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ABSTRACT

This thesis presents a newly developed Quasi Arbitrary Lagrangian-Eulerian Finite Element
Method (QALE-FEM) for numerically simulating wave-body interaction problems based on the
fully nonlinear potential theory. The boundary value problem in this model is solved by a finite
element method (FEM). The main difference between this method and the conventional FEM is
that the complex mesh is generated only once at the beginning of the calculation and is moved
at all other time steps in order to conform to the motion of the free surface and structures. This
feature allows one to use an unstructured mesh with any degree of complexity without the need
of regenerating it every time step, which is generally inevitable and very costly. Due to this
feature, the QALE-FEM has high computational efficiency when applied to problems associated
with the complex interaction between large steep waves and structures since the use of an
unstructured mesh in such a case is likely to be necessary. In order to achieve overall high
efficiency, some numerical techniques, including the method to move interior nodes, the
technique to redistribute the nodes on the free surface, the scheme to calculate velocities, are
developed. To overcome the difficulty associated with the force and acceleration of free-
response floating bodies, an ISITIMFB (Iterative Semi-Implicit Time Integration Method for
Floating Bodies) iterative procedure is developed.

The developed QALE-FEM method is applied to simulate the waves generated by a
wavemaker and their interaction with sandbars on the seabed, waves generated by a floating
body in forced motion, the response of a 2D or 3D freely floating body to a steep wave. Some of
the results have been validated by analytical solutions, experimental data and numerical results
from other methods. Satisfactory agreements are achieved. The convergence properties of this
model in cases with or without floating bodies are all investigated. The nonlinearities associated
with different cases are investigated. The mesh quality is also investigated using either
qualitative or quantitative methods. The results show the mesh quality during long-period
simulation is retained. The efficiency of the QALE-FEM method is finally discussed and
compared with other methods. It is concluded that the QALE-FEM method is 10 times faster
than the conventional FEM method in case with unstructured mesh and at least 7 times faster
than the fast BEM methods for the fully nonlinear waves.
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1. INTRODUCTION

1.1. Background
Use of moored floating structures, such as SPARs and FPSOs, as production and storage

systems 1S now an ever-increasing practice in offshore oil and gas industry, particularly with the
operations moving to deeper sea. Operating in such environments, the structures are more likely
to be exposed to very harsh seas and therefore may not avoid undergoing large loading and
motions, which will result in many undesired consequences. While the environmental

conditions are affected by tide, wind, current and waves, the effect of waves 1s of most concern.

Fig.1.1.1 Freak waves and ships Fig.1.1.2. Overturning wave
(http://www.tvnz.tx.co.nz)

The responses of floating structures to waves are very complicated, particularly in cases
involving steep waves. There are two typical effects of waves which may inflict significant
damage to the structures. The first one is the destructive energy released by steep waves, such as
freak waves (Fig 1.1.1) and overturning waves (Fig 1.1.2). This effect may result in huge
instantaneous huge loads on the floating structure causing it to capsize. The second one is the so
called resonance problem. This phenomenon not only makes the structures undergo relatively
huge motion, but also creates large forces which may also cause capsizing of ships or damage to
the structures. This may result in high risk in the operation of the structures and lead to
seasickness of people who work and live on these vessels. Furthermore, the large motion of
these moored floating vessels may cause additional large tension in mooring lines that may
already be critically loaded. Due to this fact, the responses of the floating structures to steep
waves need to be carefully investigated in order to optimise the design/operation and avoid the
latent risk from the waves.

On the other hand, the floating structures and their response to the waves also affect the
waves themselves. Generally, the surface of the structure reflects and scatters the incident waves.
This makes the waves around the structure become much steeper and/or more complex. This

21



interaction between the waves and the floating structures complicates the problem rendering it
nonlinear. Its accurate prediction lies in the vigorous analysis of the interaction between the
structures and the waves.

Many researchers have studied this complex wave-structure interaction problem by using
various analytical methods based on linear or higher order scattering analyse either in time
domain or in frequency domain, e.g. linear models in the frequency domain (Newman, 1977,
Mei, 1989), linear models in the time domain (Bratland, Korsmeyer & Newman, 1997), higher
order methods in frequency domain (perturbation theory by Davies, & Heathershaw,1984;
Faltinsen, Newman.& Vinje., 1995, Malenica & Molin,1995, multiple scale analysis by
Mei, 1985, mild-slope approach by Chamberlain & Porter,1995) and higher order methods in
time domain (Sclavounos & Kim, 1995, Skourup, Buchmann & Bingham,1997). Although
these studies are useful for calculating wave loads and radiation damping on a body, most of the
works have been simplified and applied to cases with small to moderate wave steepness. They
have until recently been limited to the problems involving wave only (Davies, & Heathershaw,
1984; Mei, 1985; Chamberlain & Port, 1995), fixed body (Sclavounos & Kim, 1995) and
forced-motion body (Eatock Taylor, Wang & Wu,1994). They are generally unable to give
satisfactory results for cases with strong nonlinearity, such as those associated with extremely
steep waves and their interaction with the floating bodies. As indicated by Koo & Kim (2004),
third order or higher order contributions of the force on a freely floating body in their test cases
are very obvious. This means a fully nonlinear analysis is necessary to deal with these problems,
particularly when the waves are very steep or overturning as shown in Fig.1.1.1 and Fig.1.1.2.

