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ABSTRACT 

This thesis presents a newly developed Quasi Arbitrary Lagrangian-Eulerian Finite Element 
Method (QALE-FEM) for numerically simulating wave-body interaction problems based on the 
fully nonlinear potential theory. The boundary value problem in this model is solved by a finite 
element method (FEM). The main difference between this method and the conventional FEM is 
that the complex mesh is generated only once at the beginning of the calculation and is moved 
at all other time steps in order to conform to the motion of the free surface and structures. This 
feature allows one to use an unstructured mesh with any degree of complexity without the need 
of regenerating it every time step, which is generally inevitable and very costly. Due to this 
feature, the QALE-FEM has high computational efficiency when applied to problems associated 
with the complex interaction between large steep waves and structures since the use of an 
unstructured mesh in such a case is likely to be necessary. In order to achieve overall high 
efficiency, some numerical techniques, including the method to move interior nodes, the 
technique to redistribute the nodes on the free surface, the scheme to calculate velocities, are 
developed. To overcome the difficulty associated with the force and acceleration of free- 
response floating bodies, an ISITIMFB (Iterative Semi-Implicit Time Integration Method for 
Floating Bodies) iterative procedure is developed. 

The developed QALE-FEM method is applied to simulate the waves generated by a 
wavemaker and their interaction with sandbars on the seabed, waves generated by a floating 
body in forced motion, the response of a 2D or 3D freely floating body to a steep wave. Some of 
the results have been validated by analytical solutions, experimental data and numerical results 
from other methods. Satisfactory agreements are achieved. The convergence properties of this 
model in cases with or without floating bodies are all investigated. The nonlinearities associated 
with different cases are investigated. The mesh quality is also investigated using either 
qualitative or quantitative methods. The results show the mesh quality during long-period 
simulation is retained. The efficiency of the QALE-FEM method is finally discussed and 
compared with other methods. It is concluded that the QALE-FEM method is 10 times faster 
than the conventional FEM method in case with unstructured mesh and at least 7 times faster 
than the fast BEM methods for the fully nonlinear waves. 
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1. INTRODUCTION 

1.1. Background 
Use of moored floating structures, such as SPARS and FPSOs, as production and storage 

systems is now an ever-increasing practice in offshore oil and gas industry, particularly with the 

operations moving to deeper sea. Operating in such environments, the structures are more likely 

to be exposed to very harsh seas and therefore may not avoid undergoing large loading and 

motions, which will result in many undesired consequences. While the environmental 

conditions are affected by tide, wind, current and waves, the effect of waves is of most concern. 

Fig. 1.1. l Freak waves and ships Fig. 1.1.2. Overturning wave 

(http: //NN-NN-NN-. tvnz. tx. co. nz) 

The responses of floating structures to waves are very complicated, particularly in cases 
involving steep waves. There are two typical effects of waves which may inflict significant 
damage to the structures. The first one is the destructive energy released by steep waves, such as 
freak waves (Fig 1.1.1) and overturning waves (Fig 1.1.2). This effect may result in huge 

instantaneous huge loads on the floating structure causing it to capsize. The second one is the so 

called resonance problem. This phenomenon not only makes the structures undergo relatively 
huge motion, but also creates large forces which may also cause capsizing of ships or damage to 

the structures. This may result in high risk in the operation of the structures and lead to 

seasickness of people who work and live on these vessels. Furthermore, the large motion of 
these moored floating vessels may cause additional large tension in mooring lines that may 
already be critically loaded. Due to this fact, the responses of the floating structures to steep 

waves need to be carefully investigated in order to optimise the design/operation and avoid the 
latent risk from the waves. 

On the other hand, the floating structures and their response to the waves also affect the 
waves themselves. Generally, the surface of the structure reflects and scatters the incident waves. 
This makes the waves around the structure become much steeper and/or more complex. This 
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interaction between the waves and the floating structures complicates the problem rendering it 

nonlinear. Its accurate prediction lies in the vigorous analysis of the interaction between the 

structures and the waves. 
Many researchers have studied this complex wave-structure interaction problem by using 

various analytical methods based on linear or higher order scattering analyse either in time 

domain or in frequency domain, e. g. linear models in the frequency domain (Newman, 1977; 

Mei, 1989), linear models in the time domain (Bratland, Korsmeyer & Newman, 1997), higher 

order methods in frequency domain (perturbation theory by Davies, & Heathershaw, 1984; 

Faltinsen, Newman. & Vinje., 1995, Malenica & Molin, 1995, multiple scale analysis by 

Mei, 1985, mild-slope approach by Chamberlain & Porter, 1995) and higher order methods in 

time domain (Sclavounos & Kim, 1995, Skourup, Buchmann & Bingham, 1997). Although 

these studies are useful for calculating wave loads and radiation damping on a body, most of the 

works have been simplified and applied to cases with small to moderate wave steepness. They 

have until recently been limited to the problems involving wave only (Davies, & Heathershaw, 

1984; Mei, 1985; Chamberlain & Port, 1995), fixed body (Sclavounos & Kim, 1995) and 
forced-motion body (Eatock Taylor, Wang & Wu, 1994). They are generally unable to give 

satisfactory results for cases with strong nonlinearity, such as those associated with extremely 

steep waves and their interaction with the floating bodies. As indicated by Koo & Kim (2004), 

third order or higher order contributions of the force on a freely floating body in their test cases 

are very obvious. This means a fully nonlinear analysis is necessary to deal with these problems, 

particularly when the waves are very steep or overturning as shown in Fig. 1.1.1 and Fig. 1.1.2. 

In order to consider full nonlinearity associated with wave-structure interaction problems, all 

terms with different order should be taken into account in the expansions. Therefore, the 

expansions are difficult or impossible to solve analytically. Although an experimental 
investigation can be carried out, it is expensive and the results might only be applicable to some 

special cases. This generates more interest in numerically simulating nonlinear water waves and 

their interaction with structures. 
To numerically simulate these problems, there are mainly two classes of theoretical models 

for cases with finite water depth. One is based on the general flow theory and the other is based 

on the potential theory. In the first class of models, the Navier-Stokes and continuity equations 
together with proper boundary conditions are solved, while in the second class, the Laplace's 

equation with fully nonlinear boundary conditions is dealt with. For brevity, the first class 

models will be called NS models and the second called FNPT (fully nonlinear potential theory) 

models in this work. Various numerical methods, such as finite element, finite volume and finite 

difference methods have been used to solve the Navier-Stokes and continuity equations in 
investigating nonlinear water waves and their interaction with fixed structures. Whatever 

method is used, solving NS equations is always a time consuming task. 
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In the FNPT models, the flow is commonly described using potential theory in which the 

viscosity of fluid, the surface tension and compressibility are all neglected. Based on the 

potential flow assumption, the flow can be governed by a Laplace's equation about the velocity 

potential. The Laplace's equation is linear, but the problem is made nonlinear by the boundary 

conditions on the free surface. The numerical results obtained by many researchers (Longuet- 

Higgins, & Cokelet, 1976; Wu & Eatock Taylor 1995 ; Ma, Wu & Eatock Taylor , 2001b and 
Grilli, Guyenne & Dias, 2001 ) have proved that this model leads to satisfactory results even in 

cases with overturning waves. The number of unknowns in the FNPT models is smaller than 

that in NS models. In addition, the complexity of the Laplace's equation is also undoubtedly 
lower than the Navier-Stokes and continuity equations. Therefore, FNPT has high CPU 

advantage of FNPT models instead of NS models. 
In these models, the key task is to solve the boundary value problem about the velocity 

potential. To do so, boundary element methods (BEMs) have been used in many publications, 

such as Cao, Schultz & Beck (1991), Celebi, Kim& Beck (1998), Clauss & Steinhagen (1999), 

Grilli, Guyenne&Dias (2001), Fochesato & Dias (2006), and so on, and have produced many 
impressive and useful results. Finite element methods (FEMs) have also been developed and 

used for two and three dimensional problems (Cai & Langtangen, 1998; Westhuis & 

Andonowati , 1998; Ma, Wu & Eatock Taylor , 2001; Wu & Hu, 2004). Though both methods 
have proved to be quite efficient, the FEMs need less memory and so are computationally more 

efficient, as indicated by Wu & Eatock Taylor (1995) , Ma (1998) and Ma, Wu & Eatock 

Taylor (2001a, 2001b). A drawback of the FEMs, however, is that an unstructured mesh is 

generally required for complex interaction between water waves and structures (e. g. the mesh 

around the complex-shape floating bodies or overturning waves) and may need to be remeshed 

at every time step to follow the motion of waves and/or structures. Repeatedly regenerating 

such a mesh can make the required CPU time prohibitive in a simulation of several thousands 

steps on a normal workstation. How to reduce the computational expense in dealing with mesh 
has become a bottleneck of FEM for numerical simulation of nonlinear interaction between 

steep waves and freely floating bodies. 

1.2. Objectives of the study 
This study will develop a new finite element scheme based on a fully nonlinear potential 

theory to simulate the interaction between steep waves and three-dimensional freely floating 

bodies. In this method, the computational mesh is moved, in place of regenerating it, to conform 
to the motion of the boundary. All the simulations will be carried out in a numerical wave tank. 
The main tasks are, 

1. Develop a robust method to move the unstructured mesh in order to conform to the 

motion of the boundary; 
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2. Develop a velocity calculation method to evaluate the velocity at the nodes on the free 

surface and the body surface based on the velocity potential suitable for the arbitrary 

and moving the mesh; 
3. Develop a method to calculate the motion of the free-response floating structures; 
4. Apply these methods to simulate the steep waves and their interaction with sandbars on 

the sea bed; 
5. Apply these methods to simulate two-dimensional and three-dimensional interaction 

between waves and free-response floating bodies. 

1.3. Outline of the thesis 
A literature review and a discussion of previous work are presented in Chapter 2. The 

mathematical formulation and numerical models are described and discussed in Chapter 3. A 

scheme to move the computational mesh and the method to calculate the velocity follows in 

Chapter 4 and S. In Chapter 6, an iterative procedure to calculate the acceleration of and force 

acting on the floating body is presented. Chapter 7 presents the application of this method in the 

modelling the steep waves in a numerical tank and its interaction with sandbars on the seabed. 
The interaction between steep waves and two-dimension floating bodies are presented in 

Chapter8, while Chapter 9 gives the validation and discussion for 3D response of the floating 

body to steep waves. The thesis ends with the conclusion and recommendations for the future 

work in the Chapter 10. 

24 



2. LITERATURE REIVEW AND DISCUSSION OF PREVIOUS WORKS 

This chapter reviews previous studies associated with modelling the interaction between 

steep waves and floating bodies. There are various methodical models such as linear model in 

the frequency domain, linear model in the time domain, high order model in the frequency 

domain, high order model in the time domain based on the assumption for potential flow. 

Detailed review of these models has been given by Ma (1998). The present thesis focuses on the 

modelling of fully nonlinear water waves and their interaction with floating bodies. 

2.1. Mathematical models 
To numerically simulate the fully nonlinear water wave problem, two types of mathematical 

models are commonly employed. As described in Chapter 1, one is based on the general flow 

theory (NS models) and the other is based on the potential theory (FNPT models). 

2.1.1 NS models and different formulations 

In the community of researchers who use NS models, the Navier-Stokes and continuity 

equations together with proper boundary conditions are solved. Because viscosity is taken into 

account in the Navier-Stokes equations, the NS models are more widely used in cases where the 

viscosity plays an important role, e. g. viscous dynamic free surface (Hirt & Nichols , 1981; 

Huerta, Liu, 1988; Navti, Lewis & Taylor, 1998; Spivak, Vanden-Broeck & Miloh, 2002; Yue, 

Lin & Patel , 2003; Greaves, 2004 and Wu, Eatock Taylor. & Greaves, 2004), boundary layer near 
the moving boundary (Zhang & Chwans, 1996,1999), shallow water waves and/or breaking 

waves ( Chen, 2003; Hieu, Katsutoshi & Ca, 2004; Devrard D., Marcer, Grilli & Fraunie . etc., 
2005; Layton, Christara & Jackson, 2006) , wave-current-body interaction (Park, Kim& Miyta 

2001). In the above applications, the common character of the computational domain is that the 

boundary of the domain, i. e. the free surface and the body surface, is moving during the whole 

calculation. According to this character, three different formulations have been suggested in 

order to treat the deformation of the fluid domain. They are Eulerian, Lagrangian and arbitrary 
Lagrangian-Eulerian (ALE) formulations. 

In the Eulerian formulation, a fixed computational mesh is employed. The fluid moves 

relative to the mesh. Use of this formulation can handle, with relative ease, large distortions of 
interfaces between two different materials by employing proper interface capturing techniques 
(such as volume of fluids and level set). For example, Hirt & Nichols (1981) modeled the 
dynamics of free surface boundaries, Navti, Lewis & Taylor (1998), Yue, Lin & Patel (2003) 

and Greaves (2004) followed. Though they got acceptable results, a larger domain than 
necessary was employed in their application. This is because the domain must cover the area 
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where the fluid may reach. Furthermore, an extra governing equation should be solved which 

may smear the interfaces and the flow details near the air-fluid boundary. In addition, it seems 
have difficulty in handling cases with interfaces of three different materials, such as those with 
floating bodies in waves. 

In the Lagrangian formulation, all nodes follow their corresponding fluid particles. In the 

other words, the velocity of the mesh nodes is equal to the velocity of the particles. As a result, 
the formulation allows a sharp tracking of interfaces between different materials. For instance, 

Donea , Fasoli-Stella & Giuliani (1976) simulated the transient fluid-structure problems by 

using FEM. However, if large distortions of the fluid domain occur, some nodes may become 

too close to or too far from others, leading to a breakdown of the computing process if 

remeshing is not performed. 
The arbitrary Lagrangian Eulerian (ALE) formulation is a hybrid approach, in which the 

computational mesh does not need to adhere to fluid particles or to be fixed in space but can be 

moved arbitrarily. Based on this description, both the Eulerian and Lagrangian methods are 

special cases of the ALE method. This provides a capability to keep the character of the 

computational mesh and avoid any mesh collapsing or frequent remeshing. Therefore, the ALE 

formulation can make use of the merits of both the Lagrangian and Eulerian formulations and 

alleviate many of their drawbacks. Specifically, the interface can be precisely tracked without 

necessarily remeshing. Of course, the nodes have to be moved in order to conform to the 
deformation or distortion of interfaces or boundaries and the governing equations are made a bit 

more complex to account for the moving velocities of the mesh. The ALE formulation has been 

discussed and used in many publications. Huerta & Liu (1988), Henning & Peter (2000), Teng, 

Zhao & Bai (2001), Souli & Zolesio (2001) and Fabian, Rail & Srinivasan (2004), et al. are 

some recent applications of this method in the free surface problems. 
Finite element, finite volume and finite difference methods are commonly used to solve the 

NS models in one of the above formulations/descriptions. However, there are three unknowns 
in 2-dimensional and four in 3-dimensional NS equation. Solving such an equation is always a 
time consuming task. 

2.1.2. FNPT models 

However, the velocity potential, in place of velocities is solved as unknown in the FNPT 

model. The governing equation is therefore simplified as a Laplace's equation for velocity 

potential. After the velocity potential is solved, the velocity can be obtained by calculating the 

spatial derivative of the velocity potential. The pressure can be estimated by using Bernoulli's 

equations. So they need much less computational resources to solve than the NS model. The 
FNPT model has high superiority in effective simulation of water waves. The linear Laplace's 

equation is made nonlinear by the boundary conditions on the free surface and the body surface. 
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A fully nonlinear boundary condition makes the simulation closer to the physical problem and 

so more suitable for some cases than second-order or higher order nonlinear boundaries which 

are usually used in analytical solutions. 
In this model, the viscosity is ignored. Nevertheless, Comparison with experimental data, 

such as Clauss & Steinhagen (1999), Ma, Wu & Eatock Taylor (2001b) , has shown that the 

results obtained by this model are accurate enough in many cases. Grilli, Guyenne, &, Dias 

(2001) also gave accurate enough results even for cases with overturning waves and shoaling 

over a sea bed with complex geometry. Therefore, the FNPT model instead of the NS model 

should be employed if a case considered does not involve wave breaking and/or with small 

structures. The FNPT model has thus been adopted in many publications for problems 

associated with the nonlinear water waves and their interactions with structures. 
The Laplace's equation is independent of time, but the boundary condition is time-dependent. 

These models are usually solved by a time marching procedure suggested by Longuet-Higgins 

& Cokelet (1976). Once the wave profile and the position of the structure are known in a time 

step, a mixed Dirichlet and Newman boundary value problem is formed which can be solved by 

a numerical method such as the finite element, boundary element method or other numerical 

methods. The velocities obtained at the nodes on the free surface will give a new free surface 

profile. The Bernoulli equation is applied to find the force acting on the structure, Newton's law 

will provide the new acceleration, velocity of the structure and therefore gives the new position 

of the structure. All of these will enable the problem to be solved at the next time step. The 

procedure can be repeated in principle for any desired period of time. Although Longuet- 

Higgins & Cokelet (1976) only focused their attention on two-dimensional wave problems, the 

results they obtained showed a high potential for their approach to be used for more complex 

problems. Their work created a foundation for the development of this model. Soon afterwards, 
Vinje & Brevig (1981) included two-dimensional submerged bodies in a fluid domain. Lin, 

Newman & Yue (1984) investigated the motion of the floating body. 

Since then, many researchers worked on FNPT models and published many valuable papers. 
Most of them studied nonlinear waves propagating in a tank or its interaction with the seabed or 

submerged bodies. For example, Grilli, Skourup & Svendsen (1989), Grilli & Svendsen (1990), 

Ferrant (1994), Wu & Eatock Taylor (1994,1995), Grilli, & Subramanya (1996), Grilli & 
Horrillo (1997) covered two dimensional cases. Cao, Schultz. & Beck (1991), Celebi Kim & 
Beck (1998), Grilli, Guyenne & Dias (2000), Grilli, Guyenne & Dias (2001), Fochesato, Dias& 
Grilli (2003), Biausser, Grilli &. Frauni6 (2003), Fochesato Dias & Grilli (2005) and Grilli, 
Fochesato & Dias (2005) simulated three dimensional cases. 

In those applications, there are no surface piercing structures and therefore no intersecting 
lines (waterlines) between the structures and the free surface. Once a piercing structure, e. g. 
cylinder, is involved, the singularity problem and other problems associated with the waterlines 
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should be treated. Lin, Newman & Yue (1984), Wang, Yao & Tulin (1995), Grilli & Svendsen 

(1990), Grill & Subramanya (1994), Rainey (1997) discussed this problem and suggested 
different methods to deal with different singularity problems. A detailed review can be found in 

Ma (1998). Based on their suggestions, many investigations on the interaction between the 

waves and fixed or forced-motion structures have been made by various researchers. For 

example, Xue & Yue (1995), Ferrant (1995), Ma (1998), Kim, Celebi & Kim (1998), Ma, Wu 

& Eatock Taylor (2001), Ferrant, Touze & Pelletier (2003), Markiewicz, Ben-Nasr, & 

Mahrenholtz (2003) simulated the wave scattered by fixed cylinders. Kashiwagi (1996) 

simulated the waves generated by a heaving floating body. Hu, Wu & Ma (2002) investigated 

the interaction between the waves and the forced-motion cylinders while Wang (2005) 

simulated the ship waves. 
However, the publications about the interaction between fully nonlinear waves and free- 

response bodies are still very limited. One reason is the difficulty of evaluating the force on and 

acceleration of the floating body. This problem will be discussed in Section 2.5. Using the 

techniques for solving such a problem, several researchers have investigated 2D cases. Wu & 

Eatock Taylor (1996,2003) simulated the transient motion of a floating body in steep water 

waves. Beck (1994,1999), Cao, Beck & Schultz (1994) made nonlinear computation of wave 
loads on and motions of a free-response rectangular barge in incident waves. Tanizawa 

(1995), Tanizawa & Minami (1998), Tanizawa Minami & Naito (1999), Koo (2003) and Koo 

& Kim (2004) simulated 2-dimensional barge-type freely floating body. Kashiwagi & Momoda 

(1998), Kashiwagi (2000) and Contento (2000) investigated wave-induced motions of 2- 

dimensional floating body with complicated shapes, Wang & Wu (2006) simulate the response 

of a 2D non-wall-sided body to nonlinear water waves. Compared to 2-dimensional problem, 
the three-dimensional problem is relatively more difficult to simulate not only because of more 

computing resource requirements but also because of many numerical difficulties, such as 
fitting the body surface, tracing the wave profiles and resolving the singularity problem on the 

waterlines. To author's knowledge, very few researchers presented numerical results for 3D 

cases. Only Wu & Hu (2004) have recently modelled the fully nonlinear interaction between 

waves and a three-dimensional cylindrical FPSO-like structure. Though, they presented 
interesting and encouraging results, the body geometry was relatively simple. The cases they 

simulated are symmetrical along the y-axis. This means that only 3 degrees of freedom is 

considered in their application. The nonlinear three-dimensional model also forms the basis of 
this study. 

It should be pointed out that Boussinesq type models are also commonly used to simulate 
highly nonlinear water waves. (Madsen, Murray & Sorensen, 1991,1992; Nwogu 1993; Wei, 
Kirby & Grilli. et al. 1995; Gobbi & Kirby, 1999; Madsen, Bingham & Liu, 2002 ; Walkley & 
Berzins, 2002; Madsen, Bingham & Schaffer, 2003; Fuhrman & Bingham, 2004; Fuhrman, 
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Bingham & Madsen, 2005 ; Koutandos, Karambas & Koutitas, 2004). However, Boussinesq 

equations are obtained by integrating Laplace's equation in the vertical direction (the classic 
derivation can be found in Peregrine, 1967), it is therefore impossible to solve the problem 
involving free-response floating bodies because the fluid might be separated from the floating 

body in vertical direction. Hence, Boussinesq type models are not suitable in cases involving 

freely floating bodies. 

2.2. Numerical methods 
Both in the NS model and the FNPT model, the governing equation together with the 

corresponding boundary condition are impossible to be solved analytically. A numerical 

technique is therefore necessary to solve the above models. In order to achieve high 

computational efficiency the FNPT model is chosen in this work because it requires much less 

computing resources than the NS model. In order to solve the FNPT model, one key task is to 

solve the boundary value problem (BVP) for velocity potential. For this purpose, different 

numerical methods, such as finite difference methods (FDMs), finite volume methods (FVMs), 

boundary element methods (BEMs) and finite element methods (FEMs) have been used. 
FDMs and FVMs are commonly used to solve NS or Boussinesq type models to investigate 

the nonlinear water waves and their interaction with fixed structures. Only few publications 

presented their applications to FNPT models. For example, Telste (1985), Yueng & Wu (1989) 

and Yeung & Vaidhanathan (1990) proposed a FD procedure to simulate nonlinear fluid motion 
in a tank, Mayer, Garapon & Sorensen (1997), Hu, Greaves & Wu(2002) applied finite volume 

method to simulate the wave flow and got well agreement with experimental data. The 

boundary fitting problems associated with the FDMs make it difficult to be adopted in wave- 

structure interaction problem. Except in the simulation of overturning wave problems, FVMs 

are also not commonly used. 
Apart from the above mesh based methods, meshless methods such as Smoothed Particle 

Hydrodynamics method (see, for example, Monaghan, 1988,1994; Shao & Lo, 2003), Moving- 

particle Semi-implicit method (see, for instance, Ataie-Ashtiani & Farhadi, 2006) and Meshless 

local Petrov-Galerkin method (see, for example, Ma, 2005) are also used by many researchers. 
Nevertheless, the mesh based methods are mainly considered here. 

2.2.1. Boundary element method 

In the BEMs, a Green function together with integrating the source on the boundaries of the 
fluid domain is used to solve the BVP. For the linear problem, a Green function which satisfies 
both the Laplace's equation in the fluid domain and the boundary condition on the free surface 
can be found (Wehausen & Laitone, 1960), only the sources distributed on the body surface are 
needed. Accordingly, the BEM is more efficient than any other methods. However, the 

29 



advantage is lost when dealing with nonlinear problems because the source over the free surface 
is also needed. In order to overcome this problem, a perturbation expansion was applied on the 
free surface. This allows a boundary condition to be imposed on a fixed boundary. Based on this 
feature, the Green function is calculated only once in the beginning. Therefore, the efficiency is 

still high. By using this approach, Zhang& Willams (1996) simulated a second order problem in 

a time domain associated with wave diffraction and radiation, Skourup, Buchmann & Bingham 

(1997) modelled wave runup on vertical cylinder. 
Obviously, for the fully nonlinear problem, the free surface as well as the body surface is 

changing during the whole calculation. On the other hand, a second-order approximation of the 

perturbation expansions is not accurate enough. Both the Green function and the integration of 
the source on both free surfaces and body surfaces have to be calculated at every time step. 
These repeated calculations undoubtedly increase the computational cost of BEMs. 

Nevertheless, since Longuet-Higgins & Cokelet (1976) used BEM to simulate a 2D fully 

nonlinear wave-structure problem, many researchers have applied BEMs based on FNPT and 

produced useful results, such as Vinje & Brevig (1981), Lin, Newman & Yue (1984) , Grilli, 

Skourup & Svendsen (1989), Grilli & Svendsen (1990), Cao, Schultz & Beck (1991), Beck 

(1994), Wang, Yao & Tulin (1995), Tanizawa (1995), Kashiwagi (1996), Grilli & Horrillo 

(1997), Celebi, Kim & Beck (1998), Kim, Celebi & Kim (1998), Tanizawa & Minami (1998), 

Tanizawa Minami & Naito (1999) Grilli, Guyenne & Dias (2000), Grilli, Guyenne & Dias 

(2001), Fochesato, Dias& Grilli (2003), Biausser, Grilli &. Frauni6 (2003), Koo& Kim (2004), 

Fochesato Dias & Grilli (2005) and Grilli, Fochesato & Dias (2005), etc. 
However, two common problems are involved in the BEMs. The first one is the well-known 

singularities problem associated with the source distribution on the real surface of the fluid 

boundary. The integration around the singularities should be specially treated which always 

results in costly calculation. As discussed by Grilli & Svendsen (1990), near the intersections of 
boundary (e. g. between the free surface and lateral boundaries) or in other regions of the free 

surface near the overturning breaker jets, the singular problem exists. Grilli & Svendsen (1990) 

and Grilli & Subramanya (1994) developed different schemes to treat the weakly singular and 

quasi-singular problem. These methods have been widely used. Some examples can be found in 

Grilli, Guyenne & Dias (2000), Grilli, Guyenne & Dias (2001), Fochesato, Dias& Grilli (2003), 

Biausser, Grilli &. Fraunid (2003), Fochesato Dias & Grilli (2005) and Grilli, Fochesato & Dias 
(2005). But the loss of the accuracy for such method may be several orders of magnitudes when 
the distance to the collocation node becomes very small. An alternative method, developed by 
Cao, Schultz& Beck (1991) and Beck, Cao, Scorpio& Schultz (1994) is the desingularised 
boundary integral method. In the desingularised method the sources are distributed on an 
artificial surface outside the fluid domain. In order to simulate the actual problem, the resultant 
source from the artificial surface should satisfy the boundary condition. This method can avoid 
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the singularity problem existing on the boundary surface. Recent applications can be found in 

Lalli (1998), Longuet-Higgins (2001), Schoberg & Chaplin (2003) and Schoberg & Rainey 

(2003). All the above applications demonstrated that the desingularised method is efficient. 
The second problem with BEMs comes from the coefficient matrices of algebraic equations 

in the BEMs. The coefficient matrices are fully populated because every node in the BEM is 

affected by all the other nodes. To store these coefficient matrices, massive memory is required. 
For the purpose of saving the memory required, some researchers used higher-order BEMs (Xü 

& Yue, 1992; Grilli, Guyenne & Dias, 2000,2001). However, solving such fully-populated 

algebraic equations is still a time consuming process. Though Fochesato & Dias (2006) 

presented a fast BEM method which introduced the fast multipole algorithm to reduce the 

computing complexity from 0(N2) to nearly O(N) where N is the number of the nodes on 

the boundary. Compared to the conventional BEM by Grilli, Guyenne & Dias (2000,2001), the 

fast BEM improves the efficiency dramatically. Even so, the CPU time required is still very 
high. For example, in a case with 6,022 nodes on the boundary, 329s per time step is needed for 

the fast BEM method, but 1,852s for conventional BEM (Fochesato & Dias, 2006). 

2.2.2. Finite element method 

Beside the BEMs, FEMs are also efficient for solving such BVP problems. In this method, an 

equivalent weak formulation, instead of the original governing equation, is used. The whole 
fluid domain is discretised into a computational mesh. The unknown at each node can be 

expressed in terms of a shape function. Using the Galerkin method, the weak formulation of the 

Laplace equation and the boundary conditions can be described as algebraic equations. The 

BVP problem is therefore solved. The application of FEM in the water wave problems can be 

traced back to Nakayama & Washizu (1980) who studied the liquid motion in a container 

subjected to a forced pitching oscillation. Lee& Leonard (1988) followed. 

Wu & Eatock Taylor (1994,1995) and Eatock Taylor (1996) extended FEM to FNPT models 

and simulated different types of nonlinear waves, including the waves generated by a piston 

wave maker, standing waves in a container and forced oscillation of a cylinder. Since then, 

many researchers have applied the FEM to treat different wave-body interaction problems. For 

example, Broderick & Leonard (1995) simulated nonlinear response of membranes to ocean 

waves, Sannasiraj & Sundaravadivelu (1995) investigated the hydrodynamic behaviour of long 

floating structures in directional seas, Ma (1998) and Ma, Wu & Eatock Taylor (2001) extended 
FEM into 3D applications, i. e. waves generated by a piston wave maker, sloshing waves in a 

container, the nonlinear interaction between waves and fixed cylinders. Cai, Langtangen & 

Nielsen et al. (1998) simulated 3D water waves in a wave tank with an obstacle submerged 
under water or a surface piercing obstacle. Kanoria & Mandal (2002) investigated water waves 
scattered by a submerged circular-arc-shaped plate. Further applications can be found in 
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Sannasiraj, Sundar & Sundarravadivelu (1998) , Sannasiraj, Sundaravadivelu, Sundar (2000), 

Westhuis & Andonowati (1998), Cho, Jeong & Woo (2004), Wu & Hu (2004), Zheng, Shen & 

You et at. (2004), Bai, Choo & Chung et at (2005), Kyoung, Hong & Kim et at. (2005), 

Sriram, Sannasirai & Sundar (2005)and Wang & Khoo (2005). 

Unlike the BEMs, the FEMs require the whole fluid domain to be discretised. Therefore, the 

number of nodes or unknowns in FEM is much larger than in BEM. Nevertheless, nonzero 

elements in the matrix for the FEM may be less than in that of for the BEM since any node in 

the FEMs only those connected with the node. Ma (1998) has analyzed the number (Pe) of non- 

zero elements in the coefficient matrix for FEM and the number (Pb) for BEM by considering a 

rectangular-box fluid domain as an example. He concluded that 

p8 
a9 max(M,, M2, N) (2.2.1) 

where Ml, M2 and N are the number of planes along the length, width and depth respectively. 

It is clear that as the number of nodes increases, the FEM needs much less memory than that for 

BEM. Wu & Eatock Taylor (1995) compared the FEM with the BEM for 2D cases and 

suggested that the FEM was actually more efficient in terms of storage requirement and solution 

time than the equivalent boundary element method. Similar conclusions were reached by 

Westhuis & Andonowati (1998), Cai, Langtangen & Nielsen et al. (1998) using the results of 

similar comparison. 
As is known, the fluid domain is being deformed at different instances during the calculation 

because of the motion of the free surface and the floating body. Therefore, the computational 

mesh in the FEM or the grid in the BEM should follow the deformation of the fluid domain. In 

the applications where BEMs are used, only the grid on the boundaries is required. The nodes 

on the boundaries usually follow the fluid particles determined by the physical boundary 

conditions on those boundaries in the time marching procedure of the FNPT models. In this 

situation, the nodes tend to group themselves in regions of high curvature and also may lead to 

distort the grid. This phenomenon leaves regions of lower curvature poorly defined. Therefore, 

the grid required usually should be regenerated in the applications using BEM (Heister, 1997 ). 

In applications where FEMs are used, the whole mesh including the surface mesh needs to be 

updated at every time step to follow the motion of waves and structures. Undoubtedly, 

generating the whole mesh is more difficult and hence more expensive than generating the 

surface mesh. On this point, FEMs seem less efficient than BEMs, particularly in cases where 

an unstructured mesh is required. 
Conventionally, a simple structured mesh has been used in applications where the FEM is 

employed, such as Wu & Eatock Taylor (1994,1995), Ma (1998) and Ma, Wu & Eatock Taylor 
(2001 a, b). That is because a structured mesh is easy to generate and therefore requires less CPU 
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time to regenerate at every time step. For the same purpose, Wu & Hu (2004) have recently 

employed a hybrid mesh. In their approach, a 2D mesh in a horizontal plane (say, the free 

surface at t=0) is first generated and then vertical lines are drawn to construct a 3D mesh. The 

2D mesh is formed by combining an unstructured mesh in a region near structures with a simple 

structured mesh (similar to Heinze, 2003) in other regions. This is a sensible approach but 

restricted to cylindrical structures without roll and pitch motions. Once the floating bodies are 

in roll/pitch motion, the above approach is not applicable and so an unstructured mesh is 

necessary in order to discretise the area around the floating body. For example, Wang & Wu 

(2006) used an unstructured mesh based FEM to simulate 2D interaction between the nonlinear 

waves and non-wall floating bodies. In their cases, the CPU time required for regenerating the 

2D unstructured mesh may be much more than that required for all the other numerical 

processes, such as solving BVPs and calculating velocities on the boundaries. Obviously, it 

takes much more time to generate a 3D unstructured mesh than a 2D mesh. Repeatedly 

regenerating such a mesh can make the required CPU time prohibitive in a simulation of several 

thousands steps on a normal workstation. 
In order to reduce the CPU time spent on regenerating the required mesh at every time step, 

Turnbull, Borthwick & Eatock Taylor (2003) developed a coupled structured-unstructured mesh 

based FEM for simulating the wave-structure interaction. In their applications, the fluid domain 

was separated into several sub-domains, those near the structures and the rest. The mesh is 

unstructured in the sub-domains near the structures but structured in others. This method 

reduced the CPU time spent on regenerating the mesh required through reducing the area where 

the unstructured mesh would cover. Actually, the problem associated with regenerating a mesh 

repeatedly was not fully solved. An unstructured mesh in a sub-domain still needs to be 

regenerated at every time step. Alternatively, Wu, Eatock Taylor & Greaves (2004) developed 

a coupled finite element and boundary element method. In this coupled method, FEM is used 

away from the body while the BEM is used in the region near the body. The combination is 

based on the consideration of the efficiency of the FEM and the BEM in computation and mesh 

generation, respectively. As has been mentioned above, only the boundary mesh is required for 

the BEM. One only needs to regenerate the surface mesh, in place of regenerating a complex 

unstructured mesh, in the area around the floating bodies. Because different methods are used 
in different sub-domains, an iterative method is needed to make the velocity potential 

continuous in the intersecting area between the sub-domains where the FEM is applied and the 

one where the BEM is applied. 
Apart from the above approaches, Cai, Langtangen & Nielsen et a] (1998) developed a finite 

element formulation based on a time-dependent fluid domain mapping technique. A fixed 

reference domain, which is mapped from the actual fluid domain time to time, is employed for 

the finite element solver. But this method may not give results as good as those obtained by Wu 
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& Eatock Taylor (1994,1995) in which remeshing is carried out repeatedly, as indicated by 

Westhuis & Andonowati (1998). 

It is concluded that the problem associated with the computational mesh has further limited 

the development of the FEMs in the wave-body interaction problems. In order to overcome this 

problem, a robust method needs to be developed herein. 

2.3. Existing methods for the calculation of velocities 
As mentioned in Section 2.1.2, the velocities on the boundaries provide a possibility to 

update the free surface and the position of the bodies in the time marching process of FNPT 

models. The error in the velocity calculation in the current time step may be brought to the next 
time step through the procedure of updating the position of the free surface and the body surface. 
That means the error may be accumulated in the calculation. Accurate estimation of the 

velocity on the boundary is one of the most important procedures in the time marching process. 
Because an FEM method is used in this thesis, only the velocity calculation schemes in the 

applications where FEMs are employed are discussed in this section. 
A directed approach is to solve the velocity in a similar way to that for the velocity potential. 

To do so, a mixed element method and a formulation based on the Galerkin method were 
developed by Wu & Eatock Taylor (1994) and were found to lead to satisfactory results. This 

approach was recently followed by Wang & Wu (2006). In this approach, the velocity 

components as well as velocity potential are treated as unknowns. Therefore, more memory and 
CPU time is required than solving velocity potential only. On the other hand, the velocity at 

every node in the fluid domains is solved in this approach. But only the velocities on the free 

surface and the body surface are required in most of the cases, unless one wants to investigate 

the velocity field of the fluid domain. In this aspect, this approach is not effect. 
Alternatively, the velocities can be alternatively estimated by calculating the spatial 

derivatives of velocity potential. Wu & Eatock Taylor (1995) suggested a FD scheme to 

calculate the velocity once the velocity potential was available. In this scheme, the velocity at a 

node is estimated by using the velocity potentials at this node and the nodes connected to it. 

Their results indicated that this method could achieve similar accuracy and require far less CPU 

time than the other methods. However, the neighbours of a node on the free surface are 
distributed either on or below the surface, the normal (or nearly vertical) component of the 

velocity estimated by the approach generally possesses relatively low accuracy, which is 

understandable from the fact that backward or forward FD schemes approximating a derivative 

have a lower order of accuracy than a central scheme. In order to enhance the overall accuracy, 
a technique was developed and applied by Ma (1998) and Ma, Wu & Eatock Taylor (2001a, b) 
for simulating 3D wave-structure interaction. A mixed FD formulation was developed and 
employed in their applications. Fig. 2.3.1 shows a node Ion the free surface and its neighbours, 
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i. e. nodes 1+1,1 +2.1 +3 and 1 +4 on the free surface, nodes 1 +5,1 +6 in the fluid domain below 

node I. A vertical line starts from node I will pass through nodes 1+5 and 1+6 at spacing h, and 
h,. 

1+2 

1+3 

1+4 

1+1 

Fig. 2.3.1 Node and its neighbours 

First of all, the vertical velocity component w is calculated using a combination of a two- 

point and a three-point numerical difference formula as follows, 

w=2 
2h, + h2 

+1 01 '2+1 01+5 +2h, 01+6 (2.3.1) 
3h, h, +h2 2 3h2 h, 3h2 h, + h2 

where 0 is the velocity potential, the subscript I, I+5,1+6 represent the velocity potential at 

nodes I , 1+5 and 1+6. In this equation, the weights for the two-point and three-point numerical 
difference formula are taken as 1/3 and 2/3, respectively. 

Once the vertical velocity component w is obtained, the horizontal components u and v can 
be found by using the principle of directional derivative, i. e., 

a-=aoa+aOav+a 
=u +va? -'+w- (2.3.2) al ax al c--, v al az al at at al 

in which 1 is a vector starting from node I to the node connected with it. All the partial 
derivative terms can be approximated by a two-point difference scheme. For every node k on the 
free surface connected to node I, Eq. (2.3.2) can be rewritten as 

u; ls Ik = 
00 

-w1Z (2.3.3) 

in which l, ly, lz are the components of the vector lk in the x-, y- and z-directions. In Ma 

(1998) and Ma, Wu & Eatock Taylor (2001a, b), only the nodes on x- and y-directions are 
considered (which are 1+1,1+2,1+3 and 1+4 in Fig. 2.3.1). The vectors 1 start from Ito each node, 
i. e. 11,12.13 and 14, are divided into four groups: (11, l 2), (12,13), (13,14) and (1 °, l 1). For each 
group, u; and v, are estimated by using Eq. (2.3.3). The averages of u, and v, are taken as the 
horizontal velocities at the node 1. For brevity, this method is called traditional 3-point method 
in this thesis. 
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This approach has been proved to be efficient and accurate by Ma (1998) and Ma, Wu & 

Eatock Taylor (2001b). However, it is only applicable in cases involving structured mesh with 

special structure, i. e., there are at least two nodes coinciding in the vertical direction of node I 

and four nodes on the free surface crossing the x- or y-direction. Once an unstructured mesh is 

used, it is impossible to satisfy the requirement of the above approach. Therefore, this approach 
does not work in cases where unstructured meshes are used. In order to remove this limitation, a 

velocity calculation scheme based on the mixed FD scheme will be developed in this thesis. 

2.4. Smoothing and recovery technique 
As is known, all the numerical methods can only give an approximate result. In the FEM 

method, the continuous fluid domain is described by a series of discrete nodes. The velocity 

potential in the fluid domain is therefore approximated by those at a number of nodes by using 

a shape function. In order to decrease the error between the finite element solution and the 

exact solution, one may increase the number of the nodes. However, the computational cost 

increases as well. 

. 1-2 . 1+2 

Averaged 
value ........................................................................................ 

Exact 
solution 

J-1 . 1+1 

Fig. 2.4.1 Sketch of the saw-tooth problem 

In fact, the finite element solution, particularly in cases using a linear shape function, 

oscillates near the exact solution as sketched in Fig. 2.4.1. This non-physical phenomenon is 

the well-known saw-tooth problem. Such a oscillation can be removed by using post- 

processing techniques, such as the smoothing or the patch recovery techniques. The 

effectiveness of these techniques have been validated and suggested by Ma (1998), Ma, Wu & 

Eatock Taylor (2001a, b) , Koo & Kim (2004), Wu & Hu (2004), Wang & Wu (2006) and so on. 

2.4.1. Smoothing technique 

Longuet-Higgins and Cokelet (1976) first introduced the evenly spaced 5-point smoothing 
scheme as 

Ti = 16 
(-wß_2 + 4w,, 

_, +1 Ow,, + 4wß+t - wJ+2) (2.4.1) 
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where w is the physical quantity(such as the velocity components) to be smoothed and w is 

the smoothed value. Subscripts in Eq. (2.4.1) indicate node numbers. J-2, J-1, J+1, J+2 are 
located at both side of the node J as shown in Fig. 2.4.1. This scheme is efficient in avoiding 
the non-physical saw-tooth instability problem during the time marching process. Ma (1998) 

and Ma, Wu & Eatock Taylor (2001a, b) used this scheme to smooth the velocity on the free 

surface in 2D cases. They compared the results obtained by using different meshes. It was 
found that the saw-tooth problem exists even if a very fine mesh is used but the smoothed 

result in cases with coarse meshes does not contain specious oscillations. This implies that the 

smoothing technique is more efficient at improving the accuracy of the finite element solution 
than using mesh refinement. 

However, Eq (2.4.1) is only applicable to nodes with equal spacing. In cases with an 

unstructured mesh, the distribution of the nodes is irregular. In order to overcome this problem, 
Koo (2003) and Koo & Kim (2004) modified and extended Eq (2.4.1) to variable-node-space 

cases and got satisfactory results. In their modified equation, the x-directional distance between 

two successive nodes on the curve is taken into account as a weight. For the same reason, 
Wang & Wu (2006) applied an energy method for smoothing. In their method, an objective 

equation is formed in order to minimize the difference between the original value and the 

smoothed value at all the nodes on the curve which should be smoothed. Therefore, additional 

equations should be solved. The efficiency is relatively lower than the above approach. 

