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ABSTRACT 

Methods of Computational Fluid Dynamics (CFD) have matured, over the last 30 years, 
to a stage where it is possible to gain substantial insight into fluid flow processes of 
engineering relevance. However, the motives of fluid dynamic engineers typically go 
well beyond the level of improved understanding, to the pragmatic aim of improving the 
performance of the engineering systems in consideration. It is in recognition of these 
circumstances that the present thesis investigates the use of automated design optimisa­
tion methodologies in order to extend the power of CFD as an engineering design tool. 
Optimum design problems require the merit or performance of designs to be measured 
explicitly in terms of an objective function. At the same time, it may be required that 
one or more constraints should be satisfied. To describe allowable variations in design, 
shape parameterisation using basic geometric entities such as straight lines and arcs is 
employed. 
Taking advantage of previous experience in the research group concerning cavitating 
flows, a fully automated method for nozzle design/optimisation was developed. The 
optimisation is performed by means of discharge coefficient (Cd) maximisation. The 
objective is to design nozzle hole shapes that maximise the nozzle Cd for a given basic 
nozzle geometry (i.e. needle and sac profile) and reduce or even eliminate the negative 
pressure region formed at the entry of the injection hole. The deterministic optimisation 
model was developed and implemented in the in-house RANS CFD code to provide 
nozzle shapes with pre-defined flow/performance characteristics. The required gradients 
are calculated using the continuous adjoint technique. A parameterisation scheme, suit­
able for nozzle design, was developed. The localised region around the hole inlet, where 
cavitation inception appears, is parameterised and modified during the optimisation 
procedure, while the rest of the nozzle remains unaffected. The parameters modifying 
the geometry are the radius of curvature and the diameter of the hole inlet or exit as well 
as the relative needle seat angle. The steepest descent method has been used to drive the 
calculated gradients to zero and update the design parameters. 
For the validation of the model two representative inverse design cases have been se­
lected. Studies showing the behaviour of the model according to different numerical and 
optimisation parameters are also presented. For the purpose of optimising the geome­
tries, a cost function intended to maximise the discharge coefficient was defined. At the 
same time it serves the purpose of restructuring geometries which have controlled or 
eliminated cavitation inception in the hole entrance. This is identified in the steady-state 
mode by reduction of the volume of negative relative pressure appearing in the hole 
entrance. Results of cavitation control on some representative nozzle geometries show 
significant benefits gained by the use of the developed method. This is mainly because 
the developed model performs optimisation on numerous parametric combinations 
automatically. Results showed that, by using the proposed method, geometries with 
larger Cd values can be achieved and the cavitation inception can, in some cases, be 
completely eliminated. Cases where all the parameters were combined for redesign the 
geometry required less modification to predict larger Cd values than cases where each 
parameter was modified individually. This is an important result since manufacturers 
are seeking improvement in the performance ofproducts reSUlting from the least geome­
try modifications. 
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NOMENCLATURE 

Abbreviations 

I-D One-dimensional 

2-D Two-dimensional 

3-D Three-dimensional 

AD Automatic Differentiation 

BD Blended differencing 

CAD Computer aided design 

CD Central differencing 

CCD Charge coupled device 

CFD Computational fluid dynamics 

CPU Central processing unit 

CT Computed tomography 

CV Control volume 

DSA Design sensitivity analysis 

I-Level Injector Flow - Low Emission levels by engine modelling 

LDV Laser Doppler velocimetry 

l.h.s. Left-hand-side 

NACA National advisory committee for aeronautics 

ODESSY Optimum DESign System 

PDE Partial differential equation 

UD Upwind differencing 

RAE Royal Aircraft Establishment 

r.h.s. Right-hand-side 

STD Standard 

TKE Turbulent kinetic energy 

VCO Valve covering orifice 

VNP Volume of negative pressure 

VOF Volume of fluid 



Roman Symbols 

A 
Linear system matrix coefficient 

Projected area m2 

a Acceleration m/s2 

B Linear system source coefficient 

b Body forces per unit mass vector m/s2 

c Speed of sound m/s 

Mass flux 
C kgls 

Bezier coefficients 

d Vector between two cell centres m 

d Injection hole diameter m 
D Orthogonal contribution vector m 
D Design parameters vector 

E Constant for wall-function approach 

f Interpolation factor 

F Volume flux m3/s 
F Force vector N 

g Vector of gravitational acceleration m/s2 

I Cost function 

I Unit tensor 

J Constraint function 

k Turbulent kinetic energy m2/s2 

k Non-orthogonal contribution vector m 

L Injection hole length m 

m Mass kg 

p Pressure bar, Pa 

P Turbulence production kg/m.s3 

q Symbolic term for discretised continuity equation 

S Outward pointing face area vector 

S Continuous phase source term 

T S tress tensor m2/s 

T Temperature K 

t Time s 
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t Bezier variable 

u Velocity vector m/s 

u X-axis or axial velocity component m/s 

v Y-axis or radial velocity component m/s 

Velocity magnitude m/s 
V 

Volume m3 

w Z-axis velocity component m/s 

X X-axis Bezier control point 

Y Y-axis Bezier control point 

y+ Dimensionless distance from the wall 

Greek Symbols 

a. Void fraction 

~ Time integration scheme blending factor 

y Polytrophic coefficient 

~ Variation 

e Turbulence dissipation rate m2/s3 

11 Steepest descent step size 

K Von Karman's constant 

A. Relative air/fuel ratio 

1.1. Dynamic viscosity kglm.s 

v Kinematic viscosity m2/s 

~ Under-relaxation factor 

p Density kglm3 

Surface tension N/m 
cr 

Standard variation 

q> Arbitrary scalar or tensor 
\{' Adjoint/costate variables 

'P Adjoint vector 

Subscripts 

Qadj Q of adjoint 

Qaug Q Augmented 
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Qback 

Qc 

Qd 

Qd 

Qf 
Qe 

Qi 

Qinj 

Qp 

Qu 

Q at downstream location 

Cost 

Molecular (for viscosity) 

Discharge 

Q at face f or face interpolation 

Q effective 

Q ofi=l, ... n 

Q of injection (for velocity: inside the nozzle hole) 

Q related to the pressure or pressure gradient force 

Q related to the velocity vector 

Target Q 

Eddy (for viscosity) 

Superscripts & Oversymbols 

Q 
.... 
Q 

Q 

[Ql 

Orthogonal component of Q or of its gradient 

Q at time t 

Time or ensemble average of Q 
Known/target value of Q 

Vector 

Derivative with respect to the design variables 

Volume average ofQ 

Non-dimensional numbers 

Cd Orifice discharge coefficient 

CN Cavitation number 

Re Reynolds number 
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Chapter 1 

INTRODUCTION 

1.1 MOTIVATION AND GENERAL OVERVIEW OF OPTIMISATION METHODS 

Cavitation is the fonnation of a two-phase mixture of vapour/gas and liquid at the point 

where the local pressure of the liquid drops below a threshold value, a value usually 

considered equal to the vapour pressure. However, theoretically speaking fluids can 

withstand large amounts of tension - meaning pressures below the thennodynamic va­

pour pressure value at a given temperature - before phase change from liquid to vapour 

is induced [I]. This phenomenon appears in the nozzle of automotive fuel injectors in 

two fonns. The first type of cavitation initiates inside the nozzle hole at the top of its 

entrance (geometric cavitation) and is due to flow separation at the comer causing local 

pressure drop. Sometimes, cavitation erosion appears in this area. Cavitation is inher­

ently a multiphase flow. Single-phase CFD technology is considered to be at such a 

mature level that single-phase predictions can be well trusted and used by the industry 

for the solution of complex problems and the development of new products. According 

to single-phase incompressible flow calculations, the area of geometric cavitation incep­

tion can be correlated with the area where the calculated pressure takes values below the 

vapour pressure of the flowing liquid. 

The second form of cavitation is referred to as string cavitation; the root of this two­

phase flow effect is still not well documented. Recent experimental evidence suggests 

that string cavitation is likely to appear due to vapour entrapment into the core of the 

transient vortices fonning inside the sac volume upstream of the injection hole. In the 

present study only the reduction of the geometrically-induced cavitation is considered. 

For most hydraulic equipment cavitation is not desirable, since its mere existence results 

in efficiency and power loss, mechanical wear which can be catastrophic in many cases, 

and noise [2, 3]. Although the effect of cavitation on the spray and the overall engine 

performance is still under investigation, it is well recognised that uncontrolled cavitation 

induces spray-to-spray and injection-to-injection variations which, in tum, increase en-
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gine exhaust pollutant emissions. On the other hand, controlled cavitation can improve 

atomisation of the fuel which can lead to improved mixing and combustion. 

Controlling cavitation greatly depends on nozzle geometry and operating conditions. In 

most diesel injectors operating at high pressure, cavitation initiates at the entrance of the 

nozzle hole. With any manifestation of cavitation, the objective is primarily the same as 

in single-phase flows, to increase the localised minimum pressure. Of course, locally 

increasing the minimum pressure may induce cavitation elsewhere or in another form 

that was previously not an issue. Hence, the problem of controlling cavitation is not 

trivial. 

In the automotive industry, experiments by trial and error are still the main design tool. 

However, it's not at all certain that repeated tests in an interactive design and analysis 

procedure can lead to a truly optimum design. The use of an automated optimisation 

method allows designs to be rapidly evaluated while directions of improvement are 

identified as well. Possession of such techniques that result in a faster design cycle gives 

a crucial advantage in a competitive environment. 

The evolution of Computational Fluid Dynamics (CFD), especially in the last decade, 

has dramatically altered the optimal design of vehicles either in the sense of aerody­

namic or engine component design. This is due to the tremendous advances in CFD and 

the development of increasingly faster and larger-memory computers, which make pos­

sible the use of CFD in shape design. In the same period there has been a rapid devel­

opment of a powerful collection of algorithms for gradient based optimisation. 

Shape optimisation is a procedure where the geometry of interest is modified to fit cer­

tain flow characteristics. Introduction of the flow characteristics into the problem is 

achieved by the definition of a so-called 'cost' function. The geometry is modified ac­

cording to a set of parameters defined by the user. In deterministic optimisation the cost 

function is minimised by driving its gradients to zero with the use of a descent method. 

Using direct methods for the calculation of the required gradients in the case of nozzle 

design is expensive in CPU time due to the large number of design parameters. For this 

reason, methods such as the finite differences that were most commonly used in the past 

are not popular anymore and the development of adjoint methods for the calculation of 

the gradient is recommended. It is appropriate at this point to mention earlier work in 
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aerodynamics based on control-theory by Pironneau [4, 5] and Jameson [6] who is con­

sidered to be the father of the adjoint method. During the last decade several applica­

tions of the adjoint method were brought to light [7-10]. So far, most work on the ad­

joint method in CFD shape optimisation has focused on aerodynamic design, which 

involves very simple boundary conditions, especially those in the far field. In this case 

the corresponding boundary conditions for the adjoint equations are easier to formulate. 

Relevant research has been conducted in engine component optimisation but for very 

simple geometries. 

It must be stated that computational design optimisation in no way is suggested to re­

place present design methodologies. The intent of design optimisation is not to do pre­

liminary or primary design, but to be used to supplement the design process, by making 

improvements on initial designs in areas where no design methodologies exist. When 

starting from a fairly good design, formal optimisation is most effective to locate non­

intuitive designs. 

1.2 PRESENT CONTRIBUTION 

The objective of this research programme was the development of an automated 

mathematical methodology for designing nozzle geometries with specified flow charac­

teristics. More specifically, the goal was to propose a design tool for automotive diesel 

injector nozzles which eliminate or produced 'controlled' cavitation resulting to more 

specified spray structures. In the latter case, this implies designs where the integral 

amount of cavitation reaching the hole exit can be one of the desired flow parameters. 

The optimisation method developed for the needs of this study is based on the adjoint 

formulation of the flow equations. The proposed method is a deterministic optimisation 

method and requires gradient information, i.e. sensitivity derivatives. The adjoint for­

mulation is a method based in control theory and the theory of Lagrange multipliers that 

provides the gradients of the cost function based. The flow solution is obtained from a 

steady-state incompressible Navier-Stokes equations flow solver, provided that such a 

solution exists. Moreover, the adjoint formulation is carried out by incorporating the 

flow equations, in the form of constraints, into the cost function; thus the augmented 

form of the cost function is provided. This can be accomplished through the use of La­

grange multipliers, namely the adjoint or costate variables. The gradients of the cost 
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function depend on the flow field and the adjoint variable distribution along the wall to 

be designed. So, through the efficient solution of the flow and the adjoint equations the 

values of the sensitivity derivatives are provided. This way the gradients for each design 

parameter are calculated and driven to zero in order to direct the geometry towards an 

optimum. The continuous approach is adopted in this study so that the resulting adjoint 

formulation, optimisation algorithm, and overall code can be used in conjunction with 

any CFD code. The adjoint method has been chosen for optimisation due to its accuracy 

and fast convergence. In addition, it provides the gradients of the cost function in a way 

so that the computational effort required for this calculation is independent of the num­

ber of the design variables. This is an important advantage for nozzle re-design cases 

where the required parameters describing the geometry and affecting cavitation may be 

numerous. Nevertheless, the possibility of getting trapped into local minima exists as in 

every gradient-based method. 

In order to setup the optimisation problem using the aforementioned method, some ad­

ditional elements are required. The cost functions were defined in such a way that, by 

driving them to zero, geometries satisfying different flow characteristics were provided. 

The cost function is the means to quantify the optimum solution; as such it is really 

important to define it appropriately for each problem. For the purpose of controlling 

cavitation a cost function, aiming to maximise the discharge coefficient, was used. At 

the same time, maximisation of the discharge coefficient led to geometries which have 

controlled or eliminated cavitation inception in the hole entrance. This is identified in 

the steady-state mode by reduction of the volume of negative pressure appearing in the 

hole entrance. A crucial part of the development process was the setup of the aforemen­

tioned problem for the Cd maximisation. It should be noted that, this case was challeng­

ing with respect to the adjoint analysis. The complication when applying this design 

approach arises from the fact that the cost function is defined at the hole exit, whilst the 

gradients of the geometry under modification are calculated at the hole inlet. To over­

come this problem, appropriate boundary conditions were assigned to the wall boundary 

under modification. 

A parameterisation scheme suitable for the design of automotive injector nozzles was 

developed and implemented in the code. The points that control the flow characteristics 

that we want to optimise were used as parameters. A linear polynomial smoother was 

incorporated in the parameterisation scheme to avoid discontinuity of the nozzle geome-
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tries and thus, production of poor quality grids. A grid modification tool was used to 

map the modified geometry onto the initial grid that was provided by a commercial 

program. 

The final step in completing the iterative optimisation process is the steepest descent 

method that drives the calculated gradients to zero and provides the design parameters 

for the modification of the geometry towards the optimum solution. 

In order to reduce the overall computational cost of the method, continuation in the flow 

calculation using the solution of the previous optimisation cycle (previous geometry) 

has been used. This resulted in significant CPU time reduction (sometimes even 90%) 

compared to a flow calculation which is initialised for every optimisation cycle. 

To investigate the performance of the proposed methodology, the effect of various nu­

merical parameters of the flow and adjoint equations, as well as parameters related to 

the optimisation method, was explored. The validation of the model was carried out by 

means of inverse design with respect to a prescribed pressure distribution of a 2-D axi­

symmetric and a 3-D multi-hole VCO nozzle. For the case of Cd maximisation several 

test cases, both 2-D and 3-D, were investigated. Parametric studies of the effect of the 

different design parameters on the optimum geometry were also performed. 

The developed optimisation method for diesel injector nozzle design provides informa­

tion regarding the direction of improvement and is effective in locating non-intuitive 

designs. In the case of Cd maximisation, even a slight modification of the design pa­

rameters can provide nozzles with reduced or eliminated cavitation (according to the 

specifications of the cost function and the design constraints). This is an important result 

since manufacturers are seeking improvement in the performance resulting from the 

least geometry modifications. Due to its automatic nature many cases can be easily in­

vestigated providing an insight into the sensitivity of the nozzle performance to changes 

of certain design parameters or combinations of them. 

1.3 THESIS OUTLINE 

The present thesis consists of seven chapters including the introductory Chapter 1, 

where the motivation and present contribution of this research work is outlined. 
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Chapter 2 reviews publications in all the research areas that are relevant to shape opti­

misation methods and especially the adjoint method. The properties of the adjoint solu­

tions are summarised along with other areas of the method's applications. Some infor­

mation about the cavitation formation used for the development of the present method 

and work related to engine optimisation is also discussed. 

In Chapter 3 the proposed method is described and all the necessary steps for the opti­

misation are discussed in detail. Moreover the parameterisation developed for this study 

and the analysis of the adjoint formulation are also included in this chapter. 

In Chapter 4 the discretisation of the flow equations is described as the basis for the 

discretisation of the adjoint equations which is also discussed. The two systems of equa­

tions are cross-referenced and the corresponding similarities and differences are identi­

fied and described. 

In Chapter 5 the effect of various numerical parameters on the developed method is 

initially investigated followed by the effect of the parameters used for the optimisation 

process. The validation of the proposed method is also discussed in this chapter. 

In Chapter 6 various applications of the model are investigated and the corresponding 

results and conclusions drawn from the test cases are discussed in detail. 

Chapter 7 concludes the thesis with a summary of the most important points, in addition 

to the brief summaries in each chapter. Recommendations for further work in the area of 

nozzle shape optimisation are also presented in this chapter in order to extend the value 

of this contribution. 

26 



Chapter 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

This chapter is a review of the published research in optimisation and other subjects 

related to this study. Special reference is given to the matters of shape optimisation and 

inverse design in CFD applications. In this area, work has been done more in aeronauti­

cal design and less in automotive which is the subject of the thesis. The optimisation 

method developed in this study is a gradient based method using continuous adjoint 

techniques for the calculation of the gradients. The different theories behind the method 

are cross referenced and discussed along with the suggestions of the author. The proper­

ties of the adjoint solution are also mentioned. Relevant studies on the topic of cavita­

tion inception are briefly discussed especially the effect of shape changes on the cavita­

tion inception. The few publications about engine component optimisation and cavita­

tion control, mainly in very simple geometries are also referenced. Since the present 

study is a continuation of previous studies of the author in the field of aerodynamic op­

timisation some background work is indicated. The purpose of this chapter is to make 

an overview of the problem of shape optimisation and to connect the literature to the 

theoretical aspects of this thesis. 

2.2 GENERAL OVERVIEW ON AUTOMATIC SHAPE DESIGN METHODS 

The first part of the literature review is a detailed historical overview on the computa­

tional methods being used for shape design. The first ever developed inverse design 

method is described as well as how engineers turned to more efficient optimisation 

methods. The philology around global vs. local optimisation is also discussed. 

Computers have had a twofold impact on the science of automotive engineering. On the 

one hand numerical simulation may be used to gain new insights into the physics of 
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complex flows. On the other hand computational methods can be used by engineers to 

predict the flow characteristics of alternative designs without the need to actually build 

them. Assuming that one has the ability to predict the performance, the question then 

arises of how to modify the design to improve this performance. The present study is 

addressing this question. 

Prior to 1960 computational methods were hardly used in fluid flow analysis. The pri­

mary tool for the development of engine configurations was experiments based on trial 

and error. Shapes were tested and modifications selected in the light of pressure and 

force measurements together with flow visualisation techniques. Computational meth­

ods are now quite widely accepted as design tools by the automotive industry. This has 

been brought out by a combination of radical improvements in numerical algorithms 

and continuing advances in both speed and memory of computers. 

If a computational method is to be useful in the design process, it must be based on a 

mathematical model which provides an appropriate representation of the significant 

features of the flow, such as cavitation, vortices and boundary layers. The method must 

also be robust, not liable to fail when parameters are varied, and it must be able to treat 

useful configurations, ultimately the complete engine. Finally, reasonable accuracy 

should be attainable at reasonable cost. Much progress has been made in these direc­

tions [11-21]. The most challenging viscous simulations are generally complicated by 

the need to allow for turbulence: while the Reynolds averaged equations can be solved 

by current methods, the results depend heavily on the choice of turbulence models. In 

particular it has been recognized that the designer generally has an idea of the kind of 

pressure distribution that will lead to the desired performance. Thus, it is useful to con­

sider the problem of calculating the shape that will lead to a given pressure distribution. 

Such a shape does not necessarily exist, unless the pressure distribution satisfies certain 

constraints, and the problem must therefore be very carefully formulated. 

All the above raised the need for developing more efficient and accurate methods for 

shape design in CFD. Methods for shape design in CFD can be classified into two major 

groups: inverse and optimisation. The distinction between the two is in how the design 

problem is formulated. 
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2.2.1 Inverse Design methods 

In the inverse method, the shape-design problem is posed by assuming that certain flow 

characteristics, such as pressure, can be imposed on the domain boundary in a way that 

optimises the performance or some other desired property (flow characteristics). Once 

the problem is thus posed, the task is to find the shape or geometry that would predict 

the imposed distribution. Though this method can be highly efficient, it has two main 

drawbacks. The first is that the distribution imposed in the inverse problem formulation 

may not be physically realisable so that a solution may be impossible. The second 

drawback is that even if the distribution imposed is physically realisable, it may not be 

the optimal distribution. 

The use of inverse methods to optimise aerodynamic shapes was pioneered by Lighthill 

[22] in the mid 1940s. He was the one who first studied the problem of designing a two 

dimensional profile to attain a desired pressure distribution. Lighthill solved this prob­

lem for the case of incompressible flow by conformal mapping of the profile to a unit 

circle. The speed over the profile is q = ffJ;{, where ffJ is the potential for flow past a 

circle, and h is the modulus of the mapping function. The solution for ffJ is known for 

incompressible flow. Let qd be the desired surface speed; then the surface value of h 

can be obtained by setting q = qd' and since the mapping function is analytic, it is 

uniquely determined by the value of h on the boundary. A solution exists for a given 

speed qooat infinity only if 2~:f qdfJ = q:x; and there are additional constraints on q if 

the profile is required to be closed. Lighthill's method was extended to compressible 

flow by McFadden [23]. Starting with a given shape, and a corresponding mapping 

function h(O), the flow equations can be solved for the potential ffJ(O), which now depends 

on h(O). A new mapping function h(l) is then determined by setting q = qd' and the proc­

ess is repeated. In the limiting case of zero Mach number the method reduces to 

Lighthill's method, and McFadden gives a proof that the iterations will converge for 

small Mach numbers. He also extended the method to treat transonic flow through the 

introduction of artificial viscosity to suppress the appearance of shock waves, which 

would cause the updated mapping function to be discontinuous. This difficulty can also 

be overcome by smoothing the changes in the mapping function. Such an approach al­

lows the recovery of smooth profiles that generate flows containing shock waves, and it 
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has been used to design improved blade sections for propellers [24]. A related method 

for three-dimensional design was devised by Garabedian and McFadden [25]. In their 

scheme the steady potential flow solution is obtained by solving an artificial time de­

pendent equation, and the surface is treated as a free boundary. This is shifted according 

to an auxiliary time dependent equation in such a way that the flow evolves toward the 

specified pressure distribution. 

Another way to formulate the problem of designing a profile for a given pressure distri­

bution is to integrate the corresponding surface speed to obtain the surface potential. 

The potential flow equation is then solved with a Dirichlet boundary condition, and a 

shape correction is determined from the calculated normal velocity through the surface. 

This approach was first tried by Tranen [26]. Volpe and Melnik [27] have shown how to 

allow for the constraints that must be satisfied by the pressure distribution if a solution 

exists. The same idea has been used by Henne [28] for three-dimensional design calcu­

lations. The hodograph transformation offers an alternative approach to the design of 

airfoils in transonic flows. Garabedian and Korn [29] achieved a striking success in the 

design of airfoils to produce shock-free transonic flows by using the method of complex 

characteristics to solve the equations in the hodograph plane. Another design procedure 

has been proposed by Giles, Drela and Thompkins [30], who write the two-dimensional 

Euler equations for inviscid flow in a streamline coordinate system, and use a Newton 

iteration. An option is then provided to treat the surface coordinates as unknowns, while 

the pressure is fixed. 

2.2.2 Optimisation methods 

The inverse method is severely restrictive because it depends on the experience and 

knowledge of the designer to establish the desirable target velocity or pressure distribu­

tions. That's why the engineers moved to more sophisticated optimisation methods. 

In the case of optimisation, the shape-design problem is posed as a minimisation prob­

lem of an objective function, subject to constraints on geometry and/or flow conditions. 

Optimisation algorithms are iterative. They begin with an initial guess of the optimal 

values of the variables and generate a sequence of improved estimates until they reach a 

solution. The strategy used to move from one iterative to the next distinguishes one 

algorithm from another. Most strategies make use of the values of the objective (cost) 
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function Ie, the constraints and possibly the first and the second derivative of these 

functions. 

Optimisation methods, pioneered by Hicks et al [31], are more attractive since these 

methods can handle a large class of design problems, including those classified as in­

verse problems. Hicks and Henne [32] have explored the possibility of meeting desired 

design objectives by using constrained optimisation. The configuration is specified by a 

set of parameters, and any suitable computer programme for flow analysis can be used 

to evaluate the aerodynamic characteristics. The optimisation method then selects val­

ues of these parameters that maximise some criterion of merit, such as the lift-to-drag 

ratio, subject to other constraints, for example the required wing thickness and volume. 

In principle this method allows the designer to specify any reasonable design objectives. 

The method becomes extremely expensive, however, as the number of parameters is 

increased, its successful application in practice depends heavily on the choice of a pa­

rametric representation of the configuration. 

Jameson [6] was the first to propose that there are benefits in regarding the design prob­

lem as a control problem, the control being the shape of the boundary. A variety of al­

ternative formulations of the design problem can then be treated systematically by using 

the mathematical theory for control of systems governed by partial differential equa­

tions [33]. He supposed that the boundary is defined by a functionj(x), where x is the 

position vector. As in the case of optimisation theory applied to the design problem, the 

desired objective is specified by a cost function Ie, which may, for example, measure 

the deviation from a desired surface pressure distribution, but could also represent other 

measures of performance such as lift and drag. The introduction of a cost function has 

the advantage that if the objective is unattainable, it is still possible to find a minimum 

of the cost function. Jameson's application of control theory can be summarised as fol­

lows. A variation in the control ~f leads to a variation Me in the cost. It is shown in [6] 

that Me can be expressed to first order as an inner product of a gradient function g with 

~fsuch as Me = (g, ~.fJ where g is independent of the particular variation ~fin the con­

trol, and can be determined by solving an adjoint equation. By choosing a sufficiently 

small positive number A. results Ie = - A. (g, g) < 0, assuring a reduction in Ie. After mak­

ing such a modification, the gradient can be recalculated and the process is repeated 

following a path of steepest descent until a minimum is reached. In order to avoid viola­

tion of the geometrical constraints, such as a minimum acceptable wing thickness, the 
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steps can be taken along the projection of the gradient into the allowable subspace of the 

control function. In this way, one can devise design procedures which must converge at 

least to a local minimum, and which might be accelerated by the use of more sophisti­

cated descent methods. While there is a possibility of more than one local minimum, the 

cost function can be chosen to reduce the likelihood of difficulties caused by such a 

contingency, and in any case the method leads to an improvement over the initial de­

sign. The mathematical development resembles in many respects the method of calcu­

lating transonic potential flow proposed by Bristeau et al [17], who reformulated the 

solution of the flow equations as a least squares problem in control theory. 

A historical summary of the design methods can be seen in Table 2.1 as they appear in 

[34]. More details about its method exist also in the above paper. 

1945 LIGHTHILL Conformal mappmg, Incompressible inviscid 
flows 

1965 NIEUWLAND Hodograph, Power Series 

1970 GARABEDIAN- Hodograph, Complex Characteristics 
KORN 

1974 BOERSTOEL Hodograph 

1974 TRENEN Potential Flow, Dirichlet Boundary Conditions 

1977 HENNE 3-D Potential Flow, Based on FL022 

1985 VOLPE- 2-D Potential Flow, Based on FL036 
MELNIK 

1979 GARABEDIAN- Potential Flow, Newman Boundary Conditions, 
McFADDEN Iterated Mapping 

1976 SOBIECZI Fictitious Gas 

1979 DRELA-GILES 2-D Euler Equations, Streamline Coordinates, 
Newton Iteration 

Table 2.1: Historical summary of the design methods 

2.2.3 Global vs. local methods 

The fastest optimisation algorithms seek only a local solution, a point at which the ob­

jective function is smaller than at all other points in its vicinity. They do not always find 

the best of such minima, that is, the global solution. Global solutions are necessary (or 

at least highly desirable) in some applications, but they are usually difficult to identify 
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and even more difficult to locate. Only in the case of convexity, namely when the Hes­

sian or the second derivative of the cost function has a specified sign, a local solution is 

also the global one [35]. 

Evolutionary algorithms and gradient-based methods are usually methodologies found 

in the literature to solve optimisation problems. These methods are different in the ap­

proach and solution of the optimisation problem as well the computational cost of each 

scheme. They can be distinguished by using the characterisation global methods or local 

methods. However, many successful global optimisation algorithms proceed by solving 

a sequence of local optimisation problems. A collection of research papers on global 

optimisation can be found in Floudas and Pardalos [36]. 

Global methods, such as those based on the genetic algorithm [37], are aiming to obtain 

the global optimum. These methods are most useful for cases in which multiple minima 

are present in the design space. It is widely known, however, that global methods incur 

large computational effort, where hundreds or even thousands of flow analyses may be 

needed before the global optimum can be found. In general, if the problem contains n 

design variables a genetic algorithm must perform n2 objective function evaluations to 

improve the original design. 

Local methods use the information on the gradient of the objective for locating the op­

timum. Therefore, for cases with multiple minima, local methods are limited to produce 

only one of the minima (i.e., the local optimum), the actual value of which depends on 

the starting point of the optimisation process. Usually, a gradient-based approach is used 

because of its efficiency and low computational cost in yielding a minimum. Because of 

the reduced computational requirement, and since any local optimum represents an im­

provement over an existing design, local methods are very useful design tools. The 

method described in this thesis belongs to this category. Despite this efficiency, for op­

timisation problems involving a large number of design variables, it can be very diffi­

cult to obtain the descent direction and the step size that are needed to carry out the op­

timisation process. This is because sensitivity coefficients, that are information on how 

the flow variables are affected by each design variable, are needed. 

The main complication of gradient based methods is the calculation of the required gra­

dients. Recent developments in the gradient-based optimisation methodology suggest 
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that two main streams may be distinguished according to the way that these gradients 

are calculated: (i) the direct method and (ii) the variational method. This distinction is 

based on how the gradient is computed. 

The gradient formulation, using direct methods [38-42], is done on a discrete level, 

which means that one must deal with the discrete form of the flow equations. The sensi­

tivity derivatives on each grid point are calculated for each design parameter using finite 

differences. This method has the advantage that the sensitivities of the flow properties 

on the grid points can be determined. Once these become available, the gradient of a 

functional (cost function) can be computed easily using the chain rule. However, the 

computational effort strongly depends on the number of design variables. For each de­

sign variable, a sensitivity equation in the form of a (large proportional to grid size) 

linear system of equations must be solved. The computational requirement can therefore 

be prohibitive if a large design space is to be covered. The solution of a large linear 

system of equations to compute the flow variable gradient with respect to each design 

parameter is required. Thus for n design parameters n large linear systems have to be 

solved. This makes the method of order O(n+ 1) (n+ 1 large linear system of equations 

have to be solved to evaluate the cost function and to obtain its gradient) and in general 

a detailed flow solution is relatively expensive for problems governed by the Euler and 

RANS equations. This cost can be reduced significantly if the LU decomposition 

method is used and the matrix is stored. However this alternative is presently only pos­

sible for 2-D problems. 

The formulation of the gradient using the variational method can be done either on dis­

crete level [43-45] or a continuous level [8,46-49]. This method needs the values of the 

so-called adjoint variables as the solution of a set of adjoint equations. More details 

about this method exist in the model description Chapter 3 since this is the method used 

for the present studies. The numerical solution procedure for solving the flow equations 

can be adopted for solving the adjoint equations. The gradient is expressed in terms of 

the flow variables and the adjoint variables. The computational effort for obtaining the 

gradient is not determined by the number of design variables. Instead, it is determined 

by the number of adjoint equations that must be solved, which is equal to the number of 

functionals, either cost functions or constraints. Anticipating that the number of design 

variables is significantly larger than the number of functionals, which is true in most 

practical cases, the variational method has a significant advantage over the direct meth-
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ods. Consequently, for problems involving many design parameters and few cost func­

tions a better alternative is to employ a variational/inverse method (adjoint formulation). 

In this approach the effort to compute each cost function gradient requires one CFD 

solution for the usual variables and one for the adjoint variables, i.e. the cost is now 

only 0(2) CFD solutions per design cycle. 

2.2.4 Gradient-based optimisation 

Computational design has become an active area of research in the fluid dynamic com­

munity. Although simulation has been used in the design of fluid dynamic configura­

tions in the past, only the optimisation cases that utilise sensitivity derivatives and gra­

dient-based optimisation methods will be discussed in this section. 

There is a huge number of methods, the so-called gradient-based, designed to optimise a 

smooth cost function Ie (D), where D is the vector of design variables, given the ability 

to evaluate both Ie (D) and its vector gradient \7 DIe. In unconstrained optimisation, the 

simplest method is to choose V DIe as a search direction and use a simple one­

dimensional optimisation method to find a local optimum and then repeat with the new 

gradient. A well-known class of algorithms for unconstrained minimisation of func­

tions, whose gradient can be calculated, is the steepest descent method first proposed by 

Cauchy in 1847 [50]. The steepest descent method is particularly useful when the di­

mension of the problem is very large. On the other hand its main disadvantages are: 

(a) Each iteration is calculated independently of the others; that is, no information is 

stored and used that might accelerate convergence. 

(b) It is not generally a finite procedure for minimising a positive-definite quadratic 

form. 

(c) The rate of convergence depends strongly on the morphology of the objective func­

tion; if the ratio of the maximum to the minimum eigenvalue of the Hessian matrix of 

second derivatives 8
2 

YaD;8D
j 

of Ie at any local optimum is large, the steepest descent 

generates short zigzagging moves in a neighbourhood of the optimum [51]. More details 

about the steepest descent method exist in section 3.7 since this is the optimisation 

method used during this study. 
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More efficient methods approximate the Hessian matrix, effectively constructing a local 

quadratic approximation to Ie (D). The approximation of the Hessian can be used to 

approximate for example the Newton step which accelerates the numerical solution of 

the optimisation problem. Arian [52] used the continuous adjoint method to solve a 

classical aerodynamic shape optimisation problem governed by the compressible Euler 

flow equations. The Hessian (second order derivative of the cost functional with respect 

to the shape variables) is approximated at the continuous level, as first introduced by the 

same author in [53]. In [54], sequential quadratic programming (SQP) method is used 

for the optimisation, in which the search direction is calculated by solving the quadratic 

sub problem where the Hessian is defined by a quasi-Newton approximation of an aug­

mented Lagrangian merit function. The Lagrange multipliers in this merit function serve 

to scale the effect of any nonlinear constraints that the design may contain. Linear con­

straints are treated by solving the quadratic sub problem such that the projected search 

direction remains in feasible space. The above methods may be more efficient but the 

problem raised by using the adjoint technique to calculate gradients is that the approxi­

mation of the Hessian results in more steps in the optimisation procedure than those 

required for a direct sensitivity approach, like finite differences. Thus, the above optimi­

sation methods are too costly to be applied to this study. 

There are modifications to the standard unconstrained optimisation methods to handle 

constraints often through the use of Lagrange multipliers. However, when there is a 

large number of constraints, other approaches may be preferable. In particular, when the 

number of active constraints is equal to the number of active design parameters, the best 

approach may be to use a linear approximation to the objective function and constraints. 

The optimal solution to this linear programming problem can be found using the sim­

plex method, and then the process is repeated using the new solution and the gradient 

information. 

A more advanced and sophisticated method for gradient descent is the conjugate gradi­

ent method. This method is one of the most useful for solving large linear system and 

can also be adapted to solve nonlinear optimisation problems as well. It is actually being 

used as the solver of the linearised Navier-Stokes equations in this study. Since the 

method is more complicated than steepest descent and the present study mostly con­

cerns about the gradient calculation technique, conjugate gradient method has not been 
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used for the optimisation. The conjugate gradient method is explained in full detail in 

[55]. 

There are also optimisation methods which are deterministic, but do not utilise gradient 

information. One of the most popular is, confusingly, also called the simplex method, or 

sometimes, the other simplex method to distinguish it from the linear programming 

problem [56]. 

As it has been mentioned in the previous section, the main complication and the most 

time consuming process in applying gradient-based optimisation in CFD is the calcula­

tion of the required gradients also called sensitivities. A detailed and concise overview 

of sensitivity analysis methods and aerodynamic design optimisation research may be 

found in Newman et al [57]. There are three well-known methods for addressing the 

sensitivity coefficient issue in gradient-based optimisation. These are the finite differ­

ence method, the direct-differentiation method, and the adjoint-variable method the way 

they are described by Tortorelli and Michaleris [58]. 

With the finite-difference method, a CFD simulation must be performed for each design 

variable to determine the sensitivity of that variable on the descent direction and step 

size. Since each CFD simulation can be very CPU and memory intensive, this approach 

is acceptable only if the number of design variables used to describe the geometry is 

small. 

With the direct-differentiation method [39, 59-64], the chain-rule along with forcing 

functions are used to modify the governing equations so that sensitivity coefficients 

instead of the flow variables become the unknowns. This method is more accurate and 

more efficient than the finite-difference method. However, its cost is still proportional to 

the number of design variables. But, it has the advantage of having its cost being inde­

pendent of the number of constraint equations. Thus, this method is ideal for problems 

with many constraints but few design variables. 

Authors who dealt with direct differentiation and finite differences often use tools for 

automatic differentiation like odyssee which is a tool based on the ideas of Beux and 

Dervieux for the exact-gradient shape optimisation [44]. Pandya and Baysal [45] used 

ADI strategies for the shape optimisation in 3-D viscous applications. Other methods in 
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those categories are the alternative direction implicit method from the same authors [40] 

or the non linear projection from LeGresley [65] and the approximately factored incre­

ment strategy by Korivi et al [66]. Representative tools for Automatic Differentiation 

are Odyssee [67], ADJIFOR [68], TAMe [69]. 

With the adjoint-variable method, the need for sensitivity coefficients can be completely 

bypassed. This is accomplished by combining the objective function and the Navier­

Stokes equations with a set of Lagrange multipliers or adjoint variables. The resulting 

equation is manipulated to eliminate all dependence on sensitivity coefficients, and this 

produces a set of adjoint-variable equations and the corresponding boundary conditions. 

