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Abstract: We study four-dimensional N = 1 gauge theories which arise from D3-brane

probes of toric Calabi-Yau threefolds. There are some standing paradoxes in the litera-

ture regarding relations among (p, q)-webs, toric diagrams and various phases of the gauge

theories, we resolve them by proposing and carefully distinguishing between two kinds of

(p, q)-webs: toric and quiver (p, q)-webs. The former has a one to one correspondence with

the toric diagram while the latter can correspond to multiple gauge theories. The key reason

for this ambiguity is that a given quiver (p, q)-web can not capture non-chiral matter fields

in the gauge theory. To support our claim we analyse families of theories emerging from par-

tial resolution of Abelian orbifolds using the Inverse Algorithm of hep-th/0003085 as well as

(p, q)-web techniques. We present complex inter-relations among these theories by Higgsing,

blowups and brane splittings. We also point out subtleties involved in the ordering of legs

in the (p, q) diagram.
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1. Introduction and Summary

Investigating the world volume theories of D-brane probes on Calabi-Yau manifolds is

of vital phenomenological importance as well as theoretical interest. In particular, toric

singularities have been investigated for some time [1, 2, 3, 4, 5, 6] because of the wealth of

mathematical techniques that allow a detailed study. Amongst many other boons, progress in

this direction has taught us salient prospects on the AdS/CFT correspondence [2, 21, 22, 23].

A plethora of methods have been developed to extract field theories from these toric

singularities, each with its virtues. The first of these methods is to use the so-called “Inverse

Algorithm” developed in [7, 8, 9]. This algorithm is based on the “Forward Algorithm”

given in [1, 5, 6]. Another method is to use the higgsing mechanism, starting from a parent

Abelian orbifold theory and adjusting the FI-parameters properly in the spacetime field

theory [12, 13, 14, 20]. A third method is to use geometric engineering techniques of [17] to

calculate the appropriate intersection numbers and mappings among exceptional collections

[15, 16, 22, 28]. The fourth one, which we shall address in detail here, is to use the (p, q)-web

picture of [31, 32] as a useful guide to directly obtain the matter content and find fields which

should be higgsed down [15, 18]. Of these four methods, the (p, q)-web technique is very

attractive, given the ease by which the matter content, i.e., quiver diagram, of the gauge

theory can be calculated (from intersection numbers of (p, q)-charges) and the immediate

identification of fields higgsed down by acquiring VEVs in the parent orbifold theory.

For toric singularities, the method of (p, q)-webs is particularly useful due to a supposed

equivalence between the toric diagram and the (p, q)-web representations [31, 32]. The (p, q)

webs provide us with a very direct and picturesque perspective. Indeed, in [31], it was

noticed that the grid diagram dual to (p, q)-web precisely resembles the corresponding toric

diagram. Then, in [32], evidence from the geometric point of view was given to support such

a relation. These works tell us that (at least for the case of a single interior point in the toric

diagram) there is a one-to-one correspondence between the (p, q)-web and the toric data.

If we accept the above correspondence, the next question is to find the quiver theory of

a given toric data or (p, q)-web. As mentioned above, the quiver diagram can be directly

obtained from the given (p, q) charges. The relation between the quiver diagram and the (p, q)

charges was established in [15] by mirror symmetry for cones over del Pezzo surfaces. This

begs the question: does a one-to-one correspondence hold for general (p, q)-webs? Along this

line, [18] identified different (p, q)-webs for different phases of toric duality [7, 8] for cones

over the ample surfaces F0, dP2 and dP3 and established the transitions among them by

higgsing and unhiggsing mechanisms [20].

Therefore, we run into a paradox. On the one hand, a one-to-one correspondence would
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dictate that given a toric singularity, there should be a unique corresponding (p, q)-web. On

the other hand, different (p, q)-webs have been identified with different toric (Seiberg) dual

phases of a given toric singularity. The two situations cannot both be true and yet each

seems to have its supporting evidence.

It is the main aim of this paper to explain this puzzle. By careful analysis, we find that

we need to distinguish two kinds of (p, q)-webs. The first one is what we shall call a toric

(p, q)-web which has the direct one-to-one correspondence with a given toric variety. This

is the one considered in [15, 31, 32]. The second one is what we shall call quiver (p, q)-web

which re-expresses a quiver diagram in the form of a (p, q)-web [18]. The second concept

has limitations. Firstly, the quiver (p, q)-web can be applied only for toric diagrams with

one interior point. For those with more than one interior point, we need to use more than

one pair of (p, q) charges to calculate the quiver diagram. Secondly, as we will show, we can

use the same “quiver (p, q)-web” for several different theories and read out various higgsing

phases; this will circumvent our problem of the lack of one-one correspondence. Because

of these limitations, however, we think that the first concept of the toric (p, q)-web is more

fundamental, although the second does have its useful rôle.

In summary, then, the outline of the paper is as follows. We begin with a review in

Section 2 on the key points of (p, q)-webs and in particular how they represent a four-

dimensional world-volume gauge theory on D3-branes probing singular toric Calabi-Yau

varieties. We show how one obtains the web from the toric diagram of the singularity by

graph-dualisation. Such webs we shall call “toric (p, q)-webs.” We then go to extensive case

studies of the toric partial resolutions of C3/ZZ3 × ZZ3 in Section 3. We will reach families

of Hirzebruch, del Pezzo and so-called pseudo del Pezzo surfaces. The quivers for these

theories are intricately inter-related and if we ignored bi-directional arrows therein many of

these theories have the same quiver even though their toric diagrams and hence toric (p, q)-

webs differ greatly. We re-construct the web which gives rise to these quivers and call these

webs “quiver (p, q)-webs.” These are more useful in reading out the higgsing information.

