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Abstract

Evolutionary computation, including genetic algorithms and genetic programming
have taken the 1deas of evolution in biology and applied some of the characteristics
to problem solving. The survival of the fittest paradigm allows a population of
candidate solutions to be modified by sexual and asexual reproduction and mutation
to come closer to solving the problem in question without the necessity of having
prior knowledge of what a good solution looks like.

The increasing importance of Nuclear Magnetic Resonance Spectroscopy in
medicine has created a demand for automated data analysis for tissue classification
and feature selection. The use of artificial intelligence techniques such as
evolutionary computing can be used for such data analysis.

This thesis applies the techniques of evolutionary computation to aid the collection
and classification of Nuclear Magnetic Resonance spectroscopy data. The first
section (chapters one and two) introduces Nuclear Magnetic Resonance spectroscopy
and evolutionary computation and also contains a review of relevant literature. The
second section focuses on classification. In the third chapter classification into two
classes of brain tumours is undertaken. The fourth chapter expands this to classify
tumours and tissues into more than two classes. Genetic Programming provided
good solutions with relatively simple biochemical interpretation and was able to
classify data into more than two classes at one time. The third section of the thesis
concentrates on using evolutionary computation techniques to optimise data
acquisition parameters directly from the Nuclear Magnetic Resonance hardware.
Chapter five shows that Genetic Algonthms in particular are successful at
suppressing signals from solvent while chapter six applies these techniques to find a
way of enhancing the signals from metabolites important to the classification of
brain tumours as found in chapter three. The final chapter draws conclusions as to
the efficacy of evolutionary computation techniques applied to Nuclear Magnetic
Resonance Spectroscopy.
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Chapter 1

Introduction to Nuclear Magnetic Resonance

1.1 Introduction

Nuclear Magnetic Resonance (NMR) is a technique used both in chemistry and
medical diagnosis as a non-invasive, non-toxic method of examining the structure
and features of a sample. It is based on the idea of using magnetism to align nuclei
of atoms into a direction which will give rise to a magnetic force which can be
measured. The collection of data can concentrate on spatial features which will
allow an image to be constructed, or on the chemical composition of the sample
which will give rise to a spectrum. The latter techniqﬁe 1s used in chemistry, as well
as 1n medical situations and the terms NMR and Magnetic Resonance Spectroscopy
(MRS) would be used to describe the techniques. Imaging is the technique more
used in clinical situations and here the word nuclear is often dropped from the
description because of negative connotations with radioactivity (which is not
required for NMR) leaving the titles Magnetic Resonance (MR) and Magnetic
Resonance Imaging (MRI) as those most commonly used. The terms MR and NMR
are interchangeable and the use of one or the other usually depends only on context.
There are many books available explaining MR (Schild 1990; Westbrook and Kaut
1993, 1998; Gadian 1995; Hornak 1997-1999)

MRI 1n a chinical setting can be used as a diagnostic tool, in examining patients for
the presence and size of tumours or in other soft tissue investigations. In imaging,
the exafnination is typically of a slice, or series of slices, through a subject. The
results are displayed in a two-dimensional grid, with different tissues distinguished
by different intensities on a grey-scale. It has advantages over both X-rays and
Positron Emission Tomography (PET) as imaging techniques partly because of the

lack of toxicity i.e. exposure to ionising radiation. However, X-rays offer better
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results in looking at bone mass and PET has advantages in tracer studies (e.g. for
radiolabelled drugs binding to specific molecular receptors). The lack of toxicity
and invasiveness also allows the possibility of repeat investigations which may have

advantages in evaluating treatment outcomes.

MRS in chemistry is used on samples in vitro and examples of its use are in

identifying the chemical structure of a newly synthesised compound or a potential

drug extracted from a plant.(Gadian 1995; Assion ef al. 1998; Alam and Alam 2005)

NMR has a role to play in medical research where the information collected by both
imaging and spectroscopy can be utilised to provide a fuller picture. NMR
techniques are used 1n the fields of cancer research, neuroscience and cardiology

amongst others.

1.2 Obtaining Signals from Nuclei via NMR

1.2.1 Atoms

An atom has a central nucleus and surrounding electrons. The nucleus consists of
nucleons which can be subdivided into protons and neutrons. Both protons and
electrons are electrically charged whereas neutrons have no charge. Electrons are

negatively charged whereas protons are positively charged.

All elements have one or more isotopes which are atoms with the same number of
protons, but with differing numbers of neutrons. All 1sotopes of an element will
have the same atomic number as that is calculated from the number of protons it has,
but will have different mass numbers as that is calculated from the total number of

protons and neutrons in the nucleus.

Hydrogen atoms contain one proton and one electron. Three i1sotopes of hydrogen
occur, with zero, one and two neutrons respectively. The most common hydrogen
isotope is 'H, containing no neutrons and is known as protium, or more frequently as
proton (although this really refers to the nucleus only). *H, containing one neutron is

called deuterium (water in which 'H is replaced by ’H is known as heavy water) and
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the isotope containing two neutrons, “H, is called tritium. This is a radioactive atom.
A proton 1sotope of hydrogen (henceforth referred to as a proton or lH) has an
atomic number of 1 and a mass number of 1. When the mass number is odd the
nucleus acquires a magnetic moment. The magnetic moment has vector properties

of size and direction.

A property of nuclei, which is utilised in NMR, is spin. This is based on the number
of unpatred protons and neutrons in the nucleus. The unmatched nucleons are what
produce the observable spin. Protons have a spin of 1/2 and nuclei from nitrogen
(**N) have a spin of 1. Only those nuclei that have observable spin can produce

NMR spectra so that carbon (‘°C) and oxygen ('°0) cannot be used.

A nucleus of spin I has 2 + 1 possible orientations, 'H therefore has two. Because
of this the 'H nucleus can be thought of as a bar magnet with two states. When an
'MR-active' nucleus, such as hydrogen, is placed in an external magnetic field it will
align 1ts axis of rotation to that of the external magnetic field. The nuclei will align
either parallel or anti-parallel to the external field. Alignment in parallel requires
lower energy than alignment anti-parallel and so in any sample there will be a small
difference in the number of nuclei in each direction with the greater number aligned
in parallel. The energy difference is proportional to the size of the applied magnetic
field. In order to acquire a signal from the nuclei, they need to be perturbed from
this initial state. A nucleus can switch states from lower to higher by absorbing a
photon which has energy equal to that between the two states. Nuclei with spin
values greater than 1/2 have more complex magnetic properties (e.g. affecting

relaxation).