In order to consider full nonlinearity associated with wave-structure interaction problems, all
terms with different order should be taken into account in the expansions. Therefore, the
expansions are difficult or impossible to solve analytically. Although an experimental
investigation can be carried out, it is expensive and the results might only be applicable to some
special cases. This generates more interest in numerically simulating nonlinear water waves and
their interaction with structures.

To numerically simulate these problems, there are mainly two classes of theoretical models
for cases with finite water depth. One is based on the general flow theory and the other is based
on the potential theory. In the first class of models, the Navier-Stokes and continuity equations
together with proper boundary conditions are solved, while in the second class, the Laplace’s
equation with fully nonlinear boundary conditions is dealt with. For brevity, the first class
models will be called NS models and the second called FNPT (fully nonlinear potential theory)
models in this work. Various numerical methods, such as finite element, finite volume and finite
difference methods have been used to solve the Navier-Stokes and continuity equations in
investigating nonlinear water waves and their interaction with fixed structures. Whatever

method is used, solving NS equations is always a time consuming task.
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In the FNPT models, the flow is commonly described using potential theory in which the
viscosity of fluid, the surface tension and compressibility are all neglected. Based on the
potential flow assumption, the flow can be governed by a Laplace’s equation about the velocity
potential. The Laplace’s equation is linear, but the problem is made nonlinear by the boundary
conditions on the free surface. The numerical results obtained by many researchers (Longuet-
Higgins,& Cokelet,1976; Wu & Eatock Taylor ,1995 ; Ma, Wu & Eatock Taylor ,2001b and
Grilli, Guyenne & Dias, 2001 ) have proved that this model leads to satisfactory results even in
cases with overturning waves. The number of unknowns in the FNPT models is smaller than
that in NS models. In addition, the complexity of the Laplace’s equation is also undoubtedly
lower than the Navier-Stokes and continuity equations. Therefore, FNPT has high CPU
advantage of FNPT models instead of NS models.

In these models, the key task is to solve the boundary value problem about the velocity
potential. To do so, boundary element methods (BEMs) have been used in many publications,
such as Cao, Schultz & Beck (1991), Celebi, Kimé& Beck (1998), Clauss & Steinhagen (1999),
Grilli, Guyenne&Dias (2001), Fochesato & Dias (2006), and so on, and have produced many
impressive and useful results. Finite element methods (FEMs) have also been developed and
used for two and three dimensional problems (Cai & Langtangen, 1998; Westhuis &
Andonowati , 1998; Ma, Wu & Eatock Taylor ,2001; Wu & Hu, 2004). Though both methods
have proved to be quite efficient, the FEMs need less memory and so are computationally more
efficient, as indicated by Wu & Eatock Taylor (1995) , Ma (1998) and Ma, Wu & Eatock
Taylor (2001a,2001b). A drawback of the FEMs, however, is that an unstructured mesh 1is
generally required for complex interaction between water waves and structures (e.g. the mesh
around the complex-shape floating bodies or overturning waves) and may need to be remeshed
at every time step to follow the motion of waves and/or structures. Repeatedly regenerating
such a mesh can make the required CPU time prohibitive in a simulation of several thousands
steps on a normal workstation. How to reduce the computational expense in dealing with mesh
has become a bottleneck of FEM for numerical simulation of nonlinear interaction between

steep waves and freely floating bodies.

1.2, Objectives of the study
This study will develop a new finite element scheme based on a fully nonlinear potential

theory to simulate the interaction between steep waves and three-dimensional freely floating
bodies. In this method, the computational mesh is moved, in place of regenerating it, to conform
to the motion of the boundary. All the simulations will be carried out in a numerical wave tank.

The main tasks are,

1. Develop a robust method to move the unstructured mesh in order to conform to the
motion of the boundary;

23



2. Develop a velocity calculation method to evaluate the velocity at the nodes on the free
surface and the body surface based on the velocity potential suitable for the arbitrary
and moving the mesh;

3. Develop a method to calculate the motion of the free-response floating structures;

4. Apply these methods to simulate the steep waves and their interaction with sandbars on
the sea bed;

5. Apply these methods to simulate two-dimensional and three-dimensional interaction

between waves and free-response floating bodies.