To this we then turn in Section 4 where detailed checks from the field theory, complete with

the superpotential, are carried out to show how these plethora of theories are related by

(un)higgsing. From the web point of view, these (un)higgsing correspond to splitting and

combining of external legs in the web-diagrams, and we finally show how the various theories

can be reached by combining legs from the parent (p, q)-webs of the C3/ZZ3 × ZZ3 orbifold.
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2. A Brief Reminder on (p, q)-Webs of Branes

We are interested in the construction of a wide class of four-dimensional N = 1 gauge

theories that arise on the world-volume of D-branes probing toric singularities. A particularly

visual method of studying the quiver that arise from such theories is to use (p, q)-webs. In

this section, we briefly outline the techniques involved before proceeding on to study detailed

examples. The reader is encouraged to also refer to Section 2 of [18] for a very nice review

on this subject in the present context.

2.1 The (p, q)-Web

We first recall that the S-duality in type IIB, or equivalently, the torus modular group

in F-theory, allows the existence of (p, q) branes. The D5-brane is assigned a charge of (1, 0)

while the NS5-brane has charge (0, 1). The methods of [29, 30] allowed [31, 32] to construct

five-dimensional N = 1 theories via configurations of type IIB (p, q)-fivebranes, stretched in

a way such that 4+1 common dimensions of the world-volume correspond to spacetime for

the gauge theory. In the transverse 5 directions the branes look like lines which conjoin in

a web fashion. We therefore suppress 3 of the transverse direction and represent our branes

as intersections of lines in a two-dimensional coördinate system with axes (p, q) so that the

charge of the (p, q) fivebrane can be readily read out from its slope. To such configurations

we shall refer as (p, q)-webs of fivebranes.

The branes intersect at a basic 3-valence vertex which we have drawn in Part (a) of

Figure 1. In general, the branes will extend in a skeletal structure woven by 3-valence

vertices at which (p, q)-charges are conserved. That is, at each vertex, the sum of the (p, q)-

vectors vanishes. Furthermore, there are internal lines and external lines, the former of which

has no free ends; these are colour and flavour branes respectively. An archetypal example

of the web is given in Part (b) of Figure 1. In general, a web with Nc parallel internal lines

and Nf external lines corresponds to an SU(Nc) theory with Nf flavours.

The Higgs branch of the gauge theory is parametrised by the abovementioned three

suppressed dimensions, while the Coulomb branch corresponds to deformations of the relative

positions of the (p, q)-branes. In (b) of Figure 1, fundamental strings stretched between the

parallel fivebranes are BPS states: those between the horizontal correspond to W-bosons of

mass Ts∆y and those between the vertical, instantons of mass |τ |Ts∆x (where τ is the type

IIB scalar and Ts, the fundamental string tension).

The number of global deformations of the theory is SO(3) coming from the Higgs branch;

in addition there are

nG = #(external faces) − 3
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(1, 0)

(0, 1)

(1, 1)

NS5

D5

(a) (b) (c)

Figure 1: (a) The triple vertex of a D5-brane (1,0), an NS5-brane (0,1) and a (1,1)-brane; (b) An

archetypal example of a (p, q)-web and (c) its dual grid (toric) diagram.

extra global deformations. On the other hand, the number of local deformations is

nL = dim(Coulomb Branch) = #(internal faces) .

2.2 Grid Diagrams, Toric Diagrams and Four-dimensional Gauge Theory

Having explained the fundamental rules of the representing five-dimensional gauge theo-

ries with (p, q)-webs. We now explain how this configuration gives rise to a four-dimensional

N = 1 gauge theory, which is in particular a world-volume theory of a D3-brane probe of

a toric singularity. For some rudiments of toric geometry in the present context, the reader

could read, for example, [24]. We point out that, of course, the toric diagrams we draw should

be three-dimensional because we are dealing with complex threefolds. However, since we are

dealing with local Calabi-Yau threefolds, we henceforth draw only the two-dimensional cross

section of the toric diagram. The endpoints of the vectors are coplanar due to the Calabi-Yau

condition.

As explained in [31], one could define a dual diagram to the (p, q)-web, a so-called grid

diagram. The duality is in the sense of finite planar graphs, where vertices and faces are

interchanged and edges, to their perpendiculars. This procedure is illustrated in going from

our prototypical example (b) to its dual in (c) in Figure 1. The astute reader may recognise

(c) to be nothing but a toric diagram; this is precisely the point of [31, 32]. The Inverse

Algorithm of [7] was devised exactly for taking this data to gauge theory data in terms of

quiver diagrams.
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Indeed, in the perspective of [32], it was noted that when geometrically engineering

gauge theories from toric varieties, a simple correspondence exists between the geometry

and branes. The key features of toric varieties are captured by when the torus fibrations

shrink. However, this is precisely where the shrinking cycles become a source of the brane-

charges. Therefore these loci should be identified with appropriate brane configurations. To

be specific, we have identified lines in the (p, q)-web with D5-branes. In addition, there could

be (fractional) D3 and D7 branes. Then, the D3-branes can be associated with vertices and

D7, with the faces. In other words, we let D3, D5 and D7 branes wrap 0, 2 and 4 cycles

respectively in a Calabi-Yau threefold geometry. The result, is a four-dimensional gauge

theory, which, on the D3-brane world volume perspective, is the N = 1, four-dimensional

quiver gauge theory from probing the said Calabi-Yau, which is a (non-compact) toric variety

whose toric diagram is specified by the grid diagram.

In light of these insights, obtaining the matter content of the N = 1 gauge theories on

D-branes probing toric singularities can be extremely intuitive and straight-forward. Indeed,

given the toric diagram, one simply has to identify it with a grid diagram, and then draw

the dual; this is then the (p, q)-web. Assigning appropriate (pi, qi)-charges to each external

leg i according to the direction of the vectors, the quiver matrix of the resulting theory is

instantly given by

χij = det

(

pi pj

qi qj

)

. (2.1)

Of course, there are limitations to this methodology: in contrast to the generality of the

Inverse Algorithm of [7], there is a present lack of a direct method to obtain the superpo-

tential. Moreover, subtleties arise when there are multiple internal points (or equivalently,

parallel external legs). More pertinent to us is the fact that we see that (2.1) is naturally

antisymmetric in the indices i and j. The non-antisymmetric parts are (1) adjoint matter

corresponding to non-zero diagonal entries in the quiver matrix and (2) non-chiral matter

corresponding to bi-directional arrows, i.e., symmetric parts, in the quiver matrix. Captur-

ing these fields, though being discussed nicely in [15], still lacks a systematic analysis from

geometric methods such as (p, q)-webs.