Quantﬁm mechanics describes restrictions to magnetic nuclei which means that they
do not align precisely parallel or anti-parallel to the external magnetic field but at an
angle. The presence of the external magnetic field also causes the nuclei to precess
around the direction of the external magnetic field. The speed of precession and size
of the precessional path are dependent on the type of nucleus and strength of the

external magnetic field. Figure 1.1 shows the protons aligned with the magnetic

field By
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The forces of nuclei aligned parallel and anti-parallel to the external magnetic field
cancel each other out. The non-cancelled ones will be in the lower-energy, parallel
state. All the forces from these nuclei can be added together to produce a field

longitudinal to the external field. This can be displayed as a net magnetic vector.

The value of the precessional frequency is calculated by the Larmor equation

wo=DBo *y
where y is the gyromagnetic ratio i.e. the relationship between spin and Larmor
frequency of each MR active nucleus and By is the external magnetic field. The
gyromagnetic ratio of hydrogen is 42.57MHz/T. A nucleus with a large

gyromagnetic ratio has a stronger magnetic vector than one with a small

gyromagnetic ratio. Hydrogen has almost the strongest magnetic vector.

Figure 1.1 Protons aligned with the magnetic field By.

1.2.2 Resonance

A nucleus gains energy and resonates if external energy is applied at its precessional
(Larmor) frequency. Other MR active nucler will not resonate as their Larmor
frequency is different. The application of a Radio-Frequency (RF) pulse which
causes resonance is known as excitation. The absorption of energy from the RF

pulse will lead to more nuclei absorbing energy and switching from the low energy
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parallel orientation to the high energy anti-parallel orientation. The energy
difference between the two populations corresponds to the energy required to

produce resonance by excitation.

The net magnetic vector (NMV) will move out of alignment with By as the nuclei
change their precessional path. The angle to which they do that is known as the flip
angle and is often adjusted to be 90° or 180°. The RF pulses which cause these flip
angles are referred to as 90° or 180" pulses. The nuclei gain enough energy from a
90° pulse that the NMV moves to the transverse plane. The nuclei will still precess
at the Larmor frequency and they will also all be in phase, that is, they will all lie at

the same point in the precessional path.

Once the RF pulse is switched off, relaxation begins, 1.e. the nuclei return to the state
prior to the application of the RF pulse. The NMYV returns to alignment with By. If
another 90° pulse is then applied the NMV will tilt to the transverse plan again. If a
second 90° pulse is applied before the relaxation is complete, the NMV will move

beyond 90° and the resulting signal will be different i.e. smaller.

1.2.3 Magnetic Resonance Signal

A coil 1s placed 1n the transverse plane and a signal is produced when the in-phase
magnetisation cuts across the coil. The component of the NMV in the transverse
plane induces a current in the coil. The current in the coil constitutes the signal. The
frequency of the signal is the Larmor frequency and the magnitude of the signal

depénds on the amount of magnetisation in the transverse plane.

1.2.4 Free Induction Decay

When the RF pulse is switched off relaxation occurs. The NMV 1s again influenced
by By, moving to align with it. The amount of magnetisation in the transverse plane
decreases leading to a decrease in the current induced in the coil. This is known as

the Free Induction Decay (FID) and is shown 1n Figufe 1.2
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magnetisation """"l',."" '__ e

Figure 1.2 Free Induction Decay. The amount of magnetisation in the transverse

plane decreases over time

1.2.5 Relaxation

Relaxation consists of two separate and independent processes, spin-lattice or T and

spin-spin or T,. T 1s longer than or equal to To.

T is the recovery of longitudinal magnetisation through the nucle1 giving up energy
to the surrounding environment or lattice. The rate of recovery is exponential. Tj 1s
the time taken for 63% of longitudinal magnetisation to recover in the tissue. T 1s
longer in stronger magnetic fields. T; also varies according to the chemical and
physical environment of the nuclei concerned. The characteristic differences in T}
(and T,) times of water in, for example, grey matter, white matter and cerebrospinal
fluid in the brain can be exploited when imaging to distinguish between different

tissues or to diagnose abnormalities.

T, occurs because the magnetic fields of nuclei interact with each other and
exchange energy; T> is also referred to as spin-spin relaxation. This causes the decay
of transverse magnetisation. The rate of decay is exponential. T; is the time taken
for 63% of the transverse magnetisation to be lost. Essentially, the efficiency of T,

relaxation is affected by how quickly the vector joining two interacting spins rotates.
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T, of pure water is longer than that of water in tissues because of restricted

molecular motion.

1.2.6 Chemical Shift

Nuclei are surrounded by electrons which spin on their own axis and also orbit the
nucleus. Electrons are negatively charged which mean the lowest energy electrons
align against an external magnetic field, unlike nuclei where the lowest energy

protons align with the external magnetic field.

I the nucleus is surrounded by electrons the effect will be to shield the nucleus from
the effects of the external magnetic field and so the effective field at the nucleus will
be smaller than the external field, By by some fraction s. Where there is no

shielding, s will be zero.
Besr = Bo(1 - s)

The electron density round each nucleus varies because of the type of nucleus and
the bonds in the molecule. Therefore, the shielding and the effective field will also
vary. As the strength of the external magnetic field affects the energy separation of
the two states of a proton, the shielding of that field by electron activity will change
the energy separation and therefore will change the frequency of the RF pulse
required to induce a spin transition. It could therefore be difficult to compare spectra

taken from MR machines at different field strengths.

The chemical shift of a nucleus 1s the difference between the resonance frequency of
a nucleus and a standard appropriate to that nucleus. The standard for 'H and C is
usually tetramethylsilane (TMS) which is not naturally present in the body and
provides a single signal at a chemical shift different to most other proton resonances,

at the right edge of the spectrum because the protons in TMS are maximally

shielded.

Chemical shift frequency changes are in the range of hundreds of Hz. Proton

transition frequencies are nominally 60MHz for a typical clinical MR imaging
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system with Bg = 1.5 Tesla. The chemical shift changes are proportional to Bg and
are referred to as a fraction of the nominal frequency in parts per million or ppm.
Figures 1.3 and 1.4 show the chemical shift of alanine and glutamine in 'H

spectroscopy along with their chemical structure.

9 8 7 b S 9 3 Vi 1 O
HSP-43-515 alalgg
(A) (B)
NH,

H00C——CH—CH;
(A)  (B)

Figure 1.3 'H spectrum of alanine showing the chemical shift, plus the chemical

structure (taken from (Sdbsweb))
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HSP-43-523 alalgg

(A) (€) (B)

NH, 0

L B)  (C)

[A]

Figure 1.4 'H spectrum of glutamine showing the chemical shift, plus the chemical

structure.