1.3. Outline of the thesis
A literature review and a discussion of previous work are presented in Chapter 2. The

mathematical formulation and numerical models are described and discussed in Chapter 3. A
scheme to move the computational mesh and the method to calculate the velocity follows in
Chapter 4 and 5. In Chapter 6, an iterative procedure to calculate the acceleration of and force
acting on the floating body is presented. Chapter 7 presents the application of this method in the
modelling the steep waves in a numerical tank and its interaction with sandbars on the seabed.
The interaction between steep waves and two-dimension floating bodies are presented in
Chapter8, while Chapter 9 gives the validation and discussion for 3D response of the floating
body to steep waves. The thesis ends with the conclusion and recommendations for the future

work in the Chapter 10.
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2. LITERATURE REIVEW AND DISCUSSION OF PREVIOUS WORKS

This chapter reviews previous studies associated with modelling the interaction between
steep waves and floating bodies. There are various methodical models such as linear model in
the frequency domain, linear model in the time domain, high order model in the frequency
domain, high order model in the time domain based on the assumption for potential flow.
Detailed review of these models has been given by Ma (1998). The present thesis focuses on the

modelling of fully nonlinear water waves and their interaction with floating bodies.

2.1. Mathematical models
To numerically simulate the fully nonlinear water wave problem, two types of mathematical

models are commonly employed. As described in Chapter 1, one is based on the general flow
theory (NS models) and the other is based on the potential theory (FNPT models).

2.1.1 NS models and different formulations

In the community of researchers who use NS models, the Navier-Stokes and continuity
equations together with proper boundary conditions are solved. Because viscosity is taken into
account in the Navier-Stokes equations, the NS models are more widely used in cases where the
viscosity plays an important role, e.g. viscous dynamic free surface (Hirt & Nichols ,1981;
Huerta, Liu,1988; Navti, Lewis & Taylor,1998; Spivak, Vanden-Broeck & Miloh,2002; Yue,
Lin & Patel ,2003; Greaves,2004 and Wu, Eatock Taylor.& Greaves,2004), boundary layer near
the moving boundary ( Zhang & Chwans, 1996, 1999), shallow water waves and/or breaking
waves ( Chen, 2003; Hieu, Katsutoshi & Ca,2004; Devrard D., Marcer, Grilli & Fraunie .etc.,
2005; Layton, Christara & Jackson, 2006) , wave-current-body interaction (Park,Kim& Miyta
2001). In the above applications, the common character of the computational domain is that the
boundary of the domain, i.e. the free surface and the body surface, is moving during the whole
calculation. According to this character, three different formulations have been suggested in
order to treat the deformation of the fluid domain. They are Eulerian, Lagrangian and arbitrary
Lagrangian-Eulerian (ALE) formulations.

In the Eulerian formulation, a fixed computational mesh is employed. The fluid moves
relative to the mesh. Use of this formulation can handle, with relative ease, large distortions of
interfaces between two different materials by employing proper interface capturing techniques
(such as volume of fluids and level set). For example, Hirt & Nichols (1981) modeled the

dynamics of free surface boundaries, Navti, Lewis & Taylor (1998), Yue, Lin & Patel (2003)
and Greaves (2004) followed. Though they got acceptable results, a larger domain than

hecessary was employed in their application. This is because the domain must cover the area
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where the fluid may reach. Furthermore, an extra governing equation should be solved which
may smear the interfaces and the flow details near the air-fluid boundary. In addition, it seems

have difficulty in handling cases with interfaces of three different materials, such as those with

floating bodies in waves.

In the Lagrangian formulation, all nodes follow their corresponding fluid particles. In the
other words, the velocity of the mesh nodes is equal to the velocity of the particles. As a result,
the formulation allows a sharp tracking of interfaces between different materials. For instance,
Donea , Fasoli-Stella & Giuliani (1976) simulated the transient fluid-structure problems by
using FEM. However, if large distortions of the fluid domain occur, some nodes may become
too close to or too far from others, leading to a breakdown of the computing process if
remeshing is not performed.

The arbitrary Lagrangian Eulerian (ALE) formulation is a hybrid approach, in which the
computational mesh does not need to adhere to fluid particles or to be fixed in space but can be
moved arbitrarily, Based on this description, both the Eulerian and Lagrangian methods are
special cases of the ALE method. This provides a capability to keep the character of the
computational mesh and avoid any mesh collapsing or frequent remeshing. Therefore, the ALE
formulation can make use of the merits of both the Lagrangian and Eulerian formulations and
alleviate many of their drawbacks. Specifically, the interface can be precisely tracked without
necessarily remeshing. Of course, the nodes have to be moved in order to conform to the
deformation or distortion of interfaces or boundaries and the governing equations are made a bit
more complex to account for the moving velocities of the mesh. The ALE formulation has been
discussed and used in many publications. Huerta & Liu (1988), Henning & Peter (2000), Teng,
Zhao & Bai (2001), Souli & Zolesio (2001) and Fabidn, Raul & Srinivasan (2004), .et al. are
some recent applications of this method in the free surface problems.