An important point is that the (p, q)-web method culminating in (2.1) seems to suggest

a one-to-one correspondence between the toric data and the (p, q)-web data in the sense that

they are dual finite graphs. Once the toric diagram is given, the (p, q)-web, and thence the

quiver, are uniquely determined. We will point below how one needs to be careful with this

identification and emphasise the concepts of “toric” versus “quiver” (p, q)-webs.
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3. Case Studies: Partial Resolutions of C3/ZZ3 × ZZ3

We will be focusing on the D-brane probe theories that arise from partial resolutions of

Abelian orbifolds, especially the cones of the Hirzebruch and del Pezzo surfaces; these have

readily available data from the Inverse Algorithm with which we may compare and contrast.

Some of these have been very nicely considered in [15, 18] from the (p, q) point of view.

The gauge theories on D-brane probes to partial resolutions of the Abelian orbifold

C3/ZZ3 ×ZZ3 have been extensively studied [5, 7]; the Inverse Algorithm of [7] and subsequent

duality considerations [8, 9, 10, 11, 12, 20] have provided us with a wealth of explicit exam-

ples. The (p, q)-web techniques reviewed in the previous Section have been applied to these

examples in [18].

In this section, we will re-examine these examples together with some new ones, in order

to demonstrate that there are really two kinds of (p, q)-webs. In particular we will focus on

the cones over Hirzebruch surfaces and so-called pseudo-del Pezzo surfaces.

3.1 The F2 Singularity

We begin with an example not previously addressed in the literature. This is the affine

cone F2 over the second Hirzebruch surface. The surface itself is a IP1-fibration over IP1.

F2 is a local Calabi-Yau threefold which can be described as a singular affine variety. The

toric diagram (with a perpendicular dimension of the cone suppressed) for F2 is given in

part (b) of Figure 2. The background configuration of blue dots is the familiar toric diagram

of C3/ZZ3 × ZZ3. We see that there is an embedding of toric diagrams. This means that the

Inverse Algorithm of [7] can be applied.

Subsequently, we can readily obtain the world volume theory of a brane probing F2. The

matter content is given by the quiver diagram depicted in part (a) of Figure 2; it is a theory

with 4 product gauge groups and 12 bi-fundamental fields. The superpotential is given by

WF2
= X12Y23Z31 − Y12X23Z31 + X23Y34Z41 − Y23X34Z41 (3.1)

+ X34Y41Z13 − Y34X41Z13 + X41Y12Z24 − Y41X12Z24 .

As discussed above, instead of using the Inverse Algorithm, the matter content, at least,

can be easily obtained from a (p, q)-web configuration. We dualise the toric diagram to obtain

the web; the result is presented in part (c) of Figure 2 with the (p, q)-charges appropriately

labelled. The quiver is then obtained by the intersection rule (2.1) from the (p, q)-charges.

The answer is in perfect agreement with that obtained from the Inverse Algorithm, presented

in Part (a) of the figure.
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Figure 2: The theory for the singularity F2 which is a cone over the second Hirzebruch surface:

(a) the quiver diagram; (b) the toric diagram (bounded by the lines) given as an embedding into

that of C3/ZZ3 × ZZ3; (c) the corresponding (p, q)-web diagram.

Note that the procedure of obtaining the web from the toric diagram involves a direct

dualisation of the graph. We henceforth call a web obtained this way a toric (p, q)-web to

reflect the fact that it is directly and uniquely obtained from the toric diagram by graph-

dualisation.

Now, in presenting the quiver and the superpotential, we have purposefully chosen the

notations above. The reader may instantly recognise, upon observing the theory presented

in the said manner, that the theory is nothing other than the familiar theory of the Abelian

orbifold C3/ZZ4 with action (1, 1, 2). That is, with the action of the ZZ4 on the coördinates

(x, y, z) of C3 as (x, y, z) → (ω4x, ω4y, ω2
4z), where ω4 is the primitive fourth root of unity.

Quivers for Abelian orbifolds are most conveniently given in terms of the Brane Box Model

representation [25]. For comparison, we have drawn the Brane Box Model of this theory in

Figure 3.
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Figure 4: (a) The toric diagram of the weighted projective space IP2
[1,a,b], which is the exceptional

divisor in the resolution of the abelian orbifold C3/ZZ1+a+b with action (1, a, b). (b) The toric

diagram of the n-th Hirzebruch surface. (c) We redraw (a) for the case of IP2
[1,1,n] and see that toric

diagram, up to rotation, coincides with that of (b).

Regarding this equivalence to the orbifold theory, we remark that in general, the toric

diagram for C3/ZZ1+a+b with action (1, a, b) is given in Figure 4. This toric diagram, when

visualized in the two-dimensional cross section, is that of the weighted projective space

IP2
[1,a,b]. This fact was observed in [10], and the corresponding “toric” (p, q)-web has also

been constructed therein. Indeed for large (a, b), there may be multiple interior points. This

would therefore be an example which demonstrates that the one-to-one correspondence, in

the sense of dual graphs, between the toric (p, q)-web and the toric diagram is still valid

even with multiple inner points in the toric diagram. The web diagram can also be used to

investigate the resolution of singularities, as discussed in [10].

More importantly, we have that the quiver obtained from (2.1) for Fn≥2, the cone over

the n-th Hirzebruch surface, is given simply by that of the Abelian orbifold C3/ZZn+2 with

action (1, 1, n). We have used our toric algorithm to verify the cases of F3 and F4. This

is both remarkable and unsurprising. It is remarkable because we have reduced the matter

content for a series of complicated geometries to those of simple Abelian orbifolds:

Quiver(Fn≥2) = Quiver(C3/ZZn+2), with action (1, 1, n). (3.2)

It is also unsurprising because upon observing part (c) of Figure 4 for the special case of

a = 1, b = n, we see that for n ≥ 2, the toric diagrams for Fn and IP2
[1,1,n] are the same

(up to rotation). Indeed, as IP2 (which, incidentally, is the zeroth del Pezzo surface) is the

exceptional divisor in the resolution of C3/ZZ3, so too is the weighted projective space IP2
[1,1,n]

9



the exceptional divisor for the resolution of C3/ZZn+2. Now, because we have shown that the

(p, q)-webs of Fn and IP2
[1,1,n] are identical for n ≥ 2, it is not surprising that the quiver for

Fn, or at least the antisymmetric part thereof obtained from (2.1), coincides with that of

C3/ZZn+2. As a parenthetical note, construction of exceptional collections of coherent sheafs

over IP2 has been central to D-brane interpretations of the McKay correspondence [26, 27],

generalisations to the aforementioned weighted projective spaces would be interesting.