2.4.2. Recovery technique 

As mentioned above, the smoothing technique may only be applicable to smooth the 

physical quantities along a curve. If a 3D unstructured mesh is used, this type of technique 

may not work. As an alternative, a patch recovery technique is usually applied in order to 

avoid the saw-tooth problem. The main idea behind this method is that the velocity at a node i 

is assumed to be fitted by a polynomial over a patch on the surface (see Fig. 2.4.2), e. g. the free 

surface and the body surface. To achieve this, many methods were developed and applied in 

the past decade, a detailed review can be found in Maisano, Micheletti & Perotto et at. (2006). 

One of the most widely used methods in practice is the superconvergent point method 
developed by Zienkiewicz & Zhu, 1987,1992). Ma (1998) and Ma, Wu & Eatock Taylor 
(2001 a) extended this method to recover the velocity on the free surface in a 3D case. In their 

application, the velocity on the patch (Fig. 2.4.2) is assumed to satisfy the following linear 
function of horizontal coordinates x and y, 
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Fig. 2.4.2 Sketch of a triangular patch 

w, =a+bx+cy (2.4.2) 

where w, is the fitted velocity at node i on the free surface. In this case, the patch is obtained 

by projecting the free surface elements into oxy plane (see Fig. 2.4.3). 

oxy plane 

Fig. 2.4.3 Elements and their projection on the oxy plane 

The least squares method is then employed to fit the polynomial by the sampling points (the 

hollow circles in Fig. 2.4.2) in the patch. The sampling points are the central points of the 

triangles which are so called the superconvergent points where the finite element solution is 

more accurate than that in other area (Zienkiewicz & Zhu, 1992). In order to estimate the 

velocity at the superconvergent point J (J=1,2,3, ... M), the interpolating formulation based on 

the shape function is used. 
3 

ws ý= as + b5x1 +c'Y1 = ENww 
Ja1 

(2.4.3) 

where wj' is the velocity at Jh superconvergent point. x,, yj is the horizontal coordinates of 

J'h superconvergent point. N, is the shape function. The coefficient as, bs, cs is calculated, 
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as ai ß1 r wi 
bs = a2 Qz Y2 W2 (2.4.4) 

Cs a3 
#83 

y3 w3 

in a triangle element where the node number is in the turn l-m-n (1, m, n =1,2,3 ), 

a'1 - 20 
(XmYn Ymxn) (2.4.5) 

ß, 
20 

(Ym 
- Yn) (2.4.6) 

1 
YI -- 2Q (xm - xn) (2.4.7) 

in which A is the area of this element. 
A special treatment should be applied for the nodes on the boundary. Different methods 

were suggested by Ma (1998) to treat the nodes on the boundaries, i. e. using smoothing 

technique mentioned above to treat plane-type boundary (Fig. 2.4.4 a and b) and replacing 

value at point A in Fig. 2.4.4 c) by the recovered value at point B. 

N0 0 
00 

(a) (b) 

Fig. 2.4.4 Patch around the boundary nodes 

(c) 

This method has been proved efficient by Ma (1998) and has been widely used in 3D wave- 

structure interaction problems where the FEM is used (for example, Hu, Wu & Ma, Q. W., 2003; 

Wu & Hu, 2004). However, this approach is not applicable to the case where the velocity in 

the patch is not a single-value function of (x, y), e. g. the body surfaces and the free surface with 

overturning jets. 

2.5. Existing methods for calculation of force 
In the FNPT model, the position and the velocity of the floating bodies should be given 

before solving the boundary value problem for velocity potential. For a free-response floating 
body, Newton's law is used to calculate the acceleration and velocity of the free-response 

floating body. The force, which is necessary for Newton's law, can be obtained by integrating 

the pressures along the body surface (Ma, 1998). The pressure p can be evaluated by using 
Bernoulli's equation 
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p=-p 
a0+l+vqsl, 

+gz+c (2.5.1) 
at 2 

where p is the density of the fluid, g is the gravitational acceleration and c is an arbitrary 

function of time independent of spatial variable which is usually be omitted by redefining 

velocity potential appropriately. 

It can be seen that the time derivative of the velocity potential (öO /at ) is required for force 

calculation. The simplest way to calculate aq / at is to use a backward FD scheme: 

(ao n on 
_ 

on-1 

at = At 
(2.5.2) 

where At is the time step and the superscript n denotes the n`h' time step. However, the nodes or 

collocation points on the body surface move from one time step to another. As a result, a direct 

calculation of this term may be impossible unless an approximated interpolating method is used. 
Because of this, Lin, Newman & Yue (1984) developed a FD scheme based on the total time 

derivative 
D0 

obtained by following a fluid particle, 

äO= 
Do-oo-oo (2.5.3) 

They used this method to investigate body-induced wave problems. For the same reason, Sen 

(1993) developed a similar scheme to calculate the pressure on a 2D moving body, employing a 

slightly different expression for 00 /at , 
00 

=LO -CJ. VO at & 
(2.5.4) 

in which U is the velocity of the body surface; represents the rate of change of velocity 
t5t 

potential obtained by following a point on the body surface. However, the scheme may suffer 
from a problem of the saw-tooth instabilities, as pointed out by Sen (1993) and Tanizawa (1995), 

when it is applied to deal with the problems with free-response floating bodies. Ma (1998) had 

also derived a force calculation formulation where 00 /at is absent from the formula. This was 

referred as a integrated force method. However, it is restricted to cases where the vertical 

surfaces are fixed. Once a floating body with rotational motion is involved, this method is not 

applicable. 
An alternative is to solve the boundary value problem for the term. The boundary value 

problem for a0/at is similar to the one for the velocity potential itself. This approach has been 

widely applied (see, for example, Ma, Wu & Eatock Taylor, 2001a, b; Ma, 1998; 
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Kashiwagi, 1996,2000; Wu & Eatock Taylor, 2003; Wu & Hu, 2004) in which the term aq/öt 

satisfies the Laplace equation in the fluid domain 

vZa0=0 (2.5.5) 

The boundary condition on free surface can be written as 

00 
_ -gý -I Ivcl2 (2.5.6) 

where ý is the elevation of the free surface. On the boundary of floating bodies, particularly on 

an accelerating boundary, the condition becomes complicated. Wu& Eatock Taylor (1996) and 
Ma (1998) has derived the equation, 

n aý =[Uc +0XrbI"n-Uc "a +5 . -[rb X(Ul -0q)] (2.5.7) 
n an 

in which UC T2, ÜC, fI are acceleration angular acceleration, velocity and angular velocity of 

body, Fb is the position vector. 

Apart from this, Tanizawa (1995) introduced a concept of acceleration potential. Similar to 

the velocity potential, the acceleration of the fluid particle can be determined from the gradient 

of acceleration potential (D which satisfies 

ado +2 Ivol, (2.5.8) 
The governing equation and the boundary condition on free surface is the same as Eq. (2.5.5) 

and (2.5.6), respectively. The boundary condition on the body surface satisfies 

O 
=n an "(U. +S2xr6)+q 

and 

(2.5.9) 

q=ü. Öx(S2xF)-k�(VO-Ü, 
-S2xr6)2+n. 2S2x(VO-Ü, -S2xFb) (2.5.10) 

where k� is normal curvature of the body surface along the path of fluid. Substitute Eq. (2.5.8) 

into (2.5.9) 

n öt =[ZIc+SZxrbJ"n+q-ý (ýIOol') (2.5.11) 

Koo (2003) and Koo & Kim (2004) applied this approach to simulate a 2D case with freely 

floating bodies using the BEM. The results agreed well with the experimental data. However, 

one needs to calculate the local curvature k� at the nodes on the body surface in order to apply 

this boundary. In addition, both k� (V - 
Ü, 

-Sx rb )2 and 
C, 2 (2 IVol) are all difficult to 
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treat in the FEM formulation. Therefore, Eq. (2.5.7) is applied for the body surface boundary 

condition in this thesis. 

However, there is a difficulty associated with the force and acceleration calculation. In Eqs. 

(2.5.7) and (2.5.11), the accelerations and velocities of the floating bodies should be known in 

order to calculate the ao I at 
. In cases with freely floating bodies, the accelerations depend on 

the forces acting on the floating body. In order to calculate the force, äo / at is necessary. They 

are nonlinearly coupled. In order to overcome this difficulty, some special techniques should be 

employed. These techniques will be discussed in the following section. 

2.6. Existing methods to overcome the difficulty on calculating the force and accelerations 
In order to tackle this difficulty existing in the force calculation as mentioned above, four 

types of methods have been suggested in literatures. They are the mode-decomposition method, 

the indirect method, the Dalen & Tanizawa's method and the iterative method. 

The mode-decomposition method was suggested by Vingi & Brevig (1981). In this approach, 

the body acceleration is decomposed into several modes, i. e. the accelerations for surge (a, ), 

sway (a2), heave (a3 ), roll (a4 ), pitch (as ), yaw (a6) motion and the acceleration due to 

velocity field. Therefore, ao i at can be found by using 
6 

aEa, 
6 

,+ 
cov 

i-I 
(2.6.1) 

where rp, is the contribution for aqs i ar of f`h mode component of generalized body 

acceleration, V, is the contribution due to due to velocity field. Every mode is found by 

solving a boundary value problem similar to that for the velocity potential but under different 

boundary conditions which are independent of the acceleration. Using these modes and the 

body-motion equations, the body acceleration is determined. Recently, Koo (2003) , Koo & 

Kim (2004) used this method to simulate the response of a 2D freely floating body to nonlinear 

water waves. The disadvantage of this method is that exact BVPs for each mode (4 modes in 

two-dimensional cases or 7 modes in three-dimensional cases) are required. The CPU time, 

therefore, may be considerably increased if employing an iterative procedure rather than a 
direct solution scheme (such as Gauss Elimination) which is unlikely to be suitable for solving 
the corresponding linear algebraic system containing a very large number of unknowns. 

The indirect method was developed by Wu & Eatock Taylor (1996). In this method, some 

auxiliary functions were introduced to decouple the mutual dependence between the force and 
the acceleration of the body. The accelerations can be obtained directly by solving similar BVPs 

as velocity potential before the force on the body is known. Many researchers (Koo & 

Kim, 2004; Kashiwagi & Momoda , 1998; Kashiwagi , 2000; Wu & Eatock Taylor, 2003; Wu & 

Hu , 2004; Wang & Wu , 2006) have used this method to simulate 2D or 3D wave-body 
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interaction. Similar to the mode-decomposition method, the motion is decomposed into several 

modes and ao / öt is also found by using Eq. (2.6.1). However, the Haskind-Newmann relation 

is utilized to find the relationship between (p, and 9, (i =1,2,3... 6) from the radiation 

damping in the linear theory. cp, is hence calculated indirectly from q', (i = 1,2,3... 6) instead of 

being directly solved. The computational time is reduced compared to the mode-decomposition 

method because the direct evaluation of cpv can be omitted. Koo & Kim (2004) compared the 

mode-decomposition method and the indirect method by using a case involving a barge-type 

floating body. They concluded that both methods lead to the similar results. When we use the 

indirect method, however, the body-surface pressure cannot be obtained. 
In the method proposed by Dalen (1993) and Tanizawa (Tanizawa, 1995; Tanizawa & 

Minami, 1998; Tanizawa, Minami & Naito, 1999), the body accelerations in Eq. (2.5.6) are 

implicitly substituted using Bernoulli's equation and thus the velocity potential and its time 

derivative are solved without the need to calculate accelerations of the floating bodies However, 

this method requires one to form a special matrix for öo /at which is different from the one for 

the velocity potential and whose properties have not been sufficiently studied. This is likely to 

increase the difficulty for numerically solving the algebraic equations associated with ä0/ at 

and also needs more CPU time for generating the special matrix. That would be the main 

reason for this method not to be commonly used. 
Cao, Beck. & Schultz (1994) and Beck (1994) suggested an iterative method to calculate the 

force and acceleration at each time step as follows, 

1. Solve the BVP for velocity potential and calculate the velocity of the free surface; 

2. Calculate the 
L' 

, 
DO 

on the free surface; 

3. Guess an initial acceleration of the floating body using the value at the last time step; 

4. Solve the BVP for 00 / at and calculate 00 / at on the body surface; 

5. Compute the pressure on the body surface using Bernoulli equation and integrate the 

pressure to get the force; 

6. Correct the acceleration of the floating body by using Newton's law; 

7. If the difference between the new acceleration and the old one is larger than the error 
tolerance, replace the old one with the new one and go to 4; otherwise, stop the iteration. 

In this procedure, the need to solve extra equations in the first two methods and the problem 

with the third method are eliminated. In their application, the velocity of the floating body is 

calculated explicitly. The explicit procedure may be satisfactory if the time steps, and therefore 

changes in the velocity and acceleration in one step are sufficiently small; otherwise, it may 
degrade the accuracy and even lead to instability. 
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3. MATHEMATICAL MODEL AND NUMERICAL METHOD 

The computational domain is chosen as a rectangular tank. Two types of methods are used 

to generate nonlinear waves. The first method is to generate the wave by a piston-like 

wavemaker which is mounted at the left end (on the negative side of the x-axis, see, 

Fig. 3.0.1). The second method is to specify the initial condition for the position and the 

velocity of the particles at the free surface. Reflective and absorbing boundary conditions are 

implemented on the lateral boundaries (at the right end) of the tank. For the former, this 

boundary is considered as a fixed wall. For the latter, a damping zone with a Sommerfeld 

condition is applied in order to suppress the reflection, as sketched in Fig. 3.0.1. Arbitrary 

forms of submerged bodies, such as sand bars, on the tank-bed may be included. A Cartesian 

coordinate system is used with the oxy plane on the mean free surface and with the z-axis 
being positive upwards. A floating body is placed at x--0 initially and moored to the bed or 

walls of the tank. 

Fig. 3.0.1 Sketch of the fluid domain 

(far end wall: the lateral boundaries; y=const wall: vertical side wall) 

3.1. FNPT models for water waves 

3.1.1. Governing equation 

r end wall 

Similar to the usual FNPT Model, the fluid is assumed to be incompressible, irrotational and 
inviscid. The continuity equation in such a condition is 

Vü=0 (3.1.1) 

where ü is the velocity vector of the flow. The velocity potential (0) is introduced and the 

velocity vector can be described as a spatial gradient of the velocity potential, i. e., 
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ü=VO (3.1.2) 

Substituting Eq. (3.1.2) into Eq. (3.1.1), the velocity potential then satisfies Laplace's equation, 

V20=0 
in the fluid domain. 

(3.1.3) 

As mentioned above, Bernoulli's equation is employed in order to calculate the pressure p, 

p=-p at(+! Ivc2+gz+cJ l 
2 

(3.1.4) 

This equation is the same as Eq. (2.5.1). c is an arbitrary function of time independent of spatial 

variable which is usually be omitted by redefining velocity potential appropriately. c is taken as 

zero in this work. Eq. (3.1.4) is derived by substituting Eq. (3.1.2) into the moment equation. 

Once the velocity potential is obtained by solving the governing equation, i. e., Eq. (3.1.3), 

once can find the velocities using Eq. (3.1.2) and the pressure using Eq. (3.1.4). However, in 

order to find the velocities and pressure by using NS models, one needs to solve the moment 

equations and continuity equation together with proper boundary conditions where four 

variables in a three-dimensional case should be of concern. The FNPT model clearly makes the 

problem easier. 

3.1.2. Boundary conditions 

The motion of the flow in the fluid domain is controlled by the boundaries. In other words, 

the physical boundary determines the behaviour of the fluid in the fluid domain. Therefore, 

appropriate boundary conditions must be specified in order to solve the velocity potential. 

According to the definition of the problem, there are two types of boundaries: rigid boundaries 

and free surface. 

On the rigid boundaries 

On all rigid boundaries, such as the wavemaker, the sea bed, the vertical walls of the tank 

and the surface of the floating body, the fluid particles cannot go through the surface and can 

only move along the tangential direction of the surface. Therefore, the normal velocity of the 

fluid on the rigid boundaries should be equal to the normal velocity of the boundary surface at 

the corresponding point to the fluid particle. 

vn =n" U(t) (3.1.5) 

where 0(t) is the velocity vector of the rigid boundaries. Decomposing Eq. (3.1.2), the normal 

velocity component can be obtained by 

vn _ý 
i9n 

(3.1.6) 
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where n is the unit normal vector of the rigid boundaries. The positive direction of the normal 

vector points to the outside of the fluid domain. Substituting Eq. (3.1.6) into Eq. (3.1.5), the 

velocity potential on the rigid boundary should satisfy 

LO 
=n 0(t) 

On 
(3.1.7) 

The normal velocity of the boundary surface must be known before this condition is employed. 

For the specific case illustrated in Fig. 3.0.1, O(t) =0 on the sea bed and other fixed walls of 

the tank, and thus the velocity potential satisfies 

00 o an 
(3.1.8) 

On the wavemaker, 0(t) = Ux (t) in which Ux (t) is the velocity of the wave maker and so Eq. 

(3.1.7) can be rewritten as 

= Ux (t) (3.1.9) 

However, once a free-response structure is included, the velocity of the structure will be found 

by Newton's law. This will be discussed in Section 3.2. 

On the free surface 

On the free surface z= C(x, y, t), both kinematic and dynamic conditions are required. The 

conditions may be described by several formulations, namely Eulerian, semi-Eulerian or 

Lagrangian. The semi-Eulerian formulation and Lagrangian formulation are usually used for the 

time-marching procedure. Detailed formulations of these three formulations can be found in Ma 

(1998). Compared to semi-Eulerian formulation in which the free-surface node is restricted to 

be moved in its vertical direction, the Lagrangian form makes it more realistical to move the 

node on the free surface and therefore is more suitable to treat a case with domain 

transformation, e. g., the cases involved in wave makers and/or floating bodies. In this work, the 
Lagrangian form is used. The kinematic condition on the free surface is 

Dx 00 Dy aO Dz aO 
Dt - ax'Dt -ay'Dt az 

and the corresponding dynamic condition is 

Dto 
= -gz +IV of , (3.1.11) 

where 
Dt 

is the substantial (or total time) derivative following fluid particles. In Eq. (3.1.11), 

the atmospheric pressure has been taken as zero, 
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3.1.3 Initial condition 

Suppose the velocity potential in the n`" time step has been obtained, VO can be evaluated 

by a mixed FD based velocity calculation scheme which is extended from the method by Ma 

(1998) and will be discussed in Chapter S. Eq (3.1.11) gives 
Do 

on the free surface, and 

hence the velocity potential on the free surface in the next time step can be found. Similarly, Eq. 

(3.1.10) gives the new position of the free surface in the next time step. Both of them make it 

possible to solve the boundary value problem in the next time step. The procedure is called a 

time-marching procedure and has been discussed earlier. This procedure also requires known 

state values in the initial time step. 
The initial condition on the free surface in this problem can be expressed as 

S(x, Y, O) = v(x, Y) 

fi(x, Y, s(x, Y, o), o) = cv(x, Y) 
(3.1.12) 

in which yr(x, y) is the initial position of the free surface and (p(x, y) is the initial velocity 

potential on the free surface. If a floating body is included, its velocity and position at the 

starting instant must also be given. 
As was mentioned at the beginning of this chapter, there are two ways to generate waves in a 

numerical tank. The first one is to generate waves by a piston-like wavemaker. In these 

applications, the flow and the floating body all start from rest, q (x, y) is therefore taken as 0 

and yr(x, y) represents the mean free surface. In the second method, the position of and the 

velocity potential on the free surface are given by the special values obtained by either 

analytical formulation or numerical methods. In this thesis, the method is only used to generate 

solitary waves. In those cases, no floating bodies are included and y'(x, y), Ip(x, y) are given by 

Tanaka's model (Tanaka, 1986). 

3.2. Motion equation of a floating body and conditions on the body surface 
Eq. (3.1.7) requires the velocity on the body surface. If the translational velocity of the 

gravitational centre of the body Ü, and the angular velocity relative to the gravitational centre 

are specified, the velocity at a point on the body is determined by 

Ü=Üc +OxFI, (3.2.1) 

where i is the position vector relative to the gravitational centre (See Fig. 3.2.1). Therefore, 

Ü. and 0 should be known for the purpose of solving the velocity potential. If U, and 6 are 

unknown, such as those of a free-response floating body, they need to be calculated. 
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Fig. 3.2.1 Sketch of a floating body and rb (GC: Gravitational centre) 

In a general fully nonlinear time domain simulation, the motion of the floating body is 

governed by Newton's law. The rotational equations are formed in terms of components in a 

moving coordinate system whose coordinate centre is located at the gravitational centre. The 

following equations govern the displacements, velocities and accelerations of the floating body 

(see, for example, Ma, 1998; Ma & Patel, 2001). 

[MJ 
dd `=F (3.2.2) 

[IJ +bx [I]! 5= N (3.2.3) 

dS 
_c il dt 

[B] 
dO 

=Ö (3.2.5) 

where F and N are the force and moment relative to the gravitational centre acting on the 

floating body; 
dä - (for breity, it is referred to as U in this thesis )the translational 

acceleration of its gravitational centre; 
do 

( for breity, it is referred to as 9) in this thesis) and 

S2 its angular velocity and acceleration; 9(a, ß, y) the Euler angles; S the translational 

displacements. In Eqs. (3.2.2) - (3.2.5), [M] and [I] are mass and inertia matrices, respectively; 

and [B] is the matrix formed by Euler angles and defined as, 

cosßcosy sing 0 
[B]= 

-cosßsiny cosy 0 (3.2.6) 

sing 01 

In 2D cases, a=0, y=0 and f) x [1]Ö =0. Eqs (3.2.3) and (3.2.5) can be rewritten as 

E13 
Al 

°N (3.2.7) 
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dB 
dt 

(3.2.8) 

Once F and N are solved, the accelerations and ` and 
d 

can be found and the velocities 

U and S2 are so obtained by integrating the accelerations, which gives the boundary condition 

for velocity potential on rigid boundaries. Eqs. (3.2.4) and (3.2.5) give the new position of the 

floating body for the next time step. 

However, in a general 3D case, C2 x [I]S2 is non-zero and determined by 6. One may 

calculate SZ by integrating dt 
explicitly or implicitly. As is known, an implicit scheme is 

more stable than the explicit scheme in terms of time step. An implicit multi-step method, which 

will be discussed in Section 3.6., is used in this thesis to calculate S2 
. 

JL 
in Eq. (3.2.3) is 

therefore be solved by using an iterative method. 

3.3. Force calculation and the equations for 00 / öt 

To evaluate the accelerations and velocities of the floating body, one must calculate the force 

(F) and moment (1V) acting on a body in Eqs. (3.2.2) and (3.2.3). The force and moment can 
be separated into two components: one due to the dynamic pressure of the fluid and the other 

one due to external forces (fm) and moments (N. ), such as those due to mooring lines. 

F=f,, +f, (3.3.1) 

N=Nh+N. (3.3.2) 

where fh and Nh are the dynamic force and the moment acting on the body surface due to the 

dynamic pressure, respectively. They can be obtained by integrating the pressure p over the 

body surface by using Bernoulli's equation, 

fh = -p 
o+1 IDOIZ + gz nds (3.3.3) 

Sb 

Nh =-ps 
at+2IV0I2+gz 

r"bxnds (3.3.4) 
Sb 

where Sb denotes the wetted body surface. 

In this work, the external forces only come from the mooring lines, f, 
� and N. hence equal 

to forces and moments due to mooring lines, respectively. Because this work focuses on the 

wave-body interaction, the mooring lines are approximated by using springs, 
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fm =k, 
& (3.3.5) 

Nm = %m X fm (3.3.6) 

in which km is the spring stiffness of the mooring line, Sm is the displacement of the mooring 

point, F is the position vector of the mooring point relative to the gravitational centre. 

Substituting Eqs (3.3.3)- (3.3.6) into (3.3.1) and (3.3.2), the force and moment acting on the 

body can be described as 

F=-Q 
O+- IVOIZ+gZ nds+k. §. (3.3.7) f 

N=-p 
O+2Iv012+Z 

F, xn"ds+F. xfn (3.3.8) 
S6 

As can be seen, the time derivative of the velocity potential (aq /at) is required and is 

critical for accurately calculating forces and moments. As discussed in Section 2.5, the simple 

backward FD scheme may suffer from the problem of the saw-tooth instabilities (Sen, 1993). In 

this thesis, 00/at is found by solving a similar boundary value problem to that for 0 defined 

in Eqs. (3.1.1)- (3.1.4) Similar to that used by Wu & Eatock Taylor (1996), Ma (1998) and Ma, 

Wu & Eatock Taylor (2001 a), the boundary value problem for 00 / öt is defined by, 

v2 
ätß 

=0 (3.3.9) 

in the fluid domain. On the free surface z= ý(x, y, t), 00 / öt is given by 

at _ -Sý -I 
Ivol, (3.3.10) 

which is based on the condition p=0. Once 0 is solved by from. Eqs. (3.1.3) (3.1.7), 

(3.1.10)- (3.1.11), V0 can be calculated. Eq. (3.3.10) can provide the value of 00 /at on the 

free surface. On a rigid boundary, particularly on a moving boundary, a0 /at satisfies the 

equation (see , for example, Wu & Eatock Taylor, 1996; Ma, 1998), 

On 
a &+sixrbý"n-üc"aaý+si"a lrbX(vc-VO)]. (3.3.11) 

On the moving boundary without rotational motion, such as on the wavemaker, 92 = 0. Eq. 

(3.3.11) can be rewritten as 

a (LI) 'ü"n-v avo 
on 0r'" On 

(3.3.12) 

Since the normal direction of the wavemaker is negative x-direction in this thesis, the condition 

on the wavemaker, therefore, can be written as 
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rl aI ao 
+_ -LIýx +u 

a2o 
(3.3.13) Fn 

\ at JJJ ax 2 

where UOx, Ucx are x-directional component of the translational acceleration and velocity 

of the wavemaker, respectively. 
As mentioned above, there is a difficulty with solving Eqs. (3.3.9) to (3.3.11). As can be seen 

from Eq. (3.3.11), the accelerations (Y and £2 should be known when solving the boundary 

value problem for 0010t. However, in cases involving a free-response floating body, they are 

evaluated by Eqs. (3.2.2) and (3.2.3) which depends on the force and moment given by Eqs. 

(3.3.7) and (3.3.8). In turn, to find the force and moment, one needs a/ öt 
. The scheme to 

overcome this difficulty will be detailed in Chapter 6 below. 

3.4. Radiation condition and wave absorption 
Reflective or absorbing boundary conditions may be implemented on the right side of the 

tank. For the numerical simulation of waves where an absorbing boundary condition is used, the 

reflection from the far end wall is undesirable. The simplest way to ease this type of effect is to 

enlarge the computational domain. Obviously, this would need a very large domain to carry out 

a long-time simulation. An alternative approach is to remove the reflection as much as possible 
by using some special technique, i. e. imposing an artificial radiation condition on the boundary 

at the far end. To do so, many methods were developed, a detailed review can be found in Ma 

(1998). Here, a combination of the Sommerfeld condition with a damping zone will be 

employed. This technique was developed by Ma (1998) and Ma, Wu & Eatock Taylor (2001a). 

A brief summary is given here. 

On the far end wall, the Sommerfeld condition is given 

a0+CIO 
at an 

(3.4.1) 

where the parameter c is the phase velocity of the wave in the linear harmonic waves. The value 

of c is taken as 

ftanh(k) 
k 

(3.4.2) 

in which k is evaluated by using wZ =k tanh(k) . Although this constant value is not 

consistent with the property of the fully nonlinear waves, it is easy to use. On the other hand, the 

combined damping zone technique will reduce the error caused by the above choice of c. 
Since, in this work, the boundary condition on the free surface is defined by the Lagrangian 

notation, the boundary at the far end is chosen to move following the fluid particles. In the 

numerical experience, the far end wall is usually regarded as a rigid plane and moving with an 
average velocity (U,, ) of the x-component of the velocity of the fluid particles on the 
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intersection line between the boundary and the free surface. According to this assumption, the 

normal direction of the far end wall is x-direction, Eq. (3.4.1) can be rewritten as 

,ý .c= 
-Cu = Tc 

a 
, at an 

(3.4.3) 

in which subscript rc indicates the far end boundary, u is the x-directional velocity component 

of fluid particles. Therefore, the time derivative of the velocity potential on the far end wall can 
be expressed as 

d Orc a 
rc +U 

aT 
rc +V 

aY'rc 
+W 

aY'rc 
= _C 

aOrc 
+UU+ VZ +WZ3.4.4) 

dt at ax 8y öz an r` 

where v and w are the y-directional and z-directional velocity component of the fluid 

particles respectively. The time integration of Eq. (3.4.4) has been suggested by Ma (1998) as 
{0rc 

t: 5 t, 
0'., It 

It-Ot + 
dýýc 

I, 

_& 
At t> ti 

(3.4.5) 

in which ti =L /(1 +, 0) and /a coefficient which is taken as 0.2. It should be noted the 

Sommerfeld condition is not consistent with the free surface condition on the waterlines 
(intersection lines) between the free surface and the far end wall. This may lead to a numerical 
instability. To suppress the problem, an interpolation area is defined. In this area, the velocity 

potential is replaced by an interpolation function (Ma, Wu & Eatock Taylor, 2001 a). 
The damping zone is an area near the boundary at the far end wall. In this area, an artificial 

viscous term is adopted in the free surface condition. The reflection is reduced by removing the 

energy from the water because of the viscous terms. As used by Ma (1998) and Ma, Wu & 

Eatock Taylor (2001a), an artificial viscous term is only adopted to the dynamic condition 
because the modification to the kinematic condition may cause saw-tooth waves in the damping 

zone according to their testing. After being modified, the dynamic condition can be rewritten as 

Do 
_'+1 IVOI2 - v(x)JOI slgn(aý) (3.4.6) gz On Dt 2 

where the function sign 0 is defined by: 

-1 f <0 
sign(f) =0f=0 (3.4.7) 

1f >0 

and v(x) is a damping coefficient and is assigned as 

V(X) =2 
vo 1-cos Lm xd) )1 

Xz Xd (3.4.8) 
0 X<Xd 
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where xd is the x-coordinate of the left end of the zone ; L, � is the length of the zone. In Ma(1998) 

L. is taken as min(32d, 3d) A is the wave length; vo is the magnitude of the damping 

coefficient which is optimised from numerical experiences by Ma(1998) as follows, 

vo = 0.0496w3 - 0.1751w2 + 0.2352w - 0.0689 (3.4.9) 

It should be noted that the frequency w in Eq. (3.4.9) are nondimensionalised by d/g (more 

detail can be found in Chapter 7). Although the above equations are based on harmonic waves, 

this combined technique works well even in cases with irregular waves. That is due to the fact 

that the irregular waves associated with marine engineering often have a narrow band spectrum 

and are mainly dominated by the components near a particular frequency. 

3.5. Numerical procedure and FEM formulation 
The fully nonlinear interaction between waves and floating structures described in the above 

3 sub-sections can be solved by a numerical procedure in a time domain. At each time step, the 

free surface and the potential values on it as well as velocities on all rigid boundaries, the 

position, velocity and acceleration of the floating structures are known, the velocity potential 

and its time derivative are solved by using the FEM. To do so, a computational mesh is required. 
Such a mesh needs to be updated at every time step in order to follow the deformation of the 

fluid domain during the calculation. As mentioned in Chapter 1, an unstructured mesh is usually 

necessary for the purpose of satisfying the need of simulating complex wave-body interaction 

problem. Regenerating such a mesh is time consuming. In order to overcome the problem, a 

method called QALE-FEM (represents Quasi Arbitrary Lagrangian Eulerian Finite Element 

Method) is developed in this thesis. 

The main idea, which distinguishes the QALE-FEM method from the conventional FEM 

(Ma, 1998; Ma, Wu & Eatock Taylor, 2001a), is that the complex mesh is generated only once 

at the beginning and is moved at other time steps in order to conform to the motions of the free 

and structure surfaces. In this approach, the mesh can be generated by any generator and can 
have any complexity, any structure and any desired distribution. Because the mesh generator is 

used only once in a simulation of several thousands time steps, the CPU time spent on mesh 

generation is not an important matter since it may be only a small proportion of total 

computational time even it is quite long (say several minutes). In addition, the generator is not 

necessarily included in the main code. The idea of moving mesh is borrowed from the ALE 

formulation for the NS Model. However the velocities of the moving mesh do not need to be 

considered in governing equations in our approach. That is why this approach is called as quasi 

arbitrary Lagrangian-Eulerian finite element method (QALE-FEM). It is obvious that the 

technique for moving mesh in this approach is vital in order to achieve a good quality mesh at 
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all time steps and to avoid a large CPU requirement. A robust method has been developed 
herein for this purpose. 

Since an unstructured mesh is used and moved by the above method, the scheme to calculate 

the velocity on the boundary developed by Ma (1998) and Ma, Wu & Eatock Taylor (2001a) is 

not applicable. A robust mixed FD scheme is therefore developed. The newly developed scheme 

allows one to calculate the velocity without the limitation of the mesh structure. It is, therefore, 

suitable to deal with the problem where a moving unstructured mesh is used. 
Apart from the above developments, an iterative procedure to find the acceleration of and the 

force acting on the floating body is also developed. This method overcomes the difficulty 

associated with the implicit relationship between the force acting on and the acceleration of the 

floating body using an iterative procedure without the need of solving extra equations which are 

required by the mode-decomposition method and the indirect method. It also avoids the 

problem of forming a special matrix for 00 / öt 
, whose properties have not been fully studied, in 

Dalen and Tanizawa's proposal. In the newly developed method, the velocity of the floating 

body is calculated implicitly, instead of being computed explicitly by the iterative procedure by 

Cao, Beck & Schultz (1994). This method is therefore more stable than the latter in cases 
involving floating bodies in large motion. Many numerical techniques, i. e. the scheme to 

estimate the initial value and the way to assign the under-relaxation coefficient, are developed to 

achieve overall high efficiency. 
Similar to the conventional FEM, after the velocity on the free surface is found, the velocity 

potential on the free surface at the next time step can be estimated using Eqs. (3.1.11). This 

provides a Dirichlet condition for the velocity potential on the free surface, 

= fp (3.5.1) 

where fp is the potential value at the free surface. The acceleration of the floating body can be 

integrated to obtain the velocity of the floating body which provides a Newmann condition on 

the rigid boundary. 
ao 

- 
fn 

an 
(3.5.2) 

in which f� is the value of normal derivative of the velocity potential on the rigid boundaries. 

These conditions on the boundaries enable one to solve the boundary value problems at the next 

time step. The problem about öb / at described in Eqs. (3.3.9) to (3.3.11) is also solved by 

using the above method with 0 and the boundary conditions for it are replaced by a /at and 

corresponding boundary conditions for äO / Ot . For the purpose of providing the computational 

mesh required by the FEM, the fluid domain is discretised into a set of small tetrahedral 

elements as shown in Fig. 3.5.1, 
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4 

1 2 

Fig. 3.5.1 Sketch of a tetrahedral element (1,2,3 and 4 is the local node numbers) 

The numerical procedure of the QALE-FEM method can be summarised as 
1. Starts with an initial state; 
2. Solve the BVP for the velocity potential described by Eqs. (3.1.3), (3.1.5) , (3.1.10) and 

(3.1.11); 

3. Calculate the velocity of the fluid on the boundary, i. e. the free surface and the body 

surface; 
4. Solve the BVP for öO / at defined by Eqs. (3.3.9)- (3.3.11); 

5. Compute the force acting on the body by using Eqs (3.3.7) and (3.3.8); 

6. If a free-response floating body is involved, calculate the accelerations and velocities of 
the floating structures by using Eqs. (3.2.2)- (3.2.5); 

7. Update the position of, the velocity potential and the velocities on the free surface and 
the floating structures; 

8. Move the mesh in order to conform to the deformation of the fluid domain; 
9. Go to the next time step. 

In this procedure, step 2 and step 4 are to solve the boundary value problems for velocity 

potential and its time derivative by FEM method, which will be discussed in this section. The 

velocity calculation scheme in step 3 will be discussed in Chapter 5. The iterative procedure to 
find the force (step 5) acting on and the acceleration (step 6) of the free-response floating body 

will be discussed in Chapter 6. A time integration scheme is developed to update the fluid 

domain in step 7 and will be discussed in Section 3.6. The method to move the mesh in step 8 

will be discussed in Chapter 4. 

3.5.1. FEM formulation for ýi 

As in the usual finite element models (see, for example, Ma, 1998; Ma, Wu & Eatock 

Taylor, 2001a), the velocity potential is expressed in terms of a shape function, N, (x, y, z) : 

0= 1OJNr(X, 
Y, Z) 

J 
(3.5.3) 
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in which O� is the velocity potential at Node J. Using the Galerkin method, the Laplace 

equation and the boundary conditions are discretised as follows, 

fffVN, 
- OJVNJcN= ff N, f,, dS-5ffVN1 '(ffp)�VNJdd (3.5.4) 

J"J 
�ýSp JESp 

where Sp represents the Dirichlet boundary on which the velocity potential fp is known and S� 

represents the Numann boundary on which the normal derivative of the velocity potential f� is 

known. Eq. (3.5.4) can further be written in the matrix form: 

[A]JO} = {B} (3.5.5) 

where 
{0}= 101002$03ý 

. 90r9... 
IT V0 Sp) (3.5.6) 

A, J = 
Jf fVN, 

"VNJdb (10SP, J0SP) (3.5.7) 
V 

B, =f JNj. fndS- fffVNI 
. (fp)JVNJdd (10 SP) (3.5.8) 

S. V �ESp 

A and B are coefficient matrices. From Eqs. (3.5.7) and (2.5.8), it can be found that these 

matrices depend on the definition of the shape function and therefore the shape function affects 

the accuracy of the calculation. Linear, quadratic or higher-order polynomial shape functions 

may be used. For the cases with 3D wave-structure interaction, Ma (1998) and Ma, Wu & 

Eatock Taylor (2001 a) have shown that the linear shape function is relatively simple and leads 

to sufficiently accurate results if a fine enough mesh is employed. In this work, a linear shape 
function is used. 

N, (x, Y, Z)= 
10 N, *(x, Y, z) 

leek 
(3.5.9) 

where I is any global node number, N, " (x, y, z) is the local shape function for element ek and 

is written as 

N; " = 
b' 

= 61 
(a, + b; x + c, y+d, z) (i =1,2,3,4) x, y, zE ek 

ek 
V" 

in which b'ek is the volume of the element, can be given as follows: 

I xl Yt it 
1 X2 Y2 Z2 dek =-det 

61 X3 Y3 Z3 
1 X4 Y4 Z4 

(3.5.10) 

(3.5.11) 

V, is the volume of a tetrahedron where node i of the element is replaced by (x, y, z). The 

coefficient matrices of the algebraic Eq. (3.5.5) are hence integrated over the elements. 
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Am = JJJONI "VNJdV (I 0 SP, J 0 SP) (3.5.12) 
k ek 

B, -2: J1N,. fndS-I: 1f1V7N,. 2: (fp)JON dV (I0 Sp) (3.5.13) 
k AS, (ek) k ek JeSp 

where is the sum taken over all the elements, and AS� (ek) represents the triangular 
k 

surface of element ek , 

An element ek is discussed below. At this element, shape function N. (x, y, z) is linear, the 

gradient ONE is constant. Substituting Eq. (3.5.9) into (3.5.12), 

1 (b, bj +c, ci +d, dj) I, J E ek ff$VNI "'NJdV = 36Vek (3.5.14) 
ek 0 Io-ekor Joek 

in which i and j are the local node numbers of node I and node J in the element ek , respectively. 

Eq. (3.5.13) results from the contribution of the boundary condition, i. e. Dirichlet condition 

on Sp and Numann condition on S. When the element contains 1 and J with J being on Sp, get 

11fVNJ " Z(f )rVNj dV = 36`d ex 

(b; bj +c, cj +d, dj)(fp)i (3.5.15) 
ek 

JeSp 

otherwise 

ff5VN, " (fp)JVNJdb=0 (3.5.16) 
ek JESp 

When one of the triangle surfaces of the element is part of the boundary S� and contains node I. 

f fN, f�dS= f fNikf�dS (3.5.17) 
AS. (ek) ASn(ek) 

otherwise 
JfN, f�dS=0 

AS, (ek) 
(3.5.18) 

Eq. (3.5.17) can be analytically integrated if f, is assumed to be constant or linear on AS,, (ek) . 
If f, is constant on AS,, (ek) such as on the wave maker, 

JJ NI kf 
ek 

f (3.5.19) n 
dS =3 

AS. (ek 

in which AS", is the area of AS, (ek). While, if f� is linear on AS, (ek) , 

JJNIkJnds= 

LSek ( 
nlt +( n)j + \fnJk (3.5.20) 

AS (ek) 
3244 

where subscript i j, k denote local node number. (f, ), is the nodal values of f� at node i. 
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Once the contributions from each element are known, the coefficient matrices in Eq. (3,5.4) 

can be formed by summing them properly. Eq. (3.5.4) is then solved by using a conjugate 

gradient iterative method with the SSOR (Symmetric Successive Over-Relaxation algorithm) 

pre-conditioner and optimised parameter(see Ma, 1998 for details). 

It should be noted that the boundary conditions on the free surface and on the rigid 
boundary are different. The nodes on the waterline must satisfy both simultaneously. This is 

known as the singularity problem on the waterlines which has been discussed in Chapter 2. In 

order to solve this problem, two types of method were used in the applications where BEM is 

used. One was suggested by Lin, Newman and Yue (1984) in which both the free surface 

condition and the body surface condition are employed at one point. The other one was 
discussed by Wang, Yao and Tulin (1995), in which every single intersection points at the 

waterlines are considered as two points. However, in the FEM, the free surface condition has 

appeared on the right side of the formulation. This can ease the well-known singularity problem 

at the waterline between the free surface and rigid boundaries and so special treatment is not 

required, as pointed by Wu and Eatock Taylor (1994) and Ma (1998). 

3.5.2. FEM formulation for 00 / öt 

The problem about 00 / ät described in Eqs. (3.3.9) to (3.3.11) is also solved by using the 

above method with 0 and the boundary conditions for it are replaced by ä0/ at and 

corresponding boundary conditions for aq / 7t . However, the normal derivative of 00 / at on 

the Newmann condition (Eq. (3.3.11)) contains a second-order derivative of velocity potential 

( 
as O 

). This term is unknown and difficult to integrate in a FEM formulation. One may use 

a backward FD scheme if an interpolating method is employed to find the velocity potential 

and the velocity at points on its normal direction. For example at node a on the body surface as 

shown in Fig. 3.5.2, as O may be calculated by 

avo (vg)Q_(vo)Q, 
an 1n (3.5.21) 

in which point a' is located in the normal direction (na) of node a with distance of 1�. Subscript 

a and a' denotes the value at nodes a and a' , respectively. Of course, one may also use other 
FD formulation, such as the 3-point formulation. But, no matter which formulation is chosen, 
one must find points on the normal direction of node a. T7q5 at point a' can be calculated by a 

numerical formulation using the velocity potential in the fluid domain. To do so, this point 
should be in the fluid domain. 
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ý ý'rwb 
/L Free surface 

ýal /Floating body 

Fig. 3.5.2 Sketch of nodes on the body surface and their normal direction 

However, in some cases, we cannot find these points in the fluid domain, e. g. the nodes on 

the waterlines (node b shown in Fig. 3.5.2). For these nodes, it is impossible to find a point on 
its normal direction (nb) in the fluid domain. Therefore, it may not possible to calculate the 

term 
aý 

by using a backward difference scheme. In this case, one cannot give a proper 

boundary condition for 00 / Of on the body surface. 