Finite element, finite volume and finite difference methods are commonly used to solve the
NS models in one of the above formulations/descriptions. However, there are three unknowns

in 2-dimensional and four in 3-dimensional NS equation. Solving such an equation is always a

time consuming task.

2.1.2. FNPT models

However, the velocity potential, in place of velocities is solved as unknown in the FNPT
model. The governing equation is therefore simplified as a Laplace’s equation for velocity
potential. After the velocity potential is solved, the velocity can be obtained by calculating the
spatial derivative of the velocity potential. The pressure can be estimated by using Bernoulli’s

equations. So they need much less computational resources to solve than the NS model. The

FNPT model has high superiority in effective simulation of water waves. The linear Laplace’s

equation is made nonlinear by the boundary conditions on the free surface and the body surface.
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A fully nonlinear boundary condition makes the simulation closer to the physical problem and
so more suitable for some cases than second-order or higher order nonlinear boundaries which
are usually used in analytical solutions.

In this model, the viscosity is ignored. Nevertheless, Comparison with experimental data,
such as Clauss & Steinhagen (1999), Ma, Wu & Eatock Taylor (2001b) , has shown that the
results obtained by this model are accurate enough in many cases. Grilli, Guyenne, &, Dias
(2001) also gave accurate enough results even for cases with overturning waves and shoaling
over a sea bed with complex geometry. Therefore, the FNPT model instead of the NS model
should be employed if a case considered does not involve wave breaking and/or with small
structures. The FNPT model has thus been adopted in many publications for problems
associated with the nonlinear water waves and their interactions with structures.

The Laplace’s equation is independent of time, but the boundary condition is time-dependent.
These models are usually solved by a time marching procedure suggested by Longuet-Higgins
& Cokelet (1976). Once the wave profile and the position of the structure are known in a time
step, a mixed Dirichlet and Newman boundary value problem is formed which can be solved by
a numerical method such as the finite element, boundary element method or other numerical

methods. The velocities obtained at the nodes on the free surface will give a new free surface
profile. The Bernoulli equation is applied to find the force acting on the structure, Newton’s law
will provide the new acceleration, velocity of the structure and therefore gives the new position
of the structure. All of these will enable the problem to be solved at the next time step. The
procedure can be repeated in principle for any desired period of time. Although Longuet-
Higgins & Cokelet (1976) only focused their attention on two-dimensional wave problems, the
results they obtained showed a high potential for their approach to be used for more complex
problems. Their work created a foundation for the development of this model. Soon afterwards,
Vinje & Brevig (1981) included two-dimensional submerged bodies in a fluid domain. Lin,
Newman & Yue (1984) investigated the motion of the floating body.

Since then, many researchers worked on FNPT models and published many valuable papers.
Most of them studied nonlinear waves propagating in a tank or its interaction with the seabed or
submerged bodies. For example, Grilli, Skourup & Svendsen (1989), Grilli & Svendsen (1990),
Ferrant (1994), Wu & Eatock Taylor (1994, 1995), Grilli, & Subramanya (1996), Grilli &
Horrillo (1997) covered two dimensional cases. Cao, Schultz. & Beck (1991), Celebi Kim &
Beck (1998), Grilli, Guyenne & Dias (2000) , Grilli, Guyenne & Dias (2001), Fochesato, Dias&
Grilli (2003), Biausser, Grilli &. Fraunié (2003), Fochesato Dias & Grilli (2005) and Grilli,
Fochesato & Dias (2005) simulated three dimensional cases.

In those applications, there are no surface piercing structures and therefore no intersecting
lines (waterlines) between the structures and the free surface. Once a piercing structure, e.g.

cylinder, is involved, the singularity problem and other problems associated with the waterlines
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should be treated. Lin, Newman & Yue (1984), Wang, Yao & Tulin (1995), Grilli & Svendsen
(1990), Grill & Subramanya (1994), Rainey (1997) discussed this problem and suggested
different methods to deal with different singularity problems. A detailed review can be found in
Ma (1998). Based on their suggestions, many investigations on the interaction between the
waves and fixed or forced-motion structures have been made by various researchers. For
example, Xue & Yue (1995), Ferrant (1995), Ma (1998) , Kim, Celebi & Kim (1998), Ma, Wu
& Eatock Taylor (2001), Ferrant, Touze & Pelletier (2003), Markiewicz, Ben-Nasr, &
Mahrenholtz (2003) simulated the wave scattered by fixed cylinders. Kashiwagi (1996)
simulated the waves generated by a heaving floating body. Hu, Wu & Ma (2002) investigated
the interaction between the waves and the forced-motion cylinders while Wang (2005)
simulated the ship waves.