We mentioned earlier that the (p, q)-web technique readily gives the antisymmetric part

of the quiver. We note that there are two bi-directional arrows in the quiver diagram (a)

of Figure 2 obtained from the Inverse Algorithm. If we neglect these bi-directional arrows,

the diagram is something we have seen before: it is exactly phase II of theory probing F0,

the cone over the zeroth Hirzebruch surface! The reader is referred to (2.2) of [8] or Figure

4 of [11] for this theory. For completeness let us include the relevant data here for the

readers’ convenience. The figure contains the respective quivers of and the superpotentials

are tabulated for dP1, the cone over the first del Pezzo surface, the two Seiberg dual phases

dP2I and dP2II for dP2, the cone over the second del Pezzo surface, as well as the two

phases F0I and F0II of F0, the cone over the zeroth Hirzebruch surface.

4

5

231

4

5

1 23

1 2

34

1 2

34

F0 II

1 2

34

F0 I

dP1

dP2 dP2
I II
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WdP1 = X34Y41X13 − Y34X41X13 − X34X42Y23 + Y34X42X23

−X12X23Z34Y41 + X12Y23Z34X45,

WF0I
= X1

14X
1
43M

22
31 − X2

14X
1
43M

12
31 − X1

14X
2
43M

21
31 + X2

14X
2
43M

11
31

−X1
12X

1
23M

22
31 + X2

12X
1
23M

12
31 + X1

12X
2
23M

21
31 − X2

12X
2
23M

11
31 ,

WF0II
= X12X23Y34Y41 − Y12X23X34Y41 − X12Y23Y34X41 + Y12Y23X34X41,

WdP2I
= [X41X15X54 − X42X25X54] − [X41Y15X53X34 − X42Y25Y53X34]

−[X31X15Y53 − X32X25X53] + [X31Y15Z53 − X32Y25Z53],

WdP2II
= [X34X45X53] − [X53Y31X15 + X34X42Y23]

+[Y23X31X15X52 + X42X23Y31X14] − [X23X31X14X45X52]. (3.3)

This above observation on the bi-directional arrows will be our initiation into the concept

of “quiver (p, q)-webs.” We first define, given a quiver diagram, the notion of the quiver

(p, q)-web; this is simply the (p, q)-web diagram which produces a given quiver by rule

(2.1) regardless of geometry. We emphasise again that since (2.1) is an antisymmetric form,

it is exactly these bi-directional arrows that can not be captured by the (p, q) technique.

Therefore, as far as F0 and F2 are concerned, they have the same “quiver (p, q)-web” even

though their “toric (p, q)-webs” differ because their toric diagrams obvious differ and we

recall that the toric (p, q)-web is obtained from the toric diagram by graph dualisation. In

the geometry this means that the intersection numbers among vanishing cycles (cf. [10]) are

antisymmetric for these theories and cannot capture non-chiral matter. We now exploit this

ambiguity in the correspondence between the quiver (p, q)-web diagram and the toric data

in detail.

3.2 The PdP2 Singularity

Our next example is what was called in Section 6 of [20] as the cone over a “Pseudo del

Pezzo surface.” Recall, we call a surface pseudo del Pezzo if it is toric and obtained by a

single blowup (inclusion of a point in the toric diagram) of a toric del Pezzo surface, but is

not itself a del Pezzo surface because the blowup point is not in general position. In other

words, it is IP2 blown up at non-generic points. Indeed, though only the first 3 del Pezzo

surfaces are toric varieties, that is, IP2 blown up at up to 3 generic points are toric, a higher

number of blowups can be included and the surface remains toric so long as these blowups

are in special positions.
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Figure 5: (a) The toric diagram of dP1, embedded into that of C3/ZZ3 × ZZ3. dP1 can be blown

up in two ways (in the toric diagram this is done by the inclusion of another point) into (b) dP2,

the cone over the second del Pezzo surface, or (c) PdP2, the cone over the second pseudo del Pezzo

surface. The toric (p, q)-web diagrams are drawn respectively in (d) and (e).

We illustrate the first case of a cone over a Pseudo del Pezzo surface, namely PdP2, in

Figure 5. In part (a), we have the toric diagram of our familiar dP1, the cone over the first

del Pezzo surface (cf. e.g. [7] and [24]), embedded into C3/ZZ3×ZZ3. Under the condition that

there is only one interior point, we can blow up dP1 in two ways, as shown in (b) and (c).

Part (c) is the familiar dP2, the cone over the second del Pezzo surface while (d) is what we

call PdP2, the cone over the second pseudo del Pezzo surface. The corresponding (p, q)-web

diagrams are given respectively in parts (d) and (e) of Figure 6. We remind the reader that

these, in our nomenclature, are toric (p, q)-webs because they are obtained directly from

dualising the toric diagrams. Indeed (d) and (e) differ because the respective toric diagrams

differ; this is illustrative of the fact that toric data and toric (p, q)-web diagrams should be

in one-to-one correspondence.

Now, in [18], these two (p, q)-web were obtained by the technique of splitting a brane.