In order to overcome the above problem, 
OVO 

is expanded as an 

avo 
_an LO 00 LO _ __ a4ný__() a0 C aO 

an ankan+az z'Or z)=a2 anaz anz'+a z 
ýan)zz (3.5.22) 

ztz 

where zl, iz are two tangential unit vectors of the body surface. The second-order normal 

derivative of the velocity potential at the nodes on the body surface is converted to a function 

of the tangential derivative using the relationship, 

a21 a20 + a20 
anZ arl az2 

(3.5.23) 

This formulation is based on the fact that the velocity potential satisfies Laplace's equation in 

the fluid domain (Eq. 3.1.3). Substituting Eq. (3.5.23) into Eq. (3.5.22), 
aVO a2o a2( a 

(aoa 
aoan 

az 12+ 
atz 2 

ýn+ 
ar1 anýz' 

+ 
ari 

ýanýzZ 

=a 
a0 +a 00 n+ a (a-)f +a (aý)? 2 (3.5.24) ` [a11. o1J T812 8T2 atl all 0 Z2 an 

In this equation, 
an 

is the normal velocity component which satisfies the boundary condition 

for velocity potential on the rigid boundary, i. e. Eq. (3.1.7). 
0 

and 
00 

are the tangential 
iz 

velocity components which can be found by using the velocity calculation scheme discussed 
later. 
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For nodes on the body surface but not lying on the waterlines, the fluid particles are always 
distributed on both side of its tangential direction. Therefore, it is possible to find the 

tangential derivative of the velocity by using a central FD scheme. For nodes on the waterline, 

we can find the fluid particles at least on one side of its tangential direction and therefore can 

calculate the tangential derivative of the velocity by using backward FD scheme. Hence, the 

difficulty discussed above is solved. Furthermore, the accuracy of the central FD scheme is 

higher than the backward FD scheme in cases with same mesh size and so Eq. (3.5.24) may 

lead to higher accuracy than direct calculation of 
'VO 

. Based on this, the boundary condition an 

for ao/at on the wavemaker (Eq. (3.3.14)) can be rewritten as 

a aý 
Ui 

ago 
+ýa-O) (3.5.25) 

On at 
=°° 

aX2 aZ2 

On other rigid boundaries, the boundary condition (Eq. (3.3.11)) is rewritten as 

än(ötýý-[Üc +OXFb -6XOc]. n-. 
n[(Ü +S2xFb)"Vq]. (3.5.26) 

where F. is the position vector relative to the gravitational centre(See Fig. 3.2.1). The 

derivation can be found in Ma (1998). However, the last term of Eq. (3.5.26) includes a normal 

derivative of [(Ü, + S2 x Fb) " VO] . 
It is difficult to numerically calculate and therefore 

needs to be rearranged. For this purpose, let r' be the last term of Eq. (3.5.26) 

I'=- 
n[(Ü, 

+S2xrb)"Vb] (3.5.27) 

which is then expanded as 

r=-än(vc+sixrb>"vO-a an '(Ü +sxrb). (3.5.28) 

Since 
-n 

=n, Eq. (3.5.28) can then be rewritten as 

r=-(0 ii)"Vb-aa i. (üc+Oxrb) (3.5.29 
Finally, substituting Eq. (3.5.29) into (3.5.26) gives 

a aý 
' ýÜ, +S2xrb -S2xO,, ]"n-(Sxn)"VO- 

aý o 
"(Ü +S2xi'b). (3.5.30) än ar 

Substitute this equation into the corresponding equation of Eq. (3.5.17) in the FEM formulation 

for öO/at and split the contribution into two parts: one including 
aý O 

and the rest, i. e. 

SfN, f�ds = Be, + Bn2 
AS. (ei) 

(3.5.31) 
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where 

B"* =f Ni k f,, dS (3.5.32) 
ASn (ek 

Bnz = JJNi k fnzdS (3.5.33) 
AS. (ek) 

in which 

f�1 =[Üc+Oxrb-OxUc]"n-(S xn)"0o (3.5.34) 

f112 =- 
yo. 

(Ü +S2xrb)=- 
ao 

"Ü (3.5.35) 
On ' 

Bni can be calculated by using the same formulation as Eq. (3.5.19) where f� is replaced 

by fn, 
. Substitute Eq. (3.5.24) into Eqs. (3.5.33) and (3.5.35), 

B` _ JJ Nek 
ao" 

+0U_ 
ahn 

U_ 
a0n 

Ü dS (3.5.36) 
n2 - 

ýýýeký 
' or, erg n aZ, _ý art '_ 

For brevity, O0, and O represent 
a0 ao 

and 
a0 

, respectively. U,,, U7. 
, 
Uz are 

r' Tn ar, 312 all "' 

normal and tangential velocity components, respectively. Using Stoke's theory, Eq. (3.5.36) 

can be rewritten as 
B'1 k2 =-9-N, (Ut2On -Unqi=Z)dvl +N1(Ur, gn 

-UnOr, 
)dz2 

Sb 

-0" dS (3.5.37) - 
ff Or, a(N, Un) 

+ 0t= a(N' Un )-0. a(NýUf ) a(Ný UT ) 

ns. (et) 
art ÖZ2 er, ÖZZ 

in which sb denotes the boundary of ES 
, 
(ek) 

. Let Bn21 and Bek2 be the former and latter 

term, respectively, 
Bn2l =-9- 

N, (U, 

20� 
- 

Uncb)dr, 
+N1(Ur1O, - Unq. )dr2 (3.5.38) 

sb 

k2 = 
a(N, Un) 

+ ý_, a(N'U") 
- 0" 

a(NýU=1) 8(N, U=2)LS 
(3.5.39) B"z - -imý cf fk )0_. az, ate az, - ý" azZ 

Bi21 denotes the contribution from the waterline. In this thesis, triangular elements are used and 

the normal direction in an element is constant. Once the normal unit vector is found, the 

tangential unit vector in each element is found by il 1 h, i, // ex, iZ In and z2 //c where 

ex and ey are the unit vectors in the x- and y-directions, respectively. In this local normal- 

tangential coordinate system, Bn2l and Bn22 can be calculated by 
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e' 
1Izºr-z, 

i, (yi, +1vfj)+Ir2r'z2j1(. 9r+9i) i' C: E S" Bn21 3232 (3.5.40) 
0 otherwise 

and 

Bek 
_ 

ASek 

_ 
'Vrl"r i 

Yrýjý'yr2j 

y 
YýrlJ rzj 

+ 
Y'r2iýsýf 

++ 

Orykflsik 

2 

"22 3244244 
n nI [(UOrp 

-Ur2On)i+(UnOr2 -Ur=On)j+(UnO- 
Urzcbn)k} 

b6, 

LýUnYrý -Us, 
cn)1 +(U,, O,, 

- CJr, 
O)j +(UU'l - 

UrIYin)k} (3.5.41) 

where 
V= -UU=cn +Un0,, and 9=U,, 0,, -Un0,, (3.5.42) 

ij and k is the local node number in the element.; b", =r2 j- r2k; C", = rlk - rij and rt, z2 are 

the tangential coordinate values. SH, denotes the waterline. The derivations of these equations are 

given in Appendix A. 

3.6. Time integration scheme 
In the time marching procedure described above, many physical quantities, need to be 

updated in order to provide the new condition at the next time step. All of these quantities are 

given in terms of time derivatives, 

dr (t) =1 '(t) (3.6.1) 

where y represents the physical quantities, i. e. the following four types of physical quantities in 

the time marching procedure described above, 
1) The position (x, y, z) of the free surface in Eq. (3.1.10) 

2) The velocity potential (0) on the new free surface in Eq. (3.1.11) 

3) The translational (U, ) and angular (S2) velocity of the floating body 

4) The translational displacement S and the Euler angles 4 (a, ß, y) of the floating body 

in Eqs. (3.2.4) and (3.2.5) 
A time integration scheme is therefore required to find the value of y in the next time step, 

v" = y"-' + f(t)dt (3.6.2) 

in which superscript n and n-1 represents the n`h and (n-1)`h time steps, respectively. The 

information in nt time step may or may not be taken into account to treat f (t)dt . If the 
w1 
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information in the current time step is considered, the scheme is implicit; otherwise, the 

scheme is explicit. 
In order to achieve high computational efficiency, the following criteria are used to choose 

the time integration scheme, 

0 It must be accurate and stable; 

9 Not requiring sub-step calculations; 

" Not updating the fluid domain in the calculation at one time step; saving the CPU time 

spent not only on this but also on forming the new coefficient matrix for FEM. 

To do so, two types of methods are commonly used. One is based on the Runge-Kutta 

method. The other one is the multi-step method (see, Gear, 1971). In the Runge-Kutta method, 

every time step is separated into several sub-steps (3 sub-steps in a general 4h-order Runge- 

Kutta scheme). This method therefore requires three sub-step calculations at one time step 
forward Koo (2003) and Koo & Kim (2004) used a 46'-order Runge-Kutta scheme is generally 

used to update the position and the velocity of the floating body. In each sub-step, the geometry 

of the computational domain may or may not be updated. If it is not updated, it is called a 
frozen coefficient method; otherwise, it is called a fully updated method. The CPU time spent 

on updating in the fully updated method is roughly equal to 4 times that in the frozen coefficient 

method. However, the frozen coefficient may not lead to stable and reasonable results for 

problems with large motions of floating bodies, as indicated by Koo & Kim (2004). Based on 

this, the frozen method doesn't satisfy the first and the second criteria, while the fully updated 

method doesn't satisfy the second and the third criteria. The Runge-Kutta method is therefore 

excluded in this work. 

In the multi-step method, a Taylor expansion is used to treat f(t)dt. If constant time 
M1 

step is used (Gear, 1971), Eq. (3.6.2) is therefore rewritten as 

I n-1 m ý, 1 (! -1) 
At r 

n n-1 n-1 1 (df 2 ur m+l 

lý 
+ o(Ar (3.6.3) yýy+f Ar +I 2 dt 

Ar + 
1-3 

in which superscript (i) represents i`h-order derivative. y" is calculated by y, its first-order time 

n'1 
derivative (f )and its higher-order time derivative 

dt(_') ,iz2 without the need of 

d('-"f n-1 

separating every time step into several sub-steps. However, pýý_ýý ,3Z3 in this thesis is 

n-I 

unknown and 
Nt 

may or may not be known. Due to this fact, the above four types of 
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physical quantities are separated into two groups: one whose second-order time derivative is 

unknown, i. e. the first three types of physical quantities listed above, and one whose second- 

order time derivative is known, i. e. the last type of physical quantities. 

For the physical quantities in the first group 
In first group, all the higher-order time derivatives are expressed as a FD scheme off. Either 

an explicit Adams-Bashforth method or an implicit Adams- Moulton method may be used 

(Gear, 1971). The standard explicit Adams-Bashforth method is given by 

r 
}ýn = yn-1 + &" 

i' 
f n-1-i 

rl 
1-0 

(3.6.4) 

in which r+1 is the number time steps which is taken into account in Eq. (3.6.2), ß,, is the 

linear coefficient, the superscript n and n-1 represent the time step The standard implicit 

Adams- Moulton method is given by 

r 
yn =y n-I +& ß'ri f n-i 

1-0 
(3.6.5) 

where ß*ri is the linear coefficient. Details on how to calculate ßr, and ß*rr are given by Gear 

(1971). As discussed by Gear (1971), Eq. (3.6.5) requires larger time step than Eq. (3.6.4) to 

get stable results if the same r is chosen. It is also shown that the stability of both schemes gets 

worse as r increases. In addition, the memory required for storing the information at previous 

time steps is also increased as r increases. Therefore, the Adams-Bashforth method with r=1 

and Adams- Moulton method with r=2 are commonly used. The former formulation is 

fn2ý 
yn =y n-I +f n-IOt +fn 

-I - 

--l At + o(At) (3.6.6) 
2 

and the latter one is given by, 

Y" =y""1+At(5f"+8f"-1-f"-2)+O(At4) (3.6.7) 

The accuracy of Eq. (3.6.6) has been investigated by Ma (1998) and Ma, Wu & Eatock 

Taylor (2001a) using the case with fixed cylinders. Their results have shown that this explicit 

scheme is sufficiently accurate. The implicit scheme (Eq. 3.6.7) has higher accuracy than Eq. 

(3.6.6). However, the implicit scheme requires an iterative procedure. During the iterative 

procedure, y" in each sub-step of the iteration should be corrected in the next sub-step. This 

method is hence not suitable for updating the free surface since the position of the free surface 

and hence the fluid domain will be updated in the iterative procedure which is not expected. 
Therefore, Eq. (3.6.6) is used to update the free surface. Furthermore, because of the iterative 

procedure, the computational cost of the implicit scheme is more than that of the explicit 

method. For the purpose of achieving high computational efficiency, Eq. (3.6.6) is also used to 
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deal with other physical quantities in the first group unless the iterative procedure is required 
for other aims, i. e. for a freely responding floating body. In such case, the force acting on and 
the acceleration of the floating body are calculated iteratively in order to decouple their mutual 
dependency. The implicit method here does not affect the whole computational efficiency. 

Based on the above discussion, it is summarised that Eq. (3.6.6) is used to update the 

position of the free surface and the implicit scheme (Eq. 3.6.7) is used to deal with the velocity 

of the floating bodies. However, for the velocity potential on the new free surface, the explicit 

scheme (Eq. 3.6.6) is used in cases without free-response floating bodies, but the implicit 

scheme (Eq. 3.6.7) is used in cases with free-response floating bodies where an iterative 

procedure is used to find the force acting on and the acceleration of the floating body. 

For the physical quantities in the second group 
In the second group, the second-order time derivativep) of the physical quantities, i. e., the 

translational displacement and the Euler angles, is known. y" is therefore expressed as a function 

of 
I- 

and f, for example, the implicit scheme as following, 

yn _ yn-1 + `n-1 At 'F 

At (df 
2 Ut 

or the explicit scheme as following, 

n-1 

yn =y n-I +f n-lAt +At 
df 

2 dt 

(df n dl n-2 

+ 
At3 dt - dt 

(3.6.8) 
6 20t 

df ) n-2 df. �-2 

+ 
At' dt dt 

(3.6.9) 
6 At 

The above two equations are based on the 3ýd order Taylor expansion with 
dztf 

approximated 

by a FD scheme. As discussed above, the implicit scheme requires iteration in which y" is 

corrected at every sub-step. If Eq. (3.6.9) is used, the translational displacement and the Euler 

angle are changed at every sub-step of the iteration. As a result, the position of the floating body 

is changed as well. That implies that the coefficient matrices for the algebraic equations should 
be re-calculated at every sub-step of the iteration and therefore the third criteria above is not 

satisfied. Due to this, Eq. (3.6.8) is used to update the position of the floating body in this thesis. 
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4. MESH MOVING SCHEME FOR QALE-FEM METHOD 

As indicated in Chapter 3, in the QALE-FEM the mesh is generated only once at the 
beginning of the calculation and is moved to accommodate the large variation of the fluid 

domain without need of any mesh regeneration at every time step. The vital task of the QALE- 

FEM method is to develop a scheme to control the nodal motion of the mesh at all other time 

steps. 
Compared to other fluid-structure interaction problems, e. g. those in aerodynamic problems, a 

defining characteristic of the fluid domain in the wave-structure problem is that there is a free 

surface which is unknown and moving during the whole calculation. The deformation of the 

domain caused by the motion of the free surface is very large in cases with nonlinear large water 

waves. These make the mesh in a fluid domain with free surface become more difficult to 

conform to the deformation of the fluid domain using the existing techniques. On the other hand, 

the position of nodes on the free surface depends on the Lagrangian dynamic and kinematic 

condition, which usually causes the nodes to get too close to or too far from each other than in 

the initial state. In some cases, this may result in the appearance of negative elements/element 

overlap. All these problems are undesirable for the FEM method. For this reason, the nodes on 
the free surface should be redistributed and the mesh moving scheme for the interior nodes in 

the QALE-FEM method should also consider the change of the free surface. 
In this work, the initial mesh is generated by an in-house mesh generator based on the mixed 

Delaunay triangulation and advancing front technique (see, for example, Frey, I3orouchaki & 

George, 1998). In order to achieve high efficiency and accuracy of computation, the method to 

move the mesh should satisfy the following criteria: 

" It must create satisfactory element shapes at all time steps. 

" It must preserve reasonable refinement and distribution in regions of interest, such as 
those close to the free surface and structures. 

" It must be computationally efficient. 

4.1. Existing methods for moving computational mesh 
Many researchers published various methods to control the motion of meshes in the ALE 

formulation for the NS model. Often-used methods include the empirical formulation method 
(Donea, Giuliani & Halleux, 1982), the trigonometric function method (Huerta & Liu, 1988; 

Kjellgren & Hyvarinen, 1998), the method based on the solution of Laplace's equation to find 

the velocity of mesh developed by Lohner & Yang (1996), the equipotential method (Souli, 
Ouahsine & Lewin, 2000), the weighted average method (Aymone, Bittencourt & Creus, 2001), 
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the isoparametric mapping method (Gadala, Movahhedy & Wang, 2002), the transfinite 

mapping method (Gadala, 2004). Besides these, a self-adaptive mesh technology was developed 

recently and applied widely in NS models (an example sees Li, Tang & Zhang, 2002). The main 

concept below this is to map the fluid domain into a fixed region by solving a coupled Poisson 

type mesh equation, so that the governing equations can be solved in the fixed mapping domain. 

These methods either tend to make the mesh uniform, need a special mesh structure or require 

much computational time. So they are not perfect options satisfying the above criteria. 
On the other hand, in the community of researchers who use ALE formulation for NS 

models, a fictitious elastic solid or dashpot/spring is assumed to exist in the whole mesh system. 

The displacement of nodes is therefore solved by a static equilibrium equation which results 

from the summation of forces at every node. This method is called the dynamic mesh algorithm 

(Zeng & Eigher, 2005). When this algorithm is implemented in conjunction with the NS models 

in ALE formulation, solution mapping from the previous mesh to the updated mesh is avoided 

(Huerta & Liu, 1988). This assumption forms the basis of two kinds of methods. 

One is called elastic analogy method. The elements are regarded as elastic and the 

deforming spatial domain is treated as a mass of elastic material so that the boundary 

displacements are spread into the mesh through elastic forces. A few researchers have used this 

method to deal with free surface problems. Souli & Zolesio (2001) and Behr & Abraham (2002) 

used this method to simulate free surface problems; Souli, Ouahsine & Lewin (2000) and 

Zhang& Hisada (2001) applied this method to treat fluid-structure interaction problems with 

structural buckling and large domain changes. However, the static equation in the elastic 

analogy method is complex and the CPU time spent in forming as well as solving such 

equations is longer than the spring analogy method discussed below. This method hence doesn't 

satisfy the above criteria properly. This is also the reason why this method is not widely used. 

The other one is called the spring analogy method and has been mainly applied to 

aerodynamic problems without a free surface. The main concept behind the method is that 

nodes in a mesh are considered to be connected by springs. The whole mesh is then deformed 

like a spring system. The boundary displacements therefore propagate into the mesh by virtue 

of a static equilibrium condition requiring that the sum of spring forces at each interior node is 

constant during the whole calculation. The spring system may comprise linear springs along 

each edge of elements (see, for example, Batina, 1989; Yang & Lee, 1996; Anderson, 1997) or 

may consist of both linear and torsional springs (Farhat et al., 1998,2002; Degand & Farhat, 

2002; Burg, 2004; Bottasso, Detomi, & Serra, 2005), the latter applying a moment to nodes. The 

sketches of the linear and torsional spring are shown in Fig. 4.1.1. 
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(a) linear (b) torsional (Farhat, Degand & Koobus et al , 1998) 

Fig. 4.1.1 Sketches of linear spring and torsional spring systems 

4.1.1. Linear spring analogy 

In the traditional linear spring analogy method, linear springs are only attached to the edge of 

every element and the spring system in the initial condition is in a static equilibrium state. Once 

the boundary is moved, the nodal displacement on the boundary introduces spring forces that 

subsequently displace interior nodes to make the whole spring system reach static equilibrium. 
It is assumed that the resultant force acting on every interior node in static equilibrium at every 

time step is equal to that in the initial state, i. e., 

Fsi 

where FS, is the resultant force acting on the ih interior node, superscript 0 and n represent the 

initial status and the Wh time step, respectively. Using the above equation, the nodal 
displacement can be obtained. Two types of springs, i. e. vertex spring and segment spring, are 

commonly used in the linear spring analogy method. 

Vertex springs 
Vertex springs are always under tension unless the spring length is zero, the assumed force 

for this type of spring can be described as 
fu = kv (zj - z) (4.1.2) 

where fu is the spring force between node i and node j; z is the spatial coordinate and k, is 

the spring stiffness of spring (ij). The resultant force acting on ih node is hence given as 
N 

FS, _ ku (zj - x", ) (4.1.3) 
.1 

in which Nthe number of nodes which connect to node i. Since 9 can be expressed as 
z =P, + Or (4.1.4) 

CkUk 
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in which z° is the initial spatial coordinate; Al the displacement of the node, Eq. (4.1.3) is 

therefore rewritten as 

P, ko (zj' +APj -z°-Ar, )=ýko (zj -x'0)+Ik11(Orj-Or1) (4.1.5) 
f sj ý-I f m] 

Substitute Eq. (4.1.3) into Eq. (4.1.1), we can get 
N 

ZkU(Or-Li)=0 

i=1 
(4.1.6) 

The iterative formulation to calculate the displacement of the node i is therefore written as 
N, N, 
E ki cri Ike 

i=1 

1j. 

1 

Segment springs 

(4.1.7) 

Segment springs have zero tension at initial length, the spring force between two nodes i and 
j can be calculated using the displacements of these two nodes, i. e. 

fy = ko (AF - AFj) (4.1.8) 

The resultant force acting on ith node is hence given as 
N, 

FS, _ ku (AF -AF, ) (4.1.9) 
J=1 

Initially, the displacements of all nodes are zero, the initial resultant force acting on every node 
is therefore equal to zero. Substituting Eq. (4.1.9) into Eq. (4.1.1) gives 

ky(erj-or, )=o (4.1.10) 

This equation is the same as Eq. (4.1.6) and the iterative formulation for displacement by using 
segment springs is so the same as Eq. (4.1.7). That means the formulation of segment springs 

and that of the vertex springs are exactly same. No matter which spring is used, the same results 

are obtained. 

Spring stiffness 
If the spring stiffness is given, the nodal displacement can be found using Eq, (4.1.7). It is 

observed in Eq. (4.1.2) or Eq. (4.1.8) that for a specified force fy, a larger value of the spring 

stiffness means a small deformation of the spring. The spring stiffness represents the capability 
to resist the deformation caused by the external force. If the springs in one area are relatively 

stiffer than those in other areas, the elements in this area are more difficult to deform. The 

definition of the spring stiffness requires that the springs in the regions of interest, which are 
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usually near the moving boundaries, should be relatively stiffer than those in the rest of the area 

so that the elements in those regions have higher capability to resist the deformation caused by 

the motion of the boundaries. 

In the traditional linear spring analogy method used in computational aerodynamics, the 

stiffness is taken as the inverse of the distance between two nodes (e. g. Batina, 1989), i. e., 

ky =1/la (4.1.11) 

where 1, is the distance between ifl' node and 1th node. Eq. (4.1.11) has been used by many 

researchers, such as Yang & Lee (1996), Anderson (1997) , Burg (2004). This definition of ku is 

justified by the fact that if two nodes tend to get closer during the mesh motion, the spring 

attached to the edge they belong to becomes stiffer and therefore prevents them from colliding. 

Furthermore, the distance between every two nodes is relatively smaller in the regions of 

interest than that in the rest of the fluid domain. The spring stiffness is therefore larger in those 

regions. The linear spring analogy method with this definition of the spring stiffness is referred 

as the conventional spring analogy method in this thesis. 

The distinct advantages of the linear spring analogy system include requiring little CPU time 

and being very simple to implement. The system can be and has been successful in cases 

without extremely large distortion of elements and without nearly flat elements (Yang & Lee, 

1996; Anderson, 1997; Burg, 2004). However, a major drawback of this approach is the lack of 

control of the collapse mechanisms due to the fact that linear spring forces in the conventional 

spring analogy method are not affected by angular or by volume changes of the element. 

Element inversion may occur in the cases with very severely distorted or nearly flat elements 

(Tezduyar, Behr & Liou, 1992). 

4.1.2. Torsional spring analogy 

In order to apply the spring analogy method to cases with very severely distorted or nearly 

flat elements, Farhat, Degand & Koobus et al (1998) attached torsional springs to the vertexes 

of every element (Fig. 4.1.1b) in a 2D case. The stiffness of the torsional spring is defined as 

C; 'k =I/ sin' Ok (4.1.12) 

where Ck is the torsional stiffness associated with the facing angle 0, '"` that has node i as its 

vertex on the triangle Aijk. This definition of the spring stiffness is based on the fact that if 

ork is close to 0 or 1800, C; 'k is close to infinite and therefore prevents the element from 

inversing. The moment MWC generated by the torsional spring acting on every node in the 

triangle can be written as 
M&k =COkAB(Ik 

where 

(4,1.13) 
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(4.1.14) Mýk = 
[Mj kMk Mk k IT 

C; Jk 00 
C''k -0 Cýk 0 (4.1.15) 

U0 Ckk 

and A0'k is the rotational displacement 

O00k = 
[0, k &0 k 0Uk 

]T 
(4.1.16) 6) 

In order to combine the torsional spring moment with the linear spring force expressed as Eq. 

(4.1.2) or (4.1.8), the rotational displacement in Eq. (4.1.13) is converted into the formulation of 

the nodal translational displacement by 
080k = RI'Arllik 

where R'"` is the conversional matrix, Or ''k the matrix describes the translational 

displacements of node ij and k. Eq. (4.1.13) therefore can be converted into a set of equivalent 
forces, 

F''k = 
[(RIlk )T C''k R 1'k ýrIjk 

=K ý'k Or'f k 4.1.18 torsional torsinal 
() 

'; in which F,; 
o�al 

is the force generated by the torsional springs. The torsional spring and the 

linear spring are therefore combined into a single network of springs. For each edge sharing 

nodes i and j, the total artificial spring force F, 
, 
U,,,, is 

Fiot'a! = K'' Ort + J: B''k K i'k Ar 'k (4.1.19a) linear tl torsional 
ij 

and 

Alin 'i I LE 
(4.1.19b) linear = ýi, 

J 

in which [ Ed ] is a matrix based on the Euler angle of spring ij ; it 'k the matrix describes the 

translational displacements of node i and j; B; jk is a Boolean operator that extracts from a 

vector associated with a triangle ijk the subcomponent associated with the edge ij; 

represents the summation of all the elements sharing edge ij. It is also assumed that the 
J 

total spring force acting on every edge of the element is constant during the mesh moving 
procedure, the nodal displacement can be solved by using Eq. (4.1.19). 

This method has been extended to 3D cases by Farhat, Degand & Koobus et at (2002) and 
Degand & Farhat (2002). All their results demonstrated that the torsional spring analogy may 
retain the mesh quality during the calculation even in cases with severely distorted and/or nearly 
flat elements. However, there are two additional matrices, i. e. R''k and Ey 

, which have to be 
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calculated each time step at high computational cost. Furthermore, there are 3 torsional springs 
in the 2D case with triangle element and up to 12 torsional triangles in 3D cases with 

tetrahedron elements. Such a number of torsional springs complicate the formulation and force 

transformation. On the other hand, the conversional matrix R''k is obtained under the 

assumption that both the angular and the translational nodal displacements are sufficiently small. 
Hence, this method requires a sufficiently small time step to satisfy the above assumption. 
Therefore, its computational efficiency is undoubtedly low and the torsional spring analogy 

method does not satisfy the criteria given above. 
For the same purpose, i. e., enhancing the ability of preventing the near flat element from 

collapsing, Bottasso, Detomi & Serra (2005) developed a ball-vertex spring analogy method. 
The main idea is to introduce additional linear spring that resists the motion of a mesh vertex 

towards its opposite face (see the dashed spring in Fig. 4.1.2). The position of each mesh vertex 
is found by forming its equilibrium under the combined effect of its edge-connected springs 
together with the additional ball-vertex springs. This method avoids the force transformation 

and displacement conversion and therefore has higher computational efficiency than the 

torsional spring analogy method. However, the additional springs also introduce additional 

computational cost. 

1 

ýý 

., .ý 
l-- -i=-ý-- j 

k 

Fig. 4.1.2 Linear springs in the ball-vertex spring analogy method 
(i' is the projected point of node 1 on the plane j-k-1) 

The effect from the angular or volume changes of the elements may be considered in the 
linear spring system through modifying the spring stiffness of the linear spring (Blom, 2000; 

Zeng & Eigher, 2005). To do so, Blom (2000) developed a semi-torsional spring analogy 

method for 2D cases. In Blom's method the angular information is incorporated into the spring 

stiffness as 

k semi-torsional 
_ 

klinear 
U 

u eJ (4.1.20) 
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where O'j is the angle facing the edge (1, J) on an element as shown in Fig. 4.1.3b; k""" is the 

linear spring stiffness and can be calculated by using Eq. (4.1.11). Though there were still many 

problems associated with this formulation, e. g. for each edge i -j there may be two different ©'' 

in two connected elements (triangles i j-k and j-I-i in Fig. 4.1.3b) sharing edge i -j, Blom (2000) 

provided a novel idea to enhance the capability of the linear spring analogy method for cases 

with very severely distorted and/or nearly flat elements by taking into account the facing angle 
in the spring stiffness. 

k 

I 

1 

1 

1 

Fig. 4.1.3 Facing angles in an 2D or 3D element 
(a: 3D tetrahedron element; b: 2D triangle element) 

1 

Based on Bolm's contribution, Zeng & Eigher (2005) developed a new semi-torsional 

approach for 3D dynamic unstructured mesh problems. In their application, the spring stiffness 
is defined as 

I1 
ký' - l; 

+KNE 
`-'sin2 9, '�' 

k 

(4.1.21) 

where NEB is the number of elements sharing edge i j, O is the facing angle which faces the 

edge 1-j on the mth element sharing the edge (see Fig. 4.1.3a), is is a coefficient and is assigned 
to be 1 in their applications. Once the facing angles sharing edge become i-j smaller, the second 

NEB 

term (2 of Eq. (4.1.21) becomes larger and the spring i-j therefore become stiffer 
m. l sin Bm 

which prevents the facing angle from becoming smaller. Compared to the traditional spring 

analogy method, the semi-torsional approach considers the angular and the volume changes of 
the element, it therefore has higher capability to resolve the problem with large deformation 

caused by the moving boundaries. This formulation has been successfully applied to update the 
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unstructured mesh in 3D cases without free surfaces. However, once a free surface is involved, 

many associated problems will arise as mentioned before. 

In this thesis, a spring analogy method based on the semi-torsional approach is extended to 

move the computational mesh during the calculation, since this method can achieve resonable 

quality of the mesh for all time steps and avoid excessive computational time spent on the mesh 

moving procedure. In order to overcome the difficulties associated with the free surface, as well 

as the moving rigid boundary, the following strategies are adopted to move the mesh: 

" considering the interior nodes and boundary nodes separately; 

" considering the nodes on the free surface and on rigid boundaries separately; 

" considering the nodes lying on the waterlines and others separately; 

" using relatively stiffer springs near the moving boundaries, such as the free surface 

and the moving rigid boundaries. 

The first three strategies separate the nodes into 4 groups: interior nodes, nodes on the free 

surface but not lying on the waterlines (referred as inner-free-surface nodes), the nodes on the 

waterlines and the nodes on the body surface but not lying on the waterlines (referred as inner- 

body-surface nodes). Different methods are employed for moving different nodes. The last 

strategy is due to the fact that in the region where the springs are stiffer, the elements are more 
difficult to deform and therefore have higher capability to resist the external forces generated by 

the deformation of the boundaries. This strategy also ensures the newly developed model 

satisfies the second criterion. 

4.2. New method in the QALE-FEM method to move the interior nodes 

4.2.1. Numerical method 

A linear spring analogy method is used to move the interior nodes. As discussed above, 
the spring stiffness should be assigned a larger value near the moving boundaries, such as the 
free surface and the moving rigid boundaries. To do so, two additional coefficients are 
introduced to correct the spring stiffness corresponding to Eq. (4.1.21). The spring stiffness is 

given as 

1 NEB 
k.. 1 

pfspbs 
sin 2 B, '�' 

(4.2.1) 

where T fs, gibs are the additional correction coefficients associated with free surface and the 

moving rigid boundaries, respectively. These two coefficients are close to 1 when the springs 

are far from the moving boundaries and become larger if the spring is closer to the moving 
boundaries. 

1) Correction coefficient ̀i'fs 
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In the initial mesh used here, the elements on the free surface are located at the mean free 

surface. The vertical coordinate, therefore, can be used to evaluate the distance between the 

spring and the free surface. Wu & Eatock Taylor (1994,1995) suggested an exponential 
function based formulation to determine the distance between the horizontal surfaces near the 

free surface when using a structured mesh. Using this idea, LYfs is defined as 

TI9 = errli+(:, +zj)/2dl (4.2.2) 

in which z; and zf are the vertical coordinates of Nodes 1 and J, respectively; d is the water depth; 

and yf is an coefficient that should be assigned a larger value if the springs are required to be 

stiffer at the free surface. Obviously, Tfs is larger for springs near the free surface according to 

Eq. (4.2.2). 

2) Correction coefficient Tbs 

In this thesis, `I'bs is defined as , 
njbs _ eTb(w, 

+w, l2) 
(4.2.3) 

in which yb plays the same role as vf but is used to adjust the spring stiffness near the body 

surface. The two coefficients may be different but in the present work, these two coefficients 

are taken to have the same values. w is a weight function and is determined by, 

10 df >Df 
w 1-df/Df df SDf 

(4.2.4) 

where df is the minimum distance from the node concerned to the body surface as shown in Fig. 

4.2.1. ; Df is the distance between the body surface and the boundary of the near-body-region 

and is defined as, 
Df = fdcmax (4.2.5) 

where dC111ax is the maximum distance from the gravitational centre to the wetted body surface 
and depends on the relative position of the floating body to the free surface. In this thesis e= 
1.5 is used. 

loating body 
Free surface dcmax 

GC Df df 

''"",. 
- region 

Fig. 4.2.1 Region near moving body surface (GC: Gravitational centre) 
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It should be noted that Eq. (4.2.4) is suitable not only for floating bodies, but also for any 

moving rigid boundary, such as the moving sea bed. In that case, a similar coefficient as ̀ I'bs 

should be taken into account when calculating spring stiffness. 

4.2.2. Element quality and mesh quality 

The quality of the mesh plays an important role in assessing the efficiency of a moving mesh 

scheme. In order to assess the quality of the mesh, a quality coefficient q, (Cavendish, Field & 

Frey , 1995; Lewis, Zheng & Gethin, 1996) fora single element I is defined 

3R, 
qý = Rc 

(4.2.6) 

where R, 
, 
R, are the inradius and circumradius of the element, respectively. This coefficient is 

based on the fact that the best tetrahedron/triangle element is the regular tetrahedron/triangle 

whose circumradius is three times of the inradius. The range of this coefficient is from 0 to 1. It 

equals to 1 for regular tetrahedrons/triangles and 0 for elements whose 4/3 points are located in 

a same plane. Obviously, smaller values of this coefficient mean the element is flatter and the 

quality of the element is lower. Since this coefficient q, is used to assess the quality of a single 

element, it is called element quality. 
After the element quality is found, the quality of the mesh is given by 

M1 
Q5 =M1 - 

i RW 
(4.2.7) 

where Qf is the mesh quality; M the number of the elements in the fluid domain. This 

coefficient represents the aggregate quality of all the elements of the mesh and so is called mesh 

quality in this work. As discussed above, the linear spring analogy method may not work in 

cases with nearly flat elements, the minimum element quality qm;,, is also calculated to assess 

the mesh moving scheme. 

4.2.3. Numerical tests 

In order to optimize the parameters, i. e. x, yb and yf in Eq. (4.2.1), a numerical 

investigation is then carried out. As discussed above, yb and yf play similar roles and can be 

assigned the same value. Furthermore, the spring surface is more difficult to deal with than the 

rigid boundaries. As long as the correction coefficient for the free surface works well , the 

correction coefficient for the body surface should also work. Due to this reason, only K and 

rf are investigated. To do so, the case which artificially specifies the free surface without 

floating bodies is used here and `Jbs is therefore assigned to be I in these cases. Two factors, 
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Nli,, 

the term I-2 and in the correction coefficient `I' therefore need to be tested. 
,,, -1 sing 

The effect of the correction coefficient `('"' 
, will be discussed in Chapter 8 and Chapter 9 by 

using cases of long-period calculations. 

The initial meshes are 3D unstructured. The free surface in the initial mesh is the mean free 

surface. A sketch of the mesh is shown as Fig. 4.2.2. The length and the width of the tank are 

12 and I respectively. The mesh size is taken as Ax = Ay = 0.075 . [lie niesh quality (Q, ) of 

the initial mesh is 0.69 and the minimum quality is 0.12. 

Fig. 4.2.2 Illustration of the initial mesh used in the test cases fier spring analogy stiffness 

The deformation of the free surface is artificially given by specifying the position of the 

nodes on the free surface. After the free surface is deformed, the spring analogy method with 

different definition of the spring stiffness is applied to move the interior nodes. Two tests are 

carried out in this sub-section to investigate the effectiveness of the method. One is to specify 

the nodal position on the free surface using a periodic sinusoidal function and the other one is to 

assign an artificial overturning wave profile on the free surface. It should be noted that the 

deforming procedure is separated into 50 sub-steps to ensure the deformation of the free surtäce 

as well as the displacement of the node are small enough. This operation is not needed in a time 

domain simulation because the deIirmation of the boundaries in each time step is relatively 

small. 

In the first test, the wave profile is specified by 

=0.3sin[n(x-L/2)]+1 (4.2.8) 

This profile is close to that of a monochromatic wave and therefore may represent the free 

surface in an actual simulation. In this artificial case, the wave length is 2 and the wave height 

is 0.6. The steepness here is larger than that in the actual case without overturning wave. As 

long as the method present in this chapter works this case, it may have the ability to deal with 

all actual cases without wave overturning. 
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In order to investigate the efficiency of the spring analogy method with different spring 

stiffness, the mesh on the vertical wall where y=0.5 is visualized. This is due to the fact that the 

case described by Eq. (4.2.8) is obviously v-coordinate independent and therefore the boundary 

mesh on the vertical wall can indicate the whole quality of' the mesh. Fig. 4.2.3 shows the 

initial mesh on the wall where v=0.5. 

(Thick curve: free surface) 

First of all, a case is run to test the effectiveness of the correction coefficient `P 
. 

In order 

NI:,, 1 
to eliminate the effect of the term 

.1- 
the coefficient x -in Eq. (4.2.1) is taken as 0 

�i -] 
S 111 0m 

and y, =1.7 is used for the correction coefficient P''' 
. 

Fig. 4.2.4 shows the mesh after 

being moved. 

Fig. 4.2.4 (a) 

Fig. 4.2.4 (b) 

iß,. 4.2.4 Mesh on the vertical wall (v=0.5) after being moved ( y, = 1.7 
, k' =0) 

(Thick curve: free surface) 
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For the purpose of comparison, another case where the spring stillness is given by the 

,q- (4.1.11 ), is also run. The meshes after being moved in this case conventional definition, i. e. 1, 

are plotted in Fig. 4.2.5. 

Fig. 4.2.5 (a) 

Fig. 4.2.5 (b) 

Fig. 4.2.5 Mesh on the vertical wall (y-0.5) after being moved using 

the conventional spring analogy method (Thick curve: free Surface) 

Fig. 4.2.4 (a) shows a part of the mesh on the vertical wall (y=0.5) moved using the present 

method with y' = 1.7 and is =0 while Fig. 4.2.4 (h) illustrates the enlarged mesh in areas 

near a wave trough. Fig. 4.2.5 shows the corresponding part of the mesh moved by using the 

traditional spring analogy method. From Fig. 4.2.4, it is found that the original refinement and 

the nodal distribution are kept and the near flat elements or negative elements, which are of 

concern when using the linear spring analogy method, do not appear. The mesh quality in this 

figure is about 0.60. Compared to the quality of the initial mesh (Q, =0.69), the decrease of the 

mesh quality is very slight. This demonstrates that the present method works well for this case. 

I lowever, in case where the conventional spring analogy method is used, the elements near the 

wave troughs become very flat (see, Fig. 4.2.5a). Many interior nodes in some regions 

(Fig. 4.2.5b) moved outside of the fluid domain and negative elements appeared. This implies 

79 



that the conventional spring analogy method (ailed to provide a satisfactory mesh by moving 

nodes in this case and therefore may not be able to treat the case with steep waves in this work. 
Nk, I 

Another case is run to test the effect of the term E In this case n' I, all other 
�1, -, sing B�, 

parameters are kept the same as those for Fig. 4.2.4. After being moved, the mesh on the 

corresponding area of that in Fig. 4.2.4 is plotted in Fig. 4.2.6. 

Fig. 4.2.6 (a) 

4 

Fig. 4.2.6 (b) 

Fig. 4.2.6 Mesh on the vertical wall (v=0.5) after being moved (y, =1.7 ti == 1) 

( Thick curve: free surface) 

From this figure, it is found that the shape of'elements and the nodal distribution are similar 

to those shown in Fig. 4.2.4 and the negative elements do not appear. The mesh quality in 

Fig. 4.2.6 is about 0.61 which is 1.5% higher than that in Fig. 4.2.4. This means the tern 

contributes in keeping the quality of the mesh when a spring analogy method is 

,, = i sin 0,;, 

employed but the effectiveness is not evident. However, additional computational cost is 

80 



NE' 

required in order to calculate 
Z 

+ý . 
For the purpose of achieving high computational 

m-1 Sln ©m 

efficiency, this term is not considered in cases without overturning waves. 

An advanced test is then carried out to optimise the value of 7f . The parameters in Eq. 

(4.2.1) and the initial mesh are same as those in Fig. 4.2.4 except yf ranging from 0.5 to 3 in 

this case. The mesh qualities in cases with different vf are shown in Fig. 4.2.7. 