To find the descent direction and step size, one only needs to obtain one CFD solution 

and one solution of the adjoint-variable equations. This implies that the cost of this 

method is independent of the number of design variables. Its cost, however, is still pro­

portional to the number of constraint equations. Thus, the adjoint-variable method is 

ideal for problems with few or no constraints and a very large number of design vari­

ables. 

The adjoint variable method can be formulated on a discrete level, as described by Forth 

et al [38] who used automatic differentiation for the extraction of the adjoint equations 

or a continuous level, like Jameson [6] who calculated the equations by hand. Compar­

ing the two approaches, the discrete level is more accurate but less transportable than 

the continuous level. The two approaches are presented in more detail in section 2.3.1. 

The aforementioned tools for automatic differentiation apply again here in the discrete 

case. Since CFD shape optimisation can involve a very large number of design variables 

(e.g., thousands or more), the adjoint-variable method clearly has significant advantages 

over other methods. Detail description and discussion about the adjoint approach fol­

lows in the next section and the next chapters since this is the method used for gradient 

calculation in this study. 

An alternative approach using the PDE sensitivity equation to develop algorithms for 

computing gradients is suggested by Borggard and Bums [70]. This approach produces 

consistent derivatives only in the case where asymptotically consistent schemes are 

combined with a trust region optimisation algorithm in a way that the resulting optimal 

design method converges. Also Hazra in [71] presents simultaneous pseudo­

timestepping as an efficient method for aerodynamic shape optimisation. In this method, 

instead of solving the necessary optimality conditions by iterative techniques, pseudo-
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time embedded nonstationary system is integrated in time until a steady state is reached. 

The main advantages of this method are that it requires no additional globalisation tech­

niques and that a preconditioner can be used for convergence acceleration which stems 

from the reduced SQP method. The important issue of this method is the trade-off be­

tween the accuracy of the forward and adjoint solver and its impact on the computa­

tional cost to approach an optimum solution. 

Several application of gradient-based methods used for CFD optimisation exist in the 

literature. Martin and Dulikravitz in [72] demonstrated the computational advantages of 

using implicit sensitivity with the boundary element method (BEM) method for the 

purpose of providing internal cooling systems designers the ability to optimise the in­

ternal cooling configuration, geometry and heat transfer enhancements for greater cool­

ing efficiency and more durable turbine airfoils. Results show a three-to-one improve­

ment in the optimisation convergence rate and greater gradient accuracy were obtained 

for the two-dimensional thermal optimisation problems. Balagangadhar [73] augmented 

the analysis capabilities of a CFD code along with design sensitivity analysis (DSA) 

and a numerical optimisation scheme. The sensitivities are calculated using analytical 

differentiation methods and the whole algorithm is applied to the optimisation of heat 

exchanger fin and HV AC duct systems. A method based on flow simulations and gradi­

ent-based optimisation techniques is presented by Kameren et al in [74] introducing the 

components of the fully automated optimisation loop and their interactions. This ap­

proach uses the fully parameterised blade geometry as variables for the optimisation 

problem. Physical parameters such as stagger angle, stacking line, and chord length are 

part of the model. The gradients required for the optimisation algorithm are computed 

by numerically solving the sensitivity equations and validated by means of finite differ­

ences. Shankaran et al [75] present a sail shape optimisation method, which combines 

the commercial CFD package FLUENT with gradient-based cost function minimisation. 

Results are presented for the optimisation of sheeting angles for the rig of a three 

masted clipper yacht. They investigated two cost functions, both characteristic of a 

sail's aerodynamic performance: the reciprocals of the driving force coefficient and the 

ratio of driving to heeling force coefficients. Comparing results for upwind and close 

reaching apparent wind angles shows that the latter leads to well trimmed sails, whereas 

the former causes the sails to be over trimmed. 
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An optimisation procedure for helicopter rotor aerodynamic performance is presented in 

[76]. This optimisation procedure is centred on the hybrid numerical optimiser 

CONMIN. The optimisation methods can be divided in two main types: the determinis­

tic methods that reach the nearest local optimum and the non-deterministic methods that 

are conceived to reach the global optimum. The gradient-based method minimises a 

functional under constraints using feasible directions while the gradients are calculated 

with finite differences. The optimiser has been coupled to a 3-D Navier-Stokes CFD 

solver eisA, and applied to helicopter rotor optimisation in hover. Svenningsen et al [77] 

reduced the computational time of the optimisation using a quasi-analytical method 

rather than the time-intensive approximation by finite differences. The optimisation tool 

was applied on a two-dimensional laminar diffuser in order to obtain maximum pressure 

recovery by contouring the divergent wall section. This investigation yields a diffuser 

performance improved by about 5% when compared with a straight-walled geometry. 

A general and efficient method for gradient based shape optimisation of fluid flow and 

FSI problems is presented in [78]. Expressions for design sensitivity analysis (DSA) are 

derived using the direct differentiation approach and the use of an inexact Jacobian ma­

trix in the analysis leads to an iterative but very efficient scheme for DSA. Li et al in 

[79] presented a modified profile optimisation method using a smoother shape modifi­

cation strategy for airfoil shape optimisation in a preliminary design environment. The 

method is formulated to overcome two technical difficulties frequently encountered 

when conducting multipoint airfoil optimisation within a high-resolution design space: 

the generation of undesirable optimal airfoil shapes due to high frequency components 

in the parametric geometry model and significant degradation in the off-design per­

formance. The novel ideas used in the proposed method, such as the smoothest shape 

modification and modified profile optimisation strategies, are applicable to minimising 

aircraft drag at multiple flight conditions. 

A two-dimensional aircraft high-lift system design and optimisation method is presented 

in [80]. The method uses a gradient based local optimiser based on modified feasible 

directions which uses Finite Differences for the calculation of the gradients. The repre­

sentation of airfoils by general shape functions as well as element positioning was con­

sidered. Results demonstrated the appropriateness of the approach for high lift system 

design and optimisation. 
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2.2.5 Optimisation methods based on evolutionary computation algorithms 

Although the optimisation method developed in this research belongs to the determinis­

tic methods (gradient-based), a summary of work in stochastic methods (evolutionary 

algorithms) is presented here for completeness. 

Stochastic methods, like genetic algorithms and related evolutionary algorithms intro­

duce a random element in the evolution of the design. They evaluate whether or not the 

new designs are better and feasible, allowing some infeasible and poorer solutions in the 

short term but aiming for feasibility and optimality in the long term. 

Evolutionary computation (EC) algorithms are inspired by nature's capability to evolve 

living beings well adapted to their environment that cooperate or compete with other 

members of the population. EC algorithms can be characterised as computational mod­

els of the evolutionary process that take inspiration from the natural genetic variety and 

natural selection. In some optimisation problems, the model cannot be fully specified 

because it depends on quantities that are unknown at the time of formulation. However, 

modellers can predict or estimate the unknown quantities with some degree of confi­

dence. This is succeeded by introducing possible scenarios for the values of these quan­

tities or even by assigning a probability to each scenario. Stochastic optimisation algo­

rithms use these quantifications of uncertainty to produce solutions that optimise the 

expected performance of the model whereas in deterministic optimisation the model 

needs to be fully specified. 

In every iteration of the EC algorithm a number of operators are applied to the individu­

als of the current population to generate the individuals of the population of the next 

generation (iteration). Usually, EC algorithms use operators called recombination or 

crossover to recombine two or more individuals to produce new ones. They also use 

mutation or modification operators which cause a self-adaptation of individuals. The 

driving force in EC algorithms is the selection of individuals based on their fitness 

(which can be based on the objective function or some other kind of quality measure). 

Individuals with a higher fitness have a higher probability to be chosen as members of 

the population of the next iteration (or as parents for the generation of new individuals). 

This corresponds to the principle of survival of the fittest in natural evolution. 

There has been a variety of different EC algorithms proposed over the years. Basically, 

they fall into three different categories which have been developed independently of 
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each other. These are evolutionary programming [81], evolution strategies [48], [82], 

and genetic algorithms [83-85]. Variations and combinations of these methods have 

appeared in the literature like the case of the combination of genetic algorithms with 

neural networks by Giannakoglou et al [37]. The neural networks are trained within the 

generations of the GAs to replace the RANS calculations. Results of this method show 

significant decrease of the overall computational time of the optimisation procedure. 

Also the flow field is accurately approximated by the neural network bases functions. A 

hybrid aerodynamic shape optimisation tool couples a stochastic genetic algorithm and 

a deterministic/gradient-based BFGS hill climbing method for industrial flows is pre­

sented in [86]. For each evaluation required by the optimiser, the Navier-Stokes equa­

tions with the k-s turbulence model are solved with a commercial CFD code on an un­

structured mesh. The method was applied to minimise the drag coefficient by optimis­

ing the rear of a simplified car shape. 

In [87] the solution of two multi-objective and multi-disciplinary shape optimisation 

problems related to industrial CFD using genetic algorithms is considered. The first one 

is a single objective optimisation problem, where the geometry of a flow divider of a 

paper machine head box is designed subject to prescribed goals and restrictions. The 

second problem is a two-dimensional airfoil design problem, where the objectives are to 

minimise the drag while the lift is kept larger than a given value. 

In order to improve efficiency of a system with three-dimensional flow characteristics, 

Han and Maeng [88] presented a new method that overcomes the computational diffi­

culties associated with three-dimensional effects by using two-dimensional CFD and a 

neural network. Results show the efficiency of the method. An optimisation environ­

ment for multidisciplinary turbomachinery blade design based on evolutionary strate­

gies which simplifies the use of various optimisation and evaluation methods is pre­

sented in [89]. The algorithm consists of a blade parameterisation scheme in order to 

perform particular blade modifications with a limited number of optimisation parame­

ters, a parallel CFD solver and a pre-evaluation tool which extracts necessary data and 

processes objectives and constraints to be assessed in an evaluator indicating the design 

quality. The developed optimisation environment enables sensitivity analyses as well as 

optimisation runs. 
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Over the years there have been quite a few overviews and surveys about EC methods. 

Among these are the ones by Back [90], by Fogel [91], by Spears et al [92] and by 

Michalewicz and Michalewicz [93]. In Calegari et al [94] taxonomy ofEC algorithm is 

proposed. 

2.3 ADJOINT-BASED OPTIMISATION 

As it has already been discussed in the first chapter, the problem that we are dealing 

with in this study is the cavitation inception control of diesel nozzle injectors. A gradi­

ent-based method has been chosen for the optimisation due to its accuracy and fast con­

vergence. In nozzle re-design cases the required parameters describing the geometry and 

affecting cavitation may be numerous. A detail discussion about these parameters fol­

lows in section 3.5. The computational cost when using a direct method to obtain the 

required gradient infonnation is proportional to this large number of design parameters. 

This fact disabled methods as the most commonly used finite differences and motivated 

the development of adjoint methods for the calculation of the gradient. 

The adjoint method has a number of advantages relative to other gradient-based meth­

ods, for example finite differences. Apart from its fast convergence, it provides the gra­

dients of the cost function in a way that the computational effort required for this calcu­

lation is independent of the number of the design variables [95]. Of course the possibil­

ity of getting trapped into local minima exists as in every gradient based method. In the 

adjoint method the governing flow equations are treated as constraints by adding them 

to the cost function through Lagrange multipliers providing the augmented fonn of the 

cost functional. By taking the variational of the augmented cost function and the conse­

quent limitation of the flow field variations, the variation of the adjoint variables as well 

as the sensitivity derivatives of the cost function with respect to the design variables are 

obtained. The gradient of the cost function at each location of the design space is de­

pendent on the flow field and the costate variables distribution along the wall to be de­

signed. So, the efficient solution of the flow and the adjoint equations may lead to the 

calculation of the exact values of the sensitivity derivatives. Details about the applica­

tions of the adjoint method exist in the following subsections. 
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2.3.1 The discrete and the continuous approach 

The followers of the adjoint method are divided into two major groups according to 

their preference in the continuous or discrete adjoint method. By definition, when the 

"continuous" approach is used, one formulates the adjoint PDE and then approximates it 

using an appropriate discretisation; this discretisation might be entirely different to that 

used for the nonlinear PDE. Whilst, using the "fully-discrete" approach to approximate 

the adjoint equations, one starts with the discretisation of the original nonlinear PDE, 

and then linearises it and forms its transpose equation [96]. The resulting discrete ad­

joint equations represent a possible discretisation of the adjoint partial differential equa­

tion. If these equations could be solved exactly they could provide the exact gradient of 

the cost function which results from the discretisation of the flow equations, which is 

itself, however, inexact; they would be identical to finite difference sensitivities ob­

tained from the flow calculation using infinitesimal step size on a computer with infinite 

machine precision. On the other hand, any consistent discretisation of the adjoint partial 

differential equation will converge to the exact gradient as the mesh is refined. One 

could even follow an intermediate path, linearising the original equations, discretising 

them and then taking the transpose equation. In principle, considering that each of the 

steps is performed correctly, and all of the solutions are sufficiently smooth, then for 

infinite grid resolution all three approaches should be consistent and converge to the 

correct analytic value for the gradient of the objective function. However, there are con­

ceptual differences between the different approaches, and for finite resolution grids 

there are also differences in the computed results. 

The major advocate of the continuous approach is Jameson [97] while of the discrete is 

Giles [96]. Jameson along with Nadarajah investigated the differences of the two ap­

proaches. In [98] they present a complete formulation for the continuous and discrete 

adjoint approach to automatic aerodynamic design using the Euler equations. The gradi­

ents from each method are compared to finite difference gradients and the following 

conclusions are drawn: 

1. The continuous boundary condition appears as an update to the costate values below 

the wall, and the discrete boundary condition appears as a source term in the cell above 

the wall. As the mesh width is reduced, one recovers the continuous adjoint boundary 

condition from the discrete adjoint boundary condition. 

2. Discrete adjoint gradients have .better agreement than continuous adjoint gradients 

with finite difference gradients as expected, but the difference is generally small. 
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3. As the mesh size increases, both the continuous adjoint gradient and the discrete ad­

joint gradient approach the finite difference gradient, whilst the difference between 

them, obviously, decreases. 

5. The computational cost of deriving the discrete adjoint as well as the memory re­

quired is much greater. 

6. The overall convergence of the objective function is not significantly affected when 

the discrete adjoint gradient is used instead of the continuous adjoint gradient. 

Jameson and Vassberg [9] stated the benefits gained from developing the theory for the 

partial differential equations of the flow. First, the true optimum shape belongs to an 

infinitely dimensional space of design parameters, and the theory provides an indication 

of how such a solution could be approached if sufficient computational resources were 

available. Second, it provides insight into the nature of the adjoint equations, and the 

connection between the formulation of the cost function and the boundary conditions 

needed to assure a well-posed problem. Third, in certain circumstances the discrete so­

lution may lose the property of continuous dependence of the design parameters. It may, 

for example, contain non-differentiable flux limiters. Also, if adaptive mesh refinement 

is used, there will be a discontinuous change in the solution whenever a mesh point is 

added or deleted. Finally, discretisation methods for differential equations provide 

guideline for the design of iterative solutions for the adjoint equation; either for the case 

where the adjoint equation is separately discretised or for the case where the discrete 

adjoint equations are derived directly from the discrete flow equations. 

Consequently, according to Jameson and his followers, there is no particular benefit in 

using the discrete adjoint method, which requires greater computational cost. On the 

other hand, Giles states that the continuous adjoint approach yields a discrete approxi­

mation to the gradient of the analytic objective function with respect to each of the de­

sign variables" This will not be exactly equal to the gradient of the discrete approxima­

tion to the objective function. Therefore, there is a slight inconsistency between the 

discrete objective function and the computed gradient. As a result, the optimisation 

process will fail to converge further once the solution is near a local minimum. 

There are several pragmatic issues that led Giles to prefer the discrete approach. One is 

the fact that the "fully-discrete" method is completely prescriptive; there is a straight­

forward process by which one generates the adjoint code, and this can be significantly 

aided by the use of Automatic Differentiation (AD) [99] techniques to automatically 
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generate key pieces of the adjoint code. Another is that it is possible to solve the dis­

crete adjoint equations using an adjoint version of the highly-optimised iterative meth­

ods developed for the nonlinear equations. This is the subject of papers [100, 101], with 

[96] also discussing the complexities that arise with the imposition of strong boundary 

conditions. 

The advantages of the fully-discrete approach could be briefly summarised as: 

- The exact gradient of the discrete objective function is obtained. This ensures that the 

optimisation process can converge fully. It also provides a convenient check on the cor­

rectness of the programming implementation; with the continuous approach one does 

not know whether a slight disagreement is a consequence of the inexact gradient or a 

possible programming error. 

- Creation of the adjoint programme is conceptually straightforward. In the future this 

should enable the almost automatic creation of adjoint programmes using AD software. 

This benefit includes the iterative solution process since the transposed matrix has the 

same eigenvalues as the original linear matrix and so the same iterative solution method 

is guaranteed to converge. 

On the other hand, the advantages of the continuous approach are: 

- The physical significance of the adjoint variables and the role of adjoint boundary 

conditions are much clearer. Only by constructing the adjoint flow equations can one 

develop a good understanding of the nature of adjoint solutions, such as the continuity 

at shocks, etc. 

- The adjoint programme is simpler and requires less memory. Because one is free to 

discretise the adjoint PDE in any consistent way, the adjoint code can be much simpler. 

However, even when following a continuous approach, it is advantageous to use the 

same discretisation for the continuous adjoint equations as for the flow equations. It is 

also generally the case that continuous adjoint solvers require less memory than the 

fully-discrete codes. 

Recently, another comparison of the two approaches is given by Duivesteijn et al [102]. 

They also dealt with the problem of boundary condition treatments applied to the quasi-

1 D Euler equations. The effect of strong and weak boundary conditions and the effect of 

flux evaluators on the numerical adjoint solution near the boundaries were discussed. 
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There are many applications of the adjoint method over the years in shape optimisation 

using either the discrete or the continuous method. In this subsection some of these are 

summarised giving emphasis on the approach used. 

A continuous adjoint method is presented in [103]. The optimisation algorithm sequen­

tially builds an approximate optimisation sub-problem, based on the value of the func­

tions and their gradient at the current design point solved with a dual method. Various 

approximations are investigated, including the method of moving asymptotes (MMA) 

and diagonal quadratic methods. Monge and Tobio in [104] used Jameson's approach to 

develop the adjoint equations for the incompressible two-dimensional flow with a given 

velocity distribution as objective, and the aim of extending it in short term to the use of 

friction drag. Their main purpose was to compare the results provided by control theory 

with those of finite differences in terms of gradient evaluation and computing time. The 

drag minimisation of a body which initial shape was a circular cylinder using control 

theory for the incompressible Navier-Stokes equations is investigated by Ochiai and 

Kawahara in [105]. 

In [106] Li and Padula presented a robust optimisation methodology based in the dis­

crete adjoint configuration. They concluded that the importance of their method in­

creases when the parameterisation has strong non-linear effect to the cost function. An­

other author who is in favour of the discrete approach is Muller, who in [107] reviews 

the implementation of Automatic Differentiation (AD) [99] on Fortran CFD codes and 

gives details of how small rearrangements can be used to produce competitive tangent 

and adjoint code using AD. Forth [38] uses the Odyssee AD tool to obtain and validate a 

discrete forward sensitivity version of the BAE SYSTEMS/AIRBUS UK unstructured 

mesh CFD code Flite3-D. A very useful paper for the discrete approach followers is the 

paper of Giering et al [69] which gives information about the construction of discrete 

adjoint codes and tools for automatic differentiation although the applications are com­

pletely different to those of the present study. 

A discrete approach which gives the ability to solve simultaneously for the flow and 

adjoint equations has been developed by Kuruvila et al [108]. The basic idea of this 

one-shot method is to change the shape of the airfoil profile in a hierarchical manner 

such that smooth changes are made separately from high frequency changes. Because 

each of these changes involves a different scale, the governing equations of the flow can 
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be solved efficiently on grids of appropriate resolution. Thus, the flow field due to 

smooth changes in the airfoil is solved on coarse grids, and the flow field to increasingly 

fine grids. The resulting optimisation procedure breaks into a sequence of sub­

optimisation problems solved on the appropriate grid. The one-shot method is imple­

mented in a multigrid algorithm. Results showed that the method brings the cost of the 

overall optimisation problem to the cost of the flow solution. But the method has not 

been used to solve practical problems apart from simple airfoil design. 

Some authors used both approaches. Anderson, who was one of the first who extracted 

the continuous adjoint equations for inviscid flows independent from the type of the 

mesh [7], moved to the discrete approach when along with Nielsen [109] they con­

structed a parallel framework for performing aerodynamic design optimisations on un­

structured meshes. Only the inviscid terms were treated in order to develop a basic 

foundation for a multiprocessor design methodology. A parallel version of the adjoint 

solver was developed using a library of MPI-based linear and nonlinear solvers known 

as PETSc, while a shared-memory approach is taken for the mesh movement and gradi­

ent evaluation codes. Parallel efficiencies were demonstrated and the linearisation of the 

residual was shown to remain valid. 

Recently, a team in DLR [11 0] gave an overview of the capabilities of the discrete ad­

joint to perform aerodynamic shape optimisation in viscous flow. They developed a 

discrete adjoint method implemented on their in-house Navier-Stokes unstructured fi­

nite-volume solver, the DLR-TAU-code. The method consisted of the explicit construc­

tion of the exact Jacobian of the spatial discretisation with respect to the unknown vari­

ables allowing the adjoint equations to be formulated and solved. A wide range of the 

spatial discretisations available in TAU have been differentiated, including the Spall art­

Almaras-Edwards one-equation, and the Wilcox k - co two-equation turbulence models. 

The strategy developed was validated only on 2D cases and compared with the ap­

proximate gradients obtained by finite-differences. Then the accuracy and efficiency of 

the approach were demonstrated for transonic airfoil design by considering geometric as 

well aerodynamic constraints, single- as well as multi-point design. Finally, the flap 

design of a multi-element airfoil in take-off configuration confirmed the capability of 

the discrete adjoint to solve a wide range of aerodynamic problems. 

A methodology to mitigate the development cycle typically associated with constructing 

a discrete adjoint solver was presented in [111]. The approach was based on a complex-
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variable fonnulation that enables straightforward differentiation of complicated real­

valued functions. An automated scripting process was used to create the complex­

variable fonn of the set of discrete equations. The accuracy of the implementation was 

verified through comparisons with a previously developed discrete direct method. 

Another discrete-adjoint fonnulation for the 3-D Euler equations discretised on a Carte­

sian mesh with embedded boundaries was presented in [112]. The solution algorithm for 

the adjoint and flow-sensitivity equations leveraged the Runge-Kutta time-marching 

scheme in conjunction with the parallel multi grid method of the flow solver. The ma­

trix-vector products associated with the linearisation of the flow equations were com­

puted on-the-fly, thereby minimizing the memory requirements of the algorithm at a 

computational cost roughly equivalent to a flow solution. A wing-body geometry at 

transonic flow conditions case and an entry vehicle at supersonic flow conditions case 

verified the accuracy of the linearisation and demonstrated the efficiency and robustness 

of the adjoint algorithm for complex-geometry problems. 

Although we have aimed to be objective in our assessment of the relative advantages of 

the two approaches, it should be noted that the author is an advocate of the continuous 

approach. An advocate of the discrete approach may place a different emphasis on the 

above observations and hence reach a different conclusion. Certainly, both methods 

perform well in practice, and it remains to be seen whether either approach demon­

strates compelling advantages over the other in terms of design performance. After ana­

lysing the pros and cons of both methods the author would like to emphasise on the 

saying of Giles [113]: "Ultimately, the final choice may always remain, to some extent, 

a matter of personal taste". 

2.3.2 Properties of the adjoint solutions 

The scope of the present research is to apply the adjoint method in order to optimise 

Diesel nozzle geometries according to specified flow characteristics. As a result, the 

author has not dealt with the problem of the properties of the adjoint solutions. For that 

reason this section comprises a detailed discussion of the existing literature in this area 

about the underlying theory, formulation, approximation and solution of adjoint equa­

tions. 

49 



Chapter 2 Literature Review 

The first who dealt with the mathematical aspect behind the adjoint equations was Giles, 

who, in 1997 along with Pierce considered the proper formulation of adjoint boundary 

conditions for the Euler and Navier-Stokes equations [114]. They proved that there is a 

limited set of objective functions for which the standard formulation of the adjoint prob­

lem is well posed. In the same paper they also identified some key properties of the 

solutions to the adjoint quasi-l-D and 2-D Euler equations. The restrictions on the per­

missible choices of cost functions show that at solid walls these cost functions must be a 

function of the linearised pressure for inviscid flows or a function of the normal and 

tangential forces for viscous flows to lead to a well posed problem. Also Jameson et al 

[115] mentioned that the boundary conditions satisfied by the flow equations restrict the 

form of the adjoint boundary condition. Consequently, the boundary contribution to the 

cost function cannot be specified arbitrarily. Instead, it must be chosen from the class of 

functions which allow cancellation of all boundary terms resulting from the adjoint 

analysis. 

Arian and Salas [116] contradicted this and proposed a method so those "inadmissible" 

cost functions can actually be "admissible". They showed that for problems with inad­

missible cost functions, additional terms should be included in the Lagrangian func­

tional when deriving the adjoint equations. These terms can be obtained from the re­

striction of the interior PDE to the control surface. They demonstrated the explicit deri­

vation of the adjoint equations for "inadmissible" cost functionals for the potential, 

Euler, and Navier-Stokes equations. Anderson [7] and Soemarwoto [117] also offered a 

solution by adding terms to the inadmissible cost functions which are actually zero but 

allow the cancellation of all the boundary terms. Their method is used in the present 

studies where the cost functions are considered inadmissible and otherwise could lead to 

ill-posed problems. 

The problem of the adjoint solutions in cases where there are discontinuities in the flow 

was the basic issue at the beginning of Giles involvement in adjoint optimisation [114]. 

In the first half of that paper, he derived the adjoint equations for inviscid and viscous 

compressible flow with the emphasis being on the correct formulation of the adjoint 

boundary conditions. It is shown that the boundary conditions for the adjoint problem 

can be simplified through the use of a linearised perturbation to generalised coordinates. 

In the second half of that paper, the Green's functions were constructed for the quasi-l­

D and 2-D Euler equations. These were used to show that the adjoint variables have a 
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logarithmic singularity at the sonic line in the quasi-I-D case, and a weak inverse square 

root singularity at the upstream stagnation streamline in the 2-D case. However, they are 

continuous at shock locations in both cases. These conclusions led to the derivation of a 

closed form solution for the adjoint quasi-I-D Euler equations with and without shocks 

[118,119]. 

The properties of adjoint solutions were examined for the quasi-I-D Euler equations, in 

more detail in [118]. For shocked flow, the derivation of the adjoint problem reveals 

that the adjoint variables are continuous with zero gradients at the shock, contradicting 

previous results oflolo and Salas [120], and that an internal adjoint boundary condition 

is required at the shock. The analytic adjoint solution was then derived for isentropic 

and shocked transonic flow revealing a logarithmic singularity at the sonic point. Nu­

merical experiments with both the discrete and continuous adjoint formulations sug­

gested that the adjoint solution behaves correctly at the shock without explicit enforce­

ment of the internal boundary condition. For the continuous approach, in the absence of 

explicit enforcement of the correct adjoint boundary conditions at the shock, the correct 

asymptotic behaviour can be explained as the effect of numerical smoothing, given that 

the correct analytic solution was the only smooth solution at the shock. In the same pa­

per an adjoint approach to a posteriori error analysis was then demonstrated and the 

implications for developing an optimal adaptive algorithm were discussed. 

In [119] a Green's function approach was used to derive the analytic adjoint solutions 

corresponding to supersonic, subsonic, isentropic and shocked transonic flows in a con­

verging-diverging duct of arbitrary shape. This analysis revealed a logarithmic singular­

ity at the sonic throat and confirms the expected properties at the shock. It remains an 

open question whether the continuous or the discrete approach is better when there are 

nonlinear discontinuities such as shocks. For quasi-l-D Euler calculations, for which 

they derived the analytic solution of the adjoint equations [118], both approaches give 

numerical results which converge to the analytic solution. For the discrete approach, this 

follows because the integrated pressure can be proved to be predicted with second-order 

accuracy [121]. The linearised discretisation should therefore yield perturbations to the 

integral of pressure that are at least first-order accurate. 

In 2-D and 3-D there is no proof of second-order accuracy for quantities such as lift and 

drag, and there is a discontinuity in the gradient of the adjoint variables at the location 

of the shock. Therefore it remains an open question as to whether either approach, dis-
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crete or continuous, will give a consistent approximation to the gradient of the objective 

function in the limit of infinite grid resolution. However, practical results for applica­

tions with weak shocks suggest that any inconsistency must be small. In practice, re­

searchers using the continuous adjoint approach do not enforce these special boundary 

conditions for the discontinuities, and their results indicate no difficulties as a conse­

quence. 

As we mentioned in the previous subsection, Giles is an advocate of the discrete method 

so in his research he often dealt with problems faced when applying this approach. In 

[101] he showed that the naive application of the adjoint method to the iterative solution 

of a linear system of equations may produce an algorithm which does not correspond to 

the iterative solution of the corresponding adjoint system of equations. An algebraic 

manipUlation that can transform the algorithm so that the adjoint variables converge to 

the solution is proposed. Using this manipulation also a continuation in the adjoint solu­

tion procedure may be applied. Giles also wanted to explain the key ideas of optimal 

design using adjoints. So he introduced the mathematics at the level of linear algebra, 

where things are relatively simpler, before progressing to partial differential equations, 

as an easy way to explain the adjoint approach to design and error analysis [113]. 

Giles latest research interest is in what happens when the underlying nonlinear solution, 

in the discrete approach, has a shock, and the conditions under which the computed 

adjoint solution will approach the analytic solution as one refines the computational 

grid. His first paper on this topic [122] deals with numerical results indicating the ne­

cessity of grid resolution improvement. The numerical smoothing varies in a way which 

increases the number of points across the shock, while at the same time the overall 

width of the shock decreases, to get a convergent adjoint discretisation. Another funda­

mental conclusion for any numerical discretisation with a fixed number of points across 

the shock is that, it is easy to fall in the trap of constructing an objective function for 

which the numerical adjoint solution will not converge. 

Jameson also dealt with the properties of the adjoint solutions. Along with Kim [123] 

they investigated the accuracy of the resulting, from the adjoint analysis, derivative in­

formation by direct comparison with finite-difference gradients and by mesh and pa­

rameter refinement studies. In the process, shortcomings of the finite difference method 

for the calculation of derivative information are pointed out and discussed. The advan-
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tages of the use of an adjoint method become apparent because of the strict require­

ments that the finite difference method imposes on the level of flow solver convergence 

and the sensitivity of the value of the gradients with respect to the choice of step size. 

From the analysis it was concluded that the gradient information obtained using the 

adjoint method is much less dependent on the level of convergence of the flow solver 

and it is insensitive to the step size chosen in the deformation of the aerodynamic con­

figuration. Also the adjoint method requires only modest levels of convergence of the 

adjoint solver, thus reducing even further the computational cost of this procedure. In 

another case along with Vassberg [124] they used the simple Brachistochrone problem 

which has an analytic solution in order to further investigate the accuracy, performance 

and robustness of several optimisation techniques. Results showed that, at least in the 

case of the Brachistochrone, the continuous gradient yields a slightly more accurate 

solution than the discrete gradient. 

Protas and Bewley [125] summarised the taxonomy of regularisation opportunities 

available in the adjoint analysis of multi-scale fluid systems. They developed a uniform 

framework for understanding the well-posedness and regularisation issues of the adjoint 

solutions. These are given in the following four ways: 

1. by adding an artificial term to the discretised state equation itself. 

2. by the definition of the cost functional. 

3. by the form of the duality pairing. 

4. by the definition of the inner product used to extract the functional gradient. 

2.3.3 Applications of the adjoint - based optimisation 

Over the past two decades many investigators have employed the adjoint-variable 

method in CFD shape optimisation either in the discrete or the continuous mode and 

benefited by the advantages vs. other most traditional methods. Some of the features of 

the most representative applications of the adjoint method in shape optimisation are 

summarised in this subsection. 

There is a long history of the use of adjoint equations in optimal control theory [33]. In 

fluid dynamics, the first use of adjoint equations for design was by Pironneau [4, 5], 

who as early as the 1970's, suggested an optimal shape design algorithm for the first 

time and derived the optimality condition for a body with minimum drag in low­

Reynolds-number laminar flow. However, within the field of aeronautical computa-
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tional fluid dynamics, which is the field with most applications, the use of adjoint equa­

tions has been pioneered by Jameson [6], who in the late 1980s used his knowledge of 

optimal control theory to develop what he called optimal design methods. During the 

past few years he applied the adjoint variable method for optimal shape design of a air­

foils, wings and complete aircrafts using the Euler [6, 126, 127] or the Navier-Stokes 

equations [115, 128]. During his research he collaborated with a lot of other investiga­

tors. With Reuther et al [46, 54, 129] they did some publications for complex wing ge­

ometries, wing-body and whole aircraft geometries where they enforced geometrical 

constraints. They worked mostly using the Euler equations and for the acceleration of 

the algorithm multigrid and parallelisation using MP! have been implemented in the 

solver. With Kim et al they did some theoretical work [123, 130] which has been refer­

enced in the previous section, concerning the accuracy of the adjoint gradients and the 

choice of optimisation parameters. They also worked on the optimisation of high-lift 

configurations [131, 132] using the adjoint method for the Navier-Stokes equations with 

the Spalart-Allmaras turbulence model. Optimisation was performed in the sense of 

drag coefficient reduction with constant lift or drag to lift ratio. Also validation of the 

model was achieved by the inverse design of the airfoil using a predescribed pressure 

distribution. In his latest work with Nadarajah [133, 134] he used the discrete adjoint 

approach to achieve sonic boom reduction in a supersonic aircraft. The challenge of this 

approach is the calculation of remote sensitivities; the cost function and thus the gradi­

ents are defined on a different boundary from the boundary of the shape to be modified. 

A similar challenge has been faced in the present study in the case of Cd maximisation. 

Details concerning the handling of this problem exist in the following chapter. 

Anderson in 1997 extracted the continuous adjoint equations for inviscid flows inde­

pendent from the type of the mesh [7]. He also included the analysis for the incom­

pressible laminar flows in the same paper. In [43] he included in the adjoint analysis 

turbulence modelling as well. Ta'asan et al were also from the first researchers that used 

the adjoint formulation and control theory for shape optimisation in inviscid flows [53, 

135, 136]. Along with 1010 they extended their theory in more complex applications 

[137, 138] and also they tried to extend the method for transonic flows [120]. Giles was 

the one who first dealt with the problem of boundary conditions for the adjoint equa­

tions and proved the duality of the adjoint and flow equations [114]. He studied the 

behaviour of the analytic solution of the adjoint equations in quasi I-D [119] and 2-D 

[118, 122] and he reached to the conclusion that contrary to [120] the adjoint variables 
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don't appear to have discontinuities in the transonic cases. He mostly dealt with the 

Euler equations and the discrete approach. In the developed discrete adjoint he reduced 

the computational cost by algebraic manipulation that allow continuation in the optimi­

sation iterations [101] and he formulated a preconditioning Runge-Kutta with multi grid 

in a way that equal numbers of iterations of the direct and the adjoint solver will result 

in the same value for the linear functional being sought [100]. 

In 1997 he gave a lecture in VKI [139] in design using adjoint for aircraft and turbo­

machines where he mentioned the advantage of greatly reduced computational cost 

when dealing with large number of design parameters. In [56] he identified some of the 

complexities inherent in the design of aeroengines and aircraft. A range of different 

numerical approaches to design were outlined and their strengths and weaknesses were 

compared. Other related topics such as distributed computing, risk management and 

strategic research planning were also discussed. Along with Duta et al [140] they devel­

oped a discrete adjoint code for the Euler and the Navier-Stokes equations where they 

enforced strong boundary conditions and associated conditions for lift and drag, using a 

particular form of Runge-Kutta. In this first harmonic adjoint algorithm the results were 

exactly equivalent with the linear perturbation code for each individual iteration. This 

guarantees the same rate of iterative convergence which is very useful for validation and 

debugging of the adjoint code. In the next paper with Campobasso et al [141] they vali­

dated the above results by checking the adjoint's exact equivalence to the linear solver 

in steady and unsteady cases for the unsteady design of turbomachinery blades. The 

same authors [142] applied for the first time the adjoint method to the linearised analy­

sis of periodic unsteady flows by involving tailoring of incoming wakes to reduce the 

level of forced response blade vibrations. The linear flow analysis of turbomachinery 

aero elasticity views the unsteady flow as the sum of a background nonlinear flow field 

and a linear harmonic perturbation. The background state is usually determined by solv­

ing the nonlinear steady flow equations. The flow solution representing the amplitude 

and phase of the unsteady perturbation is instead given by the solution of a large com­

plex linear system which results from the linearisation of the time-dependent nonlinear 

equations about the background state. In this first approach to solve unsteady problems 

they pointed at the physical origin of numerical instabilities appearing due to the pre­

conditioned multigrid iteration of the parallel flow solver. In a recent paper [143] they 

achieved the code stabilisation by using the real and complex GMRES and RPM algo­

rithms to stabilise the existing preconditioned multigrid iteration. This approach consid-
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ered an equivalent augmented real form of the original complex system of equations. 

Results showed that the complex solvers not only stabilised the code, but also led to a 

substantial enhancement of the computational performance with respect to their real 

counterparts. 

After Huan and Modi [144] who performed drag minimisation in laminar flows, Soe­

marwoto [117, 145] extended the adjoint method in viscous flows. Until then, most 

investigators used a simplified form of the Navier-Stokes equations such as the potential 

or Euler equations. With simpler governing equations for the flow field, the adjoint 

variable formulation is made simpler. Soemarwoto [145] demonstrated the feasibility of 

the approach in dealing with inverse problems and constrained drag-reduction problems, 

where the compressible viscous flow model based on the RANS equations was used for 

the flow calculations. An analytical expression of the adjoint equations was formulated 

based on the continuous form of the aerodynamic functional and the RANS equations. 

However, considerations from the physics of the boundary layer aren't taken into ac­

count for obtaining an approximation of the gradient, despite the success in obtaining 

true viscous adjoint solutions. Although the approximation can lead to useful results, as 

shown in Ref. [119], it is desirable to have a gradient expression which is derived con­

sistently using the RANS equations. This work was extended by the same author in 

[117] where he computed optimal shapes of airfoils using the compressible Navier­

Stokes equations. 