However, the publications about the interaction between fully nonlinear waves and free-
response bodies are still very limited. One reason is the difficulty of evaluating the force on and
acceleration of the floating body. This problem will be discussed in Section 2.5. Using the
techniques for solving such a problem, several researchers have investigated 2D cases. Wu &
Eatock Taylor (1996,2003) simulated the transient motion of a floating body in steep water
waves. Beck (1994, 1999), Cao, Beck & Schultz (1994) made nonlinear computation of wave
loads on and motions of a free-response rectangular barge in incident waves. Tanizawa
(1995) ,Tanizawa & Minami (1998) , Tanizawa Minami & Naito (1999) , Koo (2003) and Koo
& Kim (2004) simulated 2-dimensional barge-type freely floating body. Kashiwagi & Momoda
(1998), Kashiwagi (2000) and Contento (2000) investigated wave-induced motions of 2-
dimensional floating body with complicated shapes, Wang & Wu (2006) simulate the response
of a 2D non-wall-sided body to nonlinear water waves. Compared to 2-dimensional problem,
the three-dimensional problem is relatively more difficult to simulate not only because of more
computing resource requirements but also because of many numerical difficulties, such as
fitting the body surface, tracing the wave profiles and resolving the singularity problem on the
waterlines. To author’s knowledge, very few researchers presented numerical results for 3D
cases. Only Wu & Hu (2004) have recently modelled the fully nonlinear interaction between
waves and a three-dimensional cylindrical FPSO-like structure. Though, they presented
interesting and encouraging results, the body geometry was relatively simple. The cases they
simulated are symmetrical along the y-axis. This means that only 3 degrees of freedom is
considered in their application. The nonlinear three-dimensional model also forms the basis of
this study.

It should be pointed out that Boussinesq type models are also commonly used to simulate

highly nonlinear water waves. (Madsen, Murray & Sorensen,1991,1992; Nwogu 1993; Wei,
Kirby & Grilli .et al. 1995;: Gobbi & Kirby, 1999; Madsen, Bingham & Liu,2002 ; Walkley &
Berzins, 2002; Madsen, Bingham & Schaffer,2003; Fuhrman & Bingham,2004; Fuhrman,
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Bingham & Madsen,2005 ; Koutandos, Karambas & Koutitas,2004). However, Boussinesq
equations are obtained by integrating Laplace’s equation in the vertical direction (the classic
derivation can be found in Peregrine, 1967), it is therefore impossible to solve the problem
involving free-response floating bodies because the fluid might be separated from the floating
body in vertical direction. Hence, Boussinesq type models are not suitable in cases involving

freely floating bodies.

2.2. Numerical methods
Both in the NS model and the FNPT model, the governing equation together with the

corresponding boundary condition are impossible to be solved analytically. A numerical
technique is therefore necessary to solve the above models. In order to achieve high
computational efficiency the FNPT model is chosen in this work because it requires much less
computing resources than the NS model. In order to solve the FNPT model, one key task is to
solve the boundary value problem (BVP) for velocity potential. For this purpose, different
numerical methods, such as finite difference methods (FDMs), finite volume methods (FVMs),
boundary element methods (BEMs) and finite element methods (FEMs) have been used.

FDMs and FVMs are commonly used to solve NS or Boussinesq type models to investigate
the nonlinear water waves and their interaction with fixed structures. Only few publications
presented their applications to FNPT models. For example, Telste (1985), Yueng & Wu (1989)
and Yeung & Vaidhanathan (1990) proposed a FD procedure to simulate nonlinear fluid motion
In a tank, Mayer, Garapon & Sorensen (1997), Hu, Greaves & Wu(2002) applied finite volume
method to simulate the wave flow and got well agreement with experimental data. The
boundary fitting problems associated with the FDMs make it difficult to be adopted in wave-
structure interaction problem. Except in the simulation of overturning wave problems, FVMs
are also not commonly used.

Apart from the above mesh based methods, meshless methods such as Smoothed Particle
Hydrodynamics method (see, for example, Monaghan, 1988, 1994; Shao & Lo, 2003), Moving-
particle Semi-implicit method (see, for instance, Ataie-Ashtiani & Farhadi, 2006) and Meshless
local Petrov-Galerkin method (see, for example, Ma, 2005) are also used by many researchers.

Nevertheless, the mesh based methods are mainly considered here.