0.61 

0.6 

0.59 

0.58 

0.57 

0.56 

0.55 

0.54 

0.53 

0.52 

0 

Fig. 4.2.7 Mesh quality in cases with different yf 

It is observed that Qs increases slightly as yf increases when yf<1.5 and increases 

slowly when yf ranges from 1.5 to 2. It is also found that Qs decreases when Yf is larger than 

2. The most likely reason is that excessive spring stiffness in the area near the free surface 

causes the elements near the sea bed to undergo greatly increased external tension, due to the 

free surface deformation, and consequently become distorted. The value of rf is taken as 1.7 

but further numerical tests may be needed to choose the value of vf based on the wave 

steepness. 
As discussed, the free surface in the above test may only represent that in cases without an 

overturning wave. Once the overturning wave occurs, the free surface profile near the 

overturning jet would be very sharp. This may result in negative elements appearing in this 

region. In order to investigate the ability of the present spring analogy method, the second test 

is then carried out. In this test, the free surface is artificially assigned a overturning wave jet, 

whose profile is duplicated from Grilli, Guyenne & Dias (2001), as shown in Fig. 4.2.8. The 

crest almost reaches 0.7. Two cases are run. yf in both cases is given as 1.7 while x is 0 and 

1, respectively. The meshes after being moved in these two cases are plotted as Fig. 4.2.9 and 
Fig. 4.2.10. 
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Fig. 4.2.8 Assumed free surface profile in the case with an overturning wave 

(a) (b) 

Fig. 4.2.9 2D mesh on the vertical wall in the case with an assumed overturning wave 

(y f =1.7, u =0) (Thick curve: free surface) 

(a) (b) 
Fig. 4.2.10 2D mesh on the vertical wall in the case with an assumed overturning wave 

( yf =1.7, x =1) ( Thick curve: free surface) 

Fig. 4.2.9 (a) shows a part of the mesh on the vertical wall (y-0.5) after being moved in case 

with yf =1.7, ac =0 and Fig. 4.2.9 (b) illustrates the enlarged mesh in region near the overturning 
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jet. Fig. 4.2.10 shows the corresponding part of the mesh in case with yf =1.7, K=1. From these 

NEB 

figures, it is observed that: without term 
1 

in the spring stiffness (K-4), there are 

NE,, 1 

negative elements in the mesh near the overturning jet (see Fig. 4.2.9b); with term 
m-I sing Bm 

in the spring stiffness (ic=1), this phenomenon did not occur (see Fig. 4.2.10b). These results 

demonstrated that the term 209 plays an important role in keeping the refinement of the 
m-I Sin Bm 

mesh and the distribution of the nodes in this test. Therefore, K should be non-zero in cases 

with overturning waves. 

4.3. Moving nodes on the free surface 
Special attention must be paid to nodes on the free surface because they play a decisive part 

in producing results of high accuracy for water wave problems. In order to track precisely the 

free surface, the node positions on the surface are determined by physical boundary conditions 
in Eq. (3.1.10), i. e., following the fluid particles, at most time steps. However, as indicated 

above, the nodes updated in this way may become too close to or too far from each other. To 

prevent this from happening, these nodes are relocated at specified interval (e. g., every 40 

time steps). As pointed out in Section 4.1.2, they are grouped into those on curved waterlines, 

such as the intersecting line between the free surface and vertical walls or the wavemaker, and 

those that do not lie on the waterlines, when being relocated. The nodes in the latter group are 

called inner-free-surface nodes. In this section, only the method to move inner-free-surface 

nodes is presented. The scheme to redistribute the nodes lying on the water lines will be 

presented in Section 4.4. 

Once the nodes on the waterlines are redistributed, the inner-free-surface nodes will be 

moved by the spring analogy method, as used for the interior nodes. Nevertheless, there exists a 
difficulty. That is how to ensure the nodes after moving remain on the free surface represented 
by discrete points. For simplicity, a method to achieve this is that the nodes are first moved in 

the projected plane of the free surface, i. e., calculating the values of x and y of the new position 

of every node using the spring analogy system. After the x- and y-directional coordinates of the 

new position are obtained, the elevations of the free surface corresponding to them are evaluated 
by an interpolating method. 

It is well-known, for an FEM method, the mesh should be finer in the region where the 

gradients of the physical quantities, e. g, the elevation, are larger (Li, Tang & Zhang, 2002). In 

this aspect, the objective for the projected mesh on x -y plane after being moved is that more 
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nodes distribute in the area where the gradient ofthe free surface is relatively larger. In order to 

achieve this objective, the local gradient of' the free surlace is taken into account. The spring 

stiffness in moving the nodes in x- and }'- directions, therefore, is determined, respectively, by: 

k -- l+ and k 1+ (4.3.1) 
q l; 2 ax "1 

where 
as 

and are the local slopes of the free surface in the x- andi-directions, respectively. 
Ox ay 

Inclusion of free-surface slopes in the spring stiffness ensures that the spring forces acting on a 

node are proportional to relative displacements between nodes measured along the curved free 

surface rather than along horizontal directions. For brevity, this method is called `Global 

method' herein. 

In order to test the effectiveness of the `Global method', a case is run. In this case, the initial 

mesh used is similar to Fig. 4.2.2 with width of 4 and length of 6. The mesh on the free surface 

is shown in Fig. 4.3. I (a) . In order to check whether the above objective for moving nodes in 
. t-v 

plane, the projected mesh on this plane is also plotted in Fig. 4.3.1 (h). 
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(a) whole mesh on the free surface (b) projected mesh on x-v plane 

Fig. 4.3. I Initial mesh on the free surlhce 

fhe tree surface is now given an assumed profile which satisfies 

z=I+ 2e 10(. '2+)' 
(4.3.? ) 

and a part of' the free-surtäce mesh near the peak of' the elevation is shown in Fig. 4.3.2 (a). 

The 'Global method' is then used to redistribute the inner-free-surltace nodes. The 

corresponding mesh after adaptation is shown in Fig. 4.3.2 (b). It is observed that more nodes 

are moved to the region near the peak area and the nodes in the whole domain are thercibre 

distributed more uniformly along the curved free surlace. 
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(a) before being redistributed (b) after being redistributed 
Fig. 4.3.2 Mesh on the free surface near the peak area 

Analysis is also made for the projected mesh on the x -y plane. The mesh near the peak area 

projected to the x -y plane is plotted as Fig. 4.3.3 where Fig. 4.3.3 (a) is that before being 

redistributed and Fig. 4.3.3 (b) after being redistributed. 

(a) before being redistributed (b) after being redistributed 

Fig. 4.3.3 Projected mesh on the x -y plane 

lt is also found from Fig. 4.3.3 (b) that on the projected mesh on the x -y plane the nodal 
distribution is tighter near the peak area where the gradient of the free surface is larger than on 

other regions, as expected. This method can achieve the objective for move inner-free-surface 

nodes described above. 
It should be noted, however, that this approach is obviously subject to a condition that the 

free surface must have only one intersecting point with any vertical line; in other words, it can 

be expressed by a single-valued function. Once the free surface is a multi-valued function of x- 

and y-coordinate, i. e. when overturning waves occur, the above approach is not applicable. In 
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such cases, a spring analogy method (called `Local method') based on the local normal- 

tangential coordinate system is developed and adopted to move the nodes. The derivation and 

investigation of this method will be presented in Section 4.5. 

4.4. Redistributing nodes on the waterlines 
The nodes on the waterlines will be re-distributed by adopting the principle of the self- 

adaptive mesh (Davies & Venkatapathy, 1999). The basic idea is to make the weighted arc- 

segment lengths between two successive nodes a constant along the curved waterlines, i. e. 

, As, = Cs (4.4.1) 

where tu is a weighting function, dr, the arc-segment length between two successive nodes 

and Cs a constant. The value of Cs is determined by using the fact that the total length of the 

curved waterline (L8), should equal the sum of all arc-segment lengths, which gives 

C3 = LS 
1= 

L3 /xs (4.4.2) 
toli 

where X, 
1_ ý- 

. Therefore, if the weighting function is given, the arc-segment lengths can 
TATi 

be evaluated by 

Ls 

vy, xs 
(4.4.3) 

The distribution of As, is controlled by the weighting function. An arc-segment tends to be 

smaller for a larger value of the weighting function or vice versa. Davies & Venkatapathy. 

(1999) used the weight function as 

tu= 1+af' (4.4.4) 

where a and ß are two coefficients and f is the function of the gradient of a variable, such as 

velocity. For the applications considered in this thesis, f is taken as a function of the curvature 

of the curved waterline and is given by 
l 

t71 =1 °i° a 
(K, 

- K'min 
)/ 

Kmax - Kmin 
a (4.4.5) 

where K, is the curvature of the curve As,; 1{max and icm; n are the maximum and minimum 

curvatures of the waterline, respectively. It is suggested by Davies & Venkatapathy (1999) 

that the coefficient a is determined by the arbitrarily-specified maximum (Ass.. ) and 

minimum (dssmin) length of the arc-segment elements, i. e. 

Q, _ 

ASsmax 

Assmin (4.4.6) 
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In our applications, it is expected that the arc-segment length is smaller in areas of shorter 

waves and is larger in areas of longer waves. Hence it is reasonable to specify 

A5s. 
_ 

L. 

LSsmin Lmin 
(4.4.7) 

where L, I, ax and L,,,;,, are the maximum and minimum wave lengths, respectively, which can be 

roughly estimated for problems considered. It should be noted that a subjected to Eq. (4.4.7) 

becomes zero for waves with single wavelength and so the arc-segment lengths are a constant 

after the nodes are re-distributed. Such a distribution of nodes is reasonable for these cases. 

The evaluation of 8 is not so straightforward. As indicated by Davies & Venkatapathy (1999), 

this value is determined in such a way that the minimum length of arc-segment elements 

obtained by Eq. (4.4.3) is approximately equal to the specified Os,; n. To achieve this, iteration 

must be performed. According to numerical tests, a value ofß in the range of 0.5 -1.0 can lead 

to a satisfactory distribution of As, when Lm /LR,; n<10. 
In order to investigate the above method for redistributing nodes on the waterline, test cases 

are carried out for both 2D curves and 3D curves. The initial nodes on the curves are assigned a 

new assumed position and the above method is then used to redistribute the nodes. 

In the 2D case, the nodes are distributed evenly on a straight line from x= -4 to z= 4, initially. 

The curve is then assigned to be satisfied 

z= -2 sec h(5x) (4.4.8) 

The above method is therefore used to redistribute the nodes. The new position of every node is 

shown in Fig. 4.4.1. For the purpose of comparison, those of nodes before being redistributed 

are also plotted together. 

Fig. 4.4.1 Initial nodes and those after being redistributed on a 2D curve 
(`o': before redistributed; ̀ +': after redistributed) 

It is observed from this figure that more nodes are moved to the region where the gradient of 

z is larger, i. e. near the peak (-11). The curved distance between every two nodes is 

redistributed to be proportional along the curve. As a result, the x-directional distance between 

every two nodes is self-adaptive with respect to the gradient of z. This implies that the method 
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to redistribute the nodes on 2D waterlines leads to better nodal distribution and is therefore 

effective. 

A similar conclusion is achieved in a 3D case. Here, the nodes are distributed equidistantly 

along a 3D curve as following 

x2+y2=1 and z=O 

initially and then are moved along z-direction to 

z=2 sin(n ) 

(4.4.9) 

(4.4.10) 

Finally, the nodes are redistributed by using the above method. The results are shown in 

Fig. 4.4.2. Similar to Fig. 4.4.1, the nodal distribution on the curve before being 

redistributed is also plotted together for the purpose of comparison. 
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(a) 3D curve (b) projected curve on x-y plane 
Fig. 4.4.2 Initial nodes and those after being redistributed on a 3D curve 

('+': before redistributed; ̀ o': after redistributed) 

Fig. 4.4.2 (a) shows the 3D spatial distribution of the nodes on the waterlines, while Fig. 4.4.2 (b) 

is its projected figure on x -y plane. Similar to the 2D case, it is found that, after being 

redistributed, more nodes are moved to the region where the gradient of z (see the top and 
bottom regions of Fig. 4.4.2 (b)) and the nodal distribution in the region with small gradient of z 
become sparse. This demonstrates that the present method to redistribute the nodes on the 

waterlines can deal with both 2D and 3D problems and leads to satisfactory results. 

4.5. Moving nodes on the body surface 
The wetted body surface is time-dependent in the problems considered here. In order to 

conform to the change of the wetted body surface, the nodes on the surface must also be moved 
at each time step. The principle for doing so is similar to that for moving the nodes on the free 

surface, i. e., splitting the nodes into two groups: nodes on the waterline and nodes lying on the 
body surface but not on the waterline, the later called inner-body-surface nodes. They are 
moved according to the physical condition and must also be moved in order to prevent nodes 
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becoming too close to or too far from each other. The inner-body-surface nodes may appear to 

be moved by the same approach for moving inner-free-surface nodes, i. e., projecting the nodes 

onto a horizontal plane, moving the nodes in it by using the spring analogy method and then 

finding the new positions of nodes on the body surface by interpolation. However, this is not 

always possible for floating body surfaces, particularly when they undergo angular motions, 

such as roll and/or pitch which cause two intersecting points exist on a vertical line. Therefore, 

one cannot actually use the same approach as for moving the inner-body-surface. A new 

approach is developed here. 

In this new approach, the spring analogy method is applied in a local coordinate system 
formed by the local tangential and normal lines. In this local coordinate system, the body 

surface is single-valued. This means there is only one intersecting point between the body 

surface and a line parallel to the local normal line (and, of course, perpendicular to the local 

tangential line). Say a node i is first moved along the tangential line by 
N, N, 

Or = ku A' Z+ 1] kU 
j=I j_I 

(4.5.1) 

where il is the tangential direction at node i. After that, the new position of the nodes on the 

body surface is found by interpolation in the local coordinate system. The spring stiffness in Eq. 

(4.5.1) is taken as k, =1 /1j2. This approach is referred as ̀Local method' in this thesis. 

It should be noted that at a sharp corner, there will be no unique tangential and normal lines 

and so the above approach fails. To overcome the difficulty, two simple ways are applied in 

this work. One is to prescribe a node at the corner and the other is to smooth the corner. Either 

way works well and gives similar results based on the numerical tests. 
It should also be pointed out that this method may be used to move the nodes on the free 

surface. Since this method can deal with the surface which can be expressed as a multi-valued 
function of (x, y). Therefore, it eliminates the limitation of the `Global method' to cases 
involving non-overturning waves. According to the numerical investigation in this work, the 
CPU time required by the `Local method' is almost 3 times more than that required by the 
`Global method'. The computational efficiency of the `Local method' is relatively lower than 

the `Global method'. This is because additional CPU time is required by the `Local method' to 

calculate the normal and tangential directions at each node on the free surface at each sub-step 

of the spring analogy method. Therefore, the `Global method' is used to move the inner-free- 

surface nodes in cases without overturning waves. Once the overturning wave occurs, the `Local 

method' is used. A subroutine is written to automatically choose the method. 

89 



4.6. Surface fitting and physical quantities updating 
As mentioned above, the nodes on the boundaries are restricted on the surface when they are 

moved. In order to make sure the nodes after being moved are still on the surface, an 
interpolating method is needed to fit the surface. This method should be highly efficient and 

accurate enough for the free surface problem. On the other hand, after the mesh is moved, the 

physical quantities, such as velocity potential and velocity, at the nodes in the new position also 

should be updated for the next time step. To do so, two interpolating methods are used: the 

shape function approach and the moving least square method. 

4.6.1. Shape function approach 

This method based on the shape function was used by by Ma, Wu & Eatock Taylor (2001a, b) 

and Ma (1998) to estimate the free surface elevations (i. e. coordinate z) and to approximate 

other physical quantities, such as velocity on the free surface, at every node after being 

redistributed. To do so, one needs to find which element each new node belongs to by using the 

coordinate x and y of the new nodes. After that, the value of z is estimated using the shape 
function defined in this element. 

In order to find the element where the new node J is located, the following vector is defined 

in each element (ij, k), 
vJ, = 

{xJ 
-xf, yj-y, 

} 

vJ2 = 
{x 

i -'-, 
} 

VJ3 = 
{xJ 

- Xk, YJ Yk 
} 

vp={x, -x,, vj-v; 
} 

TV ={Xk - Xj , yk-yj} 

Vlk={X, -xk, y1 yk} 
where x, y and z are the coordinates of corresponding nodes denoted by the subscripts. If new 

node J is inside of the element (1 j, k) ,J and every node in this element should be in the same 

side of its corresponding facing line, e. g. J and node i in the same side of linej-k. This condition 
leads to the following requirement. 

VJt x Vji Z0 
VJ, x Vkj z0 
VJk xVik>O 

(4.6.1) 

Once the element ek which satisfies Eq. (4.6.1) is found, ek must contains node J and hence 

the wave elevation and other physical quantities (f *) are therefore approximated by 
3 

Nek 
1=1 

(4.6.2) 
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in which f represents the physical quantities, e. g. wave elevation and velocity, which need to be 

approximated , subscript i represents the local node number in ek . The accuracy of Eq. (4.6.2) 

clearly depends on the shape function N, "k 
. The shape function used in both Ma, Wu & Eatock 

Taylor (2001a, b) Ma (1998) and this thesis is a linear function. Thus, this method is a linear 

approximation of the free surface. The shape function approach in the present work is only used 

to treat the case with linear waves. 

4.6.2. Moving least squares method 

Alternatively, a method based on the moving least squares (MLS) method, in which the 

positions of the nodes after being moved are determined by using the information at a group of 

old nodes in such a way that the error is minimised. This method has been frequently used to 

form the interpolating function in Meshless methods and the details about it may be found in, 

e. g. Atluri, & Zhu (1998), Ma (2005). Only a brief introduction to MLS is presented here. 

Introduction of MLS 
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Fig. 4.6.1 Sketch of the moving least squares method 

Fig. 4.6.1 shows a sketch of the MLS method. In this figure, the variablef(x, y) is known at the 

points marked as hollow circles. These points are called sampling points in this section. The 

solid point is the point where the variable f should be approximated (called interpolating point in 

this section). It is assumed the variable z f(x, y) satisfies the following equation using n 

sampling points in a sub-domain ( influence area in Fig. 4.6.1), 
n 

f(x, Y) =1 a1(X, Y)P1(X, Y) = PT (X, Y)a(x, Y) 
r=t 

(4.6.3) 

where P(x, y)=[p, (x, y), p2(x, y),..., pn(x, y)]T is a basis function with m self-contained multinomial, 
the rank of MLS is maximum rank of the multinomial in the basis function. 

P(x, y) = [1, x, y, xZ, xy, y2, x3, x2y, xy2, y3'... IT (4.6.4) 
Based on the above definition, m=6 for a 2-order MLS models, m=10 for a 3-order MLS 

models. a (x, y)=[a! (x, y), a2 (x, y),..., a, n (x)y)]Tis the coefficient matrix. Consider the weighted 
scattered weak form as follows, 
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J=lx'i[. r(x, Y), -Zi]2 =Ewr[PT (x1, Y, )a(xi, Yr)-zß]2 (4.6.5) 

r=t r=1 

where zi is the value of ith node and z, =z (xi, y) , wi is the weight of ith node. a (x, y) can be 

calculated using the principle of least squares method, i. e. 

-= 
A(x, y)a(x, y) - B(x, y)Z =0 (4.6.6) 

as 

in which 
n 

A(x, Y) = wl P(xº, Y, )PT (x1'y1) (4.6.7) 

B(x, y) = [w1 P(x1' Yl )' w2 P(x2'Y2 )'..., Wn P(xn' Yn )]T (4.6.8) 

Z= [z(x19 Y1)' z(x21 Y2)'-*' z(xn I Yn )] (4.6.9) 

then, a (x, y) is given 

a(x, y) =A "' (x, Y)B(x, y)z (4.6.10) 

Substituting Eq. (4.6.10) into Eq. (4.6.3), the following fitting function is obtained, 

f(x, Y) = pT (X, Y)A-'(x, Y)B(x, Y)Z 

The weight of ith node is based on the distance and can be defined as Atluri, & Zhu (1998) 

2/3-4s2+4s3 s_<0.5 

w(s) = 4/3-4s+4s2 -4/3s3 0.5 <s: 5 1 (4.6.12) 

0 s>1 

where s= dis l Smax and dis is the distance between the interpolating point and sampling points 

around it. smax is the radius of influence area. The value of smax should be different in order to 

solve different problems. In the free surface problem, the calculation of sm. should consider 

the wave length and/or local slope of the free surface. In this thesis, it is taken as 
Smax = max 

(4'6.13) 

in which dmax is the maximum distance between the interpolating point and the sampling points. 

S is a coefficient which is taken as 1.2. Once the number of sampling points is given, one can 

calculate the distance between the interpolating point and all the sampling points. dmax can be 

found and so Smax can be determined by Eq. (4.6.13). Based on this, the problem about the 

definition of the influence area is converted to a problem of determining the value of n. 
Therefore, the value of n and m are the key factors which affect the efficiency of the MLS. 

It should be noted that if z is not a single-valued function of (x, y) in the sub-domain 
(influence area), i. e. there are two or more intersecting points in a vertical line, for example the 
free surface in a case with an overturning wave, the above method does not work. As discussed 
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in Section 4.5, in such a sub-domain, the normal coordinate as well as other physical quantities 

always can be expressed as a single-valued function of tangential coordinates. In order to solve 
this problem, the above method should be carried out in the local normal tangential coordinate 

system and x, y coordinates in Eqs. (4.6.2-I2) are therefore replaced by the tangential coordinate. 

Numerical investigation 

In order to investigate the efficiency of MLS method, numerical tests were carried out using a 
PC (Pentium N 2.53G, IG RAM). In these numerical investigations, a surface is assumed to 

satisfy the following functions, 

z=0.5 sin(2; zx / 5) + 0.75 sin(2; cy / 0.5) (4.6.14) 

in the domain Q: {0 <_10, -0.5 y O. 5}, the nodes are distributed randomly. The computational 

error is defined 

err -Z 
exact 

_ ZJfitted 
2 

t=1 

(4.6.15) 

where z' xac 
, z; '"' are exact value and fitted value, err denotes absolute error of whole domain. 

For every point to be approximated, n nearest nodes are searched as the sampling points for the 
MLS method. In this test case, n=50 is used. For the purpose of comparison, some other 

published methods (Burden & Fairs, 2004), i. e, Shepard method, Fourier transform method, m- 

order least squares method (LSM), are also used. The results are shown in Table. 4.6.1 

Table 4.6.1 Comparison between different interpolating methods 
Method Rank Err CPU time (s) 

Shepard method 1.37 0.14 

Fourier transform 0.75 0.48 

LSM 
2 0.73 0.53 

3 0.73 0.77 

1 2.14 0.14 

MLS 
2 1.41 0.19 

3 4.04D-2 0.36 

4 7.73D-3 0.76 

It can be found that the MLS method is the most accurate of all the models being investigated. 
It also can be observed in Table. 4.6.1, the accuracy of the MLS and the CPU time increase 

when the rank (m) and the number of nodes (n) increases, as expected. 
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In order to optimize m and n, more test cases are carried out. The exact solution of the 

surface is the same as that used in Table. 4.6.1, n vanes from 20 to 80, m=3, m=6 and m=10 are 

used respectively in this investigation. The results can be found in Fig 4.6.2 and Fig 4.6.3. 
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Fig. 4.6.3 CPU time spend on MLS for different n and m 

Fig. 4.6.2 and Fig. 4.6.3 show the error of and the CPU time required by the MLS with 
different n and m. From Fig. 4.6. Lit is observed that the accuracy increases as the number of 

nodes (n) as well as the increase of m. It is also found, from Fig. 4.6.3, that the CPU time 

increases dramatically when m>6. In this thesis, m=6 are chosen. On the other hand, different 

values of n do not affect the accuracy evidently when n>50. 

Choice of n 

The definition of the influence area should consider the wave length for water wave problem. 
Therefore when choosing the value of n, one needs to take the wave length into account. 
Usually, the nodal density of the computational mesh used for water wave problem should also 

consider the wave length. In other words, the mesh size (the scalar of the element dse ) on the 

free surface should be the a function of the wave length 
, i. e. Ase = A/ Q in which A is the 

94 

30 40 50 60 70 8D 90 100 
n 

Fig. 4.6.2 Error of MLS for different n and m 

30 40 30 60 70 so 90 100 

n 



wave length, cr is a coefficient. In the numerical simulation in Chapters 8,9 and 10, the mesh 

size on the free surface follows the above strategy. 
Due to this fact, n in this work may be chosen according to the topological relationship of the 

mesh which is shown in Fig. 4.6.4. 

Fig. 4.6.4 Node i and the nodes around it 

(hollow: first-layer nodes of i; solid: second-layer nodes of i) 

Fig. 4.6.4 shows a node i and the nodes around it. The nodes connected to node i are marked 

as first-layer nodes around node i in this thesis (see the hollow circle in Fig. 4.6.4). The nodes 

connected to the first-layer nodes around node i but not belonging to first-layer nodes or itself 

are marked as second-layer nodes around node i (see the solid circle in Fig. 4.6.4). The rest may 
be deduced by analogy, i. e. Ph -layer nodes are those connected to (k-1)`h-layer nodes but not 
belonging to all the nodes on the lower layer. 

Based on this definition, once the nearest node of the interpolating point is found, one may 

choose k layers nodes to form the influence area and n is therefore the number of those chosen 

nodes. The main advantages of this approach are 
1) There is no need to calculate the distance between the interpolating point and all the 

nodes on the free surface in order to find the sampling nodes in the influence area for 

the MLS; 

2) It ensures the sampling points are usually distributed surrounding the interpolating point, 

except on the boundary. 

This approach is so used in this thesis and numerical tests indicate k=2 is sufficiently accurate 
for the cases in this thesis and the procedure to find the nearest node will be discussed in the 
following section. 

4.6.3. Method to find the nearest node 
As mentioned above, it is necessary to find the nearest node to the interpolating point in order 

to form the influence area for the MLS method. The simplest way is calculate the distance 
between the interpolating point and all the nodes on the free surface. It is time-consuming task if 

the number of nodes on the free surface is very large. Alternatively, this problem may be 

converted to finding the element where the interpolating point is located. Once such an element 
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is found, the nearest node should be one of the three nodes of the element because of the 

topological relationship of the computational mesh. To find the element, Ma (1998) developed 

a method given in Eq. (4.6.1). In this method, all elements on the free surface is searched in 

order to find an element satisfying Eq. (4.6.1). In this aspect, this method is not effective 

particularly in 3D case where the elements on the free surface are very large. On the other hand, 

this method is clearly based on the assumption that the surface can be expressed as a single- 

valued function of (x, y). As discussed above, this assumption may not be true. A method based 

on an iterative procedure under local normal-tangential coordinate system is developed and 

presented here. 

Consider a node J on the free surface or body surface, the normal and tangential directions 

(i� f2, n) of node J can be found. The tangential displacement of this node in the spring 

analogy method is determined by Eq. (4.5.1). The projected point (J) of node J on the 

tangential plane (zl - ? 2) after displacement can therefore be obtained. This procedure is 

illustrated in Fig. 4.6.5. In this local normal-tangential coordinate system, in order to judge 

whether the point is located at an element or not, the coordinate values (x, y) in the 6 vectors of 

Eq. (4.6.1) are replaced by the local tangential coordinates( f,, i2 ). An initial searching node is 

selected as J, i. e. N�° = J, the searching procedure to find the nearest node of point J' is 

expressed as follows 

J4 

J3 

Fig. 4.6.5 Sketch of the way to find the nearest node 

1) Convert the Cartesian coordinate value (x, y, z) at nodes around Nn into normal-tangential 

coordinate system defined by (il, f2, n 

2) Search the elements sharing Nn (see, for example, Et, E2, E3, and E4 for node J in the Fig. 

4.6.5 ). Eq. (4.6.1) is used to judge whether J' is located at one of the elements. If yes, record 

the element number E� and go to step 4) otherwise go to step 3) 
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3) From the nodes connecting to N� ( for example, Jl, J2 J3 and J4 for node J in Fig. 4.6.5) 

find a nearest node Nn +' 
, go to step 1) 

4) Find the nearest node from those of element E, and mark it as Nn . 

Once Nn and En are obtained, it is easy to apply MLS or the shape function to fit the 

surface. This method is carried out in a local domain, i. e. only the elements around the node J. 

The normal coordinate value is always expressed as a single-valued function of two tangential 

coordinates. In addition, in the spring analogy method, the displacement of each node is very 

small, i. e. smaller than the distance between two successive nodes. Node N�° is close to the node 

N, or may be the node N; . One may need only 1 to 2 iterative steps to find the 

solution Nn 
, En 

. The efficiency of this procedure is much higher than the one used by Ma 

(1998). 

4.6.4. Special treatment for nodes on the boundary 

Numerical investigation also found that the difference between the exact solution and the 

value approximated by using MLS method is larger for the interpolating point near the 

boundary. That is because the distribution of the sampling points is unsymmetrical according to 

the interpolating point (see, Fig. 4.6.6 as an example). 

O0 
boundary 00 

i0 

ký_ -4'ý0ý 

Fig. 4.6.6 A point near the boundary and the nodes around it 

(solid: the interpolating point i; hollow: the sampling points around point i 

Dotted circularity: the influence area. ) 

Usually, the boundary of the free surface, i. e. the waterlines between the free surface and the 
floating bodies, the wave maker and the far end wall, are paid more interest in the wave- 

structure interaction problem. In order to achieve higher accuracy for the MLS when being 

applied to treat the boundaries, two approaches are used in this thesis. 
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The first one is so called symmetrical-point method which is widely in Meshless 

Computational Fluid Dynamics (SPH), e. g. Monagghar (1994), Debroux, Prakash & Cleary 

(2001). Fig. 4.6.4 shows the sketch. The solid point is the interpolating point i which will be 

approximated, the hollow points are the nodes around it, the dotted circularity is its influence 

area. For every node j, we can find its symmetrical point with respect to boundary (marked as k 

in Fig. 4.6.4). If the boundary condition is taken as 

of 
=C an 

(4.6.16) 

where f is the physical quantity to be approximated, n is the normal direction of the boundary. 

This physical quantity at artificial node k (fk) can be found based on a central FD scheme, i. e. 

fk - f, = cArjk (4.6.17) 

in which Orik is the distance between node j and node k. For example, on the vertical wall 

(y=const) wall of the numerical tank, c=0 and therefore fk = fj . 

However, a difficulty associated with this method is that the symmetrical points are 
difficult to find when the shape of the boundary is complicated, such as curved 3D surface. In 

this thesis, the method is only adopted for the nodes near the plane boundary, i. e. y=const wall, 

the wave maker and the far end wall of the numerical tank. In those cases, the artificial 

symmetrical points are shown as Fig. 4.6.7. 

.'"""`. 

"""""ý, boundary 

+%o 00 00' 
`. 

ý ooo ,' 

(a) 

"""" ýý 

boundary ;"00 
"'0 0""% 

O" .' 

(b) 
Fig, 4.6.7 nodes and their symmetrical nodes 

(solid circle: the artificial symmetrical nodes; hollow circle: the nodes in the influence area; 
Square: the point need to be approximated; Dotted circularity: the influence area. ) 

The second approach is to fit the boundaries using the nodes on the boundaries. To do so, 

a curvilinear coordinate ý is used. Suppose the nodes on the curve are arranged in the same 

direction along the curve. ý is defined as the curvilinear distance along the curve which is 

shown in Fig. 4.6.8. 
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r 
Fig. 4.6.8 Sketch of nodes on a curve 

(solid circle: nodes; arrow: the direction of the curve) 

For ý at nt node can be obtained by 

n-I 

n= 
Ori. t+ý 

(4.6.18) 
r=i 

in which Or;; 
+, 

is the arc-segment length between i`h node and (i+1)`h node. For every node on 

the curve, an exclusive ý is calculated by using Eq. (4.6.18) and the value of ý increases 

along the curve. The x-, y- and z-coordinates of the curve therefore may be expressed as a 

single-valued function of ý, i. e. 

x= x(ý) ,v= YM, z= z(ý) (4.6.19) 

by using the discrete nodes on the curve. If we know the value of ý at the interpolating point, 

the x-, y- and z-coordinates can be approximated by using an appropriate interpolating method, 

e. g., the linear interpolating method or the MLS method. For example, for a interpolating point 

where ý equals to ý;,, t , it is necessary to find a node i on the curve that satisfies 

(ý, 
+, - 

4jnc) >0 and (dint - ýj) >0 (4.6.20) 

If a linear interpolating method is used, the x-, y- and z-coordinates can be approximated as 

X= 
ýXI (ýi+l 

-'int) + Xi+l (ýint 
- 

ýl)l1(ýl+l 
- 

ýi) (4.6.21) 

y=[l (ý1+1 
- 

ýint) + Yl+i Mint 
- 

ý1 )J /l 
t+1 - 

ýi (4.6.22) 

Z=k (4W 
- in0+ Zi+l (ýint 

- 
4l )}/(ý1+1 

- 
ýl) (4.6.23) 

This method is only used in cases with linear waves. For the cases with steep waves, the MLS 

method, which is similar to Eqs. (4.6.3)- (4.6.12), is employed herein. 

In the same way, we may use this method to approximate other physical quantities. The 

distinct advantage of this method is that the physical quantities including x-, y- and z-coordinate 

can always expressed as a single-valued function of ý. However, the curve does not fit unless 

the value of ý of the interpolating point is known, otherwise, this method fails. In this work, it 
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is only used to fit the water lines when the nodes on it are redistributed by using the method 
described in Section 4.4. 
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5. VELOCITY CALCULATION SCHEME 

It is crucial in simulating water waves to evaluate the fluid velocities on the free surface 
because they are required to update the information on the surface every time step. The velocity 

at a node may be estimated by using a FD technique from the velocity potentials at this node 

and nodes connected to it. Ma, Wu & Eatock Taylor (2001a) suggested that the horizontal 

components of the velocities at nodes on the free surface are evaluated separately from their 

vertical components. For estimating the vertical component, they developed a three-point 

formula that needs the velocity potentials at the node considered and at two other nodes on the 

same vertical line as this node, which are next but just below the free surface. After the vertical 

component is found, the horizontal components are computed by averaging those given by the 

difference of the velocity potentials at all neighbour nodes on the free surface. This approach is 

very efficient and accurate. However, it is limited to structured meshes with vertical grid lines. 

In this section, the above approach will be extended to unstructured meshes generally without 

vertical grid lines. 

5.1. Velocity calculation formula for nodes on the free surface 
As indicated in Section 2.3, the approach (traditional 3-point method) developed by Ma, Wu 

& Eatock Taylor (2001a) is only applicable to meshes with special structure, i. e. there must be 

two nodes on the vertical line starting from the node on the free surface. This condition is 

different to be satisfied in case with moving unstructured mesh unless a mesh with special 

structure is employed. In order to remove this limitation, a new approach is developed. The 

basic idea of this approach is similar to that used by Ma, Wu & Eatock Taylor (2001a). The 

main differences are that 

(1) the vertical line is replaced by a normal line perpendicular to the free surface at the node 

considered; 
(2) the two nodes on the vertical line are replaced by two points on the normal line, which 

do not necessarily coincide with any nodes; 
(3) the normal component of the velocity is found before computing the components in 

tangential directions. 

Consider Node Ion the free surface of an unstructured mesh with nodes Jk (k=1,2,3, ..... 
m) as its neighbours on the free surface. A normal line is drawn from Node I to the inner 

domain and two points P11 and P12 are chosen on this line, as shown in Fig. 5.5.1. The distance 

between I and Pj1 is h11 and the distance between P11 and PAZ is h, 2. The normal component (v� ) 

of the velocity at Node I is calculated by 
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J2 

Fig. 5.1.1 Sketch of nodes around Node I 

=[2 in 
3h 

(2hl 
+2 0' 

(M12 
+hl OP" +3h h +, h 

ýP12 a. (5.1.1) 
n ri 1z l, 12 n 12 

where n is the unit normal vector of the free surface at Node I. This equation is similar to Eq. 

(2.4.1), which is obtained by the combination of a two-point (weighted by 1/3) and a three-point 

(weighted by 2/3) differential formula. Nevertheless, Op,, and Op,, here are not nodal values and 

may be found using the method discussed in subsection 5.2 below. The normal vector is taken 

as the average of the normal vectors of all surface elements (such as 1-J, -J2 ) with Node I as one 

of their nodes, i. e., 
M 

t=1 W 
(5.1.2a) 

where M is the number of surface elements with Node I as one of their nodes, s, and h, are 

the area and the normal vector of every element, and 
n, _(z, -xjý )x(z1 -ii, )/1(z, -FC. ")x(z, - äc2)I (5.1.2b) 

in which x= {x, y, z} is the vector type of coordinate, the subscripts I, J, and J2 denote the 

nodes of the element. 

In order to estimate the velocity in the tangential directions, the unit tangential vector (z) is 

required. The vector may be determined using 

ix In", zy Iii and iy //ey, 

The tangential components of the velocity are related to the difference of the velocity potential 
between any pair of nodes containing Node 1 and one of Nodes J1,12....... J. by 

VTr 'lýýk VTy "l, ýk -11j, . 
Q0 

"Vn "11j, l 
k°1,2,3, 

..... , m) (5.1.3 

where ißt is the unit vector from Node I to Node Jk; vsF and yy represent the velocity 

components in iz and zy directions, respectively. The derivation of this equation is similar to 

Eq. (2.3.3) but replacing x-, y- and z-directional vectors with the normal and tangential vectors. 
Obviously, the number of equations in Eq. (5.1.3) equals the number of free-surface nodes 
connected to Node 1(m). 
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Generally, for every node on the free surface, at least 2 free-surface nodes are connected to it. 

Therefore, the number of equations in Eq. (5.1.3) is usually larger than 2, the number of 

unknowns (V,. and v, 
y 

). In order to use all the equations and enhance the accuracy, the least 

squares method is adopted to solve Eq. (5.1.3) and so find vrx and vsy Once the three 

components are obtained, the velocity components in x-, y- and z-directions can readily be 

computed by projecting them on these directions. 

In this method, two points are chosen for the purpose of calculating the normal velocity 

components. This implies Eq. (5.1.1) may be applied to any cases with moving unstructured 

mesh without the limitation of the mesh structure. However, P» and P, 2 are not the nodal points 

and so the velocity potentials at those points cannot be given directly by the FEM method. 
Therefore an interpolating method is required to approximate the velocity potentials at those 

two points. This method will be discussed in the following section. Furthermore, these two 

points may be difficult to find for nodes in some special region of the free surface, i. e. those 

near the body surface and sharp crest, different methods are developed to specially handle those 

nodes. These special treatments will be presented in Section 5.3 and 5.4. 

5.2. Velocity potential at points P land PI2 
There are two issues associated with the velocity potential at Points P11 and P12, involved in 

the above velocity computations. One is how to choose the positions of the points and the other 
is how to estimate the values of the potential at these points. According to the numerical 

experience, Point P11 should be located in the element connected to Node I and Point P12 should 
be in another element next to the previous element in the normal direction. This is rational from 

simple reasoning. If the two points are too close to Node I so that they fall into one element, the 

values of potential calculated at these points are based mainly on the information of one element 

and so the estimated difference by using these values may possess low accuracy . i. e. one order 
lower than the shape function defined for solving velocity potential. In this thesis, a linear shape 
function is used. The accuracy may not be high enough. On the other hand, if the points are too 

far from each other or from Node I, the error of velocity estimated using Eq. (5.1.1) may also be 

big because the error increases with distances between them. That is because the accuracy of the 

FD scheme is in the order of (&h)2 
. So, h11 and h12 in Eq. (5.1.1) can be determined by: 

h�=h12=6h 
(5.2.1) 

where e is the coefficient and h is the distance from Node I to the intersecting point of the 

normal line I-P,, -P12 with the element surface formed by other three interior nodes of the 

element connected to Node I. In order to ensure the two points are in the desired elements, C is 

most likely to be a value in the range of 0.6 - 0.9. Numeical tests show that the value of h does 

not necessarily have to be calculated every time step. In fact, it is calculated only at the first 
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time step for cases presented in the following chapters. The detail and results of those numerical 
tests will be discussed in Chapter 7. 

With the values of h1, and h12 determined, the values of the velocity potential at Points P,, and 
P12 can be estimated by some interpolating methods. To do so, a straightforward method is to 

use the shape function, i. e. using Eq. (3.5.3) to approximate the velocity potential once the 

element where Points P11 or P12 located. Alternatively, one may also use the MLS method. In 

this method, an influence domain is defined for each point (PI, or P12) and the nodes in the 

influence domain are found. By using these nodes and the velocity potentials on them, one can 

estimate the velocity potential by using a similar formulation shown in Section 4.6.2. As 

discussed in Section 4.6., the former method needs less computational time but gives less 

accurate values, particularly in cases with large gradients. The latter requires more 

computational time but results in more accurate potential values. If the waves to be simulated 

are very steep, the latter should be used; otherwise the former would be the better choice. 
Because the steep waves are studied here, the latter one is used. 

Similar to the MLS described in Section 4.6, for each point J (Pi, or P12) , n,,, f layers of nodes 

around its nearest node are found to form the influence domain. Therefore, one must find the 

nearest node for point J. The procedure to find the nearest node in this section is similar to the 

one used to find the node on boundary mesh in Section 4.6.3, i. e, 

1) start from the initial searching node NO, (Node 1); 

2) For every element sharing N� Judge whether the point is located in this element. If there 

is one, record it as En and go to 4; otherwise go to 3; 

3) Find the nearest one from the nodes connected to Nn and mark it as Nn Go to 2); 

4) Find the nearest one from the nodes in E, and record it as N� . 
In this procedure, an important step is to judge whether the point J is inside of the element or 

not. For this purpose, the main idea of the approach, which is used to treat 2D problem 

presented in Section 4.6.1, is extended to treat the 3D problem with tetrahedron elements. Fig. 
5.2.1 shows a tetrahedron element in the fluid domain 

r 

I, 12 

Fig. 5.2.1 Nodes and facing surfaces in a tetrahedron element (black point: Point . 1) 
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In this figure, I,, 12,13 and 14 are its vertexes and S1, S2 S3 and S4 are the face surfaces of nodes I,, 

I2,13 and 14, respectively. Once the Point J is located in this element, Point J and Ik (k=1,2,3,4) 

should be on the same side of surface Sk� Therefore, the following equations should be satisfied, 
f 
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Since the numbered order of nodes on every element of the mesh is the same, i. e., clockwise or 

anti-clockwise, the second term (j[(2,2 - xl)x (2I. -x12 )ý " (2, -x12)}) of Eq. (5.2.2a) has 

the same sign for all elements. For example, in this work, it is always negative. Therefore, Eq. 

(5.2.2a) can be rewritten as 

(zf= -2!, )x(214 -x2,2)]"(2`,, -2, )}S0 (5.2.3a) 

Similarly the rest of Eq. (5.2.2) can be written as 
I(zl, 

-if, )x(2J3 -2, )j"(x2j -ill )}S0 (5.2.3b) 

(z, 
ý -2,. )x(2 -114)]"(2,, -1J4)}S0 (5.2.3c) 

V12 
-2ll)x(ill -x12)j"(xxl -x12)}S0 (5.2.3d) 

Once the nearest node of Point J is found, the fluid domain can be determined by using n;,, f 
layers of nodes around it. The MLS method therefore can approximate the velocity potential in 

the influence domain by using 

q5(x, y, z) = PT (x, y, z)A-1(x, y, z)B(x, y, z)F (5.2.4) 

where F is the matrix formed by the velocity potential at every node in the influence domain. 

This formulation is similar to Eq. (4.6.10) but has been extended to 3D cases. The matrices A 

and B are obtained by solving mxm linear equations formed by the least squares method. This 

is the most time-consuming task in the MLS procedure. In order to calculate the velocity at 

each node on the free surface, matrices A and B should be calculated twice, one for point P11, the 

other one for point P12. This approach is called `Method 1. A possible way to improve the 

computational efficiency for velocity calculation is to find the velocity potential at point P12 by 
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using the same matrices A and B in Eq. (5.2.4) for point P». This is based on the following two 

facts, 

1) The distance between the two points is small even when s =0.9 because the nodes are 

tightly distributed near the free surface; 

2) 0,,, plays less important role in Eq. (5.1.1) than Op, 
. Even so, there is a relatively 

large error in q,, 
2 , 

the error for the normal velocity component is still small. 

