: 10000.0000000 

NA's : 0.0000000 

Std Dev.: 0.1759780 

Figure 4C. 5 
Histogram of (Cr*) in the case of (0.1,0,0.9) when a= 20% 
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Case: CIPI (0.1,0.8,0.9) sigma = 0.2 

Summary Statistics for data in: (0.1,0.8,0.9) 

C(T)* 
Min: -5.0097520 

1st Qu.: 0.2073672 
Mean: 0.2165961 

Median: 0.2539768 
3rd Qu.: 0.2772089 

Max: 0.3030398 
Total N: 10000.0000000 

NA's : 0.0000000 
Std Dev.: 0.1464434 
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Figure 4C. 6 
Histogram of (CT) in the case of (0.1,0.8,0.9) when a= 20% 
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Case: CIPI (0.9,0,0.1) sigma = 0.2 

Summary Statistics for data in: (0.9,0,0.1) 

C (T) * 
Min: -1.050058e+000 

1st Qu.: 2.046764e-001 
Mean: 2.100490e-001 

Median: 2.188639e-001 
3rd Qu.: 2.270114e-001 

Max: 2.395829e-001 
Total N: 1.000000e+004 

NA's : 0.000000e+000 
Std Dev.: 3.513714e-002 
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Figure 4C. 7 
Histogram of (CT) in the case of (0.9,0,0.1) when a= 20% 
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Case : CIPI (0.9,0.8,0.1) sigma = 0.2 

Summary Statistics for data in: (0.9,0.8,0.1) 

C (T) * 
Min: -3.396664e+000 

Ist Qu.: 2.020505e-001 
Mean: 2.173270e-001 

Median: 2.417755e-001 
3rd Qu.: 2.650478e-001 

Max: 3.032638e-001 
Total N: 1.000000e+004 

NA's : 0.000000e+000 

Std Dev.: 9.749935e-002 
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Figure 4C. 8 
Histogram of (CT*) in the case of (0.9,0.8,0.1) when a= 20% 
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Chapter Five 

Computational experiments to reveal the underlying 
properties of the model and policy implications II 

5.1 Introduction 
Due to the similarity in the mathematical construction of the dynamic control 

problems of both models: the cost- induced performance index (CIPI) and the ratio- 

induced performance index (RIPI), we expect to obtain similar results for the 

expected optimal fund level and contribution rate with small differences between 

them. We highlight these differences in order to understand precisely the behaviour of 

the two models in response to the changes in the parameter values. 

Therefore, in this chapter the same parameters values mentioned in section 4.2 are 

used. Since the equilibrium value is examined in section 4.5 and the results of the two 

models are expected to be similar, here, we focus on using the round value of Bt = 0.3 

only. Also, the same sensitivity analysis is carried out for the RIPI model, with 

applying the five different scenarios of the fund target and the contribution target: (1, 

0.2), (1,0.22), (1,0.18), (1.2,0.2) and (0.8,0.2). 

The application of the ratio-induced performance index in the deterministic case has 

similar results to those obtained in the stochastic case, when the level of volatility is 

low as explained in section 4.3. Thus, we will explore in this chapter the exact 

differences between the two models: CIPI and RIPI in the stochastic case. Our 

analysis of RIPI model is based on the fund ratio il = 100%, however, it is also worth 

examining the effect of changing the parameter ii on E(F1; ) and E(Ct*) by allowing il 

to be equal 90% and 110% (this is discussed in section 5.2.7of this chapter). 

5.2 Results of the sensitivity analysis 
In the following subsections, the results of the sensitivity analysis of RIPI stochastic 

model will be illustrated, in order to explore the effect of changing the values of 

different parameters following the same approach as have introduced in the previous 

chapter. 
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5.2.1 Effect of changing 0 

(a) Effect of changing 9 on the benefit outgo Bt 

Since the actuarial liability recurrence relation equation used for the RIPI model is the 

same as the one used in subsection 4.4.1(a): 

ALS+1= ea . (ALS + NCt - Br) 

the value of the benefit outgo Bt changes as the value of 0 increases from 10% to 15% 

or decreases to 5%. These changes are exactly similar to the ones shown in Table 4.2. 

Thus, Bt goes up with increasing the value of 0 and moves down with decreasing the 

value of 0. 

(b) Effect of changing 0 on E(Ft*) and E(Ct*) 

Similarly to the previous chapter, here, we examine the effect of changing 0 under the 

first scenario only, where the fund target is equal to 1 and the Contribution target is 

equal to 0.2. The value of Bt remains equal to 0.3 when 0 is equal to 10%. However, 

B= reduces to 0.25 as 0 decreases to 5% and it increases to 0.34 when 0= 15%. 

Applying different values of Bt - that respond to changing 0- affects slightly the 

expected optimal fund and contribution rate. For example, in the case of (0.1,0,0.9)1 

when ß= 5%, we find that the expected fund levels remain around their target with a 

slight decreasing trend over the control period. On the other hand, the expected 

contribution rates are also around their target with an increasing trend over the control 

period. The effect of changing 0 in the same case mentioned above is more obvious 

when ß is equal to 20%. Figures 5.1 and 5.2 show the differences between E(Ft) 

under RIPI and CIPI as 0 changes with a equal to 20%. 

1 To recall: the form of (0.1,0,0.9) represents the weighting risk factors in the 

following order (y, a, ß). 
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Figure 5.1 

The expected optimal fund level under RIPI 
(1,02) In the case of (0.1,0,0.9) with different 

values of theta when sigma = 20% 
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Figure 5.2 

The expected optimal fund level under CIPI 
(1,0.2) In the case of (0.1,0,0.9) with different 

values of theta when sigma = 20% 

1.01 
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E(F*) 0.97 
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-0 theta = 5% 

-s-- theta =10% 
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Figures 5.1 and 5.2 illustrate the similarity in the trends of expected optimal fund 

level between both models CIPI and RIPI. We note that they decrease over the control 

period with decreasing 0. Therefore, when 0= 5%, E(Ft*) reaches the lowest levels in 

both models. However, E(Ft*) under CIPI is closer to the target and is around 96% 

while it is around 92% under RIPI. 

The expected optimal contribution rates in the same case (0.1,0,0.9) increase over 

the control period as 0 increases from 5% to 15%. Thus, E(Ct*) increases to reach 

22% under RIPI while it is around 21% under CIPI as shown in Figures 5.3 and 5.4. 
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Figure 5.3 

The expected optimal contribution rate under RIPI 
(1,0.2) in the case of (0.1,0,0.9) with different 

values of theta when sigma = 20% 
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Figure 5.4 

The expected optimal contribution rate under CIPI 
(1,0.2) in the case of (0.1,0,0.9) with different 

values of theta when sigma = 20% 
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This difference between E(Ct*) under both models reflects the difference on E(Ft*) 

within the dynamic relationship. Thus, it is expected that the optimal contribution rate 

under RIPI increases more than under CIPI to cover the lower levels of the fund under 

RIPI. 

Further, we include the results of keeping the value of Bt equal to 0.3 when the value 

of 0 changes to 15% and 5% ( instead of 0 remains constant and is equal to 10%). For 

example, in RIPI under the first scenario (1,0.2) and in the case of (0.1,0,0.9), E(Ft) 

tends to increase with increasing 0 and consequently E(Ct*) decreases over the control 
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period. In comparison with CIPI, the changes in both E(Ft*) and E(Ct*) are more clear 
in RIPI whether a is equal to 5% or 20%. In other words, in the latter model when 

6= 20%, E(FT') reaches 90.9% when 0= 5% and increases to 93.7% and 95.6% when 

0 is equal to 10% and 15% respectively. Under CIPI, E(FT) is around 96% with very 

slight differences among the three values of 0. Consequently, the expected optimal 

contribution rates increase over time at different levels, corresponding to the decrease 

in the fund levels under both models. 

5.2.2 Effect of changing a 
In this subsection, we use the same five different levels of volatility applied under 
CIPI. Thus, the results are obtained when a= 1%, 5%, 10%, 15% and 20%, the mean 

of rate of return 0= 10% and the benefit outgo Bt = 0.3. 

(a) Default scenario FTt =1 and CTt = 0.2 

Under the default scenario (1,0.2) and in the case of (0.1,0,0.9), we find that E(F1t) 

moves further away from the target with an increasing level of volatility. 
For instance, when a= 1%, E(Ft) is around its target and slightly decreases by the 

end of the control period to 99.5%. When a= 5%, it decreases to 99.2% and it keeps 

moving further away from the target to be equal to 98%, 96.2% and 93.7% when a is 

increased to 10%, 15% and 20% respectively. 

Comparing these values with those obtained in the same case under CIPI, we find that 

E(FF+) in both models moves further away from the target when a is increased to 20%. 

However, E(Ft) under RIPI has lower levels than those under CIPI, i. e. when 

a= 20%, E(Fc*) reaches the lowest level 93% under the former model while it is 

around 96.5% under CIPI. Figures 5.5 and 5.6 illustrate the differences in the trends 

of E(F1`) with different levels of volatility for both models. 
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Figure 5.5 

The expected optimal fund level under RIPI 
(1,0.2) for different levels of volatility In the case 

of (0.1,0,0.9) 
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Figure 5.6 

The expected optimal fund level under CIPI 
(1,02) for different levels of volatility in the case 

of (0.1,0,0.9) 
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-0 sigma=1% 
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For other cases such as: (0.5,0,0.5) and (0.9,0,0.1), similar results are obtained, 

where E(FT) decreases in the former case from 97.4% when ß =1% to 83.3% when a 

is increased to 20%. In the latter case where ß=0.1, it decreases more markedly from 

89.5% to 65.2% at the same levels of volatility. 

For the expected optimal contribution rate, we note that it also moves away from its 

target with increasing the level of volatility. In the first case of (0.1,0,0.9) when 

a= 1%, E(Ct*) increases gradually over the control period to reach the value of 20.4% 

at the final T. When a is increased to 20%, the value of E(CT) moves up to 21.3%. 

The difference of E(Ct*) levels between RIPI and CIPI are shown in Figures 5.7 and 

5.8. 
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Figure 5.7 

The expected optimal contribution rate under 
RIPI (1,0.2) for different levels of volatility in the 

case of (0.1,0,0.9) 
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Figure 5.8 

The expected optimal contribution rate under 
CIPI (1,0.2) for different levels of volatility in the 

case of (0.1,0,0.9) 
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For the other two cases of (0.5,0,0.5) and (0.9,0,0.1), E(Ct*) has the same behaviour 

as it moves slightly away from the target with increasing a. The expected optimal 

contribution rate increases gradually over the control period, and then tends to 

decrease to get closer to the target at the final T. Thus, in the former case, (0.5,0,0.5) 

E(CT) = 20.2% and increases slightly to 20.7% when 6 increases from 1% to 20%. In 

the latter case, although E(Ctt) becomes closer to the target due to the high value of 

y=0.9, the departure from the target is still observed when a is increased from 1% to 

20%. 
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Comparing these results with CIPI, we find that the differences are small between 

both models, although E(Ct*) under RIPI tends to be closer to the target as we give 

more importance to contribution rate risk through increasing the value of y. 

(b) Other scenarios 
The changes in E(Fi*) and E(Ct*) are examined, when the fund target is fixed at 100% 

and the contribution target is increased to 22%, in the second scenario, and decreased 

to 18% in the third scenario. We conclude also the results when the fund target 

increases to 120% and decreases to 80% while the contribution target is equal to 20%, 

in the fourth and fifth scenarios respectively. 

Under the second scenario, E(Ft*) remains around its target with a tendency to 

increase by the end of the control period due to the high value of the contribution 

target. Further, when the level of volatility is increased, the expected optimal fund 

level decreases and moves away from its target. 

Although E(Ft) under CIPI has the same behaviour, we note that it tends to move 

further away from the target under RIPI. For example: in the case of (0.9,0,0.1), 

when ß= 1%, E(Ft*) is around 100% with a tendency to increase by the end of the 

control period. It decreases further to 85.4% when the level of volatility is increased 

to 20%. Figures 5.9 and 5.10 show the differences between RIPI and CIPI in this case 

(0.9,0,0.1). 

Figure 5.9 

The expected optimal fund level under RIPI 
(1,0.22) for different levels of volatility in 

the case of (0.9,0,0.1) 
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Figure 5.10 
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Under the third scenario (1,0.18) in RIPI, E(Ft*) tends to decrease more markedly 

over the control period compared with the previous scenario. Moreover, increasing 

the level of volatility leads the fund level to move down further from its target. We 

consider the same case as above, (0.9,0,0.1), for the RIPI model, we find that E(Ft*) 

decreases dramatically to reach about 40% when a= 20%. This is due to increasing 

the level of volatility along with more importance is given to the weighting factor for 

the contribution rate as shown in Figure 5.11 

Figure 5.11 

The expected optimal fund level under RIPI 
(1,0.18) for different levels of volatility in 

the case of (0.9,0,0.1) 

1.20 

1.00 
0.80 

E(F*) 0.60 

0.40 

0.20 

0.00 

The expected optimal fund level under CIPI 
(1,0.22) for different levels of volatility in 

the case of (0.9,0,0.1) 
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Comparing Figure 5.11 with Table 4.11, we find that E(F, *) under CIPI (1,0.18) in 

the same case (0.9,0,0.1) reaches 87% when 6= 20%. Hence, we can conclude that 
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the expected optimal fund level under RIPI is more affected by the changes of the 

volatility levels. 

On the other hand, under the second scenario (1,0.22) in the case of (0.9,0,0.1), 

we find that E(Ct*) increases over the control period with small differences among the 

trends, when the level of volatility is increased to 20%. Thus, E(CT) is around the 

target of 22% as the value of y=0.9. 

Under the third scenario, we note that E(Ct*) under RIPI moves further away from the 

target when ß is increased to 20%. However, a smaller difference among the trends 

for E(Ct*) is noted under RIPI compared with CIPI. This is illustrated in Figures 5.12 

and 5.13 

Under the fourth scenario(1.2,0.2), similar trends of E(Ft*) and E(Ct*) in RIPI to the 

ones under the second scenario are obtained, while the results of the fifth scenario are 

similar to the ones under the third scenario, with different levels of expected funds 

and contribution rates due to the different value of the fund target. Hence, the same 

conclusion about the trends of E(Ft*) and E(Ct*) in RIPI and CIPI is reached. 

Figure 5.12 

The expected optimal contribution rate under 
RIPI (1,0.18) for different levels of volatility in 

the case of (0.9,0,0.1) 
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Figure 5.13 
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Conclusion 

The results obtained under different scenarios in RIPI implies a general decrease in 

the expected optimal fund level over the control period, when the level of volatility 

increases. In response, the expected optimal contribution rate increases and moves 

away from the target. The comparison between RIPI and CIPI reveals that the trends 

of E(Ft*) and E(Ct*) in RIPI deviate more from the target than those under CIPI. 

5.2.3 Effect of changing targets FTt and CTt 

In this subsection, the effect of changing the targets (i. e. the actuarial liability and the 

normal cost) are examined by changing their values up and down within the five 

scenarios mentioned before. In our analysis, we consider two different levels of 

volatility, when ß= 5% and 20% (as applied in subsection 4.4.3) in the cases of 

(0.3,0,0.7) and (0.7,0,0.3). 