(taken from (Sdbsweb)

1.2.7 Fourier Transform

Radiofrequency energy can be applied at each of the frequencies that will induce
resonance in protons in different chemical environments in turn - the continuous
wave method. This would allow a build up of a spectrum incrementally. However,
it would take a long time and spectra are not usually collected in this way. The other
method is to apply an RF pulse with a wide enough range of frequencies to induce
resonance in all protons whatever their chemical shift. The resulting FID therefore
contains the sine waves corresponding to the resonance frequencies of all the protons
(or, more precisely, the difference between the resonance frequency and the nominal

(carrier) frequency). This is extremely difficult to interpret as it stands. The Fourier
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transform takes the FID, which is the signal in the time domain and transforms the
data so it is displayed in the frequency domain. In effect, it separates all the
constituent sine waves into their frequencies and displays them 1n a spectrum in their
chemical shift positions. Figure 1.5 shows data acquired from the NMR system 1n

both the time and frequency domain.

(a)

Time — -

(b)

Frequency

Figure 1.5 Data from an NMR system in (a) time domain (b) frequency domain

1.2.8 Signal to Noise Ratio

The signals collected from metabolites with NMR are weak and repeated data
acquisition is usually applied to improve the signal to noise ratio (SNR). With n
acquisitions, the improvement in SNR increases by V¥n. The signal increases by a
factor of n while the noise, being random, increases by ¥n. The signal is collected at

regular intervals after a pulse is applied and the data summed until an acceptable

SNR 1s achieved.

1.2.9 NMR Pulse Sequences

In order to detect MR signals an MR magnet is used with the set up as in Figure 1.6.
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Magnet

Gradient coils

Recelver

[ R T R e .
R S N A aEm g g W A A

Signal
processor

Figure 1.6 A block diagram of an MR spectroscopy or imaging system

A pulse sequence describes the series of pulse activations, waits and signal
collections which are repeated one or more times in order to enhance the signals
from the objects of interest and to minimise the signals from those not required or to

enhance the contrast between different objects of interest

The simplest pulse sequence 1s a single activation pulse followed by a single data
acquisition phase. More usually, a series of pulses and acquisitions are carried out.
Standard pulse sequences are named and one used typically in spectroscopy is the
spin-echo sequence where a 90° pulse is applied followed at a set time by a 180°
pulse which has the effect of rephasing the protons. This pulse does not strengthen
the signal, it acts as an echo, rebounding the protons to bring them back into phase.

The pulse file that generates a 90° or 180° pulse can also be tailored for specific
purposes. Square, binomial and BURP pulse shapes can all be used to generate such

pulses to select particular frequencies.

Other pulse sequences such as gradient echo or for blood flow detection are more

commonly used for imaging purposes rather than spectroscopy.
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1.3 Factor Analysis

One of the reasons for using factor analysis i1s to reduce the dimensionality of
multivariate data by finding underlying relationships between thé data and
expressing the data in one or more factors. (Reyment and Joreskog 1993) These
factors are hypothetical variables which are constructed to describe the
interrelationships between the original variables and thus to simplify the data. The
full set of constructed factors will contain all the information held in the original
variables with the maximum number of factors being equal to the number of original
variables. Factor analysis usually describes a method where finding the maximum
intercorrelations between the original variables is the goal. A variation of this is
Principal Component Analysis (PCA). In this method the factors are created to
account for the maximum variance between the original variables. In order to use
PCA the original variables need to be measured in the same units of measure and the
measurements need to be of the same order of magnitude. If the original data is not
of this form it needs to be standardised. PCA factors are orthogonal. The first factor
1s created to hold the maximum amount of variance possible. The second and
subsequent factors are created to be orthogonal to existing factors whilst describing
the maximum amount of remaining variance. The result of this is the first few PCA
factors will contain most of the variance in the original data without holding

redundant information by replicating the variance in more than one factor.

The PCA factors are designed to hold maximum variance and may therefore contain
significant values from all original variables. It may be more useful to simplify the
structure of the factors. Varimax (Kaiser 1958; Reyment and Joreskog 1993) is a
rotational procedure which rotates the factors in an orthogonal manner. The aim is
to find a set of factors, each of which is loaded heavily on a few of the original
variables and where each original variable is loaded heavily on one or a small
number of factors. This creates factors which are specifically related to small groups
of variables rather than being general. In the case of NMR spectra the effect of

varimax rotation can be to make vectors closer to spectra of individual metabolites.
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It 1s possible to further rotate the PCA factors using promax — a rotational technique
which removes the obligation to maintain orthogonality. This allows the vectors to
become simpler and more easily interpretable. However, it is the case that even after

varimaX and promax rotation the vectors do not always correspond to spectra from

individual metabolites.
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Chapter 2

Evolutionary Techniques and their Use in the Medical

Domain and Techniques for Interpreting NMR Spectra

2.1 Introduction

There are two fields that come together in this thesis, firstly the use of Evolutionary
Computation (EC) techniques to interpret medical data, particularly spectroscopy
data. One of the main reasons for acquisition and interpretation of such data is to
classify the signals into healthy or diseased or high-grade and low-grade disease.
The amount of data generated by medical tests 1s high and does not always easily
lend itself to clear interpretation by human experts. The second area is the use of EC
techniques to generate data by automated or semi-automated means. A tremendous
advantage of MR 1maging and spectroscopy is that there is great flexibility in the
choice of data acquisition parameters. This means that a wide variety of types of
information can be obtained but the optimum set or sets of data acquisition
conditions are not always obvious. The larger research area, in terms of published
papers, is that of extracting meaning from data acquired in medical tests. This
chapter will look at some of the work published from both the EC side where
theories have been developed that can be used in various application areas and the
NMR side where the large quantity of data that can be collected requires some

automated processing to gain full value from it.

There is a large and wide-ranging body of published work dealing with the analysis
and interpretation of medical data by computer methods. The use of medical
diagnostic tests such as MR, Positron Emission Tomography (PET) and
Computerised Tomography (CT) which produce digital data stored on a computer

have allowed the collection and analysis of far larger quantities of data than
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previously. The collection of such data introduces the need for computer-based
analysis, both traditional statistical methods and also Bayesian and Artificial
Intelligence (AI) methods. The analysis of large volumes of data to extract meaning
(either explicitly defined at the outset or not) is a topic that can be described as

feature extraction, classification, search or data mining.

The fields of Al, classification, analysis of computer-collected data and medical
diagnosis have large bodies of work published of both theoretical background and
practical applications of techniques. It is not possible to fully explore all these areas
and therefore, emphasis will be placed on practical applications of techniques within

the medical domain with particular consideration of feature extraction or

classification.