This approach to approximate OP/2 using the same interpolating formulation as that of Op,, is 

called `Method 2'. In this approach, one needs to calculate matrices A and B only once. As a 

result, the computational cost is reduced. The comparison between these two methods will be 

investigated in the following section. 

5.3. Numerical Validation 
In order to validate the velocity calculation scheme, a case with a y-directionally averaged 

solitary wave in a tank is investigated. The wave elevation velocity and the velocity potential on 
the free surface are given by Tanaka's method (Tanaka, 1986), which has been widely used by 

many researchers, such as Grilli & Svendsen (1990), Grilli, Subramanya(1994), Grilli & 

Skourup(1998), Grilli, Guyenne & Dias (2000,2001), Fochesato & Dias (2006). The FEM 

formulation described as Eqs. (3.5.3)- (3.5.8) is used to solved this boundary value problem and 

gives the velocity potential at every node on the fluid domain. Then, the above velocity 

calculation scheme is used to solve the velocity at the free surface. The results are compared 

with the results by Tanaka (1986). The relative error E, is defined as 

IJucr 
- Uall 

IIuaII 
(5.2.4) 

where ucaland ua are the present numerical results and the results by Tanaka (1986), respectively. 

(I f JI = 
5f2d4 in which f represent ucal - uQ or ua in Eq. (5.2.4), Ae is the area over which the 
4 

error is estimated. 
A case with wave amplitude of A=0.6d is run in a tank with length of 18d and width of 2d. 

The mesh is unstructured as shown in Fig. 4.2.2. The mesh size is taken as Ax = 0.05d and 
Ay = 0.075d on the free surface. The initial wave crest in x-direction (xo) is located at S. 7d 

from the left side (the position of the wavemaker in Fig. 3.0.1). The main aim of this test is to 

validate the present velocity calculation scheme, only the results at t=0 are not affected by the 

error existing in the time integrating scheme, meshing moving procedure and other numerical 
technique. The results of velocity at t=0 are shown in Fig. 5.3.1. The accuracy of the long- 

period calculation in this case will be discussed in the end of this section. 
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Fig. 5.3.1 (b) Vertical velocity component (}=0) 

Fig. 5.3.1 Comparison of velocity components between numerical results and Tanaka's results 

(A=0.6d, t=0 , n,,,, T2,8 =0.9 velocity is nondimensionlised by gd ,x coordinate is 

nondimensionlised by d, `Method 1' for velocity calculation) 

Fig. 5.3.1 gives the velocity components at the centre of the tank obtained by using the 

method described above. For the purpose of comparison, the results from Tanaka (1986) are 

also plotted as well. In this calculation, the recovery technique, which will be presented in 

Section 5.7, is applied. From this figure, it is found that both the horizontal velocity component 

and the vertical velocity component obtained by the above numerical method agree well with 

those calculated by Tanaka's model. The relative error for the horizontal velocity component is 

less than 0.5% and that for vertical component is less than 1%. These results indicate that the 

velocity calculation scheme here is accurate enough. Further validation will be given in Chapter 

7, where the numerical waves generated by a wave maker are compared with analytical solution, 

experimental data and the results from other numerical methods. 
In the above case, n,,, ß-2. Different values of n,, are also investigated for this reason. The 

results are plotted as Fig. 5.3.2 It can be found from this figure that no evident difference exists 
between the results by using different n, nf . For the purpose of achieving high computational 

efficiency, n,,, f-2 is used in this thesis. 
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Fig. 5.3.2 Comparison of velocity components using different n, �f 

(A=0.6d, t=0 , n,. -2, c =0.9 velocity is nondimensionlised by gd ,x coordinate is 

nondimensionlised by d; `Method 1' for velocity calculation) 
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Fig. 5.3.3 (a) Horizontal velocity component (y=0) 
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Fig. 5.3.3 (b)Vertical velocity component (y-0) 

Fig. 5.3.3 Comparison of velocity components using differente (A=0.6d, t=O, n,,, p2, 

8 =0.9 velocity is nondimensionlised by gd ,x coordinate is nondimensionlised by d 

`Method 1' for velocity calculation) 
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Numerical tests show that 8 in Eq. (5.2.1) may be a value in the range of 0.6 - 0.9 and that 

numerical results obtained are not sensitive to its specific value (Fig. 5.2.3). In this work, 

e =0.9 is used unless P11 or P12 is outside the fluid domain. In that case, a special treatment will 

be applied. Details of the special treatment will be discussed in Section 5.5. 
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Fig. 5.3.4 (a) Horizontal velocity component ()r--0) 
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Fig. 5.3.4 (b) Vertical velocity component (y=0) 

Fig. 5.3.4 Comparison of velocity components using different methods to approximate the 

velocity potential at point P, 2 (A=0.6d, t=O, n; �j=-2, e =0.9 velocity is nondimensionlised 

by gd ,x coordinate is nondimensionlised by d) 

In the above investigation, `Method 1' is used to find the velocity potential at both point P, 1 

and P12 . Comparison between the results obtained by `Method 1' and `Method 2' is also made. 

The case is the same as that in Fig. 5.3.1. The velocity components obtained by different 

methods are plotted in Fig. 5.3.4. From this figure, it is observed that there are no evident 

differences between the results obtained from these two methods. Since the 'Method 2' requires 

less CPU time than `Method 1' , 'Method 2' is used in this thesis. More investigations in cases 

with different wave steepness will be carried out to compare these two methods. The results will 

be discussed in Chapter 7. 

. As is known, on a time domain simulation, the velocity on the free surface will give the new 

position and the velocity potential of the free surface at the next time step by using the time 

marching procedure described in Chapter 3. The error in the velocity might be brought to the 

next time step through such a procedure. In other words, the error may be accumulated. In order 

to investigate the velocity calculation scheme in a long-period calculation, the case with solitary 

wave propagating on a numerical tank is run. The initial parameters used in this case are same 

109 



as that used in Fig. 5.3.4 and `Method 2' is used to approximate the velocity potential at those 

two points. The time step is taken as At = 0.025 d -I g. Fig. 5.3.5 shows the comparison of the 

velocity on the free surface between the present numerical results and the results obtained by 

Tanaka's model (Tanaka, 1986) at t=5.0 d -I g. 
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Fig. 5.3.5 (a) Horizontal velocity component (}r0) 
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Fig. 5.3.5 (b) Vertical velocity component ()=0) 

Fig. 5.3.5 Comparison of velocity components between numerical results and Tanaka's results 

(A=0.6d, t=5.0 d/g 
, n,,, p2, e =0.9 velocity is nondimensionlised by gd ,x coordinate is 

nondimensionlised by d; xc is the position of the wave crest, ̀ Method 2' for velocity 

calculation ) 

Good agreement is achieved both for horizontal velocity component and vertical velocity 

component. The relative errors for these two components are all less than 1% It is also can be 

seen from Fig. 5.3.1 and Fig. 5.3.5 that the profiles of the velocity component centred at the 

crest of the solitary waves in different instance are almost the same. That is because solitary 

waves should keep permanent form while propagating on a flat sea bed. Fig. 5.3.6 shows the 

wave profiles at y=0 at different time steps. It is observed that the wave form is almost the same 

at different instance. This result indirectly gives evidence that the current velocity calculation 

scheme is accurate enough. 
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Fig. 5.3.6 Wave profile in different time instance (redistribute nodes once per 20 time steps) 

(a: t=0 ; b: t=2.5 d/g; c: t=5.0 d/g) 

5.4. Special treatment for nodes near solid boundaries 
It may become impractical to use the above method to calculate the velocity for nodes near a 

solid boundary because the normal line I-P»-P12 may intersect with the solid boundary (see Fig. 

5.4.1). If this happens, either Point P12 is placed outside the fluid domain if h1, and h12 are still 

estimated by Eq. (5.2.1) or the two points (Pf, and P12) are contracted into one element. Both 

situations may degrade the results. 

surface 
Fig. S. 4.1 Nodes near a solid boundary 

In order to avoid such problems, it is proposed that the normal line (coinciding with vector 

n in Fig. 5.1.1) at a node near a solid boundary is replaced by a line (coinciding with vector nb) 

obtained by rotating the normal line to the direction perpendicular to the normal vector, passing 

the node considered, of the boundary surface. Correspondingly, z is replaced by zb that is 

determined by 11b, ex and ey using the similar method to that for i. After doing so, Eqs. (5.1.1) 

and (5.1.3), by substituting nb and zb for 9 and z, are still used to compute the velocity at the 

node. Using this treatment, the velocity components in x-, y-, and z-directions are directly 

obtained when the solid boundary is vertical, e. g. on the wave maker and the far end wall. 
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Fig. 5.4.2 Sketch of buffering areas around the floating body 

Let F� denote the area (shaded area in Fig. 5.4.2) where the above special treatment is 

applied, F,, the rest of the free surface. On the intersecting curve (('1) between and F',, 
, tile 

velocity may not be continuous because of the above special treatment. To avoid this happening, 

a buffering area F. (dotted area in Fig. 5.4.2) is defined outside of F,, 
. For the nodes in this 

area, both the general method (the result from this method is v',, ) and the above special 

treatment (the result from this method is v'') are used to calculate the velocity. The ultimate 

velocity at node i in this area is 

v=DjV, +D7i, I(D1+D, ) (5.2.4) 

where Di is the distance between the node i and the curve C'1. D, is the distance between the 

node i and the curve C'2 which is the intersecting curve of hh and F� 
. 

However, if n'h, is very close to i, the above approach to calculate velocity at nodes near the 

rigid boundary may not work. The reason is that once the angle between nh and F is very 

small, the coefficients for tangential velocity components in LSM equation formed by Eq. (5.1.3) 

are much smaller than those for normal velocity components and therefore such a LSM 

formulation may result in relatively large error for the tangential velocity components. In order 

to solve this problem, another special treatment is suggested. This treatment will discussed in 

the following section and also used to the nodes near crests of the free surface. 

5.5. Special treatment for nodes near crests of the free surface 
Similarly, point P,, and point P// may be outside of the fluid domain or the two points are 

contracted into one element near the crest when waves are very steep or overturning. Therefore, 

a special treatment is also needed in such cases. 
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Obviously, the replacement vector fib does not exist in the above principle. Instead of nb, 

one may find the vector n, which is parallel to the tangential direction of the free surface on the 

other side of the crest (Fig. 5.5.1a) . However, ns may still be too close to z, particularly 

when the crest is overturning. To overcome this problem, another vector n, in place of n is 

used and defined as below (see Fig. 5.4.1) . Suppose the node i on the free surface, J1, J2, J3...... JM 

are the interior nodes connected with it. The angle a, K between n and each vector .- 
zjK (K 

=1,2,... M) can be found by using the following formula 

cos a; K =n" (x; -/IJ- xjk )I (5.5.1) 

From these nodes (Jr, J2, J3,..... JM), JKm; n is the node where a1, min = min {a,, 
I a, 2,..., a., }. So, 

n, is chosen as 

nr = (xi 
-j J� 

mm) 

/Ixi 
_ x�9 

min (5.5 i) 
Therefore, n, is closest to n so that it has largest angle with z and therefore ease the problem 

described above. Similarly, z is replaced by the corresponding it of n,. h in Eq. (5.2.1), is 

also updated by using the distance between node i and node JKm, i,,, and c =0.6. 

Since node Amin is an interior node, there are at least two nodes connected to it. Therefore, 

this approach ensures there are two layers of elements along nn,. of node i so that one can avoid 

point P, 2 or point P11 from being outside of the fluid domain as long as the mesh near the free 

surface is fine enough. 
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5.6. Velocity calculation at nodes on the body surface 
The normal velocity at nodes on a rigid boundary is known when solving the BVP for 

velocity potential. According to the body surface boundary condition, Eq. (3.1.4), the velocity 

component in the normal direction can be found by 

v� =n"Ü(t)=n""(Uc+S2xrb) (5.6.1) 

For the purpose of calculating the tangential components of the velocity, the nodes on the body 

surface are separated into two groups: inner-body-surface nodes and nodes on the waterlines. 

Different methods are applied. 

5.6.1. Inner-body-surface nodes 

For the inner-body-surface nodes, the corresponding tangential vectors need to be defined. 

Both are in the surface of the boundary and determined by 

zx ln, zxHW,,, zy In and zy//ey. (5.6.2) 

After that, one can use the same method as that for nodes on the free surface. To do so, the 

nodes Jk(k=1,2,3 , ..... , m) in Fig. 5.1.1 are replaced by the neighbour nodes on the body 

surface. Eq. (5.1.3) is then used to calculate the tangential velocity components. 

5.6.2. Nodes on waterlines 

However, at the nodes on the waterline, Eq. (5.1.3) becomes similar to a backward scheme 
due to unsymmetrical distribution of nodes around the waterline and so becomes less accurate 

than at the inner-body-surface nodes. Therefore, the two tangential components need special 

consideration. In this case, the tangential velocity components are replaced by another two 

orthogonal vectors, one is tangent to the waterline (rv) and the other (nw) is perpendicular to it 

(Fig. 5.6.1) 

waterline 

Fig. 5.6.1 Nodes on the body surface and water line 

Velocity component (vTMt ) in the direction of n,. 
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The velocity component in the direction of vector nw is estimated by using a three-point 

method similar to Eq. (5.1.1) . The three points contained the node i on the waterline and the 

other two points (marked as empty circles in Fig. 5.5.1) on the line i,. The velocity potentials 

at these two points are interpolated by using the body-surface nodes around them. A LSM 

method defined by Eqs. (4.6.3)- (4.6.9), is employed to do so. Therefore, Eq. (5.1.1) can give 

the velocity component in the direction of nµ, 

Velocity component (vr. )in the direction of i.,, 

After the velocity component in the direction of n,, is found, the velocity component in the 

direction of f,, can be estimated by using the velocity potential at two neighbour nodes (J, and 

J2) . The simplest way is to apply the central difference scheme, 

vr_ =1 "f$ 
12 

(5.6.3) 

in which 112 = 
IfCJ, 

- 
kI I is the distance between node J, and node J2 ; vrs is the model of 

vector vrx 
. However, in order to consider the the direction of the vector from the node i to 

node J, and J2, a scheme based on the concept of directional derivative is used here, 

00 
= 

00 an + ao azw + ao an, = an + azw + anw (5.6.4) 
al an al rw al anw al " al al al 

where I is the directional vector from one of the two neighbour nodes (J, and J2) pointing to 

the other. A central difference scheme is used to replace the partial derivatives in Eq. (5.6.4). 

This equation is therefore rewritten as 

Vrw1U = 
J, - 

0J 

- Vn112 -Vnw1 w 
12 112 

(5.6.5) 

in which v,,, vr., v�. are the models of the velocity components Vf, Vsw, Vnw respectively; 

1ä, 1n, lü are the three components of vector 112 in n 
, 
rx, and f,., directions, respectively. 

It should be noted that in cases with sharp corners on the waterline (node i in Fig. 5.6.2a), 

the normal vector is not continuous. The normal velocity component in the body surface 

condition, i. e., Eq. (3.1.4), should be equal to v�, and i�2 (Fig 5.6.2b). Due to this fact, the 

velocities at these nodes are difficult to find, particularly in cases where there is an incident 

angle between the incident wave and the floating bodies (Fig5.6.2b). The problems associated 

with the sharp corners may be one of the reasons why the nonlinear interaction between the 
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water waves and the free-response floating structure with an incident angle cannot been found 

in the public domain. 

º Incident waves 
vn 

i i+l 
vn2 Floating be 

i-1 

(a) 

line 

(b) 

Fig. 5.6.2 Sketch of corner problems associated with floating bodies 

To overcome this difficulty, the velocity at a node at a sharp corner is approximated using that 

at the nodes around it by the same MLS method as used in Section 4.6.2. For each node i on 
the sharp corner of the body surface (Fig. 5.6.2b), two layers of nodes around node i are found 

to form the influence domain. Eqs. (4.6.3)- (4.6.9) with m=6 give the approximated value of 

velocity at this node. The basis for this approach is from the patch recovery technique as used 
by Ma (1998) and Ma, Wu & Eatock Taylor (200Ia). That is based on the fact that the velocity 
is continuous and therefore may be described as a multinomial of coordinative in a small sub- 
domain, such as the influence domain in this approach. It should be noted that once an 

overturning wave occurs near the sharp corner, the MLS method in this approach should be 

carried out in a local-normal coordinate system, as discussed in Section 4.6.3. But the 
interaction between the floating body and the overturning wave is not considered in this work. 

5.7. Smoothing and recovery techniques 
As mentioned in Section 2.4, the finite element solution usually suffers from an oscillating 

error (so called saw-tooth problem, Fig. 5.7.1). For the purpose of removing this oscillation, 
two techniques are widely used by the researchers. One is the smoothing technique, the other is 

the patch recovery technique. 
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Fig. 5.7.1 Sketch of the smoothing technique 

5.7.1 Smoothing technique 

Like Ma (1998) & Ma, Wu & Eatock Taylor (2001a, b), a 5-point smoothing scheme is used 

to smooth the velocity at the nodes on the waterlines. The details of this scheme can be found 

in the above references, here only a brief summary is given. 
For five equally-spaced points, the relevant formula is written as 

w,, = 16(-wß_2 
+4w,, _, +1Ow., +4wj,., -wj+2) (5.7.1) 

where w is the function to be smoothed and w is the smoothed value. Subscripts in Eq. (5.7.1) 

indicate node numbers. J-2, J-1, J+1, J+2 are located at both side of the node J as shown in 

Fig. 5.7.1. The numerical investigation by Ma (1998) has proved that this scheme is very 

efficient. However, the approach is only applicable for the nodes on a straight line with equal 

space between every two connected nodes. In order to deal with the problem with variable 

node space, Koo & Kim (2004) extend the above 5-point smooth scheme as 

w,, = ar-iw _2 +a, w, +ajw,, +ar+, wr+1 +ar+xw1 2) (5.7.2) 

and 

a, -z =- 
dsj-Iýr+i 

(5.7.3a) 
2ýr-z (ASr+2 

- ASJ-2 

ar-' _- 
dsr+r 

(5.7.3b) 
2(. s_ - AsJ+, 

aJ_ 
ýr 

-i r+, + (5.7.3c) 
2J 

2 J+2 
2 

ar+, - 2(ýJ-ýrýJ+l 
(5.7.3d) 

ar+2 ' 
IsJ-1AsJ+1 

(5.7.3e) 2AsJ+21ASJ+2 
- 

ASJ-2 
! 

in which 
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ASJ-2 
- XJ-2 - XJ; AS�-1 = XJ-1 - XJ; ASJ+1 = XJ+1 - XJ' ASJ+2 

- XJ+2 - XJ (5.7.4) 

The coefficients aJ_2, aj_1, aj, aj+t and aß+2 depend on a single coordinate value, x or y. 

Therefore, this approach is not applicable to 3D curved water lines. In order to extend the 

smoothing technique to this work, the arc-segment length between two successive nodes on 

these waterlines is considered when calculating the coefficients for each nodes in Eq. (5.7.2) 

and Eq. (5.7.4) is replaced by 
ASJ-2 = SJ-2, J-1 + SJ-1, J; 

iJ-1 = sJ-1, J; 
&J+1 = SJ+1, J ; 

ASJ+2 = SJ+2, J+1 -'SJ+1, J 
(5.7.5) 

where SJ K is the are-segment length between node I and K(I, K=J-2, J-1, J, J+1 and J+2). 

This approach is only used to smooth the velocity on the waterlines of the floating body. It 

should be noted that only the tangential velocity components at the nodes on the waterlines 

need to be smoothed because the normal components are known. 

5.7.2 Recovery technique 

For other nodes on the free surface, a patch recovery technique (Ma, 1998; Ma, Wu & 

Eatock Taylor, 200la) is used here. In this method, the velocity at a node i is assumed to be 

fitted by a polynomial over a patch on the free surface. This approach works well in case 

without overturning wave. As mentioned in Section 2.4.2, this approach is based on the 

assumption that the surface can be expressed as z =f (x, y) where f is a single-valued function. In 

many cases, such as the body surface and the free surface with overturning wave, this 

assumption is not corrected as being discussed in Section 4.5. 

In order to avoid this problem happening, the patch recovery approach is carried out in a 

local normal-tangential coordinate (z'zy, n) system, where only one intersection point exists 

in the normal direction, defined by using the same method as Section 4.5. The patch is 

therefore projected to orxry plane and therefore the velocity on the patch is assumed to 

satisfy the following linear function of rx, ry, 

w, =a+btx+cry (5.7.6) 

and the velocity in the superconvergent point J(J=1,2,3,... M) is estimated by 
3 

wj =as +bszxj +csr = LNw, (5.7.7) 
J. 1 

where N, is the shape function. The coefficient a', bs, c' is calculated, 

a3 at A Yt wt 
bs = a2 Q2 72 W2 (5.7.8) 
Cf a3 f3 73 w3 
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in a triangle element where the node number is in turn 1-m-n (l, m, n =1,2,3 ), 

ar = 2e (r Ty. - r, zx") (5.7.9) 

1 
(5.7.10) A20(TY"-ry") 

Y, =-1 (r - ri) (5.7.11) 

in which A is the area of this element. 
The least squares method is therefore used to solve the equations of Eq. (5.7.6). As 

mentioned above that the local normal-tangential recovery technique requires more CPU time 

than the original one by Ma (1998) , therefore it only may be used to recover the velocity on 

the body surface in this work. For the velocity on the free surface, the method developed by 

Ma (1998) is applied unless overturning waves occur. 
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6. ITERATIVE PROCEDURE FOR CALCULATING FORCE 

In this work, ao /at 
, involved in Eqs. (3.3.3) and (3.3.4) for estimating the forces on 

floating bodies, is calculated by solving a boundary value problem defined in Eqs. (3.3.10)- 

(3.3.12). In order to find äo/ at at the nth time step, the boundary conditions on the free 

surface require the wave elevation and the velocity on the free surface. In this time step, the 

wave elevation can be found by using the velocity on the free surface at (n-1)`" time step by 

using a time marching scheme based on Eq. (3.1.7). The velocity on the free surface at this time 

step can be found by using the scheme described in Chapter 5 after the BVP problem for the 

velocity potential is solved. However the boundary condition on the body surface requires the 

velocity and the accelerations of the floating bodies. There is a difficulty with doing so due to 

the nonlinear coupling between the body and wave motions. In order to tackle this difficulty, 

four types of methods have been suggested in the literature. Those are the indirect method, the 

mode-decomposition method, the Dalen & Tanizawa's method and the iterative method. 
As discussed in Section 2.6, in the mode-decomposition and the indirect method, the motion 

is decomposed into several modes and so the equations have to be solved for the purpose of 

modelling different modes of motion. While, the Dalen & Tanizawa's method requires a special 

matrix for aO / at 
. This may increase the difficulty for numerically solving the algebraic 

equations associated with the BVP of DO / at 
. 

Apart from the CPU time spent on every time step, the overall efficiency also depends on the 

time marching procedure. As discussed in Section 3.6, either explicit or implicit multi-step 

method may be used to estimate the velocity of the floating body but the latter is better in terms 

of stability. Unfortunately, the body velocity is estimated from the acceleration at previous time 

steps (or sub-steps) in all existing methods; i. e., the corresponding procedure is explicit. The 

explicit procedure requires sufficiently small time step to ensure a stable calculation. In cases 
involving a floating body with large motion, the existing methods either used very small time 

steps or separated one time step into several sub-steps, such as a 4th-order Runge-Kutta with 
fully updated explicit or frozen coefficient. The former required more time steps to achieve a 

specified long period calculation and the latter required sub-step calculations, The overall 

computational coefficient of both approaches is relatively low. Whereas, if an implicit scheme is 

used, one may use a relatively long time step without sub-step calculation because the stability 

of the implicit method is better than explicit method with respect to same accuracy (Gear, 1971). 

Because the main aim of this work is to investigate the response of the floating bodies to 

nonlinear waves, the motion of the floating bodies in those cases will be relatively large, e. g., 
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the wave-induced response near the resonance area. Therefore, an implicit method is used to 

integrate the velocity of the floating body. 

One may also use an implicit method to update the position of and the velocity potential on 
the free surface. To do so, the position of the free surface also needs to be updated during a time 

step. Therefore, the coefficient matrix for the FEM should be updated. This results in additional 

computational cost. Based on the numerical investigation by Ma, Wu & Eatock Taylor (2001b), 

the explicit formula (Eq. 3.6.1) is accurate and stable for updating the information on the free 

surface. 
In order to integrate implicitly the velocity of the floating body, an iterative procedure is 

required. In this aspect, the iterative method for öQ5 / at may be more suitable for this work than 

any other methods. An improved iterative procedure, called Iterative Semi Implicit Time 

Integration Method for Floating Bodies (ISITIMFB), is developed. It incorporates the 

advantages and overcomes some of the disadvantages of other methods. This method has the 
following features 

(a) Using the acceleration in the current step to estimate the body velocity, i. e., it is 

implicit, distinguishing it from all other methods discussed above; 
(b) Not requiring sub-step calculations, different from the fully updated Runge-Kutta 

method; 
(c) Eliminating the necessity of solving the extra equations as in the indirect method and 

the mode-decomposition method and the need to generate a special matrix in the Dalen & 

Tanizawa's method, getting rid of the main disadvantages of all three; 

(d) not updating the positions of the free surface and the floating body during the iteration 

to find the acceleration and force, saving the CPU time spent not only on this but also on 
forming the new coefficient matrix. 

The details of the method are described in the following section. 

6.1. Iterative procedure 
Suppose that all calculations until t=tn., have been completed and so the velocity potential 

and its time derivative on the free surface, the positions of all boundaries including the free 

surface and the body surface have been obtained through updating. To find the fluid and body 

velocities at time t�, the following procedure is used. 

1) Predict the body acceleration Ä"() at time t� by curve fitting of accelerations at 

previous time steps using a least squares method and estimate the corresponding body 

velocity by using the Adams-Moulton method as follows, 

Ub (°) Ub -i + 
42 

(5Ä (°) + 8Äb -ý _ 
Ab n-2) (6.1.1) 
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where Ä"(°) and Übt°ý represent the predicted values of translational or angular body 

accelerations and velocities, respectively, at the current time step, which are used as the 
initial values of iteration. 

2) Solve the boundary value problem for 0 using Ubt°l in Eq. (6.1.1) for the boundary 

condition on the body surface. 
3) Calculate the fluid velocity and the time derivative of the velocity potential on the free 

surface. 

4) Calculate the fluid velocity Va (°) on the body surface. 

5) Using the following loop to find the acceleration of and forces on the body: 

n(k) 

(a) Solve the boundary value problem for 
a0 

using Än(k-1) 
, 
Üb ik-'l and 

Vb (k-I) in its boundary condition on the body surface (Eq. (3.3.12)), where the 

subscript n (k-1) represent the variables at time to but at k-th iteration 

(k=1,2,3...... ); 

(b) Calculate the forces or moments F"(k) and so the acceleration 
Ä6n(k) 

= 
[M]-1 [an. n(k) +(I -a n n(k-1)1; (6.1.2) 

in which the mass matrix [M] should be replaced by the matrix of the moment 

of inertia [I], (Eq. (3.2.7)), if the angular acceleration and moment are 

concerned; 

(c) Estimate the new body velocity using the similar method to Eq. (6.1.1) 

& (k) 
= 

Ub-l +' (5Ä6(k) +8Äb-1 _ 
2b-2) 

s (6.1.3) b 12 

(d) Solve the boundary value problem for ý using &; (k) in Eq. (3.1.6) for the 

boundary condition on the body surface; 

(e) Calculate the new fluid velocity Vä (k) on the body surface; 

(f) Check if the relative error of accelerations (or forces) is smaller than the 

control error; if not, go to a); otherwise go to 6). 
6) Update the position of the body using the final body velocity and acceleration in the 

above loop by using the 3rd order Taylor expansion, 

g6,, +l 
= Sbn +Un(u)Ot i' 

dtZ Ün(y) 
+ 

Ät3 dUn(u) 

26 dt (6.1.4) 

122 



where Sb"+' is the translational or annular displacement of the body to be used for the 

calculation of the next time step; Ü"") and U"(") represent the final values of body 

velocities and accelerations (translational or annular) in the above loop, respectively; 

don(u) dU"(u) 
and dt 

is calculated using the FD scheme dt = n(u) - 
U)lAt. 

7) Calculate the fluid velocity on the free surface using the final velocity potential in the 

above loop. 

8) Update the time derivative of the velocity potential on and the positions of the free 

surface using the same method as in Ma (1998) and Ma, Wu & Eatock Taylor (2001a), 

i. e. Eq. (3.6.1) 

9) Go to the next time step. 

As can be seen, an under-relaxation in Eq. (6.1.2) is employed in the iterative loop from (a) to 
(f) to improve the convergence rate. The value of a" is determined by 

an - 

An-'(u) - Abn-1(0) 

Ab n-1(1) 
- Ab n-1(0) (6A . 5) 

where Ab-1(") is the final value of the acceleration in the iteration at the previous step. This 

expression is proposed by considering the fact that if one had known a"-I , the solution for 

A' would have been found in one iteration through (a) to (f) and by assuming 

that a' a". After the iterative procedure is finished in one time step, Eq. (3.6.1) is used to 

update the geometry of the free surface. 

This iterative procedure is distinguished from one in Cao, Beck & Schultz (1994) in three 
aspects. 

(1): The velocity potential (and so the fluid velocity) is obtained in Cao, Beck & Schultz 
(1994) by assuming that the body velocity in Eq. (3.1.4) is estimated using the acceleration 

at the previous time step and thus the boundary value problem for c is solved only once, 

i. e. without Step (d), in the above loop. Therefore the procedure in Cao, Beck & Schultz 
(1994) is actually an explicit method. 
(2): The relaxation scheme in Eq. (6.1.2) and the corresponding relaxation coefficient in Eq. 
(6.1.5) are employed in this thesis while it is not clear whether any relaxation is adopted in 
Cao, Beck & Schultz (1994). 

(3): The body velocity used in Eq. (3.1.4) is continually updated here by employing the 

scheme as given in Eqs. (6.1.1) and (6.1.3), while it needs to be evaluated only once in Cao, 
Beck & Schultz (1994). 
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It has been pointed out that the body and free surface positions are not updated in the 

iteration loop in the above procedure. That is why this method is classified as ̀ Semi Implicit'. 

In this aspect, it is similar to the frozen coefficient method. However, this procedure has not 
been found to suffer the instability problem associated with the frozen coefficient method; 
instead, it has been found to exhibit the similar stable behaviour to that of the full updated 
Runge-Kutta method. Numerical demonstration of this will be given below. 

6.2. Prediction of the body acceleration Ä"(o) 

The efficiency of the iterative procedure is decided by the iteration count (or the number of 
iterations) in the above loop - the smaller iteration counts the more efficient the procedure. One 

may understand that the iteration count for a specified accuracy depends on the quality of the 

predicted velocity in Eq. (6.1.1) and three values of the acceleration in Eq. (6.1.3). Better 

prediction of the velocity and closer values of the acceleration should lead to the smaller 

number of iterations. The quality of the predicted velocity and the values of the acceleration are 
in turn determined by the time step, the amplitude of the body motions and the natural 
frequency of the system. 

In order to predict the 2"(0) with high quality, a least squares prediction method is used 
here. The detail can be found in Whittle (1963). Suppose the acceleration of the floating body 

at n`htime step is obtained. A polynomial f (t) can be found by using the sampling points (nn- 

1. n-2, n-2,... n-m+1) based on the principle of least squares method (see Fig. 6.2.1), the predicted 

acceleration of the floating body at (n+1)`" time step is given by f (t.. The number of 

sampling points in this method affects the accuracy in predicting the acceleration. In this work, 
5 points are used. 

Fig. 6.2.1 sketch of the least squares prediction 

As has been known, the time step undoubtedly affects the accuracy of the prediction of A"«oý 

Usually, smaller time step leads to relatively accurate predicted results and therefore results in 
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less iteration count for the ISITIMFB procedure. On the other hand, for a given wave and the 

shape of the body, the largest motion amplitude is related to the natural period. Therefore, the 

two most important factors affecting the iteration count may be the time step and the natural 

period. Their effects are to be investigated in Section 8.2.1. Apart from this, the mesh size may 

affect the iteration count as well, because it affects the convergence rate of the FEM. This effect 

will be discussed in Chapter 9. 
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7. WAVES GENERATED BY A WAVEMAKEA 

In this Chapter, the QALE-FEM method is validated by comparing its numerical predictions 

with analytical solutions and published results from other methods and experiments. Two kinds 

of problems are considered: one is nonlinear water waves (regular and random) generated by a 

wavemaker in a tank; and the other is the interaction between the water waves and periodic bars 

on the tank-bed. Some of the results have been published in Yan & Ma (2005) and Ma & Yan 

(2006), more results are given in this chapter. All parameters with a length scale are 

nondimensionalised by the water depth d and other parameters by 

1r d/g and (o ->rogld . (7.0.1) 

7.1. Waves propagation in a flat tank 
Water waves generated by a piston wavemaker in the tank with flat sea bed are considered in 

the first instance. In the past decade, the problem has been widely studied by many researchers 

using different numerical tools. Many interesting and valuable results were given, such as the 

analytical solution by Eatock Taylor, Wang & Wu (1994), the numerical simulation by Ma 

(1998) and Ma, Wu & Fatock Taylor (2001 a, b), the experimental research by Nestegard (1999). 

In this section, the QALE-FEM method is used to simulate the waves propagating in a Ilat- 

bottom tank. 

the waves may be monochromatic, bichromatic and random depending on the motion of the 

wavemaker. The meshes used are similar to that in Fig. 7.1 .1 
but much finer. 

Fig. 7.1.1 Illustration of initial mesh used for wavemaker problems 

7. I. 1. Monochromatic waves 

The cases with monochromatic waves are firstly modelled In these cases, the motion of the 

wavcmaker is governed by 

S., (r) = -a cos((Oz), (7.1.1) 
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U. (r) = acv sin(wz), (7.1.2) 

where S,,, (r) is the displacement of the wavemaker, Uw, (r) is its velocity, a and w are 

respectively its amplitude and frequency. 

When the amplitude of the wavemaker is very small, the steepness of the generated waves is 

also very small. The numerical results for such a case can be compared with the linearised 

analytical solution by Eatock Taylor, Wang & Wu (1994). For this purpose, a case with a 

=0.0041 and w=1.45 is simulated in a tank of length L= 14.7. The mesh is unstructured and the 

number of elements is about 78060. The time step is 0.021666, about 200 steps in each period. 

The wave profiles at two different instants (t=10T and 15T, where T =27r/w is the period) are 

plotted in Fig. 7.1.2, which shows that the numerical results are in very good agreement with the 

corresponding analytical solution. 

2.0 c/a 

0.0 

-2.0 
.7 

2.0 1 
0.0 

-2.0 
-7 

(a) a=IOT 

"5 -3 -1 
x1357 

(b) r= 15T 

Fig. 7.1.2 Comparison of wave profiles with the analytical solution for co=1.45 and a=0.0041 
(Solid line: QALE-FEM; Dots: analytical solution) 

The numerical results in Fig. 7.1.2 are also assessed by estimating relative errors. The 

relative error (E, ) is defined as: 

Er = 
III'-Sall 

llca ll (7.1.3) 

where Ich = 
Jc2dA, SQ is an analytical wave elevation and A. is the area over which the error is 

A, 

estimated. Because the accuracy of the waves within the damping zone should not be of 

concern, AB equals the area of the free surface minus the part of the damping zone. The relative 

127 

-5 -3 -1 x1357 



errors evaluated in this way for the results in Fig. 7.1.2 are less than 0.5%. It is also found that 

the wave profile at r =1 OT and that at s =1 5T are almost the same. 

The wave histories recorded at different positions at the above cases are plotted in Fig 7.1.3. 

The figure shows that the numerical results are in very good agreement with the corresponding 

analytical solutions, although the error is slightly greater near the damping zone. The cases with 

other frequencies are also carried out. The results for all of them show a similar agreement with 

the analytical solution to that seen in Fig. 7.1.2 and 7.1.3. 

a nmaur. ýan 

0 

0 10 ao 30 1 40 50 60 

(a) wave history recorded at x= -3.75 

Ein m adrm375 

iuAlcr 

0 10 20 30 1 40 a0 00 

(b) wave history recorded at x=3.75 
Fig. 7.1.3. Comparison of the wave history with the analytical solution at x= -3.75 and x=3.75 

for the case with co=1.45 and a=0.0041 

The behaviour of the QALE-FEM is then investigated by simulating waves of a larger 

amplitude and strong nonlinearity. The amplitude of the wavemaker is taken as 0.082. The 

frequency (co) and tank length are the same as that in Fig. 7.1.2. The steepness of the generated 

waves is about 0.08. For such steep waves, the analytical solution mentioned above should not 
be considered valid. In order to validate the QALE-FEM in this case, its results are compared 

with those obtained by using conventional FEM described in Ma (1998) and Ma, Wu & Eatock 

Taylor (2001b). The length of the time step (also 200 steps in each period) is the same in both 

methods, whereas the type of mesh and the number of elements are different. When using the 

conventional FEM, the mesh is structured and the number of elements is 75264. When using 

the QALE-FEM, the mesh is unstructured and the number of elements is about 78060. The 

latter is also tested using a larger number of elements (133632) but no significant difference in 

results was found. The wave profiles at time z= lOT and 15T from these two methods are 
depicted in Fig. 7.1.4. The agreement between them is quite good. The relative error estimated 
by the same method for Fig. 7.1.2 is found to be less then 1%. 
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(b)i= 15T 

Fig. 7.1.4 Comparison of wave profiles for co=1.45 and a=0.082 (Solid line: QALE-FEM; Dots: 

conventional FEM (Ma, Wu & Eatock Taylor, 2001 b)) 

As a periodic wave, its repeatability is a very important property. Ma (1998) has investigated 

the repeatability of the periodic waves and concluded that his results had good repeatability. The 

above agreement between the results by QALE-FEM and his results also give a proof that the 

modelling waves by QALE-FEM also have good repeatability. 

7.1.2. Bichromatic waves 

The QALE-FEM has also been used to simulate bichromatic waves. These waves are 

generated by the following motion of the wavemaker 

Sw (r) = -a, cos(wlr)- a2 cos(w2r) (7.1.4) 

U. (r) = alcvl sin(cv, r)+ a2wv2 sin(c 2r) (7.1.5) 

where a, and a2 are the amplitudes corresponding to the components with frequencies 0), and C'02, 

respectively. 
As an example, the values for these parameters are assigned as a, =0.016, a2=0.5a1, w, =1.45 

and cot= 2.03. The tank has the same length and the mesh is the same as for Fig. 7.1.4. The time 

step is about 0.01548, about 200 steps in each period given by 2n/c02. For this case, the wave 

history recorded at a fixed point is plotted in Fig. 7.1.5, together with the results from the 

conventional FEM. It can be seen that the results from the two methods are in very good 

agreement in the other area ( Fig. 7.1.5a) and the relative error is in the same level as for Fig. 

7.1.4. 
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-004 
4105 

o 10 as so so ao ao w 

(b) Recorded at x=3.6658 

Fig. 7.1.5 Comparison of wave histories for a1=0.016, a2=0.5a,, wi=1.45 and 0)2= 2.03 

(Solid line: QALE-FEM; Dotted lines: conventional FEM (Ma, Wu & Eatock Taylor, 2001b)) 

7.1.3. Random waves 

The QALE-FEM is also used to simulating random waves. In order to compare with the 

experimental results given by Nestegard (1999), the same motion of the wavemaker as those 

described in Nestegard (1999) is used, which is specified by a Fourier series with different 

scaling factors (a random). The Fourier series is shown in Fig. 7.1.6. 

Q1 

o. 

-0 10 
10 20 30 40 50 60 70 

Fig. 7.1.6 Fourier series used to generate random waves 

The water waves generated by this motion are focused at a point in the tank to form a large 

and steep wave. To model this case, the tank length is chosen as 20. The time step is about 

0.0242 and the number of elements is 183,240. Fig. 7.1.7 shows the wave histories recorded at 

x=3.436 (where the wave is expected to focus) together with the experimental data provided 

by Nestegard (1999) for the scaling factors equal to 0.612 and 0.749. It can be seen that the 

agreement of the numerical results with the experimental data is satisfactory, Particularly the 

largest wave crests are excellently predicted by the numerical analysis. 
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r. 

3 

Fig. 7.1.7 (a) (a 
random - 0.612) 

C 

T 

Fig. 7.1.7 (b) (a random = 0.749) 

Fig. 7.1.7 Comparison of wave histories at x =3.436 with measured data 

given by Nestegard (1999) 

In this section, the newly developed QALE-FEM method has been validated by comparing 
its numerical predictions with published analytical solutions, experimental data and results from 

other methods. Monochromatic, bichromatic and random waves are generated by a wavemaker 

and their propagation is modelled. The results given by the present method agree well with 

published data. This implies that the present QALE-FEM method has similar accuracy with the 

conventional FEM. 
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7.2. Convergence investigation 
The above test cases have given excellent results in cases with different wave amplitudes. In 

those cases, the time steps are very small, e. g. T/200. The initial mesh used is also same for 

those cases. As has been known, the mesh size and the time step are two important factors 

which affect the convergence behaviour. Ma (1998) suggested that 40 divisions in each length 

and 200 time steps per wave period may be required to obtain convergent results by using a 

structured mesh, The convergence property of QALE-FEM is most likely to be different 

because a moving unstructured mesh is used. In order to investigate the convergence behaviour, 

an investigation is carried out in a tank with length equal to 12. For convenience, the 

monochromatic waves are used in these cases. The convergence prosperities in terms of 
different time steps, mesh size are tested. Different wave amplitudes are used. Convergence is 

examined by comparing the wave history recorded at different points. The mesh is generated 

with different divisions along the length (dx), but the divisions along the width is fixed because 

the resulting wave is now y-independent. Other parameters of the test cases are shown in 

Table. 7.2.1. For each case in Table. 7.2.1, two amplitudes of the wave maker are used, i. e. 
0.0041 and 0.082 for co = 1.45,0.0041 and 0.035 in for w=2.0. 

Table 7.2.1 Parameters for cases for convergence investigation 

et 
a, =1.45, L=12 w=2.0, L=10 

dx=0.058 dx=0.073 dx=0.097 dx=0.146 dx=0.031 dx=0.039 dx=0.052 dx=0.078 

T/200 Al BI Cl D1 El Fl G1 Hl 

T/150 A2 B2 C2 D2 E2 F2 G2 H2 

T/100 A3 B3 C3 D3 E3 F3 G3 113 

T/64 A4 B4 C4 D4 E4 F4 G4 114 

1 T/32 A5 B5.1 C5 D5 E5 F5 G5 ßi5 

7.2.1. Convergence vs different time steps 

In order to investigate the effect of the time step on the convergence, cases with 
At= T/ 200, T / 150, T / 100, T / 64 and T/32 as shown in Table. 7.2.1 are carried out. 
Fig. 7.2.1 shows the results of case a=0.035, w=2.0. In these case, L=10, dx=0.052 (GI to 
G5), i. e. about 30 nodes per wave length along the x-direction. It is observed that there are no 

evident differences between the results in case dt <T /64 from Fig. 7.2. la and 7.2.1b. 