(a) Level of volatility: a= 5% 

Under the first scenario (1,0.2) and in the case of (0.3,0,0.7), E(Ft*) decreases 

gradually over the control period to reach 97.9% in the final year. Under the second 

(1,0.22) and the fourth scenario (1.2,0.2), the expected optimal fund level slightly 

decreases with a tendency to increase in year 13 onwards. This is due to increasing the 

contribution and the fund targets in both scenarios respectively. On the other hand, 

under the third scenario (1,0.18) and fifth scenario (0.8,0.2), E(Ft*) remains around 

The expected optimal contribution rate under 
CIPI (1,0.18) for different levels of volatility in 

the case of (0.9,0,0.1) 
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its targets and decreases in year 13 onwards. This is due to decreasing the values of 

both targets. Figure 5.14 shows the results of E(Ft) under the different scenarios 

when ß= 5%. 

Figure 5.14 

The expected optimal fund level under RIPI for 
different scenarios in the case of (0.3,0,0.7) 

when sigma = 5% 

1.40 

1.20 

1.00 

0.80 
E(F*) 0.60 

0.40 
0.20 

0.00 

t sc (1.2,0.2) 

- a- sc (1,0.22) 

sc (1,0.2) 

sc (1,0.18) 

- sc (0.8,0.2) 

Time (t) 

Here, it is notable that the behaviour of E(F*, ) is similar under RIPI and CIPI, where 

it decreases slightly around the targets as the weighting risk factor of the solvency risk 

is still high, i. e. P=0.7. However, we note that the tendency for the fund level to 

increase or decrease by the end of the control period is more obvious under RIPI than 

CIPI. 

For the expected optimal contribution rate under (1,0.2), we find that it remains 

around the target with a slight increase responding to the slight decrease of the fund 

level. Under the second and fourth scenarios, there is a slight increase over the control 

period to get closer to the target. Nevertheless, under the third scenario (1,0.18) and 

fifth scenario (0.8,0.2), E(C*t) starts from the higher levels 21.4% and 23% 

respectively and decreases over the time span to get closer to the target. This is shown 

in Figure 5.15. 
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Figure 5.15 

The expected optimal contribution rate under 
RIPI for different scenarios in the case of 

(0-3,0,0.7) when sigma 5% 
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Similar trends of E(C*t) under the different scenarios are obtained under CIPI. For 

example, under (1,0.2), E(C*t) is around 21% under both models and decreases to 

20.3% under RIPI and 20.7% under CIPI. Although the expected optimal contribution 

rates at the end of control period may have small differences between the two models 

- given that these values are simulated-based estimates of the expected contribution 

rates - there is, in general, a similar behaviour of E(C*t) under both models. 

(b) Level of volatility: a= 20% 

Here, we will use the case of (0.7,0,0.3) to examine the effect of increasing the level 

of volatility when FT, and CT, are changed. 

According to the high level of volatility and the low value of the weighting risk factor 

of the solvency risk, the expected optimal fund level moves further away from the 

target as can be seen from Figure 5.16. 

Comparing Figure 5.16 with Figure 4.17, we note that E(Ft) in RIPI deviates more 

from the target. For example: under (1.2,0.2), E(Ft*) decreases to reach 113.6% in 

CIPI whereas it reaches 98.9% in RIPI. Further, under (0.8,0.2), it decreases to reach 

74.5% in CIPI and 56.9% in RIPI. 
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Figure 5.16 

The expected optimal fund level under RIPI for 
different scenarios in the case of (0.7,0,0.3) 

when sigma = 20% 
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On the other hand, the expected optimal contribution rate increases over the control 

period and moves further away from the target with a high level of a. However, E(Ct*) 

tends to become closer to the target at the end of the control period, due to the high 

value of the contribution rate risk (y) given in this case (0.7,0,0.3). Comparing the 

expected optimal contribution rates in Figure 5.17 and 4.18, we note that the expected 

contribution rates under RIPI tend to increase to approximately the same levels as 

CIPI. Although they decrease to get closer to the targets by the end of the time span, it 

is noted that E(Ct*) levels for RIPI get closer to their targets compared with those for 

CIPI shown in Figure 4.18. 

Figure 5.17 

The expected optimal contribution rate under 
RIPI for different scenarios in the case of 

(0.7,0,0.3) when sigma = 20% 
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Conclusion 

The values of the contribution targets and fund targets affect E(Ft*) and E(Ct*) under 

RIPI leading to a high level of E(Ft; ) when the fund target =120%, similar levels 

equal to 100% in the three scenarios (1,0.2), (1,0.22) and (1,0.18), and we get the 

lowest level of E(FF*) at FT, = 80%. The expected optimal fund level move further 

away from these targets when 6 is increased. 

Consequently, under the three scenarios (1,0.2), (1,0.22) and (1,0.18), E(Ct*) is 

around the same level due to having the same fund target. It moves upwards or 

downwards by the end of the control period to get closer to the target 22% or 18% 

respectively. On the other hand, having different fund targets in the last two scenarios 

(1.2,0.2) and (0.8,0.2) leads to lower level of the contribution rates in the former 

scenario and a higher level in the latter one. 

Although the trends of E(Ft*) and E(Ct*) have similar behaviour in RIPI and CIPI 

(when the fund targets and contribution targets are changed), the differences in the 

levels of the expected fund and contribution rate are more obvious with a higher level 

of volatility. 

5.2.4 Effect of changing the initial value of FO 

Here, a special case of studying the effect of changing the fund target (which has been 

studied in the subsection 5.2.3) to examine the effect on E(Co) is considered. The 

values of the initial fund Fo in RIPI model are similar to those used in CIPI in 

subsection 4.4.4, where we assume that Fo is equal to FTt as follows: 

FO is equal to 1 for the first, second and the third scenarios; 

Fo is equal to 1.2 for the fourth scenario; 

and it is equal to 0.8 for the fifth scenario. 

Following the same approach, the initial fund is used to calculate E(Co) according to 

the ratio-induced performance index solution (equation 3.48) which has been derived 

in Chapter 3: 
(2y+a) z,. ý 0'+24 { CTf -(cý +2dl: r+, )(F, -B, )+ 

VT. '*I -lag(t+l)} 
E(C`) 

2(2+Z=L+dh ) Cps CT, r+t 
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The result of calculating E(Co*) is then used to calculate E(Fl*) according to the fund 

growth equation as previously mentioned in section 4.4.4. 

Changing the initial fund values, consequently, results in changing the calculated 

values of E(Co*). For example: in the case of (0.1,0,0.9) and when a= 5%, the values 

of E(CO*) are almost the same when FO = 100%. Further, it decreases to 18.7% and 

increases to 22.8% when Fo = 120% and 80% respectively. A higher level of a= 15% 

and 20% leads these values to decrease as shown in Table 5.1. 

Table 5.1 
The values of E(Co*) under different scenarios for the 

case (0.1,0,0.9) when a= 5%, 15% and 20% 
cn 

1,0.2 1,0.22 1,0.18 1.2,0.2 0.8,0.2 
= 5% 20.8 0.6 1 18.7 2.8 

0=15% 19.2 19 19.3 16.7 1.6 
= 20% 17.8 17.6 18 15.1 0.4 

Comparing these values with those obtained under CIPI in Table 4.14, it is notable 

that the values of E(Co*) are approximately the same at different levels of volatility 
between both models. 

5.2.5 Effect of changing the weighting factors of the contribution rate risk 

and the solvency risk; y and I (with a= 0) 

The effect of changing the two main parameters y and ß in RIPI model is explored in 

this subsection through the different scenarios. The five cases - that previously 

mentioned in subsection 4.4.5 - with different values of the parameters are studied, 

while the value of the mixed term weighting risk factor a is set to be 0. 

(a) First scenario: FTt = 1, CTt = 0.2 

Under this scenario when a= 5%, we allow y to increase gradually and ß to decrease 

simultaneously in these different cases: (0.9,0,0.1), (0.3,0,0.7), (0.5,0,0.5), (0.7,0, 

0.3) and (0.9,0,0.1). Thus, the following results are obtained and shown in Table 5.2. 
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Table 5.2 

The expected optimal fund level under RIPI (1,0.2) for 

different combinations of y and ß when a=5% 

t 0.1,0,0.9 (0.3,0,0. 0.5,0,0.5 0.7,0,0.3 0.9,0,0.1 
1 100.00% 100.00% 100.00% 100.00% 100.00% 
2 99.88% 99.97% 100.02% 100.01% 99.79% 
3 99.80% 99.92% 99.99% 99.95% 99.49% 
4 99.76% 99.89% 99.95% 99.86% 99.13% 
5 99.76% 99.88% 99.92% 99.76% 98.73% 
6 99.73% 99.83% 99.83% 99.58% 98.21% 
7 99.73% 99.79% 99.74% 99.36% 97.62% 
8 99.72% 99.74% 99.61% 99.08% 96.92% 
9 99.74% 99.69% 99.45% 98.75% 96.11% 
10 99.72% 99.59% 99.22% 98.32% 95.17% 
11 99.67% 99.42% 98.89% 97.76% 94.06% 
12 99.67% 99.25% 98.53% 97.13% 92.84% 
13 99.55% 98.92% 97.97% 96.29% 91.37% 
14 99.42% 98.50% 97.30% 95.30% 89.72% 
15 99.15% 97.90% 96.43% 94.11% 87.84% 

Comparing the results with those obtained in Table 4.15, we find that E(Ft*) for the 

RIPI model has a similar behaviour to the CIPI model. In response to our giving more 

importance to the weighting risk factor of the contribution target y, the expected 

optimal fund level moves down further from the target over the control period. We 

also note that E(FT) reaches 87.8% when y=0.9 compared with 98.1% obtained in 

CIPI model. This indicates that E(Ft`) under RIPI tends to move further away from its 

target with decreasing the value of ß compared with under CIPI model. 

The expected optimal contribution rate has also a similar behaviour to the one under 

CIPI shown in Table 4.16. The levels of E(Ct*) increase to be around 21% and get 

close to the target with increasing the value of y as shown in Table 5.3. 

Increasing the level of volatility leads both E(Ft*) and E(Ct*) to move further away 

from their targets. In RIPI model, for the case (0.9,0,0.1) when a= 20%, E(FT*) 

reaches 65.2% whereas it is equal to 89.8% under CIPI. 
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Meanwhile, E(Ctt) for the RIPI, in the same case of (0.9,0,0.1), starts from 

approximately 18% and increases gradually to 20.7% in year 8; then it remains around 

this value until year 13, when it starts to decrease to get closer to the target at the 

final T. In fact, E(Ct*) of CIPI has a similar behaviour, starting from approximately 

18% and increasing gradually to be around 21.9% in year 8, it remains around this 

value until year 13; thereafter, it decreases to get closer to the target. 

Table 5.3 

The expected optimal contribution rate under RIPI (1,0.2) 

for different combinations of y and ß when a= 5% 

t 0.1,0,0.9 (0.3,0,0. 0.5,0,0.5 0.7,0,0.3 (0.9,0,0. 
1 20.80% 20.87% 20.92% 20.91% 20.71% 
2 20.86% 20.88% 20.90% 20.87% 20.67% 

3 20.90% 20.89% 20.89% 20.85% 20.64% 
4 20.92% 20.90% 20.87% 20.82% 20.61% 
5 20.92% 20.89% 20.85% 20.78% 20.57% 
6 20.94% 20.89% 20.84% 20.75% 20.53% 
7 20.93% 20.88% 20.81% 20.72% 20.49% 
8 20.93% 20.87% 20.79% 20.68% 20.45% 

9 20.92% 20.84% 20.75% 20.63% 20.40% 
10 20.91 % 20.82% 20.70% 20.57% 20.35% 

11 20.91% 20.78% 20.65% 20.51% 20.30% 
12 20.87% 20.71% 20.57% 20.44% 20.25% 

13 20.83% 20.63% 20.48% 20.35% 20.19% 
14 20.71% 20.49% 20.36% 20.25% 20.13% 

15 20.48% 20.29% 20.20% 20.13% 20.07% 

(b) Second and third scenarios: FTt = 1, CTt = 0.22; FTt =1 and CTt = 0.18 

Here, we examine the results of changing the parameters y and ß under the second and 

third scenarios when the level of volatility is equal to 5% only. Due to the similarity 

between the results obtained under the second and fourth scenarios as well as the third 

and fifth scenarios, the results will be explained under the fourth and fifth scenarios 

when a= 20% in the following sub-subsection (c). This is to avoid the repetition of 

the results interpretations in our analysis. 

When a= 5%, E(Fit) generally decreases slightly to be around the target in the first 

half of the control period, and it starts to increase afterwards due to the high value of 

the contribution target. However, under the third scenario, E(Ft*) remains around its 
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target in the beginning of the control period and gradually decreases over the years of 

the control period. 

Here, it is notable that giving less importance to ß affects clearly the behaviour of 

E(Ft*). In other words, in the case of (0.9,0,0.1), we note that E(Ft*) increases from 

year 6 till it reaches 110% by the end of the control period under the second scenario, 

and it decreases from the beginning of the control period till it reaches 60.6% in the 

final year under the third scenario. Figures 5.18 and 5.19 show the differences 

between the two scenarios. 

Figure 5.18 
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Comparing these results with Figures 4.20 and 4.21, we find that E(Ft) in RIPI model 

deviates further from the targets. It can be seen in Figure 5.18 that the final level of 

E(Ft*) moves up to reach 110% while it reaches approximately 102% in Figure 4.20. 
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Furthermore, under the third scenario, the decreasing trends reach a minimum of 

60.6% in the case of (0.9,0,0.1) in Figure 5.19 while under CIPI the minimum level 

of E(Ft*) is 95%, as shown in Figure 4.21. 

Under (1,0.22), for all cases, the expected optimal contribution rates start from 

around 20% and increase over the control period to be closer to the contribution target 

22%. Under the third scenario, they start from around 21% and decrease gradually 

over the control period to be closer to the target 18%. From Figures 5.20 and 5.21, it 

is clear that giving more importance to the weighting risk factor of the contribution 

target leads the final level of E(Ct*) to be closer to the target. 

Figure 5.20 
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Figure 5.21 

The expected optimal contribution rate 
under RIPI (1,0.18) for different cases when 

sigma = 5% 

0.24 
0.23 
0.22 
0.21 
0.20 

E(C') 0.19 
0.18 
0.17 
0.16 
0.15 

6 case(0.1,0,0.9) 

case(0.3,0,0.7) 

case(0.5,0,0.5) 

case(0.7,0,0.3) 

-E case(0.9,0,0.1) 

188 

13579 11 13 15 

Time (t) 



Looking at Figures 4.22 and 4.23 and comparing them with Figures 5.20 and 5.21, we 

find that in the CIPI model under both scenarios, the behaviour of E(Ct*) shows more 

stability around 21% in most of the time span compared with the trends under RIPI. 

However, E(Ct*) increases towards 22% under (1,0.22) and decreases towards 18% 

under (1,0.18) as expected, when approaching the end of this time span. 

(c) Fourth and fifth scenarios: FTt = 1.2 and CTt = 0.2; FTt = 0.8 and CTt = 0.2 

Here, we change the fund target up to 120% and down to 80% and keep CTt at 20%. 

We study the effect of changing the parameters of the contribution rate risk and 

solvency risk in all cases when a= 20% only, for the same reason explained in sub- 

subsection (b). 

Under the fourth scenario, the expected fund level decreases over the control period 

from 120% to reach a minimum level of 100%. It moves further away from the target 

due to the high level of volatility. By the end of the control period, we note that there 

is a tendency for E(Ft*) to increase as a result of the high value given to the fund 

target. 