There, these two web diagrams were identified as those for the two different toric dual phases

of dP2. We now point out that the web diagrams in fact correspond to different geometries

12
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Figure 6: (a) The toric data of PdP2 and (b) its (toric) (p, q)-web diagram; these are redrawn

from Figure 5. (c) the corresponding quiver diagram.

and that it is important to distinguish toric and quiver (p, q)-webs. With some foresight,

we note that the condition of [18] for splitting one external leg, such that the new external

legs should not intersect with nearby external legs, is exactly the condition for addition

of points in the toric diagram. We will return to this issue in a later section on splitting

webs. We shall see that higgsing in the field theory, i.e., the combining of nearby external

legs, is exactly the reverse process of deleting some nodes from the toric diagram to reach

another [20]. In other words, the splitting and combining of external legs in the (p, q)-web

language correspond naturally to embedding and deleting nodes in toric diagrams, and thus,

to blowing up and down in the geometry. From this geometric point of view, it is natural

that there is a one-to-one correspondence between the (toric) (p, q)-web and toric diagram.

Now, let us return to the issue on bi-directional arrows and the comparison between the

two webs (d) and (e) in Figure 5. The quiver diagram of PdP2 singularity is given in part

(c) of Figure 6. Notice that this quiver diagram is exactly like phase II of dP2 given in the

diagram in (3.3), if we ignored the bi-directional arrow between nodes 1 and 2. Once again,

as in the case of F2 and F0 mentioned in the previous subsection, ignoring bidirectional

arrows identifies two different theories. Indeed, if we calculated the quiver diagram directly

from the corresponding (p, q)-web diagram in part (b) of Figure 6, we would have obtained

phase II of dP2 and this is the reason why [18] identified this web as that for dP2II . Of

course, this is a vestigial feature of the fact that (2.1) does not capture bi-directional arrows.

We therefore need to be careful that the “toric” (p, q)-web for PdP2 given in Part (b) of

13



Figure 6 does not produce the right quiver for the theory but instead gives that of dP2II.

We can further see the difference by noting that the superpotential for PdP2, from the

Inverse Algorithm, given in terms of its 13 fields is

WPdP2 = X31X15X53 − X23X34X42 + Y31X12X23 − Y23X31X12

+ X14X42X21 − X15X52X21 − Y31X14X45X53 + Y23X34X45X52 , (3.4)

which of course differs from WdP2II
. Incidentally, we can see that this theory is invariant

under the action: 1 ↔ 2, 4 ↔ 5 plus conjugation (i.e., reversal of arrows) of all fields (cf. [11]

for discussion on these symmetries). Moreover, we can find all the toric dual phases for

PdP2. To remain rank 1 after Seiberg duality (cf. [8] for this condition), only nodes 4 and

5 are suitable. Choosing either one (they are equivalent to each other by symmetry), we get

back to the same theory. Hence, there is only one toric dual phase for PdP2, as opposed to

dP2, which has two toric dual phases, as shown in (3.3)

3.3 The PdP3 Family of Singularities

Having seen the examples of F0 versus F2 and dP2II versus PdP2, let us move on. Now,

starting from the toric diagram of dP2, we can embed it into three different toric diagrams

by adding one more node. This is given in Figure 7. The first is our familiar cone over the

third del Pezzo surface dP3 (cf. Figure 4 of [7]). The other two, in the convention above, are

also what we call pseudo del Pezzo’s; these we respectively call PdP3b and PdP3c. We have

also drawn their corresponding (toric) (p, q)-web diagrams. We call these three members the

PdP3 family and will address them individually. Later, as a check on the embedding of the

toric data, we will demonstrate that higgsing any of dP3, PdP3b and PdP3c in the spirit of

[20] gives back the dP2 field theory.

3.3.1 The PdP3b Singularity

Let us first analyse PdP3b. The Inverse Algorithm applied to PdP3b from partial

resolution of C3/ZZ3 × ZZ3 results in three toric theories that are Seiberg (toric) dual to each

other. The quiver diagrams and the superpotentials for these three dual phases are given
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Figure 7: The possible three embeddings (unhiggsings) of dP2 into dP3, PdP3b and PdP3c. The

corresponding (toric) (p, q)-webs are also drawn.

below:

1 2

34

5

6

Phase  II
Phase  I

1 2

34

5

6

4

1

6

5

2

3

Phase III
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WPdP3bI
= X61X15Y56 − X61Y15X56 + X16X64X41 − X16X62X21

−X41X15X54 + X21Y15X52 + Y35X54X43 − Y35X52X23

+X56X62X23X35 − Y56X64X43X35,

WPdP3bII
= X12X25X54X41 + X26X64X43X32 − X25X51Y13X32 − X64X41X13X36

+Y13X36X61 + X13X35X51 − X61X12X26 − X43X35X54,

WPdP3bIII
= X13X34X41 − X46X61X14 + X45X51X14 − X24X41X12 + X62X24X46

−X35X51X13 + X23X35X56X61X12 − X23X34X45X56X62 . (3.5)

We first remark on the bi-directional arrows in comparison with the 4 phases of our

familiar dP3 theory. We will not present those quivers here due to their similarity to the

ones above and the reader is referred to Figure 9 of [11]. In summary,

PdP3b dP3

II II

I III

III I

(3.6)

where we have juxtaposed the quivers of the two theories that are identical if we ignored the

bi-directional arrows. We remark also that because of the bi-directional arrow in PdP3bI ,

the quiver has only a ZZ2 symmetry with action 2 ↔ 4 and we write the superpotential in a

manner to make the symmetry manifest. The same holds for PdP3bIII ; the superpotential

preserves only a ZZ2 × ZZ2 subgroup of the full D6 symmetry that is expect of the quiver

for dP3. Indeed, recalling the symmetry argument in [11], it was shown that the ZZ2 × ZZ2

symmetry uniquely determines the superpotential of phase II of dP3. Now since PdP3bII

has the same quiver diagram, we should have a different symmetry in order to distinguish it.

It is easy to check that this is indeed true and the phase II has only a diagonal ZZ2 symmetry

with action 5 ↔ 6, 1 ↔ 3, 2 ↔ 4 plus charge conjugation. We conclude that PdP3b and dP3

are indeed markedly different theories even though they share the same quiver (p, q)-webs.