In their first publication Soto and LOhner [146] used the continuous adjoint approach to 

extract incomplete gradients for the incompressible Euler equations. Several examples 

indicate the present scheme yields proper results without incurring the cost of a com­

plete adjoint solution. The method was extended [147] for the Navier-Stokes equations 

where the continuous and the discrete approaches were presented. Also an innovative 

and very fast volume mesh movement algorithm was developed, which allows including 

the interior point contributions to the gradient. A very fast pseudo-shell approach that 

produces smooth singularity-free shapes was presented [148] to parameterise surfaces in 

CFD optimisation problems. The user has to generate only the original surface mesh and 

a few design variables. The rest of the design parameters and their respective deforma­

tion modes can be generated automatically by the method. In [149] they included turbu­

lence modelling but only for the discrete approach. For the mesh movement, a deforma­

tion mode is used with a quasi-incompressible elastic scheme for the elements outside 
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of the boundary layer region. Such hybrid technique was tested in three problems con­

taining highly stretched elements with excellent results. A summary of their work for 

complete continuous adjoint spanning compressible and incompressible viscous and 

inviscid exists in [150]. Recently [151], they extracted general continuous expressions 

using only values of adjoint and flow variables at the surface where objective function is 

defined. In that work they noticed that an error can occur from the implementation of 

different types of incomplete gradients. 

In his latest work Kim, et al [130] has investigated the feasibility of improving the exist­

ing adjoint method by finding an optimal combination of flow analysis and design input 

parameters. They enhanced the existing adjoint-based design method by determining the 

control parameters ofCFD analysis and design process by the use of the non-linear gra­

dient-based optimiser package, SNOPT. SNOPT is a gradient-based package that uses a 

sequential quadratic programming (SQP) algorithm that obtains search directions from a 

sequence of quadratic programming sub-problems. Each QP sub-problem minimises a 

quadratic model of a certain Lagrangian function subject to a linearisation of the con­

straints. The numerical results show the adjoint design method can be improved in 

shape design speed, performance, and stability by integrating the method with a parame­

ter optimisation tool such as, but not limited to, SNOPT. 

Recently, Alonso and LeGresley [152] have implemented POD as a method of reducing 

the coupling bandwidth between disciplines in a decomposition method called Bi-Level 

Integrated System Synthesis (BLISS). By using POD the normally high bandwidth in­

teraction between some disciplines, such as aerodynamics and structures where all of 

the surface pressures and structural displacements need to be exchanged, is replaced by 

a one time exchange of modes and a per iteration exchange of values that scale the 

modes. 

Hazra and Schultz [153] presented a numerical method for constrained aerodynamic 

shape optimisation problems. It was based on simultaneous pseudo-timestepping in 

which stationary states were obtained by solving the pseudo-stationary system of equa­

tions representing the state, costate and design equations. The main advantages of this 

method were that it requires no additional globalisation techniques, that it blends nicely 

with a previously existing pseudo-timestepping method for the states only and that a 
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preconditioner can be used for convergence acceleration which stems from the reduced 

SQP methods. 

The adjoint-based optimisation has performed in multi-point cases as well. The author 

in [154] describes a method for drag optimisation of airfoils in three different operating 

conditions. Also Reuther along with Jameson et al [155] used the adjoint method to 

perform constrained multi-point optimisation. He developed a shape optimisation 

method for aerodynamic design problems involving complex aircraft configurations and 

multiple design points that are subject to geometric constraints. Jameson worked on 

multi-point design also with Leoviriyakit [156] and developed a method for wing sec­

tion and planform optimisation at a specific flight condition, which searches for a single 

wing shape that performs well over a range of flight conditions. A new cost function 

was defined as the weighted sum of cost functions from a range of important flight con­

ditions. Results showed improvement in performance measures such as drag divergence 

Mach number and the lift-to-drag ratio over a range of Mach numbers is significantly 

greater. The applied mathematical fundamentals of numerical multi-objective constraint 

optimisation were briefly outlined in a lecture [157] given by Wild and Brezillon last 

year. A description of the design targets and constraints for high-lift wings was given, 

followed by a detailed analysis of the properties of the flow calculation for the use 

within optimisation and the suitability of optimisation algorithms for this type of design 

problem. 

Nemec and Aftosmis [158] used a discrete adjoint method for embedded-boundary Car­

tesian meshes treated as a rigid structure. The formulation was based on the linearisation 

of a simple geometric constructor, which decoupled the computation of shape sensitivi­

ties of the surface triangulation from the cut-cell sensitivities. As a result, the method is 

well suited to CAD-based optimisation using parametric solid models. Detailed verifica­

tion studies of gradient accuracy were presented for several two- and three-dimensional 

shape optimisation problems. 

Giannakoglou et al [159] developed a hybrid inverse method for airfoil design. The 

method couples genetic algorithms (GAs) with an adjoint gradient-based optimisation 

method in a parallel environment. The GA-based optimisation method was used as the 

means to drive the solution in the area of the optimum while the gradient-based method 
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refines the solution in a few iterations. The parallelisation of the GA and flow code sig­

nificantly reduces the computation cost. 

An adjoint algorithm for efficiently incorporating the effects of mesh sensitivities in a 

computational design framework was introduced in [160]. The method eliminated the 

need for explicit linearisations of the mesh movement scheme with respect to the geo­

metric parameterization variables, an expense that has hindered large-scale design opti­

misation for practical applications. The effects of the mesh sensitivities can be ac­

counted for through the solution of an adjoint problem equivalent in cost to a single 

mesh movement computation, followed by an explicit matrix-vector product whose cost 

scales with the number of design variables and the resolution of the parameterized sur­

face grid. The methodology augmented the use of adjoint solely for the flow field lead­

ing to dramatic computational savings. The accuracy of the implementation was estab­

lished through several sample design optimisations. 

In hydrodynamics, based on Jameson's [6] work, Cowles and Martinelli [161] described 

a control-theory (continuous) approach to sensitivity analysis for incompressible, turbu­

lent viscous flows and applied this approach to match target pressure distributions (in­

verse design) on finite span wings and sails. Tahara et al [162] used a Navier-Stokes 

code, with finite-difference gradients, for CFD-based design of the bow bulb on a sur­

face combatant. The objective of that study was to minimise the downstream vorticity in 

the vicinity of the bulbous bow where no free surface effects were considered. Dreyer 

and Martinelli [163] utilise a continuous-adjoint approach for target pressure matching 

of propulsor configurations using the pseudo-compressible Euler equations in a rotating 

frame of reference. 

Finally, an overview of the design process is provided by Jameson and Vassberg [9], 

covering some of the typical decisions that a design team addresses within a multi­

disciplinary environment. A review on how the aerodynamic design process has been 

advanced, first with the improving capabilities of traditional computational fluid dy­

namics analyses, and then with aerodynamic optimisations based on these increasingly 

accurate methods, is presented. The computational cost of the adjoint method is also 

compared with that of other approaches in shape optimisation. 

59 



Chapter 2 Literature Review 

2.3.4 Other applications of the adjoint method 

The adjoint method has been used in many cases to solve engineering problems that are 

not related to shape optimisation. In this subsection some of these applications are 

summarised. 

During his research Giles broached the importance of the adjoint solution in analysing 

the numerical error in integral functionals, such as lift and drag, which are often the 

quantities of most interest in engineering computations. Along with Suli et al he wrote a 

report on the error analysis for finite element approximations of the incompressible Na­

vier-Stokes equations [164] in which they established the importance of the supercon­

vergence property. They defined this property as the convergence in which the order of 

accuracy of the functional increases twice as quickly as the order of the polynomial 

finite element function space. They derived estimates for the error in a variational ap­

proximation of the lift and drag coefficients of a body immersed into a viscous flow 

governed by the Navier-Stokes equations. The variational approximation was based on 

computing a certain weighted average of a finite element approximation to the solution 

of the Navier-Stokes equations. Their main result was an a posteriori estimate that puts 

a bound on the error in the lift and drag coefficients in terms of the local mesh size, a 

local residual quantity and a local weight describing the local stability properties of an 

associated linear dual problem. The weight was approximated by solving the dual prob­

lem numerically. The error bound becomes thus computable and can be used for quanti­

tative error estimation; they applied it to design an adaptive finite element algorithm 

specifically for the approximation of the lift and drag coefficients. 

In 1998, they followed this with a paper in which they developed a closed form solution 

for the adjoint quasi-I-D Euler equations, with and without shocks, and showed excel­

lent agreement with numerical computations [118]. In that paper they also showed how 

the error in the 'lift' (the integral of pressure along the quasi-l-D duct) could be im­

proved by correcting the leading order effects of the truncation error in the finite volume 

method; the same idea has been outlined in a short paper for a conference honouring 

Earll Murman [165]. That paper outlined how the solution of an appropriate dual prob­

lem can be used to estimate the residual error of a nonlinear functional in CFD compu­

tations. The error estimates can be used either to obtain better approximations to the 

functional itself, or to drive grid adaptation with the aim of achieving the most accurate 

answer possible for a given level of computational effort. The finite volume analysis 
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showed that on unstructured grids discrete conservation is crucial in gaining one order 

of accuracy relative to the order of the local truncation error. However, the analysis 

outlined made the assumption that the gradient of the dual solution is bounded. This 

may not be true for the Euler equations along the stagnation streamline and so additional 

analysis may be required. The a priori finite element error analysis reveals an interesting 

superconvergence property showing that the order of accuracy of the approximate linear 

functional is twice that of the solution itself. The lack of a similar result for the finite 

volume analysis indicated a significant advantage for finite element methods, but the 

advantage only appeared when using methods which have better than second order ac­

curacy. 

The realisation that the error correction was much more easily constructed by interpolat­

ing the numerical finite volume solution to obtain an approximate analytic solution, and 

then using this to evaluate the residual error and thereby form an inner product with an 

approximate adjoint solution to correct the computed value for the functional has been 

the central idea behind a sequence of papers [166, 167] in which they developed the 

analytic theory and demonstrated super convergent correct functionals for a variety of 

problems, starting with the I-D and 2-D Poisson equations and progressing to the quasi­

I-D Euler equations. In each case they used the adjoint correction to achieve fourth 

order accuracy for functionals which would otherwise have been only second order ac­

curate. This is achieved through error analysis that uses an adjoint PDE to relate the 

local errors in approximating the flow solution to the corresponding global errors in the 

functional of interest. Numerical evaluation of the local residual error together with an 

approximate solution to the adjoint equations may thus be combined to produce a cor­

rection for the computed functional value that yields the desired improvement in accu­

racy. 

The numerical results demonstrated the effectiveness of the technique applied to a sec­

ond order finite volume approximation of the quasi I-D Euler equations. When the flow 

is smooth, the error in the integrated pressure is fourth order, when there is a shock, it is 

third order. The theory is equally applicable to the Euler and Navier-Stokes equations in 

multiple dimensions. Three important issues were addressed so that similar results can 

be obtained for airfoil and aircraft super convergent lift estimates through adjoint error 

analysis. The first issue is the treatment of curved surfaces to achieve fourth order accu­

racy for corrected functional such as lift and drag, it is likely that smooth curved sur-
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faces will need to be approximated in a way which ensures continuity in the surface 

normal as opposed to the use of simple linear or bi-linear faces. The second issue is the 

resolution of singularities, the adjoint flow solution in two dimensional airfoil applica­

tions has an inverse square root singularity along the incoming stagnation streamline 

and this will need to be well resolved. The final issue concerns unstructured grid calcu­

lations which are needed for complex applications. They depicted the need for the ap­

proximate solution to be sufficiently smooth that the error is of the same order as the 

error of the solution itself. To achieve this on unstructured grids where the solution error 

has significant high frequency content may require the use of multi-dimensional 

smoothed cubic splines. 

In 2001 along with Muller [168] they extended the method for mesh refinement based 

on adjoint sensors. The advantages of the proposed method was better grid convergence 

for an integral functional than sensors without adjoint weighting or smoothing. Another 

application of the adjoint equations in aerodynamics can be found in Joslin et al [169]. 

They used optimal control and the adjoint method in order to develop a methodology for 

transition delay. 

Very recently Giles [170] used the adjoint method for an application in finance. This 

application is entirely different from the ones described in the thesis but it is included 

here to show the generality in the use of the adjoint method. The adjoint method was 

used to accelerate the calculation of Greeks by Monte Carlo simulation. The method 

calculates price sensitivities along each path; but in contrast to a forward path wise cal­

culation, it works backward recursively using adjoint variables. Along each path, the 

forward and adjoint implementations produce the same values, but the adjoint method 

rearranges the calculations to generate potential computational savings. The adjoint 

method outperforms a forward implementation in calculating the sensitivities of a small 

number of outputs to a large number of inputs. 

2.4 CAVITATION AND OTHER RELATED STUDIES IN ENGINE DESIGN 

In this section research in cavitation and optimisation methods for cavitation reduction 

and delay which will be used as a connection between the previous sections and the 

work reported in this thesis are discussed. 
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The flow through diesel fuel injector nozzles is important because of the effects on the 

spray and the atomisation process. From the experimental point of view, visualisation of 

the flow in realistic multi-hole Diesel nozzles has only recently been possible. Arcou­

manis et al [171] succeeded in visualising the flow in one of the holes of a modified 

production conical sac nozzle; the necessary modification involved the removal of some 

material and the fitting of a quartz window replacing the injection hole. The whole 

process involved very accurate machining in order to make sure that the hole character­

istics remained the same. The rest of the closed-loop flow test-rig comprised a CCD 

camera with high magnification lenses and a common rail system. Due to the fact that 

the experiments were steady-state with a constant needle lift only moderate injection 

pressures could be attained. Two needle lifts and various back pressures were tested; the 

nozzle was submerged, in order to make the obtained results directly comparable with 

previously obtained ones with the enlarged model. The comparison of the measured 

discharge coefficients showed that for high needle lift there is better agreement between 

the large-scale and the real-size nozzle. It confirmed also for the real-size nozzle that 

after the onset of cavitation, the discharge coefficient drops with increasing cavitation 

number, reaching asymptotically a minimum value. Reynolds number was not found to 

playa role under cavitating conditions. Another important finding was that string cavi­

tation could be seen in the real-size nozzle too, but only in the high needle lifts case. 

Visual comparison of the various flow regimes between the two nozzles revealed simi­

larities but also distinct differences. In the real-size nozzle and for low Reynolds and 

cavitation numbers the observed structures collapsed inside the hole, which is in con­

trast to the large-scale nozzle's case, by which cavitation structures would always exit 

the hole. Nevertheless, the effect of increasing cavitation number was dramatic in both 

cases, with cavitation in the real-size exiting the nozzle hole in misty form. Finally, 

another important finding was that the observed structure sizes did not scale with hole 

size; in the real-size they occupied relatively larger volume fraction, a point supporting 

the claim that cavitation as a phenomenon cannot be scaled. 

Complementary to the above investigation, Afzal et al [172] performed similar experi­

ments with the same test-rig, but this time they tested and visualised the flow not only in 

a mini-sac but also in a similar enlarged transparent VCO nozzle. The comparison was 

of particular interest, as in VCO nozzles higher turbulence levels are realised. More­

over, single-phase CFD simulations of the flow inside the two nozzles were performed, 
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in order to gain insight into the effects of needle lift and eccentricity on turbulence and 

other flow field quantities. The comparison between the mini-sac and VCO flow fields 

revealed interesting differences regarding cavitation characteristics. For low needle lifts 

in the VCO and with increasing cavitation number no stable film would form at the 

upper part of the holes. Moreover, for high lift cases, a film could indeed appear but it 

was much more unstable than the corresponding one in the mini-sac's case. Overall, it is 

fair to say that the cavitating flow inside the VCO nozzle was found to be much more 

unstable, and there were two possible reasons given for this. The first one was increased 

turbulence and the second one was different string cavitation characteristics. In the 

veo nozzle for low needle lift string cavitation did not occur in the very restricted sac 

area but between the needle and the hole entrance, with an axis almost parallel to that of 

the hole. Adding to that, it was much more unstable in nature for both lifts, which 

through its interaction with hole cavitation caused complete or partial destabilisation of 

any formed cavitation film, depending on whether it was low or high needle lift case. 

Concluding on enlarged model investigations, the study of Roth et al [173] will be dis­

cussed, which was focused not only on developed cavitation but also on its transient 

evolution. In this study the above described test-rig of Arcoumanis et al was used in 

order to obtain quantitative information about the flow field inside the nozzle. The re­

fractive index matching technique together with an LDV system were utilised for taking 

detailed velocity measurements inside the enlarged mini-sac nozzle under single-phase 

and cavitating conditions. Additional to these measurements, still imaging and high­

speed video were used to visualize the cavitating flow in both the mini-sac and the veo 
nozzles. Quite interesting findings were made in this study; the importance of string 

cavitation became even more evident, due to the fact that cavitation strings were found 

to induce hole cavitation, as they were seen to transport bubble nuclei from one hole, 

where cavitation would have already started, to an adjacent one which wouldn't be cavi­

tating up to that time instance. Hole-connecting strings could be seen for both high and 

low needle lifts in the mini-sac's case, whereas for the VCO they could be only seen for 

high lifts. Cavitation was found to initiate also at the side comers of the hole inlet. From 

the LDV measurements it was concluded that turbulence levels increased in the lower 

part of the injection hole as the cavitation number was increased. Nevertheless, towards 

the hole exit this increase of turbulence was found to die-out and almost level with the 

lower cavitation number cases. 
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From the computational point of view, modelling the nozzle flow is complicated by the 

presence of cavitation inside the nozzles. Chen [174] developed a few different models 

of cavitating flow. In one case he closed the hydrodynamic equations by assuming that 

the growth phase of the bubbles occurred at the vapour pressure and that the substantial 

derivative of density could be given by an empirical relation during the collapse phase. 

The pure liquid phase was treated as incompressible. This model was applied to a sharp 

nozzle and appeared to give reasonable results but was not fully explored. Marcer and 

LeGouez [175] developed a multiphase Navier-Stokes model using an improved VOF 

type interface tracking method able to calculate the liquid-vapour interface evolution, 

taking into account the mass transfer process at the interface cavity. The model allows 

numerical description of the onset and development of cavitation within Diesel injec­

tors. The results obtained confirm the findings of other investigations in that the nozzle 

discharge coefficient depends mainly on the cavitation due to the volume occupied by 

the vapour structures which tends to reduce the flow rate. The discharge coefficient 

gradually drops with increasing cavitation number reaching asymptotically a minimum 

value. Some examples of calculations performed with the multiphase code EOLE based 

on an improved VOF method taking into account mass transfer process, evidence the 

great capacities of the model to simulate cavitation features in Diesel injectors. Numer­

ous validations on measurements have been already carried out on parameters such as: 

1. discharge coefficient, 

2. injection velocity, 

3. visualisations of the cavitation shape, 

4. influence of the inlet shape of the channel (straight entrance, rounded entrance). 

The paper of Yuan et al [176] deals with the numerical simulation of cavitation phe­

nomena inside injector nozzles. The numerical approach combines the Volume-of-Fluid 

technique (VOF) with a model predicting the growth and collapse of bubbles. The effect 

of the liquid quality in the cavitation inception is extensively studied. The numerical 

study of a symmetric injection nozzle has identified several complex phenomena which 

certainly occur inside fuel injector nozzles. Numerical results indicate that the overall 

extension of the cavitation region depends on the liquid quality and the nozzle pressure 

difference, i.e. the higher nuclei concentration and the bigger nuclei radii as well as the 

lower pressure at the nozzle exit cause larger overall extension of the cavitation. The 

numerical study also demonstrates that the rounding of the nozzle inlet lip tends to in­

hibit the overall extension of the cavitated region. This was used as an indication in the 

65 



Chapter 2 Literature Review 

present study that led to the parameterisation of the radius of curvature. At the same 

time, the numerical simulations point out, that the flow separation in injector nozzles 

may be caused due to the sharpness of the nozzle inlet lip as well as by the cavitation 

process. The separation formed by the primary single flow influences the extension of 

the two-phase region. To simulate the interaction between the flow separation and the 

flow cavitation more accurately, the turbulence model needs to be improved. 

Another paper that gave hints for the nozzle parameterisation developed in this study 

was the one of Schmidt et al [177]. He uses a two dimensional, two-phase, transient 

model of cavitating nozzle flow to observe the individual effects of several nozzle pa­

rameters. The injection pressure is varied, as well as several geometric parameters. Re­

sults are presented for a range of rounded inlets, from riD of 1140 to 114. Similarly, re­

sults for a range of LID from 2 to 8 are presented. Finally, the angle of the comer is 

varied from 50° to 150°. An axisymmetric injector tip is also simulated in order to ob­

serve the effects of upstream geometry on the nozzle flow. The injector tip calculations 

show that the upstream geometry has a small influence on the nozzle flow. Results show 

that the cavitation inception is reduced in the rounded geometries. Schmidt et al [178] 

photographs revealed that the liquid-vapour interface is smooth near the inlet comer and 

becomes rough and convoluted near the end of the cavitation region. The numerical 

predictions of density agreed with the experimental photographs. The numerical results 

also showed the pressure field, streamlines, and exit momentum. Experimentally, the 

occurrence of cavitation at the inlet comer was found to be similar to that ofaxisymmet­

ric nozzles. The occurrence of separation at the nozzle exit was found to be a function 

of Reynolds number for low cavitation numbers and a function of cavitation number for 

high Reynolds number. This is a logical consequence of the fact that cavitation number 

is the dominant parameter for cavitating flows and Reynolds number is the dominant 

parameter for non-cavitating nozzles. 

From the work of Arcoumanis and Gavaises [179] it was concluded, after discussing a 

large amount of experimental and modelling investigations, that although numerous 

theoretical attempts have been made to simulate the flow inside the nozzle holes of Die­

sel injectors, there is still a need to develop a method which can predict most of the 

characteristics of cavitation more accurately. This led to the work of Giannadakis et al 

[180]. They presented a recently developed cavitation model for automotive fuel injec­

tion systems which is based on the Eulerian - Lagrangian approach. The model, which is 
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presented in more detail in [18], incorporates many of the fundamental physical proc­

esses assumed to take place in cavitating flows such as bubble formation through nu­

cleation, momentum exchange between the bubbly and the carrier liquid phases, bubble 

growth and collapse due to non-linear dynamics, bubble turbulent dispersion and both 

bubble turbulentlhydrodynamic break-up. The effect of bubble-to-bubble interaction on 

momentum exchange and during bubble growth/collapse is also considered. In addition, 

the model incorporates an approach accounting for bubble motion in Eulerian grids with 

cell size comparable to that of the bubbles. This effect is accounted for through an im­

proved conservative method that calculates the volume fraction of bubbles which extend 

to more than one cells, and an improved impingement methodology that considers the 

actual point of contact of the bubble surface with the solid boundary. By using the 

model in a solved single-phase flow field under tension, it has been possible to predict 

significant reduction of the volume of the liquid under tension and in its flow rate com­

pared to the single-phase simulation, which is consistent with the reduction of the noz­

zle discharge coefficient observed under cavitating conditions. An increase of the aver­

age velocity of the liquid emerging from the nozzle is also calculated, in agreement with 

available experimental data. This model is the one used for the presented research. An 

even more detailed approach would be to solve a separate conservation equation for the 

bubble number density. This approach was employed in the cavitation model of Matsu­

moto et al [181]. 

There have been also many theoretical studies on vortex cavitation inception; Hsiao et 

al [182] developed a model to predict cavitation inception which was based on im­

proved bubble dynamics and the interaction of bubble trajectories with the flow field 

induced by an ideal Rankine vortex. With their model they were able to predict cavita­

tion event rates based on both an "optical inception criterion" and an "acoustical incep­

tion criterion". They found scaling effects to be important due to the different behaviour 

in terms of both growth and acoustic response of various nuclei sizes. 

2.4.1 Work in internal flows and engine components optimisation 

As it was mentioned in the previous section it's only been recently that engineers man­

aged to model the flow inside nozzles. Moreover, performing computational optimisa­

tion in these geometries is very limited. So far, most efforts on the adjoint-variable 

method in CFD shape optimisation have focused on the aerodynamics of airfoils, which 

67 



Chapter 2 Literature Review 

involve very simple boundary conditions, especially the ones in the far field. With sim­

pler boundary conditions for the flow equations, boundary conditions for the adjoint 

equations are easier to formulate. There is some work in optimisation where the cases 

are similar to the ones of this thesis but in very simple geometries. In this section all the 

relevant research done in the area of the thesis is stated. 

Soto and LOhner [146] proposed a methodology to solve design problems using an in­

complete-gradient adjoint formulation based on the continuous approach to sensitivity 

analysis where only the adjoint on the boundary of the domain is computed. The con­

tinuous adjoint formulation for incompressible Euler design problems, and a scheme to 

compute the sensitivities which does not depend on the CAD representation, were de­

rived. To do this, an innovative pseudo-shell surface parameterisation scheme for the 

three-dimensional problems was introduced. The procedure is not only very cheap from 

the computational point of view, but also produces smooth, singularity-free surfaces, a 

highly desirable characteristic in any optimisation methodology. The scheme has also 

the important advantage that the perturbation of a single point produces a smooth per­

turbation on the entire surface, allowing the finite difference gradients to be approxi­

mated in an accurate manner. Several examples indicate the present scheme yields 

proper results without having to incur the cost of a complete adjoint solution. Two of 

the cases examined in that paper where relevant to the present studies. The objective of 

these examples was to maximise the minimum pressure over a hydrofoil at a fixed lift or 

over the forward part of a 2-D hull, in order to avoid possible cavitation. This type of 

optimisation objective is often encountered in hydrodynamics where cavitation is al­

ways a concern. This work was extended for the complete adjoint equations in incom­

pressible flows [147] and in the RANS equations [149] where again they present some 

cavitation reduction cases. In [147] also an innovative and very fast volume mesh 

movement algorithm was developed, which allows including the interior point contribu­

tions to the gradient. 

An adjoint-variable method was developed to perform gradient-based shape optimisa­

tion of internal flow passages in which the flow is governed by the steady-state, three­

dimensional, compressible Navier-Stokes equations Choi et al [183]. He dealt with in­

ternal flows optimisation, the boundary conditions arising in these cases and suitable 

cost functions for engines like reduction of pressure drop etc. The geometry optimised 

was a simple generic internal flow passage. Also Lim et al [184] used the adjoint 

68 



Chapter 2 Literature Review 

method to optimise this time a two-dimensional diffuser using a simple linear parame­

terisation. He also examined the effect of turbulence in the overall optimisation process. 

Recently, Kaminski et al [185] used an automatically generated discrete adjoint Navier­

Stokes code in the automotive design process. The design application consisted in the 

optimisation of the topology of a duct for the cabin ventilation. The design approach 

was based on a descent algorithm, which relied on the gradient of dissipated energy 

with respect to the duct topology. This gradient was provided by the adjoint of the 

solver, which is generated from the solver's source code by the automatic differentiation 

tool TAF. All the grid points were used as parameters for the optimisation problem Re­

sults showed that the usage ofTAF allows automating the maintenance of the derivative 

code and, hence, the update process of the entire system to new releases of the nominal 

solver. This in tum reduces the delay between model development and design applica­

tions, i.e. the overall efficiency of the design cycle can be increased. 

Other methods apart from the adjoint method have been used for shape optimisation in 

engine components. For example Trigui et al [186] investigates the problem of Ie En­

gine shape optimisation using the finite difference method where the discharge coeffi­

cient is used as the design objective function, while the total angular momentum flux 

defines the constraint function. Madsen [187] developed a method for optimisation of 

internal flow devices based on the parameterisation software ODESSY. Again, in this 

case simple diffuser geometries where examined with objectives in the interests of 

automotive engineers. Brewer et al [188] dealt with the problem of cavitation delay in 

various geometries like open water propeller and rotary blood pump. Again the problem 

of cavitation is dealt in the single face through the increase of the pressure where nega­

tive values appear. For the gradient calculation automatic differentiation was used. Op­

timisation for a medium speed direct injection diesel engine was conducted by Bergin et 

al [189]. The angular alignment, nozzle hole size, and injection pressure of each set of 

nozzle holes were optimised using a micro genetic algorithm. The design fitness criteria 

were based on a multi-variable merit function with inputs of emissions of soot, NOx, 

unburned hydrocarbons, and fuel consumption targets. Penalties to the merit function 

value were used to limit the maximum in-cylinder pressure and the burned gas tempera­

ture at exhaust valve opening. Results showed significant decrease in NOx and soot 

from the baseline case and improvement in fuel economy. An illustration of a modified 

prioritisation of the emission targets in optimisation studies, which may be crucial to 

attaining aggressive emission standards, was presented in [190]. A direction for heavy-
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duty diesel engines to meet future stringent emission mandates is also presented in the 

same paper. 

2.5 BACKGROUND 

The work reported in this thesis is a continuation of the research work of the author in 

the area of aerodynamic optimisation. The scope of the optimisation in that case, was 

again as in the case of the thesis, shape modification for performance improvement. The 

basic steps of the optimisation procedure overall are the choice of the most suitable 

shape parameterisation and the determination of the design variables on the multidimen­

sional design space. It is also the bounding limitations of the design variables when 

geometrical constraints are considered as well as the formulation of the most proper 

objective functional for each case examined and finally the mathematical assumptions 

that have been adopted during the adjoint problem derivation procedure (Le. costate 

variables, etc). 

In the aforementioned research work a continuous approach of the adjoint technique has 

been developed and applied to a finite volume CFD solver for compressible flow using 

high resolution upwind schemes [191]. The code could handle both structured and un­

structured meshes and was based on a time-marching, primitive variable, finite-volume 

method for the solution of the Euler or Navier-Stokes equations. The Roe flux­

difference splitting was used for the calculation of the inviscid fluxes. Second order 

accuracy was achieved through the implementation of the MUSCL extrapolation 

scheme. Viscous fluxes are discretised using a central scheme for the structured cases 

and methodologies from finite elements for the unstructured. The Barth-Jespersen lim­

iter was used to limit the required flow variable gradients. The Spalart-Almaras one 

equation model, which also contains a laminar to turbulent transition mechanism, pro­

vided the location of the transition point is used for turbulence modelling. In the solu­

tion of the adjoint system of equations the turbulent viscosity was considered constant. 

This is a realistic assumption if slight changes of the geometry are considered during the 

iterations. The solution in each time-step was updated by means of a pointwise-implicit 

Gauss-Seidel iterative scheme. The CFD code had the ability of capturing shock waves, 

separation, vortices etc. In Figure 2.1 the Mach distribution of an SCT wing in zero 

angle of attack and MCX) = 2 is represented. The same techniques that are used for the 

70 



Chapter 2 literature Review 

direct solver are also employed for the numerical solution of the adjoint system of equa­

tions (on the same grid at each optimisation cycle). 

For the parameterisation of the geometries Bezier polynomials were used for the 2-D 

cases (airfoils, cascades etc.) while for the 3-D cases NURBS surfaces where applied. 

The Bezier Polynomials were formulated with clipping of the control points at leading 

and trailing edge for the imposition of the corresponding aerodynamical constraints. 

More detail about these parameterisations methods exists in section 3.5. Figure 2.2 

shows the parameterisation of a SCT wing using NURBS. 

The implementation of an efficient and very fast algebraic mesh generator for the re­

quired structured C-type stretched grids or advancing front for the unstructured ones, 

into the optimisation code eliminated the need for grid modification at least in the 2-D 

case. In the 3-D case the grid modification was realised by a spring method based on 

interpolations between the previous and current position of the boundary under modifi­

cation. The same method is used for the present study and is explained in section 3.6. 

At first the method was applied in inviscid flow problems and the continuous adjoint 

equations where calculated having as constraints the Euler equations. Two different 

problems, having two different cots functions, have been solved using this approach: 

1. The problem of inverse design of an airfoil knowing the pressure distribution 

along its boundary. 

2. The problem of the drag coefficient minimisation of an airfoil or a wing lift in­

volving lift and pitching moment coefficients, appropriately weighted for the op­

timisation. 

In [154] the problem of airfoil design for multi-point performance optimisation is ad­

dressed. In particular, drag minimisation is sought for the RAE2822 airfoil in three dif­

ferent operating points, while a prescribed lift coefficient at each point has to be main­

tained. The optimisation method was also extended for the design of aerodynamical 

shapes taking into account viscous effects and turbulence modelling. In this case the 

Navier-Stokes equations are treated as constraints for the derivation of the adjoint equa­

tions. Both cases where also considered for viscous flows some representative results 

are shown in Figure 2.3 and Figure 2.4. However, the known pressure distribution de-
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sign is not straight forward in this case (see section 3.8 for details). Finally in Figure 2.5 

the convergence history of both cases is presented. More details also for the above ap­

proaches can be found in [192]. 

Figure 2.1: Mach distribution of EUROSUP in zero angle of attack and Moo = 2. 

NURBS parameterization 

real geometry + 
NURBS parameterization -------

z 

-0.2 
-0.4 
-0.6 
-0.8 

-1 
-1.2 
-1.4 
-1.6 
-1.8 

-2 

25 

72 



Chapter 2 

0." 

0.06 

~ 
~ 

-0.06 
0.0 

Literature Review 

Figure 2.2 : The initial NURBS parameterisation of EUROSUP 

- Optilnlll Shape 
- - --- RAE2822 

! 
~ .. 
I: 
lr. 

0.2 0.' 0.' 0.' 1.0 

"'chord 

1.5 

1.0 

-0.5 

-2.0 
0.0 0.2 0.' 

"'chord 

.-

0.' 

- OptImal Shape 
. - - - - RAE2822 

0.1 1.0 

Figure 2.3: Derived profile shape vs. the original (left) pressure distribution vs. the 
experimental one (right) of the RAE2822 airfoil 

0.01 

0.' 
"'chord 

-­• Ta'gOI 

t 

J 

1.5 

1.0 

0.0 

-0.5 

-1.0 

-1.5 

-2.0 
0.0 0.2 0.' 0.1 

"'chord 

- p­
• Ta'gOI 

0.1 1.0 

Figure 2.4: Derived profile shape vs. the original (left) pressure distribution vs. the 
target one (right) of the RAE2822 airfoil 

c: • u 

1 
(.) 

'" I!! 
Q 

0.022 

0 20 40 110 80 100 120 140 1110 

optimisation cycle 

0 .20 
Convergence History 

0 .18 

0.111 .. 
u 

0.14 
~ 
~ 0.12 
is 

0.10 e 
" WI 
WI e 
~ 

0.02 
20 40 110 0 80 100 120 140 1110 

optimisation cycle 

Figure 2.5: Convergence history of the drag coefficient (left), Convergence history 
of the inverse design case (right). 

73 



Chapter 2 Literature Review 

2.6 CONCLUSIONS 

Numerous investigations about shape optimisation methods and their effect on cavita­

tion inception were discussed in this chapter. There are several conclusions that can be 

drawn out of the work presented here and how these affected the choices made during 

the present research. It is obvious from the literature that automated design has elevated 

the aeronautic industry. On the other hand, in the automotive industry, there is the need 

for more efficient method for engine component design. In the automotive industry ex­

periment is still the main designing tool. Nevertheless, it's not at all likely that repeated 

trial in an interactive design and analysis procedure can lead to a truly optimum design. 

Using an automated optimisation method, not only can designs be rapidly evaluated but 

directions of improvement can be identified as well. Possession of techniques which 

result in a faster design cycle gives a crucial advantage in a competitive environment. 

Detailed numerical shape optimisation will playa strategic role for future engine design. 

It offers the possibility of designing or improving engine components with respect to a 

pre-specified figure of merit subject to geometrical and physical constraints. However, 

the extremely high computational expense of straightforward methodologies currently 

in use prohibits the application of numerical optimisation for industrially relevant prob­

lems. Optimisation methods based on the calculation of the derivatives of the cost func­

tion with respect to the design variables suffer from the high computational costs if 

many design variables are used. However, these gradients can be efficiently obtained by 

solution of the continuous adjoint flow equations. 

Especially, in Diesel multi-hole nozzles operating under high pressures, the complexity 

of the internal flow was not well understood until recently. It is now well recognised 

that cavitation forms inside multi-hole nozzles, both at areas of sharp corners, producing 

the geometric-induced cavitation, as well as within the bulk-flow. Recently, computa­

tional fluid dynamic models have been proven a valid means of predicting the formation 

of cavitation and its further development. Controlling cavitation greatly depends on the 

nozzle geometric characteristics and operating conditions. In most diesel injectors oper­

ating at high pressure exceeding 1500bar, cavitation initiates at the entrance of the noz­

zle hole. In most cases, the cavitating structures finally reach the nozzle hole exit. Al­

though the effect of cavitation on the spray formation still remains largely unknown, it 

is well recognised that uncontrolled cavitation induces spray-to-spray and cycle-to-cycle 
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variations; that, in tum, increases engine exhaust pollutant emissions. By changing the 

shape of the hole inlet (curvature, conicity, needle seat angle) cavitation formation in 

the hole can be affected. The discharge coefficient is a valid mean to measure the cavi­

tation inception. These observations helped in the choices made for the development of 

the optimisation method used in this study. The developed method consist of designing 

nozzle hole shapes that reduce or even eliminate the local minimum/negative pressure 

region formed at the entry of hole-type nozzles. In the subsequent chapters the devel­

opment and application of such an optimisation method will be presented. 
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FORMULATION OF THE OPTIMISATION 

PROBLEM 

3.1 INTRODUCTION 

In this chapter the basic idea of shape optimisation is presented in detail. The mathe­

matical definition of an optimisation problem is given and the elements of this problem 

are specified; these include parameters, cost function and constraints. The solution of 

the optimisation problem is obtained through a gradient based method. This means that 

gradient information of the cost function is required to determine the search direction 

towards the optimum. For the calculation of the required gradients the continuous ad­

joint method has been used. The solution procedure is described thoroughly in this 

chapter. The features of the problem are described together with the parameterisation 

methods used and developed for the needs of this study and the automatic grid modifi­

cation method along with the definition of the proper cost function of the problem. Also 

the mathematical model for the fluid flow is presented. The Navier-Stokes equations 

have been used as constraints for the formulation of the optimisation problem. The con­

tinuous adjoint method has been used as the means to calculate these gradients with 

respect to the design parameters. Extended analysis of the use of the method exists in 

this chapter. The adjoint system of equations is formulated along with the boundary 

conditions. The difficulties of the implementation for different cost functions are dis­

cussed along with the way to overcome them. Finally the gradients are formulated for 

the different cost functions used in this study. 
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3.2 MATHEMATICAL FORMULATION OF GENERAL OPTIMISATION 

PROBLEM 

Every parametric optimisation problem which involves quality criteria can be repre­

sented by an equivalent mathematical minimisation or maximisation problem of a real 

function involving one or more variables. For the mathematical representation of the 

optimisation problem a vector of real parameters D = (Xl" .. , X,,) E IR" is introduced as 

well as a real function or functional I(D}: A ~ IRN ~ IR(cost or objective function}. 