Under the fifth scenario, we note that E(Ft`) decreases daramatically until it reaches a 

minimum value of 37.9%, in the case of (0.9,0,0.1), at the end of the control period. 

This is due to the low level of fund target, the high level of volatility and finally the 

low value of P. These results are shown in Figures 5.22 and 5.23. 

Figure 5.22 
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Figure 5.23 

The expected optimal fund level under RIPI 
(0.8,0.2) for different cases when sigma = 20% 
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Comparing these results with those obtained under CIPI in Figures 4.24 and 4.26, it is 

clear that our giving more importance to the weighting risk factor of the contribution 

rate leads E(Ft) to move further away from its target under RIPI. Thus, under the 

fourth scenario, it decreases to reach a minimum level of 106% under CIPI compared 

with 100% under RIPI. In the fifth scenario (0.8,0.2) and in the case of (0.9,0,0.1), 

E(Ft) falls to be 37.9% under RIPI compared with 69% under CIPI. 

When 6= 20%, under the fourth scenario for the same five cases, the trends of E(Ct*) 

start from lower levels of about 15% and increase over the control period to be around 

20%. Under the fifth scenario, they start from a higher level of about 20%, then, 

increase until they reach a maximum of 23.2% in the first three cases; (0.1,0,0.9), 

(0.3,0,0.7) and (0.5,0,0.5). Subsequently, they decrease to be closer to the target by 

the end of the control period. In fact, this decreasing trend towards the target is more 

obvious when y is high in the last two cases; (0.7,0,0.3) and (0.9,0,0.1). Figures 

5.24 and 5.25 show these results. 

Comparing these Figures with Figures 4.26 and 4.27 in CIPI model under the two 

scenarios, we find that E(Ct*) starts from the same levels; however, in the CIPI model 

for the five different cases, E(Ct*) is more stable with small differences around certain 

levels: 20% under (1.2,0.2) and 23% under (0.8,0.2) respectively. 
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Figure 5.24 
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Figure 5.25 

The expected optimal contribution rate under 
RIPI (0.8,0.2) for different cases when 

sigma = 20% 
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Conclusion 

The effect of the weighting risk factors ? and ß on E(Ft*) and E(Ct*) for the RIPI 

model is identified under the five different scenarios. The expected optimal fund 

level generally remains close to the target when less importance is given to y. 

Simultaneously, E(Ct*) moves further away from the target. This deviation from the 

target for either E(Ft*) or E(Ct*) is more obvious with a higher level of volatility and 

under RIPI compared with CIPI. 
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It is also noted that the high value of a results in more variation of the levels of E(Ct*) 

under RIPI compared with CIPI, where in the latter model E(Ct*) shows more stable 
behaviour around certain levels. 

5.2.6 Effect of changing the weighting factors of the contribution rate risk 

and the solvency risk; y and ß (with a# 0) 

The importance of including the mixed middle term for RIPI model to test the mutual 

interests of the employees and the employer is explored in this subsection. We use the 

same values of the weighting risk factor of the mixed term given before, i. e 

a=0.2,0.4,0.6,0.8. Our analysis will focus on the comparison between both models 
CIPI and RIPI within the three cases (0.1,0.9)2, (0.5,0.5) and (0.9,0.1), where they 

represent the two extreme cases and the intermediate one. 

(a) First scenario FTt = 1, CTt = 0.2 

Here, we follow the same approach applied in subsection 4.4.6, so that, we identify 

first the effect of a non-zero value of the weighting risk factor of middle term with 

changing the other parameters y and P. Secondly, we study the effect of changing the 

value of a in the three cases (0.1,0.9), (0.5,0.5) and (0.9,0.1). 

When a= 5%, five different cases of changing y and ß with fixing a at 0.2 are 

examined, they are: 

(0.1,0.2,0.9), (0.3,0.2,0.7), (0.5,0.2,0.5), (0.7,0.2,0.1) and (0.9,0.2,0.1), 

the results of E(F1ý) and E(Ct*) are shown in Tables 5.4 and 5.6. 

2 In this part and also throughout the thesis, we refer to the weighting risk factors of 

solvency and contribution rate, in the cases under study, in the form of (y, ß) as the 

cross-product factor a is changing. 

192 



Table 5.4 

The expected optimal fund level under RIPI (1,0.2) 

for different cases when a=0.2 and a=5% 

t (0.1,0.2,0.9) (0.3,0.2,0.7) (0.5,0.2,0.5) (0.7,0.2,0.3) (0.9,0.2,0.1) 

1 100.00% 100.00% 100.00% 100.00% 100.00% 

2 99.70% 99.83% 99.89% 99.87% 99.62% 
3 99.50% 99.68% 99.76% 99.70% 99.16% 
4 99.39% 99.57% 99.64% 99.51% 98.66% 
5 99.35% 99.50% 99.54% 99.32% 98.12% 
6 99.29% 99.40% 99.39% 99.05% 97.49% 

7 99.27% 99.34% 99.25% 98.78% 96.80% 
8 99.26% 99.25% 99.07% 98.44% 96.02% 
9 99.26% 99.18% 98.89% 98.06% 95.17% 
10 99.25% 99.08% 98.64% 97.61% 94.21% 
11 99.19% 98.90% 98.31% 97.04% 93.12% 

12 99.19% 98.74% 97.95% 96.43% 91.96% 

13 99.09% 98.44% 97.43% 95.63% 90.59% 
14 98.99% 98.07% 96.83% 94.73% 89.10% 

15 98.80% 97.57% 96.07% 93.67% 87.44%a 

Table 5.4 shows a decreasing trend of the expected optimal fund level over the control 

period. We also note that it decreases more when y is increased to higher levels; for 

example, E(FF) decreases from 1 to 98.8% in the final year in the case of 

(0.1,0.2,0.9), while E(FT) = 87.4% in the case of (0.9,0.2,0.1). 

Moreover, for all cases shown above, E(Ft) decreases slightly more compared with 

the results obtained in Table 5.1 when a=0. This is generally consistent with the 

results previously obtained under CIPI. However, E(Ft. ) moves further away from the 

target under RIPI compared with the results obtained under CIPI in Table 4.18, where 

E(FT`) = 99.7% and 97.6% respectively for the two cases (0.1,0.2,0.9) and 

(0.9,0.2,0.1). 

From Table 5.5, the expected optimal contribution rate shows a slight increase to be 

around 21% and there is a tendency to decrease by the end of the control period to be 

around 20%. Decreasing the value of 0 to 0.1 with a=0.2 leads E(CC*) to be the 

closest to the target of 20% over the control period. 
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Comparing with Table 5.2 where a=0, E(Ct*) takes very similar values, except that it 

is slightly further away from the target by the end of the control period when a=0.2. 

Table 5.5 

The expected contribution rate under RIPI (1,0.2) 

for different cases when a=0.2 when a= 5% 

t (0.1,0.2,0. 0.3,0.2,0.7 (0.5,0.2,0. (0.7,0.2,0. (0.9,0.2,0. 
1 20.63% 20.75% 20.80% 20.79% 20.55% 
2 20.77% 20.80% 20.82% 20.78% 20.54% 

3 20.86% 20.85% 20.83% 20.77% 20.54% 
4 20.92% 20.87% 20.84% 20.77% 20.53% 
5 20.93% 20.88% 20.83% 20.75% 20.52% 

6 20.96% 20.90% 20.83% 20.74% 20.51% 
7 20.96% 20.90% 20.82% 20.72% 20.50% 
8 20.97% 20.90% 20.81% 20.70% 20.48% 
9 20.96% 20.88% 20.78% 20.66% 20.47% 

10 20.95% 20.86% 20.75% 20.63% 20.46% 
11 20.96% 20.84% 20.72% 20.59% 20.44% 
12 20.92% 20.78% 20.66% 20.54% 20.42% 

13 20.90% 20.72% 20.59% 20.49% 20.41% 
14 20.83% 20.62% 20.50% 20.42% 20.40% 
15 20.69% 20.48% 20.39% 20.35% 20.38% 

Furthermore, comparing these results with the ones obtained in Table 4.19, it is more 

clear that E(C1') has an overall decreasing trend towards its target under RIPI, while it 

is more stable around 21% over the control period with a tendency to decrease at the 

end of control period under CIPI. 

The second analysis in this sub-subsection considers the comparison between the'two 

extreme cases, (0.1,0.9) and (0.9,0.1), and the middle case (0.5,0.5) for different 

values of a. The results for each case are discussed below and also compared with the 

CIPI results. 

When a= 5%, in the case of (0.1,0.9), and a is increased to 0.8, the expected optimal 

fund level decreases slightly over the control period as shown in Figure 5.26. The 

departure from the target, when the cross-product coefficient a is increased, is 

explained by rewarding the deviation from the target due to the mathematical 

structure of the dynamic programming model. This is consistent with the results 
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obtained under CIPI but with more deviation from the target as explained in sub- 

subsection 4.4.6(a). 

Figure 5.26 
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For instance, E(Ft) moves down to be around 97% in the case of (0.1,0.8,0.9), while 

it reaches 99.4% for the same case under CIPI in Figure 4.28. 

Considering the results of applying the other cases (0.5,0.5), (0.9,0.1), at the same 

level of ß= 5%, the levels of E(Ft*) decrease more to reach 94.3% and 81.5% in the 

cases of (0.5,0.8,0.5) and (0.9,0.8,0.1) respectively. This deviation of E(Ft) from 

the target is due to increasing the weighting risk factors of both the contribution rate y 

and the mixed middle term a. These results are shown in Figures 5.27 and 5.28. The 

results can be compared with Figures 4.30 and 4.34 to identify the differences 

between RIPI and CIPI, where under the latter model E(FT) = 98.9% and 95.1% in 

the cases of (0.5,0.8,0.5) and (0.9,0.8,0.1) respectively. 
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Figure 5.27 

The expected optimal fund level under RIPI (1,0.2) 
for different values of alpha when sigma = 5%, 

gamma = 0.5 and beta = 0.5 
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Figure 5.28 

The expected optimal fund level under RIPI 
(1,0.2) for different values of alpha when 
sigma = 5°/q gamma = 0.9 and beta = 0.1 
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At the same level of volatility a= 5%, in the cases of (0.1,0.9), the expected optimal 

contribution rate is almost around 21%. We also note that all trends of E(Ct*) cross at 

the value of 20.9% in year 5, then, they move away from the target to reach 21.4% as 

a is increased to 0.8. This deviation from the target reflects the mathematical 

structure of the dynamic programming model, in which the weighting risk factor of 

the middle mixed term affects both the fund level and the contribution rate, resulting 

in rewarding a deviation from the target rather than penalizing it. 

Figure 5.29 indicates that E(Ct*) deviates more from the target with increasing a than 

under the CIPI model in Figure 4.29, where it remains stable around 21% until it 

decreases at the end of the control period. 
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Figure 5.29 

The expected optimal contribution rate under RIPI (1, 
0.2) for different values of alpha when sigma = 5°/q 

gamma = 0.1 and beta=0.9 
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Looking at the expected optimal contribution rate in the cases of (0.5,0.5) and 

(0.9,0.1) when a= 5%, we find that the trends of E(Ct*) cross around the mid of the 

control period at 20.8% and 20.5% respectively, before they deviate from the target 

when the value of a is increased. Here, we note that the deviation of E(Ct*) from the 

target in these cases are less than the case of y=0.1 and ß=0.9, as a result of the 

higher value of y as shown in Figures 5.30 and 5.31. From a comparison with the 

results of E(Ct*) in the same cases under CIPI - which are shown in Figures 4.31 and 

4.34 - we note that the behaviour of the expected optimal contribution rate is similar 

under both models; however, E(Ct*) for the CIPI is more stable at certain levels than 

RIPI. 

Figure 5.30 

The expected optimal contribution rate under RIPI 
(1,0.2) for different levels of alpha when 
sigma = 5%q gamma = 0.5 and beta = 0.5 
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Figure 5.31 

The expected optimal contribution rate under 
RIPI (1,0.2) for different values of alpha when 

sigma = 5°/6, gamma = 0.9 and beta = 0.1 
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When the level of volatility is increased to 20%, the different behaviours of E(Ft*) and 

E(Ct*) in the three cases under study: (0.1,0.9), (0.5,0.5) and (0.9,0.1) are described 

below 

The results of E(F1x) show a decreasing trend to a lower level compared with the 

results when a= 5%, for each case from (0.1,0,0.9) to (0.1,0.8,0.9). This is due to 

the increase in the level of volatility. However, we note that E(Ft*) tends to increase 

with small differences with increasing a from one case to another. These differences 

are very small and could be referred to the estimates being simulation-based. Hence, 

we can note that E(Ft*) remains between 94% and 95% as a is increased. 

Similar cases under CIPI show that E(Ft*) has no remarkable difference among the 

cases when a is increased from 0 to 0.8. 

Under RIPI for the cases (0.5,0.5), E(Ft*) decreases gradually over the control period. 

When the value of a is increased from 0 to 0.8, the differences observed from one 

case to another are still small. However, the tendency for E(FT) to increase with 

increasing a is more marked than in the cases of (0. I, 0.9). 

Further, in the cases of (0.9,0.1), E(Ft) continues to decrease over the control period. 

Giving more importance to the mixed term parameter a leads the levels of E(Ft*) to 

increase from cases (0.9,0,0.1) to (0.9,0.8,0.1). Here, the differences among the 
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levels are more obvious than in the other cases of (0.1,0.9) and (0.5,0.5). This is 

caused by the high level of volatility along with the high values of both y and a, these 

values are combined together to affect the trends of E(Ft*) leading to a greater 

deviation from the target. We have examined the distribution of E(FT) in the case of 

(0.9,0.8,0.1) - as explained earlier in sub-subsection 4.4.6(a) - and noted that the 

distribution of expected fund values is more positively skewed. This leads the mean to 

move further to the right, hence, increasing the level of the expected fund. 

It is clear that the levels of E(Ft*) in the cases of (0.1,0.9) are closer to the target than 

for the cases of (0.5,0.5) and (0.9,0.1) due to more importance being given to the 

weighting risk factor of the solvency risk. Figures 5.32,5.33 and 5.34 show these 

results. 

Therefore, E(Ft; ) indicates more volatile behaviour under RIPI compared with CIPI. 

The levels of E(Ft*) under CIPI remain more stable in the cases of (0.1,0.9) and (0.5, 

0.5) as a is increased; however, the behaviour of E(Ft*) shows an increasing trend in 

the cases of (0.9,0.1) when a is increased as shown in Figure 4.36. 

Looking at the changes of the expected optimal contribution rates when a= 20%, we 

note that E(Ct*) increases over the control period in response to the downward trend 

of E(Ft - ). Nevertheless, as the value of a is increased from 0 to 0.8 in the cases of 

(0.1,0.9), E(Ct*) takes similar values and increases to reach approximately 22%. 

In the cases of (0.5,0.5), with increasing a, E(Ct*) increases with small differences 

among the cases to reach approximately 22% in the cases of (0.5,0.6,0.5) and 

(0.5,0.8,0.5). However, we find that E(Ct*) is closer to the target in the cases where 

a=0,0.2 and 0.4 compared with the corresponding cases of (0.1,0,0.9), 

(0.1,0.2,0.9) and (0.1,0.4,0.9) due to the greater importance being given to y. 