There have been many different techniques applied to the analysis of data from
medical diagnostic tests such as MRI or PET. In the main, this chapter will focus on
situations where Al or other methods have been applied to MR spectroscopy data.
The analysis of image data allows for Al (for instance Neural Networks (NN) and
Self Organising Maps (SOM)) and other methods to aid in edge detection and

segmentation.

Pena-Reyes and Sipper published a review (Pena-Reyes and Sipper 2000) in which
some of the techniques of evolutionary computing are explained and their use in a
medical domain is presented both as a table and an extensive bibliography. Hagberg

reviewed the use of pattern recognition methods for classification of tumours from

MR spectroscopy (Hagberg 1998).

The first section of this chapter is a short introduction to Al with particular reference
to GA and GP. This 1s followed by a discussion of work relating to the PROBEN]
datasets. There will be a section on non-PROBENI1 cancer and then other non

cancer related work.

The NMR section will look at the differing points in NMR collection and analysis
where computer techniques have been found to be useful. These include acquisition,

analysis and application areas.
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2.2 Computing Techniques

2.2.1 Evolutionary Computing

Al 1s a term covering different methods of organising a computer to solve a problem
without enumerating the steps required to do so. The term can be used to describe
search techniques, natural language processing, expert systems, neural networks and
evolutionary computation amongst other things. Although not specifically focussed
on Al (Berthold and Hand 1999) has chapters on neural networks, fuzzy logic and
stochastic methods (covering EC as well as simulated annealing) and Bayesian

methods.

Evolutionary techniques use analogies from biology such as survival of the fittest,
sexual reproduction and mutation. They describe a set of techniques that find
solutions to problems by encoding single or populations of possible solutions and
then trying to find more successful (fitter) ones by -allowing the fitter solutions to
survive and to take part in a swapping of part of the solution with another relatively
fit solution. In order that the process can find its way out of a situation where a
solution may need to get worse before it can get better, the solutions can also be
randomly mutated. Evolutionary techniques have developed along three main lines
with the terms genetic algorithms (GA), evolution strategies (ES) and evolutionary
programming (EP) being used to describe them (Genetic programming (GP) is most
similar to the GA line). The differences between them stem from which facet of
evolution is emphasised (Fogel 1994). Figure 2.1 shows the life cycle of a

population-based evolutionary technique.
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Figure 2.1 The life cycle of a population-based evolutionary algorithm

2.2.2 Genetic Algorithms

Genetic Algorithms have been described in works by Holland (Holland 1975),
Goldberg (Goldberg 1989) and Mitchell (Mitchell 1998). At first GA used a binary-
‘coded vector to describe a candidate solution to a given problem, where each bit of

the vector could take one of only two values. The vector was referred to as a

chromosome and often needed to be decoded to produce the solution.

In GA a population of chromosomes 1s created. Each of these chromosomes is tested
against a set of examples of the problem to be solved. How well a chromosome
performs against this training set of examples 1s known as its fitness. The fitter
solutions are more likely (through one or more of a set of possible selection
procedures) to be selected to be involved in the next generation of chromosomes.
The standard operations available are replication, mutation and crossover. In

replication, a chromosome is copied across to the next generation unchanged.
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Mutation 1nvolves the flipping of a single bit of the chromosome to the other
possible value. Crossover (initially single point) selects the same point in two
chromosomes and swaps the contents of the part after the crossover point with each
other. The chromosomes in this next generation are then assessed for fitness. The
process continues until a fit enough solution is found or a set number of generations
have happened. Binary-coded GA is still used but real-valued GA is more
widespread as it increases the range of problems that can be encoded. The encoding
of a single real number in binary coded GA could take 32 elements (bits) of a
chromosome or one element with real-value coding. The shortening of a
chromosome will have effects on the time taken for fitness values to be calculated
and for genetic operators such as crossover and mutation to be performed. Mutation

and crossover will have different effects depending on the coding method selected.

2.2.3 Genetic Programming

Genetic Programming was first described by Cramer (Cramer 1985) and popularised
by Koza (Koza 1992) There are good introductory and more complex texts on GP in
(Koza 1994; Banzat 1998; Koza et al. 1998; Baeck et al. 2000; Koza et al. 2003).
GP follows on from GA with the use of populations of candidate solutions. The
basic data structure used by GP is a tree and in Koza’s terminology 1is referred to as
an individual. The tree contains function and terminal nodes (variables or constants).
The alphabet of the terminal nodes and functions are selected as being sufficient to
describe a solution to the problem. The individual has its variables instantiated with
test data and the result of the function application over all test data will determine its

fitness.

The data structure used allows for different size and shapes of individuals to be
constructed. In Koza’s descript‘ion there is a description of closure by which all
functions accept arguments and return results of the same type and all terminals are
of that type. This means that all mutation and crossover operations will result in a
syntactically correct individual. Most GP still works on typeless individuals but
there has been much reference to the strongly typed GP of Montana (Montana 1993).
With typed GP the representations of solutions may be closer to the real-world

nature of a solution but the need to type all functions leads to more complexity in

setting up the GP process.
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GP emphasises crossover as the main genetic operator, unlike GA which has tended

to use a greater proportion of mutation.

2.3 The Use of Evolutionary Computing Techniques for Cancer and

Other Disease Diagnosis

The UCI repository of real world databases (Blake and Merz 1998) contains both
medical (breast cancer, thyroid disease) and non-medical (classifying glass types,
approval or not for a credit-card) data. These real world datasets have been donated

by researchers in order to allow benchmarking of machine learning techniques

Schiffmann (Schiffmann et al. 1992) describes a technique where GA is used to
optimise the topology of a NN. The NN is then use(:l to classify the examples. The
dataset 1s not referenced but it has the same number of examples and type of input
features as that described in the UCI repository. The results, which show that GA
can optimise NN topology, may not be directly comparable with others using the

dataset.

Prechelt (Prechelt 1994) has taken some of the UCI datasets and encoded them
specifically as NN benchmarking datasets described as PROBEN1. He has dealt
specifically with null values and incomplete data. He has separated data into
training, validation and test sets so that results reported would be directly
comparable. Where the datasets are small, such as with glass, different partitioning
may lead to differing results, and so he has created three different partitionings of the
data which differ only on the order of the examples. This means that results can be
reported for each separate partitioning. The paper also describes how the datasets
should be used so as to allow real comparison between techniques. It also gives

some baseline results for the datasets including breast cancer.