3.3.2 The PdP3c Singularity

Our next member of the family is PdP3c, onto which we now move. The toric diagram

and corresponding (p, q)-web diagram were given in Figure 7. In this case, we have two

different phases, as obtained from the Inverse Algorithm, with quivers drawn in Figure 3.7
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and superpotentials given as follows:

4

1

6

5

2

3
1 2

34

5

6

Phase  I 
Phase II

WPdP3cI
= X12X24X41 + X45X51X14 − X13X34X41 − X46X61X14

+X13X35X56X61 + X46X62X23X34 − X12X23X35X51 − X45X56X62X24,

WPdP3cII
= X64X42X26 − X54X42X25 + X54X43X35 − X26X61X12

+X24X41X12 − X24X43X32 + X13X36X61 − X13X35X51

+X25X51Y13X32 − X41Y13X36X64 . (3.7)

Again, let us compare with the phases of dP3. For PdP3cI, its quiver diagram is exactly

the same as the phase I of dP3 except for the bi-directional arrow between nodes 1 and 4.

This arrow breaks the D6 symmetry of the original dP3 quiver down to ZZ2 × ZZ2, where one

ZZ2 takes 1 ↔ 4, 2 ↔ 5, 3 ↔ 6 and the other takes 2 ↔ 6, 3 ↔ 5 plus charge conjugation for

all fields. It is easy to see these remnant symmetries from the superpotential WPdP3cI
given

in (3.7). For PdP3cII, the quiver diagram is the same as the phase II of dP3 except for the

bi-directional arrow between nodes 2 and 4. This theory has only a diagonal ZZ2 symmetry

with action 1 ↔ 3, 2 ↔ 4, 5 ↔ 6 plus conjugation.

3.3.3 The PdP3a Singularity

The reader may question why we have not named a PdP3a singularity. We now turn

precisely to this issue. The above theories of the PdP3 family were obtained from blowing

up dP2; now let us examine what happens when we blow up PdP2 from the toric diagram
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Figure 8: The three blowups of PdP2 into PdP3a, PdP3b and PdP3c, which still embed into

the parent C3/ZZ3 × ZZ3. The toric web diagram for PdP3a is also drawn. The toric (p, q) webs for

PdP3b and PdP3c are given in Figure 7.

in Part (a) of Figure 6. We present all possible blowups of the PdP2 toric diagram that still

embed into C3/ZZ3 × ZZ3 in Figure 8.

We see that, in addition to the PdP3b and PdP3c obtained as blowups of dP2 studied

in the previous subsection, we also obtain a third new singularity which we call PdP3a. As

before, we again use the Inverse Algorithm to find the quiver and superpotential. These are

given below:

a

a

4

1

6

5

2

3

PdP3a

WPdP3a

= [X13X36X61 + X24X41X12 + X35X52X23 + X46X63X34

+X51X14X45 + X62X25X56] − [X12X25X51 + X23X36X62

+X34X41X13 + X45X52X24 + X56X63X35 + X61X14X46] .

(3.8)

There is only one toric phase for this theory. Its quiver is the same as that of model I of
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dP3 if we ignore the three bi-directional arrows connecting nodes (1,4), (2,5) and (3,6). The

superpotential, written in the manner of (3.8), clearly manifests a D6 symmetry: a ZZ6 factor

which is a 60o degree rotation, and a ZZ2 factor exchanging 2 ↔ 6, 3 ↔ 5 together with field

conjugation.

4. Higgsing, Splitting and Blowing Up

Now we have constructed a host of theories, related to each other by blowups in the

toric diagram and whose quivers can be obtained either from the toric (p, q)-webs or from

the Inverse Algorithm. We have shown that different geometries may give rise to the same

quiver if we ignored bi-directional arrows which can not be encoded into the rule (2.1) for

the webs anyway. We have insisted that there is a one-one correspondence between the toric

diagram and the “toric” (p, q)-web, which is the graph-dual of the toric diagram. On the

other hand, we have introduced the notion of the “quiver” (p, q)-web which is simply a web

that gives the right quiver by (2.1). Indeed, different geometries may have the same “quiver”

(p, q)-web even though their “toric” (p, q)-webs obviously differ.

To further establish the one-to-one correspondence between the toric data and toric

(p, q)-web diagrams, we now show that these theories above are indeed related to each other

from various perspectives. This is in the spirit of the (un)higgsing mechanism of [20]. What

we have used in the previous section is sequential blow-ups (blow-downs) in the toric geom-

etry corresponding to the removal (addition) of toric points. Now we will first show that the

theories can indeed be higgsed from each other from a field theory point of view. We then

show that this is also in accordance with the splitting procedure in the (p, q)-web picture.

For example, from the toric data of dP1, we see that it can be embedded into both

dP2 and PdP2 as shown in Figure 5. From the point of view of (p, q)-webs, this process is

realized by splitting one external leg in the (p, q)-web diagram of dP1 [18]. To keep only

one interior point in the toric data, we get only two inequivalent (p, q)-web diagrams by this

splitting process. From the perspective of the field theory on the D-brane probe, this means

that we can higgs the field theories of dP2 and PdP2 to that of dP1. This will be our first

consistency check.

4.1 Higgsing: Checks in the Field Theory

We begin with checks from the field theory which lives on the D3-brane probe world

volume. We will show that the theories obtained above by the blowups in the geometry and

using the Inverse Algorithm are indeed inter-related by the higgsing mechanism.
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4.1.1 From PdP2 to dP1

To higgs down from PdP2 to dP1, we start from the superpotential (3.4). By giving the

field X14 a non-zero vacuum expectation value, the fields X42, X21 become massive and must

be integrated out. The final theory will be left with only 13− 3 = 10 fields, which turns out

to be precisely those of dP1. Indeed, after integrating out the massive fields and relabelling

fields X45 → Y15, X34 → Z31, we obtain the following superpotential:

W = X31X15X53 − Y31Y15X53 − X31X12Y23 + Y31X12X23

−X52X23Z31X15 + X52Y23Z31Y15 . (4.1)

This is exactly the superpotential of dP1 given in (3.3).