Finally, the cases of (0.9,0.1) show that E(Ct*) increases to be around 21%, which is 

less than the cases of (0.1,0.9) and (0.5,0.5), again due to the greater importance 

being given to y. Although the differences among the cases with increasing a are 

small, the level of E(CT) for the case of (0.9,0,0.1) is the closest to the target. These 

results are shown below in Figures 5.35,5.36 and 5.37. 
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Figure 5.32 
The espected optimal fund level under RIPI 

(1.0.2) for different levels of alpha when 
sigma = 20X. gamma=0.1 and beta= 0-9 
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Figure 5.33 
The expected optimal fund level under RIPI 

(1.0.2) for different levels of alpha when 
sigma = 20x. gamma = 0.5 and beta = 0.5 
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Figure 5.34 
The espected optimal fund level under RIPI 

(1.0.2) For different levels of alpha when 
sigma = 20X. gamma = 0.9 and beta = 0.1 
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Figure 5.35 
The expected optimal contribution rate under 
RIPI (1.0.2) for different levels of alpha when 

sigma = 20%. gamma= 0.1 and beta= 0-9 
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Figure 5.36 
The expected optimal contribution rate under 
RIPI (1.0.2) for different levels of alpha when 

sigma = 20%. gamma = 0.5 and beta = 0.5 
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Figure 5.37 
The expected optimal contribution rate under 
RIPI (1.0.2) for different levels of alpha when 

sigma = 20%. gamma = 0.9 and beta = 0.1 

0.25 - 
0.20 

0.15 
E(C'] 0.10 

0.05 
0.00 

13579 11 13 15 
Time (t) 

-4-- case(0.9,0,0.1) - . -- case(0.9,0.2,0.1) 
case(0.9,0.4,0.1) case(O. 9,0.6,0.1) 

- case(0.9,0.8,0.1) 

200 

13579 11 13 15 
Time(t) 



(b) Second and third Scenarios: FTt =1 and CTt = 0.22; FTt =1 and 

CTt = 0.18 

Similarly to the approach applied in subsection 5.2.5 (b), we consider in our analysis 

for this sub-subsection the cases when a= 5%. The cases, when a= 20%, will be 

studied under the fourth and the fifth scenarios in the following sub-subsection 

5.2.6(c). 

When a= 5%, under the second scenario for the cases of (0.1,0.9) when a is 

increased from 0 to 0.8, we note that the expected optimal fund level is around the 

target of 100% over the control period. However, it increases gradually as the level of 

a is increased until it reaches the maximum level of approximately 103% when 

a=0.8. 

The tendency of E(Ft) to increase above the target level, with the increase of a, is 

more obvious in the cases where more importance is given to both y and a. The results 

under the cases of (0.5,0.8,0.5) and (0.9,0.8,0.1) show that E(Ft*) reaches a 

maximum level of 105% and 120% respectively. This increasing trend of E(Ft*) 

reflects the effect of using a higher level of contribution target. Figures 5.38,5.39 and 

5.40 show the trends of the expected optimal fund levels for the different cases of 

(0.1,0.9), (0.5,0.5) and (0.9,0.1). 

Figure 5.38 

The expected optimal fund level under RIPI 
(1,0.22) for different levels of alpha when 
sigma = 5%, gamma = 0.1 and beta = 0.9 
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Figure 5.39 

The expected optimal fund level under RIPI 
(1,0.22) for different levels of alpha when 
sigma = 5°/q gamma = 0.5 and beta = 0.5 
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Figure 5.40 

The expected optimal fund level under RIPI 
(1,0.22) for different levels of alpha when 
sigma = 5% gamma = 0.9 and beta = 0.1 
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When the third scenario is applied at the same level of volatility, we note that E(Ft*) 

generally decreases over the control period and from one case to another. The trends 

of E(Ft) are at higher levels in the cases of (0.1,0.9) than (0.5,0.5) and (0.9,0.1). For 

example, E(Ft) reaches 90% in the case of (0.1,0.8,0.9) and it drops dramatically to 

the lowest level of 37.6% in the case of (0.9,0.8,0.1). This is due to the decrease in 

the contribution target and the increase in the value of a, which leads to a greater 

departure from the target. Figures 5.41,5.42 and 5.43 show these results which 

illustrate the differences between the trends of E(Ft*) under the second and third 

scenarios, due to the change in the value of the contribution target. 
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Figure 5.41 

The expected optimal fund level under RIPI 
(1,0.18) for different levels of alpha when 
sigma =5°/s gamma = 0.1 and beta=0.9 
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Figure 5.42 

The expected optimal fund level under RIPI 
(1,0.18) for different levels of alpha when 
sigma = 5°/s gamma = 0.5 and beta = 0.5 
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Figure 5.43 

The expected optimal fund level under RIPI 
(1,0.18) for different levels of alpha when 
sigma = 5°/q gamma = 0.9 and beta = 0.1 
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Further, we compare the trends of E(Ft) for the CIPI and RIPI under both scenarios. 

The results show a similar behaviour between both models under each scenario. 

Nevertheless, the trends for E(Ft*) under RIPI deviate further away from the target 

and are wider in range compared with CIPI. For instance, under the second scenario, 

the level of E(F, ) in the case of (0.1,0,0.9) moves down to 99.3% and 99.8% under 

RIPI and CIPI respectively. The level of E(FC*) in the case of (0.1,0.8,0.9) moves up 

to be approximately 103% under RIPI and 100.3% under CIPI. This is shown in 

Figures 4.38 and 5.38. Under the third scenario, these values are decreased to 90% 

and 98.5% in the same case of (0.1,0.8,0.9). 

On the other hand, when ß= 5%, under the second scenario (1,0.22) for the cases of 

(0.1,0.9) and a is increased from 0 to 0.8, E(Ct*) is around 21%. However, it is 

notable that the different levels of E(Ct*) cross in year 5 before they tend to increase 

towards the target as a is increased from 0 to 0.4. Meanwhile, they tend to decrease 

and move away from the target in the two remaining cases (0.1,0.6,0.9) and 

(0.1,0.8,0.9). When ß is decreased to 0.5 and 0.1 with increasing a from 0 to 0.8, the 

trends of E(Ct*) have a similar behaviour becoming closer to the target when a is 

increased from 0 to 0.4 and departing from the target with the higher values of a=0.6 

and 0.8. Figures 5.44 - 5.46 show the behaviour of E(Ct*) for the different cases under 

the second scenario. 

Figure 5.44 

The expected optimal contribution rate under RIPI 
(1,0.22) for different levels of alpha when 
sigma = 5°/q gamma = 0.1 and beta = 0.9 
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Figure 5.45 

The expected optimal contribution rate under 
RIPI (1,0.22) for different levels of alpha when 

sigma = 5%% gamma = 0.5 and beta = 0.5 
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Figure 5.46 

The expected optimal contribution rate under 
RIPI (1,0.22) for different levels of alpha when 

sigma=5%, gamma = 0.9 and beta=0.1 
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Next, we look the results of applying the third scenario, the expected optimal 

contribution rate increases over the control period to be around 21% for the cases of 

(0.1,0.9). The levels of E(C(*) cross in year 5 and remain stable with a tendency to 

decrease towards the target 18%, by the end of the control period, in the three cases 

when a=0,0.2 and 0.4. At the same time, E(C, *) moves further away from the target 

when a=0.6 and 0.8 by the end of the control period. The trends of E(C, i) have 

similar behaviour over the control period in the cases of (0.5,0.5) and (0.9,0.1), 

where they cross in the first half of the control period and decrease to become closer 

to the target when less importance is given to a and 0 as shown in Figures 5.47,5.48 

and 5.49. 
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Figure 5.47 

The expected optimal contributiont rate under RIPI 
(1,0.18) for different levels of alpha when 
sigma = 5°/s gamma = 0.1 and beta = 0.9 
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Figure 5.48 

The expected optimal contribution rate under RIPI 
(1,0.18) for different levels of alpha when 
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Figure 5.49 

The expected optimal contribution rate under 
RIPI (1,0.18) for different levels of alpha when 

sigma = 50/g gamma = 0.9 and beta = 0.1 
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On the other hand, the trends of E(Ct*) under CIPI are more stable and show smaller 

deviations from the target when a is increased to 0.8 compared with RIPI. For 

example, in CIPI, E(Ct*) is around 21% in the cases of (0.1,0.9) under the second 

scenario as shown in Figure 4.41, and there is a tendency to move closer to the target 

22% with an increase in y in the cases (0.5,0.5) and (0.9,0.1) when the value of a is 

small. Under the third scenario, similar behaviour of E(Ct*) is observed under CIPI 

but again with more stable trends and less deviation from the target compared with 

RIPI, so that, in the cases of (0.1,0.9), E(Ct') is around 21% - as shown in Figure 

4.53 - and decreases to become closer to the target with a high value of y and low 

value of a. 

(c) Fourth and fifth scenarios: FTt = 1.2 and CTt = 0.2; FTt = 0.8 and CTt = 0.2 

In this sub-subsection, the effect of the weighting risk factor of the mixed term is 

explored with a higher level of volatility compared with previous sub-subsection 

5.2.6(b). Thus, we focus on studying the cases when a= 20%, where we expect the 

results of E(Ft*) and E(CK) to be similar to the ones when a= 5% but with a greater 

deviation from the target. 

When a= 20% under the fourth scenario for all cases of (0.1,0.9), we note that the 

levels of E(FF*) increase from one case to another with increasing a until it is around 

the target in the case of (0.1,0.8,0.9). In the cases of (0.5,0.5) and (0.9,0.1), the 

trends of E(Ft*) move further away from the target due to the decrease of P. We find 

that the trends are wider in range when a is increased from 0 to 0.8, i. e. E(Ft*) 

decreases to 110%, 103.2% and 100% in the cases (0.1,0,0.9), (0.5,0,0.5) and 

(0.9,0,0.1) respectively. When a=0.8, E(Ft*) moves from the target level of 120% to 

approximately 115%, in the cases of (0.1,0.8,0.9) and (0.5,0.8,0.5), then, it moves 

further away from the target and increases dramatically to 152.6% in the case of 

(0.9,0.8,0.1). This upward trend of E(F1*) - shown in Figures 5.50,5.51 and 5.52 - 

reflects the high value of the fund target and high level of volatility along with the 

high value of a. 
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Figure 5.50 
The ezpected optimal fund level under RIPI 
(1.2.0.2) for different levels of alpha when 
sigma = 20X. gamma = 0.1 and beta = 0.9 
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Figure 5.51 
The expected optimal fund level under RIPI 
(1.2.0.2) for different levels of alpha when 
sigma = 20X. gamma = 0.1 and beta = 0.9 

1.25 
1.20 
1.15 
1.10 
1.05 
1.00 
0.95 
0.90 

13579 11 13 15 
Time (t) 

0_ 
case 0.5; 0.8 0.5) -= case(O. S; 0.6; 0.5 

Figure 5.52 

The expected optimal fund level under RIPI 
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Figure 5.54 
The expected optimal fund level under RIPI 
(0.8.0.2) for different levels of alpha when 
sigma = 20X. gamma = 0.5 and beta = 0.5 
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Figure 5.55 
The expected optimal fund level under RIPI 
(0.8.0.2) for different levels of alpha when 
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Comparing these results with the ones under the CIPI model, we find that the 

behaviour of E(FFt) is similar under both scenarios. However, under the fourth 

scenario in the CIPI model, it increases from one case to another with increasing a but 

in a narrower range. For example, E(Ft*) is around 116.5% in the case of 

(0.1,0.8,0.9) under CIPI - as shown in Figure 4.68 - instead of 120% under RIPI. 

Under the fifth scenario, E(FF`) decreases in both models but to lower levels and with 

a wider range under RIPI. For example, it is around 76% in the case of (0.1,0,0.9) 

and drops to be around 72% in the case of (0.1,0.8,0.9) under RIPI, whereas it is 

between 77% and 76% in the same cases under CIPI as shown in Figure 4.75. 

On the other hand, under the fifth scenario, E(Ft*) decreases over the control period as 

more importance is given to a and less to ß. In other words, E(Ft*) reaches the 

minimum level of 33% in the case of (0.9,0.8,0.1) as shown in Figures 5.53,5.54 

and 5.55. 

Generally, the trends of E(Ct*) under the fourth scenario are very close to each other, 

where it increases in the beginning of the control period and remain stable at the level 

of 20% in the cases of (0.1,0.9). However, E(Ct*) moves away from the target to be 

around 19% when the value of a is increased to 0.8. For other cases (0.5,0.5) and 

(0.9,0.1) E(Ct*) shows a similar behaviour of becoming closer to the target when y is 

increased to 0.5 and 0.9 with lower levels of a. On the other hand, under the fifth 

scenario, E(Ct`) increases to be around 23% with small differences among the cases of 

(0.1,0.9) with increasing a. This level of E(Ct*) decreases to become closer to the 

target when y is increased, apart from the cases of (0.5,0.8,0.5) and (0.9,0.8,0.1), 

where it deviates from the target due to the high level of a. The results of E(Ct*) 

under both scenarios are shown from Figure 5.56 to 5.61. 
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Figure 5.56 
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RIPI (1.2.0.2) for different levels of alpha 
when sigma = 20X. gamma = 0.1 and 

beta = 0.9 
0.22 

0.20 

E(C') 0.16 

0.16 

0.14 
13579 11 13 15 

Ti.. (t) 

case 0.1,0,0.9) --s- case(0.1,0.2,0.9ý 
case 0.1,0.4,0.9) case(0.1,0.6,0.9 

--*. -case 0.1, O. B. 0.9) 

Figure 5.57 
The expected optimal contribution rate under 

RIPI (1.2.0.2) for different levels of alpha 
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Figure 5.58 
The expected optimal contribution rate under 

RIPI (1.2.0.2) for different levels of alpha 
when sigma = 20X. gamma = 0.9 and 
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Figure 5.59 
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Comparing these results with the trends of E(Ct*) under CIPI, we find that, under the 

fourth scenario in the cases of (0.1,0.9) for CIPI, the trends of E(Ct*) increase over 

the control period around the level of 19%, and move upwards to the target by the end 

of the control period. Hence, the corresponding results of E(Ct*) - as shown in Figure 

4.71 - show smaller differences among the cases from (0.1,0,0.9) to (0.1,0.8,0.9) 

and more homogeneous behaviour with increasing a compared with the results in 

RIPI model. 

On the other hand, under the fifth scenario, the results reveal that the levels of E(Ct*) 

increase over the control period and to be around 23%. Similarly to the fourth 

scenario, we note that the levels of E(Ct*) are closer to each other with small 

differences when the parameter a is increased compared with the RIPI results. In the 

cases of (0.5,0.5) and (0.9,0.1), similar conclusions are reached where the trends of 

E(Ct*) are more stable and closer to the target with a narrower range among the cases 

compared with RIPI. 

Conclusion 

The effect of the cross-product weighting risk factor (a) on E(Ft*) and E(Ct*) under 

RIPI model is similar to the results reached under the CIPI model. In other words, 

greater deviations from the target are generally observed for the different trends of 

E(Ft*) and E(Ct*), when the value of a is increased, under RIPI model. 

When the level of volatility is increased, it leads to marked departures from the target, 

as we have seen in the trends of E(Ft*) under the fourth and fifth scenarios. Moreover, 

the trends of E(F1"`) are wider in range under RIPI compared with CIPI. On the other 

hand, the optimal expected contribution rate shows more stable trends with smaller 

differences under CIPI than the RIPI model. 