We are trying to minimise (maximise) this function; meaning finding the point of its 

domain that corresponds to the functions minimum (maximum) value. The following 

formula proves the equivalence of minimisation and maximisation problems: 

argmax I(jj} = argmin(-I(D}) 
DeA DeA 

(3.1) 

So for the remaining of the thesis all problems will be referred to as minimisation prob­

lems. As it will be discussed in the following sections, even when we seek to modify the 

geometry in order to achieve the maximum discharge coefficient Cd, the case is handled 

as a minimisation case through the proper definition of the corresponding cost function. 

Another element which may arise in an optimisation problem is some constraints im­

posed by either the physics of the problem or the geometry of the shape, say: 

(3.2) 

Every equality constraint introduced in the optimisation problem reduces the number of 

optimisation parameters by one, if it is possible to express this parameter as a function 

of the rest. On the other hand the inequality constraints reduce the magnitude of the 

search space without changing its dimension. It is quite useful to reduce the inequality 

constraints in only one type through the formulaJ(jj):::; 0 ~ -J(D) ~ O. 

Since the above elements of the optimisation problem are defined the problem can be 

expressed as: 
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. . - Jk(D) ~ 0, k = 1, ... ,n 
Fznd the point argnun J(D) given the constraints: _ 

DeA J/(D) = 0,/ = 1, ... ,m 

Having defined the optimisation problem we have introduced the target or the solution 

to the problem without having mentioned the solution procedure or when this solution is 

possible. These elements are discussed in detail in the next sections. More details con­

cerning numerical optimisation can be found in [35]. 

3.3 OPTIMISATION PROCEDURE 

CFD shape optimisation can be defined as a procedure through which the geometry of 

interest can be modified to fit certain flow characteristics. Introduction of those charac­

teristics into the problem is achieved through the definition of the so-called 'cost' func­

tion. At the same time, the geometry is modified according to a set of parameters rela­

tive to the problem. In deterministic optimisation the cost function is minimised by driv­

ing the calculated gradients to zero with the use of a descent method. 

The optimisation method developed for the needs of this study is an adjoint-based de­

terministic method. The proposed inverse design/optimisation method, like any other 

deterministic method, requires gradient information, i.e. sensitivity derivatives. These 

are obtained by formulating and solving the adjoint equations. The latter are derived by 

enforcing the flow equations as constraints to the cost function via the concept of La­

grange multipliers. The continuous approach is adopted in this study so that the result­

ing formulation, algorithm, and code can be used in conjunction with any CFD code. 

There two more major advantages of the continuous vs. the discrete approach. 

I. The physical significance of adjoint variables and the role of the adjoint boundary 

conditions are much clearer. Only by constructing the adjoint flow equations one can 

develop a good understanding about the nature of the adjoint solutions. In aerodynamics 

where there has been more research on the properties of the adjoint solution the con­

tinuous approach helped the understanding of its behaviour. Examples include the con­

tinuity at shocks, the logarithmic singularity at a sonic point in quasi-I-D flows but not 

in 2-D or 3-D (in general) and the inverse square-root singularity along the stagnation 

streamline upstream of an airfoil in 2-D [119]. 

2. The adjoint programme is simpler and requires less memory. Because one is free to 

discretise the adjoint P.D.E. in any consistent way, the adjoint code can be much sim-
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pIer. However, our experience has been that even when following a continuous ap­

proach, it is advantageous to consult the discrete fonnulation so as to choose an appro­

priate discretisation for the continuous adjoint equations. It is also generally the case 

that continuous adjoint solvers require less memory than the fully-discrete codes, but 

this difference is not substantial if pre-computation and storage of the linearised matrix 

is avoided when implementing the discrete method. 

The problem setup is a difficult task because it can always lead to ill-posed problems. 

Ta'asan in a VKI lecture [193] demonstrated an analysis which gives a very simple 

classification of problems based on the asymptotic behaviour of the Hessian using Fou­

rier analysis. It distinguishes between ill-posed and well posed-problems, easy and dif­

ficult ones. 

The fonnulation and solution of an optimisation problem using a detenninistic method 

requires some basic initial steps. First an initial geometry is introduced. This geometry 

is either an arbitrary or a known one which has certain flow characteristics that if modi­

fied can conclude to a desired optimised geometry. This geometry has to be given in 

parametric fonn. An essential step before the parameterisation of the geometry is the 

definition of the cost function. The cost function must be defined in such a way that by 

driving it to zero the optimal geometry, i.e. the one satisfying the required flow charac­

teristics, will be provided. The cost function is the means to quantify the optimum solu­

tion so it is really important to define it appropriately for each problem. Further details 

about the definition of the proper cost function are discussed in the following section of 

this chapter. At this point some flow constraints can be introduced in the problem. In 

this study the flow has been considered viscous and assumed incompressible so the Na­

vier-Stokes equations are introduced as equality constraints. 

After these steps a parameterisation scheme describing the geometry can be introduced 

using as parameters the points that control the flow characteristics we want to optimise. 

For the parameterisation we ought to have in mind certain geometrical constraints that 

must be enforced to our design and use the knowledge about the behaviour of the flow 

under certain geometry changes [177]. Furthennore, it is desirable for local geometry 

regions of importance to be defined by a minimum number of control points so that the 

search space for the optimum solution is limited. So basically, the set of parameters 

must include the search space that the design evolves to an optimum solution, while at 
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the same time constraint it to avoid non physical geometries to be produced. The 

parameterisation methods developed and used for this study are presented in detail in 

section 3.S. 

After introducing a parameterisation scheme that captures the initial selected geometry 

and describing the designs of the search space, the initial mesh can be generated. The 

initial grid is used for the first cycle and then it is modified to provide the grids for the 

intermediate geometries. The grid in each optimisation cycle is produced via a com­

pletely automated re-meshing procedure. Further discussion about the initial grid gen­

eration and grid modification during the optimisation process exists in section 3.6. 

The completion of the previous steps along with the initialisation of the flow solution 

leads us to the point where the iterative optimisation procedure can be initiated. The 

optimisation procedure is constituted by individual cycles for the progressive improve­

ment of the shape as the cost function tends to zero. Each cycle consists of the following 

steps: 

1. Build the geometry using the parameters that control the design. 

2. Move the mesh to fit the current geometry. 

3. Use the flow solver to calculate the flow field and flow variables and the value 

of the cost function for the current design. 

4. Use the adjoint solver to calculate the adjoint field and the costate variables 

which are going to be used in the calculation of the cost function's gradient. 

S. Calculate the gradient of the cost function with respect to the control parame­

ters/design variables. 

6. Use a descent optimisation method to calculate the new parameters by driving 

the gradients to zero where the optimum is located. 

The process is repeated until the gradients and the cost function are driven to zero and 

the optimum geometry has been produced. All these steps will be discussed in further 

details in the forthcoming sections. Especially about steps 3 and 4 detailed analysis ex­

ists in sections 3.7 and 3.8 respectively. In section 3.7 exists a detailed description of the 

governing equations used for the calculation of the flow field and therefore for the cal­

culation of the current value of the cost function. In section 3.8 there is a detailed analy­

sis for the extraction of the adjoint system equations along with the boundary condi-
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tions. The boundary conditions of the adjoint system of equations strongly depend on 

the cost function used. The analysis is followed by the fonnulation of the gradient with 

respect to the design variables. The extraction of the gradients is described for each cost 

function used in the present study. The solution procedure of the flow and the adjoint 

system of equations are described separately in the next chapter. The discretisation and 

solution of the two systems are cross presented giving details about similarities and 

differences. The generic transport equation is used as the basis to describe the discretisa­

tion and solution process. 

The same numerical scheme used for the flow solution is used for the solution of the 

adjoint system of equations. However, the variation in the turbulence effective viscosity, 

attributed to the geometry modifications, has been considered negligible. This is a con­

venient assumption from the numerical point of view and quite realistic for slight 

changes of the geometry from cycle to cycle. 

The numerical solution of the flow and the adjoint equations bear almost exclusively the 

burden of computational cost. Having in mind that the computational cost for the solu­

tion of the adjoint equations is almost equal to the computational time for the direct 

problem, each design cycle is almost equivalent to two direct solutions. For further re­

duction of the computational cost, continuation of the flow solution using the solution 

of the previous optimisation cycle (previous geometry) has been used. This results in 

significant reduction of the computational time (sometimes even 90%) compared to a 

flow solution which is initialised for every optimisation cycle. 

3.4 FORMULATING AN OBJECTIVE FUNCTION 

An objective function accurately quantifies the success of the design modification. To 

optimise a design it is usually necessary to understand the source of undesired effects. 

Not until recently, the complexity of the internal flow has become well understood in 

Diesel multi-hole nozzles operating under high pressures. It is now well recognised that 

cavitation fonns inside multi-hole nozzles producing the geometric-induced cavitation, 

as well as within the bulk-flow. The latter is a dynamic effect of the vortices fonned 

inside the sac volume and it is still not predictable [194]. Recently, computational fluid 

dynamic models have been proven a valid means of predicting the fonnation of cavita­

tion and its further development [180]. In [188] a computational method has been de-
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vel oped for cavitation delay in hydrofoils. In that case the aim was to delay cavitation 

inception, and thus, an obvious objective was the increase of the pressure in regions 

where inception is known to occur. It is also pointed out that it is important to increase 

also the average pressure over a localised region, so that a continuous solution can be 

achieved. However, such models have not been applied yet to internal flow designs of 

interest to the automotive industry, except in very trivial cases [183, 184, 187]. 

Controlling cavitation greatly depends on the nozzle geometric characteristics and oper­

ating conditions. It is common that in diesel injectors operating at high pressure exceed­

ing 1500bar, cavitation initiates at the entrance of the nozzle hole. In most cases, the 

cavitating structures finally reach the nozzle hole exit. Although the effect of cavitation 

on the spray fonnation still remains largely unknown, it is well recognised that uncon­

trolled cavitation induces spray-to-spray and cycle-to-cycle variations; that, in tum, 

increases engine exhaust pollutant emissions. The objective of the present study is to 

develop a method for designing nozzle hole shapes that reduce or even eliminate the 

local minimum/negative pressure region fonned at the entry of hole-type nozzles, and in 

which geometric cavitation initiates. 

The method used for the design is general so the objective can change according to the 

users needs. However, due to the fact that the optimisation method used in this study is 

gradient based, the cost function must be continuous and differentiable i.e. a functional. 

This is not so restrictive in CFD design cases because the flow field is continuous and 

usually the flow characteristics are defined either in the whole field area or along the 

boundary of the shape in the case of the drag and lift coefficients in wings or at the flow 

exit in the case of the discharge coefficient in nozzles. Further discussion about how the 

choice of cost function influences the adjoint analysis exists in section 3.9 and 3.10 

where the boundary conditions are extracted and the gradients are calculated respec­

tively. 

In this study two different cost functions have been used, and both result to control of 

the cavitation inception in the hole inlet, although the approach of each problem setup is 

different. 

In the first approach the problem is being setup as an inverse design problem with a 

predefined target. The target is a given pressure distribution along the area of the wall of 
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the nozzle. In particular, it has been recognised that the designer generally has an idea 

of the kind of pressure distribution that will lead to the desired perfonnance. Thus it is 

useful to consider the problem of calculating the shape that will lead to a given pressure 

distribution. Such a shape does not necessarily exist, unless the pressure distribution 

satisfies certain constraints, and the problem must therefore be very carefully fonnu­

lated: no shape exists, for example, for which stagnation pressure is attained over the 

entire surface. 

Actually in the case of cavitation control there is no need to predefine the whole wall 

pressure distribution but the area where the negative pressure appears. So in order to 

handle the problem of controlling cavitation as an inverse design problem, the cost func­

tion fonned ensures increase of the pressure in the local areas where negative values 

appear. A desired target pressure distribution along the boundary of the nozzle is given, 

and then the following cost function is defined: 

Ie = -2
1 ~(p - p,)2ds -~(p - pJ,ll aa~ ·iids, 

w w n 
(3.3) 

where p and P, represent the current and target pressure respectively, u is the velocity 

vector, ii is the face unit vector along the boundary and f1 is the effective viscosity. W 

stands for wall and is the boundary of the geometry to be modified. The last integral is 

zero for incompressible flows; nevertheless, it is added to the cost function for the well­

posedness of the problem [7]. This complication comes from the method and has to do 

with the extraction of the boundary conditions that closes the adjoint equation system. 

Further discussion about this matter follows in section 3.9 where the boundary condi­

tions of the adjoint equations are fonnulated. 

The above approach is really restrictive due to the fact that the target pressure distribu­

tion must be known. Usually it can be provided by experimental data from an already 

known geometry. Although this approach appears to have an evident restriction it is a 

very good way to validate the optimisation method through the inverse design of a 

known geometry. This is the reason, as means to validate the developed method, that 

this case has been included in the present study. The same cost function has been also 

used in an inverse airfoil design case to prove the generality of the method with respect 

to different types of geometries/problems. 
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Clearly, the real power of the method is realised with the development of a suitable cost 

function for optimised injector design; written as an inverse method, the approach has a 

more limited practical use. To exploit the power of the method a second approach has 

been introduced. This approach is based on the fact that cavitation can be controlled 

through the discharge coefficient (Cd) the definition of which reads: 

Aexi/ . 

1 ~ u.iids, 
2 (Pin - PouJ exit 

p 

Pin »Pout (3.4) 

Where p is the density, u is the velocity vector, ii is the normal unit vector along the 

boundary as before Pin and Pout are the pressures at the inlet and outlet respectively and 

Aexit is the area at the exit. The Cd takes values from 0 to 1 the last being the less cavitat-

ing case [175]. The cost function Ie introduced for this case takes the form: 

(3.5) 

where Cd is the desired value of the Cd that we want to achieve. The square power in 

both cost functions ensures the convexity of the cost function and is used for mathe­

matical reasons. As we mentioned in section 3.2, although we seek to maximise the Cd 

the problem is set up again as a minimisation problem by subtracting the current Cd 

value from the target Cd one. 

This is again an inverse design case but now the target geometry is not a known one. 

The same cost function works for the optimisation case where the user wishes to 

achieve the maximum Cd possible so the value of Cd is set equal to 1; this value is not 

feasible to be achieved. In that case, it is necessary to introduce geometrical constraints 

through the parameterisation scheme. In this study the goal has always been to obtain 

feasible Cd values « 1) or to maximise Cd by setting the target value equal to 1. 

There are some complications in the application of this design approach that arise from 

the fact that the cost function is defined on the hole exit cross sectional area whilst the 
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gradient and the geometry under modification is actually the hole inlet. There is further 

discussion about these complications and the way to overcome them in section 3.8. 

3.5 GEOMETRY PARAMETERISATION 

An important step in the fonnulation of any automated design problem is for the de­

signer to explicitly identify an appropriate set of design variables D. The countless 

number of different ways to do so makes the decision, of which parameters to pre­

assign and which to consider free, far from trivial. The challenge lies in selecting design 

parameters, which are significant in tenns of system perfonnance, yet do not jeopardise 

the design process by compromising robustness of mesh generation and analysis. The 

chosen design variables must influence the considered perfonnance measures by means 

of influencing the CFD solution. This leads to the following categorisation of relevant 

types of design variables, as originally suggested for structural optimisation by Olhoff 

and Taylor [195]: 

Geometrical design variables 

1. Sizing design variables 

Describe cross-sectional geometrical properties, e.g. the width of the duct. 

2. Shape design variables 

Describe shapes of solid surfaces bounding the fluid flow domain, e.g. the shape 

of an aerodynamic profile of the cross-sectional shape of a duct. 

3. Topological design variables 

Describe topological properties of the flow domain that offer conceptual control 

of the design domain. These can either be discrete variables, such as a number of 

guide vanes, or continuous variables, e.g. the control of the distribution of void 

and solid material in catalytic beds. 

Loading design variables 

Describe position and distribution of inlet (boundary) conditions, e.g. the veloc­

ity and angle at which a mixing jet enters the main flow. 

Material design variables 
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Describe constitutive properties of the fluid, e.g. the viscosity and heat capacity 

of bearing lubricants. 

Manufacturing design variables 

Describe parameters pertaining to manufacturing processes, which may influ­

ence the performance and cost of the construction, e.g. relative surface rough-

ness. 

The work presented in this thesis concerns shape design optimisation. For this reason 

the most interesting class of design variables are the geometrical ones, and in particular 

shape design variables, whereas topological design variables are not considered. 

As we have already mentioned, the pre-described process of representing the actual 

geometry by a set of control points, called vector of design variables or parameters, is 

referred to as parameterisation. Through parameterisation the geometry can be modified 

according to the freedom given to it by the choice of the design parameters. The effi­

ciency of each parameterisation method depends on numerous factors. The geometry 

under modification, the physics of the problem and the constraints of the manufacturer 

are some of these factors. A summary of the literature on this area is presented here. 

In Jameson's first papers on the use of control theory [6, 196], every surface mesh point 

was used as a design variable. Using this approach, the complete design space of all 

airfoil shapes represented by a given number of surface points can be spanned. In the­

ory, this approach would also produce results closer to a true optimum if the optimum 

shape were to have a high frequency component that could not be captured with other 

shape functions with less compact support. On the other hand, a problem of this choice 

is that the smoothness of the shape may not be preserved. This contradicts the assump­

tion of first derivative continuity of the solution in the development of the adjoint for­

mulation. Another way of understanding this problem is that this choice of using each 

grid point as a design variable admits very high frequencies in the design space. This 

admittance of high frequencies causes a higher degree of nonlinearity, and, in practice, 

the higher the degree of nonlinearity the more computationally difficult it is to find an 

optimum. Jameson developed an implicit gradient smoothing method [6] in order to 

overcome the difficulty of discontinuity. The gradient smoothing procedure eliminates 

high frequency components from the design space. Arian and Ta'asan [197] also pre-
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sented a simple Fourier analysis which estimates the smoothing of the minimisation 

process and provides a tool to establish smoothers by preconditioning if needed. 

It has already been stated that, the choice of parameters and the parameterisation 

method are very essential to the overall design and they are really case dependent. The 

goal is to introduce a set of parameters which include the search space so that the design 

evolves to an optimum solution and at the same time constraint it to avoid non-physical 

geometries to be produced. 

Though the adjoint method has the advantage of calculating the gradients independently 

from the number of design parameters, this number is strongly connected to the size of 

the search space, and thus, retards the convergence of the optimisation process. Fur­

thermore, it is desirable that local geometry regions of importance are defined by a 

minimum number of control points. 

A typical parameterisation scheme, especially in aeronautical design is using Bezier or 

B-Spline representation in 2-D or a Bezier patch or NURBS (Non-Uniform Rational B­

Spline) surface in 3-D [154]. For the nozzle case these schemes though general have not 

been applied so far, mainly because of their general nature. The shapes produced by 

such parameterisation cannot be easily constrained to give feasible nozzle shapes that 

can be actually manufactured. However, for the sake of completeness and generalisation 

in the present study, the optimisation method has been applied to aerodynamic shapes 

(airfoils) which are modelled by Bezier-Bernstein curves. 

With regards to cavitation control, we are primarily concerned with parameterising only 

a localised region, such that the overall nozzle design is not changed by changing the 

flow characteristics of interest. Choi in [183] parameterised a flow passage using a posi­

tion vector describing the internal wall of the flow passage by a number of circles with 

given radius, centre and inclination angles. In that case, the passage inlet and outlet di­

ameter and location were constrained and only the surfaces between those two bounda­

ries could change during the optimisation process. Lim in [184] parameterised an 

asymmetric diffuser using its length, inlet and outlet heights and the opening angle. 

Trigui et al in [186] used four variables to parametrically represent the intake port sur­

face of an engine. The first two control the shape of the path along which the port sec­

tions are swept while the other two control the port cross sections. B-splines are used to 
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smoothly connect the parameterised parts of the shape. In another approach, presented 

from Soto and LOhner in [148], the key idea is a scheme in which almost every point on 

the surface can be chosen as a design parameter. Although the adjoint method is inde­

pendent from the number of design variables, and the fact that this scheme generates 

surfaces free of singularities, the search space in this case is extremely large and this 

would decrease significantly the convergence rate of the optimisation method. 

There is no published research so far in optimisation of diesel nozzles. Taking under 

consideration the above aspects, empirical parameterisation schemes were developed 

and used to parametrically represent the shape in the cases of the 2-D axisymmetric 

nozzle and 3-D nozzles. Detail description of these schemes follows in the next sec­

tions. 

3.5.1 Airfoil Parameterisation using Bezier Polynomials 

In the present study the aerodynamic shapes are modelled by Bezier-Bemstein polyno­

mial curves of degree (n) using (n+ 1) control points. The coordinates along the Bezier 

curve are written in parametric form as a function of a length parameter (t) belonging in 

the interval. The control points define the 'convex hull' polygon for the Bezier curve. 

Bezier's control points are the design variables of the optimisation problem. They often 

subject to specific constrictions-limitations resulting from geometrical constraints just 

as thickness distribution, common tangents at the leading edge for pressure and suction 

side, slope and thickness at the trailing edge. For the cases that require a large number 

of control points (about 50 or more), this parameterisation seems to be very 'expensive' 

for stochastic algorithms or direct gradient-based methods. 

The x- and y-coordinates of the airfoil boundary are written in parametric form as a 

function of a length parameter (t) belonging in the interval and depending mainly on the 

control points distribution. Each side of the airfoil is modelled separately by using 

Bezier polynomials of different degree in general, which for the n-dimensional vector of 

the control points jj = (XI' 1';), i = 1, ... , n , take the form 

n+1 n+1 

x(t) = ICj(t)Xj, y(t) = ICj(t)1'; (3.6) 
j=1 1=1 

where Cj(t) are the Bezier coefficients. Figure 3.1 represents a typical airfoil parame­

terisation. 
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Figure 3.1: Parameterisation of initial geometry using Bezier polynomials. 

It is assumed that the dt-value associated with each boundary node, remains constant 

regardless of the change in geometry. Consequently, the variation of the dx and dy, re­

quired in the expressions of the sensitivity derivatives as the variation of the quantity 

iids reads: 

(
dX) n+1 

5(dx ) = 8 - dt = IC;(t)X;dt , 
dt ;=1 

(
d ) n+1 

5(dy )=5 2 dt= IC;(t)Y;dt 
dt ;=1 

(3.7) 

where the dotted quantities stand for derivatives with respect to t, C; = dCIcu . 

3.5.2 Nozzle parameterisation 

As it has already been discussed, one could potentially completely parameterise the 

nozzle geometry. This would allow for the maximum number of possible designs. Re­

garding to cavitation control, we are primarily concerned in parameterising only a local­

ised region, such that the nozzle retains certain performance attributes. Cavitation usu­

ally occurs in the hole inlet; so practically, we are interested in changing the hole ge­

ometry in order to affect the negative pressure distribution appearing in the hole en­

trance. The parameters affecting the discharge coefficient [177], and as a result the cavi­

tation inception, are: 

1. the radius of curvature, 

2. the needle seat and relative angles, 

3. the hole entrance and exit diameters and 

4. the hole length. 

It is obvious that a general polynomial parameterisation (like Bezier) cannot affect di­

rectly those parameters and moreover change them without affecting the overall per-
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fonnance of the nozzle. The introduction of a more specified, case dependent, parame­

terisation scheme is required. 

For the needs of this study two different empirical parameterisation schemes are devel­

oped and used in the case of nozzle design in order to modify the 2-D and 3-D geome­

tries respectively. 

2-D Nozzle parameterisation 

The aforementioned parameters affect the flow characteristics and especially the dis­

charge coefficient. Apart from the physical constrains, the parameterisation of the ge­

ometry must also be well defined. Looking at the problem of parameterisation from the 

mathematical point of view, we must ensure that every set of parameters results in one 

and only one design. 

In the case of the 2-D axisymmetric nozzle the parameters that are chosen to modify the 

geometry are the radius of curvature and the inlet hole diameter. The inlet hole diameter 

affects the conicity of the nozzle hole. Figure 3.2 represents the possible choices of pa­

rameters for modifying this geometry. Moreover, the radius Rl changes the sac volume 

and as a result affects the overall perfonnance of the nozzle. For this reason the radius 

RI is not included in the parameterisation scheme, and neither is the point (xl, yl). On 

the other hand the radius of curvature R2 at the hole inlet as well as the point (x, y) are 

used through the geometry modification. 

The parameterisation scheme works in the following manner. Two parameters are used. 

The first one is a coefficient/number which is used to multiply the y-coordinate of the 

point (x, y). This way we produce the modified hole wall that affects the hole entrance 

diameter and thus, the conicity of the nozzle hole. The second parameter is a radius 

producing a part of a circle, a.k.a arc, that replaces the sharp hole inlet of the initial noz­

zle. The arc is fitted tangential on the top part of the hole wall and the sac of the nozzle, 

the way it is shown in Figure 3.2. In this way, only the localised region affecting cavita­

tion inception is parameterised and reproduced in every optimisation cycle. As it has 

already been mentioned, the parameters affected by this parameterisation are the hole 

inlet diameter and the radius of curvature and the conicity, while the hole length as well 

as the upstream nozzle geometry remain unaffected. 
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Figure 3.2: Parameterisation used for 2-D axisymmetric single hole nozzle redesign 

The procedure we have described results to some complications in the produced geome­

try. Due to the inclination change of the hole wall, the fitted circle cannot always be 

tangential to both the hole wall and the sac. This results in discontinuity of the nozzle 

geometry and thus, bad quality produced grids. A bad quality grid may lead to non­

converged solution of the flow solver or even the breakdown of the overall solution 

process. The necessity for applying smoothers appears; so a linear polynomial smoother 

is implemented in the parameterisation scheme. Figure 3.3 the effect of the smoother is 

shown on the geometry as well as on the produced mesh. 
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Before 
smoothing 

Formulation of the Optimisation Problem 

After 
smoothing 

Figure 3.3: Linear smoother for 2-D parameterisation 

3-D Nozzle parameterisation 

Parameterising the whole 3-D nozzle is a complicated task. It is well known that, the 

CPU time required for the code to run is increasing with the number of cells. In this 

study we have used the symmetry attributes of the nozzle geometry and solved only half 

of the hole. This corresponds to the 111 t h of a typical six hole nozzle. Nevertheless, the 

parameterisation scheme developed in this study can easily be extended to the whole 

nozzle geometry. 

A scheme similar to the 2-D case works also for the 3-D nozzle parameterisation. The 

parameters affecting the discharge coefficient in the 3-D case are shown in Figure 3.4. 

Again in this case the parameters used affect the radius of curvature at the hole inlet and 

the conicity; but also a new parameter for the needle seat angle has been introduced. 
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I 
• 

I 
• 

I • w : needle seat angle 

• <p : relative hole angle 
• D : hole entrance diameter 

• d : hole exit diameter 

• L : hole length 

• r : radius of curvature 

d 

Figure 3.4: Parameters that affect the discharge coefficient 

In order to be able to use attributes of the 2-D parameterisation scheme some manipula­

tion of the nozzle topology is needed; a local coordinate system is defined to simplify 

the mathematical model used for the parameterisation. 

The origin of the Cartesian system is located at the centre of the hole entrance, the x­

axis is parallel to the hole wall (see Figure 3.4) and the xz-plane is the symmetry plane 

of the nozzle. This helps in the calculation of the inlet and exit diameters and the rota­

tional matrices necessary for the parameterisation of the needle seat angle. The hole of 

the nozzle is divided in 'zones I along its length; the surface of the hole geometry is re­

duced into a set of 2-D lines parallel to the x-axis (Figure 3.5). This can be done easily 

provided that the surface mesh of the hole is structured or created by general quadrilat­

eral shapes. A representation of the symmetric hole of a real nozzle, as it is meshed for 

the need of the parameterisation scheme, is shown in Figure 3.5. The 2-D zones are 

shown as well as the origin of the local coordinate system and the x-axis. So the prob­

lem is reduced to a 2-D parameterisation and treated almost the same way as the 2-D 

case, described in the previous paragraph. 
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curvature 

Figure 3.5: Example of a 2-D zone and representation of the coordinate system 

The first parameter enforced on the design, for each iteration, is the hole exit diameter, 

which affects the conicity and results to tapered nozzles. Starting from the initial cylin­

drical hole geometry, a new hole exit is defined and the 2-D zones are inclined to pro­

duce the hole wall corresponding to this new exit hole. Then the needle seat angle is 

enforced by means of a rotational matrix turning all the surface points around the y-axis. 

The radius of curvature is treated in the same way as in the 2-D nozzle on every zone. In 

this case there is no need for smoothing since each zone of the body of the nozzle is 

linear in most cases. The conicity in the 3-D parameterisation is treated using the hole 

exit diameter instead of the hole entrance one. This is because in the 3-D case it is com­

plicated to change the shape around of the hole entrance. 

Using this parameterisation scheme, it is possible to define a different radius of curva­

ture for each zone. For the purpose of producing more realistic nozzle shapes, it has 

been preferred, in this study, to parameterise only the radiuses of the first and the last 

zone. The in-between radiuses are calculated by interpolating the values of those two 

parameters. So the overall number of parameters in the 3-D case is reduced to four. 

In Figure 3.6 the parameterised surface of a nozzle hole is presented. The hole exit sur­

face mesh is produced during the parameterisation to aid the grid modification process, 

described in the next section. The new position of the mesh points is calculated using 

the ratio of the new over the initial exit diameter. 
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Figure 3.6: Parameterised surface of a symmetric 3-D nozzle hole 

3.6 GRID GENERATION 

The focus of the present and future work is on unstructured grid generation technolo­

gies, rather than on structured grids. The unstructured approach allows fully automated 

grid generation, with automatic grid error detection and refinement. Furthermore, the 

unstructured approach allows for virtually perfect load-balancing distributions for im­

proved parallel efficiency. The parallelisation of the programme is in the future plans. 

The scope of this study is not grid generation and only a brief presentation of the meth­

ods used in this study is presented. More details about various methods in grid genera­

tion can be found in books and conference proceedings devoted to this topic, e.g. 

Thompson et al [198] and Arcilla et al [199] . 

With regards to computational design optimisation, the unstructured mesh can be auto­

matically regenerated within the solution process. This allows for automated shape 

modifications in addition to automated grid refinement. Through this process there is no 

need to recreate the data structure i.e.: define indexes, cell faces etc, because the neces­

sary arrays are stored from the initial grid read. 

For the 2-D cases the required computational unstructured meshes are generated using a 

typical advancing front method implemented in the computational code. The grid gen­

eration software is very fast, so it is repetitively used within each cycle to create the 

computational grid for every new nozzle. 
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For cases requiring more complicated meshes there is the option of modifying the initial 

unstructured mesh which is provided by a commercial programme. The grid modifica­

tion method is based on a geometric progression movement of the mesh lines according 

to the new position of the modified surface geometry in every optimisation cycle. This 

method can be used in order to reduce the cost of the grid generation as it has already 

been stated. Also this method enables continuation of the flow equations solution from 

the previous optimisation cycle which results to extremely lower computational time. In 

some cases 90% reduction of the computational cost has been succeeded by using the 

solution of the previous flow field instead of starting the solution from the beginning. 

The same method has been used for the 3-D cases where an automatic grid generator is 

not available. The initial mesh is provided using commercial software. As it has already 

been mentioned in the previous paragraph the hole of the nozzle is meshed using hexa­

hedral cells for convenience in the parameterisation. The process of re-meshing is aided 

by moving the mesh of the hole exit from within the parameterisation scheme as it has 

been described in the previous section. The quality of the produced new grids is en­

forced by the use of smoothers for the parameterised geometry. Figure 3.7 shows an 

example of an initial and a modified nozzle mesh using the developed parameterisation 

and grid modification tools. 

Initial Modified 

Figure 3.7: Initial and modified nozzle mesh using the developed parameterisation 
and grid modification tools 
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3.7 GOVERNING EQUATIONS FOR FLUID FLOWS 

The Navier-Stokes equations have been used as constraints for the fonnulation of the 

optimisation problem. The two physical properties that are modelled by the flow equa­

tions are mass and linear momentum and these are presented and discussed in this sec­

tion. The most basic conservation law in nature is that of mass. With the assumption of 

no sources such as chemical reactions or phase changes in the system, the equation of 

mass for incompressible flows reduces to: 

(3.8) 

Newton's second law of motion states that the rate the change of momentum is equal to 

the external forces acting on the fluid, which for a viscous fluid, reads: 

a~u) + V.(pu0u) = V.T+ pg (3.9) 

In this study all fluids are assumed to be Newtonian which in fonn of equations the 

above assumption reads: 

T = -( P+~/.lV'u )1+ #[V®u+(V®uf] (3.10) 

where f.l is the dynamic viscosity of the fluid, I is the unit tensor, P is the static pressure. 

The Newtonian model applies to many actual fluids. Due to the incompressibility as­

sumption, the stress tensor can be simplified into the following fonn: 

T = -pi + f.l [ V 0 u + (V ® u)T ] (3.11) 

The energy conservation law states that the total amount of energy in an isolated system 

remains constant. In the case of this study, the temperature of the fluid has been as­

sumed to be constant. In addition, no phase-change of heat transfer has been assumed. 

Thus, this equation has been omitted from the analysis. 

We can summarise the steady Navier-Stokes equations for incompressible flows R(U), 

U == (u, p) , which in tensorial fonn reads: 
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"'1·u=O, 

"'1· (pu ® u - T) = pg, 
(3.12) 

where, T = -pI + p[ \7 ® u + (\7 ® u(]. 

In this fonn the flow equations will be used in the next chapter for the derivation of the 

system of the adjoint equations. 

3.7.1 Turbulence Modelling 

Fluid flows in most engineering problems are turbulent. Nozzle flows are characterised 

by high Reynolds numbers and strong turbulent behaviour. The GFS code has several 

variations of the k - E and the k - 0> turbulence models. The turbulence model is solved 

in an iterative manner together with the RANS equations. First, the Navier-Stokes equa­

tions are solved to compute the mean flow variables. Then, the turbulence model is 

solved to compute the turbulent eddy viscosity. For the purposes of this study the eddy 

viscosity is calculated by means of the standard two-equation k-e model that was pro­

posed by Launder and Spalding [200, 201]. This model features the solution of two 

additional scalar transport equations, namely one for k, which is the average turbulent 

kinetic energy (TKE), and one for e, which is the dissipation rate of turbulent kinetic 

energy. Without getting into the theory of turbulence, the equations of the k - E turbu­

lence model are presented below. 

So the transport equation of k is given, by: 

a~k) + \7. (piik) - \7. (( fl + :; )\7k ) = P - PE: (3.13) 

where P is the production of turbulent kinetic energy: 

P = flt (\7 ® ii)· ( (\7 ® ii) + (\7 ® iil) - ~(\7' ii)(pk + Pt (\7. ii)) (3.14) 

For incompressible flows \7. ii = 0, which simplifies into: 

P = flt (\7 ® ii) . ( (\7 ® ii) + ( \7 ® ii )T ) (3.15) 

After the transport equation of k the corresponding one for E: is presented: 

a~E:) + \7. (piiE:) - \7. ((fl + :~ )\7e ) = f( CelP - Ce2pe) + Ce3PE:\7· ii (3.16) 

Again for incompressible flows the last tenn in the above equation is omitted. Eddy 

viscosity is evaluated from the following equation: 
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In the above equations a number of constants have been introduced; their values are 

presented in Table 3.1. 

Constant ell 
Value 0.09 1.44 1.92 -0.33 1.0 1.3 

Table 3.1: Coefficients in the standard k-e model 

3.8 ADJOINT EQUATIONS ANALYSIS 

As it has already been discussed the optimisation method used in this study is gradient­

based or else called deterministic. This means that gradient information of the cost func­

tion is required to determine the search direction towards the optimum. This section is 

dedicated to the derivation of these gradients with respect to the design parameters. The 

continuous adjoint method has been used as the means to calculate these gradients. Ex­

tended analysis of the use of the method exists in this section. The adjoint system of 

equations is formulated along with the boundary conditions and the solution procedure 

resembling the flow solution is described. The difficulties of the implementation for 

different cost functions are discussed along with the way to overcome them. Finally the 

gradients are formulated for the different cost functions used in this study. 

3.S.1 Computing the gradients 

Sensitivity derivatives provide information about the sensitivity of the flow with respect 

to changes in the design parameters. Traditionally, modifications are performed on a 

trial and error basis based on intuition. That is to say, if cavitation is occurring, one 

might say "let's try rounding the tip a little more". Sensitivity derivatives will help 

guide the designer to exactly where the rounding needs to be done and more importantly 

how much rounding is necessary to achieve the desired performance. 

Differentiation of the flow equations using the adjoint method can be performed either 

in terms of the continuous or the discrete approach. For the continuous approach, the 

adjoint equations are extracted prior to discretisation. The analysis is performed by hand 

using the theory of Lagrange multipliers. For the discrete approach, the POE's are dif-
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ferentiated after discretisation. In this work, the continuous approach to sensitivity 

analysis is used. 

With gradient-based optimisation methods, the search direction is determined using the 

first derivatives of the objective and constraint functions with respect to the vector of 

independent design variables (Le., sensitivity derivatives). This is not to say that the 

search direction is solely based on first-derivative information; it is possible to estimate 

higher-order derivatives using the computed first derivatives. A weakness of the adjoint 

approach is that there is no simple way to compute the Hessian matrix ii YoD/JD
j 

[56] 

even when the objective comes from a least-squares minimisation problem. Instead, the 

gradient-based optimisation method must construct an approximation to the Hessian 

matrix using information about the variation of the gradient at different points in the 

design space. In addition such methods usually determine a search direction and then 

find the optimum along the direction using line search. Both of these aspects results in 

more steps in the optimisation procedure than are required for the direct sensitivity ap­

proach, like finite differences, using approximation of the Hessian. 

3.8.2 Formulation of adjoint equations 

Efficient and accurate evaluation of the gradient of the cost function is one of the most 

important but difficult tasks in gradient-based optimisation. However, the adjoint­

variable method offers an elegant mean for evaluating this gradient easily and accu­

rately. Even in problems which are mathematically well posed, numerical resolution of 

the adjoint field can be exceedingly difficult to obtain, or the extraction of the gradient 

of the cost functional from the adjoint field exceedingly prone to amplification of nu­

merical error, unless the proper care is taken in the definition of the adjoint field. 

There is quite a bit of flexibility in how an adjoint-based optimisation problem is de­

fined, and the choices made in this definition have an enormous impact On the rate of 

convergence of the resulting numerical algorithm [106]. The derivation of the adjoint­

variable equations, as it is performed in the present study, is presented below. 
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3.8.3 Optimisation Procedure 

For the analysis an arbitrary cost function is defined and noted Ie. The cost function Ie 

is a functional of the flow variables U and the vector of design variables D, defined on 

all or part of the boundary of the shape. In this way the procedure is generalised and 

can be used for any kind of cost function defined on the boundary of the shape which is 
I 

modified. 