However, the results for At =T/ 32 seems different to that for At =T/ 200 (Figs. 7.2.1 c and 
7.2.1 d). 
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6 

e 

Z -ý -" nax 

0 

0s 10 15 10 zl 30 35 40 49 

Fig. 7.2.1 (c) recorded at x= -4 
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Fig. 7.2.1 (d) recorded at x=0 
Fig. 7.2.1 Time histories of the wave elevations in cases with different time steps 

(a=0.035, w=2.0) 

The results of cases with smaller wave amplitude are also investigated and plotted as 
Fig. 7.2.2. From this figure, it is found that the results for At =T/ 32 are very close to those for 

At= T1200 when the wave amplitude is smaller. Based on these tests, one may use 
At =T/ 32 for case with small waves and At =T/ 64 for steeper waves. Similar conclusions 

are obtained for other cases in Tab. 7.2.1. 
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Fig. 7.2.2 (d) recorded at x=0 

Fig. 7.2.2 Time histories of the wave elevation in cases with different time steps 

(a=0.0041, w=2.0 ) 

7.2.2. Convergence vs different mesh size 

On the other hand, the mesh size also affects the convergence property. In order to 

investigate the relation between convergence and mesh size, cases with different mesh size are 

investigated as shown in Table. 7.2.1. In these cases, the divisions along the x-direction are 

chosen as 20,30,40 and 50 per wavelength, respectively. The corresponding mesh size in the x- 
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direction can be found in Table. 7.2.1., i. e. 0.146,0.097,0.073 and 0.058 for cases with 

w=1.45 and 0.078,0.052,0.039 and 0.031 for cases with Co = 2.0. Fig. 7.2.3 shows the time 

history of the wave elevation for different mesh sizes and different time steps in case a--0.035, 

w=2.0, while Fig. 7.2.4 shows the corresponding case with smaller wave amplitude of those 

in Fig. 7.2.3. 
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Fig. 7.2.3. Time histories of the wave elevation in cases with different mesh sizes and different 

time steps (a=0.035, co = 2.0 ) 
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From Fig. 7.2.3a and 7.2.3b, it is observed that in cases with a=0.035, CO = 2.0, At =T/ 64 , 
there are no evident difference between the results from cases where 30 or more nodes are 
distributed in a wavelength along the x-direction on the free surface. However, when the x- 
directional size (Ax) is 0.078 (about 20 nodes per wavelength), the results seem not convergent 
(dotted curve in Fig. 7.2.3). This means the results with mesh size of 0.078 are not convergent. 

Similar results can be obtained in case with a=0.035, co = 2.0, At = T1100 from Fig. 7.2.3c 

and 7.2.3d. 
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Fig. 7.2.4. Time histories of the wave elevation in cases with different mesh sizes and different 

time steps (a=0.0041, co 2.0 ) 

However, in cases with small wave amplitudes, the difference between the results for 
Ax szý %/20 and those for Ax :5 %/30 is smaller. Not like that in Fig 7.2.3, the results for 
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Ax -- %/20 is still convergent in this figure. This implies for case with very small steepness, 

e. g., linear waves, the mesh size with Ax z . %/20 may be small enough to get a convergent 
result. Because this work focuses on the nonlinear waves, at least 30 nodes in a wave length are 

required. It should be noted that the conclusion mentioned above may not work in a case 
involving a floating body, since the convergence rate of the ISITIMFB procedure also needs to 

be investigated for the same purpose. Those investigations will be presented in Chapters 8 and 9. 

7.3. Investigation on some numerical techniques 

7.3.1. Investigation of different velocity calculation methods 

In Section 5.3, comparison has been given between two velocity calculation methods in the 

case of solitary wave. More investigations of periodic waves are made in this section to test 

these two approaches. To do so, similar cases as B3 in Table 7.2.1 are used. In these cases, 

co =1.45, L =12 , the time step is taken as T/ 100 and the mesh size on the free surface is 

taken as Ax--A/30, the wave amplitudes are taken as 0.082 and 03, respectively. Both 

'Method 1' and ̀ Method 2' are used to approximate Op, 
2 . 

Fig. 7.3.1 shows the wave history recorded at x= -4 in case with a=0.082. For comparison, 

the result from the conventional FEM by Ma (1998) is also plotted together. It is found that the 

difference between the results for `Method 1' and those for `Method 2' is negligible. Both 

results agree well with those from Ma (1998). 

h iacndea r 
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10 40 

Fig. 7.3.1 Comparison of the wave history recorded at x= -4 in case with different methods to 

approximate OPI. (a=0.082, (o =1.45 , At =T/ 100 , the time step used in Ma (1998) is T/200) 
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Fig. 7.3.2 Comparison of the wave history recorded at x= -4 in case with different methods to 

approximate Oß, 
1 

(a=0.1, co =1.45 , At =T/ 100 ) 
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In the case with a=0.10, Fig. 7.3.2 illustrates the wave history recorded at the same points as 

Fig. 7.3.1. It is also found that the difference between these two results is negligible. To further 

compare these two methods, the wave profiles in different instances are plotted as Fig. 7.3.3. 

These figures all show excellent agreement between the results from different velocity 

calculation schemes. 
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Fig. 7.3.3 (a) wave profile at r =11.2658 
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Fig. 7.3.3 (b) wave profile at r= 24.2648 
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Fig. 7.3.3 (c) wave profile at z= 47.662 

Fig. 7.3.3 Wave profiles at different instance (a=0.1, w =1.45 , At =T /100 ) 

. As a result of these investigations, ̀ Method 2' is used to approximate Op,, in the following 

application, since this method requires less CPU time than the other. It should be noted that in 

case with an overturning wave, the `Method 2' may not give results of the same accuracy as 
`Method 1. Because in such a case, the spatial derivatives of the velocity potential near the free 

surface, particularly near the overturning jet (crest), are larger than those in the above two cases, 

therefore the interpolating function of the MLS for Op,, and that for cb, 
2 are quite different. In 

these cases, ̀Method I' should be used. 
One may also find that for the case with a=0.1, w=1.45, At =T/ 100, Fig. 7.3.2 and Fig. 

7.3.3 did not give the results by Ma (1998). The reason is that a structured mesh with vertical 
lines in z-direction is used in his study. When the waves become steeper, the element near the 
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free surface might be close to flat (Fig. 7.3.4a). Once some elements near the free surface 

become close to flat, it is difficult for Ma (1998) to obtain convergent results. 

Free surface 

element near element near 
surface surface 

Free surface 

(a) structured mesh (b) unstructured mesh 

Fig. 7.3.4 Sketch of an element near the free surface 

With the QALE-FEM method, the above phenomena, i. e, near flat element, may not appear 

since an unstructured mesh is used (Fig. 7.3.4b). Therefore the QALE-FEM method may give 

convergent results for these cases similar to Fig. 7.3.2. 

7.3.2. Investigation of absorbing boundaries 

In this work, a Sommerfeld condition with a damping zone near the far end wall is used to 

reduce the reflection from the far end wall. This technique is the same as that in Ma (1998). Ma 

(1998) has investigated the efficiency of this technique in cases with structured meshes. 

However, in this work, the mesh is unstructured and is moving at every time step. This 

technique to absorb the reflection may not work. In order to validate it, numerical investigations 

are necessary. The numerical validation in Section 7.1 indicated that the results (wave history or 

wave profile) using QALE-FEM agree well with those by the conventional FEM in Ma (1998). 

These validations gave indirect evidence that this technique works well in the application of 

QALE-FEM. Further comparison between the results obtained by using tanks with different 

widths is made in this section. 

To do so, a bichromatic wave with a, =0.016, a2=0.75a1, coj=1.45 and w2= 2.175 is generated 
in a short tank with L=15 and a long tank with L=30 respectively. In these cases, there are 

about 30 nodes in a wavelength of the wave component of cwt= 2.175. The time step is taken as 
0.0043 (T, 1100). Fig. 7.3.5 shows the wave history recorded at a point. It is observed that the 

wave generated in a short tank is close to that generated in a longer tank. This implies that the 

method for the radiation condition works well in this case. The reflection from the far end wall 
is very small. The wave profiles in different instances are shown in Fig. 7.3.6. It is observed that 

after long-time simulation, the wave profiles in tanks with different widths show little difference. 

This results support the conclusion, i. e. the current technique to remove the reflection, in 

advance. 
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7.3.3. Numerical investigation on wider tanks 

The main aim of this work is to simulate 3D wave-body interaction. In those cases, the tank 

requires larger width than those in the above validations where the tank of B=0.15. Before we 

apply the QALE-FEM to 3D problem, it is necessary to investigate all the techniques, e. g., 

recovery technique, work well in such a wider tank. To do so, many cases are carried out in a 

tank with L=12, B=2. The meshes are unstructured in these cases; the x-directional and y- 

directional mesh sizes on the free surface are taken as Ax = Ay -- A. / 30, respectively. The 

nonlinear waves are generated by using Eqs. (7.1.1) and (7.1.2) with a=0.082, (v =1.45. The 

time step is Ar =T/ 64. The wave history recorded at different points in the central line (y=0) 

are compared with those obtained by using a narrow tank with L=12, B=0.15. The results are 

shown in Fig. 7.3.7. 
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(b) wave history record at x= -1 v=0 

Fig. 7.3.7 Comparison of the wave histories obtained by different tanks 

(a=0.082, o) = 1.45, At =T/ 64 for QALE-FEM and At =T/ 200 for conventional FEM 

by Ma, 1998) 

It is observed that there is no evident difference between the results obtained in case with 

wide tank and with narrow tank. This implies that in cases with wider tank the QALE-FEM 

method still leads to satisfactory results. The corresponding wave profiles in different instances 

are plotted in Fig. 7.3.8. It is found that the free surface in different instances is all very smooth. 
There is no `saw-tooth' phenomenon. These results also support the statement that the patch 
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recovery technique used can successfully remove the `saw-tooth' problem associated with the 

velocity calculation. 
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7.4. Reflection due to periodic bars on the sea bed 

The QAI, F: -FEM is now employed to simulate the interaction between waves and periodic 

bars on the seabed. Since the experimental demonstration by I leathershaw (I982), the problem 

has been studied by many researchers using various mathematical models with particular 

attention paid to Bragg resonance that leads to large reflecting waves. those models were 

developed by making various approximations, including linear perturbation approach by Davies, 

&I leathershaw (1984), multiple scale analysis by Mci (1985), mild-slope approach by 

Chamberlain & Porter (1995), fully linear analysis by Porter & Porter (2003) and so on. The 

results obtained from these models agreed well with experiments carried out by I leathcrshaw 

(1982) and Davies & Heathershaw (1984) in cases with small surface wave and har wave 

steepness. Liu & Yue (1998) performed a fully nonlinear analysis using a spectral method and 

pointed out that the nonlinear effects may cause the downshift of reflection coefficient curves 

compared with results From the simplified models such as in Mei (198.5). 

In this section, the numerical results obtained by using the QAI. I: -l l? M will be compared 

with published experimental data and analytical/numerical solutions, with particular attention 

paid to the reflecting wave properties near the Bragg resonance. The main purpose of' the 

comparisons is to further validate the new numerical method. Apart frone this, certain results 

corresponding to larger wave amplitudes will also be presented in order to illustrate the 

nonlinear effects on the reflection. 

The two cases to be considered are the same as those in I leathershaw (1982), i. e., bar patches 

with 4 and 10 sinusoidal bars on the seabed, respectively. Hie wave generator motions are as 

specified by Eqs. (7.1.1) and (7.1.2). The sketch of the fluid domain in this case is shown in 

Fig. 7.4. I a. For ease of description, the side of the bar patch near the wavemaker is called the 

front side, and the other side the lee side. The initial meshes used are similar to that illustrated 

in Fig. 7.4.11) but much finer. 

Wavemaker Damping zone 
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Fig. 7.4. I (a) Sketch of fluid domain 



Fig. 7.4.1 (b) typical initialized mesh 

Fig. 7.4. I Typical initialized mesh flor the Bragg scattering problem 

The reflection coefficients, defined by K,. = A, /A� where A, and A, are the amplitudes of 

reflecting and incident waves, are calculated from wave histories recorded at a series of points 

along the tank (see Fig. 7.4.2) by using the same method as in Ileathershaw (1982). Suppose 

there are two gauges with distance of Al to record the wave elevations, 

Pointl (x/) Point2 (x, +A1) 

t'rec surf ice 

sandbars 

Fig. 7.4.2 sketch for calculating the reflection coefficient 

I'he elevation at Point I can be written as 

S1 =c1cos(g, +cc)t) (7.4.1) 

in which c/ g, are coefficients which represent the amplitude and phase. 11 is assumed that the 

wave consists of incident and reflected waves with the same frequencies. "Therefore, I LI. (7.4.1 

can be rewritten as 

Sl=A, cos(kv, - ml + e, )+A, cos(ky, - ml + f,. ) (7.4.2) 

where the subscripts i and r" indicate the incident waves and the reflected waves, respectively. 

e are constant. f? xpand l, q. (7.4.2), 

q, = A, cos wwt + ß, sin tot (7.4.3) 
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and 

Al = A, cos G,. + A, cos G,; B, = A, sin G, - A, sin G, (7.4.4) 

where 
G, = kx +c,; G, =, +E,. (7.4.5) 

similarly, for the second Point, the elevation recorded can be described as 

sZ = A2 cos wt + B2 sin cot (7.4.6) 

and 

A2 = A. cos(kAl +G, )+A, cos(kAl+G, ) 
B2 = A, sin(k01 + G, ) - A, sin(kLl + G, ) 

(7.4.7) 

From Eqs. (7.4.1) to (7.4.7), the amplitude of the incident wave and reflected wave can be 

obtained by 

A; =1 
[(AZ 

-A, coskil - B, sinW)z + (B2 +A, sinkd! - B, cosAl)2/2 21sin kAll 
(7.4.8) 

A, _ 
[(AZ 

- A, cos k& + Bl sin kAl)Z + (B2 - A, sin k& - B, cos AI) 2 /2 
2lsin k01) 

Once A; and A, is obtained, the reflection coefficient can be estimated. 
For the purpose of computing the reflection coefficients, the time history to be used at a 

point must start from the time when the wave reflected from the lee side has arrived at the point 

and end before the wave reflected from the front side travels back to the point after interacting 

with the wavemaker. Otherwise, either the reflecting waves are not fully developed at the point 

or affected by the re-reflecting waves from the wavemaker. The start (t�) and end (tend) times 

may be estimated by 

t, = (L.,, -I- 
2Lbp2) I Cg 

tend = (3Lwp +2Lbp, )/ Cg 

(7.4.9) 

(7.4.10) 

where Cg is the group velocity of the water wave; Lw,, is the distance from the wavemaker to 

the point considered; LbPL and LbPZ are the distances from the point to the front and lee sides of 

the bar patch, respectively. 

7.4.1. Reflection coefficient as the function of wave frequencies 

First considered are the cases with small wave amplitudes. For these cases, the water waves 
are generated by small amplitudes (a=0.02 for 4 bars and 0.005 for 10 bars) and the resulting 

wave steepness (H/2, where H and A are the water wave height and length, respectively) is less 

than 0.002. In order to compare our results with experimental data in Heathershaw (1982), the 
dimensionless bar wave number (kb) is assigned a value of 2r/10, the ratios of the bar amplitude 
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(ab) to the water depth are taken respectively as ab/d = 0.32 for 4 bars and ab/d = 0.16 for 10 bars. 

The wave histories recorded at two points about 5 bar-lengths before the front side of the bar 

patch are used. 

The reflection coefficients near the resonant condition (2klkb = 1, where k is the water wave 

number) are presented in Fig. 7.4.3 together with experimental data from Heathershaw (1982). 

For the case with 10 bars, the nonlinear numerical results from Liu & Yue (1998) and analytical 

results from the simplified model (David & Heathershaw, 1984) are also included. For the case 

with 4 bars, the analytical results from Porter & Porter (2003) are plotted apart from the 

experimental and our numerical results. From Fig. 7.4.3a for the case of 4 bars, it can be seen 

that the numerical results obtained by using the QALE-FEM method agree well with the 

analytical results given in Porter & Porter (2003) and satisfactorily with experimental data in 

Heathershaw (1982). Fig. 7.4.3b for 10 bars indicated that the present numerical prediction 

almost coincide with those of Liu & Yue (1998) and are closer to the experimental data than the 

analytical solution based on simplified model (Mei, 1985) on the side of 2k/kb > 1. When 2k/kb 

<1, the present results differ with those of Liu & Yue (1998) but are closer to the experimental 

data of Heathershaw (1982) and the analytical results from the simplified models ( Mei, 1985). 
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incident waves, respectively) with k,, d = T/10 
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One may also find that in the region 2k/kb close to 1, the reflection coefficients calculated by 

the numerical results including the present results are all different to the experimental data, 

though the difference between the numerical results are small. In this region, the resonance is 

very strong. Viscosity may play very important role and therefore reduces the reflection. 

However, all the numerical methods present in this figure are based on potential theory which is 

inherently inviscid. 

To further show the properties of the reflected waves, the wave profiles at different instances 

for 4 bars are plotted in Fig. 7.4.4, in which the coordinate system is shifted so that its origin is at 

the centre of the bar patch and the bar patch is located in the range of -2<x/A, <2 

(4 = 2n / kb ). It can be observed that when the incident wave reaches the bars, the reflected 

wave begins to be produced. The reflected wave propagates towards the wavemaker, is 

superposed onto the incident wave and makes the resultant wave before the front side 

(x /A= -2) higher than the incident wave. It can also be observed that the wave after the lee 

side (x/ Ab = 2) is considerably smaller than the wave before the front side, as expected. The 

wave profiles at different instants for 10 bars are shown in Fig. 7.4.5. Similar phenomena are 
found in cases with 10 bars. 
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Fig. 7.4.4 Wave profiles at different instances for 4 bars 
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Fig. 7.4.5 Wave profiles at different instances for 10 bars 

7.4.2. Nonlinear effects 

p 

0 

In order to investigate the nonlinear effects, the case with 4 bars is simulated with different 

amplitudes. All other parameters except for the amplitude are the same as those for Fig. 7.4.4. 

The reflection coefficients corresponding to 2k/kb 1 are presented in Fig. 7.4.6. In Fig. 7.4.6a, 

the coefficients at different positions are plotted together with the experimental results and 

analytical solution from Heathershaw (1982). It can be seen that the reflection coefficients are 

close to those of the linear analytical solution when the amplitude is small but close to the 

measured data when the amplitude is larger. In addition, the reflection coefficients before the 

front side (x / A, = -2) tend to decrease with increasing amplitude, though the reduction is not 

very significant. 

The numerical reflection coefficients at a point x/ Ab= -4 are plotted in Fig. 7.4.6b in order to 

show the trend clearly. Fig. 7.4.6b clearly shows that the reflection coefficients decrease as the 

amplitudes increase. It should be noted that the method for estimating the reflection coefficients 

is the same as in Fig. 7.4.3 in order to compare the results with those in Heathershaw (1982). 

However, when the nonlinearity becomes strong, high order waves are involved. The reflection 

coefficients found in this way correspond only to the wave with the same frequency as the first 

order wave and do not include the reflection of high order waves. 
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Fig. 7.4.7 Wave profiles corresponding to different amplitudes for 4 bars 

In order to look at overall reflection of nonlinear waves by the bar patch, the shapes of wave 

profiles for the same case are illustrated in Fig. 7.4.7. In this figure, the wave profiles for 

smaller and larger amplitudes are depicted to show the different reflection properties. As can be 

seen, the wave profiles to the left of the bar patch for the smaller amplitude seems to be formed 

by superimposing two harmonic waves with the same length travelling in opposite directions 

(so the wave become higher) but the shape is still similar to the shape of harmonic waves. For 

the larger amplitude, the wave amplitude on the left of the bar batch seems not to be changed 
dramatically by the reflection waves, instead, the shape of the waves is significantly modified. 
More wave profiles corresponding to different amplitudes for 4 bars of the case in Fig. 7.4.7 are 

given in Fig. 7.4.8. 
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7.5. Computational efficiency of mesh moving scheme and mesh quality 
A significant development in this work is to move, instead of re-generating, the unstructured 

mesh at every time step when simulating water waves based on the FNPT Model. As pointed 

out in Chapter 4, the mesh obtained should have satisfactory element shapes and preserve the 

reasonable refinement and distribution in regions of interest, such as those close to the free 

surface and the bars on the tank-bed at all time steps. But Chapter 4 only investigated the 

effectiveness of the new developed spring analogy method by using some artificial cases in one 

step. The mesh quality during a long-period calculation is also of concern. In this section, 
investigations for cases without floating bodies are considered. The mesh quality in case with 
floating bodies will be assessed and discussed in Chapter 8 and Chapter 9. 

In order to show the quality of mesh moved by using the method discussed in Chapter 4, a 

case of nonlinear water waves without bars is tested, in which, a=0.082, w=1.45 and L= 14.7. 

The fluid domain is discretised into about 133,632 elements. The time-step length is taken as 
At=T/64. The results of the wave elevation have been validated in Section 7.1.1. The 

computational mesh at different time is shown in Fig. 7.5.1. It is observed that the mesh quality 

remains high throughout the simulation. It should be noted that the mesh used in this case near 
the wave maker is structured. This result means the above mesh moving scheme can be applied 
to unstructured mesh, structured mesh or a mixed mesh as shown in this figure. 
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Another case considered here is the case with 4 bars as shown in I ig. 7.4.8 with u=0.192. Fig. 

7.5? and Fig. 7.5.3 shows the initial mesh and a mesh during the calculation, respectively. 
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Fig. 7.5.2a shows a part of the initial unstructured mesh while Fig. 7.5.2h illustrates the 

enlarged mesh in areas near the two sides oi'the bar patch. Fig. 7.5.3 depicts the corresponding 

part o(' the mesh at about r -- 332. "These figures demonstrate that the original refinement and 
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distribution are kept and all elements are of satisfactory shape after long time simulation. In 

addition, negative elements, which are of concern when using the linear spring analogy method, 
do not appear in the simulation. This implies that the techniques used for moving mesh 
described in Section 3 work very well. Nevertheless, certain changes in the sizes and shapes of 
individual elements are observed and expected because the fluid domain varies with propagation 

of waves. It is these changes that make it possible to conform to the moving boundaries at all 

time steps and so to achieve satisfactory results. 
Another concern about the QALE-FEM is the computational cost of moving the mesh. The 

efficiency of moving the mesh can be deduced by comparing the computational time required 
by the QALE-FEM with that required if a conventional FEM with unstructured mesh 

regenerated at each time step is employed. For this purpose, the case in Fig. 7.5.3 is run on a PC 

(Pentium N 2.53GHz processor, 1G RAM). The CPU time spent on generating the mesh is 

about 53s. After the mesh is generated, the CPU time spent on all the other calculations is on 

average about 3s each time step, including 0.09s for moving interior nodes and 0.25s for 

adjusting all nodes on the free surface. In this simulation, adjustment of nodes on the free 

surface is performed every 40 time steps and takes about 9s each time, so the additional CPU 

time for this is roughly 0.25s each time step. If the same case had been simulated using a 

conventional FEM with the same mesh regenerated at each time step, the total CPU time on 

each time step would have been about 60s. This implies that the QALE-FEM requires less than 

10 % of the CPU time required by the conventional FEM. It should be noted that the time spent 

on adjusting nodes on the free surface depends on how often it is undertaken. Its frequency 

depends on the number of time steps used each period and the wave steepness. The more time 

steps in each period, the less frequently adjustment has to be performed. On the other hand, the 

steeper the waves, the more often adjustment is needed. According to the experience so far, the 

adjustment frequency is unlikely to be less than every ten time steps if a reasonable time step is 

chosen. Even with a frequency of every ten time steps to adjust the nodes on the free surface, 

the CPU time required by using the QALE-FEM is still considerably less than that by the 

conventional FEM. Therefore, it can be confidently stated that the QALE-FEM is much faster 

than the conventional FEM when using unstructured meshes. 
It should be declared that the required CPU time presented here is not exactly the same as 

that presented in Ma & Yan (2006). That is because the computer code is optimized and the 

computational cost now is cheaper than Ma & Yan (2006). 
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8. NONLINEAR INTERACTION BETWEEN 2D FLOATING BODIES AND 
STEEP WAVES 

In this chapter, the QALE-FEM method is used to simulate the nonlinear interaction 

between 2D floating bodies and steep waves. A sketch of this problem is given in Fig. 8.0.1. 

Fig. 8.0. I Sketch of fluid domain with floating bodies 

Some of the results are validated by comparing the numerical results with analytical 

solutions and published works. Some of the results in this chapter have been published in Yan 

& Ma (2006), more results are presented here. Unless mentioned otherwise, all parameters with 

a length scale are nondimensionalised by the water depth d and other parameters by 

t- r d/g and co-3 gld . 
(8.0.1) 

8.1. Waves generated by a 2D forced-motion floating body 
Although the main aim of this chapter is to simulate cases involving 2D free-response 

floating bodies, the case for a 2D body in forced motions is investigated in the first stage in 

order to validate the force calculation, in which the iteration loop discussed in the previous 

section becomes unnecessary since the body acceleration does not need to be found. The body 

in these cases is formed with a circular cylinder as the submerged part and vertical walls above 

it, as shown in Fig. 8.1.1 (a). The dimensionless radius of the cylinder (Rh) is 0.25. The initial 

mesh around the body is similar to that in Fig. 8.1.1 (b) but much finer. 

The displacement (ii) of the body is specified by 

q(z) = ab sin(wbz) (8.1.1) 
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where ab and Ovb are the amplitude and circular frequency of the motion, respectively. The 

velocity corresponding to Eq. (8.1.1) is 

US(T) = abCOb COS(CObr) 

heave 
sway 

free surface Rn - 

(a) floating body 

(b) initial mesh near the body 

Fig. 8.1.1 Sketch of body motions and illustration of the initial mesh 

(8.1.2) 

This implies that the floating body suddenly gains a finite value of velocity from rest, which is 

not only practically impossible but also can result in a numerical difficulty (Eatock Taylor, 

Wang & Wu, 1994; Eatock Taylor, 2005). To avoid this, the velocity Ü, is ramped as in 

Eatock Taylor (2005) and given by 

Ü, (z) = abco cos(cvbz)(1- e'ßr ) 

,l= -xwb i 2; r 

(8.1.3) 

(8.1.4) 

where, is a coefficient. The larger the value oft, the shorter the time is, during which the 

effects of the ramp function persist, though the value does not affect the final results. In this 

thesis, ;r=5 is used. 

8.1.1. Convergence properties of force calculation 

When the amplitude of the harmonic motion is small, the hydrodynamic force can be 

evaluated by summing the analytical added mass and radiation damping forces (Faltinsen, 1990). 

In this section, the force estimated by the added mass and radiation damping is used for 

comparison with numerical results to verify the QALE-FEM method. For the numerical 
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simulation, the total tank length is taken as L 30 with the length from the wavemaker to the 

body taken as L, v= 15 (Fig. 8.0.1). The motion amplitude in Eqs. (8.1.3) and (8.1.4) is assigned 

as ab = 0.01. The mesh is unstructured and there are about 35 elements on the free surface in 

each wave length. The time step is taken as T/128, where T is the wave period. The x-direction 

hydrodynamic force (divided by pgd 2) in the forced sway and the z-direction hydrodynamic 

force (also divided by pgd 2) in the forced heave are plotted in Fig. 8.1.2 for three cases with 

different values of ý, where ý= awb Rb is the frequency parameter. 
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Fig. 8.1.2 (a) forced sway ý =0.526 

0.004 

0.002 

0.000 

-0.002 

-0.004 05 10 15 20 25 
Fig. 8.1.2 (b) forced heave ý =0.526 

0.004 

0.002 

0.000 

-0.002 
-_(Ifu 

./ 

05 10 X 15 20 
Fig. 8.1.2 (c) forced sway ý =0.750 

0.004 

0.002 

0.000 

-0.002 

05 10 It 15 20 
Fig. 8.1.2 (d) forced heave ý =0.750 

157 



0.004 

0.002 

r 0.000 

-0.002 

0St 10 15 

0.004 
0,002 

0.000 

-0.002 

0 5 10 15 
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Fig. 8.1.2 Comparison of force histories for cases for forced sway/heave with analytical 

solution (Solid line: numerical results, Dot line: analytical solution (Faltinsen, 1990) 

It can be seen that the numerical results agree very well with the analytical ones in all the 

cases, except in the transient period when the difference is expected because the analytical 

forces are evaluated for steady state but not for the transient stage. To quantitatively show the 

accuracy of the numerical results, the relative error (E, ) for the results in Fig. 8.1.2 is evaluated 

by: 

Er _ 
Il. fn f. 11 

Ilf, 11 (8.1.5) 

where Il f II = 
ff 'dA ; fn and fQ are the numerical and analytical forces, respectively; and A, 
A. 

is the duration over which the error is estimated. Because the accuracy of the forces within the 

transient period should not be of concern, A8 is taken as the total duration of simulation minus 

the transient period (about half of wave period). The relative errors evaluated in this way for all 

the cases in Fig. 8.1.2 do not exceed 0.5%. 

The characteristics of the relative error are further investigated by considering different 

time steps and different mesh sizes. For this purpose, the relevant parameters are taken as 

ab =0.0 I and ý=0.75 (the corresponding wave length is about A Po 2.0 ), which are the same 

as the second case in Fig 8.1.2. It should be noted that the investigation on how numerical 
errors are affected by time steps is relatively easy but not on how they are related to mesh sizes. 
That is because the errors depend on both mesh sizes and mesh structures and also because it is 

impractical to consider all possible mesh structures as the unstructured meshes are used in this 
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paper. Apart from these, the mesh sizes constantly change with time for water wave problems. 
To eliminate the difficulty, a representative mesh size (ds) is used, which is defined as the 

distance between nodes on the free surface when the water is at rest. The initial mesh structures 

are almost the same in all cases considered, which feature that the nodes on the free surface, the 

tank bed and the body surface are uniformly distributed; the distance between nodes on the free 

surface is roughly twice of that on the body surface and half of that on the tank bed; and the 

distance between nodes in the vertical direction gradually decrease from the bed to the free 

surface. 
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Fig. 8.1.3 Relative errors for different meshes and different time steps 
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The relative errors corresponding to different time steps and different representative sizes 
(ds) are presented in Fig. 8.1.3a and Fig. 8.1.3b for sway and heave, respectively. In these 
figures, the time step is given as the wave period (7) divided by a number. It is observed that 

the relative errors reduce with the decrease in mesh sizes and/or time steps, as expected. 
Particularly in the ranges of 0< ds < 0.057 (about 35 elements in over one wave length) 

and 0< dt <T/ 64, the relative errors are less than 0.8% for all these cases. This implies that 

the numerical results with a specified accuracy are achievable by using a sufficiently fine mesh 

and small time step. 

8.1.2. Forced motion with larger amplitudes 

In order to investigate the nonlinear effects on waves generated by the forced-motions of 
the floating body, the cases similar to Fig. 8.1.1 but with larger amplitudes are simulated. The 

wave histories recorded on the left hand side of the body for the case with forced sway 
(ab=0.123) is depicted in Fig. 8.1.4 together with that for ab=0.0041. Fig. 8.1.5 shows the wave 
histories for the forced heave, in which the solid line is the wave history for ab=0.082, while the 
dotted line is that for ab=0.0041. In both figures, the wave elevations are divided by the motion 

amplitude (ab). 
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Fig. 8.1.4 Wave history recorded at x= -I due to forced sway 
(L=30, cvb=1.45, ý=0.75, solid line: ab=0.123, dot line: ab=0.0041) 
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Fig. 8.1.5 Wave history recorded at x= -1 due to forced heave 

(L=30, (vb=1.45, ý=0.75, solid line: ab=0.082, dot line: ab=0.0041) 

It can be observed that the wave height seems not to be changed dramatically while the 
shape of the wave history curve becomes more complicated as the amplitudes of motions 
becomes larger in the cases for forced sway. In the cases for forced heave, the wave history 
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becomes sharper at crests and flatter at troughs with the increase of the motion amplitudes. All 

are typical features of nonlinear waves. 

To show how well the mesh conform to the variation of the body and free surl'aces, tile 

mesh configurations for forced sway motions at some time steps are given in Fig. 8. I. 6. From 

these figures, it can be seen that the mesh quality near the body surtüce is maintained even 

though the motion of the floating body is large. 
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N 

Cases with forced roll motion are also investigated. For a circular cylinder, the normal 

velocity on the body surface is zero in the case with a roll motion with respect to the centre of 
the circle. "Therefore, the wave generated by such a motion is small. In order to investigate the 
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mesh moving scheme in the case with roll motion, the circular cylinder is replaced by a barge- 

type floating body. The mesh is similar to Fig. 8.1.6. The width of this body is 0.25d and the 

draft of the body is O. 5d as being seen in Fig. 8.1.7a. The motion of the floating body is now 
described as 

Q, (z) = abWb cos(whr)(1- eß' ) (8.1.6) 

where S2, is the angular velocity of the floating body. An example of case with forced-roll 

motion is shown Fig. 8.1.7. In this case, wh =1.45, aß, = -0.123rad . It is found that the mesh 

quality remain high throughout simulation. This implies that the suggested method to move 

nodes works well in the cases including the floating bodies and the free surface. 
Moving 
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Fig. 8.1.7 (a): Initial mesh 
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Fig. 8.1.7 (b): z=3.75T 
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Fig. 8.1.7 (c): z=7.25T 

Fig. 8.1.7 Wave profiles and mesh around the floating body with forced-roll motion 

8.2. Free-response of 2D moored floating structures to steep waves 
After being validated using cases for forced-motions, the QALE-FEM method is now 

applied to simulate the motions of a 2D free-response floating body. The incident waves are 

generated by a wavemaker in a tank and the body is moored to the walls of the tank, as 

illustrated in Fig. 8.0.1. The initial mesh used is similar to Fig 8.1.1 (b) but the circular cylinder 

is changed to a barge-type floating body. For this body, the mass is 125kg; the moment of 

inertia about the gravitational centre is 4.05 kg-m2; the width (Bb) is 0.5m; the draft is 0.25m; 

the local radius of round corner of the body is 0.064m and the gravitational centre is located at 

0.885m measured from the keel of the barge. In this work, the mooring line is modelled by a 

horizontal spring through the gravitational centre with the spring stiffness taken as 197.58 N/m. 

These parameters and the shape of the body are chosen to be consistent with those in Koo & 

Kim (2004) and Tanizawa (1995) whose results will be used to validate the present numerical 

model. A sketch of this problem is shown as Fig. 8.2.1. In the simulations, the mean water depth 

of the tank is equal to the wave length determined by A=2 tanh(21r). 

In the following, the frequency (w) of the wavemaker motion is represented 

by = w2Bh /2g ; the force is nondimensionalised by using pgd 2 on the assumption that the 

length of the 2D body in the direction parallel to the wavemaker is unit; and the roll angle is 

nondimensionalised by ((OW 2 /g)A. 
, where AH, is the amplitudes of incident waves. Other 
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parameters are nondimensionalised by the same way as in previous sections. The numerical 

results are compared with experimental results of Nojiri & Murayama (1975), the analytical 

solution given in Koo & Kim (2004), other numerical results of Koo & Kim (2004) and 
Tanizawa (1995). Two different incident wave height results are also compared. 

Fig. 8.2.1 Sketch of surface piercing single barge simulation (Koo & Kim, 2004). 

(Radius of barge round corner=0.064m, width=0.5m, draft=0.25m) 

8.2.1. Wavemaker ramp function and artificial damping technique 

It is well known that the waves generated by a wavemaker in a tank are characterised by a 
transient wave profile in the front part of a wave train even though the motion of the wavemaker 
is purely harmonic. The transient wave profile often consists of several waves with different 

lengths and heights and a larger wave crest separating the transient and steady parts in the wave 

train. If one aims to investigate the properties of steady-sate responses, such as RAOs, of 
floating bodies, the transient waves and corresponding body responses are useless and hence 

they should be suppressed in order to reduce computational cost. Three methods may be used 
for this purpose. The first one is to apply wavemaker ramp functions that reduce the wave 
heights in the transient part. The second is to add artificial viscosity in the dynamic equations 

of floating bodies (called artificial damping technique), which diminishes the transient body 

responses. The third method is the combination of the first and the second ones. Details about 
them are given below. 

Two wavemaker ramp functions are investigated. The first one is similar to those in Eatock 

Taylor, Wang & Wu (1994) and Eatock Taylor (2005). The wavemaker motion corresponding 
to the first ramp function, called `Rampl', is governed by 

S. (r)=-acos(tn ), (8.2.! ) 

U,, (Z) = acv sin(a n), (8.2.2) 

0 (r) = as 2 cos(wz)(1- ehir) (8.2.3) 
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where S,,,, U,,, and U,,, are the displacement, velocity and acceleration of the wavemaker 

respectively; and the coefficient ßj is the same as that in F, y. (8. I. 3) with (o,, replaced by ra) . 

In this approach, the generated wave is not modified by the ramp function because the velocity 

of the wavemaker and so the velocity potential are not affected. The ramping is only performed 

on the acceleration of the wavemaker, which implies that the value of' 00/ii and so lorccs on 

bodies are ramped. The wavemaker motion corresponding to the second ramp function, called 

`Ramp? ', is governed by 

Sti, (r) _ -u cos(ýrýr)r (z) , 
(8.2.4) 

(8.2.5) 
U,,, (T) = aU, I ar (8.2.6) 

I T/ 
r(r) [I 

- cos(ýrr /T, )]/ 2r <- TI 
(8.2 ) 

where T, is the cut-off time of the ramp function and is determined by 

T1 = Id,,,, /Cg (9.2.9) 

in which K is a coefficient between 0 and I; and (. 'h is the group velocity of waves. 

The efficiency of Ramp I and Ramp 2 are investigated with, " =1, u=0.0016 ,L 
15 and 

L, -10. The mesh used is unstructured with about 35 elements on the free surface in each 

wavelength. For the Ramp?, A: = 0.25 and rc = 0.5 are adopted for two cases, respectively. 

swa po i1/u 

05 

00 

-0 5 

1 211 

ig. 8.2.2 Sway motion usingdiftcrent ramp functions 

Fig. 8.2.2 shows the sway motions obtained by using dit'lerent ramp functions. It can he 

observed that Ramp2 can make the calculation become steady sooner than RanmpI, though its 

effectiveness depends on the value of K. I lowever, that the waves at the wavemaker generated 

by using Ramp2 during period r<7', are not the incident waves desired, implying that the 

waves at the floating body do not become the desired incident waves until r> 7', -+ L. /('g 
. 

In 

addition, even after the desired incident waves arrive at the floating body, its responses exited 

by undesired waves do not disappear immediately and so take extra time ( T, ) to become those 
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excited by the desired waves. As a result, the time history of motions during the time 

r <T f+L. /Cg + Te should not be considered when estimating RAOs. Based on this analysis, 

it is obvious that the shorter the sum of Tf +T,, the less CPU time is required for estimating 

RAOs. As can be seen in Fig. 8.2.2, the transient period becomes longer, indicating that Td 

becomes larger, with Tf being shorter (i. e., smaller 'c) when using the Ramp2 only. Therefore, 

the reduction in Tf does not necessarily lead to the reduction in the sum of Tf+ TQ . 

The other option left is to reduce Te by using the artificial damping technique mentioned 

above. With this technique, the motion equation, e. g., Eq. (3.2.2), is modified to 

[M]Üc+ßaUc =F 

where PQ is the artificial damping coefficient. It is given by 

(8.2.9) 

0 z>Td ý°(ý) - aß, [1+cos(zr/Td)]l2 r: 5 Td 

where ß, is the critical damping corresponding to a motion component (such as sway or heave); 

a is a coefficient; and Td is the time during which the artificial damping is active. 

In this case, the natural frequencies in heave and roll motion are much higher than wave the 

frequency of the incident wave. The transient effect is not evident in these two motions and 

therefore those two motion modes can become steady soon. So, this type of artificial damping 

coefficient is only added to sway motion in this section. In order to investigate the effect of 

differenta, the same cases as Fig. 8.2.2 are carried out. 

From Fig. 8.2.2, one may find that there is long-period oscillation existing in the sway 

motion (particularly, dotted curve), that is due to the transient response of the floating body and 

should be suppressed. One may also find that that this type of oscillation disappears after long - 

period calculation by damping of the sway motion. The larger the maximum displacement, the 

slower the oscillations disappear. The maximum sway displacement can be used to assess the 

CPU time required to reach steady state. In the investigation for the choice of a, the maximum 

sway displacements in cases with different values of a are calculated and the results are plotted 
in Fig. 8.2.3. 
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Fig. 8.2.3 Maximum displacement in cases with different a 

(u7= 0.25 and Td= L. /Cg) 

From this figure, it is seen that the maximum sway displacement decrease with the increase 

of a. The rate of decrease is large when a <0.1, but slows down when a >0.1. Particularly 

when a >0.4, the maximum displacements are almost the same as for a =0.4 and a =0.6 As a 

result of this investigation, a is best taken as O. S. Although this technique may be used alone, 

we will only discuss numerical results obtained by combining it with the Ramp2. 

To show the effectiveness of the combined method, the two cases for the Ramp2 with 

rc = 0.25 and x=0.5 in Fig. 8.2.2 are considered again but in the first case, both the Ramp2 with 

K=0.25 and the artificial damping technique with a=0.5 are applied. Fig. 8.2.4 gives the 

results, in which the dashed line denotes the result from the combined method while the solid 
line represents the result obtained by only using the Ramp2 with x=0.5 . It is interesting to see 

that the response by the combined method using K=0.25 becomes steady at about r= 60 , 
approximately two wave periods earlier than that by the Ramp2 alone with K=0.5, which is 

steady at about r= 65 . However, as shown in Fig. 8.2.2, the response corresponding 
to K=0.25 becomes steady much later than that to x=0.5 when using the Ramp2 alone. This 

indicates that the combined method is more effective in suppressing the transient response. 
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Fig. 8.2.4 Sway motion by using artificial damping technique 
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Apart from these given above, the hydrodynamic forces acting on the body obtained by 

using different ramp functions and/or the artificial damping technique are also investigated. The 

results are plotted in Fig. 8.2.5. It shows that no matter which method is used, the hydrodynamic 

force acting on floating body tends to the same steady-state limit. This result indirectly 

indicates that the wavemaker ramp function and artificial damping technique do not affect the 

RAOs. This implies, the ramp function together with artificial damping technique can get the 

actual RAOs using less CPU time. Therefore, the highest computational efficiency may be 

obtained. 
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Fig. 8.2.5 Hydrodynamic force in cases with different ramp functions 

8.2.2. Convergence properties of the ISITIMFB 

One of developments in this work is the suggestion of the ISITIMFB procedure to find the 

forces and the motions of the floating body. Its convergence properties, i. e. the iteration count 

to achieve a specified accuracy, are presented and discussed in this subsection for the following 

case: the barge is similar to the one described at the beginning of Section 8.2; the length of the 

numerical tank is taken as L 13 with Lw 8; and the dimensionless incident wave height 

generated is about 0.018 and the frequency parameter is ý=0.4. Similar to above cases, the 

mesh used is unstructured with about 35 elements on the free surface in each wavelength. As 

has been discussed in Chapter 6, the two most important factors affecting the iteration count are 

the time step and the natural period (frequency) of the system. Thus we mainly look at the 

convergence properties by changing the time step and the natural period in the following. 