5.2.7 Effect of changing the fund ratio q 

Finally, we consider studying the effect of changing the parameter il on E(FF*) and 

E(Ct*) under the five different scenarios. Hence, we allow the fund ratio in RIPI 

model to change from 100% to 90% and 110% respectively. we examine the different 

cases of RIPI model - without any comparison with CIPI cases - as the parameter il 

exists only in RIPI model. 
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Here, It is important to mention that the full analysis of some parts in this subsection 

is available but is not shown to save space and avoid the repetition of interpretation of 

the results. 

(a) Default scenario FTt = 1, CTt = 0.2 

Under this scenario, we study the effect of changing ri on the cases when a=0 and 

a: A 0. 

Firstly, considering the cases when a=0 and a= 5%, for example, (0.1,0,0.9), 

E(Ft*) decreases to lower level around 90% over the control period when rj = 90%, 

compared with the level of 100% when il is increased to 100%. Similarly, it moves up 

slightly to 110% over the control period when 71 = 110% whereas it remains around 

the target when the fund ratio is equal to 100%. Table 5.6 shows the results. 

Table 5.6 

The expected optimal fund levels with different 

fund ratios in the case of (0.1,0,0.9) when a= 5% 

t = 90% = 100% = 110% 
1 100.00% 100.00% 100.00% 
2 94.99% 99.88% 104.12% 
3 92.45% 99.80% 106.41% 
4 91.20% 99.76% 107.72% 
5 90.59% 99.76% 108.47% 
6 90.25% 99.73% 108.86% 
7 90.10% 99.73% 109.11% 
8 90.02% 99.72% 109.24% 
9 89.99% 99.74% 109.34% 
10 89.96% 99.72% 109.39% 
11 89.89% 99.67% 109.38% 
12 89.85% 99.67% 109.45% 
13 89.69% 99.55% 109.43% 
14 89.44% 99.42% 109.48% 
15 88.94% 99.15% 109.53% 

Decreasing the weighting risk factor of the solvency risk to 0.5 and 0.1 leads E(F1`) to 

have lower values compared with the ones in the case of (0.1,0,0.9). Hence, it moves 

further away from the target when il = 90%, 100% and 110%. Furthermore, when the 

value of a is increased to 20%, E(Ft*) has even lower values than those obtained when 

6= 5%. For example, in the case of (0.1,0,0.9), E(Ft`) decreases to reach 84.3%, 
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93.7% when q= 90% and 100% respectively at the final T, whereas E(FT) = 103.2% 

when the fund ratio is increased to 110%. 

The expected optimal contribution rate is also affected by changing the fund ratio. 

We examine this effect by studying the same cases used in analyzing the behaviour of 

E(Ft*). In the case of (0.1,0,0.9) and 6= 5%, we note that E(Ct*) becomes closer to 

the target when q is increased to 110%, compared with those when n= 90% and 

100%. When more importance is given to the weighting risk factor of the contribution 

rate y, E(C, *) moves more closer to the target for the different levels of fund ratio. 

This can be clearly seen from Figures 5.62,5.63,5.64. Increasing the level of 

volatility to 20%, in the cases of (0.1,0,0.9), (0.5,0,0.5) and (0.9,0,0.1) with 

changing q, leads to similar behaviours of E(Ct*), but further away from the target. 

Figure 5.65 show the different levels of E(Ct*) with changing n in the case of (0.9,0, 

0.1), this can be compared with Figure 5.64 to see the effect of increasing a to 20%. 

Figure 5.62 
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Figure 5.63 

The expected optimal contribution rate under RIPI 
(1,0.2) for different levels of eta in the case of 

(0.5,0,0.5) when sigma = 5% 
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Figure 5.64 

The expected optimal contribution rate 
under RIPI (1,0.2) for different levels of eta 
in the case of (0.9,0,0.1) when sigma = 5% 
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Figure 5.65 

The expected optimal contribution rate under RIPI 
(1,0.2) for different levels of eta in the case of 
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The second part of our analysis in this sub-subsection is to study the effect of 11 when 

a :t0. We have examined the different cases of (0.1,0,0.9), (0.5,0,0.5) and (0.9,0, 

0.1) when il is equal to 100% in subsection 5.2.6. We proceed now to study the same 

cases when a=0,0.2,0.4,..., 0.8 and when = 90% and 110%. The results of the 

expected optimal fund levels and the contribution rates are described in the next 

paragraphs. 

When a= 5% in the cases of (0.1,0.9) with increasing the value of a to 0.8, E(Ft*) 

levels decrease gradually over the control period when n= 90%. For example, E(FT) 

reaches 88.9% in the case of (0.1,0,0.9) and decreases to 85.8% in the case of 
(0.1,0.8,0.9). Further, when 0 is decreased to 0.5 and 0.1, E(Ft*) moves down further 

as a is increased, it reaches the lowest level of approximately 70% in the-case of (0.9, 

0.8,0.1). This downward trend of E(Ft*) is more clear when a is increased to 20%. 

On the other hand, when q is raised to 110% in the cases of (0.1,0.9), E(Ft*) levels 

increase till year 8 with very small differences from one case to another ( for the five 

different values of a). Afterwards, the levels of E(Ft*) reach the same level of 

approximately 109% from year 9 to 15. This is caused by the higher value of the fund 

ratio which allows all levels of E(Ft*) to move up with increasing the value of a. In 

other words, comparing the results of E(Ft`) under the three levels of n indicates that 

the levels of E(Ft*) move up as the fund ratio is increased. This can be observed from 

Figure 5.26 in section 5.2.6, and Figures 5.66 and 5.67 below. In the cases of (0.5, 

0.5) and (0.9,0.1) when a is increased to 0.8, E(Ft*) attains lower levels as the value 

of ß is decreased. The lower levels of E(Ft) are also obtained as a is increased to 

20%, indicating a greater departure from the target. 
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Figure 5.66 

The expected optimal fund level under RIPI 
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Figure 5.67 

The expected optimal fund level under RIPI (1,0.2) for 
different levels of alpha when eta= 110°/q 
sigma = 5°/q gamma = 0.1 and beta = 0.9 
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When ß= 5% and rl = 90%, we examine the behaviour of E(Ct*) for the cases of 

(0.1,0.9) with increasing a. We find that E(Ct*) levels start from lower levels around 

16% and increase over the control period. The differences are small between the cases 

although they move further away from the target as the value of a is increased, as 

shown in Figure 5.68. The cases of (0.5,0.5) show an increasing trend of E(Ct*) over 

the control period, but in lower levels to get closer to the target, compared with the 

previous cases of (0.1,0.9). This is due to the higher value of y=0.5. Further, in the 

cases of (0.9,0.1) with increasing a from 0 to 0.8, E(Ct*) remains around the target of 

20% when the value of a is small (a = 0,0.2,0.4). However, in the cases of 

(0.9,0.6,0.1) and (0.9,0.8,0.1), we note that E(Ct*) tends to deviate away from the 

target as shown in Figure 5.69. 
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Figure 5.68 

The expected optimal contribution rate under RIPI 
(1,0.2) for different levels of alpha when 

eta = 90°/q sigma = 5°/q gamma = 0.1 and beta = 0.9 
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In contrast, increasing the fund ratio to 110% for the cases of (0.1,0.9) leads E(Ct*) to 

decrease gradually from around 24% towards the target level of 20% as shown in 

Figure 5.69. When the value of y is increased to 0.5 and 0.9, E(Ct*) moves closer to 

the target to be around 20% over the control period for the cases of (0.9,0.1). Further, 

in the cases of (0.9,0.6,0.1) and (0.9,0.8,0.1), we note that E(Ct*) levels are closer to 

the target compared with those when il = 90%. This is due to the increased value of 

the fund ratio. Figures 5.70 and 5.71 show the difference in the levels of E(Ct*) for the 

cases of (0.1,0.9) and (0.9,0.1) when a is increased and 'q = 110%. 
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Figure 5.70 

The expected optimal contribution rate under RIPI 
(1,0.2) for different levels of alpha when 

eta = 110°/6, sigma = 5°/y gamma = 0.1 and 
beta = 0.9 
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Figure 5.71 

The expected optimal contribution rate under RIPI 
(1,0.2) for different levels of alpha when 
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(b) Other scenarios 

Here, we follow the same approach applied in section 5.2.7(a), where we test the 

effect on E(Ftf) and E(Ct*) when il is increased from 90% to 110%, a=0 and aý0 for 

the four scenarios. We summarize the results reached for E(Ft*) and E(Ct*) due to the 

similarities between the second and the fourth scenarios from one side, and the third 

and fifth scenarios from the other side( bearing in mind that all the results are 

available but are not shown for the purpose of avoiding repetition). 

We start with the effect of rl =90% when a=0, so that, under the four scenarios, we 

find that E(Ft*) decreases over the control period. This decreasing trend is more clear 

when the values of the contribution and fund targets are low, i. e. the third and fifth 
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scenarios. Further, lower levels of E(Ft*) are observed as o is increased. In response 

to the decreasing trend of E(Ft*), the expected optimal contribution rate increases over 
the control period under the four scenarios. Accordingly, we note higher levels of 

E(Ct*) under the third and fifth scenarios. When a higher level of volatility is applied, 

a greater departure of E(Ct*) from the target is obtained. 

When il is increased to 110%, E(Ft') increases above the target under the four 

scenarios when the value of ß is high. Under the second and fourth scenarios, the 

upward trend of E(FF*) is more clear than the other scenarios because of the higher 

values of CTS and FF along with the higher value of the fund ratio The levels of E(Ft*) 

decreases over the control period as ß is decreased. On the other hand, the levels of 

expected optimal contribution rate tends to decrease over the control period to get 

closer to the target with the increasing trend of E(Ft*) under the second, third and fifth 

scenarios . 
However, under the fourth scenario, we note that E(Ct*) starts from lower 

levels - due to the higher value of F0 - so that, it increases over the control period to 

become closer to the target. The levels of E(Ct*) increase over the control period when 

E(FF`) decreases due to the lower value of P. A higher value of Cr indicate a greater 

departure from the target for both E(F1*) and E(Ct*) under the four scenarios. 

At this point, we need to look at the effect of changing the value of a when il changes 

to 90% and 110%. 

When il = 90%, we note that E(Ft*) decreases over the control period. The levels of 

E(Ft*) increases when a is increased from 0 to 0.8, under the second and fourth 

scenario. This is due to the higher level of the contribution and fund targets. However, 

E(Ft*) decreases as a increases under the third and fifth scenarios. 

Increasing TI to 110% leads the levels of E(Ft*) to be at higher levels as a is changed 

from 0 to 0.8, under the second and fourth scenarios, compared with those under 

rl = 90%. The levels of E(Ft) decreases with the increased levels of a, under the third 

and fifth scenarios, but again with higher levels than those obtained when il = 90%. 

For different cases under the four scenarios, when il = 90% and 110%, smaller 

differences between the levels of E(Ft*) is observed when the value of a is low. A 
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greater departure of E(Ft*) from the target is explained when a higher value of a is 

applied, this is also occurred as a result of increasing the level of volatility. from 

one case to another 

Therefore, the expected optimal contribution rate responds to the decreasing trend of 

E(Ft*), when rl = 90%, and increases over the control period as a increases. 

Consequently, when T1 is increased to 110%, E(Ct*) increases to lower levels than 

those under ri = 90% as the value of a is increased. The higher values of a show a 

wider range for the levels of E(Ct*) and greater deviation from the target. It is noted 

that the behaviour of E(Ct*) under the second and fourth scenarios is similar where as 

the results of E(Ct*) under the third and fifth scenarios are more consistent. 

Conclusion 
The effect of increasing il is realized on E(Ft*) and E(C1*), under different scenarios, 

when a=0. Decreasing the value of il to 90% leads generally to lower levels of 

E(Ft*), consequently, E(Ct*) increases to be around the target. When rl is increased to 

110%, higher levels of E(FF*) are obtained, hence, E(Ct*) decreases to become closer 

to the target. 

When the value of a is increased under the different scenarios, there is always a 

departure from the target either for E(Ft*) or E(Ct*). Higher levels of contribution rate 

and fund target along with the increased level of q lead to higher levels of E(Ft*). 

Accordingly, E(Ct*) increases to lower levels to be close to the target. 

Summary 

The properties of the ratio-induced performance index (RIPI) is explained in 

comparison with the results of applying the CIPI model, which have been reached in 

chapter 5. The comparison between CIPI and RIPI reveals a major feature of the 

behaviour of E(Ft) and E(Ct*) over the control period, under the different scenarios. 

This feature is: a greater deviation from the target under RIPI compared with the CIPI 

model. Other features of the trends E(Ft*) and E(Ct*) are also explored and compared 

with CIPI under different scenarios. Further, the effect of changing the fund ratio q- 

which included in RIPI model - on the expected optimal fund level and contribution 

rate is described when a=0 and a00, for the different scenarios. 
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The properties of RIPI and CIPI are explained through studying the behaviour of the 

expected optimal fund level and contribution rate, and their sensitivity to changes in 

the different parameters. The practical implementation of these models reveals more 

about their properties, and the behaviour of E(Ft*) and E(Ct*) in the real practice. 
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Appendix 5A 

5A. 1 Histograms and statistics analysis for (FT) and (CT) 

Similarly to Appendix 4C, the histograms and statistics analysis of (FT) and (CT) are 
considered in this section for the RIPI model. The same cases under the first scenario 
(1,0.2) when ß= 20% are applied, and the results are shown below. 