2.2.1. Boundary element method

In the BEMs, a Green function together with integrating the source on the boundaries of the
fluid domain is used to solve the BVP. For the linear problem, a Green function which satisfies
both the Laplace’s equation in the fluid domain and the boundary condition on the free surface
can be found (Wehausen & Laitone, 1960), only the sources distributed on the body surface are

needed. Accordingly, the BEM is more efficient than any other methods. However, the
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advantage is lost when dealing with nonlinear problems because the source over the free surface
is also needed. In order to overcome this problem, a perturbation expansion was applied on the
free surface, This allows a boundary condition to be imposed on a fixed boundary. Based on this
feature, the Green function is calculated only once in the beginning. Therefore, the efficiency is
still high. By using this approach, Zhang& Willams (1996) simulated a second order problem in
a time domain associated with wave diffraction and radiation, Skourup, Buchmann & Bingham
(1997) modelled wave runup on vertical cylinder.

Obviously, for the fully nonlinear problem, the free surface as well as the body surface is
changing during the whole calculation. On the other hand, a second-order approximation of the
perturbation expansions is not accurate enough. Both the Green function and the integration of
the source on both free surfaces and body surfaces have to be calculated at every time step.
These repeated calculations undoubtedly increase the computational cost of BEMs.
Nevertheless, since Longuet-Higgins & Cokelet (1976) used BEM to simulate a 2D fully
nonlinear wave-structure problem, many researchers have applied BEMs based on FNPT and
produced useful results, such as Vinje & Brevig (1981), Lin, Newman & Yue (1984) , Grillj,
Skourup & Svendsen (1989), Grilli & Svendsen (1990), Cao, Schultz & Beck (1991),Beck
(1994), Wang, Yao & Tulin (1995), Tanizawa (1995),Kashiwagi (1996), Grilli & Horrillo
(1997), Celebi, Kim & Beck (1998), Kim, Celebi & Kim (1998) ,Tanizawa & Minami (1998),
Tanizawa Minami & Naito (1999) ,Grilli, Guyenne & Dias (2000), Grilli, Guyenne & Dias
(2001), Fochesato, Dias& Grilli (2003), Biausser, Grilli &. Fraunié (2003),Koo& Kim (2004),
Fochesato Dias & Grilli (2005) and Grilli, Fochesato & Dias (2005), etc.

However, two common problems are involved in the BEMs. The first one is the well-known
singularities problem associated with the source distribution on the real surface of the fluid
boundary. The integration around the singularities should be specially treated which always
results in costly calculation. As discussed by Grilli & Svendsen (1990), near the intersections of
boundary (e.g. between the free surface and lateral boundaries) or in other regions of the free
surface near the overturning breaker jets, the singular problem exists. Grilli & Svendsen (1990)
and Grilli & Subramanya (1994) developed different schemes to treat the weakly singular and
quasi-singular problem. These methods have been widely used. Some examples can be found in
Grilli, Guyenne & Dias (2000), Grilli, Guyenne & Dias (2001), Fochesato, Dias& Grilli (2003),
Biausser, Grilli &. Fraunié (2003), Fochesato Dias & Grilli (2005) and Grilli, Fochesato & Dias
(2005). But the loss of the accuracy for such method may be several orders of magnitudes when
the distance to the collocation node becomes very small. An alternative method, developed by
Cao, Schultz& Beck (1991) and Beck, Cao, Scorpio& Schultz (1994) is the desingularised
boundary integral method. In the desingularised method the sources are distributed on an
artificial surface outside the fluid domain. In order to simulate the actual problem, the resultant

source from the artificial surface should satisfy the boundary condition. This method can avoid
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the singularity problem existing on the boundary surface. Recent applications can be found in
Lalli (1998), Longuet-Higgins (2001), Schoberg & Chaplin (2003) and Schoberg & Rainey
(2003). All the above applications demonstrated that the desingularised method is efficient.

The second problem with BEMs comes from the coefficient matrices of algebraic equations

in the BEMs. The coefficient matrices are fully populated because every node in the BEM is

affected by all the other nodes. To store these coefficient matrices, massive memory is required.

For the purpose of saving the memory required, some researchers used higher-order BEMs (Xii
& Yue,1992; Grilli, Guyenne & Dias,2000,2001). However, solving such fully-populated
algebraic equations is still a time consuming process. Though Fochesato & Dias (2006)

presented a fast BEM method which introduced the fast multipole algorithm to reduce the

computing complexity from O(N?) to nearly O(N) where N is the number of the nodes on

the boundary. Compared to the conventional BEM by Grilli, Guyenne & Dias (2000, 2001), the
fast BEM improves the efficiency dramatically. Even so, the CPU time required is still very

high. For example, in a case with 6,022 nodes on the boundary, 329s per time step is needed for
the fast BEM method, but 1,852s for conventional BEM (Fochesato & Dias, 2006).