4.1.2 From PdP3b to dP2

Let us start from the phase I of PdP3b. First we give X62 a non-zero VEV. In this case,

fields X16 and X21 will become massive and should be integrated out, so we are left with

16 − 3 = 13 fields in the final theory. After working out the superpotential as above, it is

exactly that of the phase I of dP2 given by WdP2I
in (3.3). Next, if we give X41 a non-zero

VEV, fields X16, X64, X15, X54 will get mass and we are left with 16 − 5 = 11 fields. After

integrating out the massive fields we get exactly the superpotential of phase II of dP2 given

by WdP2II
in (3.3).

Let us now start with phase II of PdP3b. First, if we give field X41 a VEV, it is easy

to show that the final superpotential is exactly WdP2I
. On the other hand, if we give field

X26 a non-zero VEV, we will obtain WdP2II
. Recall that phase II of PdP3b has the same

quiver as phase II of dP3 and both of them can higgs down to dP2. Therefore, by doing the

reverse procedure of unhiggsing, this gives us a non-trivial example that when we unhiggs

one theory to a given quiver diagram, we may reach more than one final theory.

On the other hand, if we give X25 the VEV, this will give the PdP2 theory which as

we have seen has same quiver as the phase II of dP2 except the bi-directional arrow. Here

we see a very good example how the (p, q)-web diagrams guide us which theory to higgs to

which and where ambiguities may arises due to the bi-directional arrows. We will discuss

this issue more in the next section.

4.1.3 Summary of Higgsings in the Field Theory

The calculation is thus standard and we will not present the details here for all the

theories. What we will find is an intricate web of theories inter-related by the various
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higgsings. In the table below we present which theories, in the vertical, can be higged to

which theories, in the horizontal. We explicitly indicate which fields acquire non-zero VEV’s.

dP2I dP2II PdP2

dP3I X12,X23,X34,X45,X56,X61

dP3II X32,X41 X25,X54,X64,X26

dP3III X46,X26 X32,X34,X24,X12

dP3IV X51,X53,X43,X42,X52,X41

PdP3a X12,X23,X34,X45,X56,X61

PdP3bI X64,X62 X41,X21 X43,X23

PdP3bII X32,X41 X26,X54 X25,X64

PdP3bIII X12,X61,X34,X45 X23,X56

PdP3cI X12,X61,X34,X45 X23,X56

PdP3cII X32,X41 X26,X54 X25,X64

(4.2)

We remark two points. First, since the toric diagram of dP2 can not be embedded into

that of PdP3a, they should not be related by higgs mechanism. This fact is shown by the

empty entry in the above table. This same argument holds between dP3 and PdP2. Second,

starting from phase I of dP3 we can never reach phase I of dP2 by higgsing. Conversely,

dP3I can never be reached by the un-higgsing method of [20] applied to dP3I . This indicates

that the starting point of the un-higgsing process will effect the final result.

4.2 Splitting: Higgsing in the (p, q)-Web

Now, as detailed very nicely in Section 4.1 of [18], the process of (un)higgsing in the

field theory, or equivalently, the process of adding/deleting nodes in the toric diagram, has

a simple counterpart in the (p, q)-web picture. This simply corresponds to the splitting and

combining of external legs (dual to the addition and deletion of points in the toric diagram).

The archetypal example is given in Figure 9 below.

A strong evidence for the identification of different (p, q)-webs with different phases given

in [18] is the ability to use the (p, q)-web to higgs very conveniently. The basic assumption

behind this idea is the premise that the quiver diagram of a given (p, q)-web is calculated

by the intersection number a la (2.1). As we have seen in the previous discussions, such

an assumption is too strong. First, it is possible that there are bi-directional arrows in the

quiver diagram. These are not captured by the intersection number which are necessarily

antisymmetric. Second, when there is more than one interior point in the toric diagram, i.e.,

when we have parallel legs, we need more than one pair of (p, q) charges to calculate the
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intersection. This point was shown in [10] in the mirror picture1. Moreover, we will adhere

to the following constraint. When we read out which fields should get a non-zero VEV from

the (p, q)-web, we insist that only nearby external legs are combined. This condition is not

required from the point of view of field theories because there are a number of fields that

can develop non-zero VEVs to reach the desired result. However from the point of view of

toric resolutions and indeed from the (p, q)-web, this condition is natural.

Bearing these points in mind, we now construct the “quiver (p, q)-webs” for the toric

singularities studied above (incidentally, these diagrams all have only one interior point). We

will reverse-engineer the (p, q)-charges so that the desired quiver diagrams can be calculated

using (2.1) and that the various higgsings are in accordance with the conditions in the

preceding paragraph. Therefore, unlike the “toric (p, q)-web” which is uniquely determined

by graph dualisation once the toric diagram is given, for the “quiver (p, q)-web” we construct

the web from the quiver diagram a postiori to show that the correspondence may not be

one-to-one. For example, as stated earlier, the quiver (p, q)-web of PdP2 will be identical to

that of phase II of dP2 whereas their toric (p, q)-webs clearly differ.

Indeed, we would like to emphasise that the toric (p, q)-web, obtained from the geometry

alone, is perhaps a more fundamental concept. However, since the quiver (p, q)-web encodes

the information of the quiver diagram, it can be used to efficiently encode which field gets

a non-zero VEV as advocated in [18]. The (p, q)-webs identified with particular toric dual

phases of a theory in [18] are precisely these “quiver (p, q)-webs.” Thus armed, let us now

use a few examples to demonstrate how to use the quiver (p, q)-web to perform higgsing and

what ambiguities may arise.

4.2.1 Bi-directional Arrows

The first example is depicted in Figure 9. Since F2 can be embedded into both dP2

and PdP2, we should expect to be able to higgs PdP2 and dP2 to F2 as was done in the

previous sections. As we have seen, the quiver diagram of PdP2 is same as phase II of dP2

up to a bi-directional arrow, so the corresponding quiver (p, q)-webs are same. From Figure

9 it is easy to see that by combining external legs 4 and 5 of left web we can get the web on

the right.