5A. 1.1 The results of (FT) 

Case: RIPI (0.1,0,0.9) sigma = 0.2 

Summary Statistics for data in: (0.1,0,0.9) 

F(T)* 
Min: 0.7718250 

1st Qu.: 0.8343303 
Mean: 0.9370717 

Median: 0.8795399 
3rd Qu.: 0.9630345 

Max: 7.3868560 
Total N: 10000.0000000 

NA's : 0.0000000 
Std Dev.: 0.2199655 

Figure 5A. 1 
Histogram of (FT) in the case of (0.1,0,0.9) when a= 20% 
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Case: RIPI (0.1,0.8,0.9) sigma = 0.2 

*** Summary Statistics for data in: (0.1,0.8,0.9) *** 

F(T)* 

Min: 0.7487880 
1st Qu.: 0.8339960 

Mean: 0.9555811 
Median: 0.8900536 

3rd Qu.: 0.9913554 
Max: 8.1035050 

Total N: 10000.0000000 
NA's : 0.0000000 

Std Dev.: 0.2533422 

Figure 5A. 2 
Histogram of (FT) in the case of (0.1,0.8,0.9) when a= 20% 
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Case: RIPI (0.9,0,0.1) sigma = 0.2 

Summary Statistics for data in: (0.9,0,0.1) 

F(T)* 

Min: -0.0069900 
1st Qu.: 0.2655109 

Mean: 0.6515287 
Median: 0.4403381 

3rd Qu.: 0.7602803 
Max: 19.6671600 

Total N: 10000.0000000 
NA's : 0.0000000 

Std Dev.: 0.7894561 

Figure 5A. 3 
Histogram of (FT) in the case of (0.9,0,0.1) when a= 20% 
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Case: RIPI (0.9,0.8,0.1) sigma = 0.2 

Summary Statistics for data in: (0.9,0.8,0.1) 

F(T)* 
Min: 0.1730009 

1st Qu.: 0.4695316 
Mean: 0.9069162 

Median: 0.6662209 
3rd Qu.: 1.0189867 

Max: 22.8079900 
Total N: 10000.0000000 

NA's : 0.0000000 
Std Dev.: 0.8989038 

Figure 5A. 4 
Histogram of (FT) in the case of (0.9,0.8,0.1) when a= 20% 
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5A. 1.2 The results of (CT) 

Case: RIPI (0.1,0,0.9) sigma = 0.2 

Summary Statistics for data in: (0.1,0,0.9) 

C(T)* 
Min: -1.7883340 

1st Qu.: 0.2052651 
Mean: 0.2133225 

Median: 0.2311773 
3rd Qu.: 0.2452078 

Max: 0.2646060 
Total N: 10000.0000000 

NA's : 0.0000000 
Std Dev.: 0.0682653 
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Figure 5A. 5 
Histogram of (CT) in the case of (0.1,0,0.9) when a= 20% 
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Case: RIPI (0.1,0.8,0.9) sigma = 0.2 

*** Summary Statistics for data in: (0.1,0.8,0.9) *** 

C(T)* 

Min: -2.7435080 
1st Qu.: 0.2032702 

Mean: 0.2180926 
Median: 0.2452426 

3rd Qu.: 0.2684690 
Max: 0.3037732 

Total N: 10000.0000000 
NA's : 0.0000000 

Std Dev.: 0.1049674 
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Figure 5A. 6 
Histogram of (CT) in the case of (0.1,0.8,0.9) when a= 20% 
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Case: RIPI (0.9,0,0.1) sigma = 0.2 

Summary Statistics for data in: (0.9,0,0.1) 

C (T) * 

Min: 9.675600e-002 

ist Qu.: 2.012140e-001 
Mean: 2.018148e-001 

Median: 2.029816e-001 
3rd Qu.: 2.039475e-001 

Max: 2.054530e-001 
Total N: 1.000000e+004 

NA's : 0.000000e+000 
Std Dev.: 4.361636e-003 

Figure 5A. 7 
Histogram of (CT) in the case of (0.9,0,0.1) when a= 20% 

2500 

2000 

1500 

1000 

500 

0.1600.1640.1680.1720.1760.1800.1840.1880.1920.1960.2000.2040.208 
C(f )* 

228 



Case: RIPI (0.9,0.8,0.1) sigma = 0.2 

Summary Statistics for data in: (0.9,0.8,0.1) 

C(T) * 
Min: -1.675526e+000 

1st Qu.: 1.990142e-001 
Mean: 2.086556e-001 

Median: 2.293631e-001 
3rd Qu.: 2.462846e-001 

Max: 2.717955e-001 
Total N: 1.000000e+004 

NA's : 0.000000e+000 
Std Dev.: 7.733409e-002 

Figure 5A. 8 
Histogram of (CT) in the case of (0.9,0.8,0.1) when a= 20% 
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Chapter Six 
Realistic Pension Funding Approach: A case study from 
Egypt and policy implications for Egyptian context 

6.1 Introduction 
According to Chang (1999,2000), dynamic pension funding models help the 

management of a pension fund to reach the optimal contribution rates, when the 

disturbances to the economic factor, represented in the rate of return, are considered 

in the decision making process. In this chapter, we test the properties of our models 

by applying them to an Egyptian defined benefit pension scheme. This empirical 

study will mainly enable us to understand the effect of the mutual interests of the 

employer and employees on the pension funding plan. 

In our analysis, instead of projecting the cash flows of the scheme to apply the 

dynamic models - which is the approach followed by Chang (1999) - we use the past 

experience of the scheme. The data is collected from 1990 to 2002 to provide the 

inputs for applying the dynamic models, and hence, reach the expected optimal fund 

level and contribution rate. The simulated values will then be compared with the 

actual cash flows of the fund over the same period, in order to detect the differences 

between the actual and the expected optimal values for the fund levels and the 

contribution rates. 

6.2 The Egyptian defined benefit scheme - case study -1 
The study focuses on one of the largest defined benefit pension schemes in Egypt. 

The pension fund set up in 1977 to offer benefits to its members in addition to the 

benefits offered by the main State Social Insurance System, which has been applied 

by the company since 1966. It is registered as the fourth Private Pension Fund at 

Egyptian Insurance Supervisory Authority (EISA) on 7/11/1977 according to the Law 

no. 79 of 1975. At the present time, it is considered the largest scheme with total assets 

exceed 900 million Egyptian Pounds. 

1 The name of the Private Pension Fund will not be mentioned according to the 
request of the management of the fund. 
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The scheme has taken over the management of a total number of 34 other funds in 

different companies, because of its well known experience, from 1994 until now. The 

fund has also set up a Center of Insurance Studies in 1983 to provide advice to other 

pension schemes. 

In the following sections, we describe the resources and the benefits of the scheme as 

mentioned in The Statute of the Scheme and The Actuarial Reports (1990-2002). 

6.3 Resources of the scheme 
The scheme covers all the employees who work in the company including the ones in 

the other 34 companies. Both employer and the employees contribute into the scheme. 
According to the statute of the fund, the pensionable salary is defined as "the basic 

monthly salary plus the regular bonuses and promotion bonuses". 

Thus, the contributions are calculated using the pensionable salary which includes: 

the basic salary and the allowances that the member receives on a regular basis. These 

allowances include: the bonuses, high-cost of living allowance, area of work 

allowance (is defined according to the area of work and its destination from the 

capital), nature of work allowance (according to the job profiles and the type of 

responsibilities that should be carried out by the workers). 

Therefore, the main resources of the fund are: 

" Employer's contribution 

18% of allowances; 

7% of basic salaries; 

and 2.75% of basic salaries for a group life insurance policy called " 1000 

Days" group insurance policies (more detail is mentioned in section 6.4). 

" Employees' contribution 
10% of the allowances; 

7% of the basic salaries; 

and the premiums of insurance group policies. 

" Returns on investments. 
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The expected present value of the contributions is calculated according to the 

following equations - after deducting 6% for the management expenses and excluding 

2.75 % of the basic salaries for the group insurance policies -: 
60 " 

PVCA = 0.94 * 12 * 0.28 BMSX --i for allowances (6.1) 
x=20 x 

60 S 

X for basic salaries (6.2) PVCB = 0.94 * 12 * 0.14 (0.12) TMSx 
sNDx _=20 

where: 
PVCA: the present value of the contributions based on the allowances. 

PVCB: the present value of the contributions based on the basic salaries. 

BMSx: is the allowances for each member at age x 

TMSx: is the basic monthly salary for each member at age x. 

Note: 12 % is the percentage calculated for the 34 companies involved in the fund. 

6.4 Benefits of the scheme 
The scheme offers a variety of benefits to its members, this include a monthly pension 

and lump sum payments, as follows: 

" The social insurance (on the allowances) 

Each member is entitled to a pension at the end of the service for one of the following 

reasons: 

- Reaching the normal retirement age (NRA = 60 years). 

- Total disability or death. 

- Partial permanent disability. 

- End of service before NRA conditional on a minimum period of contribution equals 

to 240 months. 

The contributions are deducted from the monthly allowances of each member. The 

pension is equal to 3.3% of the average pensionable salary over the last year of 

service, for each year of membership, and 1.7% of the same average for the period 

prior to the membership. 

The expected present value of these benefits are calculated using the following 

equations: 

232 



60 SD 
(t+60-x)BMSx 

S 
60 (6.3) PVP=1.1*0.03*122: 

x=20 
Dx 

60 

60 sm 
x4 PVD =1 * 12 E BMSx 

ix 
(6.4) 

x=20 
Dz 

60 
PVAI =12 BMSx 

s ýxr 
(6.5) 

x=7A x 

where: 

PVP: the present value of the NRA pension. 

PVD: the present value of death pension. 

PVAI: the present value of the additional indemnity pension, where the additional 

indemnity: covers the total and partial disability. 

(t + 60 -x): represents the number of years of service. 

" 1000 Days insurance policies 

This policy is a group insurance policy which was issued by the insurance company 

(EL-AHLIA) and now is managed by the Fund. The benefits and the premiums of this 

policy are calculated separately, i. e. they are not included in the actuarial valuation 

reports. 

" Loyalty remuneration 

It is a lump sum remuneration equals to 3.5 months of the final salary for each year of 

service in the case of retirement, and 1.5 months in the cases of death or disability. In 

the case of early leaving, the benefits are reduced according to the age of the member 

and the number of years in service. 

The equations are: 

60 s 

(6.6) PVL = 3.5 (t + 60 - x) TMSx 
SD60 x=2o 

Dx 

60 sm sR 

PVDL =1.5) tTMSx 
Mx 

+TMSx 
Sx- 

(6.7) 
x-20 

Dx Dx 
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where 
PVL: the present value of NRA in a lump sum form. 
PVDL: the present value of death in a lump sum form. 

9 The complementary pension 

It is a unified pension for all the employees and the workers and is equal to LE50 per 

month. 

60 "D 
60' PVC =12 * 50 Z mx s 

(6.8) 
x=2A 

Dx 

PVC: the present value of the complementary pension. 

. The ancillary benefits 

The present value of these benefits assumed to be LE 2 million Egyptian pounds and 

they are paid to the members in cases such as: the loss of home, medical surgeries 

among others. 

" Fidelity remuneration 

This benefit is offered by the scheme as an additional benefit as a result of achieving 

high surplus in the Fund. It depends on the number of years of service as follows: 

10 years and less 

from 10 to less than 20 years 

from 20 to less than 25 

25 years and more 

no remuneration 

one month 

one and a half month 

two months 

PVF =Z 
60 

r,, (t + 60 - x)TMSx sD60 x=20 
Dx 

where 

(6.9) 

r,: is the rate used to calculate the benefit for each member at age x according to the 

number of years of service. 

PVF: the present value of fidelity remuneration in the form of the lump sum. 
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6.5 Analysis of dynamic pension funding models applications for the 
Egyptian context 

According to the scheme's policy, the actuarial valuation is carried out annually to 

calculate the normal cost and the actuarial liability of the scheme. The availability of 

data on annual basis for more than 10 years is another reason of choosing this scheme 

for our empirical study. In 2000, the number of members of the scheme were 48914, 

including the members of the 34 companies. In this section, we start with the actuarial 

assumptions used to calculate the actuarial liability and normal cost of the fund. 

Thereafter, we describe the data that have been used for applying the models. Finally, 

the results of application of both models CIPI and RIPI are analyzed. 

6.5.1 Actuarial assumptions 

The actuarial assumptions that have been used in the annual actuarial reports are as 
follows: 

" The valuation rate of return = 9%; 

" the life table: A49/52 ( based on the experience of UK insured persons between 

1949 and 1952, as collected and analyzed by the CMI Bureau); 

9 The salary scale: the salary scale which was used in the past was : 

sx = S20 (I + 0.15(x - 20) 

then from 1997 to 1999, it was changed to be: 

Sx = S20 (1.03)("'2°) 

in 2000 it has been raised to 4% as follows: 

Sx = S20 (1.04)(x-20) 

" The funding method is the prospective method which depends on the difference 

between the expected present value of the benefits and the expected present value 

of the contributions. 

9 The entry age is the actual age of the members at the date of actuarial valuation. 

" The expense rate is 6% of the contributions. 

9 The contributions are paid annually. 
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" The age at the valuation date is = valuation year - year of birth. 

6.5.2 Data description 

The stochastic models of CIPI and RIPI are implemented, using 10,000 simulations 

based on a VBA program. The following data are used to calculate the expected 

optimal fund levels and contribution rates over 12 years from 1990 to 2002: 

" The control period T= 12; 

" the Fund return parameters: 0= 9%(corresponding to the valuation rate of return), 

and a= 1%, 5%, 10%, 15%, 20%; 

" the fund ratio: il = 100%; 

" risk weighting factors: y and ß=0.1,0.3,0.5,0.7,0.9 interchangeably, 

and the mixed weighting factor a=0.2,0.4,0.6 and 0.8; 

" initial fund: Fo = 271,980,000 Egyptian Pounds. 

We assume that the actuarial valuation occurs at times 0,1...... T-1, so that, these 

information are available: 

" NC, = CTt : the normal cost or the contribution target at time t, where t=0,1,.., T; 

" A1-j+1= FTtI : the actuarial liability of the fund at time t+1, where t=0,1,..., T; 

" Bt: the total benefits paid to the beneficiaries during the year [t, t+l); 

where t=0,1,.... T; 

Table 6.1 shows the cash flows of the fund and the benefits outgo from 1990 to 2002 

(in thousands of Egyptian Pounds), that will be used to calculate the expected optimal 

fund level E(Ft`) and contribution rate E(Ct") . 
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Table 6.1 
The normal cost, actuarial liability and the benefits 

of the scheme from year 1990 to 2002 

(in thousands LE) 

Year NCt AI4 Bt 
1990 145290 315000 11388 
1991 179600 373600 15214 
1992 181000 448000 17936 
1993 142600 497900 20834 
1994 181401 693480 35385 
1995 203274 805872 32155 
1996 243610 874833 36282 
1997 290665 983412 42163 
1998 311998 1108036 50611 
1999 319218 1170290 53941 
2000 364318 1333544 56932 
2001 348220 1425492 80524 
2002 360604 1484285 94248 

6.5.3 Results of the sensitivity analysis for applying CIPI and RIPI 

In this subsection, we study the effect of changing 0,6, and the risk weighting factors 

y, a and ß on both stochastic models CIPI and RIPI. However, the effect of changing 

the initial fund Fo, the fund target and the contribution target are not examined due to 

applying one scenario and using the real data. Our analysis mainly consider the cases 

when a= 20%, as it is more realistic than the lower levels of volatility (which are 

more representative to the deterministic approach). 

(a) Effect of changing 0 

We assume that the value of 0 changes up to 10% and down to 8%. The expected 

optimal fund levels and contribution rate are affected by changing 0 up to 10% and 

down to 8%. For both models CIPI and RIPI, in the case of (0.1,0,0.9) when 

ß= 20%, we find that E(Ft*) increases over the time span with a tendency to increase 

when the value of 0 is increased. However, E(Ft*) increases to reach higher levels 

under RIPI compared with the ones under CIPI. Figures 6.1 and 6.2 show the 

similarity of the behaviour of E(F1*) under both models. 
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Figure 6.1 

The expected optimal fund levels under CIPI in 
the case of (0.1,0,0.9) when sigma = 20% 
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Figure 6.2 

The expected optimal fund levels under RIPI in the 
case of (0.1,0,0.9) when sigma = 20% 
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On the other hand, under CIPI, E(Ct*) tends to fluctuate over time, while under the 

RIPI model, it tends to decrease over the control period from year 1990 to 1999 

except in year 1993 and then starts to increase in the last three years. This also 

indicates that E(Ct*) has a more stable and smooth behaviour under RIPI compared 

with the ones under CIPI. Nevertheless, the E(Ct*) levels decrease slightly over time 

when 0 is increased under both models. Figures 6.3 and 6.4 show these results. 
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Figure 6.3 

The expected optimal contribution rates under 
CIPI in the case of (0.1,0,0.9) when sigma = 20% 
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Figure 6.4 

The expected optimal contribution rate under 
RIPI in the case of (0.1,0,0.9) when sigma = 20% 
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(b) Effect of changing a 

The results in chapters 4 and 5 imply that increasing the levels of volatility leads the 

fund levels to decrease to lower levels over time. For the scheme under study, in the 

case of (0.1,0,0.9), E(Ft*) has an upward trend over the time, but the levels of the 

expected fund decrease with the increased level of volatility. This applies for both 

models CIPI and RIPI although we find that the levels of the fund are slightly higher 

under RIPI as shown in Figures 6.5 and 6.6. Further, similar results are obtained when 

other cases such as: (0.5,0,0.5) and (0.9,0,0.1) are applied. 
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Figure 6.5 

The expected optimal fund level under CIPI for 
different levels of volatility in the case of 

(0.1,0,0.9) 
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Figure 6.6 

The expected optimal fund level under RIPI for 
different levels of volatility in the case of 

(0.1,0,0.9) 
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On the other hand, under CIPI, the expected optimal contribution rate fluctuates 

clearly over the control period, while under RIPI, E(Ct*) it is more stable with a 

tendency to increase in the last three years. It also decreases with increasing 6 over 

time. Figures 6.7 and 6.8 illustrate these results. 
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Figure 6.7 

The expected optimal contribution rate under 
CIPI for different levels of volatility in the case of 

(0.1,0,0.9) 
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Figure 6.8 

The expected optimal contribution rate under 
RIPI for different levels of volatility in the case 

of (0.1,0,0.9) 
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When a is increased, small differences between the levels of expected optimal 

contribution rate in both models are observed. For the cases of (0.5,0,0.5) and 

(0.9,0,0.1), we note that E(C, *) has a similar behaviour under both models, RIPI and 

CIPI, when ß is increased. 