In this study the optimisation process does not take into account the transient nature of 

the flow. Single-phase flow is sufficient to spot the cavitation inception area and inten­

sity and measure them in each optimisation cycle. Moreover an optimisation procedure 

which takes into account the needle movement is really expensive and could be better 

dealt as a steady-state multi-point case. Consequently, the adjoint problem is solved as 

steady-state problem using the incompressible Navier-Stokes flow equations R(U) of eq. 

(3.12). 

The system of flow equations R(U) is integrated and introduced as constraints to the 

optimisation problem. In this way it is ensured that the state variables are uniquely de­

termined for a given set of parameters in the domain of interest. Soto and L6hners [146, 

147, 149] analysis has been followed for the extraction of the adjoint equations and their 

boundary conditions throughout this study. The cost function Ie is augmented to the 

weak form of the constraints, through the Lagrange multiplier 'I' to give the augmented 

cost function I aug: 

Iaug = Ie + JT ·RdV = Ie + J'¥ p V ·udV + J'¥ u {V .(pu ®u -T}JdV (3.18) 
v v v 

where, 'I' = (\{' u'\{' p f, \{'u = (\{'I'\{' 2 ,\{' 3) is the vector of the costate variables and V is 

the computational domain. By application of the Green-Gauss theorem some surface 

integrals appear in the above equation (3.18) of the augmented cost function which 

takes its final form: 

I aug = Ie + ~ \{' p u . iids + t \{' u • (pu ® u - T) . iids -
oV oV 

-JV\}' p' udV + J (v® \{' u)(pu ®u -T)dV, 
(3.19) 

v v 

where oVis the boundary around the domain Vand ii = (nx,ny,nz ) is the outward nor­

mal vector alongoV. 
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The augmented cost function Iaug is a functional of the flow variables U, the costate or 

adjoint variables 'P and the vector of design variables D. An optimal point of the mini­

misation problem should meet the above necessary conditions, and is stated as: 

(1) R(U) = 0 (3.20) 

(2) 
aIaug -=0 
au 

(3.21) 

(3) 
aIaUg -=0 
aD 

(3.22) 

The first condition (3.20) is satisfied by the flow solution. The derivation of the adjoint 

equations results from the second condition (3.21). The design variables D are consid­

ered fixed while solving these equations from which the vector of costate variables 'P is 

obtained. Having solved the adjoint equations and obtained the costate variables their 

values can be substituted to the third condition (3.22) giving the adjoint gradients with 

respect to the design variables D. So the design parameters D are updated using an op­

timisation method and the whole process is repeated. Details about the derivation of the 

adjoint equations using the second conditions and discussion about the gradients follow 

in the next paragraphs. 

3.8.4 The adjoint equations 

The basic idea of the adjoint approach is to define the adjoint problem so as to eliminate 

the explicit dependence of the cost function Icon the flow variables U giving the adjoint 

form of the objective function. The derivation of the adjoint equations and the sensitiv­

ity derivatives of the cost function with respect to the design variables closely follow 

classical techniques from the calculus of variation and the theory of Lagrange multipli­

ers. The sensitivity derivatives of Ie with respect to the design variables are obtained by 

taking the variational form of Iaug. The calculations in the present study are the work of 

the author. The extracted results are compared to the ones of So to and Lohner [147]. For 

the derivation of the adjoint equations the second condition of eq. (3.21) is used. This 

condition can be expanded to give: 

a/aUg = ale + ~ (J 'PRdVJ = 0 
au au au v 

(3.23) 

Any modification/perturbation of the design variables results in a corresponding varia­

tion of the body shape. This, in return, produces a variation to the computational domain 
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and thus, the flow solution U. Having solved the flow equation and satisfied the first 

condition (3.20) the variation of the computational domain is introduced in the second 

condition by multiplying it with an arbitrary perturbation of the flow variables OU giv­

ing the variational form of the augmented cost function: 

01 = alaUg oU = alc OU +J'I' aR oUdV = 0 
aug au au au 

v 
(3.24) 

The above procedure corresponds to an individual cycle of the optimisation process so 

the design variables are fixed during the derivation of the adjoint system of equations. A 

second order approximation of the variation of the flow equation reads: 

-oU = T (3.25) 
aR { V·ou=O } 
au v . (pou ® u) + V .(pu ®ou) + Vop- v {,u(V ®ou +(v®ou) )] = 0 

where ou and 0 p are perturbations of the velocity and pressure field respectively. The 

variation of the flow solution aR oU is equal to zero because the variation of the source 
au 

term pg vanishes due to the assumed incompressibility of the fluid. 

Introducing eq. (3.25) into (3.24) the expression for the variation of the augmented cost 

function olaug is obtained: 

01 =alaugoU=alcOU+J'I'V,(OU)dV+ 
aug au au P 

v 

+ J'I' u V' . (pou ® u) + 'I' uV' ·(pu ® ou) + 'I' uV' opdV- (3.26) 
v 

-J'I' uV' {,u(V'®ou +(V®ouf)]dV 
v 

Using the Green-Gauss theorem to integrate by parts in a way that the terms containing 

derivatives of ou and 0 p are eliminated and splitting the resulting equation by taking the 

functional basis (u, 0) and (0, p) to approximate OU the following expressions are ob­

tained: 
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0= Ole ou + ~ 'I' p' ouiids + ~ 'I' u . (pou ®u)iids + ~ 'I' u .(pu ® oU)iids -
au oV oV oV 

-~'I'u {.u(v®ou+(V®ouf)]iids 
oV 

-JV'!' p ·oudV - J(v®'I' u): (pou ®u)dV - J (V®'I' u): (pu ®ou)dV + 
v v v (3.27) 

+J (v®'I' u): [.u(v®ou +(V®ouf)]dV, 
v 

In order to obtain 8I aug independently from the variation of JU the corresponding inte­

grals must vanish. If the cost function Ie is defined only on the boundary BV (or part of 

it) and if one takes into account that these equations have to be fulfilled 

VJuandVopthen equations (3.27) can be reduced to a corresponding PDE problem 

using the following manipulation. Eliminating the field and surface integrals that multi­

plies the variation of the flow variables JU provide the costate equations along with 

their boundary conditions. In this respect those integrals are manipulated one by one in 

order to cancel their dependence on ou and J p. 

The second equation, of the system of equations (3.27), is dealt first due to its simplic­

ity. By considering J p arbitrary only one field term is extracted straightforwardly 

which gives: 

J V . 'I' uO pdV => V . 'I' u = 0 (3.28) 
v 

The above equation is similar and corresponds to the continuity equation of the flow 

system. 

From the first equation, of the system of equations (3.27), the term multiplying 'I' p can 

be reduced to give: 

-Jv'!' . JudV => -V'I' p p (3.29) 
v 
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which corresponds to the pressure tenn of the momentum equation. For the rest of the 

terms some calculations are needed to derive the PDEs. Also the conservation property 

is not straight forward for the convection terms. 

The adjoint system of equations actually resembles the flow system in the sense that the 

convection and diffusion terms are easily identifiable. The most important difference 

that results from the following analysis is that the adjoint system is linear. For the deri­

vation of the remaining terms the first the assumption of a Cartesian reference frame is 

made and generalisation follows. 

Convection terms 

The convection terms of the adjoint equations are derived from the term 

J 'I' u V' . (pu ® u) dV of the augmented cost function [aug' The variation of the above 
v 

term reads: 

s 
J'¥ uV' .(pu ®u)dV~p 'I' u . (pJu ® u)iids + ~ 'I' u .(pu®Ju)iids -
v av av (3.30) 
-J (V'®'¥u): (pJu ®u)dV - J (V'® '¥u): (pu®Ju)dV 

v v 

1 For the system of equations (3.30) the field integrals are used for the adjoint equations 

while the boundary integrals along with the cost function Ie provide the boundary con­

ditions. The terms are analysed one by one to eliminate the dependence of Ju. If the 

vector of costate variables in the 3-D space is 'I' u = ('I'" 'I' 2' 'I' 3) and the vector of curvi­

linear coordinates is X = (x, y, z), the terms included in the first field integral of equa­

tion (3.30) can be calculated to give: 

I The operators used in equation (3.30) have the following formulas if A = (at, a2 , a3) and B = (bl , b2 , b3) : 
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O'¥I 8'¥2 8'1'3 
8x 8x 8x o(pv)u ( J(pu)u J(pw)u J 

(V0'1'u): (pou 0 u) = O'¥I 8'¥2 8'1'3 : o(pu)v o(pv)v o(pw)v (3.31) 
8y 8y By 

0'1'1 0'1'2 0'1'3 
8(pu)w o(pv)w o(pw)w 

oz oz oz 

while p can be excluded from the variation since incompressible flow has been as­

sumed, so the above expression expands to: 

(V 0 'I'u): (p8u ® u) = p(O'l'1 (8u)u + 0'I'2 (ou)v + 0'I'3 (8u) w+ 
ox ox ox 

0'1' 0'I' 8'I' 
+_1 (8v)u+-2 (8V)V+_3 (8v)w+ (3.32) 

By oy oy 

+_1 (8w)u+-2 (ow)v+_3 (8w)w 0'1' 0'I' 0'1' ) 
OZ OZ oz 

This, by eliminating the dependence of 8u from equation (3.32) gives: 

0'I'1 0'I' 2 0'I' 3 u-+v-+w-
ox ox ox 

(v 0 'I' u): (p8u0u) = pOu· 0'1' 1 0'I' 2 0'I' 3 U-+V +w-
By By By 

(3.33) 

0'1' 1 0'I' 2 0'I' 3 u-+v-+w-
OZ OZ OZ 

The above expression can be generalised for arbitrary cell shape in tensorial form and 

reads: 

(V® 'I' u): (p8u 0 u) = 8u .(V0 'I' u)pu (3.34) 

Following the same manipulation the terms of the second field integral of equation 

(3.30), gives: 

(V 0 'I' u): (pu 08u) = p(O'I'1 (ou)u + 0'I'2 (ov)u + 0'I' 3 (8w)u + 
ox ox ox 

0'I' 0'I' 0'I' 
+_1 (8U)V+_2 (ov)v+_3 (8w)v+ (3.35) 

oy oy By 

+_1 (8U)W+_2 (ov)w+_3 (8w)w 0'I' B'I' B'I' ) 
Bz Bz Bz 

which, by eliminating the dependence of 8u and writing the expression (3.35) in a gen­

eralised tensorial form, reads: 

(v ® 'I' u): (pu ®ou) = 8u . (puV ®'I' u) (3.36) 
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The terms multiplying b'u in equations (3.34) and (3.36) can be further analysed to give 

an orthogonal and a non-orthogonal contribution, which reads: 

(v ® \f' u)pu + puv ® \f' u = 
o\f' , o\f' 2 o\f' 3 o\f', 0\f'2 o\f'3 

ox ox ox 
= o\f', o\f'2 o\f'3 pv +(pu 

By By oy 
pv pw) 

o\f', 0\f'2 0\f'3 
= 

ox ox ox [pu) 

o\f', o\f' 2 o\f' 3 pw o\f', o\f' 2 o\f' 3 (3.37) 
By By By 

& & & & & & 

(
0'1', 0'1'2 0'1'3 0'1', 0'1'2 0'1'3 0'1', 0'1'2 O\f'3) =p -u+--v+--w,-u+--v+ w,+-u+--v+--w + 
ox ox ox By By By OZ OZ OZ 

(
0'1' , o\f' , o\f' , o\f' 2 o\f' 2 0'1' 2 0'1' 3 0'1' 3 o\f' 3 ) +p -u+-v+-w,--u+--v+--w,+--u+--v+--w 
OX By OZ ox By OZ ox oy OZ 

The first term is non-orthogonal and cannot be analysed any further so this term con­

tributes to the r.h.s of the equation in the form: 

(v ® 'I' u)pu = pu(v ® 'I' u)T (3.38) 

The second term of equation (3.37) can be further analysed considering the fact that the 

velocity field doesn't change during the solution of the adjoint field. In this way we can 

include the velocity components into the partial derivatives of the costate variables in 

the following manner: 

puV®'I'u = 

_ (OU'l', Bv'l', ow'I', ou'l' 2 ov'l' 2 Bw'l' 2 ou'l' 3 Bv'l' 3 aw'l' 3) _ -p --+--+-- --+--+-- +--+ +-- -
ax By az'ax By az' ax By az 

= v . (pu ® 'I' u) 

(3.39) 

The above analysis is necessary to ensure that the terms are conservative so the FV 

method is applicable. Also this way a convection term appears which is very similar to 

the flow equations convection term, with the only difference that this term is linear so 

there is no need for special treatment as in the case of the velocity flux in section 4.5.3. 

Concluding the analysis for the convection part of the adjoint equations the following 

convection terms for the costate equations are extracted: 
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-f (V®'¥u): (pou®u)dV - f (v®'¥ u): (pu®ou)dV ~ 
v v (3.40) 

-v .(pu ®'¥ u) - pu(V®'¥ U)T 

In the next paragraph the diffusion terms are analysed. 

Diffusion terms 

The derivation of the diffusion terms of the adjoint equation is not as obvious as the 

derivation convection terms. Due to the presence of the derivatives of the velocity com­

ponents u, v and w appearing in the diffusion part of the flow equations (3.12) the 

grouping of terms multiplying the variation of velocities Ju, Jv and Jw is not straight-

forward. The elimination of the dependence of the variation aU is actually accom­

plished by a second application of the Green-Gauss theorem. This gives rise to second 

derivatives of the co-state variables multiplying the variations aU and surface integrals 

containing first derivatives of the vector of the costate variables'P . 

To proceed with the analysis as in the previous paragraph we consider the term 

-f'¥ u V {.u( V ®u +(V ® uf)]dvof the augmented cost function [aug (3.26) that 
v 

contributes to the diffusion part of the adjoint equations. The variation of the above term 

reads: 

-f'¥uV {,u(v®u +(V®uf)]dV~-~ 'l'u {,u(v®ou+(V®ouf)]iids + 
v av 

+f (V®'I'.): [,u(v®ou+(V®ouf)]dV 
v 

(3.41) 

Following the procedure of the previous paragraph the above term can be expanded to 

gIve: 
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(3.42) 

where Cartesian reference frame has again been assumed. At this point another assump­

tion is necessary. In the derivation of the viscous adjoint terms, the variation of the tur­

bulent viscosity OIL is considered negligible and does not play significant part in the 

gradient calculation. The perturbation of turbulent viscosity is considered negligible, 

through each geometry modification. This is a convenient assumption from the numeri­

cal point of view and quite realistic considering the fact that the geometry changes 

slightly in every optimisation cycle. In the case of considering turbulent perturbation 

another two adjoint equations for the turbulence model will appear. In the case ofturbu­

lent flow, if the flow variations are found to result in significant changes in the turbulent 

viscosity, it may eventually be necessary to include its variation in the calculations 

[130]. This complication is not handled in the present study but the reader can refer to 

Anderson's work [43] for more details on how to derive the adjoint equations for the 

turbulent viscosity p.. 

Having these assumptions in mind the turbulent viscosity Jl is excluded from the gradi­

ents and variations and the above expression expands to: 
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(v®'¥ u): [,u(v®ou+(v®ouf)] = 

=,u[0'¥120(OU) +(0'1'2 + O'¥I)(O(OU) + o(ov))+ 
ox ox ox Oy oy ox 

+ 0'1'22 O( OV) + (0'1' 3 + 0'1'1 )(O( OU) + O( ow)) 
Oy oy ox oz oz ax 

+ 0'1'32 o( ow) + (0'1' 3 + 0'1'2 )(o( OV) + o( ow))] 
OZ oz oy OZ OZ Oy 

(3.43) 

At this point a second application of the Green-Gauss theorem takes place. As it has 

been mentioned before this is a necessary step for the elimination of the variation of the 

flow variables l5U due to the presence of the partial derivatives of the variation of ve­

locity components l5u, l5v and l5w appearing in the above expression. The application of 

integration by part gives in equation (3.43) the following form: 

f (V®'¥ u): [,u(v®ou+(V ®ouf)JdV = 
v 

=-,uf[~(O'¥I)20U+~(O'¥2 + O'¥I)OU+~(O'¥2 + O'¥I)OV+ 
v ox ox Oy ox Oy ax ox Oy 

+~(O'¥2)20v+~(O'¥3 + 0'¥I)OU+~(O'¥3 + O'¥I)OW+ (3.44) 
Oy Oy oz ax oz ax ax oz 

+~(0'¥3)20w+~(0'¥3 + 0'¥2)Ov+~(O'¥3 + O'¥2)OW]dV + 
OZ oz oz Oy oz Oy Oy OZ 

+,u~ii[ 2(V ®'¥ u) +(v® '1' ufJouds 
ov 

The boundary integral contributes to the sensitivity derivatives while the field integral is 

written in such a way that the dependence of ou can now be easily eliminated. Writing 

the expression (3.44) in a generalised tensorial form we conclude that the diffusion term 

of the system of adjoint equations, reads: 

In this case again we can split the diffusion term (3.45) into an orthogonal and a non­

orthogonal part the same way that is done for the flow equations: 
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(3.46) 

The first term goes to the l.h.s of the adjoint equations and the second to the r.h.s. In the 

next paragraph the adjoint system of equations is summarized. 

3.8.5 Final form of the adjoint system of equations 

In this paragraph the contribution of the terms (3.28), (3.29), (3.40) and (3.46), derived 

from the previous analysis, is summarised and the adjoint system of equations is 

formed. For completeness time variation and compressibility will be included although 

all the problems solved in this study are steady state and incompressible. After the addi­

tion of the time variation of the costate variables, the adjoint equations take the form: 

ap -V.,¥ =0 at U 

:/p'¥ u) - pu(V®'¥ u +(V®'¥ uf) - v .Tadj = 0, 

(3.47) 

where Tadj = -p'¥ / + p( V ® 'I' u + (V ® 'I' uf). 

The above equations (3.47) are very similar to the Navier-Stokes and can be character­

ised as the costate continuity and momentum equations without of course having the 

corresponding physical meaning. Considering the analysis of the previous paragraphs 

and the assumptions made the above system can be actually transformed to give: 

Y'.,¥ =0 
u 

-V .(pu ®'¥ u)- V -[,u(V®'¥ u)] = (3.48) 

= V'¥ p + (Y' ® '1' u) . V,u + pu (V ® '¥ u) T 

One important detail in the above re-arrangement is the separation of the diffusion term 

into orthogonal and non-orthogonal contributions; the orthogonal term, as it was dis­

cussed in section 3.8.4, can be linearised and it is located on the 1.h.s. of the equation, 

whereas the non-orthogonal contribution has been moved to the r.h.s. of the equation. 

Although obvious, it should be mentioned that all terms on the 1.h.s. of equation are 

linear functions of the unknown'P. The r.h.s. of the above equation contains all the 

terms which could not be linearised. 
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The resulting system of equations (3.48) is a convection-diffusion system, where infor­

mation transfer takes place in the opposite direction of the infonnation propagation of 

the costate variables in relation to the flow variables. 

The remaining surface integral multiplying variations along boundaries, contribute to 

the boundary conditions for the adjoint equations. In those integrals, the tenns arising 

from the second integration by parts of the diffusion part which contribute to the sensi­

tivity derivatives, are not included, as it has been already mentioned. Summarising the 

remaining boundary tenns we conclude the following expression for the boundary con­

ditions of the adjoint equations: 

0= olc au + ~ 'l' p' pouiids + t 'l' u • (pou ®u)iids + 
au oV oV 

+~ 'l' u ·(pu ®ou)iids - ~ 'l' u {.u(v®ou + (V®Ouf)]iids 
oV oV 

(3.49) 

o = 01 cop + ~ 'l' u • a p iids 
op oV 

It is obvious from the above expression (3.49) that the boundary conditions can only be 

derived after the definition of the cost function I c' The same applies also for the sensi-

tivity derivatives which are actually the gradients of the augmented cost laug function 

with respect to the design variables and are the result of the third condition (3.22). 

3.9 BOUNDARY CONDITIONS 

The choice of the Navier-Stokes equations as constraints in the optimisation problem 

provides the boundary tenns of equation (3.49) independently of the choice of cost 

function. Of course for the extraction of the boundary conditions the cost function must 

be specified so that the calculation of its gradients, appearing in equation (3.49), is pos­

sible. This section comprises a detailed discussion about the derivation of the boundary 

conditions for the adjoint equations according to the two different cost functions de­

scribed in section 3.4. The choice of these cost functions is such to fulfil the needs of 

the optimisation problem but also to provide challenges in the adjoint analysis. In the 

next paragraphs the two cases are discussed separately. 

112 



Chapter 3 Formulation of the Optimisation Problem 

3.9.1 Target pressure distribution 

The most typical inverse design optimisation problem in CFD aims at finding the shape 

of an engine or aerodynamic component such that the resulting pressure distribution 

along the shapes surface will minimise the least squares distance from a predescribed 

pressure distribution. This is expressed in the fonn of a cost function as follows: 

Ie =],.P(P- p,)2ds 
2w 

(3.50) 

where p and P, represent the current and target pressure respectively. W stands for wall 

and is the boundary of the geometry to be modified. The square power in the cost func­

tion ensures positive Hessian and thus convexity and it is used for mathematical rea­

sons. The above cost function cannot be used in the case of the Navier-Stokes equations 

used as constraints and in the literature this function is considered as inadmissible [114, 

128]. There is a lot of published research about the topic of admissible and inadmissible 

cost functions. Arian and Ta'asan in [116] define these problems and propose a solution 

by including some extra tenns in the Langragian cost functional. These tenns are ob­

tained from the restriction of the interior PDE to the control surface. Demonstration of 

the explicit derivation of the adjoint equations for "inadmissible" cost functionals were 

given for the potential, Euler and Navier-Stokes equations. 

Generally, suitable cost functions are composed of terms that will appropriately balance 

the boundary tenns from the residuals. This means that for a well-posed adjoint prob­

lem, there is a restriction for the cost function Ie' The definition of Ie must include 

tenns which satisfy equation (3.49). Restriction of the same nature was recognised in 

[7]. Returning to the case of equation (3.50) it is not immediately obvious that the speci­

fication of a pressure distribution is allowable because of the absence of viscous terms 

in the cost function. The cost function is enforced in the wall boundary around the sharp 

hole inlet. Since the Navier-Stokes equations have been introduced as constraints in the 

optimisation problem the no-slip condition applies in the wall boundaries. Appling the 

no-slip flow condition on equation (3.49) we obtain: 

ale au = p'l' u {.u(v®au +(v®au)T)]nds 
au w 

ale a p = -rj> 'I' u • a p nds 
ap w 

(3.51) 
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It is obvious that equation (3.50) could never satisfy the first equation in the above sys­

tem. However, a suitable cost function can be obtained by including another term in the 

cost function to obtain the cost function of equation (3.3). Equation (3.3) satisfies the 

boundary conditions (3.52) ensuring a well-posed adjoint problem. One should be aware 

that by the combination of the continuity equation and the no-slip boundary conditions 

the introduction of the extra term in Ie' as suggested in section 3.4, does not modify the 

minimisation problem. 

The variation of the cost function of equation (3.3) with respect to the flow variables 

takes the form: 

ale ou = _~(p _ p,),u o( ~u) .iids 
au w an 
ale 0 p = ~ (p - P,)O pds - ~ JL o~ . iio pds 
op w w an 

(3.53) 

Replacing these variations in equation (3.53) and taking into account the continuity 

equation that indicates :~ = 0 the condition I '¥ u = -Ii (p - P,) I is obtained as boundary 

condition for the shape to be modified. 

The values of '¥ u are negligible as long as we are far from the hole inlet, so without 

violation, can be considered equal to zero at the inlet and exit. At the rest of the walls, 

the part which is not being modified also can be considered zero as an adjoint "no-slip" 

condition. For '¥ p a Neumann condition is applied, namely, V'¥ p • ii = 0 for the entire 

boundary except from the symmetric boundaries where for both '¥ u and '¥ p symmetry 

conditions are applied. 

3.9.2 Given Cd value 

In order to explore the potential of the method, a suitable cost function for optimised 

injector design has been introduced. The discharge coefficient (Cd) has been used as the 

means to control cavitation inception within the nozzle hole. This case is also challeng­

ing with respect to the adjoint analysis. The complications in the application of this de­

sign approach arise from the fact that the cost function is defined on the hole exit whilst 
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the gradient and the geometry under modification is actually the hole inlet. To overcome 

these complications appropriate boundary conditions must be enforced in the area of the 

wall boundary under modification. 

Considering and applying variation to the cost function (3.5) defined in section 3.4 

equation (3.49) takes the following form for the hole exit: 

(E -c) 
d d ~ ouiids = 

A . 2 (Pin - Pout) exit 
exit (3.54) p 

= ~ 'I' p. pouiids + ~ 'I' u • (pou ® u)iids + ~ 'I' u ·(pu ®ou)iids 
exit exit 

where Cd is the desired value of the Cd that we want to achieve, p is the density, u is the 

velocity vector, ii is the normal unit vector along the boundary as before Pin and P
OUI 

are the pressures at the inlet and outlet respectively and Aexil is the area at the exit. The 

Cd takes values from 0 to 1 the last being the less cavitating case. Equation (3.54) can 

be written in differential form as: 

(3.55) 

Where for arbitrary values of OU and Cartesian reference frame the expression in 

brackets can be calculated to give: 

(pou ®u)+(pu ®ou) = 

(

O(PU)U o(pv)u O(PW)U] (PU)OU 
o(pu)v o(pv)v o(pw)v + (pu)ov 
o(pu)w o(pv)w o(pw)w (pU) ow 

(pV)OU (PW)OU] 
(pv) ov (pw) ov = 

(pv)ow (pw)ow 

( 

2uou vou + uov 
= p uov + vou 2vov wov + vOw = (pu + puT)ou 

WOU+UOW] 

uow+ wou vow+ WOV 2 wow 
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Replacing the result (3.56) in equation (3.55) an expression independent from8u is 

obtained: 

(3.57) 

Inversing B = pu + pUT we obtain: 

\f =-u (3.58) 

Also in this case we can assume that the values of \f u are negligible as far as we are 

from the sharp hole inlet so without violation we can set them equal to zero at the inlet 

of the nozzle. For \f p a Neumann condition is applied V\f p' Ii = 0 for the inlet and out-

let. In the symmetric boundaries again for both \f u and \f p symmetry conditions are 

applied. 

In this optimisation case where the cost function is defined on the exit boundary the 

value of its gradients on the wall are eliminated. By substituting this zero gradients in 

equation (3.49) result in Dirichlet boundary conditions for \f u on the wall equivalent 

to \f u • Ii = 0 <=> \f u = O. Choi [183] suggested this boundary condition in the similar 

case of pressure drop minimisation. The author believes that this is not possible in this 

case. The wall in this case is the moving boundary so \f u = 0 is replaced directly in the 

gradients of the cost function with respect to the design variables for the third condition 

(3.22). The most important terms in those gradients are the terms involving \f u [146]. 

For this reason Neumann condition is applied V ® \f u = 0 and Dirichlet for \f p = 0 . 
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3.10 FORMULATION OF GRADIENTS 

In the previous paragraphs the adjoint equations have been derived using the second 

condition equation (3.21). Having the adjoint equations being solved and the costate 

variables obtained, the sensitivity derivatives can be easily computed. The values of the 

costate variables can be substituted to the third condition equation (3.22) for Iaug giving 

the adjoint gradients with respect to the design variables D. The gradients or else sensi­

tivity derivatives consist of the boundary distribution of the costate variables and their 

derivatives combined with terms arising from & e plus the remaining terms resulting 

from the diffusive part of the adjoint system calculation that multiplies the variation of 

the velocities 8u, 8v and 8w. So the variation of Iaug reads: 

8laug = ole 8D+~P'¥u8(iids)+~fi.u[ V®'¥u +(V®'¥ufJ8u 
oD w w 

(3.59) 

The rest of the boundary terms are equal to zero due to the no-slip boundary condition 

enforced on the wall. The geometry under modification in this study is part of the wall 

boundary in both optimisation cases. 

Following the analysis proposed by Anderson [7] the term of equation (3.59), resulting 

from the diffusion part of the adjoint equations, can be expressed in terms of design 

variables. Expressing the velocities on the new surface in a Taylor series and noting that 

the velocities on the old and new surface are both zero, the variation of the velocity 

components can be written in the following manner that contribute to the sensitivity 

derivatives: 

au au au 
8u = --8x--8y--& ax ay az (3.60) 

The variational expressions of Iaug can be also significantly simplified by the substitu­

tion of the normal vector's definition: 

8 (iids) = 8 (n:x:,ny,nJds) = g(dx, dy , dz )dS) = (8(dx),8(dy),8(dz») (3.61) 
ds ds ds 

Considering the design points to be Dj where i = 1, ... , n, the variations of the geometri­

cal quantities in 8/ read: aug 
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b(ds) = ta(ds)bD
p 

i=1 aDi 

b(dx) = t a(dx) bD
p 

;=\ aD; 

b(dy) = t a(dy) bD;, 
i=1 aDi 

b(dz) = t a(dz) bD;. 
;=\ aD; 

(3.62) 

After replacing the variations b(dx), b(dy), b(dz) and beds) of t5J
aug

' the expression for 

the sensitivity derivatives is obtained. The final fonn of the sensitivity derivatives with 

respect to the design variables is obtained using the shape parameterisation and the con­

sequence derivation of the variations of the above geometrical entities. The variations of 

the geometric entities using a central finite difference scheme around a small perturba­

tion e, for example for b( ds) we have: 

b(ds) = ds(oD,J -ds(oD_e) (3.63) 
e 

For the rest of the geometric entities the same fonnula is employed. 

The only tenn that needs to be calculated is the gradient of the cost function Ie on the 

wall. For the inverse case of the predescribed target pressure, the gradient expression is: 

While for the Cd case, the gradient expression is: 

ale t5D=O 
aD 

(3.64) 

(3.65) 

So the design parameters D are updated using the optimisation method described in the 

next section and the whole process is repeated. 
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3.11 UPDATING THE DESIGN VARIABLES 

The last thirty years has seen the development of a powerful collection of algorithms for 

the unconstrained optimisation of smooth functions. All algorithms for unconstrained 

minimisation require the user to supply a starting point, which in our case, is the set of 

parameters that represents the initial geometry. Knowledge of the physics about the 

problem can help the user to choose a starting geometry that will be reasonably close to 

the solution. Otherwise the starting geometry must be chosen in an arbitrary manner. 

Optimisation algorithms begin from the initial geometry and generate a sequence of 

intermediate results, in an iterative process that terminates when either no more progress 

can be made or when it seems that a solution has been approximated with sufficient 

accuracy. In deciding how to move from the one iteration to the next, the algorithm uses 

information about the cost function Ie at the current iteration. The method used in this 

study is a simple line search method called steepest descent which uses the information 

of the first gradient of the cost function. 

The direction of the negative gradient is indeed the most obvious search direction for 

line search method because it is the direction where the cost function decreases most 

rapidly. This is easily proven by use of the Taylor theorem [35]. There are line search 

methods using both the first and the second derivative of the cost function but since the 

adjoint method cannot provide these in straightforward manner, such a method is not 

convenient in our case. The steepest descent method doesn't need this kind of informa­

tion but can be rather slow in some cases. Of course there are other methods which use 

only information of the first gradient of the cost function which are not explored in this 

study. The reason is that the focus of this study is the extraction of the gradients using 

the adjoint method and not a research on efficiency of the optimisation method itself; 

moreover the optimisation method can be easily replaced in the code and also existing 

libraries with optimisation methods can be used. 

The steepest descent method moves along the negative gradient direction at every step. 

After the final form of the sensitivity derivatives with respect to the design variables is 

concluded, the update of the control points location is carried out through the use of 

steepest descend scheme, reading: 
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Dnew = D _ 'TI 8Iaug 
Z Z '/ aD 

Z 

(3.66) 

The previous expression stands for positive '1 values ('1 being the step of the descent 

method). By using the gradient of the cost function, the search on the design space is 

limited to a specific direction, rather than randomly searching the entire n-dimensional 

space (n being the number of parameters). 

There are various ways to choose the value of the step size '1. In this study the choice 

was to first non-dimensionalise the '1 values by dividing with the normalised gradient; 

this reads: 

= t(~)2 
;=1 aD; 

(3.67) 

After that, a good estimate for '1 is usually an order of magnitude less than the value of 

each design variable Dj • A proper estimation of the scalar parameter '1 provides the 

minimum for the current search direction. In this study due to the nature of the parame­

terisation method used the value of '1 depends on the parameter and is defined as '1(D) . 

This is necessary due to the difference in the magnitude of the different parameters de­

scribing the nozzle shape. Vrahatis et al [202] has used individual '1 values and observed 

significant improvement in the convergence. Moreover they also used an adaptive time 

step which is not implemented in the present study. More about descent methods can be 

found in [55]. 

3.12 SUMMARY 

The setup of the problem that we are dealing with has been discussed in detail through­

out this chapter. The iterative nature of the optimisation method was described and 

every step of this iterative process was discussed in detail. The parameterisation method 

developed for this study was analysed as well as the grid modification method. The 

adjoint equations of the Navier Stokes flow solver have been extracted along with the 

corresponding boundary conditions. Finally the gradients with respect to the parameters 

are calculated and driven to zero using the steepest descent method. In the next chapter 

the discretisation and solution procedure of the adjoint equations are cross referenced 

with the ones of the incompressible Navier-Stokes flow equations. 
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DISCRETISATION AND SOLUTION OF THE 

FLOW AND ADJOINT EQUATIONS 

4.1 INTRODUCTION 

The control volume approach has been adopted in this study, for the analysis of the fluid 

flow properties and subsequently for the adjoint field properties as well. The solution 

procedure for the flow in the continuous phase in conjunction with the adjoint equations 

are presented in this chapter. The in-house GFS software, which employs an unstruc­

tured-grid RANS flow solver, has been used to calculate the flow on this study. The 

adjoint solver has been added to this code and uses the same methods as the flow solver. 

The discretisation of the generic equation will be used as the origin for the discretisation 

and solution of both the flow and adjoint equations. The finite volume discretisation 

method will be described; this method is applied for the numerical solution of the gov­

erning continuous phase equations and subsequently for the adjoint equations. 

4.2 TilE GFS CODE FOR COMPUTING TilE FLOW FIELD 

The GFS code has been used for the flow calculations during this study. The aforemen­

tioned code is an unstructured-grid RANS finite volume incompressible flow solver and 

has been used for the calculation of the single-phase internal nozzle flow distribution, 

using a pressure correction methodology. The method uses a finite-volume formulation 

of the Navier-Stokes equations which takes the conservation laws written in integral 

form discretised about control volumes. One advantage of this method is that the fluxes 

can be converted to surface integrals via Gauss-divergence theorem. Finite-volume 

schemes are much more suited for solving complicated geometrical problems due to the 

fact that they can be solved directly in the physical domain. Discretisation in the physi­

cal space ensures that mass and momentum are conserved also on the discrete level 

[203]. Various differentiation schemes and solvers are used for the solution of the mo-
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mentum equations and the corresponding adjoint transport equation. All these methods 

are explained in more details in the next sections. 

4.3 THE GENERIC TRANSPORT EQUATION 

The fluid flow is mathematically described by three conservation laws, namely, the con­

servation of mass, momentum and energy. These laws completely determine the physi­

cal behaviour of the fluid and are totally independent of the nature of the fluid, which is 

defined by additional properties such as viscosity, heat conductivity, surface tension and 

compressibility. 

Let us consider the integral form of the generic transport equation for any scalar or ten­

sorial quantity f/J [204], which is valid for any control volume V with boundary a V: 

g J pqJdV + j pqm· dS = j fV'qJdS + J Sip (qJ )dV (4.1) 
t v 8V 8V V 

. . .. ".".' 
time derivative convection tenn diffusion tenn source tenn 

where P is the density, U is the velocity vector, f is the diffusivity, Sip represents a 

source term and dS is the outward pointing face vector. The various terms in the above 

equation represent the rate of change per unit volume, the efflux by convection per unit 

volume, the rate of diffusion and the rate of production/destruction per unit volume. 

By virtue of Gauss's divergence theorem a surface integral can be converted into vol­

ume integral. Its application for example to equation (4.1) leads to the following equiva­

lent form of the generic transport equation: 

:t J pqJdV + IV" (pqJU )dV = IV" (fV'qJ )dV + I Sip (qJ )dV (4.2) 
v v v v 

For an infinitesimal volume whose size tends towards zero the conservative differential 

form of the generic transport equation can be derived from the above: 

8:: + V' . (PqJu ) = V' . ( fV' qJ ) + Sip ( qJ ) (4.3) 

Due to fact that there is not only spatial but also temporal variation of f/J. the generic 

transport equation needs to be integrated in time as well. With integration of equation 

(4.3) in time and over the control volume ofthe following equation is derived: 
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I t+ L'1t[ Iv
p 
&;t dV + Iv

p 
V· (pq>u )dV rl 

= ft +M[ Iv
p 

v · (rVq»dV + Iv
p 
S(O (q»dV~t 

(4.4) 

where 111 is the numerical time step, whose value affects the accuracy of the numerical 

time integration. The solution of q> at time level 1 is assumed to be the initial condition 

thus a known initial condition. Equation (4.4) will serve as the basis for the description 

of the discretisation approach. The discretisation of the Navier-Stokes and adjoint equa­

tions results naturally from the analysis. 

4.4 CALCULATION OF BASIC ALGEBRAIC EXPRESSIONS 

The equations of fluid mechanics are solvable for only a limited number of flows. The 

analytic solutions are extremely useful in helping to understand fluid flow but rarely can 

they be used directly in engineering analysis or design. That is the case for the Navier­

Stokes equations which cannot be solved analytically so an approximate solution 

through the use of a numerical method is pursued. For fluid flow equations the most 

widely used is the so-called finite volume method [205]. In order to apply this method, 

the solution domain is converted into a computational mesh that comprises small spatial 

subdivisions of the domain, the cells or control volumes (CV). The solution domain is 

or encloses the geometry of interest, depending on whether an internal or external flow 

is to be simulated. 

An implementation of the finite volume method which uses a face addressing technique 

is used as a basis for this study. The objective of the face addressing technique is to 

allow the use of arbitrary shaped cells whilst preserving the efficiency of the computa­

tional algorithm. 

N 

Figure 4.1: Example of control volume 
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The above figure represents a typical control volume (cell) with an arbitrary number of 

faces. The point P is the centre of the control volume of interest. By N the centre of the 

-adjacent control volume has been designated. The vector d = PN connects these two 

centres and S is the outward-pointing face area vector that is vertical to the face. The 

mesh is termed non-orthogonal when the angle between d and S is not zero. In order to 

account for the orthogonal and non-orthogonal contributions to the face gradients, the 

vectors k and D are introduced. Following Jasak [206], the over relaxed approach is 

chosen for splitting the non-orthogonal contribution k from the orthogonal D; this ap­

proach was demonstrated to be superior in various numerical tests [206]. This approach 

will be used here in the discretisation of the conservation equations. The two aforemen­

tioned vectors are defined according to the following equations: 

D=~ISI2 
d·S 

k=S-D (4.5) 

After the discretisation of space the application of the finite volume method is possible, 

with which the discretised form of the equations that are to be solved will be con­

structed. 