Some features of the classification datasets in PROBENT1 are shown in Table 2.1
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No. features No. examples No. outputs

T e — e ey S —— p A —

Cancer 9 699 2
R E 690 2
Diabetes g 768 2 -
ene 120 3175 3
R E - 214 le
- 35 020 2 -
|58 136 |3
Mushroom | 125 [ 8124 2
Soybe—an - 683 9

Rl ey .

Thyroid

L " 7

Table 2.1 Features of the PROBEN datasets

The PROBENI1 datasets are suitable for supervised NN learning as each example has

an output value, and so are also suitable for evolutionary techniques.

Brameier and Banzhaf (Brameier and Banzhaf 2001) use Linear GP applied to some
of the PROBENI datasets. Linear GP uses a sequence of instructions from an
imperative language as its data structure. The linear structure i1s represented by a
variable length string containing simple C instructions. Each instruction involves an
assignment to a variable and thus multiple program outputs are simpler than with
tree-based GP where explicit coding of variable assignment i1s required. An
advantage of Linear GP reported in the paper is that ‘introns’, another analogy from
biology here referring to non-useful pieces of code, can be removed prior to

execution, thus speeding up execution time.

The experimental set up involved the division of the population into ‘demes’, a type

of island model in which individuals can migrate to one other specified deme only.

The results reported show that Linear GP can reach a similar generalisation

performance as NN using a backpropagation learning algorithm. They also report

33



that runs using demes perform as well as those without but that effective training

time 1s reduced.

Oltean and Grosan (Oltean and Grosan) use infix form GP on the same datasets.
This technique has individuals as strings encoding complex mathematical
expressions in infix form. They report results that are similar to those from Linear
GP but with a smaller population size and vector length. The results are reported for

the cancer dataset as well as those of diabetes, heart disease and horse colic.

The production of comprehensive rules for classifying data is the focus of (De Falco
et al. 2002). They use a series of one class versus the rest to distinguish between
classes. They use a function set containing logical (AND, OR, NOT) and relational
(<, <=, = ,>>=) operators which lead to trees that can be interpreted as if
<condition> then <class>. The fitness function has a parsimony element to
encourage more compact solutions. The reported results are slightly worse than
those reported by Banzhaf and Brameier but the authors claim that the simplicity and
compactness of the rules evolved make their technique preferable. The inclusion of
arithmetic functions alongside logical ones does improve performance but at the

expense of comprehensibility.

Feature selection and fuzzy modelling are used with the PROBENI1 datasets in
several papers. Emmanouilides’ paper (Emmanouilidis ef al. 1999) uses multiple-
criteria GA and tests it on the cancer dataset although there 1s no real discussion of
the results. Yang and Honavar (Yang and Honavar 1997) use a GA to select feature
subsets in the automated design of NN pattern classifiers. They report success of

this method on the PROBENT1 datasets (they do not use the cancer dataset).

Pena-Reyes (Pena-Reyes and Sipper 2001) describes a method of using co-
evolutionary algorithms with fuzzy systems and test it on the cancer dataset. Co-
evolution refers to the simultaneous evolution of two or more populations of
individuals where the fitness of the populations is coupled. A cooperative rather
than competitive fitness strategy is used to coevolve two species which fulfil the
criteria for two interconnected search processes required for fuzzy modelling — that

for the membership functions (operational parameters) and that for the rules
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(connective parameters). The search is undertaken through an evolutionary
approach. They report that their system is more successful than previous work on

the dataset using both genetic fuzzy and other approaches.

A hybrid of GA and kNN (k Nearest Neighbour, where k is a number) methods to
classify i1s described in (Raymer ef al. 1997). The authors aim to reduce the number
of features required for classification by identifying those that are useful and
eliminating those that are not as they state that even those features that may contain
some useful information can reduce the accuracy of the classifier when the number
of training cases 1s low, as with many medical applications. Their method involves
the GA chromosome being divided into two sections. The first is a selection vector
which has a set of bits per feature, set to 0 or 1. If a majority of the bits are 1, the
feature will be included, and not otherwise. The use of a set rather than a single bit
per feature reduces the effect a single mutation has. The second half of the
chromosome is a weight vector with a single value per feature. The feature values of
each sample in the test set are multiplied by both the selection and weight vectors
and the resulting values passed to a kNN classier. The fitness of the GA is measured
by the accuracy of the kNN classifier and the number of features used in the
classifier, with fitness increasing as the number of features used decreases. The
method was applied to environments of water molecules bound to protein surfaces
and to clinical test results for patients with suspected thyroid dysfunction. The results
show that classification performance was good in both cases, with the use of the
selection vector, allowing similar classification accuracy using fewer features than

that of the GA without the selection vector.

Other papers that have reported work on different techmques and diseases include
Sierra and Larranaga (Sierra and Larranaga 1998) who use a GA to induce Bayesian
Networks based on different methods and then comparing it with a Naive-Bayes
network. They apply it to predicting survival from malignant skin melanoma after
one, three and five years. The GA induced networks had a maximum accuracy of
94% for prediction of survival after one year. Survival after five years is more

difficult to predict with the networks having an accuracy of 69% - 78%.
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Dracopoulos and Kent use GP rather than GA to cleissify patients into those at risk
from oral cancer and those not at risk, based on age, smoking and drinking habits
and regularity of dental visits (Dracopoulos and Kent 1997). They have a large
dataset of 991 training samples and 132 test samples. The samples are heavily
weighted in favour of negative examples with 95% samples 1n both sets being
negative examples. They report results on a par with those found from a NN but
poor compared to those from an experienced manual screener. Langdon also uses
GP in combination with NN for drug discovery (Langdon et al. 2004) and for data
mining DNA chip data from cancer patients (Langdon and Buxton 2004). The use of
GP with a classification tree is described in (Marmelstein and Lamont 1998) where
their results show hat this approach is faster than standard GP, the solutions are less
prone to bloat and are easier to understand (although simplicity of solutions is not
necessarily a feature of either GP or classification trees). The disadvantage of this

approach is the computational time taken to find solutions.

Inza (Inza et al. 2001) uses GA for feature subset selection in the survival of
cirrhotic patients and Aliferis (Aliferis et al. 2002) classify non-small cell lung
cancers. A study looking to classify cervical cancer by identifying sub-visual
changes to cells taken from cervical smears (Hallinen 2001) used a GA to select
input features and a weight vector which were then used by a NN to identify the
presence of one of three types of abnormal cells or the absence of any. The study
was unusual in medical data analysis by having a large set of data; 300 samples in
each of the training and test sets and a balance of normal to abnormal data (an
approximate ratio of 2:1 abnormal to normal). The authors compare their technique
with standard linear discriminant analysis (SLDA) and show that the Al method
finds more true positives but also finds more false positives than SLDA. The Al
technique is also more generalisable than SLDA, though no significantly so. Their
conclusion is that while such feature selection is valuable, the computational

overhead required is too high to make it a feasible alternative to the statistical

approach.