(c) Effect of changing the parameters y and ß when a=0 

The changes in E(F1*) and E(Ct*) are analyzed regarding the different values given to 

the weighting factors of the contribution rate risk and the solvency risk. Here, we 

focus on the different cases when y and ß take the values of 0.1,0.3,0.5,0.7,0.9 

interchangeably and when a= 20%. 
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Under the CIPI model, although E(Ft*) has an upward trend, the levels of E(Ft*) tend 

to decrease as more importance is given to the contribution rate risk. This can be seen 

clearly in the last case of (0.9,0,0.1), where E(Ft*) has the lowest level until year 

1999 and then increases till 2002. For RIPI, E(Ft*) has also an upward trend over time 

but the levels of E(F1*) increase when the value of (3 is decreased. Further, we note 

that the levels of E(F, *) move dramatically to a higher level when less importance is 

given to the solvency risk. Figures 6.9 and 6.10 show the differences in the behaviour 

of the expected fund levels under both models. 

Figure 6.9 

The expected optimal fund levels under CIPI for 
different cases when alpha =0 and sigma = 20% 
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Figure 6.10 

The expected optimal fund levels under RIPI for 
different cases when alpha =0 and sigma = 20% 
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For the expected optimal contribution rate, under CIPI, we find that the levels of 

E(Cý*) fluctuate over time and move to higher levels when the value of y is increased. 

Further, E(Ct*) has a smoother upward trend in the case of (0.9,0,0.1) compared with 
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the cases when ß is high. Under RIPI model, the levels of E(Ct*) increase in the 

second half of the control period when more importance is given to y, i. e. E(Ct*) has 

the highest level in the case of (0.9,0,0.1). These results are shown in Figures 6.11 

and 6.12. 

Figure 6.11 

The expected optimal contribution rates under CIPI 
for different cases when alpha =0 and sigma = 20% 
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Figure 6.12 

The expected optimal contribution rates under RIPI 
for different cases when alpha =0 and sigma = 20% 
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(d) Effect of changing the parameters y and ß when a :t0 

The behaviour of E(Ft*) and E(Ct*) is affected by the different values given to the 

weighting risk factor of the mixed term a. Here, we study the cases when 

243 



a=0,0.2,0.4,0.6,0.8 in the two extreme cases, (0.1,0.9) and (0.9,0.1) and the 

middle one (0.5,0.5 )2. 

Figure 6.13 

The expected optimal fund levels under CIPI for 
different values of alpha when sigma = 20°/a, 
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Figure 6.14 

The expected optimal fund levels under RIPI 
for different values of alpha when sigma = 
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Thus, under CIPI model in the case (0.1,0.9) when a is increased, E(F, *) has an 

upward trend over the time with a tendency to increase with increasing a. 

Similarly, E(Ft*) has a similar behaviour under RIPI, but it reaches higher levels 

compared with those under CIPI as shown in Figures 6.13 and 6.14. 

2 This to recall that the form for the cases represents the weighting risk factors is used 

in this order (y, ß) when the value of a is changed or (y, a, ß) with a specific value of 

a. 
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Consequently, the expected contribution rates react under both models to the changes 

in E(Ft*) when a is increased. Thus, under CIPI, the trends of E(Ct*) fluctuate over 

time. We note that there are small differences between the cases, where they increase 

slightly at the beginning of the control period and decrease more in the final year T as 

a is increased. In other words, E(Ct*) shows more fluctuation behaviour when a=0.8. 

Similarly, the trends of E(Ct*) fluctuate more with increasing a under RIPI. These 

results are shown in Figure 6.15 and 6.16. 

Figure 6.15 

The expected optimal contribution rates under 
CIPI for different values of alpha when 
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Figure 6.16 
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For the cases of (0.5,0.5), increasing a leads E(Ft*) to have an upward trend under 

both models with higher levels compared with the ones obtained under the cases when 
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y and ß are equal to 0.1 and 0.9 respectively. Moreover, this increasing trend of E(Ft*) 

between cases reach higher levels under RIPI compared with those under CIPI. 

This increasing behaviour of E(Ft*) is shown in Figures 6.17 and 6.18. We can 

conclude that there is more deviation from the actual trend of the fund level in the 

scheme when a is increased. 

Figure 6.17 

The expected optimal fund levels under CIPI 
for different values of alpha sigma = 20% 
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Figure 6.18 

The expected optimal fund levels under RIPI 
for different different values of alpha sigma = 

200/q gamma= 0.5 and beta = 0.5 
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Consequently, the behaviour of E(Ct*) over time responds to the increased level of a 

in the cases where y and ß are equal to 0.5. Under CIPI, we note that the levels of 

E(Ct*) fluctuate and move further away as a is increased to 0.8. 
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Under RIPI, E(Ct*) has a more stable behaviour compared with CIPI. The levels of 

E(C, *) decrease with less fluctuation when a is increased to 0.8. The behaviour of 

E(C1*) under both models is shown in Figures 6.19 and 6.20. 

Figure 6.19 
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Figure 6.20 

The expected optimal contribution rates under 
RIPI for different different values of alpha 

sigma = 20°/q gamma= 0.5 and beta = 0.5 
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Finally, we study the cases when more importance is given to the weighting factor of 

the contribution rate risk along with increasing the weighting factor for the cross- 

product term (i. e. the cases of (0.9,0.1)). 

Thus, under both models, we find that E(Ft*) moves up to higher levels as less 

importance is given to P. Further, the levels of E(F, *) increase more with the high 
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values of a. Moreover, we note that the increasing levels of E(Ft*) are greater under 

RIPI compared with those under CIPI. These results are shown in Figures 6.21 and 

6.22. 

Figure 6.21 

The expected optimal fund levels under CIPI for 
different different values of alpha sigma = 20°/9 
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Figure 6.22 

The expected optimal fund levels under RIPI for 
different different values of alpha sigma = 200/9 

gamma= 0.9 and beta = 0.1 
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The trends of E(Ct*) fluctuate sharply when the value of a is increased to 0.8, under 

the CIPI model. A similar result is obtained for the behaviour of E(C, *) under RIPI. 

However, the levels of E(Ct*) are more stable under RIPI compared with CIPI. These 

differences can be seen from Figure 6.23 and 6.24. 
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Figure 6.23 

The expected optimal contribution rates under 
CIPI for different different values of alpha 
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Figure 6.24 
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6.5.4 Comparison between the cash flows of the fund and the expected optimal 
fund levels and the contribution rates 

The results of applying CIPI and RIPI from year 1990 to 2002 indicate different 

trends for E(F, *) and E(C, *), in response to changing the different parameters of the 

models. Therefore, it is interesting to finalize our analysis by comparing these trends 

with the actual cash flows of the fund. This comparison is useful to understand the 

differences between the actual cash flows and the expected ones, and to find out the 

best combination of the parameters which eliminate these differences. 
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Firstly, the fund assets and the contributions paid by both the employer and the 

employees which represent the actual cash flows of the fund from year 1990 to 2002 

are shown in Table 6.2 and Figures 6.25 and 6.26. 

Table 6.2 
The fund assets and the contributions paid of 

the DB scheme from year 1990 to 2002 
(in thousands LE) 

Year Fund assets Contributions paid 
1990 271,980 21,437 
1991 323,812 22,936 
1992 393,824 23,813 
1993 474,692 27,374 
1994 516,145 31,563 
1995 570,266 28,745 
1996 652,614 32,895 
1997 749,233 41,288 
1998 852,142 44,256 
1999 946,676 47,704 
2000 1,041,963 49,454 
2001 1,135,018 60,523 
2002 1,236,770 71,034 

Figure 6.25 

The fund assets of the DB scheme from 1990 to 
2002 
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Figure 6.26 

The contributions of the DB scheme from 1990 to 
2002 
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Secondly, we examine some cases to reach E(Ft) and E(Ct*)under both models CIPI 

and RIPI, where: 

- The control period is represented from year 1990 to 2002, T= 12; 

- the fund return parameters: 0= 9%, which is the valuation rate of return used 
in the actuarial reports of the fund, and a is chosen to be equal to 20% to 

represent the volatility in the market; 

- the fund ratio: il = 100%; 

- the risk weighting factors are chosen to be: y and ß=0.1,0.5 and 0.9 

interchangeably, and the cross product risk factor a=0,0.4; 

- the initial fund FO = F1990 = LE 271,980,000; 

- NC, = CT,, AI. 1+1 = FTt+1 and B1 are obtained from Table 6.1 where 

t=0,1,..., T. 

The results of E(Ft*) and E(C, *) show similar behaviour to the ones shown in Figures 

6.25 and 6.26 in specific cases only. Alternatively, the other cases show more 

deviation from the trends of the actual cash flows - shown in Figures 6.25 and 6.26 - 

when different combination of the parameters are considered. 

The expected optimal fund level, under CIPI and RIPI, shows that there is no major 

difference between both trends in the case of (0.1,0,0.9). This implies that when 

more importance is given to the weighting factor of the solvency risk, E(Ft) has an 

upward trend very close to the trend of the fund assets as shown in Figure 6.27. 
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Figure 6.27 

The fund assets and the expected fund levels 
under CIPI and RIPI in the case of (0.1,0,0.9) 

when sigma = 20% 
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However, the trends of E(C, *) in the same case of (0.1,0,0.9) have different 

behaviour under both models. Although E(Ct*) under RIPI is more similar to the 

contributions paid compared with the one under CIPI, both of them tend to diverge 

from the trend in the actual contributions paid. These different trends can be shown in 

Figure 6.28. 

Figure 6.28 

The contributions paid and the expected 
optimal contribution rates under CIPI and RIPI 

in the case of (0.1,0,0.9) when sigma = 20% 
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For the cases of (0.5,0,0.5) and (0.9,0,0.1), we note that E(Ft*) moves away from 

the fund assets trend as less importance is given to P. Furthermore, E(Ft) under RIPI 
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moves further away from the actual fund assets compared with the one under CIPI. 

Figures 6.29 and 6.30show these results. 

Figure 6.29 

The fund assets and the expected optimal fund 
levels under CIPI and RIPI in the case of 

(0.5,0,0.5) when sigma = 20% 
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Figure 6.30 

The fund assets and the expected optimal fund 
levels under CIPI and RIPI in the case of 

(0.9,0,0.1) when sigma = 20% 
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However, we note that the expected optimal contribution rate has the same behaviour 

of the contributions paid as y is increased in both models, in the cases of (0.5,0,0.5) 

and (0.9,0,0.1). We also find that E(C, *) under RIPI moves further away from the 

contributions paid compared with the one under CIPI in both cases. Figures 6.31 and 

6.32 show the trends of E(Ct*) in the cases of (0.5,0,0.5) and (0.9,0,0.1) under both 

models. 
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Figure 6.31 

The contributions paid and the expected optimal 
contribution rates under CIPI and RIPI in the 

case of (0.5,0,0.5) when sigma = 20% 
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Figure 6.32 

The contributions paid and the expected optimal 
contribution rates under CIPI and RIPI in the case 

of (0.9,0,0.1) when sigma = 20% 
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The effect of changing a leads both E(F, *) and E(Ct*) to move further away from the 

fund assets and the contributions paid. For example, in the case of (0.1,0.4,0.9), we 

find that E(F, *) deviates more from the actual fund assets and moves up under both 

models compared with the same case when a=0. Figure 6.27 can be compared with 

Figure 6.33 to realize the difference resulting from increasing a to 0.4. 
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Figure 6.33 

The fund assets and the expected optimal fund 
levels under CIPI and RIPI in the case of 

(0.1,0.4,0.9) when sigma = 20% 
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On the other hand, the expected optimal contribution rate moves further away from 

the contributions paid trend under both models when a is increased to 0.4. In fact, 

E(C1*) under RIPI fluctuates over time rather than having the same trend of the 

contributions paid when a=0 which is shown in Figure 6.28. Figure 6.34 illustrate 

these differences under both models due to increasing a to 0.4. 

Figure 6.34 

The contributions paid and the expected 
optimal contribution rates under CIPI and RIPI 
in the case of (0.1,0.4,0.9) when sigma = 20% 
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For the cases of (0.5,0.4,0.5) and (0.9,0.4,0.1), similar results have been reached. 

In both cases, E(Ft*) and E(Ct*) move further away from the fund assets and the 

contributions paid compared with those when a=0. Although the expected 
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contribution rates tend to have a similar behaviour of the contributions paid when y is 

increased. 

In addition to the graphical presentation of E(Ft*) and E(Ct*) in the cases mentioned 

above, we calculate the weighted average of absolute sum of the differences between 

E(F1') and the fund assets from one side, and E(Ct*) and the contributions paid from 

the other side. The weights are the inverse of the fund assets and the contributions 

paid at time (t). The following formulae are applied from 1990 to 2002: 

for the fund level: 

El" 
(6.10) 

/ 12 Fý 

and for the contribution rate: 

'2 IC 

, 

It 
(6.11) /12 C 

where: 
E(F1 ): the expected optimal fund level at time t; 

E(Ct0): the expected optimal contribution rate at time t; 

Ft: the fund assets at time t; 

C1: the contributions paid at time t. 

This analysis can be helpful in our estimation to the best representative case of the 

fund assets and the contributions paid of this defined benefit scheme from 1990 to 

2002. 

Table 6.3 shows the weighted average of absolute sum of the differences between 

E(F1) and the fund assets from 1990 to 2002 for different cases under CIPI and RIPI 

models. 
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Table 6.3 

The weighted average of absolute sum of the differences between 

E(Fto) and the fund assets for different cases under CIPI and RIPI 
Cases CIPI model RIPI model 
(0.1,0,0.9) 0.1894 0.1743 
(0.5,0 0.5 0.1437 0.2759 
(0.9,0,0.1) 0.0175 0.8888 
(0.1,0.4,0.9) 0.2376 0.3405 
(0.5,0.4,0.5) 0.2300 0.4647 
0.9 0.4,0.1) 0.3750 0.9958 

Table 6.4 shows also the weighted average of absolute sum of the differences between 

E(C1) and the contributions paid from 1990 to 2002 for different cases under CIPI 

and RIPI. 