4.4.1 Face Interpolation 

One of the most fundamental issues within the context of the finite volume method is 

the numerical interpolation that is employed for the calculation of the face variable val­

ues from the corresponding cell-centred ones. The selection of a non-suitable interpola­

tion scheme can have disastrous consequences on the numerical accuracy and in some 

cases even on the stability of the method. On the contrary, a robust and accurate scheme 

can ensure stability and moreover increase the efficiency of the algorithm. 

Let us consider a scalar ffJ whose value at the face f of the control volume needs to be 

estimated, from values of ffJ at the centres P and N of the two adjacent control volumes. 

Before proceeding, we need to define the mass flux through face J, as it is necessary for 

some interpolation schemes: 

(4.6) 

where Ff is the volume flux. For the time being and since the discussion is about how to 

calculate the face value of ffJ, the face values of the velocity are assumed to be known. 

The face interpolation schemes that have been used in this study are the following: 
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Central differencing (CD) 

The first and most straightforward thing one would attempt is to use linear interpolation 

for calculating the face value: 

qJf(CD) = IpqJp + (1- Ip )qJN (4.7) 

liNl 
where Ip = liNl +IPJI 
This scheme is second-order accurate, which is considered satisfactory, but when it is 

used to interpolate face values for the discretised convection term of equation (4.4), 

under certain circumstances, it can lead to unbounded solutions and numerical diver­

gence [204]. When the bounded ness of the interpolated scalar/vector is guaranteed, for 

example if qJ was the density or a phase fraction, it can be used without problems. 

Moreover, it is used for interpolating discretised differential operators, e.g. the gradient 

or the divergence of a variable. 

Upwind differencing (UD) 

This scheme is directly related to the convective character of fluid flows, and for this 

reason the direction of the flow is essential: 

j({Jp for Cf ~ 0 
({Jf(UD) = ({IN for C

f 
< 0 

(4.8) 

UD is a first order accurate scheme, which can affect adversely the accuracy of the solu­

tion; nevertheless it guarantees its bounded ness, a feature that makes this scheme a 

valuable component of any CFD code based on the finite volume method. 

Blended differencing (BD) 

There are schemes that combine UD and CD in an effort to create a scheme with a rea­

sonable trade-off between accuracy and bounded ness. The blending differencing (BD) 

scheme is created in this way and is the scheme used on this study. This combination of 

UD and CD is linear, according to the following equation: 

({Jf(BD) = Y({Jf(CD) + (I-Y)f/Jf(UD) (4.9) 

The blending factor 0:::; Y < 1 determines how much numerical diffusion will be intro­

duced. Several theoretical attempts have been made in order to calculate this blending 

factor in the most efficient way [204]. In this study the Gamma differencing scheme that 
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was introduced by J asak et al [207] has been utilised. This scheme has the advantage 

that has been developed for unstructured meshes and it is second-order accurate. 

4.4.2 Differential Operators 

Before proceeding to the discretisation of the various terms of the generic equation 

some additional operators need to be defined as presented in [208]. In the discretised 

form of the equations some differential operators, such as the gradient of a scalar, ap­

pear quite often; for this reason their discretisation will be presented separately in this 

paragraph. By applying the theorem of Gauss, these operators can be discretised in the 

following fashion: 

Scalar gradient 

m m 

J"VqJdV = f dSqJ = LJ dSqJ ~ LS /qJf 
V av /=1 f /=1 

(4.10) 

VectorlTensor divergence 

m m 

J"V. q»dV = f dS . q» = L J dS· q» ~ L S / . q» / 
v av /=1/ /=1 

(4.11) 

Vector/Tensor gradient 

m m 

J"V 0 q»dV = f dS 0 q» = L J dS 0 q» ~ L S / 0 q» / 
v av /=1/ /=1 

(4.12) 

where m is the total number of faces of the control volume and qJf is the interpolated 

value of (jJ at face f Although the latter can be evaluated with any of the aforementioned 

schemes described in the previous section, for the discretised equations of the above 

operators CD interpolation is used exclusively throughout this study. The above expres­

sions of the differential operators will be employed in the forthcoming discretisation of 

the convection and diffusion terms of the generic transport equation. Equations (4.10) to 

(4.12) can also be used to calculate a second-order accurate approximation of the gradi­

ent of a flow variable at the cell centre of a control volume: 
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1 m 

(\7qJ)p ~ V LS fqJf 
P f=1 

1 m 

(\70q»p ~V LSf 0q>f 
p f=1 

(4.13) 

(4.14) 

(4.15) 

where P is the centre of the control volume depicted in and Vp is its actual volume. For 

the evaluation of the above gradients at faces CD interpolation is used again. Neverthe­

less, if we move to the faces all vector and tensor variables can be decomposed into 

orthogonal and non-orthogonal contributions with the over-relaxed treatment. For gradi­

ents in particular though, their orthogonal component can be evaluated directly. If the 

control volume of Figure 4.1 is considered, then the following equation is valid for the 

orthogonal component of the gradient (\7..L) of scalar qJ: 

"..Lm _ qJN - qJp 
v f"t' - Idl (4.16) 

The complete face gradient can be decomposed into its orthogonal and non-orthogonal 

contributions with the following equation: 

Sf·\7fqJ _IDflqJN-qJp k f ·(\7qJ)f 

ISfl -JS7I Idl ,+, Is!1 , . 
orthogonal non-orhogonal 

(4.17) 

where (\7 qJ ) f is evaluated with CD interpolation from (\7 qJ ) p and (\7 qJ ) N' This de­

composition is utilised in the forthcoming discretisation procedure for numerical rea­

sons. 

4.4.3 Time derivative and Temporal Approximation 

Although in this study the problems that are solved are all steady state, the temporal 

discretisation is implemented in the developed software and it is presented here for 

completeness. The discretisation of the time derivate of equation (4.4) is straightforward 

after the integration over the control volume is performed. When a time dependant prob-

lem is simulated, the term f a ~<p dV is also present. When a first order accurate 
dV 
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discretisation is used, the above tenn can be approximated by assuming linear variation 

of <p within a time step as: 

r 8prp dV = (prpV)~+tJ.t -(prpV)~ 
J Vp 8t tlt 

(4.18) 

One issue that needs discussion at this point is the time level approximation. All tenns 

of equation (4.4) are time-dependent, which means that they have to be approximated at 

some point between time levels t and t+tlt. Let us consider a representation of the dif­

ferential fonn of the generic transport equation in the following way: 

8prp ( 7j( = f p,rp,u,r,sip) (4.19) 

If equation (4.19) is integrated in time and over the control volume we obtain: 

1t+tJ.t J 8prp It+tl.t J 
t 7j(dV dt = t f(p,rp,u,r,sip )dV dt 

Vp Vp 

(4.20) 

which becomes according to equation (4.18): 

(prpV)~+tJ.t - (prpV)~ _It+tJ.t g(p rp u r S )dt 
!1t - t ' , , , ip (4.21) 

where g(p,rp,u,r,sip) = J f(p,rp,u,r,sip )dV 
Vp 

The r.h.s. of the above equation has to be approximated with respect to time; by intro­

ducing an assumption about the variation of function g over the time step tlt, the follow­

ing expression can be derived: 

(PffJV)~+tJ.t - (PffJV)~ 
tlt 

= (1- P)[g(p,rp,u,r,Sip)Y + p[g(p,rp,u,r,sip )y+tl.t 

(4.22) 

where p is a weighting factor that effectively controls the type of time integration 

scheme that is employed. 

Among numerical algorithms the most popular choices for pare p = 0 for the explicit 

and p = 1 for the implicit Euler schemes, or p = 0.5 for the implicit Crank-Nicolson 

scheme. The Euler schemes are first order accurate whereas the Crank-Nicolson is sec­

ond order. The latter is an implicit scheme too; both the implicit Euler and the Crank-
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Nicolson schemes are unconditionally stable, whereas for the explicit Euler stability 

restrictions apply. 

4.4.4 Convection Term 

We come now to the discretisation of the convection tenn of equation (4.1). As already 

discussed, by employing Gauss's theorem the integral over the control volume can be 

transfonned into a surface integral as follows: 

m m Iv 'V. (pqJu)dV = f pqJu·dS ~ L:SI . (pU)lqJI =L:PIFlqJl 
p avp 1=1 1=1 

(4.23) 

where Ff is the volume flux through face f and is defined as FI = S I . U I' Again, the 

value qJf on face f can be evaluated with the methods described in Section 4.4.1. Albeit, 

there is an important detail that needs to be mentioned; for the evaluation of the face 

velocities a special interpolation technique has to be utilised, which will be described 

together with the derivation of the pressure equation in Section 4.5.3. 

4.4.5 Diffusion Term 

The discretisation of the diffusion tenn of equation (4.1) is done in the same fashion; by 

employing Gauss's theorem the volume integral is converted into a surface one: 

m Iv 'V. (f'VqJ )dV = j dS· f'Vrp ~ 2: f/S I' 'V IqJ 
p avp 1=1 

(4.24) 

The above approximation is only valid if r is a scalar variable. A detail regarding equa­

tion (4.24) is that evaluation of 'V rp at face f is needed. In order to evaluate this, 'V rp is 

calculated at the centres P and N of the two adjacent control volumes in Figure 4.1: 

Example of control volume by using equation (4.13), and then CD interpolation is util­

ised to obtain the value of 'V IqJ . 

4.4.6 Source Term 

The last part of the general transport equation that needs discretisation is the source 

tenn. Generally speaking, the source tenn, defined as Sv/rp), can be any arbitrary func­

tion of rp' Nevertheless, it is necessary to be linearised before discretisation: 

(4.25) 
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where Sp and Su may depend on qJ . Integration of equation (4.25) over the control vol­

ume of interest yields: 

(4.26) 

The linearisation of source terms is quite important, because it gives the possibility to 

split the contribution of the original source term to the final discretised system of alge­

braic equations into an explicit and an implicit component. This latter numerical detail 

can enhance or in some cases even deteriorate, depending on correct or wrong choice of 

linearisation, the numerical stability and bounded ness of the solution algorithm. 

4.4.7 Boundary Conditions 

Before arriving to the final form of the discretised equations, one last issue has to be 

addressed; the implementation of the physical boundary conditions. As physical bound­

ary conditions we refer to the actual boundary conditions of the mathematical problem 

prior to discretisation. The face-based approach, which has been used for the discretisa­

tion of the various equation terms, has depended so far on the fact that each face inside 

the solution domain is always found between two adjacent control volumes. Neverthe­

less, the faces of the control volumes that are located at the solution domain boundaries 

are one-sided. For this reason 'pseudo-cells' are introduced at the boundaries. The 

'pseudo-cells' are the cells that have no volume and effectively have the same geomet­

rical characteristics like the boundary faces. With the pseudo-cells the physical bound­

ary conditions of the problem are realised numerically. 

D 

s 

Figure 4.2: Control volume with a boundary face. The red line depicts the 
"pseudo-cell" 
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An example of such a control volume is shown in Figure 4.2, in which some additional 

parameters have been provided. Again the vector between cell centre P and pseudo-cell 

centre b, which coincides with the centre of the boundary face, is denoted by d, and its 

component normal to the face by dn• The latter is calculated by the following equation: 

d = d.S S 
n IS l2 

(4.27) 

Since it is assumed that the boundary condition to be applied is valid along the whole of 

the face, and that vector e is relatively small, we have that vector D = S. Generally 

speaking, there two-types of numerical boundary conditions that are applied: 

Dirichlet or Fixed Value 

With this boundary condition the value of the dependent variable is prescribed or 'fixed' 

at the boundary face, i.e. ({Jf = ({Jb. Nevertheless, because of some terms also the gradient 

V" I({J needs to be evaluated at the boundary faces. In that case we take advantage of the 

fact that the boundary condition is valid for the whole of the face, which allows for the 

calculation of only the orthogonal contribution of the gradient. For example, as already 

presented in Section 4.4.1, calculation of S I • V" I({J is necessary for the discretisation of 

the diffusion term at the boundary. From equations (4.17) and (4.24) we have: 

r IS I • V" I({J = r f I S I I (fJj ~ i P (4.28) 

In equation (4.28) the fact that D = S has been taken into account. 

Neumann or Fixed Gradient 

In some cases not the value but the gradient of a variable is prescribed at the boundary; 

for example the heat flux could be defined by the problem but not the temperature itself. 

Supposedly gb is the given gradient at the boundary face, we then have: 

g _ V"1.({J - ({Jb - (fJp 
b - f - Idnl (4.29) 

which means that the needed boundary value ({Jb can be extrapolated to the boundary by 

using the gradient gb: 

(4.30) 
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4.4.8 System of Linear Algebraic Equations 

In this section all the previously discretised parts of the generic transport equation will 

be assembled, in order to fonn the final set of algebraic equations that need to be solved. 

The initial form of the transport equation from which the discretisation started was 

equation (4.4). If equations (4.18), (4.23), (4.24) and (4.26) are combined with the 

above equation, then the following expression is derived: 

(4.31 ) 

This form of the transport equation is referred to as semi-discretised [209]. Recalling 

equation (4.22), the following equation is formulated: 

(4.32) 

As already mentioned, P is a weighting factor with value range 0 < P ~ 1, which con­

trols the time integration scheme that is employed. The Euler and Crank-Nicolson 

sc~emes that are implemented in the GFS code correspond to values of P = I and 0.5 

respectively. For simpler notation the new time level ({'t+1l1 is denoted as ({'n and the old 

time level ({'I as ({,o. Equation (4.32) with aid of equation (4.17) can be re-arranged into 

the following form, which is one step before the linear system formulation: 

= p~Vfl rnO +psn Vn +p~rnk . ("\lrn)n -(1- P)~ pOFo({'o 
~t rP Up P f:I. / I. r I, ~ f f f 

non-orthogonal 

(4.33) 

m 

+ (1 - P) L: rls I . ("\l ({' )[ + ( 1 - P ) S~p Vfl ({J~ + (1 - P) S~ p Vfl 
/=1 

After having employed the aforementioned discretisation and linearisation procedures, 

we arrive to equation (4.33). One important detail in the above re-arrangement is the 
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separation of the diffusion tenn of the new time level into orthogonal and non­

orthogonal contributions; the orthogonal tenn, as it has already been mentioned can be 

linearised and it is located on the l.h.s. of equation (4.33), whereas the non-orthogonal 

contribution has been moved to the r.h.s. of the equation. Although obvious, it should be 

mentioned that all tenns on the l.h.s. of equation (4.33) are linear functions of the un-

known q/j, where withj the cell index of any control volume is denoted. On the r.h.s. of 

the above equation all the tenns have been grouped, which refer to either the previous 

time level or to the current one, but could not be linearised. Equation (4.33) is rewritten 

in a generic fonn that resembles a linear system: 

ApqJp = I:AN'P'N + Bp (4.34) 
N 

After having fonnulated the linear system, the iterative solution procedure that is fol-

lowed to obtain the final solution at the new time level is described. Effectively, due to 

the linearisation of the original mathematical equations, the coefficients of both A and B 

matrices depend on the targeted solution (although for some problems it is possible that 

matrix A is independent). For this reason an iterative procedure is undertaken. At the 

beginning of each time step, the solution from the previous one is used (or an initial 

guess, if the first time step is being solved), in order to evaluate matrices A and B. Sub­

sequently the system described by equation (4.34) is solved numerically with an itera­

tive solver, and then at the end of the iteration all parameters in these matrices that de­

pend on the solution of the current time step are updated. This cyclic procedure goes on 

until a converged solution for qJ is reached. Because of the intrinsic non-linear nature of 

the system of equations, it is common practice to introduce an artificial modification to 

the linear system, which is tenned under-relaxation: 

A n l-'A n ""'A n B +l-'A 0 pqJp +-,- pqJp = ~ NqJN + p ,pqJp 

This leads to this final fonn: 

Ap n ""'A n B 1-' A 0 TqJp = ~ NqJN + p +, pqJp 

(4.35) 

(4.36) 

where , is the under-relaxation factor (0 ~ , ~ 1). With this modification the conver-

gence procedure is enhanced, due to the improved diagonal dominance of the modified 

matrix A. The final detail about the method is the choice of the algebraic system solver. 

The solution of the modified linear system can be obtained with either a direct solver or 

an iterative one; summaries on both approaches can be found in [204]. Due to the CPU 
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cost of direct solvers most CFD codes employ iterative ones. The GFS solver features 

the extensive SLAP library [210] of iterative solvers; from various tests within the re­

search group it has been concluded that the Bi-Conjugate Gradient Sparse Matrix 

solver, which utilises iterative preconditioning, is efficient enough for the flow prob­

lems investigated here. The aforementioned solver is an extension of the conjugate gra­

dient method [55] that is valid also for non-symmetric linear systems but at twice the 

cost per iteration. More details about the solver and its limitations are presented in 

[211]. This solver has been contributed to the SLAP library by Greenbaum and Seager 

[210] and it is used throughout this study. This final step concludes the description of 

the framework and the specific details ofthe finite volume method. 

4.5 DISCRETISATION OF SINGLE PHASE MODEL EQUATIONS 

4.5.1 Continuity Equation 

The continuity equation (3.8) is integrated over an arbitrary control volume and discre­

tised; this leads to the following expression: 

1: V· udV = 0 => ~ FJ = 0 
Vp f 

(4.37) 

where it is reminded that Ff = Sf· u f and that with n the new time level is denoted. 

As it was discussed in Section 4.4.1, a special interpolation technique for the velocity 

face values of the transport coefficients is necessary, whose details will be given in Sec­

tion 4.5.2. 

4.5.2 Momentum Equation 

The momentum equation is the most complex among the transport equations; its discre­

tisation is the lengthiest and features important intrinsic details. We start with the semi­

discretised form of the momentum equation (4.38): 

Jt+~t[ Jv
P 

a~u) dV + Jv
P 

V. (pu ® u )dV rt = - Jt+~t[ Jv
P 

VpdV pt 

+ Jt+~t [Jv
P 

V . ( /le ( V ® u + (V ® u f ) ) dV + Jv
p 

pgdV pt 
(4.39) 

where /le is the effective viscosity, which represents the combined effect of viscous and 

turbulent momentum dissipation (/le = /l + Pt). Each term within the time integrals in 

the above equation is discretised following the finite volume method: 
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1
t+dt p(UV)~+dt - p(uV)~ '" F r _ 1t+dt[(" ) T.T lrl 

A +L..JP lUI t-- vp prprt 
1 tit I t 

+ 1
1

+& l:.ueJs I' (\7 ~ U)I + (V' ~ U)p (V'.ue)p Vp + pgVp Lt 
1 I r 

(4.40) 

An important detail about the discretisation of the momentum equation is that the face 

velocities U I of the convection term are estimated with the Gamma interpolation 

scheme of Jasak et al [207], which was discussed in Section 4.4.1. The second term on 

the r.h.s. of equation (4.40) is the part of the viscous tensor that can be discretised like 

the diffusion term in Section 4.4.5; this means that it can be divided into orthogonal and 

non-orthogonal contributions, which lead to: 

1
1+& p(uV)~+& - p(uV)~ '" r 

t1. + L..JpFlu I t-
1 t I 

1
1+dl 11+M 

l:.ueJD/·(V'~U)1 dt=- [(\7p)pVp }it 
1 I 1 

(4.41 ) 

+ 1t +dt l: fJ.e J k I . (V' ~ U ) I + ( V' ~ U ) P ( V' fJ.e ) p Vp + pg Vp Lt 
1 I r 

At this point, the same assumption about the time level approximation that was dis­

cussed in Section 4.4.3 is introduced. Following equation (4.33), the blending coeffi­

cient fJ is introduced; fJ = 1 corresponds to the Euler implicit scheme, and fJ = 0.5 corre­

sponds to the Crank-Nicolson scheme: 

P~tP uJ, + fJl:PFJuj - fJl:.u: Of' (V' ~ u)i = SUp - fJ(V'p)~ V; 
ti I I J 

where the source term Su contains all the remaining terms: 

SUp = P~; u~ + fJl:.u: k I' (V' ~ u)i + fJ(V' ~ u)~ (V'.ue)~ Vp 
tit I J 

+fJpgVp - (1- fJ)(V'p)~ V; - (1- fJ) l:PFJuf + (1- fJ)pgV; 
I 

+ (1 - fJ) ( V' 0 u )~ (V'.ue )~ V; + (1 - fJ) l:.u: S I . ( V' 0 u Yi 
I J 

(4.42) 

(4.43) 

On the r.h.s. of equation (4.42) all terms refer either to the previous time step (0) or to 

the current one (n), but cannot be linearised for the unknown velocity uJ" and thus have 

to be treated explicitly; within the context of the iterative solution algorithm, this effec­

tively means that the solution of the previous iteration is used for their evaluation. From 
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equations (4.42) and (4.43) the algebraic system for the velocity vector in the new time 

level is formulated: 

Apu~ = L:ANuN + SUp - fJ(V'p); V; (4.44) 
N 

The pressure gradient has been left out from the r.h.s. source term on purpose, due to its 

importance. Moreover, it is useful for the forthcoming discussion on the pressure cor­

rection method to represent the discretised momentum equation in the following form: 

n _ II ( U ) p _ fJVp ( )n 
Up - A A V'p p 

pp pp 
(4.45) 

where App = Ap and: 

H(u)p = L:ANuN + Sup (4.46) 
N 

This concludes the discretisation of the momentum equation for single-phase flows. 

Turbulence Model Equations 

The discretisation of equations (3.13) and (3.16) is quite straightforward. For the equa­

tion of the turbulent kinetic energy k we have: 

(4.47) 

where 

SUp = pVj kp + fJL:(J.l +!!J...)n k f . (V'k)j + fJPpVp - fJpe~Vp 
!:1t f Uk f 

-(l-fJ)L:PFJkJ +(l-fJ)L:(J.l+.!:!:L)O Sf·(\1k)j 
f f Uk f 

(4.48) 

+(1- fJ)PjVj - (1- fJ)pepVj 

The above expression constitutes the linear system that needs to be solved. Similarly for 

the equation of turbulence dissipation e we derive the following expression: 

(4.49) 

where 
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and 

SUp = p~p ep + p~(p. + !:!:J..)n k f' (V'e)~ + p e~ C:1P;V; 
ot f (Je f kp 

- (1 - p) ~ pFJ ej + (1 - P ) ~ (p. + l:!!...)0 Sf' ( V' e )j 
f f (Je f 

n 
S?,p = -p ep C:2V; 

k~ 

(4.50) 

(4.51) 

It is clear from the above equations that the source term of equation (3.16) was linear­

ised, in order to have a positive contribution to the linear system. With this linearisation 

the final form of the linear system for e~ is: 

(Ap - Spp )e~ = ~ANeN + Sup (4.52) 
N 

In concluding, the coefficients C:J and Ce2 in the above equations have been considered 

as time dependent, to include the case of the non-equilibrium k-e model. 

4.5.3 Pressure Equation 

One major problem with modelling incompressible flows is the lack of a constitutive 

equation for pressure; to circumvent this shortcoming many alternative methods have 

been proposed in the literature over the recent years [204]. In the current study, as it has 

been already discussed, the pressure-correction method is employed [212]. Within the 

context of this method an equation for the pressure is derived, by combining the discre­

tised continuity and momentum equations. Before describing this procedure, it is useful 

to represent the aforementioned discretised continuity equations in a unified way for 

completeness: 

~qfSf ·uj = SCp 
(4.53) 

f 

where the terms q and Sc will be assumed q = I and Sc = 0 for the rest of the analysis 

since only Single-Phase flow is considered. For the extension of the method for Eulerian 

Mixture and Eulerian - Langragian the reader can refer to [18]. 

It is necessary at this point to obtain the interpolated velocity uj at the cell faces. Nev­

ertheless, since the control volume topology is collocated and because these face veloc-
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ity values are coupled with pressure, through the pressure correction method, the inter­

polation approaches presented in Section 4.4.1 cannot be employed for this purpose. It 

has been established from past studies that usage of such techniques would cause the 

well-known check-board pressure effect [213], which effectively means that a partial 

decoupling between pressure and velocity occurs. 

A special interpolation method needs to be employed, namely the approach of Rhie and 

Chow [214]. With this technique the discretised momentum equation is used to predict 

the face value of the velocity; this is done by isolating the contribution of the pressure 

gradient from equation (4.45), when interpolating it to the face. The contribution of the 

pressure gradient at the face is then added explicitly to the interpolated face velocity, by 

calculating it directly from the pressure values of the two cell nodes, which are adjacent 

to the face. In equation form the above procedure reads: 

U/=(II(U)) _[fJVfl] (\lpr 
Ap f Ap f f 

(4.54) 

where, the face values other than the pressure gradient are calculated with central differ­

encing; recalling equation (4.55) we have: 

( II ( U ) ) = fp ( II ( U )) + (I - fp ) (~) 
Ap f Ap p Ap N 

(4.56) 

and 

[P::t =/p[P::L +(1-M[P2L (4.57) 

Substitution of uf from equation (4.54) into (4.53) equation gives: 

(4.58) 

or 

"" [fJVfl] n "" (II(U)) L..JqfSf· - (\lp) =L..JqfSf· -- -Scp 
f Ap f f f Ap f 

(4.59) 

The term containing the pressure gradient over the faces is calculated in a similar way to 

the diffusion term of the generic transport equation, which means that it can be decom-

posed into orthogonal and non-orthogonal components. Recalling Section 4.4.2, where 

the calculation of gradients with the above decomposition was discussed, we have: 
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Sf' (Vp)j = Df · (Vp)j + k f .(Vp)j 
, •• I 

(4.60) 

orthogonal non-orthogonal 

The orthogonal contribution is treated implicitly and is given by: 

Df ,(Vp)j = IDfIPld~fP (4.61) 

The non-orthogonal contribution is treated explicitly, which means that pressure values 

obtained from the previous solution iteration are utilised. Furthermore, for this term the 

pressure gradient (V p)j at the cell face is obtained by central differencing interpola­

tion, from the pressure gradient values at the centres of the two adjacent cells. All the 

components for the derivation of the pressure equation are available then; the final form 

of this equation reads: 

(4.62) 

where 

SPp = L:qfSf·[I~U)) -Scp - L:qfkf·[P;fl] (Vp)j 
f p f f P f 

(4.63) 

Equation (4.63) constitutes the linear system for pressure that needs to be solved; it can 

be reformulated in the following form: 

Appp = L:ANPN + SPp 
N 

(4.64) 

After the solution of equation (4.64), the newly obtained pressure field is used to update 

the volumetric fluxes at the cell faces with equation (4.45): 

(4.65) 

With the derivation of the pressure equation the discretisation of the governing equa­

tions for the interior of the flow domain is concluded. Nevertheless, the treatment of the 

boundary conditions for these equations needs to be discussed; this is done in the fol­

lowing paragraph. 

4.5.4 Boundary Conditions 

In Section 4.4.7 the application of numerical boundary conditions to the generic trans­

port equation was discussed, with the coverage of fixed value and fixed gradient bound­

ary conditions. Nevertheless, this discussion needs to be extended here, since some of 
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the aforementioned model equations require special treatment with respect to their 

boundary conditions. Although the application of fixed value and fixed gradient bound­

ary conditions for the equation of the above models follows the approach of Section 

4.4.7, some conditions of these types need some attention and will be covered initially. 

Subsequently, the aforementioned required extension for the boundary conditions of 

some variables will be discussed, and then a general overview of the combinations of 

boundary conditions which are applied for some typical problems will be given. 

Fixed Value Boundary Conditions 

The boundary control volume that was depicted in Figure 4.2 will be used as reference 

for the following discussion. The prescription of a fixed pressure value at a boundary 

face/needs some attention, since with this condition the boundary face velocities have 

to be calculated from equation (4.62). For this particular case, the term 

D/.[PVp
] (Vpt (4.66) 

Ap / / 

needs to be calculated at the boundary face. Since the term Vp / Ap does not exist at this 

location, the necessary face value of this term will be approximated with the value of 

the internal boundary cell. The fixed boundary value Pb is used for the approximation of 

the face pressure gradient (Vp )/. The implementation of the above assumptions in 

equation (4.62) leads to the following: 

IDfl'[PVp] Pb-PP =S/.(II(U}) 
Ap p Idfl Ap p 

(4.67) 

At the boundary faces the source Sc of equation (4.53) is assumed to be zero. For the 

remaining governing equations the implementation of fixed value boundary conditions 

does not impose any particular difficulty; their diffusion and convection terms at the 

boundary faces are calculated according to the approach described in Section 4.4.7. 

Fixed Gradient Boundary Conditions 

A boundary condition of this type that needs to be mentioned is the condition for the 

pressure equation at solid boundaries. Typically, for the velocity a zero-slip condition is 

applied, and for the turbulent kinetic energy k and its dissipation rate e a special treat­

ment is needed; for all other remaining variables, except the pressure, a zero gradient 

condition is imposed at faces which are adjacent to solid boundaries. By the case of 

pressure though, there is the special requirement on the imposed boundary condition; it 
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must comply with the hydrostatic phenomenon. For this reason, at solid boundaries, the 

following boundary condition is implemented for the pressure equation: 

(\lp)~ = pg (4.68) 

which leads to: 

(4.69) 

As for the case of fixed value boundary conditions, the implementation of fixed gradient 

boundary conditions for the remaining variables is done according to the approach that 

was described in Section 4.4.7. 

Near-Wall Turbulence Treatment 

For the purposes of the current study the so-called wall function approach of Launder 

and Spalding [200] has been utilised. The wall function approach relies on the existence 

of a two-layer structure within the turbulent boundary layer. The velocity profile within 

these two layers can be evaluated from the following: 

y+ ~ 11.63 

y+ > 11.63 
(4.70) 

where ~ is the mean velocity parallel to the wall, ur is the shear velocity, Ur = ..j Tw/ p , 

Tw is the shear stress at the wall, K is the so-called von Karman constant (K=O.4l), E is 

an empirical constant that depends on the wall roughness and is related to the thickness 

of the viscous sub layer (E = 9.7 for smooth walls) and y+ is the dimensionless dis­

tance from the wall: 

(4.71) 

But from [204]: 

(4.72) 

where CjJ is given in Table 3.1. By combining equations (4.71) and (4.72) we have: 

pCl/4 ..ffy 
y+ = jJ (4.73) 

J.l 

and 

(4.74) 
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Equation (4.74) is utilised in vector fonn, in order to calculate the additional wall shear 

force due to turbulence; this force is added as an extra source term then to the discre­

tised momentum equation of the boundary control volumes. 

Outline of Boundary Conditions 

Depending on the flow problem that needs to be simulated, a combination of boundary 

conditions for all the aforementioned equations has to be employed. In Table 4.1 an 

overview of these boundary conditions combinations is given. 

Variable 

u 

Wall 

Fixed Value 

(No-slip) 

P Fixed Gradient 

K Fixed Value 

E Fixed Value 

Inlet 

Fixed Value 

Continuity 

Zero Gradient 

Fixed Value 

Fixed Value 

Fixed Value 

Outlet 
Symmetry 

Plane 

Zero Gradient 

Continuityl 
Zero Gradient 

Fixed Value Zero Gradient 

Zero Gradient Zero Gradient 

Zero Gradient Zero Gradient 

Table 4.1: Summary of boundary conditions for each equation and boundary type 

This concludes the discussion on the issues that are pertinent to the physics and the im­

plementation of boundary conditions to each equation. 

4.5.5 Sequence of Solution 

The approach that is followed for solving the coupled system of discretised equations is 

the so-called segregated approach. Within the context of this approach, the GFS solver 

performs a number of iterations, aiming to satisfy simultaneously the above-presented 

set of differential equations on a sequential basis through numerical convergence. In 

Section 4.5.2, where the pressure equation was derived, it was shown that pressure and 

velocity have strong linear coupling. This coupling is employed by the pressure­

correction method, which is an intrinsic part of the current iterative solution algorithm. 

Many variants of the pressure-correction method exist [204], with the most well known 

being the SIMPLE [212] and the PISO [215] algorithms. The GFS solver features both 

2 When a constant pressure inlet or outlet is prescribed the boundary face velocity is calculated from the continuity 

equation. 
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options; nevertheless, throughout this study the PISO algorithm has been used for the 

flow equations and the SIMPLE for the adjoint. The latter is a pressure-velocity method 

specially developed for non-iterative computation of unsteady compressible flows, but 

is easily adaptable to incompressible ones. 

4.5.6 Pressure-velocity coupling with PISO 

The basic steps of the PISO algorithm can be described as follows: 

• Momentum prediction: The discretised momentum equation (4.44) is solved initially 

with an approximate pressure field p.; this field corresponds to that of the previous 

iteration of the current time step or of the last iteration of the previous time step. The 

solution of the momentum equation gives a new velocity field u* that does not sat­

isfy the continuity equation. It goes without saying that the momentum equation 

(4.44) is depicted in linear system form; since with this formulation any of the above 

discretised momentum equation can be represented. 

• Pressure solution: This predicted velocity u* is used to calculate II ( u* ) from equa-

tion (4.46); the latter is used for the calculation of a new pressure field p** from the 

pressure equation (4.64). If the mesh is non-orthogonal then the source term of equa­

tion (4.63) is updated and a more accurate solution is obtained. 

• Explicit velocity correction: From equation (4.65) a new set of conservative volu­

metric fluxes (also referred to as transport coefficients) is obtained, which is consis­

tent with the new pressure field. The latter is used in equation (4.45) in order to per-

form an explicit correction on velocity. The newly calculated velocity field u** is 

now consistent with the new pressure field. With this velocity field II ( u**) is cal­

culated again from equation (4.46) and is used one more time to obtain a new pres­

sure p***, by solving the pressure equation (4.64). The iteration over the last two 

steps is continued until a pre-defined numerical tolerance has been met. 

4.5.7 Solution procedure of the governing equations system 

In the previous paragraphs the discretisation of all the governing conservation equations 

was addressed; moreover, the implementation of the necessary boundary conditions to 

these equations, together with the pressure-velocity coupling through the PISO pres­

sure-correction method, was covered as well. It is now possible to describe the solution 
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sequence of the aforementioned theoretical models. In Table 4.2 the sequence of the 

computational steps that are followed is provided. 

1. Initialise all variables. 

2. Solve the momentum equation (4.75). 

3. Perform PISO-Loop. 

4. Solve k-e equations (according to which model is employed). 

For the non-equilibrium k-e only: 

Update Cel and ee2 coefficients from Table 3.1 

5. If convergence residuals are above the required numerical tolerance, 

repeat steps 2-6 again. 

6. If the desired simulation time has not been reached yet advance 

to the next time step and return to step 2. 

Table 4.2: Numerical solution procedure 

4.6 SOLUTION OF THE ADJOINT SYSTEM OF EQUATIONS 

The system of adjoint equations is very similar to the system of flow equations so the 

procedure described in chapter 4 for the discretisation and solution of the Navier-Stokes 

equations is followed here as well. The same methods are employed for the discretisa­

tion and interpolation of the terms of the corresponding costate momentum equation. 

For 'P p an equivalent pressure correction method is employed. There are of course some 

major differences in the two systems which are stated in this section one by one while 

proceeding with the analysis. 

4.6.1 Adjoint 'Continuity' Equation 

As in the case of the continuity equation, the first equation of the adjoint system (3.48) 

is integrated over an arbitrary control volume and discretised; this leads to the following 

expression: 

(4.76) 

where it is reminded that (Fadj) f = Sf' ('I' U ) f and there is no time discretisation be­

cause in this study the adjoint equations are solved for steady state. 
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4.6.2 Adjoint 'Momentum' Equation 

Unlike the adjoint of the continuity equation the adjoint of the momentum equation is 

slightly different and need to be treated differently than the actual momentum. The dif­

ferences are stated below. 

Convection terms 

The convection term of the second equation of the adjoint system (3.48) is very similar 

to the convection term of the momentum equation though a minus sign appear in the 

case of the adjoint equations. The convection terms generally indicate transport so the 

minus sign means that information transfer takes place in the opposite direction of the 

information propagation of the costate variables in relation to the flow variables. To 

overcome this we can use a downwind scheme for the interpolation of the adjoint vari­

ables. Generally downwind schemes result in instabilities in the solution so in this study 

the preferred approach is to solve using the same interpolation schemes as for the flow 

solver (upwind) and solve for -'1' u • 

Another difference between the adjoint and flow convection term is that the adjoint is 

linear because there are no costate variables appearing in the volumetric flux. This is the 

must important difference of the two equations and is the reason that the adjoint equa­

tions converge much faster. During the adjoint solution the already calculated values of 

the velocities are replaced in the volumetric flux and there is no need for special treat­

ment as in the case of the calculation of the velocities in section 4.5.3. 

Diffusion terms 

The diffusion terms appearing in the adjoint equations (3.48) have exactly the same 

form as in the momentum equation (3.9). In the adjoint case the effective viscosity Jl ~ is 

already known from the solution of the turbulent equations and as it has been mentioned 

in section 3.8.4 it is kept frozen during the adjoint solution. 

The diffusion terms are re-arranged into orthogonal and non-orthogonal contributions; 

the orthogonal term can be linearised and it is located on the l.h.s. of equation, whereas 

the non-orthogonal contribution is moved to the r.h.s. of the equation (3.46). Although 

obvious, it should be mentioned that all terms on the l.h.s. of equation (3.48) are linear-
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ised functions of the unknown'P. On the r.h.s. of equation (3.48) exist the tenns which 

cannot be linearised. Apart from the diffusion tenn there is also a convection tenn 

which cannot be linearised and has been moved to the r.h.s. Also the 'l' p gradient has 

been left out from the r.h.s. source tenn on purpose, as in the flow solver case, due to its 

importance. 

Now that the differences are stated the finite volume method is employed in equation 

(3.48) as for the flow solver to conclude: 

-2:p(Fadj )/(\IIu)/- 2:,ue,Dr (V0\11u)1 = 
1 1 

(V\IIp)p Vp + 2:,uef k 1 ·(V 0 \IIu)1 +(V 0 \IIu )p(V,ue)p Vp + pUp(V 0 \IIu)~ Vp 
1 

From the above equations the following algebraic system is fonnulated: 

Apup = LANuN + S'I'p - ('\7'Pp)p Vp 
N 

(4.77) 

(4.78) 

Where S'I'p = L,uefk f . ('\7 ® 'Pu) f + ('\7 ® 'Pu)p ('\7,ue)p Vp + pUp ('\7 ® 'Pu)~ Vp 
f 

For the solution of the algebraic systems, of equation (4.77), the SLAP library [210] is 

used with the Bi-Conjugate Gradient Sparse Matrix solver for non-symmetric linear 

systems, which utilises iterative preconditioning, used as the most efficient one. 