The results for different time steps are presented by three curves in Fig 8.2.6 (a), which 

correspond to three specified relative errors: 0.1%, 0.5% and 1%. In the figure, there are two 

rows of numbers under the horizontal axis. The first row represents the number of time steps in 

each wave period and the second row gives the length of the time step, i. e. the period divided by 

the number in the first row. In these cases, the mass of the floating body is the same as before, 

i. e. 125 kg. Under this condition, the value ofd based on the natural frequency is about 0.5 

0.6 as shown by the experimental data in Nojiri & Murayama (1975). One may observe from 

this Figure that the iteration count for a specified error decreases with the increase in the number 

of time steps in each period as expected. One may also observe that the convergence can be 
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achieved within 10 iterations when the control error is 1% and the number of time steps in each 

period is larger than 64; and that reducing the control errors leads to a slight increase in iteration 

number. It should be noted that the wave frequency is near the natural frequency in these cases. 
For other cases (not presented) where the wave frequencies are much larger than the natural 
frequency, the convergence properties are better than those shown here. 
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Fig. 8.2.6 Iteration counts for different time steps and different masses 

(err: the control iterative error) 

The results corresponding to the different natural frequencies at three different control 

errors are depicted in Fig. 8.2.6b, which are obtained by artificially changing the mass in the 

range of 0.1mo 5mS 100mo (m0: the mass for Fig. 8.2.6a) without changing the mooring 

stiffness and the shapes of the floating body (i. e., the restoring coefficient being roughly fixed). 
Under this condition, the square of the natural frequency should be inversely proportional to the 
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mass; and on this basis, the iteration count is plotted against the ratio of the mass to mo rather 
than the frequency in the figure. The time step is taken as T/128 and all other parameters are 
the same as those in Fig. 8.2.6 (a). The results in Fig 8.2.6b indicate that the iteration count 

varies with the change in mass or natural frequency but only in a small range for a large range 

of change in mass. Similar to Fig. 8.2.6a, the difference in the iteration count does not change 
dramatically when the control error changes from 0.1% to 1%. In addition, the iteration count is 

smaller than 10 over the range of mass investigated when the control error is 1%. 
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Fig. 8.2.7 Comparison of roll histories for different control errors (dt =T/ 64 ) 

Another point that needs to be discussed is how the control error in the ISITIMFB 

procedure affects the computed responses. Fig. 8.2.7 shows the comparison of roll motions 

obtained by using two different control errors for the cases of dt = T/64 in Fig. 8.2.6. It can be 

seen that the difference between the results is negligible. Therefore, one may consider the 

control error of 1% is acceptable in engineering practice but it is recommended that the 

computed results are compared with those by using a smaller control error such as 0.5%, which 
is followed when acquiring the numerical results in the thesis. 

8.2.3. Comparison with other force calculation methods 

In this subsection, the ISITIMFB procedure is firstly compared with a fully explicit method 

obtained by replacing Eq. (6.1.1) with an explicit Adams-Bashforth scheme (see, William Gear 

C, 1971), 

Cjb '(k) = 
Üb-1 + 

2t (3Äb-I _ 
An-2ý. (8.2.1) 

For the fully explicit method, the iteration is not needed. The time step is taken as T/200 and 
T/64; and other parameters are the same as those used in Fig. 8.2.7. The results are plotted in Fig. 
8.2.8. From Fig. 8.2.8 (a), it is observed that the ISITIMFB leads to similar results to the fully 

explicit integration procedure when the time step is small (T/200). However, when the time step 
becomes larger (T/64), the results from the ISITIMFB have negligible difference from those for 

smaller time steps while the results from the fully explicit integration procedure pose evident 
disagreement with those using smaller time step (Fig. 8.2.8 (b)). This indicates that the 
ISITIMFB proposed in this thesis can give more accurate results at the same time step or can 

170 



use larger time steps for specified accuracy and so needs less CPU time for a given period of 

simulation than the explicit method. 
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Fig. 8.2.8 Comparison of roll motions from the ISITIMFB and explicit procedures 

Secondly, to demonstrate the behaviour of the ISITIMFB, its results are compared with 

those from fully-updated and frozen-coefficient O-order Runge-Kutta schemes (Koo & Kim, 

2004) and shown in Fig. 8.2.9, using the same parameters except for the wave height and the 

time step as for Fig. 8.2.8. To consider the same case as in Koo& Kim (2004), the 

dimensionless incident wave height of 0.0025 and the time step At =T/ 40 are used here. 
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Fig. 8.2.9 Comparison of roll motions from ISITIMFB and other methods 

(Frozen-coefficient scheme: At =T/ 128; ISITIMFB and Fully updated Runge-Kutta 

method: At= T/ 40 ) 

As can be seen, the presented procedure leads to steady-state results that agree well with 

those from the full-updated Runge-Kutta method while the frozen-coefficient Runge-Kutta 

scheme does not give similar results even when the time step is as small as T/128. The results 
for the frozen-coefficient Runge-Kutta scheme also tend to be unstable as indicated by Koo & 

Kim (2004). This clearly demonstrates that the ISITIMFB can alleviate the instability problem 
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of the frozen-coefficient method and can be as accurate and robust as the full-updated Runge- 

Kutta method but without the need of multiple updating of fluid domain geometries and so of 

the coefficient matrix in one time step forward. 

8.2.4. RAOs of sway, heave and roll motions 

To further validate the QALE-FEM method in the cases with a floating body, the RAOs of 

sway, heave and roll motions of the barge are compared with the linear solution from frequency 

domain analysis as given in Koo & Kim (2004), Maruo (1960) and the experimental data in 

Nojiri & Murayama (1975). In the numerical simulations, Ramp2 together with the artificial 
damping technique is employed, for which the associated parameters are taken as K=0.25, 

Td = LW / Cg and a=0.5; as in above sections, the unstructured mesh is adopted with about 

30 elements on the free surface in each wavelength and the time step is taken as At =T/ 128. 

For all cases considered here, the amplitudes of the wavemaker are adjusted properly so that 

generated incident wave heights are either 0.0im or 0.07m, which are the same as those in the 

cited publications. 
The RAOs of sway, heave and roll motions corresponding to different incident waves are 

plotted in Fig. 8.2.10 together with the results from other publications. They are estimated by 

performing the FFT analysis on the steady-state portion of the time histories of corresponding 

motions. As can been seen, the present numerical results are closer to the linear solution when 

the incident waves are small (0.01m) but closer to the experimental data when the wave height 

becomes larger (0.07m). This is reasonable because the experimental data for the larger wave 
height contain nonlinear effects that are taken into account by the nonlinear numerical 

simulations but not by the linear solution. 

0.9 

0.6 

0.2 

1.4 RA0 
L}neat(Fmqusncy)(20) 

1.2 O Experimental Data(7cm) 

0 Pmsent (Icm) 

1.0 
  Pmsent(7cm) 

0.4 ý It 
is 

". 

  

0.0 
0.0 0. S 4 1.0 1.5 

Fig. 8.2.10 (a) RAO of sway motion 
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Fig. 8.2.10 RAOs of sway, heave and roll as a function of 

However, the difference between experimental data and numerical results is obvious in the 

area near resonance frequencies. That may be due to the fact the viscosity is not considered in 

numerical simulations whereas it is inevitable in experiments. To demonstrate that the 

conjecture might be true, an empirical damping force is added into the roll equation, which is 

formed by a damping coefficient multiplying the roll velocity. The value of the damping 

coefficient is taken as 1.5% or 2.8% of the critical damping coefficient in two different 

simulations. It should be noted that the empirical damping added here plays different rules and 
is for different purposes from the artificial damping discussed above. The empirical damping 

here is applied from the start to the end of simulations to approximate the real viscosity and so 

affects the amplitudes and RAOs even after the motions become steady. The artificial damping 

discussed in Section 8.2.1 is applied in a specified simulation period from the start in order to 
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suppress the transient responses and does not affect the amplitudes and RAOs after motions 
become steady. 
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Fig. 8.2.11 RAO of roll motion in cases with roll artificial damping 

The RAOs of the roll motion near the resonant frequency obtained by using different 

empirical damping for the same cases in Fig. 8.2.10 are shown in Fig. 8.2.11 together also with 
the linear solution and the experiment data. It can be seen that when the empirical roll damping 

is 2.8% of the critical damping, our numerical results agree quite well with the experimental 
data in the resonant area in this case. One may envisage, therefore, that with an appropriate 

empirical roll damping, our numerical method can give satisfactory result even when viscosity 
is important. 
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The empirical roll damping not only affects the roll motion, but also affects the sway and 

heave motion. The corresponding RAOs of sway and heave motion of the case in Fig. 8.2.11 are 

shown in Fig. 8.2.12. This is reasonable, because every mode of the motion is dependent on the 

other. To show further effect on the motion history caused by additional artificial roll damping, 

one example of body-motion history is plotted as Fig. 8.2.13. It is observed that the roll motion 

is decreased by artificial damping which also changes the RAOs of sway motion composition, 

whereas the heave motion seems not to change. 

60 

Fig. 8.2.13 (a)sway 

-0 

30 40 60 60 

Fig. 8.2.13(b)heave 

Fig. 8.2.13(c) roll 
Fig. 8.2.13 Simulated floating body motions in cases with different artificial roll damping 

(4 = 0.4 ; solid line: 2.8% critical roll damping; dash line: 0% critical roll damping) 

The cases in Figs. 8.2.11 and 8.2.12 are also simulated using different meshes, different 

iterative control errors and different time steps. Some results are shown in Fig. 8.2.14, from 

which one can see that the difference between them is very small. This implies that the 

numerical errors due to selecting different mesh sizes, time steps and iterative control errors are 

negligible for the results in these two figures. 
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Fig. 8.2.14 Roll motion in terms of different time steps, iterative control error and meshes 
(ý = 0.5, the wave height is 0.07m) 

8.2.5. Transient responses of floating bodies 

So far, discussions on responses of floating bodies to waves have been focused on the RAOs 

and how to calculate them in a more efficient way. In this section, some results are presented 
for transient responses of floating bodies, which are also used to show the nature of nonlinear 
interaction between floating bodies and waves. For the cases considered in this section, the tank 

length is L=10 with L,, =S and the frequency parameter is ý=0.65 that is near the resonant value 

as seen in Fig. 8.2.10. The generated wave heights are about 7cm. In these applications, 
Rampl (Eq. 8.2.1-3) is used to govern the motion of wave-maker. For the purpose of validation, 

the results are firstly compared with those from the same case in which Ramp2 is used. This is 

similar to Fig. 8.2.4 but the incident waves here are much steeper than that in Fig. 8.2.4. The 

result is shown in Fig. 8.2.15. It can be observed that that no matter which ramp function, 

Rampl or Ramp2, is used, the force and moment acting on body tend to the same results except 
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for the region where the wave-maker ramping function still affects the incident waves (i. e. the 

first four periods in Fig. 8.2.15). This result indirectly indicates that the RAOs simulated by 

using Rampl are the same as when Ramp2 is used. It is also observed that the force and 

moment acting on the floating body has evident nonlinearity. 
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Fig. 8.2.15 Force and moment acting on the floating body according to different wave-maker 

ramp function (ý = 0.65, wave height is taken as 7cm. solid: Rampl; Dash: Ramp2) 

The wave elevations and body responses are shown in Fig. 8.2.16, which illustrates how the 

body responds to the transient waves. One may see that the body motion, particularly the roll 

angle in this case, is dramatically larger when the front part of the wave trains just reaches the 

body than those in other instances and so larger than those predicted by using RAOs (see 

Fig. 8.2.16 c, e). 
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Fig. 8.2.16 Wave elevation and body motion (ý = 0.65, the wave height is about 7cm) 

It is clearer in Fig. 8.2.17, where the roll time history is plotted. This implies that the transient 

responses rather than RAOs should be considered in design in order to check if a floating body 

is safe when it is subjected to transient waves. 

e wvvým 
S 20 25 30 35 s 40 45 50 55 

Fig. 8.2.17 Time history of roll for the wave height of 7cm and ý=0.65 

To show the effect on wave elevation due to the motion of floating body, the wave run-up 

recorded at the water line of the floating body is plotted as Fig. 8.2.18. It can be observed that 

the wave run-up in the lee side of the floating body becomes much smaller than incident wave. 
This mainly be because that the incident wave is reflected by the floating body and make the 

waves to the tee side of the body become smaller. It is also found that the wave run-up recorded 
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at both sides of the body seem to be combined by various components of waves and therefore 

show evident characteristic of nonlinear waves. 

16 20 28 30 35 40 

Fig. 8.2.18 wave run-up recorded at waterline 

(ý = 0.65, actual wave height is taken as 7cm. solid line: front side; dot line: lee side) 

To further show the nonlinearity involved in this case, the sway force and roll moment acting 

on the floating body is plotted in Fig. 8.2.19. Similar to Fig. 8.1.15, it can be observed that all the 

curves are quite complex. For the sway force, the curve in one wave period is not symmetric 

about the apex point in that period. For the roll moment, the curve exhibits sharper high crests 

and flatter and shallower troughs. All are features of nonlinearity. 
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Fig. 8.2.19 Force and moment acting on the floating body 

(ý = 0.65, the wave height is about 7cm) 

8.2.6. The effect of sand bars on transient responses of floating bodies 

The QALE-FEM method is then applied to the case with a floating body and periodic bars 

on the seabed. In this case, the incident wave height is 7cm and the frequency parameter 

ofd = 0.65,3 sinusoidal bars are mounted in front side of the floating body whose amplitude 

(ab) and wavelength (Ab =1) are taken as 0.5 and I respectively. The force acting on the 

floating bodies is plotted as Fig. 8.2.20. For the purpose of comparison, the results from the case 

without bars are also plotted. It can be observed that the sway forces in these two cases are 
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different. This change is because of the reflection by the sand bars on the seabed. Because the 

floating body is located in the lee side of the bar patches, the wave is reduced by the bars as 
discussed in Section 7.4. The force acting on the floating body is therefore reduced. 

0.1 wlhout b 
with bars 

0 
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Fig. 8.2.20 Comparison of sway forces acting on the floating body with and without 

sandbars (ý = 0.65, the wave height is about 7cm) 
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Fig. 8.2.21 (d) x'33.09 
Fig. 8.2.21 wave elevation and body motion (ý = 0.65, wave height is about 7cm, the bar patch 

is located from -3-0, ab=0.5, Ab =1) 

To further show the wave elevations and body responses, some snapshots are shown in Fig. 

8.2.21, which illustrates how the body responds to the transient waves. As the wavelength of the 

incident wave is short in this case, the effect from the bars is not very evident. When the 

wavelength becomes close to Bragg resonance condition, the reflection caused by bars might 
becomes more evident. 

In order to demonstrate this, the test cases involving 10 sand bars with add= 0.16 on the sea 
bed are carried in a tank with length is 68. The bar patch is located from -16 to 16 with the 

centre being located at x=0. The wave maker is mounted at x= -44.2k/kb in this case is equal to 

1 in which the Bragg resonance happens. The amplitude and the frequency of the wave maker 

are taken as 0.1 and 0.86026, respectively. The floating body in this case is the same as that 

used in Fig. 8.2.20. The initial positions of the floating body are located at x= -18 (before the 

sand bar, named as ̀ Case 1'), x=0 (in the middle of sandbar patch, named as 'Case2') and x=18 
(after sandbar patch, named as ̀ Case 3'). For the sake of comparison, the case without sand bars 

is carried out. The floating body in this case is located at x=0 and wave maker is mounted at x= - 
26. This case is named ̀ Case0' in the following investigation. The time histories of the motion 
in these cases are shown in Figs. 8.2.22 -8.2.24. For the purpose of comparison, the results from 

`Case 0' are also plotted together. 

Fig. 8.2.22 shows the response of the floating body located at the front of the bar patch. It 

can be seen that all the motion modes become larger by the reflection from the sandbars. It also 
found that the phase of the motion is also changed by the sandbars. Fig. 8.2.23 shows the 

response of the floating body located in the middle of the bar patch. It is observed that the sway 

motion is reduced since the incident wave is reflected by the bar patch. However, the amplitude 

of the heave motion seems not change dramatically, but the phase is changed by the reflected 

waves. The sandbar also affects the roll motion and makes the roll more complicated than the 

one without bar patch. The response of the floating body located at the lee side of the bar patch 
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is plotted as Fig. 8.2.24. It is observed that all the three motion modes seem be reduced by the 

reflection of the bar patch. 
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Fig. 8.2.22 Time histories of motions in `Casel' 

(solid: floating body located in the front of the bar patch; dot: without sand bar) 
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Fig. 8.2.23 Time histories of motions in `Case2' 

(solid: floating body located in the middle of the bar patch; dot: without bar) 
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Fig. 8.2.24 time histories of motions in `Case3' 

(solid: floating body located at the lee of the bar patch; dot: without bar) 

8.3. Mesh quality around the floating body 
In the QALE-FEM method, the unstructured mesh is moved according to the motion of the 

boundaries. In order to satisfy the requirement of the FEM solver, the mesh must of high quality 

throughout simulation. As indicated in Chapter 7, without floating bodies, the mesh quality can 

be retained. With the inclusion of floating bodes, their motions, particularly large angular 

motions, can make the mesh near body surfaces undergo large variations and so it is necessary 

to check if the methodology for moving meshes in the QALRE-FEM could also produce good 
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quality of meshes in these cases. Some illustrations have been given for the cases with forced 

motions in Figs. 8.1.6 and 8.1.7 
. 

Apart from these, extensive investigations have also been made 

for the cases associated with free-response floating bodies during the development of' the 

method. Two cases will be presented in this section to demonstrate the effectiveness of' tile 

method in producing good meshes at all time steps. 

In the first case, the same floating body described in Section 8.2 is used, which is subjected 

to a wave of height 7cm with frequency parameters = 0.65 in a tank of' 1.10. This case is 

run on a PC (Pentium IV 2.53GHz processor, IG RAM). The fluid domain is discretised into 

about 129,732 elements and 28,725 nodes. 

Figs. 8.3.1-3 presents the mesh at different instances, where the lower column illustrates 

the enlarged mesh in the vicinity of the body surface. Fig. 8.3. I depicts the initial unstructured 

mesh while Fig. 8.3.2 and Fig. 8.3.3 show the meshes in the same area but after quite long time 

simulation. These figures demonstrate that the original refinement and distribution are 

maintained well and all the elements retain satisfactory shape during the simulation. In addition, 

negative elements, which are of concern when using the linear spring analogy method, do not 

appear. On the other hand, the CPU time spent on moving the mesh at each time step is on 

average about Is, including 0.01 Is for moving mesh on the body surface, approximately the same 

as the CPU time spent on sandbar problems in Chapter 7. The ('PU time spent on all 

calculations in one step is about 5s on average. It indicates that the method used to move mesh 

in the QALF, -FEIM in cases with floating bodies is as efficient as in cases without floating 

bodies. It also indicates that useful results for a problem like these may be obtained in several 

hours by using a normal PC. 
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Fig. 8.3.2 Mesh at Tz39.6 in the case with a floating body 

(Top: mesh around body; Down: enlarged mesh) 
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Fig. 8.3.3 Mesh at z43.1 I in the case with a floating body 

(Top: mesh around body; Down: enlarged mesh) 

IHic second case involves a floating body on the free surtäce and the sandbars on the sea bed. 

Compared to the above case, the complexity of the problem in this case is higher. 'Similar to 

those in Section 8.2.6, the floating body is located in three different positions as shown in Figs. 

8.2.21-8.2.23. The incident wave is taken as 11 = 0.65 and wave height is about 7cm. The 

meshes in different instances after long time simulation are shown in Fig. 8.3.4 flor the floating 

body in front of the bar patch, Fig 8.3.5 Im that in the middle of'the har patch and Fig. 8.3.6 für 

that in the lee side of the bar patch. All the meshes used here are unstructured with about 

200,000 elements and 45,000 nodes. For the purpose of describing the wave profiles at the 

corresponding time steps, the free surface and the position of' the floating body are all plotted 

together. 
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Fig. 8.3.4 Meshes and wave profiles at different time steps 

(the floating body located in front of the bar patch) 
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Fig. 8.3.5 Meshes and wave profiles at different time steps 
(the floating body located in the middle of the bar patch) 
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Fig. 8.3.6 Meshes and wave profiles at different time steps 

(the floating body located at the lee side of the bar patch) 

From these figures, it is observed that the qualities of the meshes after long-period calculation 

are still retained. The CPU time spent on the mesh moving scheme in those cases is all less than 

Is per time step. This implies the new-developed spring analogy method can efficiently update 

the computational mesh during a long time-period calculation for a 2D interaction between the 

floating body and the water waves. 

8.4. Computational efficiency of ISITIMFB procedure 
For cases with floating bodies, the ISITIMFB procedure for calculating forces has been 

developed in this thesis. The accuracy and stability of the procedure have been investigated in 

Section 7.2.2. In this section, the efficiency of the procedure is discussed by comparing it with 

mode-decomposition method with the 4th-order Runge-Kutta method as the time integration 

scheme. In the latter method, the motion is decomposed into 4 modes in 2D cases to find the 

solution for the potential derivatives (äo / at) by solving 4 different boundary value problems 

in addition to one for the velocity potential (0 ). Thus, a total of 5 different boundary value 

problems must be dealt with for one sub-step and therefore total 20 different boundary value 

problems for calculating 0 and öq$ / at need to be solved in one time step forward. In addition, 

187 



updating of the coefficient matrix is necessary to achieve stable solution as discussed in Section 

8.2. 

On the other hand, when using the ISITIMFB, the number of iterations in one step lorward 

is on average 7 for the case in Fig. 8.1.1 by using the control error of P! /0 ill the procedure and 

so about 15 boundary value problems need to be solved without the necessity of' updating the 

coefficient matrix. Therefore, for this case, the CPU time required by the ISI'I'IMI"B is less than 

75% of that required by the mode-decomposition method. Although the ('I'E1 time used by the 

ISITIMFB is problem-dependent, it is more efficient as long as the number of iterations in the 

ISITIMFB is less than 10; this may not be exceeded in many cases unless choosing a control 

error and a time step that are unnecessary small, as indicated in Section 8.2 In addition, if the 

mode-decomposition method with the 4th-order Runge-Kutta scheme is used in the present 

QALE-FEM method, the calculation of velocities on the free surface with unstructured meshes 

must he performed five times in one time step forward, which likely requires considerable more 

CPU time. Consequently, the ISITIMFB is a procedure that is efficient and is best matched 

with the QALE-FEM method. 
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9. FREE-RESPONSE. OF 3D MOOREI) FLOATING ti'1'Itll("1'lýlti' S 1'O ti'l'l? F; P 
WAVES 

In this section, the QALE-FEM method is used to simulate the nonlinear interaction between 

3D floating bodies and steep waves. A sketch of this problem is shown as I iß,. 3.0.1. 'T'hree types 

of floating bodies are considered in this chapter, i. e. SPAR, barge-type Iloating bodies and 

Wigley [lull ships. Some of the results are validated through comparison with analytical 

solutions and published results. Unless mentioned otherwise, all parameters with a length scale 

are nondimensionalised by the water depth il and other parameters by 

->r d/g and (O -->wj 
7. 

(9.0.1 
As in previous cases, the initial mesh is unstructured. An example of the mesh near the body 

surface is shown as Fig. 9.0.1. 

2 

-1 -1.5 

Fig. 9.0. I The initial mesh near the 3D floating body 

9.1. Free response of a moored SPARs to monochromatic waves and bichromatic waves 
The spar platform is basically a large floating vertical cylindrical structure which may he 

moored by mooring lines. A sketch of this problem is shown in I. 1. The advantages of this 

type of floating structure for oil and gas production operations is that a SPAR is more 

economically efficient than a bed mounted structure. Due to this fact, the nonlinear interaction 

between the moored spar platforms and water waves has attracted much interest recently. A 

detail review can he found in Ma & Patel (2001). 
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Fig. 9.1.1 Sketch of a moored spar platform 

Two experimental studies are reported by Weggel et al (1997) and Carpenter, Leonard & Yim 

(1995). Many researchers also numerically studied this problem by using both frequency 

domain and time domain approaches (Ma & Patel, 2001). For example, Weggel et at (1997) 

presented a frequency domain technique and gave the statistical parameters of the spar 

response at relatively low computational cost. However, this technique is based on the 

assumption that the wave is very small, and therefore may be subject to large errors when 
dealing with the large incident waves and large motion of the spars. Alternatively, the 

response of the spar platform may be calculated in the time domain through finding the wave 
forces evaluated using slender body theory (see, for example, Rainey, 1989; Kim & Chen, 

1994; Ran, Kim & Zheng, 1998). In this approach, the body is assumed ̀thin' and the force is 

obtained by the sum of the force per unit length on each short segment of the slender body 

ignoring the effects of structures on waves. Ma & Patel (2001) also employed this method but 

consider nonlinear forces which were neglected before. Their results are compared with the 

experimental studies by Weggel et at (1997). However, to author's knowledge, the fully 

nonlinear model for the free response of the SPARS is still rare in the publications, 
In this section, the QALE-FEM method is used to simulate the free response of a moored 

spar to monochromatic waves and bichromatic waves. The dimensional parameters of the spar 

platform for this study are shown in Table. 9.1.1. The mooring line in this simulation is 

considered as a nonlinear spring with its stiffness taken as 19lkN/m up to an offset of 13.7m 

and 398kN/m at offsets larger than this. 
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Table 9.1.1 Principal particulars of the spar platform 

Diameter (2Ro) 40.5m 

Initial draft (D, ) 198.2m 

Mass 2.6x108 kg 

Radius of gyration (pitch and roll) 62.33m 

Centre of gravity from keel 92.4m 

Fairleads from keel 92.6m 

Density of water 1025kg/m 

Water depth 900m 

9.1.1. Comparison with experimental data 

In these cases, the waves are generated by a wave maker. The motion of the wave maker is 

governed by Eqs. (8.2.1) - (8.2.3) for monochromatic waves and the following equations for 

bichromatic waves, 
Sx, (T) 

= -a, cos(CO1r)- a2 cos(w2r) 

U,, (r) = altos sin(wlz)+ a2ao2 sin(a 2r) 

(9.1.1) 

(9.1.2) 

ü,, (z)= [a, 
a 2i cos(r), z)+azaa22 cos(w2z)k1-e, 6`) (9.1.3) 

The numerical results will be compared with the experimental results by Weggel et al (1997). 

The transient responses of the spar platform are investigated as in their work. The cases are run 

in a numerical tank with L=8, B=1. The mesh is unstructured with mesh size on the free 

surface is given by Ax = Ay -- A/ 30 (roughly 30 nodes in a wavelength). The time step is 

taken as T/128. 
It should be noted that in such deep water (900m), the nondimensionalised diameter of the 

spar platform is very small (0.045). There are two associated problems. The first one is that the 

mass of a small body results in a larger iteration count for the ISITIMFB procedure as 

indicated in Section 8.2.2. The second one is that the mesh near the body surface should be 

very fine to ensure there are enough nodes on the body surface. Both can reduce the 

computational efficiency. To overcome these problems, the water depth used to 

nondimensionalise the physical quantities is shortened to 300m. This is based on the 

assumption that the effect on the response of the floating body from the seabed is negligible 
when the water depth is large enough, say, larger than one wave length. To ensure this 

assumption is acceptable, several cases with deeper water are also considered. The results will 
be discussed in Section 9.1.2. 

191 



The first case presented here is for the response of the spar to an incident monochromatic 

wave with the dimensional wave height being 6m and the dimensional period being 14s. The 

pitch of spar subjected to the monochromatic wave is shown as Fig 9.1.2. For the purpose of 

comparison, the experimental results which are duplicated from Weggel, Roesset & Davies, et 

al (1997), are also plotted together. From this figure, it is observed that the numerical results 
in this case are close to the experimental data. 
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Fig. 9.1.2 Comparison with experimental results for pitch of spar subjected to 

monochromatic waves (experimental results are duplicated from Weggel et al, 1997) 

Another case is for the spar subjected to bichromatic waves with dimensional periods and 

amplitudes being (16s, 17.5s) and (6m, 6m), respectively. The pitch of the spar is shown in 

Fig. 9.1.3. It is also found the numerical results agree satisfactorily with the experimental data. 
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Fig. 9.1.3 Comparison with experimental results for pitch of spar subjected to bichromatic 

waves (experimental results are duplicated from Weggel et at , 1997) 

9.1.2. Effect of the water depth 

As mentioned above, the water depth used to nondimensionalise the physical quantities is 

shortened to 300m. To investigate the effect of this treatment, the case with the water depth of 
400m is also carried out. The results are shown in Fig 9.1.4 for monochromatic waves and Fig. 

9.1.5 for bichromatic waves and compared with those in Fig. 9.1.2 and 9.1.3, respectively. 
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These two figures show that there are no obvious differences between the results with 

different water depths. This implies that the effect from the seabed is indeed negligible in the 

above cases and the treatment, i. e. using shortened water depth, is therefore acceptable. 

9.1.3. Effect of the width of tanks 

In a 3D case, the reflection from the y=const wall (side vertical walls of the tank) should be 

removed. One may also use Sommerfeld condition with damping zone techniques to ease the 

reflection. However, in this application, the simplest way, using a larger domain, is employed. 
Though the numerical results showed in Fig. 9.1.2 and Fig. 9.1.3 show high consistency with 

the experimental data, it is necessary to investigate the effects of these walls. Because the 

width of the experimental tank is not mentioned in Weggel et al (1997), these effects are 

numerically studied by using different width of the tank. 

For this purpose, the same cases in Fig. 9.1.2 and Fig. 9.1.3 are investigated in a wider tank 

(B=2). The resultant surge and pitch history are plotted in Fig 9.1.6 and Fig. 9.1.7. 
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Fig. 9.1.7 Comparison of pitch of spar subjected to a 
bichromatic wave in tanks with different widths 

It is observed that the difference is very small. Therefore, the tank used in this application is 

considered as wide enough. The width of the tank used in Fig. 9.1.2 and Fig. 9.1.3 is about 10 

times of the radius of the floating body. In the following investigations, similar principle is used. 
For cases with different floating bodies, more investigation may be made. 

9.2. Convergence properties investigation 
Similar to 2D cases, investigations on the convergence property of the QALE-FEM in 3D 

cases are also carried out. The case in Fig. 9.1.5 is used here. Two main factors, the time step 
and the mesh size, are considered in this investigation. The cases are defined in Table 9.2.1. The 

pitch histories of the spar platform for those cases are compared. 

Table 9.2.1 Test cases in convergence property investigation 

Case No. Mesh size on the free surface Time step 

Cl Ax=Ay s: v A/30 T/200 

C2 Ax=AyA/30 T/128 

C3 Ax = Ay A130 T164 

D1 Lex=AymA/20 T/128 

D2 &=AymA140 T/128 
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Fig. 9.2.1 shows the pitch histories for the cases with different time steps. The mean mesh 

size on the free surface is taken as Ax = Ay A/ 30 and the time steps are given by T/200 (C 1), 

T/128 (C2) and T/64 (C3), respectively. 
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Fig. 9.2.1 Pitch histories in cases with different time steps 

From this figure, it is observed that the difference between the result of case (Cl) with time 

step being T/128 and that of case (C2) with time step being T/200 is negligible. But, the result 
for the case with time step of T/64 is slightly different from the results of other two cases. 
However, there is no evident difference between the case with time step of T/64 and that with 
time step of T/200, as concluded in the convergence studies for 2D cases in Section 8.2.2. This 
implies the 3D cases require relatively smaller time step than 2D cases to get a convergent result. 
This is reasonable because the interaction between the waves and a 3D freely floating body 

makes the waves around the floating body become more complicated than that in a 2D case. The 

QALE-FEM method needs therefore smaller time step to achieve the same accuracy. Based on 
this, the time step in the 3D cases is taken as T/128 in this work. 

For studying the convergence properties with different mesh sizes, the time step is taken as 
T/128 and the mesh sizes are ranged from A/40 to A/2O 

. The pitch histories of the spar 

platform are plotted in Fig. 9.3.2. 
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Fig. 9.2.2 Pitch histories in cases with different mesh sizes 

It is observed that the difference between the results in cases with the mesh size of x%/30 

and A/40 is negligible. But the case with mesh size of . %/20 leads to slightly different results 
from other two. This implies that in the 3D case, the mesh size should be smaller than A/ 30. 
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This conclusion is the same as that arrived at in the 2D case. Thus, the mesh size in the 3D cases 

is taken as roughly A/ 30 in this work. 

Apart from convergence properties, the iteration counts of the ISITIMFB in these cases are 

also investigated. The results are plotted as Fig. 9.2.3. 
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Fig. 9.2.3 (a) different time steps (mesh size : %/30 ) 
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Fig. 9.2.3 (b) different mesh sizes (At = T/128) 

Fig. 9.2.3 Iteration counts in cases with different time steps and mesh sizes 

Fig. 9.2.3 (a) shows the iteration counts in the cases with different time steps while Fig. 9.2.3 

(b) illustrates the iteration counts in the case with different mesh sizes. It is observed from 

Fig. 9.2.3 (a) that the iteration count increases with increasing time step, i. e. about 6 for At= 

T/200 (case Cl), 8 for At= T/128 (case C2) and 11 for At= T/64 (Case C3). These results are 

similar to those for the 2D cases shown in Fig. 8.2.5 (a). Fig. 9.2.3 (b) demonstrates that the 

mesh sizes affect the iteration count slightly. In all these three cases, the iteration counts are 

close to 8. 

The iterative control error in the ISITIMFB used in the above simulations is taken as 0.5%. 

As discussed in Section 8.2.2, this value is appropriate in most of the 2D cases. To confirm that 

this value is still small enough in 3D cases, different control errors are used faro Case C2 
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(Ox = Ay --A/30, At=T/128). The pitch histories in the cases with different control errors are 

plotted as Fig. 9.2.4. 
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Fig. 9.2.4 Pitch histories in cases with different control errors of the ISIT1FMB 

It can be seen that the difference between them is negligible. Therefore, the 0.5% is also 

small enough even in 3D cases. This value of the control error will be adopted in all the cases 
described in this chapter. 

9.3. RAOs of surge, heave and pitch of a barge-type floating body 
Compared to the spar platform, the barge-type floating body is longer relative to its draft 

and therefore is closer to a real ship. The interaction between the waves and the floating barge- 

type body has attracted much attention. An important 3D experimental study has been done by 

Shashikala, Sundaravadivelu & Ganapathy (1997). In their study, the response of a barge 

elastically moored to a fixed support for regular and random waves in head sea condition is 

investigated. The influence of the location of the mooring point and the stiffness of the mooring 
line is also explored. In addition, they also proposed a FEM solution based on the assumptions 

that the motion of the floating barge as well as the incident waves is linear and the submerged 
body surface is taken as the initial body surface beneath the still water plane. Their linear 

numerical results are close to the experimental data. However, in the region where the frequency 

of the incident wave is close to the natural frequency, the difference between their numerical 

results and the experimental data is relatively large. One possible reason is that, in the case near 
the natural frequency, the nonlinearity associated with the wave-body system is strong and 

therefore the above assumptions are not true. In this section, the RAOs of sway, heave and roll 

motions of the 3D moored barge are modelled by the QALE-FEM method. The results are 

compared with the experimental data and the linear numerical results. The nonlinearity 

associated with the problem is also presented. The sketch of experimental set up in the above 

reference is shown in Fig 9.3.1 and the dimensional parameters associated with the floating 

barge are given in Table 9.3.1. 
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Fig. 9.3.1 Sketch of the interaction between a barge-type floating body and water waves 

Table 9.3.1 Details of the experiment on cases with barge-type bodies 

Water depth (d) 2.35m 

Length (Lb) 2m 

Breadth (Bb) 0.4m 

Draft (D, ) 0. Im 

Mass (Al) 80kg 

Volume (V) 0.08m3 

Center of gravity above hase (KG) 0.09m 

Longitudinal metacentric height (GMI) 3.2475m 

Transverse metrcentric height 0.09338m 
Mass moment of inertia about longitudinal axis 1.68kg"m 

Mass moment of inertia about transverse axis 38.17kg-M2 

Mass moment of inertia about vertical axis 38.31 kg"m 

Center of mass from water level 0.01 m 
Center of buoyancy from water level 0.05m 

Natural period in heave 0.902s 

Natural period in pitch 1. Os 

Stiffness of mooring lines ION/mm 

Mooring point from the centre of mass 80mm 

The response amplitude operator (RAO) was given in Shashikala et al. 's experiments by 

Surge RAO (m/m)=Surge amplitude/Wave amplitude 
Heave RAO (m/m)=Heave amplitude/Wave amplitude 
Pitch RAO (rad/m)=Pitch amplitude/Wave amplitude 
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In the numerical simulation, the RAOs are estimated by performing the FFT analysis on the 

steady-state portion of the time histories of corresponding motions. In order to get the steady. 

state solution in a shorter time, Ramp2 together with the artificial damping technique is 

employed, for which the associated parameters are taken as x=0.25 , Td = L. / C. and 

a=0.5, as in Section 8.2.4. 

All the cases considered here are carried out in a numerical tank with L=9,13=2. The 

computational mesh is unstructured with about 30 nodes on the free surface in each wave 
length. The wave are generated by the wavemaker located at x= -5 initially. The amplitudes of 

the wavemaker are adjusted properly so that generated incident wave steepness equals 0.02. 

The time step is taken as T/128. 
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Fig. 9.3.2 (c) Pitch RAO 

Fig. 9.3.2 Comparison of response of barge in regular waves 

The RAOs of surge, heave and pitch motions corresponding to different incident waves as a 

function of co* = w2Lb /2g are plotted in Fig. 9.3.2 together with the results from the 

references. From these figures, the present numerical results are closer to the experimental data 

than the linear numerical results by Shashikala, Sundaravadivelu & Ganapathy (1997). That is 

reasonable because the linear numerical model assumed both the waves and floating body 

motion are linear. 

It is found from Fig. 9.3.2 (a) that the peak RAO for surge is located at as * =2.2, about 1/6 

dimensionless natural frequency of surge (12.75). The RAO for pitch reaches peak value when 

w* is close to 2, about half of the natural frequency of pitch (co * =4.05). The heave response 

reduces to a very low value at co * equal to 3.0 and increase as 0) * further increases. however, 

the reason why the heave response is smallest when w* is close 3.0 still needs to be further 

studied. It is also observed that the difference between the linear solution and the experimental 
data is relatively large in this area. 

To show the nonlinearity, the surge force acting on the floating body in case with (v * =2.9 is 

plotted in Fig. 9.3.3. 

ý' 

Fig. 9.3.3 Surge force acting on the floating barge in case with w* =2.9 
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This figure shows the nonlinearity associated with the history of the surge force, i. e., the 

curve in one wave period is not symmetric about the apex point in that period. This may be the 

reason why the linear numerical solution shows large differences to the experimental data near 
that frequency area for the surge motion. The motion history of the floating body in this case is 

shown in Fig. 9.3.4. 
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Fig. 9.3.4 (c) pitch angle 
Fig. 9.3.4 Response of the floating barge in case with co * =2.9 

9.4. Response of a Wigley Hull to nonlinear waves and the effect of incident angles 
The QALE-FEM method is now applied to simulate the transient behaviour of the Wigley 

Hull due to a steep wave. The shape of the Wigley Hull used here can be described as 

77 =(1-52)(1--X2)(1+0.2 2)+S2(1-S8)(1`ý2)3 (9.4.1) 
in which 

ý= 2x/Lb, 1l = 2yl Bb, S = z/D, (9.4.2) 
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where Lb 
, 
B,,, D,. are the length, breadth and draft of' the Wigley I lull. c. 'uniparedl toi the 

floating barge, Wigley EfulI resembles a real ship more closely than a harp: -type Iloating hod\ 

and therefore is widely used in either experimental investigation or numerical simulation. (Qiu. 

2001 ). A sketch of the Wigley HuII is shown in Fig. 9.4.1. 

Fig. 9.4. I Wigley Hull and the mesh on its surface 

In order to investigate the nonlinearity associated with the wave-Wigley I lull system, waves 

with different amplitudes are used. Two factors which affect the response of the Wigley I lull 

to the incident waves are also investigated and discussed. 

The first one is the natural frequency of the Wigley dull. Different natural frequencies lead to 

different response of the floating bodies to the same incident waves. From the results of RA( )s 

shown in Section 8.2.4, it has been found that the ºnotion becomes relatively large and the 

resonance may occur when the frequency of the incident wave is close to the natural frequency. 

In order to investigate the effect of the natural frequency, Wigley Ilulls with different moment 

of inertias are used in this investigation. Another parameter which may affect the natural 
frequency of the floating body is the mooring line. Results obtained by Shashikala, 

Sundaravadivelu & Ganapathy (1997) have already indicated that the RAOs of the motion 

change as the spring stiffness changes. Naturally, different stiffness of the mooring line leads to 

different natural frequencies of the floating body. For example, the natural frequency on surge 

motion (co,,, 
4, 

) of the Wigley Hull with mooring lines can he roughly estimated in most rases 

by 

w= ý- (x). 4.1) 

where Al is summation of the mass and the added mass. Once the spring stillness is changed, 
is also changed. The effect of the mooring line will also investigated in Section'). -4. '. 
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Fig. 9.4.2 Sketch of the Wigley Hull with an incident angle 

The second factor is the incident angle of the Wigley Hull. The incident angle is the angle 
between the incident wave and the central vertical plane of the hull as shown in Fig. 9.4.2. A 

Wigley Hull in such a condition has 6 degrees of freedom and is therefore more difficult to 

simulate. Fully nonlinear simulations of this problem are still rare. One possible reason is the 

singularity problem associated with the sharp corner of the body surface. In Section 9.4.3, the 

effect of the incident angle is investigated. 

9.4.1. Response of the Wigley Hull to steep waves 

The nonlinear response of the Wigley Hull to waves with different steepness is investigated. 

In this case, a Wigley Hull with Lb=1.0, Bb=0.2, D, =0.15 is used. The dimensionless mass and 

the pitch moment of inertia are taken as 0.01677 and 0.035 respectively. The centre of gravity 
is located at 0.125 below the water level and the incident angle is taken as 0. Two linear 

springs are moored at both the head and the end of the Wigley Hull and located at z=1.0 (the 

water level) initially as shown in Fig. 9.4.2. The tank used in these cases has length of 12 and 

width of 2,10 times of the breadth of the hull. The waves are generated by a wave maker 
located at x= -7. For the purpose of investigating the transient response of the Wigley Hull, 

ramp function `Ramp 1' is used here. The mesh is unstructured and the mesh size on the free 

surface is roughly Ar A/ 30, Ay A/ 30. The motion of the wave maker is governed by 

Eqs. (8.2.1)- (8.2.3) with ao = 1.7691 , a=0.0041 and 0.025, respectively. The wave roughly 

equals to 2, two times the length of the Wigley Hull. The time step is T/128. The spring 

stiffness is taken as 0.005. In order to analysis the steady motion of the Wigley Hull, a 
damping coefficient of 0.005 in surge is applied to absorb transient motions. The response of 
the Wigley Hull due to different waves is plotted in Fig. 9,4.3. 
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Fig. 9.4.3 Response of the Wigley Hull to waves with different steepness (c) =1,7691) 

From this figure, it is observed from Fig. 9.4.3 (c) that there is long-period oscillation 

existing in the pitch motion. The period, roughly equals to 14.2, of this oscillation is almost 4 

times that of the incident wave. This period is almost equal to the natural frequency for the 

pitch motion of the hull and is therefore due to the transient effect. It is also found that the 

response of the Wigley Hull to the steeper wave (a=0.025) is slightly in advance of that to the 

linear wave (a=0.0041). That is because the steeper wave travels faster than the linear wave, as 
indicated in Section 7.1.1. To further show the nonlinearity involved in this case, the run-up 

recorded in the front and lee sides of the waterline in case with x=0.025 is shown in Fig. 9.4.4. 