Table 6.4 

The weighted average of absolute sum of the differences between E(Ct*) 

and the contributions paid for different cases under CIPI and RIPI 

Cases CIPI model RIPI model 
(0.1,0,0.9) 0.9592 1.3052 
(0.5,0,0.5) 1.1498 2.2532 
0.9 0 0.1) 1.6766 4.2865 
0.1 0.4 0.9 1.0459 1.4945 

(0.5,0.4 0.5) 1.2533 2.3904 
(0.9,0.4 0.1) 2.0059 4.0426 

From Table 6.3 and 6.4, we find that the average deviation of the fund level is 

generally less than the deviation of the contributions paid. This can be explained by 

the high fluctuation of the expected optimal contribution rates compared with the 

actual cash flows shown in the previous figures. Furthermore, the lowest weighted 

average in the fund assets is obtained in the case of (0.9,0,0.1) under CIPI, while the 

case of (0.9,0.4,0.1) under RIPI has the highest weighted average in the fund assets. 

On the other hand, the lowest weighted average obtained in the contributions paid is 

in the case of (0.1,0,0.9) under CIPI where as the highest is in the case of 

(0.9,0.4,0.1) under RIPI. 

Therefore, there is no one case has the lowest weighted average in both the fund 

assets and the contributions paid according to the data analysis. Hence, the weighted 
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average deviation of the following cases are considered relatively small for both the 
fund assets and the contributions paid: 

- the cases of (0.1,0,0.9), (0.5,0,0.5) and (0.1,0.4,0.9) under CIPI model; 

- the cases of (0.1,0,0.9) and (0.1,0.4,0.9) under RIPI model. 

Under both models, it is noted that the weighted average deviation is small in the 

cases where more importance is given to the solvency risk especially when the risk 
factor of the cross product term a=0. The weighted average deviation becomes 

higher when y is high and equal to 0.9. 

Therefore, in this Fund, the dynamic pension funding models are close to the realistic 

approach, when the management of the fund seeks for the interest of the members 
(i. e. to keep the fund solvent) over the interest of employer to keep the contribution 

rate stable. It is also clear that including a fund ratio of 100% in the application of the 

dynamic models give more similar results to those obtained in the real practice. 

Finally, it is noted that the graphical presentation of the expected and actual cash 
flows shows more stable trends of E(FC*) and E(Ct*) in the different cases under RIPI 

model than those under CIPI model. This is more clear in the case of (0.1,0,0.9) 

when more importance is given to the solvency risk. Here, it is worth mentioning that 

Chang (2000) has used the projection approach to estimate the expected optimal fund 

level and contribution rate with one set of risk parameters. Although he has concluded 

that the ratio-induced performance measure is more robust than the cost-induced 

performance measure, our data analysis of the past experience (in this defined benefit 

pension scheme from 1990 to 2002) shows that the results of E(Ft*) and E(Ct*) have 

small weighted average deviation from the actual cash flows in some cases under both 

CIPI and RIPI models. 

Summary 

The application of the stochastic models of cost-induced performance index and ratio- 
induced performance index is a main objective of our research. Thus, in this chapter, 

we introduced an Egyptian Private Pension Fund as a case study. This scheme is a 
defined benefit scheme and one of the largest according to its fund assets. We have 
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applied a different approach than the one used by Chang (1999,2000) to test our 
dynamic pension funding models. 

Thus, our analysis of the expected cash flows of the scheme was based on the past 

data achieved over the years from 1990 to 2002. The effect of changing the levels of 

volatility and the weighting risk parameters are examined with the effect of changing 

the parameter of the cross-product term. 

The application of stochastic CIPI and RIPI models on the data of the Egyptian 

Pension Fund reveals that there are few cases in which E(Ft*) and E(Ct*) are close to 

the actual cash flows. These cases are obtained under both models when more 
importance is given to the solvency risk especially when a=0 and ii = 100%. 
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Chapter Seven 
Conclusions and further work 

7.1 Conclusions 

The project has been undertaken to analyze dynamic pension funding models and test 

their application in the real practice. A full sensitivity analysis is carried out to 

understand the properties of the models. A defined benefit Egyptian Private Pension 

Fund is chosen as a case study in order to examine the behaviour of our models in 

reality. The main findings throughout the thesis are described below. 

Chapter 1 is an introduction about the different types of pension schemes. It highlights 

the importance of applying dynamic pension funding plans rather than the static ones 
in the pension schemes. The economic changes that have taken place in the Egyptian 

market, and the growing role of the Private Pension Funds justify the choice of the 

practical implementation of our models in Egypt. 

Chapter 2 summarizes the social security system in Egypt in order to provide a 
background of the environment where the models are applied on. The social security 

system in Egypt is covered through two main pillars: the State Social Insurance 

System and the Occupational Pension Schemes or Private Pension Funds as they are 

called in Egypt. Contracted-Out Schemes and personal insurance policies also offer 

social security coverage, but they are not as important as the former ones. 

The State Social Insurance System (SSIS) is regulated by four laws in which all the 

working people are covered. The employees in the government, public and private 

sectors constitute the majority of the working people covered under the Law no 79 of 

1975 (General Social Insurance System). The General Social Insurance System is 

considered a defined benefit pension scheme, funded by two separate funds: the 

Government Sector Fund and the Public and Private Sectors Fund. The pension at 

NRA, death and disability is offered to the members and their dependants, and it is 

based on the basic and variable salaries. Other benefits are also offered to cover 

various contingencies. 
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The Private Pension Funds are considered the main complementary system to the 

SSIS. They also cover the employees under government, public and private sectors. 

The Funds are governed by Law no. 54 of 1975 which requires the funds to be 

registered in the Egyptian Insurance Supervisory Authority (EISA). Thus, the EISA is 

responsible of supervising and controlling the activities of the Funds. The types of the 

contributions and benefits differ between schemes according to the statute of each 

scheme. 

The investment strategies, adopted by the SSIS and Contracted-Out schemes as well 

as the Private Pension Funds, appear to be prudent. More than 90% of the amount 
invested of SSIS and COS is allocated in the National Investment Bank (NIB). 

Further, most of the assets of Private Pension Funds are invested in Government 

bonds and bank deposits. The investment in other types of assets including equities is 

really limited. 

There is a need to reform the SSIS, as the main problem that faces the system is the 

distribution of the resources between the poor and the better off. The Private Pension 

Funds face problems of discontinuance resulting from different reasons, e. g. debts, 

actuarial deficit and misappropriate management. Therefore, more restrictions are 

needed in the law to be applied in managing the funds. Increasing the annuity and life 

insurance market (which is still limited) provides a good solution to the reform of the 

social security programs in Egypt. 

The objective of Chapter 3 is to derive the dynamic pension funding models in order 

to reach the optimal contribution rate. Chapter 3 firstly provides the basic concept of 

the pension funding for the defined benefit pension schemes, the actuarial valuation 

and the difference between the general and dynamic pension funding plans. Secondly, 

it reviews the literature of using the dynamic programming and the control theory in 

pension funding. Finally, the dynamic pension funding models are derived. 

The last part of Chapter 3 illustrates the optimisation problems in discrete finite time 
horizon, they are based on two approaches: the cost-induced performance index and 
the ratio-induced performance index. The deterministic and stochastic cases are 

applied to formulate two deterministic optimisation problems and two stochastic ones. 
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Thus, the performance indexes are set up to minimize two main risks of the pension 

scheme: the contribution rate risk and the solvency risk, in order to reach the optimal 

contribution rates. 

Minimizing the contribution rate risk and the solvency risk corresponds to achieve the 

stability of the contribution rate and security of the promised benefits respectively. 
Therefore, seeking for the stability of the contribution rate, the sponsoring employer is 

concerned mainly about minimizing the contribution rate risk. On the other hand, the 

trustees and the members are concerned mainly about the security of the promised 
benefits, which indicates their interest to minimize the solvency risk to secure their 

benefits. 

In our models, the mutual interest between the employer and the employees is 

considered. We allow for the intersection between the contribution rate risk and the 

solvency risk in the performance indexes. This is explained by the interest of the 

employer to keep his company and the scheme solvent to be able to pay the accrued 

rights. At the same time, the employees seek for the stability of the contribution rate, 

especially if they pay part of the contributions like the case of the Private Pension 

Fund in Egypt. This guarantees the payments of the contributions at the specified 

times without unduly financial burden for both the employer and the employees. 

Chapters 4 and 5 consider the properties of the cost-induced performance index (CIPI) 

and the ratio-induced performance index (RIPI). A sensitivity analysis is carried out 

with assumed values for the different parameters of the models. The results of 

applying the two stochastic models of (CIPI) and (RIPI) are analysed. For both 

stochastic models, 10,000 simulations are carried out by using the Visual Basic 

Program (Visual Basic 6.0) and VBA (excel 2000), taking into consideration the 

disturbances in the economic factor only. In other words, in both stochastic models, 

the rate of return is assumed to be independent identically distributed as a lognormal 

variable with mean 0 and different values of variance 62. 

Under CIPI and RIPI, we allow the fund target and the contribution target to change 
in five main scenarios, they are: (1,0.2), (1,0.22), (1,0.18), (1.2,0.2) and (0.8,0.2). 

The results of the expected optimal fund level and the contribution rate are analysed 
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through the cases obtained when the weighting risk factors are changed 
interchangeably. Thus, the weighting factors of the contribution rate risk and the 

solvency risk y and ß take the values of (0.1,0.3,0.5,0.7,0.9) interchangeably, while 
the weighting factor of the cross-product term a=0,0.2,0.4,0.6,0.8. 

In Chapter 4, we examine the results of applying the stochastic model of CIPI when 

the value of Bt = 0.3 (as a round value). Also, the equilibrium value of Bt is used in 

some cases to examine the effect of changing 0 and the weighting risk factors y, a and 
P. The results show the following: 

- The effect of changing 0 when Bt = 0.3 is clear for both E(Ft*) and E(Ct*), 

where E(Ft .) decreases when 0 is low and increases when it is high, 

consequently, E(Ct*) increases in the former case and decreases in the latter 

case. However, when the equilibrium value of B1 is used, there are small 
differences between the trends of E(Ft*) and less deviation from the targets for 

E(CK) when 0 changes up and down. 

- The effect of the level of volatility is clear in all cases. Both the expected 

optimal fund level and contribution rate move away from the targets when the 

value of ß is increased. 

- The expected optimal fund levels and the contribution rates are remarkably 

affected by changing the fund and contribution targets. The trends of E(Ft') 

and E(Ct*) move around the different targets. The expected optimal fund level 

is increased by increasing the contribution target and vice versa. The expected 

optimal contribution rate increases with a lower value of the fund target, and it 

decreases when the fund target is high. In our analysis, the value of the initial 

fund Fo is assumed to be equal to the fund targets. Thus, the value of E(Co*) 

changes according to the value of the fund target. 

- The expected optimal fund level becomes closer to the target, when the value of 

the weighting factor of the solvency risk (ß) is high. In the same sense, the 

expected optimal contribution rate moves further away from the contribution 

target, when the weighting factor of the contribution rate risk is low. The same 

conclusion is reached when the equilibrium value of Bt is used. 
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- The results obtained for E(F1') and E(Ct*) show small differences between the 

cases when the value of the weighting factor of the cross-product term a=0 

and when a :A0. It is noted that E(Ft*) and E(Ct*) depart from the targets 

when the value of a is increased with specific values of y and P. In other words, 

when more importance is given to weighting risk factor of the cross-product 

term, which represents the mutual interest of employers and employees, the 

results of E(F1. ) and E(Ct*) show a tendency to deviate away from the targets. 

This is also applied when we use the equilibrium value of Bt. However, the 

trends of E(Ft .) and E(C1`) get close to the targets when a, a and y are high due 

to the skewed distribution with a high value of the variance obtained. 

Chapter 5 considers the properties of the stochastic RIPI model by highlighting the 

differences between the results obtained under RIPI and CIPI when Bt= 0.3. 

Generally, the effect of changing the different parameters is similar under both 

models. However, the trends obtained under RIPI show more departure from the 

targets compared with those obtained under CIPI. 

Chapter 6 explains the empirical implementation of the stochastic RIPI and CIPI 

models. The application of the models is based on the past data, which is collected 
from 1990 to 2002 from the actuarial reports of the largest Egyptian private pension 
fund. The effect of changing the different parameters is tested on the simulated 

expected cash flows. Thereafter, the actual cash flows is compared with those resulted 
from applying the dynamic pension funding models. 

The results of the sensitivity analysis, based on the actual cash flows in our case study 

and when a= 20%, are summarized below: 

- The expected optimal fund level show similar increasing trends under both 

CIPI and RIPI when 0 is increased. However, E(Ft*) reaches higher levels 

under RIPI compared with those under CIPI. On the other hand, the expected 
optimal contribution rate decreases over time when 0 is increased. Further, 

E(C1) is more smooth and less fluctuated under RIPI compared with those 

under CIPI. 

- The effect of increasing the level of volatility show small differences between 
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the levels of E(Ft .) and E(C1*) under both models. However, E(Ft*) tends to 
decrease over time, when a is increased, while E(Ct*) tends to increase 

slightly over time. 

- The effect of the weighting factors of the contribution rate risk and solvency 
risk shows an upward trend of E(F1*) under CIPI and RIPI. However, the 

levels of E(Ft*) decrease under CIPI model, when more importance is given to 

the weighting factor of the contribution rate, while they increase under RIPI 

model. The expected optimal contribution rate increases when the value of y is 

high under CIPI and RIPI, although E(Ct*) levels are smoother under RIPI. 

- The levels of E(F1*) increase over time when a higher value is given to the 

weighting factor of the cross-product term (a). On the other hand, E(Ct*) 

levels show a fluctuation behaviour over time when a is increased. However, 

they are smoother under RIPI compared with those under CIPI. 

At the end of chapter 6, the expected cash flows are compared with the actual cash 
flows achieved over the period from 1990 to 2002. Generally, we find that there are 

some cases where E(Ft*) and E(C1*) are close to the actual cash flows under CIPI and 
RIPI models. According to the data of the Egyptian defined benefit private pension 
fund, it is noted that giving more importance to the weighting risk factor ß keeps the 

weighted average deviation from the actual cash flows small, especially when a=0 

and the fund ratio il = 100% under CIPI and RIPI models. 

7.2 Further work 
In this section, a few ideas are mentioned as a possible extension to the work of this 

thesis. 

The stochastic optimization problems are formulated taking into consideration the 

disturbances in the economic factor only. It will be useful to modify the models by 

considering the disturbances in both the economic and demographic factors. 
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The models are set up based on a finite time span which corresponds to the wind up 

valuation of the scheme. Thus, the models can be developed on the basis of infinite 

time horizon. The empirical implementation of these models could enable us to 

predict the optimal contribution rates in on-going valuation of the scheme. 

In the thesis, the investment strategy has not been included in the models. It could be 

useful to consider the asset allocation strategies and examine their effect on the 

expected optimal contribution rate. Thereafter, the results can be compared with the 

former results that obtained without considering the investment strategies of the 

scheme. 

The fact of the growing popularity of the defined contribution schemes, and the 

importance of applying the dynamic pension funding plans are considered good 

reasons to carry out the empirical study on one of the defined contribution schemes. 

Finally, applying the dynamic programming and control theory on the hybrid schemes 

following both approaches adopted in the defined benefit schemes and the defined 

contribution schemes could be an interesting area of further research. 
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