2.2.2. Finite element method

Beside the BEMs, FEMs are also efficient for solving such BVP problems. In this method, an
equivalent weak formulation, instead of the original governing equation, is used. The whole

fluid domain is discretised into a computational mesh. The unknown at each node can be
expressed in terms of a shape function. Using the Galerkin method, the weak formulation of the
Laplace equation and the boundary conditions can be described as algebraic equations. The
BVP problem is therefore solved. The application of FEM in the water wave problems can be
traced back to Nakayama & Washizu (1980) who studied the liquid motion in a container
subjected to a forced pitching oscillation. Lee& Leonard (1988) followed.

Wu & Eatock Taylor (1994,1995) and Eatock Taylor (1996) extended FEM to FNPT models
and simulated different types of nonlinear waves, including the waves generated by a piston
wave maker, standing waves in a container and forced oscillation of a cylinder. Since then,
many researchers have applied the FEM to treat different wave-body interaction problems. For
example, Broderick & Leonard (1995) simulated nonlinear response of membranes to ocean
waves, Sannasiraj & Sundaravadivelu (1995) investigated the hydrodynamic behaviour of long
floating structures in directional seas, Ma (1998) and Ma, Wu & Eatock Taylor (2001) extended
FEM into 3D applications, i.e. waves generated by a piston wave maker, sloshing waves in a
container, the nonlinear interaction between waves and fixed cylinders. Cai, Langtangen &
Nielsen .et al. (1998) simulated 3D water waves in a wave tank with an obstacle submerged
under water or a surface piercing obstacle. Kanoria & Mandal (2002) investigated water waves

scattered by a submerged circular-arc-shaped plate. Further applications can be found in
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Sannasiraj, Sundar & Sundarravadivelu (1998) , Sannasiraj, Sundaravadivelu, Sundar (2000),
Westhuis & Andonowati (1998), Cho, Jeong & Woo ( 2004), Wu & Hu (2004), Zheng, Shen &
You .et al. (2004), Bai, Choo & Chung .et al (2005), Kyoung, Hong & Kim .et al. (2005),
Sriram, Sannasirai & Sundar (2005)and Wang & Khoo (2005).

Unlike the BEMs, the FEMs require the whole fluid domain to be discretised. Therefore, the
number of nodes or unknowns in FEM is much larger than in BEM. Nevertheless, nonzero

elements in the matrix for the FEM may be less than in that of for the BEM since any node in

the FEMs only those connected with the node. Ma (1998) has analyzed the number ( £,) of non-

zero elements in the coefficient matrix for FEM and the number ( £, ) for BEM by considering a

rectangular-box fluid domain as an example. He concluded that

%- " -g-max(Ml M,,N) (22.1)

e

where M,,M, and N are the number of planes along the length, width and depth respectively.

It is clear that as the number of nodes increases, the FEM needs much less memory than that for
BEM. Wu & Eatock Taylor (1995) compared the FEM with the BEM for 2D cases and

suggested that the FEM was actually more efficient in terms of storage requirement and solution
time than the equivalent boundary element method. Similar conclusions were reached by
Westhuis & Andonowati (1998), Cai, Langtangen & Nielsen et al. (1998) using the results of
similar comparison.

As is known, the fluid domain is being deformed at different instances during the calculation

because of the motion of the free surface and the floating body. Therefore, the computational
mesh in the FEM or the grid in the BEM should follow the deformation of the fluid domain. In

the applications where BEMs are used, only the grid on the boundaries is required. The nodes
on the boundaries usually follow the fluid particles determined by the physical boundary
conditions on those boundaries in the time marching procedure of the FNPT models. In this
situation, the nodes tend to group themselves in regions of high curvature and also may lead to
distort the grid. This phenomenon leaves regions of lower curvature poorly defined. Therefore,
the grid required usually should be regenerated in the applications using BEM (Heister, 1997 ).

In applications where FEMs are used, the whole mesh including the surface mesh needs to be
updated at every time step to follow the motion of waves and structures. Undoubtedly,
generating the whole mesh is more difficult and hence more expensive than generating the
surface mesh. On this point, FEMs seem less efficient than BEMs, particularly in cases where
an unstructured mesh is required.