Wang (Wang ef al. 1995) used data from CT scans as input to a self-adaptive expert

system to diagnose brain tumours.
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2.4 NMR Spectroscopy and Pattern Recognition

Much of the early NMR work has focused on the image output with image
segmentation (Bezdek ef al. 1993; Ozkan et al. 19'93; Worth and Ke-nnedy 1994;
Poli) the largest area of research. The acquisition and analysis of spectroscopy data
has been described 1n both medical and chemistry fields. The use of NMR 1n
chemistry will not be discussed here but a review of multivariate analysis of NMR in

chemistry as well as food science and materials can be found in (Alam and Alam

2005)

The application of Al techniques to the field of NMR, and particularly to Magnetic
resonance spectroscopy (MRS), can be divided into the following areas (Figure 2.2).
In data acquisition GA has been applied to pulse design (Freeman and Wu 1987;
Geen and Freeman 1991). Data analysis and quantification of the resulting spectra
can involve (peak) fitting (Ala-Korpela et al. 1995; Pearlman 1996; Stoyanova and
Brown 2002). An application of NMR in the biochemical field involves searching
for the structure or conformation of proteins or simila‘r. Much work has been done 1n
this area with GA (Unger and Moult 1993; Wehrens ef al. 1993; Bayley ef al. 1998;
Piccolboni and Mauri 1998; Krasnogor ef al. 1999)
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Figure 2.2 Application of Al to MRS

Another application is classification of d-ata based on spectra and includes work on
pre-processing of data as well as feature selection. Both GA/GP and NN have been
used for classification along with statistical and other methods (Rutter et al. 1995;
Usenius ef al. 1996; Bakken, I et al. 2001; Mountford 2001). Much of the literature
in this field uses the term feature extraction to describe the same sort of work as
- would be described as classification or data mining in the EC literature. El-Deredy
describes different pattern recognition approaches 1n his review which covers both
dimension reduction of data (including by PCA) and techniques (including NN and
GP) which classify data.
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A paper was published in 1989 (Thomsen and Meyer 1989) in which the authors
suggest that theirs is the first example of a NN being applied to classification of
NMR spectra. Since then there have been many papers published on the use of
pattern recognition methods for classification of spectra. Many of these have dealt

with NN (see Table 2.2) but others have used a range of techniques.

A special edition of NMR in Biomedicine on Pattern Recognition was published in
1998. One of the articles was a review of methods used for tumour classification
with NMR spectroscopy (Hagberg 1998). In this article the author examines
techniques for pre-processing of data (digitisation into chemical shift ranges, wavelet
transform), feature extraction (PCA, Linear Discriminant Analysis (LDA)) and
classification algorithms (cluster analysis, NN). A table is shown of MRS
classification of tumours, showing the methodology used and results obtained.
There 1s only one evolutionary computation technique in this table, a GA used as

part of a consensus diagnosis (Somorjai ef al. 1995).

Other papers in the same edition of the journal show different methodologies and

some of these papers will be described below.

Anthony (Anthony ef al. 1994) describes the use of both PCA and non-linear
mapping (NLM) to reduce the dimensionality of NMR spectra data. Measurements
are taken from 16 metabolites and the distances between the objects are formed by
using least-squares minimisation for the NLM. Alternatively PCA is applied to the
metabolite values from the spectra. NLM refers to thé reduction of dimensionality of
data so that it can be visualised in two or three dimensions. The relative distances
between objects are preserved. The use of NLM by Anthony uses the same
measurement of error (least squares minimisation) as with Sammon Mapping
(Sammon 1969) but it is unclear from Anthony's paper whether other features of the

NLM are the same as those described in Sammon's paper. Sammon Mapping is a

widely form of NLM utilised in this field.

Lisboa (Lisboa, P ef al. 1998) uses PCA and also partial least squares to reduce
dimensionality of NMR speétroscopy data with the resulting variables passed to

statistical techniques. The use of statistical techniques is compared with NN for |
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tissue classification. The statistical methods are linear discriminant analysis (also
reported by Tate (Tate et al. 1998)) and 1*' nearest neighbour (kKNN, where k=1).
LDA seeks to provide linear combinations of variables so that the separation of the
class means is maximised relative to the variance within each class. kNN with k=1
allocates each sample to the class of its nearest neighbour. These techniques are
compared with the use of a multi-layered perceptron. The results are reported as

comparable for both statistical and NN techniques.

Holmes (Holmes et al. 1998; Holmes ef al. 2000) uses a multi-class form of PCA,
called SIMCA, where each class is described by a separate PCA model. She
suggests that the technique performs poorly where there are a large number of
classes or subsets. She also draws attention to the fact that using a large number of
principal components may lead to over-fitting. She suggests using pre-screening to

remove outliers from the data set.

Although many approaches have been used to classify disease, including cancer,
from MR data there appears to be a benchmark of success at approximately 80%. It
is difficult to assess completely the success of one method against another because of
the differing sizes of samples, number of classes and use or otherwise of validation
and test sets as well as the differing techniques but there 1s a commonality of feature
analysis. Table 2.2 summarises some of the work in this field and highlights the

reported results. The table is not an exhaustive list of all the work 1n the field but

shows some of the methods that have been used.

The focus of most papers is that of research where a small number of samples are
used to determine whether a technique can produce meaningful information from
spectra. The uptake of such techniques in a clinical setting has not followed the
reportedly good results possible in many fields. The use of magnetic resonance
' spectroscopic imaging (MRSI), where spectra are taken at the same time as MR
imaging, is described in (Gruber et al. 2005). In this paper the standard technique of
brain lesion classification, biopsy, has risks but has a diagnostic accuracy of up to
more than 90% depending on-tumour. There 1s less accuracy with grading of
tumours and with differentiation between tumour and non-malignant abscesses. The

use of MRSI at this stage can help with treatment strategies. The authors give -
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examples of individual patients where MRSI aided diagnosis and treatment of brain
tumours. They predict that the continuing development of such techniques will lead
to an improvement 1n patient survival rates. However, the costs involved as well as
technical difficulties of collecting good data, mean that such systems will probably
only be used for brain tumours, at least for the next few years. The analysis of
spectra described 1n this paper use both spectrum fitting programs and pattern

recognition techniques.