4.6.3 Pressure correction for 'l' 
p 

In the adjoint equation case again the major problem for the solution of'l' p is the lack of 

a constitutive equation for '¥ p ; to circumvent this shortcoming in the current study, the 

pressure-correction method is employed [212]. Within the context of this method an 

equation for 'l' p is derived, by combining the discretised continuity and momentum 

equations the same way as for the pressure. 

Using the same special interpolation that has been used for the pressure the contribution 

of the 'l' p gradient at the face is then added explicitly to the interpolated face velocity, 

by calculating it directly from the '¥ p values of the two cell nodes, which are adjacent 

to the face. In equation fonn the above procedure reads: 
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( ~ u) = ( H (~u ) ) - [ Vp 1 (v~ p ) 
f Ap f Ap f f 

(4.79) 

where the face values other than the pressure gradient are calculated with central differ-

encing. 

Substitution of (~u) f from equation (4.79) into equation the adjoint continuity equation 

(3.48) gives: 

(4.80) 

or 

(4.81) 

The term containing the 'I' p gradient over the faces is calculated in a similar way to the 

diffusion term of the generic transport equation, which means that it can be decomposed 

into orthogonal and non-orthogonal components. Recalling Section 4.4.2, where the 

calculation of gradients with the above decomposition was discussed, we have: 

Sf· ( V~ P ) f = D f . ( V\f p ) f + k f . ( V\f p ) f (4.82) 
. . ., . 

orthogonal non-orthogonal 

The orthogonal contribution is treated implicitly and is given by: 

D . ( V\f ) = I D I ( ~ P ) N - ( \f p ) p 

f P f f Idfl (4.83) 

The non-orthogonal contribution is treated explicitly, which means that 'I' p values ob­

tained from the previous solution iteration are utilised. Furthermore, for this term the 

pressure gradient (V~ P ) f at the cell face is obtained by central differencing interpola­

tion, from the 'I' p gradient values at the centres of the two adjacent cells. All the com­

ponents for the derivation of the pressure equation are available then; the final form of 

this equation reads: 

(4.84) 

where 
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s Pp = 2: Sf . ( II ~ \{l u ) ) - 2: k f . [7] ( V\{l p ) f 
f P f f P f 

(4.85) 

Equation (4.84) constitutes the linear system for qJ p that needs to be solved; it can be 

reformulated in the following form: 

Ap ( \{l p ) P = 2: AN ( \{l P ) N + S Pp (4.86) 
N 

Due to the linearity of the convection terms no special treatment is required for the cal­

culation of the volumetric flux which is already calculated during the flow solution. The 

GFS solver features SIMPLE and PISO pressure correction methods. Throughout this 

study the PISO algorithm has been used for the flow equations but for the adjoint the 

SIMPLE algorithm has been preferred due to the simplicity of the equations. Since the 

adjoint equations are linear there is no need to use a more complicated algorithm like 

PISO. 

4.6.4 Boundary conditions 

The boundary conditions of the adjoint equations are treated in the same way as the 

ones of the flow solver. In the case of the target pressure distribution cost function the 

r.h.s of eq. (3.51) is calculated in each optimisation cycle using the current pressure 

values. Then the calculated r.h.s is enforced for the values of 'I' u on the wall 'pseudo­

cells'. The same procedure is used for the given Cd case. The necessary quantities are 

calculated using the known velocities from the flow filed and then they are enforced for 

the values of 'I' u on the exit 'pseudo-cells'. 

At this point all the previously discretised parts of the adjoint equation can be assem­

bled, in order to form the final set of algebraic equations that need to be solved. The 

solution procedure is exactly the same as for the flow solver and it has already been 

described in section 4.5.7. 

4.7 SUMMARY 

In this chapter the flow solution procedure has been described and cross referenced with 

the solution of the adjoint equations. The control volume approach has been adopted for 

the analysis of the fluid flow properties and subsequently for the adjoint field properties 

as well. Practically, the adjoint equations were formed in a similar way as the flow 
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equations so the same methods were used for their solution. The discretisation of the 

generic equation has been used as the origin for the discretisation and solution of both 

the flow and adjoint equations. Basic differences of the two sets of equations are stated 

and the different treatments are discussed. The following chapters are dedicated to the 

validation and application of the optimisation method described in this thesis. 
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Chapter 5 

METHOD VALIDATION & PARAMETRIC 

STUDIES 

5.1 INTRODUCTION 

In this chapter the validation ofthe proposed method, as this was described in chapter 3, 

is discussed in detail. The effect of various numerical parameters of the flow and the 

adjoint equation as well as parameters related to the optimisation method on the overall 

optimisation procedure is explored. With respect to the numerical issues, a number of 

parametric studies are presented, through which the effect of the spatial (grid) discreti­

sation and the convergence of the flow and adjoint equations is assessed. Concerning 

the optimisation parameters, study on the most suitable step sizes of the steepest descent 

method is discussed. For the validation of the model the inverse design with respect to a 

predescribed pressure distribution of a 2-D axisymmetric nozzle, using different targets 

and different initial geometries, is presented. Results of the inverse design of a 3-D 

VCO multi-hole nozzle are also presented. In order to show the generality of the pro­

posed method a 2-D airfoil inverse design case is presented here as well. 

5.2 REFERENCE NOZZLE GEOMETRY FOR PARAMETRIC STUDIES 

Within the context of the I-Level European Project several real-size single-hole nozzles 

were manufactured [180] for the experimental investigation of cavitation under realistic 

flow conditions. These nozzles were operated under a variety of injection and back 

pressures. An axisymmetric single-hole nozzle that was made from a transparent acrylic 

material (Figure 5.1) has been selected as reference for the parametric studies in this 

thesis. 
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Figure 5.1: Axisymmetric 3-D nozzle for I-Level project (by courtesy of [216]) 

It is well known that the inlet edge rounding of nozzle holes has a dramatic effect on 

cavitation [18]; investigation of this effect was one of the key objectives of the I-Level 

project. For this axisymmetric geometry, three nozzles with varying injection hole inlet 

edge rounding were manufactured. The inlet rounding of each nozzle is represented by 

the degree of hydro-grinding or hydro-erosion (HE) of the nozzles; zero hydro-grinding 

(O%HE) represents a sharp inlet edge, whereas increasing degrees of hydro-grinding 

result in increased rounding of the hole inlet. Three different levels of hydro-grinding 

were selected, namely 0% HE, 9.5% HE and 18% HE (Figure 5.2). 

0% HE 18% HE 

Figure 5.2: Real-size single-hole nozzles with varying degrees of hydro-grinding 

For this injector experimental and computational results have been presented recently 

[18,180,217]. Representative results of the cavitation appearing in the flow are shown 

in Figure 5.3. This geometry is relatively simple but of relevance to the physical pro­

cesses investigated here. 
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(a) 

Vapour (%): 0 20 40 60 

(b) 

Vapour (%): 0 10 20 30 

Figure 5.3: Single-hole nozzles for (a) 0% and (b) 9.5% hydro-grinding. The calcu­
lated void fraction distribution is shown for comparison with the CCD images, 

taken from [180]. 

Clearly, changing the hole inlet radius of curvature, the cavitation intensity is modified. 

That also affects the nozzle discharge coefficient which varies considerably between the 

non-cavitating and the fully cavitating cases. Figure 5.4 shows the predicted blockage 

(dimensionless cross sectional area at the nozzle hole exit occupied by cavitation bub­

bles), as calculated by a recently developed cavitation model [217]. 
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Figure 5.4: Predicted nozzle hole exit blockage 

152 



Chapter 5 Method Validation & Parametric Studies 

As it has been shown in a number of studies, for example [218], the cavitation number 

is the major dimensionless number used to characterise the onset of cavitation, the flow 

regimes formed inside the injection hole and the reduction of the discharge coefficient 

with increasing cavitation levels. The values tested in the I-Level project correspond to 

injection pressures from 300 to 1200bar, while the back pressure ranges from 20 to 

54bar. For the particular cases to be presented here, the numerical grid was consisted of 

about 6,000cells, while the injection and back pressures used were 1000 and 20bar, 

respectively. All the grids used for the 2-D axisymmetric case were unstructured. The 

reason is to show the generality of the discretisation scheme that calculates the grid sen­

sitivities and the adjoint gradients. Figure 5.5 shows the predicted nozzle discharge co­

efficient as function of hydro-grinding level for different cavitation numbers. On the 

same graph, the measured experimental range values are also shown. As clear, the 

model predicts reasonably the volumetric flow rate as function of the nozzle hole entry 

geometry. 
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Figure 5.5: Predicted discharge coefficient as function of inlet radius of curvature 
and cavitation number 

Due to this difference in the level of hydro-grinding, each nozzle hole has also a differ­

ent diameter, in an effort to keep the flow rate of the hydro grinded nozzles comparable 

to that of the sharp-edged nozzle. In Table 5.1 the most important geometric details of 

all the nozzles are summarised; each nozzle is codenamed after the manufacturer 

(Bosch) and its hole diameter. 

Nozzle Diameter HE Needle Lift Hole Length 

Bl84 0.184mm 18% 200llm -0.91mm 

Bl92 0.192mm 9.5% 200llm -0.96mm 

B205 0.205mm 0% 200llm 1.01mm 

Table 5.1: Geometrical details of the I-Level nozzles 
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For the parametric studies in this chapter we investigate these nozzles numerically in 

two-dimensions. Only half of the geometry is numerically simulated due to the symme­

try of the real-size nozzles along their main axis. This decision was imposed by the fact 

that many runs were necessary for the parametric studies and the computational time 

increases significantly for 3-D simulations. The aforementioned I-Level nozzles, 

namely the sharp-edged (0% HE) axisymmetric nozzle at 200 ~m needle lift has been 

used as reference geometry for the parametric studies. Similar to the hydro-grinding 

geometries are reproduced using the parameterisation scheme developed for the pur­

poses of 2-D nozzle design. An example of the sac and hole of the aforementioned ge­

ometry parameterised using the developed method (section 3.5.2) is presented in Figure 

5.6. 

Figure 5.6: Example of parameterised I-Level nozzle 

From the available experimental data [216] it was known that the reference nozzle is a 

highly cavitating one, and that for even very low cavitation numbers (eN 2: 9) cavitation 

appears in the fonn of a film that extends to the exit of the hole. 

The cost function (3.3) has been used throughout the parametric studies as this is the 

validation cost function of the developed method. The cost function expression is re­

peated here to facilitate the reader: 

Ie = 21 ~(p- pYds-~(p- PI)P~~ . lids, 
w w un 

(3.3) 
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Another geometry has been constructed from the reference geometry using the parame­

terisation scheme described in section 3.5.2. The parameters used were 20% conicity 

and 25,.~.m radius of curvature producing nozzle geometry similar to the 18% hydro­

grinding one. The latter served as the means to calculate the target flow distribution 

using the GFS flow solver. In Figure 5.7 the initial and target pressure fields are 

shown. 

Initial and Target Pressure Distribution 

1 '" Press (bar) Press (bar) 

Max=O. Max=O. 

Min=-70. 

Sharp inlet corner 
Cavitating nozzle 

Rounded nozzle inlet 
Non-Cavitating nozzle 

Figure 5.7: Initial and Target pressure fields of the axisymmetric nozzle 

The Diesel fuel that was used for all the experiments by all project partners had prede­

termined constant properties, in order to avert any deviations due to varying fuel quali­

ties; these properties have been used for all I-Level test cases and are presented in Table 

5.2 below. 

Liquid Dynamic Surface 

density PL viscosity Il tension (J 

835 kglm
j 

2.5x 1 o-j kglm·s ~0.02 N/m 

Table 5.2: Properties of the I-Level project Diesel fuel 

Results the developed method for the 2-D case described, using only the radius of cur­

vature as parameter, have been presented by the author et al in [219, 220]. 
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5.3 EFFECT OF NUMERICAL PARAMETERS 

5.3.1 Effect of Grid 

It is a well-known fact that the density in computational cells of the employed grid has a 

great impact on the accuracy of fluid flow simulations [204]. The use ofa grid with very 

low cell density can cause failure to capture essential flow characteristics, especially in 

regions of the flow where large gradients are present. Obviously, this effect is also pre­

sent in the flow and adjoint variables and as a result in the gradients and the overall 

optimisation process. For its investigation the axisymmetric real-size sharp-edged 8205 

nozzle at 200ilm needle lift was used; apart from the original 2-D mesh, which has ap­

proximately 6000cells, two additional grids with different cell densities (see Table 5.3) 

were created and used in the optimisation process. 

Grid density -3800 -6000 -11000 

Smaller cell height -IOllm -611m -411m 

Test case description Coarse Reference Fine 

Table 5.3: Computational cell densities for 2-D grid effect study 

The hole inlet is the location where the steepest pressure drop is expected to take place, 

and where cavitation is most likely to initiate as a result of this pressure drop. Thus, the 

created grids have a substantially increased cell density in the vicinity of the hole en­

trance, where the smaller size cells appear. The coarse grid is chosen in a way that the 

cell size is large but y+ is such that wall functions can be applied. The predescribed 

characteristics of the three grids are shown in Figure 5.8. 
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Ref grid 

Coarse grid 

Fine grid 

Figure 5.8: Three grids used for the grid effect parametric study 

The target geometry, for all three cases, was also produced following the procedure 

described in section 5.2; by parameterising the initial geometry using a radius curvature 

and a conicity of almost 20%. The parameterised shapes are also slightly affected by the 

density change of the grid; so the target geometry is not identical for all discretisation 

cases. This is due to the fact that the parameterisation takes place after the discretisation 

of the geometry. The target pressure distributions, for the three different spatial discreti­

sation cases, were calculated along with the initial one using the GFS flow solver. The 

calculated pressure fields are presented in Figure 5.9. Clearly the reference and fine 

grids seem to produce flow fields that are similar while the resulting pressure field of 

the coarse grid seem to be different field from the other two. 
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Pressure 
95bar 

50bar 

Figure 5.9: Pressure fields for the initial and target geometries using the three dif­
ferent grids 

The same Figure 5.10 shows the corresponding pressure target distribution along the 

boundary of the nozzle; this part of the nozzle that is modified during optimisation. On 

the same graph, the pressure distribution corresponding to the initial nozzle design is 

also plotted. The developed optimisation model was then employed to re-construct the 

geometry of the targeted pressures. The corresponding results are also presented on the 

same Figure 5.10. As it is clear, after a few iterative solutions for the flow field and the 

adjoint equations, the code converges to the desired pressure and nozzle shape for all 

the different grids. The same figure shows also the initial geometry, the targeted geome­

try and the geometry predicted by the computer model after convergence for the three 

different grids investigated. As it is clear, the model predicts well the specified pressure 

distribution and nozzle geometry. In the case of the fine grid the pressure is not matched 

exactly. This is due to the fact that the more fine distribution of points along the bound­

ary results to not smooth intermediate geometries during the optimisation process. 
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Figure 5.10: Initial and targeted nozzle designs and dimensionless (eN) pressure 
vs. model predictions after convergence for the three grids 

Finally, Figure 5.11 shows the convergence history for the three test cases presented 

here. As can be seen, for all three grids, the model converges after a few iterations and 

stabilises to almost zero cost function value. As a conclusion all cases converge to their 

optimum solution and the method works for various spatial discretisations. The conver­

gence rate in the case of fine mesh differs from the other two for the aforementioned 

reason. 
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Figure 5.11: Convergence history of the cost function for the reference, more itera­
tions and no-continuation cases 

For the aforementioned reasons the reference mesh was the one selected for all the 2-D 

axisymmetric cases; for its sufficient accuracy in the pressure field calculation and fast 

and efficient convergence of the cost function to zero. 

5.3.2 Effect of flow and adjoint solution iterations - continuation 

The quality of the approximated adjoint gradients, eq. (3.59), strongly depend on the 

convergence of the calculated flow field. This is obvious from the expressions of the 

adjoint equations (3.48) and the gradients themselves calculated in sections 3.8.5. The 

computational cost of an iterative process as the one described in the context of this 

thesis is generally extremely high. Usually ten to twenty flow and adjoint solution itera­

tions are necessary to achieve the optimum solution. Due to this fact continuation in the 

solution of the flow field has been implemented during the optimisation iterations. The 

continuation works in the sense that the flow solution of the modified geometry is not 

initialised but uses as initial values the flow field of the previous geometry. In this way 

the computational cost drops significantly; some times even 90%. 

Two tests have been conducted, regarding the effect of the convergence of the flow and 

adjoint solution. For the first test the iterations of the flow and adjoint solution in each 

optimisation cycle have been have been increased from 300 to 1000. The overall com­

putational time increased over 3 times. For the second test there was no continuation 
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used in the flow solution. As a result ~3000 iteration were necessary for the flow field 

to converge increasing the computational time 10 times. The reference optimisation case 

has been used for both these tests and results showed smoother convergence of the cost 

function. Nevertheless, the cost function converges to the same value in almost the same 

number of optimisation cycles (Figure 5.12). 

~7 
Q. 

-. - Reference I 

S 
.=!:6 -. - More iterations 
N -. - No continuation -~ 5 
II 

LL 
0 4 

3 

2 

1 

0 
0 2 4 6 8 10 12 14 16 18 20 

Optimisation Cycles 

Figure 5.12: Convergence history of the cost function for the reference, more itera­
tions and no-continuation cases 

This is justified by the fact that after some optimisation cycles the actual convergence of 

the flow solution is not really different with continuation and without or if the flow it­

erations are increased. This is due to the fact that using continuation, as the iteration 

progress, the flow solution of each cycle starts from more converged values. Neverthe­

less, only mild levels of convergence in the adjoint equation are necessary to obtain 

highly accurate gradient information [123]. Apparently, unlike finite differences, deep 

convergence of the adjoint equation is helpful but not obligatory for the success of the 

overall optimisation process. 

The target and initial pressure distributions of the reference and the case with more flow 

iterations are plotted in Figure 5.13. The model was employed to re-construct the ge­

ometry of the targeted pressure distribution. The predicted results are also presented on 

the same Figure 5.13 showing agreement with the expected/target pressure. 
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Figure 5.13: Target dimensionless cavitation number (eN) corresponding to an 
initial geometry and model predictions after convergence, for (a) reference and (b) 

more iterations case 

Figure 5.14 shows the initial geometry, the targeted geometry and the geometry pre­

dicted by the computer model after convergence for the two of the three test cases in­

vestigated. The model clearly, for both the reference and the case with more flow itera­

tions, predicts the specified pressure distribution and the desired nozzle geometry. 

y(mm) 0.5 ___ 

0.4 
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0.1 
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Figure 5.14: Initial, target and predicted nozzle shapes for (a) reference and (b) 
more iterations case 

Due to this fact, continuation has been used in all cases and the flow and adjoint solu­

tions were carried out with the least possible iterations. This led to significant computa­

tional time decrease with no actual loss in the quality of the predicted results. 
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5.4 EFFECT OF OPTIMISATION PARAMETERS 

5.4.1 Effect of Steepest descent step size 

In section 3.11 the steepest descent method that was used in this study, for updating the 

design variables, was discussed. The expression of steepest descend scheme is repeated 

here for completeness, reading: 

D new = D · - 7] a/aug 
t t aD. 

t 

(4.87) 

The efficiency and fast convergence of this method strongly depends in the choice of 

the step size 1'/ values. There are various ways to choose the value of the step size 1'/. As 

we already discussed, 1'/ is un-dimensionalised by dividing with the normalised gradient 

(3.67). The more suitable value for the step size has been investigated in this section. 

Three choices of 1'/ were made for the reference test case; one was the same order of 

magnitude as the design variables (eta2) and the other two cases were 50% more (etal) 

and 50% less (eta3). Results showed that the cost function of the case etal with the 

large step size converged faster and deeper than the other two choices (Figure 5.15). 

Even larger values of the step size were tested but failed to converge. 
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Figure 5.15: Convergence history of reference geometry with effect of step size 

Throughout this study the step size eta! was used for the 2-D test cases since it is 

proven to be the most suitable value for the convergence of the optimiser. For the 3-D 

cases step sizes of similar magnitude were used. 
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5.4.2 Effect of different initial geometries 

Four different initial geometries were tested trying to reach the same target distribution. 

The characteristics of these geometries are summarised in Table 5.4. This test was con­

ducted to assess the ability of the method to converge to the optimum solution regard­

less of the choice of initial geometry, thus design parameters. 

Casel Case2 Case3 Case4 Target 
Initial Initial Initial Initial (Ref) 

Conicity 10% 5% 0% 0% 20% 

Radius of curvature 60Jlm 50Jlm 30J.lm 10J.lm 250)lm 

Table 5.4: Cases showing the effect of different initial geometries 

The starting point of the optimisation procedure is rather critical in gradient based opti­

misation [35]. Moreover, from the results presented here it is clear that the developed 

method can perform excellent in all four cases. The reference case used in the paramet­

ric studies is case4 which as it can be seen in Figure 5.16 is the sharp geometry with the 

most intense cavitation inception. In the same Figure 5.16, the pressure field and distri­

bution along the boundary for all four cases is presented as well as the geometry of the 

parameterised 2-D nozzle. Apart from the reference case which is highly cavitating 

cases 1 and 2 are also slightly cavitating, while case3 is cavitation free. The positive 

pressure values are indicated by the red contour while the negative values are repre­

sented by the rest of the colours with blue being the most intense ones. 

The convergence history of the cost function Figure 5.17 shows excellent behaviour of 

the method for all four different initial geometries. They all converge before 10 optimi­

sation cycles. Moreover the actual convergence of the cost function is obvious from the 

results presented in Figure 5.18. Figure 5.18 shows the predicted vs. target geometries 

for the four cases. In the same figure the pressure distributions are superimposed. The 

results show that for all four cases the pressure distribution was reproduced while the 

predicted geometries match the target one. 
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Figure 5.16: Geometry, pressure field and distribution for the four different ini­
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Figure 5.17: Convergence history of validation case using different initial geome­
tries 
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Figure 5.18: Predicted vs. target geometries and pressure distributions for the four 
cases 

5.4.3 Effect of different target pressure distributions 

Three similar tests as the previous were conducted starting from the same initial geome­

try and trying to reach different target distributions. The characteristics of these geome­

tries are summarised in Table 5.5. This test was conducted to assess the ability of the 

method to converge to the optimum solution regardless ofthe choice of target. 

Casel Case2 Case3 Initial 
Target (Rell TarKet Target 

Conicity 20% 25% 10% 0% 

Radius of curvature 250~m 200~m 400~m 10pm 

Table 5.5: Cases showing the effect of different target pressure distributions 

In Figure 5.19 it can be seen that for all three cases the cost function converged to zero 

value in less than 10 optimisation cycles. Nevertheless, case2 does not show as deep 

convergence as the other two cases. This is due to the fact that the quality of the target 

pressure distribution plays a critical role in the overall convergence of the optimisation 

method. From Figure 5.20 it is obvious that the geometry of the second case has a sharp 

corner on the sac volume caused by the part of cycle put there by the parameterisation 
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scheme. Something like that can happen for large values of the radius of curvature since 

in the parameterisation scheme we try to keep the sac volume shape unaffected. 
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Figure 5.19: Convergence history of validation case using different target pressure 
distributions 

In the same Figure 5.20 the three target geometries are presented and the predicted 

(black) and initial (blue) geometries are superimposed to them. Also, in Figure 5.20 the 

initial, predicted and target distributions are shown using the same colours as for the 

geometries. Results show that in all cases the target pressure distributions were repro­

duced and the predicted geometries approximated the target ones; apart from already 

mentioned problem in case2. In the current study the first target distribution has been 

used as reference for the parametric studies. In the next section a more challenging 3-D 

validation case will be presented. 
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Target 3 

Target 2 

~--------------

Target 1 (Ref) 

Figure 5.20: Geometry, pressure field and distribution predicted (black) vs. target 
(red) for the three different target cases. Initial (blue) geometry and pressure dis­

tribution 

5.5 INVERSE DESIGN OF 6-HOLE veo NOZZLE 

The scope ofthe present study is the optimisation of real Diesel nozzles. For this reason, 

more realistic, 3-D cases are necessary for the validation of the method. The 3-D test 

validation case consists of matching a pre-described pressure distribution at the hole 

inlet of a typical veo multi-hole Diesel nozzle. This test case has been recently pre­

sented by the author et al in [221] but in that case only the radius of curvature was used 

as design parameter. The hole diameter of the nozzle is 1521lm and the hole length 

970llm. The geometry simulated corresponds to only one of the assumed six holes. Fur­

thermore, only half of it has been simulated, thus the computational domain corresponds 
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to 1I12th of the whole nozzle design, as shown in Figure 5.21 and it consists of ap­

proximately 50,000 cells. Symmetry boundary conditions have been used at the left and 

side boundaries while an injection pressure of I OOObar has been assumed at the inlet and 

20bar at the nozzle hole exit. 

The target pressure was determined by solving the steady-state single-phase flow field 

for the target nozzle using the GFS code. The initial design, from which the optimisa­

tion procedure started, was almost sharp. The values of the parameters used to repro­

duce the initial and target geometries are presented in Table 5.6. 

Radius of Conicity Needle 
curvature seat an~le 

Initial 10)lm 0% 0 

Target 45)lm (upper) 5% 1 

20)lm (lower) 

Table 5.6: Initial and target geometry design parameters 

(Fixed Pressure) JJFIOW Inlet 

~OWExit 
(Fixed Pressure) 

Symmetry 
boundary 
conditions 

Figure 5.21: 3-D VCO 6-hole Nozzle geometry and test case simulated 

For the parameterisation of the aforementioned geometries the developed scheme (sec­

tion 3.5.2) was used as it is depicted in Figure 3.5. Figure 5.22 shows how the parame-
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terisation scheme was employed in the 3-D cases and the actual parts of the nozzle that 

are modified when each design parameter changes value. 

Inclinationr 
angle 

Figure 5.22: The three design parameters used for the reproduction of the 3-D 
geometries 

The pressure distribution for the initial and the target nozzle are represented in Figure 

5.23 (a) and Figure 5.23 (b). The figure also shows the area of negative pressure which 

is reduced in the target geometry. 

Pressure 

(a) 

Figure 5.23: Pressure distribution where negative pressure is depicted at the hole 
entry and flow field along the hole plane of symmetry of the (a) initial geometry 

and the (b) target geometry 

Figure 5.24 presents various nozzle boundary lines on four cross sections parallel to the 

hole plane of symmetry. Those correspond to the initial one, having the sharpest cor­

ners, the target one, which is coinciding with the predicted one after ~20 optimisation 

cycles as well as an intermediate one as predicted after 5 optimisation cycles. From the 
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results shown in Figure 5.24, it is obvious that the model is able to predict the target 

geometry in the three dimensional space. 

Target 

Predicted 

Figure 5.24: Cross sections at four locations parallel to the hole plane of symmetry, 
showing the initial geometry, the target geometry, the predicted geometry after 5 

optimisation cycles and converged 

A slight inaccuracy in the lower side of the hole entrance is due to the fact that the pres­

sure distribution is mainly affected by the changes on the upper side of the hole en­

trance. So, the overall pressure distribution can be reproduced and the cost function 

converges to nearly zero values without exactly matching the lower side shape of the 

entrance. The predicted vs. target and initial geometries and pressure distributions in the 

upper zone, the lower zone and one intermediate zone on the hole boundary are shown 

in Figure 5.25(a), Figure 5.25(b) and Figure 5.25(c) respectively. The described inaccu­

racy is obvious from Figure 5.25(b). 
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Figure 5.25: Predicted vs. target and initial geometries and pressure distributions 
for the 3-D validation case in three 'zones' (a) upper, (b) lower and (c) middle 

This time, the number of cycles required for the cost function to converge is slightly 

bigger than in the previous 2-D cases. Still, as can be seen in Figure 5.26, the method 

converges after less than 20 cycles. 
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Figure 5.26: Convergence history of the cost function for the 3-D test case 

Since continuation of the flow solution (the flow field of the previous flow solution is 

used as starting point for the following modified geometry) is used, a significantly less 

number of iterations is required to converge, compared to those needed if one would 

start from scratch. In Table 5.7 the corresponding CPU times for the flow solution and 

the overall optimisation process are compared. The optimisation process consists of the 

flow and adjoint solutions and the grid modification process. The time that the steepest 

descent uses is negligible. The times are calculated using a computer with an Intel(R) 

Pentium(R) M processor, 2.00 GHz. 

iterations CPU time Overall CPU 

(1 iteration) time 

Flow solution -5000 -6sec -500min 

(no continuation) 

Flow solution -300 -6sec -30min 

(continuation) 

Adjoint solution -300 -2sec -12min 

Optimisation -20 -45min -900min 

Table 5.7: Comparison of CPU time required for adjoint optimisation 

In this case the total computational time for predicting the target geometry corresponds 

to less than two direct flow field solutions. 
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5.6 INVERSE DESIGN OF AN ISOLATED AIRFOIL 

In this section the inverse design of an airfoil is presented as a means to show the gener­

ality of the proposed optimisation method. For this test case the target pressure distribu­

tion Cp is obtained from a flow analysis ofa best-fit oftheNACA0012 airfoil with angle 

incidence of 0° degrees and far field velocity u = 35m/sec to ensure subsonic flow be­

cause the flow solver only deals with incompressible flows . 

Different arbitrary and non-dimensional starting geometries were tested as a parametric 

study to ensure the independence of the optimisation code to the initial geometry. For 

the parameterisation two Bezier curves were used: one for the pressure and one for the 

suction side. Each side of the airfoil is modelled separately by using Bezier polynomials 

represented by 15 control points as in Figure 5.27. The leading and trailing edge control 

points are kept fixed during the optimisation procedure to avoid rigid body movement. 

The second control point is also in x = 0 so that the steep slope of the leading edge of 

the airfoil can be represented. 
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Figure S.27: Parameterisation of initial geometry using Bezier polynomials 

The required computational unstructured meshes are generated using a typical advanc­

ing front method. The grid generation software is very fast for the 2-D cases, so it is 

repetitively used within each cycle to create the computational grid for every new air­

foil. 

Two cases having different initial geometries are presented here. Both airfoils are sym­

metric and the cost function is represented by equation (3.3). As we have already 
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pointed out the second integral is equal to zero but is necessary for the extraction of the 

boundary conditions of the adjoint equations. 

The convergence of the adjoint equations and, as a result, of the whole optimisation 

procedure, strongly depends on the convergence and accuracy of the flow solution. In 

Figure 5.28 we can see the u and v velocities field and the pressure field around the air­

foil. 

Figure 5.28: Flow field around NACA0012 airfoil (upper left) u-velocity, (upper 
right) v-velocity, (lower) pressure distributions 

In Figure 5.29 the corresponding costate variable fields are represented. The ad­

joint/costate variable fields have no physical meaning. 'P I and 'P 2 show the tension of 
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the geometry to be modified in the x and y direction respectively. As for the 'l' p takes no 

part in the gradient but is the variable that works as the pressure in the pressure correc­

tion scheme used for the solution of the adjoint equations. 

Comparison of the target pressure distribution and the NA CAOO J 2 airfoil geometry with 

the predicted pressure distribution and airfoil geometry using the optimisation method 

can be seen in Figure 5.30 and Figure 5.31 for the two cases respectively. 

Figure 5.29: Adjoint variables around NACA0012 airfoil (upper left) '1'1, (upper 
right) '1'2, (lower) 'I'p 

The purpose of selecting this test case is to investigate the accuracy level of the com­

puted gradient, because the optimal solution (i.e. the target airfoil) is known beforehand. 

The computed gradient is considered to be of sufficient accuracy if the known/target 

optimal solution is obtained. In Figure 5.32 the convergence history of the cost function 
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shows that the prior goal is fulfilled and the value of the cost function has significantly 

dropped towards zero. 
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Figure 5.30: Derived pressure distribution and profile shape vs. target NACA0012 
airfoil first case (upper) geometries, (lower) pressure distributions 
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The presented results have been obtained in approximately in 70 optimisation cycles but 

it can be noticed that the most significant reduction of the cost has occurred during the 

first 50 cycles and after the convergence is stabilized. The optimisation cycles that are 

needed for this test case are significantly more than for the previous examined 2-D and 

even 3-D nozzle cases. The reason is that the design parameters that describe the airfoil 

geometry are much more than the ones used in the nozzle cases. Moreover, the dimen­

sion of the search space increases and thus, it is much more complicated to converge to 

an optimum solution. 
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Figure 5.32: Convergence history of the geometry difference for the two test cases 
investigated 

5.7 SUMMARY 

In this chapter different test geometries were investigated for the parametric studies and 

the validation of the developed model. The parametric studies were conducted using a 

2-D axisymmetric single-hole nozzle from the ones that were constructed during the 1-

Level project. The studies were divided into two groups namely, the effect of numerical 

and the effect of the optimisation parameters. 

For the numerical parameters the effect of the grid and the effect of the number of itera­

tions until convergence were investigated. On the effect of the grid the conclusion can 

be drawn that all cases converge to their optimum solution and the method works for 

various spatial discretisations. The convergence rate in the case of fine mesh differs 
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from the other two cases due to the fact that the more fine distribution of points along 

the boundary results in not smooth intermediate geometries during the optimisation 

process. Moreover, the accuracy of the predicted pressure distribution of the coarse grid 

is poor. So, the reference grid is selected for the 2-D axisymmetric case. For the para­

metric study of the depth of convergence in the flow and adjoint solution all cases again 

matched the predescribed target pressure distribution. The case that used more iterations 

for the flow and adjoint solution had a smother convergence history. Nevertheless, the 

continuation scheme presented in the thesis was used for all the cases because it leads to 

significant computational time decrease with no actual loss in the quality of the pre­

dicted results. 

For the optimisation parameters the effect of the steepest descent step size and the effect 

of the choices of target pressure distribution and initial geometry were investigated. The 

conclusion drawn for un-dimensionalised step size was that choices can be made in the 

order of magnitude of the design variables. One can always increase the step size and 

the convergence rate will increase, up to a limit were the method will fail to converge. 

In the case of the different initial geometries robustness of the method was shown since 

all four cases reproduced the target pressure distribution while the predicted geometries 

match the target one. In the final test three different target distributions were considered 

and the model was set to reproduce the target geometries. In all cases the target pressure 

distributions were reproduced and the predicted geometries approximated the target 

ones. Nevertheless, in case 2 the results were not as good as in the other cases because 

of the bad quality of the chosen target geometry. This led to the conclusion that the 

quality of the target plays an important part in the convergence of the method. 

The 3-D test validation case consisted of matching a pre-described pressure distribution 

at the hole inlet of a typical veo multi-hole Diesel nozzle. Four design parameters 

were used in order to reproduce the in-between and resulting geometries of the design 

process. The optimisation method converges to the predescribed pressure distribution in 

less than 20 cycles while the predicted geometry approximates really well the target 

one. 

Finally the inverse design of an NA CA 0012 airfoil was conducted using as design pa­

rameters Bezier polynomials. Two different initial geometries were used to match the 
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predescribed pressure distribution. The predicted results show the generality of the pro­

posed methodology. 
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Chapter 6 

METHOD ApPLICATIONS 

6.1 INTRODUCTION 

In the previous chapter the method was validated by several inverse design cases both 

using 2-D and 3-D geometries. In this chapter the discussion is mainly focused in the 

application of the developed method for producing optimised diesel nozzle shapes. For 

the purpose of optimising the geometries the second cost function is used, aiming to the 

maximisation of the discharge coefficient, which at the same time corresponds to ge­

ometries which have controlled or eliminated cavitation inception in the hole entrance. 

This is identified in the steady state mode by reduction of the volume of negative pres­

sure appearing in the hole entrance. Several test cases, both 2-D and 3-D, are investi­

gated in this chapter. Parametric studies of the effect of the different design parameters 

on the optimum geometry are presented. The geometries used are either constructed for 

the model testing or have been made available as part of recent and ongoing research of 

the group on cavitation. 

6.2 OVERVIEW OF TEST CASES INVESTIGATED 

Cavitation appears in the nozzle in two forms. The first type initiates inside the orifice at 

the top of the hole entrance. It is formed due to flow separation at the comer that causes 

local pressure drop. Sometimes, cavitation erosion appears in this area. In a single-phase 

flow calculation this area can be correlated with the area where the calculated pressure 

takes negative values. The second form of cavitation is referred to as string cavitation. 

The root of this two-phase flow effect is still not fully documented. Some scenarios 

have been proposed in the literature. Relevant experimental work of the group published 

recently in [194], suggests vapour entrapment into the core of transient vortices forming 

inside the sac volume upstream of the injection hole. Evidence of the erosion damage 

caused by the two forms of cavitation can be seen in Figure 6.1, taken from [222]. The 

left hand-side image is due to geometrically-induced cavitation while the right-hand 
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side is believed to be due to string cavitation. Although the effect of cavitation on the 

spray and the overall engine performance is still under the microscope, the previously 

described results of its formation lead to the necessity of controlling the cavitation in­

ception. During this study only the reduction of the geometrically-induced cavitation 

has been considered. 

Figure 6.1: Details of erosion in nozzle due to (left) hole cavitation and (right) 
string cavitation 

As it has been clear from the cost function definitions of section 3.4, the approach of the 

cost function (3.3), used for the validation is really restrictive because of the fact that 

the target pressure distribution must be known. For the application of the developed 

method in cavitation control the second cost function has been used. The cost function 

expression (3.5) is repeated here to facilitate the reader: 

(3.5) 

where Cd is the desired value of the Cd that we want to achieve. As it has been men­

tioned in section 3.2, although we seek to maximise the Cd, the problem is set up again 

as a minimisation problem by subtracting the current Cd value from the target Cd one. 

This approach is based on the fact that cavitation is reduced or even eliminated as the 

geometric discharge coefficient (Cd) increases. In this way cavitation inception can be 

"controlled" without actually solving for the multi-flow problem. It has to be noted that 

this is not an inherent disadvantage of the method adopted here, but simply a step not 

performed during the present investigation. 
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This approach is again an inverse design case but now the target geometry is not a 

known one. In most of the test cases in this chapter the cost function is used as an opti­

misation one where the user wishes to achieve the maximum Cd possible. For this rea-

son the value of Cd is set equal to 1; this is a non-feasible idealistic value that cannot be 

achieved. However, in some parametric studies where the effect of the different parame­

ters is investigated the target Cd is set to take actual feasible values for study reasons. 

In some cases constraint of the different parameter was essential so the design produced 

does not violate the manufacturer's standards. 