Fig. 9.4.4 Wave run-up recorded at the waterline (a=0.025, ü =1.7691) 
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This figure clearly demonstrates that the wave run-up at the front side of the Wigley hull is 

larger than that at the lee side of the Wigley Hull. As seen, the wave profile contains nonlinear 

characteristic such as sharp crests and flat troughs. In addition, one may also find that the 

wave run-up on the front side seems roughly half a period in advance of that in the lee side. 
That is because the wave length of the incident wave is twice the length of the Wiglcy Hull. It 

takes about half a period for the wave to propagate from the front side to the lee side 
It should be noted that the reflection from the side walls, e. g. y=const wall, may affect the 

response of the hull. Before further investigations are made, the effect from the width of the 

tank is tested. The Wigley Hull used in this test is the same as that used in Fig. 9.4.3. The 

width of the tank is taken as 2 (equal to IOBb) and 3, respectively. The amplitude of the motion 

of the wavemaker is a=0.025. All other parameters in these cases are the same as those in Fig. 

9.4.3. Since the reflected waves from side walls need time before affecting the response, long- 

time simulation is required. In this investigation, 60T results are obtained. The response of the 

Wigley Hull for different widths of numerical tanks is plotted as Fig. 9.4.5. 
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Fig. 9.4.5 Response of the Wigley hull in cases with tanks of different widths 

(Co = 1.7691, a=0.025; k�, =0.005) 
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This figure clearly shows that the difference between the results obtained in wider and 

calculated narrower tanks is negligible, even after 40 periods of calculation (r > 142). This 

implies that the results for B=2 are acceptable. 

9.4.2. Different response for cases with different natural frequencies 

The effect of the natural frequency is then investigated. As mentioned above, there are two 

ways to change the natural frequency of the Wigley Hull. The first one is to change the mass or 

moment of inertia. To do so, a case with a different moment of inertia is run. The shape of the 
Wigley Hull is the same as that used in Fig. 9.4.3 but the moment of inertia is given as 
I,; =0.015. The natural frequency for the pitch motion in this case is roughly 7.0. All other 

parameters are the same as those used for Fig. 9.4.3. The response of the hull is shown in Fig. 

9.4.6. For the purpose of comparison, the corresponding result (Iy=0.035)is also plotted 
together. 
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Fig. 9.4.6 Response of the Wigley Hull in casse with different moments of inertia 

(w= 1.7691, a=0.03) 

It is found from this figure that the pitch motion for 1, F0.015 increases dramatically 

compared to that for I,, =0.035. This is because the natural frequency (roughly 1.0) for pitch of 
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the Wigley Hull in this case is much closer to the frequency of the incident wave than that in 

Fig. 9.4.3. It is also found that the response of pitch angle when r> 80 keeps increasing 

which indicates resonance behaviour. This also affects the surge because of coupling and 

makes it different from the one in Fig. 9.4.3. However, the heave motion seems to remain the 

same. 
Another factor, which affects the natural frequency of the Wigley Bull, is the effect of the 

mooring line. This is also investigated. In this investigation, the stiffness of the lines, which are 

attached at 0.1 below the water level, is 0.00025. The incident wave is generated by using 

w=1.7691 and a=0.03. All other parameters are the same as those used in Fig, 9.4.3. The 

time history of the motion of the Wigley Hull is shown in Fig. 9.4.7, which illustrates how the 

Wigley Hull responds to the transient waves. 
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Fig. 9.4.7 Response of the Wigley Hull due to a monochromatic wave 
(co = 1.7691 , a=0.03, the spring stiffness is taken as 0.00025 ) 

It is found that long-period oscillations exist in both surge and pitch motions. These 

oscillations are due to the transient effects. It is also found that such a long-period oscillation 
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in surge disappears with time goes because damping is added in surge motion, whereas this 

oscillation in pitch motion does not seem to disappear since the damping of this mode of 

motion is zero. One may also find from Fig. 9.4.7 that the transient effect may result in a larger 

motion than the steady-state wave. This conclusion is consistent with that in Section 8.2.5 and 

implies that the transient responses rather than RAOs may be considered in design. 

In order to further investigate the effect of mooring line on the response of the floating body, 

a case with stiffer mooring line is considered. The spring stiffness is 0.015, to, u,.. e 
is 1.33 and 

the other parameters are the same as in Fig. 9.4.6. The surge motion of the Wigley Bull is 

shown in Fig. 9.4.8. For the purpose of comparison, the results in Fig. 9.4.7, where cofa, , 
is 

roughly 0.18, are also plotted. 
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Fig. 9.4.8 Surge motion of the Wigley Hull with different stiffness of the mooring line 

(c) = 1.7691 , a=0,03 ) 

It can be seen from this figure that the amplitude of the steady surge motion (r > 120) in 

this case is larger than that shown in Fig. 9.4.7. That is because the frequency of the incident 

wave (1.7691) is closer to the natural frequency (1.33) in this case than that (0.18) shown in 

Fig. 9.4.6. The transient response (r < 60) of the Wigley Bull depends on the mooring line 

stiffness. It is also found that the mean positions of the surface motion in case with different 

different mooring line stiffness are different. In the case with a soft mooring line (k, �=0.00025) 
is about 1.5a from the initial position. However, the surge motion for stiffer mooring line 

(k, �=0.015) is almost centred at the initial position. The displacement of the mean position of 

the surge motion is due to the drift force, which is different in those two cases. In addition, in 

the case with k, �=0.015, the spring force is much larger than the drift force and therefore 

restricts the floating body motions to oscillations about the initial position. 

Results about heave and pitch motion are shown in Fig. 9.4.9. It is shown that the steady 

heave motions become smaller with an increase in spring stiffness. This is mainly because the 

incident wave frequencies in both cases are far from the natural frequency of the heave motion. 
In this situation, stronger stiffness restricts the motion as indicated by Shashikala, 

Sundaravadivelu & Ganapathy (1997). It is also found, from Fig. 9.4.9b, that the value of the 
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pitch motion in the case with stiffer mooring line (k=0.015) is larger than that for soft one 

(k, �=0.00025). Apart from the value, the profiles of the pitch motion for different mooring lines 

are also different. For the results for k, �=0.00025, the profile seems to be formed by 

superimposing two harmonic motions with different periods. One is the period of the incident 

wave and the other one is the natural period. However, those for k,,, =0.015 seems nonperiodic 

and combined by various components of motions. 
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Fig. 9.4.9 Response of the Wigley Hull with different stiffness of the mooring line 

(w =1.7691 , a=0.03) 

9.4.3. Effects of different incident angles 

The QALE-FEM method is now applied to investigate the effect of the incident angles on 

the response of the Wigley hull. In these cases the incident angles between the incident waves 

and the Wigley hull are taken from 0 to 30°. The Wigley Ilull used in this case is the same as 

that used in Fig. 9.4.3 and Fig. 9.4.4. The moments of inertia in roll, pitch and yaw motion are 

taken as Iz=0.035,1y 0.035,1= 0.1 respectively. 

In the above investigations, the width of the tank is taken as roughly 10 times the width of 
the floating body. The numerical tests have demonstrated that with such a choice of the width, 
the side wall reflection may be negligible. However, as the incident angle of the Wigley Hull 

increasesl, the projected hull area increases and so incident waves are scattered more 
significantly. Therefore, wider tanks may be required than in the case of zero incident angles. 
Tests are run to investigate the effect of tank width. In these tests, the incident angle of is taken 
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as 300. The widths of the tanks are chosen as B=2, B=3 and B=5, respectively. The responses 

of the Wigley Hulls simulated by using the numerical tanks with different widths are plotted as 
Fig. 9.4.10. 
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Fig. 9.4.10 (f) yaw 

Fig. 9.4.10 Response of the Wigley hull in tanks with different widths 

(co = 1.7691 
, a=0.025, incident angle is 30) 

It can be seen that the results from the case with tank of B=2 are significantly different from 

those from the case with tank of B=5 when r> 30 , while the difference is negligible 

when r< 30. This difference is of course due to the reflection from side walls. It is also found 

that the difference between those results is more evident for sway and yaw motion. That may be 

because these two components are more sensitive to the reflection from the side walls. On the 

other hand, the results from the case with the tank of B=3 is much closer to those from the case 

with the tank of B=5. Based on this investigation, the width of the tank is taken as B=3. It 

should be noted that this choice of the width of the tank is for the cases considered in this 

section. If the shape of the floating body is different or the incident angles are larger then 30°, 

more investigation should be carried in order to determine the proper width. 
The effect of incident angles is then investigated. In this case, the width of the tank is taken 

as B=3. The incident angles are 15°, 20° and 30°, respectively. The response of the Wigley Hull 

due to a monochromic wave is plotted as Fig. 9.4.11 for surge, heave & pitch and Fig. 9.4.12 for 

sway, roll & yaw. For the purpose of comparison, the results in Fig 9.4.3, where the incident 

angle equals to 0, are also plotted together in Fig. 9.4.10 but not in Fig 9.4.11 because sway, roll 

and yaw are zero in case with zero incident angles. 
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Fig. 9.4.11 Surge, heave and pitch of the Wigley hull with different incident angles 

(tv=1.7691, a=0.025) 
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It can be seen that all these three components of the motions are different as the incident 

angles vary. The surge and heave increase slightly with incident angle and the associated 
increase in hull project area Therefore, the wave force acting on the Wigley hull and so the 

translational motion of the Wigley hull increases. Similar phenomena are also found in sway 

shown in Fig. 9.4.12 (a). To further investigate the force acting on the body, Fig. 9.4.13 is 

plotted. It is found that hydrodynamic force in either surge direction or sway direction 

increases with incident angle, thus supporting the above comment. 
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Fig. 9.4.13 Hydrodynamic sway forces acting on the Wigley Hull in case with different incident 

angles (w = 1.7691 , a=0.025) 

On the other hand, the pitch (Fig. 9.4.11c) and roll motion (Fig. 9.4.12b) show large 

differences in cases with different incident angles. These differences embody two aspects, i. e. 

the phase and the maximum value. In the first aspect, the time to get a peak of the motion is 

different in cases with different incident angles. This is because the phase difference between 

the wave-excited motion and the motion due to the transient effect, which combine to form the 

pitch or the roll motion, is different. This is mainly due to the fact that the time when the 
incident wave reaches the front side as well as the lee side of the Wigley Hull is different in 

cases with different incident angles. In the latter aspect, the maximum value of the pitch 

motion decreases while that of the roll motion increase with the incident angle increases. That 

is reasonable. When the incident angle is 0, the fluid domain is symmetrical according to the 
direction of roll, therefore the roll motion is 0 but the pitch motion is largest. However, when 
the incident angle equals 900, the fluid domain is symmetrical with respect to the direction of 
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pitch, therefore the pitch motion is 0 and the roll motion is largest. Due to this fact, when the 

incident angle changes from 0 to 900, the pitch motion should decrease from largest to 0, while 

the roll motion should increase from 0 to largest. It is also found from Fig 9.4.12c that the yaw 

motions in all of these cases are quite small, since this motion is restricted by the mooring line. 

It is also observed that the maximum yaw angle increase as the incident angle increases. 

Apart from the response of the Wigley Hull, the incident angle also affects waves around 

the hull. In order to show these effects of the incident angles, the wave elevations in the cases 

shown in Fig. 9.4.11 with different incident angles are compared. Figs. 9.4.14 to 9.4.17 show 

some snapshots of the free and the floating body in different instances. 

It is found from these figures that no matter whether the incident angle is zero or not, the 

wave around the Wigley hull are scattered or reflected by the hull. Such scattered or reflected 

waves complicate the wave elevation around the hull. However, a significant difference 

between these two cases is that the Wigley Hull with non-zero incident angles makes the 

waves unsymmetrical. In particular, the wave elevations near the port of the hull are different 

to that near the starboard of the hull (Fig. 9.4.15a, 9.4.16a and 9.4.17a). To further show this 

phenomena, the waterlines in different instances in the case with the incident angle of 300 is 

plotted in Fig. 9.4.18 

This figure clearly shows that the wave elevation near the port and that near the starboard is 

different. It is also found that there are local waves near bow of the hull (see the left side of all 

curves in this figure). This local wave contains the wave generated by the motion of the hull 

and the diffracted wave from the surface of the hull. This implies that the waves around the 

hull are affected by the motion of the hull. Therefore, the methods, in which the wave around 
the body is assumed not to be changed (for example, Ma & Patel, 2001), may introduce 

relatively large error in cases with steep waves or involving the floating body with large 

motion. Therefore it is necessary to use fully nonlinear numerical simulation, such as QALE- 

FEM method. The following section will discuss the efficiency of this method. 
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Fig. 9.4.14 (a) incident angle: 30° 
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Fig. 9.4.14 Snapshots of the free surface and the floating bodies 

in cases with different incident angles for r 81 

(w=1.7691 , a=0.025) 
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Fig. 9.4.15 (a) incident angle: 30° 
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Fig. 9.4.15 (b) incident angle: 0° 

Fig. 9.4.15 Snapshots of the free surface and the floating bodies 

in cases with different incident angles for r Az 85 

(w=1.7691 ,a0.025) 

216 



0.5 
1.5 

-1.5 

Fig. 9.4.16 (a) incident angle: 30° 
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Fig. 9.4.16 Snapshots of the free surface and the floating bodies 

in cases with different incident angles for r zt5 91 

(w = 1.7691 , a--0.025) 
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Fig. 9.4.17 (a) incident angle: 30° 
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Fig. 9.4.17 Snapshots of the free surface and the floating bodies 

in cases with different incident angles for r 95 

(t) = 1.7691 ,a0.025) 
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Fig. 9.4.18 water curves in different instances 

(w = 1.7691 , a=0.025, incident angle=30° 

with solid curve: larboard; without solid curve: starboard) 

9.5. The efficiency of the QALE-FEM in 3D cases 

9.5.1. Mesh quality 

As indicated in Chapter 8, the mesh quality in 2D cases retains high throughout simulation 

even in cases with large motions. The motion of the floating body in 3D cases has 6 degrees of 
freedom. The elements near the body are more likely to be distorted. It is necessary to 

investigate the quality of the mesh during the calculation. In a 3D case, the shape of the internal 

element is difficult to illustrate as Fig. 9.0.1. In addition, the quantitative analysis, in place of 
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the qualitative analysis, is more convincing. Therefore, the mesh quality coefficient defined by 

Eq. (4.2.7) is used to investigate quantitatively how the mesh quality changes with time during 

the calculation. The element quality estimated by Eq. (4.3.6) is also investigated to demonstrate 

the quality distribution in the mesh, i. e. percentage of the elements with specified quality (for 

example, the elements with quality ranging from 0.7 to 0.8) at a certain time step after long 

simulation. Two cases will be presented in this section to demonstrate the effectiveness of the 

spring analogy method in the QALE-FEM in producing good meshes at all time steps. 

The first case involves a Wigley Hull in head sea conditions as shown in Fig. 9.4.6 . The 

moment of inertia is chosen as Iy 0.015. In order to increase the complexity, the motion of the 

Wigley Hull subject to a bichromatic waves with aj=a2=0.01, w1=2.0, w2=2.6 is investigated. 

The fluid domain is discretised into about 903,992 elements and 162,322 nodes. The quality of 
the mesh during the calculation is shown in Fig. 9.5.1 and Fig. 9.5.2. 

Fig. 9.5.1 shows the time history of the mesh quality during the long calculation. From this 
figure, it is found that the mesh quality is always around 0.65. This implies that the quality of 
the mesh is retained throughtout simulation. The interesting thing in this figure is that the 

element quality seems be slightly improved from 0.6518 at the initial step to about 0.6525 after 

variation in a short period. This indicates that the spring analogy method may have the ability to 
improve the mesh. 
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Fig. 9.5.1 Mesh quality during the calculation in Case 1 
(Bichromatic incident wave with a, =a1=0.01, w, =2.0, w2=2.6 

Wigley Hull with Lb=1.0, ßb=0.2, Dr 0.15) 

Fig. 9.5.2 shows the element quality distribution in two different instances. In this figure, the 

x-axis represents the range of the quality, e. g. 0.9-1.0 means the quality of the elements ranging 
from 0.9 to 1.0. The y-axis illustrates the percentage of the elements with specified range of 
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quality. It is observed that most of the elements in both the initial mesh and the mesh at r 73 

are with quality larger than 0.5 (about 80%). The distribution of quality does not change 

dramatically after the long-time simulation. More importantly, the near flat or very bad elements 

(quality less than 0.1) do not appear during the calculation. 
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Fig. 9.5.2 element quality coefficient distribution in different instance in Case 1 

(Bichromatic incident wave with aj=a2=0,01, wj=2.0, w2=2.6 

Wigley Hull with Lb=1. O 
, 
Bb=0.2, Dr=0.15 ) 

Another case (Case 2) investigated here is the same as Fig. 9.4.12 where a Wigley hull with 

incident angle of 300 is involved. The fluid domain in this case is discretised into about 660,747 

elements and 117,678 nodes. The mesh quality coefficient and the element quality distribution 

in two different instances are plotted as Fig. 9.5.3 and Fig. 9.5.4. As seen in Fig. 9.5.3, although 

the mesh quality was not improved, it was always larger than 0.73. This demonstrates that the 

quality of the mesh in this case is also retained during the calculation. From Fig. 9.5.4, it is also 

observed that most of the elements in both instances are with quality ranging from 0.6-0.9. 

There are no near flat elements or very bad (quality less than 0.1) elements. A similar 

conclusion is reached in this case. 
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Fig. 9.5.4 Element quality coefficient distribution in different instance in Case 2 

(a = 1.7691 , a=0.025, Wigley Hull with Lb=1.0, Bb=0.2, D, =O. 15) 

In these two cases, the shape of the floating body is relatively complicated and the incident 

waves are very steep as well. That QALE-FEM can deal with such a case implies it has high 

capability to deal with other complicated wave-structure interaction problems. 

9.5.2. Efficiency of mesh moving process 

In Section 7.5, the CPU time spent on the process for moving mesh in case without freely- 

floating bodies has been analysed. Once the freely floating bodies are involved, It is necessary 

to redistribute the nodes on the body surface and therefore more CPU time is required. In this 

section, the efficiency of mesh moving process is investigated using the cases with 3D freely 

floating bodies. 
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The CPU time used in the mesh moving process at every time step is also investigated by 

using the above case. This case is run on a PC (Pentium IV 2.53G1iz processor, 1G RAM ). In 

the initial mesh, there are 117,678 nodes in the fluid domain with 9,021 nodes on free surface, 
2,221 nodes on the body surface. The CPU time spent on the mesh moving process is less than 

2.5s, including around 1. Os for moving interior nodes and O. Ss for redistributing nodes on the 

body surface. The frequency for redistributing nodes on the free surface is once every 25 time 

steps. The CPU time spent is about 24.5s for each process of redistributing nodes on the free 

surface. Therefore, averaged 1. Os for every time step. However, generating such a mesh needs 

53s using the in-house mesh generator. Compare to a conventional mesh regenerator, the 

present approach requires almost negligible CPU time. 
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Fig. 9.5.5 CPU time spent on the mesh moving 

process in cases with different numbers of nodes 

223 



Further test is made to investigate the CPU time on mesh moving scheme in cases with 
different numbers of nodes. In this test, the incident wave is generated by a wavemaker with 

m=1.7691, a=0.03. Wigley hulls with different parameters of shape are used. The time step is 

taken as T/128. The cases are run on the above PC and 3000 time steps are run. The averaged 
CPU times spent on every time step in different cases are shown in Fig. 9.5,5. Fig. 9.5.5(a) 

shows the CPU times for the whole mesh moving scheme and the process to move interior 

nodes. Fig. 9.5.5(b) and Fig. 9.5.5(c) show the CPU time spent on redistributing nodes on the 

free surface and those on the body surface, respectively. It is found from this figure that total 

CPU time for the mesh moving process is roughly in order of O(N) where N is the numbers of 

nodes. Even when the N is close to 200,000, the CPU time for moving mesh is still about 5s for 

every time step. This is much less than the time for regenerating an unstructured mesh. For 

redistributing nodes on the body surface and the free surface, the CPU time also depends on the 

number of nodes (Fig. 9.5.5b and Fig. 9.5.5c). It should be pointed out that the frequency of 

redistributing nodes on the free surface in this test is once every 20 time steps. If one uses 

smaller frequency, the averaged CPU time on redistributing nodes on the free surface will be 

shortened. One may also found that if the number of nodes on the body surface is the same as 

that on the free surface, the CPU time required is almost 3 times that for the free surface. This is 

because the `Global method' and ̀ Local method ̀ are used to move the nodes on the free surface 

and body surface, respectively. The normal and tangential directions of every node need to be 

calculated in the `Local method'. This process requires additional CPU time. 

Based on this investigation, it can be concluded that the mesh moving scheme developed in 

this work is every efficient. Less than 5s CPU time is sufficient to deal with most of the cases 

on nonlinear wave-body interaction problems. 

9.5.3. Computational efficiency 

The computational efficiency is also investigated by using the above two cases. Two aspects 

are discussed. One is the efficiency of the ISITIMFB. The other one is the overall computational 

cost. In the first aspect, the present ISITIMFB is compared with the mode-decomposition 

method with the 4th-order Runge-Kutta method as the time integration scheme. In the latter one, 
the CPU time spent on every time step by the QALE-FEM method is compared with that by a 
fast BEM method, 

As discussed in Section 2.6, the motion in the mode-decomposition method is decomposed 

into 7 modes in 3D cases to find the solution for the potential derivatives (00/01 ) by solving 7 

different boundary value problems in addition to one for the velocity potential. Thus, a total of 8 
different boundary value problems must be solved in each sub-step and therefore total 32 
boundary value problems for calculating both velocity potential and its time derivative need to 
be solved in one time step forward in 4`h-order Runge-Kutta scheme. In Section 8.2, it is also 
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pointed out that the geometry of the fluid domain as well as the coefficient matrix needs to be 

updated to achieve a stable solution. To do this, massive CPU time is required. On the other 
hand, the number of the boundary value problems solved at every time step in the QALE-FI:: M 

method depends on the number of iterations in the ISITIMFI3 procedure. As an example, the 

number of iterations at different instants for the case in Fig. 9.5.12 is shown in Fig. 9.5.5 by 

using the control error of 0.5% in the procedure. 

0O 
10 mm1 40 80 In 

Fig. 9.5.6 Number of iterations in different instance in case shown in Fig. 9.4.12 

(a1=0.015, a2=0.0075, w, =1.45, w2=1.74, incident angle=15°) 

It is observed that the maximum number of iterations in the calculation is 23 and the number 
of iterations in most time steps is around 10. The mean number of iterations in one step is 10.28 

and so about 21 boundary value problems are solved without the necessity of updating the 

coefficient matrix. Therefore, the CPU time required by the ISITIMBF is less than that required 
by the mode-decomposition method together with 4-order Runge-Kutta method for time 
integrating. Of course, the iteration count in ISITIMFB is problem-dependent. The 

computational cost of the ISITIMFB may be more expensive in other cases. But, as long as the 

number of iterations in the ISIFIMFB procedure is less than 16, the ISITIMFB is more efficient. 
According to numerical experience in this work, if appropriate time step and control error are 

chosen, the number of iterations in the ISITIMFB procedure in most of the case can be less than 

16. As indicated in Section 8.4, if the mode-decomposition method with the 4th-order Runge- 

Kutta scheme is used in the present QALE-FEM method, the calculation of velocities on the 
free surface with unstructured meshes must be performed five times in one time step forward, 

which likely requires considerable more CPU time. Consequently, the 1SITIMFB used with the 
QALE-FEM is very efficient. 

The overall computational efficiency of the QALE-FEM is subsequently compared with a 
fast BEM developed by Fochesato & Dias (2006). 

As discussed in Chapter 2, only the grid on the boundaries is required for BEM method. The 

CPU time spent on every time step in the BEM depends on the number of boundary nodes. The 

most important contribution made by Fochesato & Dias (2006) is that they reduced the 

computing complexity from O(N2) required by the conventional BEM, to nearly O(N) 
, 

where N is the number of boundary nodes for their method. Fochesato & Dias (2006) applied 
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the fast BEM method to model a solitary wave shoaling over a seabed with complicated 

geometry by using a PC (2.2GHz processor, 1G RAM). In their case, the tank length is 19 and 
the width is 8. For the first stage before the wave overturns, a coarse grid with 1,422 boundary 

nodes is used. A finer grid with 6,022 nodes is used for the remained calculation. The CPU time 

spent on each time step is 320s for the finer mesh and 45s for the coarse mesh. For brevity, this 

case is referred as ̀ fast BEM case' in this sub-section. 

When the QALE-FEM method is used, the whole computational domain needs to be 

discretised. The number of nodes is much more than the number of nodes on the boundaries. 

For example, in the case shown in Fig. 9.4.12, there are 117,678 nodes in the fluid domain with 
21,285 nodes on the boundaries. This case is run on a PC (Pentium IV 2.53GHz processor, 1G 

RAM) which is similar to that used by Fochesato & Dias (2006). The mean CPU time spent on 

each time step is 33.25s over a simulation of 3000 time step. The length and the width of the 

tank used in this case are 10 and 4, respectively. This case is referred to as ̀ QALE-FEM case' 
in this sub-section. 

To the author's knowledge, there have been no publications to date on the numerical 

simulation by fast BEM of interactions between water waves and a 3D free-response floating 

body. Here, the CPU time on the above examples are deduced for the purpose of analyzing the 

computational efficiency. Since the volume of the fluid domain in the 'fast BEM case' is almost 
4 times that of the `QALE-FEM case'. If the fast BEM by Fochesato & Dias (2006) is used for 

the `QALE-FEM case', the number of boundary nodes required may be one-forth of that used in 

the `fast BEM case'. That is 6,022/4 1,500 boundary nodes for a finer grid and 1,422/4 sw 350 
boundary nodes for a coarse grid. In the `QALE-FEM case', the wave overturning does not 
occur. The coarse grid is therefore necessary for the fast BEM method. Since the CPU time 

spent on every time step by the fast BEM is proportional to the number of boundary nodes, 
therefore about 45/4=11.25s for every time step is required. However, this CPU time is only 

used to solve the BVP for the velocity potential because the `fast BEM case' does not involve 

any free-response floating bodies. But in the `QALE-FEM case' about 20 boundary value 
problems should be solved. This means the CPU time required by the fast BEM for the ̀ QALE- 

FEM case' should be almost 11.25x20=225s which is almost 7 times that (33.25) required by 

the QALE-FEM method. It should be noted that in the above analysis for the fast BEM method, 
the grid (350 nodes on the boundary) does not consider the fact that the nodes should be 
distributed tighter near the floating body than other area. Considering this, the number of the 

nodes used by the fast BEM method should be more than 350. So, the QALE-FEM method may 
be at least 7 times faster than the fast BEM in a 3D fully nonlinear water wave problem. 
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10. CONCLUSIONS AND RECOMMENDATIONS 

In this work, the QALE-FEM based on FNPT model has been developed in order to 

simulate the three dimensional interaction between structures and steep waves using a time 

marching procedure. In this method, the boundary value problems for the velocity potential and 
its time derivatives are solved by using a FEM. The mesh is moved in order to conform to the 

variations of the free surface and the body surface by the spring analogy method specially 
developed for these problems. The method allows the efficient use of an unstructured mesh 

without the need to regenerate it at every time step, which is a necessary and very costly feature 

of the conventional FEM. In order to apply the above moving unstructured mesh, a technique 

for velocity calculation has been developed. It depends less on the structure of the mesh and can 
be applied to virtually any mesh. For the purpose of simulating the free response of the floating 

bodies to the nonlinear waves, an iterative procedure named ISITIMFB is developed. A 

computer code has also been developed during the course of the study by extending the one for 

the conventional FEM developed by Ma (1998) and has been applied to model the free response 

of both 2D and 3D moored floating bodies. 

Numerical results obtained by the QALE-FEM method have been compared with 

analytical solutions, experimental data and the results from other methods in the public domain. 

The cases included the wave generated by a piston wavemaker, the reflection from sandbars on 

the sea bed, the interaction between the waves and 2D/3D floating bodies. Good agreement has 

been achieved. The flexibility of the numerical method has been demonstrated by different 

cases with different computational domains, such as with floating bodies or sandbars on the sea 
bed. It has also been illustrated by varying methods to generate waves, including the initial free 

surface elevation, the motion of a wave maker and the motion of floating bodies. The 

convergence and the efficiency of this model as well as the ISITIMFB procedure have been 

investigated by different cases and compared with different methods. 
It can be concluded that the newly developed QALE-FEM method based on the FNPT 

models can use an unstructured mesh with any degree of complexity without the need of 
regenerating it at every time . It is 10 times faster than the conventional FEM method in case 
with unstructured mesh and at least 7 times faster than the fast BEM methods for the fully 

nonlinear waves and their interactions with free-response floating bodies. its accuracy, 
flexibility and efficiency is shown to be satisfactory in different numerical examples. More 

specified contributions and conclusions in this work are summarised as follows. 
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10.1 Numerical technique 
In order to achieve high computational efficiency, many numerical techniques are developed 

in this work. For the purpose of moving the computational mesh with high quality, a novel 

methodology is suggested and adopted. In this method, interior nodes and boundary nodes are 

considered separately; the nodes on the free surface and on rigid boundaries are considered 

separately; nodes on the free surface/body surface are split into two groups: those on waterlines 

and those not on waterlines (internal free-surface/ body-surface nodes); different methods are 

employed for moving different nodes. To move the interior nodes, a 3D spring analogy method 

is used. However, the spring stiffness in the QALE-FEM method is specified in a different way 

from that on applications without free surfaces, which depend on how far an element is away 

from the free surface and body surface. For the purpose of redistributing the nodes on the free 

surface without overturning waves, a spring analogy method based on the projected x -Y plane is 

suggested. For the interior nodes on the body surface and those on the free surface with 

overturning waves, a spring analogy method based on a local normal-tangential coordinate 

system is developed. In order to redistribute the nodes on the waterlines, a method based on the 

principle for self-adaptive mesh is developed and used. The tests carried out in this work 

demonstrate that the moving mesh scheme works well with little CPU requirement even in cases 

with very large deformation of the boundary. 

In order to conform to the moving unstructured mesh, a method to evaluate the fluid velocity 
is developed. In this method, the nodes are grouped into two: those on the free surface and those 

on the body surface. For nodes on the free surface, two points on its normal direction are added. 

The velocity potentials at those two points are approximated by using a moving least squares 

method. A mixed two-point and three-point FD scheme is adopted to find the normal 

component of the fluid velocity. Once the normal velocity component at this node is found, the 

corresponding tangential velocity components are evaluated by considering the free-surface 

nodes connected to it using a least squares method based on the concept of directional 

derivatives. Some special treatments are also suggested to deal with the nodes on the waterlines 

and those near the body surface and the shape crest. For the nodes on the body surface, the 

normal velocity component is given by the boundary condition. The tangential velocity 

components are estimated in the same way as for the free-surface nodes. This method erases the 
limitation of the mesh structure in the existing velocity calculation scheme used by the 

conventional FEM and therefore satisfies the requirement of the cases with unstructured meshes. 
The efficiency and the accuracy of this method have been demonstrated by several numerical 
tests. Furthermore, a patch recovery technique is extended to remove the saw-tooth problem and 
therefore improve the accuracy of the velocity calculation. This method is based on the local 

normal-tangential coordinate system to overcome the failure of the general patch recovery 
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method when recovering the velocity on the body surface and the free surface with overturning 

waves since the profile of those surfaces cannot be expressed as a single-valued function of (x, y). 
In order to overcome the difficulty in calculating the acceleration of and the force on the free- 

response floating bodies, an iterative procedure named ISITIMFB is developed. In this 

procedure, the acceleration in the current step is considered when estimating the body velocity. 
This implicit treatment, instead of an explicit scheme, distinguishes the ISITIMFB method from 

others. A multi-step method scheme without the need of sub-step calculation is used for the 

time integration. The positions of the free surface and the floating body are not changed during 

the iteration of this procedure. Therefore the coefficient matrix for the FEM formulation does 

not need to be updated. In order to achieve high efficiency, a least-square-method based 

prediction scheme together with an optimized under-relaxation coefficient is proposed. The 

results of this procedure show that the new developed ISITIMFII can find the acceleration of 

and the force acting on the floating bodies with higher efficiency than other methods and is 

more suitable for the QALE-FEM method. 

10.2. Application to the waves generated by a wavemaker and their interaction with 
sandbars 

The newly developed QALE-FEM method is used to simulate the wave generated by a wave 

maker and its interaction with sand bars on the sea bed and has been validated by comparing its 

numerical predictions with published analytical solutions, experimental data and results from 

other methods. The validation cases included the monochromatic, bichromatic and random 

waves with or without sandbars. In all cases, the results given by the present method agree 
reasonably with published ones (the relatively errors are all smaller than 1%). 

For cases with sand bars on the sea bed, the nonlinear effects on the reflection properties are 

also investigated. It is shown that the effects tend to reduce the reflection coefficients and make 

the wave profiles more complex. 
Assessments are made on the efficiency of moving mesh and quality of elements obtained by 

moving the mesh in a long-period simulation and show that unstructured mesh quality is 

satisfactorily maintained and the QALE-FEM requires only a small fraction of CPU time that 

would be spent on cases using the conventional FEM. 

10.3. Application to the interaction between the water waves and floating structures 
The QALE-FEM method is then used to simulate the nonlinear interaction between the 

water waves and the floating bodies. A comparison is made between the numerical prediction of 
forces on bodies undergoing a forced motion and analytical solutions. The difference between 

those results is less than 0.5%. The convergence property associated with force calculation in 

terms of different mesh sizes and different time steps is also investigated. The results show that 
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the numerical results with a specified accuracy are achievable by using a sufficiently fine mesh 

and small time step. 
A further validation of the QALE-FEM method on modelling the response of the 2D 

floating body is also made. The RAOs of a 2D barged-type floating body arc calculated and 

compared with the linear solution, experimental data and numerical results from other methods. 

The RAOs obtained by using the present method are closer to the linear solution when the 

incident wave is small but closer to the experimental data in cases with steeper waves. Further 

numerical investigation on the viscous effect near the resonance area is also carried out. The 

results demonstrate that the QALE-FEM method can give acceptable results through adding an 

appropriate empirical damping. More cases on the transient response of the floating body and 

the effect from the sandbar on the seabed are run, the strong nonlinearities associated with these 

problems are revealed. The results also illustrate that the reflected waves from the sandbars 

make the floating body in front of it undergo a larger motion but decrease those inside of the bar 

patch or after the bar patch. In order to shorten the transient period so that one may get the 

necessary data for RAO as soon as possible, the use of wavemaker ramp functions and an 

artificial damping technique has been developed. The effectiveness of this technique is 

demonstrated to be favourable. 

The QALE-FEM method is also employed to simulate the interaction between the waves 

and 3D floating bodies. The responses of a moored spar platform to either monochromic waves 

or bichromic waves are compared with the experimental data, which show good agreement. 

The convergence properties of the QALE-FEM method in 3D cases are also investigated in 

terms of different time steps, mesh sizes and different control error for the ISITIMFB procedure. 
The RAOs of surge, heave and pitch of a barge-type floating body in head sea condition (zero 

incident angles) are calculated and compared with the experimental data and the linear solution 

in publication. The results show the difference between the present results and the experimental 
data is negligible. After being validated using the above two problems, the response of the 

Wigley Hull to waves is investigated. For the vessel in a head sea condition, the effects from the 

wave amplitude and the mooring lines are discussed. The results show that as the wave 

amplitude increases, the ratio of the motion to the wave amplitude tends to be decreased. They 

also show that the stronger mooring lines reduce the response of the Wiley }lull when the 

incident wave frequency is far away from natural frequency. However, near the resonance area 

the response of the Wigley Hull becomes larger. Finally, the cases involving Wigley hull with 
different incident angles are investigated. The results illustrate that the incident angles seem not 

to affect the surge and heave but make the other four components of the motion change 
dramatically. 
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10.4. Efficiency of the QALE-FEM method 
Assessments are also made of the efficiency of moving mesh and the quality of elements 

obtained by the QALE-FEM in 3D cases. It has been found that the quality of the unstructured 

mesh is satisfactorily maintained (the mesh quality during the calcualtion is at most 0.1% lower 

than that of intial mesh) at all time steps even when complex interactions between waves and 
free-response floating bodies are involved and also that the QALE-FEM requires a little time for 

moving mesh. Furthermore, as one of the most important factors which affect the 

computational efficiency in cases with a freely floating body, the efficiency of the ISITIMFB 

procedure is studied. As long as the number of iterations in the ISITIMFB procedure is less than 

16, which is true for most cases and if an appropriate time step and control error is chosen, this 

method will be faster than the mode-decomposition method with 4-order Runge-Kutta scheme 

for time integration. Finally the overall computational efficiency of the QALE-FEM method is 

compared with a fast BEM method recently developed by Fochesato & Dias (2006). The results 

show that the QALE-FEM method is at least 7 times faster than the fast BEM for a similar 3D 

case of nonlinear water waves and their interactions with structures. 

10.5. Recommendations 
With respect to future work on the development and extension of the numerical method, the 

following is recommended: 
1) Although the numerical techniques developed in this thesis, such as the method to 

redistribute nodes on the free surface and the method to calculate velocity, are all based on the 

assumption that the overturning wave may exist in the simulation, the QALE-FEM has not been 

applied to simulate the overturning wave problems. It should be applicable to simulate these 

problems. 
2) At a sharp corner, there are no unique tangential and normal lines. This results in two 

difficulties. The first one is concerned with the mesh moving process. The remedy for 

overcoming the difficulty in this work is to prescribe a node at the corner or to smooth the 

corner. The former approach may not work if there are not enough nodes near the corner or the 

nodes near the corner become too close to each other. The latter approach may result in errors 

caused by the loss of the volume of the body. A more robust method should be developed. The 

second one is due to the singularity problem with the velocity at the corner of the floating body. 

In this work, the velocities at those corners are approximated by using an interpolating method 
based on the nodes around them. This treatment is very simple. Although in the cases presented 
in this thesis, no evident error appears, further validation may be preferred. 

3) The method for computing the velocities suggested in the Chapter 5 appears to be quite 
accurate and efficient, as demonstrated in various cases. However, this method may not be 
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applicable in cases where the wave profile near the floating bodies is very thin. Another 

specialised method should be developed to deal with this problem. 
4) In cases with 3D floating bodies or sandbars on the sea bed, the reflected waves will be 

scattered again when they reach the wave maker. In addition, in cases with 3D floating bodies, 

the scattered wave from the body surface will be reflected by the y=const walls. These two 

reflections are not desirable. In order to ease the effect, a longer/wider tank is used in this work. 
The efficiency may be enhanced by applying radiation condition at these boundaries. The 

technique used at the end of the tank may be extended to treat other boundaries. 

5) In all the cases with freely floating bodies, the body surface is regarded as rigid. An 

extension of this method may be made to simulate flexible floating bodies. The method to move 
the mesh may also be extended to the simulation of other problems, such as ship capsizes 
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APPENDIX A 
Treatment of the rigid boundary condition for öc$ / öt on the FEM formulation 

In Section 3.5.2, the integrated rigid boundary condition for öqi / at is written as 

JJN1 fadS = Bni +BnZ (al) 
AS. (ek) 

where 
Bn21 =-U-N! (Us=(6n 

-Unq )dr1 +N, (U�0n -Unlb )dr2 (a2) 
sb 

et = 
jj a(N1Un) 

+0, 
a(NUn) 

_, 
/, ]ds 

(a3) Bn22 - 
clr Dr2 

011 
Dr1 -Y'n er2 

in which 0r , 0T and g� represent 
a, ao 

and 
a0 

, U�, Uf , Ur are normal and = Orr 'T2 Ölt 

tangential velocity components, respectively. 
In a triangular element (ij, k) on the boundary, the normal and tangential directions are 

constant. Therefore, the shape function in a local normal-tangential coordinate system 

can be written as 

N, = (a, +b, r, +c, z2)/2i (a4) 

and 

a, = rIJ r2k -Tlkr2J; b, = T2j -T2k; Cl = Zlk - Zlf (a5) 

in which 0 is the area. t,, r2, n are the coordinate values in the directions of f,, z2, n 
, 

respectively. 

1) Treatment of term B, ' k22 

In order to treat Bn22 , it is separated into several terms. Each term is expanded, as follows 

a aN. aU Uba +b z +c z är 
!! NºUnl _i Un +n Ni =nr+ºI, 12XA 

,n ! A6` 

aZ, 
l1 

arl az, 2A 2e art lI 

where U=U+ rb x0 is used; . it can be seen from this equation that = is required. The 
a 

following is used to derive this term. 

At an arbitrary curved surface f (x, y, z), the position vector can be expressed as 

r= xex + yey + zez (a7) 

where e"x, ei, and eZ are the unit vectors in x-, y- and z-directions. The normal tangential 

coordinate (i, , 
z2, n) can be expressed as 
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Z, =zt(x, Y, z), r2 =r2(x, Y, z), n=n(x, y, z) (a8) 

The position vector, therefore, is written as F= F(r1, r2, n). Then the unit tangent vector in r, - 

direction is 

ar 
az, i aF er, 
aF hlOr1 

az, 

(a9) 

therefore, 'OF = h1e=, and h, = 107 
. Similarly, it can be found that the unit vectors in the 

ör, Or, 
other two directions are giving by, 

ar 
=he (al0) 

ör2 z ::. 

and 

'OF = hie" (all) 
On 

where h2 = di and h3 = an . Since, 
z 

OF 
_ 

OF 
x 

OF 
=h h3n (a12) 

, 
On aZ, art 23 

combining Eq. (a12) and (all) , one can get 

h, = h2h3 (a13) 

Similarly, h2 = hlh3 
, 
h3 = h, h2 and so h, = h2 = h3 =1. Therefore, one can get 

(a14) 
az 

= el; ýZ OF 
=- T12 =T2; 

based on this, Eq. (a6) can be rewritten as 

a 
(N U" 

U"b' 
+n c. 

tx 
n) = 

U"b' 
- n" .Ö (als) 

az, 20 20 
Similarly 

a 
(Ni U" )r ,a (N, U, ) and 

a 
(Nj U,. ) are expanded. Therefore, the 

are at, are 2 
term B iz2 can be rewritten as 
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(2) The treatment of ' e* 

Suppose the physical properties are linear on the element of a curve, then 

N- 
rl - rIj 

= 
r2 - r2. 

(a17) 
z1J -Zlf T21 -z2j 

Let 1// _ -UTZO, + Unq5r2 ,9= Ur, On - UOr,, then Bn21 can be rewritten as 

B; '21 = -IN, yrdtl + N, 9dz2 (a18) 
sb 

In an element on the waterline, 
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