An alternative approach to examining a single voxel as in standard spectroscopy 1s to
use multivoxel MRSI where a grid of voxels is examined. This allows segmentation
into different tissue types based on spatial as well as metabolic information. In (De
Vos et al. 2007), (Laudadio ef al. 2007) successful nosological classification of
tumours is carried out by a technique based on Canonical Correlation Analysis. The
technique results in coloured segmentation images showing areas of different tissue

types including tumour, necrosis, normal tissue and mixed tissue.
The use of MRSI may help with the problem of small data sets but it appears that the

use of Al techniques to aid in medical applications has not yet passed from a

research to a clinical setting in the way that authors of early papers had predicted.
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Reference | Subject Sample Purpose Computing | Classes Sample | Results
area and area technique size reported
studied
(Anthony | Nephro- Urine classification | PCA, NLM | Various 54 PCA better than
et al. toxocity NLM at
1994) discriminating,
between sites of
action of
treatments
(Somorjai Biopsies | Classification | LDA, NN, | 2 107
et al. of thyroid GP
1995) neoplasms
(Ala- Lipo- Plasma Lipoprotein | NN, 55
Korpelaer | protein quantification | Kohonen
al. 1996) abnorm- -0.019- net
alities 0.019ppm
(101 data
points)
(Usenius Cancer in-vivo classification | NN 4 33 82% success
et al. brain 0.3 -3.4ppm patient,
1996) (206 data 28
points) control
(Maxwell | Cancer Perchloric | classification | PCA, NN 2 Il 118 85% correct
et al. acid (meningiomas
1998) extracts of / non- 47 62% correct
meningiomas)
4 (grades of
| glial
tumour)
(Bakken, I | Epilepsy classification | NN 2 (Healthy, 15
Jetal discased) patient,
1999) 13
control
(Gribbesta | Cancer Perchloric | Metabolite PCA 16
detal. acid tissue | composition | Probabilistic patient
1999) extracts and concen- | NN
tration
2.8 —3.5ppm
(1000 points
[ 17 PCs)
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Reference | Subject Purpose Computing | Classes Sample | Results
area and area technique size reported
studied
(Poptani Cancer and | in-vivo classification | NN 5 (2 grades 98 [ 73% (low-grade
et al. non- brain 0.6 —3.4ppm of glioma, patient, | gliomas versus
1999) tumour (75 data tuber- 40 rest)
cerebral points) culomas, control 08% (high-
disorders abscesses, grade gliomas
healthy) versus rest)
(Bathen er | Cancer, Blood Quantification | PCA, PLSY, | Up to 14 52 PLS and NN
al. 2000) | CHD! Plasma of lipidsand | NN both good
apolipo-
proteins
0.4 —1.4ppm
(1900
points)
(Gerstle et | Cancer NN and 2 (SCCA, 16
al. 2000) LDA’ muscle) patient,
12
control
Parkinson’ | [nvivo classification | Feature 2 (disease or | 31 2 class
s Disease basal 1.5-4.0 sclection by | no disease) | patient, | excellent
(PD) ganglia ppm GA, NN 4 (no dis- 14 results,
(274 data ease,probable | control 4 class 88%
points) , possible, correct.
atypical PD
(Pulkkine | Cancer MRSI Chemical SOMS prior | Unsupervised | 71 94% test set
netal spectra of | shift to LF and but SOM patients, | correct
2002) in vivo correction NN gave 14
tumour (241 data clusters controls
(glioma) points)
(Lee etal. | Cancer MRS classification Pre-ﬁltemg 6 classes of | 98 56% to 96%
2000) spectraof | 0.5-4.2ppm | or ICA” tissue using discrimination
cystsand | (194 data followed by | pairwise between pairs
brain points}) LDA discrimin- of classes
tumours ation
(Huang er | Cancer MRS classification | ICAor | 2 (Astro- 41 62% - 90%
al. 2003) spectra of MBVS® cytomas and depending on
brain glio- method
tumours blastomas
T Coronary Heart Disease * Linear Discriminant Analysis___ -
I Partial Least Squares ° Independent Component Analysis
§ Self-Organising Maps . Multivariatc Bayesian Variable Selection

Table 2.2 Techniques used to extract meaning from MR data
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Chapter 3

The Use of Genetic Methods to Classify Brain

Tumours from NMR Spectra

3.1 Introduction

A tumour 1s a growth of tissue made up of abnormal cells. There are nearly 100
types of brain tumour. Tumours that occur in the brain can be primary (the site of
the first occurrence of this cancer) or secondary (where cancer cells travel from the
originating site elsewhere in the body to the brain via blood circulation). These are
also referred to as metastatic tumours, or metastasis. Primary brain tumours are
often named after the type of cell they developed from. The main cell type in the
brain 1s the neurone which rarely produces cancer cells. Meninges 1s the name given
to the membranes that cover the brain. Meningiomas are benign tumours, meaning
that they are slow growing and the cells do not spread to other tissues. However, the
growth of any tissue in the brain can cause problems due to the rigidity of the skull.
Glial tissue supports the neurones and nerve fibres and types of glial cell include
astrocytes and oligodendrites. Most malignant brain tumours occur in glial cells and
include gliomas, astrocytomas and oligodendrogliomas. Malignant tumours are
graded 1 - 4, high grades (3 - 4) describe a more aggressive tumour, low grades (1 -
2) a more slow growing one. Glioblastoma multiforme is a high grade astrocytoma
~ (grade 4) and is the most common type of primary malignant brain tumour in adults.
Medulloblastomas occur in the cerebellum and are high grade malignant tumours

which are one of the most common brain tumours in children.

Malignant tumours are not homogeneous; in addition to areas of tumour cells there

can be areas of necrosis (dead tissue) and oedema (swelling due to extra-cellular
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- fluid). It may also be difficult to distinguish the edge of a tumour so there can be a

mixture of cell types. Benign tumours tend to be more homogeneous.

Classification into two classes is common in all areas_ including medical applications.
A distinction between presence and absence of disease is the most crucial step in
diagnosis. Further division into types or grades of disease can then be undertaken.
As classification tasks can be generally be posed as a series of one or more one-
versus-the-rest binary classifications it is important to show that a computing
technique can produce good results on a binary classification task. It can also be
useful to show that data from a technique such as NMR can be used to distinguish

between categories.

The application discussed in this chapter is to classify tumours from 'H NMR spectra
(which give information about biochemical compounds in a tissue). These spectra
can be obtained in vivo, but more detailed information is available if they are
obtained from chemically extracted biopsy samples. It would be advantageous if
analysis of spectra data such as these could be used for diagnosis of cancer type or
prediction of treatment response. If this 1s possible 1t would be useful to know what
information in the spectra i1s being used to distinguish between different types of
tumour. The specific data used was a database of 'H NMR spectra of human brain

tumour biopsies. This database was collected as part of a European Community

Concerted Action (Biomed-I PL920432).