In the next sections several geometries are tested using the aforementioned cost func­

tion. All the geometries are subjected to different tests. The effect of different target 

discharge coefficients Cd in each parameter is investigated using the 2-D axisymmetric 

geometry. Two multi-hole veo nozzles were used in different cases for the application 

of the model. In order to distinguish them the one which has no sac volume is referred 

to as a veo NS while the other one is referred to as veo WS. For the veo NS nozzle 

the effect of different parameters is investigated in the Cd maximisation case. For the 

veo WS nozzle the effect of different parameters is investigated as well as the effect of 

different needle lifts. Finally the effect of geometric constraint is depicted in the mini­

sac nozzle. A description of the optimisation test cases investigated can be seen in Table 

6.1 where the boundary conditions and the initial calculated discharge coefficient are 

depicted. 

NOZZLE: P1NJ POACK Initial Cd 

2-D axisymmetric 1000bar 20bar 0.81 

6-lIole veo NS 1000bar 20bar 0.76 

6-lIole veo WS 1300bar 100bar 0.78 (250Jlm lift) 
0.16 (20 Jlm lift) 

mini-sac 1600bar 160bar 0.84 

Table 6.1: Description of optimisation test cases 

All four geometries are tested in high needle lift conditions apart from the veo nozzle 

which is tested in both high and low needle lift. This choice was made because the dis­

charge coefficient is usually specified at high needle lifts where there is no significant 
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pressure drop at the needle seat area and also because the grid modification tool works 

better for such cases. 

6.3 AXISYMMETRIC SINGLE-HOLE NOZZLE 

The same I-Level axisymmetric nozzle geometry which was used for the parametric 

studies of the previous chapter and was described in section 5.2 has been used here as 

well. More specifically, this geometry is the axisymmetric single-hole nozzle (Figure 

5.1) that was constructed from a transparent acrylic material for purposes of comparison 

between experimental and computational data [216]. In Figure 6.2 a cross-section of the 

3-D model of the sharp-edge axisymmetric single-hole Bosch nozzle is presented, re­

vealing the needle and internal sac volume geometry. 

Figure 6.2: Half CAD model of axisymmetric O%HE nozzle for I-Level project 

The initial geometry, diesel fuel used and flow conditions are the same as they have 

been described in detail in section 5.2. In the following sections the geometry is opti­

mised with respect to the maximisation of the Cd and the effect of different design pa­

rameters in the optimisation process is investigated. 

6.3.1 Parametric study of the effect of the design parameters 

Two design parameters have been used for the parameterisation of the 2-dimensional 

geometry. The effect of these parameters in the inverse design case with three target 

discharge coefficients is investigated in this section. First the effect of the conicity and 

184 



Chapter 6 Method Applications 

then the effect of the radius of curvature are discussed as they have been used to param­

eterise the 2-D axisymmetric nozzle according to the model described in section 3.5. 

Effect of conicity 

Three test cases are used to investigate the effect of the conicity in the inverse design 

process using different target discharge coefficients. These test cases are shown in detail 

in Table 6.2. The initial and target Cd are depicted as well as the predicted Cd using the 

optimisation model. In the same table the predicted percentage of increase from the 

initial conicity values are included. The initial geometry is cylindrical or has 0% conic­

ity. 

Casel Case2 Case3 

Initial Cd 0.81 0.81 0.81 

Target Cd l. 0.93 0.88 

Predicted Cd 0.92 0.90 0.88 

Conicity 17% 14% 10% 

Table 6.2: Cases and results for the effect of conicity 

Calculation starts from an assumed initial geometry, corresponding to the da hed line 

(most cavitating design), as it is shown in Figure 6.3. After convergence, the model 

predicts the new geometries corresponding to the solid lines in the same Figure 6.3 

which corresponds to nozzles having a Cd as close as possible to the targeted values. 
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Figure 6.3: Initial and optimised boundary of the axisymmetric nozzle for the three 
cases using conicity as design parameter 
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As it is clear from Table 6.2 and Figure 6.4, using just the conicity as design parameter 

the target Cd cannot be achieved in all three cases. This is an obvious result for the first 

case since the target Cd is set equal to 1 which is not a feasible value. But the same 

problem appears also in the second case where Cd = 0.93. Despite of the fact that using 

just this parameter there is no convergence in the third case the model converges in just 

5 iterations (Figure 6.4). 
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Figure 6.4: History of the discharge coefficient and cost function for the three test 
cases where only the conicity is used as design parameter 

The contour of the predicted geometries for the three cases investigated are presented in 

Figure 6.5 and compared to the initial geometry. The red area shows positive pressure 

values while the blue indicates the negative pressure areas. 

Case 3 

Figure 6.5: Initial vs. predicted for the three cases investigated using the conicity as 
design parameter where blue area indicates negative pressure 

Clearly, other design parameters must also be used to achieve geometries which do not 

have any negative pressure, thus cavitation. 
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Effect of radius of curvature 

The same three test cases are used to also investigate the effect of the radius of curva­

ture in the inverse design process using the same three target discharge coefficients. 

These test cases are shown in detail in Table 6.23. The initial and target Cd are depicted 

as well as the predicted Cd using the optimisation model. In the same table the predicted 

radius of curvature values are included. The initial geometry is almost sharp with only 

l).lm radius of curvature. 

Casel Case2 Case3 

Initial Cd 0.81 0.81 0.81 

Target Cd 1. 0.93 0.88 

Predicted Cd 0.97 0.93 0.88 

Radius of curvature 4251lm 160llm 40).lm 

Table 6.3: Cases and results for the effect of radius of curvature 

Again the design process starts from the dashed line shown in Figure 6.6 and converges 

to the predicted geometries depicted with the solid lines and their corresponding pres­

sure distributions which are shown in the same Figure 6.6. The predicted designs corre­

spond again to nozzles having a Cd as close as possible to the targeted values. The ge­

ometry of the third case is slightly different of the initial one but has pressure value 

lower than the threshold for cavitation lower pressure while the other two cases almost 

eliminate the cavitation site. 
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Figure 6.6: Initial and optimised boundary of the axisymmetric nozzle for the three 
cases using radius of curvature as design parameter 
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This time the model managed to predict exactly the two inverse cases 2 and 3 as it is 

obvious from Table 6.3 and from the convergence history shown in Figure 6.7. The 

model reached a maximum Cd value of 0.97 in less than eight iterations, as can be seen 

in the same Figure 6.7. 
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Figure 6.7: History of the discharge coefficient and cost function for the three test 
cases where only the radius of curvature is used as design parameter 

In Figure 6.8 the predicted contour is presented and compared with the initial geometry. 

From the red colour it is obvious that the results of cases I and 2 are not expected to 

result to cavitation inception. The third resulting geometry is cavitating because of the 

choice of the target discharge coefficient. 

Case 2 Case 3 

Figure 6.8: Initial (blue line) vs. predicted (contour) for the three cases investigated 
using the radius of curvature as design parameter where blue area indicates nega­

tive pressure 

The following test case combines the two design parameters for the prediction of an 

optimised geometry with the maximum possible Cd value. 
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6.3.2 Discharge coefficient maximisation of the 2-D axisymmetric single-hole noz­

zle 

The predescribed optimisation procedure was repeated in this case where both parame­

ters are used for the design of the 2-D axisymmetric single-hole nozzle. The conver­

gence history of the cost function and the predicted values of the discharge coefficient 

in every optimisation cycle are presented in Figure 6.9. In this case the design procedure 

was clearly speed up and a better Cd namely 0.99 was predicted by the model in ju t 

three cycles. 
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Figure 6.9: History of the discharge coefficient and cost function for the optimisa­
tion case 

The resulting geometry had an increased conicity up to 14% while the predicted radiu 

of curvature was 380llm. In Figure 6.10 the initial and predicted b undarie f n zzle 

are compared. In the same figure the corresponding pressure of the initial and the pre­

dicted geometries are shown. The optimised geometry is clearly non cavitating in thi 

case. 

eO.5 
.§. 
>. 

0.4 

0.3 

0.2 

0.1 

- - - - Initial 
- Optimised 

-- -------- --------

4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 
x (mm) 

140 
> 

0:-
120 

Q. 

1 0 
Q. 

ti. 
Ii' .20 z 
0 

-40 

- - •• Inltlal 
- Optimised 

0, 

" " " " . 

4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 
x(mm) 

Figure 6.10: Initial vs. optimised boundary of the axisymmetric nozzle after con­
vergence of the cost function 
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Clearly, by using both parameters the resulting geometry can achieve the largest Cd 

values and the cavitation inception can be completely eliminated. The design parameters 

in this case needed less modification to predict a larger Cd value than the extreme cases 

of each parameter by itself. This is a very convenient result since usually the manufac­

turers are seeking for improvement in the performance resulting by slight geometry 

modification. The model also converges much faster using the freedom given to it by 

the dimension in the search space. 

6.4 MULTI-HOLE VCO NS NOZZLE 

A typical VCO multi-hole Diesel nozzle geometry with no sac was designed for the 

needs of the present study and the testing of the developed method. The initial geometry 

used in this case is the same one that has been described in section 5.5 and was used for 

the validation case. The application of the method in this section consists of the appro­

priate modification of the aforementioned geometry in order to achieve the maximum 

discharge coefficient Cd. The automated model developed for the thesis is used for the 

optimisation. 

The specifications of the geometry are described in section 5.5 but are repeated here to 

facilitate the reader. The hole diameter of the nozzle is 152~.lm and the hole length 

970~m. The geometry simulated corresponds to the half of one of the six holes, thus the 

computational domain corresponds to 111th of the whole nozzle design (details can be 

seen in Figure 5.21) and it consists of approximately 50,000 cells. Symmetry boundary 

conditions have been used at the left and side boundaries while an injection pressure of 

1000bar has been assumed at the inlet and a back pressure of 20bar at the nozzle hole 

exit. The pressure distribution of the initial geometry has already been presented in 

Figure 5.23 of section 5.5. 

In the following section results for this test case are presented and discussed. First a 

parametric study regarding the effect of each of the design parameters in the optimisa­

tion process is investigated. Then a test is conducted using all three design parameter 

together, trying to achieve the maximum Cd value. 
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6.4.1 Effect of different parameters 

Tests have been conducted for all three different design parameters to investigate the 

effect of their perturbation in the value of the discharge coefficient. The ability of the 

method to predict nozzles without cavitation by changing only one parameter each time 

is also investigated. In Figure 6.11 the resulting pressure distributions and geometries 

for each parameter are presented. The positive pressure is denoted with red while the 

contour shows the area of negative pressure in the predicted nozzles. 

Press (bar) 
O. 

-80. 

hole exit diameter radius of curvature 
needle seat angle 

Figure 6.11: Effect of different parameters of the VCO NS nozzle in the Cd maxi­
misation case 

As it is obvious from Figure 6.11 changing only the conicity, a geometry with no cavita­

tion inception can be produced. Nevertheless, this is the case for tapered nozzle where 

a more gradual pressure drop happens along the length of the hole which re ults to 

overall higher Cd. Concerning the other two parameters some more conclusions can be 

drawn. Modifying the radius of curvature leads to displacement of the negative pressure 

area further inside the hole compared to the pressure distribution of the initial geometry 

(Figure 5.23). Finally, the inclination angle when acting as the unique design variable 

does not make any significant difference in the cavitation intensity for this particular 

case tested here. This is not a general conclusion and it believed to be due to the shape 

of the sac of the nozzle and the position of the hole. Nevertheless, this design parameter 

is usually restricted within a small range of variation, as specified by the engine design. 
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The effect of each parameter variation on the discharge coefficient values is depicted in 

Figure 6.12. The x-axis represents the percentage of increase in each parameters varia­

tion. Moreover, 0% is considered the variation of the parameters in the initial design and 

100% is the maximum predicted variation for each parameter. As it has been discussed 

in section 3.5 where the parameterisation scheme was described the radius of curvature 

varies for each zone of the hole surface. For this reason the mean/average value of these 

radiuses is used in Figure 6.12. The behaviour of the discharge coefficient is the ex­

pected for all parameters. 
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Figure 6.12: Variation of the discharge coefficient with respect to the variation of 
each parameter 

In Table 6.4 the resulting Cd and the predicted value of each parameter are summarised, 

as well as the normalised volume of negative pressure (VNP) of the predicted geome­

tries relative to that of the initial design. 

Cylindrical Tapered Curved Inclined 

Cd 0.72 0.82 0.81 0.73 

Design parameter 0 5.2 40.~m 1 

VNP 100% 0.5% 52% 91% 

Table 6.4: Summary of results for the effect of the design parameters in the MuIti­
hole VC NS nozzle optimisation 
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Clearly, the tapered geometry is the one which can achieve the largest Cd with an angle 
o 

of 5.2 compared to the cylindrical geometry and a 99.5% of decrease of the VNP is 

achieved. The radius of curvature can produce geometry with almost 50% of the VNP 

of the sharp one while the inclination angle does not really vary during the optimisation 

process. In the next paragraph all parameters are combined for the optimisation of the 

multi-hole nozzle. 

6.4.2 Discharge coefficient maximisation of multi-hole veo NS nozzle 

The developed model was used in a test where all the design parameters where free to 

vary in order to design a multi-hole veo nozzle with maximised discharge coefficient. 

The method has already converged in only four iterations, and although, there is an os­

cillation in the predicted Cd values the history of the cost function shows convergence, 

as it is shown in Figure 6.13. The oscillation is not so intense in the cost function history 

due to difference in the scaling of the two graphs. 
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Figure 6.13: History of the discharge coefficient and cost function for the 6-hole 
veo NS nozzle case 

The reSUlting geometry appears to be non cavitating since the negative pressure values 

are eliminated as it is shown in Figure 6.14. On the same Figure 6.14 the initial and 

optimised pressure contour and geometry of the veo nozzle after convergence of the 

cost function is presented. The positive pressure values are depicted with red colour 

while the other colours show the negative pressure contour with blue being the most 

intense. It is obvious that the model predicted a cavitation free geometry with maxi­

mised Cd by introducing small changes in the radius of curvature and the conicity while 

the inclination angle again, did not contribute to the overall result. 
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Figure 6.14: Initial and optimised pressure contour of the VCO NS nozzle after 
convergence of the cost function 

The predicted values of the design parameters, the Cd and the VNP have been compared 

to the initial ones and they are summarised in Table 6.5. 

Cd VNP Radius of Conicity Needle 
curvature seat angle 

Initial 0.76 100% 1O.~m 0 0 

Predicted 0.92 0% 12.5~m 2.4 1 

Table 6.5: Results of the Multi-hole VCO NS nozzle after convergence of the cost 
function 

Another point that is noticeable from the results is that the predicted discharge coeffi­

cient in the case that all parameters are involved is the best prediction compared to the 

tests with each individual design parameter. Also in this case the parameters have to 

vary less to predict this optimum value compare to the case where each parameter varies 

individually. The starting Cd case is larger than in the parametric study because the 
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starting geometry in this case is not completely sharp since so as to resemble realistic 

initial geometry. 

Finally, in Figure 6.15 the flow field and the iso-surface of negative pressures of the 

initial, predicted and two in-between iterations geometries are presented. 

Figure 6.15: Streamlines and iso-surface of negative pressure of the (a) initial, (b) 
third cycle, (c) tenth cycle and (d) predicted geometries for the Multi-hole veo NS 

nozzle case 

The streamlines coming in the hole along with the iso-surfaces of the negative pressure 

area are depicted. In Figure 6.15 (a) and (b) the recirculation and separation producing 

the negative pressure respectively are shown. The flow is attached to the hole entrance 

in Figure 6.15 ( c) due to the hole inlet curvature predicted by the model. 

6.5 MULTI-HOLE veo WS NOZZLE 

The model has also been employed for the optimisation of a multi-hole VCO Diesel 

nozzle. The geometry of Figure 6.16 has been provided by the manufacturer to the 

group for investigation purposes. Moreover, the cavitation effects of this nozzle and 

geometry modifications in order to reduce them are investigated. Both experimental and 

computational tests have been conducted in this geometry by the CFD group of City 

University but not within the context of this thesis. 
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Figure 6.16: CAD model of 6-hole VCO WS nozzle 

During this study all the cases considered are steady and the cavitation has been identi­

fied by the negative pressure areas. Nevertheless, other member of the research group 

have employed the in-house cavitation model of [18] and some representative results are 

included here as reference for the reader. Figure 6.17 shows the cavitating flow in the 

veo WS nozzle (a) when it is initiated and (b) when the cavitation reaches the hole 

exit. The needle movement is considered in this case. 

(a) Needle lift = 21IJm 

(b) Needle lift = 85IJm 

Figure 6.17: Results from unsteady cavitating flow when (a) cavitation is initiated 
and (b) when it reaches the exit ofthe hole for the veo WS nozzle 
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The specifications of the geometry as this was simulated are described next. The hole 

diameter of the nozzle is 195.6~m and the hole length Imm. The geometry simulated 

corresponds again to the half of one of the six holes, thus the computational domain 

corresponds to l/lth of the whole nozzle design and it consists of approximately 65,000 

cells. Symmetry boundary conditions have been used at the left and side boundaries 

while an injection pressure of 1300bar has been assumed at the inlet and a back pressure 

of 100bar at the nozzle hole exit. 

Two cases are investigated for this geometry. First the effect of the different parameters 

is studied, where in this case the effect of the curvature radius is explored in more detail. 

The effect of the needle lift is explored for this case as well. Significant results are 

drawn from the aforementioned tests which are discussed in the following sections. 

6.5.1 Effect of design parameters 

Tests for each parameter are conducted for this geometry in the way they were em­

ployed in the geometry of section 1916.4.1. The model was applied in each individual 

design parameters to investigate the effect of their perturbation in the value of the dis­

charge coefficient. The ability of the method to predict nozzles without cavitation by 

changing only one parameter each time is also investigated. Special attention has been 

given in the radius of curvature. As it is denoted in the description of the paramcterisa­

tion scheme in section 3.5.2 the radius of curvature is implemented in the design by the 

use of two parameters that correspond to the upper and lower zones of the hole. The in­

between values of the radiuses of curvature are interpolated from the two given ones. 

For the investigation of this section three tests concerning the radius of curvature were 

carried out. In the first test both parameters vary and in the two only the lower or only 

the upper parameter varies and the other is fixed. 

In Figure 6.11 the resulting pressure distributions and geometries for each parameter are 

presented. The positive pressure is denoted with red while the contour shows the area of 

negative pressure in the predicted nozzles. 
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Cylindrical (initial) Press (bar) Hole exit diameter 
O. 

Radius of curvature 

Figure 6.18: Effect of different parameters of the VCO WS nozzle in the Cd maxi­
misation case 

As it is clear from Figure 6.18 only the conicity almost eliminates the cavitation in the 

nozzle. An unexpected result for the three curvature cases is that the best behaviour was 

observed when the lower curvature varies; something that was not the case in previous 

tests (section 5.5). In this case the performance of the nozzle is mainly affected by the 

lower curvature where in the aforementioned validation case that parameter did not play 
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a significant part in the results. The author believes that this is due to the existence of 

sac volume in this geometry. Another observation was that in some cases the discharge 

coefficient was increased while the VNP did not decrease. In those cases the area of 

negative pressure was transferred further inside the hole of the orifice and its intensity 

was weakened. Because of that the negative pressure in this case was measured by the 

average between the percentage ofVNP and of the difference of the maximum pressure 

between the predicted and the initial design. In Table 6.6 all these results concerning the 

behaviour of the model for each design parameter are summarised. 

Cd Negative Radius of Conicity 
pressure curvature 

Cylindrical 0.78 100% 20.J.lm(up) 0 
12.Jlm(lr) 

Tapered 0.87 13% 20.J.lm(up) 4.3 
12.llm(lr) 

Curved 0.84 92% 36.J.lm(up) 0 
31.llm(lr) 

Curved (upper) 0.83 96% 38.J.lm(up) 0 
12.llm(lr) 

Curved (lower) 0.85 80% 20.J.lm(up) 0 
78.5Jlm(lr) 

Table 6.6: Summary of the effect of the design parameters in the Multi-hole VCO 
WS nozzle optimisation 

In the following section the effect of the needle lift is investigated on the same nozzle. 

6.5.2 Effect of needle lift 

Two tests were conducted to investigate the effect of the needle lift in the optimisation 

process and how it affects the ability of the model to predict optimum results. The two 

lifts investigated were the extreme needle placements for this case namely 250Jlm and 

20J.lm. The low lift case is a little peculiar because the predicted Cd is based on the noz­

zle hole exit area, which for this case is larger than the flow area at the needle seat. For 

the purposes of making a/air comparison the two cases a target Cd = 0.25 was used in 

the low lift case. So both cases converged in approximately 30 to 35 iterations giving a 

very good estimation of the target Cd as it is clear from Figure 6.19. Results showed that 

the low lift case starting from a Cd of 0.16 with small variation in the curvature and the 

conicity achieves a cavitation free solution while for the high lift case the significantly 

larger variation in the curvature is necessary. 
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Figure 6.19: History of the discharge coefficient and cost function for the VCO \VS 
nozzle in two different needle lifts 

All these results concerning the effect of the needle lift in the optimisation of the veo 
WS nozzle are summarised in Table 6.7. 

Cd VNP Radius of Conicity Needle 
curvature seat anKle 

Initial (20Jlm) 0.16 100% 1O.J.lm(up) 0 0 
8·/lp1(lrl 

Predicted (20Jlm) 0.23 0% 13.J.lm(up) 5 0 
9.J.lm(lr) 

Initial (2S0Jlm) 0.78 100% 20.J.lm(up) 0 0 
12.J.lm(lr) 

Predicted (2S0Jlm) 0.895 3% 90.J.lm(up) 4.8 0.4 
77!l_mJlr) 

Table 6.7: Summary of the effect of the needle lift in the Multi-hole veo \VS noz­
zle optimisation 

In Figure 6.20 the initial and predicted geometries of both the high and low lift case are 

cross referenced where the previously discussed attributes can be visualised. 
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Figure 6.20: Initial and optimised pressure contour of the veo WS nozzle in 
250J'm (upper) and 20J'm (lower) needle lift after convergence of the cost function 
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Finally in Figure 6.21 the streamlines and the iso-surfaces of the negative pressure in 

the initial, predicted and two in-between iterations for the high lift case are presented 

and also the separation that causes the cavitation inception in the hole entrance. 

Figure 6.21: Streamlines and iso-surface of negative pressure of the (a) initial, (b) 
fifth cycle, (c) fourteenth cycle and (d) predicted geometries for the veo WS noz­

zle case in high lift conditions 

It is clear from the previous results that the cavitation inception is easier eliminated in 

the low lift case probably because in this case cavitation usually appears in the needle 

seat than the hole entrance. 

6.6 MINI-SAC NOZZLE 

Another industrial geometry has also been used as an application to the developed 

method. The geometry of Figure 6.16 has been also provided by another manufacturer 

to the group for investigation purposes. This geometry was one of several that were 

provided within the context of a project between the aforementioned manufacturing 

company and the CFD group of City University. 
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Figure 6.22: Half of one hole of the mini-sac 6-hole nozzle geometry 

Computational tests have been conducted in this geometry in order to identify and in­

vestigate hole and needle seat cavitation phenomena. Some representative results of 

these tests are presented in Figure 6.23, taken from [18]. Although, these kind of flows 

are not included in the present research it is included here as reference for the reader for 

a better comprehension of the multi-phase flow in such nozzles. 

Figure 6.23: Results for cavitating flow the mini-sac multi-hole nozzle 

The specifications of this geometry are: the hole diameter of the nozzle is 120.~m and 

the hole length 623.~m. The geometry simulated corresponds again to the half of one of 

the six holes, thus the computational domain corresponds to 1I12th of the whole nozzle 
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design and it consists of approximately 60,000 cells. Symmetry boundary conditions 

have been used at the left and side boundaries while an injection pressure of 1600bar 

has been assumed at the inlet and a back pressure of l60bar at the nozzle hole exit. 

The effect of the geometrical constraints is investigated for this geometry. Two tests 

have been conducted where in one all parameters are free to vary and in the other the 

conicity has an upper boundary of 2.5 o. The results which are drawn from this test are 

discussed in the following section. 

6.6.1 Effect of geometrical constraints 

For the purposes of investigating the effect of geometrical constraints on the developed 

method two different tests were carried out using the mini-sac nozzle. In the first test all 

the design parameters are free to vary while in the second case an upper limit in the 

° values of the conicity is enforced, namely 2.5 . The problem again consisted of maxi-

mising the discharge coefficient and a prediction was achieved for both cases in about 

15 iterations. The convergence history of the discharge coefficient for the unconstraint 

case is shown in Figure 6.24 where the initial and final predictions of discharge coeffi­

cient are depicted. 

Predicted Cd=O.88 
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Figure 6.24: History of the discharge coefficient for the mini-sac nozzle case with­
out constraints 
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The corresponding results are summarised in Table 6.8 where it is obvious that the case 

with the constraint conicity resulted in a geometry with smaller Cd. 

Cd VNP Radius of ~onicity Needle 
curvature seat an~le 

Initial 0.76 100% 10.J,1m 0 0 

Predicted (con- 0.86 15% 16.6J,1m(up) 2.4 0.6 
straint conicity) 13.7J,1m(1r) 

Predicted (free pa- 0.88 0% 14.J,1m(up) 5.34 0.7 
rameters) 10.4gm(1Q 

Table 6.8: Results of the mini-sac nozzle for constraint and unconstraint optimisa­
tion 

The inclination angle again in this case did not influence the outcome of the optimisa­

tion. Another noticeable result is the fact that the constraint of the conicity influenced 

the modification of the radius of curvature. Moreover, the optimisation model modified 

the radius of curvature more in order to predict a nozzle with larger Cd. Clearly from the 

summary of the results in Table 6.8 and Figure 6.25 the mode! did not achieve to elimi­

nate the cavitation inception in the constraint case. 

Figure 6.25: Initial (left) and optimised pressure conte:::::- of the mini-sac nozzle 
with constraint conicity (middle) and free parameters (right) needle lift after con­

vergence of the cost function 
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On the same Figure 6.25 two views of the initial and predicted geometries of the two 

tests conducted are presented. As it has already been mentioned, the red contour corre­

sponds to the positive pressure while the negative is represented with the other colours. 

Clearly the constraint geometry has still a small negative pressure area while in the 

other case the result is non-cavitating. It is also obvious that the constraint geometry 

predicted is also more curved than the unconstraint one. 

The initial, predicted and two in-between iterations of the unconstraint case are pre­

sented in Figure 6.26 where the streamlines and the iso-surfaces of the negative pressure 

area are depicted. In Figure 6.26(a), (b) and (c) negative pressure still appear to the hole 

inlet where in the converged geometry in Figure 6.26{ d) they are eliminated. The no­

ticeable thing in this figure is that the recirculation in the sac becomes more intense 

while the iterations progress. 

Figure 6.26: Streamlines and iso-surface of negative pressure of the (a) initial, (b) 
fourth cycle, (c) eighth cycle and (d) predicted geometries for the mini-sac nozzle 

case 
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6.7 SUMMARY 

In this chapter four different geometries were used for the application of the developed 

model; the 2-D axisymmetric single-hole nozzle and three 3-D diesel nozzles. One of 

the 3-D nozzles was constructed for the model testing of this thesis while the other two 

are production nozzles, available to the group as part of recent and ongoing group re­

search on cavitation. All these geometries were optimised with respect to the discharge 

coefficient and different tests have been conducted for each of them. From the investi­

gation of this chapter several conclusions were drawn. 

For the 2-D axisymmetric geometry, using just the conicity the target Cd cannot be 

achieved in all cases due to the inefficiency of the parameterisation scheme. Different 

behaviour is noticed in the 3-D geometries where the conicity is modified using the exit 

instead of the inlet diameter. Using just the radius of curvature the model was more 

efficient predicting exactly the target Cd values. 

For the 3-D geometries, concerning the effect of the design parameters clearly the 

conicity is the one that causes the most significant increase in the discharge coefficient 

and elimination of the volume of negative pressure. This is due to the aforementioned 

characteristic of tapered nozzles. By the variation of the radius of curvature the dis­

charge coefficient increases while the area of negative pressure just moves further inside 

the nozzle hole. Finally, the inclination angle does not make any significant difference 

in the cavitation intensity for the particular cases studied here. Nevertheless, in general 

this design parameter cannot vary in a wide range of values due to engine specifications. 

Concerning the effect of the needle lift, the cavitation inception is easier eliminated in 

the low lift case probably because in this case cavitation usually appears in the needle 

seat than the hole entrance. 

The conclusion that can be drawn from constraining certain parameters is that the model 

is varying the rest of the design parameters in order to converge but the predicted ge­

ometry may not have the expected performance since the search space for the optimisa­

tion is narrowed. 
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A general conclusion is that by using a combination of the design parameters instead of 

each one separately, the resulting geometry can achieve largest Cd values and the cavita­

tion inception can, in some cases, be completely eliminated. Each design parameter in 

the combined case needed less modification to predict a larger Cd value than the ex­

treme cases of each parameter by itself. This is a very convenient result since usually 

the manufacturers are seeking for improvement in the performance resulting by the least 

geometry modifications. The model also converges much faster in a multi-dimensional 

search space. 
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CONCLUSIONS & RECOMMENDATIONS FOR 

FUTURE WORK 

7.1 OVERVIEW 

The objective of the research documented in this thesis was the development of an 

automated mathematical methodology for designing nozzle geometries with specified 

flow characteristics. More specifically, the goal was to design automotive diesel injector 

nozzles able to produce controlled (or reduced) cavitation. The developed method is 

based on the adjoint formulation of the flow equations; in the case of this thesis the 

steady incompressible Navier-Stokes equations. The adjoint formulation is carried out 

by enforcing the flow equation in the form of constraints into the cost function. In this 

way gradients for each design parameter are calculated and driven to zero in order to 

direct the design parameters into an optimum geometry. The adjoint method has been 

chosen for the optimisation due to its accuracy and fast convergence. Furthermore, in 

nozzle re-design cases the required parameters describing the geometry and affecting 

cavitation may be numerous. The adjoint method provides the gradients of the cost 

function in a way that the computational effort required for this calculation is independ­

ent of the number of the design variables. 

In order to setup the optimisation problem using the aforementioned method some tools 

needed to be developed. The cost functions were defined in such a way that by driving 

them to zero, geometries satisfying different flow characteristics were provided. The 

cost function is the means to quantify the optimum solution; as such it is really impor­

tant to define it appropriately for each problem. A parameterisation scheme suitable for 

the design of automotive injector nozzles was developed and implemented in the code 

followed by a grid modification tool. Finally, an optimisation method completed the 

iterative optimisation process by driving the calculated gradients to zero and providing 
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the design parameters for the modification of the geometry towards the optimum solu­

tion. 

To investigate the performance of the proposed methodology, the effect of various nu­

merical parameters of the flow and adjoint equations, as well as parameters related to 

the optimisation method was explored. The validation of the model was carried out by 

means of inverse design with respect to a predescribed pressure distribution of a 2-D 

axisymmetric and a 3-D multi-hole yeo nozzle. For the purpose of optimising the ge­

ometries a cost function aiming to the maximisation of the discharge coefficient was 

used. At the same time, maximisation of the discharge coefficient led to geometries 

which have controlled or eliminated cavitation inception in the hole entrance. This is 

identified in the steady state mode by reduction of the volume of negative pressure ap­

pearing in the hole entrance. Several test cases, both 2-D and 3-D, were investigated. 

Parametric studies of the effect of the different design parameters on the optimum ge­

ometry are presented. The main conclusions drawn from the validation process and the 

parametric studies are presented in the following section, together with the conclusions 

from the application of the method for cavitation control. Subsequently, the recom­

mended future work will be discussed in detail. 

7.2 CONCLUSIONS 

Before the model was applied for the optimisation of nozzle geometries with respect to 

cavitation control, various numerical and optimisation parametric investigations as well 

as validation cases were undertaken. Those cases consisted of the matching of a pre­

described pressure distribution at the hole inlet of a 2-D axisymmetric nozzle for the 

parametric studies and a typical 3-D yeO nozzle for the validation. The main conclu­

sions drawn from these studies are presented: 

~ Concerning the numerical parameters the effect of the grid and the effect of the 

number of iterations until convergence in the flow and adjoint solution were in­

vestigated. On the effect of the grid the conclusion can be drawn that the method 

works for various spatial discretisations. Moreover, the medium grid was se­

lected due to the less computational time used without loss in accuracy of the 

predicted results. For the same reason in the parametric study of the depth of 
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convergence in the flow and adjoint solution the continuation scheme with the 

least possible iterations was proven to be the most efficient choice. 

~ Concerning the optimisation parameters, the effect of the steepest descent step 

size and the choices of target pressure distribution and initial geometry were in­

vestigated. When the step size is un-dimensionalised, increasing its value, within 

the order of magnitude of the design variables, leads to a faster convergence 

rate; up to a limit where the method will fail to converge. The case where the ef­

fect of different initial geometries was investigated showed robustness of the 

method. In all four tests the target pressure distribution was reproduced while 

the predicted geometries matched the target one. Finally, three different target 

distributions were considered and the model was setup to reproduce the target 

geometries. The conclusion was that the target pressure distributions can be re­

produced and the predicted geometries approximated the target ones. Neverthe­

less, the results can be affected by the quality of the target geometry, which 

plays an important part in the convergence of the method. 

~ Another validation case was conducted using a typical 3-D veo multi-hole Die­

sel nozzle and trying to match a pre-described pressure distribution at the hole 

inlet. Four design parameters were used in order to reproduce the in-between 

and resulting geometries of the design process. The optimisation method con­

verges to the predescribed pressure distribution in less than 20 cycles while the 

predicted geometry closely approximates the target one. 

The application of the model to cavitation control was conducted by the maximisation 

of the discharge coefficient and the subsequent reduction of the volume of negative 

pressure in the hole entrance. From this application several conclusions were drawn: 

~ The effect of each different design parameter on the results of the optimisation 

procedure was investigated and the conclusions are stated below. Clearly the 

conicity is the parameter that causes the most significant increase in the dis­

charge coefficient. This stands true for tapered nozzles where a more gradual 

pressure drop happens along the length of the hole resulting to overall higher Cd· 

Another important effect of the conicity is that cavitation free nozzles can be 

predicted. On the other hand, the variation of the radius of curvature increases 
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the discharge coefficient while moving the area of negative pressure further in­

side the nozzle hole. In the curved case, the volume of negative pressure does 

not decrease significantly, but its intensity also decreases in absolute terms. Fi­

nally, the inclination angle when acting as the unique design variable does not 

make any significant difference in the cavitation intensity for the particular cases 

tested here. This is not a general conclusion and it is believed to occur due to the 

shape of the nozzle's sac and the position of the hole. Nevertheless, this design 

parameter is usually restricted within a small range of variation, as specified by 

the engine design. 

~ Concerning the effect of the needle lift. another test was undertaken. The con­

clusion drawn was that the cavitation inception is easier to eliminate in the low 

lift case. The likely cause of this effect is that at low lift conditions usually sig­

nificant pressure drop occurs at the needle seat area, which results to a reduced 

pressure just upstream of the injection hole, and thus, reduced possibility for 

cavitation inception. 

~ A case was conducted where the design parameter producing conicity in the ge­

ometry was constrained. The conclusion that can be drawn from constraining 

certain parameters is that the model varies the rest of the design parameters more 

in order to converge. Nevertheless, the predicted geometry may not have the ex­

pected performance since the search space for the optimised geometry is nar­

rowed. 

~ The following general conclusion can be drawn from the application of the 

model. By using a combination of the design parameters instead of each one in­

dividually, the resulting geometry can achieve higher Cd values and the cavita­

tion inception can, in some cases, be completely eliminated. Each design pa­

rameter in the combined case required less modification to predict a larger Cd 

value than the extreme cases of each individual parameter. This is an important 

result since the manufacturers are seeking for improvement in the performance 

resulting by the fewer geometry modifications. 

In order to summarise: 
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~ The method can predict geometries with reduced or even eliminated geometrical 

cavitation as this is specified in the cost function. The method is fully automated 

and converges in 5 to 20 iterations according to the complexity of the specific 

case. The computational cost is reduced by the use of continuation in the solu­

tion of the flow and adjoint equations. Moreover, the method is robust and con­

verges for different choices of initial geometries and target pressure distributions 

or target Cd' Finally, the method is general and can be applied in other types of 

problem or geometries, for example airfoils. 

7.3 RECOl\ll\lENDATIO~S FOR FUTURE \VORK 

Design optimisation of internal flows is a recently initiated research area, which leaves 

many interesting possibilities for future work. In the remaining part of this chapter the 

most important recommendations for the extension and improvement of the developed 

optimisation model are presented: 

~ The developed methodology has the advantage of being cost independent of the 

number of parameters used in the problem, which is very helpful for 3-D appli­

cations. In these applications more complicated parameterisation schemes are 

required for describing the nozzle design. In this study the parameterisation of 

the geometry was limited to the shape of only the injection hole rather than the 

whole nozzle tip. With the optimisation facilities of the already developed 

method there are a lot of possibilities for further development by enhancing an 

automated parameterisation and grid generation tool. Such a commercial tool 

will give the freedom required to modify additional elements of the design such 

as the shape of the needle, the hole position or even the sac geometry. 

~ The model is currently restricted to single-phase and steady-state (without cavi­

tation) calculations, for fixed needle lift position and constant inlet and exit pres­

sure boundary conditions. Implementation of the optimiser in the cavitating flow 

would give the model the ability to produce geometries with more specified 

cavitation effects. This could also be a step forward in the design of allow im­

proved designs of emerging multi-hole Diesel nozzles, capable of producing 

well atomised tailored sprays. 
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Chapter 7 Conclusions & Recommendations for Future Work 

~ Some other cost functions could be tested in order to solve other optimisation 

problems or to approach the problem of controlling cavitation from another 

point of view. For example, the volume of negative pressure can be included in 

the function that costs the improvement of the geometry. Other cost function 

choices could include the increase of the pressure values where they drop below 

zero or the maintenance of the flow rate between the inlet and exit. 

~ Improvements in the rate of convergence can be achieved by enhancing more 

sophisticated descent methods than steepest descent such as conjugate gradients 

and/or using adaptive step. Further improvements could be implemented in the 

"handling" of the geometry constrains to avoid non-feasible resulting geometries 

or geometries that do not satisfy manufacturing standards. 

In the long run, computational simulation should become the principal tool for the en­

gine design process because of the flexibility it provides for the rapid and comparatively 

inexpensive evaluation of alternative designs. Furthermore, it can be integrated in a 

numerical design environment providing for both multi-disciplinary analysis and multi­

disciplinary optimisation. Developing an automated tool, which by the push of a button 

can actually produce nozzles leading to the desired engine performance, is definitely a 

very challenging task. By no means do we believe that the outcome of this thesis is ca­

pable of producing such results, but the author likes to think of this study as the first 

step towards this direction. 
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