Conventionally, a simple structured mesh has been used in applications where the FEM is
employed, such as Wu & Eatock Taylor (1994, 1995), Ma (1998) and Ma, Wu & Eatock Taylor

(2001a,b). That is because a structured mesh is easy to generate and therefore requires less CPU
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time to regenerate at every time step. For the same purpose, Wu & Hu (2004) have recently
employed a hybrid mesh. In their approach, a 2D mesh in a horizontal plane (say, the free
surface at t=0) is first generated and then vertical lines are drawn to construct a 3D mesh. The
2D mesh is formed by combining an unstructured mesh in a region near structures with a simple
structured mesh (similar to Heinze, 2003) in other regions. This is a sensible approach but
restricted to cylindrical structures without roll and pitch motions. Once the floating bodies are
in roll/pitch motion, the above approach is not applicable and so an unstructured mesh is
necessary in order to discretise the area around the floating body. For example, Wang & Wu
(2006) used an unstructured mesh based FEM to simulate 2D interaction between the nonlinear
waves and non-wall floating bodies. In their cases, the CPU time required for regenerating the
2D unstructured mesh may be much more than that required for all the other numerical
processes, such as solving BVPs and calculating velocities on the boundaries. Obviously, it
takes much more time to generate a 3D unstructured mesh than a 2D mesh. Repeatedly
regenerating such a mesh can make the required CPU time prohibitive in a simulation of several
thousands steps on a normal workstation.

In order to reduce the CPU time spent on regenerating the required mesh at every time step,
Turnbull, Borthwick & Eatock Taylor (2003) developed a coupled structured-unstructured mesh
based FEM for simulating the wave-structure interaction. In their applications, the fluid domain
was separated into several sub-domains, those near the structures and the rest. The mesh is
unstructured in the sub-domains near the structures but structured in others. This method
reduced the CPU time spent on regenerating the mesh required through reducing the area where
the unstructured mesh would cover. Actually, the problem associated with regenerating a mesh
repeatedly was not fully solved. An unstructured mesh in a sub-domain still needs to be
regenerated at every time step. Alternatively, Wu, Eatock Taylor & Greaves (2004) developed
a coupled finite element and boundary element method. In this coupled method, FEM is used
away from the body while the BEM is used in the region near the body. The combination 1s
based on the consideration of the efficiency of the FEM and the BEM in computation and mesh
generation, respectively. As has been mentioned above, only the boundary mesh is required for
the BEM. One only needs to regenerate the surface mesh, in place of regenerating a complex
unstructured mesh, in the area around the floating bodies. Because different methods are used
in different sub-domains, an iterative method is needed to make the velocity potential
continuous in the intersecting area between the sub-domains where the FEM is applied and the
one where the BEM is applied.

Apart from the above approaches, Cai, Langtangen & Nielsen et al (1998) developed a finite

element formulation based on a time-dependent fluid domain mapping technique. A fixed

reference domain, which is mapped from the actual fluid domain time to time, is employed for

the finite element solver. But this method may not give results as good as those obtained by Wu
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& Eatock Taylor (1994,1995) in which remeshing is carried out repeatedly, as indicated by
Westhuis & Andonowati (1998).

It is concluded that the problem associated with the computational mesh has further limited

the development of the FEMs in the wave-body interaction problems. In order to overcome this

problem, a robust method needs to be developed herein.

2.3. Existing methods for the calculation of velocities
As mentioned in Section 2.1.2, the velocities on the boundaries provide a possibility to

update the free surface and the position of the bodies in the time marching process of FNPT
models. The error in the velocity calculation in the current time step may be brought to the next
time step through the procedure of updating the position of the free surface and the body surface.
That means the error may be accumulated in the calculation. Accurate estimation of the
velocity on the boundary is one of the most important procedures in the time marching process.
Because an FEM method is used in this thesis, only the velocity calculation schemes in the
applications where FEMs are employed are discussed in this section.

A directed approach is to solve the velocity in a similar way to that for the velocity potential.
To do so, a mixed element method and a formulation based on the Galerkin method were
developed by Wu & Eatock Taylor (1994) and were found to lead to satisfactory results. This
approach was recently followed by Wang & Wu (2006). In this approach, the velocity
components as well as velocity potential are treated as unknowns. Therefore, more memory and
CPU time is required than solving velocity potential only. On the other hand, the velocity at
every node in the fluid domains is solved in this approach. But only the velocities on the free
surface and the body surface are required in most of the cases, unless one wants to investigate
the velocity field of the fluid domain. In this aspect, this approach is not effect.

Alternatively, the velocities can be alternatively estimated by calculating the spatial
derivatives of velocity potential. Wu & Eatock Taylor (1995) suggested a FD scheme to
calculate the velocity once the velocity potential was available. In this scheme, the velocity at a
node is estimated by using the velocity potentials at this node and the nodes connected to it.
Their results indicated that this method could achieve similar accuracy and require far less CPU
time than the other methods. However, the neighbours of a node on the free surface are
distributed either on or below the surface, the normal (or nearly vertical) component of the
velocity estimated by the approach generally possesses relatively low a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>