Two types of evolutionary computation (GP and GA) were used with this data. GP
and GA both use a population-based strategy whilst differing in the representation of
candidate solutions present in the population. As NN have been used on the same

data set with success a comparison of NN with GA and GP was made.

3.2 Methods

The first stage of starting the classification was to collect and organise the data into a
form that could be input into the classification software. The original data were

collected in the following way; 75 brain tumour biopsies were taken during routine -
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- surgery, frozen in liquid nitrogen and extracted with 0.5M perchloric acid, as
described 1n (Remy et al. 1994). Histology (carried out by the pathology services of
the collaborating hospitals) showed that 28 were meningiomas and the remainder
(non-meningiomas) included a variety of different tumour types: (astrocytoma (14
samples), glioblastoma multiforme (9), medulloblastoma (5), metastasis (5),
oligodendroglioma (3), haemangiopericytoma (3), haemanioblastoma (1), lymphoma
(1), schwannoma (1), chordoma (1), radiation necrosis (1), pineal teratoma (1),
histiocytosis (1), angiofibroma (1) ). This database is a sub-set of that described by

Maxwell et al.,(Maxwell et al. 1998) consisting of the first 75 samples collected in
that study.

'H NMR spectra were obtained at 360 or 400 MHz in “H,0 at pH* 7.0 (pH* = pH
meter reading uncorrected for the deuterium isotope effect) and 25°C. The
spectroscopy parameters were: 90° pulse, pulse repetition time 10 s, spectral width
4303 Hz, 16000 data points, water presaturation and 64-1024 averages depending on
initial tumour weight.(Griffiths 1996)

The spectra were digitised at intervals of 0.010 ppm over the range 4.5-0.5 ppm,
giving 400 variables. Variables arising from lactate (1.26-1.40 ppm, corresponding
to the variables 311-325; and 4.09-4.18 ppm, corresponding to the variables 33- 42),
mannitol (3.63-3.88 ppm, corresponding to the variables 63-87) and a signal at 1.64
ppm (variables 283-292) were all set to zero because they were considered to be
unreliable. Lactate i1s expected to increase during the interval between tumour
excision and freezing, and it was difficult to control this period during routine
surgical procedures. Mannitol is given to patients, in varying amounts, to reduce
brain oedema. The 1.64 ppm signal was considered to be an artefact of the extraction
procedure. This is attributed to acetone which is used for cleaning tubes and
possibly used in the extraction process. Finally, the digitised spectra were
normalised to the sum of all (remaining) variables. Figure 3.1 shows the mean

spectra from the two main tumour classes; meningiomas and non-meningiomas.
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Figure 3.1. The mean spectra from the two main tumour classes, redigitised in
0.01ppm windows. Regions corresponding to lactate, mannitol and around 1.64ppm
have been zeroed and spectra normalised to the sum of the remaining variables as

described in the text. (a) Non-Meningiomas; (b) Meningiomas
Principal Component analysis showed that the first 20 PCs accounted for 99% of the

variance. The PC factors were simplified by varimax rotation. Figure 3.2 shows the

cumulative variance of PC factors and those resulting from varimax rotation.
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Figure 3.2. The cumulative variance from PC and varimax factors
Several of the varimax factors were very similar to '"H NMR spectra from individual

metabolites (e.g. glutamine, alanine, creatine, glutamate, taurine). Figure 3.3 shows

such a comparison for alanine and glutamine.
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Figure 3.3 Comparison of varimax factors with 'H NMR spectra (re-digitised in

0.01 ppm windows) from pure compounds. (a) Vector ‘R’; (b) Alanine spectrum; (c)

Vector ‘B’; (d) Glutamine spectrum. These spectra are shown before the zeroing of

the signal at 1.64 ppm.

49



- Scores were calculated by a dot product of the varimax vectors and spectrum inputs
for each sample. This gave 20 scores (varimax scores) for each sample which were
used as inputs for the GP and GA classification. The class labels were used as

outputs with two possible classes (meningioma = -1; non-meningioma =+ 1).

The GP program used was in written in the computer language Lisp, following Koza,
(Koza 1992). The terminal set consisted of the 20 varimax scores, labelled

alphabetically A-S and U (T being a reserved word in Lisp). The functions used were

taken from those shown in Table 3.1.

Function No. Comments

Arguments
+ 2 - - o
] 7 - -
*® 2 o S l
% 2 Protected division, mo, returns 1.0
IFLTZ 3 Returns 2™ argument if 1% argument < 0, |

otherwise returns 3™ argument

Standard trigonometric function

if both arguments >= 0 return +1 “otherwise

return -1

if one or both arguments >= 0 return -+1

otherwise return -1

if arghment is negative returns +1 otherwise
returns -1 |

Table 3.1. Functions used in GP

Although, in general, the function set used in GP 1s problem-dependent, in this case a
variety of function types were included (arithmetic, trigonometric, logical and
conditional). The arithmetic functions used were standard except for division: a
protected division was employed such that division by zero yielded a real number

(1.0). This allows for the ‘closure’ of the function set whereby the output of any
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- function can be used as the input to another. This is in contrast to strongly typed GP
(Montana 1993) where each function and variable hag. a type and can only be used in
places where that type is appropriate. Typed functions can be more powerful but
remove some simplicity and elegance of closed GP. Logical functions (myand, myor
and mynot, Table 3.1) were included but these were written to accept real valued
inputs (and return a real valued result) instead of truth values. Inclusion of a
conditional function ('if less than zero', IFLTZ) allowed further variability in the
function structure. The minimum function set required to produce good solutions to
this problem was not known in advance and so a larger function set than possibly

required was made available to the system.

The selection method used was fitness-proportionate whereby fitter individuals are
selected more often in proportion to their fitness. The generation method was
'ramped half and half' which creates individuals of different size and depth in the

initial random population.

The standardised fitness was taken to be equal to the number of samples minus the
number of hits, therefore a low standardised fitness score was better with zero being

perfect fitness.
SF =N —no. hits (1)

A hit was scored when the function applied to a sample produced a value with the
same sign as the class label. Runs were tried using least mean square as the fitness
function. On its own it did not increase population fitness during a run, and used in
conjunction with hits it drove the run to premature convergence (1.e. the majority of
individuals within the population converged to a sub-optimum solution) and so its
use was abandoned. The only parameters, apart <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>