According to the results in [18], this means that if we give the field X45 a non-zero

VEV, we can higgs down PdP2 (or dP2) to F2. We have shown this, by using the explicit

superpotential, in previous sections. This example demonstrates that while it is very simple

to read out the higgsing information from the quiver (p, q)-web, the identification of field

1We thank Amer Iqbal for clarifying this point to us.
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PdP2 F2

dP2 F0

Figure 9: The higgsing of the quiver (p, q)-web of either PdP2 or dP2II to that of either F2 or

F0.

theories to a specific quiver (p, q)-web is ambiguous. The higgsing process dictated by a

quiver (p, q)-web can indeed result in different field theories, depending on the theory we

choose to associate with the quiver (p, q)-web. Thus, the same quiver (p, q)-webs can tell us

the higgsing process of dP2 to F0 or from PdP2 to F2.

4.2.2 Adjacent Parallel Legs

The above ambiguities for the quiver (p, q)-web is by no means the whole story. The

procedure to read off the higgsed fields becomes much trickier when considering (p, q)-webs

with adjacent parallel external legs. For example, knowing the quiver diagram of phase II of

PdP3b, we can draw its corresponding quiver (p, q)-web as either part (a) or (b) of Figure 10.

These quiver (p, q)-webs in Figure 10 differ from each other only by the exchange of legs 5

and 6 because these nodes are identical in the quiver diagram. However, when we try to

higgs these two webs down to the quiver (p, q)-web of dP2 in Part (c), this difference in leg

ordering becomes manifest in the higgsing procedure. Using the diagram in Part (a), by

combining legs 2 and 6 we reach the phase II of dP2, but from Part (b) by combining legs

2 and 5 we reach PdP2. These are, we recall, different gauge theories.

This example demonstrates the tricky part of using quiver (p, q)-web in performing

higgsing. In fact, this also solves the following puzzle of higgsing down from the (p, q)-web

of C3/ZZ3 × ZZ3. The requirement of combining only nearby legs tell us that there are four

and only four different (p, q)-webs which we can reach from C3/ZZ3 × ZZ3 by higgsing three

fields. These are precisely the four kinds of toric singularities, viz., dP3, PdP3a, PdP3b
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Figure 10: Higgsing the Phase II theory of PdP3b down to dP2 or PdP2. Even though the latter

two have the same (p, q)-webs, their corresponding gauge theories differ by bi-directional arrows.

The different orders of label 5 and 6 (a) and (b) higgs down to these two different theories.

and PdP3c. However as we saw in §3 there are a total ten phases for dP3, PdP3a, PdP3b

and PdP3c. The answer to this puzzle is that the toric (p, q)-web and quiver (p, q)-web of

C3/ZZ3 × ZZ3 are identical but not so for the partial resolutions thereof. By switching the

positions of the external leg labels in the (p, q)-web, we can obtain the total of ten phases of

these four toric singularities. Let us now see how this is done in detail.

To start, the matter content for C3/ZZ3 × ZZ3 is given in Part (a) of Figure 11 and the

corresponding quiver (p, q) is drawn in Part (b). The superpotential of the theory is:

W = φ18φ85φ51 − φ17φ75φ51 + φ86φ63φ38 − φ85φ53φ38 + φ61φ17φ76 − φ63φ37φ76

+φ42φ28φ84 − φ41φ18φ84 + φ29φ96φ62 − φ28φ86φ62 + φ94φ41φ19 − φ96φ61φ19

+φ75φ52φ27 − φ74φ42φ27 + φ53φ39φ95 − φ52φ29φ95 + φ37φ74φ43 − φ39φ94φ43 . (4.3)

We now apply the higgsing mechanism to this orbifold theory to obtain all ten phases of

dP3, PdP3a, PdP3b, and PdP3c.

From the corresponding toric (p, q)-web of C3/ZZ3 ×ZZ3 in Figure 11, we higgs down from

the U(1)9 theory down to a U(1)6 theory by combining adjacent legs. We consequently arrive
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Figure 11: (a) The brane box model for the matter content ofC3/ZZ3×ZZ3 and (b) its corresponding

quiver-(p, q)-web. Notice that we have three equivalent groups of external legs which we have

labelled as (123), (456) and (789). For every group, the order of nodes has not been specified,

the (p, q) charges have been written in square brackets. For reference, we have included the quiver

matrix for the theory.

at four theories (cf. [18]):

legs combined

(1) dP3 [−1, 0] + [1, 1], [1, 1] + [0,−1], [0,−1] + [−1, 0]

(2) PdP3b [1, 1] + [0,−1], [0,−1] + 2[−1, 0]

(3) PdP3c [0,−1] + 2[1, 1], [−1, 0] + [1, 1]

(4) PdP3a 3[−1, 0] + [1, 1]

(4.4)

To obtain all ten theories we simply change the ordering of external legs in Part (b) of

Figure 11 and hence alter the fields which obtain non-zero VEV. We summarise the relevant

permutations below. The notation is such that (a1a2)(b1b2)(c1c2) means that the pairs of
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legs in each of the three brackets are to be combined.

9
8
7

4

1 2
3

56

9
8
7

4

1 2
3

56

7
8
9

2

6 6 6

PdP3bI

9
8
7

4

1 2
3

56

PdP3a

(91)(34)(67)

45

3 1

dP3I

(93)(24)(67)

cyclic(123)

9
8
7

5 4

PdP3cI

23

1

(93)(14)(67)

permute(12)

8
9

7

45

PdP3bIII

3
2

1

(91)(24)(67)

cyclic(321)

(91)(42)(43)

9
8
7

1 2
3

6 4 5

dP3III
(91)(52)(53)

permute(45)

9
8
7

4

1 2

3

56

PdP3bII

(34)(67)(68)

9
8
7

1 2

3

4 56

dP3II

(53)(47)(48)

cyclic(456)

9
8
7

1 2

3

645cyclic(456)

PdP3cII

(63)(57)(58)

dP3IV

(19)(18)(17)

(4.5)

In summary, the reasons that quiver (p, q)-web can describe more than one gauge theories

are (1) it does not contain information about the bi-directions bifundamental fields; (2) the

ordering ambiguities of parallel lines affects the Higgsing process. Therefore, we do not take

quiver (p, q)-web as a fundamental concept, though it is evidently a very useful tool.
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